
OpenShift Container Platform 4.18

Architecture

An overview of the architecture for OpenShift Container Platform

Last Updated: 2025-12-16

OpenShift Container Platform 4.18 Architecture

An overview of the architecture for OpenShift Container Platform

Legal Notice

Copyright © Red Hat.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides an overview of the platform and application architecture in OpenShift
Container Platform.

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. ARCHITECTURE OVERVIEW
1.1. GLOSSARY OF COMMON TERMS FOR OPENSHIFT CONTAINER PLATFORM ARCHITECTURE
1.2. ABOUT INSTALLATION AND UPDATES
1.3. ABOUT THE CONTROL PLANE
1.4. ABOUT CONTAINERIZED APPLICATIONS FOR DEVELOPERS
1.5. ABOUT RED HAT ENTERPRISE LINUX COREOS (RHCOS) AND IGNITION
1.6. ABOUT ADMISSION PLUGINS

CHAPTER 2. OPENSHIFT CONTAINER PLATFORM ARCHITECTURE
2.1. INTRODUCTION TO OPENSHIFT CONTAINER PLATFORM

2.1.1. About Kubernetes
2.1.2. The benefits of containerized applications

2.1.2.1. Operating system benefits
2.1.2.2. Deployment and scaling benefits

2.1.3. OpenShift Container Platform overview
2.1.3.1. Custom operating system
2.1.3.2. Simplified installation and update process
2.1.3.3. Other key features
2.1.3.4. OpenShift Container Platform lifecycle

2.1.4. Internet access for OpenShift Container Platform

CHAPTER 3. INSTALLATION AND UPDATE
3.1. ABOUT OPENSHIFT CONTAINER PLATFORM INSTALLATION

3.1.1. About the installation program
3.1.2. About Red Hat Enterprise Linux CoreOS (RHCOS)
3.1.3. Supported platforms for OpenShift Container Platform clusters
3.1.4. Installation process

3.1.4.1. The installation process with the Assisted Installer
3.1.4.2. The installation process with Agent-based infrastructure
3.1.4.3. The installation process with installer-provisioned infrastructure
3.1.4.4. The installation process with user-provisioned infrastructure
3.1.4.5. Installation process details

3.1.5. Installation scope
3.2. ABOUT THE OPENSHIFT UPDATE SERVICE
3.3. SUPPORT POLICY FOR UNMANAGED OPERATORS
3.4. NEXT STEPS

CHAPTER 4. RED HAT OPENSHIFT CLUSTER MANAGER
4.1. ACCESSING RED HAT OPENSHIFT CLUSTER MANAGER
4.2. GENERAL ACTIONS
4.3. CLUSTER TABS

4.3.1. Overview tab
4.3.2. Access control tab
4.3.3. Add-ons tab
4.3.4. Insights Advisor tab
4.3.5. Machine pools tab
4.3.6. Support tab
4.3.7. Settings tab

4.4. ADDITIONAL RESOURCES

CHAPTER 5. ABOUT THE MULTICLUSTER ENGINE FOR KUBERNETES OPERATOR
5.1. CLUSTER MANAGEMENT WITH MULTICLUSTER ENGINE ON OPENSHIFT CONTAINER PLATFORM

4
4
8
8
8
9
9

10
10
11

12
12
12
12
13
13
14
14
15

16
16
16
17
17
19

20
20
21
21
21
23
23
25
26

27
27
27
28
28
29
29
29
29
29
30
30

31
31

Table of Contents

1

. .

. .

. .

. .

5.2. CLUSTER MANAGEMENT WITH RED HAT ADVANCED CLUSTER MANAGEMENT
5.3. ADDITIONAL RESOURCES

CHAPTER 6. CONTROL PLANE ARCHITECTURE
6.1. NODE CONFIGURATION MANAGEMENT WITH MACHINE CONFIG POOLS
6.2. MACHINE ROLES IN OPENSHIFT CONTAINER PLATFORM

6.2.1. Control plane and node host compatibility
6.2.2. Cluster workers
6.2.3. Cluster control planes

6.3. OPERATORS IN OPENSHIFT CONTAINER PLATFORM
6.3.1. Cluster Operators
6.3.2. Add-on Operators

6.4. OVERVIEW OF ETCD
6.4.1. Benefits of using etcd
6.4.2. How etcd works

CHAPTER 7. UNDERSTANDING OPENSHIFT CONTAINER PLATFORM DEVELOPMENT
7.1. ABOUT DEVELOPING CONTAINERIZED APPLICATIONS
7.2. BUILDING A SIMPLE CONTAINER

7.2.1. Container build tool options
7.2.2. Base image options
7.2.3. Registry options

7.3. CREATING A KUBERNETES MANIFEST FOR OPENSHIFT CONTAINER PLATFORM
7.3.1. About Kubernetes pods and services
7.3.2. Application types
7.3.3. Available supporting components
7.3.4. Applying the manifest
7.3.5. Next steps

7.4. DEVELOP FOR OPERATORS

CHAPTER 8. RED HAT ENTERPRISE LINUX COREOS (RHCOS)
8.1. ABOUT RHCOS

8.1.1. Key RHCOS features
8.1.2. Choosing how to configure RHCOS
8.1.3. Choosing how to deploy RHCOS
8.1.4. About Ignition

8.1.4.1. How Ignition works
8.1.4.2. The Ignition sequence

8.2. VIEWING IGNITION CONFIGURATION FILES
8.3. CHANGING IGNITION CONFIGS AFTER INSTALLATION

CHAPTER 9. ADMISSION PLUGINS
9.1. ABOUT ADMISSION PLUGINS
9.2. DEFAULT ADMISSION PLUGINS
9.3. WEBHOOK ADMISSION PLUGINS
9.4. TYPES OF WEBHOOK ADMISSION PLUGINS

9.4.1. Mutating admission plugin
9.4.2. Validating admission plugin

9.5. CONFIGURING DYNAMIC ADMISSION
9.6. ADDITIONAL RESOURCES

31
31

32
32
33
33
34
34
36
37
37
38
38
38

40
40
40
41

42
43
43
44
44
45
45
46
46

47
47
47
48
49
50
50
51
51

53

55
55
55
58
59
59
61

62
69

OpenShift Container Platform 4.18 Architecture

2

Table of Contents

3

CHAPTER 1. ARCHITECTURE OVERVIEW
OpenShift Container Platform is a cloud-based Kubernetes container platform. The foundation of
OpenShift Container Platform is based on Kubernetes and therefore shares the same technology. To
learn more about OpenShift Container Platform and Kubernetes, see product architecture.

1.1. GLOSSARY OF COMMON TERMS FOR OPENSHIFT CONTAINER
PLATFORM ARCHITECTURE

This glossary defines common terms that are used in the architecture content.

access policies

A set of roles that dictate how users, applications, and entities within a cluster interact with one
another. An access policy increases cluster security.

admission plugins

Admission plugins enforce security policies, resource limitations, or configuration requirements.

authentication

To control access to an OpenShift Container Platform cluster, a cluster administrator can configure
user authentication to ensure only approved users access the cluster. To interact with an OpenShift
Container Platform cluster, you must authenticate with the OpenShift Container Platform API. You
can authenticate by providing an OAuth access token or an X.509 client certificate in your requests
to the OpenShift Container Platform API.

bootstrap

A temporary machine that runs minimal Kubernetes and deploys the OpenShift Container Platform
control plane.

certificate signing requests (CSRs)

A resource requests a denoted signer to sign a certificate. This request might get approved or
denied.

Cluster Version Operator (CVO)

An Operator that checks with the OpenShift Container Platform Update Service to see the valid
updates and update paths based on current component versions and information in the graph.

compute nodes

Nodes that are responsible for executing workloads for cluster users. Compute nodes are also known
as worker nodes.

configuration drift

A situation where the configuration on a node does not match what the machine config specifies.

containers

Lightweight and executable images that consist of software and all of its dependencies. Because
containers virtualize the operating system, you can run containers anywhere, such as data centers,
public or private clouds, and local hosts.

container orchestration engine

Software that automates the deployment, management, scaling, and networking of containers.

container workloads

Applications that are packaged and deployed in containers.

control groups (cgroups)

Partitions sets of processes into groups to manage and limit the resources processes consume.

OpenShift Container Platform 4.18 Architecture

4

control plane

A container orchestration layer that exposes the API and interfaces to define, deploy, and manage
the life cycle of containers. Control planes are also known as control plane machines.

CRI-O

A Kubernetes native container runtime implementation that integrates with the operating system to
deliver an efficient Kubernetes experience.

deployment

A Kubernetes resource object that maintains the life cycle of an application.

Dockerfile

A text file that contains the user commands to perform on a terminal to assemble the image.

hosted control planes

A OpenShift Container Platform feature that enables hosting a control plane on the OpenShift
Container Platform cluster from its data plane and workers. This model performs the following
actions:

Optimize infrastructure costs required for the control planes.

Improve the cluster creation time.

Enable hosting the control plane using the Kubernetes native high level primitives. For
example, deployments and stateful sets.

Allow a strong network segmentation between the control plane and workloads.

hybrid cloud deployments

Deployments that deliver a consistent platform across bare metal, virtual, private, and public cloud
environments. This offers speed, agility, and portability.

Ignition

A utility that RHCOS uses to manipulate disks during initial configuration. It completes common disk
tasks, including partitioning disks, formatting partitions, writing files, and configuring users.

installer-provisioned infrastructure

The installation program deploys and configures the infrastructure that the cluster runs on.

kubelet

A primary node agent that runs on each node in the cluster to ensure that containers are running in a
pod.

kubernetes manifest

Specifications of a Kubernetes API object in a JSON or YAML format. A configuration file can
include deployments, config maps, secrets, daemon sets.

Machine Config Daemon (MCD)

A daemon that regularly checks the nodes for configuration drift.

Machine Config Operator (MCO)

An Operator that applies the new configuration to your cluster machines.

machine config pools (MCP)

A group of machines, such as control plane components or user workloads, that are based on the
resources that they handle.

metadata

Additional information about cluster deployment artifacts.

CHAPTER 1. ARCHITECTURE OVERVIEW

5

microservices

An approach to writing software. Applications can be separated into the smallest components,
independent from each other by using microservices.

mirror registry

A registry that holds the mirror of OpenShift Container Platform images.

monolithic applications

Applications that are self-contained, built, and packaged as a single piece.

namespaces

A namespace isolates specific system resources that are visible to all processes. Inside a namespace,
only processes that are members of that namespace can see those resources.

networking

Network information of OpenShift Container Platform cluster.

node

A worker machine in the OpenShift Container Platform cluster. A node is either a virtual machine
(VM) or a physical machine.

OpenShift CLI (oc)

A command-line tool to run OpenShift Container Platform commands on the terminal.

OpenShift Dedicated

A managed RHEL OpenShift Container Platform offering on Amazon Web Services (AWS) and
Google Cloud. OpenShift Dedicated focuses on building and scaling applications.

OpenShift Update Service (OSUS)

For clusters with internet access, Red Hat Enterprise Linux (RHEL) provides over-the-air updates by
using an OpenShift update service as a hosted service located behind public APIs.

OpenShift image registry

A registry provided by OpenShift Container Platform to manage images.

Operator

The preferred method of packaging, deploying, and managing a Kubernetes application in an
OpenShift Container Platform cluster. An Operator takes human operational knowledge and
encodes it into software that is packaged and shared with customers.

OperatorHub

A platform that contains various OpenShift Container Platform Operators to install.

Operator Lifecycle Manager (OLM)

OLM helps you to install, update, and manage the lifecycle of Kubernetes native applications. OLM is
an open source toolkit designed to manage Operators in an effective, automated, and scalable way.

OSTree

An upgrade system for Linux-based operating systems that performs atomic upgrades of complete
file system trees. OSTree tracks meaningful changes to the file system tree using an addressable
object store, and is designed to complement existing package management systems.

over-the-air (OTA) updates

The OpenShift Container Platform Update Service (OSUS) provides over-the-air updates to
OpenShift Container Platform, including Red Hat Enterprise Linux CoreOS (RHCOS).

pod

One or more containers with shared resources, such as volume and IP addresses, running in your
OpenShift Container Platform cluster. A pod is the smallest compute unit defined, deployed, and
managed.

OpenShift Container Platform 4.18 Architecture

6

private registry

OpenShift Container Platform can use any server implementing the container image registry API as a
source of the image which allows the developers to push and pull their private container images.

public registry

OpenShift Container Platform can use any server implementing the container image registry API as a
source of the image which allows the developers to push and pull their public container images.

RHEL OpenShift Container Platform Cluster Manager

A managed service where you can install, modify, operate, and upgrade your OpenShift Container
Platform clusters.

RHEL Quay Container Registry

A Quay.io container registry that serves most of the container images and Operators to OpenShift
Container Platform clusters.

replication controllers

An asset that indicates how many pod replicas are required to run at a time.

role-based access control (RBAC)

A key security control to ensure that cluster users and workloads have only access to resources
required to execute their roles.

route

Routes expose a service to allow for network access to pods from users and applications outside the
OpenShift Container Platform instance.

scaling

The increasing or decreasing of resource capacity.

service

A service exposes a running application on a set of pods.

Source-to-Image (S2I) image

An image created based on the programming language of the application source code in OpenShift
Container Platform to deploy applications.

storage

OpenShift Container Platform supports many types of storage, both for on-premise and cloud
providers. You can manage container storage for persistent and non-persistent data in an OpenShift
Container Platform cluster.

Telemetry

A component to collect information such as size, health, and status of OpenShift Container Platform.

template

A template describes a set of objects that can be parameterized and processed to produce a list of
objects for creation by OpenShift Container Platform.

user-provisioned infrastructure

You can install OpenShift Container Platform on the infrastructure that you provide. You can use the
installation program to generate the assets required to provision the cluster infrastructure, create
the cluster infrastructure, and then deploy the cluster to the infrastructure that you provided.

web console

A user interface (UI) to manage OpenShift Container Platform.

worker node

Nodes that are responsible for executing workloads for cluster users. Worker nodes are also known
as compute nodes.

CHAPTER 1. ARCHITECTURE OVERVIEW

7

Additional resources

For more information on networking, see OpenShift Container Platform networking .

For more information on storage, see OpenShift Container Platform storage .

For more information on authentication, see OpenShift Container Platform authentication.

For more information on Operator Lifecycle Manager (OLM), see OLM.

For more information on over-the-air (OTA) updates, see Introduction to OpenShift updates .

1.2. ABOUT INSTALLATION AND UPDATES

As a cluster administrator, you can use the OpenShift Container Platform installation program to install
and deploy a cluster by using one of the following methods:

Installer-provisioned infrastructure

User-provisioned infrastructure

1.3. ABOUT THE CONTROL PLANE

The control plane manages the worker nodes and the pods in your cluster. You can configure nodes with
the use of machine config pools (MCPs). MCPs are groups of machines, such as control plane
components or user workloads, that are based on the resources that they handle. OpenShift Container
Platform assigns different roles to hosts. These roles define the function of a machine in a cluster. The
cluster contains definitions for the standard control plane and worker role types.

You can use Operators to package, deploy, and manage services on the control plane. Operators are
important components in OpenShift Container Platform because they provide the following services:

Perform health checks

Provide ways to watch applications

Manage over-the-air updates

Ensure applications stay in the specified state

Additional resources

Hosted control planes overview

1.4. ABOUT CONTAINERIZED APPLICATIONS FOR DEVELOPERS

As a developer, you can use different tools, methods, and formats to develop your containerized
application based on your unique requirements, for example:

Use various build-tool, base-image, and registry options to build a simple container application.

Use supporting components such as OperatorHub and templates to develop your application.

Package and deploy your application as an Operator.

You can also create a Kubernetes manifest and store it in a Git repository. Kubernetes works on basic

OpenShift Container Platform 4.18 Architecture

8

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/networking_overview/#understanding-networking
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/storage/#index
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/authentication_and_authorization/#index
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/operators/#olm-understanding-olm
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/updating_clusters/#understanding-openshift-updates
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/hosted_control_planes/#hcp-overview

You can also create a Kubernetes manifest and store it in a Git repository. Kubernetes works on basic
units called pods. A pod is a single instance of a running process in your cluster. Pods can contain one or
more containers. You can create a service by grouping a set of pods and their access policies. Services
provide permanent internal IP addresses and host names for other applications to use as pods are
created and destroyed. Kubernetes defines workloads based on the type of your application.

1.5. ABOUT RED HAT ENTERPRISE LINUX COREOS (RHCOS) AND
IGNITION

As a cluster administrator, you can perform the following Red Hat Enterprise Linux CoreOS (RHCOS)
tasks:

Learn about the next generation of single-purpose container operating system technology.

