
Red Hat OpenShift Service on AWS 4

Service Mesh

Service Mesh のインストール、使用法、およびリリースノート

Last Updated: 2025-06-01

Red Hat OpenShift Service on AWS 4 Service Mesh

Service Mesh のインストール、使用法、およびリリースノート

法律上の通知

Copyright © 2025 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

概要

このドキュメントでは、Red Hat OpenShift Service on AWS で Service Mesh を使用する方法を説
明します。

. .

目次

第1章 SERVICE MESH 2.X
1.1. OPENSHIFT SERVICE MESH について
1.2. SERVICE MESH リリースノート
1.3. SERVICE MESH について
1.4. SERVICE MESH のデプロイメントモデル
1.5. SERVICE MESH と ISTIO の相違点
1.6. SERVICE MESH のインストールの準備
1.7. OPERATOR のインストール
1.8. SERVICEMESHCONTROLPLANE の作成
1.9. SERVICE MESH へのサービスの追加
1.10. サイドカーコンテナーの挿入の有効化
1.11. SERVICE MESH のアップグレード
1.12. ユーザーおよびプロファイルの管理
1.13. セキュリティー
1.14. SERVICE MESH でのトラフィックの管理
1.15. メトリクス、ログ、およびトレース
1.16. パフォーマンスおよびスケーラビリティー
1.17. 実稼働環境の SERVICE MESH の設定
1.18. SERVICE MESH の接続
1.19. 拡張
1.20. 3SCALE WEBASSEMBLY モジュールの使用
1.21. 3SCALE ISTIO アダプターの使用
1.22. SERVICE MESH のトラブルシューティング
1.23. ENVOY プロキシーのトラブルシューティング
1.24. SERVICE MESH コントロールプレーン設定の参照
1.25. KIALI 設定リファレンス
1.26. JAEGER 設定リファレンス
1.27. SERVICE MESH のアンインストール

3
3
4

69
76
85
91

93
96

106
123
127
146
148
166
180

200
203
204
235
248
269
281

290
293
307

311
343

目次

1

Red Hat OpenShift Service on AWS 4 Service Mesh

2

第1章 SERVICE MESH 2.X

1.1. OPENSHIFT SERVICE MESH について

注記

Red Hat OpenShift Service Mesh は Red Hat OpenShift Service on AWS とは異なる頻度
でリリースされ、Red Hat OpenShift Service Mesh Operator は
ServiceMeshControlPlane の複数のバージョンのデプロイをサポートしているため、
Service Mesh のドキュメントでは、この製品のマイナーバージョン用に個別のドキュメ
ントセットを維持していません。現在のドキュメントセットは、特定のトピックまたは
特定の機能でバージョン固有の制限がない限り、現在サポートされている Service Mesh
の最新バージョンに適用されます。

Red Hat OpenShift Service Mesh のライフサイクルとサポートされるプラットフォーム
に関する追加情報は、プラットフォームライフサイクルポリシー を参照してください。

1.1.1. Red Hat OpenShift Service Mesh の概要

Red Hat OpenShift Service Mesh は、アプリケーションで一元化された制御ポイントを作成して、マイ
クロサービスアーキテクチャーのさまざまな問題に対応します。これは、アプリケーションコードを変
更せずに、既存の分散アプリケーションに透過的な層を追加します。

マイクロサービスアーキテクチャーは、エンタープライズアプリケーションの作業をモジュールサービ
スに分割するため、スケーリングとメンテナンスが容易になります。ただし、マイクロサービスアーキ
テクチャー上に構築されるエンタープライズアプリケーションはサイズも複雑性も増すため、マイクロ
サービスアーキテクチャーの理解と管理は困難です。Service Mesh は、サービス間のトラフィックを
キャプチャーしたり、インターセプトしたりして、他のサービスへの新規要求を変更、リダイレクト、
または作成することによってこれらのアーキテクチャーの問題に対応できます。

オープンソースの Istio プロジェクト をベースにする Service Mesh では、検出、負荷分散、サービス間
の認証、障害復旧、メトリクス、およびモニタリングを提供する、デプロイされたサービスのネット
ワークを簡単に作成できます。Service Mesh は、A/B テスト、カナリアリリース、レート制限、アクセ
ス制御、エンドツーエンド認証を含む、より複雑な運用機能を提供します。

注記

Red Hat OpenShift Service Mesh 3 が一般公開されました。詳細は、Red Hat OpenShift
Service Mesh 3.0 を参照してください。

1.1.2. コア機能

Red Hat OpenShift Service Mesh は、サービスのネットワーク全体で多数の主要機能を均一に提供しま
す。

トラフィック管理: サービス間でトラフィックおよび API 呼び出しのフローを制御し、呼び出し
の安定度を高め、不利な条件下でもネットワークの堅牢性を維持します。

サービス ID とセキュリティー: メッシュのサービスを検証可能な ID で指定でき、サービスのト
ラフィックがさまざまな信頼度のネットワークに送られる際にそのトラフィックを保護する機
能を提供します。

ポリシーの適用: サービス間の対話に組織のポリシーを適用し、アクセスポリシーが適用され、

第1章 SERVICE MESH 2.X

3

https://access.redhat.com/support/policy/updates/openshift#ossm
https://istio.io/
https://docs.redhat.com/en/documentation/red_hat_openshift_service_mesh/

ポリシーの適用: サービス間の対話に組織のポリシーを適用し、アクセスポリシーが適用され、
リソースはコンシューマー間で均等に分散されるようにします。ポリシー変更は、アプリケー
ションコードを変更するのではなく、メッシュを設定して行います。

テレメトリー: サービス間の依存関係やそれらの間のトラフィックの性質やフローを理解するの
に役立ち、問題を素早く特定できます。

1.2. SERVICE MESH リリースノート

1.2.1. Red Hat OpenShift Service Mesh バージョン 2.6.7

この Red Hat OpenShift Service Mesh リリースでは、Red Hat OpenShift Service Mesh Operator バー
ジョンが 2.6.7 に更新され、ServiceMeshControlPlane リソースバージョン 2.6.7 および 2.5.10 の更新
が含まれています。

このリリースは、Common Vulnerabilities and Exposures (CVE) への対応を含んでおり、Red Hat
OpenShift Service on AWS 4.14 以降でサポートされています。

Red Hat OpenShift Service Mesh Operator の最新バージョンは、サポートされているすべてのバー
ジョンの Service Mesh で使用できます。Service Mesh のバージョンは、ServiceMeshControlPlane を
使用して指定されます。

Red Hat が提供する Kiali Operator の最新バージョンは、サポートされているすべてのバージョンの
Red Hat OpenShift Service Mesh で使用できます。Service Mesh のバージョン
は、ServiceMeshControlPlane リソースを使用して指定されます。Service Mesh のバージョンによ
り、互換性のあるバージョンの Kiali が自動的に確保されます。

1.2.1.1. コンポーネントの更新

コンポーネント バージョン

Istio 1.20.8

Envoy プロキシー 1.28.7

Kiali Server 1.73.20

1.2.2. Red Hat OpenShift Service Mesh バージョン 2.5.10

この Red Hat OpenShift Service Mesh リリースは、Red Hat OpenShift Service Mesh Operator 2.6.7 に
含まれており、Red Hat OpenShift Service on AWS 4.14 以降でサポートされています。このリリースで
は、Common Vulnerabilities and Exposures (CVE) に対応しています。

1.2.2.1. コンポーネントの更新

コンポーネント バージョン

Istio 1.18.7

Envoy プロキシー 1.26.8

Red Hat OpenShift Service on AWS 4 Service Mesh

4

Kiali Server 1.73.20

コンポーネント バージョン

1.2.3. Red Hat OpenShift Service Mesh バージョン 2.6.6

この Red Hat OpenShift Service Mesh リリースでは、Red Hat OpenShift Service Mesh Operator バー
ジョンが 2.6.6 に更新され、ServiceMeshControlPlane リソースバージョン 2.6.6、2.5.9、および
2.4.15 の更新が含まれています。

このリリースは、Common Vulnerabilities and Exposures (CVE) への対応を含んでおり、Red Hat
OpenShift Service on AWS 4.14 以降でサポートされています。

Red Hat が提供する Kiali Operator の最新バージョンは、サポートされているすべてのバージョンの
Red Hat OpenShift Service Mesh で使用できます。Service Mesh のバージョン
は、ServiceMeshControlPlane リソースを使用して指定されます。Service Mesh のバージョンによ
り、互換性のあるバージョンの Kiali が自動的に確保されます。

1.2.3.1. コンポーネントの更新

コンポーネント バージョン

Istio 1.20.8

Envoy プロキシー 1.28.7

Kiali Server 1.73.19

1.2.3.2. 新機能

この更新により、Red Hat OpenShift Service Mesh 2.6 の Operator の名前が Red Hat
OpenShift Service Mesh 2 に変更され、Red Hat OpenShift Service Mesh 3.0 のリリースに合
わせて明確さが向上しました。

1.2.4. Red Hat OpenShift Service Mesh バージョン 2.5.9

この Red Hat OpenShift Service Mesh リリースは、Red Hat OpenShift Service Mesh Operator 2.6.6 に
含まれており、Red Hat OpenShift Service on AWS 4.14 以降でサポートされています。このリリースで
は、Common Vulnerabilities and Exposures (CVE) に対応しています。

1.2.4.1. コンポーネントの更新

コンポーネント バージョン

Istio 1.18.7

Envoy プロキシー 1.26.8

第1章 SERVICE MESH 2.X

5

Kiali Server 1.73.19

コンポーネント バージョン

1.2.5. Red Hat OpenShift Service Mesh バージョン 2.4.15

この Red Hat OpenShift Service Mesh リリースは、Red Hat OpenShift Service Mesh Operator 2.6.6 に
含まれており、Red Hat OpenShift Service on AWS 4.14 以降でサポートされています。

1.2.5.1. コンポーネントの更新

コンポーネント バージョン

Istio 1.16.7

Envoy プロキシー 1.24.12

Kiali Server 1.65.20

1.2.6. Red Hat OpenShift Service Mesh バージョン 2.6.5

この Red Hat OpenShift Service Mesh リリースでは、Red Hat OpenShift Service Mesh Operator バー
ジョンが 2.6.5 に更新され、2.6.5、2.5.8、および 2.4.14 の ServiceMeshControlPlane リソースバー
ジョンの更新が含まれています。

このリリースは、Common Vulnerabilities and Exposures (CVE) への対応を含んでおり、Red Hat
OpenShift Service on AWS 4.14 以降でサポートされています。

Red Hat が提供する Kiali Operator の最新バージョンは、サポートされているすべてのバージョンの
Red Hat OpenShift Service Mesh で使用できます。Service Mesh のバージョン
は、ServiceMeshControlPlane リソースを使用して指定されます。Service Mesh のバージョンによ
り、互換性のあるバージョンの Kiali が自動的に確保されます。

1.2.6.1. コンポーネントの更新

コンポーネント バージョン

Istio 1.20.8

Envoy プロキシー 1.28.7

Kiali Server 1.73.18

1.2.6.2. 新機能

Red Hat OpenShift 分散トレーシング Platform Stack が IBM Z でサポートされるようになりま
した。

Red Hat OpenShift Service on AWS 4 Service Mesh

6

1.2.6.3. 修正された問題

OSSM-8608: 以前は、バイナリーをコピーしながらインストールフェーズで Container
Network Interface (CNI) Pod を終了すると、ノードファイルシステムに Istio-CNI の一時ファ
イルが残る可能性がありました。繰り返し発生すると、最終的にはノードのディスク領域が
いっぱいになる可能性があります。現在、インストールフェーズ中に CNI Pod を終了する際
に、CNI バイナリーをコピーする前に既存の一時ファイルが削除され、ノードファイルシステ
ムには Istio バージョンごとに 1 つの一時ファイルのみが存在するようになりました。

1.2.7. Red Hat OpenShift Service Mesh バージョン 2.5.8

この Red Hat OpenShift Service Mesh リリースは、Red Hat OpenShift Service Mesh Operator 2.6.5 に
含まれており、Red Hat OpenShift Service on AWS 4.14 以降でサポートされています。このリリースで
は、Common Vulnerabilities and Exposures (CVE) に対応しています。

1.2.7.1. コンポーネントの更新

コンポーネント バージョン

Istio 1.18.7

Envoy プロキシー 1.26.8

Kiali Server 1.73.18

1.2.7.2. 修正された問題

OSSM-8608: 以前は、バイナリーをコピーしながらインストールフェーズで Container
Network Interface (CNI) Pod を終了すると、ノードファイルシステムに Istio-CNI の一時ファ
イルが残る可能性がありました。繰り返し発生すると、最終的にはノードのディスク領域が
いっぱいになる可能性があります。現在、インストールフェーズ中に CNI Pod を終了する際
に、CNI バイナリーをコピーする前に既存の一時ファイルが削除され、ノードファイルシステ
ムには Istio バージョンごとに 1 つの一時ファイルのみが存在するようになりました。

1.2.8. Red Hat OpenShift Service Mesh バージョン 2.4.14

この Red Hat OpenShift Service Mesh リリースは、Red Hat OpenShift Service Mesh Operator 2.6.5 に
含まれており、Red Hat OpenShift Service on AWS 4.14 以降でサポートされています。このリリースで
は、Common Vulnerabilities and Exposures (CVE) に対応しています。

1.2.8.1. コンポーネントの更新

コンポーネント バージョン

Istio 1.16.7

Envoy プロキシー 1.24.12

Kiali Server 1.65.19

第1章 SERVICE MESH 2.X

7

https://issues.redhat.com/browse/OSSM-8608
https://issues.redhat.com/browse/OSSM-8608

1.2.8.2. 修正された問題

OSSM-8608: 以前は、バイナリーをコピーしながらインストールフェーズで Container
Network Interface (CNI) Pod を終了すると、ノードファイルシステムに Istio-CNI の一時ファ
イルが残る可能性がありました。繰り返し発生すると、最終的にはノードのディスク領域が
いっぱいになる可能性があります。現在、インストールフェーズ中に CNI Pod を終了する際
に、CNI バイナリーをコピーする前に既存の一時ファイルが削除され、ノードファイルシステ
ムには Istio バージョンごとに 1 つの一時ファイルのみが存在するようになりました。

1.2.9. Red Hat OpenShift Service Mesh バージョン 2.6.4

この Red Hat OpenShift Service Mesh リリースでは、Red Hat OpenShift Service Mesh Operator バー
ジョンが 2.6.4 に更新され、2.6.4、2.5.7、2.4.13 の ServiceMeshControlPlane リソースバージョンの
更新が含まれています。

このリリースは、Common Vulnerabilities and Exposures (CVE) への対応を含んでおり、Red Hat
OpenShift Service on AWS 4.14 以降でサポートされています。

Red Hat が提供する Kiali Operator の最新バージョンは、サポートされているすべてのバージョンの
Red Hat OpenShift Service Mesh で使用できます。Service Mesh のバージョン
は、ServiceMeshControlPlane リソースを使用して指定されます。Service Mesh のバージョンによ
り、互換性のあるバージョンの Kiali が自動的に確保されます。

1.2.9.1. コンポーネントの更新

コンポーネント バージョン

Istio 1.20.8

Envoy プロキシー 1.28.7

Kiali Server 1.73.17

1.2.10. Red Hat OpenShift Service Mesh バージョン 2.5.7

この Red Hat OpenShift Service Mesh リリースは、Red Hat OpenShift Service Mesh Operator 2.6.4 に
含まれており、Red Hat OpenShift Service on AWS 4.14 以降でサポートされています。このリリースで
は、Common Vulnerabilities and Exposures (CVE) に対応しています。

1.2.10.1. コンポーネントの更新

コンポーネント バージョン

Istio 1.18.7

Envoy プロキシー 1.26.8

Kiali Server 1.73.17

1.2.11. Red Hat OpenShift Service Mesh バージョン 2.4.13

Red Hat OpenShift Service on AWS 4 Service Mesh

8

https://issues.redhat.com/browse/OSSM-8608

この Red Hat OpenShift Service Mesh リリースは、Red Hat OpenShift Service Mesh Operator 2.6.4 に
含まれており、Red Hat OpenShift Service on AWS 4.14 以降でサポートされています。このリリースで
は、Common Vulnerabilities and Exposures (CVE) に対応しています。

1.2.11.1. コンポーネントの更新

コンポーネント バージョン

Istio 1.16.7

Envoy プロキシー 1.24.12

Kiali Server 1.65.18

1.2.12. Red Hat OpenShift Service Mesh バージョン 2.6.3

この Red Hat OpenShift Service Mesh リリースでは、Red Hat OpenShift Service Mesh Operator バー
ジョンが 2.6.3 に更新され、2.6.3、2.5.6、2.4.12 の ServiceMeshControlPlane リソースバージョンの
更新が含まれています。

このリリースは、Common Vulnerabilities and Exposures (CVE) への対応を含んでおり、Red Hat
OpenShift Service on AWS 4.14 以降でサポートされています。

Red Hat が提供する Kiali Operator の最新バージョンは、サポートされているすべてのバージョンの
Red Hat OpenShift Service Mesh で使用できます。Service Mesh のバージョン
は、ServiceMeshControlPlane リソースを使用して指定されます。Service Mesh のバージョンによ
り、互換性のあるバージョンの Kiali が自動的に確保されます。

1.2.12.1. コンポーネントの更新

コンポーネント バージョン

Istio 1.20.8

Envoy プロキシー 1.28.7

Kiali Server 1.73.16

1.2.13. Red Hat OpenShift Service Mesh バージョン 2.5.6

この Red Hat OpenShift Service Mesh リリースは、Red Hat OpenShift Service Mesh Operator 2.6.3 に
含まれ、Common Vulnerabilities and Exposures (CVE) に対処し、Red Hat OpenShift Service on AWS
4.14 以降でサポートされています。

1.2.13.1. コンポーネントの更新

第1章 SERVICE MESH 2.X

9

コンポーネント バージョン

Istio 1.18.7

Envoy プロキシー 1.26.8

Kiali Server 1.73.16

1.2.14. Red Hat OpenShift Service Mesh バージョン 2.4.12

この Red Hat OpenShift Service Mesh リリースは、Red Hat OpenShift Service Mesh Operator 2.6.3 に
含まれ、Common Vulnerabilities and Exposures (CVE) に対処し、Red Hat OpenShift Service on AWS
4.14 以降でサポートされています。

1.2.14.1. コンポーネントの更新

コンポーネント バージョン

Istio 1.16.7

Envoy プロキシー 1.24.12

Kiali Server 1.65.17

1.2.15. Red Hat OpenShift Service Mesh バージョン 2.6.2

この Red Hat OpenShift Service Mesh リリースでは、Red Hat OpenShift Service Mesh Operator バー
ジョンが 2.6.2 に更新され、2.6.2、2.5.5、2.4.11 の ServiceMeshControlPlane リソースバージョンの更
新が含まれています。

このリリースは、Common Vulnerabilities and Exposures (CVE) への対応とバグ修正を含んでおり、
Red Hat OpenShift Service on AWS 4.14 以降でサポートされています。

Red Hat が提供する Kiali Operator の最新バージョンは、サポートされているすべてのバージョンの
Red Hat OpenShift Service Mesh で使用できます。Service Mesh のバージョン
は、ServiceMeshControlPlane リソースを使用して指定されます。Service Mesh のバージョンによ
り、互換性のあるバージョンの Kiali が自動的に確保されます。

1.2.15.1. コンポーネントの更新

コンポーネント バージョン

Istio 1.20.8

Envoy プロキシー 1.28.7

Kiali Server 1.73.15

Red Hat OpenShift Service on AWS 4 Service Mesh

10

1.2.15.2. 新機能

cert-manager Operator for Red Hat OpenShift が、IBM Power、IBM Z、IBM® LinuxONE でサ
ポートされるようになりました。

1.2.15.3. 修正された問題

OSSM-8099 以前は、エンドポイントがドレインフェーズにある場合に、永続セッションラベ
ルのサポートで問題が発生していました。現在は、ステートフルヘッダーセッションのドレイ
ンエンドポイントを処理する方法があります。

OSSM-8001 以前は、Pod で runAsUser と runAsGroup が同じ値に設定されていた場合、プ
ロキシー GID がコンテナーの GID と一致するように誤って設定され、Istio CNI によって適用さ
れた iptables ルールでトラフィック傍受の問題が発生していました。これで、コンテナーは
runAsUser と runAsGroup に同じ値を持つことができ、iptables ルールが正しく適用されるよう
になりました。

OSSM-8074 以前は、Service Mesh に数値のみの namespace (例: 12345) があった場合、Kiali
Operator は Kiali サーバーのインストールに失敗していました。現在は、数字のみを含む
namespace が正しく機能します。

1.2.16. Red Hat OpenShift Service Mesh バージョン 2.5.5

この Red Hat OpenShift Service Mesh リリースは、Red Hat OpenShift Service Mesh Operator 2.6.2 に
含まれ、Common Vulnerabilities and Exposures (CVE) に対処し、OpenShift Container Platform 4.14
以降でサポートされています。

1.2.16.1. コンポーネントの更新

コンポーネント バージョン

Istio 1.18.7

Envoy プロキシー 1.26.8

Kiali Server 1.73.15

1.2.16.2. 修正された問題

OSSM-8001 以前は、Pod で runAsUser および runAsGroup パラメーターが同じ値に設定さ
れていた場合、プロキシー GID がコンテナーの GID と一致するように誤って設定され、Istio
CNI によって適用された iptables ルールでトラフィック傍受の問題が発生していました。これ
で、コンテナーは runAsUser パラメーターと runAsGroup パラメーターに同じ値を持つこと
ができ、iptables ルールが正しく適用されるようになりました。

OSSM-8074 以前は、Service Mesh に数値のみの namespace (例: 12345) があった場合、Red
Hat が提供する Kiali Operator は Kiali Server のインストールに失敗していました。現在は、数
字のみを含む namespace が正しく機能します。

1.2.17. Red Hat OpenShift Service Mesh バージョン 2.4.11

この Red Hat OpenShift Service Mesh リリースは、Red Hat OpenShift Service Mesh Operator 2.6.2 に

第1章 SERVICE MESH 2.X

11

https://issues.redhat.com/browse/OSSM-8099
https://issues.redhat.com/browse/OSSM-8001
https://issues.redhat.com/browse/OSSM-8074
https://issues.redhat.com/browse/OSSM-8001
https://issues.redhat.com/browse/OSSM-8074

この Red Hat OpenShift Service Mesh リリースは、Red Hat OpenShift Service Mesh Operator 2.6.2 に
含まれ、Common Vulnerabilities and Exposures (CVE) に対処し、OpenShift Container Platform 4.14
以降でサポートされています。

1.2.17.1. コンポーネントの更新

コンポーネント バージョン

Istio 1.16.7

Envoy プロキシー 1.24.12

Kiali Server 1.65.16

1.2.17.2. 修正された問題

OSSM-8001 以前は、Pod で runAsUser および runAsGroup パラメーターが同じ値に設定さ
れていた場合、プロキシー GID がコンテナーの GID と一致するように誤って設定され、Istio
CNI によって適用された iptables ルールでトラフィック傍受の問題が発生していました。これ
で、コンテナーは runAsUser パラメーターと runAsGroup パラメーターに同じ値を持つこと
ができ、iptables ルールが正しく適用されるようになりました。

OSSM-8074 以前は、Service Mesh に数値のみの namespace (例: 12345) があった場合、Red
Hat が提供する Kiali Operator は Kiali Server のインストールに失敗していました。現在は、数
字のみを含む namespace が正しく機能します。

1.2.18. Red Hat OpenShift Service Mesh バージョン 2.6.1

この Red Hat OpenShift Service Mesh リリースでは、Red Hat OpenShift Service Mesh Operator バー
ジョンが 2.6.1 に更新され、2.6.1、2.5.4、2.4.10 の ServiceMeshControlPlane リソースバージョンの更
新が含まれています。このリリースは、Common Vulnerabilities and Exposures (CVE) への対応とバグ
修正を含んでおり、Red Hat OpenShift Service on AWS 4.14 以降でサポートされています。

Red Hat が提供する Kiali Operator の最新バージョンは、サポートされているすべてのバージョンの
Red Hat OpenShift Service Mesh で使用できます。Service Mesh のバージョン
は、ServiceMeshControlPlane リソースを使用して指定されます。Service Mesh のバージョンによ
り、互換性のあるバージョンの Kiali が自動的に確保されます。

1.2.18.1. コンポーネントの更新

コンポーネント バージョン

Istio 1.20.8

Envoy プロキシー 1.28.5

Kiali Server 1.73.14

1.2.18.2. 修正された問題

OSSM-6766 以前は、ユーザーが namespace を更新するか (インジェクションの有効化または

Red Hat OpenShift Service on AWS 4 Service Mesh

12

https://issues.redhat.com/browse/OSSM-8001
https://issues.redhat.com/browse/OSSM-8074

OSSM-6766 以前は、ユーザーが namespace を更新するか (インジェクションの有効化または
無効化など)、Istio オブジェクト (トラフィックポリシーなど) を作成しようとすると、
OpenShift Service Mesh Console (OSSMC) プラグインが失敗していました。現在は、ユーザー
が namespace を更新しても、Istio オブジェクトを作成しても、OpenShift Service Mesh
Console (OSSMC) プラグインは失敗しません。

1.2.19. Red Hat OpenShift Service Mesh バージョン 2.5.4

この Red Hat OpenShift Service Mesh リリースは、Red Hat OpenShift Service Mesh Operator 2.6.1 に
含まれ、Common Vulnerabilities and Exposures (CVE) に対処し、OpenShift Container Platform 4.14
以降でサポートされています。

1.2.19.1. コンポーネントの更新

コンポーネント バージョン

Istio 1.18.7

Envoy プロキシー 1.26.8

Kiali Server 1.73.14

1.2.20. Red Hat OpenShift Service Mesh バージョン 2.4.10

この Red Hat OpenShift Service Mesh リリースは、Red Hat OpenShift Service Mesh Operator 2.6.1 に
含まれ、Common Vulnerabilities and Exposures (CVE) に対処し、OpenShift Container Platform 4.14
以降でサポートされています。

1.2.20.1. コンポーネントの更新

コンポーネント バージョン

Istio 1.16.7

Envoy プロキシー 1.24.12

Kiali Server 1.65.15

1.2.21. Red Hat OpenShift Service Mesh バージョン 2.6.0

この Red Hat OpenShift Service Mesh リリースでは、Red Hat OpenShift Service Mesh Operator バー
ジョンが 2.6.0 に更新され、2.6.0、2.5.3、2.4.9 の ServiceMeshControlPlane リソースバージョンの
更新が含まれています。このリリースは、新機能と Common Vulnerabilities and Exposures (CVE) への
対応を含んでおり、Red Hat OpenShift Service on AWS 4.14 以降でサポートされています。

このリリースで、Red Hat OpenShift Service Mesh バージョン 2.3 のメンテナンスサポートは終了しま
す。Service Mesh バージョン 2.3 を使用している場合は、サポートされているバージョンに更新する必
要があります。

重要

第1章 SERVICE MESH 2.X

13

https://issues.redhat.com/browse/OSSM-6766

重要

Red Hat OpenShift Service Mesh は FIPS 用に設計されています。Service Mesh は、
x86_64、ppc64le、および s390x アーキテクチャーでの FIPS 140-2/140-3 検証のため
に NIST に提出された RHEL 暗号化ライブラリーを使用します。NIST の検証プログラム
の詳細は、Cryptographic Module Validation Program を参照してください。検証のため
に提出された RHEL 暗号化ライブラリーの個々のバージョンの最新の NIST ステータス
は、Compliance Activities and Government Standards を参照してください。

1.2.21.1. コンポーネントの更新

コンポーネント バージョン

Istio 1.20.8

Envoy プロキシー 1.28.5

Kiali 1.73.9

1.2.21.2. Istio 1.20 サポート

Service Mesh 2.6 は Istio 1.20 をベースとしており、次のような新機能と製品の機能強化が提供されてい
ます。

ネイティブサイドカーは Red Hat OpenShift Service on AWS 4.16 以降でサポートされていま
す。

ServiceMeshControlPlane リソースの例

Istio 1.20 のトラフィックミラーリングでは、複数の宛先がサポートされるようになりました。
この機能により、さまざまなエンドポイントへのトラフィックのミラーリングが可能になり、
異なるサービスバージョンや設定にわたる同時監視が可能になります。

Red Hat OpenShift Service Mesh は多くの Istio 1.20 機能をサポートしていますが、次の例外に注意し
てください。

Ambient mesh はサポートされていません

Istio の QuickAssist Technology (QAT) PrivateKeyProvider はサポートされていません

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
metadata:
 name: basic
spec:
 runtime:
 components:
 pilot:
 container:
 env:
 ENABLE_NATIVE_SIDECARS: "true"

Red Hat OpenShift Service on AWS 4 Service Mesh

14

https://csrc.nist.gov/Projects/cryptographic-module-validation-program/validated-modules
https://access.redhat.com/articles/compliance_activities_and_gov_standards#fips-140-2-and-fips-140-3-2

1.2.21.3. Istio および Kiali バンドルイメージ名の変更

このリリースでは、Istio バンドルイメージ名と Kiali バンドルイメージ名が更新され、Red Hat の命名
規則により適合するようになりました。

Istio バンドルイメージ名: openshift-service-mesh/istio-operator-bundle

Kiali バンドルイメージ名: openshift-service-mesh/kiali-operator-bundle

1.2.21.4. Red Hat OpenShift 分散トレーシングプラットフォームと Red Hat build of
OpenTelemetry との統合

このリリースでは、トレース拡張プロバイダー Red Hat OpenShift 分散トレーシング Platform と Red
Hat build of OpenTelemetry の一般公開された統合が導入されています。

ServiceMehControlPlane リソースの spec.meshConfig.extensionProviders 仕様に名前付き要素と
opentelemetry プロバイダーを追加することで、トレースデータを Red Hat OpenShift 分散トレーシン
グ Platform に公開できます。次に、テレメトリーカスタムリソースは、トレーススパンを収集して
OpenTelemetry Collector エンドポイントに送信するように Istio プロキシーを設定します。

メッシュ namespace に Red Hat build of OpenTelemetry を作成し、トレースデータをトレースプラッ
トフォームバックエンドサービスに送信するように設定できます。

1.2.21.5. Red Hat OpenShift 分散トレーシング Platform (Jaeger) のデフォルト設定の変更

このリリースでは、ServiceMeshControlPlane リソースの新しいインスタンスに対して、Red Hat
OpenShift 分散トレーシング Platform (Jaeger) がデフォルトで無効になります。

ServiceMeshControlPlane リソースの既存のインスタンスを Red Hat OpenShift Service Mesh バー
ジョン 2.6 に更新すると、分散トレーシング Platform (Jaeger) はデフォルトで有効のままになりま
す。

Red Hat OpenShift Service Mesh 2.6 は、Red Hat OpenShift 分散トレーシング Platform (Jaeger) と
OpenShift Elasticsearch Operator のサポートが含まれる最後のリリースです。分散トレーシング
Platform (Jaeger) と OpenShift Elasticsearch Operator は両方とも次のリリースで削除されます。現
在、分散トレーシング Platform (Jaeger) と OpenShift Elasticsearch Operator を使用している場合は、
Red Hat OpenShift 分散トレーシング Platform と Red Hat build of OpenTelemetry に切り替える必要
があります。

1.2.21.6. Gateway API の使用は、Red Hat OpenShift Service Mesh のクラスター全体のデプ
ロイメントで一般提供となりました。

このリリースにより、Kubernetes Gateway API バージョン 1.0.0 と Red Hat OpenShift Service Mesh
2.6 の使用が一般提供となりました。この API の使用は Red Hat OpenShift Service Mesh に限定されま
す。Gateway API カスタムリソース定義 (CRD) はサポートされていません。

クラスター全体モードが有効になっている場合 (spec.mode: ClusterWide) は、Gateway API がデフォ
ルトで有効になりました。クラスターにカスタムリソース定義 (CRD) がインストールされていない場
合でも有効にできます。

重要

マルチテナントメッシュデプロイメント用のゲートウェイ API は現在もテクノロジープ
レビュー段階です。

使用している OpenShift Service Mesh バージョンとともにどの Gateway API バージョンをインストー

第1章 SERVICE MESH 2.X

15

使用している OpenShift Service Mesh バージョンとともにどの Gateway API バージョンをインストー
ルする必要があるかを判断するには、次の表を参照してください。

Service Mesh のバー
ジョン

Istio バージョン ゲートウェイ API バー
ジョン

注記

2.6 1.20.x 1.0.0 該当なし

2.5.x 1.18.x 0.6.2 v0.6.2 には
ReferenceGrand がな
いため、実験ブランチを
使用します。

2.4.x 1.16.x 0.5.1 マルチテナントメッシュ
デプロイメントの場合、
ゲートウェイ API CRD
がすべて存在する必要が
あります。実験的なブラ
ンチを使用します。

PILOT_ENABLE_GATEWAY_API を false に設定することで、この機能を無効にできます。

1.2.21.7. 修正された問題

OSSM-6754 以前は、Red Hat OpenShift Service on AWS 4.15 で、ユーザーが Service details
ページに移動し、Service Mesh タブをクリックしてページを更新すると、アクティブなタブが
デフォルトの Details タブであったにもかかわらず、Service Mesh details ページはサービス
メッシュのコンテンツ情報のままになりました。更新後、ユーザーは問題なく Service details
ページのさまざまなタブ間を移動できるようになりました。

OSSM-2101 以前は、Istio Operator は、不要になった istio-cni-node DaemonSet やその他の
CNI リソースを削除しませんでした。現在、Operator をアップグレードした後、クラスターに
少なくとも 1 つの SMCP がインストールされている場合、Operator はこの SMCP を調整し、
未使用の CNI インストール (v2.0 などの非常に古い CNI バージョンも含む) をすべて削除しま
す。

1.2.21.8. Kiali の既知の問題

OSSM-6099 IPv6 クラスターで OpenShift Service Mesh Console (OSSMC) プラグインのイン
ストールが失敗する。

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
metadata:
 name: basic
spec:
 runtime:
 components:
 pilot:
 container:
 env:
 PILOT_ENABLE_GATEWAY_API: "false"

Red Hat OpenShift Service on AWS 4 Service Mesh

16

https://issues.redhat.com/browse/OSSM-6754
https://issues.redhat.com/browse/OSSM-2101
https://issues.redhat.com/browse/OSSM-6099

回避策: IPv4 クラスターに OSSMC プラグインをインストールします。

1.2.22. Red Hat OpenShift Service Mesh バージョン 2.5.3

この Red Hat OpenShift Service Mesh リリースは、Red Hat OpenShift Service Mesh Operator 2.6.0 に
含まれ、Common Vulnerabilities and Exposures (CVE) に対処し、OpenShift Container Platform 4.12 以
降でサポートされています。

1.2.22.1. コンポーネントの更新

コンポーネント バージョン

Istio 1.18.7

Envoy プロキシー 1.26.8

Kiali 1.73.9

1.2.23. Red Hat OpenShift Service Mesh バージョン 2.4.9

この Red Hat OpenShift Service Mesh リリースは、Red Hat OpenShift Service Mesh Operator 2.6.0 に
含まれ、Common Vulnerabilities and Exposures (CVE) に対処し、OpenShift Container Platform 4.12 以
降でサポートされています。

1.2.23.1. コンポーネントの更新

コンポーネント バージョン

Istio 1.16.7

Envoy プロキシー 1.24.12

Kiali 1.65.11

1.2.24. Red Hat OpenShift Service Mesh バージョン 2.5.2

この Red Hat OpenShift Service Mesh リリースでは、Red Hat OpenShift Service Mesh Operator バー
ジョンが 2.5.2 に更新され、2.5.2、2.4.8、2.3.12 の ServiceMeshControlPlane リソースバージョンの
更新が含まれています。このリリースは、Common Vulnerabilities and Exposures (CVE) への対応とバ
グ修正を含んでおり、Red Hat OpenShift Service on AWS 4.12 以降でサポートされています。

1.2.24.1. コンポーネントの更新

コンポーネント バージョン

Istio 1.18.7

第1章 SERVICE MESH 2.X

17

Envoy プロキシー 1.26.8

Kiali 1.73.8

コンポーネント バージョン

1.2.24.2. 修正された問題

OSSM-6331: 以前は、smcp.general.logging.componentLevels 仕様は無効な LogLevel 値を
受け入れ、その場合でも ServiceMeshControlPlane リソースが作成されていました。現在、
無効な値が使用されるとターミナルにエラーメッセージが表示され、コントロールプレーンは
作成されません。

OSSM-6290 以前は、Istio Config リストページの Project フィルタードロップダウンが正し
く機能しませんでした。ドロップダウンメニューで特定のプロジェクトを選択した場合でも、
すべての namespace のすべての istio config 項目が表示されていました。これで、フィルター
ドロップダウンで選択したプロジェクトに属する istio config 項目のみが表示されます。

OSSM-6298: 以前は、OpenShift Service Mesh Console (OSSMC) プラグイン内のアイテム参
照をクリックすると、目的のページが開く前にコンソールが複数のリダイレクトを実行するこ
とがありました。その結果、コンソールで開いた前のページに戻ると、Web ブラウザーで間
違ったページが開かれていました。現在、これらのリダイレクトは発生せず、Web ブラウザー
で Back をクリックすると正しいページが開きます。

OSSM-6299: 以前は、Red Hat OpenShift Service on AWS 4.15 でトラフィックグラフ内の任意
のノードメニューの Node graph メニューオプションをクリックしても、ノードグラフが表示
されませんでした。代わりに、ページが更新されて同じトラフィックグラフが表示されていま
した。現在は、Node graph メニューオプションをクリックするとノードグラフが正しく表示
されます。

OSSM-6267 以前は、Red Hat OpenShift Service Mesh 2.5 Grafana でデータソースを設定する
と、データクエリー認証エラーが発生し、ユーザーは Istio サービスおよびワークロードダッ
シュボードでデータを表示できませんでした。現在は、既存の 2.5 SMCP をバージョン 2.5.2 以
降にアップグレードすることで、Grafana エラーは解決します。

1.2.25. Red Hat OpenShift Service Mesh バージョン 2.4.8

この Red Hat OpenShift Service Mesh リリースは、Red Hat OpenShift Service Mesh Operator 2.5.2 に
含まれています。Common Vulnerabilities and Exposures (CVE) への対応とバグ修正を含んでおり、
OpenShift Container Platform 4.12 以降でサポートされています。

Red Hat OpenShift Service Mesh Operator の最新バージョンは、サポートされているすべてのバー
ジョンの Service Mesh で使用できます。Service Mesh のバージョンは、ServiceMeshControlPlane を
使用して指定されます。

1.2.25.1. コンポーネントの更新

コンポーネント バージョン

Istio 1.16.7

Red Hat OpenShift Service on AWS 4 Service Mesh

18

https://issues.redhat.com/browse/OSSM-6331
https://issues.redhat.com/browse/OSSM-6290
https://issues.redhat.com/browse/OSSM-6298
https://issues.redhat.com/browse/OSSM-6299
https://issues.redhat.com/browse/OSSM-6267

Envoy プロキシー 1.24.12

Kiali 1.65.11

コンポーネント バージョン

1.2.26. Red Hat OpenShift Service Mesh バージョン 2.3.12

この Red Hat OpenShift Service Mesh リリースは、Red Hat OpenShift Service Mesh Operator 2.5.2 に
含まれています。Common Vulnerabilities and Exposures (CVE) への対応とバグ修正を含んでおり、
OpenShift Container Platform 4.12 以降でサポートされています。

Red Hat OpenShift Service Mesh Operator の最新バージョンは、サポートされているすべてのバー
ジョンの Service Mesh で使用できます。Service Mesh のバージョンは、ServiceMeshControlPlane リ
ソースを使用して指定します。

1.2.26.1. コンポーネントの更新

コンポーネント バージョン

Istio 1.14.5

Envoy プロキシー 1.22.11

Kiali 1.57.14

1.2.27. 以前のリリース

これらの以前のリリースには、機能と改良が追加されました。

1.2.27.1. Red Hat OpenShift Service Mesh バージョン 2.5.1 の新機能

この Red Hat OpenShift Service Mesh リリースでは、Red Hat OpenShift Service Mesh Operator バー
ジョンが 2.5.1 に更新され、2.5.1、2.4.7、2.3.11 の ServiceMeshControlPlane リソースバージョンの更
新が含まれています。

このリリースは、Common Vulnerabilities and Exposures (CVE) への対応とバグ修正を含んでおり、
Red Hat OpenShift Service on AWS 4.12 以降でサポートされています。

1.2.27.1.1. Red Hat OpenShift Service Mesh バージョン 2.5.1 のコンポーネントのバージョン

コンポーネント バージョン

Istio 1.18.7

Envoy プロキシー 1.26.8

Kiali 1.73.7

第1章 SERVICE MESH 2.X

19

1.2.27.2. Red Hat OpenShift Service Mesh バージョン 2.5 の新機能

この Red Hat OpenShift Service Mesh リリースでは、Red Hat OpenShift Service Mesh Operator バー
ジョンが 2.5.0 に更新され、2.5.0、2.4.6、2.3.10 の ServiceMeshControlPlane リソースバージョンの
更新が含まれています。

このリリースは、新機能と Common Vulnerabilities and Exposures (CVE) への対応を含んでおり、Red
Hat OpenShift Service on AWS 4.12 以降でサポートされています。

このリリースで、OpenShift Service Mesh バージョン 2.2 のメンテナンスサポートが終了します。
OpenShift Service Mesh バージョン 2.2 を使用している場合は、サポートされているバージョンに更新
する必要があります。

1.2.27.2.1. Red Hat OpenShift Service Mesh バージョン 2.5 に含まれるコンポーネントのバージョン

コンポーネント バージョン

Istio 1.18.7

Envoy プロキシー 1.26.8

Kiali 1.73.4

1.2.27.2.2. Istio 1.18 サポート

Service Mesh 2.5 は Istio 1.18 に基づいており、新機能と製品の機能強化をもたらします。Red Hat
OpenShift Service Mesh は多くの Istio 1.18 機能をサポートしていますが、次の例外に注意する必要があ
ります。

Ambient mesh はサポートされていません

Istio の QuickAssist Technology (QAT) PrivateKeyProvider はサポートされていません

1.2.27.2.3. クラスター全体のメッシュ移行

このリリースでは、マルチテナントメッシュからクラスター全体のメッシュへの移行に関するドキュメ
ントが追加されています。詳細は、以下のドキュメントを参照してください。

「クラスター全体のメッシュへの移行について」

「クラスター全体のメッシュからの namespace の除外」

「クラスター全体のメッシュにおいてサイドカーインジェクションを受け取る namespace の定
義」

「クラスター全体のメッシュからの Pod の個別除外」

1.2.27.2.4. ARM ベースのクラスターに対する Red Hat OpenShift Service Mesh Operator

このリリースでは、ARM ベースのクラスター上で Red Hat OpenShift Service Mesh Operator が一般提
供機能として提供されます。

1.2.27.2.5. Red Hat OpenShift 分散トレーシングプラットフォーム (Tempo) スタックとの統合

Red Hat OpenShift Service on AWS 4 Service Mesh

20

このリリースでは、一般に利用可能なトレースエクステンションプロバイダーの統合が導入されていま
す。名前付き要素と zipkin プロバイダーを spec.meshConfig.extensionProviders 仕様に追加するこ
とで、トレースデータを Red Hat OpenShift 分散トレーシング Platform (Tempo) スタックに公開でき
ます。次に、テレメトリーカスタムリソースは、トレーススパンを収集し、Tempo ディストリビュー
タサービスエンドポイントに送信するように Istio プロキシーを設定します。

注記

Red Hat OpenShift 分散トレーシング Platform (Tempo) スタックは、IBM Z ではサポー
トされていません。

1.2.27.2.6. OpenShift Service Mesh Console プラグイン

このリリースでは、OpenShift Service Mesh Console (OSSMC) プラグインの一般提供バージョンが導
入されています。

OSSMC プラグインは、サービスメッシュへの可視性を提供する OpenShift コンソールのエクステン
ションです。OSSMC プラグインをインストールすると、Web コンソールのナビゲーションペインで新
しいサービスメッシュメニューオプションが使用可能になり、既存のワークロードおよびサービスコン
ソールページを強化する新しいサービスメッシュタブも使用できるようになります。

OSSMC プラグインの機能は、スタンドアロン Kiali コンソールの機能とよく似ています。OSSMC プラ
グインは Kiali コンソールに代わるものではありません。OSSMC プラグインをインストールした後も、
スタンドアロンの Kiali コンソールにアクセスできます。

1.2.27.2.7. Istio OpenShift Routing (IOR) のデフォルト設定の変更

Istio OpenShift Routing (IOR) のデフォルト設定が変更されました。今回のリリース以
降、ServiceMeshControlPlane リソースの新しいインスタンスでは自動ルートがデフォルトで無効に
なっています。

ServiceMeshControlPlane リソースの新しいインスタンスの場合、ServiceMeshControlPlane リソー
スの gateways.openshiftRoute 仕様で enabled フィールドを true に設定することで、自動ルートを
使用できます。

ServiceMeshControlPlane リソースの例

ServiceMeshControlPlane リソースの既存のインスタンスを Red Hat OpenShift Service Mesh バー
ジョン 2.5 に更新すると、自動ルートはデフォルトで有効なままになります。

1.2.27.2.8. Istio プロキシー同時実行設定の強化

networking.istio API の concurrency パラメーターは、Istio プロキシーが実行するワーカースレッド
の数を設定します。

デプロイメント間の一貫性を確保するために、Istio はプロキシーコンテナーに割り当てられた CPU 制
限に基づいて concurrency パラメーターを設定するようになりました。たとえば、制限が 2500m の
場合、concurrency パラメーターは 3 に設定されます。concurrency パラメーターを別の値に設定す

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
spec:
 gateways:
 openshiftRoute:
 enabled: true

第1章 SERVICE MESH 2.X

21

ると、Istio は CPU 制限を使用する代わりに、その値を使用してプロキシーが実行するスレッドの数を
設定します。

以前のリリースでは、このパラメーターのデフォルト設定は 2 でした。

1.2.27.2.9. ゲートウェイ API CRD バージョン

重要

Red Hat OpenShift Service on AWS Gateway API のサポートはテクノロジープレビュー
機能としてのみご利用いただけます。テクノロジープレビュー機能は、Red Hat 製品サ
ポートのサービスレベルアグリーメント (SLA) の対象外であり、機能的に完全ではない
場合があります。Red Hat は、実稼働環境でこれらを使用することを推奨していませ
ん。テクノロジープレビュー機能は、最新の製品機能をいち早く提供して、開発段階で
機能のテストを行い、フィードバックを提供していただくことを目的としています。

Red Hat のテクノロジープレビュー機能のサポート範囲に関する詳細は、テクノロジー
プレビュー機能のサポート範囲 を参照してください。

Gateway API カスタムリソース定義 (CRD) の新しいバージョンが利用可能になりました。使用してい
る OpenShift Service Mesh バージョンとともにどの Gateway API バージョンをインストールする必要
があるかを判断するには、次の表を参照してください。

Service Mesh のバー
ジョン

Istio バージョン ゲートウェイ API バー
ジョン

注記

2.5.x 1.18.x 0.6.2 v0.6.2 には
ReferenceGrand がな
いため、実験的ブランチ
を使用します。

2.4.x 1.16.x 0.5.1 マルチテナントメッシュ
デプロイメントの場合、
ゲートウェイ API CRD
がすべて存在する必要が
あります。実験的なブラ
ンチを使用します。

1.2.27.3. Red Hat OpenShift Service Mesh バージョン 2.4.7 の新機能

この Red Hat OpenShift Service Mesh リリースは、Red Hat OpenShift Service Mesh Operator 2.5.1 に
含まれています。Common Vulnerabilities and Exposures (CVE) への対応と修正を含んでおり、Red
Hat OpenShift Service on AWS 4.12 以降でサポートされています。

1.2.27.3.1. Red Hat OpenShift Service Mesh バージョン 2.4.7 のコンポーネントのバージョン

コンポーネント バージョン

Istio 1.16.7

Red Hat OpenShift Service on AWS 4 Service Mesh

22

https://access.redhat.com/support/offerings/techpreview/

Envoy プロキシー 1.24.12

Kiali 1.65.11

コンポーネント バージョン

1.2.27.4. Red Hat OpenShift Service Mesh バージョン 2.4.6 の新機能

この Red Hat OpenShift Service Mesh リリースは、Red Hat OpenShift Service Mesh Operator 2.5.0 に
含まれています。Common Vulnerabilities and Exposures (CVE) への対応とバグ修正を含んでおり、
OpenShift Container Platform 4.12 以降でサポートされています。

1.2.27.4.1. Red Hat OpenShift Service Mesh バージョン 2.4.6 のコンポーネントのバージョン

コンポーネント バージョン

Istio 1.16.7

Envoy プロキシー 1.24.12

Kiali 1.65.11

1.2.27.5. Red Hat OpenShift Service Mesh バージョン 2.4.5 の新機能

この Red Hat OpenShift Service Mesh リリースでは、Red Hat OpenShift Service Mesh Operator バー
ジョンが 2.4.5 に更新され、2.4.5、2.3.9、2.2.12 の ServiceMeshControlPlane リソースバージョンの
更新が含まれています。

このリリースは、Common Vulnerabilities and Exposures (CVE) への対応を含んでおり、Red Hat
OpenShift Service on AWS 4.11 以降でサポートされています。

1.2.27.5.1. Red Hat OpenShift Service Mesh バージョン 2.4.5 に含まれるコンポーネントのバージョン

コンポーネント バージョン

Istio 1.16.7

Envoy プロキシー 1.24.12

Kiali 1.65.11

1.2.27.6. Red Hat OpenShift Service Mesh バージョン 2.4.4 の新機能

このリリースの Red Hat OpenShift Service Mesh には、CVE (Common Vulnerabilities and Exposures)
への対応、バグ修正が含まれています。このリリースは、Red Hat OpenShift Service on AWS 4.11 以降
でサポートされます。

第1章 SERVICE MESH 2.X

23

1.2.27.6.1. Red Hat OpenShift Service Mesh バージョン 2.4.4 に含まれるコンポーネントのバージョン

コンポーネント バージョン

Istio 1.16.7

Envoy プロキシー 1.24.12

Jaeger 1.47.0

Kiali 1.65.10

1.2.27.7. Red Hat OpenShift Service Mesh バージョン 2.4.3 の新機能

envoyExtAuthzGrpc フィールドが追加されました。これは、gRPC API を使用して外部承認プ
ロバイダーを設定するために使用されます。

Common Vulnerabilities and Exposures (CVE) が解決されました。

このリリースは、Red Hat OpenShift Service on AWS 4.10 以降のバージョンでサポートされて
います。

1.2.27.7.1. Red Hat OpenShift Service Mesh バージョン 2.4.3 に含まれるコンポーネントのバージョン

コンポーネント バージョン

Istio 1.16.7

Envoy プロキシー 1.24.10

Jaeger 1.42.0

Kiali 1.65.8

1.2.27.7.2. 外部認可設定に対するリモートプロシージャコール (gRPC) API のサポート

今回の機能拡張により、envoyExtAuthzGrpc フィールドが追加され、gRPC API を使用して外部認可
プロバイダーが設定されます。

1.2.27.8. Red Hat OpenShift Service Mesh バージョン 2.4.2 の新機能

このリリースの Red Hat OpenShift Service Mesh には、CVE (Common Vulnerabilities and Exposures)
への対応、バグ修正が含まれています。このリリースは、Red Hat OpenShift Service on AWS 4.10 以降
でサポートされます。

1.2.27.8.1. Red Hat OpenShift Service Mesh バージョン 2.4.2 に含まれるコンポーネントのバージョン

Red Hat OpenShift Service on AWS 4 Service Mesh

24

コンポーネント バージョン

Istio 1.16.7

Envoy プロキシー 1.24.10

Jaeger 1.42.0

Kiali 1.65.7

1.2.27.9. Red Hat OpenShift Service Mesh バージョン 2.4.1 の新機能

このリリースの Red Hat OpenShift Service Mesh には、CVE (Common Vulnerabilities and Exposures)
への対応、バグ修正が含まれています。このリリースは、Red Hat OpenShift Service on AWS 4.10 以降
でサポートされます。

1.2.27.9.1. Red Hat OpenShift Service Mesh バージョン 2.4.1 に含まれるコンポーネントのバージョン

コンポーネント バージョン

Istio 1.16.5

Envoy プロキシー 1.24.8

Jaeger 1.42.0

Kiali 1.65.7

1.2.27.10. Red Hat OpenShift Service Mesh バージョン 2.4 の新機能

このリリースの Red Hat OpenShift Service Mesh には、CVE (Common Vulnerabilities and Exposures)
への対応、バグ修正が含まれています。このリリースは、Red Hat OpenShift Service on AWS 4.10 以降
でサポートされます。

1.2.27.10.1. Red Hat OpenShift Service Mesh バージョン 2.4 に含まれるコンポーネントのバージョン

コンポーネント バージョン

Istio 1.16.5

Envoy プロキシー 1.24.8

Jaeger 1.42.0

Kiali 1.65.6

第1章 SERVICE MESH 2.X

25

1.2.27.10.2. クラスター全体のデプロイメント

この機能拡張により、クラスター全体のデプロイメントの一般利用可能なバージョンが導入されます。
クラスター全体のデプロイメントには、クラスター全体のリソースを監視する Service Mesh Control
Plane が含まれます。コントロールプレーンは、すべての namespace で単一のクエリーを使用して、
メッシュ設定に影響を与える各 Istio または Kubernetes リソースの種類を監視します。クラスター全体
のデプロイメントでコントロールプレーンが実行するクエリーの数を減らすと、パフォーマンスが向上
します。

1.2.27.10.3. ディスカバリーセレクターのサポート

この機能強化により、meshConfig.discoverySelectors フィールドの一般利用可能なバージョンが導
入され、これをクラスター全体のデプロイメントで使用して、Service Mesh コントロールプレーンが検
出できるサービスを制限できます。

1.2.27.10.4. cert-manager istio-csr との統合

この更新により、Red Hat OpenShift Service Mesh は cert-manager コントローラーおよび istio-csr
エージェントと統合されます。cert-manager は、証明書と証明書発行者を Kubernetes クラスター内の
リソースタイプとして追加し、それらの証明書の取得、更新、使用のプロセスを簡素化します。cert-
manager は、Istio の中間 CA 証明書を提供し、ローテーションします。 istio-csr との統合により、
ユーザーは Istio プロキシーからの署名証明書要求を cert-manager に委任できま
す。ServiceMeshControlPlane v2.4 は cert-manager によって提供された CA 証明書を cacerts シー
クレットとして受け入れます。

注記

cert-manager および istio-csr との統合は、IBM Power®、IBM Z®、および IBM®
LinuxONE ではサポートされていません。

1.2.27.10.5. 外部認証システムとの統合

この機能強化により、AuthorizationPolicy リソースの action:CUSTOM フィールドを使用して、Red
Hat OpenShift Service Mesh を外部認可システムと統合する一般に利用可能な方法が導入されまし
た。envoyExtAuthzHttp フィールドを使用して、アクセス制御を外部認証システムに委任します。

1.2.27.10.6. 外部 Prometheus インストールとの統合

この機能拡張により、Prometheus 拡張プロバイダーの一般利用可能なバージョンが導入されま
す。spec.meshConfig 仕様で extensionProviders フィールドの値を prometheus に設定すること
で、Red Hat OpenShift Service on AWS モニタリングスタックまたはカスタム Prometheus インストー

spec:
 meshConfig
 discoverySelectors:
 - matchLabels:
 env: prod
 region: us-east1
 - matchExpressions:
 - key: app
 operator: In
 values:
 - cassandra
 - spark

Red Hat OpenShift Service on AWS 4 Service Mesh

26

ルにメトリクスを公開できます。テレメトリーオブジェクトは、トラフィックメトリクスを収集するよ
うに Istio プロキシーを設定します。Service Mesh は、Prometheus メトリクスの Telemetry API のみを
サポートします。

1.2.27.10.7. シングルスタック IPv6 のサポート

この機能拡張により、シングルスタック IPv6 クラスターの一般利用可能なサポートが導入され、より
広範囲の IP アドレスへのアクセスが提供されます。デュアルスタック IPv4 または IPv6 クラスターは
サポートされていません。

注記

シングルスタック IPv6 サポートは、IBM Power®、IBM Z®、および IBM® LinuxONE では
利用できません。

1.2.27.10.7.1. Red Hat OpenShift Service on AWS ゲートウェイ API の有効化

Red Hat OpenShift Service on AWS Gateway API を有効にするには、ServiceMeshControlPlane リ
ソースの techPreview.gatewayAPI 仕様で、enabled フィールドの値を true に設定します。

以前は、ゲートウェイ API を有効にするために環境変数が使用されていました。

1.2.27.10.8. Istio 1.16 サポート

spec:
 meshConfig:
 extensionProviders:
 - name: prometheus
 prometheus: {}

apiVersion: telemetry.istio.io/v1alpha1
kind: Telemetry
metadata:
 name: enable-prometheus-metrics
spec:
 metrics:
 - providers:
 - name: prometheus

spec:
 techPreview:
 gatewayAPI:
 enabled: true

spec:
 runtime:
 components:
 pilot:
 container:
 env:
 PILOT_ENABLE_GATEWAY_API: "true"
 PILOT_ENABLE_GATEWAY_API_STATUS: "true"
 PILOT_ENABLE_GATEWAY_API_DEPLOYMENT_CONTROLLER: "true"

第1章 SERVICE MESH 2.X

27

Service Mesh 2.4 は Istio 1.16 に基づいており、新機能と製品の機能強化をもたらします。多くの Istio
1.16 機能がサポートされていますが、次の例外に注意する必要があります。

サイドカーの HBONE プロトコルは実験的な機能であり、サポートされていません。

ARM64 アーキテクチャー上の Service Mesh はサポートされていません。

1.2.27.11. Red Hat OpenShift Service Mesh バージョン 2.3.11 の新機能

この Red Hat OpenShift Service Mesh リリースは、Red Hat OpenShift Service Mesh Operator 2.5.1 に
含まれています。Common Vulnerabilities and Exposures (CVE) への対応と修正を含んでおり、Red
Hat OpenShift Service on AWS 4.12 以降でサポートされています。

1.2.27.11.1. Red Hat OpenShift Service Mesh バージョン 2.3.11 のコンポーネントのバージョン

コンポーネント バージョン

Istio 1.14.5

Envoy プロキシー 1.22.11

Kiali 1.57.14

1.2.27.12. Red Hat OpenShift Service Mesh バージョン 2.3.10 の新機能

この Red Hat OpenShift Service Mesh リリースは、Red Hat OpenShift Service Mesh Operator 2.5.0 に
含まれています。Common Vulnerabilities and Exposures (CVE) への対応とバグ修正を含んでおり、
OpenShift Container Platform 4.12 以降でサポートされています。

1.2.27.12.1. Red Hat OpenShift Service Mesh バージョン 2.3.10 のコンポーネントのバージョン

コンポーネント バージョン

Istio 1.14.5

Envoy プロキシー 1.22.11

Kiali 1.57.14

1.2.27.13. Red Hat OpenShift Service Mesh バージョン 2.3.9 の新機能

この Red Hat OpenShift Service Mesh リリースは、Red Hat OpenShift Service Mesh Operator 2.4.5 に
含まれています。Common Vulnerabilities and Exposures (CVE) への対応とバグ修正を含んでおり、
OpenShift Container Platform 4.11 以降でサポートされています。

1.2.27.13.1. Red Hat OpenShift Service Mesh バージョン 2.3.9 に含まれるコンポーネントのバージョン

Red Hat OpenShift Service on AWS 4 Service Mesh

28

コンポーネント バージョン

Istio 1.14.5

Envoy プロキシー 1.22.11

Jaeger 1.47.0

Kiali 1.57.14

1.2.27.14. Red Hat OpenShift Service Mesh バージョン 2.3.8 の新機能

このリリースの Red Hat OpenShift Service Mesh には、CVE (Common Vulnerabilities and Exposures)
への対応、バグ修正が含まれています。このリリースは、Red Hat OpenShift Service on AWS 4.11 以降
でサポートされます。

