
OpenShift Container Platform 4.17

分散トレーシング

OpenShift Container Platform での分散トレーシングの設定と使用

Last Updated: 2025-12-06

OpenShift Container Platform 4.17 分散トレーシング

OpenShift Container Platform での分散トレーシングの設定と使用

Legal Notice

Copyright © 2025 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

分散トレーシングを使用して、OpenShift Container Platform の分散システムを通過するマイクロ
サービストランザクションを保存、分析、視覚化します。

. .

. .

. .

. .

. .

. .

. .

Table of Contents

第1章 RED HAT OPENSHIFT DISTRIBUTED TRACING PLATFORM 3.8 のリリースノート
1.1. このリリースについて
1.2. 修正された問題
1.3. サポートの利用

第2章 DISTRIBUTED TRACING PLATFORM について
2.1. 分散トレーシングの主要概念
2.2. RED HAT OPENSHIFT DISTRIBUTED TRACING PLATFORM の機能
2.3. RED HAT OPENSHIFT DISTRIBUTED TRACING PLATFORM のアーキテクチャー

第3章 DISTRIBUTED TRACING PLATFORM のインストール
3.1. TEMPO OPERATOR のインストール
3.2. オブジェクトストレージのセットアップ
3.3. 権限とテナントの設定
3.4. TEMPOSTACK インスタンスのインストール
3.5. TEMPOMONOLITHIC インスタンスのインストール
3.6. 関連情報

第4章 DISTRIBUTED TRACING PLATFORM の設定
4.1. バックエンドストレージの設定
4.2. TEMPOSTACK 設定パラメーターの概要
4.3. クエリー設定オプション
4.4. UI の設定
4.5. JAEGER UI の MONITOR タブの設定
4.6. レシーバーの TLS の設定
4.7. クエリー RBAC の設定
4.8. TAINT および TOLERATION の使用
4.9. 監視とアラートの設定

第5章 DISTRIBUTED TRACING PLATFORM のトラブルシューティング
5.1. コマンドラインからの診断データの収集

第6章 アップグレード
6.1. 関連情報

第7章 DISTRIBUTED TRACING PLATFORM の削除
7.1. WEB コンソールを使用して削除する
7.2. CLI を使用して削除する
7.3. 関連情報

3
3
3
3

5
5
5
6

7
7

10
23
28
35
44

45
45
45
48
51
51
55
57
59
59

62
62

63
63

64
64
64
65

Table of Contents

1

OpenShift Container Platform 4.17 分散トレーシング

2

第1章 RED HAT OPENSHIFT DISTRIBUTED TRACING
PLATFORM 3.8 のリリースノート

1.1. このリリースについて

分散 Tracing Platform 3.8 は、Tempo Operator 0.19.0 を通じて提供され、オープンソース Grafana
Tempo 2.9.0 に基づいています。

注記

サポートされている機能のみが文書化されています。文書化されていない機能は現在サ
ポートされていません。機能に関してサポートが必要な場合は、Red Hat のサポートに
お問い合わせください。

1.2. 修正された問題

Tempo Pod に影響する TLS 証明書に関する問題を解決しました。

この更新の前は、内部 TLS 証明書が更新されたため、Tempo Pod は通信を停止していました。今
回の更新により、証明書が更新されると Tempo Pod が自動的に再起動するようになりました。
TRACING-5622

tempo クエリーフロントエンドがトレース JSON のフェッチに失敗しなくなりました。

今回の更新以前は、Jaeger UI で Trace をクリックし、ページを更新するか、Tempo クエリー
frontend から Trace → Trace Timeline → Trace JSON にアクセスすると、Tempo クエリー Pod が
EOF エラーを出して失敗する場合があります。今回の更新で、この問題は解決されました。
TRACING-5483

注記

リンクされた Jira チケットの一部は、Red Hat の認証情報でのみアクセスできます。

1.3. サポートの利用

このドキュメントで説明されている手順、または OpenShift Container Platform 全般で問題が発生した
場合は、Red Hat カスタマーポータル にアクセスしてください。

カスタマーポータルでは、次のことができます。

Red Hat 製品に関するアーティクルおよびソリューションを対象とした Red Hat ナレッジベー
スの検索またはブラウズ。

Red Hat サポートに対するサポートケースの送信。

その他の製品ドキュメントへのアクセス。

クラスターの問題を特定するには、OpenShift Cluster Manager で Insights を使用できます。Insights に
より、問題の詳細と、利用可能な場合は問題の解決方法に関する情報が提供されます。

このドキュメントを改善するための提案がある場合、またはエラーを見つけた場合は、最も関連性の高
いドキュメントコンポーネントについて Jira 課題 を送信してください。セクション名や OpenShift
Container Platform バージョンなどの具体的な情報を提供してください。

第1章 RED HAT OPENSHIFT DISTRIBUTED TRACING PLATFORM 3.8 のリリースノート

3

https://catalog.redhat.com/software/containers/rhosdt/tempo-operator-bundle/642c3e0eacf1b5bdbba7654a/history
https://grafana.com/oss/tempo/
https://issues.redhat.com/browse/TRACING-5622
https://issues.redhat.com/browse/TRACING-5483
http://access.redhat.com
https://console.redhat.com/openshift
https://issues.redhat.com/secure/CreateIssueDetails!init.jspa?pid=12332330&summary=Documentation_issue&issuetype=1&components=12367614&priority=10200&versions=12385624

警告

非推奨になった Red Hat OpenShift Distributed Tracing Platform (Jaeger) 3.5 は、
Red Hat がサポートする Red Hat OpenShift Distributed Tracing Platform (Jaeger)
の最後のリリースでした。

非推奨になった Red Hat OpenShift Distributed Tracing Platform (Jaeger) 3.5 のサ
ポートおよびメンテナンスはすべて、2025 年 11 月 3 日に終了します。

Red Hat OpenShift Distributed Tracing Platform (Jaeger)を依然として使用する場
合は、分散トレースコレクションおよびストレージ用に Red Hat build of
OpenTelemetry Operator および Tempo Operator に移行する必要があります。詳
細は、Red Hat build of OpenTelemetry ドキュメントのMigrating"、Red Hat build
of OpenTelemetry ドキュメントの Installing、および Red Hat OpenShift
Distributed Tracing Platform ドキュメントの Installing を参照してください。

詳細は、Red Hat ナレッジベースソリューション Jaeger Deprecation and Removal
in OpenShift を参照してください。



OpenShift Container Platform 4.17 分散トレーシング

4

https://access.redhat.com/solutions/7083722

第2章 DISTRIBUTED TRACING PLATFORM について

2.1. 分散トレーシングの主要概念

ユーザーがアプリケーションでアクションを実行するたびに、応答を生成するために多数の異なるサー
ビスに参加を要求する可能性のあるアーキテクチャーによって要求が実行されます。Red Hat
OpenShift Distributed Tracing Platform を使用すると、分散トレーシングを実行し、アプリケーション
を構成するさまざまなマイクロサービスによる要求のパスを記録できます。

分散トレーシング は、さまざまな作業単位 (通常は別々のプロセスまたはホストで実行されるもの) に
関する情報を結び付けて、分散トランザクション内の一連のイベント全体を把握するために使用される
手法です。分散トレーシングを使用すると、開発者は大規模なマイクロサービスアーキテクチャー内の
呼び出しフローを可視化できます。これは、シリアル化、並行処理、およびレイテンシーのソースに関
する理解にも役立ちます。

Red Hat OpenShift Distributed Tracing Platform は、マイクロサービスのスタック全体における個々の
要求の実行を記録し、トレースとして表示します。トレース とは、システムにおけるデータ/実行パス
です。エンドツーエンドのトレースは、1 つ以上のスパンで構成されます。

スパン は、Red Hat OpenShift Distributed Tracing Platform における論理的な作業単位を表します。こ
れには、操作名、操作の開始時刻、期間、および場合によってはタグとログが含まれます。スパンは因
果関係をモデル化するためにネスト化され、順序付けられます。

サービス所有者は、分散トレーシングを使用してサービスを計装し、サービスアーキテクチャーに関す
る分析情報を収集できます。Red Hat OpenShift Distributed Tracing Platform を使用すると、最新のク
ラウドネイティブのマイクロサービスベースのアプリケーションにおけるコンポーネント間の相互作用
の監視、ネットワークプロファイリング、トラブルシューティングを行うことができます。

Distributed Tracing Platform を使用すると、次の機能を実行できます。

分散トランザクションの監視

パフォーマンスとレイテンシーの最適化

根本原因分析の実行

Distributed Tracing Platform を OpenShift Container Platform の他の関連コンポーネントと組み合わせ
ることができます。

TempoStack インスタンスにトレースを転送するための Red Hat build of OpenTelemetry

Cluster Observability Operator (COO) の分散トレーシング UI プラグイン

関連情報

Red Hat build of OpenTelemetry

分散トレーシング UI プラグイン

2.2. RED HAT OPENSHIFT DISTRIBUTED TRACING PLATFORM の機能

Red Hat OpenShift Distributed Tracing Platform は、次の機能を提供します。

Kiali との統合 - 適切に設定すると、Kiali コンソールから Distributed Tracing Platform データを
表示できます。

第2章 DISTRIBUTED TRACING PLATFORM について

5

https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/red_hat_build_of_opentelemetry/#install-otel
https://docs.redhat.com/en/documentation/red_hat_openshift_cluster_observability_operator/1-latest/html/ui_plugins_for_red_hat_openshift_cluster_observability_operator/distributed-tracing-ui-plugin

高いスケーラビリティー - Distributed Tracing Platform のバックエンドは、単一障害点がな
く、ビジネスニーズに合わせて拡張できるように設計されています。

分散コンテキスト伝播 - さまざまなコンポーネントのデータを相互に接続して、完全なエンド
ツーエンドのトレースを作成できます。

Zipkin との下位互換性 - Red Hat OpenShift Distributed Tracing Platform には、Zipkin のドロッ
プインリプレースメントとして使用できる API があります。ただし、Red Hat はこのリリース
では Zipkin との互換性をサポートしていません。

2.3. RED HAT OPENSHIFT DISTRIBUTED TRACING PLATFORM のアー
キテクチャー

Red Hat OpenShift Distributed Tracing Platform は、トレースデータを収集、保存、表示するために連
携して動作する複数のコンポーネントで構成されています。

Red Hat OpenShift Distributed Tracing Platform: このコンポーネントは、オープンソースの
Grafana Tempo プロジェクト に基づいています。

Gateway: ゲートウェイは、認証、認可、およびディストリビューターまたはクエリーフロ
ントエンドサービスへのリクエストの転送を処理します。

Distributor: ディストリビューターは、Jaeger、OpenTelemetry、Zipkin などの複数の形式
のスパンを受け入れます。traceID をハッシュ化し、分散コンシステントハッシュリングを
使用して、スパンを Ingester にルーティングします。

Ingester: Ingester はトレースをブロックにバッチ化し、ブルームフィルターとインデック
スを作成してすべてバックエンドにフラッシュします。

Query Frontend - Query Frontend は、受信クエリーの検索スペースを分割し、クエリー
をクエリー実行者に送信します。Query Frontend のデプロイメントでは、Tempo Query サ
イドカーを介して Jaeger UI が公開されます。

Querier: Querier は、Ingester またはバックエンドストレージで要求されたトレース ID を
検索します。パラメーターに応じて、Ingester にクエリーを実行し、バックエンドから
Bloom インデックスを取得して、オブジェクトストレージ内のブロックを検索できます。

Compactor: Compactor は、ブロックをバックエンドストレージとの間でストリーミング
して、ブロックの総数を減らします。

Red Hat build of OpenTelemetry - このコンポーネントは、オープンソースの OpenTelemetry
プロジェクト に基づいています。

OpenTelemetry Collector: OpenTelemetry Collector は、テレメトリーデータを受信、処
理、エクスポートするためのベンダーに依存しない方法です。OpenTelemetry Collector
は、Jaeger や Prometheus などのオープンソースの可観測性データ形式をサポートし、1
つ以上のオープンソースまたは商用バックエンドに送信します。Collector は、インストル
メンテーションライブラリーがテレメトリーデータをエクスポートするデフォルトの場所
です。

OpenShift Container Platform 4.17 分散トレーシング

6

https://grafana.com/oss/tempo/
https://opentelemetry.io/

第3章 DISTRIBUTED TRACING PLATFORM のインストール
Distributed Tracing Platform をインストールするには、次の手順を実行します。

1. Tempo Operator をインストールします。

2. サポートされているオブジェクトストアを設定し、オブジェクトストアの認証情報のシーク
レットを作成します。

3. 権限とテナントを設定します。

4. ユースケースに応じて次のデプロイメントを選択してインストールします。

マイクロサービスモードの TempoStack インスタンス

モノリシックモードの TempoMonolithic インスタンス

3.1. TEMPO OPERATOR のインストール

Tempo Operator は、Web コンソールまたはコマンドラインを使用してインストールできます。

3.1.1. Web コンソールを使用した Tempo Operator のインストール

Tempo Operator は、OpenShift Container Platform Web コンソールからインストールできます。

前提条件

cluster-admin ロールを持つクラスター管理者として、OpenShift Container Platform Web コ
ンソールにログインしている。

Red Hat OpenShift Dedicated の場合、dedicated-admin ロールを持つアカウントを使用して
ログインしている。

サポートされているプロバイダーによる必要なオブジェクトストレージ Red Hat OpenShift
Data Foundation、MinIO、Amazon S3、Azure Blob Storage、Google Cloud Storage の設定が
完了している。詳細は、「オブジェクトストレージのセットアップ」を参照してください。

警告

オブジェクトストレージは必須ですが、Distributed Tracing Platform には
含まれていません。Distributed Tracing Platform をインストールする前
に、サポートされているプロバイダーによるオブジェクトストレージを選
択して設定する必要があります。

手順

1. Web コンソールで、Tempo Operator を検索します。

ヒント



第3章 DISTRIBUTED TRACING PLATFORM のインストール

7

https://www.redhat.com/en/technologies/cloud-computing/openshift-data-foundation
https://min.io/
https://aws.amazon.com/s3/
https://azure.microsoft.com/en-us/products/storage/blobs/
https://cloud.google.com/storage/