Choose how to configure Red Hat Enterprise Linux CoreOS (RHCOS)

Choose how to deploy Red Hat Enterprise Linux CoreOS (RHCOS):

Installer-provisioned deployment

User-provisioned deployment

The OpenShift Container Platform installation program creates the Ignition configuration files that you
need to deploy your cluster. Red Hat Enterprise Linux CoreOS (RHCOS) uses Ignition during the initial
configuration to perform common disk tasks, such as partitioning, formatting, writing files, and
configuring users. During the first boot, Ignition reads its configuration from the installation media or the
location that you specify and applies the configuration to the machines.

You can learn how Ignition works, the process for a Red Hat Enterprise Linux CoreOS (RHCOS)
machine in an OpenShift Container Platform cluster, view Ignition configuration files, and change
Ignition configuration after an installation.

1.6. ABOUT ADMISSION PLUGINS

You can use admission plugins to regulate how OpenShift Container Platform functions. After a
resource request is authenticated and authorized, admission plugins intercept the resource request to
the master API to validate resource requests and to ensure that scaling policies are adhered to.
Admission plugins are used to enforce security policies, resource limitations, configuration requirements,
and other settings.

CHAPTER 1. ARCHITECTURE OVERVIEW

9

CHAPTER 2. OPENSHIFT CONTAINER PLATFORM
ARCHITECTURE

2.1. INTRODUCTION TO OPENSHIFT CONTAINER PLATFORM

OpenShift Container Platform is a platform for developing and running containerized applications. It is
designed to allow applications and the data centers that support them to expand from just a few
machines and applications to thousands of machines that serve millions of clients.

With its foundation in Kubernetes, OpenShift Container Platform incorporates the same technology
that serves as the engine for massive telecommunications, streaming video, gaming, banking, and other
applications. Its implementation in open Red Hat technologies lets you extend your containerized
applications beyond a single cloud to on-premise and multi-cloud environments.

OpenShift Container Platform 4.18 Architecture

10

2.1.1. About Kubernetes

Although container images and the containers that run from them are the primary building blocks for
modern application development, to run them at scale requires a reliable and flexible distribution system.
Kubernetes is the defacto standard for orchestrating containers.

Kubernetes is an open source container orchestration engine for automating deployment, scaling, and
management of containerized applications. The general concept of Kubernetes is fairly simple:

Start with one or more worker nodes to run the container workloads.

CHAPTER 2. OPENSHIFT CONTAINER PLATFORM ARCHITECTURE

11

Manage the deployment of those workloads from one or more control plane nodes.

Wrap containers in a deployment unit called a pod. Using pods provides extra metadata with the
container and offers the ability to group several containers in a single deployment entity.

Create special kinds of assets. For example, services are represented by a set of pods and a
policy that defines how they are accessed. This policy allows containers to connect to the
services that they need even if they do not have the specific IP addresses for the services.
Replication controllers are another special asset that indicates how many pod replicas are
required to run at a time. You can use this capability to automatically scale your application to
adapt to its current demand.

In only a few years, Kubernetes has seen massive cloud and on-premise adoption. The open source
development model allows many people to extend Kubernetes by implementing different technologies
for components such as networking, storage, and authentication.

2.1.2. The benefits of containerized applications

Using containerized applications offers many advantages over using traditional deployment methods.
Where applications were once expected to be installed on operating systems that included all their
dependencies, containers let an application carry their dependencies with them. Creating containerized
applications offers many benefits.

2.1.2.1. Operating system benefits

Containers use small, dedicated Linux operating systems without a kernel. Their file system, networking,
cgroups, process tables, and namespaces are separate from the host Linux system, but the containers
can integrate with the hosts seamlessly when necessary. Being based on Linux allows containers to use
all the advantages that come with the open source development model of rapid innovation.

Because each container uses a dedicated operating system, you can deploy applications that require
conflicting software dependencies on the same host. Each container carries its own dependent software
and manages its own interfaces, such as networking and file systems, so applications never need to
compete for those assets.

2.1.2.2. Deployment and scaling benefits

If you employ rolling upgrades between major releases of your application, you can continuously
improve your applications without downtime and still maintain compatibility with the current release.

You can also deploy and test a new version of an application alongside the existing version. If the
container passes your tests, simply deploy more new containers and remove the old ones.

Since all the software dependencies for an application are resolved within the container itself, you can
use a standardized operating system on each host in your data center. You do not need to configure a
specific operating system for each application host. When your data center needs more capacity, you
can deploy another generic host system.

Similarly, scaling containerized applications is simple. OpenShift Container Platform offers a simple,
standard way of scaling any containerized service. For example, if you build applications as a set of
microservices rather than large, monolithic applications, you can scale the individual microservices
individually to meet demand. This capability allows you to scale only the required services instead of the
entire application, which can allow you to meet application demands while using minimal resources.

2.1.3. OpenShift Container Platform overview

OpenShift Container Platform 4.18 Architecture

12

OpenShift Container Platform provides enterprise-ready enhancements to Kubernetes, including the
following enhancements:

Hybrid cloud deployments. You can deploy OpenShift Container Platform clusters to a variety
of public cloud platforms or in your data center.

Integrated Red Hat technology. Major components in OpenShift Container Platform come from
Red Hat Enterprise Linux (RHEL) and related Red Hat technologies. OpenShift Container
Platform benefits from the intense testing and certification initiatives for Red Hat’s enterprise
quality software.

Open source development model. Development is completed in the open, and the source code
is available from public software repositories. This open collaboration fosters rapid innovation
and development.

Although Kubernetes excels at managing your applications, it does not specify or manage platform-level
requirements or deployment processes. Powerful and flexible platform management tools and
processes are important benefits that OpenShift Container Platform 4.18 offers. The following sections
describe some unique features and benefits of OpenShift Container Platform.

2.1.3.1. Custom operating system

OpenShift Container Platform uses Red Hat Enterprise Linux CoreOS (RHCOS), a container-oriented
operating system that is specifically designed for running containerized applications from OpenShift
Container Platform and works with new tools to provide fast installation, Operator-based management,
and simplified upgrades.

RHCOS includes:

Ignition, which OpenShift Container Platform uses as a firstboot system configuration for
initially bringing up and configuring machines.

CRI-O, a Kubernetes native container runtime implementation that integrates closely with the
operating system to deliver an efficient and optimized Kubernetes experience. CRI-O provides
facilities for running, stopping, and restarting containers. It fully replaces the Docker Container
Engine, which was used in OpenShift Container Platform 3.

Kubelet, the primary node agent for Kubernetes that is responsible for launching and monitoring
containers.

In OpenShift Container Platform 4.18, you must use RHCOS for all control plane machines, but you can
use Red Hat Enterprise Linux (RHEL) as the operating system for compute machines, which are also
known as worker machines. If you choose to use RHEL workers, you must perform more system
maintenance than if you use RHCOS for all of the cluster machines.

2.1.3.2. Simplified installation and update process

With OpenShift Container Platform 4.18, if you have an account with the right permissions, you can
deploy a production cluster in supported clouds by running a single command and providing a few values.
You can also customize your cloud installation or install your cluster in your data center if you use a
supported platform.

For clusters that use RHCOS for all machines, updating, or upgrading, OpenShift Container Platform is a
simple, highly-automated process. Because OpenShift Container Platform completely controls the
systems and services that run on each machine, including the operating system itself, from a central

CHAPTER 2. OPENSHIFT CONTAINER PLATFORM ARCHITECTURE

13

control plane, upgrades are designed to become automatic events. If your cluster contains RHEL worker
machines, the control plane benefits from the streamlined update process, but you must perform more
tasks to upgrade the RHEL machines.

2.1.3.3. Other key features

Operators are both the fundamental unit of the OpenShift Container Platform 4.18 code base and a
convenient way to deploy applications and software components for your applications to use. In
OpenShift Container Platform, Operators serve as the platform foundation and remove the need for
manual upgrades of operating systems and control plane applications. OpenShift Container Platform
Operators such as the Cluster Version Operator and Machine Config Operator allow simplified, cluster-
wide management of those critical components.

Operator Lifecycle Manager (OLM) and the OperatorHub provide facilities for storing and distributing
Operators to people developing and deploying applications.

The Red Hat Quay Container Registry is a Quay.io container registry that serves most of the container
images and Operators to OpenShift Container Platform clusters. Quay.io is a public registry version of
Red Hat Quay that stores millions of images and tags.

Other enhancements to Kubernetes in OpenShift Container Platform include improvements in software
defined networking (SDN), authentication, log aggregation, monitoring, and routing. OpenShift
Container Platform also offers a comprehensive web console and the custom OpenShift CLI (oc)
interface.

2.1.3.4. OpenShift Container Platform lifecycle

The following figure illustrates the basic OpenShift Container Platform lifecycle:

Creating an OpenShift Container Platform cluster

Managing the cluster

Developing and deploying applications

Scaling up applications

Figure 2.1. High level OpenShift Container Platform overview

OpenShift Container Platform 4.18 Architecture

14

2.1.4. Internet access for OpenShift Container Platform

In OpenShift Container Platform 4.18, you require access to the internet to install your cluster.

You must have internet access to perform the following actions:

Access OpenShift Cluster Manager to download the installation program and perform
subscription management. If the cluster has internet access and you do not disable Telemetry,
that service automatically entitles your cluster.

Access Quay.io to obtain the packages that are required to install your cluster.

Obtain the packages that are required to perform cluster updates.

IMPORTANT

If your cluster cannot have direct internet access, you can perform a restricted network
installation on some types of infrastructure that you provision. During that process, you
download the required content and use it to populate a mirror registry with the
installation packages. With some installation types, the environment that you install your
cluster in will not require internet access. Before you update the cluster, you update the
content of the mirror registry.

CHAPTER 2. OPENSHIFT CONTAINER PLATFORM ARCHITECTURE

15

https://console.redhat.com/openshift
http://quay.io

CHAPTER 3. INSTALLATION AND UPDATE

3.1. ABOUT OPENSHIFT CONTAINER PLATFORM INSTALLATION

The OpenShift Container Platform installation program offers four methods for deploying a cluster
which are detailed in the following list:

Interactive: You can deploy a cluster with the web-based Assisted Installer. This is an ideal
approach for clusters with networks connected to the internet. The Assisted Installer is the
easiest way to install OpenShift Container Platform, it provides smart defaults, and it performs
pre-flight validations before installing the cluster. It also provides a RESTful API for automation
and advanced configuration scenarios.

Local Agent-based: You can deploy a cluster locally with the Agent-based Installer for
disconnected environments or restricted networks. It provides many of the benefits of the
Assisted Installer, but you must download and configure the Agent-based Installer first.
Configuration is done with a command-line interface. This approach is ideal for disconnected
environments.

Automated: You can deploy a cluster on installer-provisioned infrastructure. The installation
program uses each cluster host’s baseboard management controller (BMC) for provisioning.
You can deploy clusters in connected or disconnected environments.

Full control: You can deploy a cluster on infrastructure that you prepare and maintain, which
provides maximum customizability. You can deploy clusters in connected or disconnected
environments.

Each method deploys a cluster with the following characteristics:

Highly available infrastructure with no single points of failure, which is available by default.

Administrators can control what updates are applied and when.

3.1.1. About the installation program

You can use the installation program to deploy each type of cluster. The installation program generates
the main assets, such as Ignition config files for the bootstrap, control plane, and compute machines.
You can start an OpenShift Container Platform cluster with these three machine configurations,
provided you correctly configured the infrastructure.

The OpenShift Container Platform installation program uses a set of targets and dependencies to
manage cluster installations. The installation program has a set of targets that it must achieve, and each
target has a set of dependencies. Because each target is only concerned with its own dependencies, the
installation program can act to achieve multiple targets in parallel with the ultimate target being a
running cluster. The installation program recognizes and uses existing components instead of running
commands to create them again because the program meets the dependencies.

Figure 3.1. OpenShift Container Platform installation targets and dependencies

OpenShift Container Platform 4.18 Architecture

16

https://access.redhat.com/documentation/en-us/assisted_installer_for_openshift_container_platform
https://console.redhat.com/openshift/install/metal/agent-based

Figure 3.1. OpenShift Container Platform installation targets and dependencies

3.1.2. About Red Hat Enterprise Linux CoreOS (RHCOS)

Post-installation, each cluster machine uses Red Hat Enterprise Linux CoreOS (RHCOS) as the
operating system. RHCOS is the immutable container host version of Red Hat Enterprise Linux (RHEL)
and features a RHEL kernel with SELinux enabled by default. RHCOS includes the kubelet, which is the
Kubernetes node agent, and the CRI-O container runtime, which is optimized for Kubernetes.

Every control plane machine in an OpenShift Container Platform 4.18 cluster must use RHCOS, which
includes a critical first-boot provisioning tool called Ignition. This tool enables the cluster to configure
the machines. Operating system updates are delivered as a bootable container image, using OSTree as
a backend, that is deployed across the cluster by the Machine Config Operator. Actual operating system
changes are made in-place on each machine as an atomic operation by using rpm-ostree. Together,
these technologies enable OpenShift Container Platform to manage the operating system like it
manages any other application on the cluster, by in-place upgrades that keep the entire platform up to
date. These in-place updates can reduce the burden on operations teams.

If you use RHCOS as the operating system for all cluster machines, the cluster manages all aspects of its
components and machines, including the operating system. Because of this, only the installation
program and the Machine Config Operator can change machines. The installation program uses Ignition
config files to set the exact state of each machine, and the Machine Config Operator completes more
changes to the machines, such as the application of new certificates or keys, after installation.

3.1.3. Supported platforms for OpenShift Container Platform clusters

The following table describes which platforms are supported by the different methods available for
installing OpenShift Container Platform clusters:

Table 3.1. Supported platforms

CHAPTER 3. INSTALLATION AND UPDATE

17

Platform Installer-
provisione
d
infrastruct
ure [1]

User-
provisione
d
infrastruc
ture [2]

Agent-
based
Installer

Assisted
Installer

Amazon Web Services (AWS) X X

Bare metal X X X X

External X X

Google Cloud X X

IBM Cloud® Classic X

IBM Cloud® Virtual Private Cloud (VPC) X

IBM Power® X X X

IBM Z® or IBM® LinuxONE X X X

Microsoft Azure X X

Microsoft Azure Stack Hub X X

None X X

Nutanix X X

Oracle Cloud Infrastructure (OCI) X X

Red Hat OpenStack Platform (RHOSP) [3] X X

VMware vSphere X X X X

1. For installer-provisioned infrastructure: All machines, including the computer that you run the
installation process on, must have direct internet access to pull images for platform containers
and provide telemetry data to Red Hat.

IMPORTANT

After installation, the following changes are not supported:

Mixing cloud provider platforms.

Mixing cloud provider components. For example, using a persistent storage
framework from a another platform on the platform where you installed the
cluster.

OpenShift Container Platform 4.18 Architecture

18

2. For user-provisioned infrastructure: Depending on the supported cases for the platform, you
can perform installations on user-provisioned infrastructure so that you can run machines with
full internet access, place your cluster behind a proxy, or perform a disconnected installation.
In a disconnected installation, you can download the images that are required to install a cluster,
place them in a mirror registry, and use that data to install your cluster. While you require
internet access to pull images for platform containers, with a disconnected installation on
vSphere or bare-metal infrastructure, your cluster machines do not require direct internet
access.

3. For Red Hat OpenStack Platform (RHOSP): The latest OpenShift Container Platform release
supports both the latest RHOSP long-life release and intermediate release. For complete
RHOSP release compatibility, see the OpenShift Container Platform on RHOSP support matrix .

The OpenShift Container Platform 4.x Tested Integrations page contains details about integration
testing for different platforms.

3.1.4. Installation process

Except for the Assisted Installer, when you install an OpenShift Container Platform cluster, you must
download the installation program from the appropriate Cluster Type page on the OpenShift Cluster
Manager Hybrid Cloud Console. This console manages:

REST API for accounts.

Registry tokens, which are the pull secrets that you use to obtain the required components.

Cluster registration, which associates the cluster identity to your Red Hat account to facilitate
the gathering of usage metrics.

In OpenShift Container Platform 4.18, the installation program is a Go binary file that performs a series
of file transformations on a set of assets. The way you interact with the installation program differs
depending on your installation type. Consider the following installation use cases:

To deploy a cluster with the Assisted Installer, you must configure the cluster settings by using
the Assisted Installer. There is no installation program to download and configure. After you
finish setting the cluster configuration, you download a discovery ISO and then boot cluster
machines with that image. You can install clusters with the Assisted Installer on Nutanix,
vSphere, and bare metal with full integration, and other platforms without integration. If you
install on bare metal, you must provide all of the cluster infrastructure and resources, including
the networking, load balancing, storage, and individual cluster machines.

To deploy clusters with the Agent-based Installer, you can download the Agent-based Installer
first. You can then configure the cluster and generate a discovery image. You boot cluster
machines with the discovery image, which installs an agent that communicates with the
installation program and handles the provisioning for you instead of you interacting with the
installation program or setting up a provisioner machine yourself. You must provide all of the
cluster infrastructure and resources, including the networking, load balancing, storage, and
individual cluster machines. This approach is ideal for disconnected environments.

