
OpenShift Container Platform 4.19

Red Hat build of OpenTelemetry

Configuring and using the Red Hat build of OpenTelemetry in OpenShift Container
Platform

Last Updated: 2025-10-01

OpenShift Container Platform 4.19 Red Hat build of OpenTelemetry

Configuring and using the Red Hat build of OpenTelemetry in OpenShift Container Platform

Legal Notice

Copyright © 2025 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Use the Red Hat build of the open source OpenTelemetry project to collect unified, standardized,
and vendor-neutral telemetry data for cloud-native software in OpenShift Container Platform.

. .

. .

. .

. .

Table of Contents

CHAPTER 1. RELEASE NOTES FOR THE RED HAT BUILD OF OPENTELEMETRY 3.7
1.1. ABOUT THIS RELEASE
1.2. NEW FEATURES AND ENHANCEMENTS
1.3. TECHNOLOGY PREVIEW FEATURES
1.4. DEPRECATED FEATURES
1.5. REMOVED FEATURES
1.6. GETTING SUPPORT

CHAPTER 2. ABOUT RED HAT BUILD OF OPENTELEMETRY
2.1. RED HAT BUILD OF OPENTELEMETRY OVERVIEW

CHAPTER 3. INSTALLING
3.1. INSTALLING THE RED HAT BUILD OF OPENTELEMETRY FROM THE WEB CONSOLE
3.2. INSTALLING THE RED HAT BUILD OF OPENTELEMETRY BY USING THE CLI
3.3. USING TAINTS AND TOLERATIONS
3.4. CREATING THE REQUIRED RBAC RESOURCES AUTOMATICALLY
3.5. ADDITIONAL RESOURCES

CHAPTER 4. CONFIGURING THE COLLECTOR
4.1. CONFIGURING THE COLLECTOR

4.1.1. Deployment modes
4.1.2. OpenTelemetry Collector configuration options
4.1.3. Creating the required RBAC resources automatically

4.2. RECEIVERS
4.2.1. OTLP Receiver
4.2.2. Jaeger Receiver
4.2.3. Host Metrics Receiver
4.2.4. Kubernetes Objects Receiver
4.2.5. Kubelet Stats Receiver
4.2.6. Prometheus Receiver
4.2.7. OTLP JSON File Receiver
4.2.8. Zipkin Receiver
4.2.9. Kafka Receiver
4.2.10. Kubernetes Cluster Receiver
4.2.11. OpenCensus Receiver
4.2.12. Filelog Receiver
4.2.13. Journald Receiver
4.2.14. Kubernetes Events Receiver
4.2.15. Additional resources

4.3. PROCESSORS
4.3.1. Batch Processor
4.3.2. Memory Limiter Processor
4.3.3. Resource Detection Processor
4.3.4. Attributes Processor
4.3.5. Resource Processor
4.3.6. Span Processor
4.3.7. Kubernetes Attributes Processor
4.3.8. Filter Processor
4.3.9. Cumulative-to-Delta Processor
4.3.10. Group-by-Attributes Processor
4.3.11. Transform Processor
4.3.12. Tail Sampling Processor

5
5
5
5
5
6
6

7
7

8
8

10
13
13
14

15
15
15
16

20
20
21
22
23
24
26
27
28
29
29
30
33
33
34
37
38
39
39
40
41

43
44
44
45
46
47
48
49
51

Table of Contents

1

. .

. .

4.3.13. Probabilistic Sampling Processor
4.3.14. Additional resources

4.4. EXPORTERS
4.4.1. OTLP Exporter
4.4.2. OTLP HTTP Exporter
4.4.3. Debug Exporter
4.4.4. Load Balancing Exporter
4.4.5. Prometheus Exporter
4.4.6. Prometheus Remote Write Exporter
4.4.7. Kafka Exporter
4.4.8. AWS CloudWatch Logs Exporter
4.4.9. AWS EMF Exporter

Log group name
Log stream name

4.4.10. AWS X-Ray Exporter
4.4.11. File Exporter
4.4.12. Additional resources

4.5. CONNECTORS
4.5.1. Count Connector
4.5.2. Routing Connector
4.5.3. Forward Connector
4.5.4. Spanmetrics Connector
4.5.5. Additional resources

4.6. EXTENSIONS
4.6.1. BearerTokenAuth Extension
4.6.2. OAuth2Client Extension
4.6.3. File Storage Extension
4.6.4. OIDC Auth Extension
4.6.5. Jaeger Remote Sampling Extension
4.6.6. Performance Profiler Extension
4.6.7. Health Check Extension
4.6.8. zPages Extension
4.6.9. Additional resources

4.7. TARGET ALLOCATOR

CHAPTER 5. CONFIGURING THE INSTRUMENTATION
5.1. AUTO-INSTRUMENTATION IN THE RED HAT BUILD OF OPENTELEMETRY OPERATOR
5.2. OPENTELEMETRY INSTRUMENTATION CONFIGURATION OPTIONS

5.2.1. Instrumentation options
5.2.2. Configuration of the OpenTelemetry SDK variables
5.2.3. Exporter configuration
5.2.4. Configuration of the Apache HTTP Server auto-instrumentation
5.2.5. Configuration of the .NET auto-instrumentation
5.2.6. Configuration of the Go auto-instrumentation
5.2.7. Configuration of the Java auto-instrumentation
5.2.8. Configuration of the Node.js auto-instrumentation
5.2.9. Configuration of the Python auto-instrumentation
5.2.10. Multi-container pods
5.2.11. Multi-container pods with multiple instrumentations
5.2.12. Using the instrumentation CR with Service Mesh

CHAPTER 6. SENDING TRACES, LOGS, AND METRICS TO THE OPENTELEMETRY COLLECTOR
6.1. SENDING TRACES AND METRICS TO THE OPENTELEMETRY COLLECTOR WITH SIDECAR INJECTION

57
60
60
60
61

62
63
64
65
66
67
68
69
70
70
72
73
73
73
75
77
77
78
78
78
79
81

82
83
85
86
88
89
89

93
93
93
93
96
96
98
99

100
101
102
102
103
104
104

105

OpenShift Container Platform 4.19 Red Hat build of OpenTelemetry

2

. .

. .

. .

. .

. .

. .

. .

. .

6.2. SENDING TRACES AND METRICS TO THE OPENTELEMETRY COLLECTOR WITHOUT SIDECAR
INJECTION

CHAPTER 7. CONFIGURING METRICS FOR THE MONITORING STACK
7.1. CONFIGURATION FOR SENDING METRICS TO THE MONITORING STACK
7.2. CONFIGURATION FOR RECEIVING METRICS FROM THE MONITORING STACK
7.3. ADDITIONAL RESOURCES

CHAPTER 8. FORWARDING TELEMETRY DATA
8.1. FORWARDING TRACES TO A TEMPOSTACK INSTANCE
8.2. FORWARDING LOGS TO A LOKISTACK INSTANCE
8.3. FORWARDING TELEMETRY DATA TO THIRD-PARTY SYSTEMS
8.4. ADDITIONAL RESOURCES

CHAPTER 9. CONFIGURING THE OPENTELEMETRY COLLECTOR METRICS

CHAPTER 10. GATHERING THE OBSERVABILITY DATA FROM MULTIPLE CLUSTERS

CHAPTER 11. TROUBLESHOOTING
11.1. COLLECTING DIAGNOSTIC DATA FROM THE COMMAND LINE
11.2. GETTING THE OPENTELEMETRY COLLECTOR LOGS
11.3. EXPOSING THE METRICS
11.4. DEBUG EXPORTER
11.5. DISABLING NETWORK POLICIES
11.6. USING THE NETWORK OBSERVABILITY OPERATOR FOR TROUBLESHOOTING
11.7. TROUBLESHOOTING THE INSTRUMENTATION

11.7.1. Troubleshooting instrumentation injection into your workload
11.7.2. Troubleshooting telemetry data generation by the instrumentation libraries

CHAPTER 12. MIGRATING
12.1. MIGRATING WITH SIDECARS
12.2. MIGRATING WITHOUT SIDECARS

CHAPTER 13. UPGRADING
13.1. ADDITIONAL RESOURCES

CHAPTER 14. REMOVING
14.1. REMOVING AN OPENTELEMETRY COLLECTOR INSTANCE BY USING THE WEB CONSOLE
14.2. REMOVING AN OPENTELEMETRY COLLECTOR INSTANCE BY USING THE CLI
14.3. ADDITIONAL RESOURCES

105

107

110
110
111

113

114
114
116

120
122

123

125

130
130
130
130
132
133
133
134
134
136

138
138
140

143
143

144
144
144
145

Table of Contents

3

OpenShift Container Platform 4.19 Red Hat build of OpenTelemetry

4

CHAPTER 1. RELEASE NOTES FOR THE RED HAT BUILD OF
OPENTELEMETRY 3.7

1.1. ABOUT THIS RELEASE

Red Hat build of OpenTelemetry 3.7 is provided through the Red Hat build of OpenTelemetry Operator
0.135.0 and based on the open source OpenTelemetry release 0.135.0.

NOTE

Some linked Jira tickets are accessible only with Red Hat credentials.

NOTE

Only supported features are documented. Undocumented features are currently
unsupported. If you need assistance with a feature, contact Red Hat’s support.

1.2. NEW FEATURES AND ENHANCEMENTS

Network policy to restrict API access

With this update, the Red Hat build of OpenTelemetry Operator creates a network policy for itself
and the OpenTelemetry Collector to restrict access to the used APIs.

Native sidecars

With this update, the Red Hat build of OpenTelemetry Operator uses native sidecars on OpenShift
Container Platform 4.16 or later.

1.3. TECHNOLOGY PREVIEW FEATURES

IMPORTANT

Technology Preview features are not supported with Red Hat production service level
agreements (SLAs) and might not be functionally complete. Red Hat does not
recommend using them in production. These features provide early access to upcoming
product features, enabling customers to test functionality and provide feedback during
the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

Probabilistic Sampling Processor (Technology Preview)

This release introduces the Probabilistic Sampling Processor as a Technology Preview feature for the
Red Hat build of OpenTelemetry Collector. The Probabilistic Sampling Processor samples a specified
percentage of trace spans or log records statelessly and per request. You can use the Probabilistic
Sampling Processor if you handle high volumes of telemetry data and seek to reduce costs by
reducing processed data volumes.

1.4. DEPRECATED FEATURES

The OpenCensus Receiver is deprecated

The OpenCensus Receiver, which provided backward compatibility with the OpenCensus format, is

CHAPTER 1. RELEASE NOTES FOR THE RED HAT BUILD OF OPENTELEMETRY 3.7

5

https://catalog.redhat.com/software/containers/rhosdt/opentelemetry-operator-bundle/615618406feffc5384e84400/history
https://opentelemetry.io/docs/collector/
https://access.redhat.com/support/offerings/techpreview/

The OpenCensus Receiver, which provided backward compatibility with the OpenCensus format, is
deprecated and might be removed in a future release.

The Collector’s service metrics telemetry address is deprecated

The metrics.address field in the OpenTelemetryCollector custom resource (CR) is deprecated and
might be removed in a future release. As an alternative, use the metrics.readers field instead.
Example of using the readers field:

1.5. REMOVED FEATURES

The LokiStack Exporter is removed

The LokiStack Exporter, which exported data to a LokiStack instance, is removed and no longer
supported. You can export data to a LokiStack instance by using the OTLP HTTP Exporter instead.

The Routing Processor is removed

The Routing Processor, which routed telemetry data to an exporter is removed and no longer
supported. You can route telemetry data by using the Routing Connector instead.

1.6. GETTING SUPPORT

If you experience difficulty with a procedure described in this documentation, or with OpenShift
Container Platform in general, visit the Red Hat Customer Portal .

From the Customer Portal, you can:

Search or browse through the Red Hat Knowledgebase of articles and solutions relating to Red
Hat products.

Submit a support case to Red Hat Support.

Access other product documentation.

To identify issues with your cluster, you can use Insights in OpenShift Cluster Manager. Insights provides
details about issues and, if available, information on how to solve a problem.

If you have a suggestion for improving this documentation or have found an error, submit a Jira issue for
the most relevant documentation component. Please provide specific details, such as the section name
and OpenShift Container Platform version.

...
 config:
 service:
 telemetry:
 metrics:
 readers:
 - pull:
 exporter:
 prometheus:
 host: 0.0.0.0
 port: 8888
...

OpenShift Container Platform 4.19 Red Hat build of OpenTelemetry

6

http://access.redhat.com
https://console.redhat.com/openshift
https://issues.redhat.com/secure/CreateIssueDetails!init.jspa?pid=12332330&summary=Documentation_issue&issuetype=1&components=12367614&priority=10200&versions=12385624

CHAPTER 2. ABOUT RED HAT BUILD OF OPENTELEMETRY

2.1. RED HAT BUILD OF OPENTELEMETRY OVERVIEW

Red Hat build of OpenTelemetry is based on the open source OpenTelemetry project, which aims to
provide unified, standardized, and vendor-neutral telemetry data collection for cloud-native software.
Red Hat build of OpenTelemetry provides support for deploying and managing the OpenTelemetry
Collector and simplifying the workload instrumentation.

The OpenTelemetry Collector can receive, process, and forward telemetry data in multiple formats,
making it the ideal component for telemetry processing and interoperability between telemetry systems.
The Collector provides a unified solution for collecting and processing metrics, traces, and logs.

The OpenTelemetry Collector provides several features including the following:

Data Collection and Processing Hub

It acts as a central component that gathers telemetry data like metrics and traces from various
sources. This data can be created from instrumented applications and infrastructure.

Customizable telemetry data pipeline

The OpenTelemetry Collector is customizable and supports various processors, exporters, and
receivers.

Auto-instrumentation features

Automatic instrumentation simplifies the process of adding observability to applications. Developers
do not need to manually instrument their code for basic telemetry data.

Here are some of the use cases for the OpenTelemetry Collector:

Centralized data collection

In a microservices architecture, the Collector can be deployed to aggregate data from multiple
services.

Data enrichment and processing

Before forwarding data to analysis tools, the Collector can enrich, filter, and process this data.

Multi-backend receiving and exporting

The Collector can receive and send data to multiple monitoring and analysis platforms
simultaneously.

You can use Red Hat build of OpenTelemetry in combination with Red Hat OpenShift Distributed
Tracing Platform.

CHAPTER 2. ABOUT RED HAT BUILD OF OPENTELEMETRY

7

https://opentelemetry.io/
https://opentelemetry.io/docs/collector/

CHAPTER 3. INSTALLING
Installing the Red Hat build of OpenTelemetry involves the following steps:

1. Installing the Red Hat build of OpenTelemetry Operator.

2. Creating a namespace for an OpenTelemetry Collector instance.

3. Creating an OpenTelemetryCollector custom resource to deploy the OpenTelemetry Collector
instance.

3.1. INSTALLING THE RED HAT BUILD OF OPENTELEMETRY FROM
THE WEB CONSOLE

You can install the Red Hat build of OpenTelemetry from the Administrator view of the web console.

Prerequisites

You are logged in to the web console as a cluster administrator with the cluster-admin role.

For Red Hat OpenShift Dedicated, you must be logged in using an account with the dedicated-
admin role.

Procedure

1. Install the Red Hat build of OpenTelemetry Operator:

a. Go to Operators → OperatorHub and search for Red Hat build of OpenTelemetry
Operator.

b. Select the Red Hat build of OpenTelemetry Operator that is provided by Red Hat →
Install → Install → View Operator.

IMPORTANT

This installs the Operator with the default presets:

Update channel → stable

Installation mode → All namespaces on the cluster

Installed Namespace → openshift-opentelemetry-operator

Update approval → Automatic

c. In the Details tab of the installed Operator page, under ClusterServiceVersion details,
verify that the installation Status is Succeeded.

2. Create a permitted project of your choice for the OpenTelemetry Collector instance that you
will create in the next step by going to Home → Projects → Create Project. Project names
beginning with the openshift- prefix are not permitted.

3. Create an OpenTelemetry Collector instance.

OpenShift Container Platform 4.19 Red Hat build of OpenTelemetry

8

1

2

3

4

5

a. Go to Operators → Installed Operators.

b. Select OpenTelemetry Collector → Create OpenTelemetry Collector → YAML view.

c. In the YAML view, customize the OpenTelemetryCollector custom resource (CR):

Example OpenTelemetryCollector CR

The project that you have chosen for the OpenTelemetryCollector deployment.
Project names beginning with the openshift- prefix are not permitted.

The deployment mode with the following supported values: the default deployment,
daemonset, statefulset, or sidecar. For details, see Deployment Modes.

For details, see Receivers.

For details, see Processors.

For details, see Exporters.

apiVersion: opentelemetry.io/v1beta1
kind: OpenTelemetryCollector
metadata:
 name: otel
 namespace: <permitted_project_of_opentelemetry_collector_instance> 1
spec:
 mode: <deployment_mode> 2
 config:
 receivers: 3
 otlp:
 protocols:
 grpc:
 http:
 jaeger:
 protocols:
 grpc: {}
 thrift_binary: {}
 thrift_compact: {}
 thrift_http: {}
 zipkin: {}
 processors: 4
 batch: {}
 memory_limiter:
 check_interval: 1s
 limit_percentage: 50
 spike_limit_percentage: 30
 exporters: 5
 debug: {}
 service:
 pipelines:
 traces:
 receivers: [otlp,jaeger,zipkin]
 processors: [memory_limiter,batch]
 exporters: [debug]

CHAPTER 3. INSTALLING

9

d. Select Create.

Verification

1. Use the Project: dropdown list to select the project of the OpenTelemetry Collector instance.

2. Go to Operators → Installed Operators to verify that the Status of the OpenTelemetry
Collector instance is Condition: Ready.

3. Go to Workloads → Pods to verify that all the component pods of the OpenTelemetry
Collector instance are running.

3.2. INSTALLING THE RED HAT BUILD OF OPENTELEMETRY BY
USING THE CLI

You can install the Red Hat build of OpenTelemetry from the command line.

Prerequisites

An active OpenShift CLI (oc) session by a cluster administrator with the cluster-admin role.

TIP

Ensure that your OpenShift CLI (oc) version is up to date and matches your OpenShift
Container Platform version.

Run oc login:

Procedure

1. Install the Red Hat build of OpenTelemetry Operator:

a. Create a project for the Red Hat build of OpenTelemetry Operator by running the following
command:

b. Create an Operator group by running the following command:

$ oc login --username=<your_username>

$ oc apply -f - << EOF
apiVersion: project.openshift.io/v1
kind: Project
metadata:
 labels:
 kubernetes.io/metadata.name: openshift-opentelemetry-operator
 openshift.io/cluster-monitoring: "true"
 name: openshift-opentelemetry-operator
EOF

$ oc apply -f - << EOF
apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:

OpenShift Container Platform 4.19 Red Hat build of OpenTelemetry

10

1

1

c. Create a subscription by running the following command:

d. Check the Operator status by running the following command:

2. Create a permitted project of your choice for the OpenTelemetry Collector instance that you
will create in a subsequent step:

To create a permitted project without metadata, run the following command:

Project names beginning with the openshift- prefix are not permitted.

To create a permitted project with metadata, run the following command:

Project names beginning with the openshift- prefix are not permitted.

3. Create an OpenTelemetry Collector instance in the project that you created for it.

NOTE

You can create multiple OpenTelemetry Collector instances in separate projects
on the same cluster.

 name: openshift-opentelemetry-operator
 namespace: openshift-opentelemetry-operator
spec:
 upgradeStrategy: Default
EOF

$ oc apply -f - << EOF
apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: opentelemetry-product
 namespace: openshift-opentelemetry-operator
spec:
 channel: stable
 installPlanApproval: Automatic
 name: opentelemetry-product
 source: redhat-operators
 sourceNamespace: openshift-marketplace
EOF

$ oc get csv -n openshift-opentelemetry-operator

$ oc new-project <permitted_project_of_opentelemetry_collector_instance> 1

$ oc apply -f - << EOF
apiVersion: project.openshift.io/v1
kind: Project
metadata:
 name: <permitted_project_of_opentelemetry_collector_instance> 1
EOF

CHAPTER 3. INSTALLING

11

1

2

3

4

5

a. Customize the OpenTelemetryCollector custom resource (CR):

Example OpenTelemetryCollector CR

The project that you have chosen for the OpenTelemetryCollector deployment.
Project names beginning with the openshift- prefix are not permitted.

The deployment mode with the following supported values: the default deployment,
daemonset, statefulset, or sidecar. For details, see Deployment Modes.

For details, see Receivers.

For details, see Processors.

For details, see Exporters.

b. Apply the customized CR by running the following command:

apiVersion: opentelemetry.io/v1beta1
kind: OpenTelemetryCollector
metadata:
 name: otel
 namespace: <permitted_project_of_opentelemetry_collector_instance> 1
spec:
 mode: <deployment_mode> 2
 config:
 receivers: 3
 otlp:
 protocols:
 grpc:
 http:
 jaeger:
 protocols:
 grpc: {}
 thrift_binary: {}
 thrift_compact: {}
 thrift_http: {}
 zipkin: {}
 processors: 4
 batch: {}
 memory_limiter:
 check_interval: 1s
 limit_percentage: 50
 spike_limit_percentage: 30
 exporters: 5
 debug: {}
 service:
 pipelines:
 traces:
 receivers: [otlp,jaeger,zipkin]
 processors: [memory_limiter,batch]
 exporters: [debug]

OpenShift Container Platform 4.19 Red Hat build of OpenTelemetry

12

Verification

1. Verify that the status.phase of the OpenTelemetry Collector pod is Running and the
conditions are type: Ready by running the following command:

2. Get the OpenTelemetry Collector service by running the following command:

3.3. USING TAINTS AND TOLERATIONS

To schedule the OpenTelemetry pods on dedicated nodes, see How to deploy the different
OpenTelemetry components on infra nodes using nodeSelector and tolerations in OpenShift 4

3.4. CREATING THE REQUIRED RBAC RESOURCES AUTOMATICALLY

Some Collector components require configuring the RBAC resources.

Procedure

Add the following permissions to the opentelemetry-operator-controller-manage service
account so that the Red Hat build of OpenTelemetry Operator can create them automatically:

$ oc apply -f - << EOF
<OpenTelemetryCollector_custom_resource>
EOF

$ oc get pod -l app.kubernetes.io/managed-by=opentelemetry-
operator,app.kubernetes.io/instance=<namespace>.<instance_name> -o yaml

$ oc get service -l app.kubernetes.io/managed-by=opentelemetry-
operator,app.kubernetes.io/instance=<namespace>.<instance_name>

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 name: generate-processors-rbac
rules:
- apiGroups:
 - rbac.authorization.k8s.io
 resources:
 - clusterrolebindings
 - clusterroles
 verbs:
 - create
 - delete
 - get
 - list
 - patch
 - update
 - watch

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:

CHAPTER 3. INSTALLING

13

https://access.redhat.com/solutions/7040771

3.5. ADDITIONAL RESOURCES

Creating a cluster admin

OperatorHub.io

Accessing the web console

Installing from OperatorHub using the web console

Creating applications from installed Operators

Getting started with the OpenShift CLI

 name: generate-processors-rbac
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: generate-processors-rbac
subjects:
- kind: ServiceAccount
 name: opentelemetry-operator-controller-manager
 namespace: openshift-opentelemetry-operator

OpenShift Container Platform 4.19 Red Hat build of OpenTelemetry

14

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/postinstallation_configuration/#creating-cluster-admin_post-install-preparing-for-users
https://operatorhub.io/
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/web_console/#web-console
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/operators/#olm-installing-from-operatorhub-using-web-console_olm-adding-operators-to-a-cluster
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/operators/#olm-creating-apps-from-installed-operators
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/cli_tools/#getting-started-cli

CHAPTER 4. CONFIGURING THE COLLECTOR

4.1. CONFIGURING THE COLLECTOR

The Red Hat build of OpenTelemetry Operator uses a custom resource definition (CRD) file that
defines the architecture and configuration settings to be used when creating and deploying the Red Hat
build of OpenTelemetry resources. You can install the default configuration or modify the file.

4.1.1. Deployment modes

The OpenTelemetryCollector custom resource allows you to specify one of the following deployment
modes for the OpenTelemetry Collector:

Deployment

The default.

StatefulSet

If you need to run stateful workloads, for example when using the Collector’s File Storage Extension
or Tail Sampling Processor, use the StatefulSet deployment mode.

DaemonSet

If you need to scrape telemetry data from every node, for example by using the Collector’s Filelog
Receiver to read container logs, use the DaemonSet deployment mode.

Sidecar

If you need access to log files inside a container, inject the Collector as a sidecar, and use the
Collector’s Filelog Receiver and a shared volume such as emptyDir.
If you need to configure an application to send telemetry data via localhost, inject the Collector as a
sidecar, and set up the Collector to forward the telemetry data to an external service via an
encrypted and authenticated connection. The Collector runs in the same pod as the application when
injected as a sidecar.

NOTE

CHAPTER 4. CONFIGURING THE COLLECTOR

15

1

NOTE

If you choose the sidecar deployment mode, then in addition to setting the
spec.mode: sidecar field in the OpenTelemetryCollector custom resource CR, you
must also set the sidecar.opentelemetry.io/inject annotation as a pod annotation or
namespace annotation. If you set this annotation on both the pod and namespace, the
pod annotation takes precedence if it is set to either false or the
OpenTelemetryCollector CR name.

As a pod annotation, the sidecar.opentelemetry.io/inject annotation supports
several values:

Supported values:

false
Does not inject the Collector. This is the default if the annotation is missing.

true
Injects the Collector with the configuration of the
OpenTelemetryCollector CR in the same namespace.

<collector_name>
Injects the Collector with the configuration of the <collector_name>
OpenTelemetryCollector CR in the same namespace.

<namespace>/<collector_name>
Injects the Collector with the configuration of the <collector_name>
OpenTelemetryCollector CR in the <namespace> namespace.

4.1.2. OpenTelemetry Collector configuration options

The OpenTelemetry Collector consists of five types of components that access telemetry data:

Receivers

Processors

Exporters

Connectors

Extensions

You can define multiple instances of components in a custom resource YAML file. When configured,
these components must be enabled through pipelines defined in the spec.config.service section of the
YAML file. As a best practice, only enable the components that you need.

apiVersion: v1
kind: Pod
metadata:
 ...
 annotations:
 sidecar.opentelemetry.io/inject: "<supported_value>" 1
...

OpenShift Container Platform 4.19 Red Hat build of OpenTelemetry

16

1

Example of the OpenTelemetry Collector custom resource file

If a component is configured but not defined in the service section, the component is not enabled.