ヒント

OpenShift Container Platform 4.19 以前では、Operators → OperatorHub に移動します。

OpenShift Container Platform 4.20 以降では、エコシステム → ソフトウェアカタログ に移動し
ます。

2. Red Hat が提供 する Tempo Operator を選択します。

重要

次の選択は、この Operator のデフォルトのプリセットです。

Update channel → stable

Installation mode → All namespaces on the cluster

Installed Namespace → openshift-tempo-operator

Update approval → Automatic

3. Enable Operator recommended cluster monitoring on this Namespace チェックボックスを
選択します。

4. Install → Install → View Operator を選択します。

検証

インストール済み Operator ページの Details タブの ClusterServiceVersion details で、イン
ストールの Status が Succeeded であることを確認します。

3.1.2. CLI を使用した Tempo Operator のインストール

Tempo Operator はコマンドラインからインストールできます。

前提条件

cluster-admin ロールを持つクラスター管理者によるアクティブな OpenShift CLI (oc) セッ
ション。

ヒント

OpenShift CLI (oc) のバージョンが最新であり、OpenShift Container Platform バージョン
と一致していることを確認してください。

oc login を実行します。

サポートされているプロバイダーによる必要なオブジェクトストレージ Red Hat OpenShift
Data Foundation、MinIO、Amazon S3、Azure Blob Storage、Google Cloud Storage の設定が
完了している。詳細は、「オブジェクトストレージのセットアップ」を参照してください。

$ oc login --username=<your_username>

OpenShift Container Platform 4.17 分散トレーシング

8

https://www.redhat.com/en/technologies/cloud-computing/openshift-data-foundation
https://min.io/
https://aws.amazon.com/s3/
https://azure.microsoft.com/en-us/products/storage/blobs/
https://cloud.google.com/storage/

警告

オブジェクトストレージは必須ですが、Distributed Tracing Platform には
含まれていません。Distributed Tracing Platform をインストールする前
に、サポートされているプロバイダーによるオブジェクトストレージを選
択して設定する必要があります。

手順

1. 以下のコマンドを実行して、Tempo Operator のプロジェクトを作成します。

2. 以下のコマンドを実行して、Operator グループを作成します。

3. 以下のコマンドを実行して、サブスクリプションを作成します。

検証



$ oc apply -f - << EOF
apiVersion: project.openshift.io/v1
kind: Project
metadata:
 labels:
 kubernetes.io/metadata.name: openshift-tempo-operator
 openshift.io/cluster-monitoring: "true"
 name: openshift-tempo-operator
EOF

$ oc apply -f - << EOF
apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: openshift-tempo-operator
 namespace: openshift-tempo-operator
spec:
 upgradeStrategy: Default
EOF

$ oc apply -f - << EOF
apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: tempo-product
 namespace: openshift-tempo-operator
spec:
 channel: stable
 installPlanApproval: Automatic
 name: tempo-product
 source: redhat-operators
 sourceNamespace: openshift-marketplace
EOF

第3章 DISTRIBUTED TRACING PLATFORM のインストール

9

次のコマンドを実行して、Operator のステータスを確認します。

3.2. オブジェクトストレージのセットアップ

サポートされているオブジェクトストレージを設定する際に、次の設定パラメーターを使用できます。

重要

オブジェクトストレージを使用するには、TempoStack または TempoMonolithic イン
スタンスをデプロイする前に、サポートされているオブジェクトストアを設定し、オブ
ジェクトストアの認証情報のシークレットを作成する必要があります。

表3.1 必須のシークレットパラメーター

ストレージプロバイダー

Secret パラメーター

Red Hat OpenShift Data Foundation

name: tempostack-dev-odf # example

bucket: <bucket_name> # requires an ObjectBucketClaim

endpoint: https://s3.openshift-storage.svc

access_key_id: <data_foundation_access_key_id>

access_key_secret: <data_foundation_access_key_secret>

MinIO

MinIO Operator を参照してください。

name: tempostack-dev-minio # example

bucket: <minio_bucket_name> # MinIO documentation

endpoint: <minio_bucket_endpoint>

access_key_id: <minio_access_key_id>

access_key_secret: <minio_access_key_secret>

Amazon S3

$ oc get csv -n openshift-tempo-operator

OpenShift Container Platform 4.17 分散トレーシング

10

https://access.redhat.com/documentation/ja-jp/red_hat_openshift_data_foundation/
https://operator.min.io/
https://min.io/docs/minio/linux/reference/minio-mc/mc-mb.html#command-mc.mb

name: tempostack-dev-s3 # example

bucket: <s3_bucket_name> # Amazon S3 documentation

endpoint: <s3_bucket_endpoint>

access_key_id: <s3_access_key_id>

access_key_secret: <s3_access_key_secret>

Security Token Service (STS) を使用する Amazon S3

name: tempostack-dev-s3 # example

bucket: <s3_bucket_name> # Amazon S3 documentation

region: <s3_region>

role_arn: <s3_role_arn>

Microsoft Azure Blob Storage

name: tempostack-dev-azure # example

container: <azure_blob_storage_container_name> # Microsoft Azure documentation

account_name: <azure_blob_storage_account_name>

account_key: <azure_blob_storage_account_key>

Google Cloud Storage on Google Cloud

name: tempostack-dev-gcs # example

bucketname: <google_cloud_storage_bucket_name> # requires a bucket created in a Google
Cloud project

key.json: <path/to/key.json> # requires a service account in the bucket’s GCP project for GCP
authentication

ストレージプロバイダー

3.2.1. Security Token Service を使用する Amazon S3 ストレージの設定

Security Token Service (STS) と AWS Command Line Interface (AWS CLI) を使用して、Amazon S3 ス
トレージをセットアップできます。必要に応じて、Cloud Credential Operator (CCO) を使用すること
もできます。

重要

第3章 DISTRIBUTED TRACING PLATFORM のインストール

11

https://docs.aws.amazon.com/AmazonS3/latest/userguide/create-bucket-overview.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/create-bucket-overview.html
https://learn.microsoft.com/en-us/rest/api/storageservices/create-container?tabs=azure-ad
https://cloud.google.com/storage/docs/creating-buckets
https://cloud.google.com/resource-manager/docs/creating-managing-projects
https://cloud.google.com/docs/authentication/getting-started#creating_a_service_account

1

重要

Amazon S3 ストレージおよび STS を使用した Distributed Tracing Platform の使用は、
テクノロジープレビュー機能です。テクノロジープレビュー機能は、Red Hat 製品の
サービスレベルアグリーメント (SLA) の対象外であり、機能的に完全ではないことがあ
ります。Red Hat は、実稼働環境でこれらを使用することを推奨していません。テクノ
ロジープレビュー機能は、最新の製品機能をいち早く提供して、開発段階で機能のテス
トを行い、フィードバックを提供していただくことを目的としています。

Red Hat のテクノロジープレビュー機能のサポート範囲に関する詳細は、以下のリンク
を参照してください。

テクノロジープレビュー機能のサポート範囲

前提条件

AWS CLI の最新バージョンがインストールされている。

CCO を使用する場合は、クラスターに CCO がインストールおよび設定されている。

手順

1. AWS S3 バケットを作成します。

2. 次のステップで作成する AWS Identity and Access Management (AWS IAM) ロール
と、TempoStack または TempoMonolithic インスタンスのいずれかのサービスアカウントと
の間に信頼関係を設定するために、AWS IAM ポリシー用に次の trust.json ファイルを作成しま
す。

trust.json

OpenShift Container Platform で設定した OpenID Connect (OIDC) プロバイダー。

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Federated": "arn:aws:iam::<aws_account_id>:oidc-provider/<oidc_provider>" 1
 },
 "Action": "sts:AssumeRoleWithWebIdentity",
 "Condition": {
 "StringEquals": {
 "<oidc_provider>:sub": [
 "system:serviceaccount:<openshift_project_for_tempo>:tempo-
<tempo_custom_resource_name>" 2
 "system:serviceaccount:<openshift_project_for_tempo>:tempo-
<tempo_custom_resource_name>-query-frontend"
]
 }
 }
 }
]
}

OpenShift Container Platform 4.17 分散トレーシング

12

https://access.redhat.com/support/offerings/techpreview/

2

1

2

3

TempoStack または TempoMonolithic インスタンスのいずれかを作成する
namespace。<tempo_custom_resource_name> は、TempoStack または

ヒント

次のコマンドを実行して、OIDC プロバイダーの値を取得することもできます。

3. 作成した trust.json ポリシーファイルをアタッチして AWS IAM ロールを作成します。これを
行うには、次のコマンドを実行します。

4. 作成した AWS IAM ロールに AWS IAM ポリシーをアタッチします。これを行うには、次のコマ
ンドを実行します。

5. CCO を使用していない場合は、このステップをスキップしてください。CCO を使用している
場合は、Tempo Operator のクラウドプロバイダー環境を設定します。これを行うには、次の
コマンドを実行します。

Tempo Operator サブスクリプションの名前。

Tempo Operator の namespace。

AWS STS では、Tempo Operator サブスクリプションに ROLEARN 環境変数を追加する
必要があります。<role_arn> 値として、ステップ 3 で作成した AWS IAM ロールの
Amazon Resource Name (ARN) を追加します。

6. OpenShift Container Platform で、次のように、キーを使用してオブジェクトストレージシー
クレットを作成します。

$ oc get authentication cluster -o json | jq -r '.spec.serviceAccountIssuer' | sed
's~http[s]*://~~g'

$ aws iam create-role \
 --role-name "tempo-s3-access" \
 --assume-role-policy-document "file:///tmp/trust.json" \
 --query Role.Arn \
 --output text

$ aws iam attach-role-policy \
 --role-name "tempo-s3-access" \
 --policy-arn "arn:aws:iam::aws:policy/AmazonS3FullAccess"

$ oc patch subscription <tempo_operator_sub> \ 1
 -n <tempo_operator_namespace> \ 2
 --type='merge' -p '{"spec": {"config": {"env": [{"name": "ROLEARN", "value": "'"
<role_arn>"'"}]}}}' 3

apiVersion: v1
kind: Secret
metadata:
 name: <secret_name>
stringData:

第3章 DISTRIBUTED TRACING PLATFORM のインストール

13

1

2

1

2

7. オブジェクトストレージシークレットが作成されたら、Distributed Tracing Platform インスタ
ンスの関連するカスタムリソースを次のように更新します。

TempoStack カスタムリソースの例

前のステップで作成したシークレット。

CCO を使用していない場合は、この行を省略します。CCO を使用している場合
は、token-cco 値とともにこのパラメーターを追加します。

TempoMonolithic カスタムリソースの例

前のステップで作成したシークレット。

CCO を使用していない場合は、この行を省略します。CCO を使用している場合
は、token-cco 値とともにこのパラメーターを追加します。

関連情報

 bucket: <s3_bucket_name>
 region: <s3_region>
 role_arn: <s3_role_arn>
type: Opaque

apiVersion: tempo.grafana.com/v1alpha1
kind: TempoStack
metadata:
 name: <name>
 namespace: <namespace>
spec:
...
 storage:
 secret: 1
 name: <secret_name>
 type: s3
 credentialMode: token-cco 2
...

apiVersion: tempo.grafana.com/v1alpha1
kind: TempoMonolithic
metadata:
 name: <name>
 namespace: <namespace>
spec:
...
 storage:
 traces:
 backend: s3
 s3:
 secret: <secret_name> 1
 credentialMode: token-cco 2
...

OpenShift Container Platform 4.17 分散トレーシング

14

1

2

3

4

AWS Identity and Access Management Documentation (AWS ドキュメント)

AWS Command Line Interface Documentation (AWS ドキュメント)

OpenID Connect アイデンティティープロバイダーの設定

Identify AWS resources with Amazon Resource Names (ARNs) (AWS ドキュメント)

3.2.2. Security Token Service を使用した Azure ストレージの設定

Azure Command Line Interface (Azure CLI) を使用して、Security Token Service (STS) を備えた Azure
ストレージをセットアップできます。

重要

Azure ストレージおよび STS での Distributed Tracing Platform の使用は、テクノロジー
プレビュー機能です。テクノロジープレビュー機能は、Red Hat 製品のサービスレベル
アグリーメント (SLA) の対象外であり、機能的に完全ではないことがあります。Red
Hat は、実稼働環境でこれらを使用することを推奨していません。テクノロジープレ
ビュー機能は、最新の製品機能をいち早く提供して、開発段階で機能のテストを行い、
フィードバックを提供していただくことを目的としています。

Red Hat のテクノロジープレビュー機能のサポート範囲に関する詳細は、以下のリンク
を参照してください。

テクノロジープレビュー機能のサポート範囲

前提条件

Azure CLI の最新バージョンがインストールされている。

Azure ストレージアカウントを作成している。

Azure Blob ストレージコンテナーを作成している。

手順

1. 次のコマンドを実行して、Azure マネージドアイデンティティーを作成します。

マネージドアイデンティティーに選択した名前。

アイデンティティーを作成する Azure リソースグループ。

Azure リージョン。リソースグループと同じリージョンである必要があります。

Azure サブスクリプション ID。

2. Query Frontend を除く Distributed Tracing Platform のすべてのコンポーネントで使用するため

$ az identity create \
 --name <identity_name> \ 1
 --resource-group <resource_group> \ 2
 --location <region> \ 3
 --subscription <subscription_id> 4

第3章 DISTRIBUTED TRACING PLATFORM のインストール

15

https://docs.aws.amazon.com/iam/
https://docs.aws.amazon.com/cli/
https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/authentication_and_authorization/#configuring-oidc-identity-provider
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference-arns.html
https://access.redhat.com/support/offerings/techpreview/

1

2

3

4

5

1

2. Query Frontend を除く Distributed Tracing Platform のすべてのコンポーネントで使用するため
に、OpenShift Container Platform サービスアカウントのフェデレーションアイデンティ
ティー認証情報を作成します。これを行うには、次のコマンドを実行します。

フェデレーションアイデンティティー認証情報を使用すると、OpenShift Container
Platform サービスアカウントは、シークレットを保存したり、Azure サービスプリンシパ
ルアイデンティティーを使用したりすることなく、Azure マネージドアイデンティティー
として認証できます。

フェデレーション認証情報に選択した名前。

クラスターの OpenID Connect (OIDC) プロバイダーの URL。

system:serviceaccount:<namespace>:tempo-<tempostack_instance_name> 形式のク
ラスターのサービスアカウントサブジェクト。

フェデレーションアイデンティティー認証情報に対して発行されたトークンを検証するた
めに使用される、想定されるオーディエンス。これは通
常、api://AzureADTokenExchange に設定されます。

ヒント

次のコマンドを実行すると、クラスターの OpenID Connect (OIDC) 発行者の URL を取得でき
ます。

$ oc get authentication cluster -o json | jq -r .spec.serviceAccountIssuer

3. Distributed Tracing Platform の Query Frontend コンポーネントで使用するために、OpenShift
Container Platform サービスアカウントのフェデレーションアイデンティティー認証情報を作
成します。これを行うには、次のコマンドを実行します。

