
OpenShift Container Platform 4.19

Network security

Securing network traffic and enforcing network policies in OpenShift Container
Platform

Last Updated: 2026-01-15





OpenShift Container Platform 4.19 Network security

Securing network traffic and enforcing network policies in OpenShift Container Platform



Legal Notice

Copyright © Red Hat.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document covers how to implement and manage network security features, such as network
policies and egress firewalls, in OpenShift Container Platform.



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table of Contents

CHAPTER 1. UNDERSTANDING NETWORK POLICY APIS
1.1. NETWORK POLICIES AND THEIR SCOPE
1.2. HOW NETWORK POLICY IS EVALUATED AND APPLIED
1.3. KEY DIFFERENCES BETWEEN ADMINNETWORKPOLICY AND NETWORKPOLICY CUSTOM RESOURCES

CHAPTER 2. ADMIN NETWORK POLICY
2.1. OVN-KUBERNETES ADMINNETWORKPOLICY

2.1.1. AdminNetworkPolicy
2.1.1.1. AdminNetworkPolicy example
2.1.1.2. AdminNetworkPolicy actions for rules

2.1.1.2.1. AdminNetworkPolicy Allow example
2.1.1.2.2. AdminNetworkPolicy Deny example
2.1.1.2.3. AdminNetworkPolicy Pass example

2.2. OVN-KUBERNETES BASELINEADMINNETWORKPOLICY
2.2.1. BaselineAdminNetworkPolicy

2.2.1.1. BaselineAdminNetworkPolicy example
2.2.1.2. BaselineAdminNetworkPolicy Deny example

2.3. MONITORING ANP AND BANP
2.3.1. Metrics for AdminNetworkPolicy

2.4. EGRESS NODES AND NETWORKS PEER FOR ADMINNETWORKPOLICY
2.4.1. Northbound traffic controls for AdminNetworkPolicy and BaselineAdminNetworkPolicy

2.4.1.1. Using nodes peer to control egress traffic to cluster nodes
2.4.1.2. Using networks peer to control egress traffic towards external destinations
2.4.1.3. Using nodes peer and networks peer together

2.5. TROUBLESHOOTING ADMINNETWORKPOLICY
2.5.1. Checking creation of ANP

2.5.1.1. Using nbctl commands for ANP and BANP
2.5.2. Additional resources

2.6. BEST PRACTICES FOR ADMINNETWORKPOLICY
2.6.1. Designing AdminNetworkPolicy

2.6.1.1. Considerations for using BaselineAdminNetworkPolicy
2.6.1.2. Differences to consider between AdminNetworkPolicy and NetworkPolicy

CHAPTER 3. NETWORK POLICY
3.1. ABOUT NETWORK POLICY

3.1.1. About network policy
3.1.1.1. Using the allow-from-router network policy
3.1.1.2. Using the allow-from-hostnetwork network policy

3.1.2. Optimizations for network policy with OVN-Kubernetes network plugin
3.1.2.1. NetworkPolicy CR and external IPs in OVN-Kubernetes

3.1.3. Next steps
3.1.4. Additional resources

3.2. CREATING A NETWORK POLICY
3.2.1. Example NetworkPolicy object
3.2.2. Creating a network policy using the CLI
3.2.3. Creating a default deny all network policy
3.2.4. Creating a network policy to allow traffic from external clients
3.2.5. Creating a network policy allowing traffic to an application from all namespaces
3.2.6. Creating a network policy allowing traffic to an application from a namespace
3.2.7. Additional resources

3.3. VIEWING A NETWORK POLICY

5
5
5

6

8
8
8
8
9
9

10
10
11
11

12
12
14
14
15
15
15
16
18
19
19
21
32
32
32
33
34

35
35
35
37
38
38
40
40
41
41
41
41

44
45
46
48
50
50

Table of Contents

1



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.3.1. Example NetworkPolicy object
3.3.2. Viewing network policies using the CLI

3.4. EDITING A NETWORK POLICY
3.4.1. Editing a network policy
3.4.2. Example NetworkPolicy object
3.4.3. Additional resources

3.5. DELETING A NETWORK POLICY
3.5.1. Deleting a network policy using the CLI

3.6. DEFINING A DEFAULT NETWORK POLICY FOR PROJECTS
3.6.1. Modifying the template for new projects
3.6.2. Adding network policies to the new project template

3.7. CONFIGURING MULTITENANT ISOLATION WITH NETWORK POLICY
3.7.1. Configuring multitenant isolation by using network policy
3.7.2. Next steps

CHAPTER 4. AUDIT LOGGING FOR NETWORK SECURITY
4.1. AUDIT CONFIGURATION
4.2. AUDIT LOGGING
4.3. ADMINNETWORKPOLICY AUDIT LOGGING
4.4. BASELINEADMINNETWORKPOLICY AUDIT LOGGING
4.5. CONFIGURING EGRESS FIREWALL AND NETWORK POLICY AUDITING FOR A CLUSTER
4.6. ENABLING EGRESS FIREWALL AND NETWORK POLICY AUDIT LOGGING FOR A NAMESPACE
4.7. DISABLING EGRESS FIREWALL AND NETWORK POLICY AUDIT LOGGING FOR A NAMESPACE
4.8. ADDITIONAL RESOURCES

CHAPTER 5. EGRESS FIREWALL
5.1. VIEWING AN EGRESS FIREWALL FOR A PROJECT

5.1.1. Viewing an EgressFirewall custom resource (CR)
5.2. EDITING AN EGRESS FIREWALL FOR A PROJECT

5.2.1. Editing an EgressFirewall custom resource (CR)
5.3. REMOVING AN EGRESS FIREWALL FROM A PROJECT

5.3.1. Removing an EgressFirewall CR
5.4. CONFIGURING AN EGRESS FIREWALL FOR A PROJECT

5.4.1. How an egress firewall works in a project
5.4.1.1. Limitations of an egress firewall
5.4.1.2. Matching order for egress firewall policy rules
5.4.1.3. How Domain Name Server (DNS) resolution works

5.4.1.3.1. Improved DNS resolution and resolving wildcard domain names
5.4.2. EgressFirewall custom resource (CR)

5.4.2.1. EgressFirewall rules
5.4.2.2. Example EgressFirewall CR
5.4.2.3. Example EgressFirewall CR using nodeSelector

5.4.3. Creating an EgressFirewall custom resource (CR)

CHAPTER 6. CONFIGURING IPSEC ENCRYPTION
6.1. MODES OF OPERATION
6.2. PREREQUISITES
6.3. NETWORK CONNECTIVITY REQUIREMENTS WHEN IPSEC IS ENABLED
6.4. IPSEC ENCRYPTION FOR POD-TO-POD TRAFFIC

6.4.1. Types of network traffic flows encrypted by pod-to-pod IPsec
6.4.2. Encryption protocol and IPsec mode
6.4.3. Security certificate generation and rotation

6.5. IPSEC ENCRYPTION FOR EXTERNAL TRAFFIC
6.5.1. Supported platforms

51
51
52
52
54
55
55
55
56
56
57
58
59
61

62
62
63
66
69
72
76
77
78

79
79
79
79
79
80
80
81
81
81

82
83
83
84
85
86
86
87

88
88
89
89
90
90
91
91
91
91

OpenShift Container Platform 4.19 Network security

2



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6.5.2. Limitations
6.6. ENABLING IPSEC ENCRYPTION
6.7. CONFIGURING IPSEC ENCRYPTION FOR EXTERNAL TRAFFIC
6.8. ADDITIONAL RESOURCES
6.9. DISABLING IPSEC ENCRYPTION FOR AN EXTERNAL IPSEC ENDPOINT
6.10. DISABLING IPSEC ENCRYPTION
6.11. ADDITIONAL RESOURCES

CHAPTER 7. ZERO TRUST NETWORKING
7.1. ROOT OF TRUST
7.2. TRAFFIC AUTHENTICATION AND ENCRYPTION
7.3. IDENTIFICATION AND AUTHENTICATION
7.4. INTER-SERVICE AUTHORIZATION
7.5. TRANSACTION-LEVEL VERIFICATION
7.6. RISK ASSESSMENT
7.7. SITE-WIDE POLICY ENFORCEMENT AND DISTRIBUTION
7.8. OBSERVABILITY FOR CONSTANT, AND RETROSPECTIVE, EVALUATION
7.9. ENDPOINT SECURITY
7.10. EXTENDING TRUST OUTSIDE OF THE CLUSTER

92
92
94
99
99

100
100

101
101
101
102
102
102
102
103
103
103
104

Table of Contents

3



OpenShift Container Platform 4.19 Network security

4



CHAPTER 1. UNDERSTANDING NETWORK POLICY APIS
Network policy is defined using both cluster-scoped and namespace-scoped network policy APIs. By
defining network policy across these different levels, you can create sophisticated network security
configurations for your clusters, including full multi-tenant isolation.

1.1. NETWORK POLICIES AND THEIR SCOPE

Cluster-scoped network policy

Cluster and network administrators can use the AdminNetworkPolicy to define network policy at the
cluster level. The AdminNetworkPolicy feature consists of two APIs: the AdminNetworkPolicy API
and BaselineAdminNetworkPolicy API. These APIs are used to set rules that can be applied to the
entire cluster, or delegated to the namespace-scoped NetworkPolicy.
Policies defined using the AdminNetworkPolicy API take precedence over all other policy types
when set to "Allow" or "Deny". However, administrators can also use "Pass" to delegate responsibility
for a given policy to the namespace-scoped NetworkPolicy to allow application developers and
namespace tenants to control specific aspects of network security for their projects.

Policies defined using the BaselineAdminNetworkPolicy API apply only when no other network
policy overrides them. When you use the AdminNetworkPolicy API to delegate an aspect of
network policy to the namespace-scoped NetworkPolicy, you should also define a sensible minimum
restriction in the BaselineAdminNetworkPolicy. This ensures a baseline level of network security at
the cluster level in case the NetworkPolicy for a namespace does not provide sufficient protection.

Namespace-scoped network policy

Application developers and namespace tenants can use the NetworkPolicy API to define network
policy rules for a specific namespace. Rules in the NetworkPolicy for a namespace take precedence
over cluster-wide rules configured using the BaselineAdminNetworkPolicy API, or for a cluster-wide
rule that has been delegated or "passed" from the cluster-wide AdminNetworkPolicy API.

1.2. HOW NETWORK POLICY IS EVALUATED AND APPLIED

When a network connection is established, the network provider (default: OVN-Kubernetes) checks the
connection details against network policy rules to determine how to handle the connection.

OVN-Kubernetes evaluates connections against network policy objects in the following order:

1. Check for matches in the AdminNetworkPolicy tier.

a. If a connection matches an Allow or Deny rule, follow that rule and stop evaluating.

b. If a connection matches a Pass rule, move to the NetworkPolicy tier.

2. Check for matches in the NetworkPolicy tier.

a. If a connection matches a rule, follow that rule and stop evaluating.

b. If no match is found, move to the BaselineAdminNetworkPolicy tier.

3. Follow a matching rule in the BaselineAdminNetworkPolicy tier.

Figure 1.1. Evaluation of network policies by OVN-Kubernetes

CHAPTER 1. UNDERSTANDING NETWORK POLICY APIS

5



Figure 1.1. Evaluation of network policies by OVN-Kubernetes

1.3. KEY DIFFERENCES BETWEEN ADMINNETWORKPOLICY AND
NETWORKPOLICY CUSTOM RESOURCES

The following table explains key differences between the cluster scoped AdminNetworkPolicy API and
the namespace scoped NetworkPolicy API.

Policy elements AdminNetworkPolicy NetworkPolicy

Applicable user Cluster administrator or
equivalent

Namespace owners

Scope Cluster Namespace

Drop traffic Supported with an explicit Deny
action set as a rule.

Supported via implicit Deny
isolation at policy creation time.

Delegate traffic Supported with an Pass action
set as a rule.

Not applicable.

Allow traffic Supported with an explicit Allow
action set as a rule.

The default action for all rules is
to allow.

Rule precedence within the policy Depends on the order in which
they appear within an ANP. The
higher the rule’s position the
higher the precedence.

Rules are additive.

Policy precedence Among ANPs the priority field
sets the order for evaluation. The
lower the priority number higher
the policy precedence.

There is no policy ordering
between policies.

OpenShift Container Platform 4.19 Network security

6



Feature precedence Evaluated first via tier 1 ACL and
BANP is evaluated last via tier 3
ACL.

Enforced after ANP and before
BANP, they are evaluated in tier 2
of the ACL.

Matching pod selection Can apply different rules across
namespaces.

Can apply different rules across
pods in single namespace.

Cluster egress traffic Supported via nodes and 
networks peers

Supported through ipBlock field
along with accepted CIDR syntax.

Cluster ingress traffic Not supported. Not supported.

Fully qualified domain names
(FQDN) peer support

Not supported. Not supported.

Namespace selectors Supports advanced selection of
Namespaces with the use of 
namespaces.matchLabels
field.

Supports label based namespace
selection with the use of 
namespaceSelector field.

Policy elements AdminNetworkPolicy NetworkPolicy

CHAPTER 1. UNDERSTANDING NETWORK POLICY APIS

7



CHAPTER 2. ADMIN NETWORK POLICY

2.1. OVN-KUBERNETES ADMINNETWORKPOLICY

2.1.1. AdminNetworkPolicy

An AdminNetworkPolicy (ANP) is a cluster-scoped custom resource definition (CRD). As a OpenShift
Container Platform administrator, you can use ANP to secure your network by creating network policies
before creating namespaces. Additionally, you can create network policies on a cluster-scoped level that
is non-overridable by NetworkPolicy objects.

The key difference between AdminNetworkPolicy and NetworkPolicy objects are that the former is
for administrators and is cluster scoped while the latter is for tenant owners and is namespace scoped.

An ANP allows administrators to specify the following:

A priority value that determines the order of its evaluation. The lower the value the higher the
precedence.

A set of pods that consists of a set of namespaces or namespace on which the policy is applied.

A list of ingress rules to be applied for all ingress traffic towards the subject.

A list of egress rules to be applied for all egress traffic from the subject.

2.1.1.1. AdminNetworkPolicy example

Example 2.1. Example YAML file for an ANP

apiVersion: policy.networking.k8s.io/v1alpha1
kind: AdminNetworkPolicy
metadata:
  name: sample-anp-deny-pass-rules 1
spec:
  priority: 50 2
  subject:
    namespaces:
      matchLabels:
          kubernetes.io/metadata.name: example.name 3
  ingress: 4
  - name: "deny-all-ingress-tenant-1" 5
    action: "Deny"
    from:
    - pods:
        namespaceSelector:
          matchLabels:
            custom-anp: tenant-1
        podSelector:
          matchLabels:
            custom-anp: tenant-1 6
  egress: 7
  - name: "pass-all-egress-to-tenant-1"
    action: "Pass"

OpenShift Container Platform 4.19 Network security

8



1

2

3

4

5

6

7

Specify a name for your ANP.

The spec.priority field supports a maximum of 100 ANPs in the range of values 0-99 in a cluster.
The lower the value, the higher the precedence because the range is read in order from the
lowest to highest value. Because there is no guarantee which policy takes precedence when
ANPs are created at the same priority, set ANPs at different priorities so that precedence is
deliberate.

Specify the namespace to apply the ANP resource.

ANP have both ingress and egress rules. ANP rules for spec.ingress field accepts values of 
Pass, Deny, and Allow for the action field.

Specify a name for the ingress.name.

Specify podSelector.matchLabels to select pods within the namespaces selected by 
namespaceSelector.matchLabels as ingress peers.

ANPs have both ingress and egress rules. ANP rules for spec.egress field accepts values of 
Pass, Deny, and Allow for the action field.

Additional resources

Network Policy API Working Group

2.1.1.2. AdminNetworkPolicy actions for rules

As an administrator, you can set Allow, Deny, or Pass as the action field for your AdminNetworkPolicy
rules. Because OVN-Kubernetes uses a tiered ACLs to evaluate network traffic rules, ANP allow you to
set very strong policy rules that can only be changed by an administrator modifying them, deleting the
rule, or overriding them by setting a higher priority rule.

2.1.1.2.1. AdminNetworkPolicy Allow example

The following ANP that is defined at priority 9 ensures all ingress traffic is allowed from the monitoring
namespace towards any tenant (all other namespaces) in the cluster.

Example 2.2. Example YAML file for a strong Allow ANP

    to:
    - pods:
        namespaceSelector:
          matchLabels:
            custom-anp: tenant-1
        podSelector:
          matchLabels:
            custom-anp: tenant-1

apiVersion: policy.networking.k8s.io/v1alpha1
kind: AdminNetworkPolicy
metadata:
  name: allow-monitoring
spec:

CHAPTER 2. ADMIN NETWORK POLICY

9

https://network-policy-api.sigs.k8s.io/


This is an example of a strong Allow ANP because it is non-overridable by all the parties involved. No
tenants can block themselves from being monitored using NetworkPolicy objects and the monitoring
tenant also has no say in what it can or cannot monitor.

2.1.1.2.2. AdminNetworkPolicy Deny example

The following ANP that is defined at priority 5 ensures all ingress traffic from the monitoring
namespace is blocked towards restricted tenants (namespaces that have labels security: restricted).

Example 2.3. Example YAML file for a strong Deny ANP

This is a strong Deny ANP that is non-overridable by all the parties involved. The restricted tenant
owners cannot authorize themselves to allow monitoring traffic, and the infrastructure’s monitoring
service cannot scrape anything from these sensitive namespaces.

When combined with the strong Allow example, the block-monitoring ANP has a lower priority value
giving it higher precedence, which ensures restricted tenants are never monitored.

2.1.1.2.3. AdminNetworkPolicy Pass example

The following ANP that is defined at priority 7 ensures all ingress traffic from the monitoring

  priority: 9
  subject:
    namespaces: {} # Use the empty selector with caution because it also selects OpenShift 
namespaces as well.
  ingress:
  - name: "allow-ingress-from-monitoring"
    action: "Allow"
    from:
    - namespaces:
        matchLabels:
          kubernetes.io/metadata.name: monitoring
# ...

apiVersion: policy.networking.k8s.io/v1alpha1
kind: AdminNetworkPolicy
metadata:
  name: block-monitoring
spec:
  priority: 5
  subject:
    namespaces:
      matchLabels:
        security: restricted
  ingress:
  - name: "deny-ingress-from-monitoring"
    action: "Deny"
    from:
    - namespaces:
        matchLabels:
          kubernetes.io/metadata.name: monitoring
# ...

OpenShift Container Platform 4.19 Network security

10



The following ANP that is defined at priority 7 ensures all ingress traffic from the monitoring
namespace towards internal infrastructure tenants (namespaces that have labels security: internal) are
passed on to tier 2 of the ACLs and evaluated by the namespaces’ NetworkPolicy objects.

Example 2.4. Example YAML file for a strong Pass ANP

This example is a strong Pass action ANP because it delegates the decision to NetworkPolicy objects
defined by tenant owners. This pass-monitoring ANP allows all tenant owners grouped at security level 
internal to choose if their metrics should be scraped by the infrastructures' monitoring service using
namespace scoped NetworkPolicy objects.

2.2. OVN-KUBERNETES BASELINEADMINNETWORKPOLICY

2.2.1. BaselineAdminNetworkPolicy

BaselineAdminNetworkPolicy (BANP) is a cluster-scoped custom resource definition (CRD). As a
OpenShift Container Platform administrator, you can use BANP to setup and enforce optional baseline
network policy rules that are overridable by users using NetworkPolicy objects if need be. Rule actions
for BANP are allow or deny.

The BaselineAdminNetworkPolicy resource is a cluster singleton object that can be used as a
guardrail policy incase a passed traffic policy does not match any NetworkPolicy objects in the cluster.
A BANP can also be used as a default security model that provides guardrails that intra-cluster traffic is
blocked by default and a user will need to use NetworkPolicy objects to allow known traffic. You must
use default as the name when creating a BANP resource.

A BANP allows administrators to specify:

A subject that consists of a set of namespaces or namespace.

A list of ingress rules to be applied for all ingress traffic towards the subject.

A list of egress rules to be applied for all egress traffic from the subject.

apiVersion: policy.networking.k8s.io/v1alpha1
kind: AdminNetworkPolicy
metadata:
  name: pass-monitoring
spec:
  priority: 7
  subject:
    namespaces:
      matchLabels:
        security: internal
  ingress:
  - name: "pass-ingress-from-monitoring"
    action: "Pass"
    from:
    - namespaces:
        matchLabels:
          kubernetes.io/metadata.name: monitoring
# ...

CHAPTER 2. ADMIN NETWORK POLICY

11



1

2

3

4

5

6

2.2.1.1. BaselineAdminNetworkPolicy example

Example 2.5. Example YAML file for BANP

The policy name must be default because BANP is a singleton object.

Specify the namespace to apply the ANP to.

BANP have both ingress and egress rules. BANP rules for spec.ingress and spec.egress fields
accepts values of Deny and Allow for the action field.

Specify a name for the ingress.name

Specify the namespaces to select the pods from to apply the BANP resource.

Specify podSelector.matchLabels name of the pods to apply the BANP resource.

2.2.1.2. BaselineAdminNetworkPolicy Deny example

The following BANP singleton ensures that the administrator has set up a default deny policy for all

apiVersion: policy.networking.k8s.io/v1alpha1
kind: BaselineAdminNetworkPolicy
metadata:
  name: default 1
spec:
  subject:
    namespaces:
      matchLabels:
          kubernetes.io/metadata.name: example.name 2
  ingress: 3
  - name: "deny-all-ingress-from-tenant-1" 4
    action: "Deny"
    from:
    - pods:
        namespaceSelector:
          matchLabels:
            custom-banp: tenant-1 5
        podSelector:
          matchLabels:
            custom-banp: tenant-1 6
  egress:
  - name: "allow-all-egress-to-tenant-1"
    action: "Allow"
    to:
    - pods:
        namespaceSelector:
          matchLabels:
            custom-banp: tenant-1
        podSelector:
          matchLabels:
            custom-banp: tenant-1

OpenShift Container Platform 4.19 Network security

12



ingress monitoring traffic coming into the tenants at internal security level. When combined with the
"AdminNetworkPolicy Pass example", this deny policy acts as a guardrail policy for all ingress traffic that
is passed by the ANP pass-monitoring policy.

Example 2.6. Example YAML file for a guardrail Deny rule

You can use an AdminNetworkPolicy resource with a Pass value for the action field in conjunction
with the BaselineAdminNetworkPolicy resource to create a multi-tenant policy. This multi-tenant
policy allows one tenant to collect monitoring data on their application while simultaneously not
collecting data from a second tenant.

As an administrator, if you apply both the "AdminNetworkPolicy Pass action example" and the
"BaselineAdminNetwork Policy Deny example", tenants are then left with the ability to choose to create
a NetworkPolicy resource that will be evaluated before the BANP.

For example, Tenant 1 can set up the following NetworkPolicy resource to monitor ingress traffic:

Example 2.7. Example NetworkPolicy

apiVersion: policy.networking.k8s.io/v1alpha1
kind: BaselineAdminNetworkPolicy
metadata:
  name: default
spec:
  subject:
    namespaces:
      matchLabels:
        security: internal
  ingress:
  - name: "deny-ingress-from-monitoring"
    action: "Deny"
    from:
    - namespaces:
        matchLabels:
          kubernetes.io/metadata.name: monitoring
# ...

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
  name: allow-monitoring
  namespace: tenant 1
spec:
  podSelector:
  policyTypes:
    - Ingress
  ingress:
  - from:
    - namespaceSelector:
        matchLabels:
          kubernetes.io/metadata.name: monitoring
# ...

CHAPTER 2. ADMIN NETWORK POLICY

13



In this scenario, Tenant 1’s policy would be evaluated after the "AdminNetworkPolicy Pass action
example" and before the "BaselineAdminNetwork Policy Deny example", which denies all ingress
monitoring traffic coming into tenants with security level internal. With Tenant 1’s NetworkPolicy
object in place, they will be able to collect data on their application. Tenant 2, however, who does not
have any NetworkPolicy objects in place, will not be able to collect data. As an administrator, you have
not by default monitored internal tenants, but instead, you created a BANP that allows tenants to use 
NetworkPolicy objects to override the default behavior of your BANP.

2.3. MONITORING ANP AND BANP

AdminNetworkPolicy and BaselineAdminNetworkPolicy resources have metrics that can be used for
monitoring and managing your policies. See the following table for more details on the metrics.

2.3.1. Metrics for AdminNetworkPolicy

Name Description Explanation

ovnkube_controller_admin_n
etwork_policies

Not applicable The total number of 
AdminNetworkPolicy
resources in the cluster.

ovnkube_controller_baseline
_admin_network_policies

Not applicable The total number of 
BaselineAdminNetworkPolic
y resources in the cluster. The
value should be 0 or 1.

ovnkube_controller_admin_n
etwork_policies_rules direction: specifies

either Ingress or 
Egress.

action: specifies either 
Pass, Allow, or Deny.

The total number of rules across
all ANP policies in the cluster
grouped by direction and 
action.

ovnkube_controller_baseline
_admin_network_policies_ru
les

direction: specifies
either Ingress or 
Egress.

action: specifies either 
Allow or Deny.

The total number of rules across
all BANP policies in the cluster
grouped by direction and 
action.

ovnkube_controller_admin_n
etwork_policies_db_objects

table_name: specifies either 
ACL or Address_Set

The total number of OVN
Northbound database (nbdb)
objects that are created by all the
ANP in the cluster grouped by the
table_name.