Table 4.1. Parameters used by the Operator to define the OpenTelemetry Collector

Parameter Description Values Default

apiVersion: opentelemetry.io/v1beta1
kind: OpenTelemetryCollector
metadata:
 name: cluster-collector
 namespace: tracing-system
spec:
 mode: deployment
 observability:
 metrics:
 enableMetrics: true
 config:
 receivers:
 otlp:
 protocols:
 grpc: {}
 http: {}
 processors: {}
 exporters:
 otlp:
 endpoint: otel-collector-headless.tracing-system.svc:4317
 tls:
 ca_file: "/var/run/secrets/kubernetes.io/serviceaccount/service-ca.crt"
 prometheus:
 endpoint: 0.0.0.0:8889
 resource_to_telemetry_conversion:
 enabled: true # by default resource attributes are dropped
 service: 1
 pipelines:
 traces:
 receivers: [otlp]
 processors: []
 exporters: [otlp]
 metrics:
 receivers: [otlp]
 processors: []
 exporters: [prometheus]

CHAPTER 4. CONFIGURING THE COLLECTOR

17

receivers:
A receiver is how data
gets into the Collector.
By default, no receivers
are configured. There
must be at least one
enabled receiver for a
configuration to be
considered valid.
Receivers are enabled
by being added to a
pipeline.

otlp, jaeger,
prometheus, zipkin,
kafka, opencensus

None

processors:
Processors run through
the received data before
it is exported. By default,
no processors are
enabled.

batch,
memory_limiter,
resourcedetection,
attributes, span,
k8sattributes, filter,
routing

None

exporters:
An exporter sends data
to one or more back
ends or destinations. By
default, no exporters are
configured. There must
be at least one enabled
exporter for a
configuration to be
considered valid.
Exporters are enabled
by being added to a
pipeline. Exporters
might be used with their
default settings, but
many require
configuration to specify
at least the destination
and security settings.

otlp, otlphttp, debug,
prometheus, kafka

None

connectors:
Connectors join pairs of
pipelines by consuming
data as end-of-pipeline
exporters and emitting
data as start-of-pipeline
receivers. Connectors
can be used to
summarize, replicate, or
route consumed data.

spanmetrics None

Parameter Description Values Default

OpenShift Container Platform 4.19 Red Hat build of OpenTelemetry

18

extensions:
Optional components
for tasks that do not
involve processing
telemetry data.

bearertokenauth,
oauth2client,
jaegerremotesampli
ng, pprof,
health_check,
memory_ballast,
zpages

None

service:
 pipelines:

Components are
enabled by adding them
to a pipeline under
services.pipeline.

service:
 pipelines:
 traces:
 receivers:

You enable receivers for
tracing by adding them
under
service.pipelines.tra
ces.

 None

service:
 pipelines:
 traces:
 processors:

You enable processors
for tracing by adding
them under
service.pipelines.tra
ces.

 None

service:
 pipelines:
 traces:
 exporters:

You enable exporters for
tracing by adding them
under
service.pipelines.tra
ces.

 None

service:
 pipelines:
 metrics:
 receivers:

You enable receivers for
metrics by adding them
under
service.pipelines.me
trics.

 None

service:
 pipelines:
 metrics:
 processors:

You enable processors
for metircs by adding
them under
service.pipelines.me
trics.

 None

Parameter Description Values Default

CHAPTER 4. CONFIGURING THE COLLECTOR

19

service:
 pipelines:
 metrics:
 exporters:

You enable exporters for
metrics by adding them
under
service.pipelines.me
trics.

 None

Parameter Description Values Default

4.1.3. Creating the required RBAC resources automatically

Some Collector components require configuring the RBAC resources.

Procedure

Add the following permissions to the opentelemetry-operator-controller-manage service
account so that the Red Hat build of OpenTelemetry Operator can create them automatically:

4.2. RECEIVERS

Receivers get data into the Collector. A receiver can be push or pull based. Generally, a receiver accepts

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 name: generate-processors-rbac
rules:
- apiGroups:
 - rbac.authorization.k8s.io
 resources:
 - clusterrolebindings
 - clusterroles
 verbs:
 - create
 - delete
 - get
 - list
 - patch
 - update
 - watch

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 name: generate-processors-rbac
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: generate-processors-rbac
subjects:
- kind: ServiceAccount
 name: opentelemetry-operator-controller-manager
 namespace: openshift-opentelemetry-operator

OpenShift Container Platform 4.19 Red Hat build of OpenTelemetry

20

data in a specified format, translates it into the internal format, and passes it to processors and
exporters defined in the applicable pipelines. By default, no receivers are configured. One or more
receivers must be configured. Receivers may support one or more data sources.

Currently, the following General Availability and Technology Preview receivers are available for the
Red Hat build of OpenTelemetry:

OTLP Receiver

Jaeger Receiver

Host Metrics Receiver

Kubernetes Objects Receiver

Kubelet Stats Receiver

Prometheus Receiver

OTLP JSON File Receiver

Zipkin Receiver

Kafka Receiver

Kubernetes Cluster Receiver

OpenCensus Receiver

Filelog Receiver

Journald Receiver

Kubernetes Events Receiver

4.2.1. OTLP Receiver

The OTLP Receiver ingests traces, metrics, and logs by using the OpenTelemetry Protocol (OTLP). The
OTLP Receiver ingests traces and metrics using the OpenTelemetry protocol (OTLP).

OpenTelemetry Collector custom resource with an enabled OTLP Receiver

...
 config:
 receivers:
 otlp:
 protocols:
 grpc:
 endpoint: 0.0.0.0:4317 1
 tls: 2
 ca_file: ca.pem
 cert_file: cert.pem
 key_file: key.pem
 client_ca_file: client.pem 3
 reload_interval: 1h 4
 http:

CHAPTER 4. CONFIGURING THE COLLECTOR

21

1

2

3

4

5

6

The OTLP gRPC endpoint. If omitted, the default 0.0.0.0:4317 is used.

The server-side TLS configuration. Defines paths to TLS certificates. If omitted, the TLS is
disabled.

The path to the TLS certificate at which the server verifies a client certificate. This sets the value of
ClientCAs and ClientAuth to RequireAndVerifyClientCert in the TLSConfig. For more
information, see the Config of the Golang TLS package.

Specifies the time interval at which the certificate is reloaded. If the value is not set, the certificate
is never reloaded. The reload_interval field accepts a string containing valid units of time such as
ns, us (or µs), ms, s, m, h.

The OTLP HTTP endpoint. The default value is 0.0.0.0:4318.

The server-side TLS configuration. For more information, see the grpc protocol configuration
section.

4.2.2. Jaeger Receiver

The Jaeger Receiver ingests traces in the Jaeger formats.

OpenTelemetry Collector custom resource with an enabled Jaeger Receiver

 endpoint: 0.0.0.0:4318 5
 tls: {} 6

 service:
 pipelines:
 traces:
 receivers: [otlp]
 metrics:
 receivers: [otlp]
...

...
 config:
 receivers:
 jaeger:
 protocols:
 grpc:
 endpoint: 0.0.0.0:14250 1
 thrift_http:
 endpoint: 0.0.0.0:14268 2
 thrift_compact:
 endpoint: 0.0.0.0:6831 3
 thrift_binary:
 endpoint: 0.0.0.0:6832 4
 tls: {} 5

 service:
 pipelines:

OpenShift Container Platform 4.19 Red Hat build of OpenTelemetry

22

https://godoc.org/crypto/tls#Config

1

2

3

4

5

The Jaeger gRPC endpoint. If omitted, the default 0.0.0.0:14250 is used.

The Jaeger Thrift HTTP endpoint. If omitted, the default 0.0.0.0:14268 is used.

The Jaeger Thrift Compact endpoint. If omitted, the default 0.0.0.0:6831 is used.

The Jaeger Thrift Binary endpoint. If omitted, the default 0.0.0.0:6832 is used.

The server-side TLS configuration. See the OTLP Receiver configuration section for more details.

4.2.3. Host Metrics Receiver

The Host Metrics Receiver ingests metrics in the OTLP format.

OpenTelemetry Collector custom resource with an enabled Host Metrics Receiver

 traces:
 receivers: [jaeger]
...

apiVersion: v1
kind: ServiceAccount
metadata:
 name: otel-hostfs-daemonset
 namespace: <namespace>
...

apiVersion: security.openshift.io/v1
kind: SecurityContextConstraints
allowHostDirVolumePlugin: true
allowHostIPC: false
allowHostNetwork: false
allowHostPID: true
allowHostPorts: false
allowPrivilegeEscalation: true
allowPrivilegedContainer: true
allowedCapabilities: null
defaultAddCapabilities:
- SYS_ADMIN
fsGroup:
 type: RunAsAny
groups: []
metadata:
 name: otel-hostmetrics
readOnlyRootFilesystem: true
runAsUser:
 type: RunAsAny
seLinuxContext:
 type: RunAsAny
supplementalGroups:
 type: RunAsAny
users:
- system:serviceaccount:<namespace>:otel-hostfs-daemonset
volumes:
- configMap

CHAPTER 4. CONFIGURING THE COLLECTOR

23

1

2

3

4

Sets the time interval for host metrics collection. If omitted, the default value is 1m.

Sets the initial time delay for host metrics collection. If omitted, the default value is 1s.

Configures the root_path so that the Host Metrics Receiver knows where the root filesystem is. If
running multiple instances of the Host Metrics Receiver, set the same root_path value for each
instance.

Lists the enabled host metrics scrapers. Available scrapers are cpu, disk, load, filesystem,
memory, network, paging, processes, and process.

4.2.4. Kubernetes Objects Receiver

The Kubernetes Objects Receiver pulls or watches objects to be collected from the Kubernetes API
server. This receiver watches primarily Kubernetes events, but it can collect any type of Kubernetes
objects. This receiver gathers telemetry for the cluster as a whole, so only one instance of this receiver
suffices for collecting all the data.

- emptyDir
- hostPath
- projected
...

apiVersion: opentelemetry.io/v1beta1
kind: OpenTelemetryCollector
metadata:
 name: otel
 namespace: <namespace>
spec:
 serviceAccount: otel-hostfs-daemonset
 mode: daemonset
 volumeMounts:
 - mountPath: /hostfs
 name: host
 readOnly: true
 volumes:
 - hostPath:
 path: /
 name: host
 config:
 receivers:
 hostmetrics:
 collection_interval: 10s 1
 initial_delay: 1s 2
 root_path: / 3
 scrapers: 4
 cpu: {}
 memory: {}
 disk: {}
 service:
 pipelines:
 metrics:
 receivers: [hostmetrics]
...

OpenShift Container Platform 4.19 Red Hat build of OpenTelemetry

24

IMPORTANT

The Kubernetes Objects Receiver is a Technology Preview feature only. Technology
Preview features are not supported with Red Hat production service level agreements
(SLAs) and might not be functionally complete. Red Hat does not recommend using
them in production. These features provide early access to upcoming product features,
enabling customers to test functionality and provide feedback during the development
process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

OpenTelemetry Collector custom resource with an enabled Kubernetes Objects Receiver

apiVersion: v1
kind: ServiceAccount
metadata:
 name: otel-k8sobj
 namespace: <namespace>
...

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 name: otel-k8sobj
 namespace: <namespace>
rules:
- apiGroups:
 - ""
 resources:
 - events
 - pods
 verbs:
 - get
 - list
 - watch
- apiGroups:
 - "events.k8s.io"
 resources:
 - events
 verbs:
 - watch
 - list
...

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 name: otel-k8sobj
subjects:
 - kind: ServiceAccount
 name: otel-k8sobj
 namespace: <namespace>
roleRef:
 kind: ClusterRole
 name: otel-k8sobj

CHAPTER 4. CONFIGURING THE COLLECTOR

25

https://access.redhat.com/support/offerings/techpreview/

1

2

3

4

5

6

The Resource name that this receiver observes: for example, pods, deployments, or events.

The observation mode that this receiver uses: pull or watch.

Only applicable to the pull mode. The request interval for pulling an object. If omitted, the default
value is 1h.

The label selector to define targets.

The field selector to filter targets.

The list of namespaces to collect events from. If omitted, the default value is all.

4.2.5. Kubelet Stats Receiver

The Kubelet Stats Receiver extracts metrics related to nodes, pods, containers, and volumes from the
kubelet’s API server. These metrics are then channeled through the metrics-processing pipeline for
additional analysis.

OpenTelemetry Collector custom resource with an enabled Kubelet Stats Receiver

 apiGroup: rbac.authorization.k8s.io
...

apiVersion: opentelemetry.io/v1beta1
kind: OpenTelemetryCollector
metadata:
 name: otel-k8s-obj
 namespace: <namespace>
spec:
 serviceAccount: otel-k8sobj
 mode: deployment
 config:
 receivers:
 k8sobjects:
 auth_type: serviceAccount
 objects:
 - name: pods 1
 mode: pull 2
 interval: 30s 3
 label_selector: 4
 field_selector: 5
 namespaces: [<namespace>,...] 6
 - name: events
 mode: watch
 exporters:
 debug:
 service:
 pipelines:
 logs:
 receivers: [k8sobjects]
 exporters: [debug]
...

OpenShift Container Platform 4.19 Red Hat build of OpenTelemetry

26

1

1

Sets the K8S_NODE_NAME to authenticate to the API.

The Kubelet Stats Receiver requires additional permissions for the service account used for running the
OpenTelemetry Collector.

Permissions required by the service account

The permissions required when using the extra_metadata_labels or request_utilization or
limit_utilization metrics.

4.2.6. Prometheus Receiver

The Prometheus Receiver scrapes the metrics endpoints.

OpenTelemetry Collector custom resource with an enabled Prometheus Receiver

...
 config:
 receivers:
 kubeletstats:
 collection_interval: 20s
 auth_type: "serviceAccount"
 endpoint: "https://${env:K8S_NODE_NAME}:10250"
 insecure_skip_verify: true
 service:
 pipelines:
 metrics:
 receivers: [kubeletstats]
 env:
 - name: K8S_NODE_NAME 1
 valueFrom:
 fieldRef:
 fieldPath: spec.nodeName
...

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 name: otel-collector
rules:
 - apiGroups: ['']
 resources: ['nodes/stats']
 verbs: ['get', 'watch', 'list']
 - apiGroups: [""]
 resources: ["nodes/proxy"] 1
 verbs: ["get"]
...

...
 config:
 receivers:
 prometheus:
 config:

CHAPTER 4. CONFIGURING THE COLLECTOR

27

1

2

3

4

1

2

Scrapes configurations using the Prometheus format.

The Prometheus job name.

The lnterval for scraping the metrics data. Accepts time units. The default value is 1m.

The targets at which the metrics are exposed. This example scrapes the metrics from a my-app
application in the example project.

4.2.7. OTLP JSON File Receiver

The OTLP JSON File Receiver extracts pipeline information from files containing data in the
ProtoJSON format and conforming to the OpenTelemetry Protocol specification. The receiver watches
a specified directory for changes such as created or modified files to process.

IMPORTANT

The OTLP JSON File Receiver is a Technology Preview feature only. Technology Preview
features are not supported with Red Hat production service level agreements (SLAs) and
might not be functionally complete. Red Hat does not recommend using them in
production. These features provide early access to upcoming product features, enabling
customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

OpenTelemetry Collector custom resource with the enabled OTLP JSON File Receiver

The list of file path glob patterns to watch.

The list of file path glob patterns to ignore.

 scrape_configs: 1
 - job_name: 'my-app' 2
 scrape_interval: 5s 3
 static_configs:
 - targets: ['my-app.example.svc.cluster.local:8888'] 4
 service:
 pipelines:
 metrics:
 receivers: [prometheus]
...

...
 config:
 otlpjsonfile:
 include:
 - "/var/log/*.log" 1
 exclude:
 - "/var/log/test.log" 2
...

OpenShift Container Platform 4.19 Red Hat build of OpenTelemetry

28

https://protobuf.dev/programming-guides/json/
https://opentelemetry.io/docs/specs/otel/protocol/
https://access.redhat.com/support/offerings/techpreview/

1

2

4.2.8. Zipkin Receiver

The Zipkin Receiver ingests traces in the Zipkin v1 and v2 formats.

OpenTelemetry Collector custom resource with the enabled Zipkin Receiver

The Zipkin HTTP endpoint. If omitted, the default 0.0.0.0:9411 is used.

The server-side TLS configuration. See the OTLP Receiver configuration section for more details.

4.2.9. Kafka Receiver

The Kafka Receiver receives traces, metrics, and logs from Kafka in the OTLP format.

IMPORTANT

The Kafka Receiver is a Technology Preview feature only. Technology Preview features
are not supported with Red Hat production service level agreements (SLAs) and might
not be functionally complete. Red Hat does not recommend using them in production.
These features provide early access to upcoming product features, enabling customers
to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

OpenTelemetry Collector custom resource with the enabled Kafka Receiver

...
 config:
 receivers:
 zipkin:
 endpoint: 0.0.0.0:9411 1
 tls: {} 2
 service:
 pipelines:
 traces:
 receivers: [zipkin]
...

...
 config:
 receivers:
 kafka:
 brokers: ["localhost:9092"] 1
 protocol_version: 2.0.0 2
 topic: otlp_spans 3
 auth:
 plain_text: 4
 username: example
 password: example
 tls: 5
 ca_file: ca.pem

CHAPTER 4. CONFIGURING THE COLLECTOR

29

https://access.redhat.com/support/offerings/techpreview/

1

2

3

4

5

6

7

The list of Kafka brokers. The default is localhost:9092.

The Kafka protocol version. For example, 2.0.0. This is a required field.

The name of the Kafka topic to read from. The default is otlp_spans.

The plain text authentication configuration. If omitted, plain text authentication is disabled.

The client-side TLS configuration. Defines paths to the TLS certificates. If omitted, TLS
authentication is disabled.

Disables verifying the server’s certificate chain and host name. The default is false.

ServerName indicates the name of the server requested by the client to support virtual hosting.

4.2.10. Kubernetes Cluster Receiver

The Kubernetes Cluster Receiver gathers cluster metrics and entity events from the Kubernetes API
server. It uses the Kubernetes API to receive information about updates. Authentication for this receiver
is only supported through service accounts.

IMPORTANT

The Kubernetes Cluster Receiver is a Technology Preview feature only. Technology
Preview features are not supported with Red Hat production service level agreements
(SLAs) and might not be functionally complete. Red Hat does not recommend using
them in production. These features provide early access to upcoming product features,
enabling customers to test functionality and provide feedback during the development
process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

OpenTelemetry Collector custom resource with the enabled Kubernetes Cluster Receiver

 cert_file: cert.pem
 key_file: key.pem
 insecure: false 6
 server_name_override: kafka.example.corp 7
 service:
 pipelines:
 traces:
 receivers: [kafka]
...

...
 config:
 receivers:
 k8s_cluster:
 distribution: openshift
 collection_interval: 10s
 exporters:
 debug: {}
 service:

OpenShift Container Platform 4.19 Red Hat build of OpenTelemetry

30

https://access.redhat.com/support/offerings/techpreview/

This receiver requires a configured service account, RBAC rules for the cluster role, and the cluster role
binding that binds the RBAC with the service account.

ServiceAccount object

RBAC rules for the ClusterRole object

 pipelines:
 metrics:
 receivers: [k8s_cluster]
 exporters: [debug]
 logs/entity_events:
 receivers: [k8s_cluster]
 exporters: [debug]
...

apiVersion: v1
kind: ServiceAccount
metadata:
 labels:
 app: otelcontribcol
 name: otelcontribcol
...

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 name: otelcontribcol
 labels:
 app: otelcontribcol
rules:
- apiGroups:
 - quota.openshift.io
 resources:
 - clusterresourcequotas
 verbs:
 - get
 - list
 - watch
- apiGroups:
 - ""
 resources:
 - events
 - namespaces
 - namespaces/status
 - nodes
 - nodes/spec
 - pods
 - pods/status
 - replicationcontrollers
 - replicationcontrollers/status
 - resourcequotas
 - services
 verbs:
 - get

CHAPTER 4. CONFIGURING THE COLLECTOR

31

ClusterRoleBinding object

 - list
 - watch
- apiGroups:
 - apps
 resources:
 - daemonsets
 - deployments
 - replicasets
 - statefulsets
 verbs:
 - get
 - list
 - watch
- apiGroups:
 - extensions
 resources:
 - daemonsets
 - deployments
 - replicasets
 verbs:
 - get
 - list
 - watch
- apiGroups:
 - batch
 resources:
 - jobs
 - cronjobs
 verbs:
 - get
 - list
 - watch
- apiGroups:
 - autoscaling
 resources:
 - horizontalpodautoscalers
 verbs:
 - get
 - list
 - watch
...

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 name: otelcontribcol
 labels:
 app: otelcontribcol
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: otelcontribcol
subjects:
- kind: ServiceAccount

OpenShift Container Platform 4.19 Red Hat build of OpenTelemetry

32

1

2

3

4.2.11. OpenCensus Receiver

The OpenCensus Receiver provides backwards compatibility with the OpenCensus project for easier
migration of instrumented codebases. It receives metrics and traces in the OpenCensus format via
gRPC or HTTP and Json.

WARNING

The OpenCensus Receiver is deprecated and might be removed in a future release.

OpenTelemetry Collector custom resource with the enabled OpenCensus Receiver

The OpenCensus endpoint. If omitted, the default is 0.0.0.0:55678.

The server-side TLS configuration. See the OTLP Receiver configuration section for more details.

You can also use the HTTP JSON endpoint to optionally configure CORS, which is enabled by
specifying a list of allowed CORS origins in this field. Wildcards with * are accepted under the
cors_allowed_origins. To match any origin, enter only *.

4.2.12. Filelog Receiver

The Filelog Receiver tails and parses logs from files.

IMPORTANT

 name: otelcontribcol
 namespace: default
...



...
 config:
 receivers:
 opencensus:
 endpoint: 0.0.0.0:9411 1
 tls: 2
 cors_allowed_origins: 3
 - https://*.<example>.com
 service:
 pipelines:
 traces:
 receivers: [opencensus]
...

CHAPTER 4. CONFIGURING THE COLLECTOR

33

1

2

IMPORTANT

The Filelog Receiver is a Technology Preview feature only. Technology Preview features
are not supported with Red Hat production service level agreements (SLAs) and might
not be functionally complete. Red Hat does not recommend using them in production.
These features provide early access to upcoming product features, enabling customers
to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

OpenTelemetry Collector custom resource with the enabled Filelog Receiver that tails a
text file

A list of file glob patterns that match the file paths to be read.

An array of Operators. Each Operator performs a simple task such as parsing a timestamp or JSON.
To process logs into a desired format, chain the Operators together.

4.2.13. Journald Receiver

The Journald Receiver parses journald events from the systemd journal and sends them as logs.

IMPORTANT

The Journald Receiver is a Technology Preview feature only. Technology Preview
features are not supported with Red Hat production service level agreements (SLAs) and
might not be functionally complete. Red Hat does not recommend using them in
production. These features provide early access to upcoming product features, enabling
customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

OpenTelemetry Collector custom resource with the enabled Journald Receiver

...
 config:
 receivers:
 filelog:
 include: [/simple.log] 1
 operators: 2
 - type: regex_parser
 regex: '^(?P<time>\d{4}-\d{2}-\d{2} \d{2}:\d{2}:\d{2}) (?P<sev>[A-Z]*) (?P<msg>.*)$'
 timestamp:
 parse_from: attributes.time
 layout: '%Y-%m-%d %H:%M:%S'
 severity:
 parse_from: attributes.sev
...

apiVersion: v1
kind: Namespace

OpenShift Container Platform 4.19 Red Hat build of OpenTelemetry

34

https://access.redhat.com/support/offerings/techpreview/
https://access.redhat.com/support/offerings/techpreview/

metadata:
 name: otel-journald
 labels:
 security.openshift.io/scc.podSecurityLabelSync: "false"
 pod-security.kubernetes.io/enforce: "privileged"
 pod-security.kubernetes.io/audit: "privileged"
 pod-security.kubernetes.io/warn: "privileged"
...

apiVersion: v1
kind: ServiceAccount
metadata:
 name: privileged-sa
 namespace: otel-journald
...

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 name: otel-journald-binding
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: system:openshift:scc:privileged
subjects:
- kind: ServiceAccount
 name: privileged-sa
 namespace: otel-journald
...

apiVersion: opentelemetry.io/v1beta1
kind: OpenTelemetryCollector
metadata:
 name: otel-journald-logs
 namespace: otel-journald
spec:
 mode: daemonset
 serviceAccount: privileged-sa
 securityContext:
 allowPrivilegeEscalation: false
 capabilities:
 drop:
 - CHOWN
 - DAC_OVERRIDE
 - FOWNER
 - FSETID
 - KILL
 - NET_BIND_SERVICE
 - SETGID
 - SETPCAP
 - SETUID
 readOnlyRootFilesystem: true
 seLinuxOptions:
 type: spc_t
 seccompProfile:
 type: RuntimeDefault

CHAPTER 4. CONFIGURING THE COLLECTOR

35

1

2

3

4

5

6

7

Filters output by message priorities or priority ranges. The default value is info.

Lists the units to read entries from. If empty, entries are read from all units.

Includes very long logs and logs with unprintable characters. The default value is false.

If set to true, the receiver pauses reading a file and attempts to resend the current batch of logs
when encountering an error from downstream components. The default value is false.

The time interval to wait after the first failure before retrying. The default value is 1s. The units are
ms, s, m, h.

The upper bound for the retry backoff interval. When this value is reached, the time interval
between consecutive retry attempts remains constant at this value. The default value is 30s. The
supported units are ms, s, m, h.

The maximum time interval, including retry attempts, for attempting to send a logs batch to a
downstream consumer. When this value is reached, the data are discarded. If the set value is 0,

 config:
 receivers:
 journald:
 files: /var/log/journal/*/*
 priority: info 1
 units: 2
 - kubelet
 - crio
 - init.scope
 - dnsmasq
 all: true 3
 retry_on_failure:
 enabled: true 4
 initial_interval: 1s 5
 max_interval: 30s 6
 max_elapsed_time: 5m 7
 processors:
 exporters:
 debug: {}
 service:
 pipelines:
 logs:
 receivers: [journald]
 exporters: [debug]
 volumeMounts:
 - name: journal-logs
 mountPath: /var/log/journal/
 readOnly: true
 volumes:
 - name: journal-logs
 hostPath:
 path: /var/log/journal
 tolerations:
 - key: node-role.kubernetes.io/master
 operator: Exists
 effect: NoSchedule
...

OpenShift Container Platform 4.19 Red Hat build of OpenTelemetry

36

downstream consumer. When this value is reached, the data are discarded. If the set value is 0,
retrying never stops. The default value is 5m. The supported units are ms, s, m, h.

4.2.14. Kubernetes Events Receiver

The Kubernetes Events Receiver collects events from the Kubernetes API server. The collected events
are converted into logs.

IMPORTANT

The Kubernetes Events Receiver is a Technology Preview feature only. Technology
Preview features are not supported with Red Hat production service level agreements
(SLAs) and might not be functionally complete. Red Hat does not recommend using
them in production. These features provide early access to upcoming product features,
enabling customers to test functionality and provide feedback during the development
process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

OpenShift Container Platform permissions required for the Kubernetes Events Receiver

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 name: otel-collector
 labels:
 app: otel-collector
rules:
- apiGroups:
 - ""
 resources:
 - events
 - namespaces
 - namespaces/status
 - nodes
 - nodes/spec
 - pods
 - pods/status
 - replicationcontrollers
 - replicationcontrollers/status
 - resourcequotas
 - services
 verbs:
 - get
 - list
 - watch
- apiGroups:
 - apps
 resources:
 - daemonsets
 - deployments
 - replicasets
 - statefulsets

CHAPTER 4. CONFIGURING THE COLLECTOR

37

https://access.redhat.com/support/offerings/techpreview/

1

2

OpenTelemetry Collector custom resource with the enabled Kubernetes Event Receiver

The service account of the Collector that has the required ClusterRole otel-collector RBAC.