フェデレーションアイデンティティー認証情報を使用すると、OpenShift Container
Platform サービスアカウントは、シークレットを保存したり、Azure サービスプリンシパ
ルアイデンティティーを使用したりすることなく、Azure マネージドアイデンティティー
として認証できます。

$ az identity federated-credential create \ 1
 --name <credential_name> \ 2
 --identity-name <identity_name> \
 --resource-group <resource_group> \
 --issuer <oidc_provider> \ 3
 --subject <tempo_service_account_subject> \ 4
 --audiences <audience> 5

$ az identity federated-credential create \ 1
 --name <credential_name>-frontend \ 2
 --identity-name <identity_name> \
 --resource-group <resource_group> \
 --issuer <cluster_issuer> \
 --subject <tempo_service_account_query_frontend_subject> \ 3
 --audiences <audience> | jq

OpenShift Container Platform 4.17 分散トレーシング

16

2

3

1

1

2

1

2

フロントエンドフェデレーションアイデンティティー認証情報に選択した名前。

system:serviceaccount:<namespace>:tempo-<tempostack_instance_name> 形式のク
ラスターのサービスアカウントサブジェクト。

4. 作成された Azure マネージドアイデンティティーの Azure サービスプリンシパルアイデンティ
ティーに、Storage Blob Data Contributor ロールを割り当てます。これを行うには、次のコマ
ンドを実行します。

ステップ 1 で作成した Azure マネージドアイデンティティーの Azure サービスプリンシパ
ルアイデンティティー。

ヒント

次のコマンドを実行すると、<assignee_name> の値を取得できます。

$ az ad sp list --all --filter "servicePrincipalType eq 'ManagedIdentity'" | jq -r --arg idName
<identity_name> '.[] | select(.displayName == $idName) | .appId'`

5. ステップ 1 で作成した Azure マネージドアイデンティティーのクライアント ID を取得します。

ステップ 1 の <identity_name> 値をコピーして貼り付けます。

ステップ 1 の <resource_group> 値をコピーして貼り付けます。

6. Azure Workload Identity Federation (WIF) 用の OpenShift Container Platform シークレットを
作成します。これを行うには、次のコマンドを実行します。

Azure Blob Storage コンテナーの名前。

Azure Storage アカウントの名前。

$ az role assignment create \
 --assignee <assignee_name> \ 1
 --role "Storage Blob Data Contributor" \
 --scope "/subscriptions/<subscription_id>

CLIENT_ID=$(az identity show \
 --name <identity_name> \ 1
 --resource-group <resource_group> \ 2
 --query clientId \
 -o tsv)

$ oc create -n <tempo_namespace> secret generic azure-secret \
 --from-literal=container=<azure_storage_azure_container> \ 1
 --from-literal=account_name=<azure_storage_azure_accountname> \ 2
 --from-literal=client_id=<client_id> \ 3
 --from-literal=audience=<audience> \ 4
 --from-literal=tenant_id=<tenant_id> 5

第3章 DISTRIBUTED TRACING PLATFORM のインストール

17

3

4

5

1

1

前のステップで取得したマネージドアイデンティティーのクライアント ID。

オプション: デフォルトは api://AzureADTokenExchange です。

Azure テナント ID。

7. オブジェクトストレージシークレットが作成されたら、Distributed Tracing Platform インスタ
ンスの関連するカスタムリソースを次のように更新します。

TempoStack カスタムリソースの例

前のステップで作成したシークレット。

TempoMonolithic カスタムリソースの例

前のステップで作成したシークレット。

関連情報

Install the Azure CLI on Linux (Azure ドキュメント)

3.2.3. Security Token Service を使用した Google Cloud ストレージのセットアップ

Google Cloud CLI を使用して、Security Token Service (STS) を利用する Google Cloud Storage (GCS)

apiVersion: tempo.grafana.com/v1alpha1
kind: TempoStack
metadata:
 name: <name>
 namespace: <namespace>
spec:
...
 storage:
 secret: 1
 name: <secret_name>
 type: azure
...

apiVersion: tempo.grafana.com/v1alpha1
kind: TempoMonolithic
metadata:
 name: <name>
 namespace: <namespace>
spec:
...
 storage:
 traces:
 backend: azure
 azure:
 secret: <secret_name> 1
...

OpenShift Container Platform 4.17 分散トレーシング

18

https://learn.microsoft.com/en-us/cli/azure/install-azure-cli-linux

1

2

Google Cloud CLI を使用して、Security Token Service (STS) を利用する Google Cloud Storage (GCS)
をセットアップできます。

重要

GCS および STS を使用した Distributed Tracing Platform の使用は、テクノロジープレ
ビュー機能です。テクノロジープレビュー機能は、Red Hat 製品のサービスレベルアグ
リーメント (SLA) の対象外であり、機能的に完全ではないことがあります。Red Hat
は、実稼働環境でこれらを使用することを推奨していません。テクノロジープレビュー
機能は、最新の製品機能をいち早く提供して、開発段階で機能のテストを行い、フィー
ドバックを提供していただくことを目的としています。

Red Hat のテクノロジープレビュー機能のサポート範囲に関する詳細は、以下のリンク
を参照してください。

テクノロジープレビュー機能のサポート範囲

前提条件

Google Cloud CLI の最新バージョンがインストールされている。

手順

1. Google Cloud に GCS バケットを作成します。

2. Google の Identity and Access Management (IAM) を使用して、サービスアカウントを作成ま
たは再利用します。

Google Cloud 上のサービスアカウントの名前。

Google Cloud 上のサービスアカウントのプロジェクト ID。

3. 必要な Google Cloud ロールを、プロジェクトレベルで作成されたサービスアカウントにバイ
ンドします。これを行うには、次のコマンドを実行します。

4. クラスターに関連付けられている Google Cloud Workload Identity Pool の POOL_ID 値を取得
します。この値を取得する方法は環境によって異なるため、次のコマンドは単なる例です。

SERVICE_ACCOUNT_EMAIL=$(gcloud iam service-accounts create
<iam_service_account_name> \ 1
 --display-name="Tempo Account" \
 --project <project_id> \ 2
 --format='value(email)' \
 --quiet)

$ gcloud projects add-iam-policy-binding <project_id> \
 --member "serviceAccount:$SERVICE_ACCOUNT_EMAIL" \
 --role "roles/storage.objectAdmin"

$ OIDC_ISSUER=$(oc get authentication.config cluster -o
jsonpath='{.spec.serviceAccountIssuer}') \
&&
 POOL_ID=$(echo "$OIDC_ISSUER" | awk -F'/' '{print $NF}' | sed 's/-oidc$//')

第3章 DISTRIBUTED TRACING PLATFORM のインストール

19

https://access.redhat.com/support/offerings/techpreview/

1

1

2

5. IAM ポリシーバインディングを追加します。これを行うには、次のコマンドを実行します。

$SERVICE_ACCOUNT_EMAIL は、ステップ 2 のコマンドの出力です。

6. TempoStack カスタムリソースで使用するストレージシークレットの key.json キーの認証情
報ファイルを作成します。これを行うには、次のコマンドを実行します。

Operator はこのパスからトークンをマウントするため、credential-source-file パラメー
ターは常に /var/run/secrets/storage/serviceaccount/token パスを指している必要があり
ます。

出力ファイルを保存するためのパス。

7. 次のコマンドを実行して、正しいオーディエンスを取得します。

8. 次のコマンドを実行して、Distributed Tracing Platform のストレージシークレットを作成しま
す。

$ gcloud iam service-accounts add-iam-policy-binding "$SERVICE_ACCOUNT_EMAIL" \ 1
 --role="roles/iam.workloadIdentityUser" \
 --
member="principal://iam.googleapis.com/projects/<project_number>/locations/global/workloadId
entityPools/<pool_id>/subject/system:serviceaccount:<tempo_namespace>:tempo-
<tempo_name>" \
 --project=<project_id> \
 --quiet \
&&
 gcloud iam service-accounts add-iam-policy-binding "$SERVICE_ACCOUNT_EMAIL" \
 --role="roles/iam.workloadIdentityUser" \
 --
member="principal://iam.googleapis.com/projects/<project_number>/locations/global/workloadId
entityPools/<pool_id>/subject/system:serviceaccount:<tempo_namespace>:tempo-
<tempo_name>-query-frontend" \
 --project=<project_id> \
 --quiet
&&
 gcloud storage buckets add-iam-policy-binding "gs://$BUCKET_NAME" \
 --role="roles/storage.admin" \
 --member="serviceAccount:$SERVICE_ACCOUNT_EMAIL" \
 --condition=None

$ gcloud iam workload-identity-pools create-cred-config \

"projects/<project_number>/locations/global/workloadIdentityPools/<pool_id>/providers/<provide
r_id>" \
 --service-account="$SERVICE_ACCOUNT_EMAIL" \
 --credential-source-file=/var/run/secrets/storage/serviceaccount/token \ 1
 --credential-source-type=text \
 --output-file=<output_file_path> 2

$ gcloud iam workload-identity-pools providers describe "$PROVIDER_NAME" --
format='value(oidc.allowedAudiences[0])'

OpenShift Container Platform 4.17 分散トレーシング

20

1

2

3

1

1

Google Cloud Storage のバケット名。

前のステップで取得したオーディエンス。

ステップ 6 で作成した認証情報ファイル。

9. オブジェクトストレージシークレットが作成されたら、Distributed Tracing Platform インスタ
ンスの関連するカスタムリソースを次のように更新します。

TempoStack カスタムリソースの例

前のステップで作成したシークレット。

TempoMonolithic カスタムリソースの例

前のステップで作成したシークレット。

関連情報

$ oc -n <tempo_namespace> create secret generic gcs-secret \
 --from-literal=bucketname="<bucket_name>" \ 1
 --from-literal=audience="<audience>" \ 2
 --from-file=key.json=<output_file_path> 3

apiVersion: tempo.grafana.com/v1alpha1
kind: TempoStack
metadata:
 name: <name>
 namespace: <namespace>
spec:
...
 storage:
 secret: 1
 name: <secret_name>
 type: gcs
...

apiVersion: tempo.grafana.com/v1alpha1
kind: TempoMonolithic
metadata:
 name: <name>
 namespace: <namespace>
spec:
...
 storage:
 traces:
 backend: gcs
 gcs:
 secret: <secret_name> 1
...

第3章 DISTRIBUTED TRACING PLATFORM のインストール

21

Install the gcloud CLI (Google Cloud ドキュメント)

Service accounts overview (Google Cloud ドキュメント)

3.2.4. IBM Cloud Object Storage の設定

OpenShift CLI (oc) を使用して IBM Cloud Object Storage をセットアップできます。

前提条件

OpenShift CLI (oc) の最新バージョンをインストールした。詳細は、設定: CLI ツール の
「OpenShift CLI の使用を開始する」を参照してください。

IBM Cloud Command Line Interface (ibmcloud) の最新バージョンをインストールした。詳細
は、IBM Cloud Docs の「Getting started with the IBM Cloud CLI」を参照してください。

IBM Cloud Object Storage を設定した。詳細は、IBM Cloud Docs の「Choosing a plan and
creating an instance」を参照してください。

IBM Cloud Platform アカウントを持っている。

IBM Cloud Object Storage のプランを発注した。

IBM Cloud Object Storage のインスタンスを作成した。

手順

1. IBM Cloud でオブジェクトストアバケットを作成します。

2. IBM Cloud で、次のコマンドを実行して、オブジェクトストアバケットに接続するためのサー
ビスキーを作成します。

3. IBM Cloud で、次のコマンドを実行して、バケット認証情報を含むシークレットを作成しま
す。

4. OpenShift Container Platform で、次のように、キーを使用してオブジェクトストレージシー
クレットを作成します。

$ ibmcloud resource service-key-create <tempo_bucket> Writer \
 --instance-name <tempo_bucket> --parameters '{"HMAC":true}'

$ oc -n <namespace> create secret generic <ibm_cos_secret> \
 --from-literal=bucket="<tempo_bucket>" \
 --from-literal=endpoint="<ibm_bucket_endpoint>" \
 --from-literal=access_key_id="<ibm_bucket_access_key>" \
 --from-literal=access_key_secret="<ibm_bucket_secret_key>"

apiVersion: v1
kind: Secret
metadata:
 name: <ibm_cos_secret>
stringData:
 bucket: <tempo_bucket>
 endpoint: <ibm_bucket_endpoint>

OpenShift Container Platform 4.17 分散トレーシング

22

https://cloud.google.com/sdk/docs/install
https://cloud.google.com/iam/docs/service-account-overview

1

5. OpenShift Container Platform で、TempoStack カスタムリソースのストレージセクションを
次のように設定します。

IBM Cloud Storage のアクセスキーとシークレットキーが含まれるシークレットの名前。

関連情報

OpenShift CLI の使用を開始する

Getting started with the IBM Cloud CLI (IBM Cloud Docs)

Choosing a plan and creating an instance (IBM Cloud Docs)

Getting started with IBM Cloud Object Storage: Before you begin (IBM Cloud Docs)

3.3. 権限とテナントの設定

TempoStack または TempoMonolithic インスタンスをインストールする前に、1 つ以上のテナントを
定義し、テナントの読み取りおよび書き込みアクセス権を設定する必要があります。このような認可設
定は、Kubernetes のロールベースアクセス制御 (RBAC) のクラスターロールとクラスターロールバイ
ンディングを使用して設定できます。デフォルトでは、どのユーザーにも読み取り権限または書き込み
権限は付与されません。詳細は、「テナントの読み取り権限の設定」および「テナントの書き込み権限
の設定」を参照してください。

注記

Red Hat build of OpenTelemetry の OpenTelemetry Collector は、データの書き込み用の
サービスアカウントと RBAC を使用して、トレースデータを TempoStack または
TempoMonolithic インスタンスに送信できます。

表3.2 認証および認可

Component Tempo Gateway
サービス

OpenShift OAuth TokenReview
API

SubjectAccess
Review API

Authentication X X X

 access_key_id: <ibm_bucket_access_key>
 access_key_secret: <ibm_bucket_secret_key>
type: Opaque

apiVersion: tempo.grafana.com/v1alpha1
kind: TempoStack
...
spec:
...
 storage:
 secret:
 name: <ibm_cos_secret> 1
 type: s3
...