OpenShift Container Platform 4.19 Network security

14



ovnkube_controller_baseline
_admin_network_policies_db
_objects

table_name: specifies either 
ACL or Address_Set

The total number of OVN
Northbound database (nbdb)
objects that are created by all the
BANP in the cluster grouped by
the table_name.

Name Description Explanation

2.4. EGRESS NODES AND NETWORKS PEER FOR
ADMINNETWORKPOLICY

This section explains nodes and networks peers. Administrators can use the examples in this section to
design AdminNetworkPolicy and BaselineAdminNetworkPolicy to control northbound traffic in their
cluster.

2.4.1. Northbound traffic controls for AdminNetworkPolicy and
BaselineAdminNetworkPolicy

In addition to supporting east-west traffic controls, ANP and BANP also allow administrators to control
their northbound traffic leaving the cluster or traffic leaving the node to other nodes in the cluster. End-
users can do the following:

Implement egress traffic control towards cluster nodes using nodes egress peer

Implement egress traffic control towards Kubernetes API servers using nodes or networks
egress peers

Implement egress traffic control towards external destinations outside the cluster using 
networks peer

NOTE

For ANP and BANP, nodes and networks peers can be specified for egress rules only.

2.4.1.1. Using nodes peer to control egress traffic to cluster nodes

Using the nodes peer administrators can control egress traffic from pods to nodes in the cluster. A
benefit of this is that you do not have to change the policy when nodes are added to or deleted from the
cluster.

The following example allows egress traffic to the Kubernetes API server on port 6443 by any of the
namespaces with a restricted, confidential, or internal level of security using the node selector peer. It
also denies traffic to all worker nodes in your cluster from any of the namespaces with a restricted, 
confidential, or internal level of security.

Example 2.8. Example of ANP Allow egress using nodes peer

apiVersion: policy.networking.k8s.io/v1alpha1
kind: AdminNetworkPolicy
metadata:
  name: egress-security-allow

CHAPTER 2. ADMIN NETWORK POLICY

15



1

2

3

4

Specifies a node or set of nodes in the cluster using the matchExpressions field.

Specifies all the pods labeled with dept: engr.

Specifies the subject of the ANP which includes any namespaces that match the labels used by
the network policy. The example matches any of the namespaces with restricted, confidential,
or internal level of security.

Specifies key/value pairs for matchExpressions field.

2.4.1.2. Using networks peer to control egress traffic towards external destinations

Cluster administrators can use CIDR ranges in networks peer and apply a policy to control egress traffic
leaving from pods and going to a destination configured at the IP address that is within the CIDR range
specified with networks field.

The following example uses networks peer and combines ANP and BANP policies to restrict egress
traffic.

IMPORTANT

spec:
  egress:
  - action: Deny
    to:
    - nodes:
        matchExpressions:
        - key: node-role.kubernetes.io/worker
          operator: Exists
  - action: Allow
    name: allow-to-kubernetes-api-server-and-engr-dept-pods
    ports:
    - portNumber:
        port: 6443
        protocol: TCP
    to:
    - nodes: 1
        matchExpressions:
        - key: node-role.kubernetes.io/control-plane
          operator: Exists
    - pods: 2
        namespaceSelector:
          matchLabels:
            dept: engr
        podSelector: {}
  priority: 55
  subject: 3
    namespaces:
      matchExpressions:
      - key: security 4
        operator: In
        values:
        - restricted
        - confidential
        - internal

OpenShift Container Platform 4.19 Network security

16



IMPORTANT

Use the empty selector ({}) in the namespace field for ANP and BANP with caution.
When using an empty selector, it also selects OpenShift namespaces.

If you use values of 0.0.0.0/0 in a ANP or BANP Deny rule, you must set a higher priority
ANP Allow rule to necessary destinations before setting the Deny to 0.0.0.0/0.

Example 2.9. Example of ANP and BANP using networks peers

apiVersion: policy.networking.k8s.io/v1alpha1
kind: AdminNetworkPolicy
metadata:
  name: network-as-egress-peer
spec:
  priority: 70
  subject:
    namespaces: {} # Use the empty selector with caution because it also selects OpenShift 
namespaces as well.
  egress:
  - name: "deny-egress-to-external-dns-servers"
    action: "Deny"
    to:
    - networks: 1
      - 8.8.8.8/32
      - 8.8.4.4/32
      - 208.67.222.222/32
    ports:
      - portNumber:
          protocol: UDP
          port: 53
  - name: "allow-all-egress-to-intranet"
    action: "Allow"
    to:
    - networks: 2
      - 89.246.180.0/22
      - 60.45.72.0/22
  - name: "allow-all-intra-cluster-traffic"
    action: "Allow"
    to:
    - namespaces: {} # Use the empty selector with caution because it also selects OpenShift 
namespaces as well.
  - name: "pass-all-egress-to-internet"
    action: "Pass"
    to:
    - networks:
      - 0.0.0.0/0 3
---
apiVersion: policy.networking.k8s.io/v1alpha1
kind: BaselineAdminNetworkPolicy
metadata:
  name: default
spec:
  subject:
    namespaces: {} # Use the empty selector with caution because it also selects OpenShift 

CHAPTER 2. ADMIN NETWORK POLICY

17



1

2

3 4

Use networks to specify a range of CIDR networks outside of the cluster.

Specifies the CIDR ranges for the intra-cluster traffic from your resources.

Specifies a Deny egress to everything by setting networks values to 0.0.0.0/0. Make sure you
have a higher priority Allow rule to necessary destinations before setting a Deny to 0.0.0.0/0
because this will deny all traffic including to Kubernetes API and DNS servers.

Collectively the network-as-egress-peer ANP and default BANP using networks peers enforces the
following egress policy:

All pods cannot talk to external DNS servers at the listed IP addresses.

All pods can talk to rest of the company’s intranet.

All pods can talk to other pods, nodes, and services.

All pods cannot talk to the internet. Combining the last ANP Pass rule and the strong BANP 
Deny rule a guardrail policy is created that secures traffic in the cluster.

2.4.1.3. Using nodes peer and networks peer together

Cluster administrators can combine nodes and networks peer in your ANP and BANP policies.

Example 2.10. Example of nodes and networks peer

namespaces as well.
  egress:
  - name: "deny-all-egress-to-internet"
    action: "Deny"
    to:
    - networks:
      - 0.0.0.0/0 4
---

apiVersion: policy.networking.k8s.io/v1alpha1
kind: AdminNetworkPolicy
metadata:
  name: egress-peer-1 1
spec:
  egress: 2
  - action: "Allow"
    name: "allow-egress"
    to:
    - nodes:
        matchExpressions:
        - key: worker-group
          operator: In
          values:
          - workloads # Egress traffic from nodes with label worker-group: workloads is allowed.
    - networks:
      - 104.154.164.170/32
    - pods:

OpenShift Container Platform 4.19 Network security

18



1

2

3

4

Specifies the name of the policy.

For nodes and networks peers, you can only use northbound traffic controls in ANP as egress.

Specifies the priority of the ANP, determining the order in which they should be evaluated.
Lower priority rules have higher precedence. ANP accepts values of 0-99 with 0 being the
highest priority and 99 being the lowest.

Specifies the set of pods in the cluster on which the rules of the policy are to be applied. In the
example, any pods with the apps: all-apps label across all namespaces are the subject of the
policy.

2.5. TROUBLESHOOTING ADMINNETWORKPOLICY

2.5.1. Checking creation of ANP

To check that your AdminNetworkPolicy (ANP) and BaselineAdminNetworkPolicy (BANP) are

        namespaceSelector:
          matchLabels:
            apps: external-apps
        podSelector:
          matchLabels:
            app: web # This rule in the policy allows the traffic directed to pods labeled apps: web in 
projects with apps: external-apps to leave the cluster.
  - action: "Deny"
    name: "deny-egress"
    to:
    - nodes:
        matchExpressions:
        - key: worker-group
          operator: In
          values:
          - infra # Egress traffic from nodes with label worker-group: infra is denied.
    - networks:
      - 104.154.164.160/32 # Egress traffic to this IP address from cluster is denied.
    - pods:
        namespaceSelector:
          matchLabels:
            apps: internal-apps
        podSelector: {}
  - action: "Pass"
    name: "pass-egress"
    to:
    - nodes:
        matchExpressions:
        - key: node-role.kubernetes.io/worker
          operator: Exists # All other egress traffic is passed to NetworkPolicy or BANP for evaluation.
  priority: 30 3
  subject: 4
    namespaces:
      matchLabels:
        apps: all-apps

CHAPTER 2. ADMIN NETWORK POLICY

19



To check that your AdminNetworkPolicy (ANP) and BaselineAdminNetworkPolicy (BANP) are
created correctly, check the status outputs of the following commands: oc describe anp or oc 
describe banp.

A good status indicates OVN DB plumbing was successful and the SetupSucceeded.

Example 2.11. Example ANP with a good status

If plumbing is unsuccessful, an error is reported from the respective zone controller.

Example 2.12. Example of an ANP with a bad status and error message

...
Conditions:
Last Transition Time:  2024-06-08T20:29:00Z
Message:               Setting up OVN DB plumbing was successful
Reason:                SetupSucceeded
Status:                True
Type:                  Ready-In-Zone-ovn-control-plane Last Transition Time:  2024-06-08T20:29:00Z
Message:               Setting up OVN DB plumbing was successful
Reason:                SetupSucceeded
Status:                True
Type:                  Ready-In-Zone-ovn-worker
Last Transition Time:  2024-06-08T20:29:00Z
Message:               Setting up OVN DB plumbing was successful
Reason:                SetupSucceeded
Status:                True
Type:                  Ready-In-Zone-ovn-worker2
...

...
Status:
  Conditions:
    Last Transition Time:  2024-06-25T12:47:44Z
    Message:               error attempting to add ANP cluster-control with priority 600 because, OVNK 
only supports priority ranges 0-99
    Reason:                SetupFailed
    Status:                False
    Type:                  Ready-In-Zone-example-worker-1.example.example-org.net
    Last Transition Time:  2024-06-25T12:47:45Z
    Message:               error attempting to add ANP cluster-control with priority 600 because, OVNK 
only supports priority ranges 0-99
    Reason:                SetupFailed
    Status:                False
    Type:                  Ready-In-Zone-example-worker-0.example.example-org.net
    Last Transition Time:  2024-06-25T12:47:44Z
    Message:               error attempting to add ANP cluster-control with priority 600 because, OVNK 
only supports priority ranges 0-99
    Reason:                SetupFailed
    Status:                False
    Type:                  Ready-In-Zone-example-ctlplane-1.example.example-org.net
    Last Transition Time:  2024-06-25T12:47:44Z
    Message:               error attempting to add ANP cluster-control with priority 600 because, OVNK 
only supports priority ranges 0-99

OpenShift Container Platform 4.19 Network security

20



See the following section for nbctl commands to help troubleshoot unsuccessful policies.

2.5.1.1. Using nbctl commands for ANP and BANP

To troubleshoot an unsuccessful setup, start by looking at OVN Northbound database (nbdb) objects
including ACL, AdressSet, and Port_Group. To view the nbdb, you need to be inside the pod on that
node to view the objects in that node’s database.

Prerequisites

Access to the cluster as a user with the cluster-admin role.

The OpenShift CLI (oc) installed.

NOTE

To run ovn nbctl commands in a cluster, you must open a remote shell into the `nbdb`on
the relevant node.

The following policy was used to generate outputs.

Example 2.13. AdminNetworkPolicy used to generate outputs

    Reason:                SetupFailed
    Status:                False
    Type:                  Ready-In-Zone-example-ctlplane-2.example.example-org.net
    Last Transition Time:  2024-06-25T12:47:44Z
    Message:               error attempting to add ANP cluster-control with priority 600 because, OVNK 
only supports priority ranges 0-99
    Reason:                SetupFailed
    Status:                False
    Type:                  Ready-In-Zone-example-ctlplane-0.example.example-org.net
    ```

apiVersion: policy.networking.k8s.io/v1alpha1
kind: AdminNetworkPolicy
metadata:
  name: cluster-control
spec:
  priority: 34
  subject:
    namespaces:
      matchLabels:
        anp: cluster-control-anp # Only namespaces with this label have this ANP
  ingress:
  - name: "allow-from-ingress-router" # rule0
    action: "Allow"
    from:
    - namespaces:
        matchLabels:
          policy-group.network.openshift.io/ingress: ""
  - name: "allow-from-monitoring" # rule1
    action: "Allow"

CHAPTER 2. ADMIN NETWORK POLICY

21



    from:
    - namespaces:
        matchLabels:
          kubernetes.io/metadata.name: openshift-monitoring
    ports:
    - portNumber:
        protocol: TCP
        port: 7564
    - namedPort: "scrape"
  - name: "allow-from-open-tenants" # rule2
    action: "Allow"
    from:
    - namespaces: # open tenants
        matchLabels:
          tenant: open
  - name: "pass-from-restricted-tenants" # rule3
    action: "Pass"
    from:
    - namespaces: # restricted tenants
        matchLabels:
          tenant: restricted
  - name: "default-deny" # rule4
    action: "Deny"
    from:
    - namespaces: {} # Use the empty selector with caution because it also selects OpenShift 
namespaces as well.
  egress:
  - name: "allow-to-dns" # rule0
    action: "Allow"
    to:
    - pods:
        namespaceSelector:
          matchLabels:
            kubernetes.io/metadata.name: openshift-dns
        podSelector:
          matchLabels:
            app: dns
    ports:
    - portNumber:
        protocol: UDP
        port: 5353
  - name: "allow-to-kapi-server" # rule1
    action: "Allow"
    to:
    - nodes:
        matchExpressions:
        - key: node-role.kubernetes.io/control-plane
          operator: Exists
    ports:
    - portNumber:
        protocol: TCP
        port: 6443
  - name: "allow-to-splunk" # rule2
    action: "Allow"
    to:
    - namespaces:

OpenShift Container Platform 4.19 Network security

22



Procedure

1. List pods with node information by running the following command:

Example output

        matchLabels:
          tenant: splunk
    ports:
    - portNumber:
        protocol: TCP
        port: 8991
    - portNumber:
        protocol: TCP
        port: 8992
  - name: "allow-to-open-tenants-and-intranet-and-worker-nodes" # rule3
    action: "Allow"
    to:
    - nodes: # worker-nodes
        matchExpressions:
        - key: node-role.kubernetes.io/worker
          operator: Exists
    - networks: # intranet
      - 172.29.0.0/30
      - 10.0.54.0/19
      - 10.0.56.38/32
      - 10.0.69.0/24
    - namespaces: # open tenants
        matchLabels:
          tenant: open
  - name: "pass-to-restricted-tenants" # rule4
    action: "Pass"
    to:
    - namespaces: # restricted tenants
        matchLabels:
          tenant: restricted
  - name: "default-deny"
    action: "Deny"
    to:
    - networks:
      - 0.0.0.0/0

$ oc get pods -n openshift-ovn-kubernetes -owide

NAME                                     READY   STATUS    RESTARTS   AGE   IP           NODE                                       
NOMINATED NODE   READINESS GATES
ovnkube-control-plane-5c95487779-8k9fd   2/2     Running   0          34m   10.0.0.5     ci-ln-
0tv5gg2-72292-6sjw5-master-0         <none>           <none>
ovnkube-control-plane-5c95487779-v2xn8   2/2     Running   0          34m   10.0.0.3     ci-ln-
0tv5gg2-72292-6sjw5-master-1         <none>           <none>
ovnkube-node-524dt                       8/8     Running   0          33m   10.0.0.4     ci-ln-0tv5gg2-
72292-6sjw5-master-2         <none>           <none>
ovnkube-node-gbwr9                       8/8     Running   0          24m   10.0.128.4   ci-ln-0tv5gg2-
72292-6sjw5-worker-c-s9gqt   <none>           <none>

CHAPTER 2. ADMIN NETWORK POLICY

23



2. Navigate into a pod to look at the northbound database by running the following command:

3. Run the following command to look at the ACLs nbdb:

Where, cluster-control

Specifies the name of the AdminNetworkPolicy you are troubleshooting.

AdminNetworkPolicy

Specifies the type: AdminNetworkPolicy or BaselineAdminNetworkPolicy.

Example 2.14. Example output for ACLs

ovnkube-node-h4fpx                       8/8     Running   0          33m   10.0.0.5     ci-ln-0tv5gg2-
72292-6sjw5-master-0         <none>           <none>
ovnkube-node-j4hzw                       8/8     Running   0          24m   10.0.128.2   ci-ln-0tv5gg2-
72292-6sjw5-worker-a-hzbh5   <none>           <none>
ovnkube-node-wdhgv                       8/8     Running   0          33m   10.0.0.3     ci-ln-0tv5gg2-
72292-6sjw5-master-1         <none>           <none>
ovnkube-node-wfncn                       8/8     Running   0          24m   10.0.128.3   ci-ln-0tv5gg2-
72292-6sjw5-worker-b-5bb7f   <none>           <none>

$ oc rsh -c nbdb -n openshift-ovn-kubernetes ovnkube-node-524dt

$ ovn-nbctl find ACL 'external_ids{>=}{"k8s.ovn.org/owner-
type"=AdminNetworkPolicy,"k8s.ovn.org/name"=cluster-control}'

_uuid               : 0d5e4722-b608-4bb1-b625-23c323cc9926
action              : allow-related
direction           : to-lport
external_ids        : {direction=Ingress, gress-index="2", "k8s.ovn.org/id"="default-network-
controller:AdminNetworkPolicy:cluster-control:Ingress:2:None", 
"k8s.ovn.org/name"=cluster-control, "k8s.ovn.org/owner-controller"=default-network-
controller, "k8s.ovn.org/owner-type"=AdminNetworkPolicy, port-policy-protocol=None}
label               : 0
log                 : false
match               : "outport == @a14645450421485494999 && ((ip4.src == 
$a13730899355151937870))"
meter               : acl-logging
name                : "ANP:cluster-control:Ingress:2"
options             : {}
priority            : 26598
severity            : []
tier                : 1

_uuid               : b7be6472-df67-439c-8c9c-f55929f0a6e0
action              : drop
direction           : from-lport
external_ids        : {direction=Egress, gress-index="5", "k8s.ovn.org/id"="default-network-
controller:AdminNetworkPolicy:cluster-control:Egress:5:None", 
"k8s.ovn.org/name"=cluster-control, "k8s.ovn.org/owner-controller"=default-network-
controller, "k8s.ovn.org/owner-type"=AdminNetworkPolicy, port-policy-protocol=None}
label               : 0
log                 : false
match               : "inport == @a14645450421485494999 && ((ip4.dst == 
$a11452480169090787059))"

OpenShift Container Platform 4.19 Network security

24



meter               : acl-logging
name                : "ANP:cluster-control:Egress:5"
options             : {apply-after-lb="true"}
priority            : 26595
severity            : []
tier                : 1

_uuid               : 5a6e5bb4-36eb-4209-b8bc-c611983d4624
action              : pass
direction           : to-lport
external_ids        : {direction=Ingress, gress-index="3", "k8s.ovn.org/id"="default-network-
controller:AdminNetworkPolicy:cluster-control:Ingress:3:None", 
"k8s.ovn.org/name"=cluster-control, "k8s.ovn.org/owner-controller"=default-network-
controller, "k8s.ovn.org/owner-type"=AdminNetworkPolicy, port-policy-protocol=None}
label               : 0
log                 : false
match               : "outport == @a14645450421485494999 && ((ip4.src == 
$a764182844364804195))"
meter               : acl-logging
name                : "ANP:cluster-control:Ingress:3"
options             : {}
priority            : 26597
severity            : []
tier                : 1

_uuid               : 04f20275-c410-405c-a923-0e677f767889
action              : pass
direction           : from-lport
external_ids        : {direction=Egress, gress-index="4", "k8s.ovn.org/id"="default-network-
controller:AdminNetworkPolicy:cluster-control:Egress:4:None", 
"k8s.ovn.org/name"=cluster-control, "k8s.ovn.org/owner-controller"=default-network-
controller, "k8s.ovn.org/owner-type"=AdminNetworkPolicy, port-policy-protocol=None}
label               : 0
log                 : false
match               : "inport == @a14645450421485494999 && ((ip4.dst == 
$a5972452606168369118))"
meter               : acl-logging
name                : "ANP:cluster-control:Egress:4"
options             : {apply-after-lb="true"}
priority            : 26596
severity            : []
tier                : 1

_uuid               : 4b5d836a-e0a3-4088-825e-f9f0ca58e538
action              : drop
direction           : to-lport
external_ids        : {direction=Ingress, gress-index="4", "k8s.ovn.org/id"="default-network-
controller:AdminNetworkPolicy:cluster-control:Ingress:4:None", 
"k8s.ovn.org/name"=cluster-control, "k8s.ovn.org/owner-controller"=default-network-
controller, "k8s.ovn.org/owner-type"=AdminNetworkPolicy, port-policy-protocol=None}
label               : 0
log                 : false
match               : "outport == @a14645450421485494999 && ((ip4.src == 
$a13814616246365836720))"
meter               : acl-logging
name                : "ANP:cluster-control:Ingress:4"

CHAPTER 2. ADMIN NETWORK POLICY

25



options             : {}
priority            : 26596
severity            : []
tier                : 1

_uuid               : 5d09957d-d2cc-4f5a-9ddd-b97d9d772023
action              : allow-related
direction           : from-lport
external_ids        : {direction=Egress, gress-index="2", "k8s.ovn.org/id"="default-network-
controller:AdminNetworkPolicy:cluster-control:Egress:2:tcp", "k8s.ovn.org/name"=cluster-
control, "k8s.ovn.org/owner-controller"=default-network-controller, "k8s.ovn.org/owner-
type"=AdminNetworkPolicy, port-policy-protocol=tcp}
label               : 0
log                 : false
match               : "inport == @a14645450421485494999 && ((ip4.dst == 
$a18396736153283155648)) && tcp && tcp.dst=={8991,8992}"
meter               : acl-logging
name                : "ANP:cluster-control:Egress:2"
options             : {apply-after-lb="true"}
priority            : 26598
severity            : []
tier                : 1

_uuid               : 1a68a5ed-e7f9-47d0-b55c-89184d97e81a
action              : allow-related
direction           : from-lport
external_ids        : {direction=Egress, gress-index="1", "k8s.ovn.org/id"="default-network-
controller:AdminNetworkPolicy:cluster-control:Egress:1:tcp", "k8s.ovn.org/name"=cluster-
control, "k8s.ovn.org/owner-controller"=default-network-controller, "k8s.ovn.org/owner-
type"=AdminNetworkPolicy, port-policy-protocol=tcp}
label               : 0
log                 : false
match               : "inport == @a14645450421485494999 && ((ip4.dst == 
$a10706246167277696183)) && tcp && tcp.dst==6443"
meter               : acl-logging
name                : "ANP:cluster-control:Egress:1"
options             : {apply-after-lb="true"}
priority            : 26599
severity            : []
tier                : 1

_uuid               : aa1a224d-7960-4952-bdfb-35246bafbac8
action              : allow-related
direction           : to-lport
external_ids        : {direction=Ingress, gress-index="1", "k8s.ovn.org/id"="default-network-
controller:AdminNetworkPolicy:cluster-control:Ingress:1:tcp", "k8s.ovn.org/name"=cluster-
control, "k8s.ovn.org/owner-controller"=default-network-controller, "k8s.ovn.org/owner-
type"=AdminNetworkPolicy, port-policy-protocol=tcp}
label               : 0
log                 : false
match               : "outport == @a14645450421485494999 && ((ip4.src == 
$a6786643370959569281)) && tcp && tcp.dst==7564"
meter               : acl-logging
name                : "ANP:cluster-control:Ingress:1"
options             : {}
priority            : 26599

OpenShift Container Platform 4.19 Network security

26



severity            : []
tier                : 1

_uuid               : 1a27d30e-3f96-4915-8ddd-ade7f22c117b
action              : allow-related
direction           : from-lport
external_ids        : {direction=Egress, gress-index="3", "k8s.ovn.org/id"="default-network-
controller:AdminNetworkPolicy:cluster-control:Egress:3:None", 
"k8s.ovn.org/name"=cluster-control, "k8s.ovn.org/owner-controller"=default-network-
controller, "k8s.ovn.org/owner-type"=AdminNetworkPolicy, port-policy-protocol=None}
label               : 0
log                 : false
match               : "inport == @a14645450421485494999 && ((ip4.dst == 
$a10622494091691694581))"
meter               : acl-logging
name                : "ANP:cluster-control:Egress:3"
options             : {apply-after-lb="true"}
priority            : 26597
severity            : []
tier                : 1

_uuid               : b23a087f-08f8-4225-8c27-4a9a9ee0c407
action              : allow-related
direction           : from-lport
external_ids        : {direction=Egress, gress-index="0", "k8s.ovn.org/id"="default-network-
controller:AdminNetworkPolicy:cluster-control:Egress:0:udp", "k8s.ovn.org/name"=cluster-
control, "k8s.ovn.org/owner-controller"=default-network-controller, "k8s.ovn.org/owner-
type"=AdminNetworkPolicy, port-policy-protocol=udp}
label               : 0
log                 : false
match               : "inport == @a14645450421485494999 && ((ip4.dst == 
$a13517855690389298082)) && udp && udp.dst==5353"
meter               : acl-logging
name                : "ANP:cluster-control:Egress:0"
options             : {apply-after-lb="true"}
priority            : 26600
severity            : []
tier                : 1

_uuid               : d14ed5cf-2e06-496e-8cae-6b76d5dd5ccd
action              : allow-related
direction           : to-lport
external_ids        : {direction=Ingress, gress-index="0", "k8s.ovn.org/id"="default-network-
controller:AdminNetworkPolicy:cluster-control:Ingress:0:None", 
"k8s.ovn.org/name"=cluster-control, "k8s.ovn.org/owner-controller"=default-network-
controller, "k8s.ovn.org/owner-type"=AdminNetworkPolicy, port-policy-protocol=None}
label               : 0
log                 : false
match               : "outport == @a14645450421485494999 && ((ip4.src == 
$a14545668191619617708))"
meter               : acl-logging
name                : "ANP:cluster-control:Ingress:0"
options             : {}
priority            : 26600
severity            : []
tier                : 1

CHAPTER 2. ADMIN NETWORK POLICY

27



NOTE

The outputs for ingress and egress show you the logic of the policy in the ACL.
For example, every time a packet matches the provided match the action is
taken.

a. Examine the specific ACL for the rule by running the following command:

Where, cluster-control

Specifies the name of your ANP.