The list of namespaces to collect events from. The default value is empty, which means that all
namespaces are collected.

4.2.15. Additional resources

 verbs:
 - get
 - list
 - watch
- apiGroups:
 - extensions
 resources:
 - daemonsets
 - deployments
 - replicasets
 verbs:
 - get
 - list
 - watch
- apiGroups:
 - batch
 resources:
 - jobs
 - cronjobs
 verbs:
 - get
 - list
 - watch
- apiGroups:
 - autoscaling
 resources:
 - horizontalpodautoscalers
 verbs:
 - get
 - list
 - watch
...

...
 serviceAccount: otel-collector 1
 config:
 receivers:
 k8s_events:
 namespaces: [project1, project2] 2
 service:
 pipelines:
 logs:
 receivers: [k8s_events]
...

OpenShift Container Platform 4.19 Red Hat build of OpenTelemetry

38

OpenTelemetry Protocol (OTLP) (OpenTelemetry Documentation)

4.3. PROCESSORS

Processors process the data between it is received and exported. Processors are optional. By default, no
processors are enabled. Processors must be enabled for every data source. Not all processors support
all data sources. Depending on the data source, multiple processors might be enabled. Note that the
order of processors matters.

Currently, the following General Availability and Technology Preview processors are available for the
Red Hat build of OpenTelemetry:

Batch Processor

Memory Limiter Processor

Resource Detection Processor

Attributes Processor

Resource Processor

Span Processor

Kubernetes Attributes Processor

Filter Processor

Cumulative-to-Delta Processor

Group-by-Attributes Processor

Transform Processor

Tail Sampling Processor

4.3.1. Batch Processor

The Batch Processor batches traces and metrics to reduce the number of outgoing connections needed
to transfer the telemetry information.

Example of the OpenTelemetry Collector custom resource when using the Batch Processor

...
 config:
 processors:
 batch:
 timeout: 5s
 send_batch_max_size: 10000
 service:
 pipelines:
 traces:
 processors: [batch]
 metrics:
 processors: [batch]
...

CHAPTER 4. CONFIGURING THE COLLECTOR

39

https://opentelemetry.io/docs/specs/otlp/

Table 4.2. Parameters used by the Batch Processor

Parameter Description Default

timeout Sends the batch after a specific
time duration and irrespective of
the batch size.

200ms

send_batch_size Sends the batch of telemetry
data after the specified number
of spans or metrics.

8192

send_batch_max_size The maximum allowable size of
the batch. Must be equal or
greater than the
send_batch_size.

0

metadata_keys When activated, a batcher
instance is created for each
unique set of values found in the
client.Metadata.

[]

metadata_cardinality_limit When the metadata_keys are
populated, this configuration
restricts the number of distinct
metadata key-value combinations
processed throughout the
duration of the process.

1000

4.3.2. Memory Limiter Processor

The Memory Limiter Processor periodically checks the Collector’s memory usage and pauses data
processing when the soft memory limit is reached. This processor supports traces, metrics, and logs. The
preceding component, which is typically a receiver, is expected to retry sending the same data and may
apply a backpressure to the incoming data. When memory usage exceeds the hard limit, the Memory
Limiter Processor forces garbage collection to run.

Example of the OpenTelemetry Collector custom resource when using the Memory Limiter
Processor

...
 config:
 processors:
 memory_limiter:
 check_interval: 1s
 limit_mib: 4000
 spike_limit_mib: 800
 service:
 pipelines:
 traces:
 processors: [batch]
 metrics:
 processors: [batch]

OpenShift Container Platform 4.19 Red Hat build of OpenTelemetry

40

Table 4.3. Parameters used by the Memory Limiter Processor

Parameter Description Default

check_interval Time between memory usage
measurements. The optimal value
is 1s. For spiky traffic patterns,
you can decrease the
check_interval or increase the
spike_limit_mib.

0s

limit_mib The hard limit, which is the
maximum amount of memory in
MiB allocated on the heap.
Typically, the total memory usage
of the OpenTelemetry Collector is
about 50 MiB greater than this
value.

0

spike_limit_mib Spike limit, which is the maximum
expected spike of memory usage
in MiB. The optimal value is
approximately 20% of limit_mib.
To calculate the soft limit,
subtract the spike_limit_mib
from the limit_mib.

20% of limit_mib

limit_percentage Same as the limit_mib but
expressed as a percentage of the
total available memory. The
limit_mib setting takes
precedence over this setting.

0

spike_limit_percentage Same as the spike_limit_mib
but expressed as a percentage of
the total available memory.
Intended to be used with the
limit_percentage setting.

0

4.3.3. Resource Detection Processor

The Resource Detection Processor identifies host resource details in alignment with OpenTelemetry’s
resource semantic standards. Using the detected information, this processor can add or replace the
resource values in telemetry data. This processor supports traces and metrics. You can use this
processor with multiple detectors such as the Docket metadata detector or the
OTEL_RESOURCE_ATTRIBUTES environment variable detector.

IMPORTANT

...

CHAPTER 4. CONFIGURING THE COLLECTOR

41

1

IMPORTANT

The Resource Detection Processor is a Technology Preview feature only. Technology
Preview features are not supported with Red Hat production service level agreements
(SLAs) and might not be functionally complete. Red Hat does not recommend using
them in production. These features provide early access to upcoming product features,
enabling customers to test functionality and provide feedback during the development
process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

OpenShift Container Platform permissions required for the Resource Detection Processor

OpenTelemetry Collector using the Resource Detection Processor

OpenTelemetry Collector using the Resource Detection Processor with an environment
variable detector

Specifies which detector to use. In this example, the environment detector is specified.

kind: ClusterRole
metadata:
 name: otel-collector
rules:
- apiGroups: ["config.openshift.io"]
 resources: ["infrastructures", "infrastructures/status"]
 verbs: ["get", "watch", "list"]
...

...
 config:
 processors:
 resourcedetection:
 detectors: [openshift]
 override: true
 service:
 pipelines:
 traces:
 processors: [resourcedetection]
 metrics:
 processors: [resourcedetection]
...

...
 config:
 processors:
 resourcedetection/env:
 detectors: [env] 1
 timeout: 2s
 override: false
...

OpenShift Container Platform 4.19 Red Hat build of OpenTelemetry

42

https://access.redhat.com/support/offerings/techpreview/

4.3.4. Attributes Processor

The Attributes Processor can modify attributes of a span, log, or metric. You can configure this
processor to filter and match input data and include or exclude such data for specific actions.

This processor operates on a list of actions, executing them in the order specified in the configuration.
The following actions are supported:

Insert

Inserts a new attribute into the input data when the specified key does not already exist.

Update

Updates an attribute in the input data if the key already exists.

Upsert

Combines the insert and update actions: Inserts a new attribute if the key does not exist yet. Updates
the attribute if the key already exists.

Delete

Removes an attribute from the input data.

Hash

Hashes an existing attribute value as SHA1.

Extract

Extracts values by using a regular expression rule from the input key to the target keys defined in the
rule. If a target key already exists, it is overridden similarly to the Span Processor’s to_attributes
setting with the existing attribute as the source.

Convert

Converts an existing attribute to a specified type.

OpenTelemetry Collector using the Attributes Processor

...
 config:
 processors:
 attributes/example:
 actions:
 - key: db.table
 action: delete
 - key: redacted_span
 value: true
 action: upsert
 - key: copy_key
 from_attribute: key_original
 action: update
 - key: account_id
 value: 2245
 action: insert
 - key: account_password
 action: delete
 - key: account_email
 action: hash
 - key: http.status_code

CHAPTER 4. CONFIGURING THE COLLECTOR

43

4.3.5. Resource Processor

The Resource Processor applies changes to the resource attributes. This processor supports traces,
metrics, and logs.

OpenTelemetry Collector using the Resource Detection Processor

Attributes represent the actions that are applied to the resource attributes, such as delete the attribute,
insert the attribute, or upsert the attribute.

4.3.6. Span Processor

The Span Processor modifies the span name based on its attributes or extracts the span attributes from
the span name. This processor can also change the span status and include or exclude spans. This
processor supports traces.

Span renaming requires specifying attributes for the new name by using the from_attributes
configuration.

IMPORTANT

The Span Processor is a Technology Preview feature only. Technology Preview features
are not supported with Red Hat production service level agreements (SLAs) and might
not be functionally complete. Red Hat does not recommend using them in production.
These features provide early access to upcoming product features, enabling customers
to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

OpenTelemetry Collector using the Span Processor for renaming a span

 action: convert
 converted_type: int
...

...
 config:
 processors:
 attributes:
 - key: cloud.availability_zone
 value: "zone-1"
 action: upsert
 - key: k8s.cluster.name
 from_attribute: k8s-cluster
 action: insert
 - key: redundant-attribute
 action: delete
...

...
 config:
 processors:
 span:

OpenShift Container Platform 4.19 Red Hat build of OpenTelemetry

44

https://access.redhat.com/support/offerings/techpreview/

1

2

1

Defines the keys to form the new span name.

An optional separator.

You can use this processor to extract attributes from the span name.

OpenTelemetry Collector using the Span Processor for extracting attributes from a span
name

This rule defines how the extraction is to be executed. You can define more rules: for example, in
this case, if the regular expression matches the name, a documentID attibute is created. In this
example, if the input span name is /api/v1/document/12345678/update, this results in the
/api/v1/document/{documentId}/update output span name, and a new
"documentId"="12345678" attribute is added to the span.

You can have the span status modified.

OpenTelemetry Collector using the Span Processor for status change

4.3.7. Kubernetes Attributes Processor

The Kubernetes Attributes Processor enables automatic configuration of spans, metrics, and log
resource attributes by using the Kubernetes metadata. This processor supports traces, metrics, and logs.
This processor automatically identifies the Kubernetes resources, extracts the metadata from them, and
incorporates this extracted metadata as resource attributes into relevant spans, metrics, and logs. It
utilizes the Kubernetes API to discover all pods operating within a cluster, maintaining records of their IP
addresses, pod UIDs, and other relevant metadata.

Minimum OpenShift Container Platform permissions required for the Kubernetes

 name:
 from_attributes: [<key1>, <key2>, ...] 1
 separator: <value> 2
...

...
 config:
 processors:
 span/to_attributes:
 name:
 to_attributes:
 rules:
 - ^\/api\/v1\/document\/(?P<documentId>.*)\/update$ 1
...

...
 config:
 processors:
 span/set_status:
 status:
 code: Error
 description: "<error_description>"
...

CHAPTER 4. CONFIGURING THE COLLECTOR

45

Minimum OpenShift Container Platform permissions required for the Kubernetes
Attributes Processor

OpenTelemetry Collector using the Kubernetes Attributes Processor

4.3.8. Filter Processor

The Filter Processor leverages the OpenTelemetry Transformation Language to establish criteria for
discarding telemetry data. If any of these conditions are satisfied, the telemetry data are discarded. You
can combine the conditions by using the logical OR operator. This processor supports traces, metrics,
and logs.

IMPORTANT

The Filter Processor is a Technology Preview feature only. Technology Preview features
are not supported with Red Hat production service level agreements (SLAs) and might
not be functionally complete. Red Hat does not recommend using them in production.
These features provide early access to upcoming product features, enabling customers
to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

OpenTelemetry Collector custom resource with an enabled OTLP Exporter

kind: ClusterRole
metadata:
 name: otel-collector
rules:
 - apiGroups: ['']
 resources: ['pods', 'namespaces']
 verbs: ['get', 'watch', 'list']
 - apiGroups: ['apps']
 resources: ['replicasets']
 verbs: ['get', 'watch', 'list']
...

...
 config:
 processors:
 k8sattributes:
 filter:
 node_from_env_var: KUBE_NODE_NAME
...

...
 config:
 processors:
 filter/ottl:
 error_mode: ignore 1
 traces:
 span:

OpenShift Container Platform 4.19 Red Hat build of OpenTelemetry

46

https://access.redhat.com/support/offerings/techpreview/

1

2

3

Defines the error mode. When set to ignore, ignores errors returned by conditions. When set to
propagate, returns the error up the pipeline. An error causes the payload to be dropped from the
Collector.

Filters the spans that have the container.name == app_container_1 attribute.

Filters the spans that have the host.name == localhost resource attribute.

4.3.9. Cumulative-to-Delta Processor

The Cumulative-to-Delta Processor converts monotonic, cumulative-sum, and histogram metrics to
monotonic delta metrics.

You can filter metrics by using the include: or exclude: fields and specifying the strict or regexp
metric name matching.

Because this processor calculates delta by storing the previous value of a metric, you must set up the
metric source to send the metric data to a single stateful Collector instance rather than a deployment of
multiple Collectors.

This processor does not convert non-monotonic sums and exponential histograms.

IMPORTANT

The Cumulative-to-Delta Processor is a Technology Preview feature only. Technology
Preview features are not supported with Red Hat production service level agreements
(SLAs) and might not be functionally complete. Red Hat does not recommend using
them in production. These features provide early access to upcoming product features,
enabling customers to test functionality and provide feedback during the development
process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

Example of an OpenTelemetry Collector custom resource with an enabled Cumulative-to-
Delta Processor

 - 'attributes["container.name"] == "app_container_1"' 2
 - 'resource.attributes["host.name"] == "localhost"' 3
...

...
mode: sidecar 1
config:
 processors:
 cumulativetodelta:
 include: 2
 match_type: strict 3
 metrics: 4
 - <metric_1_name>
 - <metric_2_name>
 exclude: 5
 match_type: regexp

CHAPTER 4. CONFIGURING THE COLLECTOR

47

https://access.redhat.com/support/offerings/techpreview/

1

2

3

4

5

1

To tie the Collector’s lifecycle to the metric source, you can run the Collector as a sidecar to the
application that emits the cumulative temporality metrics.

Optional: You can limit which metrics the processor converts by explicitly defining which metrics
you want converted in this stanza. If you omit this field, the processor converts all metrics, except
the metrics that are listed in the exclude field.

Defines the value that you provided in the metrics field as an exact match by using the strict
parameter or a regular expression by using the regex parameter.

Lists the names of the metrics that you want to convert. The processor converts exact matches or
matches for regular expressions. If a metric matches both the include and exclude filters, the
exclude filter takes precedence.

Optional: You can exclude certain metrics from conversion by explicitly defining them here.

4.3.10. Group-by-Attributes Processor

The Group-by-Attributes Processor groups all spans, log records, and metric datapoints that share the
same attributes by reassigning them to a Resource that matches those attributes.

IMPORTANT

The Group-by-Attributes Processor is a Technology Preview feature only. Technology
Preview features are not supported with Red Hat production service level agreements
(SLAs) and might not be functionally complete. Red Hat does not recommend using
them in production. These features provide early access to upcoming product features,
enabling customers to test functionality and provide feedback during the development
process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

At minimum, configuring this processor involves specifying an array of attribute keys to be used to group
spans, log records, or metric datapoints together, as in the following example:

Example of the OpenTelemetry Collector custom resource when using the Group-by-
Attributes Processor

Specifies attribute keys to group by.

 metrics:
 - "<regular_expression_for_metric_names>"
...

...
 config:
 processors:
 groupbyattrs:
 keys: 1
 - <key1> 2
 - <key2>
...

OpenShift Container Platform 4.19 Red Hat build of OpenTelemetry

48

https://access.redhat.com/support/offerings/techpreview/

2

1

2

If a processed span, log record, or metric datapoint contains at least one of the specified attribute
keys, it is reassigned to a Resource that shares the same attribute values; and if no such Resource

4.3.11. Transform Processor

The Transform Processor enables modification of telemetry data according to specified rules and in the
OpenTelemetry Transformation Language (OTTL) . For each signal type, the processor processes a
series of conditions and statements associated with a specific OTTL Context type and then executes
them in sequence on incoming telemetry data as specified in the configuration. Each condition and
statement can access and modify telemetry data by using various functions, allowing conditions to
dictate if a function is to be executed.

All statements are written in the OTTL. You can configure multiple context statements for different
signals, traces, metrics, and logs. The value of the context type specifies which OTTL Context the
processor must use when interpreting the associated statements.

IMPORTANT

The Transform Processor is a Technology Preview feature only. Technology Preview
features are not supported with Red Hat production service level agreements (SLAs) and
might not be functionally complete. Red Hat does not recommend using them in
production. These features provide early access to upcoming product features, enabling
customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

Configuration summary

Optional: See the following table "Values for the optional error_mode field".

Indicates a signal to be transformed.

...
config:
 processors:
 transform:
 error_mode: ignore 1
 <trace|metric|log>_statements: 2
 - context: <string> 3
 conditions: 4
 - <string>
 - <string>
 statements: 5
 - <string>
 - <string>
 - <string>
 - context: <string>
 statements:
 - <string>
 - <string>
 - <string>
...

CHAPTER 4. CONFIGURING THE COLLECTOR

49

https://github.com/open-telemetry/opentelemetry-collector-contrib/tree/main/pkg/ottl
https://access.redhat.com/support/offerings/techpreview/

3

4

1

2

3

4

See the following table "Values for the context field".

Optional: Conditions for performing a transformation.

Example of the OpenTelemetry Collector custom resource when using the Transform
Processor

Transforms a trace signal.

Keeps keys on the resources.

Replaces attributes and replaces string characters in password fields with asterisks.

Performs transformations at the span level.

Table 4.4. Values for the context field

Signal Statement Valid Contexts

trace_statements resource, scope, span, spanevent

metric_statements resource, scope, metric, datapoint

log_statements resource, scope, log

Table 4.5. Values for the optional error_mode field

...
 config:
 transform:
 error_mode: ignore
 trace_statements: 1
 - context: resource
 statements:
 - keep_keys(attributes, ["service.name", "service.namespace", "cloud.region",
"process.command_line"]) 2
 - replace_pattern(attributes["process.command_line"], "password\\=[^\\s]*(\\s?)",
"password=***") 3
 - limit(attributes, 100, [])
 - truncate_all(attributes, 4096)
 - context: span 4
 statements:
 - set(status.code, 1) where attributes["http.path"] == "/health"
 - set(name, attributes["http.route"])
 - replace_match(attributes["http.target"], "/user/*/list/*", "/user/{userId}/list/{listId}")
 - limit(attributes, 100, [])
 - truncate_all(attributes, 4096)
...

OpenShift Container Platform 4.19 Red Hat build of OpenTelemetry

50

Value Description

ignore Ignores and logs errors returned by statements and
then continues to the next statement.

silent Ignores and doesn’t log errors returned by
statements and then continues to the next
statement.

propagate Returns errors up the pipeline and drops the payload.
Implicit default.

4.3.12. Tail Sampling Processor

The Tail Sampling Processor samples traces according to user-defined policies when all of the spans are
completed. Tail-based sampling enables you to filter the traces of interest and reduce your data
ingestion and storage costs.

IMPORTANT

The Tail Sampling Processor is a Technology Preview feature only. Technology Preview
features are not supported with Red Hat production service level agreements (SLAs) and
might not be functionally complete. Red Hat does not recommend using them in
production. These features provide early access to upcoming product features, enabling
customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

This processor reassembles spans into new batches and strips spans of their original context.

TIP

In pipelines, place this processor downstream of any processors that rely on context: for
example, after the Kubernetes Attributes Processor.

If scaling the Collector, ensure that one Collector instance receives all spans of the same trace
so that this processor makes correct sampling decisions based on the specified sampling
policies. You can achieve this by setting up two layers of Collectors: the first layer of Collectors
with the Load Balancing Exporter, and the second layer of Collectors with the Tail Sampling
Processor.

Example of the OpenTelemetry Collector custom resource when using the Tail Sampling
Processor

...
config:
 processors:
 tail_sampling: 1
 decision_wait: 30s 2
 num_traces: 50000 3

CHAPTER 4. CONFIGURING THE COLLECTOR

51

https://access.redhat.com/support/offerings/techpreview/

1

2

3

4

5

Processor name.

Optional: Decision delay time, counted from the time of the first span, before the processor makes
a sampling decision on each trace. Defaults to 30s.

Optional: The number of traces kept in memory. Defaults to 50000.

Optional: The expected number of new traces per second, which is helpful for allocating data
structures. Defaults to 0.

Definitions of the policies for trace evaluation. The processor evaluates each trace against all of
the specified policies and then either samples or drops the trace.

You can choose and combine policies from the following list:

The following policy samples all traces:

The following policy samples only traces of a duration that is within a specified range:

 expected_new_traces_per_sec: 10 4
 policies: 5
 [
 {
 <definition_of_policy_1>
 },
 {
 <definition_of_policy_2>
 },
 {
 <definition_of_policy_3>
 },
]
...

...
 policies:
 [
 {
 name: <always_sample_policy>,
 type: always_sample,
 },
]
...

...
 policies:
 [
 {
 name: <latency_policy>,
 type: latency,
 latency: {threshold_ms: 5000, upper_threshold_ms: 10000} 1
 },
]
...

OpenShift Container Platform 4.19 Red Hat build of OpenTelemetry

52

1

1

1

The provided 5000 and 10000 values are examples. You can estimate the desired latency
values by looking at the earliest start time value and latest end time value. If you omit the
upper_threshold_ms field, this policy samples all latencies greater than the specified
threshold_ms value.

The following policy samples traces by numeric value matches for resource and record
attributes:

The provided 50 and 100 values are examples.

The following policy samples only a percentage of traces:

The provided 10 value is an example.

The following policy samples traces by the status code: OK, ERROR, or UNSET:

The following policy samples traces by string value matches for resource and record attributes:

...
 policies:
 [
 {
 name: <numeric_attribute_policy>,
 type: numeric_attribute,
 numeric_attribute: {key: <key1>, min_value: 50, max_value: 100} 1
 },
]
...

...
 policies:
 [
 {
 name: <probabilistic_policy>,
 type: probabilistic,
 probabilistic: {sampling_percentage: 10} 1
 },
]
...

...
 policies:
 [
 {
 name: <status_code_policy>,
 type: status_code,
 status_code: {status_codes: [ERROR, UNSET]}
 },
]
...

...

CHAPTER 4. CONFIGURING THE COLLECTOR

53

1

1

1

This policy definition supports both exact and regular-expression value matches. The
provided 10 value in the cache_max_size field is an example.

The following policy samples traces by the rate of spans per second:

The provided 35 value is an example.

The following policy samples traces by the minimum and maximum number of spans inclusively:

If the sum of all spans in the trace is outside the range threshold, the trace is not sampled.
The provided 2 and 20 values are examples.

The following policy samples traces by TraceState value matches:

 policies:
 [
 {
 name: <string_attribute_policy>,
 type: string_attribute,
 string_attribute: {key: <key2>, values: [<value1>, <val>*], enabled_regex_matching:
true, cache_max_size: 10} 1
 },
]
...

...
 policies:
 [
 {
 name: <rate_limiting_policy>,
 type: rate_limiting,
 rate_limiting: {spans_per_second: 35} 1
 },
]
...

...
 policies:
 [
 {
 name: <span_count_policy>,
 type: span_count,
 span_count: {min_spans: 2, max_spans: 20} 1
 },
]
...

...
 policies:
 [
 {
 name: <trace_state_policy>,

OpenShift Container Platform 4.19 Red Hat build of OpenTelemetry

54

The following policy samples traces by a boolean attribute (resource and record):

The following policy samples traces by a given boolean OTTL condition for a span or span event:

The following is an AND policy that samples traces based on a combination of multiple policies:

 type: trace_state,
 trace_state: { key: <key3>, values: [<value1>, <value2>] }
 },
]
...

...
 policies:
 [
 {
 name: <bool_attribute_policy>,
 type: boolean_attribute,
 boolean_attribute: {key: <key4>, value: true}
 },
]
...

...
 policies:
 [
 {
 name: <ottl_policy>,
 type: ottl_condition,
 ottl_condition: {
 error_mode: ignore,
 span: [
 "attributes[\"<test_attr_key_1>\"] == \"<test_attr_value_1>\"",
 "attributes[\"<test_attr_key_2>\"] != \"<test_attr_value_1>\"",
],
 spanevent: [
 "name != \"<test_span_event_name>\"",
 "attributes[\"<test_event_attr_key_2>\"] != \"<test_event_attr_value_1>\"",
]
 }
 },
]
...

...
 policies:
 [
 {
 name: <and_policy>,
 type: and,
 and: {
 and_sub_policy:
 [
 {
 name: <and_policy_1>,

CHAPTER 4. CONFIGURING THE COLLECTOR

55

1 The provided 50 and 100 values are examples.

The following is a DROP policy that drops traces from sampling based on a combination of
multiple policies:

The following policy samples traces by a combination of the previous samplers and with ordering
and rate allocation per sampler:

 type: numeric_attribute,
 numeric_attribute: { key: <key1>, min_value: 50, max_value: 100 } 1
 },
 {
 name: <and_policy_2>,
 type: string_attribute,
 string_attribute: { key: <key2>, values: [<value1>, <value2>] }
 },
]
 }
 },
]
...

...
 policies:
 [
 {
 name: <drop_policy>,
 type: drop,
 drop: {
 drop_sub_policy:
 [
 {
 name: <drop_policy_1>,
 type: string_attribute,
 string_attribute: {key: url.path, values: [\/health, \/metrics],
enabled_regex_matching: true}
 }
]
 }
 },
]
...

...
 policies:
 [
 {
 name: <composite_policy>,
 type: composite,
 composite:
 {
 max_total_spans_per_second: 100, 1
 policy_order: [<composite_policy_1>, <composite_policy_2>,
<composite_policy_3>],

OpenShift Container Platform 4.19 Red Hat build of OpenTelemetry

56

1 2 Allocates percentages of spans according to the order of applied policies. For example, if
you set the 100 value in the max_total_spans_per_second field, you can set the
following values in the rate_allocation section: the 50 percent value in the policy:
<composite_policy_1> section to allocate 50 spans per second, and the 25 percent value
in the policy: <composite_policy_2> section to allocate 25 spans per second. To fill the
remaining capacity, you can set the always_sample value in the type field of the name:
<composite_policy_3> section.

Additional resources

Tail Sampling with OpenTelemetry: Why it’s useful, how to do it, and what to consider
(OpenTelemetry Blog)

Gateway (OpenTelemetry Documentation)

4.3.13. Probabilistic Sampling Processor

If you handle high volumes of telemetry data and seek to reduce costs by reducing processed data
volumes, you can use the Probabilistic Sampling Processor as an alternative to the Tail Sampling
Processor.

IMPORTANT

 composite_sub_policy:
 [
 {
 name: <composite_policy_1>,
 type: numeric_attribute,
 numeric_attribute: {key: <key1>, min_value: 50}
 },
 {
 name: <composite_policy_2>,
 type: string_attribute,
 string_attribute: {key: <key2>, values: [<value1>, <value2>]}
 },
 {
 name: <composite_policy_3>,
 type: always_sample
 }
],
 rate_allocation:
 [
 {
 policy: <composite_policy_1>,
 percent: 50 2
 },
 {
 policy: <composite_policy_2>,
 percent: 25
 }
]
 }
 },
]
...