第3章 DISTRIBUTED TRACING PLATFORM のインストール

23

https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/cli_tools/#cli-getting-started
https://cloud.ibm.com/docs/cli?topic=cli-getting-started
https://cloud.ibm.com/docs/cloud-object-storage?topic=cloud-object-storage-provision
https://cloud.ibm.com/docs/cloud-object-storage?topic=cloud-object-storage-getting-started-cloud-object-storage&q=credential&tags=cloud-object-storage&offset=10#getting-started

1

2

認可 X X

Component Tempo Gateway
サービス

OpenShift OAuth TokenReview
API

SubjectAccess
Review API

3.3.1. テナントの読み取り権限の設定

テナントの読み取り権限は、Web コンソールの Administrator ビューまたはコマンドラインから設定
できます。

前提条件

cluster-admin ロールを持つクラスター管理者として、OpenShift Container Platform Web コ
ンソールにログインしている。

Red Hat OpenShift Dedicated の場合、dedicated-admin ロールを持つアカウントを使用して
ログインしている。

手順

1. 任意の値を指定した tenantName および tenantId パラメーターを TempoStack カスタムリ
ソース (CR) に追加して、テナントを定義します。

TempoStack CR のテナントの例

ユーザーが選択した tenantName 値。

ユーザーが選択した tenantId 値。

2. トレースを読み取るための読み取り (get) 権限を持つクラスターロールにテナントを追加しま
す。

ClusterRole リソースの RBAC 設定の例

apiVersion: tempo.grafana.com/v1alpha1
kind: TempoStack
metadata:
 name: redmetrics
spec:
...
 tenants:
 mode: openshift
 authentication:
 - tenantName: dev 1
 tenantId: "1610b0c3-c509-4592-a256-a1871353dbfa" 2
...

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:

OpenShift Container Platform 4.17 分散トレーシング

24

1

2

1

この例では、前のステップで tenantName パラメーターを使用して定義したテナント
(dev および prod) をリストします。

リストしたテナントの読み取り操作を有効にします。

3. 上記ステップのクラスターロールのクラスターロールバインディングを定義して、認証された
ユーザーにトレースデータの読み取り権限を付与します。

ClusterRoleBinding リソースの RBAC 設定の例

認証されたユーザー全員に、トレースデータの読み取り権限を付与します。

3.3.2. テナントの書き込み権限の設定

テナントの書き込み権限は、Web コンソールの Administrator ビューまたはコマンドラインから設定
できます。

前提条件

cluster-admin ロールを持つクラスター管理者として、OpenShift Container Platform Web コ
ンソールにログインしている。

Red Hat OpenShift Dedicated の場合、dedicated-admin ロールを持つアカウントを使用して
ログインしている。

OpenTelemetry Collector をインストールし、権限を持つ許可済みのサービスアカウントを使

 name: tempostack-traces-reader
rules:
 - apiGroups:
 - 'tempo.grafana.com'
 resources: 1
 - dev
 - prod
 resourceNames:
 - traces
 verbs:
 - 'get' 2

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 name: tempostack-traces-reader
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: tempostack-traces-reader
subjects:
 - kind: Group
 apiGroup: rbac.authorization.k8s.io
 name: system:authenticated 1

第3章 DISTRIBUTED TRACING PLATFORM のインストール

25

1

2

OpenTelemetry Collector をインストールし、権限を持つ許可済みのサービスアカウントを使
用するように Collector を設定した。詳細は、Red Hat build of OpenTelemetry ドキュメントの
「必要な RBAC リソースの自動作成」を参照してください。

手順

1. OpenTelemetry Collector で使用するためのサービスアカウントを作成します。

2. トレースを書き込むための書き込み (create) 権限を持つクラスターロールにテナントを追加し
ます。

ClusterRole リソースの RBAC 設定の例

テナントをリスト表示します。

書き込み操作を有効にします。

3. OpenTelemetry Collector のサービスアカウントを割り当てるためのクラスターロールバイン
ディングを定義して、OpenTelemetry Collector に書き込み権限を付与します。

ClusterRoleBinding リソースの RBAC 設定の例

apiVersion: v1
kind: ServiceAccount
metadata:
 name: otel-collector
 namespace: <project_of_opentelemetry_collector_instance>

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 name: tempostack-traces-write
rules:
 - apiGroups:
 - 'tempo.grafana.com'
 resources: 1
 - dev
 resourceNames:
 - traces
 verbs:
 - 'create' 2

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 name: tempostack-traces
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: tempostack-traces-write
subjects:

OpenShift Container Platform 4.17 分散トレーシング

26

1 前のステップで作成したサービスアカウント。これは、クライアントがトレースデータを
エクスポートするときに使用されます。

4. OpenTelemetryCollector カスタムリソースを次のように設定します。

トレーシングパイプラインサービスに、bearertokenauth エクステンションと有効なトー
クンを追加します。

otlp/otlphttp エクスポーターにテナント名を X-Scope-OrgID ヘッダーとして追加します。

有効な認証局ファイルを使用して TLS を有効にします。

OpenTelemetry CR 設定のサンプル

 - kind: ServiceAccount
 name: otel-collector 1
 namespace: otel

apiVersion: opentelemetry.io/v1beta1
kind: OpenTelemetryCollector
metadata:
 name: cluster-collector
 namespace: <project_of_tempostack_instance>
spec:
 mode: deployment
 serviceAccount: otel-collector 1
 config: |
 extensions:
 bearertokenauth: 2
 filename: "/var/run/secrets/kubernetes.io/serviceaccount/token" 3
 exporters:
 otlp/dev: 4
 endpoint: sample-gateway.tempo.svc.cluster.local:8090
 tls:
 insecure: false
 ca_file: "/var/run/secrets/kubernetes.io/serviceaccount/service-ca.crt" 5
 auth:
 authenticator: bearertokenauth
 headers:
 X-Scope-OrgID: "dev" 6
 otlphttp/dev: 7
 endpoint: https://sample-gateway.
<project_of_tempostack_instance>.svc.cluster.local:8080/api/traces/v1/dev
 tls:
 insecure: false
 ca_file: "/var/run/secrets/kubernetes.io/serviceaccount/service-ca.crt"
 auth:
 authenticator: bearertokenauth
 headers:
 X-Scope-OrgID: "dev"
 service:
 extensions: [bearertokenauth]
 pipelines:
 traces:

第3章 DISTRIBUTED TRACING PLATFORM のインストール

27

1

2

3

4

5

6

7

8

書き込み権限が設定されたサービスアカウント。

サービスアカウントトークンを使用するためのベアラートークンエクステンション。

サービスアカウントトークン。このトークンは、ベアラートークンヘッダーとして、
クライアントによりトレーシングパイプラインサービスに送信されます。

OTLP gRPC Exporter (otlp/dev) または OTLP HTTP Exporter (otlphttp/dev) のいず
れかを指定します。

有効なサービス CA ファイルを使用して TLS を有効にします。

テナント名を含むヘッダー。

OTLP gRPC Exporter (otlp/dev) または OTLP HTTP Exporter (otlphttp/dev) のいず
れかを指定します。

CR の exporters セクションで指定したエクスポーター。

関連情報

必要な RBAC リソースの自動作成

3.4. TEMPOSTACK インスタンスのインストール

TempoStack インスタンスは、Web コンソールまたはコマンドラインを使用してインストールできま
す。

3.4.1. Web コンソールを使用した TempoStack インスタンスのインストール

Web コンソールの Administrator ビューから TempoStack インスタンスをインストールできます。

前提条件

cluster-admin ロールを持つクラスター管理者として、OpenShift Container Platform Web コ
ンソールにログインしている。

Red Hat OpenShift Dedicated の場合、dedicated-admin ロールを持つアカウントを使用して
ログインしている。

サポートされているプロバイダーによる必要なオブジェクトストレージ Red Hat OpenShift
Data Foundation、MinIO、Amazon S3、Azure Blob Storage、Google Cloud Storage の設定が
完了している。詳細は、「オブジェクトストレージのセットアップ」を参照してください。

 exporters: [otlp/dev] 8

...

OpenShift Container Platform 4.17 分散トレーシング

28

https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/red_hat_build_of_opentelemetry/#install-otel
https://www.redhat.com/en/technologies/cloud-computing/openshift-data-foundation
https://min.io/
https://aws.amazon.com/s3/
https://azure.microsoft.com/en-us/products/storage/blobs/
https://cloud.google.com/storage/

警告

オブジェクトストレージは必須ですが、Distributed Tracing Platform には
含まれていません。Distributed Tracing Platform をインストールする前
に、サポートされているプロバイダーによるオブジェクトストレージを選
択して設定する必要があります。

1 つ以上のテナントを定義し、読み取りおよび書き込み権限を設定した。詳細は、「テナントの
読み取り権限の設定」および「テナントの書き込み権限の設定」を参照してください。

手順

1. Home → Projects → Create Project に移動して、後続のステップで作成する TempoStack イ
ンスタンス用に、許可される任意のプロジェクトを作成します。openshift- 接頭辞で始まるプ
ロジェクト名は許可されません。

2. Workloads → Secrets → Create → From YAML に移動して、TempoStack インスタンス用に
作成したプロジェクトに、オブジェクトストレージバケットのシークレットを作成します。詳
細は、「オブジェクトストレージのセットアップ」を参照してください。

Amazon S3 および MinIO ストレージのシークレット例

3. TempoStack インスタンスを作成します。

注記

同じクラスター上の別々のプロジェクトに、複数の TempoStack インスタンス
を作成できます。

a. Operators → Installed Operators に移動します。

b. TempoStack → Create TempoStack → YAML view の順に選択します。

c. YAML view で、TempoStack カスタムリソース (CR) をカスタマイズします。

AWS S3 および MinIO ストレージと 2 つのテナント用の TempoStack CR の例



apiVersion: v1
kind: Secret
metadata:
 name: minio-test
stringData:
 endpoint: http://minio.minio.svc:9000
 bucket: tempo
 access_key_id: tempo
 access_key_secret: <secret>
type: Opaque

apiVersion: tempo.grafana.com/v1alpha1

第3章 DISTRIBUTED TRACING PLATFORM のインストール

29

1

2

3

4

5

6

7

8

9

この CR は、HTTP および OpenTelemetry Protocol (OTLP) 経由で Jaeger Thrift を受
信するように設定された TempoStack デプロイメントを作成します。

TempoStack デプロイメント用に選択したプロジェクト。openshift- 接頭辞で始まる
プロジェクト名は許可されません。

Red Hat は、Red Hat OpenShift Distributed Tracing Platform ドキュメントに記載さ
れているカスタムリソースオプションのみをサポートしています。

トレースを保存するためのストレージを指定します。

前提条件の 1 つとして設定したオブジェクトストレージ用に、ステップ 2 で作成した
シークレット。

シークレットの metadata セクションにある name フィールドの値。たとえ
ば、minio です。

この値には、Azure Blob Storage の場合は azure、Google Cloud Storage の場合は
gcs、Amazon S3、MinIO、または Red Hat OpenShift Data Foundation の場合は s3
を使用できます。たとえば、s3 です。

Tempo Write-Ahead Logging (WAL) の永続ボリューム要求のサイズ。デフォルトは
10Gi です。たとえば、1Gi のように指定します。

任意。

kind: TempoStack 1
metadata:
 name: simplest
 namespace: <permitted_project_of_tempostack_instance> 2
spec: 3
 storage: 4
 secret: 5
 name: <secret_name> 6
 type: <secret_provider> 7
 storageSize: <value>Gi 8
 resources: 9
 total:
 limits:
 memory: 2Gi
 cpu: 2000m
 tenants:
 mode: openshift 10
 authentication: 11
 - tenantName: dev 12
 tenantId: "1610b0c3-c509-4592-a256-a1871353dbfa" 13
 - tenantName: prod
 tenantId: "1610b0c3-c509-4592-a256-a1871353dbfb"
 template:
 gateway:
 enabled: true 14
 queryFrontend:
 jaegerQuery:
 enabled: true 15

OpenShift Container Platform 4.17 分散トレーシング

30

10

11

12

13

14

15

値は openshift である必要があります。

テナントのリスト。

テナント名。X-Scope-OrgId HTTP ヘッダーの値として使用されます。

テナントの一意の識別子。TempoStack デプロイメントのライフサイクル全体を通じ
て一意である必要があります。Distributed Tracing Platform は、この ID を使用して、
オブジェクトストレージ内のオブジェクトに接頭辞を付けます。UUID または
tempoName フィールドの値を再利用できます。

認証と認可を実行するゲートウェイを有効にします。

http://<gateway_ingress>/api/traces/v1/<tenant_name>/search のルート経由で、
データを視覚化する Jaeger UI を公開します。

d. Create を選択します。

検証

1. Project: ドロップダウンリストを使用して、TempoStack インスタンスのプロジェクトを選択
します。

2. Operators → Installed Operators に移動して、TempoStack インスタンスの Status が
Condition: Ready であることを確認します。

3. Workloads → Pods に移動して、TempoStack インスタンスのすべてのコンポーネント Pod が
稼働していることを確認します。

4. Tempo コンソールにアクセスします。

a. Networking → Routes に移動し、Ctrl+F で tempo を検索します。

b. Location 列で URL を開き、Tempo コンソールにアクセスします。

注記

Tempo コンソールをインストールした直後は、Tempo コンソールにトレー
スデータは表示されません。

3.4.2. CLI を使用した TempoStack インスタンスのインストール

コマンドラインから TempoStack インスタンスをインストールできます。

前提条件

cluster-admin ロールを持つクラスター管理者によるアクティブな OpenShift CLI (oc) セッ
ション。

ヒント

第3章 DISTRIBUTED TRACING PLATFORM のインストール

31

1

ヒント

OpenShift CLI (oc) のバージョンが最新であり、OpenShift Container Platform バージョン
と一致していることを確認してください。

oc login コマンドを実行します。

サポートされているプロバイダーによる必要なオブジェクトストレージ Red Hat OpenShift
Data Foundation、MinIO、Amazon S3、Azure Blob Storage、Google Cloud Storage の設定が
完了している。詳細は、「オブジェクトストレージのセットアップ」を参照してください。

警告

オブジェクトストレージは必須ですが、Distributed Tracing Platform には
含まれていません。Distributed Tracing Platform をインストールする前
に、サポートされているプロバイダーによるオブジェクトストレージを選
択して設定する必要があります。

1 つ以上のテナントを定義し、読み取りおよび書き込み権限を設定した。詳細は、「テナントの
読み取り権限の設定」および「テナントの書き込み権限の設定」を参照してください。