1.2.27.14.1. Red Hat OpenShift Service Mesh バージョン 2.3.8 に含まれるコンポーネントのバージョン

コンポーネント バージョン

Istio 1.14.5

Envoy プロキシー 1.22.11

Jaeger 1.47.0

Kiali 1.57.13

1.2.27.15. Red Hat OpenShift Service Mesh バージョン 2.3.7 の新機能

このリリースの Red Hat OpenShift Service Mesh には、CVE (Common Vulnerabilities and Exposures)
への対応、バグ修正が含まれています。このリリースは、Red Hat OpenShift Service on AWS 4.10 以降
でサポートされます。

1.2.27.15.1. Red Hat OpenShift Service Mesh バージョン 2.3.7 に含まれるコンポーネントのバージョン

コンポーネント バージョン

Istio 1.14.6

Envoy プロキシー 1.22.11

Jaeger 1.42.0

Kiali 1.57.11

第1章 SERVICE MESH 2.X

29

1.2.27.16. Red Hat OpenShift Service Mesh バージョン 2.3.6 の新機能

このリリースの Red Hat OpenShift Service Mesh には、CVE (Common Vulnerabilities and Exposures)
への対応、バグ修正が含まれています。このリリースは、Red Hat OpenShift Service on AWS 4.10 以降
でサポートされます。

1.2.27.16.1. Red Hat OpenShift Service Mesh バージョン 2.3.6 に含まれるコンポーネントのバージョン

コンポーネント バージョン

Istio 1.14.5

Envoy プロキシー 1.22.11

Jaeger 1.42.0

Kiali 1.57.10

1.2.27.17. Red Hat OpenShift Service Mesh バージョン 2.3.5 の新機能

このリリースの Red Hat OpenShift Service Mesh には、CVE (Common Vulnerabilities and Exposures)
への対応、バグ修正が含まれています。このリリースは、Red Hat OpenShift Service on AWS 4.10 以降
でサポートされます。

1.2.27.17.1. Red Hat OpenShift Service Mesh バージョン 2.3.5 に含まれるコンポーネントのバージョン

コンポーネント バージョン

Istio 1.14.5

Envoy プロキシー 1.22.9

Jaeger 1.42.0

Kiali 1.57.10

1.2.27.18. Red Hat OpenShift Service Mesh バージョン 2.3.4 の新機能

このリリースの Red Hat OpenShift Service Mesh には、CVE (Common Vulnerabilities and Exposures)
への対応、バグ修正が含まれています。このリリースは、Red Hat OpenShift Service on AWS 4.10 以降
でサポートされます。

1.2.27.18.1. Red Hat OpenShift Service Mesh バージョン 2.3.4 に含まれるコンポーネントのバージョン

コンポーネント バージョン

Istio 1.14.6

Red Hat OpenShift Service on AWS 4 Service Mesh

30

Envoy プロキシー 1.22.9

Jaeger 1.42.0

Kiali 1.57.9

コンポーネント バージョン

1.2.27.19. Red Hat OpenShift Service Mesh バージョン 2.3.3 の新機能

このリリースの Red Hat OpenShift Service Mesh には、CVE (Common Vulnerabilities and Exposures)
への対応、バグ修正が含まれています。このリリースは、Red Hat OpenShift Service on AWS 4.9 以降
でサポートされます。

1.2.27.19.1. Red Hat OpenShift Service Mesh バージョン 2.3.3 に含まれるコンポーネントのバージョン

コンポーネント バージョン

Istio 1.14.5

Envoy プロキシー 1.22.9

Jaeger 1.42.0

Kiali 1.57.7

1.2.27.20. Red Hat OpenShift Service Mesh バージョン 2.3.2 の新機能

このリリースの Red Hat OpenShift Service Mesh には、CVE (Common Vulnerabilities and Exposures)
への対応、バグ修正が含まれています。このリリースは、Red Hat OpenShift Service on AWS 4.9 以降
でサポートされます。

1.2.27.20.1. Red Hat OpenShift Service Mesh バージョン 2.3.2 に含まれるコンポーネントのバージョン

コンポーネント バージョン

Istio 1.14.5

Envoy プロキシー 1.22.7

Jaeger 1.39

Kiali 1.57.6

1.2.27.21. Red Hat OpenShift Service Mesh バージョン 2.3.1 の新機能

このリリースの Red Hat OpenShift Service Mesh には、新機能の導入、CVE (Common Vulnerabilities

第1章 SERVICE MESH 2.X

31

このリリースの Red Hat OpenShift Service Mesh には、新機能の導入、CVE (Common Vulnerabilities
and Exposures) への対応、バグ修正が含まれ、Red Hat OpenShift Service on AWS 4.9 以降でサポート
されます。

1.2.27.21.1. Red Hat OpenShift Service Mesh バージョン 2.3.1 に含まれるコンポーネントのバージョン

コンポーネント バージョン

Istio 1.14.5

Envoy プロキシー 1.22.4

Jaeger 1.39

Kiali 1.57.5

1.2.27.22. Red Hat OpenShift Service Mesh バージョン 2.3 の新機能

このリリースの Red Hat OpenShift Service Mesh には、新機能の導入、CVE (Common Vulnerabilities
and Exposures) への対応、バグ修正が含まれ、Red Hat OpenShift Service on AWS 4.9 以降でサポート
されます。

1.2.27.22.1. Red Hat OpenShift Service Mesh バージョン 2.3 に含まれるコンポーネントのバージョン

コンポーネント バージョン

Istio 1.14.3

Envoy プロキシー 1.22.4

Jaeger 1.38

Kiali 1.57.3

1.2.27.22.2. 新しい Container Network Interface (CNI) DaemonSet コンテナーと ConfigMap

openshift-operators namespace には、新しい istio CNI DaemonSet istio-cni-node-v2-3、新しい
ConfigMap リソース、istio-cni-config-v2-3 が含まれています。

Service Mesh Control Plane 2.3 にアップグレードすると、既存の istio-cni-node DaemonSet は変更さ
れず、新しい istio-cni-node-v2-3 DaemonSet が作成されます。

この名称変更は、以前のリリースや、以前のリリースを使用してデプロイされた Service Mesh Control
Plane に関連付けられた istio-cni-node CNI DaemonSet には影響しません。

1.2.27.22.3. ゲートウェイ挿入のサポート

このリリースでは、ゲートウェイ挿入の一般利用可能なサポートが導入されています。ゲートウェイ設
定は、サービスワークロードとともに実行するサイドカー Envoy プロキシーではなく、メッシュのエッ
ジで実行するスタンドアロン Envoy プロキシーに適用されます。これにより、ゲートウェイオプション

Red Hat OpenShift Service on AWS 4 Service Mesh

32

1

1

のカスタマイズ機能が有効になります。ゲートウェイ挿入を使用する場合は、ゲートウェイプロキシー
を実行する namespace にリソース (Service、Deployment、Role、および RoleBinding) を作成する
必要があります。

1.2.27.22.4. Istio 1.14 サポート

Service Mesh 2.3 は Istio 1.14 に基づいており、新機能と製品の機能強化をもたらします。多くの Istio
1.14 機能がサポートされていますが、次の例外に注意する必要があります。

ProxyConfig API はサポートされていますが、image フィールドは例外です。

SPIRE ランタイムはサポートされていない機能です。

1.2.27.22.4.1. クラスター全体のデプロイメントの設定

次の ServiceMeshControlPlane オブジェクトの例では、クラスター全体のデプロイを設定します。

クラスター全体のデプロイメント用に SMCP を作成する場合、ユーザーは cluster-admin ClusterRole
に属している必要があります。SMCP がクラスター全体のデプロイメント用に設定されている場合は、
それがクラスター内の唯一の SMCP である必要があります。コントロールプレーンモードをマルチテ
ナントからクラスター全体 (またはクラスター全体からマルチテナント) に変更することはできません。
マルチテナントコントロールプレーンがすでに存在する場合は、それを削除して、新しいコントロール
プレーンを作成します。

この例では、クラスター全体のデプロイメント用に SMCP を設定します。

Istiod が、個々の namespace を監視するのではなく、クラスターレベルでリソースを監視できる
ようにします。

さらに、SMMR もクラスター全体のデプロイメント用に設定する必要があります。この例では、クラス
ター全体のデプロイメント用に SMMR を設定します。

後で作成する namespace を含め、すべての namespace をメッシュに追加します。kube、
openshift、kube-*、および openshift-* の namespace は、メッシュの一部ではありません。

 apiVersion: maistra.io/v2
 kind: ServiceMeshControlPlane
 metadata:
 name: cluster-wide
 namespace: istio-system
 spec:
 version: v2.3
 techPreview:
 controlPlaneMode: ClusterScoped 1

 apiVersion: maistra.io/v1
 kind: ServiceMeshMemberRoll
 metadata:
 name: default
 spec:
 members:
 - '*' 1

第1章 SERVICE MESH 2.X

33

1.2.27.23. Red Hat OpenShift Service Mesh バージョン 2.2.12 の新機能

この Red Hat OpenShift Service Mesh リリースは、Red Hat OpenShift Service Mesh Operator 2.4.5 に
含まれています。Common Vulnerabilities and Exposures (CVE) への対応とバグ修正を含んでおり、
OpenShift Container Platform 4.11 以降でサポートされています。

1.2.27.23.1. Red Hat OpenShift Service Mesh バージョン 2.2.12 に含まれるコンポーネントのバージョ
ン

コンポーネント バージョン

Istio 1.12.9

Envoy プロキシー 1.20.8

Jaeger 1.47.0

Kiali 1.48.11

1.2.27.24. Red Hat OpenShift Service Mesh バージョン 2.2.11 の新機能

このリリースの Red Hat OpenShift Service Mesh には、CVE (Common Vulnerabilities and Exposures)
への対応、バグ修正が含まれています。このリリースは、Red Hat OpenShift Service on AWS 4.11 以降
でサポートされます。

1.2.27.24.1. Red Hat OpenShift Service Mesh バージョン 2.2.11 に含まれるコンポーネントのバージョン

コンポーネント バージョン

Istio 1.12.9

Envoy プロキシー 1.20.8

Jaeger 1.47.0

Kiali 1.48.10

1.2.27.25. Red Hat OpenShift Service Mesh バージョン 2.2.10 の新機能

このリリースの Red Hat OpenShift Service Mesh には、CVE (Common Vulnerabilities and Exposures)
への対応、バグ修正が含まれています。このリリースは、Red Hat OpenShift Service on AWS 4.10 以降
でサポートされます。

1.2.27.25.1. Red Hat OpenShift Service Mesh バージョン 2.2.10 に含まれるコンポーネントのバージョ
ン

Red Hat OpenShift Service on AWS 4 Service Mesh

34

コンポーネント バージョン

Istio 1.12.9

Envoy プロキシー 1.20.8

Jaeger 1.42.0

Kiali 1.48.8

1.2.27.26. Red Hat OpenShift Service Mesh バージョン 2.2.9 の新機能

このリリースの Red Hat OpenShift Service Mesh には、CVE (Common Vulnerabilities and Exposures)
への対応、バグ修正が含まれています。このリリースは、Red Hat OpenShift Service on AWS 4.10 以降
でサポートされます。

1.2.27.26.1. Red Hat OpenShift Service Mesh バージョン 2.2.9 に含まれるコンポーネントのバージョン

コンポーネント バージョン

Istio 1.12.9

Envoy プロキシー 1.20.8

Jaeger 1.42.0

Kiali 1.48.7

1.2.27.27. Red Hat OpenShift Service Mesh バージョン 2.2.8 の新機能

このリリースの Red Hat OpenShift Service Mesh には、CVE (Common Vulnerabilities and Exposures)
への対応、バグ修正が含まれています。このリリースは、Red Hat OpenShift Service on AWS 4.10 以降
でサポートされます。

1.2.27.27.1. Red Hat OpenShift Service Mesh バージョン 2.2.8 に含まれるコンポーネントのバージョン

コンポーネント バージョン

Istio 1.12.9

Envoy プロキシー 1.20.8

Jaeger 1.42.0

Kiali 1.48.7

第1章 SERVICE MESH 2.X

35

1.2.27.28. Red Hat OpenShift Service Mesh バージョン 2.2.7 の新機能

このリリースの Red Hat OpenShift Service Mesh には、CVE (Common Vulnerabilities and Exposures)
への対応、バグ修正が含まれています。このリリースは、Red Hat OpenShift Service on AWS 4.10 以降
でサポートされます。

1.2.27.28.1. Red Hat OpenShift Service Mesh バージョン 2.2.7 に含まれるコンポーネントのバージョン

コンポーネント バージョン

Istio 1.12.9

Envoy プロキシー 1.20.8

Jaeger 1.42.0

Kiali 1.48.6

1.2.27.29. Red Hat OpenShift Service Mesh バージョン 2.2.6 の新機能

このリリースの Red Hat OpenShift Service Mesh には、CVE (Common Vulnerabilities and Exposures)
への対応、バグ修正が含まれています。このリリースは、Red Hat OpenShift Service on AWS 4.9 以降
でサポートされます。

1.2.27.29.1. Red Hat OpenShift Service Mesh バージョン 2.2.6 に含まれるコンポーネントのバージョン

コンポーネント バージョン

Istio 1.12.9

Envoy プロキシー 1.20.8

Jaeger 1.39

Kiali 1.48.5

1.2.27.30. Red Hat OpenShift Service Mesh バージョン 2.2.5 の新機能

このリリースの Red Hat OpenShift Service Mesh には、CVE (Common Vulnerabilities and Exposures)
への対応、バグ修正が含まれています。このリリースは、Red Hat OpenShift Service on AWS 4.9 以降
でサポートされます。

1.2.27.30.1. Red Hat OpenShift Service Mesh バージョン 2.2.5 に含まれるコンポーネントのバージョン

コンポーネント バージョン

Istio 1.12.9

Red Hat OpenShift Service on AWS 4 Service Mesh

36

Envoy プロキシー 1.20.8

Jaeger 1.39

Kiali 1.48.3

コンポーネント バージョン

1.2.27.31. Red Hat OpenShift Service Mesh バージョン 2.2.4 の新機能

このリリースの Red Hat OpenShift Service Mesh には、CVE (Common Vulnerabilities and Exposures)
への対応、バグ修正が含まれています。このリリースは、Red Hat OpenShift Service on AWS 4.9 以降
でサポートされます。

1.2.27.31.1. Red Hat OpenShift Service Mesh バージョン 2.2.4 に含まれるコンポーネントのバージョン

コンポーネント バージョン

Istio 1.12.9

Envoy プロキシー 1.20.8

Jaeger 1.36.14

Kiali 1.48.3

1.2.27.32. Red Hat OpenShift Service Mesh バージョン 2.2.3 の新機能

このリリースの Red Hat OpenShift Service Mesh は、共通脆弱性および漏洩 (CVE) に対処し、バグ修
正を行っており、Red Hat OpenShift Service on AWS 4.9 以降でサポートされています。

1.2.27.32.1. Red Hat OpenShift Service Mesh バージョン 2.2.3 に含まれるコンポーネントのバージョン

コンポーネント バージョン

Istio 1.12.9

Envoy プロキシー 1.20.8

Jaeger 1.36

Kiali 1.48.3

1.2.27.33. Red Hat OpenShift Service Mesh バージョン 2.2.2 の新機能

このリリースの Red Hat OpenShift Service Mesh は、共通脆弱性および漏洩 (CVE) に対処し、バグ修
正を行っており、Red Hat OpenShift Service on AWS 4.9 以降でサポートされています。

第1章 SERVICE MESH 2.X

37

1.2.27.33.1. Red Hat OpenShift Service Mesh バージョン 2.2.2 に含まれるコンポーネントのバージョン

コンポーネント バージョン

Istio 1.12.7

Envoy プロキシー 1.20.6

Jaeger 1.36

Kiali 1.48.2-1

1.2.27.33.2. ルートラベルのコピー

この機能強化により、アノテーションのコピーに加えて、OpenShift ルートの特定のラベルをコピーで
きます。Red Hat OpenShift Service Mesh は、Istio Gateway リソースに存在するすべてのラベルとア
ノテーション (kubectl.kubernetes.io で始まるアノテーションを除く) をマネージドの OpenShift Route
リソースにコピーします。

1.2.27.34. Red Hat OpenShift Service Mesh バージョン 2.2.1 の新機能

このリリースの Red Hat OpenShift Service Mesh は、共通脆弱性および漏洩 (CVE) に対処し、バグ修
正を行っており、Red Hat OpenShift Service on AWS 4.9 以降でサポートされています。

1.2.27.34.1. Red Hat OpenShift Service Mesh バージョン 2.2.1 に含まれるコンポーネントのバージョン

コンポーネント バージョン

Istio 1.12.7

Envoy プロキシー 1.20.6

Jaeger 1.34.1

Kiali 1.48.2-1

1.2.27.35. Red Hat OpenShift Service Mesh 2.2 の新機能

このリリースの Red Hat OpenShift Service Mesh は、新しい機能と拡張機能を追加し、Red Hat
OpenShift Service on AWS 4.9 以降のバージョンでサポートされています。

1.2.27.35.1. Red Hat OpenShift Service Mesh バージョン 2.2 に含まれるコンポーネントのバージョン

コンポーネント バージョン

Istio 1.12.7

Red Hat OpenShift Service on AWS 4 Service Mesh

38

Envoy プロキシー 1.20.4

Jaeger 1.34.1

Kiali 1.48.0.16

コンポーネント バージョン

1.2.27.35.2. WasmPlugin API

このリリースでは、WasmPlugin API のサポートが追加され、ServiceMeshExtension が非推奨になり
ました。

1.2.27.35.3. ROSA サポート

このリリースでは、マルチクラスターフェデレーションを含む Red Hat OpenShift on AWS (ROSA) の
Service Mesh サポートが導入されています。

1.2.27.35.4. istio-node DaemonSet の名前変更

このリリースでは、istio-node DaemonSet の名前が istio-cni-node に変更になり、アップストリーム
Istio の名前と同じになりました。

1.2.27.35.5. エンボイサイドカーネットワークの変更

Istio 1.10 は、デフォルトで lo ではなく eth0 を使用してトラフィックをアプリケーションコンテナーに
送信するように Envoy を更新しました。

1.2.27.35.6. Service Mesh コントロールプレーン 1.1

このリリースは、すべてのプラットフォームでの Service Mesh 1.1 に基づく Service Mesh コントロール
プレーンのサポートの終了を示します。

1.2.27.35.7. Istio 1.12 サポート

Service Mesh 2.2 は Istio 1.12 に基づいており、新機能と製品の機能強化をもたらします。多くの Istio
1.12 機能がサポートされていますが、サポートされていない次の機能に注意する必要があります。

AuthPolicy ドライランはテクノロジープレビュー機能です。

gRPC Proxyless Service Mesh は、テクノロジープレビュー機能です。

Telemetry API は、テクノロジープレビュー機能です。

ディスカバリーセレクターはサポート対象外の機能です。

外部コントロールプレーンはサポート対象外の機能です。

ゲートウェイインジェクションはサポート対象外の機能です。

1.2.27.35.7.1. Gateway API CRD のインストール

Gateway API CRD は、デフォルトでは OpenShift クラスターにプリインストールされていません。

第1章 SERVICE MESH 2.X

39

Gateway API CRD は、デフォルトでは OpenShift クラスターにプリインストールされていません。
SMCP で Gateway API サポートを有効にする前に、CRD をインストールします。

1.2.27.35.7.2. Kubernetes Gateway API の有効化

この機能を有効にするには、ServiceMeshControlPlane で Istiod コンテナーに次の環境変数を設定し
ます。

ゲートウェイ API リスナーでのルート接続を制限するには、SameNamespace または All 設定を使用
します。Istio は、listeners.allowedRoutes.namespaces のラベルセレクターの使用を無視し、デフォ
ルトの動作 (SameNamespace) に戻します。

1.2.27.35.7.3. 手動によるゲートウェイリソースへの既存ゲートウェイのリンク

Kubernetes API デプロイメントコントローラーが無効になっている場合は、ingress ゲートウェイを手
動でデプロイし、作成されたゲートウェイリソースにリンクする必要があります。

1.2.27.36. Red Hat OpenShift Service Mesh 2.1.6 の新機能

このリリースの Red Hat OpenShift Service Mesh には、CVE (Common Vulnerabilities and Exposures)
への対応、バグ修正が含まれています。このリリースは、Red Hat OpenShift Service on AWS 4.9 以降
でサポートされます。

1.2.27.36.1. Red Hat OpenShift Service Mesh バージョン 2.1.6 に含まれるコンポーネントのバージョン

コンポーネント バージョン

Istio 1.9.9

$ kubectl get crd gateways.gateway.networking.k8s.io || { kubectl kustomize "github.com/kubernetes-
sigs/gateway-api/config/crd?ref=v0.4.0" | kubectl apply -f -; }

spec:
 runtime:
 components:
 pilot:
 container:
 env:
 PILOT_ENABLE_GATEWAY_API: "true"
 PILOT_ENABLE_GATEWAY_API_STATUS: "true"
 # and optionally, for the deployment controller
 PILOT_ENABLE_GATEWAY_API_DEPLOYMENT_CONTROLLER: "true"

 apiVersion: gateway.networking.k8s.io/v1alpha2
 kind: Gateway
 metadata:
 name: gateway
 spec:
 addresses:
 - value: ingress.istio-gateways.svc.cluster.local
 type: Hostname

Red Hat OpenShift Service on AWS 4 Service Mesh

40

Envoy プロキシー 1.17.5

Jaeger 1.36

Kiali 1.36.16

コンポーネント バージョン

1.2.27.37. Red Hat OpenShift Service Mesh 2.1.5.2 の新機能

このリリースの Red Hat OpenShift Service Mesh には、CVE (Common Vulnerabilities and Exposures)
への対応、バグ修正が含まれています。このリリースは、Red Hat OpenShift Service on AWS 4.9 以降
でサポートされます。

1.2.27.37.1. Red Hat OpenShift Service Mesh バージョン 2.1.5.2 に含まれるコンポーネントのバージョ
ン

コンポーネント バージョン

Istio 1.9.9

Envoy プロキシー 1.17.5

Jaeger 1.36

Kiali 1.24.17

1.2.27.38. Red Hat OpenShift Service Mesh 2.1.5.1 の新機能

このリリースの Red Hat OpenShift Service Mesh は、共通脆弱性および漏洩 (CVE) に対処し、バグ修
正を行っており、Red Hat OpenShift Service on AWS 4.9 以降でサポートされています。

1.2.27.38.1. Red Hat OpenShift Service Mesh バージョン 2.1.5.1 に含まれるコンポーネントのバージョ
ン

コンポーネント バージョン

Istio 1.9.9

Envoy プロキシー 1.17.5

Jaeger 1.36

Kiali 1.36.13

1.2.27.39. Red Hat OpenShift Service Mesh 2.1.5 の新機能

第1章 SERVICE MESH 2.X

41

このリリースの Red Hat OpenShift Service Mesh は、共通脆弱性および漏洩 (CVE) に対処し、バグ修
正を行っており、Red Hat OpenShift Service on AWS 4.9 以降でサポートされています。

1.2.27.39.1. Red Hat OpenShift Service Mesh バージョン 2.1.5 に含まれるコンポーネントのバージョン

コンポーネント バージョン

Istio 1.9.9

Envoy プロキシー 1.17.1

Jaeger 1.36

Kiali 1.36.12-1

1.2.27.40. Red Hat OpenShift Service Mesh 2.1.4 の新機能

Red Hat OpenShift Service Mesh のこのリリースでは、Common Vulnerabilities and Exposures (CVE)
およびバグ修正に対応しています。

1.2.27.40.1. Red Hat OpenShift Service Mesh バージョン 2.1.4 に含まれるコンポーネントのバージョン

コンポーネント バージョン

Istio 1.9.9

Envoy プロキシー 1.17.1

Jaeger 1.30.2

Kiali 1.36.12-1

1.2.27.41. Red Hat OpenShift Service Mesh 2.1.3 の新機能

Red Hat OpenShift Service Mesh のこのリリースでは、Common Vulnerabilities and Exposures (CVE)
およびバグ修正に対応しています。

1.2.27.41.1. Red Hat OpenShift Service Mesh バージョン 2.1.3 に含まれるコンポーネントのバージョン

コンポーネント バージョン

Istio 1.9.9

Envoy プロキシー 1.17.1

Jaeger 1.30.2

Red Hat OpenShift Service on AWS 4 Service Mesh

42

Kiali 1.36.10-2

コンポーネント バージョン

1.2.27.42. Red Hat OpenShift Service Mesh 2.1.2.1 の新機能

Red Hat OpenShift Service Mesh のこのリリースでは、Common Vulnerabilities and Exposures (CVE)
およびバグ修正に対応しています。

1.2.27.42.1. Red Hat OpenShift Service Mesh バージョン 2.1.2.1 に含まれるコンポーネントのバージョ
ン

コンポーネント バージョン

Istio 1.9.9

Envoy プロキシー 1.17.1

Jaeger 1.30.2

Kiali 1.36.9

1.2.27.43. Red Hat OpenShift Service Mesh 2.1.2 の新機能

Red Hat OpenShift Service Mesh のこのリリースでは、Common Vulnerabilities and Exposures (CVE)
およびバグ修正に対応しています。

このリリースでは、Red Hat OpenShift 分散トレーシング Platform (Jaeger) Operator が、デフォルト
で openshift-distributed-tracing 名前空間にインストールされるようになりました。以前のリリースで
は、デフォルトのインストールは openshift-operator namespace にありました。

1.2.27.43.1. Red Hat OpenShift Service Mesh バージョン 2.1.2 に含まれるコンポーネントのバージョン

コンポーネント バージョン

Istio 1.9.9

Envoy プロキシー 1.17.1

Jaeger 1.30.1

Kiali 1.36.8

1.2.27.44. Red Hat OpenShift Service Mesh 2.1.1 の新機能

Red Hat OpenShift Service Mesh のこのリリースでは、Common Vulnerabilities and Exposures (CVE)
およびバグ修正に対応しています。

第1章 SERVICE MESH 2.X

43

このリリースでは、ネットワークポリシーの自動作成を無効にする機能も追加されています。

1.2.27.44.1. Red Hat OpenShift Service Mesh バージョン 2.1.1 に含まれるコンポーネントのバージョン

コンポーネント バージョン

Istio 1.9.9

Envoy プロキシー 1.17.1

Jaeger 1.24.1

Kiali 1.36.7

1.2.27.44.2. ネットワークポリシーの無効化

Red Hat OpenShift Service Mesh は、Service Mesh コントロールプレーンおよびアプリケーションネー
ムスペースで多数の NetworkPolicies リソースを自動的に作成し、管理します。これは、アプリケー
ションとコントロールプレーンが相互に通信できるようにするために使用されます。

NetworkPolicies リソースの自動作成および管理を無効にする場合 (例: 会社のセキュリティーポリシー
を適用する場合など) は、これを実行できます。ServiceMeshControlPlane を編集して
spec.security.manageNetworkPolicy 設定を falseに設定できます。

注記

spec.security.manageNetworkPolicy を無効にすると、Red Hat OpenShift Service
Mesh は、NetworkPolicy オブジェクトをひとつも作成しません。システム管理者は、
ネットワークを管理し、この原因の問題を修正します。

手順

1. Red Hat OpenShift Service on AWS Web コンソールで、Operators → Installed Operators を
クリックします。

2. Project メニューから、Service Mesh コントロールプレーンをインストールしたプロジェクト
(例: istio-system) を選択します。

3. Red Hat OpenShift Service Mesh Operator をクリックします。Istio Service Mesh Control
Plane 列で、ServiceMeshControlPlane の名前 (basic-install など) をクリックします。

4. Create ServiceMeshControlPlane Details ページで、YAML をクリックして設定を変更しま
す。

5. 以下の例のように、ServiceMeshControlPlane フィールド
spec.security.manageNetworkPolicy を false に設定します。

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
spec:

Red Hat OpenShift Service on AWS 4 Service Mesh

44

6. Save をクリックします。

1.2.27.45. Red Hat OpenShift Service Mesh 2.1 の新機能および機能拡張

このリリースの Red Hat OpenShift Service Mesh では、Istio 1.9.8、Envoy Proxy 1.17.1、Jaeger 1.24.1、
および Kiali 1.36.5 のサポートと新機能および機能拡張が Red Hat OpenShift Service on AWS 4.6 EUS、
4.7、4.8、および 4.9 で追加されました。

1.2.27.45.1. Red Hat OpenShift Service Mesh バージョン 2.1 に含まれるコンポーネントのバージョン

コンポーネント バージョン

Istio 1.9.6

Envoy プロキシー 1.17.1

Jaeger 1.24.1

Kiali 1.36.5

1.2.27.45.2. Service Mesh のフェデレーション

Service Mesh をフェデレーションできるように新規のカスタムリソース定義 (CRD) が追加されまし
た。Service Mesh は、同じクラスター内または異なる OpenShift クラスター間でフェデレーションを
行うことができます。これらの新規リソースには以下が含まれます。

ServiceMeshPeer: ゲートウェイ設定、ルート信頼証明書設定、ステータスフィールドなど、
別の Service Mesh でのフェデレーションを定義します。フェデレーションされたメッシュのペ
アでは、各メッシュは独自の ServiceMeshPeer リソースを個別に定義します。

ExportedServiceMeshSet: ピアメッシュのインポートに利用できる特定の ServiceMeshPeer
サービスを定義します。

ImportedServiceSet: ピアメッシュからインポートする特定の ServiceMeshPeer のサービスを
定義します。これらのサービスは、ピアの ExportedServiceMeshSet リソースで利用できるよ
うにする必要もあります。

Service Mesh フェデレーションは、Red Hat OpenShift Service on AWS (ROSA) または OpenShift
Dedicated (OSD) 上のクラスター間ではサポートされていません。

1.2.27.45.3. OVN-Kubernetes Container Network Interface (CNI) の一般提供

OVN-Kubernetes Container Network Interface (CNI) は、以前は Red Hat OpenShift Service Mesh 2.0.1
のテクノロジープレビュー機能として導入されましたが、Red Hat OpenShift Service on AWS 4.7.32、
Red Hat OpenShift Service on AWS 4.8.12、および Red Hat OpenShift Service on AWS 4.9 で使用でき
るように Red Hat OpenShift Service Mesh 2.1 および 2.0.x で一般提供されています。

1.2.27.45.4. Service Mesh WebAssembly (WASM) 拡張

 security:
 trust:
 manageNetworkPolicy: false

第1章 SERVICE MESH 2.X

45

ServiceMeshExtensions カスタムリソース定義 (CRD) は、最初に 2.0 でテクノロジープレビュー機能
として導入され、今回のバージョンで一般公開されました。CRD を使用して独自のプラグインを構築
できますが、Red Hat では独自に作成したプラグインはサポートしていません。

Mixer は Service Mesh 2.1 で完全に削除されました。Mixer が有効な場合は、Service Mesh 2.0.x リリー
スから 2.1 へのアップグレードは、ブロックされます。Mixer プラグインは WebAssembly 拡張に移植す
る必要があります。

1.2.27.45.5. 3scale WebAssembly Adapter (WASM)

Mixer が正式に削除されたため、OpenShift 3scale mixer アダプターは、Service Mesh 2.1 ではサポート
対象外となっています。Service Mesh 2.1 にアップグレードする前に、Mixer ベースの 3scale アダプ
ターと追加の Mixer プラグインを削除します。次に、ServiceMeshExtension リソースを使用して、新
しい 3scale WebAssembly アダプターを Service Mesh 2.1 以上で手動でインストールして設定します。

3scale 2.11 では、WebAssembly に基づく更新された Service Mesh の統合が導入されました。

1.2.27.45.6. Istio 1.9 サポート

Service Mesh 2.1 は Istio 1.9 をベースとしており、製品の新機能および機能拡張が数多く追加されまし
た。Istio 1.9 の大半の機能がサポートされていますが、以下の例外に注意してください。

仮想マシンの統合はまだサポートされていません。

Kubernetes Gateway API はまだサポートされていません。

WebAssembly HTTP フィルターのリモートフェッチおよびロードはサポートされていません。

Kubernetes CSR API を使用したカスタム CA 統合はまだサポートされていません。

トラフィック監視要求の分類機能はテクノロジープレビュー機能です。

Authorization ポリシーの CUSTOM アクションによる外部承認システムとの統合はテクノロ
ジープレビュー機能です。

1.2.27.45.7. Service Mesh Operator のパフォーマンス向上

各 ServiceMeshControlPlane の調整の終了時に、Red Hat OpenShift Service Mesh が以前のリソース
のプルーニングに使用する期間が短縮されました。これにより、ServiceMeshControlPlane のデプロ
イメントにかかる時間が短縮され、既存の SMCP に適用される変更がこれまでよりも早く有効になり
ます。

1.2.27.45.8. Kiali の更新

Kiali 1.36 には、以下の機能と拡張機能が含まれています。

Service Mesh のトラブルシューティング機能

コントロールプレーンおよびゲートウェイの監視

プロキシーの同期ステータス

Envoy 設定ビュー

Envoy プロキシーおよびアプリケーションログのインターリーブを示す統合ビュー

フェデレーションされた Service Mesh ビューをサポートする namespace およびクラスター

Red Hat OpenShift Service on AWS 4 Service Mesh

46

フェデレーションされた Service Mesh ビューをサポートする namespace およびクラスター
ボックス

新しい検証、ウィザード、および分散トレースの機能拡張

1.2.27.46. Red Hat OpenShift Service Mesh 2.0.11.1 の新機能

このリリースの Red Hat OpenShift Service Mesh には、CVE (Common Vulnerabilities and Exposures)
への対応、バグ修正が含まれています。このリリースは、Red Hat OpenShift Service on AWS 4.9 以降
でサポートされます。

1.2.27.46.1. Red Hat OpenShift Service Mesh バージョン 2.0.11.1 に含まれるコンポーネントのバージョ
ン

コンポーネント バージョン

Istio 1.6.14

Envoy プロキシー 1.14.5

Jaeger 1.36

Kiali 1.24.17

1.2.27.47. Red Hat OpenShift Service Mesh 2.0.11 の新機能

このリリースの Red Hat OpenShift Service Mesh には、CVE (Common Vulnerabilities and Exposures)
への対応、バグ修正が含まれています。このリリースは、Red Hat OpenShift Service on AWS 4.9 以降
でサポートされます。

1.2.27.47.1. Red Hat OpenShift Service Mesh バージョン 2.0.11 に含まれるコンポーネントのバージョ
ン

コンポーネント バージョン

Istio 1.6.14

Envoy プロキシー 1.14.5

Jaeger 1.36

Kiali 1.24.16-1

1.2.27.48. Red Hat OpenShift Service Mesh 2.0.10 の新機能

Red Hat OpenShift Service Mesh のこのリリースでは、Common Vulnerabilities and Exposures (CVE)
およびバグ修正に対応しています。

1.2.27.48.1. Red Hat OpenShift Service Mesh バージョン 2.0.10 に含まれるコンポーネントのバージョ

第1章 SERVICE MESH 2.X

47

1.2.27.48.1. Red Hat OpenShift Service Mesh バージョン 2.0.10 に含まれるコンポーネントのバージョ
ン

コンポーネント バージョン

Istio 1.6.14

Envoy プロキシー 1.14.5

Jaeger 1.28.0

Kiali 1.24.16-1

1.2.27.49. Red Hat OpenShift Service Mesh 2.0.9 の新機能

Red Hat OpenShift Service Mesh のこのリリースでは、Common Vulnerabilities and Exposures (CVE)
およびバグ修正に対応しています。

1.2.27.49.1. Red Hat OpenShift Service Mesh バージョン 2.0.9 に含まれるコンポーネントのバージョ
ン

コンポーネント バージョン

Istio 1.6.14

Envoy プロキシー 1.14.5

Jaeger 1.24.1

Kiali 1.24.11

1.2.27.50. Red Hat OpenShift Service Mesh 2.0.8 の新機能

このリリースの Red Hat OpenShift Service Mesh では、バグ修正に対応しています。

1.2.27.51. Red Hat OpenShift Service Mesh 2.0.7.1 の新機能

Red Hat OpenShift Service Mesh のこのリリースでは、Common Vulnerabilities and Exposures (CVE)
に対応しています。

1.2.27.51.1. Red Hat OpenShift Service Mesh が URI フラグメントを処理する方法の変更

Red Hat OpenShift Service Mesh には、リモートで悪用可能な脆弱性 CVE-2021-39156 が含まれてお
り、URI パスにフラグメント (URI の末尾が # 文字で始まるセクション) を含む HTTP リクエストが
Istio URI パスベースの認証ポリシーを無視する可能性があります。たとえば、Istio 認証ポリシーは URI
パス /user/profile に送信される要求を拒否します。脆弱なバージョンでは、URI パス
/user/profile#section1 のリクエストは、deny ポリシーと、(正規化された URI path
/user/profile%23section1 を使用する) バックエンドへのルートを無視するため、セキュリティーのイ
ンシデントにつながる可能性があります。

DENY アクションおよび operation.paths、または ALLOW アクションおよび operation.notPaths で

Red Hat OpenShift Service on AWS 4 Service Mesh

48

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-39156

DENY アクションおよび operation.paths、または ALLOW アクションおよび operation.notPaths で
認可ポリシーを使用する場合は、この脆弱性の影響を受けます。

軽減策により、リクエストの URI の断片部分が、承認とルーティングの前に削除されます。これによ
り、URI のフラグメントを持つ要求が、フラグメントの一部のない URI をベースとする認可ポリシーが
無視できなくなります。

軽減策の新しい動作からオプトインするには、URI の fragment セクションが保持されま
す。ServiceMeshControlPlane を設定して URI フラグメントを保持できます。

警告

新しい動作を無効にすると、上記のようにパスを正規化し、安全でないと見なされ
ます。URI フラグメントを保持することを選択する前に、セキュリティーポリシー
でこれに対応していることを確認してください。

ServiceMeshControlPlane の変更例

1.2.27.51.2. 認証ポリシーに必要な更新

Istio はホスト名自体とすべての一致するポートの両方にホスト名を生成します。たとえば、
"httpbin.foo" のホストの仮想サービスまたはゲートウェイは、"httpbin.foo and httpbin.foo:*" に一致す
る設定を生成します。ただし、完全一致許可ポリシーは、hosts または notHosts フィールドに指定さ
れた完全一致文字列にのみ一致します。

ルールの正確な文字列比較を使用して hosts または notHosts を決定する AuthorizationPolicy リソー
スがある場合、クラスターは影響を受けます。

完全一致ではなく接頭辞一致を使用するように、認証ポリシー ルール を更新する必要があります。た
とえば、最初の AuthorizationPolicy の例で hosts: ["httpbin.com"] を hosts: ["httpbin.com:*"] に置
き換えます。

接頭辞一致を使用した最初の AuthorizationPolicy の例



apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
metadata:
 name: basic
spec:
 techPreview:
 meshConfig:
 defaultConfig:
 proxyMetadata: HTTP_STRIP_FRAGMENT_FROM_PATH_UNSAFE_IF_DISABLED: "false"

apiVersion: security.istio.io/v1beta1
kind: AuthorizationPolicy
metadata:
 name: httpbin
 namespace: foo
spec:

第1章 SERVICE MESH 2.X

49

https://istio.io/latest/docs/reference/config/security/authorization-policy/#Operation
https://istio.io/latest/docs/reference/config/security/authorization-policy/#Rule

接頭辞一致を使用した 2 つ目の AuthorizationPolicy の例

1.2.27.52. Red Hat OpenShift Service Mesh 2.0.7 の新機能

Red Hat OpenShift Service Mesh のこのリリースでは、Common Vulnerabilities and Exposures (CVE)
およびバグ修正に対応しています。

1.2.27.53. Red Hat OpenShift Dedicated 上の Red Hat OpenShift Service Mesh

Red Hat OpenShift Service Mesh は、Red Hat OpenShift Dedicated でサポートされるようになりまし
た。

1.2.27.54. Red Hat OpenShift Service Mesh 2.0.6 の新機能

Red Hat OpenShift Service Mesh のこのリリースでは、Common Vulnerabilities and Exposures (CVE)
およびバグ修正に対応しています。

1.2.27.55. Red Hat OpenShift Service Mesh 2.0.5 の新機能

Red Hat OpenShift Service Mesh のこのリリースでは、Common Vulnerabilities and Exposures (CVE)
およびバグ修正に対応しています。

1.2.27.56. Red Hat OpenShift Service Mesh 2.0.4 の新機能

Red Hat OpenShift Service Mesh のこのリリースでは、Common Vulnerabilities and Exposures (CVE)
およびバグ修正に対応しています。

重要

CVE-2021-29492 および CVE-2021-31920 に対応するために、手動による手順を完了す
る必要があります。

 action: DENY
 rules:
 - from:
 - source:
 namespaces: ["dev"]
 to:
 - operation:
 hosts: [“httpbin.com”,"httpbin.com:*"]

apiVersion: security.istio.io/v1beta1
kind: AuthorizationPolicy
metadata:
 name: httpbin
 namespace: default
spec:
 action: DENY
 rules:
 - to:
 - operation:
 hosts: ["httpbin.example.com:*"]

Red Hat OpenShift Service on AWS 4 Service Mesh

50

1.2.27.56.1. CVE-2021-29492 および CVE-2021-31920 で必要な手動による更新

Istio にはリモートで悪用可能な脆弱性があり、複数のスラッシュまたはエスケープされたスラッシュ文
字 (%2F または %5C) を持つ HTTP リクエストパスが、パスベースの認証ルールが使用される場合に
Istio 認証ポリシーを無視する可能性があります。

たとえば、Istio クラスター管理者が、パス /admin での要求を拒否する認証 DENY ポリシーを定義する
と仮定します。URL パス //admin に送信される要求は、認証ポリシーには拒否されません。

RFC 3986 に応じて、複数のスラッシュを持つパス //admin は、/admin とは異なるパスとして処理さ
れる必要があります。ただし、一部のバックエンドサービスは、複数のスラッシュを単一のスラッシュ
にマージして URL パスを正規化することを選択します。これにより、認証ポリシーがバイパスされ
(//admin は /admin に一致しない)、ユーザーはバックエンドのパス (/admin) でリソースにアクセスで
きます。これは、セキュリティーのインシデントを表します。

ALLOW action + notPaths フィールドまたは DENY action + paths field パターンを使用する認証ポリ
シーがある場合、クラスターはこの脆弱性の影響を受けます。これらのパターンは、予期しないポリ
シーのバイパスに対して脆弱です。

以下の場合、クラスターはこの脆弱性の影響を受けません。

認証ポリシーがありません。

認証ポリシーは、paths フィールドまたは notPaths フィールドを定義しません。

認証ポリシーは、ALLOW action + paths フィールドまたは DENY action + notPaths フィー
ルドのパターンを使用します。これらのパターンは、ポリシーのバイパスではなく、予期しな
い拒否を生じさせる可能性があります。このような場合、アップグレードは任意です。

注記

パスの正規化向けの Red Hat OpenShift Service Mesh 設定の場所は、Istio 設定とは異な
ります。

1.2.27.56.2. パスの正規化設定の更新

Istio 認証ポリシーは、HTTP リクエストの URL パスをベースとする場合があります。URI の正規化と
して知られる パスの正規化 は、正規化されたパスを標準の方法で処理できるように、受信要求のパス
を変更し、標準化します。構文の異なるパスは、パスの正規化後と同一になる場合があります。

Istio は、認証ポリシーに対して評価し、要求をルーティングする前の、要求パスでの以下の正規化ス
キームをサポートします。

表1.1 正規化スキーム

オプション 説明 例 注記

NONE 正規化は行われません。
Envoy が受信する内容は
そのまますべて、どの
バックエンドサービスに
も完全に転送されます。

../%2fa../b は認証ポリ
シーによって評価され、
サービスに送信されま
す。

この設定は CVE-2021-
31920 に対して脆弱で
す。

第1章 SERVICE MESH 2.X

51

https://tools.ietf.org/html/rfc3986#section-6
https://en.wikipedia.org/wiki/URI_normalization

BASE 現時点で、これは Istio
の デフォルト インス
トールで使用されるオプ
ションです。これによ
り、Envoy プロキシーで
normalize_path オプ
ションが適用されます。
これは、追加の正規化に
おいて RFC 3986 に従
い、バックスラッシュを
フォワードスラッシュに
変換します。

/a/../b は /b に正規化さ
れます。\da は /da に正
規化されます。

この設定は CVE-2021-
31920 に対して脆弱で
す。

MERGE_SLASHES スラッシュは BASE の
正規化後にマージされま
す。

/a//b は /a/b に正規化さ
れます。

この設定に対して更新を
行い、CVE-2021-31920
のリスクを軽減します。

DECODE_AND_MER
GE_SLASHES

デフォルトですべてのト
ラフィックを許可する場
合の最も厳密な設定で
す。この設定の場合は、
認証ポリシーのルートを
詳細にテストする必要が
ある点に注意してくださ
い。パーセントでエン
コードされた スラッ
シュおよびバックスラッ
シュ文字
(%2F、%2f、%5C お
よび %5c)
は、MERGE_SLASHE
S の正規化の前に / また
は \ にデコードされま
す。

/a%2fb は /a/b に正規化
されます。

この設定に対して更新を
行い、CVE-2021-31920
のリスクを軽減します。
この設定はより安全です
が、アプリケーションが
破損する可能性がありま
す。実稼働環境にデプロ
イする前にアプリケー
ションをテストします。

オプション 説明 例 注記

正規化アルゴリズムは以下の順序で実行されます。

1. パーセントでデコードされた %2F、%2f、%5C および %5c。

2. Envoy の normalize_path オプションで実装された RFC 3986 およびその他の正規化。

3. スラッシュをマージします。

Red Hat OpenShift Service on AWS 4 Service Mesh

52

https://www.envoyproxy.io/docs/envoy/latest/api-v3/extensions/filters/network/http_connection_manager/v3/http_connection_manager.proto#envoy-v3-api-field-extensions-filters-network-http-connection-manager-v3-httpconnectionmanager-normalize-path
https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc3986#section-2.1
https://www.envoyproxy.io/docs/envoy/latest/api-v3/extensions/filters/network/http_connection_manager/v3/http_connection_manager.proto#envoy-v3-api-field-extensions-filters-network-http-connection-manager-v3-httpconnectionmanager-normalize-path
https://tools.ietf.org/html/rfc3986

警告

これらの正規化オプションは HTTP 標準および一般的な業界プラクティスの推奨事
項を表しますが、アプリケーションは独自に選択したいずれかの方法で URL を解
釈する場合があります。拒否ポリシーを使用する場合は、アプリケーションの動作
を把握している必要があります。

1.2.27.56.3. パスの正規化設定の例

Envoy がバックエンドサービスの期待値に一致するように要求パスを正規化することは、システムのセ
キュリティーを保護する上で非常に重要です。以下の例は、システムを設定するための参考として使用
できます。正規化された URL パス、または NONE が選択されている場合、元の URL パスは以下のよ
うになります。

1. 認証ポリシーの確認に使用されます。

2. バックエンドアプリケーションに転送されます。

表1.2 設定例

アプリケーションの条件 選択内容

プロキシーを使用して正規化を行う。 BASE、MERGE_SLASHES、または
DECODE_AND_MERGE_SLASHES

RFC 3986 に基づいて要求パスを正規化し、スラッ
シュをマージしない。

BASE

RFC 3986 に基づいて要求パスを正規化し、スラッ
シュをマージするが、パーセントでエンコードされ
た スラッシュをデコードしない。

MERGE_SLASHES

RFC 3986 に基づいて要求パスを正規化し、パーセ
ントでエンコードされた スラッシュをデコードし、
スラッシュをマージする。

DECODE_AND_MERGE_SLASHES

RFC 3986 と互換性のない方法で要求パスを処理す
る。

NONE

1.2.27.56.4. パスを正規化するための SMCP の設定

Red Hat OpenShift Service Mesh のパスの正規化を設定するには、ServiceMeshControlPlane で以下
を指定します。設定例を使用すると、システムの設定を判断するのに役立ちます。

SMCP v2 pathNormalization



spec:
 techPreview:
 global:

第1章 SERVICE MESH 2.X

53

https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc3986#section-2.1
https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc3986#section-2.1
https://tools.ietf.org/html/rfc3986

1.2.27.56.5. ケース正規化 (case normalization) の設定

環境によっては、大文字と小文字を区別しない場合の比較用に 2 つのパスを認証ポリシーに用意すると
便利な場合があります。たとえば、https://myurl/get と https://myurl/GeT を同等なものとして扱いま
す。このような場合は、以下に示されている EnvoyFilter を使用できます。このフィルターは、比較用
に使用されるパスとアプリケーションに表示されるパスの両方を変更します。この例では、istio-
system が Service Mesh コントロールプレーンプロジェクトの名前となります。

EnvoyFilter をファイルに保存して、以下のコマンドを実行します。

1.2.27.57. Red Hat OpenShift Service Mesh 2.0.3 の新機能

Red Hat OpenShift Service Mesh のこのリリースでは、Common Vulnerabilities and Exposures (CVE)
およびバグ修正に対応しています。

また、このリリースには以下の新機能があります。

指定された Service Mesh コントロールプレーン namespace から情報を収集する must-gather
データ収集ツールにオプションが追加されました。詳細は、OSSM-351 を参照してください。

数百の namespace が含まれる Service Mesh コントロールプレーンのパフォーマンスの向上

 pathNormalization: <option>

$ oc create -f <myEnvoyFilterFile>

apiVersion: networking.istio.io/v1alpha3
kind: EnvoyFilter
metadata:
 name: ingress-case-insensitive
 namespace: istio-system
spec:
 configPatches:
 - applyTo: HTTP_FILTER
 match:
 context: GATEWAY
 listener:
 filterChain:
 filter:
 name: "envoy.filters.network.http_connection_manager"
 subFilter:
 name: "envoy.filters.http.router"
 patch:
 operation: INSERT_BEFORE
 value:
 name: envoy.lua
 typed_config:
 "@type": "type.googleapis.com/envoy.extensions.filters.http.lua.v3.Lua"
 inlineCode: |
 function envoy_on_request(request_handle)
 local path = request_handle:headers():get(":path")
 request_handle:headers():replace(":path", string.lower(path))
 end

Red Hat OpenShift Service on AWS 4 Service Mesh

54

https://myurl/get
https://myurl/GeT
https://issues.redhat.com/browse/OSSM-351

1.2.27.58. Red Hat OpenShift Service Mesh 2.0.2 の新機能

Red Hat OpenShift Service Mesh のこのリリースでは、Common Vulnerabilities and Exposures (CVE)
およびバグ修正に対応しています。

1.2.27.59. Red Hat OpenShift Service Mesh 2.0.1 の新機能

Red Hat OpenShift Service Mesh のこのリリースでは、Common Vulnerabilities and Exposures (CVE)
およびバグ修正に対応しています。

1.2.27.60. Red Hat OpenShift Service Mesh 2.0 の新機能

このリリースの Red Hat OpenShift Service Mesh では、Istio 1.6.5、Jaeger 1.20.0、Kiali 1.24.2、3scale
Istio Adapter 2.0、および Red Hat OpenShift Service on AWS 4.6 のサポートが追加されました。

また、このリリースには以下の新機能があります。

Service Mesh コントロールプレーンのインストール、アップグレード、および管理を単純化し
ます。

Service Mesh コントロールプレーンのリソース使用量と起動時間を短縮します。

ネットワークのコントロールプレーン間の通信を削減することで、パフォーマンスが向上しま
す。

Envoy の Secret Discovery Service (SDS) のサポートが追加されました。SDS は、Envoy
サイドカープロキシーにシークレットを提供するためのより安全で効率的なメカニズムで
す。

よく知られているセキュリティーリスクがある Kubernetes シークレットを使用する必要性がな
くなります。

プロキシーが新しい証明書を認識するのに再起動を必要としなくなったため、証明書のロー
テーション時にパフォーマンスが向上します。

WebAssembly 拡張を使用してビルドされる Istio の Telemetry v2 アーキテクチャーのサ
ポートを追加します。この新しいアーキテクチャーにより、パフォーマンスが大幅に改善
されました。

ServiceMeshControlPlane リソースを簡素化された設定を含む v2 に更新し、Service Mesh
コントロールプレーンの管理を容易にします。

1.2.28. 非推奨の機能と削除された機能

以前のリリースで利用可能であった一部の機能が非推奨になるか、削除されました。

非推奨の機能は依然として Red Hat OpenShift Service on AWS に含まれており、引き続きサポートさ
れますが、この製品の今後のリリースで削除されるため、新規デプロイメントでの使用は推奨されませ
ん。

この製品では、削除機能が除去されています。

1.2.28.1. Red Hat OpenShift Service Mesh 2.5 で非推奨化および削除された機能

v2.2 の ServiceMeshControlPlane リソースはサポートされなくなりました。お客様は、新しいバー

第1章 SERVICE MESH 2.X

55

v2.2 の ServiceMeshControlPlane リソースはサポートされなくなりました。お客様は、新しいバー
ジョンの ServiceMeshControlPlane リソースを使用するようにメッシュデプロイメントをアップグ
レードする必要があります。

Red Hat OpenShift 分散トレーシング Platform (Jaeger) Operator のサポートは非推奨になりました。
トレーススパンを収集するには、Red Hat OpenShift 分散トレーシング Platform (Tempo) スタックを
使用します。

OpenShift Elasticsearch Operator のサポートが非推奨になりました。

Istio は、ファーストパーティ JSON Web トークン (JWT) のサポートを削除します。Istio は今後も
サードパーティーの JWT をサポートします。

1.2.28.2. Red Hat OpenShift Service Mesh 2.4 で非推奨化および削除された機能

v2.1 の ServiceMeshControlPlane リソースはサポートされなくなりました。お客様は、新しいバー
ジョンの ServiceMeshControlPlane リソースを使用するようにメッシュデプロイメントをアップグ
レードする必要があります。

Istio OpenShift Routing (IOR) のサポートは非推奨となり、将来のリリースでは削除される予定です。

Grafana のサポートは非推奨となり、将来のリリースでは削除される予定です。

Red Hat OpenShift Service Mesh 2.3 で非推奨となった以下の暗号スイートのサポートは、クライアン
ト側とサーバー側の両方で TLS ネゴシエーションで使用される暗号のデフォルトのリストから削除さ
れました。これらの暗号スイートのいずれかを必要とするサービスにアクセスする必要があるアプリ
ケーションは、プロキシーから TLS 接続が開始されると接続に失敗します。

ECDHE-ECDSA-AES128-SHA

ECDHE-RSA-AES128-SHA

AES128-GCM-SHA256

AES128-SHA

ECDHE-ECDSA-AES256-SHA

ECDHE-RSA-AES256-SHA

AES256-GCM-SHA384

AES256-SHA

1.2.28.3. Red Hat OpenShift Service Mesh 2.3 で非推奨化および削除された機能

次の暗号スイートのサポートは非推奨になりました。将来のリリースでは、クライアント側とサーバー
側の両方で TLS ネゴシエーションに使用されるデフォルトの暗号リストから削除される予定です。

ECDHE-ECDSA-AES128-SHA

ECDHE-RSA-AES128-SHA

AES128-GCM-SHA256

AES128-SHA

Red Hat OpenShift Service on AWS 4 Service Mesh

56

ECDHE-ECDSA-AES256-SHA

ECDHE-RSA-AES256-SHA

AES256-GCM-SHA384

AES256-SHA

Red Hat OpenShift Service Mesh バージョン 2.2 で非推奨化された ServiceMeshExtension API は、
Red Hat OpenShift Service Mesh バージョン 2.3 で廃止されました。ServiceMeshExtension API を使
用している場合、WebAssembly エクステンションを引き続き使用するには WasmPlugin API に移行す
る必要があります。

1.2.28.4. 非推奨になった Red Hat OpenShift Service Mesh 2.2 の機能

ServiceMeshExtension API は、リリース 2.2 で非推奨になり、今後のリリースで削除される予定で
す。ServiceMeshExtension API はリリース 2.2 でも引き続きサポートされますが、お客様は新しい
WasmPlugin API への移行を開始する必要があります。

1.2.28.5. Red Hat OpenShift Service Mesh 2.2 で削除された機能

このリリースは、すべてのプラットフォームでの Service Mesh 1.1 に基づく Service Mesh コントロール
プレーンのサポートの終了を示します。

1.2.28.6. Red Hat OpenShift Service Mesh 2.1 で削除された機能

Service Mesh 2.1 では、Mixer コンポーネントが削除されます。バグ修正およびサポートは、Service
Mesh 2.0 の最後のライフサイクルで提供されます。

Mixer プラグインが有効な場合は、Service Mesh 2.0.x リリースから 2.1 へのアップグレードは続行され
ません。Mixer プラグインは、WebAssembly 拡張に移植する必要があります。

1.2.28.7. 非推奨になった Red Hat OpenShift Service Mesh 2.0 の機能

Mixer コンポーネントはリリース 2.0 で非推奨となり、リリース 2.1 で削除されます。Mixer を使用した
エクステンションの実装はリリース 2.0 でも引き続きサポートされますが、エクステンションを新規の
WebAssembly メカニズムに移行する必要があります。

以下のリソースタイプは Red Hat OpenShift Service Mesh 2.0 でサポートされなくなりました。

Policy (authentication.istio.io/v1alpha1) はサポートされなくなりました。Policy リソースの特
定の設定によっては、同じ効果を実現するために複数のリソースを設定しなければならない場
合があります。

RequestAuthentication (security.istio.io/v1beta1) の使用

PeerAuthentication (security.istio.io/v1beta1) の使用

ServiceMeshPolicy (maistra.io/v1) はサポートされなくなりました。

上記のように RequestAuthentication または PeerAuthentication を使用しますが、
Service Mesh コントロールプレーン namespace に配置します。

RbacConfig (rbac.istio.io/v1alpha1) はサポートされなくなりました。

AuthorizationPolicy (security.istio.io/v1beta1) に置き換わります。これは

第1章 SERVICE MESH 2.X

57

https://istio.io/latest/blog/2020/wasm-announce/

AuthorizationPolicy (security.istio.io/v1beta1) に置き換わります。これは
RbacConfig、ServiceRole、および ServiceRoleBinding の動作を包含します。

ServiceMeshRbacConfig (maistra.io/v1) がサポートされなくなりました。

上記のように AuthorizationPolicy を使用しますが、Service Mesh コントロールプレーン
の namespace に配置します。

ServiceRole (rbac.istio.io/v1alpha1) がサポートされなくなりました。

ServiceRoleBinding (rbac.istio.io/v1alpha1) がサポートされなくなりました。

Kiali では、login および LDAP ストラテジーは非推奨になりました。今後のバージョンでは、
OpenID プロバイダーを使用した認証が導入されます。

1.2.29. 既知の問題

Red Hat OpenShift Service Mesh には以下のような制限が存在します。

Red Hat OpenShift Service Mesh はまだ IPv6 をフルサポートを提供していません。その結果、
Red Hat OpenShift Service Mesh ではデュアルスタッククラスターはサポート対象外です。

グラフレイアウト: Kiali グラフのレイアウトは、アプリケーションのアーキテクチャーや表示
データ (グラフィックノードとその対話の数) によって異なることがあります。すべての状況に
適した単一のレイアウトを作成することは不可能ではないにしても困難であるため、Kiali は複
数の異なるレイアウトの選択肢を提供します。別のレイアウトを選択するには、Graph
Settings メニューから異なる Layout Schema を選択します。

Kiali コンソールから分散トレーシング Platform (Jaeger) や Grafana などの関連サービスに初
めてアクセスする場合は、証明書を受け入れ、Red Hat OpenShift Service on AWS のログイン
認証情報を使用して再認証する必要があります。これは、フレームワークが組み込まれたペー
ジをコンソールで表示する方法に問題があるために生じます。

1.2.29.1. Service Mesh の既知の問題

これらは Red Hat OpenShift Service Mesh の既知の問題です: * OSSM-5556 istio-system ラベルが検出
セレクターと一致しない場合、ゲートウェイはスキップされます。

+ 回避策: ゲートウェイ設定がスキップされないように、検出セレクターと一致するようにコントロール
プレーンの namespace にラベルを付けます。

+ ServiceMeshControlPlane リソースの例

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
metadata:
 name: basic
 namespace: istio-system
spec:
 mode: ClusterWide
 meshConfig:
 discoverySelectors:
 - matchLabels:
 istio-discovery: enabled

Red Hat OpenShift Service on AWS 4 Service Mesh

58

https://issues.redhat.com/browse/MAISTRA-1314
https://issues.redhat.com/browse/OSSM-5556

+ 次に、コマンドラインで次のコマンドを実行します。

+

OSSM-3890 マルチテナントメッシュデプロイメントでゲートウェイ API を使用しようとする
と、次のようなエラーメッセージが生成されます。

マルチテナントメッシュデプロイメントでゲートウェイ API をサポートするには、すべての
ゲートウェイ API カスタムリソース定義 (CRD) ファイルがクラスター内に存在する必要があり
ます。

マルチテナントメッシュデプロイメントでは、CRD スキャンが無効になり、Istio はクラスター
内にどの CRD が存在するかを検出する方法がありません。その結果、Istio はサポートされて
いるすべての Gateway API CRD を監視しようとしますが、それらの CRD の一部が存在しない
場合はエラーが生成されます。

Service Mesh 2.3.1 以降のバージョンは、v1alpha2 と v1beta1 の両方の CRD をサポートしま
す。したがって、マルチテナントメッシュデプロイメントでゲートウェイ API をサポートする
には、両方の CRD バージョンが存在する必要があります。

回避策: 次の例では、kubectl get 操作により v1alpha2 および v1beta1 CRD がインストールさ
れます。URL には追加の experimental セグメントが含まれており、それに応じて既存のスク
リプトが更新されることに注意してください。

OSSM-2042 default という名前の SMCP のデプロイメントが失敗します。SMCP オブジェク
トを作成し、そのバージョンフィールドを v2.3 に設定する場合、オブジェクトの名前は
default にできません。名前が default の場合、コントロールプレーンはデプロイに失敗し、
OpenShift は次のメッセージを含む Warning イベントを生成します。
Error processing component mesh-config: error: [mesh-
config/templates/telemetryv2_1.6.yaml: Internal error occurred: failed calling webhook
"rev.validation.istio.io": Post "https://istiod-default.istio-system.svc:443/validate?
timeout=10s": x509: certificate is valid for istiod.istio-system.svc, istiod-remote.istio-
system.svc, istio-pilot.istio-system.svc, not istiod-default.istio-system.svc, mesh-
config/templates/enable-mesh-permissive.yaml

OSSM-1655 SMCP で mTLS を有効にした後に、Kiali ダッシュボードにエラーが表示されま
す。
SMCP で spec.security.controlPlane.mtls 設定を有効にすると、Kiali コンソールにエラー
メッセージ No subsets defined が表示されます。

 gateways:
 ingress:
 enabled: true

oc label namespace istio-system istio-discovery=enabled

2023-05-02T15:20:42.541034Z error watch error in cluster Kubernetes: failed to list
*v1alpha2.TLSRoute: the server could not find the requested resource (get
tlsroutes.gateway.networking.k8s.io)
2023-05-02T15:20:42.616450Z info kube controller
"gateway.networking.k8s.io/v1alpha2/TCPRoute" is syncing...