Ingress

Specifies the direction of traffic either of type Ingress or Egress.

1

Specifies the rule you want to look at.

For the example ANP named cluster-control at priority 34, the following is an example
output for Ingress rule 1:

Example 2.15. Example output

4. Run the following command to look at address sets in the nbdb:

Example 2.16. Example outputs for Address_Set

$ ovn-nbctl find ACL 'external_ids{>=}{"k8s.ovn.org/owner-
type"=AdminNetworkPolicy,direction=Ingress,"k8s.ovn.org/name"=cluster-control,gress-
index="1"}'

_uuid               : aa1a224d-7960-4952-bdfb-35246bafbac8
action              : allow-related
direction           : to-lport
external_ids        : {direction=Ingress, gress-index="1", "k8s.ovn.org/id"="default-
network-controller:AdminNetworkPolicy:cluster-control:Ingress:1:tcp", 
"k8s.ovn.org/name"=cluster-control, "k8s.ovn.org/owner-controller"=default-network-
controller, "k8s.ovn.org/owner-type"=AdminNetworkPolicy, port-policy-protocol=tcp}
label               : 0
log                 : false
match               : "outport == @a14645450421485494999 && ((ip4.src == 
$a6786643370959569281)) && tcp && tcp.dst==7564"
meter               : acl-logging
name                : "ANP:cluster-control:Ingress:1"
options             : {}
priority            : 26599
severity            : []
tier                : 1

$ ovn-nbctl find Address_Set 'external_ids{>=}{"k8s.ovn.org/owner-
type"=AdminNetworkPolicy,"k8s.ovn.org/name"=cluster-control}'

OpenShift Container Platform 4.19 Network security

28



_uuid               : 56e89601-5552-4238-9fc3-8833f5494869
addresses           : ["192.168.194.135", "192.168.194.152", "192.168.194.193", 
"192.168.194.254"]
external_ids        : {direction=Egress, gress-index="1", ip-family=v4, 
"k8s.ovn.org/id"="default-network-controller:AdminNetworkPolicy:cluster-
control:Egress:1:v4", "k8s.ovn.org/name"=cluster-control, "k8s.ovn.org/owner-
controller"=default-network-controller, "k8s.ovn.org/owner-type"=AdminNetworkPolicy}
name                : a10706246167277696183

_uuid               : 7df9330d-380b-4bdb-8acd-4eddeda2419c
addresses           : ["10.132.0.10", "10.132.0.11", "10.132.0.12", "10.132.0.13", 
"10.132.0.14", "10.132.0.15", "10.132.0.16", "10.132.0.17", "10.132.0.5", "10.132.0.7", 
"10.132.0.71", "10.132.0.75", "10.132.0.8", "10.132.0.81", "10.132.0.9", "10.132.2.10", 
"10.132.2.11", "10.132.2.12", "10.132.2.14", "10.132.2.15", "10.132.2.3", "10.132.2.4", 
"10.132.2.5", "10.132.2.6", "10.132.2.7", "10.132.2.8", "10.132.2.9", "10.132.3.64", 
"10.132.3.65", "10.132.3.72", "10.132.3.73", "10.132.3.76", "10.133.0.10", "10.133.0.11", 
"10.133.0.12", "10.133.0.13", "10.133.0.14", "10.133.0.15", "10.133.0.16", "10.133.0.17", 
"10.133.0.18", "10.133.0.19", "10.133.0.20", "10.133.0.21", "10.133.0.22", "10.133.0.23", 
"10.133.0.24", "10.133.0.25", "10.133.0.26", "10.133.0.27", "10.133.0.28", "10.133.0.29", 
"10.133.0.30", "10.133.0.31", "10.133.0.32", "10.133.0.33", "10.133.0.34", "10.133.0.35", 
"10.133.0.36", "10.133.0.37", "10.133.0.38", "10.133.0.39", "10.133.0.40", "10.133.0.41", 
"10.133.0.42", "10.133.0.44", "10.133.0.45", "10.133.0.46", "10.133.0.47", "10.133.0.48", 
"10.133.0.5", "10.133.0.6", "10.133.0.7", "10.133.0.8", "10.133.0.9", "10.134.0.10", 
"10.134.0.11", "10.134.0.12", "10.134.0.13", "10.134.0.14", "10.134.0.15", "10.134.0.16", 
"10.134.0.17", "10.134.0.18", "10.134.0.19", "10.134.0.20", "10.134.0.21", "10.134.0.22", 
"10.134.0.23", "10.134.0.24", "10.134.0.25", "10.134.0.26", "10.134.0.27", "10.134.0.28", 
"10.134.0.30", "10.134.0.31", "10.134.0.32", "10.134.0.33", "10.134.0.34", "10.134.0.35", 
"10.134.0.36", "10.134.0.37", "10.134.0.38", "10.134.0.4", "10.134.0.42", "10.134.0.9", 
"10.135.0.10", "10.135.0.11", "10.135.0.12", "10.135.0.13", "10.135.0.14", "10.135.0.15", 
"10.135.0.16", "10.135.0.17", "10.135.0.18", "10.135.0.19", "10.135.0.23", "10.135.0.24", 
"10.135.0.26", "10.135.0.27", "10.135.0.29", "10.135.0.3", "10.135.0.4", "10.135.0.40", 
"10.135.0.41", "10.135.0.42", "10.135.0.43", "10.135.0.44", "10.135.0.5", "10.135.0.6", 
"10.135.0.7", "10.135.0.8", "10.135.0.9"]
external_ids        : {direction=Ingress, gress-index="4", ip-family=v4, 
"k8s.ovn.org/id"="default-network-controller:AdminNetworkPolicy:cluster-
control:Ingress:4:v4", "k8s.ovn.org/name"=cluster-control, "k8s.ovn.org/owner-
controller"=default-network-controller, "k8s.ovn.org/owner-type"=AdminNetworkPolicy}
name                : a13814616246365836720

_uuid               : 84d76f13-ad95-4c00-8329-a0b1d023c289
addresses           : ["10.132.3.76", "10.135.0.44"]
external_ids        : {direction=Egress, gress-index="4", ip-family=v4, 
"k8s.ovn.org/id"="default-network-controller:AdminNetworkPolicy:cluster-
control:Egress:4:v4", "k8s.ovn.org/name"=cluster-control, "k8s.ovn.org/owner-
controller"=default-network-controller, "k8s.ovn.org/owner-type"=AdminNetworkPolicy}
name                : a5972452606168369118

_uuid               : 0c53e917-f7ee-4256-8f3a-9522c0481e52
addresses           : ["10.132.0.10", "10.132.0.11", "10.132.0.12", "10.132.0.13", 
"10.132.0.14", "10.132.0.15", "10.132.0.16", "10.132.0.17", "10.132.0.5", "10.132.0.7", 
"10.132.0.71", "10.132.0.75", "10.132.0.8", "10.132.0.81", "10.132.0.9", "10.132.2.10", 
"10.132.2.11", "10.132.2.12", "10.132.2.14", "10.132.2.15", "10.132.2.3", "10.132.2.4", 
"10.132.2.5", "10.132.2.6", "10.132.2.7", "10.132.2.8", "10.132.2.9", "10.132.3.64", 
"10.132.3.65", "10.132.3.72", "10.132.3.73", "10.132.3.76", "10.133.0.10", "10.133.0.11", 
"10.133.0.12", "10.133.0.13", "10.133.0.14", "10.133.0.15", "10.133.0.16", "10.133.0.17", 
"10.133.0.18", "10.133.0.19", "10.133.0.20", "10.133.0.21", "10.133.0.22", "10.133.0.23", 

CHAPTER 2. ADMIN NETWORK POLICY

29



"10.133.0.24", "10.133.0.25", "10.133.0.26", "10.133.0.27", "10.133.0.28", "10.133.0.29", 
"10.133.0.30", "10.133.0.31", "10.133.0.32", "10.133.0.33", "10.133.0.34", "10.133.0.35", 
"10.133.0.36", "10.133.0.37", "10.133.0.38", "10.133.0.39", "10.133.0.40", "10.133.0.41", 
"10.133.0.42", "10.133.0.44", "10.133.0.45", "10.133.0.46", "10.133.0.47", "10.133.0.48", 
"10.133.0.5", "10.133.0.6", "10.133.0.7", "10.133.0.8", "10.133.0.9", "10.134.0.10", 
"10.134.0.11", "10.134.0.12", "10.134.0.13", "10.134.0.14", "10.134.0.15", "10.134.0.16", 
"10.134.0.17", "10.134.0.18", "10.134.0.19", "10.134.0.20", "10.134.0.21", "10.134.0.22", 
"10.134.0.23", "10.134.0.24", "10.134.0.25", "10.134.0.26", "10.134.0.27", "10.134.0.28", 
"10.134.0.30", "10.134.0.31", "10.134.0.32", "10.134.0.33", "10.134.0.34", "10.134.0.35", 
"10.134.0.36", "10.134.0.37", "10.134.0.38", "10.134.0.4", "10.134.0.42", "10.134.0.9", 
"10.135.0.10", "10.135.0.11", "10.135.0.12", "10.135.0.13", "10.135.0.14", "10.135.0.15", 
"10.135.0.16", "10.135.0.17", "10.135.0.18", "10.135.0.19", "10.135.0.23", "10.135.0.24", 
"10.135.0.26", "10.135.0.27", "10.135.0.29", "10.135.0.3", "10.135.0.4", "10.135.0.40", 
"10.135.0.41", "10.135.0.42", "10.135.0.43", "10.135.0.44", "10.135.0.5", "10.135.0.6", 
"10.135.0.7", "10.135.0.8", "10.135.0.9"]
external_ids        : {direction=Egress, gress-index="2", ip-family=v4, 
"k8s.ovn.org/id"="default-network-controller:AdminNetworkPolicy:cluster-
control:Egress:2:v4", "k8s.ovn.org/name"=cluster-control, "k8s.ovn.org/owner-
controller"=default-network-controller, "k8s.ovn.org/owner-type"=AdminNetworkPolicy}
name                : a18396736153283155648

_uuid               : 5228bf1b-dfd8-40ec-bfa8-95c5bf9aded9
addresses           : []
external_ids        : {direction=Ingress, gress-index="0", ip-family=v4, 
"k8s.ovn.org/id"="default-network-controller:AdminNetworkPolicy:cluster-
control:Ingress:0:v4", "k8s.ovn.org/name"=cluster-control, "k8s.ovn.org/owner-
controller"=default-network-controller, "k8s.ovn.org/owner-type"=AdminNetworkPolicy}
name                : a14545668191619617708

_uuid               : 46530d69-70da-4558-8c63-884ec9dc4f25
addresses           : ["10.132.2.10", "10.132.2.5", "10.132.2.6", "10.132.2.7", "10.132.2.8", 
"10.132.2.9", "10.133.0.47", "10.134.0.33", "10.135.0.10", "10.135.0.11", "10.135.0.12", 
"10.135.0.19", "10.135.0.24", "10.135.0.7", "10.135.0.8", "10.135.0.9"]
external_ids        : {direction=Ingress, gress-index="1", ip-family=v4, 
"k8s.ovn.org/id"="default-network-controller:AdminNetworkPolicy:cluster-
control:Ingress:1:v4", "k8s.ovn.org/name"=cluster-control, "k8s.ovn.org/owner-
controller"=default-network-controller, "k8s.ovn.org/owner-type"=AdminNetworkPolicy}
name                : a6786643370959569281

_uuid               : 65fdcdea-0b9f-4318-9884-1b51d231ad1d
addresses           : ["10.132.3.72", "10.135.0.42"]
external_ids        : {direction=Ingress, gress-index="2", ip-family=v4, 
"k8s.ovn.org/id"="default-network-controller:AdminNetworkPolicy:cluster-
control:Ingress:2:v4", "k8s.ovn.org/name"=cluster-control, "k8s.ovn.org/owner-
controller"=default-network-controller, "k8s.ovn.org/owner-type"=AdminNetworkPolicy}
name                : a13730899355151937870

_uuid               : 73eabdb0-36bf-4ca3-b66d-156ac710df4c
addresses           : ["10.0.32.0/19", "10.0.56.38/32", "10.0.69.0/24", "10.132.3.72", 
"10.135.0.42", "172.29.0.0/30", "192.168.194.103", "192.168.194.2"]
external_ids        : {direction=Egress, gress-index="3", ip-family=v4, 
"k8s.ovn.org/id"="default-network-controller:AdminNetworkPolicy:cluster-
control:Egress:3:v4", "k8s.ovn.org/name"=cluster-control, "k8s.ovn.org/owner-
controller"=default-network-controller, "k8s.ovn.org/owner-type"=AdminNetworkPolicy}
name                : a10622494091691694581

OpenShift Container Platform 4.19 Network security

30



a. Examine the specific address set of the rule by running the following command:

Example 2.17. Example outputs for Address_Set

_uuid               : 50cdbef2-71b5-474b-914c-6fcd1d7712d3
addresses           : ["10.132.0.10", "10.132.0.11", "10.132.0.12", "10.132.0.13", 
"10.132.0.14", "10.132.0.15", "10.132.0.16", "10.132.0.17", "10.132.0.5", "10.132.0.7", 
"10.132.0.71", "10.132.0.75", "10.132.0.8", "10.132.0.81", "10.132.0.9", "10.132.2.10", 
"10.132.2.11", "10.132.2.12", "10.132.2.14", "10.132.2.15", "10.132.2.3", "10.132.2.4", 
"10.132.2.5", "10.132.2.6", "10.132.2.7", "10.132.2.8", "10.132.2.9", "10.132.3.64", 
"10.132.3.65", "10.132.3.72", "10.132.3.73", "10.132.3.76", "10.133.0.10", "10.133.0.11", 
"10.133.0.12", "10.133.0.13", "10.133.0.14", "10.133.0.15", "10.133.0.16", "10.133.0.17", 
"10.133.0.18", "10.133.0.19", "10.133.0.20", "10.133.0.21", "10.133.0.22", "10.133.0.23", 
"10.133.0.24", "10.133.0.25", "10.133.0.26", "10.133.0.27", "10.133.0.28", "10.133.0.29", 
"10.133.0.30", "10.133.0.31", "10.133.0.32", "10.133.0.33", "10.133.0.34", "10.133.0.35", 
"10.133.0.36", "10.133.0.37", "10.133.0.38", "10.133.0.39", "10.133.0.40", "10.133.0.41", 
"10.133.0.42", "10.133.0.44", "10.133.0.45", "10.133.0.46", "10.133.0.47", "10.133.0.48", 
"10.133.0.5", "10.133.0.6", "10.133.0.7", "10.133.0.8", "10.133.0.9", "10.134.0.10", 
"10.134.0.11", "10.134.0.12", "10.134.0.13", "10.134.0.14", "10.134.0.15", "10.134.0.16", 
"10.134.0.17", "10.134.0.18", "10.134.0.19", "10.134.0.20", "10.134.0.21", "10.134.0.22", 
"10.134.0.23", "10.134.0.24", "10.134.0.25", "10.134.0.26", "10.134.0.27", "10.134.0.28", 
"10.134.0.30", "10.134.0.31", "10.134.0.32", "10.134.0.33", "10.134.0.34", "10.134.0.35", 
"10.134.0.36", "10.134.0.37", "10.134.0.38", "10.134.0.4", "10.134.0.42", "10.134.0.9", 
"10.135.0.10", "10.135.0.11", "10.135.0.12", "10.135.0.13", "10.135.0.14", "10.135.0.15", 
"10.135.0.16", "10.135.0.17", "10.135.0.18", "10.135.0.19", "10.135.0.23", "10.135.0.24", 
"10.135.0.26", "10.135.0.27", "10.135.0.29", "10.135.0.3", "10.135.0.4", "10.135.0.40", 
"10.135.0.41", "10.135.0.42", "10.135.0.43", "10.135.0.44", "10.135.0.5", "10.135.0.6", 
"10.135.0.7", "10.135.0.8", "10.135.0.9"]
external_ids        : {direction=Egress, gress-index="0", ip-family=v4, 
"k8s.ovn.org/id"="default-network-controller:AdminNetworkPolicy:cluster-
control:Egress:0:v4", "k8s.ovn.org/name"=cluster-control, "k8s.ovn.org/owner-
controller"=default-network-controller, "k8s.ovn.org/owner-type"=AdminNetworkPolicy}
name                : a13517855690389298082

_uuid               : 32a42f32-2d11-43dd-979d-a56d7ee6aa57
addresses           : ["10.132.3.76", "10.135.0.44"]
external_ids        : {direction=Ingress, gress-index="3", ip-family=v4, 
"k8s.ovn.org/id"="default-network-controller:AdminNetworkPolicy:cluster-
control:Ingress:3:v4", "k8s.ovn.org/name"=cluster-control, "k8s.ovn.org/owner-
controller"=default-network-controller, "k8s.ovn.org/owner-type"=AdminNetworkPolicy}
name                : a764182844364804195

_uuid               : 8fd3b977-6e1c-47aa-82b7-e3e3136c4a72
addresses           : ["0.0.0.0/0"]
external_ids        : {direction=Egress, gress-index="5", ip-family=v4, 
"k8s.ovn.org/id"="default-network-controller:AdminNetworkPolicy:cluster-
control:Egress:5:v4", "k8s.ovn.org/name"=cluster-control, "k8s.ovn.org/owner-
controller"=default-network-controller, "k8s.ovn.org/owner-type"=AdminNetworkPolicy}
name                : a11452480169090787059

$ ovn-nbctl find Address_Set 'external_ids{>=}{"k8s.ovn.org/owner-
type"=AdminNetworkPolicy,direction=Egress,"k8s.ovn.org/name"=cluster-control,gress-
index="5"}'

CHAPTER 2. ADMIN NETWORK POLICY

31



5. Run the following command to look at the port groups in the nbdb:

Example 2.18. Example outputs for Port_Group

2.5.2. Additional resources

Tracing Openflow with ovnkube-trace

Troubleshooting OVN-Kubernetes

2.6. BEST PRACTICES FOR ADMINNETWORKPOLICY

This section provides best practices for the AdminNetworkPolicy and BaselineAdminNetworkPolicy
resources.

2.6.1. Designing AdminNetworkPolicy

When building AdminNetworkPolicy (ANP) resources, you might consider the following when creating
your policies:

You can create ANPs that have the same priority. If you do create two ANPs at the same
priority, ensure that they do not apply overlapping rules to the same traffic. Only one rule per
value is applied and there is no guarantee which rule is applied when there is more than one at

_uuid               : 8fd3b977-6e1c-47aa-82b7-e3e3136c4a72
addresses           : ["0.0.0.0/0"]
external_ids        : {direction=Egress, gress-index="5", ip-family=v4, 
"k8s.ovn.org/id"="default-network-controller:AdminNetworkPolicy:cluster-
control:Egress:5:v4", "k8s.ovn.org/name"=cluster-control, "k8s.ovn.org/owner-
controller"=default-network-controller, "k8s.ovn.org/owner-type"=AdminNetworkPolicy}
name                : a11452480169090787059

$ ovn-nbctl find Port_Group 'external_ids{>=}{"k8s.ovn.org/owner-
type"=AdminNetworkPolicy,"k8s.ovn.org/name"=cluster-control}'

_uuid               : f50acf71-7488-4b9a-b7b8-c8a024e99d21
acls                : [04f20275-c410-405c-a923-0e677f767889, 0d5e4722-b608-4bb1-b625-
23c323cc9926, 1a27d30e-3f96-4915-8ddd-ade7f22c117b, 1a68a5ed-e7f9-47d0-b55c-
89184d97e81a, 4b5d836a-e0a3-4088-825e-f9f0ca58e538, 5a6e5bb4-36eb-4209-b8bc-
c611983d4624, 5d09957d-d2cc-4f5a-9ddd-b97d9d772023, aa1a224d-7960-4952-bdfb-
35246bafbac8, b23a087f-08f8-4225-8c27-4a9a9ee0c407, b7be6472-df67-439c-8c9c-
f55929f0a6e0, d14ed5cf-2e06-496e-8cae-6b76d5dd5ccd]
external_ids        : {"k8s.ovn.org/id"="default-network-
controller:AdminNetworkPolicy:cluster-control", "k8s.ovn.org/name"=cluster-control, 
"k8s.ovn.org/owner-controller"=default-network-controller, "k8s.ovn.org/owner-
type"=AdminNetworkPolicy}
name                : a14645450421485494999
ports               : [5e75f289-8273-4f8a-8798-8c10f7318833, de7e1b71-6184-445d-93e7-
b20acadf41ea]

OpenShift Container Platform 4.19 Network security

32

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/ovn-kubernetes_network_plugin/#ovn-kubernetes-tracing-using-ovntrace
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/ovn-kubernetes_network_plugin/#ovn-kubernetes-troubleshooting-sources


the same priority value. Because there is no guarantee which policy takes precedence when
overlapping ANPs are created, set ANPs at different priorities so that precedence is well
defined.

Administrators must create ANP that apply to user namespaces not system namespaces.

IMPORTANT

Applying ANP and BaselineAdminNetworkPolicy (BANP) to system namespaces
(default, kube-system, any namespace whose name starts with openshift-, etc) is not
supported, and this can leave your cluster unresponsive and in a non-functional state.

Because 0-100 is the supported priority range, you might design your ANP to use a middle range
like 30-70. This leaves some placeholder for priorities before and after. Even in the middle
range, you might want to leave gaps so that as your infrastructure requirements evolve over
time, you are able to insert new ANPs when needed at the right priority level. If you pack your
ANPs, then you might need to recreate all of them to accommodate any changes in the future.

When using 0.0.0.0/0 or ::/0 to create a strong Deny policy, ensure that you have higher priority 
Allow or Pass rules for essential traffic.

Use Allow as your action field when you want to ensure that a connection is allowed no matter
what. An Allow rule in an ANP means that the connection will always be allowed, and 
NetworkPolicy will be ignored.

Use Pass as your action field to delegate the policy decision of allowing or denying the
connection to the NetworkPolicy layer.

Ensure that the selectors across multiple rules do not overlap so that the same IPs do not
appear in multiple policies, which can cause performance and scale limitations.

Avoid using namedPorts in conjunction with PortNumber and PortRange because this creates
6 ACLs and cause inefficiencies in your cluster.

2.6.1.1. Considerations for using BaselineAdminNetworkPolicy

You can define only a single BaselineAdminNetworkPolicy (BANP) resource within a cluster.
The following are supported uses for BANP that administrators might consider in designing their
BANP:

You can set a default deny policy for cluster-local ingress in user namespaces. This BANP
will force developers to have to add NetworkPolicy objects to allow the ingress traffic that
they want to allow, and if they do not add network policies for ingress it will be denied.

You can set a default deny policy for cluster-local egress in user namespaces. This BANP
will force developers to have to add NetworkPolicy objects to allow the egress traffic that
they want to allow, and if they do not add network policies it will be denied.

You can set a default allow policy for egress to the in-cluster DNS service. Such a BANP
ensures that the namespaced users do not have to set an allow egress NetworkPolicy to
the in-cluster DNS service.

You can set an egress policy that allows internal egress traffic to all pods but denies access
to all external endpoints (i.e 0.0.0.0/0 and ::/0). This BANP allows user workloads to send
traffic to other in-cluster endpoints, but not to external endpoints by default. 

CHAPTER 2. ADMIN NETWORK POLICY

33



NetworkPolicy can then be used by developers in order to allow their applications to send
traffic to an explicit set of external services.

Ensure you scope your BANP so that it only denies traffic to user namespaces and not to
system namespaces. This is because the system namespaces do not have NetworkPolicy
objects to override your BANP.

2.6.1.2. Differences to consider between AdminNetworkPolicy and NetworkPolicy

Unlike NetworkPolicy objects, you must use explicit labels to reference your workloads within
ANP and BANP rather than using the empty ({}) catch all selector to avoid accidental traffic
selection.

IMPORTANT

An empty namespace selector applied to a infrastructure namespace can make your
cluster unresponsive and in a non-functional state.

In API semantics for ANP, you have to explicitly define allow or deny rules when you create the
policy, unlike NetworkPolicy objects which have an implicit deny.

Unlike NetworkPolicy objects, AdminNetworkPolicy objects ingress rules are limited to in-
cluster pods and namespaces so you cannot, and do not need to, set rules for ingress from the
host network.