For clusters with installer-provisioned infrastructure, you delegate the infrastructure
bootstrapping and provisioning to the installation program instead of doing it yourself. The
installation program creates all of the networking, machines, and operating systems that are
required to support the cluster, except if you install on bare metal. If you install on bare metal,
you must provide all of the cluster infrastructure and resources, including the bootstrap
machine, networking, load balancing, storage, and individual cluster machines.

If you provision and manage the infrastructure for your cluster, you must provide all of the

CHAPTER 3. INSTALLATION AND UPDATE

19

https://access.redhat.com/articles/4679401
https://access.redhat.com/articles/4128421
https://console.redhat.com/openshift/create
https://access.redhat.com/documentation/en-us/assisted_installer_for_openshift_container_platform
https://console.redhat.com/openshift/install/metal/agent-based

If you provision and manage the infrastructure for your cluster, you must provide all of the
cluster infrastructure and resources, including the bootstrap machine, networking, load
balancing, storage, and individual cluster machines.

For the installation program, the program uses three sets of files during installation: an installation
configuration file that is named install-config.yaml, Kubernetes manifests, and Ignition config files for
your machine types.

IMPORTANT

You can modify Kubernetes and the Ignition config files that control the underlying
RHCOS operating system during installation. However, no validation is available to
confirm the suitability of any modifications that you make to these objects. If you modify
these objects, you might render your cluster non-functional. Because of this risk,
modifying Kubernetes and Ignition config files is not supported unless you are following
documented procedures or are instructed to do so by Red Hat support.

The installation configuration file is transformed into Kubernetes manifests, and then the manifests are
wrapped into Ignition config files. The installation program uses these Ignition config files to create the
cluster.

The installation configuration files are all pruned when you run the installation program, so be sure to
back up all the configuration files that you want to use again.

IMPORTANT

You cannot modify the parameters that you set during installation, but you can modify
many cluster attributes after installation.

3.1.4.1. The installation process with the Assisted Installer

Installation with the Assisted Installer involves creating a cluster configuration interactively by using the
web-based user interface or the RESTful API. The Assisted Installer user interface prompts you for
required values and provides reasonable default values for the remaining parameters, unless you change
them in the user interface or with the API. The Assisted Installer generates a discovery image, which you
download and use to boot the cluster machines. The image installs RHCOS and an agent, and the agent
handles the provisioning for you. You can install OpenShift Container Platform with the Assisted
Installer and full integration on Nutanix, vSphere, and bare metal. Additionally, you can install OpenShift
Container Platform with the Assisted Installer on other platforms without integration.

OpenShift Container Platform manages all aspects of the cluster, including the operating system itself.
Each machine boots with a configuration that references resources hosted in the cluster that it joins.
This configuration allows the cluster to manage itself as updates are applied.

If possible, use the Assisted Installer feature to avoid having to download and configure the Agent-
based Installer.

3.1.4.2. The installation process with Agent-based infrastructure

Agent-based installation is similar to using the Assisted Installer, except that you must initially download
and install the Agent-based Installer . An Agent-based installation is useful when you want the
convenience of the Assisted Installer, but you need to install a cluster in a disconnected environment.

If possible, use the Agent-based installation feature to avoid having to create a provisioner machine
with a bootstrap VM, and then provision and maintain the cluster infrastructure.

OpenShift Container Platform 4.18 Architecture

20

https://access.redhat.com/documentation/en-us/assisted_installer_for_openshift_container_platform
https://console.redhat.com/openshift/install/metal/agent-based

3.1.4.3. The installation process with installer-provisioned infrastructure

The default installation type uses installer-provisioned infrastructure. By default, the installation
program acts as an installation wizard, prompting you for values that it cannot determine on its own and
providing reasonable default values for the remaining parameters. You can also customize the
installation process to support advanced infrastructure scenarios. The installation program provisions
the underlying infrastructure for the cluster.

You can install either a standard cluster or a customized cluster. With a standard cluster, you provide
minimum details that are required to install the cluster. With a customized cluster, you can specify more
details about the platform, such as the number of machines that the control plane uses, the type of
virtual machine that the cluster deploys, or the CIDR range for the Kubernetes service network.

If possible, use this feature to avoid having to provision and maintain the cluster infrastructure. In all
other environments, you use the installation program to generate the assets that you require to
provision your cluster infrastructure.

With installer-provisioned infrastructure clusters, OpenShift Container Platform manages all aspects of
the cluster, including the operating system itself. Each machine boots with a configuration that
references resources hosted in the cluster that it joins. This configuration allows the cluster to manage
itself as updates are applied.

3.1.4.4. The installation process with user-provisioned infrastructure

You can also install OpenShift Container Platform on infrastructure that you provide. You use the
installation program to generate the assets that you require to provision the cluster infrastructure,
create the cluster infrastructure, and then deploy the cluster to the infrastructure that you provided.

If you do not use infrastructure that the installation program provisioned, you must manage and
maintain the cluster resources yourself. The following list details some of these self-managed resources:

The underlying infrastructure for the control plane and compute machines that make up the
cluster

Load balancers

Cluster networking, including the DNS records and required subnets

Storage for the cluster infrastructure and applications

If your cluster uses user-provisioned infrastructure, you have the option of adding RHEL compute
machines to your cluster.

3.1.4.5. Installation process details

When a cluster is provisioned, each machine in the cluster requires information about the cluster.
OpenShift Container Platform uses a temporary bootstrap machine during initial configuration to
provide the required information to the permanent control plane. The temporary bootstrap machine
boots by using an Ignition config file that describes how to create the cluster. The bootstrap machine
creates the control plane machines that make up the control plane. The control plane machines then
create the compute machines, which are also known as worker machines. The following figure illustrates
this process:

Figure 3.2. Creating the bootstrap, control plane, and compute machines

CHAPTER 3. INSTALLATION AND UPDATE

21

Figure 3.2. Creating the bootstrap, control plane, and compute machines

IMPORTANT

While planning to deploy your cluster, ensure that you are familiar with the recommended
practices for performance and scalability, particularly the requirements for input/output
(I/O) latency for etcd storage and the requirements for the recommended control plane
node sizing. For more information, see “Recommended etcd practices” and “Control
plane node sizing”.

After the cluster machines initialize, the bootstrap machine is destroyed. All clusters use the bootstrap
process to initialize the cluster, but if you provision the infrastructure for your cluster, you must complete
many of the steps manually.

IMPORTANT

The Ignition config files that the installation program generates contain
certificates that expire after 24 hours, which are then renewed at that time. If the
cluster is shut down before renewing the certificates and the cluster is later
restarted after the 24 hours have elapsed, the cluster automatically recovers the
expired certificates. The exception is that you must manually approve the
pending node-bootstrapper certificate signing requests (CSRs) to recover
kubelet certificates. See the documentation for Recovering from expired control
plane certificates for more information.

Consider using Ignition config files within 12 hours after they are generated,
because the 24-hour certificate rotates from 16 to 22 hours after the cluster is
installed. By using the Ignition config files within 12 hours, you can avoid
installation failure if the certificate update runs during installation.

Bootstrapping a cluster involves the following steps:

1. The bootstrap machine boots and starts hosting the remote resources required for the control

OpenShift Container Platform 4.18 Architecture

22

1. The bootstrap machine boots and starts hosting the remote resources required for the control
plane machines to boot. If you provision the infrastructure, this step requires manual
intervention.

2. The bootstrap machine starts a single-node etcd cluster and a temporary Kubernetes control
plane.

3. The control plane machines fetch the remote resources from the bootstrap machine and finish
booting. If you provision the infrastructure, this step requires manual intervention.

4. The temporary control plane schedules the production control plane to the production control
plane machines.

5. The Cluster Version Operator (CVO) comes online and installs the etcd Operator. The etcd
Operator scales up etcd on all control plane nodes.

6. The temporary control plane shuts down and passes control to the production control plane.

7. The bootstrap machine injects OpenShift Container Platform components into the production
control plane.

8. The installation program shuts down the bootstrap machine. If you provision the infrastructure,
this step requires manual intervention.

9. The control plane sets up the compute nodes.

10. The control plane installs additional services in the form of a set of Operators.

The result of this bootstrapping process is a running OpenShift Container Platform cluster. The cluster
then downloads and configures remaining components needed for the day-to-day operations, including
the creation of compute machines in supported environments.

Additional resources

Recommended etcd practices

Control plane node sizing

3.1.5. Installation scope

The scope of the OpenShift Container Platform installation program is intentionally narrow. It is
designed for simplicity and ensured success. You can complete many more configuration tasks after
installation completes.

Additional resources

See Available cluster customizations for details about OpenShift Container Platform
configuration resources.

3.2. ABOUT THE OPENSHIFT UPDATE SERVICE

The OpenShift Update Service (OSUS) provides update recommendations to OpenShift Container
Platform, including Red Hat Enterprise Linux CoreOS (RHCOS). It provides a graph, or diagram, that
contains the vertices of component Operators and the edges that connect them. The edges in the
graph show which versions you can safely update to. The vertices are update payloads that specify the
intended state of the managed cluster components.

CHAPTER 3. INSTALLATION AND UPDATE

23

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/scalability_and_performance/#recommended-etcd-practices
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/scalability_and_performance/#master-node-sizing_recommended-control-plane-practices
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/postinstallation_configuration/#available_cluster_customizations

The Cluster Version Operator (CVO) in your cluster checks with the OpenShift Update Service to see
the valid updates and update paths based on current component versions and information in the graph.
When you request an update, the CVO uses the corresponding release image to update your cluster.
The release artifacts are hosted in Quay as container images.

To allow the OpenShift Update Service to provide only compatible updates, a release verification
pipeline drives automation. Each release artifact is verified for compatibility with supported cloud
platforms and system architectures, as well as other component packages. After the pipeline confirms
the suitability of a release, the OpenShift Update Service notifies you that it is available.

The OpenShift Update Service (OSUS) supports a single-stream release model, where only one release
version is active and supported at any given time. When a new release is deployed, it fully replaces the
previous release.

The updated release provides support for upgrades from all OpenShift Container Platform versions
starting after 4.8 up to the new release version.

IMPORTANT

The OpenShift Update Service displays all recommended updates for your current
cluster. If an update path is not recommended by the OpenShift Update Service, it might
be because of a known issue related to the update path, such as incompatibility or
availability.

Two controllers run during continuous update mode. The first controller continuously updates the
payload manifests, applies the manifests to the cluster, and outputs the controlled rollout status of the
Operators to indicate whether they are available, upgrading, or failed. The second controller polls the
OpenShift Update Service to determine if updates are available.

IMPORTANT

Only updating to a newer version is supported. Reverting or rolling back your cluster to a
previous version is not supported. If your update fails, contact Red Hat support.

During the update process, the Machine Config Operator (MCO) applies the new configuration to your
cluster machines. The MCO cordons the number of nodes specified by the maxUnavailable field on the
machine configuration pool and marks them unavailable. By default, this value is set to 1. The MCO
updates the affected nodes alphabetically by zone, based on the topology.kubernetes.io/zone label. If
a zone has more than one node, the oldest nodes are updated first. For nodes that do not use zones,
such as in bare metal deployments, the nodes are updated by age, with the oldest nodes updated first.
The MCO updates the number of nodes as specified by the maxUnavailable field on the machine
configuration pool at a time. The MCO then applies the new configuration and reboots the machine.

WARNING

The default setting for maxUnavailable is 1 for all the machine config pools in
OpenShift Container Platform. It is recommended to not change this value and
update one control plane node at a time. Do not change this value to 3 for the
control plane pool.



OpenShift Container Platform 4.18 Architecture

24

If you use Red Hat Enterprise Linux (RHEL) machines as workers, the MCO does not update the kubelet
because you must update the OpenShift API on the machines first.

With the specification for the new version applied to the old kubelet, the RHEL machine cannot return
to the Ready state. You cannot complete the update until the machines are available. However, the
maximum number of unavailable nodes is set to ensure that normal cluster operations can continue with
that number of machines out of service.

The OpenShift Update Service is composed of an Operator and one or more application instances.

3.3. SUPPORT POLICY FOR UNMANAGED OPERATORS

The management state of an Operator determines whether an Operator is actively managing the
resources for its related component in the cluster as designed. If an Operator is set to an unmanaged
state, it does not respond to changes in configuration nor does it receive updates.

While this can be helpful in non-production clusters or during debugging, Operators in an unmanaged
state are unsupported and the cluster administrator assumes full control of the individual component
configurations and upgrades.

An Operator can be set to an unmanaged state using the following methods:

Individual Operator configuration
Individual Operators have a managementState parameter in their configuration. This can be
accessed in different ways, depending on the Operator. For example, the Red Hat OpenShift
Logging Operator accomplishes this by modifying a custom resource (CR) that it manages,
while the Cluster Samples Operator uses a cluster-wide configuration resource.

Changing the managementState parameter to Unmanaged means that the Operator is not
actively managing its resources and will take no action related to the related component. Some
Operators might not support this management state as it might damage the cluster and require
manual recovery.

WARNING

Changing individual Operators to the Unmanaged state renders that
particular component and functionality unsupported. Reported issues must
be reproduced in Managed state for support to proceed.

Cluster Version Operator (CVO) overrides
The spec.overrides parameter can be added to the CVO’s configuration to allow
administrators to provide a list of overrides to the CVO’s behavior for a component. Setting the
spec.overrides[].unmanaged parameter to true for a component blocks cluster upgrades and
alerts the administrator after a CVO override has been set:



Disabling ownership via cluster version overrides prevents upgrades. Please remove
overrides before continuing.

CHAPTER 3. INSTALLATION AND UPDATE

25

WARNING

Setting a CVO override puts the entire cluster in an unsupported state.
Reported issues must be reproduced after removing any overrides for
support to proceed.

3.4. NEXT STEPS

Selecting a cluster installation method and preparing it for users



OpenShift Container Platform 4.18 Architecture

26

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/installation_overview/#installing-preparing

CHAPTER 4. RED HAT OPENSHIFT CLUSTER MANAGER
Red Hat OpenShift Cluster Manager is a managed service where you can install, modify, operate, and
upgrade your Red Hat OpenShift clusters. This service allows you to work with all of your organization’s
clusters from a single dashboard.

OpenShift Cluster Manager guides you to install OpenShift Container Platform, Red Hat OpenShift
Service on AWS (ROSA), and OpenShift Dedicated clusters. It is also responsible for managing both
OpenShift Container Platform clusters after self-installation as well as your ROSA and OpenShift
Dedicated clusters.

You can use OpenShift Cluster Manager to do the following actions:

Create new clusters

View cluster details and metrics

Manage your clusters with tasks such as scaling, changing node labels, networking,
authentication

Manage access control

Monitor clusters

Schedule upgrades

4.1. ACCESSING RED HAT OPENSHIFT CLUSTER MANAGER

You can access OpenShift Cluster Manager with your configured OpenShift account.

Prerequisites

You have an account that is part of an OpenShift organization.

If you are creating a cluster, your organization has specified quota.

Procedure

Log in to OpenShift Cluster Manager using your login credentials.

4.2. GENERAL ACTIONS

On the top right of the cluster page, there are some actions that a user can perform on the entire
cluster:

Open console launches a web console so that the cluster owner can issue commands to the
cluster.

Actions drop-down menu allows the cluster owner to rename the display name of the cluster,
change the amount of load balancers and persistent storage on the cluster, if applicable,
manually set the node count, and delete the cluster.

Refresh icon forces a refresh of the cluster.

CHAPTER 4. RED HAT OPENSHIFT CLUSTER MANAGER

27

https://console.redhat.com/openshift

4.3. CLUSTER TABS

Selecting an active, installed cluster shows tabs associated with that cluster. The following tabs display
after the cluster’s installation completes:

Overview

Access control

Add-ons

Networking

Insights Advisor

Machine pools

Support

Settings

4.3.1. Overview tab

The Overview tab provides information about how the cluster was configured:

Cluster ID is the unique identification for the created cluster. This ID can be used when issuing
commands to the cluster from the command line.

Domain prefix is the prefix that is used throughout the cluster. The default value is the cluster’s
name.

Type shows the OpenShift version that the cluster is using.

Control plane type is the architecture type of the cluster. The field only displays if the cluster
uses a hosted control plane architecture.

Region is the server region.

Availability shows which type of availability zone that the cluster uses, either single or
multizone.

Version is the OpenShift version that is installed on the cluster. If there is an update available,
you can update from this field.

Created at shows the date and time that the cluster was created.

Owner identifies who created the cluster and has owner rights.

Delete Protection: <status> shows whether or not the cluster’s delete protection is enabled.

Total vCPU shows the total available virtual CPU for this cluster.

Total memory shows the total available memory for this cluster.

Infrastructure AWS account displays the AWS account that is responsible for cluster creation
and maintenance.