手順

1. 次のコマンドを実行して、後続のステップで作成する TempoStack インスタンス用に、許可さ
れる任意のプロジェクトを作成します。

openshift- 接頭辞で始まるプロジェクト名は許可されません。

2. TempoStack インスタンス用に作成したプロジェクトで、次のコマンドを実行して、オブジェ
クトストレージバケットのシークレットを作成します。

詳細は、「オブジェクトストレージのセットアップ」を参照してください。

Amazon S3 および MinIO ストレージのシークレット例

$ oc login --username=<your_username>



$ oc apply -f - << EOF
apiVersion: project.openshift.io/v1
kind: Project
metadata:
 name: <permitted_project_of_tempostack_instance> 1
EOF

$ oc apply -f - << EOF
<object_storage_secret>
EOF

OpenShift Container Platform 4.17 分散トレーシング

32

https://www.redhat.com/en/technologies/cloud-computing/openshift-data-foundation
https://min.io/
https://aws.amazon.com/s3/
https://azure.microsoft.com/en-us/products/storage/blobs/
https://cloud.google.com/storage/

3. TempoStack インスタンス用に作成したプロジェクトに TempoStack インスタンスを作成しま
す。

注記

同じクラスター上の別々のプロジェクトに、複数の TempoStack インスタンス
を作成できます。

a. TempoStack カスタムリソース (CR) をカスタマイズします。

AWS S3 および MinIO ストレージと 2 つのテナント用の TempoStack CR の例

apiVersion: v1
kind: Secret
metadata:
 name: minio-test
stringData:
 endpoint: http://minio.minio.svc:9000
 bucket: tempo
 access_key_id: tempo
 access_key_secret: <secret>
type: Opaque

apiVersion: tempo.grafana.com/v1alpha1
kind: TempoStack 1
metadata:
 name: simplest
 namespace: <permitted_project_of_tempostack_instance> 2
spec: 3
 storage: 4
 secret: 5
 name: <secret_name> 6
 type: <secret_provider> 7
 storageSize: <value>Gi 8
 resources: 9
 total:
 limits:
 memory: 2Gi
 cpu: 2000m
 tenants:
 mode: openshift 10
 authentication: 11
 - tenantName: dev 12
 tenantId: "1610b0c3-c509-4592-a256-a1871353dbfa" 13
 - tenantName: prod
 tenantId: "1610b0c3-c509-4592-a256-a1871353dbfb"
 template:
 gateway:
 enabled: true 14
 queryFrontend:
 jaegerQuery:
 enabled: true 15

第3章 DISTRIBUTED TRACING PLATFORM のインストール

33

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

この CR は、HTTP および OpenTelemetry Protocol (OTLP) 経由で Jaeger Thrift を受
信するように設定された TempoStack デプロイメントを作成します。

TempoStack デプロイメント用に選択したプロジェクト。openshift- 接頭辞で始まる
プロジェクト名は許可されません。

Red Hat は、Red Hat OpenShift Distributed Tracing Platform ドキュメントに記載さ
れているカスタムリソースオプションのみをサポートしています。

トレースを保存するためのストレージを指定します。

前提条件の 1 つとして設定したオブジェクトストレージ用に、ステップ 2 で作成した
シークレット。

シークレットの metadata セクションにある name フィールドの値。たとえ
ば、minio です。

この値には、Azure Blob Storage の場合は azure、Google Cloud Storage の場合は
gcs、Amazon S3、MinIO、または Red Hat OpenShift Data Foundation の場合は s3
を使用できます。たとえば、s3 です。

Tempo Write-Ahead Logging (WAL) の永続ボリューム要求のサイズ。デフォルトは
10Gi です。たとえば、1Gi のように指定します。

任意。

値は openshift である必要があります。

テナントのリスト。

テナント名。X-Scope-OrgId HTTP ヘッダーの値として使用されます。

テナントの一意の識別子。TempoStack デプロイメントのライフサイクル全体を通じ
て一意である必要があります。Distributed Tracing Platform は、この ID を使用して、
オブジェクトストレージ内のオブジェクトに接頭辞を付けます。UUID または
tempoName フィールドの値を再利用できます。

認証と認可を実行するゲートウェイを有効にします。

http://<gateway_ingress>/api/traces/v1/<tenant_name>/search のルート経由で、
データを視覚化する Jaeger UI を公開します。

b. 次のコマンドを実行して、カスタマイズされた CR を適用します。

検証

1. 次のコマンドを実行して、すべての TempoStack components の status が
Running、conditions が type: Ready になっていることを確認します。

$ oc apply -f - << EOF
<tempostack_cr>
EOF

$ oc get tempostacks.tempo.grafana.com simplest -o yaml

OpenShift Container Platform 4.17 分散トレーシング

34

2. 次のコマンドを実行して、すべての TempoStack コンポーネント Pod が稼働していることを
確認します。

3. Tempo コンソールにアクセスします。

a. 以下のコマンドを実行してルートの詳細をクエリーします。

b. Web ブラウザーで https://<route_from_previous_step> を開きます。

注記

Tempo コンソールをインストールした直後は、Tempo コンソールにトレー
スデータは表示されません。

3.5. TEMPOMONOLITHIC インスタンスのインストール

重要

TempoMonolithic インスタンスは、テクノロジープレビュー機能です。テクノロジープ
レビュー機能は、Red Hat 製品のサービスレベルアグリーメント (SLA) の対象外であ
り、機能的に完全ではないことがあります。Red Hat は、実稼働環境でこれらを使用す
ることを推奨していません。テクノロジープレビュー機能は、最新の製品機能をいち早
く提供して、開発段階で機能のテストを行い、フィードバックを提供していただくこと
を目的としています。

Red Hat のテクノロジープレビュー機能のサポート範囲に関する詳細は、以下のリンク
を参照してください。

テクノロジープレビュー機能のサポート範囲

TempoMonolithic インスタンスは、Web コンソールまたはコマンドラインを使用してインストールで
きます。

TempoMonolithic カスタムリソース (CR) は、モノリシックモードで Tempo デプロイメントを作成し
ます。コンパクター、ディストリビューター、インジェスター、クエリアー、クエリーフロントエンド
など、Tempo デプロイメントのすべてのコンポーネントが、単一のコンテナーに含まれます。

TempoMonolithic インスタンスは、インメモリーストレージ、永続ボリューム、またはオブジェクト
ストレージへのトレースの保存をサポートしています。

小規模なデプロイメント、デモンストレーション、テストには、モノリシックモードでの Tempo デプ
ロイメントが適しています。

注記

Tempo のモノリシックデプロイメントは水平方向にスケーリングできません。水平ス
ケーリングが必要な場合は、マイクロサービスモードでの Tempo デプロイメント用の
TempoStack CR を使用してください。

$ oc get pods

$ oc get route

第3章 DISTRIBUTED TRACING PLATFORM のインストール

35

https://access.redhat.com/support/offerings/techpreview/

3.5.1. Web コンソールを使用した TempoMonolithic インスタンスのインストール

重要

TempoMonolithic インスタンスは、テクノロジープレビュー機能です。テクノロジープ
レビュー機能は、Red Hat 製品のサービスレベルアグリーメント (SLA) の対象外であ
り、機能的に完全ではないことがあります。Red Hat は、実稼働環境でこれらを使用す
ることを推奨していません。テクノロジープレビュー機能は、最新の製品機能をいち早
く提供して、開発段階で機能のテストを行い、フィードバックを提供していただくこと
を目的としています。

Red Hat のテクノロジープレビュー機能のサポート範囲に関する詳細は、以下のリンク
を参照してください。

テクノロジープレビュー機能のサポート範囲

Web コンソールの Administrator ビューから TempoMonolithic インスタンスをインストールできま
す。

前提条件

cluster-admin ロールを持つクラスター管理者として、OpenShift Container Platform Web コ
ンソールにログインしている。

Red Hat OpenShift Dedicated の場合、dedicated-admin ロールを持つアカウントを使用して
ログインしている。

1 つ以上のテナントを定義し、読み取りおよび書き込み権限を設定した。詳細は、「テナントの
読み取り権限の設定」および「テナントの書き込み権限の設定」を参照してください。

手順

1. Home → Projects → Create Project に移動して、後続のステップで作成する
TempoMonolithic インスタンス用に、許可される任意のプロジェクトを作成しま
す。openshift- 接頭辞で始まるプロジェクト名は許可されません。

2. トレースの保存に使用するサポート対象のストレージのタイプ (インメモリーストレージ、永続
ボリューム、オブジェクトストレージ) を決定します。

重要

OpenShift Container Platform 4.17 分散トレーシング

36

https://access.redhat.com/support/offerings/techpreview/

重要

オブジェクトストレージは、Distributed Tracing Platform には含まれていませ
ん。そのため、サポートされているプロバイダー (Red Hat OpenShift Data
Foundation、MinIO、Amazon S3、Azure Blob Storage、または Google Cloud
Storage) によるオブジェクトストアを設定する必要があります。

また、オブジェクトストレージを選択するには、TempoMonolithic インスタン
ス用に作成したプロジェクトにオブジェクトストレージバケットのシークレット
を作成する必要があります。これは、Workloads → Secrets → Create → From
YAML で実行できます。

詳細は、「オブジェクトストレージのセットアップ」を参照してください。

Amazon S3 および MinIO ストレージのシークレット例

3. TempoMonolithic インスタンスを作成します。

注記

同じクラスター上の別々のプロジェクトに複数の TempoMonolithic インスタン
スを作成できます。

a. Operators → Installed Operators に移動します。

b. TempoMonolithic → Create TempoMonolithic → YAML view を選択します。

c. YAML view で、TempoMonolithic カスタムリソース (CR) をカスタマイズします。

TempoMonolithic CR の例

apiVersion: v1
kind: Secret
metadata:
 name: minio-test
stringData:
 endpoint: http://minio.minio.svc:9000
 bucket: tempo
 access_key_id: tempo
 access_key_secret: <secret>
type: Opaque

apiVersion: tempo.grafana.com/v1alpha1
kind: TempoMonolithic 1
metadata:
 name: <metadata_name>
 namespace: <permitted_project_of_tempomonolithic_instance> 2
spec: 3
 storage: 4
 traces:
 backend: <supported_storage_type> 5
 size: <value>Gi 6
 s3: 7

第3章 DISTRIBUTED TRACING PLATFORM のインストール

37

https://www.redhat.com/en/technologies/cloud-computing/openshift-data-foundation
https://min.io/
https://aws.amazon.com/s3/
https://azure.microsoft.com/en-us/products/storage/blobs/
https://cloud.google.com/storage/

1

2

3

4

5

6

7

8

この CR は、OTLP プロトコルでトレースの取り込みを行う TempoMonolithic デプ
ロイメントを作成します。

TempoMonolithic デプロイメント用に選択したプロジェクト。openshift- 接頭辞で
始まるプロジェクト名は許可されません。

Red Hat は、Red Hat OpenShift Distributed Tracing Platform ドキュメントに記載さ
れているカスタムリソースオプションのみをサポートしています。

トレースを保存するためのストレージを指定します。

トレースを保存するストレージのタイプ (インメモリーストレージ、永続ボリュー
ム、またはオブジェクトストレージ)。永続ボリュームの値は pv です。オブジェクト
ストレージの値は、使用するオブジェクトストアのタイプに応じて、s3、gcs、また
は azure が受け入れられます。デフォルト値は、tmpfs インメモリーストレージの
memory です。これは、Pod がシャットダウンするとデータが保持されないため、開
発、テスト、デモ、および概念検証用の環境にのみ適しています。

メモリーサイズ: インメモリーストレージの場合、これは tmpfs ボリュームのサイズ
を意味します。デフォルトは 2Gi です。永続ボリュームの場合、これは永続ボリュー
ム要求のサイズを意味します。デフォルトは 10Gi です。オブジェクトストレージの
場合、これは Tempo Write-Ahead Logging (WAL) の永続ボリューム要求のサイズを
意味し、デフォルトは 10Gi です。

オプション: オブジェクトストレージの場合、オブジェクトストレージのタイプ。使用
するオブジェクトストアのタイプに応じて、s3、gcs、および azure が値として受け
入れられます。

オプション: オブジェクトストレージの場合、ストレージシークレットの metadata 内
の name の値。ストレージシークレットは、TempoMonolithic インスタンスと同じ
namespace にあり、「表 1.必要なシークレットパラメーター」(「オブジェクトスト
レージのセットアップ」セクションを参照) で指定えているフィールドを含んでいる

 secret: <secret_name> 8
 tls: 9
 enabled: true
 caName: <ca_certificate_configmap_name> 10
 jaegerui:
 enabled: true 11
 route:
 enabled: true 12
 resources: 13
 total:
 limits:
 memory: <value>Gi
 cpu: <value>m
 multitenancy:
 enabled: true
 mode: openshift
 authentication: 14
 - tenantName: dev 15
 tenantId: "1610b0c3-c509-4592-a256-a1871353dbfa" 16
 - tenantName: prod
 tenantId: "1610b0c3-c509-4592-a256-a1871353dbfb"

OpenShift Container Platform 4.17 分散トレーシング

38

9

10

11

12

13

14

15

16

必要があります。

オプション:

オプション: CA 証明書を含む ConfigMap オブジェクトの名前。

http://<gateway_ingress>/api/traces/v1/<tenant_name>/search のルート経由で、
データを視覚化する Jaeger UI を公開します。

Jaeger UI のルートの作成を有効にします。

任意。

テナントをリスト表示します。

テナント名。X-Scope-OrgId HTTP ヘッダーの値として使用されます。

テナントの一意の識別子。TempoMonolithic デプロイメントのライフサイクル全体を
通じて一意である必要があります。この ID は、オブジェクトストレージ内のオブジェ
クトの接頭辞として追加されます。UUID または tempoName フィールドの値を再利
用できます。

d. Create を選択します。

検証

1. Project: ドロップダウンリストを使用して、TempoMonolithic インスタンスのプロジェクトを
選択します。

2. Operator → Installed Operator に移動して、TempoMonolithic インスタンスの Status が
Condition: Ready であることを確認します。

3. Workloads → Pod に移動して、TempoMonolithic インスタンスの Pod が実行中であることを
確認します。

4. Jaeger UI にアクセスします。

a. Networking → Routes に移動し、Ctrl+F を押して jaegerui を検索します。

注記

Jaeger UI は、tempo-<metadata_name_of_TempoMonolithic_CR>-
jaegerui ルートを使用します。

b. Location 列で URL を開き、Jaeger UI にアクセスします。

5. TempoMonolithic インスタンスの Pod の準備ができたら、クラスター内の tempo-
<metadata_name_of_TempoMonolithic_CR>:4317 (OTLP/gRPC) および tempo-
<metadata_name_of_TempoMonolithic_CR>:4318 (OTLP/HTTP) エンドポイントにトレー
スを送信できます。
Tempo API は、クラスター内の tempo-<metadata_name_of_TempoMonolithic_CR>:3200
エンドポイントで利用できます。