OpenShift Container Platform 4.19 Network security

34



CHAPTER 3. NETWORK POLICY

3.1. ABOUT NETWORK POLICY

As a developer, you can define network policies that restrict traffic to pods in your cluster.

3.1.1. About network policy

By default, all pods in a project are accessible from other pods and network endpoints. To isolate one or
more pods in a project, you can create NetworkPolicy objects in that project to indicate the allowed
incoming connections. Project administrators can create and delete NetworkPolicy objects within their
own project.

If a pod is matched by selectors in one or more NetworkPolicy objects, then the pod will accept only
connections that are allowed by at least one of those NetworkPolicy objects. A pod that is not selected
by any NetworkPolicy objects is fully accessible.

A network policy applies to only the Transmission Control Protocol (TCP), User Datagram Protocol
(UDP), Internet Control Message Protocol (ICMP), and Stream Control Transmission Protocol (SCTP)
protocols. Other protocols are not affected.

WARNING

A network policy does not apply to the host network namespace. Pods with
host networking enabled are unaffected by network policy rules. However,
pods connecting to the host-networked pods might be affected by the
network policy rules.

Using the namespaceSelector field without the podSelector field set to {}
will not include hostNetwork pods. You must use the podSelector set to {}
with the namespaceSelector field in order to target hostNetwork pods
when creating network policies.

Network policies cannot block traffic from localhost or from their resident
nodes.

The following example NetworkPolicy objects demonstrate supporting different scenarios:

Deny all traffic:
To make a project deny by default, add a NetworkPolicy object that matches all pods but
accepts no traffic:



kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
  name: deny-by-default
spec:
  podSelector: {}
  ingress: []

CHAPTER 3. NETWORK POLICY

35



Only allow connections from the OpenShift Container Platform Ingress Controller:
To make a project allow only connections from the OpenShift Container Platform Ingress
Controller, add the following NetworkPolicy object.

Only accept connections from pods within a project:

IMPORTANT

To allow ingress connections from hostNetwork pods in the same namespace,
you need to apply the allow-from-hostnetwork policy together with the allow-
same-namespace policy.

To make pods accept connections from other pods in the same project, but reject all other
connections from pods in other projects, add the following NetworkPolicy object:

Only allow HTTP and HTTPS traffic based on pod labels:
To enable only HTTP and HTTPS access to the pods with a specific label (role=frontend in
following example), add a NetworkPolicy object similar to the following:

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
  name: allow-from-openshift-ingress
spec:
  ingress:
  - from:
    - namespaceSelector:
        matchLabels:
          policy-group.network.openshift.io/ingress: ""
  podSelector: {}
  policyTypes:
  - Ingress

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
  name: allow-same-namespace
spec:
  podSelector: {}
  ingress:
  - from:
    - podSelector: {}

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
  name: allow-http-and-https
spec:
  podSelector:
    matchLabels:
      role: frontend
  ingress:

OpenShift Container Platform 4.19 Network security

36



Accept connections by using both namespace and pod selectors:
To match network traffic by combining namespace and pod selectors, you can use a 
NetworkPolicy object similar to the following:

NetworkPolicy objects are additive, which means you can combine multiple NetworkPolicy objects
together to satisfy complex network requirements.

For example, for the NetworkPolicy objects defined in previous samples, you can define both allow-
same-namespace and allow-http-and-https policies within the same project. Thus allowing the pods
with the label role=frontend, to accept any connection allowed by each policy. That is, connections on
any port from pods in the same namespace, and connections on ports 80 and 443 from pods in any
namespace.

3.1.1.1. Using the allow-from-router network policy

Use the following NetworkPolicy to allow external traffic regardless of the router configuration:

  - ports:
    - protocol: TCP
      port: 80
    - protocol: TCP
      port: 443

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
  name: allow-pod-and-namespace-both
spec:
  podSelector:
    matchLabels:
      name: test-pods
  ingress:
    - from:
      - namespaceSelector:
          matchLabels:
            project: project_name
        podSelector:
          matchLabels:
            name: test-pods

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
  name: allow-from-router
spec:
  ingress:
  - from:
    - namespaceSelector:
        matchLabels:
          policy-group.network.openshift.io/ingress: "" 1
  podSelector: {}
  policyTypes:
  - Ingress

CHAPTER 3. NETWORK POLICY

37



1 policy-group.network.openshift.io/ingress:"" label supports OVN-Kubernetes.

3.1.1.2. Using the allow-from-hostnetwork network policy

Add the following allow-from-hostnetwork NetworkPolicy object to direct traffic from the host
network pods.

3.1.2. Optimizations for network policy with OVN-Kubernetes network plugin

When designing your network policy, refer to the following guidelines:

For network policies with the same spec.podSelector spec, it is more efficient to use one
network policy with multiple ingress or egress rules, than multiple network policies with subsets
of ingress or egress rules.

Every ingress or egress rule based on the podSelector or namespaceSelector spec
generates the number of OVS flows proportional to number of pods selected by network 
policy + number of pods selected by ingress or egress rule. Therefore, it is preferable to use
the podSelector or namespaceSelector spec that can select as many pods as you need in one
rule, instead of creating individual rules for every pod.
For example, the following policy contains two rules:

The following policy expresses those same two rules as one:

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
  name: allow-from-hostnetwork
spec:
  ingress:
  - from:
    - namespaceSelector:
        matchLabels:
          policy-group.network.openshift.io/host-network: ""
  podSelector: {}
  policyTypes:
  - Ingress

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
  name: test-network-policy
spec:
  podSelector: {}
  ingress:
  - from:
    - podSelector:
        matchLabels:
          role: frontend
  - from:
    - podSelector:
        matchLabels:
          role: backend

OpenShift Container Platform 4.19 Network security

38



The same guideline applies to the spec.podSelector spec. If you have the same ingress or 
egress rules for different network policies, it might be more efficient to create one network
policy with a common spec.podSelector spec. For example, the following two policies have
different rules:

The following network policy expresses those same two rules as one:

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
  name: test-network-policy
spec:
  podSelector: {}
  ingress:
  - from:
    - podSelector:
        matchExpressions:
        - {key: role, operator: In, values: [frontend, backend]}

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
  name: policy1
spec:
  podSelector:
    matchLabels:
      role: db
  ingress:
  - from:
    - podSelector:
        matchLabels:
          role: frontend
---
apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
  name: policy2
spec:
  podSelector:
    matchLabels:
      role: client
  ingress:
  - from:
    - podSelector:
        matchLabels:
          role: frontend

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
  name: policy3
spec:
  podSelector:
    matchExpressions:
    - {key: role, operator: In, values: [db, client]}

CHAPTER 3. NETWORK POLICY

39



You can apply this optimization when only multiple selectors are expressed as one. In cases
where selectors are based on different labels, it may not be possible to apply this optimization. In
those cases, consider applying some new labels for network policy optimization specifically.

3.1.2.1. NetworkPolicy CR and external IPs in OVN-Kubernetes

In OVN-Kubernetes, the NetworkPolicy custom resource (CR) enforces strict isolation rules. If a service
is exposed using an external IP, a network policy can block access from other namespaces unless
explicitly configured to allow traffic.

To allow access to external IPs across namespaces, create a NetworkPolicy CR that explicitly permits
ingress from the required namespaces and ensures traffic is allowed to the designated service ports.
Without allowing traffic to the required ports, access might still be restricted.

Example output

where:

<policy_name>

Specifies your name for the policy.

<my_namespace>

Specifies the name of the namespace where the policy is deployed.

For more details, see "About network policy".

3.1.3. Next steps

  ingress:
  - from:
    - podSelector:
        matchLabels:
          role: frontend

  apiVersion: networking.k8s.io/v1
  kind: NetworkPolicy
  metadata:
    annotations:
    name: <policy_name>
    namespace: openshift-ingress
  spec:
    ingress:
    - ports:
      - port: 80
        protocol: TCP
    - ports:
      - port: 443
        protocol: TCP
    - from:
      - namespaceSelector:
          matchLabels:
          kubernetes.io/metadata.name: <my_namespace>
    podSelector: {}
    policyTypes:
    - Ingress

OpenShift Container Platform 4.19 Network security

40



Creating a network policy

Optional: Defining a default network policy for projects

3.1.4. Additional resources

Projects and namespaces

Configuring multitenant isolation with network policy

NetworkPolicy API

3.2. CREATING A NETWORK POLICY

As a cluster administrator, you can create a network policy for a namespace.

3.2.1. Example NetworkPolicy object

The following configuration annotates an example NetworkPolicy object:

where:

name

The name of the NetworkPolicy object.

spec.podSelector

A selector that describes the pods to which the policy applies. The policy object can only select pods
in the project that defines the NetworkPolicy object.

ingress.from.podSelector

A selector that matches the pods from which the policy object allows ingress traffic. The selector
matches pods in the same namespace as the NetworkPolicy.

ingress.ports

A list of one or more destination ports on which to accept traffic.

3.2.2. Creating a network policy using the CLI

To define granular rules describing ingress or egress network traffic allowed for namespaces in your

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
  name: allow-27107
spec:
  podSelector:
    matchLabels:
      app: mongodb
  ingress:
  - from:
    - podSelector:
        matchLabels:
          app: app
    ports:
    - protocol: TCP
      port: 27017

CHAPTER 3. NETWORK POLICY

41

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/authentication_and_authorization/#rbac-projects-namespaces_using-rbac
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/network_apis/#networkpolicy-networking-k8s-io-v1


To define granular rules describing ingress or egress network traffic allowed for namespaces in your
cluster, you can create a network policy.

NOTE

If you log in with a user with the cluster-admin role, then you can create a network policy
in any namespace in the cluster.

Prerequisites

Your cluster uses a network plugin that supports NetworkPolicy objects, such as the OVN-
Kubernetes network plugin, with mode: NetworkPolicy set.

You installed the OpenShift CLI (oc).

You logged in to the cluster with a user with admin privileges.

You are working in the namespace that the network policy applies to.

Procedure

1. Create a policy rule.

a. Create a <policy_name>.yaml file:

where:

<policy_name>

Specifies the network policy file name.

b. Define a network policy in the created file. The following example denies ingress traffic from
all pods in all namespaces. This is a fundamental policy, blocking all cross-pod networking
other than cross-pod traffic allowed by the configuration of other Network Policies.

The following example configuration allows ingress traffic from all pods in the same
namespace:

$ touch <policy_name>.yaml

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
spec:
  podSelector: {}
  policyTypes:
  - Ingress
  ingress: []

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
  name: allow-same-namespace
spec:
  podSelector:
  ingress:

OpenShift Container Platform 4.19 Network security

42



The following example allows ingress traffic to one pod from a particular namespace. This
policy allows traffic to pods that have the pod-a label from pods running in namespace-y.

The following example configuration restricts traffic to a service. This policy when applied
ensures every pod with both labels app=bookstore and role=api can only be accessed by
pods with label app=bookstore. In this example the application could be a REST API server,
marked with labels app=bookstore and role=api.

This example configuration addresses the following use cases:

Restricting the traffic to a service to only the other microservices that need to use it.

Restricting the connections to a database to only permit the application using it.

2. To create the network policy object, enter the following command. Successful output lists the
name of the policy object and the created status.

  - from:
    - podSelector: {}
# ...

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
  name: allow-traffic-pod
spec:
  podSelector:
   matchLabels:
      pod: pod-a
  policyTypes:
  - Ingress
  ingress:
  - from:
    - namespaceSelector:
        matchLabels:
           kubernetes.io/metadata.name: namespace-y
# ...

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
  name: api-allow
spec:
  podSelector:
    matchLabels:
      app: bookstore
      role: api
  ingress:
  - from:
      - podSelector:
          matchLabels:
            app: bookstore
# ...

$ oc apply -f <policy_name>.yaml -n <namespace>

CHAPTER 3. NETWORK POLICY

43



where:

<policy_name>

Specifies the network policy file name.

<namespace>

Optional parameter. If you defined the object in a different namespace than the current
namespace, the parameter specifices the namespace.

Successful output lists the name of the policy object and the created status.

NOTE

If you log in to the web console with cluster-admin privileges, you have a choice
of creating a network policy in any namespace in the cluster directly in YAML or
from a form in the web console.

3.2.3. Creating a default deny all network policy

The default deny all network policy blocks all cross-pod networking other than network traffic allowed by
the configuration of other deployed network policies and traffic between host-networked pods. This
procedure enforces a strong deny policy by applying a deny-by-default policy in the my-project
namespace.

WARNING

Without configuring a NetworkPolicy custom resource (CR) that allows traffic
communication, the following policy might cause communication problems across
your cluster.

Prerequisites

Your cluster uses a network plugin that supports NetworkPolicy objects, such as the OVN-
Kubernetes network plugin, with mode: NetworkPolicy set.

You installed the OpenShift CLI (oc).

You logged in to the cluster with a user with admin privileges.

You are working in the namespace that the network policy applies to.

Procedure

1. Create the following YAML that defines a deny-by-default policy to deny ingress from all pods
in all namespaces. Save the YAML in the deny-by-default.yaml file:



kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
  name: deny-by-default

OpenShift Container Platform 4.19 Network security

44



where:

namespace

Specifies the namespace in which to deploy the policy. For example, the my-project
namespace.

podSelector

If this field is empty, the configuration matches all the pods. Therefore, the policy applies to
all pods in the my-project namespace.

ingress

Where [] indicates that no ingress rules are specified. This causes incoming traffic to be
dropped to all pods.

2. Apply the policy by entering the following command. Successful output lists the name of the
policy object and the created status.

3.2.4. Creating a network policy to allow traffic from external clients

With the deny-by-default policy in place you can proceed to configure a policy that allows traffic from
external clients to a pod with the label app=web.

NOTE

If you log in with a user with the cluster-admin role, then you can create a network policy
in any namespace in the cluster.

Follow this procedure to configure a policy that allows external service from the public Internet directly
or by using a Load Balancer to access the pod. Traffic is only allowed to a pod with the label app=web.

Prerequisites

Your cluster uses a network plugin that supports NetworkPolicy objects, such as the OVN-
Kubernetes network plugin, with mode: NetworkPolicy set.

You installed the OpenShift CLI (oc).

You logged in to the cluster with a user with admin privileges.

You are working in the namespace that the network policy applies to.

Procedure

1. Create a policy that allows traffic from the public Internet directly or by using a load balancer to
access the pod. Save the YAML in the web-allow-external.yaml file:

  namespace: my-project
spec:
  podSelector: {}
  ingress: []

$ oc apply -f deny-by-default.yaml

CHAPTER 3. NETWORK POLICY

45



2. Apply the policy by entering the following command. Successful output lists the name of the
policy object and the created status.

This policy allows traffic from all resources, including external traffic as illustrated in the
following diagram:

3.2.5. Creating a network policy allowing traffic to an application from all
namespaces

You can configure a policy that allows traffic from all pods in all namespaces to a particular application.

NOTE

If you log in with a user with the cluster-admin role, then you can create a network policy
in any namespace in the cluster.

Prerequisites

Your cluster uses a network plugin that supports NetworkPolicy objects, such as the OVN-
Kubernetes network plugin, with mode: NetworkPolicy set.

You installed the OpenShift CLI (oc).

You logged in to the cluster with a user with admin privileges.

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
spec:
  policyTypes:
  - Ingress
  podSelector:
    matchLabels:
      app: web
  ingress:
    - {}

$ oc apply -f web-allow-external.yaml

OpenShift Container Platform 4.19 Network security

46



You are working in the namespace that the network policy applies to.

Procedure

1. Create a policy that allows traffic from all pods in all namespaces to a particular application.
Save the YAML in the web-allow-all-namespaces.yaml file:

where:

app

Applies the policy only to app:web pods in default namespace.

namespaceSelector

Selects all pods in all namespaces.

NOTE

By default, if you do not specify a namespaceSelector parameter in the
policy object, no namespaces get selected. This means the policy allows
traffic only from the namespace where the network policy deployes.

2. Apply the policy by entering the following command. Successful output lists the name of the
policy object and the created status.

Verification

1. Start a web service in the default namespace by entering the following command:

2. Run the following command to deploy an alpine image in the secondary namespace and to
start a shell:

3. Run the following command in the shell and observe that the service allows the request:

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
spec:
  podSelector:
    matchLabels:
      app: web
  policyTypes:
  - Ingress
  ingress:
  - from:
    - namespaceSelector: {}

$ oc apply -f web-allow-all-namespaces.yaml

$ oc run web --namespace=default --image=nginx --labels="app=web" --expose --port=80

$ oc run test-$RANDOM --namespace=secondary --rm -i -t --image=alpine -- sh

# wget -qO- --timeout=2 http://web.default

CHAPTER 3. NETWORK POLICY

47



3.2.6. Creating a network policy allowing traffic to an application from a namespace

You can configure a policy that allows traffic to a pod with the label app=web from a particular
namespace. This configuration is useful in the following use cases:

Restrict traffic to a production database only to namespaces that have production workloads
deployed.

Enable monitoring tools deployed to a particular namespace to scrape metrics from the current
namespace.

NOTE

If you log in with a user with the cluster-admin role, then you can create a network policy
in any namespace in the cluster.

Prerequisites

Your cluster uses a network plugin that supports NetworkPolicy objects, such as the OVN-
Kubernetes network plugin, with mode: NetworkPolicy set.

You installed the OpenShift CLI (oc).

You logged in to the cluster with a user with admin privileges.

You are working in the namespace that the network policy applies to.

Procedure

1. Create a policy that allows traffic from all pods in a particular namespaces with a label 

<!DOCTYPE html>
<html>
<head>
<title>Welcome to nginx!</title>
<style>
html { color-scheme: light dark; }
body { width: 35em; margin: 0 auto;
font-family: Tahoma, Verdana, Arial, sans-serif; }
</style>
</head>
<body>
<h1>Welcome to nginx!</h1>
<p>If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.</p>

<p>For online documentation and support please refer to
<a href="http://nginx.org/">nginx.org</a>.<br/>
Commercial support is available at
<a href="http://nginx.com/">nginx.com</a>.</p>

<p><em>Thank you for using nginx.</em></p>
</body>
</html>

OpenShift Container Platform 4.19 Network security

48



1. Create a policy that allows traffic from all pods in a particular namespaces with a label 
purpose=production. Save the YAML in the web-allow-prod.yaml file:

where:

app

Applies the policy only to app:web pods in the default namespace.

purpose

Restricts traffic to only pods in namespaces that have the label purpose=production.

2. Apply the policy by entering the following command. Successful output lists the name of the
policy object and the created status.

Verification

1. Start a web service in the default namespace by entering the following command:

2. Run the following command to create the prod namespace:

3. Run the following command to label the prod namespace:

4. Run the following command to create the dev namespace:

5. Run the following command to label the dev namespace:

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
  name: web-allow-prod
  namespace: default
spec:
  podSelector:
    matchLabels:
      app: web
  policyTypes:
  - Ingress
  ingress:
  - from:
    - namespaceSelector:
        matchLabels:
          purpose: production

$ oc apply -f web-allow-prod.yaml

$ oc run web --namespace=default --image=nginx --labels="app=web" --expose --port=80

$ oc create namespace prod

$ oc label namespace/prod purpose=production

$ oc create namespace dev

CHAPTER 3. NETWORK POLICY

49



6. Run the following command to deploy an alpine image in the dev namespace and to start a
shell:

7. Run the following command in the shell and observe the reason for the blocked request. For
example, expected output states wget: download timed out.

8. Run the following command to deploy an alpine image in the prod namespace and start a shell:

9. Run the following command in the shell and observe that the request is allowed:

3.2.7. Additional resources

Accessing the web console

Logging for egress firewall and network policy rules

3.3. VIEWING A NETWORK POLICY

$ oc label namespace/dev purpose=testing

$ oc run test-$RANDOM --namespace=dev --rm -i -t --image=alpine -- sh

# wget -qO- --timeout=2 http://web.default

$ oc run test-$RANDOM --namespace=prod --rm -i -t --image=alpine -- sh

# wget -qO- --timeout=2 http://web.default

<!DOCTYPE html>
<html>
<head>
<title>Welcome to nginx!</title>
<style>
html { color-scheme: light dark; }
body { width: 35em; margin: 0 auto;
font-family: Tahoma, Verdana, Arial, sans-serif; }
</style>
</head>
<body>
<h1>Welcome to nginx!</h1>
<p>If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.</p>

<p>For online documentation and support please refer to
<a href="http://nginx.org/">nginx.org</a>.<br/>
Commercial support is available at
<a href="http://nginx.com/">nginx.com</a>.</p>

<p><em>Thank you for using nginx.</em></p>
</body>
</html>

OpenShift Container Platform 4.19 Network security

50

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/web_console/#web-console


As a cluster administrator, you can view a network policy for a namespace.

3.3.1. Example NetworkPolicy object

The following configuration annotates an example NetworkPolicy object:

where:

name

The name of the NetworkPolicy object.

spec.podSelector

A selector that describes the pods to which the policy applies. The policy object can only select pods
in the project that defines the NetworkPolicy object.

ingress.from.podSelector

A selector that matches the pods from which the policy object allows ingress traffic. The selector
matches pods in the same namespace as the NetworkPolicy.

ingress.ports

A list of one or more destination ports on which to accept traffic.

3.3.2. Viewing network policies using the CLI

You can examine the network policies in a namespace.

NOTE

If you log in with a user with the cluster-admin role, then you can view any network policy
in the cluster.

Prerequisites

You installed the OpenShift CLI (oc).

You are logged in to the cluster with a user with admin privileges.

You are working in the namespace where the network policy exists.

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
  name: allow-27107
spec:
  podSelector:
    matchLabels:
      app: mongodb
  ingress:
  - from:
    - podSelector:
        matchLabels:
          app: app
    ports:
    - protocol: TCP
      port: 27017

CHAPTER 3. NETWORK POLICY

51



Procedure

1. List network policies in a namespace.

a. To view network policy objects defined in a namespace enter the following command:

b. Optional: To examine a specific network policy enter the following command:

where:

<policy_name>

Specifies the name of the network policy to inspect.

<namespace>

Optional: Specifies the namespace if the object is defined in a different namespace than
the current namespace.

NOTE

If you log in to the web console with cluster-admin privileges, you have a choice of
viewing a network policy in any namespace in the cluster directly in YAML or from a form
in the web console.

3.4. EDITING A NETWORK POLICY

As a cluster administrator, you can edit an existing network policy for a namespace.

3.4.1. Editing a network policy

You can edit a network policy in a namespace.

NOTE

$ oc get networkpolicy

$ oc describe networkpolicy <policy_name> -n <namespace>

$ oc describe networkpolicy allow-same-namespace

Name:         allow-same-namespace
Namespace:    ns1
Created on:   2021-05-24 22:28:56 -0400 EDT
Labels:       <none>
Annotations:  <none>
Spec:
  PodSelector:     <none> (Allowing the specific traffic to all pods in this namespace)
  Allowing ingress traffic:
    To Port: <any> (traffic allowed to all ports)
    From:
      PodSelector: <none>
  Not affecting egress traffic
  Policy Types: Ingress

OpenShift Container Platform 4.19 Network security

52



NOTE

If you log in with a user with the cluster-admin role, then you can edit a network policy in
any namespace in the cluster.

Prerequisites

Your cluster uses a network plugin that supports NetworkPolicy objects, such as the OVN-
Kubernetes network plugin, with mode: NetworkPolicy set.

You installed the OpenShift CLI (oc).

You are logged in to the cluster with a user with admin privileges.

You are working in the namespace where the network policy exists.

Procedure

1. Optional: To list the network policy objects in a namespace, enter the following command:

where:

<namespace>

Optional: Specifies the namespace if the object is defined in a different namespace than the
current namespace.

2. Edit the network policy object.

a. If you saved the network policy definition in a file, edit the file and make any necessary
changes, and then enter the following command.

where:

<namespace>

Optional: Specifies the namespace if the object is defined in a different namespace than
the current namespace.

<policy_file>

Specifies the name of the file containing the network policy.

b. If you need to update the network policy object directly, enter the following command:

where:

<policy_name>

Specifies the name of the network policy.

<namespace>

Optional: Specifies the namespace if the object is defined in a different namespace than

$ oc get network policy -n <namespace>

$ oc apply -n <namespace> -f <policy_file>.yaml

$ oc edit network policy <policy_name> -n <namespace>

CHAPTER 3. NETWORK POLICY

53



Optional: Specifies the namespace if the object is defined in a different namespace than
the current namespace.

3. Confirm that the network policy object is updated.

where:

<policy_name>

Specifies the name of the network policy.

<namespace>

Optional: Specifies the namespace if the object is defined in a different namespace than the
current namespace.

NOTE

If you log in to the web console with cluster-admin privileges, you have a choice of
editing a network policy in any namespace in the cluster directly in YAML or from the
policy in the web console through the Actions menu.

3.4.2. Example NetworkPolicy object

The following configuration annotates an example NetworkPolicy object:

where:

name

The name of the NetworkPolicy object.

spec.podSelector

A selector that describes the pods to which the policy applies. The policy object can only select pods
in the project that defines the NetworkPolicy object.

ingress.from.podSelector

A selector that matches the pods from which the policy object allows ingress traffic. The selector
matches pods in the same namespace as the NetworkPolicy.

$ oc describe networkpolicy <policy_name> -n <namespace>

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
  name: allow-27107
spec:
  podSelector:
    matchLabels:
      app: mongodb
  ingress:
  - from:
    - podSelector:
        matchLabels:
          app: app
    ports:
    - protocol: TCP
      port: 27017

OpenShift Container Platform 4.19 Network security

54



ingress.ports

A list of one or more destination ports on which to accept traffic.