OpenShift Container Platform 4.18 Architecture

28

Nodes shows the actual and desired nodes on the cluster. These numbers might not match due
to cluster scaling.

Network field shows the address and prefixes for network connectivity.

OIDC configuration field shows the Open ID Connect configuration for the cluster.

Resource usage section of the tab displays the resources in use with a graph.

Advisor recommendations section gives insight in relation to security, performance, availability,
and stability. This section requires the use of remote health functionality. See Using Insights to
identify issues with the cluster in the Additional resources section.

4.3.2. Access control tab

The Access control tab allows the cluster owner to set up an identity provider, grant elevated
permissions, and grant roles to other users.

Prerequisites

You must be the cluster owner or have the correct permissions to grant roles on the cluster.

Procedure

1. Select the Grant role button.

2. Enter the Red Hat account login for the user that you wish to grant a role on the cluster.

3. Select the Grant role button on the dialog box.

4. The dialog box closes, and the selected user shows the "Cluster Editor" access.

4.3.3. Add-ons tab

4.3.4. Insights Advisor tab

The Insights Advisor tab uses the Remote Health functionality of the OpenShift Container Platform to
identify and mitigate risks to security, performance, availability, and stability. See Using Insights to
identify issues with your cluster in the OpenShift Container Platform documentation.

4.3.5. Machine pools tab

The Machine pools tab allows the cluster owner to create new machine pools if there is enough available
quota, or edit an existing machine pool.

Selecting the > Edit option opens the "Edit machine pool" dialog. In this dialog, you can change
the node count per availability zone, edit node labels and taints, and view any associated AWS security
groups.

4.3.6. Support tab

In the Support tab, you can add notification contacts for individuals that should receive cluster

CHAPTER 4. RED HAT OPENSHIFT CLUSTER MANAGER

29

https://docs.openshift.com/container-platform/latest/support/getting-support.html

In the Support tab, you can add notification contacts for individuals that should receive cluster
notifications. The username or email address that you provide must relate to a user account in the Red
Hat organization where the cluster is deployed.

Also from this tab, you can open a support case to request technical support for your cluster.

4.3.7. Settings tab

The Settings tab provides a few options for the cluster owner:

Update strategy allows you to determine if the cluster automatically updates on a certain day of
the week at a specified time or if all updates are scheduled manually.

Update status shows the current version and if there are any updates available.

4.4. ADDITIONAL RESOURCES

For the complete documentation for OpenShift Cluster Manager, see OpenShift Cluster
Manager documentation.

OpenShift Container Platform 4.18 Architecture

30

https://access.redhat.com/documentation/en-us/openshift_cluster_manager/2022/html-single/managing_clusters/index

CHAPTER 5. ABOUT THE MULTICLUSTER ENGINE FOR
KUBERNETES OPERATOR

One of the challenges of scaling Kubernetes environments is managing the lifecycle of a growing fleet.
To meet that challenge, you can use the multicluster engine Operator. The operator delivers full
lifecycle capabilities for managed OpenShift Container Platform clusters and partial lifecycle
management for other Kubernetes distributions. It is available in two ways:

As a standalone operator that you install as part of your OpenShift Container Platform or
OpenShift Kubernetes Engine subscription

As part of Red Hat Advanced Cluster Management for Kubernetes

5.1. CLUSTER MANAGEMENT WITH MULTICLUSTER ENGINE ON
OPENSHIFT CONTAINER PLATFORM

When you enable multicluster engine on OpenShift Container Platform, you gain the following
capabilities:

Hosted control planes , which is a feature that is based on the HyperShift project. With a
centralized hosted control plane, you can operate OpenShift Container Platform clusters in a
hyperscale manner.

Hive, which provisions self-managed OpenShift Container Platform clusters to the hub and
completes the initial configurations for those clusters.

klusterlet agent, which registers managed clusters to the hub.

Infrastructure Operator, which manages the deployment of the Assisted Service to orchestrate
on-premise bare metal and vSphere installations of OpenShift Container Platform, such as
single-node OpenShift on bare metal. The Infrastructure Operator includes GitOps Zero Touch
Provisioning (ZTP), which fully automates cluster creation on bare metal and vSphere
provisioning with GitOps workflows to manage deployments and configuration changes.

Open cluster management, which provides resources to manage Kubernetes clusters.

The multicluster engine is included with your OpenShift Container Platform support subscription and is
delivered separately from the core payload. To start to use multicluster engine, you deploy the
OpenShift Container Platform cluster and then install the operator. For more information, see Installing
and upgrading multicluster engine operator.

5.2. CLUSTER MANAGEMENT WITH RED HAT ADVANCED CLUSTER
MANAGEMENT

If you need cluster management capabilities beyond what OpenShift Container Platform with
multicluster engine can provide, consider Red Hat Advanced Cluster Management. The multicluster
engine is an integral part of Red Hat Advanced Cluster Management and is enabled by default.

5.3. ADDITIONAL RESOURCES

For the complete documentation for multicluster engine, see Cluster lifecycle with multicluster engine
documentation, which is part of the product documentation for Red Hat Advanced Cluster
Management.

CHAPTER 5. ABOUT THE MULTICLUSTER ENGINE FOR KUBERNETES OPERATOR

31

https://docs.redhat.com/en/documentation/red_hat_advanced_cluster_management_for_kubernetes
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/hosted_control_planes/#hcp-overview
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/edge_computing/#ztp-challenges-of-far-edge-deployments_ztp-deploying-far-edge-clusters-at-scale
https://docs.redhat.com/en/documentation/red_hat_advanced_cluster_management_for_kubernetes/2.13/html/clusters/cluster_mce_overview#mce-install-intro
https://docs.redhat.com/en/documentation/red_hat_advanced_cluster_management_for_kubernetes/2.13/html/clusters/cluster_mce_overview

CHAPTER 6. CONTROL PLANE ARCHITECTURE
The control plane, which is composed of control plane machines, manages the OpenShift Container
Platform cluster. The control plane machines manage workloads on the compute machines, which are
also known as worker machines. The cluster itself manages all upgrades to the machines by the actions
of the Cluster Version Operator (CVO), the Machine Config Operator, and a set of individual Operators.

6.1. NODE CONFIGURATION MANAGEMENT WITH MACHINE CONFIG
POOLS

Machines that run control plane components or user workloads are divided into groups based on the
types of resources they handle. These groups of machines are called machine config pools (MCP). Each
MCP manages a set of nodes and its corresponding machine configs. The role of the node determines
which MCP it belongs to; the MCP governs nodes based on its assigned node role label. Nodes in an
MCP have the same configuration; this means nodes can be scaled up and torn down in response to
increased or decreased workloads.

By default, there are two MCPs created by the cluster when it is installed: master and worker. Each
default MCP has a defined configuration applied by the Machine Config Operator (MCO), which is
responsible for managing MCPs and facilitating MCP updates.

For worker nodes, you can create additional MCPs, or custom pools, to manage nodes with custom use
cases that extend outside of the default node types. Custom MCPs for the control plane nodes are not
supported.

Custom pools are pools that inherit their configurations from the worker pool. They use any machine
config targeted for the worker pool, but add the ability to deploy changes only targeted at the custom
pool. Since a custom pool inherits its configuration from the worker pool, any change to the worker pool
is applied to the custom pool as well. Custom pools that do not inherit their configurations from the
worker pool are not supported by the MCO.

NOTE

A node can only be included in one MCP. If a node has multiple labels that correspond to
several MCPs, like worker,infra, it is managed by the infra custom pool, not the worker
pool. Custom pools take priority on selecting nodes to manage based on node labels;
nodes that do not belong to a custom pool are managed by the worker pool.

It is recommended to have a custom pool for every node role you want to manage in your cluster. For
example, if you create infra nodes to handle infra workloads, it is recommended to create a custom infra
MCP to group those nodes together. If you apply an infra role label to a worker node so it has the
worker,infra dual label, but do not have a custom infra MCP, the MCO considers it a worker node. If you
remove the worker label from a node and apply the infra label without grouping it in a custom pool, the
node is not recognized by the MCO and is unmanaged by the cluster.

IMPORTANT

Any node labeled with the infra role that is only running infra workloads is not counted
toward the total number of subscriptions. The MCP managing an infra node is mutually
exclusive from how the cluster determines subscription charges; tagging a node with the
appropriate infra role and using taints to prevent user workloads from being scheduled
on that node are the only requirements for avoiding subscription charges for infra
workloads.

OpenShift Container Platform 4.18 Architecture

32

The MCO applies updates for pools independently; for example, if there is an update that affects all
pools, nodes from each pool update in parallel with each other. If you add a custom pool, nodes from
that pool also attempt to update concurrently with the master and worker nodes.

There might be situations where the configuration on a node does not fully match what the currently-
applied machine config specifies. This state is called configuration drift. The Machine Config Daemon
(MCD) regularly checks the nodes for configuration drift. If the MCD detects configuration drift, the
MCO marks the node degraded until an administrator corrects the node configuration. A degraded
node is online and operational, but, it cannot be updated.

Additional resources

Understanding configuration drift detection

6.2. MACHINE ROLES IN OPENSHIFT CONTAINER PLATFORM

OpenShift Container Platform assigns hosts different roles. These roles define the function of the
machine within the cluster. The cluster contains definitions for the standard master and worker role
types.

NOTE

The cluster also contains the definition for the bootstrap role. Because the bootstrap
machine is used only during cluster installation, its function is explained in the cluster
installation documentation.

6.2.1. Control plane and node host compatibility

The OpenShift Container Platform version must match between control plane host and node host. For
example, in a 4.18 cluster, all control plane hosts must be 4.18 and all nodes must be 4.18.

Temporary mismatches during cluster upgrades are acceptable. For example, when upgrading from the
previous OpenShift Container Platform version to 4.18, some nodes will upgrade to 4.18 before others.
Prolonged skewing of control plane hosts and node hosts might expose older compute machines to
bugs and missing features. Users should resolve skewed control plane hosts and node hosts as soon as
possible.

The kubelet service must not be newer than kube-apiserver, and can be up to two minor versions older
depending on whether your OpenShift Container Platform version is odd or even. The table below
shows the appropriate version compatibility:

OpenShift Container Platform version Supported kubelet skew

Odd OpenShift Container Platform minor versions [1] Up to one version older

Even OpenShift Container Platform minor versions
[2]

Up to two versions older

1. For example, OpenShift Container Platform 4.11, 4.13.

2. For example, OpenShift Container Platform 4.10, 4.12.

CHAPTER 6. CONTROL PLANE ARCHITECTURE

33

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/machine_configuration/#machine-config-drift-detection_machine-config-overview

6.2.2. Cluster workers

In a Kubernetes cluster, worker nodes run and manage the actual workloads requested by Kubernetes
users. The worker nodes advertise their capacity and the scheduler, which is a control plane service,
determines on which nodes to start pods and containers. The following important services run on each
worker node:

CRI-O, which is the container engine.

kubelet, which is the service that accepts and fulfills requests for running and stopping container
workloads.

A service proxy, which manages communication for pods across workers.

The crun or runC low-level container runtime, which creates and runs containers.

NOTE

For information about how to enable runC instead of the default crun, see the
documentation for creating a ContainerRuntimeConfig CR.

In OpenShift Container Platform, compute machine sets control the compute machines, which are
assigned the worker machine role. Machines with the worker role drive compute workloads that are
governed by a specific machine pool that autoscales them. Because OpenShift Container Platform has
the capacity to support multiple machine types, the machines with the worker role are classed as
compute machines. In this release, the terms worker machine and compute machine are used
interchangeably because the only default type of compute machine is the worker machine. In future
versions of OpenShift Container Platform, different types of compute machines, such as infrastructure
machines, might be used by default.

NOTE

Compute machine sets are groupings of compute machine resources under the
machine-api namespace. Compute machine sets are configurations that are designed to
start new compute machines on a specific cloud provider. Conversely, machine config
pools (MCPs) are part of the Machine Config Operator (MCO) namespace. An MCP is
used to group machines together so the MCO can manage their configurations and
facilitate their upgrades.

6.2.3. Cluster control planes

In a Kubernetes cluster, the master nodes run services that are required to control the Kubernetes
cluster. In OpenShift Container Platform, the control plane is comprised of control plane machines that
have a master machine role. They contain more than just the Kubernetes services for managing the
OpenShift Container Platform cluster.

For most OpenShift Container Platform clusters, control plane machines are defined by a series of
standalone machine API resources. For supported cloud provider and OpenShift Container Platform
version combinations, control planes can be managed with control plane machine sets. Extra controls
apply to control plane machines to prevent you from deleting all of the control plane machines and
breaking your cluster.

NOTE

OpenShift Container Platform 4.18 Architecture

34

NOTE

Exactly three control plane nodes must be used for all production deployments. However,
on bare metal platforms, clusters can be scaled up to five control plane nodes.

Services that fall under the Kubernetes category on the control plane include the Kubernetes API server,
etcd, the Kubernetes controller manager, and the Kubernetes scheduler.

Table 6.1. Kubernetes services that run on the control plane

Component Description

Kubernetes API server The Kubernetes API server validates and configures the data for pods,
services, and replication controllers. It also provides a focal point for the
shared state of the cluster.

etcd etcd stores the persistent control plane state while other components
watch etcd for changes to bring themselves into the specified state.

Kubernetes controller manager The Kubernetes controller manager watches etcd for changes to objects
such as replication, namespace, and service account controller objects,
and then uses the API to enforce the specified state. Several such
processes create a cluster with one active leader at a time.

Kubernetes scheduler The Kubernetes scheduler watches for newly created pods without an
assigned node and selects the best node to host the pod.

There are also OpenShift services that run on the control plane, which include the OpenShift API server,
OpenShift controller manager, OpenShift OAuth API server, and OpenShift OAuth server.

Table 6.2. OpenShift services that run on the control plane

Component Description

OpenShift API server The OpenShift API server validates and configures the data for
OpenShift resources, such as projects, routes, and templates.

The OpenShift API server is managed by the OpenShift API Server
Operator.

OpenShift controller manager The OpenShift controller manager watches etcd for changes to
OpenShift objects, such as project, route, and template controller
objects, and then uses the API to enforce the specified state.

The OpenShift controller manager is managed by the OpenShift
Controller Manager Operator.

CHAPTER 6. CONTROL PLANE ARCHITECTURE

35

OpenShift OAuth API server The OpenShift OAuth API server validates and configures the data to
authenticate to OpenShift Container Platform, such as users, groups,
and OAuth tokens.

The OpenShift OAuth API server is managed by the Cluster
Authentication Operator.

OpenShift OAuth server Users request tokens from the OpenShift OAuth server to authenticate
themselves to the API.

The OpenShift OAuth server is managed by the Cluster Authentication
Operator.

Component Description

Some of these services on the control plane machines run as systemd services, while others run as static
pods.

Systemd services are appropriate for services that you need to always come up on that particular
system shortly after it starts. For control plane machines, those include sshd, which allows remote login.
It also includes services such as:

The CRI-O container engine (crio), which runs and manages the containers. OpenShift
Container Platform 4.18 uses CRI-O instead of the Docker Container Engine.

Kubelet (kubelet), which accepts requests for managing containers on the machine from control
plane services.

CRI-O and Kubelet must run directly on the host as systemd services because they need to be running
before you can run other containers.

The installer-* and revision-pruner-* control plane pods must run with root permissions because they
write to the /etc/kubernetes directory, which is owned by the root user. These pods are in the following
namespaces:

openshift-etcd

openshift-kube-apiserver

openshift-kube-controller-manager

openshift-kube-scheduler

Additional resources

Hosted control planes overview

6.3. OPERATORS IN OPENSHIFT CONTAINER PLATFORM

Operators are among the most important components of OpenShift Container Platform. They are the
preferred method of packaging, deploying, and managing services on the control plane. They can also
provide advantages to applications that users run.

Operators integrate with Kubernetes APIs and CLI tools such as kubectl and the OpenShift CLI (oc).

OpenShift Container Platform 4.18 Architecture

36

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/hosted_control_planes/#hcp-overview

Operators integrate with Kubernetes APIs and CLI tools such as kubectl and the OpenShift CLI (oc).
They provide the means of monitoring applications, performing health checks, managing over-the-air
(OTA) updates, and ensuring that applications remain in your specified state.

Operators also offer a more granular configuration experience. You configure each component by
modifying the API that the Operator exposes instead of modifying a global configuration file.

Because CRI-O and the Kubelet run on every node, almost every other cluster function can be managed
on the control plane by using Operators. Components that are added to the control plane by using
Operators include critical networking and credential services.

While both follow similar Operator concepts and goals, Operators in OpenShift Container Platform are
managed by two different systems, depending on their purpose:

Cluster Operators

Managed by the Cluster Version Operator (CVO) and installed by default to perform cluster
functions.

Optional add-on Operators

Managed by Operator Lifecycle Manager (OLM) and can be made accessible for users to run in their
applications. Also known as OLM-based Operators.