CHAPTER 4. CONFIGURING THE COLLECTOR

57

https://opentelemetry.io/blog/2022/tail-sampling/
https://opentelemetry.io/docs/collector/deployment/gateway/

1

2

3

IMPORTANT

Probabilistic Sampling Processor is a Technology Preview feature only. Technology
Preview features are not supported with Red Hat production service level agreements
(SLAs) and might not be functionally complete. Red Hat does not recommend using
them in production. These features provide early access to upcoming product features,
enabling customers to test functionality and provide feedback during the development
process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

The processor samples a specified percentage of trace spans or log records statelessly and per request.

The processor adds the information about the used effective sampling probability into the telemetry
data:

In trace spans, the processor encodes the threshold and optional randomness information in the
W3C Trace Context tracestate fields.

In log records, the processor encodes the threshold and randomness information as attributes.

The following is an example OpenTelemetryCollector custom resource configuration for the
Probabilistic Sampling Processor for sampling trace spans:

For trace pipelines, the source of randomness is the hashed value of the span trace ID.

Required. Accepts a 32-bit floating-point percentage value at which spans are to be sampled.

Optional. Accepts a supported string value for a sampling logic mode: the default hash_seed,
proportional, or equalizing. The hash_seed mode applies the Fowler–Noll–Vo (FNV) hash
function to the trace ID and weighs the hashed value against the sampling percentage value. You
can also use the hash_seed mode with units of telemetry other than the trace ID. The
proportional mode samples a strict, probability-based ratio of the total span quantity, and is based
on the OpenTelemetry and World Wide Web Consortium specifications. The equalizing mode is
useful for lowering the sampling probability to a minimum value across a whole pipeline or applying
a uniform sampling probability in Collector deployments where client SDKs have mixed sampling
configurations.

...
 config:
 processors:
 probabilistic_sampler: 1
 sampling_percentage: 15.3 2
 mode: "proportional" 3
 hash_seed: 22 4
 sampling_precision: 14 5
 fail_closed: true 6
...
service:
 pipelines:
 traces:
 processors: [probabilistic_sampler]
...

OpenShift Container Platform 4.19 Red Hat build of OpenTelemetry

58

https://access.redhat.com/support/offerings/techpreview/

4

5

6

1

2

3

4

Optional. Accepts a 32-bit unsigned integer, which is used to compute the hash algorithm. When
this field is not configured, the default seed value is 0. If you use multiple tiers of Collector

Optional. Determines the number of hexadecimal digits used to encode the sampling threshold.
Accepts an integer value. The supported values are 1-14. The default value 4 causes the threshold
to be rounded if it contains more than 16 significant bits, which is the case of the proportional
mode that uses 56 bits. If you select the proportional mode, use a greater value for the purpose of
preserving precision applied by preceding samplers.

Optional. Rejects spans with sampling errors. Accepts a boolean value. The default value is true.

The following is an example OpenTelemetryCollector custom resource configuration for the
Probabilistic Sampling Processor for sampling log records:

Required. Accepts a 32-bit floating-point percentage value at which spans are to be sampled.

Optional. Accepts a supported string value for a sampling logic mode: the default hash_seed,
equalizing, or proportional. The hash_seed mode applies the Fowler–Noll–Vo (FNV) hash
function to the trace ID or a specified log record attribute and then weighs the hashed value
against the sampling percentage value. You can also use hash_seed mode with other units of
telemetry than trace ID, for example to use the service.instance.id resource attribute for
collecting log records from a percentage of pods. The equalizing mode is useful for lowering the
sampling probability to a minimum value across a whole pipeline or applying a uniform sampling
probability in Collector deployments where client SDKs have mixed sampling configurations. The
proportional mode samples a strict, probability-based ratio of the total span quantity, and is based
on the OpenTelemetry and World Wide Web Consortium specifications.

Optional. Accepts a 32-bit unsigned integer, which is used to compute the hash algorithm. When
this field is not configured, the default seed value is 0. If you use multiple tiers of Collector
instances, you must configure all Collectors of the same tier to the same seed value.

Optional. Determines the number of hexadecimal digits used to encode the sampling threshold.
Accepts an integer value. The supported values are 1-14. The default value 4 causes the threshold
to be rounded if it contains more than 16 significant bits, which is the case of the proportional
mode that uses 56 bits. If you select the proportional mode, use a greater value for the purpose of

...
 config:
 processors:
 probabilistic_sampler/logs:
 sampling_percentage: 15.3 1
 mode: "hash_seed" 2
 hash_seed: 22 3
 sampling_precision: 4 4
 attribute_source: "record" 5
 from_attribute: "<log_record_attribute_name>" 6
 fail_closed: true 7
...
service:
 pipelines:
 logs:
 processors: [probabilistic_sampler/logs]
...

CHAPTER 4. CONFIGURING THE COLLECTOR

59

5

6

7

preserving precision applied by preceding samplers.

Optional. Defines where to look for the log record attribute in from_attribute. The log record
attribute is used as the source of randomness. Accept the default traceID value or the record
value.

Optional. The name of a log record attribute to be used to compute the sampling hash, such as a
unique log record ID. Accepts a string value. The default value is "". Use this field only if you need to
specify a log record attribute as the source of randomness in those situations where the trace ID is
absent or trace ID sampling is disabled or the attribute_source field is set to the record value.

Optional. Rejects spans with sampling errors. Accepts a boolean value. The default value is true.

4.3.14. Additional resources

OpenTelemetry Protocol (OTLP) (OpenTelemetry Documentation)

4.4. EXPORTERS

Exporters send data to one or more back ends or destinations. An exporter can be push or pull based. By
default, no exporters are configured. One or more exporters must be configured. Exporters can support
one or more data sources. Exporters might be used with their default settings, but many exporters
require configuration to specify at least the destination and security settings.

Currently, the following General Availability and Technology Preview exporters are available for the
Red Hat build of OpenTelemetry:

OTLP Exporter

OTLP HTTP Exporter

Debug Exporter

Load Balancing Exporter

Prometheus Exporter

Prometheus Remote Write Exporter

Kafka Exporter

AWS CloudWatch Logs Exporter

AWS EMF Exporter

AWS X-Ray Exporter

File Exporter

4.4.1. OTLP Exporter

The OTLP gRPC Exporter exports traces and metrics by using the OpenTelemetry protocol (OTLP).

OpenTelemetry Collector custom resource with the enabled OTLP Exporter

OpenShift Container Platform 4.19 Red Hat build of OpenTelemetry

60

https://opentelemetry.io/docs/specs/otlp/

1

2

3

4

5

6

7

The OTLP gRPC endpoint. If the https:// scheme is used, then client transport security is enabled
and overrides the insecure setting in the tls.

The client-side TLS configuration. Defines paths to TLS certificates.

Disables client transport security when set to true. The default value is false by default.

Skips verifying the certificate when set to true. The default value is false.

Specifies the time interval at which the certificate is reloaded. If the value is not set, the certificate
is never reloaded. The reload_interval accepts a string containing valid units of time such as ns, us
(or µs), ms, s, m, h.

Overrides the virtual host name of authority such as the authority header field in requests. You can
use this for testing.

Headers are sent for every request performed during an established connection.

4.4.2. OTLP HTTP Exporter

The OTLP HTTP Exporter exports traces and metrics by using the OpenTelemetry protocol (OTLP).

OpenTelemetry Collector custom resource with the enabled OTLP Exporter

...
 config:
 exporters:
 otlp:
 endpoint: tempo-ingester:4317 1
 tls: 2
 ca_file: ca.pem
 cert_file: cert.pem
 key_file: key.pem
 insecure: false 3
 insecure_skip_verify: false # 4
 reload_interval: 1h 5
 server_name_override: <name> 6
 headers: 7
 X-Scope-OrgID: "dev"
 service:
 pipelines:
 traces:
 exporters: [otlp]
 metrics:
 exporters: [otlp]
...

...
 config:
 exporters:
 otlphttp:
 endpoint: http://tempo-ingester:4318 1
 tls: 2

CHAPTER 4. CONFIGURING THE COLLECTOR

61

1

2

3

4

1

2

3

The OTLP HTTP endpoint. If the https:// scheme is used, then client transport security is enabled
and overrides the insecure setting in the tls.

The client side TLS configuration. Defines paths to TLS certificates.

Headers are sent in every HTTP request.

If true, disables HTTP keep-alives. It will only use the connection to the server for a single HTTP
request.

4.4.3. Debug Exporter

The Debug Exporter prints traces and metrics to the standard output.

OpenTelemetry Collector custom resource with the enabled Debug Exporter

Verbosity of the debug export: detailed, normal, or basic. When set to detailed, pipeline data are
verbosely logged. Defaults to normal.

Initial number of messages logged per second. The default value is 2 messages per second.

Sampling rate after the initial number of messages, the value in sampling_initial, has been logged.
Disabled by default with the default 1 value. Sampling is enabled with values greater than 1. For
more information, see the page for the sampler function in the zapcore package on the Go
Project’s website.

 headers: 3
 X-Scope-OrgID: "dev"
 disable_keep_alives: false 4

 service:
 pipelines:
 traces:
 exporters: [otlphttp]
 metrics:
 exporters: [otlphttp]
...

...
 config:
 exporters:
 debug:
 verbosity: detailed 1
 sampling_initial: 5 2
 sampling_thereafter: 200 3
 use_internal_logger: true 4
 service:
 pipelines:
 traces:
 exporters: [debug]
 metrics:
 exporters: [debug]
...

OpenShift Container Platform 4.19 Red Hat build of OpenTelemetry

62

https://pkg.go.dev/go.uber.org/zap/zapcore?utm_source=godoc#NewSamplerWithOptions

4

1

2

3

4

When set to true, enables output from the Collector’s internal logger for the exporter.

4.4.4. Load Balancing Exporter

The Load Balancing Exporter consistently exports spans, metrics, and logs according to the
routing_key configuration.

IMPORTANT

The Load Balancing Exporter is a Technology Preview feature only. Technology Preview
features are not supported with Red Hat production service level agreements (SLAs) and
might not be functionally complete. Red Hat does not recommend using them in
production. These features provide early access to upcoming product features, enabling
customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

OpenTelemetry Collector custom resource with the enabled Load Balancing Exporter

The routing_key: service exports spans for the same service name to the same Collector
instance to provide accurate aggregation. The routing_key: traceID exports spans based on their
traceID. The implicit default is traceID based routing.

The OTLP is the only supported load-balancing protocol. All options of the OTLP exporter are
supported.

You can configure only one resolver.

The static resolver distributes the load across the listed endpoints.

...
 config:
 exporters:
 loadbalancing:
 routing_key: "service" 1
 protocol:
 otlp: 2
 timeout: 1s
 resolver: 3
 static: 4
 hostnames:
 - backend-1:4317
 - backend-2:4317
 dns: 5
 hostname: otelcol-headless.observability.svc.cluster.local
 k8s: 6
 service: lb-svc.kube-public
 ports:
 - 15317
 - 16317
...

CHAPTER 4. CONFIGURING THE COLLECTOR

63

https://access.redhat.com/support/offerings/techpreview/

5

6

1

2

3

You can use the DNS resolver only with a Kubernetes headless service.

The Kubernetes resolver is recommended.

4.4.5. Prometheus Exporter

The Prometheus Exporter exports metrics in the Prometheus or OpenMetrics formats.

IMPORTANT

The Prometheus Exporter is a Technology Preview feature only. Technology Preview
features are not supported with Red Hat production service level agreements (SLAs) and
might not be functionally complete. Red Hat does not recommend using them in
production. These features provide early access to upcoming product features, enabling
customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

OpenTelemetry Collector custom resource with the enabled Prometheus Exporter

The network endpoint where the metrics are exposed. The Red Hat build of OpenTelemetry
Operator automatically exposes the port specified in the endpoint field to the <instance_name>-
collector service.

The server-side TLS configuration. Defines paths to TLS certificates.

If set, exports metrics under the provided value.

...
 config:
 exporters:
 prometheus:
 endpoint: 0.0.0.0:8889 1
 tls: 2
 ca_file: ca.pem
 cert_file: cert.pem
 key_file: key.pem
 namespace: prefix 3
 const_labels: 4
 label1: value1
 enable_open_metrics: true 5
 resource_to_telemetry_conversion: 6
 enabled: true
 metric_expiration: 180m 7
 add_metric_suffixes: false 8
 service:
 pipelines:
 metrics:
 exporters: [prometheus]
...

OpenShift Container Platform 4.19 Red Hat build of OpenTelemetry

64

https://access.redhat.com/support/offerings/techpreview/

4

5

6

7

8

Key-value pair labels that are applied for every exported metric.

If true, metrics are exported by using the OpenMetrics format. Exemplars are only exported in the
OpenMetrics format and only for histogram and monotonic sum metrics such as counter. Disabled
by default.

If enabled is true, all the resource attributes are converted to metric labels. Disabled by default.

Defines how long metrics are exposed without updates. The default is 5m.

Adds the metrics types and units suffixes. Must be disabled if the monitor tab in the Jaeger
console is enabled. The default is true.

NOTE

When the spec.observability.metrics.enableMetrics field in the
OpenTelemetryCollector custom resource (CR) is set to true, the
OpenTelemetryCollector CR automatically creates a Prometheus ServiceMonitor or
PodMonitor CR to enable Prometheus to scrape your metrics.

4.4.6. Prometheus Remote Write Exporter

The Prometheus Remote Write Exporter exports metrics to compatible back ends.

IMPORTANT

The Prometheus Remote Write Exporter is a Technology Preview feature only.
Technology Preview features are not supported with Red Hat production service level
agreements (SLAs) and might not be functionally complete. Red Hat does not
recommend using them in production. These features provide early access to upcoming
product features, enabling customers to test functionality and provide feedback during
the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

OpenTelemetry Collector custom resource with the enabled Prometheus Remote Write
Exporter

...
 config:
 exporters:
 prometheusremotewrite:
 endpoint: "https://my-prometheus:7900/api/v1/push" 1
 tls: 2
 ca_file: ca.pem
 cert_file: cert.pem
 key_file: key.pem
 target_info: true 3
 export_created_metric: true 4
 max_batch_size_bytes: 3000000 5
 service:

CHAPTER 4. CONFIGURING THE COLLECTOR

65

https://access.redhat.com/support/offerings/techpreview/

1

2

3

4

5

Endpoint for sending the metrics.

Server-side TLS configuration. Defines paths to TLS certificates.

When set to true, creates a target_info metric for each resource metric.

When set to true, exports a _created metric for the Summary, Histogram, and Monotonic Sum
metric points.

Maximum size of the batch of samples that is sent to the remote write endpoint. Exceeding this
value results in batch splitting. The default value is 3000000, which is approximately 2.861
megabytes.

WARNING

This exporter drops non-cumulative monotonic, histogram, and summary
OTLP metrics.

You must enable the --web.enable-remote-write-receiver feature flag on
the remote Prometheus instance. Without it, pushing the metrics to the
instance using this exporter fails.

4.4.7. Kafka Exporter

The Kafka Exporter exports logs, metrics, and traces to Kafka. This exporter uses a synchronous
producer that blocks and does not batch messages. You must use it with batch and queued retry
processors for higher throughput and resiliency.

OpenTelemetry Collector custom resource with the enabled Kafka Exporter

 pipelines:
 metrics:
 exporters: [prometheusremotewrite]
...



...
 config:
 exporters:
 kafka:
 brokers: ["localhost:9092"] 1
 protocol_version: 2.0.0 2
 topic: otlp_spans 3
 auth:
 plain_text: 4
 username: example
 password: example
 tls: 5
 ca_file: ca.pem
 cert_file: cert.pem

OpenShift Container Platform 4.19 Red Hat build of OpenTelemetry

66

1

2

3

4

5

6

7

The list of Kafka brokers. The default is localhost:9092.

The Kafka protocol version. For example, 2.0.0. This is a required field.

The name of the Kafka topic to read from. The following are the defaults: otlp_spans for traces,
otlp_metrics for metrics, otlp_logs for logs.

The plain text authentication configuration. If omitted, plain text authentication is disabled.

The client-side TLS configuration. Defines paths to the TLS certificates. If omitted, TLS
authentication is disabled.

Disables verifying the server’s certificate chain and host name. The default is false.

ServerName indicates the name of the server requested by the client to support virtual hosting.

4.4.8. AWS CloudWatch Logs Exporter

The AWS CloudWatch Logs Exporter sends logs data to the Amazon CloudWatch Logs service and
signs requests by using the AWS SDK for Go and the default credential provider chain.

IMPORTANT

The AWS CloudWatch Logs Exporter is a Technology Preview feature only. Technology
Preview features are not supported with Red Hat production service level agreements
(SLAs) and might not be functionally complete. Red Hat does not recommend using
them in production. These features provide early access to upcoming product features,
enabling customers to test functionality and provide feedback during the development
process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

OpenTelemetry Collector custom resource with the enabled AWS CloudWatch Logs
Exporter

 key_file: key.pem
 insecure: false 6
 server_name_override: kafka.example.corp 7
 service:
 pipelines:
 traces:
 exporters: [kafka]
...

...
 config:
 exporters:
 awscloudwatchlogs:
 log_group_name: "<group_name_of_amazon_cloudwatch_logs>" 1
 log_stream_name: "<log_stream_of_amazon_cloudwatch_logs>" 2
 region: <aws_region_of_log_stream> 3

CHAPTER 4. CONFIGURING THE COLLECTOR

67

https://access.redhat.com/support/offerings/techpreview/

1

2

3

4

5

Required. If the log group does not exist yet, it is automatically created.

Required. If the log stream does not exist yet, it is automatically created.

Optional. If the AWS region is not already set in the default credential chain, you must specify it.

Optional. You can override the default Amazon CloudWatch Logs service endpoint to which the
requests are forwarded. You must include the protocol, such as https://, as part of the endpoint
value. For the list of service endpoints by region, see Amazon CloudWatch Logs endpoints and
quotas (AWS General Reference).

Optional. With this parameter, you can set the log retention policy for new Amazon CloudWatch log
groups. If this parameter is omitted or set to 0, the logs never expire by default. Supported values
for retention in days are 1, 3, 5, 7, 14, 30, 60, 90, 120, 150, 180, 365, 400, 545, 731, 1827, 2192, 2557,
2922, 3288, or 3653.

Additional resources

What is Amazon CloudWatch Logs? (Amazon CloudWatch Logs User Guide)

Specifying Credentials (AWS SDK for Go Developer Guide)

Amazon CloudWatch Logs endpoints and quotas (AWS General Reference)

4.4.9. AWS EMF Exporter

The AWS EMF Exporter converts the following OpenTelemetry metrics datapoints to the AWS
CloudWatch Embedded Metric Format (EMF):

Int64DataPoints

DoubleDataPoints

SummaryDataPoints

The EMF metrics are then sent directly to the Amazon CloudWatch Logs service by using the
PutLogEvents API.

One of the benefits of using this exporter is the possibility to view logs and metrics in the Amazon
CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

IMPORTANT

 endpoint: <protocol><service_endpoint_of_amazon_cloudwatch_logs> 4
 log_retention: <supported_value_in_days> 5
...

OpenShift Container Platform 4.19 Red Hat build of OpenTelemetry

68

https://docs.aws.amazon.com/general/latest/gr/cwl_region.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/WhatIsCloudWatchLogs.html
https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/configuring-sdk.html#specifying-credentials
https://docs.aws.amazon.com/general/latest/gr/cwl_region.html
https://console.aws.amazon.com/cloudwatch/

1

2

3

4

5

6

7

IMPORTANT

The AWS EMF Exporter is a Technology Preview feature only. Technology Preview
features are not supported with Red Hat production service level agreements (SLAs) and
might not be functionally complete. Red Hat does not recommend using them in
production. These features provide early access to upcoming product features, enabling
customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

OpenTelemetry Collector custom resource with the enabled AWS EMF Exporter

Customized log group name.

Customized log stream name.

Optional. Converts resource attributes to telemetry attributes such as metric labels. Disabled by
default.

The AWS region of the log stream. If a region is not already set in the default credential provider
chain, you must specify the region.

Optional. You can override the default Amazon CloudWatch Logs service endpoint to which the
requests are forwarded. You must include the protocol, such as https://, as part of the endpoint
value. For the list of service endpoints by region, see Amazon CloudWatch Logs endpoints and
quotas (AWS General Reference).

Optional. With this parameter, you can set the log retention policy for new Amazon CloudWatch log
groups. If this parameter is omitted or set to 0, the logs never expire by default. Supported values
for retention in days are 1, 3, 5, 7, 14, 30, 60, 90, 120, 150, 180, 365, 400, 545, 731, 1827, 2192, 2557,
2922, 3288, or 3653.

Optional. A custom namespace for the Amazon CloudWatch metrics.

Log group name
The log_group_name parameter allows you to customize the log group name and supports the default
/metrics/default value or the following placeholders:

/aws/metrics/{ClusterName}

...
 config:
 exporters:
 awsemf:
 log_group_name: "<group_name_of_amazon_cloudwatch_logs>" 1
 log_stream_name: "<log_stream_of_amazon_cloudwatch_logs>" 2
 resource_to_telemetry_conversion: 3
 enabled: true
 region: <region> 4
 endpoint: <protocol><endpoint> 5
 log_retention: <supported_value_in_days> 6
 namespace: <custom_namespace> 7
...

CHAPTER 4. CONFIGURING THE COLLECTOR

69

https://access.redhat.com/support/offerings/techpreview/
https://docs.aws.amazon.com/general/latest/gr/cwl_region.html

This placeholder is used to search for the ClusterName or aws.ecs.cluster.name resource attribute
in the metrics data and replace it with the actual cluster name.

{NodeName}

This placeholder is used to search for the NodeName or k8s.node.name resource attribute.

{TaskId}

This placeholder is used to search for the TaskId or aws.ecs.task.id resource attribute.

If no resource attribute is found in the resource attribute map, the placeholder is replaced by the
undefined value.

Log stream name
The log_stream_name parameter allows you to customize the log stream name and supports the
default otel-stream value or the following placeholders:

{ClusterName}

This placeholder is used to search for the ClusterName or aws.ecs.cluster.name resource
attribute.

{ContainerInstanceId}

This placeholder is used to search for the ContainerInstanceId or aws.ecs.container.instance.id
resource attribute. This resource attribute is valid only for the AWS ECS EC2 launch type.

{NodeName}

This placeholder is used to search for the NodeName or k8s.node.name resource attribute.

{TaskDefinitionFamily}

This placeholder is used to search for the TaskDefinitionFamily or aws.ecs.task.family resource
attribute.

{TaskId}

This placeholder is used to search for the TaskId or aws.ecs.task.id resource attribute in the
metrics data and replace it with the actual task ID.

If no resource attribute is found in the resource attribute map, the placeholder is replaced by the
undefined value.

Additional resources

Specification: Embedded metric format (Amazon CloudWatch User Guide)

PutLogEvents (Amazon CloudWatch Logs API Reference)

Amazon CloudWatch Logs endpoints and quotas (AWS General Reference)

4.4.10. AWS X-Ray Exporter

The AWS X-Ray Exporter converts OpenTelemetry spans to AWS X-Ray Segment Documents and then
sends them directly to the AWS X-Ray service. The AWS X-Ray Exporter uses the PutTraceSegments
API and signs requests by using the AWS SDK for Go and the default credential provider chain.

IMPORTANT

OpenShift Container Platform 4.19 Red Hat build of OpenTelemetry

70

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch_Embedded_Metric_Format_Specification.html
https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_PutLogEvents.html
https://docs.aws.amazon.com/general/latest/gr/cwl_region.html

1

2

3

4

5

6

7

IMPORTANT

The AWS X-Ray Exporter is a Technology Preview feature only. Technology Preview
features are not supported with Red Hat production service level agreements (SLAs) and
might not be functionally complete. Red Hat does not recommend using them in
production. These features provide early access to upcoming product features, enabling
customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

OpenTelemetry Collector custom resource with the enabled AWS X-Ray Exporter

The destination region for the X-Ray segments sent to the AWS X-Ray service. For example, eu-
west-1.

Optional. You can override the default Amazon CloudWatch Logs service endpoint to which the
requests are forwarded. You must include the protocol, such as https://, as part of the endpoint
value. For the list of service endpoints by region, see Amazon CloudWatch Logs endpoints and
quotas (AWS General Reference).

The Amazon Resource Name (ARN) of the AWS resource that is running the Collector.

The AWS Identity and Access Management (IAM) role for uploading the X-Ray segments to a
different account.

The list of attribute names to be converted to X-Ray annotations.

The list of log group names for Amazon CloudWatch Logs.

Time duration in seconds before timing out a request. If omitted, the default value is 30.

Additional resources

What is AWS X-Ray? (AWS X-Ray Developer Guide)

AWS SDK for Go API Reference (AWS Documentation)

Specifying Credentials (AWS SDK for Go Developer Guide)

...
 config:
 exporters:
 awsxray:
 region: "<region>" 1
 endpoint: <protocol><endpoint> 2
 resource_arn: "<aws_resource_arn>" 3
 role_arn: "<iam_role>" 4
 indexed_attributes: ["<indexed_attr_0>", "<indexed_attr_1>"] 5
 aws_log_groups: ["<group1>", "<group2>"] 6
 request_timeout_seconds: 120 7
...

CHAPTER 4. CONFIGURING THE COLLECTOR

71

https://access.redhat.com/support/offerings/techpreview/
https://docs.aws.amazon.com/general/latest/gr/cwl_region.html
https://docs.aws.amazon.com/xray/latest/devguide/aws-xray.html
https://docs.aws.amazon.com/sdk-for-go/api/index.html
https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/configuring-sdk.html#specifying-credentials

1

2

3

4

5

6

IAM roles (AWS Identity and Access Management User Guide)

4.4.11. File Exporter

The File Exporter writes telemetry data to files in persistent storage and supports file operations such as
rotation, compression, and writing to multiple files. With this exporter, you can also use a resource
attribute to control file naming. The only required setting is path, which specifies the destination path
for telemetry files in the persistent-volume file system.

IMPORTANT

The File Exporter is a Technology Preview feature only. Technology Preview features are
not supported with Red Hat production service level agreements (SLAs) and might not
be functionally complete. Red Hat does not recommend using them in production. These
features provide early access to upcoming product features, enabling customers to test
functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

OpenTelemetry Collector custom resource with the enabled File Exporter

The file-system path where the data is to be written. There is no default.

File rotation is an optional feature of this exporter. By default, telemetry data is exported to a
single file. Add the rotation setting to enable file rotation.

The max_megabytes setting is the maximum size a file is allowed to reach until it is rotated. The
default is 100.

The max_days setting is for how many days a file is to be retained, counting from the timestamp in
the file name. There is no default.

The max_backups setting is for retaining several older files. The defalt is 100.

The localtime setting specifies the local-time format for the timestamp, which is appended to the
file name in front of any extension, when the file is rotated. The default is the Coordinated
Universal Time (UTC).

...
 config: |
 exporters:
 file:
 path: /data/metrics.json 1
 rotation: 2
 max_megabytes: 10 3
 max_days: 3 4
 max_backups: 3 5
 localtime: true 6
 format: proto 7
 compression: zstd 8
 flush_interval: 5 9
...