3.4.3. Additional resources

Creating a network policy

3.5. DELETING A NETWORK POLICY

As a cluster administrator, you can delete a network policy from a namespace.

3.5.1. Deleting a network policy using the CLI

You can delete a network policy in a namespace.

NOTE

If you log in with a user with the cluster-admin role, then you can delete any network
policy in the cluster.

Prerequisites

Your cluster uses a network plugin that supports NetworkPolicy objects, such as the OVN-
Kubernetes network plugin, with mode: NetworkPolicy set.

You installed the OpenShift CLI (oc).

You logged in to the cluster with a user with admin privileges.

You are working in the namespace where the network policy exists.

Procedure

To delete a network policy object, enter the following command. Successful output lists the
name of the policy object and the deleted status.

where:

<policy_name>

Specifies the name of the network policy.

<namespace>

Optional parameter. If you defined the object in a different namespace than the current
namespace, the parameter specifices the namespace.

NOTE

If you log in to the web console with cluster-admin privileges, you have a choice of
deleting a network policy in any namespace in the cluster directly in YAML or from the
policy in the web console through the Actions menu.

$ oc delete networkpolicy <policy_name> -n <namespace>

CHAPTER 3. NETWORK POLICY

55



3.6. DEFINING A DEFAULT NETWORK POLICY FOR PROJECTS

As a cluster administrator, you can modify the new project template to automatically include network
policies when you create a new project. If you do not yet have a customized template for new projects,
you must first create one.

3.6.1. Modifying the template for new projects

As a cluster administrator, you can modify the default project template so that new projects are created
using your custom requirements.

To create your own custom project template:

Prerequisites

You have access to an OpenShift Container Platform cluster using an account with cluster-
admin permissions.

Procedure

1. Log in as a user with cluster-admin privileges.

2. Generate the default project template:

3. Use a text editor to modify the generated template.yaml file by adding objects or modifying
existing objects.

4. The project template must be created in the openshift-config namespace. Load your modified
template:

5. Edit the project configuration resource using the web console or CLI.

Using the web console:

i. Navigate to the Administration → Cluster Settings page.

ii. Click Configuration to view all configuration resources.

iii. Find the entry for Project and click Edit YAML.

Using the CLI:

i. Edit the project.config.openshift.io/cluster resource:

6. Update the spec section to include the projectRequestTemplate and name parameters, and
set the name of your uploaded project template. The default name is project-request.

Project configuration resource with custom project template

$ oc adm create-bootstrap-project-template -o yaml > template.yaml

$ oc create -f template.yaml -n openshift-config

$ oc edit project.config.openshift.io/cluster

OpenShift Container Platform 4.19 Network security

56



7. After you save your changes, create a new project to verify that your changes were successfully
applied.

3.6.2. Adding network policies to the new project template

As a cluster administrator, you can add network policies to the default template for new projects.
OpenShift Container Platform will automatically create all the NetworkPolicy objects specified in the
template in the project.

Prerequisites

Your cluster uses a default container network interface (CNI) network plugin that supports 
NetworkPolicy objects, such as the OVN-Kubernetes.

You installed the OpenShift CLI (oc).

You must log in to the cluster with a user with cluster-admin privileges.

You must have created a custom default project template for new projects.

Procedure

1. Edit the default template for a new project by running the following command:

Replace <project_template> with the name of the default template that you configured for
your cluster. The default template name is project-request.

2. In the template, add each NetworkPolicy object as an element to the objects parameter. The 
objects parameter accepts a collection of one or more objects.
In the following example, the objects parameter collection includes several NetworkPolicy
objects.

apiVersion: config.openshift.io/v1
kind: Project
metadata:
# ...
spec:
  projectRequestTemplate:
    name: <template_name>
# ...

$ oc edit template <project_template> -n openshift-config

objects:
- apiVersion: networking.k8s.io/v1
  kind: NetworkPolicy
  metadata:
    name: allow-from-same-namespace
  spec:
    podSelector: {}
    ingress:
    - from:
      - podSelector: {}
- apiVersion: networking.k8s.io/v1

CHAPTER 3. NETWORK POLICY

57



1

3. Optional: Create a new project and confirm the successful creation of your network policy
objects.

a. Create a new project:

Replace <project> with the name for the project you are creating.

b. Confirm that the network policy objects in the new project template exist in the new project:

Expected output:

3.7. CONFIGURING MULTITENANT ISOLATION WITH NETWORK
POLICY

As a cluster administrator, you can configure your network policies to provide multitenant network
isolation.

  kind: NetworkPolicy
  metadata:
    name: allow-from-openshift-ingress
  spec:
    ingress:
    - from:
      - namespaceSelector:
          matchLabels:
            policy-group.network.openshift.io/ingress:
    podSelector: {}
    policyTypes:
    - Ingress
- apiVersion: networking.k8s.io/v1
  kind: NetworkPolicy
  metadata:
    name: allow-from-kube-apiserver-operator
  spec:
    ingress:
    - from:
      - namespaceSelector:
          matchLabels:
            kubernetes.io/metadata.name: openshift-kube-apiserver-operator
        podSelector:
          matchLabels:
            app: kube-apiserver-operator
    policyTypes:
    - Ingress
...

$ oc new-project <project> 1

$ oc get networkpolicy

NAME                           POD-SELECTOR   AGE
allow-from-openshift-ingress   <none>         7s
allow-from-same-namespace      <none>         7s

OpenShift Container Platform 4.19 Network security

58



NOTE

Configuring network policies as described in this section provides network isolation similar
to the multitenant mode of OpenShift SDN in previous versions of OpenShift Container
Platform.

3.7.1. Configuring multitenant isolation by using network policy

You can configure your project to isolate it from pods and services in other project namespaces.

Prerequisites

Your cluster uses a network plugin that supports NetworkPolicy objects, such as the OVN-
Kubernetes network plugin, with mode: NetworkPolicy set.

You installed the OpenShift CLI (oc).

You are logged in to the cluster with a user with admin privileges.

Procedure

1. Create the following NetworkPolicy objects:

a. A policy named allow-from-openshift-ingress.

NOTE

policy-group.network.openshift.io/ingress: "" is the preferred namespace
selector label for OVN-Kubernetes.

b. A policy named allow-from-openshift-monitoring:

$ cat << EOF| oc create -f -
apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
  name: allow-from-openshift-ingress
spec:
  ingress:
  - from:
    - namespaceSelector:
        matchLabels:
          policy-group.network.openshift.io/ingress: ""
  podSelector: {}
  policyTypes:
  - Ingress
EOF

$ cat << EOF| oc create -f -
apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
  name: allow-from-openshift-monitoring
spec:

CHAPTER 3. NETWORK POLICY

59



c. A policy named allow-same-namespace:

d. A policy named allow-from-kube-apiserver-operator:

For more details, see New kube-apiserver-operator webhook controller validating health
of webhook.

2. Optional: To confirm that the network policies exist in your current project, enter the following
command:

Example output

  ingress:
  - from:
    - namespaceSelector:
        matchLabels:
          network.openshift.io/policy-group: monitoring
  podSelector: {}
  policyTypes:
  - Ingress
EOF

$ cat << EOF| oc create -f -
kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
  name: allow-same-namespace
spec:
  podSelector:
  ingress:
  - from:
    - podSelector: {}
EOF

$ cat << EOF| oc create -f -
apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
  name: allow-from-kube-apiserver-operator
spec:
  ingress:
  - from:
    - namespaceSelector:
        matchLabels:
          kubernetes.io/metadata.name: openshift-kube-apiserver-operator
      podSelector:
        matchLabels:
          app: kube-apiserver-operator
  policyTypes:
  - Ingress
EOF

$ oc describe networkpolicy

OpenShift Container Platform 4.19 Network security

60

https://access.redhat.com/solutions/6964520


3.7.2. Next steps

Defining a default network policy for a project

Name:         allow-from-openshift-ingress
Namespace:    example1
Created on:   2020-06-09 00:28:17 -0400 EDT
Labels:       <none>
Annotations:  <none>
Spec:
  PodSelector:     <none> (Allowing the specific traffic to all pods in this namespace)
  Allowing ingress traffic:
    To Port: <any> (traffic allowed to all ports)
    From:
      NamespaceSelector: policy-group.network.openshift.io/ingress:
  Not affecting egress traffic
  Policy Types: Ingress

Name:         allow-from-openshift-monitoring
Namespace:    example1
Created on:   2020-06-09 00:29:57 -0400 EDT
Labels:       <none>
Annotations:  <none>
Spec:
  PodSelector:     <none> (Allowing the specific traffic to all pods in this namespace)
  Allowing ingress traffic:
    To Port: <any> (traffic allowed to all ports)
    From:
      NamespaceSelector: network.openshift.io/policy-group: monitoring
  Not affecting egress traffic
  Policy Types: Ingress

CHAPTER 3. NETWORK POLICY

61



CHAPTER 4. AUDIT LOGGING FOR NETWORK SECURITY
The OVN-Kubernetes network plugin uses Open Virtual Network (OVN) access control lists (ACLs) to
manage AdminNetworkPolicy, BaselineAdminNetworkPolicy, NetworkPolicy, and EgressFirewall
objects. Audit logging exposes allow and deny ACL events for NetworkPolicy, EgressFirewall and 
BaselineAdminNetworkPolicy custom resources (CR). Logging also exposes allow, deny, and pass
ACL events for AdminNetworkPolicy (ANP) CR.

NOTE

Audit logging is available for only the OVN-Kubernetes network plugin .

4.1. AUDIT CONFIGURATION

The configuration for audit logging is specified as part of the OVN-Kubernetes cluster network provider
configuration. The following YAML illustrates the default values for the audit logging:

Audit logging configuration

The following table describes the configuration fields for audit logging.

Table 4.1. policyAuditConfig object

Field Type Description

rateLimit integer The maximum number of messages to generate every second
per node. The default value is 20 messages per second.

maxFileSize integer The maximum size for the audit log in bytes. The default value is 
50000000 or 50 MB.

maxLogFiles integer The maximum number of log files that are retained.

apiVersion: operator.openshift.io/v1
kind: Network
metadata:
  name: cluster
spec:
  defaultNetwork:
    ovnKubernetesConfig:
      policyAuditConfig:
        destination: "null"
        maxFileSize: 50
        rateLimit: 20
        syslogFacility: local0

OpenShift Container Platform 4.19 Network security

62

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/ovn-kubernetes_network_plugin/#about-ovn-kubernetes


destination string One of the following additional audit log targets:

libc
The libc syslog() function of the journald process on the
host.

udp:<host>:<port>
A syslog server. Replace <host>:<port> with the host and
port of the syslog server.

unix:<file>
A Unix Domain Socket file specified by <file>.

null
Do not send the audit logs to any additional target.

syslogFacility string The syslog facility, such as kern, as defined by RFC5424. The
default value is local0.

Field Type Description

4.2. AUDIT LOGGING

You can configure the destination for audit logs, such as a syslog server or a UNIX domain socket.
Regardless of any additional configuration, an audit log is always saved to /var/log/ovn/acl-audit-
log.log on each OVN-Kubernetes pod in the cluster.

You can enable audit logging for each namespace by annotating each namespace configuration with a 
k8s.ovn.org/acl-logging section. In the k8s.ovn.org/acl-logging section, you must specify allow, 
deny, or both values to enable audit logging for a namespace.

NOTE

A network policy does not support setting the Pass action set as a rule.

The ACL-logging implementation logs access control list (ACL) events for a network. You can view
these logs to analyze any potential security issues.

Example namespace annotation

To view the default ACL logging configuration values, see the policyAuditConfig object in the cluster-

kind: Namespace
apiVersion: v1
metadata:
  name: example1
  annotations:
    k8s.ovn.org/acl-logging: |-
      {
        "deny": "info",
        "allow": "info"
      }

CHAPTER 4. AUDIT LOGGING FOR NETWORK SECURITY

63



To view the default ACL logging configuration values, see the policyAuditConfig object in the cluster-
network-03-config.yml file. If required, you can change the ACL logging configuration values for log file
parameters in this file.

The logging message format is compatible with syslog as defined by RFC5424. The syslog facility is
configurable and defaults to local0. The following example shows key parameters and their values
outputted in a log message:

Example logging message that outputs parameters and their values

Where:

<timestamp> states the time and date for the creation of a log message.

<message_serial> lists the serial number for a log message.

acl_log(ovn_pinctrl0) is a literal string that prints the location of the log message in the OVN-
Kubernetes plugin.

<severity> sets the severity level for a log message. If you enable audit logging that supports 
allow and deny tasks then two severity levels show in the log message output.

<name> states the name of the ACL-logging implementation in the OVN Network Bridging
Database (nbdb) that was created by the network policy.

<verdict> can be either allow or drop.

<direction> can be either to-lport or from-lport to indicate that the policy was applied to traffic
going to or away from a pod.

<flow> shows packet information in a format equivalent to the OpenFlow protocol. This
parameter comprises Open vSwitch (OVS) fields.

The following example shows OVS fields that the flow parameter uses to extract packet information
from system memory:

Example of OVS fields used by the flow parameter to extract packet information

Where:

<proto> states the protocol. Valid values are tcp and udp.

vlan_tci=0x0000 states the VLAN header as 0 because a VLAN ID is not set for internal pod
network traffic.

<src_mac> specifies the source for the Media Access Control (MAC) address.

<source_mac> specifies the destination for the MAC address.

<timestamp>|<message_serial>|acl_log(ovn_pinctrl0)|<severity>|name="<acl_name>", verdict="
<verdict>", severity="<severity>", direction="<direction>": <flow>

<proto>,vlan_tci=0x0000,dl_src=<src_mac>,dl_dst=<source_mac>,nw_src=<source_ip>,nw_dst=
<target_ip>,nw_tos=<tos_dscp>,nw_ecn=<tos_ecn>,nw_ttl=<ip_ttl>,nw_frag=<fragment>,tp_src=
<tcp_src_port>,tp_dst=<tcp_dst_port>,tcp_flags=<tcp_flags>

OpenShift Container Platform 4.19 Network security

64



<source_ip> lists the source IP address

<target_ip> lists the target IP address.

<tos_dscp> states Differentiated Services Code Point (DSCP) values to classify and prioritize
certain network traffic over other traffic.

<tos_ecn> states Explicit Congestion Notification (ECN) values that indicate any congested
traffic in your network.

<ip_ttl> states the Time To Live (TTP) information for an packet.

<fragment> specifies what type of IP fragments or IP non-fragments to match.

<tcp_src_port> shows the source for the port for TCP and UDP protocols.

<tcp_dst_port> lists the destination port for TCP and UDP protocols.

<tcp_flags> supports numerous flags such as SYN, ACK, PSH and so on. If you need to set
multiple values then each value is separated by a vertical bar (|). The UDP protocol does not
support this parameter.

NOTE

For more information about the previous field descriptions, go to the OVS manual page
for ovs-fields.

Example ACL deny log entry for a network policy

The following table describes namespace annotation values:

Table 4.2. Audit logging namespace annotation for k8s.ovn.org/acl-logging

Field Description

deny Blocks namespace access to any traffic that matches an ACL
rule with the deny action. The field supports alert, warning, 
notice, info, or debug values.

2023-11-02T16:28:54.139Z|00004|acl_log(ovn_pinctrl0)|INFO|name="NP:verify-audit-
logging:Ingress", verdict=drop, severity=alert, direction=to-lport: 
tcp,vlan_tci=0x0000,dl_src=0a:58:0a:81:02:01,dl_dst=0a:58:0a:81:02:23,nw_src=10.131.0.39,nw_dst=1
0.129.2.35,nw_tos=0,nw_ecn=0,nw_ttl=62,nw_frag=no,tp_src=58496,tp_dst=8080,tcp_flags=syn
2023-11-02T16:28:55.187Z|00005|acl_log(ovn_pinctrl0)|INFO|name="NP:verify-audit-
logging:Ingress", verdict=drop, severity=alert, direction=to-lport: 
tcp,vlan_tci=0x0000,dl_src=0a:58:0a:81:02:01,dl_dst=0a:58:0a:81:02:23,nw_src=10.131.0.39,nw_dst=1
0.129.2.35,nw_tos=0,nw_ecn=0,nw_ttl=62,nw_frag=no,tp_src=58496,tp_dst=8080,tcp_flags=syn
2023-11-02T16:28:57.235Z|00006|acl_log(ovn_pinctrl0)|INFO|name="NP:verify-audit-
logging:Ingress", verdict=drop, severity=alert, direction=to-lport: 
tcp,vlan_tci=0x0000,dl_src=0a:58:0a:81:02:01,dl_dst=0a:58:0a:81:02:23,nw_src=10.131.0.39,nw_dst=1
0.129.2.35,nw_tos=0,nw_ecn=0,nw_ttl=62,nw_frag=no,tp_src=58496,tp_dst=8080,tcp_flags=syn

CHAPTER 4. AUDIT LOGGING FOR NETWORK SECURITY

65



allow Permits namespace access to any traffic that matches an ACL
rule with the allow action. The field supports alert, warning, 
notice, info, or debug values.

pass A pass action applies to an admin network policy’s ACL rule. A 
pass action allows either the network policy in the namespace or
the baseline admin network policy rule to evaluate all incoming
and outgoing traffic. A network policy does not support a pass
action.

Field Description

Additional resources

Understanding network policy APIs

4.3. ADMINNETWORKPOLICY AUDIT LOGGING

Audit logging is enabled per AdminNetworkPolicy CR by annotating an ANP policy with the 
k8s.ovn.org/acl-logging key such as in the following example:

Example 4.1. Example of annotation for AdminNetworkPolicy CR

apiVersion: policy.networking.k8s.io/v1alpha1
kind: AdminNetworkPolicy
metadata:
  annotations:
    k8s.ovn.org/acl-logging: '{ "deny": "alert", "allow": "alert", "pass" : "warning" }'
  name: anp-tenant-log
spec:
  priority: 5
  subject:
    namespaces:
      matchLabels:
        tenant: backend-storage # Selects all pods owned by storage tenant.
  ingress:
    - name: "allow-all-ingress-product-development-and-customer" # Product development and 
customer tenant ingress to backend storage.
      action: "Allow"
      from:
      - pods:
          namespaceSelector:
            matchExpressions:
            - key: tenant
              operator: In
              values:
              - product-development
              - customer
          podSelector: {}
    - name: "pass-all-ingress-product-security"

OpenShift Container Platform 4.19 Network security

66



Logs are generated whenever a specific OVN ACL is hit and meets the action criteria set in your logging
annotation. For example, an event in which any of the namespaces with the label tenant: product-
development accesses the namespaces with the label tenant: backend-storage, a log is generated.

NOTE

ACL logging is limited to 60 characters. If your ANP name field is long, the rest of the log
will be truncated.

The following is a direction index for the examples log entries that follow:

Direction Rule

Ingress
Rule0

Allow from tenant product-development and customer
to tenant backend-storage; Ingress0: Allow

Rule1
Pass from product-security`to tenant `backend-
storage; Ingress1: Pass

Rule2
Deny ingress from all pods; Ingress2: Deny

      action: "Pass"
      from:
      - namespaces:
          matchLabels:
              tenant: product-security
    - name: "deny-all-ingress" # Ingress to backend from all other pods in the cluster.
      action: "Deny"
      from:
      - namespaces: {}
  egress:
    - name: "allow-all-egress-product-development"
      action: "Allow"
      to:
      - pods:
          namespaceSelector:
            matchLabels:
              tenant: product-development
          podSelector: {}
    - name: "pass-egress-product-security"
      action: "Pass"
      to:
      - namespaces:
           matchLabels:
             tenant: product-security
    - name: "deny-all-egress" # Egress from backend denied to all other pods.
      action: "Deny"
      to:
      - namespaces: {}

CHAPTER 4. AUDIT LOGGING FOR NETWORK SECURITY

67



Egress
Rule0

Allow to product-development; Egress0: Allow
Rule1

Pass to product-security; Egress1: Pass
Rule2

Deny egress to all other pods; Egress2: Deny

Direction Rule

Example 4.2. Example ACL log entry for Allow action of the AdminNetworkPolicy named anp-
tenant-log with Ingress:0 and Egress:0

Example 4.3. Example ACL log entry for Pass action of the AdminNetworkPolicy named anp-
tenant-log with Ingress:1 and Egress:1

Example 4.4. Example ACL log entry for Deny action of the AdminNetworkPolicy named anp-
tenant-log with Egress:2 and Ingress2

2024-06-10T16:27:45.194Z|00052|acl_log(ovn_pinctrl0)|INFO|name="ANP:anp-tenant-
log:Ingress:0", verdict=allow, severity=alert, direction=to-lport: 
tcp,vlan_tci=0x0000,dl_src=0a:58:0a:80:02:1a,dl_dst=0a:58:0a:80:02:19,nw_src=10.128.2.26,nw_ds
t=10.128.2.25,nw_tos=0,nw_ecn=0,nw_ttl=64,nw_frag=no,tp_src=57814,tp_dst=8080,tcp_flags=syn

2024-06-10T16:28:23.130Z|00059|acl_log(ovn_pinctrl0)|INFO|name="ANP:anp-tenant-
log:Ingress:0", verdict=allow, severity=alert, direction=to-lport: 
tcp,vlan_tci=0x0000,dl_src=0a:58:0a:80:02:18,dl_dst=0a:58:0a:80:02:19,nw_src=10.128.2.24,nw_ds
t=10.128.2.25,nw_tos=0,nw_ecn=0,nw_ttl=64,nw_frag=no,tp_src=38620,tp_dst=8080,tcp_flags=ack

2024-06-10T16:28:38.293Z|00069|acl_log(ovn_pinctrl0)|INFO|name="ANP:anp-tenant-
log:Egress:0", verdict=allow, severity=alert, direction=from-lport: 
tcp,vlan_tci=0x0000,dl_src=0a:58:0a:80:02:19,dl_dst=0a:58:0a:80:02:1a,nw_src=10.128.2.25,nw_ds
t=10.128.2.26,nw_tos=0,nw_ecn=0,nw_ttl=64,nw_frag=no,tp_src=47566,tp_dst=8080,tcp_flags=fin|a
ck=0,nw_ecn=0,nw_ttl=64,nw_frag=no,tp_src=55704,tp_dst=8080,tcp_flags=ack

2024-06-10T16:33:12.019Z|00075|acl_log(ovn_pinctrl0)|INFO|name="ANP:anp-tenant-
log:Ingress:1", verdict=pass, severity=warning, direction=to-lport: 
tcp,vlan_tci=0x0000,dl_src=0a:58:0a:80:02:1b,dl_dst=0a:58:0a:80:02:19,nw_src=10.128.2.27,nw_ds
t=10.128.2.25,nw_tos=0,nw_ecn=0,nw_ttl=64,nw_frag=no,tp_src=37394,tp_dst=8080,tcp_flags=ack

2024-06-10T16:35:04.209Z|00081|acl_log(ovn_pinctrl0)|INFO|name="ANP:anp-tenant-
log:Egress:1", verdict=pass, severity=warning, direction=from-lport: 
tcp,vlan_tci=0x0000,dl_src=0a:58:0a:80:02:19,dl_dst=0a:58:0a:80:02:1b,nw_src=10.128.2.25,nw_ds
t=10.128.2.27,nw_tos=0,nw_ecn=0,nw_ttl=64,nw_frag=no,tp_src=34018,tp_dst=8080,tcp_flags=ack

2024-06-10T16:43:05.287Z|00087|acl_log(ovn_pinctrl0)|INFO|name="ANP:anp-tenant-
log:Egress:2", verdict=drop, severity=alert, direction=from-lport: 
tcp,vlan_tci=0x0000,dl_src=0a:58:0a:80:02:19,dl_dst=0a:58:0a:80:02:18,nw_src=10.128.2.25,nw_ds

OpenShift Container Platform 4.19 Network security

68



The following table describes ANP annotation:

Table 4.3. Audit logging AdminNetworkPolicy annotation

Annotation Value

k8s.ovn.org/acl-logging You must specify at least one of Allow, Deny, or Pass to
enable audit logging for a namespace.

Deny
Optional: Specify alert, warning, notice, info, or debug.

Allow
Optional: Specify alert, warning, notice, info, or debug.

Pass
Optional: Specify alert, warning, notice, info, or debug.

4.4. BASELINEADMINNETWORKPOLICY AUDIT LOGGING

Audit logging is enabled in the BaselineAdminNetworkPolicy CR by annotating an BANP policy with
the k8s.ovn.org/acl-logging key such as in the following example:

Example 4.5. Example of annotation for BaselineAdminNetworkPolicy CR

t=10.128.2.24,nw_tos=0,nw_ecn=0,nw_ttl=64,nw_frag=no,tp_src=51598,tp_dst=8080,tcp_flags=syn

2024-06-10T16:44:43.591Z|00090|acl_log(ovn_pinctrl0)|INFO|name="ANP:anp-tenant-
log:Ingress:2", verdict=drop, severity=alert, direction=to-lport: 
tcp,vlan_tci=0x0000,dl_src=0a:58:0a:80:02:1c,dl_dst=0a:58:0a:80:02:19,nw_src=10.128.2.28,nw_dst
=10.128.2.25,nw_tos=0,nw_ecn=0,nw_ttl=64,nw_frag=no,tp_src=33774,tp_dst=8080,tcp_flags=syn

apiVersion: policy.networking.k8s.io/v1alpha1
kind: BaselineAdminNetworkPolicy
metadata:
  annotations:
    k8s.ovn.org/acl-logging: '{ "deny": "alert", "allow": "alert"}'
  name: default
spec:
  subject:
    namespaces:
      matchLabels:
          tenant: workloads # Selects all workload pods in the cluster.
  ingress:
  - name: "default-allow-dns" # This rule allows ingress from dns tenant to all workloads.
    action: "Allow"
    from:
    - namespaces:
          matchLabels:
            tenant: dns
  - name: "default-deny-dns" # This rule denies all ingress from all pods to workloads.
    action: "Deny"
    from:

CHAPTER 4. AUDIT LOGGING FOR NETWORK SECURITY

69



In the example, an event in which any of the namespaces with the label tenant: dns accesses the
namespaces with the label tenant: workloads, a log is generated.