6.3.1. Cluster Operators

In OpenShift Container Platform, all cluster functions are divided into a series of default cluster
Operators. Cluster Operators manage a particular area of cluster functionality, such as cluster-wide
application logging, management of the Kubernetes control plane, or the machine provisioning system.

Cluster Operators are represented by a ClusterOperator object, which cluster administrators can view in
the OpenShift Container Platform web console from the Administration → Cluster Settings page.
Each cluster Operator provides a simple API for determining cluster functionality. The Operator hides
the details of managing the lifecycle of that component. Operators can manage a single component or
tens of components, but the end goal is always to reduce operational burden by automating common
actions.

Additional resources

Cluster Operators reference

6.3.2. Add-on Operators

Operator Lifecycle Manager (OLM) and OperatorHub are default components in OpenShift Container
Platform that help manage Kubernetes-native applications as Operators. Together they provide the
system for discovering, installing, and managing the optional add-on Operators available on the cluster.

Using OperatorHub in the OpenShift Container Platform web console, cluster administrators and
authorized users can select Operators to install from catalogs of Operators. After installing an Operator
from OperatorHub, it can be made available globally or in specific namespaces to run in user
applications.

Default catalog sources are available that include Red Hat Operators, certified Operators, and
community Operators. Cluster administrators can also add their own custom catalog sources, which can
contain a custom set of Operators.

Developers can use the Operator SDK to help author custom Operators that take advantage of OLM

CHAPTER 6. CONTROL PLANE ARCHITECTURE

37

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/operators/#operator-reference

Developers can use the Operator SDK to help author custom Operators that take advantage of OLM
features, as well. Their Operator can then be bundled and added to a custom catalog source, which can
be added to a cluster and made available to users.

NOTE

OLM does not manage the cluster Operators that comprise the OpenShift Container
Platform architecture.

Additional resources

For more details on running add-on Operators in OpenShift Container Platform, see the
Operators guide sections on Operator Lifecycle Manager (OLM) and OperatorHub.

For more details on the Operator SDK, see Developing Operators.

6.4. OVERVIEW OF ETCD

etcd is a consistent, distributed key-value store that holds small amounts of data that can fit entirely in
memory. Although etcd is a core component of many projects, it is the primary data store for
Kubernetes, which is the standard system for container orchestration.

6.4.1. Benefits of using etcd

By using etcd, you can benefit in several ways:

Maintain consistent uptime for your cloud-native applications, and keep them working even if
individual servers fail

Store and replicate all cluster states for Kubernetes

Distribute configuration data to provide redundancy and resiliency for the configuration of
nodes

6.4.2. How etcd works

To ensure a reliable approach to cluster configuration and management, etcd uses the etcd Operator.
The Operator simplifies the use of etcd on a Kubernetes container platform like OpenShift Container
Platform. With the etcd Operator, you can create or delete etcd members, resize clusters, perform
backups, and upgrade etcd.

The etcd Operator observes, analyzes, and acts:

1. It observes the cluster state by using the Kubernetes API.

2. It analyzes differences between the current state and the state that you want.

3. It fixes the differences through the etcd cluster management APIs, the Kubernetes API, or both.

etcd holds the cluster state, which is constantly updated. This state is continuously persisted, which
leads to a high number of small changes at high frequency. As a result, it is critical to back the etcd
cluster member with fast, low-latency I/O. For more information about best practices for etcd, see
"Recommended etcd practices".

Additional resources

OpenShift Container Platform 4.18 Architecture

38

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/operators/#olm-understanding-olm
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/operators/#olm-understanding-operatorhub
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/operators/#osdk-about

Recommended etcd practices

Backing up etcd

CHAPTER 6. CONTROL PLANE ARCHITECTURE

39

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/scalability_and_performance/#recommended-etcd-practices
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/backup_and_restore/#backing-up-etcd

CHAPTER 7. UNDERSTANDING OPENSHIFT CONTAINER
PLATFORM DEVELOPMENT

To fully leverage the capability of containers when developing and running enterprise-quality
applications, ensure your environment is supported by tools that allow containers to be:

Created as discrete microservices that can be connected to other containerized, and non-
containerized, services. For example, you might want to join your application with a database or
attach a monitoring application to it.

Resilient, so if a server crashes or needs to go down for maintenance or to be decommissioned,
containers can start on another machine.

Automated to pick up code changes automatically and then start and deploy new versions of
themselves.

Scaled up, or replicated, to have more instances serving clients as demand increases and then
spun down to fewer instances as demand declines.

Run in different ways, depending on the type of application. For example, one application might
run once a month to produce a report and then exit. Another application might need to run
constantly and be highly available to clients.

Managed so you can watch the state of your application and react when something goes wrong.

Containers’ widespread acceptance, and the resulting requirements for tools and methods to make
them enterprise-ready, resulted in many options for them.

The rest of this section explains options for assets you can create when you build and deploy
containerized Kubernetes applications in OpenShift Container Platform. It also describes which
approaches you might use for different kinds of applications and development requirements.

7.1. ABOUT DEVELOPING CONTAINERIZED APPLICATIONS

You can approach application development with containers in many ways, and different approaches
might be more appropriate for different situations. To illustrate some of this variety, the series of
approaches that is presented starts with developing a single container and ultimately deploys that
container as a mission-critical application for a large enterprise. These approaches show different tools,
formats, and methods that you can employ with containerized application development. This topic
describes:

Building a simple container and storing it in a registry

Creating a Kubernetes manifest and saving it to a Git repository

Making an Operator to share your application with others

7.2. BUILDING A SIMPLE CONTAINER

You have an idea for an application and you want to containerize it.

First you require a tool for building a container, like buildah or docker, and a file that describes what goes
in your container, which is typically a Dockerfile.

Next, you require a location to push the resulting container image so you can pull it to run anywhere you

OpenShift Container Platform 4.18 Architecture

40

https://docs.docker.com/engine/reference/builder/

Next, you require a location to push the resulting container image so you can pull it to run anywhere you
want it to run. This location is a container registry.

Some examples of each of these components are installed by default on most Linux operating systems,
except for the Dockerfile, which you provide yourself.

The following diagram displays the process of building and pushing an image:

Figure 7.1. Create a simple containerized application and push it to a registry

If you use a computer that runs Red Hat Enterprise Linux (RHEL) as the operating system, the process
of creating a containerized application requires the following steps:

1. Install container build tools: RHEL contains a set of tools that includes podman, buildah, and
skopeo that you use to build and manage containers.

2. Create a Dockerfile to combine base image and software: Information about building your
container goes into a file that is named Dockerfile. In that file, you identify the base image you
build from, the software packages you install, and the software you copy into the container. You
also identify parameter values like network ports that you expose outside the container and
volumes that you mount inside the container. Put your Dockerfile and the software you want to
containerize in a directory on your RHEL system.

3. Run buildah or docker build: Run the buildah build-using-dockerfile or the docker
build command to pull your chosen base image to the local system and create a container
image that is stored locally. You can also build container images without a Dockerfile by using
buildah.

4. Tag and push to a registry: Add a tag to your new container image that identifies the location of
the registry in which you want to store and share your container. Then push that image to the
registry by running the podman push or docker push command.

5. Pull and run the image: From any system that has a container client tool, such as podman or
docker, run a command that identifies your new image. For example, run the podman
run <image_name> or docker run <image_name> command. Here <image_name> is the
name of your new container image, which resembles quay.io/myrepo/myapp:latest. The
registry might require credentials to push and pull images.

For more details on the process of building container images, pushing them to registries, and running
them, see Custom image builds with Buildah .

7.2.1. Container build tool options

CHAPTER 7. UNDERSTANDING OPENSHIFT CONTAINER PLATFORM DEVELOPMENT

41

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/builds_using_buildconfig/#custom-builds-buildah

Building and managing containers with buildah, podman, and skopeo results in industry standard
container images that include features specifically tuned for deploying containers in OpenShift
Container Platform or other Kubernetes environments. These tools are daemonless and can run without
root privileges, requiring less overhead to run them.

IMPORTANT

Support for Docker Container Engine as a container runtime is deprecated in Kubernetes
1.20 and will be removed in a future release. However, Docker-produced images will
continue to work in your cluster with all runtimes, including CRI-O. For more information,
see the Kubernetes blog announcement .

When you ultimately run your containers in OpenShift Container Platform, you use the CRI-O container
engine. CRI-O runs on every worker and control plane machine in an OpenShift Container Platform
cluster, but CRI-O is not yet supported as a standalone runtime outside of OpenShift Container
Platform.

7.2.2. Base image options

The base image you choose to build your application on contains a set of software that resembles a
Linux system to your application. When you build your own image, your software is placed into that file
system and sees that file system as though it were looking at its operating system. Choosing this base
image has major impact on how secure, efficient and upgradeable your container is in the future.

Red Hat provides a new set of base images referred to as Red Hat Universal Base Images (UBI). These
images are based on Red Hat Enterprise Linux and are similar to base images that Red Hat has offered
in the past, with one major difference: they are freely redistributable without a Red Hat subscription. As
a result, you can build your application on UBI images without having to worry about how they are shared
or the need to create different images for different environments.

These UBI images have standard, init, and minimal versions. You can also use the Red Hat Software
Collections images as a foundation for applications that rely on specific runtime environments such as
Node.js, Perl, or Python. Special versions of some of these runtime base images are referred to as
Source-to-Image (S2I) images. With S2I images, you can insert your code into a base image
environment that is ready to run that code.

S2I images are available for you to use directly from the OpenShift Container Platform web UI. In the
Developer perspective, navigate to the +Add view and in the Developer Catalog tile, view all of the
available services in the Developer Catalog.

Figure 7.2. Choose S2I base images for apps that need specific runtimes

OpenShift Container Platform 4.18 Architecture

42

https://kubernetes.io/blog/2020/12/02/dont-panic-kubernetes-and-docker/
https://cri-o.io/
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/7/html-single/getting_started_with_containers/index#using_red_hat_base_container_images_standard_and_minimal
https://access.redhat.com/documentation/en-us/red_hat_software_collections/3/html-single/using_red_hat_software_collections_container_images/index

Figure 7.2. Choose S2I base images for apps that need specific runtimes

7.2.3. Registry options

Container registries are where you store container images so you can share them with others and make
them available to the platform where they ultimately run. You can select large, public container registries
that offer free accounts or a premium version that offer more storage and special features. You can also
install your own registry that can be exclusive to your organization or selectively shared with others.

To get Red Hat images and certified partner images, you can draw from the Red Hat Registry. The Red
Hat Registry is represented by two locations: registry.access.redhat.com, which is unauthenticated
and deprecated, and registry.redhat.io, which requires authentication. You can learn about the Red Hat
and partner images in the Red Hat Registry from the Container images section of the Red Hat
Ecosystem Catalog. Besides listing Red Hat container images, it also shows extensive information about
the contents and quality of those images, including health scores that are based on applied security
updates.

Large, public registries include Docker Hub and Quay.io. The Quay.io registry is owned and managed by
Red Hat. Many of the components used in OpenShift Container Platform are stored in Quay.io, including
container images and the Operators that are used to deploy OpenShift Container Platform itself.
Quay.io also offers the means of storing other types of content, including Helm charts.

If you want your own, private container registry, OpenShift Container Platform itself includes a private
container registry that is installed with OpenShift Container Platform and runs on its cluster. Red Hat
also offers a private version of the Quay.io registry called Red Hat Quay. Red Hat Quay includes geo
replication, Git build triggers, Clair image scanning, and many other features.

All of the registries mentioned here can require credentials to download images from those registries.
Some of those credentials are presented on a cluster-wide basis from OpenShift Container Platform,
while other credentials can be assigned to individuals.

7.3. CREATING A KUBERNETES MANIFEST FOR OPENSHIFT
CONTAINER PLATFORM

While the container image is the basic building block for a containerized application, more information is

CHAPTER 7. UNDERSTANDING OPENSHIFT CONTAINER PLATFORM DEVELOPMENT

43

https://catalog.redhat.com/software/containers/explore
https://hub.docker.com/
https://quay.io/
https://access.redhat.com/products/red-hat-quay

While the container image is the basic building block for a containerized application, more information is
required to manage and deploy that application in a Kubernetes environment such as OpenShift
Container Platform. The typical next steps after you create an image are to:

Understand the different resources you work with in Kubernetes manifests

Make some decisions about what kind of an application you are running

Gather supporting components

Create a manifest and store that manifest in a Git repository so you can store it in a source
versioning system, audit it, track it, promote and deploy it to the next environment, roll it back to
earlier versions, if necessary, and share it with others

7.3.1. About Kubernetes pods and services

While the container image is the basic unit with docker, the basic units that Kubernetes works with are
called pods. Pods represent the next step in building out an application. A pod can contain one or more
than one container. The key is that the pod is the single unit that you deploy, scale, and manage.

Scalability and namespaces are probably the main items to consider when determining what goes in a
pod. For ease of deployment, you might want to deploy a container in a pod and include its own logging
and monitoring container in the pod. Later, when you run the pod and need to scale up an additional
instance, those other containers are scaled up with it. For namespaces, containers in a pod share the
same network interfaces, shared storage volumes, and resource limitations, such as memory and CPU,
which makes it easier to manage the contents of the pod as a single unit. Containers in a pod can also
communicate with each other by using standard inter-process communications, such as System V
semaphores or POSIX shared memory.

While individual pods represent a scalable unit in Kubernetes, a service provides a means of grouping
together a set of pods to create a complete, stable application that can complete tasks such as load
balancing. A service is also more permanent than a pod because the service remains available from the
same IP address until you delete it. When the service is in use, it is requested by name and the
OpenShift Container Platform cluster resolves that name into the IP addresses and ports where you can
reach the pods that compose the service.

By their nature, containerized applications are separated from the operating systems where they run
and, by extension, their users. Part of your Kubernetes manifest describes how to expose the application
to internal and external networks by defining network policies that allow fine-grained control over
communication with your containerized applications. To connect incoming requests for HTTP, HTTPS,
and other services from outside your cluster to services inside your cluster, you can use an Ingress
resource.

If your container requires on-disk storage instead of database storage, which might be provided through
a service, you can add volumes to your manifests to make that storage available to your pods. You can
configure the manifests to create persistent volumes (PVs) or dynamically create volumes that are
added to your Pod definitions.

After you define a group of pods that compose your application, you can define those pods in
Deployment and DeploymentConfig objects.

7.3.2. Application types

Next, consider how your application type influences how to run it.

Kubernetes defines different types of workloads that are appropriate for different kinds of applications.

OpenShift Container Platform 4.18 Architecture

44

https://kubernetes.io/docs/concepts/workloads/pods/pod-overview/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/network-policies/
https://kubernetes.io/docs/concepts/services-networking/ingress/
https://kubernetes.io/docs/concepts/storage/volumes/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/building_applications/#what-deployments-are

Kubernetes defines different types of workloads that are appropriate for different kinds of applications.
To determine the appropriate workload for your application, consider if the application is:

Meant to run to completion and be done. An example is an application that starts up to produce
a report and exits when the report is complete. The application might not run again then for a
month. Suitable OpenShift Container Platform objects for these types of applications include
Job and CronJob objects.

Expected to run continuously. For long-running applications, you can write a deployment.

Required to be highly available. If your application requires high availability, then you want to size
your deployment to have more than one instance. A Deployment or DeploymentConfig object
can incorporate a replica set for that type of application. With replica sets, pods run across
multiple nodes to make sure the application is always available, even if a worker goes down.

Need to run on every node. Some types of Kubernetes applications are intended to run in the
cluster itself on every master or worker node. DNS and monitoring applications are examples of
applications that need to run continuously on every node. You can run this type of application as
a daemon set. You can also run a daemon set on a subset of nodes, based on node labels.

Require life-cycle management. When you want to hand off your application so that others can
use it, consider creating an Operator. Operators let you build in intelligence, so it can handle
things like backups and upgrades automatically. Coupled with the Operator Lifecycle Manager
(OLM), cluster managers can expose Operators to selected namespaces so that users in the
cluster can run them.

Have identity or numbering requirements. An application might have identity requirements or
numbering requirements. For example, you might be required to run exactly three instances of
the application and to name the instances 0, 1, and 2. A stateful set is suitable for this
application. Stateful sets are most useful for applications that require independent storage, such
as databases and zookeeper clusters.

7.3.3. Available supporting components

The application you write might need supporting components, like a database or a logging component.
To fulfill that need, you might be able to obtain the required component from the following Catalogs
that are available in the OpenShift Container Platform web console:

OperatorHub, which is available in each OpenShift Container Platform 4.18 cluster. The
OperatorHub makes Operators available from Red Hat, certified Red Hat partners, and
community members to the cluster operator. The cluster operator can make those Operators
available in all or selected namespaces in the cluster, so developers can launch them and
configure them with their applications.

Templates, which are useful for a one-off type of application, where the lifecycle of a
component is not important after it is installed. A template provides an easy way to get started
developing a Kubernetes application with minimal overhead. A template can be a list of resource
definitions, which could be Deployment, Service, Route, or other objects. If you want to change
names or resources, you can set these values as parameters in the template.