3.5.2. CLI を使用した TempoMonolithic インスタンスのインストール

第3章 DISTRIBUTED TRACING PLATFORM のインストール

39

1

重要

TempoMonolithic インスタンスは、テクノロジープレビュー機能です。テクノロジープ
レビュー機能は、Red Hat 製品のサービスレベルアグリーメント (SLA) の対象外であ
り、機能的に完全ではないことがあります。Red Hat は、実稼働環境でこれらを使用す
ることを推奨していません。テクノロジープレビュー機能は、最新の製品機能をいち早
く提供して、開発段階で機能のテストを行い、フィードバックを提供していただくこと
を目的としています。

Red Hat のテクノロジープレビュー機能のサポート範囲に関する詳細は、以下のリンク
を参照してください。

テクノロジープレビュー機能のサポート範囲

コマンドラインから TempoMonolithic インスタンスをインストールできます。

前提条件

cluster-admin ロールを持つクラスター管理者によるアクティブな OpenShift CLI (oc) セッ
ション。

ヒント

OpenShift CLI (oc) のバージョンが最新であり、OpenShift Container Platform バージョン
と一致していることを確認してください。

oc login コマンドを実行します。

1 つ以上のテナントを定義し、読み取りおよび書き込み権限を設定した。詳細は、「テナントの
読み取り権限の設定」および「テナントの書き込み権限の設定」を参照してください。

手順

1. 次のコマンドを実行して、後続のステップで作成する TempoMonolithic インスタンス用に、
許可される任意のプロジェクトを作成します。

openshift- 接頭辞で始まるプロジェクト名は許可されません。

2. トレースの保存に使用するサポート対象のストレージのタイプ (インメモリーストレージ、永続
ボリューム、オブジェクトストレージ) を決定します。

重要

$ oc login --username=<your_username>

$ oc apply -f - << EOF
apiVersion: project.openshift.io/v1
kind: Project
metadata:
 name: <permitted_project_of_tempomonolithic_instance> 1
EOF

OpenShift Container Platform 4.17 分散トレーシング

40

https://access.redhat.com/support/offerings/techpreview/

重要

オブジェクトストレージは、Distributed Tracing Platform には含まれていませ
ん。そのため、サポートされているプロバイダー (Red Hat OpenShift Data
Foundation、MinIO、Amazon S3、Azure Blob Storage、または Google Cloud
Storage) によるオブジェクトストアを設定する必要があります。

また、オブジェクトストレージを選択するには、TempoMonolithic インスタン
ス用に作成したプロジェクトにオブジェクトストレージバケットのシークレット
を作成する必要があります。これを行うには、次のコマンドを実行します。

詳細は、「オブジェクトストレージのセットアップ」を参照してください。

Amazon S3 および MinIO ストレージのシークレット例

3. TempoMonolithic インスタンス用に作成したプロジェクト内に TempoMonolithic インスタン
スを作成します。

ヒント

同じクラスター上の別々のプロジェクトに複数の TempoMonolithic インスタンスを作成でき
ます。

a. TempoMonolithic カスタムリソース (CR) をカスタマイズします。

TempoMonolithic CR の例

$ oc apply -f - << EOF
<object_storage_secret>
EOF

apiVersion: v1
kind: Secret
metadata:
 name: minio-test
stringData:
 endpoint: http://minio.minio.svc:9000
 bucket: tempo
 access_key_id: tempo
 access_key_secret: <secret>
type: Opaque

apiVersion: tempo.grafana.com/v1alpha1
kind: TempoMonolithic 1
metadata:
 name: <metadata_name>
 namespace: <permitted_project_of_tempomonolithic_instance> 2
spec: 3
 storage: 4
 traces:
 backend: <supported_storage_type> 5
 size: <value>Gi 6

第3章 DISTRIBUTED TRACING PLATFORM のインストール

41

https://www.redhat.com/en/technologies/cloud-computing/openshift-data-foundation
https://min.io/
https://aws.amazon.com/s3/
https://azure.microsoft.com/en-us/products/storage/blobs/
https://cloud.google.com/storage/

1

2

3

4

5

6

7

8

この CR は、OTLP プロトコルでトレースの取り込みを行う TempoMonolithic デプ
ロイメントを作成します。

TempoMonolithic デプロイメント用に選択したプロジェクト。openshift- 接頭辞で
始まるプロジェクト名は許可されません。

Red Hat は、Red Hat OpenShift Distributed Tracing Platform ドキュメントに記載さ
れているカスタムリソースオプションのみをサポートしています。

トレースを保存するためのストレージを指定します。

トレースを保存するストレージのタイプ (インメモリーストレージ、永続ボリュー
ム、またはオブジェクトストレージ)。永続ボリュームの値は pv です。オブジェクト
ストレージの値は、使用するオブジェクトストアのタイプに応じて、s3、gcs、また
は azure が受け入れられます。デフォルト値は、tmpfs インメモリーストレージの
memory です。これは、Pod がシャットダウンするとデータが保持されないため、開
発、テスト、デモ、および概念検証用の環境にのみ適しています。

メモリーサイズ: インメモリーストレージの場合、これは tmpfs ボリュームのサイズ
を意味します。デフォルトは 2Gi です。永続ボリュームの場合、これは永続ボリュー
ム要求のサイズを意味します。デフォルトは 10Gi です。オブジェクトストレージの
場合、これは Tempo Write-Ahead Logging (WAL) の永続ボリューム要求のサイズを
意味し、デフォルトは 10Gi です。

オプション: オブジェクトストレージの場合、オブジェクトストレージのタイプ。使用
するオブジェクトストアのタイプに応じて、s3、gcs、および azure が値として受け
入れられます。

オプション: オブジェクトストレージの場合、ストレージシークレットの metadata 内
の name の値。ストレージシークレットは、TempoMonolithic インスタンスと同じ
namespace にあり、「表 1.必要なシークレットパラメーター」(「オブジェクトスト

 s3: 7
 secret: <secret_name> 8
 tls: 9
 enabled: true
 caName: <ca_certificate_configmap_name> 10
 jaegerui:
 enabled: true 11
 route:
 enabled: true 12
 resources: 13
 total:
 limits:
 memory: <value>Gi
 cpu: <value>m
 multitenancy:
 enabled: true
 mode: openshift
 authentication: 14
 - tenantName: dev 15
 tenantId: "1610b0c3-c509-4592-a256-a1871353dbfa" 16
 - tenantName: prod
 tenantId: "1610b0c3-c509-4592-a256-a1871353dbfb"

OpenShift Container Platform 4.17 分散トレーシング

42

9

10

11

12

13

14

15

16

レージのセットアップ」セクションを参照) で指定えているフィールドを含んでいる
必要があります。

オプション:

オプション: CA 証明書を含む ConfigMap オブジェクトの名前。

http://<gateway_ingress>/api/traces/v1/<tenant_name>/search のルート経由で、
データを視覚化する Jaeger UI を公開します。

Jaeger UI のルートの作成を有効にします。

任意。

テナントをリスト表示します。

テナント名。X-Scope-OrgId HTTP ヘッダーの値として使用されます。

テナントの一意の識別子。TempoMonolithic デプロイメントのライフサイクル全体を
通じて一意である必要があります。この ID は、オブジェクトストレージ内のオブジェ
クトの接頭辞として追加されます。UUID または tempoName フィールドの値を再利
用できます。

b. 次のコマンドを実行して、カスタマイズされた CR を適用します。

検証

1. 次のコマンドを実行して、すべての TempoMonolithic components の status が Running で
あり、conditions が type: Ready であることを確認します。

2. 次のコマンドを実行して、TempoMonolithic インスタンスの Pod が実行中であることを確認
します。

3. Jaeger UI にアクセスします。

a. 次のコマンドを実行して、tempo-<metadata_name_of_tempomonolithic_cr>-jaegerui
ルートのルート詳細をクエリーします。

b. Web ブラウザーで https://<route_from_previous_step> を開きます。

4. TempoMonolithic インスタンスの Pod の準備ができたら、クラスター内の tempo-
<metadata_name_of_tempomonolithic_cr>:4317 (OTLP/gRPC) および tempo-

$ oc apply -f - << EOF
<tempomonolithic_cr>
EOF

$ oc get tempomonolithic.tempo.grafana.com <metadata_name_of_tempomonolithic_cr> -o
yaml

$ oc get pods

$ oc get route

第3章 DISTRIBUTED TRACING PLATFORM のインストール

43

<metadata_name_of_tempomonolithic_cr>:4318 (OTLP/HTTP) エンドポイントにトレース
を送信できます。
Tempo API は、クラスター内の tempo-<metadata_name_of_tempomonolithic_cr>:3200 エ
ンドポイントで利用できます。

3.6. 関連情報

クラスター管理者の作成

OperatorHub.io

Web コンソールへのアクセス

Web コンソールを使用した OperatorHub からのインストール

インストールされた Operator からのアプリケーションの作成

OpenShift CLI の使用を開始する

OpenShift Container Platform 4.17 分散トレーシング

44

https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/postinstallation_configuration/#creating-cluster-admin_post-install-preparing-for-users
https://operatorhub.io/
https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/web_console/#web-console
https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/operators/#olm-installing-from-operatorhub-using-web-console_olm-adding-operators-to-a-cluster
https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/operators/#olm-creating-apps-from-installed-operators
https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/cli_tools/#getting-started-cli

1

第4章 DISTRIBUTED TRACING PLATFORM の設定
Tempo Operator は、Distributed Tracing Platform のリソースを作成およびデプロイするためのアーキ
テクチャーと設定を定義したカスタムリソース定義 (CRD) ファイルを使用します。デフォルト設定を
インストールすることも、ファイルを変更することもできます。

4.1. バックエンドストレージの設定

バックエンドストレージの設定は、永続ストレージについて および選択したストレージオプションに関
連する設定セクションを参照してください。

4.2. TEMPOSTACK 設定パラメーターの概要

TempoStack カスタムリソース (CR) は、Distributed Tracing Platform のリソースを作成するための
アーキテクチャーと設定を定義したものです。これらのパラメーターを変更して、実装をビジネスニー
ズに合わせてカスタマイズできます。

TempoStack CR の例

オブジェクトの作成時に使用する API バージョン。

apiVersion: tempo.grafana.com/v1alpha1 1
kind: TempoStack 2
metadata: 3
 name: <name> 4
spec: 5
 storage: {} 6
 resources: {} 7
 replicationFactor: 1 8
 retention: 9
 global:
 traces: 48h
 perTenant: {}
 template:
 distributor: {} 10
 ingester: {} 11
 compactor: {} 12
 querier: {} 13
 queryFrontend: {} 14
 gateway: {} 15
 limits: 16
 global:
 ingestion: {} 17
 query: {} 18
 observability: 19
 grafana: {}
 metrics: {}
 tracing: {}
 search: {} 20
 managementState: managed 21

第4章 DISTRIBUTED TRACING PLATFORM の設定

45

https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/storage/#understanding-persistent-storage

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

作成する Kubernetes オブジェクトの種類を定義します。

name の文字列、UID、オプションの namespace などのオブジェクトを一意に識別するデータ。
OpenShift Container Platform は UID を自動的に生成し、オブジェクトが作成されるプロジェクト
の名前で namespace を完了します。

TempoStack インスタンスの名前。

TempoStack インスタンスのすべての設定パラメーターが含まれます。すべての Tempo コンポー
ネントに共通の定義が必要な場合は、spec セクションで定義します。定義が個々のコンポーネン
トに関連している場合は、spec.template.<component> セクションに配置します。

ストレージはインスタンスのデプロイメント時に指定されます。インスタンスのストレージオプ
ションの詳細は、インストールページを参照してください。

Tempo コンテナーのコンピュートリソースを定義します。

スパンを受け入れる前にディストリビューターからのデータを確認する必要があるインジェスター
の数を表す整数値。

トレースの保持に関する設定オプション。デフォルト値は 48h です。

Tempo distributor コンポーネントの設定オプション。

Tempo ingester コンポーネントの設定オプション。

Tempo compactor コンポーネントの設定オプション。

Tempo querier コンポーネントの設定オプション。

Tempo query-frontend コンポーネントの設定オプション。

Tempo gateway コンポーネントの設定オプション。

取り込みとクエリーのレートを制限します。

取り込みの流量制御を定義します。

クエリーの流量制御を定義します。

テレメトリーデータを処理するためのオペランドを設定します。

検索機能を設定します。

この CR が Operator によって管理されるかどうかを定義します。デフォルト値は managed で
す。

表4.1 TempoStack CR のパラメーター

パラメーター 説明 値 デフォルト値

apiVersion: オブジェクトの作成時に
使用する API バージョ
ン。

tempo.grafana.com/
v1alpha1

tempo.grafana.com/
v1alpha1

OpenShift Container Platform 4.17 分散トレーシング

46

kind: 作成する Kubernetes オ
ブジェクトの種類を定義
します。

tempo

metadata: name の文字列、UID、
オプションの
namespace などのオ
ブジェクトを一意に識別
するデータ。

 OpenShift Container
Platform は UID を自動
的に生成し、オブジェク
トが作成されるプロジェ
クトの名前で
namespace を完了し
ます。

name: オブジェクトの名前。 TempoStack インスタン
スの名前。

tempo-all-in-one-
inmemory

spec: 作成するオブジェクトの
仕様。

TempoStack インスタン
スのすべての設定パラ
メーターが含まれていま
す。すべての Tempo コ
ンポーネントの共通定義
が必要な場合、spec
ノードで定義されます。
個々のコンポーネントに
関連する定義
は、spec.template.
<component> ノード
に置かれます。

該当なし

resources: TempoStack インスタン
スに割り当てられたリ
ソース。

storageSize: Ingester PVC のスト
レージサイズ。

replicationFactor: レプリケーション係数の
設定。

retention: トレースの保持に関する
設定オプション。

storage: ストレージを定義する設
定オプション。

template.distributor: Tempo ディストリ
ビューターの設定オプ
ション。

パラメーター 説明 値 デフォルト値

第4章 DISTRIBUTED TRACING PLATFORM の設定

47

template.ingester: Tempo インジェスター
の設定オプション。

template.compactor: Tempo コンパクターの
設定オプション。

template.querier: Tempo クエリアーの設
定オプション。

template.queryFront
end:

Tempo クエリーフロン
トエンドの設定オプショ
ン。

template.gateway: Tempo ゲートウェイの
設定オプション。

パラメーター 説明 値 デフォルト値

関連情報

TempoStack インスタンスのインストール

TempoMonolithic インスタンスのインストール

4.3. クエリー設定オプション

Distributed Tracing Platform の 2 つのコンポーネントであるクエリアーとクエリーフロントエンドがク
エリーを管理します。これらのコンポーネントは両方とも設定できます。

クエリアーコンポーネントは、インジェスターまたはバックエンドストレージで要求されたトレース ID
を検索します。設定されたパラメーターに応じて、クエリアーコンポーネントはインジェスターの両方
にクエリーを実行し、bloom またはインデックスをバックエンドからプルして、オブジェクトストレー
ジ内のブロックを検索できます。クエリアーコンポーネントは GET /querier/api/traces/<trace_id> で
HTTP エンドポイントを公開します。ただし、このエンドポイントを直接使用することは想定されてい
ません。クエリーはクエリーフロントエンドに送信する必要があります。

表4.2 クエリアーコンポーネントの設定パラメーター

パラメーター 説明 値

nodeSelector ノード選択制約の単純な形式。 type: object

replicas コンポーネントに対して作成され
るレプリカの数。

type: integer; format: int32

toleration コンポーネント固有の Pod 容認。 type: array

クエリーフロントエンドコンポーネントは、受信クエリーの検索スペースをシャーディングする役割を

OpenShift Container Platform 4.17 分散トレーシング

48

持ちます。クエリーフロントエンドは、単純な HTTP エンドポイント (GET /api/traces/<trace_id>) を
介してトレースを公開します。内部的には、クエリーフロントエンドコンポーネントは blockID スペー
スを設定可能な数のシャードに分割し、これらのリクエストをキューに登録します。クエリアーコン
ポーネントは、ストリーミング gRPC 接続を介してクエリーフロントエンドコンポーネントに接続し、
これらのシャードクエリーを処理します。

表4.3 クエリーフロントエンドコンポーネントの設定パラメーター

パラメーター 説明 値

component クエリーフロントエンドコンポー
ネントの設定。

type: object

component.nodeSelector ノード選択制約の単純な形式。 type: object

component.replicas クエリーフロントエンドコンポー
ネントに対して作成されるレプリ
カの数。

type: integer; format: int32

component.tolerations クエリーフロントエンドコンポー
ネントに固有の Pod 容認。

type: array

jaegerQuery Jaeger Query コンポーネントに
固有のオプション。

type: object

jaegerQuery.enabled enabled にすると、Jaeger
Query コンポーネント
jaegerQuery が作成されます。

type: boolean

jaegerQuery.ingress Jaeger Query Ingress のオプショ
ン。

type: object

jaegerQuery.ingress.annotati
ons

Ingress オブジェクトのアノテー
ション。

type: object

jaegerQuery.ingress.host Ingress オブジェクトのホスト
名。

type: string

jaegerQuery.ingress.ingress
ClassName

IngressClass クラスターリソース
の名前。この Ingress リソースを
提供する Ingress コントローラー
を定義します。

type: string

jaegerQuery.ingress.route OpenShift ルートのオプション。 type: object

jaegerQuery.ingress.route.te
rmination

終端タイプ。デフォルトは edge
です。

type: string (enum: insecure,
edge, passthrough, reencrypt)

第4章 DISTRIBUTED TRACING PLATFORM の設定

49

jaegerQuery.ingress.type Jaeger Query UI の Ingress のタイ
プ。サポートされているタイプ
は、ingress、route、および
none です。

type: string (enum: ingress, route)

jaegerQuery.monitorTab Monitor タブの設定。 type: object

jaegerQuery.monitorTab.ena
bled

Jaeger コンソールの Monitor タ
ブを有効にしま
す。PrometheusEndpoint を
設定する必要があります。

type: boolean

jaegerQuery.monitorTab.pro
metheusEndpoint

スパンのレート、エラー、および
期間 (RED) メトリクスを含む
Prometheus インスタンスへのエ
ンドポイント。たとえ
ば、https://thanos-
querier.openshift-
monitoring.svc.cluster.local:
9092 です。

type: string

パラメーター 説明 値

TempoStack CR のクエリーフロントエンドコンポーネントの設定例

関連情報

apiVersion: tempo.grafana.com/v1alpha1
kind: TempoStack
metadata:
 name: simplest
spec:
 storage:
 secret:
 name: minio
 type: s3
 storageSize: 200M
 resources:
 total:
 limits:
 memory: 2Gi
 cpu: 2000m
 template:
 queryFrontend:
 jaegerQuery:
 enabled: true
 ingress:
 route:
 termination: edge
 type: route

OpenShift Container Platform 4.17 分散トレーシング

50

関連情報

taint および toleration について

4.4. UI の設定

Cluster Observability Operator (COO) の分散トレーシング UI プラグインを、Red Hat OpenShift
Distributed Tracing Platform のユーザーインターフェイス (UI) として使用できます。分散トレーシング
UI プラグインのインストールと使用の詳細は、Cluster Observability Operator の「分散トレーシング
UI プラグイン」を参照してください。

関連情報

分散トレーシング UI プラグイン

4.5. JAEGER UI の MONITOR タブの設定

リクエストのレート、エラー、および期間 (RED) メトリクスをトレースから抽出して、OpenShift
Container Platform Web コンソールの Monitor タブの Jaeger コンソールで視覚化できます。メトリク
スは、Prometheus によってコレクターからスクレイピングされた OpenTelemetry コレクター内のスパ
ンから導出されます。Prometheus は、ユーザーワークロードモニタリングスタックにデプロイできま
す。Jaeger UI は、Prometheus エンドポイントからこれらのメトリクスをクエリーし、可視化しま
す。

前提条件

Distributed Tracing Platform の権限とテナントを設定した。詳細は、「権限とテナントの設
定」を参照してください。

手順

1. OpenTelemetry Collector の OpenTelemetryCollector カスタムリソースで、Spanmetrics コ
ネクター (spanmetrics) を有効にします。このコネクターは、トレースからメトリクスを導出
し、そのメトリクスを Prometheus 形式でエクスポートします。

スパン RED 用の OpenTelemetryCollector カスタムリソースの例

apiVersion: opentelemetry.io/v1beta1
kind: OpenTelemetryCollector
metadata:
 name: otel
spec:
 mode: deployment
 observability:
 metrics:
 enableMetrics: true 1
 config: |
 connectors:
 spanmetrics: 2
 metrics_flush_interval: 15s

 receivers:
 otlp: 3
 protocols:

第4章 DISTRIBUTED TRACING PLATFORM の設定

51

https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/nodes/#nodes-scheduler-taints-tolerations-about_nodes-scheduler-taints-tolerations
https://docs.redhat.com/en/documentation/red_hat_openshift_cluster_observability_operator/1-latest/html/ui_plugins_for_red_hat_openshift_cluster_observability_operator/distributed-tracing-ui-plugin

1

2

3

4

5

6

7

ServiceMonitor カスタムリソースを作成して、Prometheus エクスポーターの収集を有効
にします。

Spanmetrics コネクターはトレースを受信し、メトリクスをエクスポートします。

OpenTelemetry プロトコルのスパンを受信する OTLP レシーバー。

Prometheus エクスポーターは、Prometheus 形式でメトリクスをエクスポートするため
に使用されます。

リソース属性はデフォルトでドロップされます。

Spanmetrics コネクターは、トレースパイプラインのエクスポーターとして設定されてい
ます。

Spanmetrics コネクターは、メトリクスパイプラインのレシーバーとして設定されていま
す。

2. TempoStack カスタムリソースで、Monitor タブを有効にし、ユーザー定義のモニタリングス

 grpc:
 http:

 exporters:
 prometheus: 4
 endpoint: 0.0.0.0:8889
 add_metric_suffixes: false
 resource_to_telemetry_conversion:
 enabled: true 5

 otlp:
 auth:
 authenticator: bearertokenauth
 endpoint: tempo-redmetrics-gateway.mynamespace.svc.cluster.local:8090
 headers:
 X-Scope-OrgID: dev
 tls:
 ca_file: /var/run/secrets/kubernetes.io/serviceaccount/service-ca.crt
 insecure: false

 extensions:
 bearertokenauth:
 filename: /var/run/secrets/kubernetes.io/serviceaccount/token

 service:
 extensions:
 - bearertokenauth
 pipelines:
 traces:
 receivers: [otlp]
 exporters: [otlp, spanmetrics] 6
 metrics:
 receivers: [spanmetrics] 7
 exporters: [prometheus]

...

OpenShift Container Platform 4.17 分散トレーシング

52

1

2

3

2. TempoStack カスタムリソースで、Monitor タブを有効にし、ユーザー定義のモニタリングス
タックからデータを照会するように、Prometheus エンドポイントを Thanos Querier サービス
に設定します。

Monitor タブが有効な TempoStack カスタムリソースの例

Jaeger コンソールの監視タブを有効にします。

ユーザーワークロードモニタリングからの Thanos Querier のサービス名。

オプション: Jaeger クエリーが Prometheus メトリクスを取得するメトリクス
namespace。この行は、0.109.0 より前のバージョンの OpenTelemetry Collector を使用
している場合にのみ含めてください。OpenTelemetry Collector バージョン 0.109.0 以降
を使用している場合は、この行を省略します。

3. オプション: spanmetrics コネクターによって生成されるスパン RED メトリクスを、アラート
ルールで使用します。たとえば、このコネクターは、サービスの速度低下に関するアラートの
場合や、サービスレベル目標 (SLO) を定義する場合のために、duration_bucket ヒストグラム
と calls カウンターメトリクスを作成します。これらのメトリクスには、サービス、API 名、操
作タイプ、その他の属性を識別するラベルが付いています。

表4.4 spanmetrics コネクターで作成されるメトリクスのラベル

apiVersion: tempo.grafana.com/v1alpha1
kind: TempoStack
metadata:
 name: redmetrics
spec:
 storage:
 secret:
 name: minio-test
 type: s3
 storageSize: 1Gi
 tenants:
 mode: openshift
 authentication:
 - tenantName: dev
 tenantId: "1610b0c3-c509-4592-a256-a1871353dbfa"
 template:
 gateway:
 enabled: true
 queryFrontend:
 jaegerQuery:
 monitorTab:
 enabled: true 1
 prometheusEndpoint: https://thanos-querier.openshift-monitoring.svc.cluster.local:9092
2

 redMetricsNamespace: "" 3

...

第4章 DISTRIBUTED TRACING PLATFORM の設定

53

1

ラベル 説明 値

service_name otel_service_name 環境変
数によって設定されるサービ
ス名。

frontend

span_name 操作の名前。
/

/customer

span_kind サーバー、クライアント、
メッセージング、または内部
操作を識別します。

SPAN_KIND_SERVER

SPAN_KIND_CLIENT

SPAN_KIND_PRODUC
ER

SPAN_KIND_CONSUM
ER

SPAN_KIND_INTERNA
L

フロントエンドサービスで 2000 ミリ秒以内に 95% の要求が処理されない場合の SLO
のアラートルールを定義する PrometheusRule カスタムリソースの例

95% のフロントエンドサーバーの応答時間値が 2000 ミリ秒未満であるかどうかを確認す
る式。時間範囲 ([5m]) が収集間隔の 4 倍以上で、メトリクスの変化に対応できる十分な
長さである必要があります。

apiVersion: monitoring.coreos.com/v1
kind: PrometheusRule
metadata:
 name: span-red
spec:
 groups:
 - name: server-side-latency
 rules:
 - alert: SpanREDFrontendAPIRequestLatency
 expr: histogram_quantile(0.95, sum(rate(duration_bucket{service_name="frontend",
span_kind="SPAN_KIND_SERVER"}[5m])) by (le, service_name, span_name)) > 2000 1
 labels:
 severity: Warning
 annotations:
 summary: "High request latency on {{$labels.service_name}} and
{{$labels.span_name}}"
 description: "{{$labels.instance}} has 95th request latency above 2s (current value:
{{$value}}s)"

OpenShift Container Platform 4.17 分散トレーシング

54

1

2

3

関連情報

権限とテナントの設定

4.6. レシーバーの TLS の設定

TempoStack または TempoMonolithic インスタンスのカスタムリソースで、ユーザーが指定する証明
書または OpenShift のサービス提供証明書を使用して、レシーバーの TLS を設定できます。

4.6.1. TempoStack インスタンス用のレシーバーの TLS 設定

シークレットの TLS 証明書を指定することも、OpenShift Container Platform によって生成されるサー
ビス提供証明書を使用することもできます。

シークレットの TLS 証明書を指定するには、TempoStack カスタムリソースでそれを設定しま
す。

注記

この機能は、有効な Tempo Gateway ではサポートされていません。

レシーバーの TLS と、ユーザーが指定するシークレットの証明書の使用

Tempo Distributor で TLS が有効になります。

事前に適用する tls.key 鍵と tls.crt 証明書を含むシークレット。

オプション: 相互 TLS 認証 (mTLS) を有効にするための config map 内の CA。

または、OpenShift Container Platform によって生成されたサービス提供証明書を使用するこ
ともできます。

注記

この機能では、相互 TLS 認証 (mTLS) はサポートされていません。

レシーバーの TLS と、OpenShift Container Platform によって生成されるサービス提
供証明書の使用

apiVersion: tempo.grafana.com/v1alpha1
kind: TempoStack
...
spec:
...
 template:
 distributor:
 tls:
 enabled: true 1
 certName: <tls_secret> 2
 caName: <ca_name> 3
...

第4章 DISTRIBUTED TRACING PLATFORM の設定

55

1

1

2

3

Tempo Distributor の TLS に十分な設定。

関連情報

サービス提供証明書について

サービス CA 証明書

4.6.2. TempoMonolithic インスタンス用のレシーバーの TLS 設定

シークレットの TLS 証明書を指定することも、OpenShift Container Platform によって生成されるサー
ビス提供証明書を使用することもできます。

シークレットの TLS 証明書を指定するには、TempoMonolithic カスタムリソースでそれを設
定します。

注記

この機能は、有効な Tempo Gateway ではサポートされていません。

レシーバーの TLS と、ユーザーが指定するシークレットの証明書の使用

Tempo Distributor で TLS が有効になります。

事前に適用する tls.key 鍵と tls.crt 証明書を含むシークレット。

オプション: 相互 TLS 認証 (mTLS) を有効にするための config map 内の CA。

apiVersion: tempo.grafana.com/v1alpha1
kind: TempoStack
...
spec:
...
 template:
 distributor:
 tls:
 enabled: true 1
...

apiVersion: tempo.grafana.com/v1alpha1
kind: TempoMonolithic
...
 spec:
...
 ingestion:
 otlp:
 grpc:
 tls:
 enabled: true 1
 certName: <tls_secret> 2
 caName: <ca_name> 3
...