OpenShift Container Platform 4.19 Red Hat build of OpenTelemetry

72

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://access.redhat.com/support/offerings/techpreview/

7

8

9

The format for encoding the telemetry data before writing it to a file. The default format is json.
The proto format is also supported.

File compression is optional and not set by default. This setting defines the compression algorithm
for the data that is exported to a file. Currently, only the zstd compression algorithm is supported.
There is no default.

The time interval between flushes. A value without a unit is set in nanoseconds. This setting is
ignored when file rotation is enabled through the rotation settings.

4.4.12. Additional resources

OpenTelemetry Protocol (OTLP) (OpenTelemetry Documentation)

4.5. CONNECTORS

A connector connects two pipelines. It consumes data as an exporter at the end of one pipeline and
emits data as a receiver at the start of another pipeline. It can consume and emit data of the same or
different data type. It can generate and emit data to summarize the consumed data, or it can merely
replicate or route data.

Currently, the following General Availability and Technology Preview connectors are available for the
Red Hat build of OpenTelemetry:

Count Connector

Routing Connector

Forward Connector

Spanmetrics Connector

4.5.1. Count Connector

The Count Connector counts trace spans, trace span events, metrics, metric data points, and log
records in exporter pipelines.

IMPORTANT

The Count Connector is a Technology Preview feature only. Technology Preview features
are not supported with Red Hat production service level agreements (SLAs) and might
not be functionally complete. Red Hat does not recommend using them in production.
These features provide early access to upcoming product features, enabling customers
to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

The following are the default metric names:

trace.span.count

trace.span.event.count

CHAPTER 4. CONFIGURING THE COLLECTOR

73

https://opentelemetry.io/docs/specs/otlp/
https://access.redhat.com/support/offerings/techpreview/

1

2

3

metric.count

metric.datapoint.count

log.record.count

You can also expose custom metric names.

OpenTelemetry Collector custom resource (CR) with an enabled Count Connector

It is important to correctly configure the Count Connector as an exporter or receiver in the pipeline
and to export the generated metrics to the correct exporter.

The Count Connector is configured to receive spans as an exporter.

The Count Connector is configured to emit generated metrics as a receiver.

TIP

If the Count Connector is not generating the expected metrics, you can check whether the
OpenTelemetry Collector is receiving the expected spans, metrics, and logs, and whether the
telemetry data flow through the Count Connector as expected. You can also use the Debug
Exporter to inspect the incoming telemetry data.

The Count Connector can count telemetry data according to defined conditions and expose those data
as metrics when configured by using such fields as spans, spanevents, metrics, datapoints, or logs.
See the next example.

Example OpenTelemetry Collector CR for the Count Connector to count spans by
conditions

...
 config:
 receivers:
 otlp:
 protocols:
 grpc:
 endpoint: 0.0.0.0:4317
 exporters:
 prometheus:
 endpoint: 0.0.0.0:8889
 connectors:
 count: {}
 service:
 pipelines: 1
 traces/in:
 receivers: [otlp]
 exporters: [count] 2
 metrics/out:
 receivers: [count] 3
 exporters: [prometheus]
...

OpenShift Container Platform 4.19 Red Hat build of OpenTelemetry

74

1

2

1

2

3

In this example, the exposed metric counts spans with the specified conditions.

You can specify a custom metric name such as cluster.prod.event.count.

TIP

Write conditions correctly and follow the required syntax for attribute matching or telemetry field
conditions. Improperly defined conditions are the most likely sources of errors.

The Count Connector can count telemetry data according to defined attributes when configured by
using such fields as spans, spanevents, metrics, datapoints, or logs. See the next example. The
attribute keys are injected into the telemetry data. You must define a value for the default_value field
for missing attributes.

Example OpenTelemetry Collector CR for the Count Connector to count logs by attributes

Specifies attributes for logs.

You can specify a custom metric name such as my.log.count.

Defines a default value when the attribute is not set.

4.5.2. Routing Connector

The Routing Connector routes logs, metrics, and traces to specified pipelines according to resource
attributes and their routing conditions, which are written as OpenTelemetry Transformation Language
(OTTL) statements.

IMPORTANT

...
 config:
 connectors:
 count:
 spans: 1
 <custom_metric_name>: 2
 description: "<custom_metric_description>"
 conditions:
 - 'attributes["env"] == "dev"'
 - 'name == "devevent"'
...

...
 config:
 connectors:
 count:
 logs: 1
 <custom_metric_name>: 2
 description: "<custom_metric_description>"
 attributes:
 - key: env
 default_value: unknown 3
...

CHAPTER 4. CONFIGURING THE COLLECTOR

75

1

2

3

4

5

6

IMPORTANT

The Routing Connector is a Technology Preview feature only. Technology Preview
features are not supported with Red Hat production service level agreements (SLAs) and
might not be functionally complete. Red Hat does not recommend using them in
production. These features provide early access to upcoming product features, enabling
customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

OpenTelemetry Collector custom resource with an enabled Routing Connector

Connector routing table.

Routing conditions written as OTTL statements.

Destination pipelines for routing the matching telemetry data.

Destination pipelines for routing the telemetry data for which no routing condition is satisfied.

Error-handling mode: The propagate value is for logging an error and dropping the payload. The
ignore value is for ignoring the condition and attempting to match with the next one. The silent
value is the same as ignore but without logging the error. The default is propagate.

When set to true, the payload is routed only to the first pipeline whose routing condition is met.
The default is false.

...
 config:
 connectors:
 routing:
 table: 1
 - statement: route() where attributes["X-Tenant"] == "dev" 2
 pipelines: [traces/dev] 3
 - statement: route() where attributes["X-Tenant"] == "prod"
 pipelines: [traces/prod]
 default_pipelines: [traces/dev] 4
 error_mode: ignore 5
 match_once: false 6
 service:
 pipelines:
 traces/in:
 receivers: [otlp]
 exporters: [routing]
 traces/dev:
 receivers: [routing]
 exporters: [otlp/dev]
 traces/prod:
 receivers: [routing]
 exporters: [otlp/prod]
...

OpenShift Container Platform 4.19 Red Hat build of OpenTelemetry

76

https://access.redhat.com/support/offerings/techpreview/

4.5.3. Forward Connector

The Forward Connector merges two pipelines of the same type.

IMPORTANT

The Forward Connector is a Technology Preview feature only. Technology Preview
features are not supported with Red Hat production service level agreements (SLAs) and
might not be functionally complete. Red Hat does not recommend using them in
production. These features provide early access to upcoming product features, enabling
customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

OpenTelemetry Collector custom resource with an enabled Forward Connector

4.5.4. Spanmetrics Connector

The Spanmetrics Connector aggregates Request, Error, and Duration (R.E.D) OpenTelemetry metrics

...
 config:
 receivers:
 otlp:
 protocols:
 grpc:
 jaeger:
 protocols:
 grpc:
 processors:
 batch:
 exporters:
 otlp:
 endpoint: tempo-simplest-distributor:4317
 tls:
 insecure: true
 connectors:
 forward: {}
 service:
 pipelines:
 traces/regiona:
 receivers: [otlp]
 processors: []
 exporters: [forward]
 traces/regionb:
 receivers: [jaeger]
 processors: []
 exporters: [forward]
 traces:
 receivers: [forward]
 processors: [batch]
 exporters: [otlp]
...

CHAPTER 4. CONFIGURING THE COLLECTOR

77

https://access.redhat.com/support/offerings/techpreview/

1

The Spanmetrics Connector aggregates Request, Error, and Duration (R.E.D) OpenTelemetry metrics
from span data.

OpenTelemetry Collector custom resource with an enabled Spanmetrics Connector

Defines the flush interval of the generated metrics. Defaults to 15s.

4.5.5. Additional resources

OpenTelemetry Protocol (OTLP) (OpenTelemetry Documentation)

4.6. EXTENSIONS

Extensions add capabilities to the Collector. For example, authentication can be added to the receivers
and exporters automatically.

Currently, the following General Availability and Technology Preview extensions are available for the
Red Hat build of OpenTelemetry:

BearerTokenAuth Extension

OAuth2Client Extension

File Storage Extension

OIDC Auth Extension

Jaeger Remote Sampling Extension

Performance Profiler Extension

Health Check Extension

zPages Extension

4.6.1. BearerTokenAuth Extension

The BearerTokenAuth Extension is an authenticator for receivers and exporters that are based on the
HTTP and the gRPC protocol. You can use the OpenTelemetry Collector custom resource to configure
client authentication and server authentication for the BearerTokenAuth Extension on the receiver and
exporter side. This extension supports traces, metrics, and logs.

...
 config:
 connectors:
 spanmetrics:
 metrics_flush_interval: 15s 1
 service:
 pipelines:
 traces:
 exporters: [spanmetrics]
 metrics:
 receivers: [spanmetrics]
...

OpenShift Container Platform 4.19 Red Hat build of OpenTelemetry

78

https://opentelemetry.io/docs/specs/otlp/

1

2

3

4

5

OpenTelemetry Collector custom resource with client and server authentication
configured for the BearerTokenAuth Extension

You can configure the BearerTokenAuth Extension to send a custom scheme. The default is
Bearer.

You can add the BearerTokenAuth Extension token as metadata to identify a message.

Path to a file that contains an authorization token that is transmitted with every message.

You can assign the authenticator configuration to an OTLP Receiver.

You can assign the authenticator configuration to an OTLP Exporter.

4.6.2. OAuth2Client Extension

The OAuth2Client Extension is an authenticator for exporters that are based on the HTTP and the gRPC
protocol. Client authentication for the OAuth2Client Extension is configured in a separate section in the
OpenTelemetry Collector custom resource. This extension supports traces, metrics, and logs.

IMPORTANT

...
 config:
 extensions:
 bearertokenauth:
 scheme: "Bearer" 1
 token: "<token>" 2
 filename: "<token_file>" 3

 receivers:
 otlp:
 protocols:
 http:
 auth:
 authenticator: bearertokenauth 4
 exporters:
 otlp:
 auth:
 authenticator: bearertokenauth 5

 service:
 extensions: [bearertokenauth]
 pipelines:
 traces:
 receivers: [otlp]
 exporters: [otlp]
...

CHAPTER 4. CONFIGURING THE COLLECTOR

79

1

2

IMPORTANT

The OAuth2Client Extension is a Technology Preview feature only. Technology Preview
features are not supported with Red Hat production service level agreements (SLAs) and
might not be functionally complete. Red Hat does not recommend using them in
production. These features provide early access to upcoming product features, enabling
customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

OpenTelemetry Collector custom resource with client authentication configured for the
OAuth2Client Extension

Client identifier, which is provided by the identity provider.

Confidential key used to authenticate the client to the identity provider.

...
 config:
 extensions:
 oauth2client:
 client_id: <client_id> 1
 client_secret: <client_secret> 2
 endpoint_params: 3
 audience: <audience>
 token_url: https://example.com/oauth2/default/v1/token 4
 scopes: ["api.metrics"] 5
 # tls settings for the token client
 tls: 6
 insecure: true 7
 ca_file: /var/lib/mycert.pem 8
 cert_file: <cert_file> 9
 key_file: <key_file> 10
 timeout: 2s 11

 receivers:
 otlp:
 protocols:
 http: {}

 exporters:
 otlp:
 auth:
 authenticator: oauth2client 12

 service:
 extensions: [oauth2client]
 pipelines:
 traces:
 receivers: [otlp]
 exporters: [otlp]
...

OpenShift Container Platform 4.19 Red Hat build of OpenTelemetry

80

https://access.redhat.com/support/offerings/techpreview/

3

4

5

6

7

8

9

10

11

12

Further metadata, in the key-value pair format, which is transferred during authentication. For
example, audience specifies the intended audience for the access token, indicating the recipient

The URL of the OAuth2 token endpoint, where the Collector requests access tokens.

The scopes define the specific permissions or access levels requested by the client.

The Transport Layer Security (TLS) settings for the token client, which is used to establish a secure
connection when requesting tokens.

When set to true, configures the Collector to use an insecure or non-verified TLS connection to
call the configured token endpoint.

The path to a Certificate Authority (CA) file that is used to verify the server’s certificate during the
TLS handshake.

The path to the client certificate file that the client must use to authenticate itself to the OAuth2
server if required.

The path to the client’s private key file that is used with the client certificate if needed for
authentication.

Sets a timeout for the token client’s request.

You can assign the authenticator configuration to an OTLP exporter.

4.6.3. File Storage Extension

The File Storage Extension supports traces, metrics, and logs. This extension can persist the state to the
local file system. This extension persists the sending queue for the OpenTelemetry Protocol (OTLP)
exporters that are based on the HTTP and the gRPC protocols. This extension requires the read and
write access to a directory. This extension can use a default directory, but the default directory must
already exist.

IMPORTANT

The File Storage Extension is a Technology Preview feature only. Technology Preview
features are not supported with Red Hat production service level agreements (SLAs) and
might not be functionally complete. Red Hat does not recommend using them in
production. These features provide early access to upcoming product features, enabling
customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

OpenTelemetry Collector custom resource with a configured File Storage Extension that
persists an OTLP sending queue

...
 config:
 extensions:
 file_storage/all_settings:
 directory: /var/lib/otelcol/mydir 1
 timeout: 1s 2

CHAPTER 4. CONFIGURING THE COLLECTOR

81

https://access.redhat.com/support/offerings/techpreview/

1

2

3

4

5

6

7

8

Specifies the directory in which the telemetry data is stored.

Specifies the timeout time interval for opening the stored files.

Starts compaction when the Collector starts. If omitted, the default is false.

Specifies the directory in which the compactor stores the telemetry data.

Defines the maximum size of the compaction transaction. To ignore the transaction size, set to
zero. If omitted, the default is 65536 bytes.

When set, forces the database to perform an fsync call after each write operation. This helps to
ensure database integrity if there is an interruption to the database process, but at the cost of
performance.

Buffers the OTLP Exporter data on the local file system.

Starts the File Storage Extension by the Collector.

4.6.4. OIDC Auth Extension

The OIDC Auth Extension authenticates incoming requests to receivers by using the OpenID Connect
(OIDC) protocol. It validates the ID token in the authorization header against the issuer and updates the
authentication context of the incoming request.

IMPORTANT

The OIDC Auth Extension is a Technology Preview feature only. Technology Preview
features are not supported with Red Hat production service level agreements (SLAs) and
might not be functionally complete. Red Hat does not recommend using them in
production. These features provide early access to upcoming product features, enabling
customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

 compaction:
 on_start: true 3
 directory: /tmp/ 4
 max_transaction_size: 65_536 5
 fsync: false 6

 exporters:
 otlp:
 sending_queue:
 storage: file_storage/all_settings 7

 service:
 extensions: [file_storage/all_settings] 8
 pipelines:
 traces:
 receivers: [otlp]
 exporters: [otlp]
...

OpenShift Container Platform 4.19 Red Hat build of OpenTelemetry

82

https://access.redhat.com/support/offerings/techpreview/

1

2

3

4

5

OpenTelemetry Collector custom resource with the configured OIDC Auth Extension

The name of the header that contains the ID token. The default name is authorization.

The base URL of the OIDC provider.

Optional: The path to the issuer’s CA certificate.

The audience for the token.

The name of the claim that contains the username. The default name is sub.

4.6.5. Jaeger Remote Sampling Extension

The Jaeger Remote Sampling Extension enables serving sampling strategies after Jaeger’s remote
sampling API. You can configure this extension to proxy requests to a backing remote sampling server
such as a Jaeger collector down the pipeline or to a static JSON file from the local file system.

IMPORTANT

...
 config:
 extensions:
 oidc:
 attribute: authorization 1
 issuer_url: https://example.com/auth/realms/opentelemetry 2
 issuer_ca_path: /var/run/tls/issuer.pem 3
 audience: otel-collector 4
 username_claim: email 5
 receivers:
 otlp:
 protocols:
 grpc:
 auth:
 authenticator: oidc
 exporters:
 debug: {}
 service:
 extensions: [oidc]
 pipelines:
 traces:
 receivers: [otlp]
 exporters: [debug]
...

CHAPTER 4. CONFIGURING THE COLLECTOR

83

1

2

3

IMPORTANT

The Jaeger Remote Sampling Extension is a Technology Preview feature only.
Technology Preview features are not supported with Red Hat production service level
agreements (SLAs) and might not be functionally complete. Red Hat does not
recommend using them in production. These features provide early access to upcoming
product features, enabling customers to test functionality and provide feedback during
the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

OpenTelemetry Collector custom resource with a configured Jaeger Remote Sampling
Extension

The time interval at which the sampling configuration is updated.

The endpoint for reaching the Jaeger remote sampling strategy provider.

The path to a local file that contains a sampling strategy configuration in the JSON format.

Example of a Jaeger Remote Sampling strategy file

...
 config:
 extensions:
 jaegerremotesampling:
 source:
 reload_interval: 30s 1
 remote:
 endpoint: jaeger-collector:14250 2
 file: /etc/otelcol/sampling_strategies.json 3

 receivers:
 otlp:
 protocols:
 http: {}

 exporters:
 debug: {}

 service:
 extensions: [jaegerremotesampling]
 pipelines:
 traces:
 receivers: [otlp]
 exporters: [debug]
...

{
 "service_strategies": [
 {
 "service": "foo",
 "type": "probabilistic",

OpenShift Container Platform 4.19 Red Hat build of OpenTelemetry

84

https://access.redhat.com/support/offerings/techpreview/

4.6.6. Performance Profiler Extension

The Performance Profiler Extension enables the Go net/http/pprof endpoint. Developers use this
extension to collect performance profiles and investigate issues with the service.

IMPORTANT

The Performance Profiler Extension is a Technology Preview feature only. Technology
Preview features are not supported with Red Hat production service level agreements
(SLAs) and might not be functionally complete. Red Hat does not recommend using
them in production. These features provide early access to upcoming product features,
enabling customers to test functionality and provide feedback during the development
process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

 "param": 0.8,
 "operation_strategies": [
 {
 "operation": "op1",
 "type": "probabilistic",
 "param": 0.2
 },
 {
 "operation": "op2",
 "type": "probabilistic",
 "param": 0.4
 }
]
 },
 {
 "service": "bar",
 "type": "ratelimiting",
 "param": 5
 }
],
 "default_strategy": {
 "type": "probabilistic",
 "param": 0.5,
 "operation_strategies": [
 {
 "operation": "/health",
 "type": "probabilistic",
 "param": 0.0
 },
 {
 "operation": "/metrics",
 "type": "probabilistic",
 "param": 0.0
 }
]
 }
}

CHAPTER 4. CONFIGURING THE COLLECTOR

85

https://access.redhat.com/support/offerings/techpreview/

1

2

3

4

OpenTelemetry Collector custom resource with the configured Performance Profiler
Extension

The endpoint at which this extension listens. Use localhost: to make it available only locally or ":"
to make it available on all network interfaces. The default value is localhost:1777.

Sets a fraction of blocking events to be profiled. To disable profiling, set this to 0 or a negative
integer. See the documentation for the runtime package. The default value is 0.

Set a fraction of mutex contention events to be profiled. To disable profiling, set this to 0 or a
negative integer. See the documentation for the runtime package. The default value is 0.

The name of the file in which the CPU profile is to be saved. Profiling starts when the Collector
starts. Profiling is saved to the file when the Collector is terminated.

4.6.7. Health Check Extension

The Health Check Extension provides an HTTP URL for checking the status of the OpenTelemetry
Collector. You can use this extension as a liveness and readiness probe on OpenShift.

IMPORTANT

...
 config:
 extensions:
 pprof:
 endpoint: localhost:1777 1
 block_profile_fraction: 0 2
 mutex_profile_fraction: 0 3
 save_to_file: test.pprof 4

 receivers:
 otlp:
 protocols:
 http: {}

 exporters:
 debug: {}

 service:
 extensions: [pprof]
 pipelines:
 traces:
 receivers: [otlp]
 exporters: [debug]
...

OpenShift Container Platform 4.19 Red Hat build of OpenTelemetry

86

https://golang.org/pkg/runtime/#SetBlockProfileRate
https://golang.org/pkg/runtime/#SetMutexProfileFraction

1

2

3

4

5

IMPORTANT

The Health Check Extension is a Technology Preview feature only. Technology Preview
features are not supported with Red Hat production service level agreements (SLAs) and
might not be functionally complete. Red Hat does not recommend using them in
production. These features provide early access to upcoming product features, enabling
customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

OpenTelemetry Collector custom resource with the configured Health Check Extension

The target IP address for publishing the health check status. The default is 0.0.0.0:13133.

The TLS server-side configuration. Defines paths to TLS certificates. If omitted, the TLS is
disabled.

The path for the health check server. The default is /.

Settings for the Collector pipeline health check.

Enables the Collector pipeline health check. The default is false.

...
 config:
 extensions:
 health_check:
 endpoint: "0.0.0.0:13133" 1
 tls: 2
 ca_file: "/path/to/ca.crt"
 cert_file: "/path/to/cert.crt"
 key_file: "/path/to/key.key"
 path: "/health/status" 3
 check_collector_pipeline: 4
 enabled: true 5
 interval: "5m" 6
 exporter_failure_threshold: 5 7

 receivers:
 otlp:
 protocols:
 http: {}

 exporters:
 debug: {}

 service:
 extensions: [health_check]
 pipelines:
 traces:
 receivers: [otlp]
 exporters: [debug]
...

CHAPTER 4. CONFIGURING THE COLLECTOR

87

https://access.redhat.com/support/offerings/techpreview/

6

7

1

The time interval for checking the number of failures. The default is 5m.

The threshold of multiple failures until which a container is still marked as healthy. The default is 5.

4.6.8. zPages Extension

The zPages Extension provides an HTTP endpoint that serves live data for debugging instrumented
components in real time. You can use this extension for in-process diagnostics and insights into traces
and metrics without relying on an external backend. With this extension, you can monitor and
troubleshoot the behavior of the OpenTelemetry Collector and related components by watching the
diagnostic information at the provided endpoint.

IMPORTANT

The zPages Extension is a Technology Preview feature only. Technology Preview features
are not supported with Red Hat production service level agreements (SLAs) and might
not be functionally complete. Red Hat does not recommend using them in production.
These features provide early access to upcoming product features, enabling customers
to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

OpenTelemetry Collector custom resource with the configured zPages Extension

Specifies the HTTP endpoint for serving the zPages extension. The default is localhost:55679.

IMPORTANT

...
 config:
 extensions:
 zpages:
 endpoint: "localhost:55679" 1

 receivers:
 otlp:
 protocols:
 http: {}
 exporters:
 debug: {}

 service:
 extensions: [zpages]
 pipelines:
 traces:
 receivers: [otlp]
 exporters: [debug]
...

OpenShift Container Platform 4.19 Red Hat build of OpenTelemetry

88

https://access.redhat.com/support/offerings/techpreview/

IMPORTANT

Accessing the HTTP endpoint requires port-forwarding because the Red Hat build of
OpenTelemetry Operator does not expose this route.

You can enable port-forwarding by running the following oc command:

The Collector provides the following zPages for diagnostics:

ServiceZ

Shows an overview of the Collector services and links to the following zPages: PipelineZ,
ExtensionZ, and FeatureZ. This page also displays information about the build version and runtime.
An example of this page’s URL is http://localhost:55679/debug/servicez.

PipelineZ

Shows detailed information about the active pipelines in the Collector. This page displays the pipeline
type, whether data are modified, and the associated receivers, processors, and exporters for each
pipeline. An example of this page’s URL is http://localhost:55679/debug/pipelinez.

ExtensionZ

Shows the currently active extensions in the Collector. An example of this page’s URL is
http://localhost:55679/debug/extensionz.

FeatureZ

Shows the feature gates enabled in the Collector along with their status and description. An example
of this page’s URL is http://localhost:55679/debug/featurez.

TraceZ

Shows spans categorized by latency. Available time ranges include 0 µs, 10 µs, 100 µs, 1 ms, 10 ms,
100 ms, 1 s, 10 s, 1 m. This page also allows for quick inspection of error samples. An example of this
page’s URL is http://localhost:55679/debug/tracez.

4.6.9. Additional resources

OpenTelemetry Protocol (OTLP) (OpenTelemetry Documentation)

4.7. TARGET ALLOCATOR

The Target Allocator is an optional component of the OpenTelemetry Operator that shards scrape
targets across the deployed fleet of OpenTelemetry Collector instances. The Target Allocator
integrates with the Prometheus PodMonitor and ServiceMonitor custom resources (CR). When the
Target Allocator is enabled, the OpenTelemetry Operator adds the http_sd_config field to the enabled
prometheus receiver that connects to the Target Allocator service.

IMPORTANT

$ oc port-forward pod/$(oc get pod -l app.kubernetes.io/name=instance-collector -
o=jsonpath='{.items[0].metadata.name}') 55679

CHAPTER 4. CONFIGURING THE COLLECTOR

89

http://localhost:55679/debug/servicez
http://localhost:55679/debug/pipelinez
http://localhost:55679/debug/extensionz
http://localhost:55679/debug/featurez
http://localhost:55679/debug/tracez
https://opentelemetry.io/docs/specs/otlp/

1

2

3

IMPORTANT

The Target Allocator is a Technology Preview feature only. Technology Preview features
are not supported with Red Hat production service level agreements (SLAs) and might
not be functionally complete. Red Hat does not recommend using them in production.
These features provide early access to upcoming product features, enabling customers
to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

Example OpenTelemetryCollector CR with the enabled Target Allocator

When the Target Allocator is enabled, the deployment mode must be set to statefulset.

Enables the Target Allocator. Defaults to false.

The service account name of the Target Allocator deployment. The service account needs to have
RBAC to get the ServiceMonitor, PodMonitor custom resources, and other objects from the
cluster to properly set labels on scraped metrics. The default service name is <collector_name>-
targetallocator.

apiVersion: opentelemetry.io/v1beta1
kind: OpenTelemetryCollector
metadata:
 name: otel
 namespace: observability
spec:
 mode: statefulset 1
 targetAllocator:
 enabled: true 2
 serviceAccount: 3
 prometheusCR:
 enabled: true 4
 scrapeInterval: 10s
 serviceMonitorSelector: 5
 name: app1
 podMonitorSelector: 6
 name: app2
 config:
 receivers:
 prometheus: 7
 config:
 scrape_configs: []
 processors:
 exporters:
 debug: {}
 service:
 pipelines:
 metrics:
 receivers: [prometheus]
 processors: []
 exporters: [debug]
...

OpenShift Container Platform 4.19 Red Hat build of OpenTelemetry

90

https://access.redhat.com/support/offerings/techpreview/

4

5

6

7

1

Enables integration with the Prometheus PodMonitor and ServiceMonitor custom resources.

Label selector for the Prometheus ServiceMonitor custom resources. When left empty, enables all
service monitors.

Label selector for the Prometheus PodMonitor custom resources. When left empty, enables all
pod monitors.

Prometheus receiver with the minimal, empty scrape_config: [] configuration option.

The Target Allocator deployment uses the Kubernetes API to get relevant objects from the cluster, so it
requires a custom RBAC configuration.