You can configure the supporting Operators and templates to the specific needs of your development
team and then make them available in the namespaces in which your developers work. Many people add
shared templates to the openshift namespace because it is accessible from all other namespaces.

7.3.4. Applying the manifest

CHAPTER 7. UNDERSTANDING OPENSHIFT CONTAINER PLATFORM DEVELOPMENT

45

https://kubernetes.io/docs/concepts/workloads/controllers/jobs-run-to-completion/
https://kubernetes.io/docs/concepts/workloads/controllers/cron-jobs/
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/building_applications/#deployments-kube-deployments
https://kubernetes.io/docs/concepts/workloads/controllers/replicaset/
https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/
https://www.openshift.com/learn/topics/operators
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/

Kubernetes manifests let you create a more complete picture of the components that make up your
Kubernetes applications. You write these manifests as YAML files and deploy them by applying them to
the cluster, for example, by running the oc apply command.

7.3.5. Next steps

At this point, consider ways to automate your container development process. Ideally, you have some
sort of CI pipeline that builds the images and pushes them to a registry. In particular, a GitOps pipeline
integrates your container development with the Git repositories that you use to store the software that
is required to build your applications.

The workflow to this point might look like:

Day 1: You write some YAML. You then run the oc apply command to apply that YAML to the
cluster and test that it works.

Day 2: You put your YAML container configuration file into your own Git repository. From there,
people who want to install that app, or help you improve it, can pull down the YAML and apply it
to their cluster to run the app.

Day 3: Consider writing an Operator for your application.

7.4. DEVELOP FOR OPERATORS

Packaging and deploying your application as an Operator might be preferred if you make your
application available for others to run. As noted earlier, Operators add a lifecycle component to your
application that acknowledges that the job of running an application is not complete as soon as it is
installed.

When you create an application as an Operator, you can build in your own knowledge of how to run and
maintain the application. You can build in features for upgrading the application, backing it up, scaling it,
or keeping track of its state. If you configure the application correctly, maintenance tasks, like updating
the Operator, can happen automatically and invisibly to the Operator’s users.

An example of a useful Operator is one that is set up to automatically back up data at particular times.
Having an Operator manage an application’s backup at set times can save a system administrator from
remembering to do it.

Any application maintenance that has traditionally been completed manually, like backing up data or
rotating certificates, can be completed automatically with an Operator.

OpenShift Container Platform 4.18 Architecture

46

CHAPTER 8. RED HAT ENTERPRISE LINUX COREOS (RHCOS)

8.1. ABOUT RHCOS

Red Hat Enterprise Linux CoreOS (RHCOS) represents the next generation of single-purpose container
operating system technology by providing the quality standards of Red Hat Enterprise Linux (RHEL)
with automated, remote upgrade features.

RHCOS is supported only as a component of OpenShift Container Platform 4.18 for all OpenShift
Container Platform machines. RHCOS is the only supported operating system for OpenShift Container
Platform control plane, or master, machines. While RHCOS is the default operating system for all cluster
machines, you can create compute machines, which are also known as worker machines, that use RHEL
as their operating system. There are two general ways RHCOS is deployed in OpenShift Container
Platform 4.18:

If you install your cluster on infrastructure that the installation program provisions, RHCOS
images are downloaded to the target platform during installation. Suitable Ignition config files,
which control the RHCOS configuration, are also downloaded and used to deploy the machines.

If you install your cluster on infrastructure that you manage, you must follow the installation
documentation to obtain the RHCOS images, generate Ignition config files, and use the Ignition
config files to provision your machines.

8.1.1. Key RHCOS features

The following list describes key features of the RHCOS operating system:

Based on RHEL: The underlying operating system consists primarily of RHEL components. The
same quality, security, and control measures that support RHEL also support RHCOS. For
example, RHCOS software is in RPM packages, and each RHCOS system starts up with a RHEL
kernel and a set of services that are managed by the systemd init system.

Controlled immutability: Although it contains RHEL components, RHCOS is designed to be
managed more tightly than a default RHEL installation. Management is performed remotely
from the OpenShift Container Platform cluster. When you set up your RHCOS machines, you
can modify only a few system settings. This controlled immutability allows OpenShift Container
Platform to store the latest state of RHCOS systems in the cluster so it is always able to create
additional machines and perform updates based on the latest RHCOS configurations.

CRI-O container runtime: Although RHCOS contains features for running the OCI- and
libcontainer-formatted containers that Docker requires, it incorporates the CRI-O container
engine instead of the Docker container engine. By focusing on features needed by Kubernetes
platforms, such as OpenShift Container Platform, CRI-O can offer specific compatibility with
different Kubernetes versions. CRI-O also offers a smaller footprint and reduced attack surface
than is possible with container engines that offer a larger feature set. At the moment, CRI-O is
the only engine available within OpenShift Container Platform clusters.
CRI-O can use either the crun or runC container runtime to start and manage containers. crun is
the default. For information about how to enable runC, see the documentation for creating a
ContainerRuntimeConfig CR.

Set of container tools: For tasks such as building, copying, and otherwise managing containers,
RHCOS replaces the Docker CLI tool with a compatible set of container tools. The podman CLI
tool supports many container runtime features, such as running, starting, stopping, listing, and
removing containers and container images. The skopeo CLI tool can copy, authenticate, and

CHAPTER 8. RED HAT ENTERPRISE LINUX COREOS (RHCOS)

47

sign images. You can use the crictl CLI tool to work with containers and pods from the CRI-O
container engine. While direct use of these tools in RHCOS is discouraged, you can use them for
debugging purposes.

rpm-ostree upgrades: RHCOS features transactional upgrades using the rpm-ostree system.
Updates are delivered by means of container images and are part of the OpenShift Container
Platform update process. When deployed, the container image is pulled, extracted, and written
to disk, then the bootloader is modified to boot into the new version. The machine will reboot
into the update in a rolling manner to ensure cluster capacity is minimally impacted.

bootupd firmware and bootloader updater: Package managers and hybrid systems such as
rpm-ostree do not update the firmware or the bootloader. With bootupd, RHCOS users have
access to a cross-distribution, system-agnostic update tool that manages firmware and boot
updates in UEFI and legacy BIOS boot modes that run on modern architectures, such as
x86_64, ppc64le, and aarch64.
For information about how to install bootupd, see the documentation for Updating the
bootloader using bootupd.

Updated through the Machine Config Operator: In OpenShift Container Platform, the
Machine Config Operator handles operating system upgrades. Instead of upgrading individual
packages, as is done with yum upgrades, rpm-ostree delivers upgrades of the OS as an atomic
unit. The new OS deployment is staged during upgrades and goes into effect on the next
reboot. If something goes wrong with the upgrade, a single rollback and reboot returns the
system to the previous state. RHCOS upgrades in OpenShift Container Platform are performed
during cluster updates.

For RHCOS systems, the layout of the rpm-ostree file system has the following characteristics:

/usr is where the operating system binaries and libraries are stored and is read-only. We do not
support altering this.

/etc, /boot, /var are writable on the system but only intended to be altered by the Machine
Config Operator.

/var/lib/containers is the graph storage location for storing container images.

8.1.2. Choosing how to configure RHCOS

RHCOS is designed to deploy on an OpenShift Container Platform cluster with a minimal amount of user
configuration. In its most basic form, this consists of:

Starting with a provisioned infrastructure, such as on AWS, or provisioning the infrastructure
yourself.

Supplying a few pieces of information, such as credentials and cluster name, in an install-
config.yaml file when running openshift-install.

Because RHCOS systems in OpenShift Container Platform are designed to be fully managed from the
OpenShift Container Platform cluster after that, directly changing an RHCOS machine is discouraged.
Although limited direct access to RHCOS machines cluster can be accomplished for debugging
purposes, you should not directly configure RHCOS systems. Instead, if you need to add or change
features on your OpenShift Container Platform nodes, consider making changes in the following ways:

Kubernetes workload objects, such as DaemonSet and Deployment: If you need to add
services or other user-level features to your cluster, consider adding them as Kubernetes
workload objects. Keeping those features outside of specific node configurations is the best way

OpenShift Container Platform 4.18 Architecture

48

to reduce the risk of breaking the cluster on subsequent upgrades.

Day-2 customizations: If possible, bring up a cluster without making any customizations to
cluster nodes and make necessary node changes after the cluster is up. Those changes are
easier to track later and less likely to break updates. Creating machine configs or modifying
Operator custom resources are ways of making these customizations.

Day-1 customizations: For customizations that you must implement when the cluster first
comes up, there are ways of modifying your cluster so changes are implemented on first boot.
Day-1 customizations can be done through Ignition configs and manifest files during openshift-
install or by adding boot options during ISO installs provisioned by the user.

Here are examples of customizations you could do on day 1:

Kernel arguments: If particular kernel features or tuning is needed on nodes when the cluster
first boots.

Disk encryption: If your security needs require that the root file system on the nodes are
encrypted, such as with FIPS support.

Kernel modules: If a particular hardware device, such as a network card or video card, does not
have a usable module available by default in the Linux kernel.

Chronyd: If you want to provide specific clock settings to your nodes, such as the location of
time servers.

To accomplish these tasks, you can augment the openshift-install process to include additional objects
such as MachineConfig objects. Those procedures that result in creating machine configs can be
passed to the Machine Config Operator after the cluster is up.

NOTE

The Ignition config files that the installation program generates contain
certificates that expire after 24 hours, which are then renewed at that time. If the
cluster is shut down before renewing the certificates and the cluster is later
restarted after the 24 hours have elapsed, the cluster automatically recovers the
expired certificates. The exception is that you must manually approve the
pending node-bootstrapper certificate signing requests (CSRs) to recover
kubelet certificates. See the documentation for Recovering from expired control
plane certificates for more information.

It is recommended that you use Ignition config files within 12 hours after they are
generated because the 24-hour certificate rotates from 16 to 22 hours after the
cluster is installed. By using the Ignition config files within 12 hours, you can avoid
installation failure if the certificate update runs during installation.

8.1.3. Choosing how to deploy RHCOS

Differences between RHCOS installations for OpenShift Container Platform are based on whether you
are deploying on an infrastructure provisioned by the installer or by the user:

Installer-provisioned: Some cloud environments offer preconfigured infrastructures that allow
you to bring up an OpenShift Container Platform cluster with minimal configuration. For these
types of installations, you can supply Ignition configs that place content on each node so it is
there when the cluster first boots.

CHAPTER 8. RED HAT ENTERPRISE LINUX COREOS (RHCOS)

49

User-provisioned: If you are provisioning your own infrastructure, you have more flexibility in
how you add content to a RHCOS node. For example, you could add kernel arguments when you
boot the RHCOS ISO installer to install each system. However, in most cases where
configuration is required on the operating system itself, it is best to provide that configuration
through an Ignition config.

The Ignition facility runs only when the RHCOS system is first set up. After that, Ignition configs can be
supplied later using the machine config.

8.1.4. About Ignition

Ignition is the utility that is used by RHCOS to manipulate disks during initial configuration. It completes
common disk tasks, including partitioning disks, formatting partitions, writing files, and configuring users.
On first boot, Ignition reads its configuration from the installation media or the location that you specify
and applies the configuration to the machines.

Whether you are installing your cluster or adding machines to it, Ignition always performs the initial
configuration of the OpenShift Container Platform cluster machines. Most of the actual system setup
happens on each machine itself. For each machine, Ignition takes the RHCOS image and boots the
RHCOS kernel. Options on the kernel command line identify the type of deployment and the location of
the Ignition-enabled initial RAM disk (initramfs).

8.1.4.1. How Ignition works

To create machines by using Ignition, you need Ignition config files. The OpenShift Container Platform
installation program creates the Ignition config files that you need to deploy your cluster. These files are
based on the information that you provide to the installation program directly or through an install-
config.yaml file.

The way that Ignition configures machines is similar to how tools like cloud-init or Linux Anaconda
kickstart configure systems, but with some important differences:

Ignition runs from an initial RAM disk that is separate from the system you are installing to.
Because of that, Ignition can repartition disks, set up file systems, and perform other changes to
the machine’s permanent file system. In contrast, cloud-init runs as part of a machine init system
when the system boots, so making foundational changes to things like disk partitions cannot be
done as easily. With cloud-init, it is also difficult to reconfigure the boot process while you are in
the middle of the node boot process.

Ignition is meant to initialize systems, not change existing systems. After a machine initializes
and the kernel is running from the installed system, the Machine Config Operator from the
OpenShift Container Platform cluster completes all future machine configuration.

Instead of completing a defined set of actions, Ignition implements a declarative configuration.
It checks that all partitions, files, services, and other items are in place before the new machine
starts. It then makes the changes, like copying files to disk that are necessary for the new
machine to meet the specified configuration.

After Ignition finishes configuring a machine, the kernel keeps running but discards the initial
RAM disk and pivots to the installed system on disk. All of the new system services and other
features start without requiring a system reboot.

Because Ignition confirms that all new machines meet the declared configuration, you cannot
have a partially configured machine. If a machine setup fails, the initialization process does not
finish, and Ignition does not start the new machine. Your cluster will never contain partially
configured machines. If Ignition cannot complete, the machine is not added to the cluster. You

OpenShift Container Platform 4.18 Architecture

50

https://cloud-init.io/
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html-single/installation_guide/index#chap-kickstart-installations

must add a new machine instead. This behavior prevents the difficult case of debugging a
machine when the results of a failed configuration task are not known until something that
depended on it fails at a later date.

If there is a problem with an Ignition config that causes the setup of a machine to fail, Ignition
will not try to use the same config to set up another machine. For example, a failure could result
from an Ignition config made up of a parent and child config that both want to create the same
file. A failure in such a case would prevent that Ignition config from being used again to set up an
other machines until the problem is resolved.

If you have multiple Ignition config files, you get a union of that set of configs. Because Ignition
is declarative, conflicts between the configs could cause Ignition to fail to set up the machine.
The order of information in those files does not matter. Ignition will sort and implement each
setting in ways that make the most sense. For example, if a file needs a directory several levels
deep, if another file needs a directory along that path, the later file is created first. Ignition sorts
and creates all files, directories, and links by depth.

Because Ignition can start with a completely empty hard disk, it can do something cloud-init
cannot do: set up systems on bare metal from scratch using features such as PXE boot. In the
bare metal case, the Ignition config is injected into the boot partition so that Ignition can find it
and configure the system correctly.

8.1.4.2. The Ignition sequence

The Ignition process for an RHCOS machine in an OpenShift Container Platform cluster involves the
following steps:

The machine gets its Ignition config file. Control plane machines get their Ignition config files
from the bootstrap machine, and worker machines get Ignition config files from a control plane
machine.

Ignition creates disk partitions, file systems, directories, and links on the machine. It supports
RAID arrays but does not support LVM volumes.

Ignition mounts the root of the permanent file system to the /sysroot directory in the initramfs
and starts working in that /sysroot directory.

Ignition configures all defined file systems and sets them up to mount appropriately at runtime.

Ignition runs systemd temporary files to populate required files in the /var directory.

Ignition runs the Ignition config files to set up users, systemd unit files, and other configuration
files.

Ignition unmounts all components in the permanent system that were mounted in the initramfs.

Ignition starts up the init process of the new machine, which in turn starts up all other services on
the machine that run during system boot.

At the end of this process, the machine is ready to join the cluster and does not require a reboot.

8.2. VIEWING IGNITION CONFIGURATION FILES

To see the Ignition config file used to deploy the bootstrap machine, run the following command:

$ openshift-install create ignition-configs --dir $HOME/testconfig

CHAPTER 8. RED HAT ENTERPRISE LINUX COREOS (RHCOS)

51

After you answer a few questions, the bootstrap.ign, master.ign, and worker.ign files appear in the
directory you entered.

To see the contents of the bootstrap.ign file, pipe it through the jq filter. Here’s a snippet from that file:

To decode the contents of a file listed in the bootstrap.ign file, pipe the base64-encoded data string
representing the contents of that file to the base64 -d command. Here’s an example using the contents
of the /etc/motd file added to the bootstrap machine from the output shown above:

Example output

$ cat $HOME/testconfig/bootstrap.ign | jq
{
 "ignition": {
 "version": "3.2.0"
 },
 "passwd": {
 "users": [
 {
 "name": "core",
 "sshAuthorizedKeys": [
 "ssh-rsa AAAAB3NzaC1yc...."
]
 }
]
 },
 "storage": {
 "files": [
 {
 "overwrite": false,
 "path": "/etc/motd",
 "user": {
 "name": "root"
 },
 "append": [
 {
 "source": "data:text/plain;charset=utf-
8;base64,VGhpcyBpcyB0aGUgYm9vdHN0cmFwIG5vZGU7IGl0IHdpbGwgYmUgZGVzdHJveWVkIHdo
ZW4gdGhlIG1hc3RlciBpcyBmdWxseSB1cC4KClRoZSBwcmltYXJ5IHNlcnZpY2VzIGFyZSByZWxlYXNlL
WltYWdlLnNlcnZpY2UgZm9sbG93ZWQgYnkgYm9vdGt1YmUuc2VydmljZS4gVG8gd2F0Y2ggdGhlaXI
gc3RhdHVzLCBydW4gZS5nLgoKICBqb3VybmFsY3RsIC1iIC1mIC11IHJlbGVhc2UtaW1hZ2Uuc2Vydm
ljZSAtdSBib290a3ViZS5zZXJ2aWNlCg=="
 }
],
 "mode": 420
 },
...