$ kubectl get crd gateways.gateway.networking.k8s.io || { kubectl kustomize
"github.com/kubernetes-sigs/gateway-api/config/crd/experimental?ref=v0.5.1" | kubectl apply
-f -; }

第1章 SERVICE MESH 2.X

59

https://issues.redhat.com/browse/OSSM-3890
https://issues.redhat.com/browse/OSSM-2042
https://issues.redhat.com/browse/OSSM-1655

OSSM-1505 この問題は、OpenShift Container Platform 4.11 で ServiceMeshExtension リソー
スを使用する場合にのみ発生します。OpenShift Container Platform 4.11 で
ServiceMeshExtension を使用すると、リソースの準備が整いません。oc describe
ServiceMeshExtension を使用して問題を調べると、stderr: Error creating mount
namespace before pivot: function not implemented エラーが表示されます。
回避策: ServiceMeshExtension は Service Mesh 2.2 で廃止されまし
た。ServiceMeshExtension から WasmPlugin リソースに移行します。詳細
は、ServiceMeshExtension から WasmPlugin リソースへの移行を参照してください。

OSSM-1396 ゲートウェイリソースに spec.externalIPs 設定が含まれていると、ゲートウェイ
は、ServiceMeshControlPlane の更新時に再作成されず削除され、再作成されることはありま
せん。

OSSM-1168 Service Mesh リソースが単一の YAML ファイルとして作成される場合は、Envoy
プロキシーサイドカーが Pod に確実に挿入されません。SMCP、SMMR、およびデプロイメン
トリソースを個別に作成すると、デプロイメントは想定どおりに機能します。

OSSM-1115 spec.proxy API の concurrency フィールドが istio-proxy に伝播されませんでし
た。concurrency フィールドは、ProxyConfig で設定すると機能します。concurrency
フィールドは、実行するワーカースレッドの数を指定します。フィールドが 0 に設定されてい
る場合、使用可能なワーカースレッドの数は CPU コアの数と等しくなります。フィールドが設
定されていない場合、使用可能なワーカースレッドの数はデフォルトで 2 になります。
次の例では、concurrency フィールドが 0 に設定されています。

OSSM-1052 Service Mesh コントロールプレーンで入力ゲートウェイのサービス ExternalIP を
設定すると、サービスは作成されません。SMCP のスキーマには、サービスのパラメーターが
ありません。
回避策: SMCP 仕様でゲートウェイの作成を無効にして、(サービス、ロール、および
RoleBinding など) ゲートウェイのデプロイメントを完全に手動で管理します。

OSSM-882 これは、Service Mesh 2.1 以前に適用されます。namespace は
accessible_namespace リストにありますが、Kiali UI には表示されません。デフォルトでは、
Kiali は "kube" で始まる namespace を表示しません。これらの namespace は通常内部使用の
みであり、メッシュの一部ではないためです。
たとえば、'akube-a' という名前の namespace を作成し、これを Service Mesh メンバーロール
に追加すると、Kiali UI は namespace を表示しません。定義された除外パターンの場合、ソフ
トウェアは、このパターンで始まるか、そのパターンを含む namespace を除外します。

回避策: Kiali カスタムリソース設定を変更して、設定に接頭辞としてキャレット (^) を追加しま
す。以下に例を示します。

apiVersion: networking.istio.io/v1beta1
kind: ProxyConfig
metadata:
 name: mesh-wide-concurrency
 namespace: <istiod-namespace>
spec:
 concurrency: 0

api:
 namespaces:
 exclude:
 - "^istio-operator"

Red Hat OpenShift Service on AWS 4 Service Mesh

60

https://issues.redhat.com/browse/OSSM-1505
https://issues.redhat.com/browse/OSSM-1396
https://issues.redhat.com/browse/OSSM-1168
https://issues.redhat.com/browse/OSSM-1115
https://issues.redhat.com/browse/OSSM-1052
https://issues.redhat.com/browse/OSSM-882

MAISTRA-2692 Mixer が削除されると、Service Mesh 2.0.x で定義されたカスタムメトリクスを
2.1 で使用できません。カスタムメトリクスは EnvoyFilter を使用して設定できます。明示的に
文書化されている場合を除き、Red Hat は EnvoyFilter 設定をサポートできません。これは、
下層の Envoy API と疎結合されており、後方互換性を保持できないためです。

MAISTRA-1959 2.0 への移行 Prometheus の収集 (spec.addons.prometheus.scrape が true
に設定される) は mTLS が有効になっていると機能しません。また、Kiali は、mTLS が無効に
なっている場合に余分なグラフデータを表示します。
この問題は、たとえば、プロキシー設定からポート 15020 を除外して対応できます。

MAISTRA-453 新規プロジェクトを作成して Pod を即時にデプロイすると、サイドカーコンテ
ナーの挿入は発生しません。この Operator は Pod の作成前に maistra.io/member-of を追加で
きないため、サイドカーコンテナーの挿入を発生させるには Pod を削除し、再作成する必要が
あります。

MAISTRA-158 同じホスト名を参照する複数のゲートウェイを適用すると、すべてのゲートウェ
イが機能しなくなります。

1.2.29.2. Kiali の既知の問題

注記

Kiali の新たな問題は、Component が Kiali に設定された状態の OpenShift Service Mesh
プロジェクトに作成される必要があります。

Kiali の既知の問題は以下のとおりです。

OSSM-6299 Red Hat OpenShift Service on AWS 4.15 では、トラフィックグラフ内の任意の
Node graph メニューオプションをクリックしても、ノードグラフが表示されません。代わり
に、ページが同じトラフィックグラフで更新されます。現在、この問題に対する回避策はあり
ません。

OSSM-6298 OpenShift Service Mesh Console (OSSMC) プラグイン内の項目参照 (特定のサー
ビスに関連するワークロードリンクなど) をクリックすると、コンソールが目的のページを開く
前に複数回のリダイレクトを実行することがあります。Web ブラウザーで Back をクリックす
ると、前のページではなく、コンソールの別のページが開きます。回避策として、Back を 2 回
クリックして前のページに移動してください。

OSSM-6290 Red Hat OpenShift Service on AWS 4.15 では、 Istio Config リストページの
Project フィルターが正しく機能しません。ドロップダウンから特定のプロジェクトを選択し
た場合でも、すべての istio の項目が表示されます。現在、この問題に対する回避策はありませ
ん。

 - "^kube-.*"
 - "^openshift.*"
 - "^kiali-operator"

spec:
 proxy:
 networking:
 trafficControl:
 inbound:
 excludedPorts:
 - 15020

第1章 SERVICE MESH 2.X

61

https://issues.redhat.com/browse/MAISTRA-2692
https://issues.jboss.org/browse/MAISTRA-1959
https://issues.jboss.org/browse/MAISTRA-453
https://issues.jboss.org/browse/MAISTRA-158
https://issues.redhat.com/projects/OSSM/
https://issues.redhat.com/browse/OSSM-6299
https://issues.redhat.com/browse/OSSM-6298
https://issues.redhat.com/browse/OSSM-6290

KIALI-2206 初回の Kiali コンソールへのアクセス時に、Kiali のキャッシュされたブラウザー
データがない場合、Kiali サービスの詳細ページの Metrics タブにある “View in Grafana” リンク
は誤った場所にリダイレクトされます。この問題は、Kiali への初回アクセス時にのみ生じま
す。

KIALI-507 Kiali は Internet Explorer 11 に対応していません。これは、基礎となるフレームワー
クが Internet Explorer に対応していないためです。Kiali コンソールにアクセスするには、
Chrome、Edge、Firefox、または Safari ブラウザーの最新の 2 バージョンのいずれかを使用し
ます。

1.2.30. 修正された問題

以下の問題は、これまでのリリースで解決されています。

1.2.30.1. Service Mesh の修正された問題

OSSM-6177 以前は、ServiceMeshControlPlane (SMCP) で検証メッセージが有効になってい
る場合、GatewayAPI サポートが有効になっていない限り、istiod が継続的にクラッシュして
いました。現在は、検証メッセージが有効になっている場合、GatewayAPI サポートが有効に
なっていなくても、istiod が継続的にクラッシュすることはなくなりました。

OSSM-6163 次の問題が解決されました。

以前は、不安定な Prometheus イメージが Service Mesh コントロールプレーン (SMCP)
v2.5 に含まれていたため、ユーザーが Prometheus ダッシュボードにアクセスできません
でした。現在は、Service Mesh Operator 2.5.1 で、Prometheus イメージが更新されていま
す。

以前は、Service Mesh コントロールプレーン (SMCP) で、Grafana データソースが Basic
認証のパスワードを自動的に設定できず、ユーザーが Grafana メッシュダッシュボードで
Prometheus からのメトリクスを表示できませんでした。現在は、Grafana データソースの
パスワードが secureJsonData フィールドで設定されます。メトリクスはダッシュボード
に正しく表示されます。

OSSM-6148 以前は、ユーザーが Traffic Graph ページのノードのメニューでオプションをク
リックしても、OpenShift Service Mesh Console (OSSMC) プラグインが応答しませんでした。
現在は、プラグインがメニューで選択されたオプションに応答し、対応する詳細ページにリダ
イレクトします。

OSSM-6099 以前は、OpenShift Service Mesh Console (OSSMC) プラグインが IPv6 クラス
ターで正しくロードされませんでした。現在は、OSSMC プラグインの設定が変更され、IPv6
クラスターで適切にロードされるようになりました。

OSSM-5960 以前は、OpenShift Service Mesh Console (OSSMC) プラグインが、バックエン
ドエラーや Istio 検証などの通知メッセージを表示しませんでした。現在は、これらの通知がプ
ラグインページの上部に正しく表示されます。

OSSM-5959 以前は、OpenShift Service Mesh Console (OSSMC) プラグインの Overview ペー
ジに TLS および Istio の認証情報が表示されませんでした。現在は、この情報が正しく表示さ
れます。

OSSM-5902 以前は、ユーザーが Overview ページで Istio config のヘルスシンボルをクリッ
クすると、OpenShift Service Mesh Console (OSSMC) プラグインが "Not Found Page" エラー
にリダイレクトされていました。現在は、プラグインが正しい Istio config 詳細ページにリダ
イレクトされます。

OSSM-5541 以前は、一部の再起動状態で、Istio Operator Pod がリーダーリースを待機し続け

Red Hat OpenShift Service on AWS 4 Service Mesh

62

https://issues.jboss.org/browse/KIALI-2206
https://github.com/kiali/kiali/issues/507
https://issues.redhat.com/browse/OSSM-6177
https://issues.redhat.com/browse/OSSM-6163
https://issues.redhat.com/browse/OSSM-6148
https://issues.redhat.com/browse/OSSM-6099
https://issues.redhat.com/browse/OSSM-5960
https://issues.redhat.com/browse/OSSM-5959
https://issues.redhat.com/browse/OSSM-5902

OSSM-5541 以前は、一部の再起動状態で、Istio Operator Pod がリーダーリースを待機し続け
ることがありました。現在は、この問題を回避するためにリーダー選出の実装が強化されてい
ます。

OSSM-1397 以前は、namespace から maistra.io/member-of ラベルを削除した場合、サービ
スメッシュ Operator により、ラベルは namespace に自動的に再適用されませんでした。その
結果、サイドカーインジェクションは対象の namespace で機能しませんでした。
ServiceMeshMember オブジェクトに変更を加えた場合、Operator はラベルを namespace に
再適用します。これにより、このメンバーオブジェクトの調整がトリガーされます。

今後は、namespace に変更を加えると、メンバーオブジェクトの調整もトリガーされます。

OSSM-3647 以前は、Service Mesh コントロールプレーン (SMCP) v2.2 (Istio 1.12) では、
WasmPlugin は受信リスナーにのみ適用されていました。SMCP v2.3 (Istio 1.14) 以降、
WasmPlugin はデフォルトでインバウンドおよびアウトバウンドのリスナーに適用されるよう
になり、3scale WasmPlugin のユーザーにリグレッションが発生しました。環境変数
APPLY_WASM_PLUGINS_TO_INBOUND_ONLY が追加され、SMCP v2.2 から v2.3 および
v2.4 への安全な移行が可能になります。
次の設定を SMCP config に追加する必要があります。

安全な移行を確保するには、次の手順を実行します。

1. SMCP v2.2 で APPLY_WASM_PLUGINS_TO_INBOUND_ONLY を設定します。

2. 2.4 にアップグレードします。

3. WasmPlugins で spec.match[].mode: SERVER を設定します。

4. 以前に追加した環境変数を削除します。

OSSM-4851 以前は、runAsGroup、runAsUser、または fsGroup パラメーターが nil の場
合、メッシュ内をスコープとする namespace に新しい Pod をデプロイするオペレータでエ
ラーが発生しました。nil 値を回避するために yaml 検証が追加されました。

OSSM-3771 以前は、Service Mesh Control Plane (SMCP) で定義された追加の Ingress ゲート
ウェイに対して OpenShift ルートを無効にすることができませんでした。現在、routeConfig
ブロックを追加の各 additionalIngress ゲートウェイに追加できるため、ゲートウェイごとに
OpenShift ルートの作成を有効または無効にできます。

OSSM-4197 では、'ServiceMeshControlPlane' リソースの v2.2 または v2.1 をデプロイして
も、/etc/cni/multus/net.d/ ディレクトリーは作成されませんでした。その結果、istio-cni Pod
の準備ができず、istio-cni Pod のログに次のメッセージが含まれていました。

ここで、'ServiceMeshControlPlane' リソースの v2.2 または v2.1 をデプロイする
と、/etc/cni/multus/net.d/ ディレクトリーが作成され、istio-cni Pod の準備が整います。

spec:
 runtime:
 components:
 pilot:
 container:
 env:
 APPLY_WASM_PLUGINS_TO_INBOUND_ONLY: "true"

$ error Installer exits with open /host/etc/cni/multus/net.d/v2-2-istio-
cni.kubeconfig.tmp.841118073: no such file or directory

第1章 SERVICE MESH 2.X

63

https://issues.redhat.com/browse/OSSM-5541
https://issues.redhat.com/browse/OSSM-1397
https://issues.redhat.com/browse/OSSM-3647
https://issues.redhat.com/browse/OSSM-4851
https://issues.redhat.com/browse/OSSM-3771
https://issues.redhat.com/browse/OSSM-4197

OSSM-3993 以前は、Kiali は標準 HTTPS ポート 443 上のプロキシー経由の OpenShift OAuth
のみをサポートしていました。現在、Kiali は非標準の HTTPS ポートを介した OpenShift
OAuth をサポートします。ポートを有効にするには、Kiali CR で spec.server.web_port
フィールドをプロキシーの非標準 HTTPS ポートに設定する必要があります。

OSSM-3936 以前は、injection_label_rev および injection_label_name 属性の値がハード
コーディングされていました。これにより、カスタム設定が Kiali カスタムリソース定義 (CRD)
で有効になりませんでした。今回のリリースより、属性値はハードコーディングされなくなり
ました。spec.istio_labels 仕様の injection_label_rev および injection_label_name 属性の値
をカスタマイズできます。

OSSM-3644 これまで、フェデレーション egress-gateway はネットワークゲートウェイエン
ドポイントの誤った更新を受信し、余分なエンドポイントエントリーが発生していました。現
在は、federation-egress ゲートウェイがサーバー側で更新され、正しいネットワークゲート
ウェイエンドポイントを受信するようになりました。

OSSM-3595 これまでは、iptables-restore ユーティリティーが /tmp ディレクトリー内のファ
イルを開くことを SELinux が許可しなかったため、RHEL 上で istio-cni プラグインが失敗する
ことがありました。SELinux は、ファイル経由ではなく stdin 入力ストリーム経由で iptables-
restore を渡すようになりました。

OSSM-3586 以前は、Google Cloud Platform (GCP) メタデータサーバーが利用できない場合
に Istio プロキシーの起動が遅くなりました。Istio 1.14.6 にアップグレードすると、メタデータ
サーバーが利用できない場合でも、Istio プロキシーは GCP 上で期待どおりに起動します。

OSSM-3025 Istiod が準備完了にならないことがあります。メッシュに多くのメンバーの
namespace が含まれている場合は、Istiod 内のデッドロックが原因で Istiod Pod が準備完了に
ならないことがありました。デッドロックが解決され、Pod が期待どおりに起動するようにな
りました。

OSSM-2493 SMCP のデフォルトの nodeSelector と tolerations が Kiali に渡されませ
ん。SMCP.spec.runtime.defaults に追加する nodeSelector と tolerations が Kiali リソースに
渡されるようになりました。

OSSM-2492 SMCP のデフォルトの toleration が Jaeger に渡されませ
ん。SMCP.spec.runtime.defaults に追加する nodeSelector と tolerations が Jaeger リソー
スに渡されるようになりました。

OSSM-2374 ServiceMeshMember リソースの 1 つを削除すると、Service Mesh Operator が
ServiceMeshMemberRoll を削除しました。これは、最後の ServiceMeshMember を削除する
際に期待される動作ですが、削除されたメンバーに加えて、メンバーが含まれている場合、
Operator は ServiceMeshMemberRoll を削除しないようにする必要があります。この問題は
修正され、Operator は最後の ServiceMeshMember リソースが削除された場合のみ、
ServiceMeshMemberRoll を削除するようになりました。

OSSM-2373 ログイン時に OAuth メタデータを取得しようとして、エラーが発生しました。ク
ラスターのバージョンを取得するには、system:anonymous アカウントが使用されます。クラ
スターのデフォルトのバンドルされた ClusterRole と ClusterRoleBinding を使用すると、匿名
アカウントはバージョンを正しく取得できます。system:anonymous アカウントがクラスター
バージョンを取得する権限を失うと、OpenShift 認証は使用できなくなります。
これは、Kiali SA を使用して、クラスターのバージョンを取得することで修正されます。これに
より、クラスターのセキュリティーも向上します。

OSSM-2371 Kiali が "view-only" として設定されているにもかかわらず、ユーザーはワークロー
ドの詳細の Logs タブの kebab メニューからプロキシーログレベルを変更できます。この問題
は修正されており、Kiali が "view-only" として設定されている場合は、"Set Proxy Log Level" の
下のオプションが無効になります。

Red Hat OpenShift Service on AWS 4 Service Mesh

64

https://issues.redhat.com/browse/OSSM-3993
https://issues.redhat.com/browse/OSSM-3936
https://issues.redhat.com/browse/OSSM-3644
https://issues.redhat.com/browse/OSSM-3595
https://issues.redhat.com/browse/OSSM-3586
https://issues.redhat.com/browse/OSSM-3025
https://issues.redhat.com/browse/OSSM-2493
https://issues.redhat.com/browse/OSSM-2492
https://issues.redhat.com/browse/OSSM-2374
https://issues.redhat.com/browse/OSSM-2373
https://issues.redhat.com/browse/OSSM-2371

OSSM-2344 Istiod を再起動すると、Kiali によって CRI-O がポート転送リクエストでいっぱい
になります。この問題は、Kiali が Istiod に接続できず、Kiali が同時に大量のリクエストを
istiod に発行したときに発生しました。Kiali が istiod に送信するリクエストの数が制限される
ようになりました。

OSSM-2335 Traces の散布図のプロット上でマウスポインターをドラッグすると、同時バック
エンドリクエストが原因で Kiali コンソールが応答を停止する場合がありました。

OSSM-2221 以前は、デフォルトで ignore-namespace ラベルが namespace に適用されていた
ため、ServiceMeshControlPlane namespace へのゲートウェイインジェクションはできませ
んでした。
v2.4 コントロールプレーンを作成すると、namespace に ignore-namespace ラベルが適用さ
れなくなり、ゲートウェイインジェクションが可能になります。

以下の例では、oc label コマンドは既存のデプロイメントの namespace から ignore-
namespace ラベルを削除します。

ここでは、以下のようになります。

istio_system

ServiceMeshControlPlane namespace の名前を指定します。

OSSM-2053 Red Hat OpenShift Service Mesh Operator 2.2 または 2.3 を使用すると、SMCP
の調整中に、SMMR コントローラーがメンバーの namespace を
SMMR.status.configuredMembers から削除しました。これにより、メンバーの namespace
のサービスがしばらく利用できなくなりました。
Red Hat OpenShift Service Mesh Operator 2.2 または 2.3 を使用すると、SMMR コントロー
ラーは SMMR.status.configuredMembers から namespace を削除しなくなります。代わり
に、コントローラーは namespace を SMMR.status.pendingMembers に追加して、それらが
最新ではないことを示します。調整中に、各 namespace が SMCP と同期されると、
namespace は SMMR.status.pendingMembers から自動的に削除されます。

OSSM-1962 フェデレーションコントローラーで EndpointSlices を使用します。フェデレー
ションコントローラーが EndpointSlices を使用するようになりました。これにより、大規模
なデプロイメントでのスケーラビリティとパフォーマンスが向上します。
PILOT_USE_ENDPOINT_SLICE フラグはデフォルトで有効になっています。フラグを無効にす
ると、フェデレーションデプロイメントを使用できなくなります。

OSSM-1668 新しいフィールド spec.security.jwksResolverCA がバージョン 2.1 SMCP に追加
されましたが、2.2.0 および 2.2.1 リリースにはありませんでした。このフィールドが存在する
Operator バージョンから、このフィールドが存在しなかった Operator バージョンにアップグ
レードする場合は、SMCP で .spec.security.jwksResolverCA フィールドを使用できませんで
した。

OSSM-1325 istiod Pod がクラッシュし、 fatal error: concurrent map iteration and map write
のエラーメッセージが表示されます。

OSSM-1211 フェイルオーバー用のフェデレーション Service Mesh の設定が想定どおりに機能し
ません。
Istiod パイロットログに、envoy connection [C289] TLS error: 337047686:SSL
routines:tls_process_server_certificate:certificate verify failed のエラーが表示されます。

OSSM-1099 Kiali コンソールに Sorry, there was a problem.Try a refresh or navigate to a
different page. メッセージが表示されました

$ oc label namespace istio-system maistra.io/ignore-namespace-

第1章 SERVICE MESH 2.X

65

https://issues.redhat.com/browse/OSSM-2344
https://issues.redhat.com/browse/OSSM-2335
https://issues.redhat.com/browse/OSSM-2221
https://issues.redhat.com/browse/OSSM-2053
https://issues.redhat.com/browse/OSSM-1962
https://issues.redhat.com/browse/OSSM-1668
https://issues.redhat.com/browse/OSSM-1325
https://issues.redhat.com/browse/OSSM-1211
https://issues.redhat.com/browse/OSSM-1099

OSSM-1074 SMCP で定義された Pod アノテーションが Pod に注入されません。

OSSM-999 Kiali は想定どおりに保持されませんでした。ダッシュボードグラフでは、カレン
ダーの時刻がグレーアウトされています。

OSSM-797 Kiali Operator Pod は、Operator のインストールまたはアップグレード時に
CreateContainerConfigError を生成します。

kube で始まる OSSM-722 namespace は Kiali には表示されません。

OSSM-569: Prometheus istio-proxy コンテナーには CPU メモリー制限がありません。
Prometheus istio-proxy サイドカーは、spec.proxy.runtime.container で定義されたリソース
制限を使用するようになりました。

OSSM-535 SMCP での validationMessages のサポート。Service Mesh コントロールプレーン
の ValidationMessages フィールドを True に設定できるようになりました。これにより、問
題のトラブルシューティングに役立つ、リソースのステータスのログが書き込まれます。

OSSM-449 VirtualService および Service により、"Only unique values for domains are
permitted.Duplicate entry of domain." エラーが生じます。

同様の名前を持つ OSSM-419 namespace は、namespace が Service Mesh Member Role で定
義されていない場合でも、Kiali namespace の一覧に表示されます。

OSSM-296 ヘルス設定を Kiali カスタムリソース (CR) に追加する場合、これは Kiali configmap
にレプリケートされません。

OSSM-291 Kiali コンソールの、Applications、Services、および Workloads ページの "Remove
Label from Filters" が機能しません。

OSSM-289 Kiali コンソールの 'istio-ingressgateway' および 'jaeger-query' サービスの Service
Details ページにはトレースが表示されません。トレースは Jaeger にあります。

OSSM-287 Kiali コンソールでは、トレースが Graph Service に表示されません。

OSSM-285 Kiali コンソールにアクセスしようとすると、"Error trying to get OAuth Metadata"
エラーメッセージが表示されます。
回避策: Kiali Pod を再起動します。

MAISTRA-2735 Red Hat OpenShift Service Mesh バージョン 2.1 では、SMCP の調整時に
Service Mesh Operator が削除するリソースが変更されました。以前のバージョンでは、
Operator は以下のラベルを持つリソースを削除しました。

maistra.io/owner

app.kubernetes.io/version

Operator は app.kubernetes.io/managed-by=maistra-istio-operator ラベルを含まないリソー
スを無視するようになりました。独自のリソースを作成する場合
は、app.kubernetes.io/managed-by=maistra-istio-operator ラベルをそれらに追加すること
はできません。

MAISTRA-2687 外部証明書を使用する場合は、Red Hat OpenShift Service Mesh 2.1 フェデ
レーションゲートウェイでは、証明書チェーンが完全に送信されません。Service Mesh フェデ
レーション egress ゲートウェイはクライアント証明書のみを送信します。フェデレーション
Ingress ゲートウェイはルート証明書のみを認識するため、ルート証明書をフェデレーションイ
ンポート ConfigMap に追加しない限り、クライアント証明書を検証できません。

Red Hat OpenShift Service on AWS 4 Service Mesh

66

https://issues.redhat.com/browse/OSSM-1074
https://issues.redhat.com/browse/OSSM-999
https://issues.redhat.com/browse/OSSM-797
https://issues.redhat.com/browse/OSSM-722
https://issues.redhat.com/browse/OSSM-569
https://issues.redhat.com/browse/OSSM-535
https://issues.redhat.com/browse/OSSM-449
https://issues.redhat.com/browse/OSSM-419
https://issues.redhat.com/browse/OSSM-296
https://issues.redhat.com/browse/OSSM-291
https://issues.redhat.com/browse/OSSM-289
https://issues.redhat.com/browse/OSSM-287
https://issues.redhat.com/browse/OSSM-285
https://issues.redhat.com/browse/MAISTRA-2735
https://issues.jboss.org/browse/MAISTRA-2687

MAISTRA-2635 非推奨の Kubernetes API が置き換えられました。Red Hat OpenShift Service
on AWS 4.8 との互換性を維持するために、apiextensions.k8s.io/v1beta1 API は Red Hat
OpenShift Service Mesh 2.0.8 で非推奨になりました。

MAISTRA-2631 nsenter バイナリーが存在しないことが原因で Podman に問題が発生している
ため、WASM 機能は使用できません。Red Hat OpenShift Service Mesh は Error: error
configuring CNI network plugin exec: "nsenter": executable file not found in $PATH エ
ラーメッセージを生成します。コンテナーイメージには nsenter が含まれ、WASM が予想通り
に機能するようになりました。

MAISTRA-2534 istiod が JWT ルールで指定された発行者の JWKS の取得を試行する際に、発
行者サービスは 502 で応答します。これにより、プロキシーコンテナーの準備ができなくな
り、デプロイメントがハングしていました。コミュニティーバグ の修正は、Service Mesh 2.0.7
リリースに含まれています。

MAISTRA-2411 Operator が ServiceMeshControlPlane で spec.gateways.additionaIngress
を使用して新規 ingress ゲートウェイを作成する場合、Operator はデフォルトの istio-
ingressgateway の場合と同様に追加の Ingress ゲートウェイの NetworkPolicy を作成しませ
ん。これにより、新規ゲートウェイのルートから 503 応答が生じました。
回避策: istio-system namespace に NetworkPolicy を手動で作成します。

MAISTRA-2401 CVE-2021-3586 servicemesh-operator: NetworkPolicy リソースが Ingress リ
ソースのポートを誤って指定しています。Red Hat OpenShift Service Mesh にインストールさ
れた NetworkPolicy リソースでは、アクセス可能なポートが適切に指定されませんでした。こ
れにより、任意の Pod からこれらのリソースの全ポートにアクセスできるようになりました。
以下のリソースに適用されるネットワークポリシーが影響を受けます。

Galley

Grafana

Istiod

Jaeger

Kiali

Prometheus

サイドカーインジェクター

MAISTRA-2378 クラスターが ovs-multitenant で OpenShift SDN を使用するように設定され
ており、メッシュに多数の namespace (200+) が含まれる場合に、Red Hat OpenShift Service
on AWS ネットワークプラグインは namespace を迅速に設定できません。Service Mesh がタイ
ムアウトになると、namespace が Service Mesh から継続的にドロップされ、再リストされま
す。

MAISTRA-2370 は listerInformer で tombstones を処理します。更新されたキャッシュコード
ベースは、namespace キャッシュからのイベントを集約されたキャッシュに変換する際に
tombstones を処理しないため、go ルーチンでパニックが生じました。

MAISTRA-2117 オプションの ConfigMap マウントを Operator に追加します。CSV にはオプ
ションの ConfigMap ボリュームマウントが含まれるようになり、smcp-templates
ConfigMap (存在する場合) をマウントします。smcp-templates ConfigMap が存在しない
と、マウントされたディレクトリーは空になります。ConfigMap を作成すると、ディレクト
リーには ConfigMap からのエントリーが設定され、SMCP.spec.profiles で参照できます。
Service Mesh Operator の再起動は必要ありません。

第1章 SERVICE MESH 2.X

67

https://issues.redhat.com/browse/MAISTRA-2635
https://issues.redhat.com/browse/MAISTRA-2631
https://issues.redhat.com/browse/MAISTRA-2534
https://github.com/istio/istio/issues/24629
https://issues.jboss.org/browse/MAISTRA-2411
https://issues.redhat.com/browse/MAISTRA-2401
https://issues.redhat.com/browse/MAISTRA-2378
https://issues.redhat.com/browse/MAISTRA-2370
https://issues.redhat.com/browse/MAISTRA-2117

CSV を変更して 2.0 Operator を使用して smcp-templates ConfigMap をマウントしている場合
は、Red Hat OpenShift Service Mesh 2.1 にアップグレードできます。アップグレード後は、
CSV を編集せずに、既存の ConfigMap およびこれに含まれるプロファイルを引き続き使用で
きます。以前別の名前で ConfigMap を使用していた場合は、ConfigMap の名前を変更する
か、アップグレード後に CSV を更新する必要があります。

MAISTRA-2010 AuthorizationPolicy は request.regex.headers フィールドをサポートしませ
ん。validatingwebhook はこのフィールドのある AuthorizationPolicy を拒否し、これを無効に
した場合でも、パイロットは同じコードを使用してこの検証を試行し、機能しません。

MAISTRA-1979 2.0 への移行 変換 webhook は、SMCP.status を v2 から v1 に変換する際に以
下の重要なフィールドをドロップします。

conditions

components

observedGeneration

annotations
Operator を 2.0 にアップグレードすると、リソースの maistra.io/v1 バージョンを使用する
SMCP ステータスを読み取るクライアントツールが破損する可能性があります。

また、oc get servicemeshcontrolplanes.v1.maistra.io の実行時に READY および
STATUS 列が空になります。

MAISTRA-1983 2.0 への移行 既存の無効な ServiceMeshControlPlane を使用した 2.0.0 への
アップグレードは修復できません。ServiceMeshControlPlane リソース内の無効な項目によ
り、回復不可能なエラーが発生しました。修正により、エラーが回復可能になりました。無効
なリソースを削除してこれを新しいリソースに置き換えるか、リソースを編集してエラーを修
正できます。リソースの編集に関する詳細は、[Red Hat OpenShift Service Mesh インストール
の設定] を参照してください。

MAISTRA-1502 バージョン 1.0.10 の CVE の修正により、Istio ダッシュボードは Grafana の
Home Dashboard メニューから利用できなくなりました。Istio ダッシュボードにアクセスする
には、ナビゲーションパネルの Dashboard メニューをクリックし、Manage タブを選択しま
す。

MAISTRA-1399 Red Hat OpenShift Service Mesh では、サポート対象外の CNI プロトコルがイ
ンストールされなくなりました。サポート対象のネットワーク設定は変更されていません。

MAISTRA-1089 2.0 への移行 コントロールプレーン以外の namespace で作成されたゲート
ウェイは自動的に削除されます。SMCP 仕様からゲートウェイ定義を削除した後にこれらのリ
ソースを手動で削除する必要があります。

MAISTRA-858 Istio 1.1.x に関連する非推奨のオプションと設定 を説明する以下のような Envoy
ログメッセージが予想されます。

[2019-06-03 07:03:28.943][19][warning][misc]
[external/envoy/source/common/protobuf/utility.cc:129] 非推奨の
'envoy.api.v2.listener.Filter.config' オプションの使用。この設定はまもなく Envoy から削除
されます。

[2019-08-12 22:12:59.001][13][warning][misc]
[external/envoy/source/common/protobuf/utility.cc:174] lds.proto ファイルから非推奨の
'envoy.api.v2.Listener.use_original_dst' オプションを使用。この設定はまもなく Envoy から
削除されます。

Red Hat OpenShift Service on AWS 4 Service Mesh

68

https://issues.redhat.com/browse/MAISTRA-2010
https://issues.jboss.org/browse/MAISTRA-1979
https://issues.redhat.com/browse/MAISTRA-1983
https://issues.redhat.com/browse/MAISTRA-1502
https://issues.redhat.com/browse/MAISTRA-1399
https://issues.jboss.org/browse/MAISTRA-1089
https://issues.jboss.org/browse/MAISTRA-858
https://www.envoyproxy.io/docs/envoy/latest/intro/deprecated

MAISTRA-806 エビクトされた Istio Operator Pod により、メッシュおよび CNI はデプロイで
きなくなります。
回避策: コントロールペインのデプロイ時に istio-operator Pod がエビクトされる場合は、エビ
クトされた istio-operator Pod を削除します。

MAISTRA-681 Service Mesh コントロールプレーンに多くの namespace がある場合に、パ
フォーマンスの問題が発生する可能性があります。

MAISTRA-193 ヘルスチェックが citadel で有効になっていると、予期しないコンソール情報
メッセージが表示されます。

Bugzilla 1821432 Red Hat OpenShift Service on AWS カスタムリソースの詳細ページのトグルコ
ントロールで CR が正しく更新されません。Red Hat OpenShift Service on AWS Web コンソー
ルの Service Mesh Control Plane (SMCP) Overview ページの UI のトグルコントロールにより、
リソースの誤ったフィールドが更新されることがあります。SMCP を更新するには、YAML コ
ンテンツを直接編集するか、トグルコントロールをクリックせずにコマンドラインからリソー
スを更新します。

1.3. SERVICE MESH について

Red Hat OpenShift Service Mesh は、Service Mesh においてネットワーク化されたマイクロサービス全
体の動作に関する洞察と運用管理のためのプラットフォームを提供します。Red Hat OpenShift Service
Mesh を使用すると、Red Hat OpenShift Service on AWS 環境でマイクロサービスを接続、保護、監視
できます。

1.3.1. Red Hat OpenShift Service Mesh とは

Service Mesh は、分散したマイクロサービスアーキテクチャーの複数のアプリケーションを設定する
マイクロサービスのネットワークであり、マイクロサービス間の対話を可能にします。Service Mesh の
サイズとおよび複雑性が増大すると、これを把握し、管理することがより困難になる可能性がありま
す。

オープンソースの Istio プロジェクトをベースとする Red Hat OpenShift Service Mesh は、サービス
コードに変更を加えずに、既存の分散したアプリケーションに透過的な層を追加します。Red Hat
OpenShift Service Mesh サポートをサービスに追加するには、マイクロサービス間のすべてのネット
ワーク通信を傍受する特別なサイドカープロキシーをメッシュ内の関連サービスにデプロイします。
Service Mesh コントロールプレーンの機能を使用して Service Mesh を設定し、管理します。

Red Hat OpenShift Service Mesh により、以下を提供するデプロイされたサービスのネットワークを簡
単に作成できます。

検出

負荷分散

サービス間の認証

障害回復

メトリクス

モニタリング

Red Hat OpenShift Service Mesh は、以下を含むより複雑な運用機能も提供します。

A/B テスト

第1章 SERVICE MESH 2.X

69

https://issues.jboss.org/browse/MAISTRA-806
https://issues.jboss.org/browse/MAISTRA-681
https://issues.jboss.org/browse/MAISTRA-193
https://bugzilla.redhat.com/show_bug.cgi?id=1821432
https://istio.io/

カナリアリリース

アクセス制御

エンドツーエンド認証

1.3.2. Service Mesh アーキテクチャー

Service Mesh テクノロジーはネットワーク通信レベルで動作します。つまり、サービスメッシュコン
ポーネントは、マイクロサービスとの間のトラフィックを取得または傍受して、リクエストを変更した
り、リダイレクトしたり、他のサービスへの新しいリクエストを作成したりします。

高いレベルでは、Red Hat OpenShift Service Mesh はデータプレーンおよびコントロールプレーンで構
成されます。

データプレーン は、Pod のアプリケーションコンテナーとともに実行するインテリジェントプロキ
シーのセットであり、Service Mesh 内のマイクロサービス間で起こる受信および送信ネットワーク通信
をすべて傍受し、制御します。データプレーンは、すべての受信 (ingress) および送信 (egress) ネット
ワークトラフィックを傍受する方法で実装されます。Istio データプレーンは、Pod 内のアプリケーショ
ンコンテナーと並行して実行される Envoy コンテナーで構成されます。Envoy コンテナーはプロキシー
として機能し、すべてのネットワーク通信を Pod に対して制御します。

Envoy プロキシー は、データプレーントラフィックと対話する唯一の Istio コンポーネントで
す。プロキシー経由でサービスフロー間の受信 (ingress) および送信 (egress) ネットワークト
ラフィックはすべて、そのプロキシーを介して行われます。また、Envoy プロキシーは、メッ
シュ内のサービストラフィックに関連するすべてのメトリクスを収集します。Envoy プロキ
シーはサイドカーとしてデプロイされ、サービスと同じ Pod で実行されます。Envoy プロキ
シーは、メッシュゲートウェイの実装にも使用されます。

Sidecar プロキシー は、ワークロードインスタンスのインバウンドおよびアウトバウンド
通信を管理します。

ゲートウェイ は、受信または送信 HTTP/TCP 接続を受信するロードバランサーとして動作
するプロキシーです。ゲートウェイ設定は、サービスワークロードとともに実行するサイ
ドカー Envoy プロキシーではなく、メッシュのエッジで実行するスタンドアロン Envoy プ
ロキシーに適用されます。ゲートウェイを使用してメッシュの受信トラフィックおよび送
信トラフィックを管理することで、メッシュに入るか、メッシュを出るトラフィックを指
定できます。

Red Hat OpenShift Service on AWS 4 Service Mesh

70

Ingress-gateway - ingress コントローラーとしても知られる、Ingress ゲートウェイは
Service Mesh に入るトラフィックを受信し、制御する専用の Envoy プロキシーです。
Ingress ゲートウェイは、モニタリングおよびルーティングルールなどの機能をクラス
ターに入るトラフィックに適用できるようにします。

Egress-gateway - egress コントローラーとしても知られる、Egress Gateway は
Service Mesh からトラフィックを管理する専用の Envoy プロキシーです。Egress
Gateway は、モニタリングおよびルートルールなどの機能をメッシュのトラフィック
に適用できるようにします。

コントロールプレーン は、データプレーンを設定するプロキシーを管理し、設定します。これは、設定
用の権威ソースで、アクセス制御および使用状況ポリシーを管理し、Service Mesh のプロキシーからメ
トリクスを収集します。

Istio コントロールプレーンは、以前の複数のコントロールプレーンコンポーネント (Citadel、
Galley、Pilot) を単一バイナリーに統合する Istiod で構成されています。Istiod は、サービス検
出、設定、および証明書の管理を行います。これは、高レベルのルーティングルールを Envoy
設定に変換し、それらをランタイム時にサイドカーコンテナーに伝播します。

Istiod は認証局 (CA) として機能し、データプレーンでセキュアな mTLS 通信に対応する証
明書を生成します。この場合は、外部 CA を使用することもできます。

Istiod は、サイドカーコンテナーを OpenShift クラスターにデプロイされたワークロード
に挿入します。

Red Hat OpenShift Service Mesh は、istio-operator を使用してコントロールプレーンのインストール
も管理します。Operator は、OpenShift クラスターで共通アクティビティーを実装し、自動化できる
ソフトウェアの設定要素です。これはコントローラーとして機能し、クラスター内の必要なオブジェク
トの状態 (この場合は Red Hat OpenShift Service Mesh のインストール) を設定または変更できます。

Red Hat OpenShift Service Mesh は以下の Istio アドオンを製品の一部としてバンドルします。

Kiali: Kiali は Red Hat OpenShift Service Mesh の管理コンソールです。ダッシュボード、可観
測性、および堅牢な設定、ならびに検証機能を提供します。これは、トラフィックトポロジー
を推測して Service Mesh の構造を示し、メッシュの正常性を表示します。Kiali は、詳細なメト
リクス、強力な検証、Grafana へのアクセス、分散トレーシングプラットフォーム (Jaeger) と
の強力な統合を提供します。

Prometheus: Red Hat OpenShift Service Mesh は Prometheus を使用してサービスからのテレ
メトリー情報を保存します。Kiali は、メトリクス、ヘルスステータス、およびメッシュトポロ
ジーを取得するために Prometheus に依存します。

Jaeger - Red Hat OpenShift Service Mesh は、分散トレーシングプラットフォーム (Jaeger)
をサポートしています。Jaeger はオープンソースのトレース機能で、複数のサービス間の単一
要求に関連付けられたトレースを一元管理し、表示します。分散トレーシングプラットフォー
ム (Jaeger) を使用すると、マイクロサービスベースの分散システムを監視およびトラブル
シューティングできます。

Elasticsearch: Elasticsearch は、オープンソースの分散型 JSON ベースの検索および解析エン
ジンです。分散トレーシングプラットフォーム (Jaeger) は、永続ストレージに Elasticsearch
を使用します。

Grafana: Grafana は、Istio データの高度なクエリーおよびメトリクス分析、ならびにダッシュ
ボードを使用してメッシュ管理者を提供します。任意で、Grafana を使用して Service Mesh メ
トリクスを分析できます。

以下の Istio 統合は Red Hat OpenShift Service Mesh でサポートされます。

第1章 SERVICE MESH 2.X

71

3scale: Istio では、オプションで Red Hat 3scale API Management ソリューションとの統合が
提供されます。2.1 より前のバージョンでは、この統合は 3scale Istio アダプターを使用して実
行されました。バージョン 2.1 以降では、3scale の統合は WebAssembly モジュールを介して行
われます。

3scale アダプターのインストール方法に関する詳細は、3scale Istio アダプターのドキュメント を参照
してください。

1.3.3. Kiali について

Kiali は、Service Mesh のマイクロサービスとそれらの接続方法を表示して Service Mesh を可視化しま
す。

1.3.3.1. Kiali の概要

Kiali は、Red Hat OpenShift Service on AWS で実行されている Service Mesh に可観測性を提供しま
す。Kiali は、Istio Service Mesh の定義、検証、および確認に役立ちます。トポロジーを推測すること
で Service Mesh の構造を理解するのに役立ち、Service Mesh の正常性に関する情報も提供します。

Kiali は、サーキットブレーカー、要求レート、レイテンシー、トラフィックフローのグラフなどの機能
を可視化する、namespace のインタラクティブなグラフビューをリアルタイムで提供します。Kiali で
は、異なるレベルのコンポーネント (アプリケーションからサービスおよびワークロードまで) に関する
洞察を提供し、選択されたグラフノードまたはエッジに関するコンテキスト情報やチャートを含む対話
を表示できます。Kiali は、ゲートウェイ、宛先ルール、仮想サービス、メッシュポリシーなど、Istio 設
定を検証する機能も提供します。Kiali は詳細なメトリクスを提供し、基本的な Grafana 統合は高度なク
エリーに利用できます。Jaeger を Kiali コンソールに統合することで、分散トレースを提供します。

Kiali は、デフォルトで Red Hat OpenShift Service Mesh の一部としてインストールされます。

1.3.3.2. Kiali アーキテクチャー

Kiali はオープンソースの Kiali プロジェクト に基づいています。Kiali は Kiali アプリケーションと Kiali
コンソールという 2 つのコンポーネントで構成されます。

Kiali アプリケーション (バックエンド): このコンポーネントはコンテナーアプリケーションプ
ラットフォームで実行され、Service Mesh コンポーネントと通信し、データを取得し、処理
し、そのデータをコンソールに公開します。Kiali アプリケーションはストレージを必要としま
せん。アプリケーションをクラスターにデプロイする場合、設定は ConfigMap およびシーク
レットに設定されます。

Kiali コンソール (フロントエンド): Kiali コンソールは Web アプリケーションです。Kiali アプリ
ケーションは Kiali コンソールを提供し、データをユーザーに表示するためにバックエンドに対
してデータのクエリーを実行します。

さらに Kiali は、コンテナーアプリケーションプラットフォームと Istio が提供する外部サービスとコン
ポーネントに依存します。

Red Hat Service Mesh (Istio): Istio は Kiali の要件です。Istio は Service Mesh を提供し、制御す
るコンポーネントです。Kiali と Istio を個別にインストールすることはできますが、Kiali は Istio
に依存し、Istio が存在しない場合は機能しません。Kiali は、Prometheus およびクラスター
API 経由で公開される Istio データおよび設定を取得する必要があります。

Prometheus: 専用の Prometheus インスタンスは Red Hat OpenShift Service Mesh インストー
ルの一部として組み込まれています。Istio Telemetry が有効になっている場合、メトリクス
データは Prometheus に保存されます。Kiali はこの Prometheus データを使用して、メッシュ
トポロジーの判別、メトリクスの表示、健全性の算出、可能性のある問題の表示などを行いま

Red Hat OpenShift Service on AWS 4 Service Mesh

72

https://kiali.io/

す。Kiali は Prometheus と直接通信し、Istio Telemetry で使用されるデータスキーマを想定し
ます。Prometheus は Istio に依存しており、Kiali と明示的な依存関係があるため、Kiali の機能
の多くは Prometheus なしに機能しません。

Cluster API - Kiali は Service Mesh 設定を取得し、解決するために、Red Hat OpenShift
Service on AWS (クラスター API) の API を使用します。Kiali はクラスター API に対してクエ
リーを実行し、たとえば、namespace、サービス、デプロイメント、Pod、その他のエンティ
ティーの定義を取得します。Kiali はクエリーを実行して、異なるクラスターエンティティー間
の関係も解決します。クラスター API に対してもクエリーを実行し、仮想サービス、宛先ルー
ル、ルートルール、ゲートウェイ、クォータなどの Istio 設定を取得します。

Jaeger: Jaeger はオプションですが、Red Hat OpenShift Service Mesh インストールの一部と
してデフォルトでインストールされます。デフォルトの Red Hat OpenShift Service Mesh イン
ストールの一部として分散トレーシング Platform (Jaeger) をインストールすると、Kiali コン
ソールに分散トレーシングデータを表示するタブが含まれます。Istio の分散トレース機能を無
効にした場合、トレースデータは利用できないことに注意してください。また、トレースデー
タを表示するには、ユーザーは Service Mesh コントロールプレーンがインストールされている
namespace にアクセスできる必要があります。

Grafana: Grafana はオプションですが、デフォルトでは Red Hat OpenShift Service Mesh イン
ストールの一部としてインストールされます。使用可能な場合は、Kiali のメトリクスページに
Grafana 内の同じメトリクスにユーザーを移動させるリンクが表示されます。Grafana ダッ
シュボードへのリンクと Grafana データを表示するには、Service Mesh コントロールプレーン
がインストールされている namespace にユーザーがアクセスできる必要があることに注意して
ください。

1.3.3.3. Kiali の機能

Kiali コンソールは Red Hat Service Mesh に統合され、以下の機能を提供します。

健全性: アプリケーション、サービス、またはワークロードの問題を素早く特定します。

トポロジー: Kiali グラフを使用して、アプリケーション、サービス、またはワークロードの通信
方法を可視化します。

メトリクス: 事前定義済みのメトリクスダッシュボードを使用すると、Go、Node.js、
Quarkus、Spring Boot、Thorntail、および Vert.xまた、独自のカスタムダッシュボードを作成
することもできます。

トレース: Jaeger との統合により、アプリケーションを設定するさまざまなマイクロサービス
で要求のパスを追跡できます。

検証: 最も一般的な Istio オブジェクト (宛先ルール、サービスエントリー、仮想サービスなど)
で高度な検証を実行します。

設定: ウィザードを使用するか、Kiali コンソールの YAML エディターを直接使用して、Istio
ルーティング設定を作成し、更新し、削除できるオプションの機能です。

1.3.4. 分散トレースについて

ユーザーがアプリケーションでアクションを実行するたびに、応答を生成するために多数の異なるサー
ビスに参加を要求する可能性のあるアーキテクチャーによって要求が実行されます。この要求のパスは
分散トランザクションです。分散トレーシングプラットフォーム (Jaeger) を使用すると、アプリケー
ションを設定するさまざまなマイクロサービスを通じてリクエストのパスを追跡する分散トレーシング
を実行できます。

分散トレースは、さまざまな作業ユニットの情報を連携させるために使用される技術です。これは、分

第1章 SERVICE MESH 2.X

73

分散トレースは、さまざまな作業ユニットの情報を連携させるために使用される技術です。これは、分
散トランザクションでのイベントのチェーン全体を理解するために、通常さまざまなプロセスまたはホ
ストで実行されます。分散トレースを使用すると、開発者は大規模なサービス指向アーキテクチャーで
呼び出しフローを可視化できます。シリアル化、並行処理、およびレイテンシーの原因を理解しておく
ことも重要です。

分散トレーシングプラットフォーム (Jaeger) は、マイクロサービスのスタック全体にわたる個々のリ
クエストの実行を記録し、それらをトレースとして表示します。トレース とは、システムにおけるデー
タ/実行パスです。エンドツーエンドトレースは、1 つ以上のスパンで構成されます。

スパンは、オペレーション名、オペレーションの開始時間および期間を持つ、作業の論理単位を表して
います。スパンは因果関係をモデル化するためにネスト化され、順序付けられます。

1.3.4.1. 分散トレースの概要

サービスの所有者は、分散トレースを使用してサービスをインストルメント化し、サービスアーキテク
チャーに関する洞察を得ることができます。Red Hat OpenShift 分散トレーシング Platform を使用す
ると、最新のクラウドネイティブのマイクロサービスベースのアプリケーションにおけるコンポーネン
ト間の相互作用の監視、ネットワークプロファイリング、トラブルシューティングを行うことができま
す。

分散トレーシングプラットフォームを使用すると、次の機能を実行できます。

分散トランザクションの監視

パフォーマンスとレイテンシーの最適化

根本原因分析の実行

1.3.4.2. Red Hat OpenShift 分散トレーシングプラットフォームアーキテクチャー

Red Hat OpenShift 分散トレーシング Platform は、トレースデータを収集、保存、表示するために連
携して動作する複数のコンポーネントで設定されています。

Red Hat OpenShift 分散トレーシング Platform - このコンポーネントは、オープンソースの
Grafana Tempo プロジェクト に基づいています。

Gateway: ゲートウェイは、認証、認可、およびディストリビューターまたはクエリーフロ
ントエンドサービスへのリクエストの転送を処理します。

Distributor: ディストリビューターは、Jaeger、OpenTelemetry、Zipkin などの複数の形式
のスパンを受け入れます。traceID をハッシュ化し、分散コンシステントハッシュリングを
使用して、スパンを Ingester にルーティングします。

Ingester: Ingester はトレースをブロックにバッチ化し、ブルームフィルターとインデック
スを作成してすべてバックエンドにフラッシュします。

Query Frontend: Query Frontend は、受信クエリーの検索スペースをシャーディングしま
す。次に、検索クエリーが Querier に送信されます。Query Frontend のデプロイメントで
は、Tempo Query サイドカーを介して Jaeger UI が公開されます。

Querier: Querier は、Ingester またはバックエンドストレージで要求されたトレース ID を
検索します。パラメーターに応じて、Ingester にクエリーを実行し、バックエンドから
Bloom インデックスを取得して、オブジェクトストレージ内のブロックを検索できます。

Compactor: Compactor は、ブロックをバックエンドストレージとの間でストリーミング
して、ブロックの総数を減らします。

Red Hat OpenShift Service on AWS 4 Service Mesh

74

https://grafana.com/oss/tempo/

Red Hat build of OpenTelemetry - このコンポーネントは、オープンソースの OpenTelemetry
プロジェクト に基づいています。

OpenTelemetry Collector: OpenTelemetry Collector は、テレメトリーデータを受信、処
理、エクスポートするためのベンダーに依存しない方法です。OpenTelemetry Collector
は、Jaeger や Prometheus などのオープンソースの可観測性データ形式をサポートし、1
つ以上のオープンソースまたは商用バックエンドに送信します。Collector は、インストル
メンテーションライブラリーがテレメトリーデータをエクスポートするデフォルトの場所
です。

Red Hat OpenShift 分散トレーシング Platform (Jaeger) - このコンポーネントはオープン
ソースの Jaeger プロジェクト に基づいています。

重要

Red Hat OpenShift 分散トレーシング Platform (Jaeger) は非推奨の機能です。
非推奨の機能は依然として Red Hat OpenShift Service on AWS に含まれてお
り、引き続きサポートされますが、この製品の今後のリリースで削除されるた
め、新規デプロイメントでの使用は推奨されません。

Red Hat OpenShift 分散トレーシング Platform Operator (Jaeger) は、今後のリ
リースの redhat-operators カタログから削除されます。詳細は、Red Hat ナ
レッジベースソリューション Jaeger Deprecation and Removal in OpenShift を
参照してください。

分散トレーシングの収集と保存を行うには、Tempo Operator と Red Hat build
of OpenTelemetry に移行する必要があります。

クライアント (Jaeger クライアント、Tracer、Reporter、インストルメント化されたアプ
リケーション、クライアントライブラリー) - 分散トレーシング Platform (Jaeger) クライ
アントは、OpenTracing API の言語固有の実装です。クライアントは、手動で、またはさ
まざまな既存のオープンソースフレームワーク (Camel (Fuse)、Spring Boot (RHOAR)、
MicroProfile (RHOAR/Thorntail)、Wildfly (EAP) など、OpenTracing にすでに統合されてい
るもの) を使用して、分散トレーシング用にアプリケーションを計装するために使用できま
す。

エージェント (Jaeger エージェント、サーバーキュー、プロセッサーワーカー) - 分散ト
レーシング Platform (Jaeger) エージェントは、User Datagram Protocol (UDP) 経由で送
信されるスパンをリッスンし、それをバッチ処理してコレクターに送信するネットワーク
デーモンです。このエージェントは、インストルメント化されたアプリケーションと同じ
ホストに配置されることが意図されています。これは通常、Kubernetes などのコンテナー
環境にサイドカーコンテナーを配置することによって実行されます。

Jaeger Collector (Collector、Queue、Worker): Jaeger エージェントと同様に、Jaeger
Collector はスパンを受信し、これらを処理するために内部キューに配置します。これによ
り、Jaeger Collector はスパンがストレージに移動するまで待機せずに、クライアント/
エージェントにすぐに戻ることができます。

Storage (Data Store): コレクターには永続ストレージのバックエンドが必要です。Red
Hat OpenShift 分散トレーシング Platform (Jaeger) には、スパンストレージ用のプラグ可
能なメカニズムがあります。Red Hat OpenShift 分散トレーシング Platform (Jaeger) は、
Elasticsearch ストレージをサポートしています。

Query (Query Service): Query は、ストレージからトレースを取得するサービスです。

Ingester (Ingester サービス) - Red Hat OpenShift 分散トレーシング Platform は、

第1章 SERVICE MESH 2.X

75

https://opentelemetry.io/
https://www.jaegertracing.io/
https://access.redhat.com/solutions/7083722

Collector と実際の Elasticsearch バッキングストレージ間のバッファーとして Apache
Kafka を使用できます。Ingester は、Kafka からデータを読み取り、Elasticsearch ストレー
ジバックエンドに書き込むサービスです。

Jaeger コンソール - Red Hat OpenShift 分散トレーシング Platform (Jaeger) ユーザーイ
ンターフェイスを使用すると、分散トレーシングデータを視覚化できます。検索ページ
で、トレースを検索し、個別のトレースを設定するスパンの詳細を確認できます。

1.3.4.3. Red Hat OpenShift 分散トレーシングプラットフォームの機能

Red Hat OpenShift 分散トレーシング Platform は、次の機能を提供します。

Kiali との統合 - 適切に設定すると、Kiali コンソールから分散トレーシング Platform データを表
示できます。

High スケーラビリティー - 分散トレーシングプラットフォームのバックエンドは、単一障害点
がなく、ビジネスニーズに合わせて拡張できるように設計されています。

分散コンテキストの伝播: さまざまなコンポーネントからのデータをつなぎ、完全なエンドツー
エンドトレースを作成できます。

Zipkin との下位互換性 - Red Hat OpenShift 分散トレーシング Platform には、Zipkin の代替と
して使用できる API がありますが、Red Hat はこのリリースでは Zipkin との互換性をサポート
していません。

1.3.5. 次のステップ

Red Hat OpenShift Service on AWS 環境で Red Hat OpenShift Service Mesh をインストールす
る準備 をします。

1.4. SERVICE MESH のデプロイメントモデル

Red Hat OpenShift Service Mesh は、さまざまなデプロイメントモデルを複数サポートし、ビジネス要
件に最も適合するように、各種方法を組み合わせることができます。

Istio では、テナントはデプロイされたワークロードで共通のアクセスおよび権限を共有するユーザーの
グループです。テナントを使用して、異なるチーム間で一定レベルの分離を確保できます。istio.io また
はサービスリソースの NetworkPolicies、AuthorizationPolicies、および exportTo アノテーションを
使用して、異なるテナントへのアクセスを分離できます。