RBAC configuration for the Target Allocator service account

The name of the Target Allocator service account mane.

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 name: otel-targetallocator
rules:
 - apiGroups: [""]
 resources:
 - services
 - pods
 - namespaces
 verbs: ["get", "list", "watch"]
 - apiGroups: ["monitoring.coreos.com"]
 resources:
 - servicemonitors
 - podmonitors
 - scrapeconfigs
 - probes
 verbs: ["get", "list", "watch"]
 - apiGroups: ["discovery.k8s.io"]
 resources:
 - endpointslices
 verbs: ["get", "list", "watch"]

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 name: otel-targetallocator
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: otel-targetallocator
subjects:
 - kind: ServiceAccount
 name: otel-targetallocator 1
 namespace: observability 2
...

CHAPTER 4. CONFIGURING THE COLLECTOR

91

2 The namespace of the Target Allocator service account.

OpenShift Container Platform 4.19 Red Hat build of OpenTelemetry

92

CHAPTER 5. CONFIGURING THE INSTRUMENTATION
The Red Hat build of OpenTelemetry Operator uses an Instrumentation custom resource that defines
the configuration of the instrumentation.

5.1. AUTO-INSTRUMENTATION IN THE RED HAT BUILD OF
OPENTELEMETRY OPERATOR

Auto-instrumentation in the Red Hat build of OpenTelemetry Operator can automatically instrument an
application without manual code changes. Developers and administrators can monitor applications with
minimal effort and changes to the existing codebase.

Auto-instrumentation runs as follows:

1. The Red Hat build of OpenTelemetry Operator injects an init-container, or a sidecar container
for Go, to add the instrumentation libraries for the programming language of the instrumented
application.

2. The Red Hat build of OpenTelemetry Operator sets the required environment variables in the
application’s runtime environment. These variables configure the auto-instrumentation libraries
to collect traces, metrics, and logs and send them to the appropriate OpenTelemetry Collector
or another telemetry backend.

3. The injected libraries automatically instrument your application by connecting to known
frameworks and libraries, such as web servers or database clients, to collect telemetry data. The
source code of the instrumented application is not modified.

4. Once the application is running with the injected instrumentation, the application automatically
generates telemetry data, which is sent to a designated OpenTelemetry Collector or an external
OTLP endpoint for further processing.

Auto-instrumentation enables you to start collecting telemetry data quickly without having to manually
integrate the OpenTelemetry SDK into your application code. However, some applications might require
specific configurations or custom manual instrumentation.

5.2. OPENTELEMETRY INSTRUMENTATION CONFIGURATION
OPTIONS

The Red Hat build of OpenTelemetry injects and configures the OpenTelemetry auto-instrumentation
libraries into your workloads. Currently, the Red Hat build of OpenTelemetry supports injecting
instrumentation libraries for Go, Java, Node.js, Python, .NET, and the Apache HTTP Server (httpd).

IMPORTANT

The Red Hat build of OpenTelemetry Operator only supports the injection mechanism of
the instrumentation libraries but does not support instrumentation libraries or upstream
images. Customers can build their own instrumentation images or use community images.

5.2.1. Instrumentation options

Instrumentation options are specified in an Instrumentation custom resource (CR).

Sample Instrumentation CR

CHAPTER 5. CONFIGURING THE INSTRUMENTATION

93

1

2

3

4

5

6

Python auto-instrumentation uses protocol buffers over HTTP (HTTP/proto or HTTP/protobuf)
by default.

Required if endpoint is set to :4317.

.NET auto-instrumentation uses protocol buffers over HTTP (HTTP/proto or HTTP/protobuf) by
default.

Required if endpoint is set to :4317.

Go auto-instrumentation uses protocol buffers over HTTP (HTTP/proto or HTTP/protobuf) by
default.

Required if endpoint is set to :4317.

For more information about procol buffers, see Overview (Protocol Buffers Documentation).

Table 5.1. Parameters used by the Operator to define the instrumentation

Parameter Description Values

env Definition of common
environment variables for all
instrumentation types.

apiVersion: opentelemetry.io/v1alpha1
kind: Instrumentation
metadata:
 name: instrumentation
spec:
 env:
 - name: OTEL_EXPORTER_OTLP_TIMEOUT
 value: "20"
 exporter:
 endpoint: http://production-collector.observability.svc.cluster.local:4317
 propagators:
 - tracecontext
 - baggage
 sampler:
 type: parentbased_traceidratio
 argument: "1"
 python: 1
 env: 2
 - name: OTEL_EXPORTER_OTLP_ENDPOINT
 value: http://production-collector.observability.svc.cluster.local:4318
 dotnet: 3
 env: 4
 - name: OTEL_EXPORTER_OTLP_ENDPOINT
 value: http://production-collector.observability.svc.cluster.local:4318
 go: 5
 env: 6
 - name: OTEL_EXPORTER_OTLP_ENDPOINT
 value: http://production-collector.observability.svc.cluster.local:4318

OpenShift Container Platform 4.19 Red Hat build of OpenTelemetry

94

https://protobuf.dev/overview/

exporter Exporter configuration.

propagators Propagators defines inter-
process context propagation
configuration.

tracecontext, baggage, b3,
b3multi, jaeger, ottrace, none

resource Resource attributes configuration.

sampler Sampling configuration.

apacheHttpd Configuration for the Apache
HTTP Server instrumentation.

dotnet Configuration for the .NET
instrumentation.

go Configuration for the Go
instrumentation.

java Configuration for the Java
instrumentation.

nodejs Configuration for the Node.js
instrumentation.

python Configuration for the Python
instrumentation.

Depending on the programming
language, environment variables
might not work for configuring
telemetry. For the SDKs that do
not support environment variable
configuration, you must add a
similar configuration directly in the
code. For more information, see
Environment Variable
Specification (OpenTelemetry
Documentation).

Parameter Description Values

Table 5.2. Default protocol for auto-instrumentation

Auto-instrumentation Default protocol

Java 1.x otlp/grpc

Java 2.x otlp/http

Python otlp/http

CHAPTER 5. CONFIGURING THE INSTRUMENTATION

95

https://opentelemetry.io/docs/specs/otel/configuration/sdk-environment-variables/

.NET otlp/http

Go otlp/http

Apache HTTP Server otlp/grpc

Auto-instrumentation Default protocol

5.2.2. Configuration of the OpenTelemetry SDK variables

You can use the instrumentation.opentelemetry.io/inject-sdk annotation in the OpenTelemetry
Collector custom resource to instruct the Red Hat build of OpenTelemetry Operator to inject some of
the following OpenTelemetry SDK environment variables, depending on the Instrumentation CR, into
your pod:

OTEL_SERVICE_NAME

OTEL_TRACES_SAMPLER

OTEL_TRACES_SAMPLER_ARG

OTEL_PROPAGATORS

OTEL_RESOURCE_ATTRIBUTES

OTEL_EXPORTER_OTLP_ENDPOINT

OTEL_EXPORTER_OTLP_CERTIFICATE

OTEL_EXPORTER_OTLP_CLIENT_CERTIFICATE

OTEL_EXPORTER_OTLP_CLIENT_KEY

Table 5.3. Values for the instrumentation.opentelemetry.io/inject-sdk annotation

Value Description

"true" Injects the Instrumentation resource with the
default name from the current namespace.

"false" Injects no Instrumentation resource.

"<instrumentation_name>" Specifies the name of the Instrumentation
resource to inject from the current namespace.

"<namespace>/<instrumentation_name>" Specifies the name of the Instrumentation
resource to inject from another namespace.

5.2.3. Exporter configuration

OpenShift Container Platform 4.19 Red Hat build of OpenTelemetry

96

1

2

3

1

2

3

4

Although the Instrumentation custom resource supports setting up one or more exporters per signal,
auto-instrumentation configures only the OTLP Exporter. So you must configure the endpoint to point
to the OTLP Receiver on the Collector.

Sample exporter TLS CA configuration using a config map

Specifies the OTLP endpoint using the HTTPS scheme and TLS.

Specifies the name of the config map. The config map must already exist in the namespace of the
pod injecting the auto-instrumentation.

Points to the CA certificate in the config map or the absolute path to the certificate if the
certificate is already present in the workload file system.

Sample exporter mTLS configuration using a Secret

Specifies the OTLP endpoint using the HTTPS scheme and TLS.

Specifies the name of the Secret for the ca_file, cert_file, and key_file values. The Secret must
already exist in the namespace of the pod injecting the auto-instrumentation.

Points to the CA certificate in the Secret or the absolute path to the certificate if the certificate is
already present in the workload file system.

Points to the client certificate in the Secret or the absolute path to the certificate if the certificate
is already present in the workload file system.

apiVersion: opentelemetry.io/v1alpha1
kind: Instrumentation
...
spec
...
 exporter:
 endpoint: https://production-collector.observability.svc.cluster.local:4317 1
 tls:
 configMapName: ca-bundle 2
 ca_file: service-ca.crt 3
...

apiVersion: opentelemetry.io/v1alpha1
kind: Instrumentation
...
spec
...
 exporter:
 endpoint: https://production-collector.observability.svc.cluster.local:4317 1
 tls:
 secretName: serving-certs 2
 ca_file: service-ca.crt 3
 cert_file: tls.crt 4
 key_file: tls.key 5
...

CHAPTER 5. CONFIGURING THE INSTRUMENTATION

97

5 Points to the client key in the Secret or the absolute path to a key if the key is already present in
the workload file system.

NOTE

You can provide the CA certificate in a config map or Secret. If you provide it in both, the
config map takes higher precedence than the Secret.

Example configuration for CA bundle injection by using a config map and Instrumentation
CR

5.2.4. Configuration of the Apache HTTP Server auto-instrumentation

IMPORTANT

The Apache HTTP Server auto-instrumentation is a Technology Preview feature only.
Technology Preview features are not supported with Red Hat production service level
agreements (SLAs) and might not be functionally complete. Red Hat does not
recommend using them in production. These features provide early access to upcoming
product features, enabling customers to test functionality and provide feedback during
the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

Table 5.4. Parameters for the .spec.apacheHttpd field

Name Description Default

apiVersion: v1
kind: ConfigMap
metadata:
 name: otelcol-cabundle
 namespace: tutorial-application
 annotations:
 service.beta.openshift.io/inject-cabundle: "true"
...

apiVersion: opentelemetry.io/v1alpha1
kind: Instrumentation
metadata:
 name: my-instrumentation
spec:
 exporter:
 endpoint: https://simplest-collector.tracing-system.svc.cluster.local:4317
 tls:
 configMapName: otelcol-cabundle
 ca: service-ca.crt
...

OpenShift Container Platform 4.19 Red Hat build of OpenTelemetry

98

https://access.redhat.com/support/offerings/techpreview/

attrs Attributes specific to the Apache
HTTP Server.

configPath Location of the Apache HTTP
Server configuration.

/usr/local/apache2/conf

env Environment variables specific to
the Apache HTTP Server.

image Container image with the Apache
SDK and auto-instrumentation.

resourceRequirements The compute resource
requirements.

version Apache HTTP Server version. 2.4

Name Description Default

The PodSpec annotation to enable injection

5.2.5. Configuration of the .NET auto-instrumentation

IMPORTANT

The .NET auto-instrumentation is a Technology Preview feature only. Technology
Preview features are not supported with Red Hat production service level agreements
(SLAs) and might not be functionally complete. Red Hat does not recommend using
them in production. These features provide early access to upcoming product features,
enabling customers to test functionality and provide feedback during the development
process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

IMPORTANT

By default, this feature injects unsupported, upstream instrumentation libraries.

Name Description

env Environment variables specific to .NET.

image Container image with the .NET SDK and auto-
instrumentation.

instrumentation.opentelemetry.io/inject-apache-httpd: "true"

CHAPTER 5. CONFIGURING THE INSTRUMENTATION

99

https://access.redhat.com/support/offerings/techpreview/

1

resourceRequirements The compute resource requirements.

Name Description

For the .NET auto-instrumentation, the required OTEL_EXPORTER_OTLP_ENDPOINT environment
variable must be set if the endpoint of the exporters is set to 4317. The .NET autoinstrumentation uses
http/proto by default, and the telemetry data must be set to the 4318 port.

The PodSpec annotation to enable injection

5.2.6. Configuration of the Go auto-instrumentation

IMPORTANT

The Go auto-instrumentation is a Technology Preview feature only. Technology Preview
features are not supported with Red Hat production service level agreements (SLAs) and
might not be functionally complete. Red Hat does not recommend using them in
production. These features provide early access to upcoming product features, enabling
customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

IMPORTANT

By default, this feature injects unsupported, upstream instrumentation libraries.

Name Description

env Environment variables specific to Go.

image Container image with the Go SDK and auto-
instrumentation.

resourceRequirements The compute resource requirements.

The PodSpec annotation to enable injection

Sets the value for the required OTEL_GO_AUTO_TARGET_EXE environment variable.

Permissions required for the Go auto-instrumentation in the OpenShift cluster

instrumentation.opentelemetry.io/inject-dotnet: "true"

instrumentation.opentelemetry.io/inject-go: "true"
instrumentation.opentelemetry.io/otel-go-auto-target-exe: "/<path>/<to>/<container>/<executable>"
1

OpenShift Container Platform 4.19 Red Hat build of OpenTelemetry

100

https://access.redhat.com/support/offerings/techpreview/

TIP

The CLI command for applying the permissions for the Go auto-instrumentation in the OpenShift
cluster is as follows:

5.2.7. Configuration of the Java auto-instrumentation

IMPORTANT

The Java auto-instrumentation is a Technology Preview feature only. Technology Preview
features are not supported with Red Hat production service level agreements (SLAs) and
might not be functionally complete. Red Hat does not recommend using them in
production. These features provide early access to upcoming product features, enabling
customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

IMPORTANT

By default, this feature injects unsupported, upstream instrumentation libraries.

Name Description

env Environment variables specific to Java.

image Container image with the Java SDK and auto-
instrumentation.

apiVersion: security.openshift.io/v1
kind: SecurityContextConstraints
metadata:
 name: otel-go-instrumentation-scc
allowHostDirVolumePlugin: true
allowPrivilegeEscalation: true
allowPrivilegedContainer: true
allowedCapabilities:
- "SYS_PTRACE"
fsGroup:
 type: RunAsAny
runAsUser:
 type: RunAsAny
seLinuxContext:
 type: RunAsAny
seccompProfiles:
- '*'
supplementalGroups:
 type: RunAsAny

$ oc adm policy add-scc-to-user otel-go-instrumentation-scc -z <service_account>

CHAPTER 5. CONFIGURING THE INSTRUMENTATION

101

https://access.redhat.com/support/offerings/techpreview/

resourceRequirements The compute resource requirements.

Name Description

The PodSpec annotation to enable injection

5.2.8. Configuration of the Node.js auto-instrumentation

IMPORTANT

The Node.js auto-instrumentation is a Technology Preview feature only. Technology
Preview features are not supported with Red Hat production service level agreements
(SLAs) and might not be functionally complete. Red Hat does not recommend using
them in production. These features provide early access to upcoming product features,
enabling customers to test functionality and provide feedback during the development
process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

IMPORTANT

By default, this feature injects unsupported, upstream instrumentation libraries.

Name Description

env Environment variables specific to Node.js.

image Container image with the Node.js SDK and auto-
instrumentation.

resourceRequirements The compute resource requirements.

The PodSpec annotations to enable injection

5.2.9. Configuration of the Python auto-instrumentation

IMPORTANT

instrumentation.opentelemetry.io/inject-java: "true"

instrumentation.opentelemetry.io/inject-nodejs: "true"

OpenShift Container Platform 4.19 Red Hat build of OpenTelemetry

102

https://access.redhat.com/support/offerings/techpreview/

1

IMPORTANT

The Python auto-instrumentation is a Technology Preview feature only. Technology
Preview features are not supported with Red Hat production service level agreements
(SLAs) and might not be functionally complete. Red Hat does not recommend using
them in production. These features provide early access to upcoming product features,
enabling customers to test functionality and provide feedback during the development
process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

IMPORTANT

By default, this feature injects unsupported, upstream instrumentation libraries.

Name Description

env Environment variables specific to Python.

image Container image with the Python SDK and auto-
instrumentation.

resourceRequirements The compute resource requirements.

For Python auto-instrumentation, the OTEL_EXPORTER_OTLP_ENDPOINT environment variable
must be set if the endpoint of the exporters is set to 4317. Python auto-instrumentation uses
http/proto by default, and the telemetry data must be set to the 4318 port.

The PodSpec annotation to enable injection

5.2.10. Multi-container pods

The instrumentation is injected to the first container that is available by default according to the pod
specification. You can also specify the target container names for injection.

Pod annotation

Use this annotation when you want to inject a single instrumentation in multiple containers.

NOTE

The Go auto-instrumentation does not support multi-container auto-instrumentation
injection.

instrumentation.opentelemetry.io/inject-python: "true"

instrumentation.opentelemetry.io/container-names: "<container_1>,<container_2>" 1

CHAPTER 5. CONFIGURING THE INSTRUMENTATION

103

https://access.redhat.com/support/offerings/techpreview/

1

5.2.11. Multi-container pods with multiple instrumentations

Injecting instrumentation for an application language to one or more containers in a multi-container pod
requires the following annotation:

You can inject instrumentation for only one language per container. For the list of supported
<application_language> values, see the following table.

Table 5.5. Supported values for the <application_language>

Language Value for <application_language>

ApacheHTTPD apache-httpd

DotNet dotnet

Java java

NGINX inject-nginx

NodeJS nodejs

Python python

SDK sdk

5.2.12. Using the instrumentation CR with Service Mesh

When using the Instrumentation custom resource (CR) with Red Hat OpenShift Service Mesh, you
must use the b3multi propagator.

instrumentation.opentelemetry.io/<application_language>-container-names: "<container_1>,
<container_2>" 1

OpenShift Container Platform 4.19 Red Hat build of OpenTelemetry

104

CHAPTER 6. SENDING TRACES, LOGS, AND METRICS TO THE
OPENTELEMETRY COLLECTOR

You can set up and use the Red Hat build of OpenTelemetry to send traces, logs, and metrics to the
OpenTelemetry Collector or the TempoStack instance.

Sending traces and metrics to the OpenTelemetry Collector is possible with or without sidecar injection.

6.1. SENDING TRACES AND METRICS TO THE OPENTELEMETRY
COLLECTOR WITH SIDECAR INJECTION

You can set up sending telemetry data to an OpenTelemetry Collector instance with sidecar injection.

The Red Hat build of OpenTelemetry Operator allows sidecar injection into deployment workloads and
automatic configuration of your instrumentation to send telemetry data to the OpenTelemetry
Collector.

Prerequisites

The Red Hat OpenShift Distributed Tracing Platform is installed, and a TempoStack instance is
deployed.

You have access to the cluster through the web console or the OpenShift CLI (oc):

You are logged in to the web console as a cluster administrator with the cluster-admin role.

An active OpenShift CLI (oc) session by a cluster administrator with the cluster-admin role.

For Red Hat OpenShift Dedicated, you must have an account with the dedicated-admin
role.

Procedure

1. Create a project for an OpenTelemetry Collector instance.

2. Create a service account.

3. Grant the permissions to the service account for the k8sattributes and resourcedetection
processors.

apiVersion: project.openshift.io/v1
kind: Project
metadata:
 name: observability

apiVersion: v1
kind: ServiceAccount
metadata:
 name: otel-collector-sidecar
 namespace: observability

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole

CHAPTER 6. SENDING TRACES, LOGS, AND METRICS TO THE OPENTELEMETRY COLLECTOR

105

4. Deploy the OpenTelemetry Collector as a sidecar.

metadata:
 name: otel-collector
rules:
- apiGroups: ["", "config.openshift.io"]
 resources: ["pods", "namespaces", "infrastructures", "infrastructures/status"]
 verbs: ["get", "watch", "list"]

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 name: otel-collector
subjects:
- kind: ServiceAccount
 name: otel-collector-sidecar
 namespace: observability
roleRef:
 kind: ClusterRole
 name: otel-collector
 apiGroup: rbac.authorization.k8s.io

apiVersion: opentelemetry.io/v1beta1
kind: OpenTelemetryCollector
metadata:
 name: otel
 namespace: observability
spec:
 serviceAccount: otel-collector-sidecar
 mode: sidecar
 config:
 serviceAccount: otel-collector-sidecar
 receivers:
 otlp:
 protocols:
 grpc: {}
 http: {}
 processors:
 batch: {}
 memory_limiter:
 check_interval: 1s
 limit_percentage: 50
 spike_limit_percentage: 30
 resourcedetection:
 detectors: [openshift]
 timeout: 2s
 exporters:
 otlp:
 endpoint: "tempo-<example>-gateway:8090" 1
 tls:
 insecure: true
 service:
 pipelines:
 traces:

OpenShift Container Platform 4.19 Red Hat build of OpenTelemetry

106

1 This points to the Gateway of the TempoStack instance deployed by using the <example>
Tempo Operator.

5. Create your deployment using the otel-collector-sidecar service account.

6. Add the sidecar.opentelemetry.io/inject: "true" annotation to your Deployment object. This
will inject all the needed environment variables to send data from your workloads to the
OpenTelemetry Collector instance.

6.2. SENDING TRACES AND METRICS TO THE OPENTELEMETRY
COLLECTOR WITHOUT SIDECAR INJECTION

You can set up sending telemetry data to an OpenTelemetry Collector instance without sidecar
injection, which involves manually setting several environment variables.

Prerequisites

The Red Hat OpenShift Distributed Tracing Platform is installed, and a TempoStack instance is
deployed.

You have access to the cluster through the web console or the OpenShift CLI (oc):

You are logged in to the web console as a cluster administrator with the cluster-admin role.

An active OpenShift CLI (oc) session by a cluster administrator with the cluster-admin role.

For Red Hat OpenShift Dedicated, you must have an account with the dedicated-admin
role.

Procedure

1. Create a project for an OpenTelemetry Collector instance.

2. Create a service account.

3. Grant the permissions to the service account for the k8sattributes and resourcedetection
processors.

 receivers: [otlp]
 processors: [memory_limiter, resourcedetection, batch]
 exporters: [otlp]

apiVersion: project.openshift.io/v1
kind: Project
metadata:
 name: observability

apiVersion: v1
kind: ServiceAccount
metadata:
 name: otel-collector-deployment
 namespace: observability

CHAPTER 6. SENDING TRACES, LOGS, AND METRICS TO THE OPENTELEMETRY COLLECTOR

107

4. Deploy the OpenTelemetry Collector instance with the OpenTelemetryCollector custom
resource.

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 name: otel-collector
rules:
- apiGroups: ["", "config.openshift.io"]
 resources: ["pods", "namespaces", "infrastructures", "infrastructures/status"]
 verbs: ["get", "watch", "list"]

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 name: otel-collector
subjects:
- kind: ServiceAccount
 name: otel-collector-deployment
 namespace: observability
roleRef:
 kind: ClusterRole
 name: otel-collector
 apiGroup: rbac.authorization.k8s.io

apiVersion: opentelemetry.io/v1beta1
kind: OpenTelemetryCollector
metadata:
 name: otel
 namespace: observability
spec:
 mode: deployment
 serviceAccount: otel-collector-deployment
 config:
 receivers:
 jaeger:
 protocols:
 grpc: {}
 thrift_binary: {}
 thrift_compact: {}
 thrift_http: {}
 opencensus:
 otlp:
 protocols:
 grpc: {}
 http: {}
 zipkin: {}
 processors:
 batch: {}
 k8sattributes: {}
 memory_limiter:
 check_interval: 1s
 limit_percentage: 50
 spike_limit_percentage: 30
 resourcedetection:

OpenShift Container Platform 4.19 Red Hat build of OpenTelemetry

108

1 This points to the Gateway of the TempoStack instance deployed by using the <example>
Tempo Operator.

5. Set the environment variables in the container with your instrumented application.

Name Description Default value

OTEL_SERVICE_NAME Sets the value of the
service.name resource
attribute.

""

OTEL_EXPORTER_OTLP_
ENDPOINT

Base endpoint URL for any
signal type with an optionally
specified port number.

https://localhost:4317

OTEL_EXPORTER_OTLP_
CERTIFICATE

Path to the certificate file for
the TLS credentials of the
gRPC client.

https://localhost:4317

OTEL_TRACES_SAMPLE
R

Sampler to be used for traces. parentbased_always_on

OTEL_EXPORTER_OTLP_
PROTOCOL

Transport protocol for the
OTLP exporter.

grpc

OTEL_EXPORTER_OTLP_
TIMEOUT

Maximum time interval for the
OTLP exporter to wait for
each batch export.

10s

OTEL_EXPORTER_OTLP_
INSECURE

Disables client transport
security for gRPC requests. An
HTTPS schema overrides it.

False

 detectors: [openshift]
 exporters:
 otlp:
 endpoint: "tempo-<example>-distributor:4317" 1
 tls:
 insecure: true
 service:
 pipelines:
 traces:
 receivers: [jaeger, opencensus, otlp, zipkin]
 processors: [memory_limiter, k8sattributes, resourcedetection, batch]
 exporters: [otlp]

CHAPTER 6. SENDING TRACES, LOGS, AND METRICS TO THE OPENTELEMETRY COLLECTOR

109

1

CHAPTER 7. CONFIGURING METRICS FOR THE MONITORING
STACK

As a cluster administrator, you can configure the OpenTelemetry Collector custom resource (CR) to
perform the following tasks:

Create a Prometheus ServiceMonitor CR for scraping the Collector’s pipeline metrics and the
enabled Prometheus exporters.

Configure the Prometheus receiver to scrape metrics from the in-cluster monitoring stack.

7.1. CONFIGURATION FOR SENDING METRICS TO THE MONITORING
STACK

You can configure the OpenTelemetryCollector custom resource (CR) to create a Prometheus
ServiceMonitor CR or a PodMonitor CR for a sidecar deployment. A ServiceMonitor can scrape
Collector’s internal metrics endpoint and Prometheus exporter metrics endpoints.

Example of the OpenTelemetry Collector CR with the Prometheus exporter

Configures the Red Hat build of OpenTelemetry Operator to create the Prometheus
ServiceMonitor CR or PodMonitor CR to scrape the Collector’s internal metrics endpoint and the
Prometheus exporter metrics endpoints.

NOTE

apiVersion: opentelemetry.io/v1beta1
kind: OpenTelemetryCollector
spec:
 mode: deployment
 observability:
 metrics:
 enableMetrics: true 1
 config:
 exporters:
 prometheus:
 endpoint: 0.0.0.0:8889
 resource_to_telemetry_conversion:
 enabled: true # by default resource attributes are dropped
 service:
 telemetry:
 metrics:
 readers:
 - pull:
 exporter:
 prometheus:
 host: 0.0.0.0
 port: 8888
 pipelines:
 metrics:
 exporters: [prometheus]

OpenShift Container Platform 4.19 Red Hat build of OpenTelemetry

110

1

2

3

NOTE

Setting enableMetrics to true creates the following two ServiceMonitor instances:

One ServiceMonitor instance for the <instance_name>-collector-monitoring
service. This ServiceMonitor instance scrapes the Collector’s internal metrics.