The following is a direction index for the examples log entries that follow:

Direction Rule

Ingress
Rule0

Allow from tenant dns to tenant workloads; Ingress0: 
Allow

Rule1
Deny to tenant workloads from all pods; Ingress1: Deny

Egress
Rule0

Deny to all pods; Egress0: Deny

Example 4.6. Example ACL allow log entry for Allow action of default BANP with Ingress:0

    - namespaces: {} # Use the empty selector with caution because it also selects OpenShift 
namespaces as well.
  egress:
  - name: "default-deny-dns" # This rule denies all egress from workloads. It will be applied when 
no ANP or network policy matches.
    action: "Deny"
    to:
    - namespaces: {} # Use the empty selector with caution because it also selects OpenShift 
namespaces as well.

2024-06-10T18:11:58.263Z|00022|acl_log(ovn_pinctrl0)|INFO|name="BANP:default:Ingress:0", 
verdict=allow, severity=alert, direction=to-lport: 
tcp,vlan_tci=0x0000,dl_src=0a:58:0a:82:02:57,dl_dst=0a:58:0a:82:02:56,nw_src=10.130.2.87,nw_ds
t=10.130.2.86,nw_tos=0,nw_ecn=0,nw_ttl=64,nw_frag=no,tp_src=60510,tp_dst=8080,tcp_flags=syn

2024-06-10T18:11:58.264Z|00023|acl_log(ovn_pinctrl0)|INFO|name="BANP:default:Ingress:0", 
verdict=allow, severity=alert, direction=to-lport: 
tcp,vlan_tci=0x0000,dl_src=0a:58:0a:82:02:57,dl_dst=0a:58:0a:82:02:56,nw_src=10.130.2.87,nw_ds
t=10.130.2.86,nw_tos=0,nw_ecn=0,nw_ttl=64,nw_frag=no,tp_src=60510,tp_dst=8080,tcp_flags=psh|
ack
2024-06-10T18:11:58.264Z|00024|acl_log(ovn_pinctrl0)|INFO|name="BANP:default:Ingress:0", 
verdict=allow, severity=alert, direction=to-lport: 
tcp,vlan_tci=0x0000,dl_src=0a:58:0a:82:02:57,dl_dst=0a:58:0a:82:02:56,nw_src=10.130.2.87,nw_ds
t=10.130.2.86,nw_tos=0,nw_ecn=0,nw_ttl=64,nw_frag=no,tp_src=60510,tp_dst=8080,tcp_flags=ack

2024-06-10T18:11:58.264Z|00025|acl_log(ovn_pinctrl0)|INFO|name="BANP:default:Ingress:0", 
verdict=allow, severity=alert, direction=to-lport: 
tcp,vlan_tci=0x0000,dl_src=0a:58:0a:82:02:57,dl_dst=0a:58:0a:82:02:56,nw_src=10.130.2.87,nw_ds
t=10.130.2.86,nw_tos=0,nw_ecn=0,nw_ttl=64,nw_frag=no,tp_src=60510,tp_dst=8080,tcp_flags=ack

2024-06-10T18:11:58.264Z|00026|acl_log(ovn_pinctrl0)|INFO|name="BANP:default:Ingress:0", 

OpenShift Container Platform 4.19 Network security

70



Example 4.7. Example ACL allow log entry for Allow action of default BANP with Egress:0 and 
Ingress:1

The following table describes BANP annotation:

Table 4.4. Audit logging BaselineAdminNetworkPolicy annotation

Annotation Value

verdict=allow, severity=alert, direction=to-lport: 
tcp,vlan_tci=0x0000,dl_src=0a:58:0a:82:02:57,dl_dst=0a:58:0a:82:02:56,nw_src=10.130.2.87,nw_ds
t=10.130.2.86,nw_tos=0,nw_ecn=0,nw_ttl=64,nw_frag=no,tp_src=60510,tp_dst=8080,tcp_flags=fin|a
ck
2024-06-10T18:11:58.264Z|00027|acl_log(ovn_pinctrl0)|INFO|name="BANP:default:Ingress:0", 
verdict=allow, severity=alert, direction=to-lport: 
tcp,vlan_tci=0x0000,dl_src=0a:58:0a:82:02:57,dl_dst=0a:58:0a:82:02:56,nw_src=10.130.2.87,nw_ds
t=10.130.2.86,nw_tos=0,nw_ecn=0,nw_ttl=64,nw_frag=no,tp_src=60510,tp_dst=8080,tcp_flags=ack

2024-06-10T18:09:57.774Z|00016|acl_log(ovn_pinctrl0)|INFO|name="BANP:default:Egress:0", 
verdict=drop, severity=alert, direction=from-lport: 
tcp,vlan_tci=0x0000,dl_src=0a:58:0a:82:02:56,dl_dst=0a:58:0a:82:02:57,nw_src=10.130.2.86,nw_ds
t=10.130.2.87,nw_tos=0,nw_ecn=0,nw_ttl=64,nw_frag=no,tp_src=45614,tp_dst=8080,tcp_flags=syn

2024-06-10T18:09:58.809Z|00017|acl_log(ovn_pinctrl0)|INFO|name="BANP:default:Egress:0", 
verdict=drop, severity=alert, direction=from-lport: 
tcp,vlan_tci=0x0000,dl_src=0a:58:0a:82:02:56,dl_dst=0a:58:0a:82:02:57,nw_src=10.130.2.86,nw_ds
t=10.130.2.87,nw_tos=0,nw_ecn=0,nw_ttl=64,nw_frag=no,tp_src=45614,tp_dst=8080,tcp_flags=syn

2024-06-10T18:10:00.857Z|00018|acl_log(ovn_pinctrl0)|INFO|name="BANP:default:Egress:0", 
verdict=drop, severity=alert, direction=from-lport: 
tcp,vlan_tci=0x0000,dl_src=0a:58:0a:82:02:56,dl_dst=0a:58:0a:82:02:57,nw_src=10.130.2.86,nw_ds
t=10.130.2.87,nw_tos=0,nw_ecn=0,nw_ttl=64,nw_frag=no,tp_src=45614,tp_dst=8080,tcp_flags=syn

2024-06-10T18:10:25.414Z|00019|acl_log(ovn_pinctrl0)|INFO|name="BANP:default:Ingress:1", 
verdict=drop, severity=alert, direction=to-lport: 
tcp,vlan_tci=0x0000,dl_src=0a:58:0a:82:02:58,dl_dst=0a:58:0a:82:02:56,nw_src=10.130.2.88,nw_ds
t=10.130.2.86,nw_tos=0,nw_ecn=0,nw_ttl=64,nw_frag=no,tp_src=40630,tp_dst=8080,tcp_flags=syn

2024-06-10T18:10:26.457Z|00020|acl_log(ovn_pinctrl0)|INFO|name="BANP:default:Ingress:1", 
verdict=drop, severity=alert, direction=to-lport: 
tcp,vlan_tci=0x0000,dl_src=0a:58:0a:82:02:58,dl_dst=0a:58:0a:82:02:56,nw_src=10.130.2.88,nw_ds
t=10.130.2.86,nw_tos=0,nw_ecn=0,nw_ttl=64,nw_frag=no,tp_src=40630,tp_dst=8080,tcp_flags=syn

2024-06-10T18:10:28.505Z|00021|acl_log(ovn_pinctrl0)|INFO|name="BANP:default:Ingress:1", 
verdict=drop, severity=alert, direction=to-lport: 
tcp,vlan_tci=0x0000,dl_src=0a:58:0a:82:02:58,dl_dst=0a:58:0a:82:02:56,nw_src=10.130.2.88,nw_ds
t=10.130.2.86,nw_tos=0,nw_ecn=0,nw_ttl=64,nw_frag=no,tp_src=40630,tp_dst=8080,tcp_flags=syn

CHAPTER 4. AUDIT LOGGING FOR NETWORK SECURITY

71



k8s.ovn.org/acl-logging You must specify at least one of Allow or Deny to enable audit
logging for a namespace.

Deny
Optional: Specify alert, warning, notice, info, or debug.

Allow
Optional: Specify alert, warning, notice, info, or debug.

Annotation Value

4.5. CONFIGURING EGRESS FIREWALL AND NETWORK POLICY
AUDITING FOR A CLUSTER

As a cluster administrator, you can customize audit logging for your cluster.

Prerequisites

Install the OpenShift CLI (oc).

Log in to the cluster with a user with cluster-admin privileges.

Procedure

To customize the audit logging configuration, enter the following command:

TIP

You can also customize and apply the following YAML to configure audit logging:

Verification

1. To create a namespace with network policies complete the following steps:

a. Create a namespace for verification:

$ oc edit network.operator.openshift.io/cluster

apiVersion: operator.openshift.io/v1
kind: Network
metadata:
  name: cluster
spec:
  defaultNetwork:
    ovnKubernetesConfig:
      policyAuditConfig:
        destination: "null"
        maxFileSize: 50
        rateLimit: 20
        syslogFacility: local0

OpenShift Container Platform 4.19 Network security

72



Successful output lists the namespace with the network policy and the created status.

b. Create network policies for the namespace:

Example output

2. Create a pod for source traffic in the default namespace:

$ cat <<EOF| oc create -f -
kind: Namespace
apiVersion: v1
metadata:
  name: verify-audit-logging
  annotations:
    k8s.ovn.org/acl-logging: '{ "deny": "alert", "allow": "alert" }'
EOF

$ cat <<EOF| oc create -n verify-audit-logging -f -
apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
  name: deny-all
spec:
  podSelector:
    matchLabels:
  policyTypes:
  - Ingress
  - Egress
---
apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
  name: allow-from-same-namespace
  namespace: verify-audit-logging
spec:
  podSelector: {}
  policyTypes:
   - Ingress
   - Egress
  ingress:
    - from:
        - podSelector: {}
  egress:
    - to:
       - namespaceSelector:
          matchLabels:
            kubernetes.io/metadata.name: verify-audit-logging
EOF

networkpolicy.networking.k8s.io/deny-all created
networkpolicy.networking.k8s.io/allow-from-same-namespace created

$ cat <<EOF| oc create -n default -f -
apiVersion: v1
kind: Pod

CHAPTER 4. AUDIT LOGGING FOR NETWORK SECURITY

73



3. Create two pods in the verify-audit-logging namespace:

Successful output lists the two pods, such as pod/client and pod/server, and the created
status.

4. To generate traffic and produce network policy audit log entries, complete the following steps:

a. Obtain the IP address for pod named server in the verify-audit-logging namespace:

b. Ping the IP address from an earlier command from the pod named client in the default
namespace and confirm the all packets are dropped:

Example output

c. From the client pod in the verify-audit-logging namespace, ping the IP address stored in
the POD_IP shell environment variable and confirm the system allows all packets.

metadata:
  name: client
spec:
  containers:
    - name: client
      image: registry.access.redhat.com/rhel7/rhel-tools
      command: ["/bin/sh", "-c"]
      args:
        ["sleep inf"]
EOF

$ for name in client server; do
cat <<EOF| oc create -n verify-audit-logging -f -
apiVersion: v1
kind: Pod
metadata:
  name: ${name}
spec:
  containers:
    - name: ${name}
      image: registry.access.redhat.com/rhel7/rhel-tools
      command: ["/bin/sh", "-c"]
      args:
        ["sleep inf"]
EOF
done

$ POD_IP=$(oc get pods server -n verify-audit-logging -o jsonpath='{.status.podIP}')

$ oc exec -it client -n default -- /bin/ping -c 2 $POD_IP

PING 10.128.2.55 (10.128.2.55) 56(84) bytes of data.

--- 10.128.2.55 ping statistics ---
2 packets transmitted, 0 received, 100% packet loss, time 2041ms

$ oc exec -it client -n verify-audit-logging -- /bin/ping -c 2 $POD_IP

OpenShift Container Platform 4.19 Network security

74



Example output

5. Display the latest entries in the network policy audit log:

Example output

PING 10.128.0.86 (10.128.0.86) 56(84) bytes of data.
64 bytes from 10.128.0.86: icmp_seq=1 ttl=64 time=2.21 ms
64 bytes from 10.128.0.86: icmp_seq=2 ttl=64 time=0.440 ms

--- 10.128.0.86 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 1001ms
rtt min/avg/max/mdev = 0.440/1.329/2.219/0.890 ms

$ for pod in $(oc get pods -n openshift-ovn-kubernetes -l app=ovnkube-node --no-
headers=true | awk '{ print $1 }') ; do
    oc exec -it $pod -n openshift-ovn-kubernetes -- tail -4 /var/log/ovn/acl-audit-log.log
  done

2023-11-02T16:28:54.139Z|00004|acl_log(ovn_pinctrl0)|INFO|name="NP:verify-audit-
logging:Ingress", verdict=drop, severity=alert, direction=to-lport: 
tcp,vlan_tci=0x0000,dl_src=0a:58:0a:81:02:01,dl_dst=0a:58:0a:81:02:23,nw_src=10.131.0.39,n
w_dst=10.129.2.35,nw_tos=0,nw_ecn=0,nw_ttl=62,nw_frag=no,tp_src=58496,tp_dst=8080,tcp
_flags=syn
2023-11-02T16:28:55.187Z|00005|acl_log(ovn_pinctrl0)|INFO|name="NP:verify-audit-
logging:Ingress", verdict=drop, severity=alert, direction=to-lport: 
tcp,vlan_tci=0x0000,dl_src=0a:58:0a:81:02:01,dl_dst=0a:58:0a:81:02:23,nw_src=10.131.0.39,n
w_dst=10.129.2.35,nw_tos=0,nw_ecn=0,nw_ttl=62,nw_frag=no,tp_src=58496,tp_dst=8080,tcp
_flags=syn
2023-11-02T16:28:57.235Z|00006|acl_log(ovn_pinctrl0)|INFO|name="NP:verify-audit-
logging:Ingress", verdict=drop, severity=alert, direction=to-lport: 
tcp,vlan_tci=0x0000,dl_src=0a:58:0a:81:02:01,dl_dst=0a:58:0a:81:02:23,nw_src=10.131.0.39,n
w_dst=10.129.2.35,nw_tos=0,nw_ecn=0,nw_ttl=62,nw_frag=no,tp_src=58496,tp_dst=8080,tcp
_flags=syn
2023-11-02T16:49:57.909Z|00028|acl_log(ovn_pinctrl0)|INFO|name="NP:verify-audit-
logging:allow-from-same-namespace:Egress:0", verdict=allow, severity=alert, direction=from-
lport: 
icmp,vlan_tci=0x0000,dl_src=0a:58:0a:81:02:22,dl_dst=0a:58:0a:81:02:23,nw_src=10.129.2.34,
nw_dst=10.129.2.35,nw_tos=0,nw_ecn=0,nw_ttl=64,nw_frag=no,icmp_type=8,icmp_code=0
2023-11-02T16:49:57.909Z|00029|acl_log(ovn_pinctrl0)|INFO|name="NP:verify-audit-
logging:allow-from-same-namespace:Ingress:0", verdict=allow, severity=alert, direction=to-
lport: 
icmp,vlan_tci=0x0000,dl_src=0a:58:0a:81:02:22,dl_dst=0a:58:0a:81:02:23,nw_src=10.129.2.34,
nw_dst=10.129.2.35,nw_tos=0,nw_ecn=0,nw_ttl=64,nw_frag=no,icmp_type=8,icmp_code=0
2023-11-02T16:49:58.932Z|00030|acl_log(ovn_pinctrl0)|INFO|name="NP:verify-audit-
logging:allow-from-same-namespace:Egress:0", verdict=allow, severity=alert, direction=from-
lport: 
icmp,vlan_tci=0x0000,dl_src=0a:58:0a:81:02:22,dl_dst=0a:58:0a:81:02:23,nw_src=10.129.2.34,
nw_dst=10.129.2.35,nw_tos=0,nw_ecn=0,nw_ttl=64,nw_frag=no,icmp_type=8,icmp_code=0
2023-11-02T16:49:58.932Z|00031|acl_log(ovn_pinctrl0)|INFO|name="NP:verify-audit-
logging:allow-from-same-namespace:Ingress:0", verdict=allow, severity=alert, direction=to-
lport: 
icmp,vlan_tci=0x0000,dl_src=0a:58:0a:81:02:22,dl_dst=0a:58:0a:81:02:23,nw_src=10.129.2.34,
nw_dst=10.129.2.35,nw_tos=0,nw_ecn=0,nw_ttl=64,nw_frag=no,icmp_type=8,icmp_code=0

CHAPTER 4. AUDIT LOGGING FOR NETWORK SECURITY

75



4.6. ENABLING EGRESS FIREWALL AND NETWORK POLICY AUDIT
LOGGING FOR A NAMESPACE

As a cluster administrator, you can enable audit logging for a namespace.

Prerequisites

Install the OpenShift CLI (oc).

Log in to the cluster with a user with cluster-admin privileges.

Procedure

To enable audit logging for a namespace, enter the following command:

where:

<namespace>

Specifies the name of the namespace.

TIP

You can also apply the following YAML to enable audit logging:

Successful output lists the audit logging name and the annotated status.

Verification

Display the latest entries in the audit log:

Example output

$ oc annotate namespace <namespace> \
  k8s.ovn.org/acl-logging='{ "deny": "alert", "allow": "notice" }'

kind: Namespace
apiVersion: v1
metadata:
  name: <namespace>
  annotations:
    k8s.ovn.org/acl-logging: |-
      {
        "deny": "alert",
        "allow": "notice"
      }

$ for pod in $(oc get pods -n openshift-ovn-kubernetes -l app=ovnkube-node --no-
headers=true | awk '{ print $1 }') ; do
    oc exec -it $pod -n openshift-ovn-kubernetes -- tail -4 /var/log/ovn/acl-audit-log.log
  done

OpenShift Container Platform 4.19 Network security

76



4.7. DISABLING EGRESS FIREWALL AND NETWORK POLICY AUDIT
LOGGING FOR A NAMESPACE

As a cluster administrator, you can disable audit logging for a namespace.

Prerequisites

Install the OpenShift CLI (oc).

Log in to the cluster with a user with cluster-admin privileges.

Procedure

To disable audit logging for a namespace, enter the following command:

where:

<namespace>

Specifies the name of the namespace.

TIP

You can also apply the following YAML to disable audit logging:

2023-11-02T16:49:57.909Z|00028|acl_log(ovn_pinctrl0)|INFO|name="NP:verify-audit-
logging:allow-from-same-namespace:Egress:0", verdict=allow, severity=alert, direction=from-
lport: 
icmp,vlan_tci=0x0000,dl_src=0a:58:0a:81:02:22,dl_dst=0a:58:0a:81:02:23,nw_src=10.129.2.34,
nw_dst=10.129.2.35,nw_tos=0,nw_ecn=0,nw_ttl=64,nw_frag=no,icmp_type=8,icmp_code=0
2023-11-02T16:49:57.909Z|00029|acl_log(ovn_pinctrl0)|INFO|name="NP:verify-audit-
logging:allow-from-same-namespace:Ingress:0", verdict=allow, severity=alert, direction=to-
lport: 
icmp,vlan_tci=0x0000,dl_src=0a:58:0a:81:02:22,dl_dst=0a:58:0a:81:02:23,nw_src=10.129.2.34,
nw_dst=10.129.2.35,nw_tos=0,nw_ecn=0,nw_ttl=64,nw_frag=no,icmp_type=8,icmp_code=0
2023-11-02T16:49:58.932Z|00030|acl_log(ovn_pinctrl0)|INFO|name="NP:verify-audit-
logging:allow-from-same-namespace:Egress:0", verdict=allow, severity=alert, direction=from-
lport: 
icmp,vlan_tci=0x0000,dl_src=0a:58:0a:81:02:22,dl_dst=0a:58:0a:81:02:23,nw_src=10.129.2.34,
nw_dst=10.129.2.35,nw_tos=0,nw_ecn=0,nw_ttl=64,nw_frag=no,icmp_type=8,icmp_code=0
2023-11-02T16:49:58.932Z|00031|acl_log(ovn_pinctrl0)|INFO|name="NP:verify-audit-
logging:allow-from-same-namespace:Ingress:0", verdict=allow, severity=alert, direction=to-
lport: 
icmp,vlan_tci=0x0000,dl_src=0a:58:0a:81:02:22,dl_dst=0a:58:0a:81:02:23,nw_src=10.129.2.34,
nw_dst=10.129.2.35,nw_tos=0,nw_ecn=0,nw_ttl=64,nw_frag=no,icmp_type=8,icmp_code=0

$ oc annotate --overwrite namespace <namespace> k8s.ovn.org/acl-logging-

kind: Namespace
apiVersion: v1
metadata:
  name: <namespace>
  annotations:
    k8s.ovn.org/acl-logging: null

CHAPTER 4. AUDIT LOGGING FOR NETWORK SECURITY

77



Successful output lists the audit logging name and the annotated status.

4.8. ADDITIONAL RESOURCES

About network policy

Configuring an egress firewall for a project

OpenShift Container Platform 4.19 Network security

78



CHAPTER 5. EGRESS FIREWALL

5.1. VIEWING AN EGRESS FIREWALL FOR A PROJECT

As a cluster administrator, you can list the names of any existing egress firewalls and view the traffic
rules for a specific egress firewall.

5.1.1. Viewing an EgressFirewall custom resource (CR)

You can view an EgressFirewall CR in your cluster.

Prerequisites

A cluster using the OVN-Kubernetes network plugin.

Install the OpenShift Command-line Interface (CLI), commonly known as oc.

You must log in to the cluster.

Procedure

1. Optional: To view the names of the EgressFirewall CR defined in your cluster, enter the
following command:

2. To inspect a policy, enter the following command. Replace <policy_name> with the name of
the policy to inspect.

Example output

5.2. EDITING AN EGRESS FIREWALL FOR A PROJECT

As a cluster administrator, you can modify network traffic rules for an existing egress firewall.

5.2.1. Editing an EgressFirewall custom resource (CR)

As a cluster administrator, you can update the egress firewall for a project.

Prerequisites

$ oc get egressfirewall --all-namespaces

$ oc describe egressfirewall <policy_name>

Name:  default
Namespace: project1
Created: 20 minutes ago
Labels:  <none>
Annotations: <none>
Rule:  Allow to 1.2.3.0/24
Rule:  Allow to www.example.com
Rule:  Deny to 0.0.0.0/0

CHAPTER 5. EGRESS FIREWALL

79



A cluster using the OVN-Kubernetes network plugin.

Install the OpenShift CLI (oc).

You must log in to the cluster as a cluster administrator.

Procedure

1. Find the name of the EgressFirewall CR for the project. Replace <project> with the name of
the project.

2. Optional: If you did not save a copy of the EgressFirewall object when you created the egress
network firewall, enter the following command to create a copy.

Replace <project> with the name of the project. Replace <name> with the name of the object.
Replace <filename> with the name of the file to save the YAML to.

3. After making changes to the policy rules, enter the following command to replace the 
EgressFirewall CR. Replace <filename> with the name of the file containing the updated 
EgressFirewall CR.

5.3. REMOVING AN EGRESS FIREWALL FROM A PROJECT

As a cluster administrator, you can remove an egress firewall from a project to remove all restrictions on
network traffic from the project that leaves the OpenShift Container Platform cluster.

5.3.1. Removing an EgressFirewall CR

As a cluster administrator, you can remove an egress firewall from a project.

Prerequisites

A cluster using the OVN-Kubernetes network plugin.

Install the OpenShift CLI (oc).

You must log in to the cluster as a cluster administrator.

Procedure

1. Find the name of the EgressFirewall CR for the project. Replace <project> with the name of
the project.

2. Delete the EgressFirewall CR by entering the following command. Replace <project> with the
name of the project and <name> with the name of the object.

$ oc get -n <project> egressfirewall

$ oc get -n <project> egressfirewall <name> -o yaml > <filename>.yaml

$ oc replace -f <filename>.yaml

$ oc get egressfirewall -n <project>

OpenShift Container Platform 4.19 Network security

80



5.4. CONFIGURING AN EGRESS FIREWALL FOR A PROJECT

As a cluster administrator, you can create an egress firewall for a project that restricts egress traffic
leaving your OpenShift Container Platform cluster.

5.4.1. How an egress firewall works in a project

As a cluster administrator, you can use an egress firewall to limit the external hosts that some or all pods
can access from within the cluster. An egress firewall supports the following scenarios:

A pod can only connect to internal hosts and cannot initiate connections to the public internet.

A pod can only connect to the public internet and cannot initiate connections to internal hosts
that are outside the OpenShift Container Platform cluster.

A pod cannot reach specified internal subnets or hosts outside the OpenShift Container
Platform cluster.

A pod can only connect to specific external hosts.