1.4.1. クラスター全体 (シングルテナント) メッシュデプロイメントモデル

クラスター全体のデプロイメントには、クラスター全体のリソースを監視する Service Mesh Control
Plane が含まれます。クラスター全体のリソースのモニタリングは、コントロールプレーンがすべての
namespace にわたって単一のクエリーを使用して Istio および Kubernetes リソースを監視するという
点で、Istio の機能によく似ています。その結果、クラスター全体のデプロイメントにより、API サー
バーに送信されるリクエストの数が減少します。

Istio と同様に、クラスター全体のメッシュには、デフォルトで istio-injection=enabled namespace ラ
ベルが付いた namespace が含まれます。このラベルを変更するには、ServiceMeshMemberRoll リ
ソースの spec.memberSelectors フィールドを変更します。

1.4.2. マルチテナントデプロイメントモデル

Red Hat OpenShift Service Mesh は、デフォルトでマルチテナントとして設定される

Red Hat OpenShift Service on AWS 4 Service Mesh

76

ServiceMeshControlPlane をインストールします。Red Hat OpenShift Service Mesh はマルチテナン
ト Operator を使用して、Service Mesh コントロールプレーンのライフサイクルを管理します。メッ
シュ内では、テナントに namespace が使用されます。

Red Hat OpenShift Service Mesh は ServiceMeshControlPlane リソースを使用してメッシュインス
トールを管理します。メッシュのインストールのスコープはデフォルトでは、リソースを含む
namespace に限定されます。ServiceMeshMemberRoll および ServiceMeshMember リソースを使用
して、別の namespace をメッシュに追加します。namespace は単一のメッシュにのみ組み込むことが
でき、複数のメッシュを単一の OpenShift クラスターにインストールできます。

通常の Service Mesh デプロイメントでは、単一の Service Mesh コントロールプレーンを使用してメッ
シュ内のサービス間の通信を設定します。Red Hat OpenShift Service Mesh はテナントごとにコント
ロールプレーン 1 つと、メッシュが 1 つある "ソフトマルチテナンシー" をサポートします。クラスター
内には、複数の独立したコントロールプレーンが存在させることができます。マルチテナントのデプロ
イメントでは、Service Mesh にアクセスできるプロジェクトを指定し、Service Mesh を他のコント
ロールプレーンインスタンスから分離します。

クラスター管理者はすべての Istio コントロールプレーンを制御して、可視化できますが、テナント管
理者は特定の Service Mesh、Kiali、および Jaeger インスタンスしか制御できません。

指定の namespace または namespace 設定だけにワークロードをデプロイするチームパーミッションを
付与できます。Service Mesh 管理者が mesh-user ロールを付与していると、ユーザーは
ServiceMeshMember リソースを作成して namespace を ServiceMeshMemberRoll に追加できます。

1.4.2.1. クラスター全体のメッシュへの移行について

クラスター全体のメッシュでは、1 つの ServiceMeshControlPlane (SMCP) がクラスター全体のすべ
ての namespace を監視します。Red Hat OpenShift Service Mesh バージョン 2.5 以降を使用して、既
存のクラスターをマルチテナントメッシュからクラスター全体のメッシュに移行できます。

注記

クラスターに複数の SMCP が必要な場合、クラスター全体のメッシュに移行できませ
ん。

デフォルトでは、クラスター全体のメッシュはクラスターを構成するすべての namespace を検出しま
す。ただし、限られた namespace セットにアクセスするようにメッシュを設定できます。デフォルト
では、namespace はサイドカーインジェクションを受け取りません。どの namespace がサイドカーイ
ンジェクションを受け取るかを指定する必要があります。

同様に、どの Pod がサイドカーインジェクションを受け取るかを指定する必要があります。サイド
カーインジェクションを受け取る namespace に存在する Pod は、サイドカーインジェクションを継承
しません。サイドカーインジェクションを namespace と Pod に適用するのは別の操作です。

クラスター全体のメッシュに移行するときに Istio のバージョンを変更した場合は、アプリケーション
を再起動する必要があります。同じ Istio バージョンを使用する場合、アプリケーションプロキシーは
クラスター全体のメッシュの新規 SMCP に接続し、マルチテナントメッシュの場合と同じように動作
します。

1.4.2.1.1. Web コンソールを使用してクラスター全体のメッシュに namespace を含めたり除外したりす
る

Red Hat OpenShift Service on AWS Web コンソールを使用して、クラスター全体のメッシュの
ServiceMeshControlPlane リソースに検出セレクターを追加できます。ディスカバリーセレクターは
コントロールプレーンが検出できる namespace を定義します。コントロールプレーンは、メッシュか

第1章 SERVICE MESH 2.X

77

ら namespace を除外する検出セレクターのいずれにも一致しない namespace を無視します。

注記

コントロールプレーンの namespace に Ingress または Egress ゲートウェイをインス
トールする場合は、コントロールプレーンの namespace を検出セレクターに含める必要
があります。

前提条件

Red Hat OpenShift Service Mesh Operator がインストールされている。

ServiceMeshControlPlane リソースがデプロイされている。

cluster-admin ロールを持つユーザーとしてログインしている。Red Hat OpenShift Dedicated
を使用する場合は、dedicated-admin ロールを持つユーザーとしてログインします。

手順

1. Red Hat OpenShift Service on AWS Web コンソールにログインします。

2. Operators → Installed Operators に移動します。

3. Red Hat OpenShift Service Mesh Operator をクリックします。

4. Istio Service Mesh Control Plane をクリックします。

5. コントロールプレーンの名前をクリックします。

6. YAML をクリックします。

7. YAML ファイルを変更して、ServiceMeshControlPlane リソースの spec.meshConfig フィー
ルドに検出セレクターが含まれるようにします。

注記

Istiod サービスが検出できる namespace を設定する場合は、他のメッシュには
公開すべきではない機密サービスが含まれる可能性のある namespace を除外し
ます。

以下の例では、Istiod サービスは istio-discovery: enabled のラベルが付いた namespace、ま
たは info、httpbin、または istio-system の名前を持つ namespace を検出します。

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
metadata:
 name: basic
spec:
 mode: ClusterWide
 meshConfig:
 discoverySelectors:
 - matchLabels:
 istio-discovery: enabled 1
 - matchExpressions:
 - key: kubernetes.io/metadata.name 2

Red Hat OpenShift Service on AWS 4 Service Mesh

78

1

2

1

メッシュがラベル istio-discovery:enabled を含む namespace を検出するようにします。

メッシュが namespace info、httpbin、および istio-system を検出するようにします。

namespace が検出セレクターのいずれかに一致する場合、メッシュは namespace を検出しま
す。メッシュは、どの検出セレクターにも一致しない namespace を除外します。

8. ファイルを保存します。

1.4.2.1.2. CLI を使用したクラスター全体のメッシュへの namespace の組み込みと除外

Red Hat OpenShift Service on AWS CLI を使用して、クラスター全体のメッシュの
ServiceMeshControlPlane リソースに検出セレクターを追加できます。ディスカバリーセレクターは
コントロールプレーンが検出できる namespace を定義します。コントロールプレーンは、メッシュか
ら namespace を除外する検出セレクターのいずれにも一致しない namespace を無視します。

注記

コントロールプレーンの namespace に Ingress または Egress ゲートウェイをインス
トールする場合は、コントロールプレーンの namespace を検出セレクターに含める必要
があります。

前提条件

Red Hat OpenShift Service Mesh Operator がインストールされている。

ServiceMeshControlPlane リソースがデプロイされている。

cluster-admin ロールを持つユーザーとしてログインしている。Red Hat OpenShift Dedicated
を使用する場合は、dedicated-admin ロールを持つユーザーとしてログインします。

手順

1. Red Hat OpenShift Service on AWS CLI にログインします。

2. 次のコマンドを実行して、ServiceMeshControlPlane リソースを YAML ファイルとして開き
ます。

<name> は、ServiceMeshControlPlane リソースの名前を表します。

3. YAML ファイルを変更して、ServiceMeshControlPlane リソースの spec.meshConfig フィー
ルドに検出セレクターが含まれるようにします。

注記

 operator: In
 values:
 - info
 - httpbin
 - istio-system

$ oc -n istio-system edit smcp <name> 1

第1章 SERVICE MESH 2.X

79

1

2

注記

Istiod サービスが検出できる namespace を設定する場合は、他のメッシュには
公開すべきではない機密サービスが含まれる可能性のある namespace を除外し
ます。

以下の例では、Istiod サービスは istio-discovery: enabled のラベルが付いた namespace、ま
たは info、httpbin、または istio-system の名前を持つ namespace を検出します。

メッシュがラベル istio-discovery:enabled を含む namespace を検出するようにします。

メッシュが namespace info、httpbin、および istio-system を検出するようにします。

namespace が検出セレクターのいずれかに一致する場合、メッシュは namespace を検出しま
す。メッシュは、どの検出セレクターにも一致しない namespace を除外します。

4. ファイルを保存して、エディターを終了します。

1.4.2.1.3. Web コンソールを使用して、クラスター全体のメッシュでサイドカーインジェクションを受け
取る namespace を定義する

デフォルトでは、Red Hat OpenShift Service Mesh Operator はメンバーセレクターを使用して、サイ
ドカーインジェクションを受け取る namespace を識別します。ServiceMeshMemberRoll リソースで
定義されている istio-injection=enabled ラベルと一致しない namespace は、サイドカーインジェク
ションを受け取りません。

注記

検出セレクターを使用してメッシュが検出できる namespace を決定しても、サイドカー
インジェクションには影響しません。namespace の検出とサイドカーインジェクション
の設定は別の操作です。

前提条件

Red Hat OpenShift Service Mesh Operator がインストールされている。

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
metadata:
 name: basic
spec:
 mode: ClusterWide
 meshConfig:
 discoverySelectors:
 - matchLabels:
 istio-discovery: enabled 1
 - matchExpressions:
 - key: kubernetes.io/metadata.name 2
 operator: In
 values:
 - info
 - httpbin
 - istio-system

Red Hat OpenShift Service on AWS 4 Service Mesh

80

1

ServiceMeshControlPlanae リソースを mode: ClusterWide アノテーションが指定してデプ
ロイした。

cluster-admin ロールを持つユーザーとしてログインしている。Red Hat OpenShift Dedicated
を使用する場合は、dedicated-admin ロールを持つユーザーとしてログインします。

手順

1. Red Hat OpenShift Service on AWS Web コンソールにログインします。

2. Operators → Installed Operators に移動します。

3. Red Hat OpenShift Service Mesh Operator をクリックします。

4. Istio Service Mesh Member Roll をクリックします。

5. ServiceMeshMemberRoll リソースをクリックします。

6. YAML をクリックします。

7. inject ラベルと一致するメンバーセレクターを追加して、ServiceMeshMemberRoll リソース
の spec.memberSelectors フィールドを変更します。次の例では、istio-injection: enabled を
使用します。

namespace がサイドカーインジェクションを確実に受け取るようにします。

8. ファイルを保存します。

1.4.2.1.4. CLI を使用して、クラスター全体のメッシュでサイドカーインジェクションを受け取る
namespace を定義する

デフォルトでは、Red Hat OpenShift Service Mesh Operator はメンバーセレクターを使用して、サイ
ドカーインジェクションを受け取る namespace を識別します。ServiceMeshMemberRoll リソースで
定義されている istio-injection=enabled ラベルと一致しない namespace は、サイドカーインジェク
ションを受け取りません。

注記

検出セレクターを使用してメッシュが検出できる namespace を決定しても、サイドカー
インジェクションには影響しません。namespace の検出とサイドカーインジェクション
の設定は別の操作です。

前提条件

Red Hat OpenShift Service Mesh Operator がインストールされている。

apiVersion: maistra.io/v1
kind: ServiceMeshMemberRoll
metadata:
 name: default
spec:
 memberSelectors:
 - matchLabels:
 istio-injection: enabled 1

第1章 SERVICE MESH 2.X

81

1

ServiceMeshControlPlanae リソースを mode: ClusterWide アノテーションが指定してデプ
ロイした。

cluster-admin ロールを持つユーザーとしてログインしている。Red Hat OpenShift Dedicated
を使用する場合は、dedicated-admin ロールを持つユーザーとしてログインします。

手順

1. Red Hat OpenShift Service on AWS CLI にログインします。

2. ServiceMeshMemberRoll リソースを編集します。

3. inject ラベルと一致するメンバーセレクターを追加して、ServiceMeshMemberRoll リソース
の spec.memberSelectors フィールドを変更します。次の例では、istio-injection: enabled を
使用します。

namespace がサイドカーインジェクションを確実に受け取るようにします。

4. ファイルを保存して、エディターを終了します。

1.4.2.1.5. Web コンソールを使用してクラスター全体のメッシュから個々の Pod を除外する

Pod に sidecar.istio.io/inject: true アノテーションが適用されており、Pod が
ServiceMeshMemberRoll リソースで定義されているラベルセレクターまたはメンバーリストのいずれ
かに一致する namespace に存在する場合、Pod はサイドカーインジェクションを受け取ります。

Pod に sidecar.istio.io/inject アノテーションが適用されていない場合、サイドカーインジェクション
を受け取ることができません。

前提条件

Red Hat OpenShift Service Mesh Operator がインストールされている。

ServiceMeshControlPlane リソースを mode: ClusterWide アノテーションが指定してデプロ
イした。

cluster-admin ロールを持つユーザーとしてログインしている。Red Hat OpenShift Dedicated
を使用する場合は、dedicated-admin ロールを持つユーザーとしてログインします。

手順

1. Red Hat OpenShift Service on AWS Web コンソールにログインします。

$ oc edit smmr -n <controlplane-namespace>

apiVersion: maistra.io/v1
kind: ServiceMeshMemberRoll
metadata:
 name: default
spec:
 memberSelectors:
 - matchLabels:
 istio-injection: enabled 1

Red Hat OpenShift Service on AWS 4 Service Mesh

82

1

2

2. Workloads → Deployments に移動します。

3. デプロイメントの名前をクリックします。

4. YAML をクリックします。

5. 次の例に示すように、YAML ファイルを変更して、サイドカーインジェクションを受け取るア
プリケーションと受け取らないアプリケーションを 1 つずつデプロイします。

この Pod には、sidecar.istio.io/inject アノテーションが適用されているため、サイド
カーインジェクションを受け取ります。

この Pod にはアノテーションがないため、サイドカーインジェクションを受け取りませ
ん。

apiVersion: apps/v1
kind: Deployment
metadata:
 name: nginx
spec:
 selector:
 matchLabels:
 app: nginx
 template:
 metadata:
 annotations:
 sidecar.istio.io/inject: 'true' 1
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: nginx:1.14.2
 ports:
 - containerPort: 80

apiVersion: apps/v1
kind: Deployment
metadata:
 name: nginx-without-sidecar
spec:
 selector:
 matchLabels:
 app: nginx-without-sidecar
 template:
 metadata:
 labels:
 app: nginx-without-sidecar 2
 spec:
 containers:
 - name: nginx
 image: nginx:1.14.2
 ports:
 - containerPort: 80

第1章 SERVICE MESH 2.X

83

6. ファイルを保存します。

1.4.2.1.6. CLI を使用してクラスター全体のメッシュから個々の Pod を除外する

Pod に sidecar.istio.io/inject: true アノテーションが適用されており、Pod が
ServiceMeshMemberRoll リソースで定義されているラベルセレクターまたはメンバーリストのいずれ
かに一致する namespace に存在する場合、Pod はサイドカーインジェクションを受け取ります。

Pod に sidecar.istio.io/inject アノテーションが適用されていない場合、サイドカーインジェクション
を受け取ることができません。

前提条件

Red Hat OpenShift Service Mesh Operator がインストールされている。

ServiceMeshControlPlane リソースを mode: ClusterWide アノテーションが指定してデプロ
イした。

cluster-admin ロールを持つユーザーとしてログインしている。Red Hat OpenShift Dedicated
を使用する場合は、dedicated-admin ロールを持つユーザーとしてログインします。

手順

1. Red Hat OpenShift Service on AWS CLI にログインします。

2. 次のコマンドを実行して、デプロイメントを編集します。

3. 次の例に示すように、YAML ファイルを変更して、サイドカーインジェクションを受け取るア
プリケーションと受け取らないアプリケーションを 1 つずつデプロイします。

$ oc edit deployment -n <namespace> <deploymentName>

apiVersion: apps/v1
kind: Deployment
metadata:
 name: nginx
spec:
 selector:
 matchLabels:
 app: nginx
 template:
 metadata:
 annotations:
 sidecar.istio.io/inject: 'true' 1
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: nginx:1.14.2
 ports:
 - containerPort: 80

apiVersion: apps/v1
kind: Deployment

Red Hat OpenShift Service on AWS 4 Service Mesh

84

1

2

この Pod には、sidecar.istio.io/inject アノテーションが適用されているため、サイド
カーインジェクションを受け取ります。

この Pod にはアノテーションがないため、サイドカーインジェクションを受け取りませ
ん。

4. ファイルを保存します。

1.4.3. マルチテーマまたはフェデレーションされたデプロイメントモデル

フェデレーション は、個別の管理ドメインで管理される個別のメッシュ間でサービスとワークロードを
共有できるデプロイメントモデルです。

Istio マルチクラスターモデルでは、メッシュ間だで高いレベルの信頼が必要なだけでなく、個々のメッ
シュが存在するすべての Kubernetes API サーバーへのリモートアクセスも必要です。Red Hat
OpenShift Service Mesh のフェデレーションは、メッシュ間の 最小限 の信頼を前提とする Service
Mesh のマルチクラスター実装に対して独自のアプローチを採用しています。

フェデレーションされたメッシュ は、単一のメッシュとして動作させるメッシュのグループです。各
メッシュのサービスは、独自のサービスにできます。たとえば、別のメッシュからサービスをインポー
トすることでサービスを追加するメッシュは、メッシュ全体で同じサービスにさらにワークロードを追
加し、高可用性を提供することや、その両方を組み合わせることができます。フェデレーションされた
メッシュに参加するすべてのメッシュは個別に管理されたままなので、フェデレーション内の他のメッ
シュとの間でエクスポートやインポートされるサービスを明示的に設定する必要があります。証明書の
生成、メトリクス、トレース収集などのサポート機能は、それぞれのメッシュのローカルで機能しま
す。

1.5. SERVICE MESH と ISTIO の相違点

Red Hat OpenShift Service Mesh は、追加機能の提供、Red Hat OpenShift Service on AWS へのデプ
ロイ時の差異の処理を実行する Istio のインストールとは異なります。

1.5.1. Istio と Red Hat OpenShift Service Mesh の相違点

以下の機能は Service Mesh と Istio で異なります。

metadata:
 name: nginx-without-sidecar
spec:
 selector:
 matchLabels:
 app: nginx-without-sidecar
 template:
 metadata:
 labels:
 app: nginx-without-sidecar 2
 spec:
 containers:
 - name: nginx
 image: nginx:1.14.2
 ports:
 - containerPort: 80

第1章 SERVICE MESH 2.X

85

1.5.1.1. コマンドラインツール

Red Hat OpenShift Service Mesh のコマンドラインツールは oc です。 Red Hat OpenShift Service
Mesh は、istioctl をサポートしません。

1.5.1.2. インストールおよびアップグレード

Red Hat OpenShift Service Mesh は、Istio インストールプロファイルをサポートしません。

Red Hat OpenShift Service Mesh は Service Mesh のカナリアアップグレードをサポートしません。

1.5.1.3. 自動的な挿入

アップストリームの Istio コミュニティーインストールは、ラベル付けしたプロジェクト内の Pod にサ
イドカーコンテナーを自動的に挿入します。

Red Hat OpenShift Service Mesh は、サイドカーコンテナーをあらゆる Pod に自動的に挿入すること
はなく、プロジェクトにラベルを付けることなくアノテーションを使用して挿入をオプトインする必要
があります。この方法は必要な権限が少なく、ビルダー Pod などの他の Red Hat OpenShift Service on
AWS 機能と競合しません。自動挿入を有効にするには、サイドカーの自動挿入 セクションで説明され
ているとおり、sidecar.istio.io/inject ラベルまたはアノテーションを指定します。

表1.3 サイドカーインジェクションのラベルとアノテーションの設定

 アップストリーム Istio Red Hat OpenShift Service Mesh

namespace ラベル "enabled" と "disabled" をサポー
ト

"disabled" をサポート

Pod Label "true" と "false" をサポート "true" と "false" をサポート

Pod のアノテーション "false" のみをサポート "true" と "false" をサポート

1.5.1.4. Istio ロールベースアクセス制御機能

Istio ロールベースアクセス制御機能 (RBAC) は、サービスへのアクセスを制御するために使用できるメ
カニズムを提供します。ユーザー名やプロパティーのセットを指定してサブジェクトを特定し、それに
応じてアクセス制御を適用できます。

アップストリームの Istio コミュニティーインストールには、ヘッダーの完全一致の実行、ヘッダーの
ワイルドカードの一致の実行、または特定の接頭辞または接尾辞を含むヘッダーの有無をチェックする
オプションが含まれます。

Red Hat OpenShift Service Mesh は、正規表現を使用して要求ヘッダーと一致させる機能を拡張しま
す。request.regex.headers のプロパティーキーを正規表現で指定します。

アップストリーム Istio コミュニティーの要求ヘッダーのマッチング例

apiVersion: security.istio.io/v1beta1
kind: AuthorizationPolicy
metadata:
 name: httpbin-usernamepolicy
spec:

Red Hat OpenShift Service on AWS 4 Service Mesh

86

1.5.1.5. OpenSSL

Red Hat OpenShift Service Mesh では、BoringSSL を OpenSSL に置き換えます。OpenSSL は、
Secure Sockets Layer (SSL) プロトコルおよび Transport Layer Security (TLS) プロトコルのオープン
ソース実装を含むソフトウェアライブラリーです。Red Hat OpenShift Service Mesh Proxy バイナリー
は、基礎となる Red Hat Enterprise Linux オペレーティングシステムから OpenSSL ライブラリー (libssl
および libcrypto) を動的にリンクします。

1.5.1.6. 外部ワークロード

Red Hat OpenShift Service Mesh は、ベアメタルサーバー上で OpenShift の外部で実行される仮想マシ
ンなどの外部ワークロードをサポートしません。

1.5.1.7. 仮想マシンのサポート

OpenShift Virtualization を使用して、仮想マシンを OpenShift にデプロイできます。次に、メッシュの
一部である他の Pod と同様に、mTLS または AuthorizationPolicy などのメッシュポリシーをこれらの
仮想マシンに適用できます。

1.5.1.8. コンポーネントの変更

すべてのリソースに maistra-version ラベルが追加されました。

すべての Ingress リソースが OpenShift ルートリソースに変換されました。

Grafana、分散トレース (Jaeger)、および Kiali はデフォルトで有効になっており、OpenShift
ルート経由で公開されます。

すべてのテンプレートから Godebug が削除されました。

istio-multi ServiceAccount および ClusterRoleBinding が削除されました。また、 istio-reader
ClusterRole も削除されました。

1.5.1.9. Envoy フィルター

Red Hat OpenShift Service Mesh は、明示的に文書化されている場合を除き、EnvoyFilter の設定はサ
ポートしていません。下層の Envoy API と疎結合されており、後方互換性を確保できませ
ん。EnvoyFilter パッチは、Istio によって生成される Envoy 設定の形式に非常に敏感です。Istio で生
成された設定を変更すると、EnvoyFilter のアプリケーションが破損する可能性があります。

1.5.1.10. Envoy サービス

Red Hat OpenShift Service Mesh は、QUIC ベースのサービスをサポートしません。

 action: ALLOW
 rules:
 - when:
 - key: 'request.regex.headers[username]'
 values:
 - "allowed.*"
 selector:
 matchLabels:
 app: httpbin

第1章 SERVICE MESH 2.X

87

1.5.1.11. Istio Container Network Interface (CNI) プラグイン

Red Hat OpenShift Service Mesh には CNI プラグインが含まれ、アプリケーション Pod ネットワーキ
ングを設定する代替の方法が提供されます。CNI プラグインは init-container ネットワーク設定を置き
換えます。これにより、昇格した権限でサービスアカウントおよびプロジェクトに Security Context
Constraints (SCC) へのアクセスを付与する必要がなくなります。

注記

デフォルトでは、Istio Container Network Interface (CNI) Pod は、Red Hat OpenShift
Service on AWS ノード上に作成されます。特定のノードでの CNI Pod の作成を除外する
には、maistra.io/exclude- cni=true ラベルをノードに適用します。このラベルを追加す
ると、以前にデプロイされた Istio CNI Pod がノードから削除されます。

1.5.1.12. グローバル mTLS 設定

Red Hat OpenShift Service Mesh は、メッシュ内で相互 TLS 認証 (mTLS) を有効または無効にする
PeerAuthentication リソースを作成します。

1.5.1.13. ゲートウェイ

Red Hat OpenShift Service Mesh は、デフォルトで受信および送信用のゲートウェイをインストールし
ます。次の設定を使用して、ServiceMeshControlPlane (SMCP) リソースでゲートウェイのインス
トールを無効にできます。

spec.gateways.enabled=false は、ingress ゲートウェイと egress ゲートウェイの両方を無効
にします。

spec.gateways.ingress.enabled=false は、ingress ゲートウェイを無効にします。

spec.gateways.egress.enabled=false は、egress ゲートウェイを無効にします。

注記

Operator はデフォルトゲートウェイにアノテーションを付けて、それらが Red Hat
OpenShift Service Mesh Operator によって生成および管理されていることを示します。

1.5.1.14. マルチクラスター設定

マルチクラスター設定における Red Hat OpenShift Service Mesh のサポートは、複数のクラスターにわ
たる Service Mesh のフェデレーションに限定されます。

1.5.1.15. カスタム証明書署名要求 (CSR)

Kubernetes 認証局 (CA) で CSR を処理するように Red Hat OpenShift Service Mesh を設定することは
できません。

1.5.1.16. Istio ゲートウェイのルート

Istio ゲートウェイの OpenShift ルートは、Red Hat OpenShift Service Mesh で自動的に管理されま
す。Istio ゲートウェイが Service Mesh 内で作成され、更新され、削除されるたびに、OpenShift ルー
トが作成され、更新され、削除されます。

Istio OpenShift Routing (IOR) と呼ばれる Red Hat OpenShift Service Mesh コントロールプレーンコン

Red Hat OpenShift Service on AWS 4 Service Mesh

88

Istio OpenShift Routing (IOR) と呼ばれる Red Hat OpenShift Service Mesh コントロールプレーンコン
ポーネントは、ゲートウェイルートを同期させます。詳細は、「自動ルートの作成」を参照してくださ
い。

1.5.1.16.1. catch-all ドメイン

catch-all ドメイン ("*") はサポートされません。ゲートウェイ定義で catch-all ドメインが見つかった場
合、Red Hat OpenShift Service Mesh はルートを 作成します が、デフォルトのホスト名を作成するに
は OpenShift に依存します。つまり、新たに作成されたルートは、catch all ("*") ルート ではなく、代
わりに <route-name>[-<project>].<suffix> 形式のホスト名を持ちます。デフォルトのホスト名の仕組
みや、cluster-admin がカスタマイズできる仕組みの詳細は、Red Hat OpenShift Service on AWS ド
キュメントを参照してください。Red Hat OpenShift Dedicated を使用する場合は、Red Hat
OpenShift Dedicated の dedicated-admin ロールを参照してください。

1.5.1.16.2. サブドメイン

サブドメイン (e.g.: "*.domain.com") はサポートされます。ただし、この機能は Red Hat OpenShift
Service on AWS ではデフォルトで有効になっていません。つまり、Red Hat OpenShift Service Mesh
はサブドメインを持つルートを 作成します が、これは Red Hat OpenShift Service on AWS が有効にす
るように設定されている場合にのみ有効になります。

1.5.1.16.3. トランスポート層セキュリティー

トランスポート層セキュリティー (TLS) がサポートされます。ゲートウェイに tls セクションが含まれ
ると、OpenShift ルートは TLS をサポートするように設定されます。

関連情報

自動ルート作成

1.5.2. マルチテナントインストール

アップストリームの Istio は単一テナントのアプローチをとりますが、Red Hat OpenShift Service Mesh
はクラスター内で複数の独立したコントロールプレーンをサポートします。Red Hat OpenShift Service
Mesh はマルチテナント Operator を使用して、コントロールプレーンのライフサイクルを管理しま
す。

Red Hat OpenShift Service Mesh は、デフォルトでマルチテナントコントロールプレーンをインストー
ルします。Service Mesh にアクセスできるプロジェクトを指定し、Service Mesh を他のコントロール
プレーンインスタンスから分離します。

1.5.2.1. マルチテナンシーとクラスター全体のインストールの比較

マルチテナントインストールとクラスター全体のインストールの主な違いは、istod で使用される権限
の範囲です。コンポーネントでは、クラスタースコープのロールベースのアクセス制御 (RBAC) リソー
ス ClusterRoleBinding が使用されなくなりました。

ServiceMeshMemberRoll members リストのすべてのプロジェクトには、コントロールプレーンのデ
プロイメントに関連付けられた各サービスアカウントの RoleBinding があり、各コントロールプレー
ンのデプロイメントはそれらのメンバープロジェクトのみを監視します。各メンバープロジェクトには
maistra.io/member-of ラベルが追加されており、member-of の値はコントロールプレーンのインス
トールが含まれるプロジェクトになります。

Red Hat OpenShift Service Mesh は、各メンバープロジェクトに NetworkPolicy リソースを作成し、
他のメンバーとコントロールプレーンからのすべての Pod への Ingress を許可することで、各メンバー

第1章 SERVICE MESH 2.X

89

プロジェクトを設定して、それ自体、コントロールプレーン、および他のメンバープロジェクト間の
ネットワークアクセスを確保します。Service Mesh からメンバーを削除すると、この NetworkPolicy
リソースがプロジェクトから削除されます。

注記

また、これにより Ingress がメンバープロジェクトのみに制限されます。メンバー以外の
プロジェクトの Ingress が必要な場合は、NetworkPolicy を作成してそのトラフィック
を許可する必要があります。

1.5.2.2. クラスタースコープのリソース

アップストリーム Istio には、依存するクラスタースコープのリソースが 2 つあります。MeshPolicy お
よび ClusterRbacConfig。これらはマルチテナントクラスターと互換性がなく、以下で説明されてい
るように置き換えられました。

コントロールプレーン全体の認証ポリシーを設定するために、MeshPolicy は
ServiceMeshPolicy に置き換えられます。これは、コントロールプレーンと同じプロジェクト
に作成する必要があります。

コントロールプレーン全体のロールベースのアクセス制御を設定するために、
ClusterRbacConfig は ServicemeshRbacConfig に置き換えられます。これは、コントロール
プレーンと同じプロジェクトに作成する必要があります。

1.5.3. Kiali と Service Mesh

Red Hat OpenShift Service on AWS での Service Mesh を使用した Kiali のインストールは、複数の点で
コミュニティーの Kiali インストールとは異なります。以下のような変更が、問題の解決、追加機能の提
供、Red Hat OpenShift Service on AWS へのデプロイ時の差異の処理を実行するために必要になること
があります。

Kiali はデフォルトで有効になっている。

Ingress はデフォルトで有効になっている。

Kiali ConfigMap が更新されている。

Kiali の ClusterRole 設定が更新されている。

変更は Service Mesh または Kiali Operator によって上書きされる可能性があるため、
ConfigMap を編集しないでください。Kiali Operator が管理するファイルには、kiali.io/ ラベル
またはアノテーションが付いています。Operator ファイルの更新は、cluster-admin 権限を持
つユーザーに制限する必要があります。Red Hat OpenShift Dedicated を使用する場合
に、dedicated-admin 権限のあるユーザーだけが Operator ファイルを更新できるようにする
必要があります。

1.5.4. 分散トレースと Service Mesh

Red Hat OpenShift Service on AWS にサービスメッシュを使用して分散トレーシングプラットフォーム
(Jaeger) をインストールすることは、コミュニティーの Jaeger のインストールとはさまざまな点で異
なります。以下のような変更が、問題の解決、追加機能の提供、Red Hat OpenShift Service on AWS へ
のデプロイ時の差異の処理を実行するために必要になることがあります。

分散トレースは、Service Mesh に対してデフォルトで有効になっています。

Red Hat OpenShift Service on AWS 4 Service Mesh

90

Ingress は、Service Mesh に対してデフォルトで有効になっています。

Zipkin ポート名が、(http から) jaeger-collector-zipkin に変更されています。

Jaeger は、production または streaming デプロイメントオプションのいずれかを選択する際
に、デフォルトでストレージに Elasticsearch を使用します。

Istio のコミュニティーバージョンは、一般的な "トレース" ルートを提供します。Red Hat
OpenShift Service Mesh は、Red Hat OpenShift 分散トレーシング Platform (Jaeger)
Operator によってインストールされ、すでに OAuth によって保護されている jaeger ルートを
使用します。

Red Hat OpenShift Service Mesh は Envoy プロキシーにサイドカーを使用し、Jaeger も
Jaeger エージェントにサイドカーを使用します。両者は個別に設定し、混同しないようにして
ください。プロキシーサイドカーは、Pod の Ingress および Egress トラフィックに関連するス
パンを作成します。エージェントサイドカーは、アプリケーションによって出力されるスパン
を受け取り、これらを Jaeger Collector に送信します。

1.6. SERVICE MESH のインストールの準備

Red Hat OpenShift Service Mesh をインストールする前に、Red Hat OpenShift Service on AWS にサ
ブスクライブし、サポートされている設定で Red Hat OpenShift Service on AWS をインストールする
必要があります。

1.6.1. 前提条件

Red Hat アカウントにアクティブな Red Hat OpenShift Service on AWS サブスクリプションが
ある。サブスクリプションをお持ちでない場合は、営業担当者にお問い合わせください。

Red Hat OpenShift Service on AWS のバージョンに一致する Red Hat OpenShift Service on
AWS コマンドラインユーティリティー (oc クライアントツール) のバージョンをインストール
し、それをパスに追加する。

Red Hat OpenShift Service Mesh のライフサイクルおよびサポートされるプラットフォームの詳細
は、サポートポリシー を参照してください。

1.6.2. サポートされる構成

以下の設定は、Red Hat OpenShift Service Mesh の現行リリースでサポートされます。

1.6.2.1. サポート対象のプラットフォーム

Red Hat OpenShift Service Mesh Operator は、複数のバージョンの ServiceMeshControlPlane リ
ソースをサポートします。バージョン 2.6 の Service Mesh コントロールプレーンは、次のプラット
フォームバージョンでサポートされています。

Red Hat OpenShift Container Platform バージョン 4.10 以降

Red Hat OpenShift Dedicated バージョン 4

Azure Red Hat OpenShift (ARO) バージョン 4

Red Hat OpenShift Service on AWS (ROSA)

1.6.2.2. サポートされない設定

第1章 SERVICE MESH 2.X

91

https://access.redhat.com/support/policy/updates/openshift#ossm

明示的にサポート対象外とされているケースには、以下が含まれます。

OpenShift Online は Red Hat OpenShift Service Mesh に対してはサポートされていません。

Red Hat OpenShift Service Mesh では、Service Mesh が実行されているクラスター以外にある
マイクロサービスの管理はサポートしていません。

1.6.2.3. サポートされるネットワーク設定

Red Hat OpenShift Service Mesh は以下のネットワーク設定をサポートします。

OpenShift-SDN

OVN-Kubernetes は、サポートされているすべてのバージョンの Red Hat OpenShift Service
on AWS で利用できます。

Red Hat OpenShift Service on AWS で認定され、さらに Service Mesh 適合テストに合格した
サードパーティーの Container Network Interface (CNI) プラグイン。詳細は、認定 OpenShift
CNI プラグイン を参照してください。

1.6.2.4. Service Mesh でサポートされる設定

このリリースの Red Hat OpenShift Service Mesh は、Red Hat OpenShift Service on AWS
x86_64 でのみ利用できます。

すべての Service Mesh コンポーネントが単一の Red Hat OpenShift Service on AWS クラス
ター内に含まれる設定。

仮想マシンなどの外部サービスを統合しない設定。

Red Hat OpenShift Service Mesh は、明示的に文書化されている場合を除き、EnvoyFilter の
設定はサポートしていません。

1.6.2.5. Kiali のサポートされる設定

Kiali コンソールは、Google Chrome、Microsoft Edge、Mozilla Firefox、または Apple Safari ブ
ラウザーの最新の 2 つのリリースでのみサポートされています。

openshift 認証戦略は、Kiali が Red Hat OpenShift Service Mesh (OSSM) とともにデプロイさ
れている場合にサポートされる唯一の認証設定です。openshift 戦略は、Red Hat OpenShift
Service on AWS の個人のロールベースのアクセス制御 (RBAC) ロールに基づいてアクセスを制
御します。

1.6.2.6. 分散トレースのサポートされる設定

サイドカーとしての Jaeger エージェントは、Jaeger でサポートされる唯一の設定です。デー
モンセットとしての Jaeger はマルチテナントインストールまたは OpenShift Dedicated では
サポートされません。

1.6.2.7. サポート対象の WebAssembly モジュール

3scale WebAssembly は、提供されている唯一の WebAssembly モジュールです。カスタム
WebAssembly モジュールを作成できます。

1.6.3. 次のステップ

Red Hat OpenShift Service on AWS 4 Service Mesh

92

https://access.redhat.com/articles/5436171

Red Hat OpenShift Service on AWS 環境に Red Hat OpenShift Service Mesh をインストール
します。

1.7. OPERATOR のインストール

Red Hat OpenShift Service Mesh をインストールするには、まず Red Hat OpenShift Service Mesh
Operator とオプションの Operator を Red Hat OpenShift Service on AWS にインストールします。次
に、コントロールプレーンをデプロイするための ServiceMeshControlPlane リソースを作成します。

注記

この基本的なインストールはデフォルトの OpenShift 設定に基づいて設定され、実稼働
環境での使用を目的としていません。 このデフォルトインストールを使用してインス
トールを確認し、お使いの環境に Service Mesh を設定します。

前提条件

Red Hat OpenShift Service Mesh のインストールの準備 のプロセスを確認している。

cluster-admin ロールを持つアカウントがある。

以下の手順では、Red Hat OpenShift Service on AWS に Red Hat OpenShift Service Mesh の基本的な
インスタンスをインストールする方法を説明します。

重要

Red Hat OpenShift Service Mesh 2.5 以降、Red Hat OpenShift 分散トレーシング
Platform (Jaeger) および OpenShift Elasticsearch Operator は非推奨となり、今後のリ
リースで削除される予定です。Red Hat は、現行リリースのライフサイクル中はこれら
の機能のバグ修正とサポートを提供しますが、今後これらの機能に対する機能強化は行
われません。Red Hat OpenShift 分散トレーシング Platform (Jaeger) の代わりに、Red
Hat OpenShift 分散トレーシング Platform を使用することもできます。

1.7.1. Service Mesh Operator の概要

Red Hat OpenShift Service Mesh では、Red Hat OpenShift Service Mesh Operator を使用する必要が
あります。この Operator により、アプリケーションを構成するマイクロサービスの接続、保護、制
御、監視が可能になります。他の Operator をインストールして、Service Mesh のエクスペリエンスを
強化することもできます。

警告

Operator のコミュニティーバージョンはインストールしないでください。コミュ
ニティー Operator はサポートされていません。

次の Operator が必要です。

Red Hat OpenShift Service Mesh Operator

アプリケーションを構成するマイクロサービスの接続、保護、制御、監視を可能にします。また、



第1章 SERVICE MESH 2.X

93

アプリケーションを構成するマイクロサービスの接続、保護、制御、監視を可能にします。また、
Service Mesh コンポーネントのデプロイ、更新、削除を管理する ServiceMeshControlPlane リ
ソースを定義および監視します。これはオープンソースの Istio プロジェクトに基づいています。

次の Operator はオプションです。

Red Hat が提供する Kiali Operator

Service Mesh の可観測性を提供します。これにより、単一のコンソールで設定を表示し、トラ
フィックを監視し、トレースの分析を実行できます。これはオープンソースの Kiali プロジェクトに
基づいています。

Red Hat OpenShift 分散トレーシングプラットフォーム

複雑な分散システム内のトランザクションを監視およびトラブルシューティングするための分散ト
レーシングを提供します。これはオープンソースの Grafana Tempo プロジェクトに基づいていま
す。

次のオプションの Operators は非推奨です。

重要

Red Hat OpenShift Service Mesh 2.5 以降、Red Hat OpenShift 分散トレーシング
Platform (Jaeger) および OpenShift Elasticsearch Operator は非推奨となり、今後のリ
リースで削除される予定です。Red Hat は、現行リリースのライフサイクル中はこれら
の機能のバグ修正とサポートを提供しますが、今後これらの機能に対する機能強化は行
われません。Red Hat OpenShift 分散トレーシング Platform (Jaeger) の代わりに、Red
Hat OpenShift 分散トレーシング Platform を使用することもできます。

Red Hat OpenShift 分散トレーシングプラットフォーム (Jaeger)

複雑な分散システム内のトランザクションを監視およびトラブルシューティングするための分散ト
レーシングを提供します。これはオープンソースの Jaeger プロジェクトに基づいています。

OpenShift Elasticsearch Operator

分散トレーシング Platform (Jaeger) を使用したトレースおよびログ記録用のデータベースストレー
ジを提供します。これはオープンソースの Elasticsearch プロジェクトに基づいています。

1.7.2. Operator のインストール

Red Hat OpenShift Service Mesh をインストールするには、Red Hat OpenShift Service Mesh Operator
をインストールする必要があります。この手順を、インストールする追加の Operator ごとに繰り返し
行ってください。

追加の Operators には以下のものがあります。

Red Hat が提供する Kiali Operator

Tempo Operator

非推奨となった追加の Operators は次のとおりです。

重要

Red Hat OpenShift Service on AWS 4 Service Mesh

94

https://istio.io/
https://www.kiali.io/
https://grafana.com/oss/tempo/
https://www.jaegertracing.io/
https://www.elastic.co/

重要

Red Hat OpenShift Service Mesh 2.5 以降、Red Hat OpenShift 分散トレーシング
Platform (Jaeger) および OpenShift Elasticsearch Operator は非推奨となり、今後のリ
リースで削除される予定です。Red Hat は、現行リリースのライフサイクル中はこれら
の機能のバグ修正とサポートを提供しますが、今後これらの機能に対する機能強化は行
われません。Red Hat OpenShift 分散トレーシング Platform (Jaeger) の代わりに、Red
Hat OpenShift 分散トレーシング Platform を使用することもできます。

Red Hat OpenShift 分散トレーシングプラットフォーム (Jaeger)

OpenShift Elasticsearch Operator

注記

OpenShift Logging の一部として OpenShift Elasticsearch Operator がすでにインストー
ルされている場合は、OpenShift Elasticsearch Operator を再びインストールする必要は
ありません。Red Hat OpenShift 分散トレーシング Platform (Jaeger) Operator は、イ
ンストールされた OpenShift Elasticsearch Operator を使用して Elasticsearch インスタ
ンスを作成します。

手順

1. dedicated-admin ロールを持つユーザーとして Red Hat OpenShift Service on AWS Web コン
ソールにログインします。

2. Red Hat OpenShift Service on AWS Web コンソールで、Operator → OperatorHub をクリッ
クします。

3. Operator のフィルターボックスに名前を入力し、Red Hat バージョンの Operator を選択しま
す。Operator のコミュニティーバージョンはサポートされていません。

4. Install をクリックします。

5. 各 Operator の Install Operator ページで、デフォルト設定を受け入れます。

6. Install をクリックします。Operator がインストールされるまで待機してから、同じ手順を繰り
返して、次の Operator をインストールします。

Red Hat OpenShift Service Mesh Operator は、openshift-operators namespace にインス
トールされ、クラスター内のすべての namespace で使用できます。

Red Hat が提供する Kiali Operator は、openshift-operators namespace にインストールさ
れ、クラスター内のすべての namespace で使用できます。

Tempo Operator は、openshift-tempo-operator namespace にインストールされ、クラス
ター内のすべての namespace で使用できます。

Red Hat OpenShift 分散トレーシング Platform (Jaeger) は 、openshift-distributed-
tracing 名前空間にインストールされ、クラスター内のすべての名前空間で使用できます。

重要

第1章 SERVICE MESH 2.X

95

重要

Red Hat OpenShift Service Mesh 2.5 以降、Red Hat OpenShift 分散トレー
シング Platform (Jaeger) は非推奨となり、今後のリリースで削除される予
定です。Red Hat は、現在のリリースのライフサイクル中にこの機能のバグ
修正とサポートを提供しますが、この機能は今後、機能拡張を受け取らず、
削除されます。Red Hat OpenShift 分散トレーシング Platform (Jaeger) の
代わりに、Red Hat OpenShift 分散トレーシング Platform を使用すること
もできます。

OpenShift Elasticsearch Operator は、openshift-operators-redhat namespace にインス
トールされ、クラスター内のすべての namespace で使用できます。

重要

Red Hat OpenShift Service Mesh 2.5 以降、OpenShift Elasticsearch
Operator が非推奨になりました。これは今後のリリースで削除される予定
です。Red Hat は、現在のリリースのライフサイクル中にこの機能のバグ修
正とサポートを提供しますが、この機能は今後、機能拡張を受け取らず、削
除されます。

検証

4 つの Operator をすべてインストールしたら、Operators → Installed Operators をクリック
して Operator がインストールされていることを確認します。

1.7.3. 次のステップ

Red Hat OpenShift Service Mesh Operator は、Service Mesh コントロールプレーンをデプロイ
するまで、Service Mesh カスタムリソース定義 (CRD) を作成しませ
ん。ServiceMeshControlPlane リソースを使用して、Service Mesh コンポーネントをインス
トールおよび設定できます。詳細は、ServiceMeshControlPlane の作成 を参照してください。

1.8. SERVICEMESHCONTROLPLANE の作成

1.8.1. About ServiceMeshControlPlane

コントロールプレーンには、Istiod、Ingress および Egress Gateway、Kiali や Jaeger などのその他コン
ポーネントが含まれます。コントロールプレーンは、Service Mesh Operator やデータプレーンアプリ
ケーションおよびサービスとは別の namespace にデプロイする必要があります。Red Hat OpenShift
Service on AWS Web コンソールを使用するか、oc クライアントツールを使用してコマンドラインから
ServiceMeshControlPlane (SMCP) の基本的なインストールをデプロイできます。

注記

この基本インストールは、デフォルトの Red Hat OpenShift Service on AWS 設定に基づ
いて設定されており、本番環境での使用を目的として設計されていません。このデフォ
ルトのインストールを使用してインストールを確認し、環境に合わせて
ServiceMeshControlPlane 設定を設定します。

Red Hat OpenShift Service on AWS で使用するためにコントロールプレーンをデプロイしている場合
は、新しいプロジェクトの追加と Pod の開始を説明している Red Hat ナレッジベースの記事
OpenShift service mesh operator Istio basic not starting due to authentication errors を参照してくださ

Red Hat OpenShift Service on AWS 4 Service Mesh

96

https://access.redhat.com/solutions/6529231

い。

1.8.1.1. Web コンソールからの Service Mesh コントロールプレーンのデプロイ

Web コンソールを使用して基本的な ServiceMeshControlPlane をデプロイできます。この例で
は、istio-system が Service Mesh コントロールプレーンプロジェクトの名前となります。

前提条件

Red Hat OpenShift Service Mesh Operator がインストールされている。

Red Hat OpenShift Service on AWS Web コンソールに、dedicated-admin ロールを持つユー
ザーとしてログインしている。

手順

1. cluster-admin ロールを持つユーザーとして Red Hat OpenShift Service on AWS Web コンソー
ルにログインします。(Red Hat OpenShift Dedicated を使用する場合) dedicated-admin ロー
ルがあるアカウント。

2. istio-system という名前のプロジェクトを作成します。

a. Home → Projects に移動します。

b. Create Project をクリックします。

c. Name フィールドに istio-system と入力します。ServiceMeshControlPlane リソース
は、マイクロサービスおよび Operator とは別に、istio-system プロジェクトにインストー
ルする必要があります。

d. Create をクリックします。

3. Operators → Installed Operators に移動します。

4. Red Hat OpenShift Service Mesh Operator をクリックした後に、Istio Service Mesh Control
Plane をクリックします。

5. Istio Service Mesh Control Plane タブで Create ServiceMeshControlPlane をクリックしま
す。

a. 製品の最新バージョンで使用できる機能を利用するには、デフォルトの Service Mesh コン
トロールプレーンバージョンを受け入れます。コントロールプレーンのバージョンは、
Operator のバージョンに関係なく利用可能な機能を判別します。

b. Red Hat OpenShift Service on AWS に必要な spec.security.identity.type.ThirdParty
フィールドを追加します。

c. Create をクリックします。

Operator は、設定パラメーターに基づいて Pod、サービス、Service Mesh コントロールプレー
ンのコンポーネントを作成します。ServiceMeshControlPlane 設定は後で設定できます。

検証

Istio Service Mesh Control Plane タブをクリックしてコントロールプレーンが正常にインス
トールされることを確認します。

第1章 SERVICE MESH 2.X

97

a. 新規コントロールプレーンの名前をクリックします。

b. Resources タブをクリックして、Red Hat OpenShift Service Mesh コントロールプレーン
リソース (Operator が作成し、設定したもの) を表示します。

1.8.1.2. CLI を使用した Service Mesh コントロールプレーンのデプロイ

コマンドラインから基本的な ServiceMeshControlPlane をデプロイできます。

前提条件

Red Hat OpenShift Service Mesh Operator がインストールされている。

OpenShift CLI (oc) へのアクセスがある。

Red Hat OpenShift Service on AWS に、dedicated-admin ロールを持つユーザーとしてログイ
ンしている。

手順

1. istio-system という名前のプロジェクトを作成します。

ServiceMeshControlPlane リソースは、マイクロサービスおよび Operator とは別に、 istio-
system プロジェクトにインストールする必要があります。

2. 以下の例を使用して istio-installation.yaml という名前の ServiceMeshControlPlane ファイル
を作成します。Service Mesh コントロールプレーンのバージョンは、Operator のバージョンに
関係なく利用可能な機能を判別します。

ServiceMeshControlPlane リソースの例

$ oc new-project istio-system

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
metadata:
 name: basic
 namespace: istio-system
spec:
 version: v2.6
 security:
 identity:
 type: ThirdParty 1
 tracing:
 type: None
 sampling: 10000
 policy:
 type: Istiod
 addons:
 grafana:
 enabled: true
 kiali:
 enabled: true
 prometheus:

Red Hat OpenShift Service on AWS 4 Service Mesh

98

1 Red Hat OpenShift Service on AWS に必要な設定を指定します。

3. 以下のコマンドを実行して Service Mesh コントロールプレーンをデプロイします。ここ
で、<istio_installation.yaml> にはファイルへの完全パスが含まれます。

4. Pod のデプロイメントの進行状況を監視するには、次のコマンドを実行します。

以下のような出力が表示されるはずです。

1.8.1.3. CLI を使用した SMCP インストールの検証

コマンドラインから ServiceMeshControlPlane の作成を検証できます。

1. 前提条件

Red Hat OpenShift Service Mesh Operator がインストールされている。

OpenShift CLI (oc) へのアクセスがある。

Red Hat OpenShift Service on AWS に、dedicated-admin ロールを持つユーザーとしてロ
グインしている。

手順

1. 次のコマンドを実行して、Service Mesh コントロールプレーンのインストールを確認しま
す。istio-system は、Service Mesh コントロールプレーンをインストールした namespace で
す。

STATUS 列が ComponentsReady の場合は、インストールが正常に終了しています。

1.8.2. コントロールプレーンとクラスター全体のデプロイメントについて

 enabled: true
 telemetry:
 type: Istiod

$ oc create -n istio-system -f <istio_installation.yaml>

$ oc get pods -n istio-system -w

NAME READY STATUS RESTARTS AGE
grafana-b4d59bd7-mrgbr 2/2 Running 0 65m
istio-egressgateway-678dc97b4c-wrjkp 1/1 Running 0 108s
istio-ingressgateway-b45c9d54d-4qg6n 1/1 Running 0 108s
istiod-basic-55d78bbbcd-j5556 1/1 Running 0 108s
kiali-6476c7656c-x5msp 1/1 Running 0 43m
prometheus-58954b8d6b-m5std 2/2 Running 0 66m

$ oc get smcp -n istio-system

NAME READY STATUS PROFILES VERSION AGE
basic 10/10 ComponentsReady ["default"] 2.6.7 66m

第1章 SERVICE MESH 2.X

99

クラスター全体のデプロイメントには、クラスター全体のリソースを監視する Service Mesh Control
Plane が含まれます。クラスター全体のリソースのモニタリングは、コントロールプレーンがすべての
namespace にわたって単一のクエリーを使用して Istio および Kubernetes リソースを監視するという
点で、Istio の機能によく似ています。その結果、クラスター全体のデプロイメントにより、API サー
バーに送信されるリクエストの数が減少します。

Red Hat OpenShift Service on AWS Web コンソールまたは CLI を使用して、クラスター全体のデプロ
イメント用に Service Mesh コントロールプレーンを設定できます。

1.8.2.1. Web コンソールを使用したクラスター全体のデプロイメント用のコントロールプレーン
の設定

Red Hat OpenShift Service on AWS Web コンソールを使用して、クラスター全体のデプロイメント用
に ServiceMeshControlPlane リソースを設定できます。この例では、istio-system が Service Mesh
コントロールプレーンプロジェクトの名前となります。

前提条件

Red Hat OpenShift Service Mesh Operator がインストールされている。

Red Hat OpenShift Service on AWS に、dedicated-admin ロールを持つユーザーとしてログイ
ンしている。

手順

1. istio-system という名前のプロジェクトを作成します。

a. Home → Projects に移動します。

b. Create Project をクリックします。

c. Name フィールドに istio-system と入力します。ServiceMeshControlPlane リソース
は、マイクロサービスおよび Operator とは異なるプロジェクトにインストールする必要が
あります。
これらの手順では、istio-system をサンプルとして使用します。Service Mesh コントロー
ルプレーンは、サービスが含まれるプロジェクトから分離されている限り、任意のプロ
ジェクトにデプロイできます。

d. Create をクリックします。

2. Operators → Installed Operators に移動します。

3. Red Hat OpenShift Service Mesh Operator をクリックした後に、Istio Service Mesh Control
Plane をクリックします。

4. Istio Service Mesh Control Plane タブで Create ServiceMeshControlPlane をクリックしま
す。

5. YAML view をクリックします。Service Mesh コントロールプレーンのバージョンは、
Operator のバージョンに関係なく利用可能な機能を判別します。

6. spec.mode フィールドを変更し、spec.security.identity.type.ThirdParty フィールドを追加し
ます。

ServiceMeshControlPlane リソースの例

Red Hat OpenShift Service on AWS 4 Service Mesh

100

1

2

リソースがクラスター全体のデプロイメント用であることを指定します。

Red Hat OpenShift Service on AWS に必要な設定を指定します。

7. Create をクリックします。Operator は、設定パラメーターに基づいて Pod、サービス、
Service Mesh コントロールプレーンのコンポーネントを作成しま
す。ServiceMeshMemberRoll がデフォルト設定の一部として存在しない場合、Operator はそ
れも作成します。

検証

コントロールプレーンが正しくインストールされていることを確認するには、次の手順を実行
します。

a. Istio Service Mesh Control Plane タブをクリックします。

b. 新しい ServiceMeshControlPlane オブジェクトの名前をクリックします。

c. Resources タブをクリックして、Red Hat OpenShift Service Mesh コントロールプレーン
リソース (Operator が作成し、設定したもの) を表示します。

1.8.2.2. CLI を使用したクラスター全体のデプロイメント用のコントロールプレーンの設定

CLI を使用して、クラスター全体のデプロイメント用に ServiceMeshControlPlane リソースを設定で

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
metadata:
 name: basic
 namespace: istio-system
spec:
 version: v2.6
 mode: ClusterWide 1
 security:
 identity:
 type: ThirdParty 2
 tracing:
 type: Jaeger
 sampling: 10000
 policy:
 type: Istiod
 addons:
 grafana:
 enabled: true
 jaeger:
 install:
 storage:
 type: Memory
 kiali:
 enabled: true
 prometheus:
 enabled: true
 telemetry:
 type: Istiod

第1章 SERVICE MESH 2.X

101

1

2

CLI を使用して、クラスター全体のデプロイメント用に ServiceMeshControlPlane リソースを設定で
きます。この例では、istio-system は Service Mesh コントロールプレーンの namespace の名前です。

前提条件

Red Hat OpenShift Service Mesh Operator がインストールされている。

OpenShift CLI (oc) にアクセスできる。

Red Hat OpenShift Service on AWS に、dedicated-admin ロールを持つユーザーとしてログイ
ンしている。

手順

1. istio-system という名前のプロジェクトを作成します。

2. 以下の例を使用して istio-installation.yaml という名前の ServiceMeshControlPlane ファイル
を作成します。

ServiceMeshControlPlane リソースの例

リソースがクラスター全体のデプロイメント用であることを指定します。

Red Hat OpenShift Service on AWS に必要な設定を指定します。

3. 次のコマンドを実行して、Service Mesh コントロールプレーンをデプロイします。

ここでは、以下のようになります。

<istio_installation.yaml>

ファイルへの完全パスを指定します。

検証

1. Pod のデプロイの進行状況を監視するには、次のコマンドを実行します。

$ oc new-project istio-system

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
metadata:
 name: basic
 namespace: istio-system
spec:
 version: v2.6
 mode: ClusterWide 1
 security:
 identity:
 type: ThirdParty 2

$ oc create -n istio-system -f <istio_installation.yaml>

$ oc get pods -n istio-system -w

Red Hat OpenShift Service on AWS 4 Service Mesh

102

次の例のような出力が表示されるはずです。

出力例

1.8.2.3. クラスター全体のメッシュのメンバーロールのカスタマイズ

クラスター全体モードでは、ServiceMeshControlPlane リソースを作成する
と、ServiceMeshMemberRoll リソースも作成されます。ServiceMeshMemberRoll リソースは、作成
後に変更できます。リソースを変更すると、Service Mesh オペレーターはそのリソースを変更しなくな
ります。Red Hat OpenShift Service on AWS Web コンソールを使用して ServiceMeshMemberRoll リ
ソースを変更する場合は、変更を上書きするプロンプトを受け入れます。

または、ServiceMeshControlPlane リソースをデプロイする前に ServiceMeshMemberRoll リソース
を作成することもできます。ServiceMeshControlPlane リソースを作成するとき、Service Mesh
Operator は ServiceMeshMemberRoll を変更しません。

注記

ServiceMeshMemberRoll リソース名には、default という名前を付
け、ServiceMeshControlPlane リソースと同じプロジェクト namespace に作成する必
要があります。

メッシュに namespace を追加するには 2 つの方法があります。spec.members リストで名前を指定し
て namespace を追加することも、ラベルに基づいて namespace を含めるか除外するように一連の
namespace ラベルセレクターを設定することもできます。

注記

ServiceMeshMemberRoll リソースでメンバーがどのように指定されているかに関係な
く、各 namespace に ServiceMeshMember リソースを作成してメッシュにメンバーを
追加することもできます。

1.8.3. Kiali を使用した SMCP インストールの検証

Kiali コンソールを使用して、Service Mesh のインストールを検証できます。Kiali コンソールには、
Service Mesh コンポーネントが適切にデプロイおよび設定されていることを検証する方法がいくつかあ
ります。

1. 前提条件

Red Hat OpenShift Service Mesh Operator がインストールされている。

OpenShift CLI (oc) へのアクセスがある。

Red Hat OpenShift Service on AWS に、dedicated-admin ロールを持つユーザーとしてロ

NAME READY STATUS RESTARTS AGE
grafana-b4d59bd7-mrgbr 2/2 Running 0 65m
istio-egressgateway-678dc97b4c-wrjkp 1/1 Running 0 108s
istio-ingressgateway-b45c9d54d-4qg6n 1/1 Running 0 108s
istiod-basic-55d78bbbcd-j5556 1/1 Running 0 108s
jaeger-67c75bd6dc-jv6k6 2/2 Running 0 65m
kiali-6476c7656c-x5msp 1/1 Running 0 43m
prometheus-58954b8d6b-m5std 2/2 Running 0 66m