One ServiceMonitor instance for the <instance_name>-collector service. This
ServiceMonitor instance scrapes the metrics exposed by the Prometheus
exporter instances.

Alternatively, a manually created Prometheus PodMonitor CR can provide fine control, for example
removing duplicated labels added during Prometheus scraping.

Example of the PodMonitor CR that configures the monitoring stack to scrape the Collector
metrics

The name of the OpenTelemetry Collector CR.

The name of the internal metrics port for the OpenTelemetry Collector. This port name is always
metrics.

The name of the Prometheus exporter port for the OpenTelemetry Collector.

7.2. CONFIGURATION FOR RECEIVING METRICS FROM THE
MONITORING STACK

A configured OpenTelemetry Collector custom resource (CR) can set up the Prometheus receiver to
scrape metrics from the in-cluster monitoring stack.

apiVersion: monitoring.coreos.com/v1
kind: PodMonitor
metadata:
 name: otel-collector
spec:
 selector:
 matchLabels:
 app.kubernetes.io/name: <cr_name>-collector 1
 podMetricsEndpoints:
 - port: metrics 2
 - port: promexporter 3
 relabelings:
 - action: labeldrop
 regex: pod
 - action: labeldrop
 regex: container
 - action: labeldrop
 regex: endpoint
 metricRelabelings:
 - action: labeldrop
 regex: instance
 - action: labeldrop
 regex: job

CHAPTER 7. CONFIGURING METRICS FOR THE MONITORING STACK

111

Example of the OpenTelemetry Collector CR for scraping metrics from the in-cluster
monitoring stack

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 name: otel-collector
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: cluster-monitoring-view 1
subjects:
 - kind: ServiceAccount
 name: otel-collector
 namespace: observability

kind: ConfigMap
apiVersion: v1
metadata:
 name: cabundle
 namespace: observability
 annotations:
 service.beta.openshift.io/inject-cabundle: "true" 2

apiVersion: opentelemetry.io/v1beta1
kind: OpenTelemetryCollector
metadata:
 name: otel
 namespace: observability
spec:
 volumeMounts:
 - name: cabundle-volume
 mountPath: /etc/pki/ca-trust/source/service-ca
 readOnly: true
 volumes:
 - name: cabundle-volume
 configMap:
 name: cabundle
 mode: deployment
 config:
 receivers:
 prometheus: 3
 config:
 scrape_configs:
 - job_name: 'federate'
 scrape_interval: 15s
 scheme: https
 tls_config:
 ca_file: /etc/pki/ca-trust/source/service-ca/service-ca.crt
 bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token
 honor_labels: false
 params:
 'match[]':
 - '{__name__="<metric_name>"}' 4
 metrics_path: '/federate'

OpenShift Container Platform 4.19 Red Hat build of OpenTelemetry

112

1

2

3

4

5

Assigns the cluster-monitoring-view cluster role to the service account of the OpenTelemetry
Collector so that it can access the metrics data.

Injects the OpenShift service CA for configuring the TLS in the Prometheus receiver.

Configures the Prometheus receiver to scrape the federate endpoint from the in-cluster
monitoring stack.

Uses the Prometheus query language to select the metrics to be scraped. See the in-cluster
monitoring documentation for more details and limitations of the federate endpoint.

Configures the debug exporter to print the metrics to the standard output.

7.3. ADDITIONAL RESOURCES

Querying metrics by using the federation endpoint for Prometheus

 static_configs:
 - targets:
 - "prometheus-k8s.openshift-monitoring.svc.cluster.local:9091"
 exporters:
 debug: 5
 verbosity: detailed
 service:
 pipelines:
 metrics:
 receivers: [prometheus]
 processors: []
 exporters: [debug]

CHAPTER 7. CONFIGURING METRICS FOR THE MONITORING STACK

113

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/monitoring/#monitoring-querying-metrics-by-using-the-federation-endpoint-for-prometheus_accessing-monitoring-apis-by-using-the-cli

1

2

CHAPTER 8. FORWARDING TELEMETRY DATA
You can use the OpenTelemetry Collector to forward your telemetry data.

8.1. FORWARDING TRACES TO A TEMPOSTACK INSTANCE

To configure forwarding traces to a TempoStack instance, you can deploy and configure the
OpenTelemetry Collector. You can deploy the OpenTelemetry Collector in the deployment mode by
using the specified processors, receivers, and exporters. For other modes, see the OpenTelemetry
Collector documentation linked in Additional resources .

Prerequisites

The Red Hat build of OpenTelemetry Operator is installed.

The Tempo Operator is installed.

A TempoStack instance is deployed on the cluster.

Procedure

1. Create a service account for the OpenTelemetry Collector.

Example ServiceAccount

2. Create a cluster role for the service account.

Example ClusterRole

This example uses the Kubernetes Attributes Processor, which requires these permissions
for the pods and namespaces resources.

Also due to the Kubernetes Attributes Processor, these permissions are required for the

apiVersion: v1
kind: ServiceAccount
metadata:
 name: otel-collector-deployment

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 name: otel-collector
rules:
- apiGroups: [""]
 resources: ["pods", "namespaces",]
 verbs: ["get", "watch", "list"] 1
- apiGroups: ["apps"]
 resources: ["replicasets"]
 verbs: ["get", "watch", "list"] 2
- apiGroups: ["config.openshift.io"]
 resources: ["infrastructures", "infrastructures/status"]
 verbs: ["get", "watch", "list"] 3

OpenShift Container Platform 4.19 Red Hat build of OpenTelemetry

114

3

Also due to the Kubernetes Attributes Processor, these permissions are required for the
replicasets resources.

This example also uses the Resource Detection Processor, which requires these
permissions for the infrastructures and status resources.

3. Bind the cluster role to the service account.

Example ClusterRoleBinding

4. Create the YAML file to define the OpenTelemetryCollector custom resource (CR).

Example OpenTelemetryCollector

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 name: otel-collector
subjects:
- kind: ServiceAccount
 name: otel-collector-deployment
 namespace: otel-collector-example
roleRef:
 kind: ClusterRole
 name: otel-collector
 apiGroup: rbac.authorization.k8s.io

apiVersion: opentelemetry.io/v1beta1
kind: OpenTelemetryCollector
metadata:
 name: otel
spec:
 mode: deployment
 serviceAccount: otel-collector-deployment
 config:
 receivers:
 jaeger:
 protocols:
 grpc: {}
 thrift_binary: {}
 thrift_compact: {}
 thrift_http: {}
 opencensus: {}
 otlp:
 protocols:
 grpc: {}
 http: {}
 zipkin: {}
 processors:
 batch: {}
 k8sattributes: {}
 memory_limiter:
 check_interval: 1s
 limit_percentage: 50
 spike_limit_percentage: 30

CHAPTER 8. FORWARDING TELEMETRY DATA

115

1

2

The Collector exporter is configured to export OTLP and points to the Tempo distributor
endpoint, "tempo-simplest-distributor:4317" in this example, which is already created.

The Collector is configured with a receiver for Jaeger traces, OpenCensus traces over the
OpenCensus protocol, Zipkin traces over the Zipkin protocol, and OTLP traces over the
gRPC protocol.

TIP

You can deploy telemetrygen as a test:

Additional resources

OpenTelemetry Collector (OpenTelemetry Documentation)

Deployment examples on GitHub (GitHub)

8.2. FORWARDING LOGS TO A LOKISTACK INSTANCE

You can deploy the OpenTelemetry Collector to forward logs to a LokiStack instance by using the

 resourcedetection:
 detectors: [openshift]
 exporters:
 otlp:
 endpoint: "tempo-simplest-distributor:4317" 1
 tls:
 insecure: true
 service:
 pipelines:
 traces:
 receivers: [jaeger, opencensus, otlp, zipkin] 2
 processors: [memory_limiter, k8sattributes, resourcedetection, batch]
 exporters: [otlp]

apiVersion: batch/v1
kind: Job
metadata:
 name: telemetrygen
spec:
 template:
 spec:
 containers:
 - name: telemetrygen
 image: ghcr.io/open-telemetry/opentelemetry-collector-contrib/telemetrygen:latest
 args:
 - traces
 - --otlp-endpoint=otel-collector:4317
 - --otlp-insecure
 - --duration=30s
 - --workers=1
 restartPolicy: Never
 backoffLimit: 4

OpenShift Container Platform 4.19 Red Hat build of OpenTelemetry

116

https://opentelemetry.io/docs/collector/
https://github.com/os-observability/redhat-rhosdt-samples

You can deploy the OpenTelemetry Collector to forward logs to a LokiStack instance by using the
openshift-logging tenants mode.

Prerequisites

The Red Hat build of OpenTelemetry Operator is installed.

The Loki Operator is installed.

A supported LokiStack instance is deployed on the cluster. For more information about the
supported LokiStack configuration, see Logging.

Procedure

1. Create a service account for the OpenTelemetry Collector.

Example ServiceAccount object

2. Create a cluster role that grants the Collector’s service account the permissions to push logs to
the LokiStack application tenant.

Example ClusterRole object

3. Bind the cluster role to the service account.

Example ClusterRoleBinding object

apiVersion: v1
kind: ServiceAccount
metadata:
 name: otel-collector-deployment
 namespace: openshift-logging

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 name: otel-collector-logs-writer
rules:
 - apiGroups: ["loki.grafana.com"]
 resourceNames: ["logs"]
 resources: ["application"]
 verbs: ["create"]
 - apiGroups: [""]
 resources: ["pods", "namespaces", "nodes"]
 verbs: ["get", "watch", "list"]
 - apiGroups: ["apps"]
 resources: ["replicasets"]
 verbs: ["get", "list", "watch"]
 - apiGroups: ["extensions"]
 resources: ["replicasets"]
 verbs: ["get", "list", "watch"]

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding

CHAPTER 8. FORWARDING TELEMETRY DATA

117

4. Create an OpenTelemetryCollector custom resource (CR) object.

Example OpenTelemetryCollector CR object

metadata:
 name: otel-collector-logs-writer
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: otel-collector-logs-writer
subjects:
 - kind: ServiceAccount
 name: otel-collector-deployment
 namespace: openshift-logging

apiVersion: opentelemetry.io/v1beta1
kind: OpenTelemetryCollector
metadata:
 name: otel
 namespace: openshift-logging
spec:
 serviceAccount: otel-collector-deployment
 config:
 extensions:
 bearertokenauth:
 filename: "/var/run/secrets/kubernetes.io/serviceaccount/token"
 receivers:
 otlp:
 protocols:
 grpc: {}
 http: {}
 processors:
 k8sattributes: {}
 resource:
 attributes: 1
 - key: kubernetes.namespace_name
 from_attribute: k8s.namespace.name
 action: upsert
 - key: kubernetes.pod_name
 from_attribute: k8s.pod.name
 action: upsert
 - key: kubernetes.container_name
 from_attribute: k8s.container.name
 action: upsert
 - key: log_type
 value: application
 action: upsert
 transform:
 log_statements:
 - context: log
 statements:
 - set(attributes["level"], ConvertCase(severity_text, "lower"))
 exporters:
 otlphttp:
 endpoint: https://logging-loki-gateway-http.openshift-

OpenShift Container Platform 4.19 Red Hat build of OpenTelemetry

118

1

2

3

Provides the following resource attributes to be used by the web console:
kubernetes.namespace_name, kubernetes.pod_name, kubernetes.container_name,
and log_type.

Enables the BearerTokenAuth Extension that is required by the OTLP HTTP Exporter.

Enables the OTLP HTTP Exporter to export logs from the Collector.

TIP

You can deploy telemetrygen as a test:

logging.svc.cluster.local:8080/api/logs/v1/application/otlp
 encoding: json
 tls:
 ca_file: "/var/run/secrets/kubernetes.io/serviceaccount/service-ca.crt"
 auth:
 authenticator: bearertokenauth
 debug:
 verbosity: detailed
 service:
 extensions: [bearertokenauth] 2
 pipelines:
 logs:
 receivers: [otlp]
 processors: [k8sattributes, transform, resource]
 exporters: [otlphttp] 3
 logs/test:
 receivers: [otlp]
 processors: []
 exporters: [debug]

apiVersion: batch/v1
kind: Job
metadata:
 name: telemetrygen
spec:
 template:
 spec:
 containers:
 - name: telemetrygen
 image: ghcr.io/open-telemetry/opentelemetry-collector-contrib/telemetrygen:v0.106.1
 args:
 - logs
 - --otlp-endpoint=otel-collector.openshift-logging.svc.cluster.local:4317
 - --otlp-insecure
 - --duration=180s
 - --workers=1
 - --logs=10
 - --otlp-attributes=k8s.container.name="telemetrygen"
 restartPolicy: Never
 backoffLimit: 4

CHAPTER 8. FORWARDING TELEMETRY DATA

119

8.3. FORWARDING TELEMETRY DATA TO THIRD-PARTY SYSTEMS

The OpenTelemetry Collector exports telemetry data by using the OTLP exporter via the
OpenTelemetry Protocol (OTLP) that is implemented over the gRPC or HTTP transports. If you need to
forward telemetry data to your third-party system and it does not support the OTLP or other supported
protocol in the Red Hat build of OpenTelemetry, then you can deploy an unsupported custom
OpenTelemetry Collector that can receive telemetry data via the OTLP and export it to your third-party
system by using a custom exporter.

WARNING

Red Hat does not support custom deployments.

Prerequisites

You have developed your own unsupported custom exporter that can export telemetry data via
the OTLP to your third-party system.

Procedure

Deploy a custom Collector either through the OperatorHub or manually:

If your third-party system supports it, deploy the custom Collector by using the
OperatorHub.

Deploy the custom Collector manually by using a config map, deployment, and service.

Example of a custom Collector deployment



apiVersion: v1
kind: ConfigMap
metadata:
 name: custom-otel-collector-config
data:
 otel-collector-config.yaml: |
 receivers:
 otlp:
 protocols:
 grpc:
 exporters:
 debug: {}
 prometheus:
 service:
 pipelines:
 traces:
 receivers: [otlp]
 exporters: [debug] 1

apiVersion: apps/v1
kind: Deployment
metadata:

OpenShift Container Platform 4.19 Red Hat build of OpenTelemetry

120

1

2

3

Replace debug with the required exporter for your third-party system.

Replace the image with the required version of the OpenTelemetry Collector that has
the required exporter for your third-party system.

The service name is used in the Red Hat build of OpenTelemetry Collector CR to
configure the OTLP exporter.

 name: custom-otel-collector-deployment
spec:
 replicas: 1
 selector:
 matchLabels:
 component: otel-collector
 template:
 metadata:
 labels:
 component: otel-collector
 spec:
 containers:
 - name: opentelemetry-collector
 image: ghcr.io/open-telemetry/opentelemetry-collector-releases/opentelemetry-
collector-contrib:latest 2
 command:
 - "/otelcol-contrib"
 - "--config=/conf/otel-collector-config.yaml"
 ports:
 - name: otlp
 containerPort: 4317
 protocol: TCP
 volumeMounts:
 - name: otel-collector-config-vol
 mountPath: /conf
 readOnly: true
 volumes:
 - name: otel-collector-config-vol
 configMap:
 name: custom-otel-collector-config

apiVersion: v1
kind: Service
metadata:
 name: custom-otel-collector-service 3
 labels:
 component: otel-collector
spec:
 type: ClusterIP
 ports:
 - name: otlp-grpc
 port: 4317
 targetPort: 4317
 selector:
 component: otel-collector

CHAPTER 8. FORWARDING TELEMETRY DATA

121

8.4. ADDITIONAL RESOURCES

OpenTelemetry Protocol (OTLP)

OpenShift Container Platform 4.19 Red Hat build of OpenTelemetry

122

https://opentelemetry.io/docs/specs/otlp/

CHAPTER 9. CONFIGURING THE OPENTELEMETRY
COLLECTOR METRICS

The following list shows some of these metrics:

Collector memory usage

CPU utilization

Number of active traces and spans processed

Dropped spans, logs, or metrics

Exporter and receiver statistics

The Red Hat build of OpenTelemetry Operator automatically creates a service named
<instance_name>-collector-monitoring that exposes the Collector’s internal metrics. This service
listens on port 8888 by default.

You can use these metrics for monitoring the Collector’s performance, resource consumption, and
other internal behaviors. You can also use a Prometheus instance or another monitoring tool to scrape
these metrics from the mentioned <instance_name>-collector-monitoring service.

NOTE

When the spec.observability.metrics.enableMetrics field in the
OpenTelemetryCollector custom resource (CR) is set to true, the
OpenTelemetryCollector CR automatically creates a Prometheus ServiceMonitor or
PodMonitor CR to enable Prometheus to scrape your metrics.

Prerequisites

Monitoring for user-defined projects is enabled in the cluster.

Procedure

To enable metrics of an OpenTelemetry Collector instance, set the
spec.observability.metrics.enableMetrics field to true:

Verification

You can use the Administrator view of the web console to verify successful configuration:

1. Go to Observe → Targets.

apiVersion: opentelemetry.io/v1beta1
kind: OpenTelemetryCollector
metadata:
 name: <name>
spec:
 observability:
 metrics:
 enableMetrics: true

CHAPTER 9. CONFIGURING THE OPENTELEMETRY COLLECTOR METRICS

123

2. Filter by Source: User.

3. Check that the ServiceMonitors or PodMonitors in the opentelemetry-collector-
<instance_name> format have the Up status.

Additional resources

Enabling monitoring for user-defined projects

OpenShift Container Platform 4.19 Red Hat build of OpenTelemetry

124

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/monitoring/#enabling-monitoring-for-user-defined-projects-uwm_preparing-to-configure-the-monitoring-stack-uwm

CHAPTER 10. GATHERING THE OBSERVABILITY DATA FROM
MULTIPLE CLUSTERS

For a multicluster configuration, you can create one OpenTelemetry Collector instance in each one of
the remote clusters and then forward all the telemetry data to one OpenTelemetry Collector instance.

Prerequisites

The Red Hat build of OpenTelemetry Operator is installed.

The Tempo Operator is installed.

A TempoStack instance is deployed on the cluster.

The following mounted certificates: Issuer, self-signed certificate, CA issuer, client and server
certificates. To create any of these certificates, see step 1.

Procedure

1. Mount the following certificates in the OpenTelemetry Collector instance, skipping already
mounted certificates.

a. An Issuer to generate the certificates by using the cert-manager Operator for Red Hat
OpenShift.

b. A self-signed certificate.

apiVersion: cert-manager.io/v1
kind: Issuer
metadata:
 name: selfsigned-issuer
spec:
 selfSigned: {}

apiVersion: cert-manager.io/v1
kind: Certificate
metadata:
 name: ca
spec:
 isCA: true
 commonName: ca
 subject:
 organizations:
 - <your_organization_name>
 organizationalUnits:
 - Widgets
 secretName: ca-secret
 privateKey:
 algorithm: ECDSA
 size: 256
 issuerRef:
 name: selfsigned-issuer
 kind: Issuer
 group: cert-manager.io

CHAPTER 10. GATHERING THE OBSERVABILITY DATA FROM MULTIPLE CLUSTERS

125

1

2

c. A CA issuer.

d. The client and server certificates.

List of exact DNS names to be mapped to a solver in the server OpenTelemetry
Collector instance.

List of exact DNS names to be mapped to a solver in the client OpenTelemetry
Collector instance.

2. Create a service account for the OpenTelemetry Collector instance.

Example ServiceAccount

apiVersion: cert-manager.io/v1
kind: Issuer
metadata:
 name: test-ca-issuer
spec:
 ca:
 secretName: ca-secret

apiVersion: cert-manager.io/v1
kind: Certificate
metadata:
 name: server
spec:
 secretName: server-tls
 isCA: false
 usages:
 - server auth
 - client auth
 dnsNames:
 - "otel.observability.svc.cluster.local" 1
 issuerRef:
 name: ca-issuer

apiVersion: cert-manager.io/v1
kind: Certificate
metadata:
 name: client
spec:
 secretName: client-tls
 isCA: false
 usages:
 - server auth
 - client auth
 dnsNames:
 - "otel.observability.svc.cluster.local" 2
 issuerRef:
 name: ca-issuer

apiVersion: v1
kind: ServiceAccount

OpenShift Container Platform 4.19 Red Hat build of OpenTelemetry

126

1

2

3. Create a cluster role for the service account.

Example ClusterRole

The k8sattributesprocessor requires permissions for pods and namespace resources.

The resourcedetectionprocessor requires permissions for infrastructures and status.

4. Bind the cluster role to the service account.

Example ClusterRoleBinding

5. Create the YAML file to define the OpenTelemetryCollector custom resource (CR) in the
edge clusters.

Example OpenTelemetryCollector custom resource for the edge clusters

metadata:
 name: otel-collector-deployment

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 name: otel-collector
rules:
 1
 2
- apiGroups: ["", "config.openshift.io"]
 resources: ["pods", "namespaces", "infrastructures", "infrastructures/status"]
 verbs: ["get", "watch", "list"]

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 name: otel-collector
subjects:
- kind: ServiceAccount
 name: otel-collector-deployment
 namespace: otel-collector-<example>
roleRef:
 kind: ClusterRole
 name: otel-collector
 apiGroup: rbac.authorization.k8s.io

apiVersion: opentelemetry.io/v1beta1
kind: OpenTelemetryCollector
metadata:
 name: otel
 namespace: otel-collector-<example>
spec:
 mode: daemonset
 serviceAccount: otel-collector-deployment
 config:

CHAPTER 10. GATHERING THE OBSERVABILITY DATA FROM MULTIPLE CLUSTERS

127

1 The Collector exporter is configured to export OTLP HTTP and points to the
OpenTelemetry Collector from the central cluster.

6. Create the YAML file to define the OpenTelemetryCollector custom resource (CR) in the
central cluster.

Example OpenTelemetryCollector custom resource for the central cluster

 receivers:
 jaeger:
 protocols:
 grpc: {}
 thrift_binary: {}
 thrift_compact: {}
 thrift_http: {}
 opencensus:
 otlp:
 protocols:
 grpc: {}
 http: {}
 zipkin: {}
 processors:
 batch: {}
 k8sattributes: {}
 memory_limiter:
 check_interval: 1s
 limit_percentage: 50
 spike_limit_percentage: 30
 resourcedetection:
 detectors: [openshift]
 exporters:
 otlphttp:
 endpoint: https://observability-cluster.com:443 1
 tls:
 insecure: false
 cert_file: /certs/server.crt
 key_file: /certs/server.key
 ca_file: /certs/ca.crt
 service:
 pipelines:
 traces:
 receivers: [jaeger, opencensus, otlp, zipkin]
 processors: [memory_limiter, k8sattributes, resourcedetection, batch]
 exporters: [otlp]
 volumes:
 - name: otel-certs
 secret:
 name: otel-certs
 volumeMounts:
 - name: otel-certs
 mountPath: /certs

apiVersion: opentelemetry.io/v1beta1
kind: OpenTelemetryCollector
metadata:

OpenShift Container Platform 4.19 Red Hat build of OpenTelemetry

128

1

2

The Collector receiver requires the certificates listed in the first step.

The Collector exporter is configured to export OTLP and points to the Tempo distributor
endpoint, which in this example is "tempo-simplest-distributor:4317" and already created.

 name: otlp-receiver
 namespace: observability
spec:
 mode: "deployment"
 ingress:
 type: route
 route:
 termination: "passthrough"
 config:
 receivers:
 otlp:
 protocols:
 http:
 tls: 1
 cert_file: /certs/server.crt
 key_file: /certs/server.key
 client_ca_file: /certs/ca.crt
 exporters:
 otlp:
 endpoint: "tempo-<simplest>-distributor:4317" 2
 tls:
 insecure: true
 service:
 pipelines:
 traces:
 receivers: [otlp]
 processors: []
 exporters: [otlp]
 volumes:
 - name: otel-certs
 secret:
 name: otel-certs
 volumeMounts:
 - name: otel-certs
 mountPath: /certs

CHAPTER 10. GATHERING THE OBSERVABILITY DATA FROM MULTIPLE CLUSTERS

129

1

1

CHAPTER 11. TROUBLESHOOTING
The OpenTelemetry Collector offers multiple ways to measure its health as well as investigate data
ingestion issues.

11.1. COLLECTING DIAGNOSTIC DATA FROM THE COMMAND LINE

When submitting a support case, it is helpful to include diagnostic information about your cluster to Red
Hat Support. You can use the oc adm must-gather tool to gather diagnostic data for resources of
various types, such as OpenTelemetryCollector, Instrumentation, and the created resources like
Deployment, Pod, or ConfigMap. The oc adm must-gather tool creates a new pod that collects this
data.

Procedure

From the directory where you want to save the collected data, run the oc adm must-gather
command to collect the data:

The default namespace where the Operator is installed is openshift-opentelemetry-
operator.

Verification

Verify that the new directory is created and contains the collected data.

11.2. GETTING THE OPENTELEMETRY COLLECTOR LOGS

You can get the logs for the OpenTelemetry Collector as follows.

Procedure

1. Set the relevant log level in the OpenTelemetryCollector custom resource (CR):

Collector’s log level. Supported values include info, warn, error, or debug. Defaults to
info.

2. Use the oc logs command or the web console to retrieve the logs.

11.3. EXPOSING THE METRICS

$ oc adm must-gather --image=ghcr.io/open-telemetry/opentelemetry-operator/must-gather --
\
/usr/bin/must-gather --operator-namespace <operator_namespace> 1

 config:
 service:
 telemetry:
 logs:
 level: debug 1

OpenShift Container Platform 4.19 Red Hat build of OpenTelemetry

130

The OpenTelemetry Collector exposes the following metrics about the data volumes it has processed:

otelcol_receiver_accepted_spans

The number of spans successfully pushed into the pipeline.

otelcol_receiver_refused_spans

The number of spans that could not be pushed into the pipeline.

otelcol_exporter_sent_spans

The number of spans successfully sent to the destination.

otelcol_exporter_enqueue_failed_spans

The number of spans failed to be added to the sending queue.

otelcol_receiver_accepted_logs

The number of logs successfully pushed into the pipeline.

otelcol_receiver_refused_logs

The number of logs that could not be pushed into the pipeline.

otelcol_exporter_sent_logs

The number of logs successfully sent to the destination.

otelcol_exporter_enqueue_failed_logs

The number of logs failed to be added to the sending queue.

otelcol_receiver_accepted_metrics

The number of metrics successfully pushed into the pipeline.

otelcol_receiver_refused_metrics

The number of metrics that could not be pushed into the pipeline.

otelcol_exporter_sent_metrics

The number of metrics successfully sent to the destination.

otelcol_exporter_enqueue_failed_metrics

The number of metrics failed to be added to the sending queue.

You can use these metrics to troubleshoot issues with your Collector. For example, if the
otelcol_receiver_refused_spans metric has a high value, it indicates that the Collector is not able to
process incoming spans.

The Operator creates a <cr_name>-collector-monitoring telemetry service that you can use to scrape
the metrics endpoint.