OpenShift Container Platform 4.17 分散トレーシング

56

https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/security_and_compliance/#understanding-service-serving_service-serving-certificate
https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/security_and_compliance/#cert-types-service-ca-certificates

1

または、OpenShift Container Platform によって生成されたサービス提供証明書を使用するこ
ともできます。

注記

この機能では、相互 TLS 認証 (mTLS) はサポートされていません。

レシーバーの TLS と、OpenShift Container Platform によって生成されるサービス提
供証明書の使用

Tempo Distributor の TLS の最小設定。

関連情報

サービス提供証明書について

サービス CA 証明書

4.7. クエリー RBAC の設定

管理者は、クエリーのロールベースアクセス制御 (RBAC) を設定して、ユーザーに権限を付与した
namespace ごとにユーザーの SPAN 属性をフィルタリングできます。

注記

クエリー RBAC を有効にすると、ユーザーは引き続きすべての namepsace からのト
レースにアクセスできるようになり、service.name 属性と k8s.namespace.name 属性
もすべてのユーザーに表示されます。

前提条件

cluster-admin ロールを持つクラスター管理者によるアクティブな OpenShift CLI (oc) セッ
ション。

ヒント

apiVersion: tempo.grafana.com/v1alpha1
kind: TempoMonolithic
...
 spec:
...
 ingestion:
 otlp:
 grpc:
 tls:
 enabled: true
 http:
 tls:
 enabled: true 1
...

第4章 DISTRIBUTED TRACING PLATFORM の設定

57

https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/security_and_compliance/#understanding-service-serving_service-serving-certificate
https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/security_and_compliance/#cert-types-service-ca-certificates

1

2

3

ヒント

OpenShift CLI (oc) のバージョンが最新であり、OpenShift Container Platform バージョン
と一致していることを確認してください。

oc login を実行します。

手順

1. TempoStack カスタムリソース (CR) でマルチテナントを有効にし、RBAC のクエリーを実行
します。以下はその例です。

常に true に設定されます。

常に true に設定されます。

常に false に設定されます。

2. クラスターロールとクラスターロールバインディングを作成して、TempoStack CR で指定し
たテナントにアクセスするための権限をターゲットユーザーに付与します。以下はその例で
す。

$ oc login --username=<your_username>

apiVersion: tempo.grafana.com/v1alpha1
kind: TempoStack
metadata:
 name: simplest
 namespace: chainsaw-multitenancy
spec:
 storage:
 secret:
 name: minio
 type: s3
 storageSize: 1Gi
 resources:
 total:
 limits:
 memory: 2Gi
 cpu: 2000m
 tenants:
 mode: openshift
 authentication:
 - tenantName: dev
 tenantId: "1610b0c3-c509-4592-a256-a1871353dbfb"
 template:
 gateway:
 enabled: true 1
 rbac:
 enabled: true 2
 queryFrontend:
 jaegerQuery:
 enabled: false 3

OpenShift Container Platform 4.17 分散トレーシング

58

1

2

TempoStack CR 内のテナント名。

認証されたすべての OpenShift ユーザーを意味します。

3. ターゲットユーザーにプロジェクトの属性を読み取る権限を付与します。これを行うには、次
のコマンドを実行します。

4.8. TAINT および TOLERATION の使用

専用ノードで TempoStack Pod をスケジュールするには、OpenShift 4 で nodeSelector と tolerations
を使用してインフラノードにさまざまな TempoStack コンポーネントをデプロイする方法 を参照して
ください。

4.9. 監視とアラートの設定

Tempo Operator は、distributor や ingester などの各 TempoStack コンポーネントのモニタリングとア
ラートをサポートし、Operator 自体に関するアップグレードおよび運用のメトリクスを公開します。

4.9.1. TempoStack のメトリクスとアラートの設定

TempoStack インスタンスのメトリクスとアラートを有効にできます。

前提条件

ユーザー定義プロジェクトのモニタリングがクラスターで有効にされている。

手順

1. TempoStack インスタンスのメトリクスを有効にするに

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 name: tempo-dev-read
rules:
- apiGroups: [tempo.grafana.com]
 resources: [dev] 1
 resourceNames: [traces]
 verbs: [get]

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 name: tempo-dev-read
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: tempo-dev-read
subjects:
 - kind: Group
 apiGroup: rbac.authorization.k8s.io
 name: system:authenticated 2

$ oc adm policy add-role-to-user view <username> -n <project>

第4章 DISTRIBUTED TRACING PLATFORM の設定

59

https://access.redhat.com/solutions/7040685

1. TempoStack インスタンスのメトリクスを有効にするに
は、spec.observability.metrics.createServiceMonitors フィールドを true に設定します。

2. TempoStack インスタンスのアラートを有効にするに
は、spec.observability.metrics.createPrometheusRules フィールドを true に設定します。

検証

Web コンソールの Administrator ビューを使用して、正常に設定されたことを確認できます。

1. Observe → Targets に移動して Source: User でフィルタリングし、tempo-
<instance_name>-<component> 形式の ServiceMonitors のステータスが Up であることを
確認します。

2. アラートが正しく設定されていることを確認するには、Observe → Alerting → Alerting rules
に移動して Source: User でフィルタリングし、TempoStack インスタンスコンポーネントの
Alert rules が利用可能であることを確認します。

関連情報

ユーザー定義プロジェクトのモニタリングの有効化

4.9.2. Tempo Operator のメトリクスとアラートの設定

Web コンソールから Tempo Operator をインストールする場合は、Enable Operator recommended
cluster monitoring on this Namespace チェックボックスを選択すると、Tempo Operator のメトリク
スおよびアラートを作成できます。

インストール時にチェックボックスを選択しなかった場合も、Tempo Operator をインストールした後
にメトリクスとアラートを手動で有効にできます。

手順

Tempo Operator がインストールされているプロジェクトに openshift.io/cluster-monitoring:
"true" ラベルを追加します。デフォルトは openshift-tempo-operator です。

検証

apiVersion: tempo.grafana.com/v1alpha1
kind: TempoStack
metadata:
 name: <name>
spec:
 observability:
 metrics:
 createServiceMonitors: true

apiVersion: tempo.grafana.com/v1alpha1
kind: TempoStack
metadata:
 name: <name>
spec:
 observability:
 metrics:
 createPrometheusRules: true

OpenShift Container Platform 4.17 分散トレーシング

60

https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/monitoring/#enabling-monitoring-for-user-defined-projects-uwm_preparing-to-configure-the-monitoring-stack-uwm

Web コンソールの Administrator ビューを使用して、正常に設定されたことを確認できます。

1. Observe → Targets に移動して Source: Platform でフィルタリングし、tempo-operator を検
索します。その場合は、ステータスは Up でなければなりません。

2. アラートが正しく設定されていることを確認するには、Observe → Alerting → Alerting rules
に移動して Source: Platform でフィルタリングし、Tempo Operator の Alert rules を見つけ
ます。

第4章 DISTRIBUTED TRACING PLATFORM の設定

61

1

第5章 DISTRIBUTED TRACING PLATFORM のトラブルシュー
ティング

さまざまなトラブルシューティング方法を使用して、TempoStack または TempoMonolithic インスタ
ンスの問題を診断して修正できます。

5.1. コマンドラインからの診断データの収集

サポートケースを送信するときは、クラスターに関する診断情報を Red Hat サポートに含めると役立ち
ます。oc adm must-gather ツールを使用すると、TempoStack や TempoMonolithic などのさまざま
なタイプのリソースや、Deployment、Pod、ConfigMap などの作成されたリソースの診断データを収
集できます。oc adm must-gather ツールは、このデータを収集する新しい Pod を作成します。

手順

収集したデータを保存するディレクトリーから、oc adm must-gather コマンドを実行して
データを収集します。

Operator がインストールされるデフォルトの namespace は openshift-tempo-operator
です。

検証

新しいディレクトリーが作成され、収集されたデータが含まれていることを確認します。

$ oc adm must-gather --image=ghcr.io/grafana/tempo-operator/must-gather -- \
/usr/bin/must-gather --operator-namespace <operator_namespace> 1

OpenShift Container Platform 4.17 分散トレーシング

62

第6章 アップグレード
バージョンアップグレードの場合、Tempo Operator は Operator Lifecycle Manager (OLM) を使用しま
す。これは、クラスター内の Operator のインストール、アップグレード、ロールベースのアクセス制
御 (RBAC) を制御します。

OLM は、デフォルトで OpenShift Container Platform で実行されます。OLM は利用可能な Operator
のクエリーやインストールされた Operator のアップグレードを実行します。

Tempo Operator が新しいバージョンにアップグレードされると、その Operator が管理する実行中の
TempoStack インスタンスをスキャンし、新しい Operator バージョンに対応するバージョンにアップ
グレードします。

6.1. 関連情報

Operator Lifecycle Manager の概念およびリソース

インストール済み Operators の更新

第6章 アップグレード

63

https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/operators/#olm-understanding-olm
https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/operators/#olm-upgrading-operators

第7章 DISTRIBUTED TRACING PLATFORM の削除
OpenShift Container Platform クラスターから Red Hat OpenShift Distributed Tracing Platform を削除
する手順は次のとおりです。

1. すべての Distributed Tracing Platform Pod をシャットダウンします。

2. TempoStack インスタンスを削除します。

3. Tempo Operator を削除します。

7.1. WEB コンソールを使用して削除する

Web コンソールの Administrator ビューで、TempoStack インスタンスを削除できます。

前提条件

cluster-admin ロールを持つクラスター管理者として、OpenShift Container Platform Web コ
ンソールにログインしている。

Red Hat OpenShift Dedicated の場合、dedicated-admin ロールを持つアカウントを使用して
ログインしている。

手順

1. Operators → Installed Operators → Tempo Operator → TempoStack に移動します。

2. TempoStack インスタンスを削除するには、 → Delete TempoStack → Delete を選択し
ます。

3. オプション: Tempo Operator を削除します。

7.2. CLI を使用して削除する

コマンドラインで TempoStack インスタンスを削除できます。

前提条件

cluster-admin ロールを持つクラスター管理者によるアクティブな OpenShift CLI (oc) セッ
ション。

ヒント

OpenShift CLI (oc) のバージョンが最新であり、OpenShift Container Platform バージョン
と一致していることを確認してください。

oc login を実行します。

手順

$ oc login --username=<your_username>

OpenShift Container Platform 4.17 分散トレーシング

64

1. 以下のコマンドを実行して、TempoStack インスタンスの名前を取得します。

2. 以下のコマンドを実行して、TempoStack インスタンスを削除します。

3. オプション: Tempo Operator を削除します。

検証

1. 以下のコマンドを実行して、出力に TempoStack インスタンスがないことを確認します。ない
場合、正常に削除されています。

7.3. 関連情報

クラスターからの Operator の削除

OpenShift CLI の使用を開始

$ oc get deployments -n <project_of_tempostack_instance>

$ oc delete tempo <tempostack_instance_name> -n <project_of_tempostack_instance>

$ oc get deployments -n <project_of_tempostack_instance>

第7章 DISTRIBUTED TRACING PLATFORM の削除

65

https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/operators/#olm-deleting-operators-from-a-cluster
https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/cli_tools/#getting-started-cli

	Table of Contents
	第1章 RED HAT OPENSHIFT DISTRIBUTED TRACING PLATFORM 3.8 のリリースノート
	1.1. このリリースについて
	1.2. 修正された問題
	1.3. サポートの利用

	第2章 DISTRIBUTED TRACING PLATFORM について
	2.1. 分散トレーシングの主要概念
	2.2. RED HAT OPENSHIFT DISTRIBUTED TRACING PLATFORM の機能
	2.3. RED HAT OPENSHIFT DISTRIBUTED TRACING PLATFORM のアーキテクチャー

	第3章 DISTRIBUTED TRACING PLATFORM のインストール
	3.1. TEMPO OPERATOR のインストール
	3.1.1. Web コンソールを使用した Tempo Operator のインストール
	3.1.2. CLI を使用した Tempo Operator のインストール

	3.2. オブジェクトストレージのセットアップ
	3.2.1. Security Token Service を使用する Amazon S3 ストレージの設定
	3.2.2. Security Token Service を使用した Azure ストレージの設定
	3.2.3. Security Token Service を使用した Google Cloud ストレージのセットアップ
	3.2.4. IBM Cloud Object Storage の設定

	3.3. 権限とテナントの設定
	3.3.1. テナントの読み取り権限の設定
	3.3.2. テナントの書き込み権限の設定

	3.4. TEMPOSTACK インスタンスのインストール
	3.4.1. Web コンソールを使用した TempoStack インスタンスのインストール
	3.4.2. CLI を使用した TempoStack インスタンスのインストール

	3.5. TEMPOMONOLITHIC インスタンスのインストール
	3.5.1. Web コンソールを使用した TempoMonolithic インスタンスのインストール
	3.5.2. CLI を使用した TempoMonolithic インスタンスのインストール

	3.6. 関連情報

	第4章 DISTRIBUTED TRACING PLATFORM の設定
	4.1. バックエンドストレージの設定
	4.2. TEMPOSTACK 設定パラメーターの概要
	4.3. クエリー設定オプション
	4.4. UI の設定
	4.5. JAEGER UI の MONITOR タブの設定
	4.6. レシーバーの TLS の設定
	4.6.1. TempoStack インスタンス用のレシーバーの TLS 設定
	4.6.2. TempoMonolithic インスタンス用のレシーバーの TLS 設定

	4.7. クエリー RBAC の設定
	4.8. TAINT および TOLERATION の使用
	4.9. 監視とアラートの設定
	4.9.1. TempoStack のメトリクスとアラートの設定
	4.9.2. Tempo Operator のメトリクスとアラートの設定

	第5章 DISTRIBUTED TRACING PLATFORM のトラブルシューティング
	5.1. コマンドラインからの診断データの収集

	第6章 アップグレード
	6.1. 関連情報

	第7章 DISTRIBUTED TRACING PLATFORM の削除
	7.1. WEB コンソールを使用して削除する
	7.2. CLI を使用して削除する
	7.3. 関連情報