第1章 SERVICE MESH 2.X

103

Red Hat OpenShift Service on AWS に、dedicated-admin ロールを持つユーザーとしてロ
グインしている。

手順

1. Red Hat OpenShift Service on AWS Web コンソールで、Networking → Routes に移動しま
す。

2. Routes ページで、Namespace メニューから Service Mesh コントロールプレーンプロジェク
トを選択します (例: istio-system)。
Location 列には、各ルートのリンク先アドレスが表示されます。

3. 必要に応じて、フィルターを使用して Kiali コンソールのルートを見つけます。ルートの
Location をクリックしてコンソールを起動します。

4. Log In With OpenShift をクリックします。
初回の Kiali コンソールへのログイン時に、表示するパーミッションを持つ Service Mesh 内の
すべての namespace を表示する Overview ページが表示されます。概要 ページに複数の
namespace が表示されている場合は、Kiali は最初に正常性または検証に問題がある
namespace を表示します。

図1.1 Kiali の概要ページ

各 namespace のタイルには、ラベルの数、Istio Config の状態、アプリケーション の状態と
数、namespace の トラフィック が表示されます。コンソールのインストールを検証中で、
namespace がまだメッシュに追加されていないと、istio-system 以外のデータは表示されない
可能性があります。

5. Kiali には、Service Mesh コントロールプレーンがインストールされている namespace 専用の
ダッシュボードが 4 つあります。これらのダッシュボードを表示するには、コントロールプ

レーン namespace のタイル (例: istio-system) で Options メニュー をクリックし、次の
いずれかのオプションを選択します。

Istio メッシュダッシュボード

Istio コントロールプレーンダッシュボード

Istio パフォーマンスダッシュボード

Red Hat OpenShift Service on AWS 4 Service Mesh

104

Istio Wasm Exetension ダッシュボード

図1.2 Grafana Istio コントロールプレーンダッシュボード

Kiali は、Grafana ホームページ から入手できる追加の Grafana ダッシュボード 2 つもイン
ストールします。

Istio ワークロードダッシュボード

Istio サービスダッシュボード

6. Service Mesh コントロールプレーンノードを表示するには、グラフ ページをクリックし、メ
ニューから ServiceMeshControlPlane をインストールした Namespace を選択します (例
:istio-system)。

a. 必要に応じて、Display idle nodes をクリックします。

b. グラフ ページの詳細は、グラフツアー リンクをクリックしてください。

c. メッシュトポロジーを表示するには、namespace メニューの Service Mesh メンバーロール
から追加の namespace を 1 つまたは複数選択します。

7. istio-system namespace 内のアプリケーションのリストを表示するには、アプリケーション
ページをクリックします。Kiali は、アプリケーションの状態を表示します。

a. 情報アイコンの上にマウスをかざすと、詳細 列に記載されている追加情報が表示されま
す。

8. istio-system namespace のワークロードのリストを表示するには、ワークロード ページをク
リックします。Kiali は、ワークロードの状態を表示します。

a. 情報アイコンの上にマウスをかざすと、詳細 列に記載されている追加情報が表示されま
す。

9. istio-system namespace のサービスのリストを表示するには、サービス ページをクリックし
ます。Kiali は、サービスと設定の状態を表示します。

a. 情報アイコンの上にマウスをかざすと、詳細 列に記載されている追加情報が表示されま
す。

10. istio-system namespace の Istio 設定オブジェクトのリストを表示するには、 Istio Config ペー

第1章 SERVICE MESH 2.X

105

10. istio-system namespace の Istio 設定オブジェクトのリストを表示するには、 Istio Config ペー
ジをクリックします。Kiali は、設定の正常性を表示します。

a. 設定エラーがある場合は、行をクリックすると、Kiali が設定ファイルを開き、エラーが強
調表示されます。

1.8.4. 関連情報

Red Hat OpenShift Service Mesh はクラスター内で複数の独立したコントロールプレーンをサポートし
ます。ServiceMeshControlPlane プロファイルを使用すると、再利用可能な設定を作成ができます。
詳細は、コントロールプレーンプロファイルの作成 を参照してください。

1.8.5. 次のステップ

プロジェクトを Service Mesh に追加してアプリケーションを利用可能にします。詳細
は、Service Mesh へのサービスの追加 を参照してください。

1.9. SERVICE MESH へのサービスの追加

プロジェクトにはサービスが含まれますが、そのプロジェクトを Service Mesh に追加していなければ
サービスは使用できません。

1.9.1. Service Mesh へのプロジェクトの追加

Operator をインストールして ServiceMeshControlPlane リソースを作成した後、1 つ以上のプロジェ
クトを Service Mesh に追加します。

注記

Red Hat OpenShift Service on AWS では、プロジェクトは基本的に、プロジェクトで使
用できるユーザー ID の範囲などの追加のアノテーションを備えた Kubernetes 名前空間
です。通常、Red Hat OpenShift Service on AWS Web コンソールではプロジェクトとい
う用語が使用され、CLI では namespace という用語が使用されますが、この 2 つの用語
は基本的に同義です。

Red Hat OpenShift Service on AWS Web コンソールまたは CLI を使用して、既存の Service Mesh にプ
ロジェクトを追加できます。プロジェクトを Service Mesh に追加するには、次の 3 つの方法がありま
す。

ServiceMeshMemberRoll リソースでプロジェクト名を指定する方法。

ServiceMeshMemberRoll リソースの spec.memberSelectors フィールドでラベルセレクター
を設定します。

プロジェクトで ServiceMeshMember リソースを作成する方法。

最初の方法を使用する場合は、ServiceMeshMemberRoll リソースを作成する必要があります。

1.9.2. Red Hat OpenShift Service Mesh メンバーロールの作成

ServiceMeshMemberRoll は、Service Mesh コントロールプレーンに属するプロジェクトを一覧表示し
ます。ServiceMeshMemberRoll に一覧表示されているプロジェクトのみがコントロールプレーンの影
響を受けます。プロジェクトは、特定のコントロールプレーンのデプロイメント用にメンバーロールに
追加するまで Service Mesh に属しません。

Red Hat OpenShift Service on AWS 4 Service Mesh

106

istio-system など、ServiceMeshControlPlane と同じプロジェクトに、default という名前の
ServiceMeshMemberRoll リソースを作成する必要があります。

1.9.2.1. Web コンソールからのメンバーロールの作成

Web コンソールを使用して 1 つ以上のプロジェクトを Service Mesh メンバーロールに追加します。こ
の例では、istio-system が Service Mesh コントロールプレーンプロジェクトの名前となります。

前提条件

Red Hat OpenShift Service Mesh Operator がインストールされ、検証されていること。

Service Mesh に追加する既存プロジェクトの一覧。

手順

1. Red Hat OpenShift Service on AWS Web コンソールにログインします。

2. メッシュのサービスがない場合や、ゼロから作業を開始する場合は、アプリケーションのプロ
ジェクトを作成します。これは、Service Mesh コントロールプレーンをインストールしたプロ
ジェクトとは異なる必要があります。

a. Home → Projects に移動します。

b. Name フィールドに名前を入力します。

c. Create をクリックします。

3. Operators → Installed Operators に移動します。

4. Project メニューをクリックし、リストから ServiceMeshControlPlane リソースがデプロイさ
れているプロジェクト (例: istio-system) を選択します。

5. Red Hat OpenShift Service Mesh Operator をクリックします。

6. Istio Service Mesh Member Roll タブをクリックします。

7. Create ServiceMeshMemberRoll をクリックします。

8. Members をクリックし、Value フィールドにプロジェクトの名前を入力します。任意の数のプ
ロジェクトを追加できますが、プロジェクトは 1 つの ServiceMeshMemberRoll リソースにし
か属することができません。

9. Create をクリックします。

1.9.2.2. CLI からのメンバーロールの作成

コマンドラインからプロジェクトを ServiceMeshMemberRoll に追加します。

前提条件

Red Hat OpenShift Service Mesh Operator がインストールされ、検証されていること。

Service Mesh に追加するプロジェクトの一覧。

OpenShift CLI (oc) へのアクセスがある。

第1章 SERVICE MESH 2.X

107

手順

1. Red Hat OpenShift Service on AWS CLI にログインします。

2. メッシュのサービスがない場合や、ゼロから作業を開始する場合は、アプリケーションのプロ
ジェクトを作成します。これは、Service Mesh コントロールプレーンをインストールしたプロ
ジェクトとは異なる必要があります。

3. プロジェクトをメンバーとして追加するには、以下の YAML の例を変更します。任意の数のプ
ロジェクトを追加できますが、プロジェクトは 1 つの ServiceMeshMemberRoll リソースにし
か属することができません。この例では、istio-system が Service Mesh コントロールプレーン
プロジェクトの名前となります。

servicemeshmemberroll-default.yaml の例

4. 以下のコマンドを実行して、istio-system namespace に ServiceMeshMemberRoll リソース
をアップロードおよび作成します。

5. 以下のコマンドを実行して、ServiceMeshMemberRoll が正常に作成されていることを確認し
ます。

STATUS 列が Configured の場合、インストールは正常に終了しています。

1.9.3. ServiceMeshMemberRoll リソースを使用したプロジェクトの追加について

ServiceMeshMemberRoll リソースを使用するのが、プロジェクトを Service Mesh に追加する最も簡
単な方法です。プロジェクトを追加するには、ServiceMeshMemberRoll リソースの spec.members
フィールドにプロジェクト名を指定します。ServiceMeshMemberRoll リソース
は、ServiceMeshControlPlane リソースによって制御されるプロジェクトを指定します。

$ oc login --username=<NAMEOFUSER> https://<HOSTNAME>:6443

$ oc new-project <your-project>

apiVersion: maistra.io/v1
kind: ServiceMeshMemberRoll
metadata:
 name: default
 namespace: istio-system
spec:
 members:
 # a list of projects joined into the service mesh
 - your-project-name
 - another-project-name

$ oc create -n istio-system -f servicemeshmemberroll-default.yaml

$ oc get smmr -n istio-system default

Red Hat OpenShift Service on AWS 4 Service Mesh

108

注記

この方法を使用してプロジェクトを追加するには、追加するプロジェクトの
servicemeshmemberrolls 権限と update pods 権限をユーザーが持っている必要があり
ます。

Service Mesh に追加するアプリケーション、ワークロード、またはサービスがすでにある場合
は、次を参照してください。

Web コンソールで ServiceMeshMemberRoll リソースを使用してメッシュにプロジェクト
を追加または削除する

CLI で ServiceMeshMemberRoll リソースを使用してメッシュにプロジェクトを追加また
は削除する

あるいは、Bookinfo というサンプルアプリケーションをインストールして
ServiceMeshMemberRoll リソースに追加するには、Bookinfo サンプルアプリケーションの
チュートリアルを参照してください。

1.9.3.1. Web コンソールで ServiceMeshMemberRoll リソースを使用してメッシュにプロジェ
クトを追加または削除する

Red Hat OpenShift Service on AWS Web コンソールで ServiceMeshMemberRoll リソースを使用し
て、メッシュにプロジェクトを追加または削除できます。任意の数のプロジェクトを追加できますが、
プロジェクトは 1 つのメッシュにしか属することができません。

ServiceMeshMemberRoll リソースは、対応する ServiceMeshControlPlane リソースが削除されると
削除されます。

前提条件

Red Hat OpenShift Service Mesh Operator がインストールされ、検証されていること。

既存の ServiceMeshMemberRoll リソース。

ServiceMeshMemberRoll リソースを持つプロジェクトの名前。

メッシュに追加する、またはメッシュから削除するプロジェクトの名前。

第1章 SERVICE MESH 2.X

109

手順

1. Red Hat OpenShift Service on AWS Web コンソールにログインします。

2. Operators → Installed Operators に移動します。

3. Project メニューをクリックし、リストから ServiceMeshControlPlane リソースがデプロイさ
れているプロジェクトを選択します。たとえば、istio-system です。

4. Red Hat OpenShift Service Mesh Operator をクリックします。

5. Istio Service Mesh Member Roll タブをクリックします。

6. default リンクをクリックします。

7. YAML タブをクリックします。

8. YAML を変更してプロジェクトをメンバーとして追加します (またはプロジェクトを削除して既
存メンバーを削除します)。任意の数のプロジェクトを追加できますが、プロジェクトは 1 つの
ServiceMeshMemberRoll リソースにしか属することができません。

servicemeshmemberroll-default.yaml の例

9. Save をクリックします。

10. Reload をクリックします。

1.9.3.2. CLI で ServiceMeshMemberRoll リソースを使用してメッシュにプロジェクトを追加ま
たは削除する

CLI で ServiceMeshMemberRoll リソースを使用して、1 つ以上のプロジェクトをメッシュに追加でき
ます。任意の数のプロジェクトを追加できますが、プロジェクトは 1 つのメッシュにしか属することが
できません。

ServiceMeshMemberRoll リソースは、対応する ServiceMeshControlPlane リソースが削除されると
削除されます。

前提条件

Red Hat OpenShift Service Mesh Operator がインストールされ、検証されていること。

既存の ServiceMeshMemberRoll リソース。

ServiceMeshMemberRoll リソースを持つプロジェクトの名前。

apiVersion: maistra.io/v1
kind: ServiceMeshMemberRoll
metadata:
 name: default
 namespace: istio-system #control plane project
spec:
 members:
 # a list of projects joined into the service mesh
 - your-project-name
 - another-project-name

Red Hat OpenShift Service on AWS 4 Service Mesh

110

メッシュに追加する、またはメッシュから削除するプロジェクトの名前。

OpenShift CLI (oc) へのアクセスがある。

手順

1. Red Hat OpenShift Service on AWS CLI にログインします。

2. ServiceMeshMemberRoll リソースを編集します。

3. YAML を変更して、プロジェクトをメンバーとして追加または削除します。任意の数のプロ
ジェクトを追加できますが、プロジェクトは 1 つの ServiceMeshMemberRoll リソースにしか
属することができません。

servicemeshmemberroll-default.yaml の例

4. ファイルを保存して、エディターを終了します。

1.9.4. ServiceMeshMember リソースを使用したプロジェクトの追加について

ServiceMeshMember リソースを使用すると、ServiceMeshMemberRoll リソースを変更せずにプロ
ジェクトを Service Mesh に追加できます。プロジェクトを追加するには、Service Mesh に追加するプ
ロジェクトに ServiceMeshMember リソースを作成します。Service Mesh Operator が
ServiceMeshMember オブジェクトを処理すると、ServiceMeshMemberRoll リソースの
status.members リストにプロジェクトが表示されます。次に、プロジェクトに存在するサービスが
メッシュで利用可能になります。

$ oc edit smmr -n <controlplane-namespace>

apiVersion: maistra.io/v1
kind: ServiceMeshMemberRoll
metadata:
 name: default
 namespace: istio-system #control plane project
spec:
 members:
 # a list of projects joined into the service mesh
 - your-project-name
 - another-project-name

第1章 SERVICE MESH 2.X

111

メッシュ管理者は、各メッシュユーザーに ServiceMeshMember リソースの
ServiceMeshControlPlane リソースを参照する権限を付与する必要があります。この権限を設定する
と、メッシュユーザーが Service Mesh プロジェクトまたは ServiceMeshMemberRoll リソースへの直
接アクセス権を持っていない場合でも、メッシュユーザーはプロジェクトをメッシュに追加できます。
詳細は、Red Hat OpenShift Service Mesh メンバーの作成を参照してください。

1.9.4.1. Web コンソールで ServiceMeshMember リソースを使用してメッシュにプロジェクト
を追加

Red Hat OpenShift Service on AWS Web コンソールで ServiceMeshMember リソースを使用して、1
つ以上のプロジェクトをメッシュに追加できます。

前提条件

Red Hat OpenShift Service Mesh Operator がインストールされている。

ServiceMeshControlPlane リソースの名前と、リソースが属するプロジェクトの名前はわかっ
ています。

メッシュに追加するプロジェクトの名前はわかっています。

Service Mesh 管理者は、Service Mesh へのアクセスを明示的に付与する必要があります。管理
者は、RoleBinding または ClusterRoleBinding を使用して mesh-user ロール をユーザーに
割り当てて、メッシュにアクセスする権限を付与できます。詳細は、Red Hat OpenShift
Service Mesh メンバーの作成 を参照してください。

手順

1. Red Hat OpenShift Service on AWS Web コンソールにログインします。

2. Operators → Installed Operators に移動します。

3. Project メニューをクリックし、ドロップダウンリストからメッシュに追加するプロジェクト
を選択します。たとえば、istio-system です。

4. Red Hat OpenShift Service Mesh Operator をクリックします。

5. Istio Service Mesh Member タブをクリックします。

Red Hat OpenShift Service on AWS 4 Service Mesh

112

6. Create ServiceMeshMember をクリックします。

7. ServiceMeshMember のデフォルト名を許可します。

8. クリックして ControlPlaneRef を展開します。

9. Namespace フィールドで、ServiceMeshControlPlane リソースが属するプロジェクトを選択
します。たとえば、istio-system です。

10. Name フィールドに、この namespace が属する ServiceMeshControlPlane リソースの名前を
入力します。たとえば、basic です。

11. Create をクリックします。

検証

1. 次の手順を使用して、ServiceMeshMember リソースが作成され、プロジェクトがメッシュに
追加されたことを確認します。

a. リソース名 (例: default) をクリックします。

b. 画面の最後に表示される Conditions セクションを表示します。

c. Reconciled および Ready の条件の Status が True であることを確認します。
Status が False の場合は、Reason 列および Message 列で詳細を確認してください。

1.9.4.2. CLI で ServiceMeshMember リソースを使用してメッシュにプロジェクトを追加する

CLI で ServiceMeshMember リソースを使用して、1 つ以上のプロジェクトをメッシュに追加できま
す。

前提条件

Red Hat OpenShift Service Mesh Operator がインストールされている。

ServiceMeshControlPlane リソースの名前と、それが属するプロジェクトの名前はわかってい
ます。

メッシュに追加するプロジェクトの名前はわかっています。

Service Mesh 管理者は、Service Mesh へのアクセスを明示的に付与する必要があります。管理
者は、RoleBinding または ClusterRoleBinding を使用して mesh-user ロール をユーザーに
割り当てて、メッシュにアクセスする権限を付与できます。詳細は、Red Hat OpenShift
Service Mesh メンバーの作成 を参照してください。

手順

1. Red Hat OpenShift Service on AWS CLI にログインします。

2. ServiceMeshMember マニフェストの YAML ファイルを作成します。マニフェストは、 istio-
system namespace にデプロイされた ServiceMeshControlPlane リソースが作成した Service
Mesh に my-application プロジェクトを追加します。

apiVersion: maistra.io/v1
kind: ServiceMeshMember
metadata:

第1章 SERVICE MESH 2.X

113

3. YAML ファイルを適用して ServiceMeshMember リソースを作成します。

検証

次のコマンドを実行して、namespace がメッシュに含まれていることを確認します。READY
列に True の値が表示されていることを確認します。

出力例

または、ServiceMeshMemberRoll リソースを表示して、my-application namespace が
ServiceMeshMemberRoll リソースの status.members フィールドと
status.configuredMembers フィールドに表示されることを確認します。

出力例

1.9.5. ラベルセレクターを使用したプロジェクトの追加について

クラスター全体のデプロイメントの場合は、ラベルセレクターを使用してプロジェクトをメッシュに追
加できます。ServiceMeshMemberRoll リソースで指定されたラベルセレクターを使用すると、
Service Mesh Operator は、namespace ラベルに基づいてメッシュに namespace を追加またはメッ
シュから namespace を削除できます。単一のラベルセレクターを指定するために使用できる他の標準
的な Red Hat OpenShift Service on AWS リソースとは異なり、ServiceMeshMemberRoll リソースを
使用して複数のラベルセレクターを指定できます。

 name: default
 namespace: my-application
spec:
 controlPlaneRef:
 namespace: istio-system
 name: basic

$ oc apply -f <file-name>

$ oc get smm default -n my-application

NAME CONTROL PLANE READY AGE
default istio-system/basic True 2m11s

$ oc describe smmr default -n istio-system

Name: default
Namespace: istio-system
Labels: <none>
...
Status:
...
 Configured Members:
 default
 my-application
...
 Members:
 default
 my-application

Red Hat OpenShift Service on AWS 4 Service Mesh

114

namespace のラベルが ServiceMeshMemberRoll リソースで指定されたセレクターのいずれかに一致
する場合、その namespace はメッシュに含まれます。

注記

Red Hat OpenShift Service on AWS では、プロジェクトは基本的に、プロジェクトで使
用できるユーザー ID の範囲などの追加のアノテーションを備えた Kubernetes 名前空間
です。通常、Red Hat OpenShift Service on AWS Web コンソールでは プロジェクト と
いう用語が使用され、CLI では 名前空間 という用語が使用されますが、この 2 つの用語
は基本的に同義です。

1.9.5.1. Web コンソールでラベルセレクターを使用してメッシュにプロジェクトを追加する

ラベルセレクターを使用して、Red Hat OpenShift Service on AWS Web コンソールで Service Mesh に
プロジェクトを追加できます。

前提条件

Red Hat OpenShift Service Mesh Operator がインストールされている。

デプロイメントには既存の ServiceMeshMemberRoll リソースがあります。

Red Hat OpenShift Service on AWS Web コンソールに、dedicated-admin ロールを持つユー
ザーとしてログインしている。

手順

1. Operators → Installed Operators に移動します。

2. Project メニューをクリックし、ドロップダウンリストから ServiceMeshMemberRoll リソー
スがデプロイされているプロジェクトを選択します。たとえば、istio-system です。

3. Red Hat OpenShift Service Mesh Operator をクリックします。

4. Istio Service Mesh Member Roll タブをクリックします。

5. Create ServiceMeshMember Roll をクリックします。

第1章 SERVICE MESH 2.X

115

6. ServiceMeshMemberRoll のデフォルト名を受け入れます。

7. Labels フィールドにキーと値のペアを入力して、Service Mesh に含める namespace を識別す
るラベルを定義します。プロジェクト namespace にセレクターで指定されたラベルがある場
合、プロジェクト namespace は Service Mesh に含まれます。両方のラベルを含める必要はあ
りません。
たとえば、mykey=myvalue と入力すると、このラベルを持つすべての namespace がメッシュ
の一部として含まれます。セレクターが一致を識別すると、プロジェクト namespace が
Service Mesh に追加されます。

myotherkey=myothervalue と入力すると、このラベルを持つすべての namespace がメッシュ
の一部として含まれます。セレクターが一致を識別すると、プロジェクト namespace が
Service Mesh に追加されます。

8. Create をクリックします。

1.9.5.2. CLI でラベルセレクターを使用してメッシュにプロジェクトを追加する

ラベルセレクターを使用して、CLI でプロジェクトを Service Mesh に追加できます。

前提条件

Red Hat OpenShift Service Mesh Operator がインストールされている。

デプロイメントには既存の ServiceMeshMemberRoll リソースがあります。

Red Hat OpenShift Service on AWS に、dedicated-admin ロールを持つユーザーとしてログイ
ンしている。

手順

1. Red Hat OpenShift Service on AWS CLI にログインします。

2. ServiceMeshMemberRoll リソースを編集します。

Service Mesh コントロールプレーンは、サービスが含まれるプロジェクトから分離されていれ
ば、任意のプロジェクトにデプロイできます。

3. YAML ファイルを変更して、ServiceMeshMemberRoll リソースの spec.memberSelectors
フィールドに namespace ラベルセレクターを含めます。

注記

matchLabels フィールドを使用する代わりに、セレクターで
matchExpressions フィールドを使用することもできます。

$ oc edit smmr default -n istio-system

apiVersion: maistra.io/v1
kind: ServiceMeshMemberRoll
metadata:
 name: default
 namespace: istio-system
spec:

Red Hat OpenShift Service on AWS 4 Service Mesh

116

1

2 3

4 5

Service Mesh に含まれるプロジェクト namespace を識別するために使用されるラベルセ
レクターが含まれます。プロジェクト namespace にセレクターで指定されたラベルがあ
る場合、プロジェクト namespace は Service Mesh に含まれます。プロジェクト
namespace には両方のラベルを含める必要はありません。

mykey=myvalue ラベルを持つすべての namespace を指定します。セレクターが一致を
識別すると、プロジェクト namespace が Service Mesh に追加されます。

myotherkey=myothervalue ラベルを持つすべての namespace を指定します。セレク
ターが一致を識別すると、プロジェクト namespace が Service Mesh に追加されます。

1.9.6. Bookinfo サンプルアプリケーション

Bookinfo サンプルアプリケーションを使用すると、Red Hat OpenShift Service on AWS 上の Red Hat
OpenShift Service Mesh 2.6.7 のインストールをテストできます。

Bookinfo アプリケーションは、オンラインブックストアの単一カタログエントリーのように、書籍に関
する情報を表示します。このアプリケーションでは、書籍の説明、書籍の詳細 (ISBN、ページ数その他
の情報)、および書評のページが表示されます。

Bookinfo アプリケーションはこれらのマイクロサービスで構成されます。

productpage マイクロサービスは、details と reviews マイクロサービスを呼び出して、ペー
ジを設定します。

details マイクロサービスには書籍の情報が含まれています。

reviews マイクロサービスには、書評が含まれます。これは ratings マイクロサービスも呼び
出します。

ratings マイクロサービスには、書評を伴う書籍のランキング情報が含まれます。

reviews マイクロサービスには、以下の 3 つのバージョンがあります。

バージョン v1 は、ratings サービスを呼び出しません。

バージョン v2 は、ratings サービスを呼び出して、各評価を 1 から 5 の黒い星で表示します。

バージョン v3 は、ratings サービスを呼び出して、各評価を 1 から 5 の赤い星で表示します。

1.9.6.1. Bookinfo アプリケーションのインストール

このチュートリアルでは、プロジェクトの作成、そのプロジェクトへの Bookinfo アプリケーションの
デプロイ、Service Mesh での実行中のアプリケーションの表示を行い、サンプルアプリケーションを作
成する方法を説明します。

前提条件

 memberSelectors: 1
 - matchLabels: 2
 mykey: myvalue 3
 - matchLabels: 4
 myotherkey: myothervalue 5

第1章 SERVICE MESH 2.X

117

Red Hat OpenShift Service on AWS 4.1 以降がインストールされている。

Red Hat OpenShift Service Mesh 2.6.7 がインストールされている。

OpenShift CLI (oc) へのアクセスがある。

Red Hat OpenShift Service on AWS に、dedicated-admin ロールを持つユーザーとしてログイ
ンしている。

注記

このセクションのコマンドは、Service Mesh コントロールプレーンプロジェクトが
istio-system であると仮定します。コントロールプレーンを別の namespace にインス
トールしている場合は、実行する前にそれぞれのコマンドを編集します。

手順

1. Home → Projects をクリックします。

2. Create Project をクリックします。

3. Project Name として info を入力し、Display Name を入力します。その後、Description を入
力し、Create をクリックします。

または、CLI からこのコマンドを実行して、info プロジェクトを作成できます。

4. Operators → Installed Operators をクリックします。

5. プロジェクト メニューをクリックし、Service Mesh コントロールプレーンの namespace を使
用します。この例では istio-system を使用します。

6. Red Hat OpenShift Service Mesh Operator をクリックします。

7. Istio Service Mesh Member Roll タブをクリックします。

a. Istio Service Mesh Member Roll がすでに作成されている場合は、名前をクリックしてから
YAML タブをクリックし、YAML エディターを開きます。

b. ServiceMeshMemberRoll を作成していない場合は、Create ServiceMeshMemberRoll を
クリックします。

8. Members をクリックし、Value フィールドにプロジェクトの名前を入力します。

9. Create をクリックして、更新した Service Mesh Member Roll を保存します。

a. または、以下のサンプルを YAML ファイルに保存します。

Bookinfo ServiceMeshMemberRoll の例 (servicemeshmemberroll-default.yaml)

$ oc new-project info

apiVersion: maistra.io/v1
kind: ServiceMeshMemberRoll
metadata:
 name: default

Red Hat OpenShift Service on AWS 4 Service Mesh

118

b. 以下のコマンドを実行して、そのファイルをアップロードし、istio-system namespace に
ServiceMeshMemberRoll リソースを作成します。この例では、istio-system が Service
Mesh コントロールプレーンプロジェクトの名前となります。

10. 以下のコマンドを実行して、ServiceMeshMemberRoll が正常に作成されていることを確認し
ます。

STATUS 列が Configured の場合、インストールは正常に終了しています。

11. CLI で `info` プロジェクトに Bookinfo アプリケーションをデプロイするには、bookinfo.yaml
ファイルを適用します。

以下のような出力が表示されるはずです。

12. info-gateway.yaml ファイルを適用して Ingress ゲートウェイを作成します。

以下のような出力が表示されるはずです。

spec:
 members:
 - info

$ oc create -n istio-system -f servicemeshmemberroll-default.yaml

$ oc get smmr -n istio-system -o wide

NAME READY STATUS AGE MEMBERS
default 1/1 Configured 70s ["info"]

$ oc apply -n info -f https://raw.githubusercontent.com/Maistra/istio/maistra-
2.6/samples/bookinfo/platform/kube/bookinfo.yaml

service/details created
serviceaccount/info-details created
deployment.apps/details-v1 created
service/ratings created
serviceaccount/info-ratings created
deployment.apps/ratings-v1 created
service/reviews created
serviceaccount/info-reviews created
deployment.apps/reviews-v1 created
deployment.apps/reviews-v2 created
deployment.apps/reviews-v3 created
service/productpage created
serviceaccount/info-productpage created
deployment.apps/productpage-v1 created

$ oc apply -n info -f https://raw.githubusercontent.com/Maistra/istio/maistra-
2.6/samples/bookinfo/networking/bookinfo-gateway.yaml

gateway.networking.istio.io/info-gateway created
virtualservice.networking.istio.io/info created

第1章 SERVICE MESH 2.X

119

13. GATEWAY_URL パラメーターの値を設定します。

1.9.6.2. デフォルトの宛先ルールの追加

Bookinfo アプリケーションを使用するには、先にデフォルトの宛先ルールを追加する必要があります。
相互トランスポート層セキュリティー (TLS) 認証が有効かどうかによって、2 つの事前設定される
YAML ファイルを使用できます。

手順

1. 宛先ルールを追加するには、以下のいずれかのコマンドを実行します。

相互 TLS を有効にしていない場合:

相互 TLS を有効にしている場合:

以下のような出力が表示されるはずです。

1.9.6.3. Bookinfo インストールの検証

Bookinfo アプリケーションのサンプルが正常にデプロイされたことを確認するには、以下の手順を実行
します。

前提条件

Red Hat OpenShift Service Mesh がインストールされている。

Bookinfo サンプルアプリケーションのインストール手順を実行します。

Red Hat OpenShift Service on AWS に、dedicated-admin ロールを持つユーザーとしてログイ
ンしている。

CLI からの手順

1. 以下のコマンドですべての Pod が準備状態にあることを確認します。

すべての Pod のステータスは Running である必要があります。以下のような出力が表示され

$ export GATEWAY_URL=$(oc -n istio-system get route istio-ingressgateway -o
jsonpath='{.spec.host}')

$ oc apply -n info -f https://raw.githubusercontent.com/Maistra/istio/maistra-
2.6/samples/bookinfo/networking/destination-rule-all.yaml

$ oc apply -n info -f https://raw.githubusercontent.com/Maistra/istio/maistra-
2.6/samples/bookinfo/networking/destination-rule-all-mtls.yaml

destinationrule.networking.istio.io/productpage created
destinationrule.networking.istio.io/reviews created
destinationrule.networking.istio.io/ratings created
destinationrule.networking.istio.io/details created

$ oc get pods -n info

Red Hat OpenShift Service on AWS 4 Service Mesh

120

すべての Pod のステータスは Running である必要があります。以下のような出力が表示され
るはずです。

2. 以下のコマンドを実行して、製品ページの URL を取得します。

3. Web ブラウザーで出力をコピーして貼り付けて、Bookinfo の製品ページがデプロイされている
ことを確認します。

Kiali Web コンソールからの手順

1. Kiali Web コンソールのアドレスを取得します。

a. Red Hat OpenShift Service on AWS Web コンソールにログインします。

b. Networking → Routes に移動します。

c. Routes ページで、Namespace メニューから Service Mesh コントロールプレーンプロジェ
クトを選択します (例: istio-system)。
Location 列には、各ルートのリンク先アドレスが表示されます。

d. Kiali の 場所 列のリンクをクリックします。

e. Log In With OpenShift をクリックします。Kiali の 概要 画面には、各プロジェクトの
namespace のタイルが表示されます。

2. Kiali で、グラフ をクリックします。

3. Namespace リストから info を選択し、Graph Type リストから App graph を選択します。

4. Display メニューから Display idle nodes をクリックします。
これにより、定義されているが要求を受信または送信していないノードが表示されます。アプ
リケーションが適切に定義されていることを確認できますが、要求トラフィックは報告されて
いません。

期間 メニューを使用して、期間を延ばして、古いトラフィックを取得できるようにしま
す。

Refresh Rate メニューを使用して、トラフィックを頻繁に更新するか、まったく更新しな

NAME READY STATUS RESTARTS AGE
details-v1-55b869668-jh7hb 2/2 Running 0 12m
productpage-v1-6fc77ff794-nsl8r 2/2 Running 0 12m
ratings-v1-7d7d8d8b56-55scn 2/2 Running 0 12m
reviews-v1-868597db96-bdxgq 2/2 Running 0 12m
reviews-v2-5b64f47978-cvssp 2/2 Running 0 12m
reviews-v3-6dfd49b55b-vcwpf 2/2 Running 0 12m

echo "http://$GATEWAY_URL/productpage"

第1章 SERVICE MESH 2.X

121

Refresh Rate メニューを使用して、トラフィックを頻繁に更新するか、まったく更新しな
いようにします。

5. Services、Workloads または Istio Config をクリックして、info コンポーネントのリスト
ビューを表示し、それらが正常であることを確認します。

1.9.6.4. Bookinfo アプリケーションの削除

以下の手順で、Bookinfo アプリケーションを削除します。

前提条件

Red Hat OpenShift Service on AWS 4.1 以降がインストールされている。

Red Hat OpenShift Service Mesh 2.6.7 がインストールされている。

OpenShift CLI (oc) へのアクセスがある。

1.9.6.4.1. Bookinfo プロジェクトの削除

手順

1. Red Hat OpenShift Service on AWS Web コンソールにログインします。

2. Home → Projects をクリックします。

3. info メニュー をクリックしてから Delete Project をクリックします。

4. 確認ダイアログボックスに info と入力してから Delete をクリックします。

または、CLI を使用して次のコマンドを実行し、info プロジェクトを作成できます。

1.9.6.4.2. Service Mesh Member Roll からの Bookinfo プロジェクトの削除

手順

1. Red Hat OpenShift Service on AWS Web コンソールにログインします。

2. Operators → Installed Operators をクリックします。

3. Project メニューをクリックし、一覧から istio-system を選択します。

4. Red Hat OpenShift Service Mesh Operator の Provided APIS で、Istio Service Mesh
Member Roll のリンクをクリックします。

5. ServiceMeshMemberRoll メニュー をクリックし、Edit Service Mesh Member Roll を
選択します。

6. デフォルトの Service Mesh Member Roll YAML を編集し、members 一覧から info を削除しま

$ oc delete project info

Red Hat OpenShift Service on AWS 4 Service Mesh

122

6. デフォルトの Service Mesh Member Roll YAML を編集し、members 一覧から info を削除しま
す。

または、CLI を使用して次のコマンドを実行し、ServiceMeshMemberRoll から info プロ
ジェクトを削除できます。この例では、istio-system が Service Mesh コントロールプレー
ンプロジェクトの名前となります。

7. Save をクリックして、Service Mesh Member Roll を更新します。

1.9.7. 次のステップ

インストールプロセスを続行するには、サイドカーインジェクションを有効化 を行う必要があ
ります。

1.10. サイドカーコンテナーの挿入の有効化

サービスが含まれる namespace をメッシュに追加したら、次の手順は、アプリケーションのデプロイ
メントリソースでサイドカーの自動挿入を有効にします。デプロイメントごとにサイドカーコンテナー
の自動挿入を有効にする必要があります。

Bookinfo サンプルアプリケーションをインストールした場合は、アプリケーションがデプロイされ、イ
ンストール手順の一部としてサイドカーが注入されています。独自のプロジェクトとサービスを使用し
ている場合は、Red Hat OpenShift Service on AWS にアプリケーションをデプロイします。

注記

Init Containers (Pod 内のアプリケーションコンテナーの前に実行される特殊なコンテ
ナー) によって開始されたトラフィックは、デフォルトでサービスメッシュの外に移動で
きません。Init Container が実行する、メッシュ外のネットワークトラフィック接続の確
立を必要とするアクションはすべて失敗します。

Init Container をサービスに接続する方法の詳細は Red Hat ナレッジベースソリューショ
ン initContainer in CrashLoopBackOff on pod with Service Mesh sidecar injected を参照
してください。

1.10.1. 前提条件

メッシュにデプロイされたサービス(Bookinfo サンプルアプリケーションなど)。

デプロイメントリソースファイル。

1.10.2. サイドカーコンテナーの自動挿入の有効化

アプリケーションをデプロイする場合は、deployment オブジェクトで
spec.template.metadata.labels の sidecar.istio.io/inject ラベルを true に設定して、インジェクショ
ンをオプトインする必要があります。オプトインにより、サイドカーの挿入が Red Hat OpenShift
Service on AWS エコシステム内の複数のフレームワークが使用する、ビルダー Pod などの他の Red
Hat OpenShift Service on AWS 機能に干渉しないようにします。

前提条件

Service Mesh の一部である namespace と、サイドカーの自動注入が必要なデプロイメントを

$ oc -n istio-system patch --type='json' smmr default -p '[{"op": "remove", "path":
"/spec/members", "value":["'"info"'"]}]'

第1章 SERVICE MESH 2.X

123

https://access.redhat.com/solutions/6653601

Service Mesh の一部である namespace と、サイドカーの自動注入が必要なデプロイメントを
特定しておく。

手順

1. デプロイメントを見つけるには、oc get コマンドを使用します。

たとえば、info namespace の 'ratings-v1' マイクロサービスの Deployment YAML ファイルを
表示するには、次のコマンドを使用して YAML 形式でリソースを表示します。

2. エディターでアプリケーションの Deployment YAML ファイルを開きます。

3. 次の例に示すように、spec.template.metadata.labels.sidecar.istio/inject を Deployment
YAML ファイルに追加し、sidecar.istio.io/inject を true に設定します。

info deployment-ratings-v1.yaml からのスニペットの例

注記

自動サイドカーコンテナー注入を有効にする際の annotations パラメーターの
使用は非推奨となり、labels パラメーターの使用に置き換えられます。

4. Deployment YAML ファイルを保存します。

5. ファイルをアプリケーションが含まれるプロジェクトに追加し直します。

この例では、info は ratings-v1 アプリを含むプロジェクトの名前であり、deployment-
ratings-v1.yaml は編集したファイルです。

6. リソースが正常にアップロードされたことを確認するには、以下のコマンドを実行します。

$ oc get deployment -n <namespace>

oc get deployment -n info ratings-v1 -o yaml

apiVersion: apps/v1
kind: Deployment
metadata:
 name: ratings-v1
 namespace: info
 labels:
 app: ratings
 version: v1
spec:
 template:
 metadata:
 labels:
 sidecar.istio.io/inject: 'true'

$ oc apply -n <namespace> -f deployment.yaml

$ oc apply -n info -f deployment-ratings-v1.yaml

Red Hat OpenShift Service on AWS 4 Service Mesh

124

以下に例を示します。

1.10.3. サイドカーインジェクションの検証

Kiali コンソールは、アプリケーション、サービス、ワークロードにサイドカープロキシーがあるかどう
かを検証するためのいくつかの方法を提供します。

図1.3 サイドカーバッジがない

グラフ ページには、次のグラフに サイドカー がないことを示すノードバッジが表示されます。

App graph

Versioned app graph

Workload graph

図1.4 サイドカーアイコンがない

アプリケーション ページでは、サイドカーがない namespace 内のアプリケーションの 詳細 列に
Missing Sidecar アイコンが表示されます。

ワークロード ページでは、サイドカーがない namespace 内のアプリケーションの 詳細 列に Missing
Sidecar アイコンが表示されます。

サービス ページでは、サイドカーがない namespace 内のアプリケーションの 詳細 列に Missing
Sidecar アイコンが表示されます。サービスのバージョンが複数ある場合は、サービスの詳細 ページを
使用して、Missing Sidecar アイコンを表示します。

ワークロードの詳細 ページには、アプリケーションログとプロキシーログを表示および相互に関連付け
ることができる特別な統合 Logs タブがあります。Envoy ログは、アプリケーションワークロードのサ
イドカーインジェクションを検証する別の方法として表示できます。

ワークロードの詳細 ページには、Envoy プロキシーであるか、Envoy プロキシーが注入されたワーク
ロード用の Envoy タブもあります。このタブに
は、Clusters、Listeners、Routes、Bootstrap、Config、および Metrics のサブタブなど、組み込み
の Envoy ダッシュボードが表示されます。

Envoy アクセスログを有効にする方法は、トラブルシューティング のセクションを参照してください。

$ oc get deployment -n <namespace> <deploymentName> -o yaml

$ oc get deployment -n info ratings-v1 -o yaml

第1章 SERVICE MESH 2.X

125

Envoy ログの表示については、Kiali コンソールでのログの表示 を参照してください。

1.10.4. アノテーションによるプロキシー環境変数の設定

Envoy サイドカープロキシーの設定は、ServiceMeshControlPlane によって管理されます。

デプロイメントの Pod アノテーションを injection-template.yaml ファイルに追加することにより、ア
プリケーションのサイドカープロキシーで環境変数を設定できます。環境変数がサイドカーコンテナー
に挿入されます。

injection-template.yaml の例

警告

独自のカスタムリソースを作成するときは、maistra.io/ ラベルとアノテーションを
含めないでください。これらのラベルとアノテーションは、リソースが Operator
によって生成および管理されていることを示しています。独自のリソースの作成時
に Operator が生成したリソースからコンテンツをコピーする場合は、maistra.io/
で始まるラベルやアノテーションを含めないでください。これらのラベルまたはア
ノテーションを含むリソースは、次回の調整時に Operator によって上書きまたは
削除されます。

1.10.5. サイドカープロキシーの更新

サイドカープロキシーの設定を更新するには、アプリケーション管理者はアプリケーション Pod を再
起動する必要があります。

デプロイメントで自動のサイドカーコンテナー挿入を使用する場合は、アノテーションを追加または変
更してデプロイメントの Pod テンプレートを更新できます。以下のコマンドを実行して Pod を再デプ
ロイします。

デプロイメントで自動のサイドカーコンテナー挿入を使用しない場合は、デプロイメントまたは Pod

apiVersion: apps/v1
kind: Deployment
metadata:
 name: resource
spec:
 replicas: 7
 selector:
 matchLabels:
 app: resource
 template:
 metadata:
 annotations:
 sidecar.maistra.io/proxyEnv: "{ \"maistra_test_env\": \"env_value\", \"maistra_test_env_2\":
\"env_value_2\" }"



$ oc patch deployment/<deployment> -p '{"spec":{"template":{"metadata":{"annotations":
{"kubectl.kubernetes.io/restartedAt": "'`date -Iseconds`'"}}}}}'

Red Hat OpenShift Service on AWS 4 Service Mesh

126

デプロイメントで自動のサイドカーコンテナー挿入を使用しない場合は、デプロイメントまたは Pod
で指定されたサイドカーコンテナーイメージを変更して Pod を再起動し、サイドカーコンテナーを手
動で更新する必要があります。

1.10.6. 次のステップ

ご使用の環境用に Red Hat OpenShift Service Mesh 機能を設定します。

セキュリティー

トラフィック管理

メトリクス、ログ、およびトレース

1.11. SERVICE MESH のアップグレード

Red Hat OpenShift Service Mesh の最新機能にアクセスするには、最新バージョンである 2.6.7 にアッ
プグレードしてください。

1.11.1. バージョニングについて

Red Hat は、製品リリースにセマンティックバージョニングを使用します。セマンティックバージョニ
ングは、X.Y.Z 形式の 3 つのコンポーネント番号になります。

X はメジャーバージョンを表します。メジャーリリースは通常、アーキテクチャーの変更、API
の変更、スキーマの変更、および同様のメジャー更新など、何らかの最新の変更を意味しま
す。

Y はマイナーバージョンを表します。マイナーリリースには、下位互換性を維持しながら、新
しい機能が含まれています。

Z はパッチバージョン (z-stream リリースとも呼ばれます) を表します。パッチリリースは、
Common Vulnerabilities and Exposures (CVE) に対応し、バグ修正をリリースするために使用さ
れます。通常、新機能はパッチリリースの一部としてリリースされません。

1.11.1.1. バージョニングが Service Mesh のアップグレードに与える影響

実行する更新のバージョンによって、アップグレードプロセスが異なります。

パッチの更新: パッチのアップグレードは、Operator Lifecycle Manager (OLM) によって管理さ
れます。Operator を更新すると自動的に発生します。

マイナーアップグレード: マイナーアップグレードでは、最新の Red Hat OpenShift Service
Mesh Operator バージョンに更新することと、ServiceMeshControlPlane リソースの
spec.version 値を手動で変更することの両方が必要です。

メジャーアップグレード: メジャーアップグレードでは、最新の Red Hat OpenShift Service
Mesh Operator バージョンに更新することと、ServiceMeshControlPlane リソースの
spec.version 値を手動で変更することの両方が必要です。メジャーアップグレードには後方互
換性のない変更が含まれている可能性があるため、手動による追加の変更が必要になる場合が
あります。

1.11.1.2. Service Mesh のバージョンについて

ご使用のシステムにデプロイした Red Hat OpenShift Service Mesh のバージョンを理解するには、各コ

第1章 SERVICE MESH 2.X

127

ご使用のシステムにデプロイした Red Hat OpenShift Service Mesh のバージョンを理解するには、各コ
ンポーネントのバージョンがどのように管理されるかを理解する必要があります。

Operator バージョン - 最新の Operator バージョンは 2.6.7 です。Operator バージョン番号
は、現在インストールされている Operator のバージョンのみを示します。Red Hat OpenShift
Service Mesh Operator は Service Mesh コントロールプレーンの複数のバージョンをサポート
するため、Operator のバージョンはデプロイされた ServiceMeshControlPlane リソースの
バージョンを決定しません。

重要

最新の Operator バージョンにアップグレードすると、パッチの更新が自動的に
適用されますが、Service Mesh コントロールプレーンは最新のマイナーバー
ジョンに自動的にアップグレードされません。

ServiceMeshControlPlane バージョン: ServiceMeshControlPlane バージョンは、使用してい
る Red Hat OpenShift Service Mesh のバージョンを決定します。ServiceMeshControlPlane
リソースの spec.version フィールドの値は、Red Hat OpenShift Service Mesh のインストー
ルとデプロイに使用されるアーキテクチャーと設定を制御します。Service Mesh コントロール
プレーンを作成する場合は、以下の 2 つの方法のいずれかでバージョンを設定できます。

Form View で設定するには、Control Plane Version メニューからバージョンを選択しま
す。

YAML View で設定するには、YAML ファイルに spec.version の値を設定します。

Operator Lifecycle Manager (OLM) は Service Mesh コントロールプレーンのアップグレードをを管理
しないため、SMCP を手動でアップグレードしない限り、Operator および ServiceMeshControlPlane
(SMCP) のバージョン番号が一致しない可能性があります。

1.11.2. アップグレードに関する考慮事項

maistra.io/ ラベルまたはアノテーションは、ユーザーが作成したカスタムリソースで使用することはで
きません。これは、Red Hat OpenShift Service Mesh Operator によってリソースが生成され、管理さ
れる必要があることを示すためです。

警告

アップグレード時に、Operator はファイルの削除や置換などの変更を、リソース
が Operator によって管理されることを示す以下のラベルまたはアノテーションを
含むリソースに対して行います。

アップグレードする前に、ユーザーが作成したカスタムリソースで以下のラベルまたはアノテーション
が含まれるか確認します。

maistra-istio-operator (Red Hat OpenShift Service Mesh) に設定された maistra.io/ および
app.kubernetes.io/managed-by ラベル

kiali.io/ (Kiali)



Red Hat OpenShift Service on AWS 4 Service Mesh

128

jaegertracing.io/ (Red Hat OpenShift 分散トレーシングプラットフォーム (Jaeger))

logging.openshift.io/ (Red Hat Elasticsearch)

アップグレードの前に、ユーザーが作成したカスタムリソースで、それらが Operator によって管理さ
れることを示すラベルまたはアノテーションを確認します。Operator によって管理されないカスタム
リソースからラベルまたはアノテーションを削除します。

バージョン 2.0 にアップグレードする場合、Operator は SMCP と同じ namespace で、これらのラベル
を持つリソースのみを削除します。

バージョン 2.1 にアップグレードする場合、Operator はすべての namespace で、これらのラベルを持
つリソースを削除します。

1.11.2.1. アップグレードに影響する可能性のある既知の問題

アップグレードに影響する可能性がある既知の問題には、次のものがあります。

Operator をアップグレードする際に、Jaeger または Kiali のカスタム設定が元に戻される可能
性があります。Operator をアップグレードする前に、Service Mesh の実稼働環境用デプロイメ
ント内にある Jaeger オブジェクトまたは Kiali オブジェクトのカスタム設定をメモし、再作成
できるようにしてください。

Red Hat OpenShift Service Mesh は、明示的に文書化されている場合を除き、EnvoyFilter 設
定の使用はサポートしていません。これは、下層の Envoy API と疎結合されており、後方互換
性を保持できないためです。Envoy フィルターを使用していて、ServiceMeshControlPlane の
アップグレードによって導入された新しいバージョンの Envoy が原因で Istio によって生成され
た設定が変更された場合は、実装した EnvoyFilter が壊れる可能性があります。

OSSM-1505 ServiceMeshExtension は Red Hat OpenShift Service on AWS バージョン 4.11 で
は機能しません。ServiceMeshExtension は Red Hat OpenShift Service Mesh 2.2 で非推奨と
なったため、この既知の問題は修正されず、エクステンションを WasmPluging に移行する必
要があります。

OSSM-1396 ゲートウェイリソースに spec.externalIPs 設定が含まれている場合、ゲートウェ
イは、ServiceMeshControlPlane の更新時に再作成されずに削除され、再作成されることはあ
りません。

OSSM-1052 Service Mesh コントロールプレーンで入力ゲートウェイのサービス ExternalIP を
設定すると、サービスは作成されません。SMCP のスキーマには、サービスのパラメーターが
ありません。
回避策: SMCP 仕様でゲートウェイの作成を無効にして、(サービス、ロール、および
RoleBinding など) ゲートウェイのデプロイメントを完全に手動で管理します。

1.11.3. Operator のアップグレード

Service Mesh に最新のセキュリティー修正、バグ修正、およびソフトウェア更新プログラムを適用し続
けるには、Operator を最新の状態に保つ必要があります。パッチの更新は、Operator をアップグレー
ドすることで開始されます。

重要

Operator のバージョンは、お使いの Service Mesh のバージョンを 判別しません。デプ
ロイされた Service Mesh コントロールプレーンのバージョンによって、Service Mesh の
バージョンが決まります。

第1章 SERVICE MESH 2.X

129

https://issues.redhat.com/browse/OSSM-1505
https://issues.redhat.com/browse/OSSM-1396
https://issues.redhat.com/browse/OSSM-1052

Red Hat OpenShift Service Mesh Operator は Service Mesh コントロールプレーンの複数のバージョン
をサポートするため、Red Hat OpenShift Service Mesh Operator を更新しても、デプロイされた
ServiceMeshControlPlane の spec.version 値は 更新されません。また、spec.version 値は 2 桁の数
字 (2.2 など) であり、パッチの更新 (2.2.1 など) は SMCP バージョン値に反映されないことにも注意し
てください。

Operator Lifecycle Manager (OLM) は、クラスター内の Operator のインストール、アップグレード、
ロールベースのアクセス制御 (RBAC) を制御します。OLM は、Red Hat OpenShift Service on AWS で
デフォルトで実行されます。OLM は利用可能な Operator のクエリーやインストールされた Operator
のアップグレードを実行します。

Operator をアップグレードするためにアクションを実行する必要があるかどうかは、インストール時
に選択した設定によって異なります。各 Operator をインストールしたときに、Update Channel およ
び Approval Strategy を選択しました。これら 2 つの設定の組み合わせによって、Operator が更新さ
れるタイミングと方法が決まります。

表1.4 更新チャネルおよび承認ストラテジーのインタラクション

 バージョン付けされたチャネル "Stable" または "Preview" チャネ
ル

自動 そのバージョンのみのマイナーリ
リースおよびパッチリリースの
Operator を自動的に更新しま
す。次のメジャーバージョン
(バージョン 2.0 から 3.0) には、
自動的に自動的に更新されませ
ん。次のメジャーバージョンに更
新するために必要な Operator サ
ブスクリプションを手動で変更し
ます。

すべてのメジャー、マイナーおよ
びパッチリリースについて、
Operator を自動的に更新しま
す。

手動 指定したバージョンのマイナーお
よびパッチリリースに必要な手動
更新。次のメジャーバージョンに
更新するために必要な Operator
サブスクリプションを手動で変更
します。

すべてのメジャー、マイナー、お
よびパッチリリースについて、手
動更新が必要になります。

Red Hat OpenShift Service Mesh Operator を更新すると、Operator Lifecycle Manager (OLM) は古い
Operator Pod を削除し、新しい Pod を開始します。新しい Operator Pod が開始されると、調整プロ
セスは ServiceMeshControlPlane (SMCP) をチェックし、いずれかの Service Mesh コントロールプ
レーンコンポーネントの利用可能な更新されたコンテナーイメージがある場合は、それらの Service
Mesh コントロールプレーン Pod を新しいコンテナーイメージを使用するものに置き換えます。

Kiali および Red Hat OpenShift 分散トレーシング Platform (Jaeger) Operator をアップグレードする
と、OLM 調整プロセスによってクラスターがスキャンされ、管理対象インスタンスが新しい Operator
のバージョンにアップグレードされます。たとえば、Red Hat OpenShift 分散トレーシング Platform
(Jaeger) Operator をバージョン 1.30.2 からバージョン 1.34.1 に更新する場合、Operator は実行中の分
散トレーシング Platform (Jaeger) のインスタンスをスキャンし、それらも 1.34.1 にアップグレードし
ます。

Red Hat OpenShift Service Mesh の特定のパッチバージョンにとどまるには、自動更新を無効にして、
Operator のその特定のバージョンにとどまる必要があります。

Red Hat OpenShift Service on AWS 4 Service Mesh

130

1.11.4. コントロールプレーンのアップグレード

マイナーおよびメジャーリリースのコントロールプレーンを手動で更新する必要があります。コミュニ
ティーの Istio プロジェクトはカナリアアップグレードを推奨していますが、Red Hat OpenShift
Service Mesh はインプレースアップグレードのみをサポートしています。Red Hat OpenShift Service
Mesh では、各マイナーリリースから次のマイナーリリースに順番にアップグレードする必要がありま
す。たとえば、バージョン 2.0 からバージョン 2.1 にアップグレードしてから、バージョン 2.2 にアップ
グレードする必要があります。Red Hat OpenShift Service Mesh 2.0 から 2.2 に直接更新することはで
きません。

Service Mesh コントロールプレーンをアップグレードすると、Operator が管理するすべてのリソース
(ゲートウェイなど) もアップグレードされます。

複数のバージョンのコントロールプレーンを同じクラスターにデプロイできますが、Red Hat
OpenShift Service Mesh は、Service Mesh のカナリアアップグレードをサポートしていません。つま
り、spec.version の値が異なるさまざまな SCMP リソースを使用できますが、同じメッシュを管理す
ることはできません。

エクステンションの移行に関する詳細は、ServiceMeshExtension から WasmPlugin リソースへの移行
を参照してください。

1.11.4.1. バージョン 2.5 からバージョン 2.6 へのアップグレードの変更

1.11.4.1.1. Red Hat OpenShift 分散トレーシング Platform (Jaeger) のデフォルト設定の変更

このリリースでは、ServiceMeshControlPlane リソースの新しいインスタンスに対して、Red Hat
OpenShift 分散トレーシング Platform (Jaeger) がデフォルトで無効になります。

ServiceMeshControlPlane リソースの既存のインスタンスを Red Hat OpenShift Service Mesh バー
ジョン 2.6 に更新すると、分散トレーシング Platform (Jaeger) はデフォルトで有効のままになりま
す。

Red Hat OpenShift Service Mesh 2.6 は、Red Hat OpenShift 分散トレーシング Platform (Jaeger) と
OpenShift Elasticsearch Operator のサポートが含まれる最後のリリースです。分散トレーシング
Platform (Jaeger) と OpenShift Elasticsearch Operator は両方とも次のリリースで削除されます。現
在、分散トレーシング Platform (Jaeger) と OpenShift Elasticsearch Operator を使用している場合は、
Red Hat OpenShift 分散トレーシング Platform と Red Hat build of OpenTelemetry に移行する必要が
あります。

1.11.4.1.2. Envoy サイドカーコンテナーのデフォルト設定の変更

Pod の起動時間を短縮するために、Istio ではサイドカーコンテナーに startupProbe がデフォルトで含
まれるようになりました。Pod の readiness プローブは、Envoy サイドカーが起動するまで起動しませ
ん。

1.11.4.2. バージョン 2.4 から 2.5 へのアップグレードに伴う変更

1.11.4.2.1. Istio OpenShift Routing (IOR) のデフォルト設定の変更

Istio OpenShift Routing (IOR) のデフォルト設定が変更されました。この設定はデフォルトで無効にな
りました。

ServiceMeshControlPlane リソースの spec.gateways.openshiftRoute 仕様で、enabled フィールド
を true に設定することで、IOR を使用できます。

第1章 SERVICE MESH 2.X

131

1.11.4.2.2. Istio プロキシー同時実行設定の強化

デプロイメント間の一貫性を確保するために、Istio はプロキシーコンテナーに割り当てられた CPU 制
限に基づいて concurrency パラメーターを設定するようになりました。たとえば、制限が 2500m の
場合、concurrency パラメーターは 3 に設定されます。concurrency パラメーターを別の値に設定す
ると、Istio は CPU 制限を使用する代わりに、その値を使用してプロキシーが実行するスレッドの数を
設定します。

以前のリリースでは、このパラメーターのデフォルト設定は 2 でした。

1.11.4.3. バージョン 2.3 から 2.4 へのアップグレードに伴う変更

Service Mesh コントロールプレーンをバージョン 2.3 から 2.4 にアップグレードすると、次の動作変更
が導入されます。

Istio OpenShift Routing (IOR) のサポートは非推奨になりました。IOR 機能は引き続き有効です
が、将来のリリースでは削除される予定です。

次の暗号スイートはサポートされなくなり、クライアント側とサーバー側の TLS ネゴシエー
ションで使用される暗号のリストから削除されました。

ECDHE-ECDSA-AES128-SHA

ECDHE-RSA-AES128-SHA

AES128-GCM-SHA256

AES128-SHA

ECDHE-ECDSA-AES256-SHA

ECDHE-RSA-AES256-SHA

AES256-GCM-SHA384

AES256-SHA
これらの暗号スイートのいずれかを使用するサービスにアクセスする必要があるアプリ
ケーションは、プロキシーが TLS 接続を開始すると接続に失敗します。

1.11.4.4. バージョン 2.2 から 2.3 へのアップグレードに伴う変更

Service Mesh コントロールプレーンをバージョン 2.2 から 2.3 にアップグレードすると、次の動作変更
が導入されます。

このリリースでは、WasmPlugin API を使用する必要があります。2.2 で非推奨化された
ServiceMeshExtension API のサポートが廃止されました。ServiceMeshExtension API の使
用中にアップグレードを試みると、アップグレードは失敗します。

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
spec:
 gateways:
 openshiftRoute:
 enabled: true

Red Hat OpenShift Service on AWS 4 Service Mesh

132

1.11.4.5. バージョン 2.1 から 2.2 へのアップグレードに伴う変更

Service Mesh コントロールプレーンをバージョン 2.1 から 2.2 にアップグレードすると、次の動作変更
が導入されます。

istio-node DaemonSet は、アップストリームの Istio の名前と一致するように istio-cni-node
に名前が変更されました。

Istio 1.10 は、デフォルトで lo ではなく eth0 を使用してトラフィックをアプリケーションコン
テナーに送信するように Envoy を更新しました。