$ echo
VGhpcyBpcyB0aGUgYm9vdHN0cmFwIG5vZGU7IGl0IHdpbGwgYmUgZGVzdHJveWVkIHdoZW4gdG
hlIG1hc3RlciBpcyBmdWxseSB1cC4KClRoZSBwcmltYXJ5IHNlcnZpY2VzIGFyZSByZWxlYXNlLWltYWdl
LnNlcnZpY2UgZm9sbG93ZWQgYnkgYm9vdGt1YmUuc2VydmljZS4gVG8gd2F0Y2ggdGhlaXIgc3Rhd
HVzLCBydW4gZS5nLgoKICBqb3VybmFsY3RsIC1iIC1mIC11IHJlbGVhc2UtaW1hZ2Uuc2VydmljZSAtd
SBib290a3ViZS5zZXJ2aWNlCg== | base64 --decode

OpenShift Container Platform 4.18 Architecture

52

Repeat those commands on the master.ign and worker.ign files to see the source of Ignition config
files for each of those machine types. You should see a line like the following for the worker.ign,
identifying how it gets its Ignition config from the bootstrap machine:

Here are a few things you can learn from the bootstrap.ign file:

Format: The format of the file is defined in the Ignition config spec. Files of the same format are
used later by the MCO to merge changes into a machine’s configuration.

Contents: Because the bootstrap machine serves the Ignition configs for other machines, both
master and worker machine Ignition config information is stored in the bootstrap.ign, along with
the bootstrap machine’s configuration.

Size: The file is more than 1300 lines long, with path to various types of resources.

The content of each file that will be copied to the machine is actually encoded into data URLs,
which tends to make the content a bit clumsy to read. (Use the jq and base64 commands shown
previously to make the content more readable.)

Configuration: The different sections of the Ignition config file are generally meant to contain
files that are just dropped into a machine’s file system, rather than commands to modify existing
files. For example, instead of having a section on NFS that configures that service, you would
just add an NFS configuration file, which would then be started by the init process when the
system comes up.

users: A user named core is created, with your SSH key assigned to that user. This allows you to
log in to the cluster with that user name and your credentials.

storage: The storage section identifies files that are added to each machine. A few notable files
include /root/.docker/config.json (which provides credentials your cluster needs to pull from
container image registries) and a bunch of manifest files in /opt/openshift/manifests that are
used to configure your cluster.

systemd: The systemd section holds content used to create systemd unit files. Those files are
used to start up services at boot time, as well as manage those services on running systems.

Primitives: Ignition also exposes low-level primitives that other tools can build on.

8.3. CHANGING IGNITION CONFIGS AFTER INSTALLATION

Machine config pools manage a cluster of nodes and their corresponding machine configs. Machine
configs contain configuration information for a cluster. To list all machine config pools that are known:

Example output

This is the bootstrap node; it will be destroyed when the master is fully up.

The primary services are release-image.service followed by bootkube.service. To watch their status,
run e.g.

 journalctl -b -f -u release-image.service -u bootkube.service

"source": "https://api.myign.develcluster.example.com:22623/config/worker",

$ oc get machineconfigpools

CHAPTER 8. RED HAT ENTERPRISE LINUX COREOS (RHCOS)

53

https://coreos.github.io/ignition/configuration-v3_2/

Example output

To list all machine configs:

Example output

The Machine Config Operator acts somewhat differently than Ignition when it comes to applying these
machine configs. The machine configs are read in order (from 00* to 99*). Labels inside the machine
configs identify the type of node each is for (master or worker). If the same file appears in multiple
machine config files, the last one wins. So, for example, any file that appears in a 99* file would replace
the same file that appeared in a 00* file. The input MachineConfig objects are unioned into a
"rendered" MachineConfig object, which will be used as a target by the operator and is the value you
can see in the machine config pool.

To see what files are being managed from a machine config, look for "Path:" inside a particular
MachineConfig object. For example:

Example output

Be sure to give the machine config file a later name (such as 10-worker-container-runtime). Keep in
mind that the content of each file is in URL-style data. Then apply the new machine config to the
cluster.

NAME CONFIG UPDATED UPDATING DEGRADED
master master-1638c1aea398413bb918e76632f20799 False False False
worker worker-2feef4f8288936489a5a832ca8efe953 False False False

$ oc get machineconfig

NAME GENERATEDBYCONTROLLER IGNITIONVERSION CREATED
OSIMAGEURL

00-master 4.0.0-0.150.0.0-dirty 3.2.0 16m
00-master-ssh 4.0.0-0.150.0.0-dirty 16m
00-worker 4.0.0-0.150.0.0-dirty 3.2.0 16m
00-worker-ssh 4.0.0-0.150.0.0-dirty 16m
01-master-kubelet 4.0.0-0.150.0.0-dirty 3.2.0 16m
01-worker-kubelet 4.0.0-0.150.0.0-dirty 3.2.0 16m
master-1638c1aea398413bb918e76632f20799 4.0.0-0.150.0.0-dirty 3.2.0 16m
worker-2feef4f8288936489a5a832ca8efe953 4.0.0-0.150.0.0-dirty 3.2.0 16m

$ oc describe machineconfigs 01-worker-container-runtime | grep Path:

 Path: /etc/containers/registries.conf
 Path: /etc/containers/storage.conf
 Path: /etc/crio/crio.conf

OpenShift Container Platform 4.18 Architecture

54

CHAPTER 9. ADMISSION PLUGINS
Admission plugins are used to help regulate how OpenShift Container Platform functions.

9.1. ABOUT ADMISSION PLUGINS

Admission plugins intercept requests to the master API to validate resource requests. After a request is
authenticated and authorized, the admission plugins ensure that any associated policies are followed.
For example, they are commonly used to enforce security policy, resource limitations or configuration
requirements.

Admission plugins run in sequence as an admission chain. If any admission plugin in the sequence rejects
a request, the whole chain is aborted and an error is returned.

OpenShift Container Platform has a default set of admission plugins enabled for each resource type.
These are required for proper functioning of the cluster. Admission plugins ignore resources that they
are not responsible for.

In addition to the defaults, the admission chain can be extended dynamically through webhook
admission plugins that call out to custom webhook servers. There are two types of webhook admission
plugins: a mutating admission plugin and a validating admission plugin. The mutating admission plugin
runs first and can both modify resources and validate requests. The validating admission plugin validates
requests and runs after the mutating admission plugin so that modifications triggered by the mutating
admission plugin can also be validated.

Calling webhook servers through a mutating admission plugin can produce side effects on resources
related to the target object. In such situations, you must take steps to validate that the end result is as
expected.

WARNING

Dynamic admission should be used cautiously because it impacts cluster control
plane operations. When calling webhook servers through webhook admission
plugins in OpenShift Container Platform 4.18, ensure that you have read the
documentation fully and tested for side effects of mutations. Include steps to
restore resources back to their original state prior to mutation, in the event that a
request does not pass through the entire admission chain.

9.2. DEFAULT ADMISSION PLUGINS

Default validating and admission plugins are enabled in OpenShift Container Platform 4.18. These
default plugins contribute to fundamental control plane functionality, such as ingress policy, cluster
resource limit override and quota policy.

IMPORTANT



CHAPTER 9. ADMISSION PLUGINS

55

IMPORTANT

Do not run workloads in or share access to default projects. Default projects are reserved
for running core cluster components.

The following default projects are considered highly privileged: default, kube-public,
kube-system, openshift, openshift-infra, openshift-node, and other system-created
projects that have the openshift.io/run-level label set to 0 or 1. Functionality that relies
on admission plugins, such as pod security admission, security context constraints, cluster
resource quotas, and image reference resolution, does not work in highly privileged
projects.

The following lists contain the default admission plugins:

Example 9.1. Validating admission plugins

LimitRanger

ServiceAccount

PodNodeSelector

Priority

PodTolerationRestriction

OwnerReferencesPermissionEnforcement

PersistentVolumeClaimResize

RuntimeClass

CertificateApproval

CertificateSigning

CertificateSubjectRestriction

autoscaling.openshift.io/ManagementCPUsOverride

authorization.openshift.io/RestrictSubjectBindings

scheduling.openshift.io/OriginPodNodeEnvironment

network.openshift.io/ExternalIPRanger

network.openshift.io/RestrictedEndpointsAdmission

image.openshift.io/ImagePolicy

security.openshift.io/SecurityContextConstraint

security.openshift.io/SCCExecRestrictions

route.openshift.io/IngressAdmission

OpenShift Container Platform 4.18 Architecture

56

config.openshift.io/ValidateAPIServer

config.openshift.io/ValidateAuthentication

config.openshift.io/ValidateFeatureGate

config.openshift.io/ValidateConsole

operator.openshift.io/ValidateDNS

config.openshift.io/ValidateImage

config.openshift.io/ValidateOAuth

config.openshift.io/ValidateProject

config.openshift.io/DenyDeleteClusterConfiguration

config.openshift.io/ValidateScheduler

quota.openshift.io/ValidateClusterResourceQuota

security.openshift.io/ValidateSecurityContextConstraints

authorization.openshift.io/ValidateRoleBindingRestriction

config.openshift.io/ValidateNetwork

operator.openshift.io/ValidateKubeControllerManager

ValidatingAdmissionWebhook

ResourceQuota

quota.openshift.io/ClusterResourceQuota

Example 9.2. Mutating admission plugins

NamespaceLifecycle

LimitRanger

ServiceAccount

NodeRestriction

TaintNodesByCondition

PodNodeSelector

Priority

DefaultTolerationSeconds

PodTolerationRestriction

CHAPTER 9. ADMISSION PLUGINS

57

DefaultStorageClass

StorageObjectInUseProtection

RuntimeClass

DefaultIngressClass

autoscaling.openshift.io/ManagementCPUsOverride

scheduling.openshift.io/OriginPodNodeEnvironment

image.openshift.io/ImagePolicy

security.openshift.io/SecurityContextConstraint

security.openshift.io/DefaultSecurityContextConstraints

MutatingAdmissionWebhook

9.3. WEBHOOK ADMISSION PLUGINS

In addition to OpenShift Container Platform default admission plugins, dynamic admission can be
implemented through webhook admission plugins that call webhook servers, to extend the functionality
of the admission chain. Webhook servers are called over HTTP at defined endpoints.

There are two types of webhook admission plugins in OpenShift Container Platform:

During the admission process, the mutating admission plugin can perform tasks, such as injecting
affinity labels.

At the end of the admission process, the validating admission plugin can be used to make sure an
object is configured properly, for example ensuring affinity labels are as expected. If the
validation passes, OpenShift Container Platform schedules the object as configured.

When an API request comes in, mutating or validating admission plugins use the list of external
webhooks in the configuration and call them in parallel:

If all of the webhooks approve the request, the admission chain continues.

If any of the webhooks deny the request, the admission request is denied and the reason for
doing so is based on the first denial.

If more than one webhook denies the admission request, only the first denial reason is returned
to the user.

If an error is encountered when calling a webhook, the request is either denied or the webhook is
ignored depending on the error policy set. If the error policy is set to Ignore, the request is
unconditionally accepted in the event of a failure. If the policy is set to Fail, failed requests are
denied. Using Ignore can result in unpredictable behavior for all clients.

Communication between the webhook admission plugin and the webhook server must use TLS.
Generate a CA certificate and use the certificate to sign the server certificate that is used by your
webhook admission server. The PEM-encoded CA certificate is supplied to the webhook admission
plugin using a mechanism, such as service serving certificate secrets.

OpenShift Container Platform 4.18 Architecture

58

The following diagram illustrates the sequential admission chain process within which multiple webhook
servers are called.

Figure 9.1. API admission chain with mutating and validating admission plugins

An example webhook admission plugin use case is where all pods must have a common set of labels. In
this example, the mutating admission plugin can inject labels and the validating admission plugin can
check that labels are as expected. OpenShift Container Platform would subsequently schedule pods
that include required labels and reject those that do not.

Some common webhook admission plugin use cases include:

Namespace reservation.

Limiting custom network resources managed by the SR-IOV network device plugin.

Defining tolerations that enable taints to qualify which pods should be scheduled on a node.

Pod priority class validation.

NOTE

The maximum default webhook timeout value in OpenShift Container Platform is 13
seconds, and it cannot be changed.

9.4. TYPES OF WEBHOOK ADMISSION PLUGINS

Cluster administrators can call out to webhook servers through the mutating admission plugin or the
validating admission plugin in the API server admission chain.

9.4.1. Mutating admission plugin

The mutating admission plugin is invoked during the mutation phase of the admission process, which
allows modification of resource content before it is persisted. One example webhook that can be called
through the mutating admission plugin is the Pod Node Selector feature, which uses an annotation on a
namespace to find a label selector and add it to the pod specification.

Sample mutating admission plugin configuration

CHAPTER 9. ADMISSION PLUGINS

59

1

2

3

4

5

6

7

8

9

10

11

Specifies a mutating admission plugin configuration.

The name for the MutatingWebhookConfiguration object. Replace <webhook_name> with the
appropriate value.

The name of the webhook to call. Replace <webhook_name> with the appropriate value.

Information about how to connect to, trust, and send data to the webhook server.

The namespace where the front-end service is created.

The name of the front-end service.

The webhook URL used for admission requests. Replace <webhook_url> with the appropriate
value.

A PEM-encoded CA certificate that signs the server certificate that is used by the webhook server.
Replace <ca_signing_certificate> with the appropriate certificate in base64 format.

Rules that define when the API server should use this webhook admission plugin.

One or more operations that trigger the API server to call this webhook admission plugin. Possible
values are create, update, delete or connect. Replace <operation> and <resource> with the
appropriate values.

Specifies how the policy should proceed if the webhook server is unavailable. Replace <policy>
with either Ignore (to unconditionally accept the request in the event of a failure) or Fail (to deny
the failed request). Using Ignore can result in unpredictable behavior for all clients.

IMPORTANT

apiVersion: admissionregistration.k8s.io/v1beta1
kind: MutatingWebhookConfiguration 1
metadata:
 name: <webhook_name> 2
webhooks:
- name: <webhook_name> 3
 clientConfig: 4
 service:
 namespace: default 5
 name: kubernetes 6
 path: <webhook_url> 7
 caBundle: <ca_signing_certificate> 8
 rules: 9
 - operations: 10
 - <operation>
 apiGroups:
 - ""
 apiVersions:
 - "*"
 resources:
 - <resource>
 failurePolicy: <policy> 11
 sideEffects: None

OpenShift Container Platform 4.18 Architecture

60

1

2

3

4

5

6

7

IMPORTANT

In OpenShift Container Platform 4.18, objects created by users or control loops through a
mutating admission plugin might return unexpected results, especially if values set in an
initial request are overwritten, which is not recommended.

9.4.2. Validating admission plugin

A validating admission plugin is invoked during the validation phase of the admission process. This phase
allows the enforcement of invariants on particular API resources to ensure that the resource does not
change again. The Pod Node Selector is also an example of a webhook which is called by the validating
admission plugin, to ensure that all nodeSelector fields are constrained by the node selector
restrictions on the namespace.

Sample validating admission plugin configuration

Specifies a validating admission plugin configuration.

The name for the ValidatingWebhookConfiguration object. Replace <webhook_name> with the
appropriate value.

The name of the webhook to call. Replace <webhook_name> with the appropriate value.

Information about how to connect to, trust, and send data to the webhook server.

The namespace where the front-end service is created.

The name of the front-end service.

The webhook URL used for admission requests. Replace <webhook_url> with the appropriate
value.

apiVersion: admissionregistration.k8s.io/v1beta1
kind: ValidatingWebhookConfiguration 1
metadata:
 name: <webhook_name> 2
webhooks:
- name: <webhook_name> 3
 clientConfig: 4
 service:
 namespace: default 5
 name: kubernetes 6
 path: <webhook_url> 7
 caBundle: <ca_signing_certificate> 8
 rules: 9
 - operations: 10
 - <operation>
 apiGroups:
 - ""
 apiVersions:
 - "*"
 resources:
 - <resource>
 failurePolicy: <policy> 11
 sideEffects: Unknown

CHAPTER 9. ADMISSION PLUGINS

61

8

9

10

11

1

value.