For example, you can allow one project access to a specified IP range but deny the same access to a
different project. Or, you can restrict application developers from updating from Python pip mirrors, and
force updates to come only from approved sources.

You configure an egress firewall policy by creating an EgressFirewall custom resource (CR). The
egress firewall matches network traffic that meets any of the following criteria:

An IP address range in CIDR format

A DNS name that resolves to an IP address

A port number

A protocol that is one of the following protocols: TCP, UDP, and SCTP

5.4.1.1. Limitations of an egress firewall

An egress firewall has the following limitations:

No project can have more than one EgressFirewall CR.

Egress firewall rules do not apply to traffic that goes through routers. Any user with permission
to create a Route CR object can bypass egress firewall policy rules by creating a route that
points to a forbidden destination.

Egress firewall does not apply to the host network namespace. Pods with host networking
enabled are unaffected by egress firewall rules.

If your egress firewall includes a deny rule for 0.0.0.0/0, access to your OpenShift Container
Platform API servers is blocked. You must either add allow rules for each IP address or use the 
nodeSelector type allow rule in your egress policy rules to connect to API servers.
The following example illustrates the order of the egress firewall rules necessary to ensure API
server access:

$ oc delete -n <project> egressfirewall <name>

CHAPTER 5. EGRESS FIREWALL

81



where:

<namespace>

Specifies the namespace for the egress firewall.

<api_server_address_range>

Specifies the IP address range that includes your OpenShift Container Platform API servers.

<cidrSelector>

Specifies a value of 0.0.0.0/0 to set a global deny rule that prevents access to the OpenShift
Container Platform API servers.
To find the IP address for your API servers, run oc get ep kubernetes -n default.

For more information, see BZ#1988324.

A maximum of one EgressFirewall object with a maximum of 8,000 rules can be defined per
project.

If you are using the OVN-Kubernetes network plugin with shared gateway mode in Red Hat
OpenShift Networking, return ingress replies are affected by egress firewall rules. If the egress
firewall rules drop the ingress reply destination IP, the traffic is dropped.

In general, using Domain Name Server (DNS) names in your egress firewall policy does not
affect local DNS resolution through CoreDNS. However, if your egress firewall policy uses
domain names and an external DNS server handles DNS resolution for an affected pod, you
must include egress firewall rules that permit access to the IP addresses of your DNS server.

Violating any of these restrictions results in a broken egress firewall for the project. Consequently, all
external network traffic is dropped, which can cause security risks for your organization.

An EgressFirewall resource is created in the kube-node-lease, kube-public, kube-system, openshift
and openshift- projects.

5.4.1.2. Matching order for egress firewall policy rules

OVN-Kubernetes evaluates egress firewall policy rules in the order they are defined in, from first to last.
The first rule that matches an egress connection from a pod applies. Any subsequent rules are ignored
for that connection.

apiVersion: k8s.ovn.org/v1
kind: EgressFirewall
metadata:
  name: default
  namespace: <namespace>
spec:
  egress:
  - to:
      cidrSelector: <api_server_address_range> 1
    type: Allow
# ...
  - to:
      cidrSelector: 0.0.0.0/0 2
    type: Deny

OpenShift Container Platform 4.19 Network security

82

https://bugzilla.redhat.com/show_bug.cgi?id=1988324


5.4.1.3. How Domain Name Server (DNS) resolution works

If you use DNS names in any of your egress firewall policy rules, proper resolution of the domain names
is subject to the following restrictions:

Domain name updates are polled based on a time-to-live (TTL) duration. By default, the
duration is 30 minutes. When the egress firewall controller queries the local name servers for a
domain name, if the response includes a TTL and the TTL is less than 30 minutes, the controller
sets the duration for that DNS name to the returned value. Each DNS name is queried after the
TTL for the DNS record expires.

The pod must resolve the domain from the same local name servers when necessary. Otherwise
the IP addresses for the domain known by the egress firewall controller and the pod can be
different. If the IP addresses for a hostname differ, the egress firewall might not be enforced
consistently.

Because the egress firewall controller and pods asynchronously poll the same local name server,
the pod might obtain the updated IP address before the egress controller does, which causes a
race condition. Due to this current limitation, domain name usage in EgressFirewall objects is
only recommended for domains with infrequent IP address changes.

5.4.1.3.1. Improved DNS resolution and resolving wildcard domain names

There might be situations where the IP addresses associated with a DNS record change frequently, or
you might want to specify wildcard domain names in your egress firewall policy rules.

In this situation, the OVN-Kubernetes cluster manager creates a DNSNameResolver custom resource
object for each unique DNS name used in your egress firewall policy rules. This custom resource stores
the following information:

IMPORTANT

Improved DNS resolution for egress firewall rules is a Technology Preview feature only.
Technology Preview features are not supported with Red Hat production service level
agreements (SLAs) and might not be functionally complete. Red Hat does not
recommend using them in production. These features provide early access to upcoming
product features, enabling customers to test functionality and provide feedback during
the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

Example DNSNameResolver CR definition

apiVersion: networking.openshift.io/v1alpha1
kind: DNSNameResolver
spec:
  name: www.example.com.
status:
  resolvedNames:
  - dnsName: www.example.com.
    resolvedAddress:
    - ip: "1.2.3.4"
      ttlSeconds: 60
      lastLookupTime: "2023-08-08T15:07:04Z"

CHAPTER 5. EGRESS FIREWALL

83

https://access.redhat.com/support/offerings/techpreview/


where:

<name>

Specifies the DNS name. This can be either a standard DNS name or a wildcard DNS name. For a
wildcard DNS name, the DNS name resolution information contains all of the DNS names that match
the wildcard DNS name.

<dnsName>

Specifies the resolved DNS name matching the spec.name field. If the spec.name field contains a
wildcard DNS name, then multiple dnsName entries are created that contain the standard DNS
names that match the wildcard DNS name when resolved. If the wildcard DNS name can also be
successfully resolved, then this field also stores the wildcard DNS name. <ip> Specifies the current IP
addresses associated with the DNS name.

<ttlSeconds>

Specifies the last time-to-live (TTL) duration.

<lastLookupTime>

Specifies the last lookup time.

If during DNS resolution the DNS name in the query matches any name defined in a 
DNSNameResolver CR, then the previous information is updated accordingly in the CR status field. For
unsuccessful DNS wildcard name lookups, the request is retried after a default TTL of 30 minutes.

The OVN-Kubernetes cluster manager watches for updates to an EgressFirewall custom resource
object, and creates, modifies, or deletes DNSNameResolver CRs associated with those egress firewall
policies when that update occurs.

WARNING

Do not modify DNSNameResolver custom resources directly. This can lead to
unwanted behavior of your egress firewall.

5.4.2. EgressFirewall custom resource (CR)

You can define one or more rules for an egress firewall. A rule is either an Allow rule or a Deny rule, with
a specification for the traffic that the rule applies to.

The following YAML describes an EgressFirewall CR:

EgressFirewall object

where:



apiVersion: k8s.ovn.org/v1
kind: EgressFirewall
metadata:
  name: <ovn>
spec:
  egress: <egress_rules>
    ...

OpenShift Container Platform 4.19 Network security

84



<ovn>

The name for the object must be default.

<egress_rules>

Specifies a collection of one or more egress network policy rules as described in the following
section.

5.4.2.1. EgressFirewall rules

The following YAML describes the rules for an EgressFirewall resource. The user can select either an IP
address range in CIDR format, a domain name, or use the nodeSelector field to allow or deny egress
traffic. The egress stanza expects an array of one or more objects.

Egress policy rule stanza

where:

<type>

Specifies the type of rule. The value must be either Allow or Deny.

<to>

Specifies a stanza describing an egress traffic match rule that specifies the cidrSelector field or the 
dnsName field. You cannot use both fields in the same rule.

<cidr_range>

Specifies an IP address range in CIDR format.

<dns_name>

Specifies a DNS domain name.

<nodeSelector>

Specifies labels which are key and value pairs that the user defines. Labels are attached to objects,
such as pods. The nodeSelector allows for one or more node labels to be selected and attached to
pods.

<ports>

Specifies an optional field that describes a collection of network ports and protocols for the rule.

Ports stanza

where:

egress:
- type: <type>
  to:
    cidrSelector: <cidr_range>
    dnsName: <dns_name>
    nodeSelector: <label_name>: <label_value>
  ports: <optional_port>
      ...

ports:
- port:
  protocol:

CHAPTER 5. EGRESS FIREWALL

85



<port>

Specifies a network port, such as 80 or 443. If you specify a value for this field, you must also specify a
value for the protocol field.

<protocol>

Specifies a network protocol. The value must be either TCP, UDP, or SCTP.

5.4.2.2. Example EgressFirewall CR

The following example defines several egress firewall policy rules:

where:

<egress>

Specifies a collection of egress firewall policy rule objects.

The following example defines a policy rule that denies traffic to the host at the 172.16.1.1/32 IP
address, if the traffic is using either the TCP protocol and destination port 80 or any protocol and
destination port 443.

5.4.2.3. Example EgressFirewall CR using nodeSelector

As a cluster administrator, you can allow or deny egress traffic to nodes in your cluster by specifying a
label using nodeSelector field. Labels can be applied to one or more nodes. Labels can be helpful
because instead of adding manual rules per node IP address, you can use node selectors to create a
label that allows pods behind an egress firewall to access host network pods. The following is an example
with the region=east label:

apiVersion: k8s.ovn.org/v1
kind: EgressFirewall
metadata:
  name: default
spec:
  egress: 1
  - type: Allow
    to:
      cidrSelector: 1.2.3.0/24
  - type: Deny
    to:
      cidrSelector: 0.0.0.0/0

apiVersion: k8s.ovn.org/v1
kind: EgressFirewall
metadata:
  name: default
spec:
  egress:
  - type: Deny
    to:
      cidrSelector: 172.16.1.1/32
    ports:
    - port: 80
      protocol: TCP
    - port: 443

OpenShift Container Platform 4.19 Network security

86



5.4.3. Creating an EgressFirewall custom resource (CR)

As a cluster administrator, you can create an egress firewall policy object for a project.

IMPORTANT

If the project already has an EgressFirewall resource, you must edit the existing policy to
make changes to egress firewall rules.

Prerequisites

A cluster that uses the OVN-Kubernetes network plugin.

Install the OpenShift CLI (oc).

You must log in to the cluster as a cluster administrator.

Procedure

1. Create a policy rule:

a. Create a <policy_name>.yaml file where <policy_name> describes the egress policy rules.

b. Define the EgressFirewall object in the file.

2. Create the policy object by entering the following command. Replace <policy_name> with the
name of the policy and <project> with the project that the rule applies to.

Successful output lists the egressfirewall.k8s.ovn.org/v1 name and the created status.

3. Optional: Save the <policy_name>.yaml file so that you can make changes later.

apiVersion: k8s.ovn.org/v1
kind: EgressFirewall
metadata:
  name: default
spec:
    egress:
    - to:
        nodeSelector:
          matchLabels:
            region: east
      type: Allow

$ oc create -f <policy_name>.yaml -n <project>

CHAPTER 5. EGRESS FIREWALL

87



CHAPTER 6. CONFIGURING IPSEC ENCRYPTION
By enabling IPsec, you can encrypt both internal pod-to-pod cluster traffic between nodes and external
traffic between pods and IPsec endpoints external to your cluster. All pod-to-pod network traffic
between nodes on the OVN-Kubernetes cluster network is encrypted with IPsec in Transport mode.

IPsec is disabled by default. You can enable IPsec either during or after installing the cluster. For
information about cluster installation, see OpenShift Container Platform installation overview .

NOTE

Upgrading your cluster to OpenShift Container Platform 4.19 when the libreswan and 
NetworkManager-libreswan packages have different OpenShift Container Platform
versions causes two consecutive compute node reboot operations. For the first reboot,
the Cluster Network Operator (CNO) applies the IPsec configuration to compute nodes.
For the second reboot, the Machine Config Operator (MCO) applies the latest machine
configs to the cluster.

To combine the CNO and MCO updates into a single node reboot, complete the
following tasks:

Before upgrading your cluster, set the paused parameter to true in the 
MachineConfigPools custom resource (CR) that groups compute nodes.

After you upgrade your cluster, set the parameter to false.

For more information, see Performing a Control Plane Only update .

The following support limitations exist for IPsec on a OpenShift Container Platform cluster:

On IBM Cloud®, IPsec supports only network address translation-traversal (NAT-T).
Encapsulating Security Payload (ESP) is not supported on this platform.

If your cluster uses hosted control planes for Red Hat OpenShift Container Platform, IPsec is
not supported for IPsec encryption of either pod-to-pod or traffic to external hosts.

Using ESP hardware offloading on any network interface is not supported if one or more of
those interfaces is attached to Open vSwitch (OVS). Enabling IPsec for your cluster triggers the
use of IPsec with interfaces attached to OVS. By default, OpenShift Container Platform
disables ESP hardware offloading on any interfaces attached to OVS.

If you enabled IPsec for network interfaces that are not attached to OVS, a cluster administrator
must manually disable ESP hardware offloading on each interface that is not attached to OVS.

The following list outlines key tasks in the IPsec documentation:

Enable and disable IPsec after cluster installation.

Configure IPsec encryption for traffic between the cluster and external hosts.

Verify that IPsec encrypts traffic between pods on different nodes.

6.1. MODES OF OPERATION

When using IPsec on your OpenShift Container Platform cluster, you can choose from the following

OpenShift Container Platform 4.19 Network security

88

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/installation_overview/#ocp-installation-overview
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/updating_clusters/#control-plane-only-update
https://www.redhat.com/en/topics/containers/what-are-hosted-control-planes


When using IPsec on your OpenShift Container Platform cluster, you can choose from the following
operating modes:

Table 6.1. IPsec modes of operation

Mode Description Default

Disabled No traffic is encrypted. This is the cluster default. Yes

Full Pod-to-pod traffic is encrypted as described in "Types of
network traffic flows encrypted by pod-to-pod IPsec". Traffic to
external nodes may be encrypted after you complete the
required configuration steps for IPsec.

No

External Traffic to external nodes may be encrypted after you complete
the required configuration steps for IPsec.

No

6.2. PREREQUISITES

For IPsec support for encrypting traffic to external hosts, ensure that you meet the following
prerequisites:

Set routingViaHost=true in the ovnKubernetesConfig.gatewayConfig specification of the
OVN-Kubernetes network plugin.

Install the NMState Operator. This Operator is required for specifying the IPsec configuration.
For more information, see Kubernetes NMState Operator .

NOTE

The NMState Operator is supported on Google Cloud only for configuring IPsec.

The Butane tool (butane) is installed. To install Butane, see Installing Butane .

These prerequisites are required to add certificates into the host NSS database and to configure IPsec
to communicate with external hosts.

6.3. NETWORK CONNECTIVITY REQUIREMENTS WHEN IPSEC IS
ENABLED

You must configure the network connectivity between machines to allow OpenShift Container Platform
cluster components to communicate. Each machine must be able to resolve the hostnames of all other
machines in the cluster.

Table 6.2. Ports used for all-machine to all-machine communications

Protocol Port Description

UDP 500 IPsec IKE packets

4500 IPsec NAT-T packets

CHAPTER 6. CONFIGURING IPSEC ENCRYPTION

89

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/networking_operators/#k8s-nmstate-about-the-k8s-nmstate-operator
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/installation_configuration/#installation-special-config-butane-install_installing-customizing


ESP N/A IPsec Encapsulating Security Payload (ESP)

Protocol Port Description

6.4. IPSEC ENCRYPTION FOR POD-TO-POD TRAFFIC

For IPsec encryption of pod-to-pod traffic, the following sections describe which specific pod-to-pod
traffic is encrypted, what kind of encryption protocol is used, and how X.509 certificates are handled.
These sections do not apply to IPsec encryption between the cluster and external hosts, which you must
configure manually for your specific external network infrastructure.

6.4.1. Types of network traffic flows encrypted by pod-to-pod IPsec

With IPsec enabled, only the following network traffic flows between pods are encrypted:

Traffic between pods on different nodes on the cluster network

Traffic from a pod on the host network to a pod on the cluster network

The following traffic flows are not encrypted:

Traffic between pods on the same node on the cluster network

Traffic between pods on the host network

Traffic from a pod on the cluster network to a pod on the host network

The encrypted and unencrypted flows are illustrated in the following diagram:

OpenShift Container Platform 4.19 Network security

90



6.4.2. Encryption protocol and IPsec mode

The encrypt cipher used is AES-GCM-16-256. The integrity check value (ICV) is 16 bytes. The key length
is 256 bits.

The IPsec mode used is Transport mode, a mode that encrypts end-to-end communication by adding an
Encapsulated Security Payload (ESP) header to the IP header of the original packet and encrypts the
packet data. OpenShift Container Platform does not currently use or support IPsec Tunnel mode  for
pod-to-pod communication.

6.4.3. Security certificate generation and rotation

The Cluster Network Operator (CNO) generates a self-signed X.509 certificate authority (CA) that is
used by IPsec for encryption. Certificate signing requests (CSRs) from each node are automatically
fulfilled by the CNO.

The CA is valid for 10 years. The individual node certificates are valid for 5 years and are automatically
rotated after 4 1/2 years elapse.

6.5. IPSEC ENCRYPTION FOR EXTERNAL TRAFFIC

OpenShift Container Platform supports the use of IPsec to encrypt traffic destined for external hosts,
ensuring confidentiality and integrity of data in transit. This feature relies on X.509 certificates that you
must supply.

6.5.1. Supported platforms

This feature is supported on the following platforms:

CHAPTER 6. CONFIGURING IPSEC ENCRYPTION

91



Bare metal

Google Cloud

Red Hat OpenStack Platform (RHOSP)

VMware vSphere

IMPORTANT

If you have Red Hat Enterprise Linux (RHEL) compute nodes, these do not support IPsec
encryption for external traffic.

If your cluster uses hosted control planes for Red Hat OpenShift Container Platform, configuring IPsec
for encrypting traffic to external hosts is not supported.

6.5.2. Limitations

Ensure that the following prohibitions are observed:

IPv6 configuration is not currently supported by the NMState Operator when configuring IPsec
for external traffic.

Certificate common names (CN) in the provided certificate bundle must not begin with the 
ovs_ prefix, because this naming can conflict with pod-to-pod IPsec CN names in the Network
Security Services (NSS) database of each node.

6.6. ENABLING IPSEC ENCRYPTION

As a cluster administrator you can enable pod-to-pod IPsec encryption between the cluster and external
IPsec endpoints.

You can configure IPsec in either of the following modes:

Full: Encryption for pod-to-pod and external traffic

External: Encryption for external traffic

NOTE

If you configure IPsec in Full mode, you must also complete the "Configuring IPsec
encryption for external traffic" procedure.

If you enabled IPsec in Full mode, as a cluster administrator you can configure options for the mode by
adding the full schema to networks.operator.openshift.io. The full schema supports the 
encapsulation parameter. You can use this parameter to configure network address translation-
traversal (NAT-T) encapsulation for IPsec traffic. The encapsulation parameter supports the following
values:

Auto is the default value and enables UDP encapsulation when libreswan detects network
address translation (NAT) packets in traffic within a node.

Always enables UDP encapsulation for all traffic types available in a node. This option does not
rely upon libreswan to detect NAT packets in a node.

OpenShift Container Platform 4.19 Network security

92



1 1

Prerequisites

Install the OpenShift CLI (oc).

You are logged in to the cluster as a user with cluster-admin privileges.

You have reduced the size of your cluster MTU by 46 bytes to allow for the overhead of the
IPsec ESP header.

Procedure

1. To enable IPsec encryption, enter the following command:

Specify External to encrypt traffic to external hosts or specify Full to encrypt pod-to-pod
traffic and, optionally, traffic to external hosts. By default, IPsec is disabled.

Example configuration that has IPsec enabled in Full mode and encapsulation set to 
Always

2. Encrypt external traffic with IPsec by completing the "Configuring IPsec encryption for external
traffic" procedure.

Verification

1. To find the names of the OVN-Kubernetes data plane pods, enter the following command:

Example output

$ oc patch networks.operator.openshift.io cluster --type=merge -p \
  '{
  "spec":{
    "defaultNetwork":{
      "ovnKubernetesConfig":{
        "ipsecConfig":{
          "mode":"<mode"> 1
        }}}}}'

$ oc patch networks.operator.openshift.io cluster --type=merge -p \
  '{
  "spec":{
    "defaultNetwork":{
      "ovnKubernetesConfig":{
        "ipsecConfig":{
          "mode":"Full",
          "full":{
            "encapsulation": "Always"
          }}}}}}'

$ oc get pods -n openshift-ovn-kubernetes -l=app=ovnkube-node

ovnkube-node-5xqbf                       8/8     Running   0              28m
ovnkube-node-6mwcx                       8/8     Running   0              29m
ovnkube-node-ck5fr                       8/8     Running   0              31m

CHAPTER 6. CONFIGURING IPSEC ENCRYPTION

93



2. Verify that you enabled IPsec on your cluster by running the following command:

NOTE

As a cluster administrator, you can verify that you enabled IPsec between pods
on your cluster when you configured IPsec in Full mode. This step does not verify
whether IPsec is working between your cluster and external hosts.

where: <XXXXX> specifies the random sequence of letters for a pod from an earlier step.

Successful output from the command shows the status as true.

6.7. CONFIGURING IPSEC ENCRYPTION FOR EXTERNAL TRAFFIC

As a cluster administrator, to encrypt external traffic with IPsec you must configure IPsec for your
network infrastructure, including providing PKCS#12 certificates. Because this procedure uses Butane to
create machine configs, you must have the butane tool installed.

NOTE

After you apply the machine config, the Machine Config Operator (MCO) reboots
affected nodes in your cluster to rollout the new machine config.

Prerequisites

Install the OpenShift CLI (oc).

You have installed the butane tool on your local computer.

You have installed the NMState Operator on the cluster.

You logged in to the cluster as a user with cluster-admin privileges.

You have an existing PKCS#12 certificate for the IPsec endpoint and a CA cert in Privacy
Enhanced Mail (PEM) format.

You enabled IPsec in either Full or External mode on your cluster.

You must set the routingViaHost parameter to true in the 
ovnKubernetesConfig.gatewayConfig specification of the OVN-Kubernetes network plugin.

Procedure

1. Create an IPsec configuration with an NMState Operator node network configuration policy. For
more information, see Configuring an IPsec based VPN connection by using nmstatectl .

ovnkube-node-fr4ld                       8/8     Running   0              26m
ovnkube-node-wgs4l                       8/8     Running   0              33m
ovnkube-node-zfvcl                       8/8     Running   0              34m
...

$ oc -n openshift-ovn-kubernetes rsh ovnkube-node-<XXXXX> ovn-nbctl --no-leader-only get 
nb_global . ipsec 1

OpenShift Container Platform 4.19 Network security

94

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/9/html/configuring_and_managing_networking/setting-up-an-ipsec-vpn_configuring-and-managing-networking#configuring-an-ipsec-based-vpn-connection-by-using-nmstatectl_setting-up-an-ipsec-vpn


a. To identify the IP address of the cluster node that is the IPsec endpoint, enter the following
command:

$ oc get nodes

b. Create a file named ipsec-config.yaml that has a node network configuration policy for the
NMState Operator, such as in the following examples. For an overview about 
NodeNetworkConfigurationPolicy objects, see The Kubernetes NMState project .

Example NMState IPsec transport configuration

where:

kubernetes.io/hostname

Specifies the hostname to apply the policy to. This host serves as the left side host in the
IPsec configuration.

name

Specifies the name of the interface to create on the host.

left

Specifies the hostname of the cluster node that terminates the IPsec tunnel on the
cluster side. The name must match the SAN [Subject Alternate Name] from your
supplied PKCS#12 certificates.

right

Specifies the external hostname, such as host.example.com. The name should match
the SAN [Subject Alternate Name] from your supplied PKCS#12 certificates.

rightsubnet

Specifies the IP address of the external host, such as 10.1.2.3/32.

apiVersion: nmstate.io/v1
kind: NodeNetworkConfigurationPolicy
metadata:
  name: ipsec-config
spec:
  nodeSelector:
    kubernetes.io/hostname: "<hostname>"
  desiredState:
    interfaces:
    - name: <interface_name>
      type: ipsec
      libreswan:
        left: <cluster_node>
        leftid: '%fromcert'
        leftrsasigkey: '%cert'
        leftcert: left_server
        leftmodecfgclient: false
        right: <external_host>
        rightid: '%fromcert'
        rightrsasigkey: '%cert'
        rightsubnet: <external_address>/32
        ikev2: insist
        type: transport

CHAPTER 6. CONFIGURING IPSEC ENCRYPTION

95

https://nmstate.io/kubernetes-nmstate/


Example NMState IPsec tunnel configuration

c. To configure the IPsec interface, enter the following command:

2. Give the following certificate files to add to the Network Security Services (NSS) database on
each host. These files are imported as part of the Butane configuration in the next steps.

left_server.p12: The certificate bundle for the IPsec endpoints

ca.pem: The certificate authority that you signed your certificates with

3. Create a machine config to add your certificates to the cluster.

4. Read the password from a mounted secret file:

left_server_password:: The name of the file that contains the password. This file exists in
the mounted secret.

5. Use the pk12util tool, which comes prepackaged with Red Hat Enterprise Linux (RHEL), to
specify a password that protects PKCS#12 files by entering the following command. Ensure
that you replace the <password> value with your password.