このリリースでは、WasmPlugin API のサポートが追加され、ServiceMeshExtension が非推
奨になりました。

1.11.4.6. バージョン 2.0 から 2.1 へのアップグレードに伴う変更

Service Mesh コントロールプレーンをバージョン 2.0 から 2.1 にアップグレードすると、以下のアーキ
テクチャーおよび動作上の変更が導入されます。

アーキテクチャーの変更

Mixer は Red Hat OpenShift Service Mesh 2.1 で完全に削除されました。Red Hat OpenShift Service
Mesh 2.0.x リリースから 2.1 へのアップグレードは、Mixer が有効な場合にブロックされます。

v2.0 から v2.1 にアップグレード時に以下のメッセージが表示される場合は、.spec.version フィールド
を更新する前に、既存のコントロールプレーン仕様にすでに存在する Mixer タイプを Istiod タイプに
更新します。

以下に例を示します。

動作上の変更

AuthorizationPolicy の更新

PROXY プロトコルでは、ipBlocks および notIpBlocks を使用してリモート IP アドレスを
指定する場合は、代わりに remoteIpBlocks および notRemoteIpBlocks を使用するよう
に設定を更新します。

ネストされた JSON Web Token(JWT) 要求のサポートが追加されました。

EnvoyFilter の重大な変更

An error occurred
admission webhook smcp.validation.maistra.io denied the request: [support for policy.type "Mixer"
and policy.Mixer options have been removed in v2.1, please use another alternative, support for
telemetry.type "Mixer" and telemetry.Mixer options have been removed in v2.1, please use another
alternative]”

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
spec:
 policy:
 type: Istiod
 telemetry:
 type: Istiod
 version: v2.6

第1章 SERVICE MESH 2.X

133

typed_config を使用する必要があります。

xDS v2 はサポート対象外になりました。

フィルター名が非推奨になりました。

以前のバージョンのプロキシーは、新しいプロキシーから 1xx または 204 ステータスコードを
受信すると、503 ステータスコードを報告する場合があります。

1.11.4.7. Service Mesh コントロールプレーンのアップグレード

Red Hat OpenShift Service Mesh をアップグレードするには、Red Hat OpenShift Service Mesh
ServiceMeshControlPlane v2 リソースのバージョンフィールドを更新する必要があります。次に、設
定と適用が完了したら、アプリケーション Pod を再起動して各サイドカープロキシーとその設定を更
新します。

前提条件

Red Hat OpenShift Service on AWS 4.9 以降を実行している。

最新の Red Hat OpenShift Service Mesh Operator がある。

手順

1. ServiceMeshControlPlane リソースが含まれるプロジェクトに切り替えます。この例で
は、istio-system が Service Mesh コントロールプレーンプロジェクトの名前となります。

2. v2 ServiceMeshControlPlane リソース設定をチェックし、これが有効であることを確認しま
す。

a. 以下のコマンドを実行して、ServiceMeshControlPlane リソースを v2 リソースとして表
示します。

ヒント

Service Mesh コントロールプレーン設定をバックアップします。

3. .spec.version フィールドを更新し、設定を適用します。
以下に例を示します。

または、コマンドラインの代わりに Web コンソールを使用して Service Mesh コントロールプ
レーンを編集することもできます。Red Hat OpenShift Service on AWS Web コンソールで
Project をクリックし、入力したプロジェクト名を選択します。

$ oc project istio-system

$ oc get smcp -o yaml

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
metadata:
 name: basic
spec:
 version: v2.6

Red Hat OpenShift Service on AWS 4 Service Mesh

134

a. Operators → Installed Operators をクリックします。

b. ServiceMeshControlPlane インスタンスを見つけます。

c. YAML view を選択し、直前の例のように YAML ファイルのテキストを更新します。

d. Save をクリックします。

1.11.4.8. Red Hat OpenShift Service Mesh のバージョン 1.1 からバージョン 2.0 への移行

バージョン 1.1 から 2.0 にアップグレードするには、ワークロードおよびアプリケーションを新規バー
ジョンを実行する Red Hat OpenShift Service Mesh の新規インスタンスに移行する手動の手順が必要で
す。

前提条件

Red Hat OpenShift Service Mesh 2.0 にアップグレードする前に Red Hat OpenShift Service on
AWS 4.7 にアップグレードする必要がある。

Red Hat OpenShift Service Mesh のバージョン 2.0 Operator が必要である。自動 アップグレー
ドパスを選択した場合、Operator は最新情報を自動的にダウンロードします。ただし、Red
Hat OpenShift Service Mesh バージョン 2.0 で機能を使用するために実行する必要のある手順
があります。

1.11.4.8.1. Red Hat OpenShift Service Mesh のアップグレード

Red Hat OpenShift Service Mesh をアップグレードするには、新規の namespace に Red Hat
OpenShift Service Mesh ServiceMeshControlPlane 2.0 リソースのインスタンスを作成する必要があ
ります。次に、設定後にマイクロサービスアプリケーションおよびワークロードを古いメッシュから新
規の Service Mesh に移動します。

手順

1. v1 ServiceMeshControlPlane リソース設定をチェックし、これが有効であることを確認しま
す。

a. 以下のコマンドを実行して、ServiceMeshControlPlane リソースを v2 リソースとして表
示します。

b. 無効なフィールドの情報は、出力の spec.techPreview.errored.message フィールドを確
認してください。

c. v1 リソースに無効なフィールドがある場合は、リソースは調整されず、v2 リソースとして
編集することはできません。v2 フィールドへの更新はすべて、元の v1 設定で上書きされま
す。無効なフィールドを修正するには、リソースの v1 バージョンを置き換えるか、パッチ
を適用するか、編集できます。リソースを修正せずに削除することもできます。リソース
の修正後に調整でき、リソースの v2 バージョンを変更または表示できます。

d. ファイルを編集してリソースを修正するには、oc get を使用してリソースを取得し、テキ
ストファイルをローカルで編集し、リソースを編集したファイルに置き換えます。

$ oc get smcp -o yaml

第1章 SERVICE MESH 2.X

135

e. パッチを使用してリソースを修正するには、oc patch を使用します。

f. コマンドラインツールで編集してリソースを修正するには、oc edit を使用します。

2. Service Mesh コントロールプレーン設定をバックアップします。ServiceMeshControlPlane
リソースが含まれるプロジェクトに切り替えます。この例では、istio-system が Service Mesh
コントロールプレーンプロジェクトの名前となります。

3. 以下のコマンドを実行して、現在の設定を取得します。<smcp_name> は
ServiceMeshControlPlane リソースのメタデータに指定されます (例: basic-install または
full-install)。

4. ServiceMeshControlPlane を、開始点としての設定に関する情報が含まれる v2 のコントロー
ルプレーンバージョンに変換します。

5. プロジェクトを作成します。Red Hat OpenShift Service on AWS コンソールの Project メ
ニューで、New Project をクリックし、プロジェクトの名前 (istio-system-upgrade など) を入
力します。または、CLI からこのコマンドを実行できます。

6. v2 ServiceMeshControlPlane の metadata.namespace フィールドを新規のプロジェクト名で
更新します。この例では、istio-system-upgrade を使用します。

7. version フィールドを 1.1 から 2.0 に更新するか、v2 ServiceMeshControlPlane でこれを削除
します。

8. 新規 namespace に ServiceMeshControlPlane を作成します。コマンドラインで以下のコマン
ドを実行し、取得した ServiceMeshControlPlane の v2 バージョンでコントロールプレーンを
デプロイします。この例の `<smcp_name.v2>` は、実際のファイルへのパスに置き換えます。

または、コンソールを使用して Service Mesh コントロールプレーンを作成することもできま
す。Red Hat OpenShift Service on AWS Web コンソールで、Project をクリックします。次
に、入力したプロジェクト名を選択します。

$ oc get smcp.v1.maistra.io <smcp_name> > smcp-resource.yaml
#Edit the smcp-resource.yaml file.
$ oc replace -f smcp-resource.yaml

$ oc patch smcp.v1.maistra.io <smcp_name> --type json --patch '[{"op":
"replace","path":"/spec/path/to/bad/setting","value":"corrected-value"}]'

$ oc edit smcp.v1.maistra.io <smcp_name>

$ oc project istio-system

$ oc get servicemeshcontrolplanes.v1.maistra.io <smcp_name> -o yaml >
<smcp_name>.v1.yaml

$ oc get smcp <smcp_name> -o yaml > <smcp_name>.v2.yaml

$ oc new-project istio-system-upgrade

$ oc create -n istio-system-upgrade -f <smcp_name>.v2.yaml

Red Hat OpenShift Service on AWS 4 Service Mesh

136

a. Operators → Installed Operators をクリックします。

b. Create ServiceMeshControlPlane をクリックします。

c. YAML view を選択し、取得した YAML ファイルのテキストをフィールドに貼り付けま
す。apiVersion フィールドが maistra.io/v2 に設定されていることを確認
し、metadata.namespace フィールドを新規 namespace (例: istio-system-upgrade) を使
用するように変更します。

d. Create をクリックします。

1.11.4.8.2. 2.0 ServiceMeshControlPlane の設定

ServiceMeshControlPlane リソースは Red Hat OpenShift Service Mesh バージョン 2.0 用に変更され
ました。ServiceMeshControlPlane リソースの v2 バージョンを作成したら、新機能を利用し、デプロ
イメントを適合させるようにこれを変更します。ServiceMeshControlPlane リソースを変更するた
め、Red Hat OpenShift Service Mesh 2.0 の仕様および動作に以下の変更を加えることを検討してくだ
さい。使用する機能の更新情報は、Red Hat OpenShift Service Mesh 2.0 の製品ドキュメントを参照し
てください。v2 リソースは、Red Hat OpenShift Service Mesh 2.0 インストールに使用する必要があり
ます。

1.11.4.8.2.1. アーキテクチャーの変更

以前のバージョンで使用されるアーキテクチャーのユニットは Istiod によって置き換えられました。
2.0 では、Service Mesh コントロールプレーンのコンポーネント Mixer、Pilot、Citadel、Galley、およ
びサイドカーインジェクター機能が単一のコンポーネントである Istiod に統合されました。

Mixer はコントロールプレーンコンポーネントとしてサポートされなくなりましたが、Mixer ポリシー
および Telemetry プラグインは Istiod の WASM 拡張でサポートされるようになりました。レガシー
Mixer プラグインを統合する必要がある場合は、ポリシーと Telemetry に対して Mixer を有効にできま
す。

シークレット検出サービス (SDS) は、証明書とキーを Istiod からサイドカーコンテナーに直接配信する
ために使用されます。Red Hat OpenShift Service Mesh バージョン 1.1 では、シークレットはクライア
ント証明書およびキーを取得するためにプロキシーによって使用される Citadel で生成されました。

1.11.4.8.2.2. アノテーションの変更

v2.0 では、以下のアノテーションに対応しなくなりました。これらのアノテーションのいずれかを使用
している場合は、これを v2.0 Service Mesh コントロールプレーンに移行する前にワークロードを更新
する必要があります。

sidecar.maistra.io/proxyCPULimit は sidecar.istio.io/proxyCPULimit に置き換えられまし
た。ワークロードで sidecar.maistra.io アノテーションを使用していた場合は、代わりに
sidecar.istio.io を使用するようにこれらのワークロードを変更する必要があります。

sidecar.maistra.io/proxyMemoryLimit が sidecar.istio.io/proxyMemoryLimit に置き換えら
れました。

sidecar.istio.io/discoveryAddress はサポートされなくなりました。また、デフォルトの検出
アドレスが pilot.<control_plane_namespace>.svc:15010 (または mtls が有効にされている場
合はポート 15011) から istiod-<smcp_name>.<control_plane_namespace>.svc:15012 に移行
しました。

ヘルスステータスポートは設定できなくなり、15021 にハードコーディングされています。* カ
スタムステータスポート (例: status.sidecar.istio.io/port) を定義している場合は、ワークロー

第1章 SERVICE MESH 2.X

137

ドを v2.0 Service Mesh コントロールプレーンに移行する前にオーバーライドを削除する必要が
あります。ステータスポートを 0 に設定すると、readiness チェックを依然として無効にできま
す。

Kubernetes シークレットリソースは、サイドカーのクライアント証明書を配信するために使用
されなくなりました。証明書は Istiod の SDS サービスを介して配信されるようになりました。
マウントされたシークレットに依存している場合、それらは v2.0 Service Mesh コントロールプ
レーンのワークロードで利用不可になります。

1.11.4.8.2.3. 動作上の変更

Red Hat OpenShift Service Mesh 2.0 の機能の一部は、以前のバージョンの機能とは異なります。

ゲートウェイの readiness ポートは 15020 から 15021 に移行しました。

ターゲットホストの可視性には、VirtualService と ServiceEntry リソースが含まれます。これに
は、Sidecar リソースを介して適用される制限が含まれます。

自動の相互 TLS はデフォルトで有効になります。プロキシー間の通信は、実施されているグ
ローバルの PeerAuthentication ポリシーに関係なく、mTLS を使用するように自動的に設定さ
れます。

セキュアな接続は、spec.security.controlPlane.mtls 設定に関係なく、プロキシーが Service
Mesh コントロールプレーンと通信する際に常に使用されま
す。spec.security.controlPlane.mtls 設定は、Mixer Telemetry またはポリシーの接続を設定
する場合にのみ使用されます。

1.11.4.8.2.4. サポート対象外のリソースの移行情報

Policy (authentication.istio.io/v1alpha1)

Policy リソースは、v2.0 Service Mesh コントロールプレーン、PeerAuthentication および
RequestAuthentication で使用するために新規リソースタイプに移行する必要があります。Policy リ
ソースの特定の設定によっては、同じ効果を実現するために複数のリソースを設定しなければならない
場合があります。

相互 TLS

相互 TLS は、security.istio.io/v1beta1 PeerAuthentication リソースを使用して実行されます。レガ
シーの spec.peers.mtls.mode フィールドは、新規リソースの spec.mtls.mode フィールドに直接マッ
プされます。選定基準は、spec.targets[x].name のでのサービス名の指定から
spec.selector.matchLabels のラベルセレクターに変更されました。PeerAuthentication では、ラベル
は、ターゲットリストで名前が指定されたサービスのセレクターと一致する必要があります。ポート固
有の設定は spec.portLevelMtls にマップされる必要があります。

認証

spec.origins に指定される追加の認証方法は、security.istio.io/v1beta1 RequestAuthentication リ
ソースにマップされる必要があります。spec.selector.matchLabels は PeerAuthentication の同じ
フィールドに対して同様に設定される必要があります。spec.origins.jwt アイテムからの JWT プリン
シパルに固有の設定は、spec.rules アイテムの同様のフィールドにマップされます。

Policy で指定される spec.origins[x].jwt.triggerRules は 1 つ以上の security.istio.io/v1beta1
AuthorizationPolicy リソースにマップされる必要があります。spec.selector.labels は、
RequestAuthentication の同じフィールドに対して同様に設定される必要があります。

spec.origins[x].jwt.triggerRules.excludedPaths は AuthorizationPolicy にマップされる必要

Red Hat OpenShift Service on AWS 4 Service Mesh

138

spec.origins[x].jwt.triggerRules.excludedPaths は AuthorizationPolicy にマップされる必要
があります。ここで、spec.rules[x].to.operation.path エントリーは除外されたパスに一致す
る状態で spec.action が ALLOW に設定されます。

spec.origins[x].jwt.triggerRules.includedPaths は別個の AuthorizationPolicy にマップされる
必要があります。ここで、spec.rules[x].to.operation.path エントリーは組み込まれるパスに
一致し、specified spec.origins[x].jwt.issuer と一致する spec.rules.
[x].from.source.requestPrincipals エントリーが Policy リソースにある状態で、 spec.action
が ALLOW に設定されます。

ServiceMeshPolicy (maistra.io/v1)

ServiceMeshPolicy は、v1 リソースの spec.istio.global.mtls.enabled または v2 リソース設定の
spec.security.dataPlane.mtls で Service Mesh コントロールプレーンに自動的に設定されています。
v2 コントロールプレーンの場合は、機能的に同等の PeerAuthentication リソースがインストール時に
作成されます。この機能は、Red Hat OpenShift Service Mesh バージョン 2.0 で非推奨となりました。

RbacConfig, ServiceRole, ServiceRoleBinding (rbac.istio.io/v1alpha1)

これらのリソースは security.istio.io/v1beta1 AuthorizationPolicy リソースに置き換えられました。

RbacConfig の動作をコピーするには、RbacConfig で指定される spec.mode に依存するデフォルトの
AuthorizationPolicy を作成する必要があります。

spec.mode が OFF に設定されている場合は、AuthorizationPolicy が要求に適用されない限
り、デフォルトのポリシーが ALLOW であるためリソースは必要ありません。

spec.mode が ON に設定されている場合は、spec: {} を設定します。メッシュ内のすべての
サービスに対して AuthorizationPolicy ポリシーを作成する必要があります。

spec.mode が ON_WITH_INCLUSION に設定されていると、spec: {} が組み込まれている各
namespace に指定された状態で AuthorizationPolicy を作成する必要があります。
AuthorizationPolicy では、個別のサービスを含めることはサポートされません。ただし、サー
ビスのワークロードに適用される AuthorizationPolicy が作成されるとすぐに、明示的に許可さ
れない他のすべての要求は拒否されます。

spec.mode が ON_WITH_EXCLUSION に設定されていると、これは AuthorizationPolicy に
よってサポートされません。グローバル DENY ポリシーを作成できますが、namespace または
ワークロードのいずれかに適用できる allow-all ポリシーがないため、メッシュ内のすべての
ワークロードに対して AuthorizationPolicy を作成する必要があります。

AuthorizationPolicy には、ServiceRoleBinding が提供する機能と同様の、設定が適用されるセレクター
と、ServiceRole が提供する機能と同様の、適用する必要のあるルールの両方の設定が含まれます。

ServiceMeshRbacConfig (maistra.io/v1)

このリソースは、Service Mesh コントロールプレーンの namespace で security.istio.io/v1beta1
AuthorizationPolicy リソースを使用して置き換えられます。このポリシーは、メッシュ内のすべての
ワークロードに適用されるデフォルトの認証ポリシーになります。特定の移行の詳細は、上記の
RbacConfig を参照してください。

1.11.4.8.2.5. Mixer プラグイン

Mixer コンポーネントは、バージョン 2.0 ではデフォルトで無効にされます。ワークロードで Mixer プ
ラグインを使用する場合は、Mixer コンポーネントを含めるようにバージョン 2.0
ServiceMeshControlPlane を設定する必要があります。

Mixer ポリシーコンポーネントを有効にするには、以下のスニペットを ServiceMeshControlPlane に

第1章 SERVICE MESH 2.X

139

Mixer ポリシーコンポーネントを有効にするには、以下のスニペットを ServiceMeshControlPlane に
追加します。

Mixer Telemetry コンポーネントを有効にするには、以下のスニペットを ServiceMeshControlPlane
に追加します。

レガシーの Mixer プラグインは、新しい ServiceMeshExtension (maistra.io/v1alpha1) カスタムリソース
を使用して WASM に移行し、統合することもできます。

アップストリーム Istio ディストリビューションに含まれるビルトインの WASM フィルターは Red Hat
OpenShift Service Mesh 2.0 では利用できません。

1.11.4.8.2.6. 相互 TLS の変更

ワークロード固有の PeerAuthentication ポリシーで mTLS を使用する場合は、ワークロードポリシー
が namespace/グローバルポリシーと異なる場合にトラフィックを許可するために、対応する
DestinationRule が必要になります。

自動 mTLS はデフォルトで有効になっていますが、spec.security.dataPlane.automtls を
ServiceMeshControlPlane リソースで false に設定して無効にできます。auto mTLS を無効にする場
合は、サービス間の適切な通信のために DestinationRules が必要になる場合があります。たとえば、1
つの namespace に対して PeerAuthentication を STRICT に設定すると、DestinationRule が
namespace のサービスに TLS モードを設定しない限り、他の namespace のサービスがそれらにアク
セスできなくなります。

mTLS に関する詳細は、相互トランスポート層セキュリティー (mTLS) の有効化 を参照してください。

1.11.4.8.2.6.1. その他の mTLS の例

info サンプルアプリケーションで mTLS For productpage サービスを無効にするため、Red Hat
OpenShift Service Mesh v1.1 に対して以下の方法 Policy リソースが設定されました。

Policy リソースの例

info サンプルアプリケーションで mTLS For productpage サービスを無効にするために、以下の例を使
用して Red Hat OpenShift Service Mesh v2.0 の PeerAuthentication リソースを設定します。

PeerAuthentication リソースの例

spec:
 policy:
 type: Mixer

spec:
 telemetry:
 type: Mixer

apiVersion: authentication.istio.io/v1alpha1
kind: Policy
metadata:
 name: productpage-mTLS-disable
 namespace: <namespace>
spec:
 targets:
 - name: productpage

Red Hat OpenShift Service on AWS 4 Service Mesh

140

info サンプルアプリケーションで productpage サービスの mTLS With JWT 認証を有効にするため
に、Policy リソースが Red Hat OpenShift Service Mesh v1.1 に対して設定されました。

Policy リソースの例

info サンプルアプリケーションの productpage サービスの mTLS With JWT 認証を有効にするために、
以下の例を使用して Red Hat OpenShift Service Mesh v2.0 の PeerAuthentication リソースを設定しま
す。

PeerAuthentication リソースの例

apiVersion: security.istio.io/v1beta1
kind: PeerAuthentication
metadata:
 name: productpage-mTLS-disable
 namespace: <namespace>
spec:
 mtls:
 mode: DISABLE
 selector:
 matchLabels:
 # this should match the selector for the "productpage" service
 app: productpage

apiVersion: authentication.istio.io/v1alpha1
kind: Policy
metadata:
 name: productpage-mTLS-with-JWT
 namespace: <namespace>
spec:
 targets:
 - name: productpage
 ports:
 - number: 9000
 peers:
 - mtls:
 origins:
 - jwt:
 issuer: "https://securetoken.google.com"
 audiences:
 - "productpage"
 jwksUri: "https://www.googleapis.com/oauth2/v1/certs"
 jwtHeaders:
 - "x-goog-iap-jwt-assertion"
 triggerRules:
 - excludedPaths:
 - exact: /health_check
 principalBinding: USE_ORIGIN

#require mtls for productpage:9000
apiVersion: security.istio.io/v1beta1
kind: PeerAuthentication
metadata:
 name: productpage-mTLS-with-JWT
 namespace: <namespace>

第1章 SERVICE MESH 2.X

141

spec:
 selector:
 matchLabels:
 # this should match the selector for the "productpage" service
 app: productpage
 portLevelMtls:
 9000:
 mode: STRICT

#JWT authentication for productpage
apiVersion: security.istio.io/v1beta1
kind: RequestAuthentication
metadata:
 name: productpage-mTLS-with-JWT
 namespace: <namespace>
spec:
 selector:
 matchLabels:
 # this should match the selector for the "productpage" service
 app: productpage
 jwtRules:
 - issuer: "https://securetoken.google.com"
 audiences:
 - "productpage"
 jwksUri: "https://www.googleapis.com/oauth2/v1/certs"
 fromHeaders:
 - name: "x-goog-iap-jwt-assertion"

#Require JWT token to access product page service from
#any client to all paths except /health_check
apiVersion: security.istio.io/v1beta1
kind: AuthorizationPolicy
metadata:
 name: productpage-mTLS-with-JWT
 namespace: <namespace>
spec:
 action: ALLOW
 selector:
 matchLabels:
 # this should match the selector for the "productpage" service
 app: productpage
 rules:
 - to: # require JWT token to access all other paths
 - operation:
 notPaths:
 - /health_check
 from:
 - source:
 # if using principalBinding: USE_PEER in the Policy,
 # then use principals, e.g.
 # principals:
 # - “*”
 requestPrincipals:
 - “*”
 - to: # no JWT token required to access health_check

Red Hat OpenShift Service on AWS 4 Service Mesh

142

1.11.4.8.3. 設定レシピ

これらの設定レシピを使用して、以下の項目を設定できます。

1.11.4.8.3.1. データプレーンでの相互 TLS

データプレーン通信の相互 TLS は、ServiceMeshControlPlane リソースの
spec.security.dataPlane.mtls で設定されます。これはデフォルトは false になります。

1.11.4.8.3.2. カスタム署名キー

Istiod は、サービスプロキシーによって使用されるクライアント証明書とプライベートキーを管理しま
す。デフォルトで、Istiod は署名用に自己署名証明書を使用しますが、カスタム証明書とシークレット
キーを設定できます。署名するキーの設定方法に関する詳細は、外部認証局キーおよび証明書の追加 を
参照してください。

1.11.4.8.3.3. トレーシング

トレースは spec.tracing で設定されます。現在、サポートされるトレーサーの唯一のタイプは Jaeger
です。サンプリングは 0.01% の増分 (例: 1 は 0.01%、10000 は 100%) を表すスケーリングされた整数で
す。トレースの実装およびサンプリングレートを指定できます。

Jaeger は、ServiceMeshControlPlane リソースの addons セクションで設定します。

 - operation:
 paths:
 - /health_check

spec:
 tracing:
 sampling: 100 # 1%
 type: Jaeger

spec:
 addons:
 jaeger:
 name: jaeger
 install:
 storage:
 type: Memory # or Elasticsearch for production mode
 memory:
 maxTraces: 100000
 elasticsearch: # the following values only apply if storage:type:=Elasticsearch
 storage: # specific storageclass configuration for the Jaeger Elasticsearch (optional)
 size: "100G"
 storageClassName: "storageclass"
 nodeCount: 3
 redundancyPolicy: SingleRedundancy
 runtime:
 components:
 tracing.jaeger: {} # general Jaeger specific runtime configuration (optional)
 tracing.jaeger.elasticsearch: #runtime configuration for Jaeger Elasticsearch deployment
(optional)
 container:

第1章 SERVICE MESH 2.X

143

Jaeger インストールは install フィールドでカスタマイズできます。リソース制限などのコンテナー設
定は、spec.runtime.components.jaeger の関連フィールドに設定されま
す。spec.addons.jaeger.name の値に一致する Jaeger リソースが存在する場合は、Service Mesh コン
トロールプレーンは既存のインストールを使用するように設定されます。既存の Jaeger リソースを使
用して Jaeger インストールを完全にカスタマイズします。

1.11.4.8.3.4. 可視化

Kiali および Grafana は、ServiceMeshControlPlane リソースの addons セクションで設定されます。

Grafana および Kiali のインストールは、それぞれの install フィールドでカスタマイズできます。リ
ソース制限などのコンテナーのカスタマイズは、spec.runtime.components.kiali および
spec.runtime.components.grafana で設定されます。name の値に一致する既存の Kiali リソースが存
在する場合、Service Mesh コントロールプレーンはコントロールプレーンで使用するように Kiali リ
ソースを設定します。accessible_namespaces 一覧や Grafana、Prometheus、およびトレースのエン
ドポイントなどの Kiali リソースの一部のフィールドは上書きされます。既存のリソースを使用して Kiali
インストールを完全にカスタマイズします。

1.11.4.8.3.5. リソース使用状況とスケジューリング

リソースは spec.runtime.<component> で設定されます。以下のコンポーネント名がサポートされま
す。

コンポーネント 説明 サポート対象バージョン

セキュリティー Citadel コンテナー v1.0/1.1

galley Galley コンテナー v1.0/1.1

pilot Pilot/Istiod コンテナー v1.0/1.1/2.0

mixer istio-telemetry および istio-policy
コンテナー

v1.0/1.1

mixer.policy istio-policy コンテナー v2.0

 resources:
 requests:
 memory: "1Gi"
 cpu: "500m"
 limits:
 memory: "1Gi"

spec:
 addons:
 grafana:
 enabled: true
 install: {} # customize install
 kiali:
 enabled: true
 name: kiali
 install: {} # customize install

Red Hat OpenShift Service on AWS 4 Service Mesh

144

mixer.telemetry istio-telemetry コンテナー v2.0

global.oauthproxy 各種アドオンと共に使用する
oauth-proxy コンテナー

v1.0/1.1/2.0

sidecarInjectorWebhook サイドカーインジェクター
Webhook コンテナー

v1.0/1.1

tracing.jaeger 一般的な Jaeger コンテナー: すべ
ての設定が適用されない可能性が
あります。Jaeger インストール
の完全なカスタマイズは、既存の
Jaeger リソースを Service Mesh
コントロールプレーンの設定に指
定することでサポートされます。

v1.0/1.1/2.0

tracing.jaeger.agent Jaeger エージェントに固有の設
定

v1.0/1.1/2.0

tracing.jaeger.allInOne Jaeger allInOne に固有の設定 v1.0/1.1/2.0

tracing.jaeger.collector Jaeger コレクターに固有の設定 v1.0/1.1/2.0

tracing.jaeger.elasticsearch Jaeger elasticsearch デプロイメ
ントに固有の設定

v1.0/1.1/2.0

tracing.jaeger.query Jaeger クエリーに固有の設定 v1.0/1.1/2.0

prometheus prometheus コンテナー v1.0/1.1/2.0

kiali Kiali コンテナー: Kiali インストー
ルの完全なカスタマイズは、既存
の Kiali リソースを Service Mesh
コントロールプレーン設定に指定
してサポートされます。

v1.0/1.1/2.0

grafana Grafana コンテナー v1.0/1.1/2.0

3scale 3scale コンテナー v1.0/1.1/2.0

wasmExtensions.cacher WASM 拡張キャッシュコンテナー V2.0: テクノロジープレビュー

コンポーネント 説明 サポート対象バージョン

コンポーネントによっては、リソースの制限およびスケジューリングをサポートするものもあります。
詳細は、パフォーマンスおよびスケーラビリティー を参照してください。

1.11.4.8.4. アプリケーションとワークロードを移行するための次の手順

第1章 SERVICE MESH 2.X

145

アプリケーションのワークロードを新規のメッシュに移動し、古いインスタンスを削除してアップグ
レードを完了します。

1.11.5. データプレーンのアップグレード

コントロールプレーンをアップグレードした後も、データプレーンは引き続き機能します。ただし、
Envoy プロキシーに更新を適用し、プロキシー設定に変更を適用するには、アプリケーション Pod と
ワークロードを再起動する必要があります。

1.11.5.1. アプリケーションおよびワークロードの更新

移行を完了するには、メッシュ内のすべてのアプリケーション Pod を再起動して、Envoy サイドカー
プロキシーおよびそれらの設定をアップグレードします。

デプロイメントのローリング更新を実行するには、以下のコマンドを使用します。

メッシュを設定するすべてのアプリケーションに対してローリング更新を実行する必要があります。

1.12. ユーザーおよびプロファイルの管理

1.12.1. Red Hat OpenShift Service Mesh メンバーの作成

ServiceMeshMember リソースは、各ユーザーが Service Mesh プロジェクトまたはメンバーロールに
直接アクセスできない場合でも、Red Hat OpenShift Service Mesh の管理者がプロジェクトを Service
Mesh に追加するパーミッションを委譲する方法を提供します。プロジェクト管理者にはプロジェクト
で ServiceMeshMember リソースを作成するためのパーミッションが自動的に付与されますが、
Service Mesh 管理者が Service Mesh へのアクセスを明示的に付与するまで、これらのプロジェクト管
理者はこれを ServiceMeshControlPlane にポイントすることはできません。管理者は、ユーザーに
mesh-user ユーザーロールを付与してメッシュにアクセスするパーミッションをユーザーに付与できま
す。この例では、istio-system が Service Mesh コントロールプレーンプロジェクトの名前となりま
す。

管理者は Service Mesh コントロールプレーンプロジェクトで mesh user ロールバインディングを変更
し、アクセスが付与されたユーザーおよびグループを指定できます。ServiceMeshMember は、プロ
ジェクトを、参照する Service Mesh コントロールプレーンプロジェクト内の
ServiceMeshMemberRoll に追加します。

mesh-users ロールバインディングは、管理者が ServiceMeshControlPlane リソースを作成した後に
自動的に作成されます。管理者は以下のコマンドを使用してロールをユーザーに追加できます。

$ oc rollout restart <deployment>

$ oc policy add-role-to-user -n istio-system --role-namespace istio-system mesh-user <user_name>

apiVersion: maistra.io/v1
kind: ServiceMeshMember
metadata:
 name: default
spec:
 controlPlaneRef:
 namespace: istio-system
 name: basic

Red Hat OpenShift Service on AWS 4 Service Mesh

146

管理者は、ServiceMeshControlPlane リソースを作成する前に、mesh-user ロールバインディングを
作成することもできます。たとえば、管理者は ServiceMeshControlPlane リソースと同じ oc apply
操作でこれを作成できます。

この例では、alice のロールバインディングを追加します。

1.12.2. Service Mesh コントロールプレーンプロファイルの作成

ServiceMeshControlPlane プロファイルを使用すると、再利用可能な設定を作成ができます。各ユー
ザーは、作成するプロファイルを独自の設定で拡張できます。プロファイルは、他のプロファイルから
設定情報を継承することもできます。たとえば、会計チーム用の会計コントロールプレーンとマーケ
ティングチーム用のマーケティングコントロールプレーンを作成できます。開発プロファイルと実稼働
テンプレートを作成する場合、マーケティングチームおよび会計チームのメンバーは、チーム固有のカ
スタマイズで開発および実稼働プロファイルを拡張できます。

ServiceMeshControlPlane と同じ構文に従う Service Mesh コントロールプレーンのプロファイルを設
定する場合、ユーザーは階層的に設定を継承します。Operator は、Red Hat OpenShift Service Mesh
のデフォルト設定を使用する default プロファイルと共に提供されます。

1.12.2.1. ConfigMap の作成

カスタムプロファイルを追加するには、openshift-operators プロジェクトで smcp-templates という
名前の ConfigMap を作成する必要があります。Operator コンテナーは ConfigMap を自動的にマウン
トします。

前提条件

Service Mesh Operator がインストールされ、検証されていること。

cluster-admin ロールを持つアカウントがある。(Red Hat OpenShift Dedicated を使用する場
合) dedicated-admin ロールがあるアカウント。

Operator デプロイメントの場所。

OpenShift CLI (oc) へのアクセスがある。

手順

1. cluster-admin として Red Hat OpenShift Service on AWS CLI にログインします。(Red Hat

$ oc policy add-role-to-user

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
 namespace: istio-system
 name: mesh-users
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: Role
 name: mesh-user
subjects:
- apiGroup: rbac.authorization.k8s.io
 kind: User
 name: alice

第1章 SERVICE MESH 2.X

147

1. cluster-admin として Red Hat OpenShift Service on AWS CLI にログインします。(Red Hat
OpenShift Dedicated を使用する場合) dedicated-admin ロールがあるアカウント。

2. CLI で以下のコマンドを実行し、openshift-operators プロジェクトに smcp-templates という
名前の ConfigMap を作成し、<profiles-directory> をローカルディスクの
ServiceMeshControlPlane ファイルの場所に置き換えます。

3. ServiceMeshControlPlane で template パラメーターを使用して 1 つ以上のテンプレートを指
定できます。

1.12.2.2. 適切なネットワークポリシーの設定

Service Mesh は Service Mesh コントロールプレーンおよびメンバー namespace にネットワークポリ
シーを作成し、それらの間のトラフィックを許可します。デプロイする前に、以下の条件を考慮し、
Red Hat OpenShift Service on AWS ルートで以前に公開された Service Mesh のサービスを確認しま
す。

Istio が適切に機能するには、Service Mesh へのトラフィックが常に ingress-gateway を経由す
る必要があります。

Service Mesh 外のサービスは、Service Mesh にない個別の namespace にデプロイします。

Service Mesh でリストされた namespace 内にデプロイする必要のあるメッシュ以外のサービ
スでは、それらのデプロイメント maistra.io/expose-route: "true" にラベルを付けます。これ
により、これらのサービスへの Red Hat OpenShift Service on AWS ルートは依然として機能し
ます。

1.13. セキュリティー

Service Mesh アプリケーションが複雑な配列のマイクロサービスで構築されている場合は、Red Hat
OpenShift Service Mesh を使用してそれらのサービス間の通信のセキュリティーをカスタマイズできま
す。Service Mesh のトラフィック管理機能と共に Red Hat OpenShift Service on AWS のインフラスト
ラクチャーを使用すると、アプリケーションの複雑性を管理し、マイクロサービスのセキュリティーを
確保できるようにします。

作業を始める前に

プロジェクトがある場合は、プロジェクトを ServiceMeshMemberRoll リソース に追加します。

プロジェクトがない場合は、Bookinfo サンプルアプリケーション をインストールし、これを
ServiceMeshMemberRoll リソースに追加します。サンプルアプリケーションは、セキュリティーの概
念を説明するのに役立ちます。

1.13.1. Mutual Transport Layer Security (mTLS) について

Mutual Transport Layer Security (mTLS) は、二者が相互認証できるようにするプロトコルです。これ

$ oc create configmap --from-file=<profiles-directory> smcp-templates -n openshift-operators

 apiVersion: maistra.io/v2
 kind: ServiceMeshControlPlane
 metadata:
 name: basic
 spec:
 profiles:
 - default

Red Hat OpenShift Service on AWS 4 Service Mesh

148

Mutual Transport Layer Security (mTLS) は、二者が相互認証できるようにするプロトコルです。これ
は、一部のプロトコル (IKE、SSH) での認証のデフォルトモードであり、他のプロトコル (TLS) ではオ
プションになります。mTLS は、アプリケーションやサービスコードを変更せずに使用できます。TLS
は、Service Mesh インフラストラクチャーおよび 2 つのサイドカープロキシー間で完全に処理されま
す。

デフォルトで、Red Hat OpenShift Service Mesh の mTLS は有効になっており、Permissive モードに
設定されます。この場合、Service Mesh のサイドカーは、プレーンテキストのトラフィックと mTLS
を使用して暗号化される接続の両方を受け入れます。厳密な mTLS を使用するように設定されたメッ
シュ内のサービスがメッシュ外のサービスと通信している場合、厳密な mTLS においてクライアントと
サーバーの両方が互いの ID を検証できる必要があるため、これらのサービス間の通信が中断される可
能性があります。ワークロードを Service Mesh に移行する間に Permissive モードを使用します。次
に、メッシュ、namespace、またはアプリケーションで厳密な mTLS を有効にできます。

Service Mesh コントロールプレーンのレベルでメッシュ全体で mTLS を有効にすると、アプリケー
ションとワークロードを書き換えずに Service Mesh 内のすべてのトラフィックのセキュリティーが保
護されます。メッシュの namespace のセキュリティーは、ServiceMeshControlPlane リソースのデー
タプレーンレベルで保護できます。トラフィックの暗号化接続をカスタマイズするには、アプリケー
ションレベルで namespace を PeerAuthentication および DestinationRule リソースで設定します。

1.13.1.1. Service Mesh 全体での厳密な mTLS の有効化

ワークロードがメッシュ外のサービスと通信しない場合は、通信を中断せずに mTLS をメッシュ全体で
すぐに有効にできます。これを有効にするには、ServiceMeshControlPlane リソースで
spec.security.dataPlane.mtls を true に設定します。Operator は必要なリソースを作成します。

Red Hat OpenShift Service on AWS Web コンソールを使用して mTLS を有効にすることもできます。

手順

1. Web コンソールにログインします。

2. Project メニューをクリックし、Service Mesh コントロールプレーンをインストールしたプロ
ジェクト (例: istio-system) を選択します。

3. Operators → Installed Operators をクリックします。

4. Provided APIs の Service Mesh Control Plane をクリックします。

5. ServiceMeshControlPlane リソースの名前 (例: basic) をクリックします。

6. Details ページで、Data Plane Security の Security セクションでトグルをクリックします。

1.13.1.1.1. 特定のサービスの受信接続用のサイドカーの設定

ポリシーを作成して、個別のサービスに mTLS を設定することもできます。

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
spec:
 version: v2.6
 security:
 dataPlane:
 mtls: true

第1章 SERVICE MESH 2.X

149

手順

1. 以下のサンプルを使用して YAML ファイルを作成します。

PeerAuthentication ポリシーの例 (policy.yaml)

a. <namespace> は、サービスが置かれている namespace に置き換えます。

2. 以下のコマンドを実行して、サービスが置かれている namespace にリソースを作成します。先
ほど作成した Policy リソースの namespace フィールドと一致させる必要があります。

注記

自動 mTLS を使用しておらず、PeerAuthentication を STRICT に設定する場合は、サー
ビスの DestinationRule リソースを作成する必要があります。

1.13.1.1.2. 送信接続用のサイドカーの設定

宛先ルールを作成し、Service Mesh がメッシュ内の他のサービスに要求を送信する際に mTLS を使用
するように設定します。

手順

1. 以下のサンプルを使用して YAML ファイルを作成します。

DestinationRule の例 (destination-rule.yaml)

a. <namespace> は、サービスが置かれている namespace に置き換えます。

2. 以下のコマンドを実行して、サービスが置かれている namespace にリソースを作成します。先
ほど作成した DestinationRule リソースの namespace フィールドと一致させる必要がありま
す。

apiVersion: security.istio.io/v1beta1
kind: PeerAuthentication
metadata:
 name: default
 namespace: <namespace>
spec:
 mtls:
 mode: STRICT

$ oc create -n <namespace> -f <policy.yaml>

apiVersion: networking.istio.io/v1alpha3
kind: DestinationRule
metadata:
 name: default
 namespace: <namespace>
spec:
 host: "*.<namespace>.svc.cluster.local"
 trafficPolicy:
 tls:
 mode: ISTIO_MUTUAL

Red Hat OpenShift Service on AWS 4 Service Mesh

150

1.13.1.1.3. 最小および最大のプロトコルバージョンの設定

ご使用の環境の Service Mesh に暗号化されたトラフィックの特定の要件がある場合は、許可される暗
号化機能を制御できます。これは、ServiceMeshControlPlane リソースに
spec.security.controlPlane.tls.minProtocolVersion または
spec.security.controlPlane.tls.maxProtocolVersion を設定して許可できます。Service Mesh コント
ロールプレーンリソースで設定されるこれらの値は、TLS 経由でセキュアに通信する場合にメッシュコ
ンポーネントによって使用される最小および最大の TLS バージョンを定義します。

デフォルトは TLS_AUTO であり、TLS のバージョンは指定しません。

表1.5 有効な値

値 説明

TLS_AUTO default

TLSv1_0 TLS バージョン 1.0

TLSv1_1 TLS バージョン 1.1

TLSv1_2 TLS バージョン 1.2

TLSv1_3 TLS バージョン 1.3

手順

1. Web コンソールにログインします。

2. Project メニューをクリックし、Service Mesh コントロールプレーンをインストールしたプロ
ジェクト (例: istio-system) を選択します。

3. Operators → Installed Operators をクリックします。

4. Provided APIs の Service Mesh Control Plane をクリックします。

5. ServiceMeshControlPlane リソースの名前 (例: basic) をクリックします。

6. YAML タブをクリックします。

7. 以下のコードスニペットを YAML エディターに挿入します。minProtocolVersion の値は、
TLS バージョンの値に置き換えます。この例では、最小の TLS バージョンは TLSv1_2 に設定
されます。

ServiceMeshControlPlane スニペット

$ oc create -n <namespace> -f <destination-rule.yaml>

kind: ServiceMeshControlPlane
spec:
 security:

第1章 SERVICE MESH 2.X

151

8. Save をクリックします。

9. Refresh をクリックし、変更が正しく更新されたことを確認します。

1.13.1.2. Kiali による暗号化の検証

Kiali コンソールは、アプリケーション、サービス、ワークロードが mTLS 暗号化を有効にしているかど
うかを検証するためのいくつかの方法を提供します。

図1.5 マストヘッドアイコンメッシュワイド mTLS が有効

サービスメッシュ全体で厳密に mTLS が有効化されている場合、Kiali はマストヘッドの右側にロックア
イコンを表示します。これは、メッシュ内のすべての通信に mTLS が使用されていることを意味しま
す。

図1.6 マストヘッドアイコンメッシュワイド mTLS が一部有効

メッシュが PERMISSIVE モードに設定されているか、メッシュ全体の mTLS 設定にエラーが発生して
いる場合、Kiali は中空ロックアイコンを表示します。

図1.7 セキュリティーバッジ

Graph ページには、mTLS が有効であることを示すために、グラフの端に Security バッジを表示する

 controlPlane:
 tls:
 minProtocolVersion: TLSv1_2

Red Hat OpenShift Service on AWS 4 Service Mesh

152

オプションがあります。グラフにセキュリティーバッジを表示するには、Display メニューの Show
Badges で Security チェックボックスをオンにします。エッジにロックアイコンが表示されている場合
は、mTLS が有効なリクエストが少なくとも 1 つ存在することを意味します。mTLS と non-mTLS の両
方のリクエストがある場合、サイドパネルには mTLS を使用するリクエストのパーセンテージが表示さ
れます。

Applications Detail Overview ページでは、mTLS が有効なリクエストが 1 つ以上存在するグラフの端
に Security アイコンが表示されます。

Workloads Detail Overview ページでは、mTLS が有効なリクエストが 1 つ以上存在するグラフの端に
Security アイコンが表示されます。

Services Detail Overview ページでは、mTLS が有効なリクエストが 1 つ以上存在するグラフの端に
Security アイコンが表示されます。また、Kiali では、mTLS を設定したポートの横の Network セク
ションにロックアイコンが表示されることに注意してください。

1.13.2. ロールベースアクセス制御 (RBAC) の設定

ロールベースアクセス制御 (RBAC) オブジェクトは、ユーザーまたはサービスがプロジェクト内で所定
のアクションを実行することが許可されるかどうかを決定します。メッシュでワークロードのメッシュ
全体、namespace 全体、およびワークロード全体のアクセス制御を定義できます。

RBAC を設定するには、アクセスを設定する namespace で AuthorizationPolicy リソースを作成しま
す。メッシュ全体のアクセスを設定する場合は、Service Mesh コントロールプレーンをインストールし
たプロジェクト (例: istio-system) を使用します。

たとえば、RBAC を使用して以下を実行するポリシーを作成できます。

プロジェクト内通信を設定します。

デフォルト namespace のすべてのワークロードへの完全アクセスを許可または拒否します。

ingress ゲートウェイアクセスを許可または拒否します。

アクセスにはトークンが必要です。

認証ポリシーには、セレクター、アクション、およびルールのリストが含まれます。

selector フィールドは、ポリシーのターゲットを指定します。

action フィールドは、要求を許可または拒否するかどうかを指定します。

rules フィールドは、アクションをトリガーするタイミングを指定します。

from フィールドは、要求元の制約を指定します。

to フィールドは、要求のターゲットおよびパラメーターの制約を指定します。

when フィールドは、ルールを適用する追加の条件を指定します。

手順

1. AuthorizationPolicy リソースを作成します。以下の例は、ingress-policy AuthorizationPolicy
を更新して、IP アドレスが Ingress ゲートウェイにアクセスすることを拒否するリソースを示
しています。

apiVersion: security.istio.io/v1beta1

第1章 SERVICE MESH 2.X

153

2. リソースを作成した後に以下のコマンドを実行して、namespace にリソースを作成します。
namespace は、AuthorizationPolicy リソースの metadata.namespace フィールドと一致する
必要があります。

次のステップ

その他の一般的な設定は、以下の例を参照してください。

1.13.2.1. プロジェクト内通信の設定

AuthorizationPolicy を使用して Service Mesh コントロールプレーンを設定し、メッシュまたはメッ
シュ内のサービスとの通信トラフィックを許可したり、拒否したりできます。

1.13.2.1.1. namespace 外のサービスへのアクセス制限

以下の AuthorizationPolicy リソースの例を使用して、info namespace にないソースからの要求を拒
否できます。

1.13.2.1.2. allow-all およびデフォルトの deny-all 認可ポリシーの作成

以下の例は、info namespace のすべてのワークロードへの完全なアクセスを許可する allow-all 認可ポ
リシーを示しています。

kind: AuthorizationPolicy
metadata:
 name: ingress-policy
 namespace: istio-system
spec:
 selector:
 matchLabels:
 app: istio-ingressgateway
 action: DENY
 rules:
 - from:
 - source:
 ipBlocks: ["1.2.3.4"]

$ oc create -n istio-system -f <filename>

apiVersion: security.istio.io/v1beta1
kind: AuthorizationPolicy
metadata:
 name: httpbin-deny
 namespace: info
spec:
 selector:
 matchLabels:
 app: httpbin
 version: v1
 action: DENY
 rules:
 - from:
 - source:
 notNamespaces: ["info"]

Red Hat OpenShift Service on AWS 4 Service Mesh

154

以下の例は、info namespace のすべてのワークロードへのアクセスを拒否するポリシーを示していま
す。

1.13.2.2. ingress ゲートウェイへのアクセスの許可または拒否

認証ポリシーを設定し、IP アドレスに基づいて許可または拒否リストを追加できます。

1.13.2.3. JSON Web トークンを使用したアクセスの制限

JSON Web Token (JWT) を使用してメッシュにアクセスできる内容を制限できます。認証後に、ユー
ザーまたはサービスはそのトークンに関連付けられたルート、サービスにアクセスできます。

ワークロードでサポートされる認証方法を定義する RequestAuthentication リソースを作成します。
以下の例では、http://localhost:8080/auth/realms/master で実行される JWT を受け入れます。

apiVersion: security.istio.io/v1beta1
kind: AuthorizationPolicy
metadata:
 name: allow-all
 namespace: info
spec:
 action: ALLOW
 rules:
 - {}

apiVersion: security.istio.io/v1beta1
kind: AuthorizationPolicy
metadata:
 name: deny-all
 namespace: info
spec:
 {}

apiVersion: security.istio.io/v1beta1
kind: AuthorizationPolicy
metadata:
 name: ingress-policy
 namespace: istio-system
spec:
 selector:
 matchLabels:
 app: istio-ingressgateway
 action: ALLOW
 rules:
 - from:
 - source:
 ipBlocks: ["1.2.3.4", "5.6.7.0/24"]

apiVersion: "security.istio.io/v1beta1"
kind: "RequestAuthentication"
metadata:
 name: "jwt-example"
 namespace: info
spec:

第1章 SERVICE MESH 2.X

155

http://localhost:8080/auth/realms/master

次に、同じ namespace に AuthorizationPolicy リソースを作成し、作成した RequestAuthentication
リソースと連携させます。以下の例では、要求を httpbin ワークロードに送信する際に、JWT は
Authorization ヘッダーになければなりません。

1.13.3. 暗号化スイートおよび ECDH 曲線の設定

暗号化スイートおよび ECDH 曲線 (Elliptic-curve Diffie–Hellman) は、Service Mesh のセキュリティー
を保護するのに役立ちます。暗号化スイートのコンマ区切りの一覧を
spec.security.controlplane.tls.cipherSuites を使用して定義し、ECDH 曲線を
ServiceMeshControlPlane リソースの spec.security.controlplane.tls.ecdhCurves を使用して定義で
きます。これらの属性のいずれかが空の場合は、デフォルト値が使用されます。

Service Mesh が TLS 1.2 以前のバージョンを使用する場合は、cipherSuites 設定が有効になります。こ
の設定は、TLS 1.3 でネゴシエートする場合は影響を与えません。

コンマ区切りのリストに暗号化スイートを優先度順に設定します。たとえば、ecdhCurves:
CurveP256, CurveP384 は、CurveP256 を CurveP384 よりも高い優先順位として設定します。

注記

暗号化スイートを設定する場合は、TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
または TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 のいずれかを追加する必
要があります。HTTP/2 のサポートには、1 つ以上の以下の暗号スイートが必要です。

サポートされている暗号化スイートは以下になります。

TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256

TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256

TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256

 selector:
 matchLabels:
 app: httpbin
 jwtRules:
 - issuer: "http://localhost:8080/auth/realms/master"
 jwksUri: "http://keycloak.default.svc:8080/auth/realms/master/protocol/openid-connect/certs"

apiVersion: "security.istio.io/v1beta1"
kind: "AuthorizationPolicy"
metadata:
 name: "frontend-ingress"
 namespace: info
spec:
 selector:
 matchLabels:
 app: httpbin
 action: DENY
 rules:
 - from:
 - source:
 notRequestPrincipals: ["*"]

Red Hat OpenShift Service on AWS 4 Service Mesh

156

TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384

TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384

TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256

TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA

TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256

TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA

TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA

TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA

TLS_RSA_WITH_AES_128_GCM_SHA256

TLS_RSA_WITH_AES_256_GCM_SHA384

TLS_RSA_WITH_AES_128_CBC_SHA256

TLS_RSA_WITH_AES_128_CBC_SHA

TLS_RSA_WITH_AES_256_CBC_SHA

TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA

TLS_RSA_WITH_3DES_EDE_CBC_SHA

サポートされる ECDH 曲線は以下のとおりです。

CurveP256

CurveP384

CurveP521

X25519

1.13.4. JSON Web キーセットリゾルバー認証局の設定

ServiceMeshControlPlane (SMCP) 仕様から独自の JSON Web Key Sets (JWKS) リゾルバー認証局
(CA) を設定できます。

手順

1. ServiceMeshControlPlane 仕様ファイルを編集します。

2. 次の例に示すように、ServiceMeshControlPlane 仕様で mtls フィールドの値を true に設定
して、データプレーンの mtls を有効にします。

$ oc edit smcp <smcp-name>

spec:
 security:

第1章 SERVICE MESH 2.X

157

3. 変更を保存します。Red Hat OpenShift Service on AWS が変更を自動的に適用します。

pilot-jwks-cacerts-<SMCP name> などの ConfigMap が CA .pem data を使用して作成されます。

ConfigMap pilot-jwks-cacerts-<SMCP name> の例

1.13.5. 外部認証局キーおよび証明書の追加

デフォルトで、Red Hat OpenShift Service Mesh は自己署名ルート証明書およびキーを生成し、それら
を使用してワークロード証明書に署名します。ユーザー定義の証明書およびキーを使用して、ユーザー
定義のルート証明書を使用してワークロード証明書に署名することもできます。このタスクは、証明書
およびキーを Service Mesh にプラグインするサンプルを示しています。

前提条件

相互 TLS を有効にして Red Hat OpenShift Service Mesh をインストールし、証明書を設定す
る。

この例では、Maistra リポジトリー からの証明書を使用します。実稼働環境の場合は、認証局
から独自の証明書を使用します。

Bookinfo サンプルアプリケーションをデプロイして以下の手順で結果を確認しておく。

OpenSSL は、証明書を検証するために必要です。

1.13.5.1. 既存の証明書およびキーの追加

既存の署名 (CA) 証明書およびキーを使用するには、CA 証明書、キー、ルート証明書が含まれる信頼
ファイルのチェーンを作成する必要があります。対応する証明書ごとに、以下のファイル名をそのまま
使用する必要があります。CA 証明書は ca-cert.pem と呼ばれ、キーは ca-key.pem であり、ca-
cert.pem を署名するルート証明書は root-cert.pem と呼ばれます。ワークロードで中間証明書を使用
する場合は、cert-chain.pem ファイルでそれらを指定する必要があります。

1. Maistra リポジトリー のサンプル証明書をローカルに保存し、<path> を証明書へのパスに置き
換えます。

 dataPlane:
 mtls: true # enable mtls for data plane
 # JWKSResolver extra CA
 # PEM-encoded certificate content to trust an additional CA
 jwksResolverCA: |
 -----BEGIN CERTIFICATE-----
 [...]
 [...]
 -----END CERTIFICATE-----
...

kind: ConfigMap
apiVersion: v1
data:
 extra.pem: |
 -----BEGIN CERTIFICATE-----
 [...]
 [...]
 -----END CERTIFICATE-----

Red Hat OpenShift Service on AWS 4 Service Mesh

158

https://github.com/maistra/istio/tree/maistra-2.6/samples/certs
https://github.com/maistra/istio/tree/maistra-2.6/samples/certs

2. cacert という名前のシークレットを作成します。これには、入力ファイルの ca-cert.pem、ca-
key.pem、root-cert.pem および cert-chain.pem が含まれます。

3. ServiceMeshControlPlane リソースで、spec.security.dataPlane.mtls true を true に設定
し、以下の例のように certificateAuthority フィールドを設定します。デフォルトの
rootCADir は /etc/cacerts です。キーおよび証明書がデフォルトの場所にマウントされている
場合は、privateKey を設定する必要はありません。Service Mesh は、secret-mount ファイル
から証明書およびキーを読み取ります。

4. cacert シークレットを作成/変更/削除した後に、変更を有効にするために、Service Mesh コン
トロールプレーンの istiod と gateway Pod を再起動する必要があります。以下のコマンドで
Pod を再起動します。

Operator は、Pod を削除した後、自動的に再作成します。

5. info アプリケーションの Pod を再起動し、sidecar プロキシーがシークレットの変更を取り込
むようにします。以下のコマンドで Pod を再起動します。

以下のような出力が表示されるはずです。

6. 以下のコマンドで、Pod が作成され、準備ができたことを確認します。

1.13.5.2. 証明書の確認

$ oc create secret generic cacerts -n istio-system --from-file=<path>/ca-cert.pem \
 --from-file=<path>/ca-key.pem --from-file=<path>/root-cert.pem \
 --from-file=<path>/cert-chain.pem

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
spec:
 security:
 dataPlane:
 mtls: true
 certificateAuthority:
 type: Istiod
 istiod:
 type: PrivateKey
 privateKey:
 rootCADir: /etc/cacerts

$ oc -n istio-system delete pods -l 'app in (istiod,istio-ingressgateway, istio-egressgateway)'

$ oc -n info delete pods --all

pod "details-v1-6cd699df8c-j54nh" deleted
pod "productpage-v1-5ddcb4b84f-mtmf2" deleted
pod "ratings-v1-bdbcc68bc-kmng4" deleted
pod "reviews-v1-754ddd7b6f-lqhsv" deleted
pod "reviews-v2-675679877f-q67r2" deleted
pod "reviews-v3-79d7549c7-c2gjs" deleted

$ oc get pods -n info

第1章 SERVICE MESH 2.X

159

Bookinfo サンプルアプリケーションを使用して、ワークロード証明書が CA に差し込まれた証明書に
よって署名されていることを確認します。このプロセスでは、マシンに openssl がインストールされ
ている必要があります。

1. info ワークロードから証明書を抽出するには、以下のコマンドを使用します。

コマンドを実行すると、作業ディレクトリーに proxy-cert-1.pem、proxy-cert-
2.pem、proxy-cert-3.pem の 3 つのファイルが作成されるはずです。

2. ルート証明書が管理者が指定したものと同じであることを確認します。<path> を証明書へのパ
スに置き換えます。

ターミナルウィンドウで次の構文を実行します。

ターミナルウィンドウで以下の構文を実行して、証明書を比較します。

以下のような結果が表示されるはずです: Files /tmp/root-cert.crt.txt and /tmp/pod-root-
cert.crt.txt are identical

3. CA 証明書が管理者が指定したものと同じであることを確認します。<path> を証明書へのパス
に置き換えます。

ターミナルウィンドウで次の構文を実行します。

ターミナルウィンドウで以下の構文を実行して、証明書を比較します。

以下のような結果が表示されるはずです: Files /tmp/ca-cert.crt.txt and /tmp/pod-cert-chain-
ca.crt.txt are identical.