Procedure

1. Enable the telemetry service by adding the following lines in the OpenTelemetryCollector
custom resource (CR):

...
 config:
 service:
 telemetry:
 metrics:
 readers:
 - pull:
 exporter:

CHAPTER 11. TROUBLESHOOTING

131

1 The port at which the internal collector metrics are exposed. Defaults to :8888.

2. Retrieve the metrics by running the following command, which uses the port-forwarding
Collector pod:

3. In the OpenTelemetryCollector CR, set the enableMetrics field to true to scrape internal
metrics:

Depending on the deployment mode of the OpenTelemetry Collector, the internal metrics are
scraped by using PodMonitors or ServiceMonitors.

NOTE

Alternatively, if you do not set the enableMetrics field to true, you can access
the metrics endpoint at http://localhost:8888/metrics.

4. Optional: If the User Workload Monitoring feature is enabled in the web console, go to
Observe → Dashboards in the web console, and then select the OpenTelemetry Collector
dashboard from the drop-down list to view it. For more information about the User Workload
Monitoring feature, see "Enabling monitoring for user-defined projects" in Monitoring.

TIP

You can filter the visualized data such as spans or metrics by the Collector instance, namespace,
or OpenTelemetry components such as processors, receivers, or exporters.

Additional resources

Enabling monitoring for user-defined projects

11.4. DEBUG EXPORTER

You can configure the Debug Exporter to export the collected data to the standard output.

Procedure

 prometheus:
 host: 0.0.0.0
 port: 8888 1
...

$ oc port-forward <collector_pod>

apiVersion: opentelemetry.io/v1beta1
kind: OpenTelemetryCollector
spec:
...
 mode: deployment
 observability:
 metrics:
 enableMetrics: true
...

OpenShift Container Platform 4.19 Red Hat build of OpenTelemetry

132

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/monitoring/#enabling-monitoring-for-user-defined-projects-uwm_preparing-to-configure-the-monitoring-stack-uwm

1

1. Configure the OpenTelemetryCollector custom resource as follows:

2. Use the oc logs command or the web console to export the logs to the standard output.

11.5. DISABLING NETWORK POLICIES

The Red Hat build of OpenTelemetry Operator creates network policies to control the traffic for the
Operator and operands to improve security. By default, the network policies are enabled and configured
to allow traffic to all the required components. No additional configuration is needed.

If you are experiencing traffic issues for the OpenTelemetry Collector or its Target Allocator
component, the problem might be caused by the default network policy configuration. You can disable
network policies for the OpenTelemetry Collector to troubleshoot the issue.

Prerequisites

You have access to the cluster as a cluster administrator with the cluster-admin role.

Procedure

Disable the network policy for the OpenTelemetry Collector by configuring the
OpenTelemetryCollector custom resource (CR):

Specify whether to enable network policies by setting networkPolicy.enabled to true
(default) or false. Setting it to false disables the creation of network policies.

11.6. USING THE NETWORK OBSERVABILITY OPERATOR FOR
TROUBLESHOOTING

You can debug the traffic between your observability components by visualizing it with the Network

 config:
 exporters:
 debug:
 verbosity: detailed
 service:
 pipelines:
 traces:
 exporters: [debug]
 metrics:
 exporters: [debug]
 logs:
 exporters: [debug]

apiVersion: opentelemetry.io/v1beta1
kind: OpenTelemetryCollector
metadata:
 name: otel
 namespace: observability
spec:
 networkPolicy:
 enabled: false 1
 # ...

CHAPTER 11. TROUBLESHOOTING

133

1

You can debug the traffic between your observability components by visualizing it with the Network
Observability Operator.

Prerequisites

You have installed the Network Observability Operator as explained in "Installing the Network
Observability Operator".

Procedure

1. In the OpenShift Container Platform web console, go to Observe → Network Traffic →
Topology.

2. Select Namespace to filter the workloads by the namespace in which your OpenTelemetry
Collector is deployed.

3. Use the network traffic visuals to troubleshoot possible issues. See "Observing the network
traffic from the Topology view" for more details.

Additional resources

Installing the Network Observability Operator

Observing the network traffic from the Topology view

11.7. TROUBLESHOOTING THE INSTRUMENTATION

To troubleshoot the instrumentation, look for any of the following issues:

Issues with instrumentation injection into your workload

Issues with data generation by the instrumentation libraries

11.7.1. Troubleshooting instrumentation injection into your workload

To troubleshoot instrumentation injection, you can perform the following activities:

Checking if the Instrumentation object was created

Checking if the init-container started

Checking if the resources were deployed in the correct order

Searching for errors in the Operator logs

Double-checking the pod annotations

Procedure

1. Run the following command to verify that the Instrumentation object was successfully created:

The namespace where the instrumentation was created.

$ oc get instrumentation -n <workload_project> 1

OpenShift Container Platform 4.19 Red Hat build of OpenTelemetry

134

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/network_observability/#installing-network-observability-operators
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/network_observability/#nw-observe-network-traffic

1

2. Run the following command to verify that the opentelemetry-auto-instrumentation init-
container successfully started, which is a prerequisite for instrumentation injection into
workloads:

The namespace where the instrumentation is injected for workloads.

Example output

3. Verify that the resources were deployed in the correct order for the auto-instrumentation to
work correctly. The correct order is to deploy the Instrumentation custom resource (CR)
before the application. For information about the Instrumentation CR, see the section
"Configuring the instrumentation".

NOTE

When the pod starts, the Red Hat build of OpenTelemetry Operator checks the
Instrumentation CR for annotations containing instructions for injecting auto-
instrumentation. Generally, the Operator then adds an init-container to the
application’s pod that injects the auto-instrumentation and environment
variables into the application’s container. If the Instrumentation CR is not
available to the Operator when the application is deployed, the Operator is
unable to inject the auto-instrumentation.

Fixing the order of deployment requires the following steps:

a. Update the instrumentation settings.

b. Delete the instrumentation object.

c. Redeploy the application.

4. Run the following command to inspect the Operator logs for instrumentation errors:

5. Troubleshoot pod annotations for the instrumentations for a specific programming language.
See the required annotation fields and values in "Configuring the instrumentation".

a. Verify that the application pods that you are instrumenting are labeled with correct
annotations and the appropriate auto-instrumentation settings have been applied.

Example

instrumentation.opentelemetry.io/inject-python="true"

Example command to get pod annotations for an instrumented Python

$ oc get events -n <workload_project> 1

... Created container opentelemetry-auto-instrumentation

... Started container opentelemetry-auto-instrumentation

$ oc logs -l app.kubernetes.io/name=opentelemetry-operator --container manager -n
openshift-opentelemetry-operator --follow

CHAPTER 11. TROUBLESHOOTING

135

Example command to get pod annotations for an instrumented Python
application

b. Verify that the annotation applied to the instrumentation object is correct for the
programming language that you are instrumenting.

c. If there are multiple instrumentations in the same namespace, specify the name of the
Instrumentation object in their annotations.

Example

instrumentation.opentelemetry.io/inject-nodejs: "<instrumentation_object>"

d. If the Instrumentation object is in a different namespace, specify the namespace in the
annotation.

Example

instrumentation.opentelemetry.io/inject-nodejs: "
<other_namespace>/<instrumentation_object>"

e. Verify that the OpenTelemetryCollector custom resource specifies the auto-
instrumentation annotations under spec.template.metadata.annotations. If the auto-
instrumentation annotations are in spec.metadata.annotations instead, move them into
spec.template.metadata.annotations.

11.7.2. Troubleshooting telemetry data generation by the instrumentation libraries

You can troubleshoot telemetry data generation by the instrumentation libraries by checking the
endpoint, looking for errors in your application logs, and verifying that the Collector is receiving the
telemetry data.

Procedure

1. Verify that the instrumentation is transmitting data to the correct endpoint:

The default endpoint http://localhost:4317 for the Instrumentation object is only applicable to
a Collector instance that is deployed as a sidecar in your application pod. If you are using an
incorrect endpoint, correct it by editing the Instrumentation object and redeploying your
application.

2. Inspect your application logs for error messages that might indicate that the instrumentation is
malfunctioning:

3. If the application logs contain error messages that indicate that the instrumentation might be

$ oc get pods -n <workload_project> -o jsonpath='{range .items[?
(@.metadata.annotations["instrumentation.opentelemetry.io/inject-python"]=="true")]}
{.metadata.name}{"\n"}{end}'

$ oc get instrumentation <instrumentation_name> -n <workload_project> -o
jsonpath='{.spec.endpoint}'

$ oc logs <application_pod> -n <workload_project>

OpenShift Container Platform 4.19 Red Hat build of OpenTelemetry

136

3. If the application logs contain error messages that indicate that the instrumentation might be
malfunctioning, install the OpenTelemetry SDK and libraries locally. Then run your application
locally and troubleshoot for issues between the instrumentation libraries and your application
without OpenShift Container Platform.

4. Use the Debug Exporter to verify that the telemetry data is reaching the destination
OpenTelemetry Collector instance. For more information, see "Debug Exporter".

CHAPTER 11. TROUBLESHOOTING

137

CHAPTER 12. MIGRATING

WARNING

The deprecated Red Hat OpenShift Distributed Tracing Platform (Jaeger) 3.5 was
the last release of the Red Hat OpenShift Distributed Tracing Platform (Jaeger)
that Red Hat supports.

Support for the deprecated Red Hat OpenShift Distributed Tracing Platform
(Jaeger) ends on November 3, 2025.

The Red Hat OpenShift Distributed Tracing Platform Operator (Jaeger) will be
removed from the redhat-operators catalog on November 3, 2025. For more
information, see the Red Hat Knowledgebase solution Jaeger Deprecation and
Removal in OpenShift.

You must migrate to the Red Hat build of OpenTelemetry Operator and the Tempo
Operator for distributed tracing collection and storage. For more information, see
"Migrating" in the Red Hat build of OpenTelemetry documentation, "Installing" in
the Red Hat build of OpenTelemetry documentation, and "Installing" in the
Distributed Tracing Platform documentation.

If you are already using the Red Hat OpenShift Distributed Tracing Platform (Jaeger) for your
applications, you can migrate to the Red Hat build of OpenTelemetry, which is based on the
OpenTelemetry open-source project.

The Red Hat build of OpenTelemetry provides a set of APIs, libraries, agents, and instrumentation to
facilitate observability in distributed systems. The OpenTelemetry Collector in the Red Hat build of
OpenTelemetry can ingest the Jaeger protocol, so you do not need to change the SDKs in your
applications.

Migration from the Distributed Tracing Platform (Jaeger) to the Red Hat build of OpenTelemetry
requires configuring the OpenTelemetry Collector and your applications to report traces seamlessly.
You can migrate sidecar and sidecarless deployments.

12.1. MIGRATING WITH SIDECARS

The Red Hat build of OpenTelemetry Operator supports sidecar injection into deployment workloads, so
you can migrate from a Distributed Tracing Platform (Jaeger) sidecar to a Red Hat build of
OpenTelemetry sidecar.

Prerequisites

The Red Hat OpenShift Distributed Tracing Platform (Jaeger) is used on the cluster.

The Red Hat build of OpenTelemetry is installed.

Procedure

1. Configure the OpenTelemetry Collector as a sidecar.



OpenShift Container Platform 4.19 Red Hat build of OpenTelemetry

138

https://access.redhat.com/solutions/7083722
https://opentelemetry.io/

1 This endpoint points to the Gateway of a TempoStack instance deployed by using the
<example> Tempo Operator.

2. Create a service account for running your application.

3. Create a cluster role for the permissions needed by some processors.

apiVersion: opentelemetry.io/v1beta1
kind: OpenTelemetryCollector
metadata:
 name: otel
 namespace: <otel-collector-namespace>
spec:
 mode: sidecar
 config:
 receivers:
 jaeger:
 protocols:
 grpc: {}
 thrift_binary: {}
 thrift_compact: {}
 thrift_http: {}
 processors:
 batch: {}
 memory_limiter:
 check_interval: 1s
 limit_percentage: 50
 spike_limit_percentage: 30
 resourcedetection:
 detectors: [openshift]
 timeout: 2s
 exporters:
 otlp:
 endpoint: "tempo-<example>-gateway:8090" 1
 tls:
 insecure: true
 service:
 pipelines:
 traces:
 receivers: [jaeger]
 processors: [memory_limiter, resourcedetection, batch]
 exporters: [otlp]

apiVersion: v1
kind: ServiceAccount
metadata:
 name: otel-collector-sidecar

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 name: otel-collector-sidecar
rules:
 1

CHAPTER 12. MIGRATING

139

1 The resourcedetectionprocessor requires permissions for infrastructures and
infrastructures/status.

4. Create a ClusterRoleBinding to set the permissions for the service account.

5. Deploy the OpenTelemetry Collector as a sidecar.

6. Remove the injected Jaeger Agent from your application by removing the
"sidecar.jaegertracing.io/inject": "true" annotation from your Deployment object.

7. Enable automatic injection of the OpenTelemetry sidecar by adding the
sidecar.opentelemetry.io/inject: "true" annotation to the
.spec.template.metadata.annotations field of your Deployment object.

8. Use the created service account for the deployment of your application to allow the processors
to get the correct information and add it to your traces.

12.2. MIGRATING WITHOUT SIDECARS

You can migrate from the Distributed Tracing Platform (Jaeger) to the Red Hat build of OpenTelemetry
without sidecar deployment.

Prerequisites

The Red Hat OpenShift Distributed Tracing Platform (Jaeger) is used on the cluster.

The Red Hat build of OpenTelemetry is installed.

Procedure

1. Configure OpenTelemetry Collector deployment.

2. Create the project where the OpenTelemetry Collector will be deployed.

- apiGroups: ["config.openshift.io"]
 resources: ["infrastructures", "infrastructures/status"]
 verbs: ["get", "watch", "list"]

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 name: otel-collector-sidecar
subjects:
- kind: ServiceAccount
 name: otel-collector-deployment
 namespace: otel-collector-example
roleRef:
 kind: ClusterRole
 name: otel-collector
 apiGroup: rbac.authorization.k8s.io

apiVersion: project.openshift.io/v1
kind: Project
metadata:

OpenShift Container Platform 4.19 Red Hat build of OpenTelemetry

140

1

2

3. Create a service account for running the OpenTelemetry Collector instance.

4. Create a cluster role for setting the required permissions for the processors.

Permissions for the pods and namespaces resources are required for the
k8sattributesprocessor.

Permissions for infrastructures and infrastructures/status are required for
resourcedetectionprocessor.

5. Create a ClusterRoleBinding to set the permissions for the service account.

6. Create the OpenTelemetry Collector instance.

NOTE

This collector will export traces to a TempoStack instance. You must create your
TempoStack instance by using the Red Hat Tempo Operator and place here the
correct endpoint.

 name: observability

apiVersion: v1
kind: ServiceAccount
metadata:
 name: otel-collector-deployment
 namespace: observability

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 name: otel-collector
rules:
 1
 2
- apiGroups: ["", "config.openshift.io"]
 resources: ["pods", "namespaces", "infrastructures", "infrastructures/status"]
 verbs: ["get", "watch", "list"]

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 name: otel-collector
subjects:
- kind: ServiceAccount
 name: otel-collector-deployment
 namespace: observability
roleRef:
 kind: ClusterRole
 name: otel-collector
 apiGroup: rbac.authorization.k8s.io

CHAPTER 12. MIGRATING

141

1

7. Point your tracing endpoint to the OpenTelemetry Operator.

8. If you are exporting your traces directly from your application to Jaeger, change the API
endpoint from the Jaeger endpoint to the OpenTelemetry Collector endpoint.

Example of exporting traces by using the jaegerexporter with Golang

The URL points to the OpenTelemetry Collector API endpoint.

apiVersion: opentelemetry.io/v1beta1
kind: OpenTelemetryCollector
metadata:
 name: otel
 namespace: observability
spec:
 mode: deployment
 serviceAccount: otel-collector-deployment
 config:
 receivers:
 jaeger:
 protocols:
 grpc: {}
 thrift_binary: {}
 thrift_compact: {}
 thrift_http: {}
 processors:
 batch: {}
 k8sattributes: {}
 memory_limiter:
 check_interval: 1s
 limit_percentage: 50
 spike_limit_percentage: 30
 resourcedetection:
 detectors: [openshift]
 exporters:
 otlp:
 endpoint: "tempo-example-gateway:8090"
 tls:
 insecure: true
 service:
 pipelines:
 traces:
 receivers: [jaeger]
 processors: [memory_limiter, k8sattributes, resourcedetection, batch]
 exporters: [otlp]

exp, err := jaeger.New(jaeger.WithCollectorEndpoint(jaeger.WithEndpoint(url))) 1

OpenShift Container Platform 4.19 Red Hat build of OpenTelemetry

142

CHAPTER 13. UPGRADING
For version upgrades, the Red Hat build of OpenTelemetry Operator uses the Operator Lifecycle
Manager (OLM), which controls installation, upgrade, and role-based access control (RBAC) of
Operators in a cluster.

The OLM runs in the OpenShift Container Platform by default. The OLM queries for available
Operators as well as upgrades for installed Operators.

The Red Hat build of OpenTelemetry Operator automatically upgrades all OpenTelemetryCollector
custom resources during its startup. The Operator reconciles all managed instances during its startup. If
there is an error, the Operator retries the upgrade at exponential backoff. If an upgrade fails, the
Operator will retry the upgrade again when it restarts.

When the Red Hat build of OpenTelemetry Operator is upgraded to the new version, it scans for running
OpenTelemetry Collector instances that it manages and upgrades them to the version corresponding to
the Operator’s new version.

13.1. ADDITIONAL RESOURCES

Operator Lifecycle Manager concepts and resources

Updating installed Operators

CHAPTER 13. UPGRADING

143

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/operators/#olm-understanding-olm
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/operators/#olm-upgrading-operators

CHAPTER 14. REMOVING
The steps for removing the Red Hat build of OpenTelemetry from an OpenShift Container Platform
cluster are as follows:

1. Shut down all Red Hat build of OpenTelemetry pods.

2. Remove any OpenTelemetryCollector instances.

3. Remove the Red Hat build of OpenTelemetry Operator.

14.1. REMOVING AN OPENTELEMETRY COLLECTOR INSTANCE BY
USING THE WEB CONSOLE

You can remove an OpenTelemetry Collector instance in the Administrator view of the web console.

Prerequisites

You are logged in to the web console as a cluster administrator with the cluster-admin role.

For Red Hat OpenShift Dedicated, you must be logged in using an account with the dedicated-
admin role.

Procedure

1. Go to Operators → Installed Operators → Red Hat build of OpenTelemetry Operator →
OpenTelemetryInstrumentation or OpenTelemetryCollector.

2. To remove the relevant instance, select → Delete …​ → Delete.

3. Optional: Remove the Red Hat build of OpenTelemetry Operator.

14.2. REMOVING AN OPENTELEMETRY COLLECTOR INSTANCE BY
USING THE CLI

You can remove an OpenTelemetry Collector instance on the command line.

Prerequisites

An active OpenShift CLI (oc) session by a cluster administrator with the cluster-admin role.

TIP

Ensure that your OpenShift CLI (oc) version is up to date and matches your OpenShift
Container Platform version.

Run oc login:

$ oc login --username=<your_username>

OpenShift Container Platform 4.19 Red Hat build of OpenTelemetry

144

Procedure

1. Get the name of the OpenTelemetry Collector instance by running the following command:

2. Remove the OpenTelemetry Collector instance by running the following command:

3. Optional: Remove the Red Hat build of OpenTelemetry Operator.

Verification

To verify successful removal of the OpenTelemetry Collector instance, run oc get
deployments again:

14.3. ADDITIONAL RESOURCES

Deleting Operators from a cluster

Getting started with the OpenShift CLI

$ oc get deployments -n <project_of_opentelemetry_instance>

$ oc delete opentelemetrycollectors <opentelemetry_instance_name> -n
<project_of_opentelemetry_instance>

$ oc get deployments -n <project_of_opentelemetry_instance>

CHAPTER 14. REMOVING

145

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/operators/#olm-deleting-operators-from-a-cluster
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/cli_tools/#getting-started-cli

	Table of Contents
	CHAPTER 1. RELEASE NOTES FOR THE RED HAT BUILD OF OPENTELEMETRY 3.7
	1.1. ABOUT THIS RELEASE
	1.2. NEW FEATURES AND ENHANCEMENTS
	1.3. TECHNOLOGY PREVIEW FEATURES
	1.4. DEPRECATED FEATURES
	1.5. REMOVED FEATURES
	1.6. GETTING SUPPORT

	CHAPTER 2. ABOUT RED HAT BUILD OF OPENTELEMETRY
	2.1. RED HAT BUILD OF OPENTELEMETRY OVERVIEW

	CHAPTER 3. INSTALLING
	3.1. INSTALLING THE RED HAT BUILD OF OPENTELEMETRY FROM THE WEB CONSOLE
	3.2. INSTALLING THE RED HAT BUILD OF OPENTELEMETRY BY USING THE CLI
	3.3. USING TAINTS AND TOLERATIONS
	3.4. CREATING THE REQUIRED RBAC RESOURCES AUTOMATICALLY
	3.5. ADDITIONAL RESOURCES

	CHAPTER 4. CONFIGURING THE COLLECTOR
	4.1. CONFIGURING THE COLLECTOR
	4.1.1. Deployment modes
	4.1.2. OpenTelemetry Collector configuration options
	4.1.3. Creating the required RBAC resources automatically

	4.2. RECEIVERS
	4.2.1. OTLP Receiver
	4.2.2. Jaeger Receiver
	4.2.3. Host Metrics Receiver
	4.2.4. Kubernetes Objects Receiver
	4.2.5. Kubelet Stats Receiver
	4.2.6. Prometheus Receiver
	4.2.7. OTLP JSON File Receiver
	4.2.8. Zipkin Receiver
	4.2.9. Kafka Receiver
	4.2.10. Kubernetes Cluster Receiver
	4.2.11. OpenCensus Receiver
	4.2.12. Filelog Receiver
	4.2.13. Journald Receiver
	4.2.14. Kubernetes Events Receiver
	4.2.15. Additional resources

	4.3. PROCESSORS
	4.3.1. Batch Processor
	4.3.2. Memory Limiter Processor
	4.3.3. Resource Detection Processor
	4.3.4. Attributes Processor
	4.3.5. Resource Processor
	4.3.6. Span Processor
	4.3.7. Kubernetes Attributes Processor
	4.3.8. Filter Processor
	4.3.9. Cumulative-to-Delta Processor
	4.3.10. Group-by-Attributes Processor
	4.3.11. Transform Processor
	4.3.12. Tail Sampling Processor
	4.3.13. Probabilistic Sampling Processor
	4.3.14. Additional resources

	4.4. EXPORTERS
	4.4.1. OTLP Exporter
	4.4.2. OTLP HTTP Exporter
	4.4.3. Debug Exporter
	4.4.4. Load Balancing Exporter
	4.4.5. Prometheus Exporter
	4.4.6. Prometheus Remote Write Exporter
	4.4.7. Kafka Exporter
	4.4.8. AWS CloudWatch Logs Exporter
	4.4.9. AWS EMF Exporter
	Log group name
	Log stream name

	4.4.10. AWS X-Ray Exporter
	4.4.11. File Exporter
	4.4.12. Additional resources

	4.5. CONNECTORS
	4.5.1. Count Connector
	4.5.2. Routing Connector
	4.5.3. Forward Connector
	4.5.4. Spanmetrics Connector
	4.5.5. Additional resources

	4.6. EXTENSIONS
	4.6.1. BearerTokenAuth Extension
	4.6.2. OAuth2Client Extension
	4.6.3. File Storage Extension
	4.6.4. OIDC Auth Extension
	4.6.5. Jaeger Remote Sampling Extension
	4.6.6. Performance Profiler Extension
	4.6.7. Health Check Extension
	4.6.8. zPages Extension
	4.6.9. Additional resources

	4.7. TARGET ALLOCATOR

	CHAPTER 5. CONFIGURING THE INSTRUMENTATION
	5.1. AUTO-INSTRUMENTATION IN THE RED HAT BUILD OF OPENTELEMETRY OPERATOR
	5.2. OPENTELEMETRY INSTRUMENTATION CONFIGURATION OPTIONS
	5.2.1. Instrumentation options
	5.2.2. Configuration of the OpenTelemetry SDK variables
	5.2.3. Exporter configuration
	5.2.4. Configuration of the Apache HTTP Server auto-instrumentation
	5.2.5. Configuration of the .NET auto-instrumentation
	5.2.6. Configuration of the Go auto-instrumentation
	5.2.7. Configuration of the Java auto-instrumentation
	5.2.8. Configuration of the Node.js auto-instrumentation
	5.2.9. Configuration of the Python auto-instrumentation
	5.2.10. Multi-container pods
	5.2.11. Multi-container pods with multiple instrumentations
	5.2.12. Using the instrumentation CR with Service Mesh

	CHAPTER 6. SENDING TRACES, LOGS, AND METRICS TO THE OPENTELEMETRY COLLECTOR
	6.1. SENDING TRACES AND METRICS TO THE OPENTELEMETRY COLLECTOR WITH SIDECAR INJECTION
	6.2. SENDING TRACES AND METRICS TO THE OPENTELEMETRY COLLECTOR WITHOUT SIDECAR INJECTION

	CHAPTER 7. CONFIGURING METRICS FOR THE MONITORING STACK
	7.1. CONFIGURATION FOR SENDING METRICS TO THE MONITORING STACK
	7.2. CONFIGURATION FOR RECEIVING METRICS FROM THE MONITORING STACK
	7.3. ADDITIONAL RESOURCES

	CHAPTER 8. FORWARDING TELEMETRY DATA
	8.1. FORWARDING TRACES TO A TEMPOSTACK INSTANCE
	8.2. FORWARDING LOGS TO A LOKISTACK INSTANCE
	8.3. FORWARDING TELEMETRY DATA TO THIRD-PARTY SYSTEMS
	8.4. ADDITIONAL RESOURCES

	CHAPTER 9. CONFIGURING THE OPENTELEMETRY COLLECTOR METRICS
	CHAPTER 10. GATHERING THE OBSERVABILITY DATA FROM MULTIPLE CLUSTERS
	CHAPTER 11. TROUBLESHOOTING
	11.1. COLLECTING DIAGNOSTIC DATA FROM THE COMMAND LINE
	11.2. GETTING THE OPENTELEMETRY COLLECTOR LOGS
	11.3. EXPOSING THE METRICS
	11.4. DEBUG EXPORTER
	11.5. DISABLING NETWORK POLICIES
	11.6. USING THE NETWORK OBSERVABILITY OPERATOR FOR TROUBLESHOOTING
	11.7. TROUBLESHOOTING THE INSTRUMENTATION
	11.7.1. Troubleshooting instrumentation injection into your workload
	11.7.2. Troubleshooting telemetry data generation by the instrumentation libraries

	CHAPTER 12. MIGRATING
	12.1. MIGRATING WITH SIDECARS
	12.2. MIGRATING WITHOUT SIDECARS

	CHAPTER 13. UPGRADING
	13.1. ADDITIONAL RESOURCES

	CHAPTER 14. REMOVING
	14.1. REMOVING AN OPENTELEMETRY COLLECTOR INSTANCE BY USING THE WEB CONSOLE
	14.2. REMOVING AN OPENTELEMETRY COLLECTOR INSTANCE BY USING THE CLI
	14.3. ADDITIONAL RESOURCES