6. To create Butane config files for the control plane and compute nodes, enter the following

apiVersion: nmstate.io/v1
kind: NodeNetworkConfigurationPolicy
metadata:
  name: ipsec-config
spec:
  nodeSelector:
    kubernetes.io/hostname: "<hostname>"
  desiredState:
    interfaces:
    - name: <interface_name>
      type: ipsec
      libreswan:
        left: <cluster_node>
        leftid: '%fromcert'
        leftmodecfgclient: false
        leftrsasigkey: '%cert'
        leftcert: left_server
        right: <external_host>
        rightid: '%fromcert'
        rightrsasigkey: '%cert'
        rightsubnet: <external_address>/32
        ikev2: insist
        type: tunnel

$ oc create -f ipsec-config.yaml

$ password=$(cat run/secrets/<left_server_password>)

$ pk12util -W "<password>" -i /etc/pki/certs/left_server.p12 -d /var/lib/ipsec/nss/

OpenShift Container Platform 4.19 Network security

96



6. To create Butane config files for the control plane and compute nodes, enter the following
command:

NOTE

The Butane version you specify in the config file should match the OpenShift
Container Platform version and always ends in 0. For example, 4.19.0. See
"Creating machine configs with Butane" for information about Butane.

$ for role in master worker; do
  cat >> "99-ipsec-${role}-endpoint-config.bu" <<-EOF
  variant: openshift
  version: 4.19.0
  metadata:
    name: 99-${role}-import-certs
    labels:
      machineconfiguration.openshift.io/role: $role
  systemd:
    units:
    - name: ipsec-import.service
      enabled: true
      contents: |
        [Unit]
        Description=Import external certs into ipsec NSS
        Before=ipsec.service

        [Service]
        Type=oneshot
        ExecStart=/usr/local/bin/ipsec-addcert.sh
        RemainAfterExit=false
        StandardOutput=journal

        [Install]
        WantedBy=multi-user.target
  storage:
    files:
    - path: /etc/pki/certs/ca.pem
      mode: 0400
      overwrite: true
      contents:
        local: ca.pem
    - path: /etc/pki/certs/left_server.p12
      mode: 0400
      overwrite: true
      contents:
        local: left_server.p12
    - path: /usr/local/bin/ipsec-addcert.sh
      mode: 0740
      overwrite: true
      contents:
        inline: |
          #!/bin/bash -e
          echo "importing cert to NSS"
          certutil -A -n "CA" -t "CT,C,C" -d /var/lib/ipsec/nss/ -i /etc/pki/certs/ca.pem
          pk12util -W "" -i /etc/pki/certs/left_server.p12 -d /var/lib/ipsec/nss/

CHAPTER 6. CONFIGURING IPSEC ENCRYPTION

97

https://coreos.github.io/butane/specs/


7. To transform the Butane files that you created in the earlier step into machine configs, enter
the following command:

8. To apply the machine configs to your cluster, enter the following command:

IMPORTANT

As the Machine Config Operator (MCO) updates machines in each machine
config pool, it reboots each node one by one. You must wait for all the nodes to
update before external IPsec connectivity is available.

Verification

1. Check the machine config pool status by entering the following command:

A successfully updated node has the following status: UPDATED=true, UPDATING=false, 
DEGRADED=false.

NOTE

By default, the MCO updates one machine per pool at a time, causing the total
time the migration takes to increase with the size of the cluster.

2. To confirm that IPsec machine configs rolled out successfully, enter the following commands:

a. Confirm the creation of the IPsec machine configs:

Example output

b. Confirm you have applied the IPsec extension to control plane nodes:

c. Confirm the application of the IPsec extension to compute nodes. Example output would

          certutil -M -n "left_server" -t "u,u,u" -d /var/lib/ipsec/nss/
EOF
done

$ for role in master worker; do
  butane -d . 99-ipsec-${role}-endpoint-config.bu -o ./99-ipsec-$role-endpoint-config.yaml
done

$ for role in master worker; do
  oc apply -f 99-ipsec-${role}-endpoint-config.yaml
done

$ oc get mcp

$ oc get mc | grep ipsec

80-ipsec-master-extensions        3.2.0        6d15h
80-ipsec-worker-extensions        3.2.0        6d15h

$ oc get mcp master -o yaml | grep 80-ipsec-master-extensions -c

OpenShift Container Platform 4.19 Network security

98



c. Confirm the application of the IPsec extension to compute nodes. Example output would
show 2.

6.8. ADDITIONAL RESOURCES

IPsec Encryption

6.9. DISABLING IPSEC ENCRYPTION FOR AN EXTERNAL IPSEC
ENDPOINT

As a cluster administrator, you can remove an existing IPsec tunnel to an external host.

Prerequisites

Install the OpenShift CLI (oc).

You are logged in to the cluster as a user with cluster-admin privileges.

You enabled IPsec in either Full or External mode on your cluster.

Procedure

1. Create a file named remove-ipsec-tunnel.yaml with the following YAML:

where:

name

Specifies a name for the node network configuration policy.

node_name

Specifies the name of the node where the IPsec tunnel that you want to remove exists.

tunnel_name

Specifies the interface name for the existing IPsec tunnel.

2. To remove the IPsec tunnel, enter the following command:

$ oc get mcp worker -o yaml | grep 80-ipsec-worker-extensions -c

kind: NodeNetworkConfigurationPolicy
apiVersion: nmstate.io/v1
metadata:
  name: <name>
spec:
  nodeSelector:
    kubernetes.io/hostname: <node_name>
  desiredState:
    interfaces:
    - name: <tunnel_name>
      type: ipsec
      state: absent

$ oc apply -f remove-ipsec-tunnel.yaml

CHAPTER 6. CONFIGURING IPSEC ENCRYPTION

99

https://nmstate.io/devel/yaml_api.html#ipsec-encryption


6.10. DISABLING IPSEC ENCRYPTION

As a cluster administrator, you can disable IPsec encryption.

Prerequisites

You installed the OpenShift CLI (oc).

You logged in to the cluster with a user with cluster-admin privileges.

Procedure

1. Choose one of the following options to disable IPsec encryption:

a. Where the ipsecConfig.mode parameter is set to either External or Full and the 
ipsecConfig.full schema is not added to networks.operator.openshift.io, enter the
following command:

b. Where the ipsecConfig.mode parameter is set to Full and the ipsecConfig.full
configuration is added to networks.operator.openshift.io, enter the following command:

2. Optional: You can increase the size of your cluster MTU by 46 bytes because there is no longer
any overhead from the IPsec Encapsulating Security Payload (ESP) header in IP packets.

6.11. ADDITIONAL RESOURCES

Configuring a VPN with IPsec  in Red Hat Enterprise Linux (RHEL) 10

Installing Butane

About the OVN-Kubernetes Container Network Interface (CNI) network plugin

Changing the MTU for the cluster network

Network [operator.openshift.io/v1]API

$ oc patch networks.operator.openshift.io cluster --type=merge -p \
  '{
  "spec":{
    "defaultNetwork":{
      "ovnKubernetesConfig":{
        "ipsecConfig":{
          "mode":"Disabled"
        }}}}}'

$ oc patch networks.operator.openshift.io cluster --type='json' -p \
      '[{"op": "remove", "path": 
"/spec/defaultNetwork/ovnKubernetesConfig/ipsecConfig/full"},
      {"op": "replace", "path": 
"/spec/defaultNetwork/ovnKubernetesConfig/ipsecConfig/mode", "value": "Disabled"}]'

OpenShift Container Platform 4.19 Network security

100

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/10/html/configuring_and_managing_networking/setting-up-an-ipsec-vpn
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/installation_configuration/#installation-special-config-butane-install_installing-customizing
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/ovn-kubernetes_network_plugin/#about-ovn-kubernetes
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/advanced_networking/#changing-cluster-network-mtu
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/operator_apis/#network-operator-openshift-io-v1


CHAPTER 7. ZERO TRUST NETWORKING
Zero trust is an approach to designing security architectures based on the premise that every
interaction begins in an untrusted state. This contrasts with traditional architectures, which might
determine trustworthiness based on whether communication starts inside a firewall. More specifically,
zero trust attempts to close gaps in security architectures that rely on implicit trust models and one-
time authentication.

OpenShift Container Platform can add some zero trust networking capabilities to containers running on
the platform without requiring changes to the containers or the software running in them. There are also
several products that Red Hat offers that can further augment the zero trust networking capabilities of
containers. If you have the ability to change the software running in the containers, then there are other
projects that Red Hat supports that can add further capabilities.

Explore the following targeted capabilities of zero trust networking.

7.1. ROOT OF TRUST

Public certificates and private keys are critical to zero trust networking. These are used to identify
components to one another, authenticate, and to secure traffic. The certificates are signed by other
certificates, and there is a chain of trust to a root certificate authority (CA). Everything participating in
the network needs to ultimately have the public key for a root CA so that it can validate the chain of
trust. For public-facing things, these are usually the set of root CAs that are globally known, and whose
keys are distributed with operating systems, web browsers, and so on. However, it is possible to run a
private CA for a cluster or a corporation if the certificate of the private CA is distributed to all parties.

Leverage:

OpenShift Container Platform: OpenShift creates a cluster CA at installation that is used to
secure the cluster resources. However, OpenShift Container Platform can also create and sign
certificates for services in the cluster, and can inject the cluster CA bundle into a pod if
requested. Service certificates created and signed by OpenShift Container Platform have a 26-
month time to live (TTL) and are rotated automatically at 13 months. They can also be rotated
manually if necessary.

OpenShift cert-manager Operator: cert-manager allows you to request keys that are signed by
an external root of trust. There are many configurable issuers to integrate with external issuers,
along with ways to run with a delegated signing certificate. The cert-manager API can be used
by other software in zero trust networking to request the necessary certificates (for example,
Red Hat OpenShift Service Mesh), or can be used directly by customer software.

7.2. TRAFFIC AUTHENTICATION AND ENCRYPTION

Ensure that all traffic on the wire is encrypted and the endpoints are identifiable. An example of this is
Mutual TLS, or mTLS, which is a method for mutual authentication.

Leverage:

OpenShift Container Platform: With transparent pod-to-pod IPsec, the source and destination
of the traffic can be identified by the IP address. There is the capability for egress traffic to be
encrypted using IPsec. By using the egress IP feature, the source IP address of the traffic can be
used to identify the source of the traffic inside the cluster.

Red Hat OpenShift Service Mesh: Provides powerful mTLS capabilities that can transparently
augment traffic leaving a pod to provide authentication and encryption.

CHAPTER 7. ZERO TRUST NETWORKING

101

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/security_and_compliance/#cert-types-bootstrap-certificates
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/security_and_compliance/#add-service-serving
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/security_and_compliance/#cert-types-service-ca-certificates
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/security_and_compliance/#cert-manager-operator-about
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/ovn-kubernetes_network_plugin/#configuring-egress-ips-ovn
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/service_mesh/#ossm-about
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/service_mesh/#ossm-security-mtls_ossm-security


OpenShift cert-manager Operator: Use custom resource definitions (CRDs) to request
certificates that can be mounted for your programs to use for SSL/TLS protocols.

7.3. IDENTIFICATION AND AUTHENTICATION

After you have the ability to mint certificates using a CA, you can use it to establish trust relationships by
verification of the identity of the other end of a connection — either a user or a client machine. This also
requires management of certificate lifecycles to limit use if compromised.

Leverage:

OpenShift Container Platform: Cluster-signed service certificates to ensure that a client is
talking to a trusted endpoint. This requires that the service uses SSL/TLS and that the client
uses the cluster CA. The client identity must be provided using some other means.

Red Hat Single Sign-On : Provides request authentication integration with enterprise user
directories or third-party identity providers.

Red Hat OpenShift Service Mesh: Transparent upgrade of connections to mTLS, auto-rotation,
custom certificate expiration, and request authentication with JSON web token (JWT).

OpenShift cert-manager Operator: Creation and management of certificates for use by your
application. Certificates can be controlled by CRDs and mounted as secrets, or your application
can be changed to interact directly with the cert-manager API.

7.4. INTER-SERVICE AUTHORIZATION

It is critical to be able to control access to services based on the identity of the requester. This is done
by the platform and does not require each application to implement it. That allows better auditing and
inspection of the policies.

Leverage:

OpenShift Container Platform: Can enforce isolation in the networking layer of the platform
using the Kubernetes NetworkPolicy and AdminNetworkPolicy objects.

Red Hat OpenShift Service Mesh: Sophisticated L4 and L7 control of traffic using standard Istio
objects and using mTLS to identify the source and destination of traffic and then apply policies
based on that information.

7.5. TRANSACTION-LEVEL VERIFICATION

In addition to the ability to identify and authenticate connections, it is also useful to control access to
individual transactions. This can include rate-limiting by source, observability, and semantic validation
that a transaction is well formed.

Leverage:

Red Hat OpenShift Service Mesh: Perform L7 inspection of requests, rejecting malformed HTTP
requests, transaction-level observability and reporting. Service Mesh can also provide request-
based authentication using JWT.

7.6. RISK ASSESSMENT

As the number of security policies in a cluster increase, visualization of what the policies allow and deny

OpenShift Container Platform 4.19 Network security

102

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/security_and_compliance/#cert-manager-operator-about
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/security_and_compliance/#add-service-serving
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/security_and_compliance/#add-service-certificate-configmap_service-serving-certificate
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/security_and_compliance/#security-platform-red-hat-sso_security-platform
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/service_mesh/#ossm-about
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/service_mesh/#ossm-architecture
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/security_and_compliance/#cert-manager-operator-about
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/service_mesh/#ossm-about
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/service_mesh/#ossm-security
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/service_mesh/#ossm-about
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/service_mesh/#understanding-kiali
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/service_mesh/#restrict-access-with-json-web-token


As the number of security policies in a cluster increase, visualization of what the policies allow and deny
becomes increasingly important. These tools make it easier to create, visualize, and manage cluster
security policies.

Leverage:

Red Hat OpenShift Service Mesh: Create and visualize Kubernetes NetworkPolicy and 
AdminNetworkPolicy, and OpenShift Networking EgressFirewall objects using the OpenShift
web console.

Red Hat Advanced Cluster Security for Kubernetes : Advanced visualization of objects.

7.7. SITE-WIDE POLICY ENFORCEMENT AND DISTRIBUTION

After deploying applications on a cluster, it becomes challenging to manage all of the objects that make
up the security rules. It becomes critical to be able to apply site-wide policies and audit the deployed
objects for compliance with the policies. This should allow for delegation of some permissions to users
and cluster administrators within defined bounds, and should allow for exceptions to the policies if
necessary.

Leverage:

Red Hat OpenShift Service Mesh: RBAC to control policy objects and delegate control.

Red Hat Advanced Cluster Security for Kubernetes : Policy enforcement engine.

Red Hat Advanced Cluster Management (RHACM) for Kubernetes : Centralized policy control.

7.8. OBSERVABILITY FOR CONSTANT, AND RETROSPECTIVE,
EVALUATION

After you have a running cluster, you want to be able to observe the traffic and verify that the traffic
comports with the defined rules. This is important for intrusion detection, forensics, and is helpful for
operational load management.

Leverage:

Network Observability Operator: Allows for inspection, monitoring, and alerting on network
connections to pods and nodes in the cluster.

Red Hat Advanced Cluster Management (RHACM) for Kubernetes : Monitors, collects, and
evaluates system-level events such as process execution, network connections and flows, and
privilege escalation. It can determine a baseline for a cluster, and then detect anomalous activity
and alert you about it.

Red Hat OpenShift Service Mesh: Can monitor traffic entering and leaving a pod.

Red Hat OpenShift Distributed Tracing Platform : For suitably instrumented applications, you
can see all traffic associated with a particular action as it splits into sub-requests to
microservices. This allows you to identify bottlenecks within a distributed application.

7.9. ENDPOINT SECURITY

It is important to be able to trust that the software running the services in your cluster has not been

CHAPTER 7. ZERO TRUST NETWORKING

103

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/service_mesh/#ossm-about
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/web_console/#web-console-overview
https://www.redhat.com/en/technologies/cloud-computing/openshift/advanced-cluster-security-kubernetes
https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_security_for_kubernetes/4.3/html/operating/index
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/service_mesh/#ossm-about
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/security_and_compliance/#security-platform-multi-tenancy_security-platform
https://www.redhat.com/en/technologies/cloud-computing/openshift/advanced-cluster-security-kubernetes
https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_security_for_kubernetes/4.1/html/operating/manage-security-policies#doc-wrapper
https://www.redhat.com/en/technologies/management/advanced-cluster-management
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/network_observability/#installing-network-observability-operators
https://www.redhat.com/en/technologies/cloud-computing/openshift/advanced-cluster-security-kubernetes
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/service_mesh/#ossm-about
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/service_mesh/#ossm-kiali-overview_ossm-architecture
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/service_mesh/#understanding-distributed-tracing


It is important to be able to trust that the software running the services in your cluster has not been
compromised. For example, you might need to ensure that certified images are run on trusted hardware,
and have policies to only allow connections to or from an endpoint based on endpoint characteristics.

Leverage:

OpenShift Container Platform: Secureboot can ensure that the nodes in the cluster are running
trusted software, so the platform itself (including the container runtime) have not been
tampered with. You can configure OpenShift Container Platform to only run images that have
been signed by certain signatures .

Red Hat Trusted Artifact Signer : This can be used in a trusted build chain and produce signed
container images.

7.10. EXTENDING TRUST OUTSIDE OF THE CLUSTER

You might want to extend trust outside of the cluster by allowing a cluster to mint CAs for a subdomain.
Alternatively, you might want to attest to workload identity in the cluster to a remote endpoint.

Leverage:

OpenShift cert-manager Operator: You can use cert-manager to manage delegated CAs so
that you can distribute trust across different clusters, or through your organization.

Red Hat OpenShift Service Mesh: Can use SPIFFE to provide remote attestation of workloads
to endpoints running in remote or local clusters.

OpenShift Container Platform 4.19 Network security

104

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/security_and_compliance/#security-container-signature
https://catalog.redhat.com/software/container-stacks/detail/6525b71aa53de2eb01ac9628
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/security_and_compliance/#cert-manager-operator-about
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/service_mesh/#ossm-about

	Table of Contents
	CHAPTER 1. UNDERSTANDING NETWORK POLICY APIS
	1.1. NETWORK POLICIES AND THEIR SCOPE
	1.2. HOW NETWORK POLICY IS EVALUATED AND APPLIED
	1.3. KEY DIFFERENCES BETWEEN ADMINNETWORKPOLICY AND NETWORKPOLICY CUSTOM RESOURCES

	CHAPTER 2. ADMIN NETWORK POLICY
	2.1. OVN-KUBERNETES ADMINNETWORKPOLICY
	2.1.1. AdminNetworkPolicy
	2.1.1.1. AdminNetworkPolicy example
	2.1.1.2. AdminNetworkPolicy actions for rules


	2.2. OVN-KUBERNETES BASELINEADMINNETWORKPOLICY
	2.2.1. BaselineAdminNetworkPolicy
	2.2.1.1. BaselineAdminNetworkPolicy example
	2.2.1.2. BaselineAdminNetworkPolicy Deny example


	2.3. MONITORING ANP AND BANP
	2.3.1. Metrics for AdminNetworkPolicy

	2.4. EGRESS NODES AND NETWORKS PEER FOR ADMINNETWORKPOLICY
	2.4.1. Northbound traffic controls for AdminNetworkPolicy and BaselineAdminNetworkPolicy
	2.4.1.1. Using nodes peer to control egress traffic to cluster nodes
	2.4.1.2. Using networks peer to control egress traffic towards external destinations
	2.4.1.3. Using nodes peer and networks peer together


	2.5. TROUBLESHOOTING ADMINNETWORKPOLICY
	2.5.1. Checking creation of ANP
	2.5.1.1. Using nbctl commands for ANP and BANP

	2.5.2. Additional resources

	2.6. BEST PRACTICES FOR ADMINNETWORKPOLICY
	2.6.1. Designing AdminNetworkPolicy
	2.6.1.1. Considerations for using BaselineAdminNetworkPolicy
	2.6.1.2. Differences to consider between AdminNetworkPolicy and NetworkPolicy



	CHAPTER 3. NETWORK POLICY
	3.1. ABOUT NETWORK POLICY
	3.1.1. About network policy
	3.1.1.1. Using the allow-from-router network policy
	3.1.1.2. Using the allow-from-hostnetwork network policy

	3.1.2. Optimizations for network policy with OVN-Kubernetes network plugin
	3.1.2.1. NetworkPolicy CR and external IPs in OVN-Kubernetes

	3.1.3. Next steps
	3.1.4. Additional resources

	3.2. CREATING A NETWORK POLICY
	3.2.1. Example NetworkPolicy object
	3.2.2. Creating a network policy using the CLI
	3.2.3. Creating a default deny all network policy
	3.2.4. Creating a network policy to allow traffic from external clients
	3.2.5. Creating a network policy allowing traffic to an application from all namespaces
	3.2.6. Creating a network policy allowing traffic to an application from a namespace
	3.2.7. Additional resources

	3.3. VIEWING A NETWORK POLICY
	3.3.1. Example NetworkPolicy object
	3.3.2. Viewing network policies using the CLI

	3.4. EDITING A NETWORK POLICY
	3.4.1. Editing a network policy
	3.4.2. Example NetworkPolicy object
	3.4.3. Additional resources

	3.5. DELETING A NETWORK POLICY
	3.5.1. Deleting a network policy using the CLI

	3.6. DEFINING A DEFAULT NETWORK POLICY FOR PROJECTS
	3.6.1. Modifying the template for new projects
	3.6.2. Adding network policies to the new project template

	3.7. CONFIGURING MULTITENANT ISOLATION WITH NETWORK POLICY
	3.7.1. Configuring multitenant isolation by using network policy
	3.7.2. Next steps


	CHAPTER 4. AUDIT LOGGING FOR NETWORK SECURITY
	4.1. AUDIT CONFIGURATION
	4.2. AUDIT LOGGING
	4.3. ADMINNETWORKPOLICY AUDIT LOGGING
	4.4. BASELINEADMINNETWORKPOLICY AUDIT LOGGING
	4.5. CONFIGURING EGRESS FIREWALL AND NETWORK POLICY AUDITING FOR A CLUSTER
	4.6. ENABLING EGRESS FIREWALL AND NETWORK POLICY AUDIT LOGGING FOR A NAMESPACE
	4.7. DISABLING EGRESS FIREWALL AND NETWORK POLICY AUDIT LOGGING FOR A NAMESPACE
	4.8. ADDITIONAL RESOURCES

	CHAPTER 5. EGRESS FIREWALL
	5.1. VIEWING AN EGRESS FIREWALL FOR A PROJECT
	5.1.1. Viewing an EgressFirewall custom resource (CR)

	5.2. EDITING AN EGRESS FIREWALL FOR A PROJECT
	5.2.1. Editing an EgressFirewall custom resource (CR)

	5.3. REMOVING AN EGRESS FIREWALL FROM A PROJECT
	5.3.1. Removing an EgressFirewall CR

	5.4. CONFIGURING AN EGRESS FIREWALL FOR A PROJECT
	5.4.1. How an egress firewall works in a project
	5.4.1.1. Limitations of an egress firewall
	5.4.1.2. Matching order for egress firewall policy rules
	5.4.1.3. How Domain Name Server (DNS) resolution works

	5.4.2. EgressFirewall custom resource (CR)
	5.4.2.1. EgressFirewall rules
	5.4.2.2. Example EgressFirewall CR
	5.4.2.3. Example EgressFirewall CR using nodeSelector

	5.4.3. Creating an EgressFirewall custom resource (CR)


	CHAPTER 6. CONFIGURING IPSEC ENCRYPTION
	6.1. MODES OF OPERATION
	6.2. PREREQUISITES
	6.3. NETWORK CONNECTIVITY REQUIREMENTS WHEN IPSEC IS ENABLED
	6.4. IPSEC ENCRYPTION FOR POD-TO-POD TRAFFIC
	6.4.1. Types of network traffic flows encrypted by pod-to-pod IPsec
	6.4.2. Encryption protocol and IPsec mode
	6.4.3. Security certificate generation and rotation

	6.5. IPSEC ENCRYPTION FOR EXTERNAL TRAFFIC
	6.5.1. Supported platforms
	6.5.2. Limitations

	6.6. ENABLING IPSEC ENCRYPTION
	6.7. CONFIGURING IPSEC ENCRYPTION FOR EXTERNAL TRAFFIC
	6.8. ADDITIONAL RESOURCES
	6.9. DISABLING IPSEC ENCRYPTION FOR AN EXTERNAL IPSEC ENDPOINT
	6.10. DISABLING IPSEC ENCRYPTION
	6.11. ADDITIONAL RESOURCES

	CHAPTER 7. ZERO TRUST NETWORKING
	7.1. ROOT OF TRUST
	7.2. TRAFFIC AUTHENTICATION AND ENCRYPTION
	7.3. IDENTIFICATION AND AUTHENTICATION
	7.4. INTER-SERVICE AUTHORIZATION
	7.5. TRANSACTION-LEVEL VERIFICATION
	7.6. RISK ASSESSMENT
	7.7. SITE-WIDE POLICY ENFORCEMENT AND DISTRIBUTION
	7.8. OBSERVABILITY FOR CONSTANT, AND RETROSPECTIVE, EVALUATION
	7.9. ENDPOINT SECURITY
	7.10. EXTENDING TRUST OUTSIDE OF THE CLUSTER