4. ルート証明書からワークロード証明書への証明書チェーンを確認します。<path> を証明書への
パスに置き換えます。

$ sleep 60
$ oc -n info exec "$(oc -n bookinfo get pod -l app=productpage -o jsonpath=
{.items..metadata.name})" -c istio-proxy -- openssl s_client -showcerts -connect details:9080
> bookinfo-proxy-cert.txt
$ sed -n '/-----BEGIN CERTIFICATE-----/{:start /-----END CERTIFICATE-----/!{N;b
start};/.*/p}' info-proxy-cert.txt > certs.pem
$ awk 'BEGIN {counter=0;} /BEGIN CERT/{counter++} { print > "proxy-cert-" counter ".pem"}'
< certs.pem

$ openssl x509 -in <path>/root-cert.pem -text -noout > /tmp/root-cert.crt.txt

$ openssl x509 -in ./proxy-cert-3.pem -text -noout > /tmp/pod-root-cert.crt.txt

$ diff -s /tmp/root-cert.crt.txt /tmp/pod-root-cert.crt.txt

$ openssl x509 -in <path>/ca-cert.pem -text -noout > /tmp/ca-cert.crt.txt

$ openssl x509 -in ./proxy-cert-2.pem -text -noout > /tmp/pod-cert-chain-ca.crt.txt

$ diff -s /tmp/ca-cert.crt.txt /tmp/pod-cert-chain-ca.crt.txt

$ openssl verify -CAfile <(cat <path>/ca-cert.pem <path>/root-cert.pem) ./proxy-cert-1.pem

Red Hat OpenShift Service on AWS 4 Service Mesh

160

以下のような出力が表示されるはずです: ./proxy-cert-1.pem: OK

1.13.5.3. 証明書の削除

追加した証明書を削除するには、以下の手順に従います。

1. シークレット cacerts を削除します。この例では、istio-system が Service Mesh コントロール
プレーンプロジェクトの名前となります。

2. ServiceMeshControlPlane リソースで自己署名ルート証明書を使用して Service Mesh を再デ
プロイします。

1.13.6. Service Mesh と cert-manager および istio-csr の統合について

cert-manager ツールは、Kubernetes での X.509 証明書管理のソリューションです。Vault、Google
Cloud Certificate Authority Service、Let's Encrypt、その他のプロバイダーなどの秘密キーまたは公開
キーインフラストラクチャー (PKI) とアプリケーションを統合するための統合 API を提供します。

cert-manager ツールは、証明書の有効期限が切れる前に、設定された時間に証明書の更新を試行する
ことで、証明書が有効で最新であることを確認します。

Istio ユーザーの場合、cert-manager は、Istio プロキシーからの証明書署名要求 (CSR) を処理する認証
局 (CA) サーバーである istio-csr との統合も提供します。次に、サーバーは署名を cert-manager に委
任し、設定された CA サーバーに CSR を転送します。

注記

Red Hat は、istio-csr および cert-manager との統合のサポートを提供します。Red Hat
は istio-csr またはコミュニティー cert-manager コンポーネントに対する直接サポート
を提供しません。ここで示すコミュニティー cert-manager の使用は、デモンストレー
ションのみを目的としています。

前提条件

cert-manager の次のいずれかのバージョン:

Red Hat OpenShift 1.10 以降の cert-manager Operator

コミュニティー cert-manager Operator 1.11 以降

cert-manager 1.11 以降

OpenShift Service Mesh Operator 2.4 以降

istio-csr 0.6.0 以降

$ oc delete secret cacerts -n istio-system

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
spec:
 security:
 dataPlane:
 mtls: true

第1章 SERVICE MESH 2.X

161

注記

istio-csr サーバーが jetstack/cert-manager-istio-csr Helm チャートとともにインストー
ルされているときに、すべての namespace で config map が作成されないようにするに
は、istio-csr.yaml ファイル内の app.controller.configmapNamespaceSelector:
"maistra.io/member-of: <istio-namespace>" 設定を使用します。

1.13.6.1. cert-manager のインストール

cert-manager ツールをインストールすると、TLS 証明書のライフサイクルを管理し、証明書が有効で
最新であることを確認できます。環境内で Istio を実行している場合は、Istio プロキシーからの証明書
署名要求 (CSR) を処理する istio-csr 認証局 (CA) サーバーをインストールすることもできます。 istio-
csr CA は署名を cert-manager ツールに委任し、cert-manager ツールは設定された CA に委任しま
す。

手順

1. ルートクラスターの発行者を作成します。

a. 次の例のように cluster-issuer オブジェクトを作成します。

cluster-issuer.yaml の例

apiVersion: cert-manager.io/v1
kind: Issuer
metadata:
 name: selfsigned-root-issuer
 namespace: cert-manager
spec:
 selfSigned: {}

apiVersion: cert-manager.io/v1
kind: Certificate
metadata:
 name: root-ca
 namespace: cert-manager
spec:
 isCA: true
 duration: 21600h # 900d
 secretName: root-ca
 commonName: root-ca.my-company.net
 subject:
 organizations:
 - my-company.net
 issuerRef:
 name: selfsigned-root-issuer
 kind: Issuer
 group: cert-manager.io

apiVersion: cert-manager.io/v1
kind: ClusterIssuer
metadata:
 name: root-ca
spec:
 ca:
 secretName: root-ca

Red Hat OpenShift Service on AWS 4 Service Mesh

162

注記

root-ca がクラスター発行者であるため、selfsigned-root-issuer の発行者
と root-ca 証明書の namespace は cert-manager です。そのため、cert-
manager は参照されるシークレットを独自の namespace で検索します。
Red Hat OpenShift の cert-manager Operator の場合、namespace の名前は
cert-manager です。

b. 次のコマンドを使用してオブジェクトを作成します。

c. 次の例のように istio-ca オブジェクトを作成します。

istio-ca.yaml の例

d. 次のコマンドを使用してオブジェクトを作成します。

2. istio-csr をインストールします。

$ oc apply -f cluster-issuer.yaml

apiVersion: cert-manager.io/v1
kind: Certificate
metadata:
 name: istio-ca
 namespace: istio-system
spec:
 isCA: true
 duration: 21600h
 secretName: istio-ca
 commonName: istio-ca.my-company.net
 subject:
 organizations:
 - my-company.net
 issuerRef:
 name: root-ca
 kind: ClusterIssuer
 group: cert-manager.io

apiVersion: cert-manager.io/v1
kind: Issuer
metadata:
 name: istio-ca
 namespace: istio-system
spec:
 ca:
 secretName: istio-ca

$ oc apply -n istio-system -f istio-ca.yaml

$ helm install istio-csr jetstack/cert-manager-istio-csr \
 -n istio-system \
 -f deploy/examples/cert-manager/istio-csr/istio-csr.yaml

第1章 SERVICE MESH 2.X

163

istio-csr.yaml の例

3. SMCP をデプロイメントします。

例 mesh.yaml

replicaCount: 2

image:
 repository: quay.io/jetstack/cert-manager-istio-csr
 tag: v0.6.0
 pullSecretName: ""

app:
 certmanager:
 namespace: istio-system
 issuer:
 group: cert-manager.io
 kind: Issuer
 name: istio-ca

 controller:
 configmapNamespaceSelector: "maistra.io/member-of=istio-system"
 leaderElectionNamespace: istio-system

 istio:
 namespace: istio-system
 revisions: ["basic"]

 server:
 maxCertificateDuration: 5m

 tls:
 certificateDNSNames:
 # This DNS name must be set in the SMCP spec.security.certificateAuthority.cert-
manager.address
 - cert-manager-istio-csr.istio-system.svc

$ oc apply -f mesh.yaml -n istio-system

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
metadata:
 name: basic
spec:
 addons:
 grafana:
 enabled: false
 kiali:
 enabled: false
 prometheus:
 enabled: false
 proxy:
 accessLogging:
 file:

Red Hat OpenShift Service on AWS 4 Service Mesh

164

注記

security.identity.type: ThirdParty は security.certificateAuthority.type: cert-manager
が設定されている場合に設定する必要があります。

検証

サンプル httpbin サービスと sleep アプリを使用して、イングレスゲートウェイからの mTLS トラ
フィックをチェックし、cert-manager ツールがインストールされていることを確認します。

1. HTTP アプリと sleep アプリをデプロイします。

2. sleep が httpbin サービスにアクセスできることを確認します。

出力例

 name: /dev/stdout
 security:
 certificateAuthority:
 cert-manager:
 address: cert-manager-istio-csr.istio-system.svc:443
 type: cert-manager
 dataPlane:
 mtls: true
 identity:
 type: ThirdParty
 tracing:
 type: None

apiVersion: maistra.io/v1
kind: ServiceMeshMemberRoll
metadata:
 name: default
spec:
 members:
 - httpbin
 - sleep

$ oc new-project <namespace>

$ oc apply -f https://raw.githubusercontent.com/maistra/istio/maistra-
2.4/samples/httpbin/httpbin.yaml

$ oc apply -f https://raw.githubusercontent.com/maistra/istio/maistra-
2.4/samples/sleep/sleep.yaml

$ oc exec "$(oc get pod -l app=sleep -n <namespace> \
 -o jsonpath={.items..metadata.name})" -c sleep -n <namespace> -- \
 curl http://httpbin.<namespace>:8000/ip -s -o /dev/null \
 -w "%{http_code}\n"

200

第1章 SERVICE MESH 2.X

165

3. Ingress ゲートウェイから httpbin サービスへの mTLS トラフィックを確認します。

4. istio-ingressgateway ルートを取得します。

5. Ingress ゲートウェイから httpbin サービスへの mTLS トラフィックを確認します。

1.13.7. 関連情報

Red Hat OpenShift Service on AWS の cert-manager Operator をインストールする方法は、Installing
the cert-manager Operator for Red Hat OpenShift を参照してください。

1.14. SERVICE MESH でのトラフィックの管理

Red Hat OpenShift Service Mesh のサービス間におけるトラフィックのフローおよび API 呼び出しを制
御できます。Service Mesh 内の一部のサービスはメッシュ内で通信する必要があり、その他のサービス
は非表示にする必要がある場合があります。トラフィックを管理して、特定のバックエンドサービスを
非表示にし、サービスを公開し、テストまたはバージョン管理デプロイメントを作成し、または一連の
サービスのセキュリティーの層を追加できます。

1.14.1. ゲートウェイの使用

ゲートウェイを使用してメッシュの受信トラフィックおよび送信トラフィックを管理することで、メッ
シュに入るか、メッシュを出るトラフィックを指定できます。ゲートウェイ設定は、サービスワーク
ロードとともに実行するサイドカー Envoy プロキシーではなく、メッシュのエッジで実行するスタンド
アロン Envoy プロキシーに適用されます。

Kubernetes Ingress API などのシステムに入るトラフィックを制御する他のメカニズムとは異なり、
Red Hat OpenShift Service Mesh ゲートウェイではトラフィックのルーティングの機能および柔軟性を
最大限に利用します。

Red Hat OpenShift Service Mesh ゲートウェイリソースは、Red Hat OpenShift Service Mesh TLS 設定
を公開して設定するポートなど、レイヤー 4-6 の負荷分散プロパティーを使用できます。アプリケー
ション層のトラフィックルーティング (L7) を同じ API リソースに追加する代わりに、通常の Red Hat
OpenShift Service Mesh 仮想サービスをゲートウェイにバインドし、Service Mesh 内の他のデータプ
レーントラフィックのようにゲートウェイトラフィックを管理できます。

ゲートウェイは ingress トラフィックの管理に主に使用されますが、egress ゲートウェイを設定するこ
ともできます。egress ゲートウェイを使用すると、メッシュからのトラフィック専用の終了ノードを設
定できます。これにより、Service Mesh にセキュリティー制御を追加することで、外部ネットワークに
アクセスできるサービスを制限できます。また、ゲートウェイを使用して完全に内部のプロキシーを設
定することもできます。

ゲートウェイの例

ゲートウェイリソースは、着信または発信 HTTP/TCP 接続を受信するメッシュのエッジで動作する

$ oc apply -n <namespace> -f https://raw.githubusercontent.com/maistra/istio/maistra-
2.4/samples/httpbin/httpbin-gateway.yaml

INGRESS_HOST=$(oc -n istio-system get routes istio-ingressgateway -o
jsonpath='{.spec.host}')

$ curl -s -I http://$INGRESS_HOST/headers -o /dev/null -w "%{http_code}" -s

Red Hat OpenShift Service on AWS 4 Service Mesh

166

https://access.redhat.com/documentation/ja-jp/openshift_container_platform/4.12/html-single/security_and_compliance/index#cert-manager-operator-install

ゲートウェイリソースは、着信または発信 HTTP/TCP 接続を受信するメッシュのエッジで動作する
ロードバランサーを表します。この仕様には、公開する必要のあるポートのセット、使用するプロトコ
ルのタイプ、ロードバランサー用の SNI 設定などが記述されています。

以下の例は、外部 HTTPS Ingress トラフィックのゲートウェイ設定を示しています。

このゲートウェイ設定により、ポート 443 での ext-host.example.com からメッシュへの HTTPS トラ
フィックが可能になりますが、トラフィックのルーティングは指定されません。

ルーティングを指定し、ゲートウェイが意図される通りに機能するには、ゲートウェイを仮想サービス
にバインドする必要もあります。これは、以下の例のように、仮想サービスのゲートウェイフィールド
を使用して実行します。

次に、仮想サービスを外部トラフィックのルーティングルールを使用して設定できます。

1.14.1.1. Ingress トラフィックの管理

Red Hat OpenShift Service Mesh では、Ingress Gateway は、モニタリング、セキュリティー、ルート
ルールなどの機能をクラスターに入るトラフィックに適用できるようにします。Service Mesh ゲート
ウェイを使用して Service Mesh 外のサービスを公開します。

1.14.1.1.1. Ingress IP およびポートの判別

Ingress 設定は、環境が外部ロードバランサーをサポートするかどうかによって異なります。外部ロー
ドバランサーはクラスターの Ingress IP およびポートに設定されます。クラスターの IP およびポート
が外部ロードバランサーに設定されているかどうかを判別するには、以下のコマンドを実行します。こ

apiVersion: networking.istio.io/v1alpha3
kind: Gateway
metadata:
 name: ext-host-gwy
spec:
 selector:
 istio: ingressgateway # use istio default controller
 servers:
 - port:
 number: 443
 name: https
 protocol: HTTPS
 hosts:
 - ext-host.example.com
 tls:
 mode: SIMPLE
 serverCertificate: /tmp/tls.crt
 privateKey: /tmp/tls.key

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
 name: virtual-svc
spec:
 hosts:
 - ext-host.example.com
 gateways:
 - ext-host-gwy

第1章 SERVICE MESH 2.X

167

の例では、istio-system が Service Mesh コントロールプレーンプロジェクトの名前となります。

このコマンドは、namespace のそれぞれの項目の NAME、TYPE、CLUSTER-IP、EXTERNAL-
IP、PORT(S)、および AGE を返します。

EXTERNAL-IP 値が設定されている場合、環境には Ingress ゲートウェイに使用できる外部ロードバラ
ンサーがあります。

EXTERNAL-IP の値が <none> または永続的に <pending> の場合、環境は Ingress ゲートウェイの外
部ロードバランサーを提供しません。

1.14.1.1.1.1. ロードバランサーを使用した Ingress ポートの判別

お使いの環境に外部ロードバランサーがある場合は、以下の手順に従います。

手順

1. 以下のコマンドを実行して Ingress IP およびポートを設定します。このコマンドは、ターミナ
ルに変数を設定します。

2. 以下のコマンドを実行して Ingress ポートを設定します。

3. 以下のコマンドを実行してセキュアな Ingress ポートを設定します。

4. 以下のコマンドを実行して TCP Ingress ポートを設定します。

注記

一部の環境では、ロードバランサーは IP アドレスの代わりにホスト名を使用して公開さ
れる場合があります。この場合、Ingress ゲートウェイの EXTERNAL-IP 値は IP アドレ
スではありません。これはホスト名であり、直前のコマンドは INGRESS_HOST 環境変
数の設定に失敗します。

失敗した場合は、以下のコマンドを使用して INGRESS_HOST 値を修正します。

$ oc get svc istio-ingressgateway -n istio-system

$ export INGRESS_HOST=$(oc -n istio-system get service istio-ingressgateway -o
jsonpath='{.status.loadBalancer.ingress[0].ip}')

$ export INGRESS_PORT=$(oc -n istio-system get service istio-ingressgateway -o
jsonpath='{.spec.ports[?(@.name=="http2")].port}')

$ export SECURE_INGRESS_PORT=$(oc -n istio-system get service istio-ingressgateway -
o jsonpath='{.spec.ports[?(@.name=="https")].port}')

$ export TCP_INGRESS_PORT=$(kubectl -n istio-system get service istio-ingressgateway -o
jsonpath='{.spec.ports[?(@.name=="tcp")].port}')

$ export INGRESS_HOST=$(oc -n istio-system get service istio-ingressgateway -o
jsonpath='{.status.loadBalancer.ingress[0].hostname}')

Red Hat OpenShift Service on AWS 4 Service Mesh

168

1.14.1.1.1.2. ロードバランサーのない Ingress ポートの判別

お使いの環境に外部ロードバランサーがない場合は、Ingress ポートを判別し、代わりにノードポート
を使用します。

手順

1. Ingress ポートを設定します。

2. 以下のコマンドを実行してセキュアな Ingress ポートを設定します。

3. 以下のコマンドを実行して TCP Ingress ポートを設定します。

1.14.1.2. Ingress ゲートウェイの設定

Ingress ゲートウェイは、受信 HTTP/TCP 接続を受信するメッシュのエッジで稼働するロードバラン
サーです。このゲートウェイは、公開されるポートおよびプロトコルを設定しますが、これにはトラ
フィックルーティングの設定は含まれません。Ingress トラフィックに対するトラフィックルーティン
グは、内部サービス要求の場合と同様に、ルーティングルールで設定されます。

以下の手順では、ゲートウェイを作成し、/productpage と /login のパスの外部トラフィックに、
Bookinfo サンプルアプリケーションのサービスを公開するように、VirtualService を設定します。

手順

1. トラフィックを受け入れるゲートウェイを作成します。

a. YAML ファイルを作成し、以下の YAML をこれにコピーします。

ゲートウェイの例 (gateway.yaml)

$ export INGRESS_PORT=$(oc -n istio-system get service istio-ingressgateway -o
jsonpath='{.spec.ports[?(@.name=="http2")].nodePort}')

$ export SECURE_INGRESS_PORT=$(oc -n istio-system get service istio-ingressgateway -
o jsonpath='{.spec.ports[?(@.name=="https")].nodePort}')

$ export TCP_INGRESS_PORT=$(kubectl -n istio-system get service istio-ingressgateway -o
jsonpath='{.spec.ports[?(@.name=="tcp")].nodePort}')

apiVersion: networking.istio.io/v1alpha3
kind: Gateway
metadata:
 name: info-gateway
spec:
 selector:
 istio: ingressgateway
 servers:
 - port:
 number: 80
 name: http
 protocol: HTTP
 hosts:
 - "*"

第1章 SERVICE MESH 2.X

169

b. YAML ファイルを適用します。

2. VirtualService オブジェクトを作成し、ホストヘッダーを再作成します。

a. YAML ファイルを作成し、以下の YAML をこれにコピーします。

仮想サービスの例

b. YAML ファイルを適用します。

3. ゲートウェイと VirtualService が正しく設定されていることを確認してください。

a. ゲートウェイ URL を設定します。

b. ポート番号を設定します。この例では、istio-system が Service Mesh コントロールプレー
ンプロジェクトの名前となります。

$ oc apply -f gateway.yaml

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
 name: info
spec:
 hosts:
 - "*"
 gateways:
 - info-gateway
 http:
 - match:
 - uri:
 exact: /productpage
 - uri:
 prefix: /static
 - uri:
 exact: /login
 - uri:
 exact: /logout
 - uri:
 prefix: /api/v1/products
 route:
 - destination:
 host: productpage
 port:
 number: 9080

$ oc apply -f vs.yaml

export GATEWAY_URL=$(oc -n istio-system get route istio-ingressgateway -o
jsonpath='{.spec.host}')

export TARGET_PORT=$(oc -n istio-system get route istio-ingressgateway -o
jsonpath='{.spec.port.targetPort}')

Red Hat OpenShift Service on AWS 4 Service Mesh

170

c. 明示的に公開されているページをテストします。

想定される結果は 200 です。

1.14.2. 自動ルートについて

重要

Istio OpenShift Routing (IOR) は非推奨の機能です。非推奨の機能は依然として Red Hat
OpenShift Service on AWS に含まれており、引き続きサポートされますが、この製品の
今後のリリースで削除されるため、新規デプロイメントでの使用は推奨されません。

Red Hat OpenShift Service on AWS で非推奨化または削除された主な機能の最新のリス
トについては、Red Hat OpenShift Service on AWS リリースノートの 非推奨および削除
された機能 セクションを参照してください。

ゲートウェイの OpenShift ルートは Service Mesh で自動的に管理されます。Istio ゲートウェイが
Service Mesh 内で作成され、更新され、削除されるたびに、OpenShift ルートが作成され、更新され、
削除されます。

注記

Service Mesh 2.5 以降、ServiceMeshControlPlane リソースの新しいインスタンスでは
自動ルートがデフォルトで無効になっています。

1.14.2.1. サブドメインのあるルート

Red Hat OpenShift Service Mesh はサブドメインを使用してルートを作成しますが、Red Hat
OpenShift Service on AWS はそのサブドメインが有効になるように設定する必要がありま
す。*.domain.com などのサブドメインはサポートされますが、デフォルトでは設定されません。ワイ
ルドカードホスト Gateway を設定する前に、Red Hat OpenShift Service on AWS ワイルドカードポリ
シーを設定します。

1.14.2.2. サブドメインルートの作成

以下の例では、サブドメインルートを作成する Bookinfo サンプルアプリケーションにゲートウェイを
作成します。

curl -s -I "$GATEWAY_URL/productpage"

apiVersion: networking.istio.io/v1alpha3
kind: Gateway
metadata:
 name: gateway1
spec:
 selector:
 istio: ingressgateway
 servers:
 - port:
 number: 80
 name: http
 protocol: HTTP

第1章 SERVICE MESH 2.X

171

Gateway リソースは、次の OpenShift ルートを作成します。ルートが以下のコマンドを使用して作成
されていることを確認できます。この例では、istio-system が Service Mesh コントロールプレーンプ
ロジェクトの名前となります。

予想される出力

このゲートウェイが削除されると、Red Hat OpenShift Service Mesh はルートを削除します。ただし、
手動で作成したルートは Red Hat OpenShift Service Mesh によって変更されることはありません。

1.14.2.3. ルートラベルとアノテーション

OpenShift ルートでは、特定のラベルまたはアノテーションが必要になる場合があります。

このユースケースおよび他のユースケースでは、Red Hat OpenShift Service Mesh は
(kubectl.kubernetes.io で始まるものを除く) Istio Gateway リソースにあるすべてのラベルとアノテー
ションを管理対象の OpenShift Route リソースにコピーします。

Service Mesh によって作成される OpenShift ルートで特定のラベルまたはアノテーションが必要な場
合は、それらを Istio Gateway リソースで作成すると、Service Mesh で管理される OpenShift ルートリ
ソースにコピーされます。

1.14.2.4. 自動ルート作成の無効化

デフォルトで、ServiceMeshControlPlane リソースは Istio ゲートウェイリソースと OpenShift ルート
を自動的に同期します。自動ルート作成を無効にすると、特殊なケースがある場合やルートを手動で制
御する場合に、ルートをより柔軟に制御できます。

1.14.2.4.1. 特定のケースでの自動ルート作成の無効化

特定の Istio ゲートウェイの OpenShift ルートの自動管理を無効にする場合は、アノテーション
maistra.io/manageRoute: false をゲートウェイのメタデータ定義に追加する必要があります。Red
Hat OpenShift Service Mesh は、他の Istio ゲートウェイの自動管理を維持しつつ、このアノテーショ
ンの付いた Istio ゲートウェイを無視します。

1.14.2.4.2. すべてのケースでの自動ルート作成の無効化

メッシュ内のすべてのゲートウェイの OpenShift ルートの自動管理を無効にできます。

Istio ゲートウェイと OpenShift ルート間の統合を無効にするには、ServiceMeshControlPlane フィー
ルド gateways.openshiftRoute.enabled を false に設定します。たとえば、以下のリソーススニペッ
トを参照してください。

 hosts:
 - www.info.com
 - info.example.com

$ oc -n istio-system get routes

NAME HOST/PORT PATH SERVICES PORT TERMINATION WILDCARD
gateway1-lvlfn info.example.com istio-ingressgateway <all> None
gateway1-scqhv www.info.com istio-ingressgateway <all> None

apiVersion: maistra.io/v1alpha1
kind: ServiceMeshControlPlane

Red Hat OpenShift Service on AWS 4 Service Mesh

172

1.14.3. サービスエントリーについて

サービスエントリーは、Red Hat OpenShift Service Mesh が内部で維持するサービスレジストリーにエ
ントリーを追加します。サービスエントリーの追加後、Envoy プロキシーはメッシュ内のサービスであ
るかのようにトラフィックをサービスに送信できます。サービスエントリーを使用すると、以下が可能
になります。

Service Mesh 外で実行されるサービスのトラフィックを管理します。

Web から消費される API やレガシーインフラストラクチャーのサービスへのトラフィックな
ど、外部宛先のトラフィックをリダイレクトし、転送します。

外部宛先の再試行、タイムアウト、およびフォールトインジェクションポリシーを定義しま
す。

仮想マシンをメッシュに追加して、仮想マシン (VM) でメッシュサービスを実行します。

注記

別のクラスターからメッシュにサービスを追加し、Kubernetes でマルチクラスター Red
Hat OpenShift Service Mesh メッシュを設定します。

サービスエントリーの例

以下の mesh-external サービスエントリーの例では、ext-resource の外部依存関係を Red Hat
OpenShift Service Mesh サービスレジストリーに追加します。

hosts フィールドを使用して外部リソースを指定します。これを完全に修飾することも、ワイルドカー
ドの接頭辞が付けられたドメイン名を使用することもできます。

仮想サービスおよび宛先ルールを設定して、メッシュ内の他のサービスのトラフィックを設定するのと
同じように、サービスエントリーへのトラフィックを制御できます。たとえば、以下の宛先ルールで
は、トラフィックルートを、サービスエントリーを使用して設定される ext-svc.example.com 外部
サービスへの接続のセキュリティーを保護するために相互 TLS を使用するように設定します。

metadata:
 namespace: istio-system
spec:
 gateways:
 openshiftRoute:
 enabled: false

apiVersion: networking.istio.io/v1alpha3
kind: ServiceEntry
metadata:
 name: svc-entry
spec:
 hosts:
 - ext-svc.example.com
 ports:
 - number: 443
 name: https
 protocol: HTTPS
 location: MESH_EXTERNAL
 resolution: DNS

第1章 SERVICE MESH 2.X

173

1.14.4. VirtualServices の使用

仮想サービスを使用して、Red Hat OpenShift Service Mesh で複数バージョンのマイクロサービスに要
求を動的にルーティングできます。仮想サービスを使用すると、以下が可能になります。

単一の仮想サービスで複数のアプリケーションサービスに対応する。メッシュが Kubernetes を
使用する場合などに、仮想サービスを特定の namespace のすべてのサービスを処理するように
設定できます。仮想サービスを使用すると、モノリシックなアプリケーションをシームレス
に、個別のマイクロサービスで構成されるサービスに変換できます。

ingress および egress トラフィックを制御できるようにゲートウェイと組み合わせてトラ
フィックルールを設定する。

1.14.4.1. VirtualServices の設定

要求は、仮想サービスを使用して Service Mesh 内のサービスにルーティングされます。それぞれの仮
想サービスは、順番に評価される一連のルーティングルールで構成されます。Red Hat OpenShift
Service Mesh は、仮想サービスへのそれぞれの指定された要求をメッシュ内の特定の実際の宛先に一致
させます。

仮想サービスがない場合、Red Hat OpenShift Service Mesh はすべてのサービスインスタンス間で最小
要求負荷分散を使用してトラフィックを分散します。仮想サービスを使用すると、1 つ以上のホスト名
のトラフィック動作を指定できます。仮想サービスのルーティングルールでは、仮想サービスのトラ
フィックを適切な宛先に送信する方法を Red Hat OpenShift Service Mesh に指示します。ルートの宛先
は、同じサービスのバージョンまたは全く異なるサービスにできます。

手順

1. アプリケーションに接続するユーザーに基づき、異なるバージョンの Bookinfo アプリケーショ
ンサービスのサンプルに、要求をルーティングする以下の例を使用して、YAML ファイルを作
成します。

VirtualService.yaml の例

apiVersion: networking.istio.io/v1alpha3
kind: DestinationRule
metadata:
 name: ext-res-dr
spec:
 host: ext-svc.example.com
 trafficPolicy:
 tls:
 mode: MUTUAL
 clientCertificate: /etc/certs/myclientcert.pem
 privateKey: /etc/certs/client_private_key.pem
 caCertificates: /etc/certs/rootcacerts.pem

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
 name: reviews
spec:
 hosts:
 - reviews
 http:

Red Hat OpenShift Service on AWS 4 Service Mesh

174

2. 以下のコマンドを実行して VirtualService.yaml を適用します。VirtualService.yaml はファイ
ルへのパスです。

1.14.4.2. VirtualService 設定リファレンス

パラメーター 説明

spec:
 hosts:

hosts フィールドには、ルーティングルールが適用
される仮想サービスのユーザーの宛先アドレスが一
覧表示されます。これは、サービスへの要求送信に
使用するアドレスです。仮想サービスのホスト名
は、IP アドレス、DNS 名または完全修飾ドメイン名
に解決される短縮名になります。

spec:
 http:
 - match:

http セクションには、ホストフィールドで指定され
た宛先に送信される HTTP/1.1、HTTP2、および
gRPC トラフィックのルーティングの一致条件とア
クションを記述する仮想サービスのルーティング
ルールが含まれます。ルーティングルールは、トラ
フィックの宛先と、指定の一致条件で構成されま
す。この例の最初のルーティングルールには条件が
あり、match フィールドで始まります。この例で
は、このルーティングはユーザー jason からの要求
すべてに適用されます。headers、end-user、お
よび exact フィールドを追加し、適切な要求を選択
します。

spec:
 http:
 - match:
 - destination:

route セクションの destination フィールドは、こ
の条件に一致するトラフィックの実際の宛先を指定
します。仮想サービスのホストとは異なり、宛先の
ホストは Red Hat OpenShift Service Mesh サービス
レジストリーに存在する実際の宛先でなければなり
ません。これは、プロキシーが含まれるメッシュ
サービス、またはサービスエントリーを使用して追
加されたメッシュ以外のサービスである可能性があ
ります。この例では、ホスト名は Kubernetes サービ
ス名です。

 - match:
 - headers:
 end-user:
 exact: jason
 route:
 - destination:
 host: reviews
 subset: v2
 - route:
 - destination:
 host: reviews
 subset: v3

$ oc apply -f <VirtualService.yaml>

第1章 SERVICE MESH 2.X

175

1.14.5. 宛先ルールについて

宛先ルールは仮想サービスのルーティングルールが評価された後に適用されるため、それらはトラ
フィックの実際の宛先に適用されます。仮想サービスはトラフィックを宛先にルーティングします。宛
先ルールでは、その宛先のトラフィックに生じる内容を設定します。

デフォルトでは、Red Hat OpenShift Service Mesh は最小要求負荷分散ポリシーを使用します。その場
合は、アクティブな接続の数が最も少ないプール内のサービスインスタンスが要求を受け取ります。
Red Hat OpenShift Service Mesh は以下のモデルもサポートします。このモデルは、特定のサービスま
たはサービスサブセットへの要求の宛先ルールに指定できます。

Random: 要求はプール内のインスタンスにランダムに転送されます。

Weighted: 要求は特定のパーセンテージに応じてプールのインスタンスに転送されます。

Least requests: 要求は要求の数が最も少ないインスタンスに転送されます。

宛先ルールの例

以下の宛先ルールの例では、異なる負荷分散ポリシーで my-svc 宛先サービスに 3 つの異なるサブセッ
トを設定します。

1.14.6. ネットワークポリシーについて

Red Hat OpenShift Service Mesh は、Service Mesh コントロールプレーンおよびアプリケーションネー
ムスペースで多数の NetworkPolicies リソースを自動的に作成し、管理します。これは、アプリケー
ションとコントロールプレーンが相互に通信できるようにするために使用されます。

たとえば、Red Hat OpenShift Service on AWS クラスターが SDN プラグインを使用するように設定さ
れている場合、Red Hat OpenShift Service Mesh は各メンバープロジェクトで NetworkPolicy リソー
スを作成します。これにより、他のメッシュメンバーおよびコントロールプレーンからのメッシュ内の
すべての Pod に対する ingress が有効になります。また、これにより Ingress がメンバープロジェクト

apiVersion: networking.istio.io/v1alpha3
kind: DestinationRule
metadata:
 name: my-destination-rule
spec:
 host: my-svc
 trafficPolicy:
 loadBalancer:
 simple: RANDOM
 subsets:
 - name: v1
 labels:
 version: v1
 - name: v2
 labels:
 version: v2
 trafficPolicy:
 loadBalancer:
 simple: ROUND_ROBIN
 - name: v3
 labels:
 version: v3

Red Hat OpenShift Service on AWS 4 Service Mesh

176

のみに制限されます。メンバー以外のプロジェクトの Ingress が必要な場合は、NetworkPolicy を作成
してそのトラフィックを許可する必要があります。Service Mesh から namespace を削除する場合、こ
の NetworkPolicy リソースはプロジェクトから削除されます。

1.14.6.1. NetworkPolicy 自動作成の無効化

NetworkPolicy リソースの自動作成および管理を無効にする場合 (例: 会社のセキュリティーポリシーを
適用したり、メッシュ内の Pod への直接アクセスを許可する場合など) はこれを実行できま
す。ServiceMeshControlPlane を編集し、spec.security.manageNetworkPolicy を false に設定でき
ます。

注記

spec.security.manageNetworkPolicy を無効にすると、Red Hat OpenShift Service
Mesh は、NetworkPolicy オブジェクトをひとつも作成しません。システム管理者は、
ネットワークを管理し、この原因の問題を修正します。

前提条件

Red Hat OpenShift Service Mesh Operator バージョン 2.1.1 以降がインストールされている。

ServiceMeshControlPlane リソースはバージョン 2.1 以降に更新されている。

手順

1. Red Hat OpenShift Service on AWS Web コンソールで、Operators → Installed Operators を
クリックします。

2. Project メニューから、Service Mesh コントロールプレーンをインストールしたプロジェクト
(例: istio-system) を選択します。

3. Red Hat OpenShift Service Mesh Operator をクリックします。Istio Service Mesh Control
Plane 列で、ServiceMeshControlPlane の名前 (basic-install など) をクリックします。

4. Create ServiceMeshControlPlane Details ページで、YAML をクリックして設定を変更しま
す。

5. 以下の例のように、ServiceMeshControlPlane フィールド
spec.security.manageNetworkPolicy を false に設定します。

6. Save をクリックします。

1.14.7. トラフィック管理のサイドカーの設定

デフォルトでは、Red Hat OpenShift Service Mesh は、関連するワークロードのすべてのポートでトラ
フィックを受け入れ、トラフィックの転送時にメッシュ内のすべてのワークロードに到達するように、
すべての Envoy プロキシーを設定します。サイドカー設定を使用して以下を実行できます。

Envoy プロキシーが受け入れるポートとプロトコルのセットを微調整します。

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
spec:
 security:
 manageNetworkPolicy: false

第1章 SERVICE MESH 2.X

177

Envoy プロキシーが到達できるサービスのセットを制限します。

注記

Service Mesh のパフォーマンスを最適化するには、Envoy プロキシー設定の制限を検討
してください。

Bookinfo サンプルアプリケーションで、同じ namespace およびコントロールプレーンで実行されてい
る他のサービスに度のサービスからでもアクセスできるように Sidecar を設定します。この Sidecar 設
定は、Red Hat OpenShift Service Mesh ポリシーおよび Telemetry 機能での使用に必要になります。

手順

1. 以下の例を使用して YAML ファイルを作成し、サイドカー設定を特定の namespace の全ワー
クロードに適用するように指定します。それ以外の場合は、workloadSelector を使用して特定
のワークロードを選択します。

sidecar.yaml の例

2. 以下のコマンドを実行して sidecar.yaml を適用します。ここでは、sidecar.yaml はファイル
へのパスです。

3. サイドカーが正常に作成されたことを確認するには、以下のコマンドを実行します。

1.14.8. ルーティングチュートリアル

このガイドでは Bookinfo サンプルアプリケーションを参照して、サンプルアプリケーションでのルー
ティングの例を説明します。Bookinfo アプリケーション をインストールして、これらのルーティング
のサンプルがどのように機能するかを確認します。

1.14.8.1. Bookinfo ルーティングチュートリアル

Service Mesh Bookinfo サンプルアプリケーションは、それぞれが複数のバージョンを持つ 4 つの別個
のマイクロサービスで構成されます。Bookinfo サンプルアプリケーションをインストールした後
に、reviews マイクロサービスの 3 つの異なるバージョンが同時に実行されます。

ブラウザーで Bookinfo アプリケーションの /product ページにアクセスして数回更新すると、書評の出
力に星評価が含まれる場合と含まれない場合があります。ルーティング先の明示的なデフォルトサービ

apiVersion: networking.istio.io/v1alpha3
kind: Sidecar
metadata:
 name: default
 namespace: info
spec:
 egress:
 - hosts:
 - "./*"
 - "istio-system/*"

$ oc apply -f sidecar.yaml

$ oc get sidecar

Red Hat OpenShift Service on AWS 4 Service Mesh

178

スバージョンがない場合、Service Mesh は、利用可能なすべてのバージョンに要求をルーティングして
いきます。

このチュートリアルは、すべてのトラフィックをマイクロサービスの v1 (バージョン 1) にルーティング
するルールを適用するのに役立ちます。後に、HTTP リクエストヘッダーの値に基づいてトラフィック
をルーティングするためのルールを適用できます。

前提条件

以下の例に合わせて Bookinfo サンプルアプリケーションをデプロイする。

1.14.8.2. 仮想サービスの適用

以下の手順では、マイクロサービスのデフォルトバージョンを設定する仮想サービスを適用して、各マ
イクロサービスの v1 にすべてのトラフィックをルーティングします。

手順

1. 仮想サービスを適用します。

2. 仮想サービスの適用を確認するには、以下のコマンドで定義されたルートを表示します。

このコマンドでは、YAML 形式で kind: VirtualService のリソースを返します。

Service Mesh を Bookinfo マイクロサービスの v1 バージョン (例: reviews サービスバージョン 1) に
ルーティングするように設定しています。

1.14.8.3. 新規ルート設定のテスト

Bookinfo アプリケーションの /productpage を更新して、新しい設定をテストします。

手順

1. GATEWAY_URL パラメーターの値を設定します。この変数を使用して、Bookinfo 製品ページ
の URL を後で見つけることができます。この例では、istio-system はコントロールプレーンプ
ロジェクトの名前です。

2. 以下のコマンドを実行して、製品ページの URL を取得します。

3. ブラウザーで Bookinfo サイトを開きます。

更新回数に関係なく、ページのレビュー部分は星評価なしに表示されます。これは、Service Mesh を、
reviews サービスのすべてのトラフィックをバージョン reviews:v1 にルーティングするように設定して
いるためであり、サービスのこのバージョンは星評価サービスにアクセスしません。

$ oc apply -f https://raw.githubusercontent.com/Maistra/istio/maistra-
2.6/samples/info/networking/virtual-service-all-v1.yaml

$ oc get virtualservices -o yaml

export GATEWAY_URL=$(oc -n istio-system get route istio-ingressgateway -o
jsonpath='{.spec.host}')

echo "http://$GATEWAY_URL/productpage"

第1章 SERVICE MESH 2.X

179

Service Mesh は、トラフィックを 1 つのバージョンのサービスにルーティングするようになりました。

1.14.8.4. ユーザーアイデンティティーに基づくルート

ルート設定を変更して、特定のユーザーからのトラフィックすべてが特定のサービスバージョンにルー
ティングされるようにします。この場合、jason という名前のユーザーからのトラフィックはすべて、
サービス reviews:v2 にルーティングされます。

Service Mesh には、ユーザーアイデンティティーに関する特別な組み込み情報はありません。この例
は、productpage サービスが reviews サービスへのすべてのアウトバウンド HTTP リクエストにカスタ
ム end-user ヘッダーを追加することで有効になります。

手順

1. 以下のコマンドを実行して、Bookinfo アプリケーション例でユーザーベースのルーティングを
有効にします。

2. 以下のコマンドを実行して、ルールの作成を確認します。このコマンドは、kind:
VirtualService のすべてのリソースを YAML 形式で返します。

3. Bookinfo アプリケーションの /productpage で、パスワードなしでユーザー jason としてログ
インします。

4. ブラウザーを更新します。各レビューの横に星評価が表示されます。

5. 別のユーザーとしてログインします (任意の名前を指定します)。ブラウザーを更新します。こ
れで星がなくなりました。Jason 以外のすべてのユーザーのトラフィックが reviews:v1 にルー
ティングされるようになりました。

ユーザーアイデンティティーに基づいてトラフィックをルーティングするように Bookinfo のアプリ
ケーションサンプルが正常に設定されています。

1.15. メトリクス、ログ、およびトレース

アプリケーションをメッシュに追加したら、アプリケーション経由でデータフローを確認できます。独
自のアプリケーションがインストールされていない場合は、Bookinfo サンプルアプリケーション をイ
ンストールして、Red Hat OpenShift Service Mesh で可観測性がどのように機能するかを確認できま
す。

1.15.1. コンソールアドレスの検出

Red Hat OpenShift Service Mesh は、Service Mesh データを表示する以下のコンソールを提供します。

Kiali コンソール: Kiali は Red Hat OpenShift Service Mesh の管理コンソールです。

Jaeger コンソール - Jaeger は、Red Hat OpenShift 分散トレーシング Platform の管理コン
ソールです。

Grafana コンソール: Grafana は、Istio データの高度なクエリーとメトリクス分析およびダッ

$ oc apply -f https://raw.githubusercontent.com/Maistra/istio/maistra-
2.6/samples/info/networking/virtual-service-reviews-test-v2.yaml

$ oc get virtualservice reviews -o yaml

Red Hat OpenShift Service on AWS 4 Service Mesh

180

Grafana コンソール: Grafana は、Istio データの高度なクエリーとメトリクス分析およびダッ
シュボードをメッシュ管理者に提供します。任意で、Grafana を使用して Service Mesh メトリ
クスを分析できます。

Prometheus コンソール: Red Hat OpenShift Service Mesh は Prometheus を使用してサービス
からのテレメトリー情報を保存します。

Service Mesh コントロールプレーンのインストール時に、インストールされた各コンポーネントのルー
トを自動的に生成します。ルートアドレスを作成したら、Kiali、Jaeger、Prometheus、または
Grafana コンソールにアクセスして、Service Mesh データを表示および管理できます。

前提条件

コンポーネントが有効で、インストールされていること。たとえば、分散トレースをインス
トールしていない場合、Jaeger コンソールにはアクセスできません。

OpenShift コンソールからの手順

1. cluster-admin 権限を持つユーザーとして Red Hat OpenShift Service on AWS Web コンソール
にログインします。(Red Hat OpenShift Dedicated を使用する場合) dedicated-admin ロール
があるアカウント。

2. Networking → Routes に移動します。

3. Routes ページで、Namespace メニューから Service Mesh コントロールプレーンプロジェク
トを選択します (例: istio-system)。
Location 列には、各ルートのリンク先アドレスが表示されます。

4. 必要な場合は、フィルターを使用して、アクセスするルートを持つコンポーネントコンソール
を検索します。ルートの Location をクリックしてコンソールを起動します。

5. Log In With OpenShift をクリックします。

CLI からの手順

1. cluster-admin ロールを持つユーザーとして Red Hat OpenShift Service on AWS CLI にログイ
ンします。(Red Hat OpenShift Dedicated を使用する場合) dedicated-admin ロールがあるア
カウント。

2. Service Mesh コントロールプレーンプロジェクトに切り替えます。この例では、istio-system
は Service Mesh コントロールプレーンプロジェクトです。以下のコマンドを実行します。

3. 各種 Red Hat OpenShift Service Mesh コンソールのルートを取得するには、以下のコマンドを
実行します。

このコマンドは、Kiali、Jaeger、Prometheus、および Grafana Web コンソールの URL と、
Service Mesh 内の他のルートの URL を返します。以下のような出力が表示されるはずです。

$ oc login --username=<NAMEOFUSER> https://<HOSTNAME>:6443

$ oc project istio-system

$ oc get routes

NAME HOST/PORT SERVICES PORT TERMINATION

第1章 SERVICE MESH 2.X

181

4. HOST/PORT コラムからアクセスするコンソールの URL をブラウザーにコピーして、コンソー
ルを開きます。

5. Log In With OpenShift をクリックします。

1.15.2. Kiali コンソールへのアクセス

Kiali コンソールでアプリケーションのトポロジー、健全性、およびメトリクスを表示できます。サービ
スで問題が発生した場合、Kiali コンソールは、サービス経由でデータフローを表示できます。抽象アプ
リケーションからサービスおよびワークロードまで、さまざまなレベルでのメッシュコンポーネントに
関する洞察を得ることができます。Kiali は、リアルタイムで namespace のインタラクティブなグラフ
ビューも提供します。

Kiali コンソールにアクセスするには、Red Hat OpenShift Service Mesh がインストールされ、Kiali がイ
ンストールおよび設定されている必要があります。

インストールプロセスにより、Kiali コンソールにアクセスするためのルートが作成されます。

Kiali コンソールの URL が分かっている場合は、直接アクセスできます。URL が分からない場合は、以
下の指示を使用します。

管理者の手順

1. 管理者ロールで Red Hat OpenShift Service on AWS Web コンソールにログインします。

2. Home → Projects をクリックします。

3. Projects ページで、必要に応じてフィルターを使用してプロジェクトの名前を検索します。

4. プロジェクトの名前 (例: info) をクリックします。

5. Project details ページの Launcher セクションで、Kiali リンクをクリックします。

6. Red Hat OpenShift Service on AWS コンソールにアクセスするときに使用するものと同じユー
ザー名とパスワードを使用して Kiali コンソールにログインします。
初回の Kiali コンソールへのログイン時に、表示するパーミッションを持つ Service Mesh 内の
すべての namespace を表示する Overview ページが表示されます。

コンソールのインストールを検証中で、namespace がまだメッシュに追加されていない
と、istio-system 以外のデータは表示されない可能性があります。

開発者の手順

1. 開発者ロールで Red Hat OpenShift Service on AWS Web コンソールにログインします。

2. Project をクリックします。

3. 必要に応じて、Project Details ページで、フィルターを使用してプロジェクトの名前を検索し

info-gateway bookinfo-gateway-yourcompany.com istio-ingressgateway http2
grafana grafana-yourcompany.com grafana <all>
reencrypt/Redirect
istio-ingressgateway istio-ingress-yourcompany.com istio-ingressgateway 8080
jaeger jaeger-yourcompany.com jaeger-query <all> reencrypt
kiali kiali-yourcompany.com kiali 20001 reencrypt/Redirect
prometheus prometheus-yourcompany.com prometheus <all>
reencrypt/Redirect

Red Hat OpenShift Service on AWS 4 Service Mesh

182

3. 必要に応じて、Project Details ページで、フィルターを使用してプロジェクトの名前を検索し
ます。

4. プロジェクトの名前 (例: info) をクリックします。

5. Project ページの Launcher セクションで、Kiali リンクをクリックします。

6. Log In With OpenShift をクリックします。

1.15.3. Kiali コンソールでの Service Mesh データの表示

Kiali グラフは、メッシュトラフィックの強力な視覚化を提供します。このトポロジーは、リアルタイム
のリクエストトラフィックと Istio 設定情報を組み合わせて、Service Mesh の動作を即座に把握し、問
題を迅速に特定できるようにします。複数のグラフタイプを使用すると、トラフィックを高レベルの
サービストポロジー、低レベルのワークロードトポロジー、またはアプリケーションレベルのトポロ
ジーとして視覚化できます。

以下から選択できるグラフがいくつかあります。

App グラフ は、同じラベルが付けられたすべてのアプリケーションの集約ワークロードを示し
ます。

Service グラフ は、メッシュ内の各サービスのノードを表示しますが、グラフからすべてのア
プリケーションおよびワークロードを除外します。これは高レベルのビューを提供し、定義さ
れたサービスのすべてのトラフィックを集約します。

Versioned App グラフ は、アプリケーションの各バージョンのノードを表示します。アプリ
ケーションの全バージョンがグループ化されます。

Workload グラフ は、Service Mesh の各ワークロードのノードを表示します。このグラフで
は、app および version のラベルを使用する必要はありません。アプリケーションが version ラ
ベルを使用しない場合は、このグラフを使用します。

グラフノードは、さまざまな情報で装飾され、仮想サービスやサービスエントリーなどのさまざまな
ルートルーティングオプションや、フォールトインジェクションやサーキットブレーカーなどの特別な
設定を指定します。mTLS の問題、レイテンシーの問題、エラートラフィックなどを特定できます。グ
ラフは高度な設定が可能で、トラフィックのアニメーションを表示でき、強力な検索機能や非表示機能
があります。

Legend ボタンをクリックして、グラフに表示されるシェイプ、色、矢印、バッジに関する情報を表示
します。

メトリクスの要約を表示するには、グラフ内のノードまたはエッジを選択し、そのメトリクスの詳細を
サマリーの詳細パネルに表示します。

1.15.3.1. Kiali でのグラフレイアウトの変更

Kiali グラフのレイアウトは、アプリケーションのアーキテクチャーや表示データによって異なることが
あります。たとえば、グラフノードの数およびそのインタラクションにより、Kiali グラフのレンダリン
グ方法を判別できます。すべての状況に適した単一のレイアウトを作成することは不可能であるため、
Kiali は複数の異なるレイアウトの選択肢を提供します。

前提条件

独自のアプリケーションがインストールされていない場合は、Bookinfo サンプルアプリケー

第1章 SERVICE MESH 2.X

183

独自のアプリケーションがインストールされていない場合は、Bookinfo サンプルアプリケー
ションをインストールします。次に、以下のコマンドを複数回入力して Bookinfo アプリケー
ションのトラフィックを生成します。

このコマンドはアプリケーションの productpage マイクロサービスにアクセスするユーザーを
シミュレートします。

手順

1. Kiali コンソールを起動します。

2. Log In With OpenShift をクリックします。

3. Kiali コンソールで、Graph をクリックし、namespace グラフを表示します。

4. Namespace メニューから、アプリケーション namespace (例: info) を選択します。

5. 別のグラフレイアウトを選択するには、以下のいずれか、両方を行います。

グラフの上部にあるメニューから、異なるグラフデータグループを選択します。

App graph

Service graph

Versioned App graph (デフォルト)

Workload graph

グラフの下部にある Legend から別のグラフレイアウトを選択します。

Layout default dagre

Layout 1 cose-bilkent

Layout 2 cola

1.15.3.2. Kiali コンソールでのログの表示

Kiali コンソールでワークロードのログを表示できます。Workload Detail ページには Logs タブが含ま
れており、アプリケーションとプロキシーログの両方を表示する統一されたログビューが表示されま
す。Kiali でログ表示を更新する頻度を選択できます。

Kiali に表示されるログのロギングレベルを変更するには、ワークロードまたはプロキシーのロギング設
定を変更します。

前提条件

Service Mesh がインストールされ、設定されている。

Kiali がインストールされ、設定されている。

Kiali コンソールのアドレス。

アプリケーションまたは Bookinfo サンプルアプリケーションがメッシュに追加されました。

$ curl "http://$GATEWAY_URL/productpage"

Red Hat OpenShift Service on AWS 4 Service Mesh

184

手順

1. Kiali コンソールを起動します。

2. Log In With OpenShift をクリックします。
Kiali Overview ページには、閲覧権限を持つメッシュに追加された namespace が表示されま
す。

3. Workloads をクリックします。

4. Workloads ページで、Namespace メニューからプロジェクトを選択します。

5. 必要な場合は、フィルターを使用して、表示するログがあるワークロードを見つけます。ワー
クロードの名前をクリックします。たとえば、ratings-v1 をクリックします。

6. Workload Details ページで、Logs タブをクリックしてワークロードのログを表示します。

ヒント

ログエントリーが表示されない場合は、時間範囲または更新間隔のいずれかの調整が必要になる場合が
あります。

1.15.3.3. Kiali コンソールでのメトリクスの表示

Kiali コンソールで、アプリケーション、ワークロード、サービスのインバウンドおよびアウトバウンド
メトリクスを表示できます。詳細ページには、以下のタブが含まれます。

inbound Application metrics

outbound Application metrics

inbound Workload metrics

outbound Workload metrics

inbound Service metrics

これらのタブには、関連するアプリケーション、ワークロード、またはサービスレベルに合わせて調整
された事前定義済みのメトリクスダッシュボードが表示されます。アプリケーションおよびワークロー
ドの詳細ビューには、ボリューム、期間、サイズ、TCP トラフィックなどの要求および応答メトリクス
が表示されます。サービスの詳細ビューには、インバウンドトラフィックの要求および応答メトリクス
のみ表示されます。

Kiali では、チャート化されたディメンションを選択してチャートをカスタマイズできます。Kiali は、
ソースまたは宛先プロキシーメトリクスによって報告されるメトリクスを表示することもできます。ま
た、トラブルシューティングのために、Kiali はメトリクスでトレースをオーバーレイできます。

前提条件

Service Mesh がインストールされ、設定されている。

Kiali がインストールされ、設定されている。

Kiali コンソールのアドレス。

(オプション): 分散トレースがインストールされ、設定されます。

第1章 SERVICE MESH 2.X

185

手順

1. Kiali コンソールを起動します。

2. Log In With OpenShift をクリックします。
Kiali Overview ページには、閲覧権限を持つメッシュに追加された namespace が表示されま
す。

3. Applications、Workloads、または Services のいずれかをクリックします。

4. Applications、Workloads、または Services ページで、Namespace メニューからプロジェク
トを選択します。

5. 必要な場合は、フィルターを使用して、ログを表示するアプリケーション、ワークロード、ま
たはサービスを検索します。名前をクリックします。

6. Application Detail、Workload Details、または Service Details ページで、Inbound Metrics ま
たは Outbound Metrics タブをクリックしてメトリクスを表示します。

1.15.4. 分散トレース

分散トレースは、アプリケーションのサービス呼び出しのパスを追跡して、アプリケーション内の個々
のサービスのパフォーマンスを追跡するプロセスです。アプリケーションでユーザーがアクションを起
こすたびに、要求が実行され、多くのサービスが応答を生成するために対話が必要になる場合がありま
す。この要求のパスは、分散トランザクションと呼ばれます。

Red Hat OpenShift Service Mesh は、Red Hat OpenShift 分散トレーシング Platform を使用して、開
発者がマイクロサービスアプリケーション内の呼び出しフローを表示できるようにします。

1.15.4.1. Red Hat OpenShift 分散トレーシングプラットフォームと Red Hat build of
OpenTelemetry の設定

ServiceMeshControlPlane の spec.meshConfig.extensionProviders 仕様に名前付き要素と
opentelemetry プロバイダーを追加することで、トレースデータを Red Hat OpenShift 分散トレーシン
グ Platform に公開できます。次に、テレメトリーカスタムリソースは、トレーススパンを収集して
OpenTelemetry Collector エンドポイントに送信するように Istio プロキシーを設定します。

メッシュ namespace に Red Hat build of OpenTelemetry を作成し、トレースデータをトレースプラッ
トフォームバックエンドサービスに送信するように設定できます。

前提条件

tracing-system namespace で Red Hat Tempo Operator を使用して TempoStack インスタン
スを作成しました。詳細は、Red Hat OpenShift 分散トレーシング Platform のインストールを
参照してください。

Red Hat build of OpenTelemetry Operator を、推奨される namespace または openshift-
operators namespace のいずれかにインストールしました。詳細は、「Red Hat build of
OpenTelemetry のインストール」を参照してください。

Red Hat OpenShift Service Mesh 2.5 以前を使用している場合は、ServiceMeshControlPlane
リソースの spec.tracing.type パラメーターを None に設定して、トレースデータを
OpenTelemetry Collector に送信できるようにします。

手順

1. メッシュ namespace に OpenTelemetry Collector インスタンスを作成します。この例で

Red Hat OpenShift Service on AWS 4 Service Mesh

186

1

2

1. メッシュ namespace に OpenTelemetry Collector インスタンスを作成します。この例で
は、info namespace を使用します。

OpenTelemetry Collector の設定例

ServiceMeshMemberRoll メンバーリストに namespace を含めます。

この例では、TempoStack インスタンスが tracing-system namespace で実行していま
す。ServiceMeshMemberRoll メンバーリストに、`tracing-system` などの TempoStack
namespace を含める必要はありません。

注記

ServiceMeshMemberRoll メンバー namespace の 1 つに OpenTelemetry
Collector のインスタンスを 1 つ作成してください。

OpenTelemetryCollector リソースに sidecar.istio.io/inject: 'true' を追加す
ることで、メッシュの一部として otel-collector を追加できます。

2. otel-collector Pod ログを確認し、Pod が実行中であることを確認します。

otel-collector Pod ログチェックの例

3. istio-system namespace で ServiceMeshControlPlane カスタムリソース (CR) を作成または
既存の ServiceMeshControlPlane を更新します。

apiVersion: opentelemetry.io/v1alpha1
kind: OpenTelemetryCollector
metadata:
 name: otel
 namespace: info 1
spec:
 mode: deployment
 config: |
 receivers:
 otlp:
 protocols:
 grpc:
 endpoint: 0.0.0.0:4317
 exporters:
 otlp:
 endpoint: "tempo-sample-distributor.tracing-system.svc.cluster.local:4317" 2
 tls:
 insecure: true
 service:
 pipelines:
 traces:
 receivers: [otlp]
 processors: []
 exporters: [otlp]

$ oc logs -n info -l app.kubernetes.io/name=otel-collector

第1章 SERVICE MESH 2.X

187

SMCP カスタムリソースの例

注記

SMCP 2.5 から 2.6 にアップグレードする場合は、spec.tracing.type パラメー
ターを None に設定します。

SMCP spec.tracing.type パラメーターの例

4. istio-system namespace に Telemetry リソースを作成します。

Telemetry リソースの例

kind: ServiceMeshControlPlane
apiVersion: maistra.io/v2
metadata:
 name: basic
 namespace: istio-system
spec:
 addons:
 grafana:
 enabled: false
 kiali:
 enabled: true
 prometheus:
 enabled: true
 meshConfig:
 extensionProviders:
 - name: otel
 opentelemetry:
 port: 4317
 service: otel-collector.info.svc.cluster.local
 policy:
 type: Istiod
 telemetry:
 type: Istiod
 version: v2.6

spec:
 tracing:
 type: None

apiVersion: telemetry.istio.io/v1alpha1
kind: Telemetry
metadata:
 name: mesh-default
 namespace: istio-system
spec:
 tracing:
 - providers:
 - name: otel
 randomSamplingPercentage: 100

Red Hat OpenShift Service on AWS 4 Service Mesh

188

1

2

5. istiod ログを確認します。

6. Kiali リソース仕様を設定して、Kiali ワークロードトレースダッシュボードを有効にします。
ダッシュボードを使用して、トレースクエリーの結果を表示できます。

Kiali リソースの例

デフォルトの query_timeout 整数値は 30 秒です。値を 30 秒より大きく設定する場合
は、Kiali CR の .spec.server.write_timeout を更新し、Kiali ルートに
haproxy.router.openshift.io/timeout=50s アノテーションを追加する必要がありま
す。.spec.server.write_timeout と haproxy.router.openshift.io/timeout= は両方とも
query_timeout より大きくする必要があります。

デフォルトの HTTP または gRPC ポートを使用していない場合は、in_cluster_url: ポート
をカスタムポートに置き換えます。

注記

Kiali 1.73 は、Jaeger Query API を使用するため、Tempo リソースの制限に応じ
て応答時間が長くなります。Kiali UI に Could not fetch spans のエラーメッ
セージが表示された場合は、Tempo 設定を確認するか、Kiali のクエリーごとの
制限を減らしてください。

7. アプリケーションにリクエストを送信します。

8. istiod Pod ログと otel-collector Pod ログを確認します。

1.15.4.1.1. mTLS で暗号化された Service Mesh メンバー namespace での OpenTelemetryCollector の
設定

Service Mesh dataPlane の mTLS 暗号化を有効にすると、すべてのトラフィックが TLS で暗号化され
ます。

メッシュが OpenTelemetryCollector サービスと通信できるようにするに
は、OpenTelemetryCollector サービスに DestinationRule を適用して TLS trafficPolicy を無効にし
ます。

DestinationRule Tempo CR の例

apiVersion: kiali.io/v1alpha1
kind: Kiali
...
spec:
 external_services:
 tracing:
 query_timeout: 30 1
 enabled: true
 in_cluster_url: 'http://tempo-sample-query-frontend.tracing-
system.svc.cluster.local:16685'
 url: '[Tempo query frontend Route url]'
 use_grpc: true 2

apiVersion: networking.istio.io/v1alpha3

第1章 SERVICE MESH 2.X

189

1.15.4.1.2. mTLS で暗号化されたサービスメッシュメンバー名前空間での Red Hat OpenShift 分散ト
レーシングプラットフォームの設定