A PEM-encoded CA certificate that signs the server certificate that is used by the webhook server.
Replace <ca_signing_certificate> with the appropriate certificate in base64 format.

Rules that define when the API server should use this webhook admission plugin.

One or more operations that trigger the API server to call this webhook admission plugin. Possible
values are create, update, delete or connect. Replace <operation> and <resource> with the
appropriate values.

Specifies how the policy should proceed if the webhook server is unavailable. Replace <policy>
with either Ignore (to unconditionally accept the request in the event of a failure) or Fail (to deny
the failed request). Using Ignore can result in unpredictable behavior for all clients.

9.5. CONFIGURING DYNAMIC ADMISSION

This procedure outlines high-level steps to configure dynamic admission. The functionality of the
admission chain is extended by configuring a webhook admission plugin to call out to a webhook server.

The webhook server is also configured as an aggregated API server. This allows other OpenShift
Container Platform components to communicate with the webhook using internal credentials and
facilitates testing using the oc command. Additionally, this enables role based access control (RBAC)
into the webhook and prevents token information from other API servers from being disclosed to the
webhook.

Prerequisites

An OpenShift Container Platform account with cluster administrator access.

The OpenShift Container Platform CLI (oc) installed.

A published webhook server container image.

Procedure

1. Build a webhook server container image and make it available to the cluster using an image
registry.

2. Create a local CA key and certificate and use them to sign the webhook server’s certificate
signing request (CSR).

3. Create a new project for webhook resources:

Note that the webhook server might expect a specific name.

4. Define RBAC rules for the aggregated API service in a file called rbac.yaml:

$ oc new-project my-webhook-namespace 1

apiVersion: v1
kind: List
items:

OpenShift Container Platform 4.18 Architecture

62

- apiVersion: rbac.authorization.k8s.io/v1 1
 kind: ClusterRoleBinding
 metadata:
 name: auth-delegator-my-webhook-namespace
 roleRef:
 kind: ClusterRole
 apiGroup: rbac.authorization.k8s.io
 name: system:auth-delegator
 subjects:
 - kind: ServiceAccount
 namespace: my-webhook-namespace
 name: server

- apiVersion: rbac.authorization.k8s.io/v1 2
 kind: ClusterRole
 metadata:
 annotations:
 name: system:openshift:online:my-webhook-server
 rules:
 - apiGroups:
 - online.openshift.io
 resources:
 - namespacereservations 3
 verbs:
 - get
 - list
 - watch

- apiVersion: rbac.authorization.k8s.io/v1 4
 kind: ClusterRole
 metadata:
 name: system:openshift:online:my-webhook-requester
 rules:
 - apiGroups:
 - admission.online.openshift.io
 resources:
 - namespacereservations 5
 verbs:
 - create

- apiVersion: rbac.authorization.k8s.io/v1 6
 kind: ClusterRoleBinding
 metadata:
 name: my-webhook-server-my-webhook-namespace
 roleRef:
 kind: ClusterRole
 apiGroup: rbac.authorization.k8s.io
 name: system:openshift:online:my-webhook-server
 subjects:
 - kind: ServiceAccount
 namespace: my-webhook-namespace
 name: server

- apiVersion: rbac.authorization.k8s.io/v1 7

CHAPTER 9. ADMISSION PLUGINS

63

1

2

3

4

Delegates authentication and authorization to the webhook server API.

Allows the webhook server to access cluster resources.

Points to resources. This example points to the namespacereservations resource.

Enables the aggregated API server to create admission reviews.

 kind: RoleBinding
 metadata:
 namespace: kube-system
 name: extension-server-authentication-reader-my-webhook-namespace
 roleRef:
 kind: Role
 apiGroup: rbac.authorization.k8s.io
 name: extension-apiserver-authentication-reader
 subjects:
 - kind: ServiceAccount
 namespace: my-webhook-namespace
 name: server

- apiVersion: rbac.authorization.k8s.io/v1 8
 kind: ClusterRole
 metadata:
 name: my-cluster-role
 rules:
 - apiGroups:
 - admissionregistration.k8s.io
 resources:
 - validatingwebhookconfigurations
 - mutatingwebhookconfigurations
 verbs:
 - get
 - list
 - watch
 - apiGroups:
 - ""
 resources:
 - namespaces
 verbs:
 - get
 - list
 - watch

- apiVersion: rbac.authorization.k8s.io/v1
 kind: ClusterRoleBinding
 metadata:
 name: my-cluster-role
 roleRef:
 kind: ClusterRole
 apiGroup: rbac.authorization.k8s.io
 name: my-cluster-role
 subjects:
 - kind: ServiceAccount
 namespace: my-webhook-namespace
 name: server

OpenShift Container Platform 4.18 Architecture

64

5

6

7

8

Points to resources. This example points to the namespacereservations resource.

Enables the webhook server to access cluster resources.

Role binding to read the configuration for terminating authentication.

Default cluster role and cluster role bindings for an aggregated API server.

5. Apply those RBAC rules to the cluster:

6. Create a YAML file called webhook-daemonset.yaml that is used to deploy a webhook as a
daemon set server in a namespace:

$ oc auth reconcile -f rbac.yaml

apiVersion: apps/v1
kind: DaemonSet
metadata:
 namespace: my-webhook-namespace
 name: server
 labels:
 server: "true"
spec:
 selector:
 matchLabels:
 server: "true"
 template:
 metadata:
 name: server
 labels:
 server: "true"
 spec:
 serviceAccountName: server
 containers:
 - name: my-webhook-container 1
 image: <image_registry_username>/<image_path>:<tag> 2
 imagePullPolicy: IfNotPresent
 command:
 - <container_commands> 3
 ports:
 - containerPort: 8443 4
 volumeMounts:
 - mountPath: /var/serving-cert
 name: serving-cert
 readinessProbe:
 httpGet:
 path: /healthz
 port: 8443 5
 scheme: HTTPS
 volumes:
 - name: serving-cert
 secret:
 defaultMode: 420
 secretName: server-serving-cert

CHAPTER 9. ADMISSION PLUGINS

65

1

2

3

4

5

1

2

Note that the webhook server might expect a specific container name.

Points to a webhook server container image. Replace
<image_registry_username>/<image_path>:<tag> with the appropriate value.

Specifies webhook container run commands. Replace <container_commands> with the
appropriate value.

Defines the target port within pods. This example uses port 8443.

Specifies the port used by the readiness probe. This example uses port 8443.

7. Deploy the daemon set:

8. Define a secret for the service serving certificate signer, within a YAML file called webhook-
secret.yaml:

References the signed webhook server certificate. Replace <server_certificate> with the
appropriate certificate in base64 format.

References the signed webhook server key. Replace <server_key> with the appropriate
key in base64 format.

9. Create the secret:

10. Define a service account and service, within a YAML file called webhook-service.yaml:

$ oc apply -f webhook-daemonset.yaml

apiVersion: v1
kind: Secret
metadata:
 namespace: my-webhook-namespace
 name: server-serving-cert
type: kubernetes.io/tls
data:
 tls.crt: <server_certificate> 1
 tls.key: <server_key> 2

$ oc apply -f webhook-secret.yaml

apiVersion: v1
kind: List
items:

- apiVersion: v1
 kind: ServiceAccount
 metadata:
 namespace: my-webhook-namespace
 name: server

- apiVersion: v1
 kind: Service

OpenShift Container Platform 4.18 Architecture

66

1

2

1

2

3

4

5

6

7

Defines the port that the service listens on. This example uses port 443.

Defines the target port within pods that the service forwards connections to. This example
uses port 8443.

11. Expose the webhook server within the cluster:

12. Define a custom resource definition for the webhook server, in a file called webhook-crd.yaml:

Reflects CustomResourceDefinition spec values and is in the format <plural>.<group>.
This example uses the namespacereservations resource.

REST API group name.

REST API version name.

Accepted values are Namespaced or Cluster.

Plural name to be included in URL.

Alias seen in oc output.

The reference for resource manifests.

13. Apply the custom resource definition:

 metadata:
 namespace: my-webhook-namespace
 name: server
 annotations:
 service.beta.openshift.io/serving-cert-secret-name: server-serving-cert
 spec:
 selector:
 server: "true"
 ports:
 - port: 443 1
 targetPort: 8443 2

$ oc apply -f webhook-service.yaml

apiVersion: apiextensions.k8s.io/v1beta1
kind: CustomResourceDefinition
metadata:
 name: namespacereservations.online.openshift.io 1
spec:
 group: online.openshift.io 2
 version: v1alpha1 3
 scope: Cluster 4
 names:
 plural: namespacereservations 5
 singular: namespacereservation 6
 kind: NamespaceReservation 7

CHAPTER 9. ADMISSION PLUGINS

67

1

14. Configure the webhook server also as an aggregated API server, within a file called webhook-
api-service.yaml:

A PEM-encoded CA certificate that signs the server certificate that is used by the
webhook server. Replace <ca_signing_certificate> with the appropriate certificate in
base64 format.

15. Deploy the aggregated API service:

16. Define the webhook admission plugin configuration within a file called webhook-config.yaml.
This example uses the validating admission plugin:

$ oc apply -f webhook-crd.yaml

apiVersion: apiregistration.k8s.io/v1beta1
kind: APIService
metadata:
 name: v1beta1.admission.online.openshift.io
spec:
 caBundle: <ca_signing_certificate> 1
 group: admission.online.openshift.io
 groupPriorityMinimum: 1000
 versionPriority: 15
 service:
 name: server
 namespace: my-webhook-namespace
 version: v1beta1

$ oc apply -f webhook-api-service.yaml

apiVersion: admissionregistration.k8s.io/v1beta1
kind: ValidatingWebhookConfiguration
metadata:
 name: namespacereservations.admission.online.openshift.io 1
webhooks:
- name: namespacereservations.admission.online.openshift.io 2
 clientConfig:
 service: 3
 namespace: default
 name: kubernetes
 path: /apis/admission.online.openshift.io/v1beta1/namespacereservations 4
 caBundle: <ca_signing_certificate> 5
 rules:
 - operations:
 - CREATE
 apiGroups:
 - project.openshift.io
 apiVersions:
 - "*"
 resources:
 - projectrequests
 - operations:
 - CREATE

OpenShift Container Platform 4.18 Architecture

68

1

2

3

4

5

Name for the ValidatingWebhookConfiguration object. This example uses the
namespacereservations resource.

Name of the webhook to call. This example uses the namespacereservations resource.

Enables access to the webhook server through the aggregated API.

The webhook URL used for admission requests. This example uses the
namespacereservation resource.

A PEM-encoded CA certificate that signs the server certificate that is used by the
webhook server. Replace <ca_signing_certificate> with the appropriate certificate in
base64 format.

17. Deploy the webhook:

18. Verify that the webhook is functioning as expected. For example, if you have configured
dynamic admission to reserve specific namespaces, confirm that requests to create those
namespaces are rejected and that requests to create non-reserved namespaces succeed.

9.6. ADDITIONAL RESOURCES

Configuring the SR-IOV Network Operator

Controlling pod placement using node taints

Pod priority names

 apiGroups:
 - ""
 apiVersions:
 - "*"
 resources:
 - namespaces
 failurePolicy: Fail

$ oc apply -f webhook-config.yaml

CHAPTER 9. ADMISSION PLUGINS

69

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/networking_operators/#configuring-sriov-operator_configuring-sriov-operator
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/nodes/#nodes-scheduler-taints-tolerations_dedicating_nodes-scheduler-taints-tolerations
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/nodes/#admin-guide-priority-preemption-names_nodes-pods-priority

	Table of Contents
	CHAPTER 1. ARCHITECTURE OVERVIEW
	1.1. GLOSSARY OF COMMON TERMS FOR OPENSHIFT CONTAINER PLATFORM ARCHITECTURE
	1.2. ABOUT INSTALLATION AND UPDATES
	1.3. ABOUT THE CONTROL PLANE
	1.4. ABOUT CONTAINERIZED APPLICATIONS FOR DEVELOPERS
	1.5. ABOUT RED HAT ENTERPRISE LINUX COREOS (RHCOS) AND IGNITION
	1.6. ABOUT ADMISSION PLUGINS

	CHAPTER 2. OPENSHIFT CONTAINER PLATFORM ARCHITECTURE
	2.1. INTRODUCTION TO OPENSHIFT CONTAINER PLATFORM
	2.1.1. About Kubernetes
	2.1.2. The benefits of containerized applications
	2.1.2.1. Operating system benefits
	2.1.2.2. Deployment and scaling benefits

	2.1.3. OpenShift Container Platform overview
	2.1.3.1. Custom operating system
	2.1.3.2. Simplified installation and update process
	2.1.3.3. Other key features
	2.1.3.4. OpenShift Container Platform lifecycle

	2.1.4. Internet access for OpenShift Container Platform

	CHAPTER 3. INSTALLATION AND UPDATE
	3.1. ABOUT OPENSHIFT CONTAINER PLATFORM INSTALLATION
	3.1.1. About the installation program
	3.1.2. About Red Hat Enterprise Linux CoreOS (RHCOS)
	3.1.3. Supported platforms for OpenShift Container Platform clusters
	3.1.4. Installation process
	3.1.4.1. The installation process with the Assisted Installer
	3.1.4.2. The installation process with Agent-based infrastructure
	3.1.4.3. The installation process with installer-provisioned infrastructure
	3.1.4.4. The installation process with user-provisioned infrastructure
	3.1.4.5. Installation process details

	3.1.5. Installation scope

	3.2. ABOUT THE OPENSHIFT UPDATE SERVICE
	3.3. SUPPORT POLICY FOR UNMANAGED OPERATORS
	3.4. NEXT STEPS

	CHAPTER 4. RED HAT OPENSHIFT CLUSTER MANAGER
	4.1. ACCESSING RED HAT OPENSHIFT CLUSTER MANAGER
	4.2. GENERAL ACTIONS
	4.3. CLUSTER TABS
	4.3.1. Overview tab
	4.3.2. Access control tab
	4.3.3. Add-ons tab
	4.3.4. Insights Advisor tab
	4.3.5. Machine pools tab
	4.3.6. Support tab
	4.3.7. Settings tab

	4.4. ADDITIONAL RESOURCES

	CHAPTER 5. ABOUT THE MULTICLUSTER ENGINE FOR KUBERNETES OPERATOR
	5.1. CLUSTER MANAGEMENT WITH MULTICLUSTER ENGINE ON OPENSHIFT CONTAINER PLATFORM
	5.2. CLUSTER MANAGEMENT WITH RED HAT ADVANCED CLUSTER MANAGEMENT
	5.3. ADDITIONAL RESOURCES

	CHAPTER 6. CONTROL PLANE ARCHITECTURE
	6.1. NODE CONFIGURATION MANAGEMENT WITH MACHINE CONFIG POOLS
	6.2. MACHINE ROLES IN OPENSHIFT CONTAINER PLATFORM
	6.2.1. Control plane and node host compatibility
	6.2.2. Cluster workers
	6.2.3. Cluster control planes

	6.3. OPERATORS IN OPENSHIFT CONTAINER PLATFORM
	6.3.1. Cluster Operators
	6.3.2. Add-on Operators

	6.4. OVERVIEW OF ETCD
	6.4.1. Benefits of using etcd
	6.4.2. How etcd works

	CHAPTER 7. UNDERSTANDING OPENSHIFT CONTAINER PLATFORM DEVELOPMENT
	7.1. ABOUT DEVELOPING CONTAINERIZED APPLICATIONS
	7.2. BUILDING A SIMPLE CONTAINER
	7.2.1. Container build tool options
	7.2.2. Base image options
	7.2.3. Registry options

	7.3. CREATING A KUBERNETES MANIFEST FOR OPENSHIFT CONTAINER PLATFORM
	7.3.1. About Kubernetes pods and services
	7.3.2. Application types
	7.3.3. Available supporting components
	7.3.4. Applying the manifest
	7.3.5. Next steps

	7.4. DEVELOP FOR OPERATORS

	CHAPTER 8. RED HAT ENTERPRISE LINUX COREOS (RHCOS)
	8.1. ABOUT RHCOS
	8.1.1. Key RHCOS features
	8.1.2. Choosing how to configure RHCOS
	8.1.3. Choosing how to deploy RHCOS
	8.1.4. About Ignition
	8.1.4.1. How Ignition works
	8.1.4.2. The Ignition sequence

	8.2. VIEWING IGNITION CONFIGURATION FILES
	8.3. CHANGING IGNITION CONFIGS AFTER INSTALLATION

	CHAPTER 9. ADMISSION PLUGINS
	9.1. ABOUT ADMISSION PLUGINS
	9.2. DEFAULT ADMISSION PLUGINS
	9.3. WEBHOOK ADMISSION PLUGINS
	9.4. TYPES OF WEBHOOK ADMISSION PLUGINS
	9.4.1. Mutating admission plugin
	9.4.2. Validating admission plugin

	9.5. CONFIGURING DYNAMIC ADMISSION
	9.6. ADDITIONAL RESOURCES