注記

Service Mesh メンバー namespace ではない namespace に TempoStack インスタンスを
作成した場合、この追加の DestinationRule 設定は必要ありません。

Service Mesh dataPlane mTLS 暗号化を有効にし、 tracing-system-mtls などの Service Mesh メン
バー namespace に TempoStack インスタンスを作成すると、すべてのトラフィックが TLS で暗号化さ
れます。この暗号化は Tempo 分散サービスでは予期されていないため、TLS エラーが返されます。

TLS エラーを修正するには、Tempo と Kiali に DestinationRule を適用して TLS trafficPolicy を無効
にします。

DestinationRule Tempo の例

DestinationRule Kiali の例

1.15.4.2. 既存の分散トレーシングの Jaeger インスタンスへの接続

Red Hat OpenShift Service on AWS に既存の Red Hat OpenShift 分散トレーシング Platform (Jaeger)

kind: DestinationRule
metadata:
 name: otel-disable-tls
spec:
 host: "otel-collector.info.svc.cluster.local"
 trafficPolicy:
 tls:
 mode: DISABLE

apiVersion: networking.istio.io/v1alpha3
kind: DestinationRule
metadata:
 name: tempo
 namespace: tracing-system-mtls
spec:
 host: "*.tracing-system-mtls.svc.cluster.local"
 trafficPolicy:
 tls:
 mode: DISABLE

apiVersion: networking.istio.io/v1alpha3
kind: DestinationRule
metadata:
 name: kiali
 namespace: istio-system
spec:
 host: kiali.istio-system.svc.cluster.local
 trafficPolicy:
 tls:
 mode: DISABLE

Red Hat OpenShift Service on AWS 4 Service Mesh

190

Red Hat OpenShift Service on AWS に既存の Red Hat OpenShift 分散トレーシング Platform (Jaeger)
インスタンスがある場合は、そのインスタンスを分散トレーシング Platform に使用するように
ServiceMeshControlPlane リソースを設定できます。

重要

Red Hat OpenShift Service Mesh 2.5 以降、Red Hat OpenShift 分散トレーシング
Platform (Jaeger) および OpenShift Elasticsearch Operator は非推奨となり、今後のリ
リースで削除される予定です。Red Hat は、現行リリースのライフサイクル中はこれら
の機能のバグ修正とサポートを提供しますが、今後これらの機能に対する機能強化は行
われません。Red Hat OpenShift 分散トレーシング Platform (Jaeger) の代わりに、Red
Hat OpenShift 分散トレーシング Platform を使用することもできます。

前提条件

Red Hat OpenShift 分散トレーシング Platform インスタンスがインストールおよび設定されて
います。

手順

1. Red Hat OpenShift Service on AWS Web コンソールで、Operators → Installed Operators を
クリックします。

2. Project メニューをクリックし、Service Mesh コントロールプレーンをインストールしたプロ
ジェクト (例: istio-system) を選択します。

3. Red Hat OpenShift Service Mesh Operator をクリックします。Istio Service Mesh Control
Plane 列で、ServiceMeshControlPlane リソースの名前 (basic など) をクリックします。

4. 分散トレーシング Platform (Jaeger) インスタンスの名前を ServiceMeshControlPlane に追加
します。

a. YAML タブをクリックします。

b. ServiceMeshControlPlane リソースの spec.addons.jaeger.name に、分散トレーシング
Platform (Jaeger) インスタンスの名前を追加します。次の例では、distr-tracing-
production は 分散トレーシング Platform (Jaeger) インスタンスの名前です。

分散トレースの設定例

c. Save をクリックします。

5. Reload をクリックして、ServiceMeshControlPlane リソースが正しく設定されていることを
確認します。

1.15.4.3. サンプリングレートの調整

トレースは、Service Mesh 内のサービス間の実行パスです。トレースは 1 つ以上のスパンで構成されま
す。スパンは、名前、開始時間、および期間を持つ作業の論理単位です。サンプリングレートは、ト
レースが永続化される頻度を決定します。

spec:
 addons:
 jaeger:
 name: distr-tracing-production

第1章 SERVICE MESH 2.X

191

Envoy プロキシーのサンプリングレートは、デフォルトで Service Mesh でトレースの 100% をサンプ
リングするように設定されています。サンプリングレートはクラスターリソースおよびパフォーマンス
を消費しますが、問題のデバッグを行う場合に役立ちます。Red Hat OpenShift Service Mesh を実稼働
環境でデプロイする前に、値を小さめのトレースサイズに設定します。たとえ
ば、spec.tracing.sampling を 100 に設定し、トレースの 1% をサンプリングします。

Envoy プロキシーサンプリングレートを、0.01% の増分を表すスケーリングされた整数として設定しま
す。

基本的なインストールでは、spec.tracing.sampling は 10000 に設定され、トレースの 100% をサンプ
リングします。以下に例を示します。

この値を 10 サンプル (トレースの 0.1%) に設定します。

この値を 500 サンプル (トレースの 5%) に設定します。

注記

Envoy プロキシーサンプリングレートは、Service Mesh で利用可能なアプリケーション
に適用され、Envoy プロキシーを使用します。このサンプリングレートは、Envoy プロ
キシーが収集および追跡するデータ量を決定します。

Jaeger リモートサンプリングレートは、Service Mesh の外部にあるアプリケーションに
適用され、データベースなどの Envoy プロキシーを使用しません。このサンプリング
レートは、分散トレースシステムが収集および保存するデータ量を決定します。

手順

1. Red Hat OpenShift Service on AWS Web コンソールで、Operators → Installed Operators を
クリックします。

2. Project メニューをクリックし、コントロールプレーンをインストールしたプロジェクト (例:
istio-system) を選択します。

3. Red Hat OpenShift Service Mesh Operator をクリックします。Istio Service Mesh Control
Plane 列で、ServiceMeshControlPlane リソースの名前 (basic など) をクリックします。

4. サンプリングレートを調整するには、spec.tracing.sampling に別の値を設定します。

a. YAML タブをクリックします。

b. ServiceMeshControlPlane リソースで spec.tracing.sampling の値を設定します。以下の
例では、100 に設定します。

Jaeger サンプリングの例

c. Save をクリックします。

5. Reload をクリックして、ServiceMeshControlPlane リソースが正しく設定されていることを
確認します。

spec:
 tracing:
 sampling: 100

Red Hat OpenShift Service on AWS 4 Service Mesh

192

1.15.5. Jaeger コンソールへのアクセス

Jaeger コンソールにアクセスするには、Red Hat OpenShift Service Mesh がインストールされ、Red
Hat OpenShift 分散トレーシング Platform (Jaeger) がインストールおよび設定されている必要があり
ます。

インストールプロセスにより、Jaeger コンソールにアクセスするためのルートが作成されます。

Jaeger コンソールの URL が分かっている場合は、これに直接アクセスできます。URL が分からない場
合は、以下の指示を使用します。

重要

Red Hat OpenShift Service Mesh 2.5 以降、Red Hat OpenShift 分散トレーシング
Platform (Jaeger) および OpenShift Elasticsearch Operator は非推奨となり、今後のリ
リースで削除される予定です。Red Hat は、現在のリリースのライフサイクル中にこの
機能のバグ修正とサポートを提供しますが、この機能は今後、機能拡張を受け取らず、
削除されます。Red Hat OpenShift 分散トレーシング Platform (Jaeger) の代わりに、
Red Hat OpenShift 分散トレーシング Platform を使用することもできます。

OpenShift コンソールからの手順

1. cluster-admin 権限を持つユーザーとして Red Hat OpenShift Service on AWS Web コンソール
にログインします。(Red Hat OpenShift Dedicated を使用する場合) dedicated-admin ロール
があるアカウント。

2. Networking → Routes に移動します。

3. Routes ページで、Namespace メニューから Service Mesh コントロールプレーンプロジェク
トを選択します (例: istio-system)。
Location 列には、各ルートのリンク先アドレスが表示されます。

4. 必要な場合は、フィルターを使用して jaeger ルートを検索します。ルートの Location をク
リックしてコンソールを起動します。

5. Log In With OpenShift をクリックします。

Kiali コンソールからの手順

1. Kiali コンソールを起動します。

2. 左側のナビゲーションペインで Distributed Tracing をクリックします。

3. Log In With OpenShift をクリックします。

CLI からの手順

1. cluster-admin ロールを持つユーザーとして Red Hat OpenShift Service on AWS CLI にログイ
ンします。(Red Hat OpenShift Dedicated を使用する場合) dedicated-admin ロールがあるア
カウント。

2. コマンドラインを使用してルートの詳細をクエリーするには、以下のコマンドを入力します。
この例では、istio-system が Service Mesh コントロールプレーンの namespace です。

$ oc login --username=<NAMEOFUSER> https://<HOSTNAME>:6443

第1章 SERVICE MESH 2.X

193

3. ブラウザーを起動し、https://<JAEGER_URL> に移動します。ここで、<JAEGER_URL> は直
前の手順で検出されたルートです。

4. Red Hat OpenShift Service on AWS コンソールにアクセスするときに使用するものと同じユー
ザー名とパスワードを使用してログインします。

5. Service Mesh にサービスを追加し、トレースを生成している場合は、フィルターと Find
Traces ボタンを使用してトレースデータを検索します。
コンソールインストールを検証すると、表示するトレースデータはありません。

1.15.6. Grafana コンソールへのアクセス

Grafana は、Service Mesh メトリクスの表示、クエリー、および分析に使用できる解析ツールです。こ
の例では、istio-system が Service Mesh コントロールプレーンの namespace です。Grafana にアクセ
スするには、以下の手順を実施します。

手順

1. Red Hat OpenShift Service on AWS Web コンソールにログインします。

2. Project メニューをクリックし、Service Mesh コントロールプレーンをインストールしたプロ
ジェクト (例: istio-system) を選択します。

3. Routes をクリックします。

4. Grafana 行の Location コラムのリンクをクリックします。

5. Red Hat OpenShift Service on AWS の認証情報を使用して Grafana コンソールにログインしま
す。

1.15.7. Prometheus コンソールへのアクセス

Prometheus は、マイクロサービスに関する多次元データの収集に使用できるモニタリングおよびア
ラートツールです。この例では、istio-system が Service Mesh コントロールプレーンの namespace で
す。

手順

1. Red Hat OpenShift Service on AWS Web コンソールにログインします。

2. Project メニューをクリックし、Service Mesh コントロールプレーンをインストールしたプロ
ジェクト (例: istio-system) を選択します。

3. Routes をクリックします。

4. Prometheus 行の Location コラムのリンクをクリックします。

5. Red Hat OpenShift Service on AWS の認証情報を使用して Prometheus コンソールにログイン
します。

1.15.8. ユーザーのワークロード監視との統合

デフォルトでは、Red Hat OpenShift Service Mesh (OSSM) は、メッシュからメトリクスを収集するた

$ oc get route -n istio-system jaeger -o jsonpath='{.spec.host}'

Red Hat OpenShift Service on AWS 4 Service Mesh

194

めの Prometheus の専用インスタンスを含む Service Mesh コントロールプレーン (SMCP) をインス
トールします。ただし、運用システムには、ユーザー定義プロジェクトの Red Hat OpenShift Service
on AWS 監視など、より高度な監視システムが必要です。

次の手順では、Service Mesh をユーザーワークロードの監視と統合する方法を示します。

前提条件

ユーザーのワークロードの監視が有効になっている。

Red Hat OpenShift Service Mesh Operator 2.4 がインストールされている。

Kiali Operator 1.65 がインストールされている。

手順

1. cluster-monitoring-view ロールを Kiali サービスアカウントに付与します。

2. ユーザーワークロードを監視するために Kiali を設定します。

Istio Operator 2.4 を使用する場合は、次の設定を使用して Kiali をユーザーワークロードモ
ニタリング用に設定します。

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 name: kiali-monitoring-rbac
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: cluster-monitoring-view
subjects:
- kind: ServiceAccount
 name: kiali-service-account
 namespace: istio-system

apiVersion: kiali.io/v1alpha1
kind: Kiali
metadata:
 name: kiali
 namespace: istio-system
spec:
 auth:
 strategy: openshift
 deployment:
 accessible_namespaces: #restricted setting for ROSA
 - istio-system
 image_pull_policy: ''
 ingress_enabled: true
 namespace: istio-system

apiVersion: kiali.io/v1alpha1
kind: Kiali
metadata:
 name: kiali-user-workload-monitoring

第1章 SERVICE MESH 2.X

195

注記

Red Hat OpenShift Service on AWS では、リソースを作成できる場所に関し
て追加の制限が適用され、Red Hat 管理の namespace に Kiali リソースを作
成することはできません。

つまり、spec.deployment.accessible_namespaces の以下の共通設定は
OpenShift Dedicated クラスターでは許可されません。

['**'] (すべての namespaces)

default

codeready-*

openshift-*

redhat-*

検証エラーメッセージでは、制限されたすべての namespace の完全なリス
トが提供されます。

3. 外部 Prometheus 用に SMCP を設定します。

 namespace: istio-system
spec:
 external_services:
 istio:
 config_map_name: istio-<smcp-name>
 istio_sidecar_injector_config_map_name: istio-sidecar-injector-<smcp-name>
 istiod_deployment_name: istiod-<smcp-name>
 url_service_version: 'http://istiod-<smcp-name>.istio-system:15014/version'
 prometheus:
 auth:
 token: secret:thanos-querier-web-token:token
 type: bearer
 use_kiali_token: false
 query_scope:
 mesh_id: "basic-istio-system"
 thanos_proxy:
 enabled: true
 url: https://thanos-querier.openshift-monitoring.svc.cluster.local:9091
 version: v1.65

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
metadata:
 name: basic
 namespace: istio-system
spec:
 addons:
 prometheus:
 enabled: false 1
 grafana:
 enabled: false 2

Red Hat OpenShift Service on AWS 4 Service Mesh

196

1

2

1

1

2

OSSM によって提供されるデフォルトの Prometheus インスタンスを無効にします。

Grafana を無効にします。外部 Prometheus インスタンスではサポートされていません。

4. カスタムネットワークポリシーを適用して、モニタリング namespace からの受信トラフィック
を許可します。

カスタムネットワークポリシーはすべての namespace に適用する必要があります。

5. Telemetry オブジェクトを適用して、Istio プロキシーのトラフィックメトリクスを有効にしま
す。

コントロールプレーンの namespace で作成された Telemetry オブジェクトは、メッシュ
内のすべてのワークロードに適用されます。Telemetry を 1 つの namespace のみに適用す
るには、ターゲット namespace にオブジェクトを作成します。

オプション: selector.matchLabels 仕様を設定すると、ターゲット namespace 内の特定
のワークロードに Telemetry オブジェクトが適用されます。

 kiali:
 name: kiali-user-workload-monitoring
 meshConfig:
 extensionProviders:
 - name: prometheus
 prometheus: {}

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: user-workload-access
 namespace: istio-system 1
spec:
 ingress:
 - from:
 - namespaceSelector:
 matchLabels:
 network.openshift.io/policy-group: monitoring
 podSelector: {}
 policyTypes:
 - Ingress

apiVersion: telemetry.istio.io/v1alpha1
kind: Telemetry
metadata:
 name: enable-prometheus-metrics
 namespace: istio-system 1
spec:
 selector: 2
 matchLabels:
 app: info
 metrics:
 - providers:
 - name: prometheus

第1章 SERVICE MESH 2.X

197

1

2

6. ServiceMonitor オブジェクトを適用して Istio コントロールプレーンを監視します。

この ServiceMonitor オブジェクトは Istiod サービスを監視するため、Istio コントロール
プレーン namespace に作成します。この例では、namespace は istio-system です。

文字列 "basic-istio-system" は、SMCP 名とその namespace の組み合わせですが、クラ
スター内のユーザーワークロード監視を使用するメッシュごとに一意である限り、任意の
ラベルを使用できます。ステップ 2 で設定した Kiali リソースの
spec.prometheus.query_scope は、この値と一致する必要があります。

注記

ユーザーワークロードモニタリングを使用するメッシュが 1 つだけの場合、Kiali
リソースの Mesh_id の再ラベル付けと spec.prometheus.query_scope フィー
ルドは両方ともオプションです (ただし、mesh_id ラベルが削除される場合は、
ここで指定される query_scope フィールドも削除される必要があります)。

クラスター上の複数のメッシュインスタンスがユーザーワークロードのモニタリ
ングを使用する可能性がある場合は、Kiali リソースの mesh_id の再ラベル付け
と spec.prometheus.query_scope フィールドの両方が必要です。これによ
り、Kiali は関連付けられたメッシュからのメトリクスのみ参照します。

Kiali をデプロイしていない場合でも、別のメッシュのメトリクスを区別できるよ
うに mesh_id の再ラベル付けを適用できます。

7. PodMonitor オブジェクトを適用して、Istio プロキシーからメトリクスを収集します。

apiVersion: monitoring.coreos.com/v1
kind: ServiceMonitor
metadata:
 name: istiod-monitor
 namespace: istio-system 1
spec:
 targetLabels:
 - app
 selector:
 matchLabels:
 istio: pilot
 endpoints:
 - port: http-monitoring
 interval: 30s
 relabelings:
 - action: replace
 replacement: "basic-istio-system" 2
 targetLabel: mesh_id

apiVersion: monitoring.coreos.com/v1
kind: PodMonitor
metadata:
 name: istio-proxies-monitor
 namespace: istio-system 1
spec:
 selector:
 matchExpressions:

Red Hat OpenShift Service on AWS 4 Service Mesh

198

1

2

Red Hat OpenShift Service on AWS モニタリングは ServiceMonitor オブジェクトと
PodMonitor オブジェクトの namespaceSelector 仕様を無視するため、コントロールプ
レーンの namespace を含むすべてのメッシュ namespace に PodMonitor オブジェクトを
適用する必要があります。

文字列 "basic-istio-system" は、SMCP 名とその namespace の組み合わせですが、クラ
スター内のユーザーワークロード監視を使用するメッシュごとに一意である限り、任意の
ラベルを使用できます。ステップ 2 で設定した Kiali リソースの
spec.prometheus.query_scope は、この値と一致する必要があります。

注記

 - key: istio-prometheus-ignore
 operator: DoesNotExist
 podMetricsEndpoints:
 - path: /stats/prometheus
 interval: 30s
 relabelings:
 - action: keep
 sourceLabels: [__meta_kubernetes_pod_container_name]
 regex: "istio-proxy"
 - action: keep
 sourceLabels: [__meta_kubernetes_pod_annotationpresent_prometheus_io_scrape]
 - action: replace
 regex: (\d+);(([A-Fa-f0-9]{1,4}::?){1,7}[A-Fa-f0-9]{1,4})
 replacement: '[$2]:$1'
 sourceLabels: [__meta_kubernetes_pod_annotation_prometheus_io_port,
 __meta_kubernetes_pod_ip]
 targetLabel: __address__
 - action: replace
 regex: (\d+);((([0-9]+?)(\.|$)){4})
 replacement: $2:$1
 sourceLabels: [__meta_kubernetes_pod_annotation_prometheus_io_port,
 __meta_kubernetes_pod_ip]
 targetLabel: __address__
 - action: labeldrop
 regex: "__meta_kubernetes_pod_label_(.+)"
 - sourceLabels: [__meta_kubernetes_namespace]
 action: replace
 targetLabel: namespace
 - sourceLabels: [__meta_kubernetes_pod_name]
 action: replace
 targetLabel: pod_name
 - action: replace
 replacement: "basic-istio-system" 2
 targetLabel: mesh_id

第1章 SERVICE MESH 2.X

199

注記

ユーザーワークロードモニタリングを使用するメッシュが 1 つだけの場合、Kiali
リソースの Mesh_id の再ラベル付けと spec.prometheus.query_scope フィー
ルドは両方ともオプションです (ただし、mesh_id ラベルが削除される場合は、
ここで指定される query_scope フィールドも削除される必要があります)。

クラスター上の複数のメッシュインスタンスがユーザーワークロードのモニタリ
ングを使用する可能性がある場合は、Kiali リソースの mesh_id の再ラベル付け
と spec.prometheus.query_scope フィールドの両方が必要です。これによ
り、Kiali は関連付けられたメッシュからのメトリクスのみ参照します。

Kiali をデプロイしていない場合でも、別のメッシュのメトリクスを区別できるよ
うに mesh_id の再ラベル付けを適用できます。

8. Red Hat OpenShift Service on AWS Web コンソールを開き、メトリックが表示されていること
を確認します。

1.16. パフォーマンスおよびスケーラビリティー

デフォルトの ServiceMeshControlPlane 設定は実稼働環境での使用を目的としていません。それらは
リソース面で制限のあるデフォルトの Red Hat OpenShift Service on AWS インストールに正常にイン
ストールされるように設計されています。SMCP インストールに成功したことを確認したら、SMCP 内
で定義した設定をお使いの環境に合わせて変更する必要があります。

1.16.1. コンピュートリソースでの制限の設定

デフォルトでは、spec.proxy には cpu:10m および memory:128M の設定があります。Pilot を使用し
ている場合、spec.runtime.components.pilot には同じデフォルト値があります。

以下の例の設定は、1 秒あたり 1,000 サービスおよび 1,000 要求をベースとしていま
す。ServiceMeshControlPlane で cpu および memory の値を変更できます。

手順

1. Red Hat OpenShift Service on AWS Web コンソールで、Operators → Installed Operators を
クリックします。

2. Project メニューをクリックし、Service Mesh コントロールプレーンをインストールしたプロ
ジェクト (例: istio-system) を選択します。

3. Red Hat OpenShift Service Mesh Operator をクリックします。Istio Service Mesh Control
Plane 列で、ServiceMeshControlPlane の名前 (basic など) をクリックします。

4. スタンドアロンの Jaeger インスタンスの名前を ServiceMeshControlPlane に追加します。

a. YAML タブをクリックします。

b. ServiceMeshControlPlane リソースの
spec.proxy.runtime.container.resources.requests.cpu、spec.proxy.runtime.container.
resources.requests.memory、components.kiali.container、および
components.global.oauthproxy の値を設定します。

サンプルバージョン 2.6 ServiceMeshControlPlane

Red Hat OpenShift Service on AWS 4 Service Mesh

200

c. Red Hat OpenShift 分散トレーシング Platform (Jaeger) の値を設定するには、分散トレー
シングプラットフォーム Jaeger の設定とデプロイを参照してください。

d. Save をクリックします。

検証

Reload をクリックして、ServiceMeshControlPlane リソースが正しく設定されたことを確認
します。

1.16.2. テスト結果の読み込み

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
metadata:
 name: basic
 namespace: istio-system
spec:
 version: v2.6
 proxy:
 runtime:
 container:
 resources:
 requests:
 cpu: 600m
 memory: 50Mi
 limits: {}
 runtime:
 components:
 pilot:
 container:
 resources:
 requests:
 cpu: 1000m
 memory: 1.6Gi
 limits: {}
 kiali:
 container:
 resources:
 limits:
 cpu: "90m"
 memory: "245Mi"
 requests:
 cpu: "30m"
 memory: "108Mi"
 global.oauthproxy:
 container:
 resources:
 requests:
 cpu: "101m"
 memory: "256Mi"
 limits:
 cpu: "201m"
 memory: "512Mi"

第1章 SERVICE MESH 2.X

201

関連情報

アップストリームの Istio コミュニティーの負荷テストのメッシュは、1 秒あたり 70,000 のメッシュ全
体の要求を持つ 1000 サービスと 2000 サイドカーで構成されます。Istio 1.12.3 を使用してテストを実
行後、以下の結果が生成されました。

Envoy プロキシーは、プロキシーを通過する 1 秒あたり/要求 1000 件あたり 0.35 vCPU および
40 MB メモリー を使用します。

Istiod は 1 vCPU および 1.5 GB のメモリーを使用します。

Envoy プロキシーは 2.65 ms を 90 % レイテンシーに追加します。

従来の istio-telemetry サービス (Service Mesh 2.0 ではデフォルトで無効になっています) は、
Mixer を使用するデプロイメントの場合は、1 秒あたり 1000 メッシュ全体のリクエストごとに
0.6 vCPU を使用します。データプレーンのコンポーネントである Envoy プロキシーは、シス
テムを通過するデータフローを処理します。Service Mesh コントロールプレーンコンポーネン
トである Istiod は、データプレーンを設定します。データプレーンおよびコントロールプレー
ンには、さまざまなパフォーマンスに関する懸念点があります。

1.16.2.1. Service Mesh コントロールプレーンのパフォーマンス

Istiod は、ユーザーが作成する設定ファイルおよびシステムの現在の状態に基づいてサイドカープロキ
シーを設定します。Kubernetes 環境では、カスタムリソース定義 (CRD) およびデプロイメントはシス
テムの設定および状態を構成します。ゲートウェイや仮想サービスなどの Istio 設定オブジェクトは、
ユーザーが作成する設定を提供します。プロキシーの設定を生成するために、Istiod は Kubernetes 環
境およびユーザー作成の設定から、組み合わせた設定およびシステムの状態を処理します。

Service Mesh コントロールプレーンは、数千のサービスをサポートし、これらは同様の数のユーザーが
作成する仮想サービスおよびその他の設定オブジェクトと共に数千の Pod 全体に分散されます。Istiod
の CPU およびメモリー要件は、設定数および使用可能なシステムの状態と共にスケーリングされま
す。CPU の消費は、以下の要素でスケーリングします。

デプロイメントの変更レート。

設定の変更レート。

Istiod へのプロキシー数。

ただし、この部分は水平的にスケーリングが可能です。

1.16.2.2. データプレーンのパフォーマンス

データプレーンのパフォーマンスは、以下を含む数多くの要因によって変わります。

クライアント接続の数

ターゲットの要求レート

要求サイズおよび応答サイズ

プロキシーワーカーのスレッド数

プロトコル

CPU コア数

Red Hat OpenShift Service on AWS 4 Service Mesh

202

プロキシーフィルターの数およびタイプ (とくに Telemetry v2 関連のフィルター)。

レイテンシー、スループット、およびプロキシーの CPU およびメモリーの消費は、これらの要素の関
数として測定されます。

1.16.2.2.1. CPU およびメモリーの消費

Sidecar プロキシーはデータパスで追加の作業を実行するため、CPU およびメモリーを消費します。
Istio 1.12.3 の時点で、プロキシーは 1 秒あたり 1000 要求ベースで 0.5 vCPU を消費します。

プロキシーのメモリー消費は、プロキシーが保持する設定の状態の合計数によって異なります。多数の
リスナー、クラスター、およびルートは、メモリーの使用量を増やす可能性があります。

通常、プロキシーは通過するデータをバッファーに入れないため、要求レートはメモリー消費には影響
を及ぼしません。

1.16.2.2.2. その他のレイテンシー

Istio はデータパスにサイドカープロキシーを挿入するため、レイテンシーは重要な考慮事項になりま
す。Istio は認証フィルター、Telemetry フィルター、およびメタデータ交換フィルターをプロキシーに
追加します。すべての追加フィルターはプロキシー内のパスの長さに追加され、これはレイテンシーに
影響を及ぼします。

Envoy プロキシーは、応答がクライアントに送信された後に未加工の Telemetry データを収集します。
リクエストの生のテレメトリーの収集に費やされた時間は、そのリクエストの完了にかかる合計時間に
は影響しません。ただし、ワーカーは要求処理にビジー状態になるため、ワーカーは次の要求の処理を
すぐに開始しません。このプロセスは、次の要求のキューの待機時間に追加され、平均のレイテンシー
およびテイルレイテンシー (Tail Latency) に影響を及ぼします。実際のテイルレイテンシーは、トラ
フィックのパターンによって異なります。

メッシュ内で、要求はクライアント側のプロキシーを通過してから、サーバー側のプロキシーを通過し
ます。Istio 1.12.3 のデフォルト設定 (Istio と Telemetry v2) では、2 つのプロキシーは、ベースラインの
データプレーンのレイテンシーに対してそれぞれ約 1.7 ms および 2.7 ms を 90 および 99 番目のパーセ
ンタイルレイテンシーに追加します。

1.17. 実稼働環境の SERVICE MESH の設定

基本インストールから実稼働環境に移行する準備ができたら、実稼働環境の要件を満たすようにコント
ロールプレーン、トレーシング、およびセキュリティー証明書を設定する必要があります。

前提条件

Red Hat OpenShift Service Mesh をインストールして設定しておく。

ステージング環境で設定をテストしておく

1.17.1. 実稼働環境用の ServiceMeshControlPlane リソース設定

Service Mesh をテストするために基本的な ServiceMeshControlPlane リソースをインストールしてい
る場合は、実稼働環境で Red Hat OpenShift Service Mesh を使用する前にこれを実稼働仕様に設定する
必要があります。

既存の ServiceMeshControlPlane リソースの metadata.name フィールドを変更できません。実稼働
デプロイメントの場合は、デフォルトのテンプレートをカスタマイズする必要があります。

第1章 SERVICE MESH 2.X

203

手順

1. 実稼働用に分散トレーシングプラットフォーム (Jaeger) を設定します。

a. ServiceMeshControlPlane リソースは、production デプロイメントストラテジーを使用
するように編集するには、spec.addons.jaeger.install.storage.type を Elasticsearch に
設定し、install で追加設定オプションを指定します。Jaeger インスタンスを作成および設
定し、spec.addons.jaeger.name を Jaeger インスタンスの名前に設定できます。

デフォルト Jaeger パラメーター (例: Elasticsearch)

b. 実稼働環境のサンプリングレートを設定します。詳細は、パフォーマンスおよびスケーラ
ビリティーセクションを参照してください。

2. 外部認証局からセキュリティー証明書をインストールして、セキュリティー証明書が実稼働可
能であることを確認します。詳細は、セキュリティーのセクションを参照してください。

検証

1. 以下のコマンドを実行して、ServiceMeshControlPlane リソースが適切に更新されていること
を確認します。この例では、basic は ServiceMeshControlPlane リソースの名前です。

1.17.2. 関連情報

パフォーマンス用の Service Mesh のチューニングに関する詳細は、パフォーマンスおよびス
ケーラビリティー を参照してください。

1.18. SERVICE MESH の接続

フェデレーション は、個別の管理ドメインで管理される個別のメッシュ間でサービスとワークロードを

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
metadata:
 name: basic
spec:
 version: v2.6
 tracing:
 sampling: 100
 type: Jaeger
 addons:
 jaeger:
 name: MyJaeger
 install:
 storage:
 type: Elasticsearch
 ingress:
 enabled: true
 runtime:
 components:
 tracing.jaeger.elasticsearch: # only supports resources and image name
 container:
 resources: {}

$ oc get smcp basic -o yaml

Red Hat OpenShift Service on AWS 4 Service Mesh

204

フェデレーション は、個別の管理ドメインで管理される個別のメッシュ間でサービスとワークロードを
共有できるデプロイメントモデルです。

1.18.1. フェデレーションの概要

フェデレーションは、個別のメッシュ間でサービスを接続できるようにする機能セットであり、複数の
別個の管理対象ドメイン間での認証、認可、およびトラフィック管理などの Service Mesh 機能を使用
できるようにします。

フェデレーションメッシュを実装すると、複数の OpenShift クラスター全体で実行されている単一の
Service Mesh を実行、管理、および監視できます。Red Hat OpenShift Service Mesh のフェデレーショ
ンは、メッシュ間の 最小限 の信頼を前提とする Service Mesh のマルチクラスター実装に対して独自の
アプローチを採用しています。

Service Mesh フェデレーションでは、各メッシュが個別に管理され、独自の管理者を用意することが前
提です。デフォルトの動作では、通信が許可されず、メッシュ間で情報を共有されません。メッシュ間
の情報、オプトインを明示することで共有されます。共有設定されていない限り、フェデレーション
メッシュでは共有されません。証明書の生成、メトリクス、トレース収集などのサポート機能は、それ
ぞれのメッシュのローカルで機能します。

各 Service Mesh で ServiceMeshControlPlane が、フェデレーション専用の ingress および egress
ゲートウェイを作成してメッシュの信頼ドメインを指定するように設定します。

フェデレーションでは、追加でフェデレーションファイルも作成されます。以下のリソースを使用し
て、2 つ以上のメッシュ間のフェデレーションを設定します。

ServiceMeshPeer リソースは、Service Mesh のペア間のフェデレーションを宣言します。

ExportedServiceSet リソース: メッシュからの 1 つ以上のサービスがピアメッシュで使用でき
ることを宣言します。

ImportedServiceSet リソース: ピアメッシュでエクスポートされたどのサービスがメッシュに
インポートされるかを宣言します。

1.18.2. フェデレーション機能

メッシュに参加するための Red Hat OpenShift Service Mesh フェデレーションアプローチの機能は以下
のとおりです。

各メッシュの共通ルート証明書をサポートします。

各メッシュの異なるルート証明書をサポートします。

メッシュ管理者は、フェデレーションメッシュの外部にあるメッシュの証明書チェーン、サー
ビス検出エンドポイント、信頼ドメインを手動で設定する必要があります。

メッシュ間で共有するサービスのみをエクスポート/インポートします。

デフォルトは、デプロイされたワークロードに関する情報は、フェデレーション内の他の
メッシュとは共有されません。サービスをエクスポートして他のメッシュに公開し、独自
のメッシュ外のワークロードから要求できるようにします。

エクスポートされたサービスは別のメッシュにインポートでき、そのメッシュのワーク
ロードをインポートされたサービスに送信できるようにします。

メッシュ間の通信を常時暗号化します。

第1章 SERVICE MESH 2.X

205

ローカルにデプロイされたワークロードおよびフェデレーション内の別のメッシュにデプロイ
されたワークロードの間における負荷分散の設定をサポートします。

メッシュが別のメッシュに参加すると、以下を実行できます。

フェデレーションメッシュに対して自信の信頼情報を提供します。

フェデレーションメッシュに関する信頼情報を検出します。

独自にエクスポートされたサービスに関する情報をフェデレーションメッシュに提供します。

フェデレーションメッシュでエクスポートされるサービスの情報を検出します。

1.18.3. フェデレーションセキュリティー

Red Hat OpenShift Service Mesh のフェデレーションは、メッシュ間の最小限の信頼を前提とする
Service Mesh のマルチクラスター実装に対して独自のアプローチを採用しています。データセキュリ
ティーは、フェデレーション機能の一部として組み込まれています。

メッシュごとに、テナントや管理が一意となっています。

フェデレーションで各メッシュに一意の信頼ドメインを作成します。

フェデレーションメッシュ間のトラフィックは、相互トランスポート層セキュリティー
(mTLS) を使用して自動的に暗号化されます。

Kiali グラフは、インポートしたメッシュとサービスのみを表示します。メッシュにインポート
されていない他のメッシュまたはサービスを確認できません。

1.18.4. フェデレーションの制限

メッシュに参加するための Red Hat OpenShift Service Mesh フェデレーションアプローチには、以下の
制限があります。

メッシュのフェデレーションは OpenShift Dedicated ではサポートされていません。

1.18.5. フェデレーションの前提条件

メッシュに参加するための Red Hat OpenShift Service Mesh フェデレーションアプローチには、以下の
前提条件があります。

2 つ以上の Red Hat OpenShift Service on AWS 4.6 以降のクラスター。

フェデレーションは、Red Hat OpenShift Service Mesh 2.1 以降で導入されました。フェデレー
ションする必要のある各メッシュに Red Hat OpenShift Service Mesh 2.1 Operator がインス
トールされている必要があります。

フェデレーションする必要のある各メッシュにバージョン 2.1 以降の
ServiceMeshControlPlane をデプロイする必要があります。

生の TLS トラフィックをサポートするように、フェデレーションゲートウェイに関連付けられ
たサービスをサポートするロードバランサーを設定する必要があります。フェデレーショント
ラフィックは、検出用の HTTPS と、サービストラフィック用の生の暗号化 TCP で構成されま
す。

別のメッシュに公開するサービスは、エクスポートおよびインポートする前にデプロイする必

Red Hat OpenShift Service on AWS 4 Service Mesh

206

要があります。ただし、これは厳密な要件ではありません。エクスポート/インポート用にまだ
存在していないサービス名を指定できます。ExportedServiceSet と ImportedServiceSet とい
う名前のサービスをデプロイする場合に、これらのサービスは自動的にエクスポート/インポー
トで利用可能になります。

1.18.6. メッシュフェデレーションのプランニング

メッシュフェデレーションの設定を開始する前に、実装の計画に時間をかけるようにしてください。

フェデレーションに参加させる予定のメッシュは何個ありますか ?まずは、2 つから 3 つ程度の
限られた数のメッシュで開始する必要があります。

各メッシュにどの命名規則を使用する予定ですか ?事前定義の命名規則があると、設定とトラ
ブルシューティングに役立ちます。このドキュメントの例では、メッシュごとに異なる色を使
用します。各メッシュと以下のフェデレーションリソースの所有者および管理者を判断できる
ように、命名規則を決定する必要があります。

クラスター名

クラスターネットワーク名

メッシュ名と namespace

フェデレーション Ingress ゲートウェイ

フェデレーション egress ゲートウェイ

セキュリティー信頼ドメイン

注記

フェデレーションの各メッシュには、一意の信頼ドメインが必要です。

各メッシュのどのサービスをフェデレーションメッシュにエクスポートする予定ですか ?各
サービスは個別にエクスポートすることも、ラベルを指定したり、ワイルドカードを使用した
りすることもできます。

サービスの namespace にエイリアスを使用しますか ?

エクスポートされたサービスにエイリアスを使用しますか ?

各メッシュでどのエクスポートサービスを、インポートする予定ですか ?各メッシュは必要な
サービスのみをインポートします。

インポートしたサービスにエイリアスを使用しますか ?

1.18.7. クラスター全体でのメッシュフェデレーション

OpenShift Service Mesh のインスタンスを別のクラスターで実行されているインスタンスに接続するに
は、同じクラスターにデプロイされた 2 つのメッシュに接続する場合とほぼ変わりません。ただし、
メッシュの Ingress ゲートウェイに、他のメッシュから到達可できる必要があります。確実に到達でき
るようにするには、クラスターがこのタイプのサービスをサポートする場合に、ゲートウェイサービス
を LoadBalancer サービスとして設定します。

サービスは、OSI モデルのレイヤー 4 で動作するロードバランサー経由で公開する必要があります。

第1章 SERVICE MESH 2.X

207

1.18.7.1. ベアメタルで実行されるクラスターでのフェデレーション Ingress の公開

クラスターがベアメタルで実行され、LoadBalancer サービスを完全にサポートする場合は、ingress
ゲートウェイ Service オブジェクトの .status.loadBalancer.ingress.ip フィールドにある IP アドレス
を ServiceMeshPeer オブジェクトの .spec.remote.addresses フィールドにあるエントリーの 1 つと
して指定する必要があります。

クラスターが LoadBalancer サービスをサポートしない場合は、他のメッシュを実行するクラスターか
らノードにアクセスできるのであれば NodePort サービスを使用することも可能で
す。ServiceMeshPeer オブジェクトで、.spec.remote.addresses フィールドのノードの IP アドレス
と、.spec.remote.discoveryPort と .spec.remote.servicePort フィールドのサービスのノードポート
を指定します。

1.18.7.2. Amazon Web Services(AWS) でのフェデレーション Ingress の公開

デフォルトでは、AWS で実行されるクラスターの LoadBalancer サービスで L4 負荷分散はサポートさ
れていません。Red Hat OpenShift Service Mesh フェデレーションを正常に機能させるには、以下のア
ノテーションを Ingress ゲートウェイサービスに追加する必要があります。

service.beta.kubernetes.io/aws-load-balancer-type: nlb

ingress ゲートウェイ Service オブジェクトの .status.loadBalancer.ingress.hostname フィールドに
ある完全修飾ドメイン名は、ServiceMeshPeer オブジェクトの .spec.remote.addresses フィールド
にあるエントリーの 1 つとして指定する必要があります。

1.18.8. フェデレーション実装のチェックリスト

Service Mesh のフェデレーションには、以下のアクティビティーが含まれます。

❏ フェデレーションする予定のクラスター間のネットワークを設定する。

❏ 生の TLS トラフィックをサポートするように、フェデレーションゲートウェイに関連付
けられたサービスをサポートするロードバランサーを設定する。

❏ Red Hat OpenShift Service Mesh バージョン 2.1 以降の Operator を各クラスターにインス
トールする。

❏ バージョン 2.1 以降の ServiceMeshControlPlane を各クラスターにデプロイする。

❏ フェデレーションする各メッシュのフェデレーションに SMCP を設定する。

❏ フェデレーションする各メッシュにフェデレーション egress ゲートウェイを作成する。

❏ フェデレーションする各メッシュにフェデレーション Ingress ゲートウェイを作成す
る。

❏ 一意の信頼ドメインを設定する。

❏ 各メッシュのペアの ServiceMeshPeer リソースを作成して、2 つ以上のメッシュをフェデ
レーションする。

❏ ExportedServiceSet リソースを作成してサービスをエクスポートし、1 つのメッシュからピ
アメッシュにサービスが利用できるようにします。

❏ ImportedServiceSet リソースを作成してサービスをインポートし、メッシュピアで共有さ
れるサービスをインポートします。

Red Hat OpenShift Service on AWS 4 Service Mesh

208

1.18.9. フェデレーション用の Service Mesh コントロールプレーンの設定

メッシュをフェデレーションする前に、メッシュフェデレーションの ServiceMeshControlPlane を設
定する必要があります。フェデレーションに所属する全メッシュは同等で、各メッシュは個別に管理さ
れるため、フェデレーションに参加する 各 メッシュに SMCP を設定する必要があります。

以下の例では、red-mesh の管理者は green-mesh と blue-mesh の両方を使用して、フェデレーショ
ンに SMCP を設定します。

red-mesh のサンプル SMCP

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
metadata:
 name: red-mesh
 namespace: red-mesh-system
spec:
 version: v2.6
 runtime:
 defaults:
 container:
 imagePullPolicy: Always
 gateways:
 additionalEgress:
 egress-green-mesh:
 enabled: true
 requestedNetworkView:
 - green-network
 routerMode: sni-dnat
 service:
 metadata:
 labels:
 federation.maistra.io/egress-for: egress-green-mesh
 ports:
 - port: 15443
 name: tls
 - port: 8188
 name: http-discovery #note HTTP here
 egress-blue-mesh:
 enabled: true
 requestedNetworkView:
 - blue-network
 routerMode: sni-dnat
 service:
 metadata:
 labels:
 federation.maistra.io/egress-for: egress-blue-mesh
 ports:
 - port: 15443
 name: tls
 - port: 8188
 name: http-discovery #note HTTP here
 additionalIngress:
 ingress-green-mesh:
 enabled: true
 routerMode: sni-dnat

第1章 SERVICE MESH 2.X

209

表1.6 ServiceMeshControlPlane フェデレーション設定パラメーター

パラメーター 説明 値 デフォルト値

spec:
 cluster:
 name:

クラスターの名前。クラ
スター名は指定する必要
はありませんが、トラブ
ルシューティングに役立
ちます。

文字列 該当なし

spec:
 cluster:
 network:

クラスターネットワーク
の名前。ネットワークの
名前は指定する必要はあ
りませんが、設定および
トラブルシューティング
に役立ちます。

文字列 該当なし

1.18.9.1. フェデレーションゲートウェイについて

ゲートウェイ を使用してメッシュの受信トラフィックおよび送信トラフィックを管理することで、メッ
シュに入るか、メッシュを出るトラフィックを指定できます。

Ingress および egress ゲートウェイを使用して、Service Mesh (North-South トラフィック) に入退出す
るトラフィックを管理します。フェデレーションメッシュの作成時に、追加の Ingress/egress ゲート
ウェイを作成し、フェデレーションメッシュ間のサービス検出や通信を用意にして、Service Mesh 間の

 service:
 type: LoadBalancer
 metadata:
 labels:
 federation.maistra.io/ingress-for: ingress-green-mesh
 ports:
 - port: 15443
 name: tls
 - port: 8188
 name: https-discovery #note HTTPS here
 ingress-blue-mesh:
 enabled: true
 routerMode: sni-dnat
 service:
 type: LoadBalancer
 metadata:
 labels:
 federation.maistra.io/ingress-for: ingress-blue-mesh
 ports:
 - port: 15443
 name: tls
 - port: 8188
 name: https-discovery #note HTTPS here
 security:
 identity:
 type: ThirdParty
 trust:
 domain: red-mesh.local

Red Hat OpenShift Service on AWS 4 Service Mesh

210

トラフィックフロー (East-West トラフィック) を管理します。

メッシュ間の命名の競合を回避するには、各メッシュに個別の egress および ingress ゲートウェイを作
成する必要があります。たとえば、red-mesh には、green-mesh および blue-mesh に移動するトラ
フィックに対して個別の egress ゲートウェイがあります。

表1.7 フェデレーションゲートウェイパラメーター

パラメーター 説明 値 デフォルト値

spec:
 gateways:

additionalEgress:

<egress_name>:

フェデレーションの 各
メッシュピアの egress
ゲートウェイを追加で定
義します。

spec:
 gateways:

additionalEgress:

<egress_name>:
 enabled:

このパラメーターは、
フェデレーションの
egress を有効または無
効にします。

true/false true

spec:
 gateways:

additionalEgress:

<egress_name>:

requestedNetwork
View:

エクスポートされたサー
ビスに関連付けられた
ネットワーク。

メッシュの SMCP で
spec.cluster.network
の値に設定します。それ
以外の場合は、
<ServiceMeshPeer-
name>-network を使用
します。たとえば、メッ
シュの
ServiceMeshPeer リ
ソースの名前が west の
場合、ネットワークは
west-network になり
ます。

第1章 SERVICE MESH 2.X

211

spec:
 gateways:

additionalEgress:

<egress_name>:
 service:
 metadata:
 labels:

federation.maistra.i
o/egress-for:

フェデレーショントラ
フィックがクラスターの
デフォルトのシステム
ゲートウェイを通過しな
いように、ゲートウェイ
に一意のラベルを指定し
ます。

spec:
 gateways:

additionalEgress:

<egress_name>:
 service:
 ports:

TLS およびサービス検出
用の port: と name: を
指定するのに使用しま
す。フェデレーショント
ラフィックは、サービス
トラフィック用の生の暗
号化 TCP で構成されま
す。

ポート 15443 は、フェ
デレーションで TLS
サービス要求を他のメッ
シュに送信するために必
要です。ポート 8188
は、フェデレーションで
サービス検出要求を他の
メッシュに送信するため
に必要です。

spec:
 gateways:

additionalIngress:

フェデレーションで、各
メッシュピアの追加の
Ingress ゲートウェイを
定義します。

spec:
 gateways:
 additionalIgress:

<ingress_name>:
 enabled:

このパラメーターは、
フェデレーション
Ingress を有効または無
効にします。

true/false true

パラメーター 説明 値 デフォルト値

Red Hat OpenShift Service on AWS 4 Service Mesh

212

spec:
 gateways:

additionalIngress:

<ingress_name>:
 service:
 type:

Ingress ゲートウェイ
サービスは、OSI モデル
のレイヤー 4 で動作
し、一般公開されている
ロードバランサー経由で
公開する必要がありま
す。

LoadBalancer

spec:
 gateways:

additionalIngress:

<ingress_name>:
 service:
 type:

クラスターが
LoadBalancer サービ
スをサポートしていない
場合、入力ゲートウェイ
サービスは NodePort
サービスを介して公開で
きます。

NodePort

spec:
 gateways:

additionalIngress:

<ingress_name>:
 service:
 metadata:
 labels:

federation.maistra.i
o/ingress-for:

フェデレーショントラ
フィックがクラスターの
デフォルトのシステム
ゲートウェイを通過しな
いように、ゲートウェイ
に一意のラベルを指定し
ます。

spec:
 gateways:

additionalIngress:

<ingress_name>:
 service:
 ports:

TLS およびサービス検出
用の port: と name: を
指定するのに使用しま
す。フェデレーショント
ラフィックは、サービス
トラフィック用の生の暗
号化 TCP で構成されま
す。フェデレーショント
ラフィックは、検出用に
HTTPS で構成されま
す。

ポート 15443 は、フェ
デレーションの他のメッ
シュへの TLS サービス
要求を受信するために必
要です。ポート 8188
は、フェデレーションの
他のメッシュへのサービ
ス検出要求を受信するた
めに必要です。

パラメーター 説明 値 デフォルト値

第1章 SERVICE MESH 2.X

213

spec:
 gateways:

additionalIngress:

<ingress_name>:
 service:
 ports:
 nodePort:

クラスターが
LoadBalancer サービ
スをサポートしていない
場合は、nodePort: を
指定するために使用され
ます。

指定した場合は、port:
と name: 以外に、TLS
とサービス検出の両方で
これが必須で
す。nodePort:
30000-32767 の範囲で
ある必要があります。

パラメーター 説明 値 デフォルト値

次の例では、管理者は NodePort サービスを使用して グリーンメッシュ とのフェデレーション用に
SMCP を設定しています。

NodePort の SMCP 例

1.18.9.2. フェデレーション信頼ドメインパラメーターについて

フェデレーションの各メッシュには、一意の信頼ドメインが必要です。この値は、ServiceMesh Peer
リソースでメッシュフェデレーションを設定する時に使用されます。

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
metadata:
 name: green-mesh
 namespace: green-mesh-system
spec:
...
 gateways:
 additionalIngress:
 ingress-green-mesh:
 enabled: true
 service:
 type: NodePort
 metadata:
 labels:
 federation.maistra.io/ingress-for: ingress-green-mesh
 ports:
 - port: 15443
 nodePort: 30510
 name: tls
 - port: 8188
 nodePort: 32359
 name: https-discovery

kind: ServiceMeshControlPlane
metadata:
 name: red-mesh
 namespace: red-mesh-system
spec:

Red Hat OpenShift Service on AWS 4 Service Mesh

214

表1.8 フェデレーションセキュリティーパラメーター

パラメーター 説明 値 デフォルト値

spec:
 security:
 trust:
 domain:

メッシュの信頼ドメイン
の一意の名前を指定する
ために使用されます。ド
メインは、フェデレー
ション内のすべてのメッ
シュで一意である必要が
あります。

<mesh-name>.local 該当なし

コンソールからの手順

この手順に従って、Red Hat OpenShift Service on AWS Web コンソールで ServiceMeshControlPlane
を編集します。この例では、red-mesh をサンプルとして使用しています。

1. cluster-admin ロールを持つユーザーとして Red Hat OpenShift Service on AWS Web コンソー
ルにログインします。

2. Operators → Installed Operators に移動します。

3. Project メニューをクリックし、Service Mesh コントロールプレーンをインストールしたプロ
ジェクトを選択します。例: red-mesh-system

4. Red Hat OpenShift Service Mesh Operator をクリックします。

5. Istio Service Mesh Control Plane タブで、ServiceMeshControlPlane の名前 (red-mesh な
ど) をクリックします。

6. Create ServiceMeshControlPlane Details ページで、YAML をクリックして設定を変更しま
す。

7. ServiceMeshControlPlane を変更してフェデレーション Ingress および egress ゲートウェイ
を追加し、信頼ドメインを指定します。

8. Save をクリックします。

CLI からの手順

以下の手順に従って、コマンドラインで ServiceMeshControlPlane を作成するか、編集します。この
例では、red-mesh をサンプルとして使用しています。

1. cluster-admin ロールを持つユーザーとして Red Hat OpenShift Service on AWS CLI にログイ
ンします。以下のコマンドを入力します。次に、プロンプトが表示されたら、ユーザー名とパ
スワードを入力します。

2. Service Mesh コントロールプレーンをインストールしたプロジェクト (例: red-mesh-system)
に切り替えます。

 security:
 trust:
 domain: red-mesh.local

$ oc login --username=<NAMEOFUSER> https://<HOSTNAME>:6443

第1章 SERVICE MESH 2.X

215

3. ServiceMeshControlPlane ファイルを編集し、フェデレーション Ingress および egress ゲー
トウェイを追加して信頼ドメインを指定します。

4. 以下のコマンドを実行して Service Mesh コントロールプレーンを編集します。ここで、red-
mesh-system はシステムの namespace であり、 red-mesh は ServiceMeshControlPlane オ
ブジェクトの名前になります。

5. 以下のコマンドを実行して、Service Mesh コントロールプレーンのインストールのステータス
を確認します。このコマンドでは、red-mesh-system がシステム namespace に置き換えま
す。

READY 列にすべてのコンポーネントが準備状態であることが示されると、インストールは正常
に終了しています。

NAME READY STATUS PROFILES VERSION AGE
red-mesh 10/10 ComponentsReady ["default"] 2.1.0 4m25s

1.18.10. フェデレーションメッシュへの参加

ServiceMeshPeer リソースを作成して、2 つのメッシュ間のフェデレーションを宣言しま
す。ServiceMeshPeer リソースは、2 つのメッシュ間のフェデレーションを定義し、これを使用して
ピアメッシュの検出設定、ピアメッシュへのアクセス、および他のメッシュのクライアントの検証に使
用される証明書を定義します。

メッシュは 1 対 1 でフェデレーションされるため、ピアの各ペアでは、他のサービスメッシュへのフェ
デレーション接続を指定する ServiceMeshPeer リソースのペアが必要です。たとえば、red および
green という名前の 2 つのメッシュには 2 つの ServiceMeshPeer ファイルが必要です。

1. red-mesh-system で、green メッシュの ServiceMeshPeer を作成します。

$ oc project red-mesh-system

$ oc edit -n red-mesh-system smcp red-mesh

$ oc get smcp -n red-mesh-system

Red Hat OpenShift Service on AWS 4 Service Mesh

216

2. green-mesh-system で、Red メッシュの ServiceMeshPeer を作成します。

red、blue および green という名前の 3 つのメッシュのフェデレーションには 6 つの
ServiceMeshPeer ファイルが必要になります。

1. red-mesh-system で、green メッシュの ServiceMeshPeer を作成します。

2. red-mesh-system で、blue メッシュの ServiceMeshPeer を作成します。

3. green-mesh-system で、Red メッシュの ServiceMeshPeer を作成します。

4. green-mesh-system で、blue メッシュの ServiceMeshPeer を作成します。

5. blue-mesh-system で、Red メッシュの ServiceMeshPeer を作成します。

6. blue-mesh-system で、green メッシュの ServiceMeshPeer を作成します。

ServiceMeshPeer リソースの設定には、以下が含まれます。

検出およびサービス要求に使用される他のメッシュの Ingress ゲートウェイのアドレス。

指定のピアメッシュとの対話に使用されるローカル ingress および egress ゲートウェイの名
前。

このメッシュへの要求の送信時に他のメッシュで使用されるクライアント ID。

他のメッシュで使用される信頼ドメイン。

ConfigMap の名前。これには、他のメッシュで使用される信頼ドメインのクライアント証明書
の検証に使用するルート証明書が含まれます。

以下の例では、red-mesh の管理者は green-mesh でフェデレーションを設定します。

red-mesh の ServiceMeshPeer リソースの例

表1.9 ServiceMeshPeer 設定パラメーター

kind: ServiceMeshPeer
apiVersion: federation.maistra.io/v1
metadata:
 name: green-mesh
 namespace: red-mesh-system
spec:
 remote:
 addresses:
 - ingress-red-mesh.green-mesh-system.apps.domain.com
 gateways:
 ingress:
 name: ingress-green-mesh
 egress:
 name: egress-green-mesh
 security:
 trustDomain: green-mesh.local
 clientID: green-mesh.local/ns/green-mesh-system/sa/egress-red-mesh-service-account
 certificateChain:
 kind: ConfigMap
 name: green-mesh-ca-root-cert

第1章 SERVICE MESH 2.X

217

パラメーター 説明 値

metadata:
 name:

このリソースがフェデレーション
を設定するピアメッシュの名前。

文字列

metadata:
 namespace:

このメッシュのシステム
namespace (Service Mesh コント
ロールプレーンのインストール
先)。

文字列

spec:
 remote:
 addresses:

このメッシュからの要求に対応す
るピアメッシュの Ingress ゲート
ウェイのパブリックアドレスリス
ト。

spec:
 remote:
 discoveryPort:

アドレスが検出要求を処理する
ポート。

デフォルトは 8188 です。

spec:
 remote:
 servicePort:

アドレスがサービス要求を処理す
るポート。

デフォルトは 15443 です。

spec:
 gateways:
 ingress:
 name:

ピアメッシュからの受信要求に対
応するこのメッシュの Ingress の
名前。例: ingress-green-mesh

spec:
 gateways:
 egress:
 name:

ピアメッシュに送信される要求に
対応するこのメッシュ上の egress
の名前。例: egress-green-
mesh

spec:
 security:
 trustDomain:

ピアメッシュで使用される信頼ド
メイン。

<peerMeshName>.local

spec:
 security:
 clientID:

このメッシュの呼び出し時にピア
メッシュが使用するクライアント
ID。

<peerMeshTrustDomain>/ns/<pe
erMeshSystem>/sa/<peerMeshEg
ressGatewayName>-service-
account

Red Hat OpenShift Service on AWS 4 Service Mesh

218

spec:
 security:
 certificateChain:
 kind: ConfigMap
 name:

ピアメッシュがこのメッシュに提
示したクライアント証明書の検証
に使用されるルート証明書が含ま
れるリソースの種類 (例:
ConfigMap) と名前。証明書が含
まれる config map エントリーの
鍵は root-cert.pem である必要
があります。

kind: ConfigMap name:
<peerMesh>-ca-root-cert

パラメーター 説明 値

1.18.10.1. ServiceMeshPeer リソースの作成

前提条件

2 つ以上の Red Hat OpenShift Service on AWS 4.6 以降のクラスター。

クラスターのネットワーク設定が完了している。

生の TLS トラフィックをサポートするように、フェデレーションゲートウェイに関連付けられ
たサービスをサポートするロードバランサーを設定する必要があります。

各クラスターには、フェデレーションデプロイをサポートするようにバージョン 2.1 以降の
ServiceMeshControlPlane が設定されている必要があります。

cluster-admin ロールを持つアカウントがある。

CLI からの手順

以下の手順に従って、コマンドラインから ServiceMeshPeer リソースを作成します。以下の例で
は、red-mesh が green-mesh のピアリソースを作成しています。

1. cluster-admin ロールを持つユーザーとして Red Hat OpenShift Service on AWS CLI にログイ
ンします。以下のコマンドを入力します。次に、プロンプトが表示されたら、ユーザー名とパ
スワードを入力します。

2. コントロールプレーンをインストールしたプロジェクト (例: red-mesh-system) に切り替えま
す。

3. フェデレーションを行う 2 つのメッシュに対して、以下の例に基づいて ServiceMeshPeer
ファイルを作成します。

red-mesh から green-mesh への ServiceMeshPeer リソースのサンプル

$ oc login --username=<NAMEOFUSER> <API token> https://<HOSTNAME>:6443

$ oc project red-mesh-system

kind: ServiceMeshPeer
apiVersion: federation.maistra.io/v1
metadata:
 name: green-mesh
 namespace: red-mesh-system

第1章 SERVICE MESH 2.X

219

4. 以下のコマンドを実行してリソースをデプロイします。ここで、red-mesh-system はシステム
の namespace に置き換え、servicemeshpeer.yaml には編集したファイルへのフルパスが含ま
れます。

5. red メッシュと green メッシュ間の接続確立を確認するには、red-mesh-system namespace の
green-mesh ServiceMeshPeer のステータスを調べます。

red-mesh と green-mesh 間の ServiceMeshPeer 接続の例

status.discoveryStatus.active.remotes フィールドは、ピアメッシュ (この例では green メッ
シュ) が現在のメッシュ (この例では red メッシュ) の istiod に接続されていることを示しま
す。

status.discoveryStatus.active.watch フィールドは、現在のメッシュの istiod がピアメッシュ
で istiod に接続されていることを示します。

green-mesh-system で red-mesh という名前の servicemeshpeer を確認すると、green メッ
シュの観点からの 2 つの同じ接続に関する情報が表示されます。

2 つのメッシュ間の接続が確立されていない場合、ServiceMeshPeer ステータス

spec:
 remote:
 addresses:
 - ingress-red-mesh.green-mesh-system.apps.domain.com
 gateways:
 ingress:
 name: ingress-green-mesh
 egress:
 name: egress-green-mesh
 security:
 trustDomain: green-mesh.local
 clientID: green-mesh.local/ns/green-mesh-system/sa/egress-red-mesh-service-account
 certificateChain:
 kind: ConfigMap
 name: green-mesh-ca-root-cert

$ oc create -n red-mesh-system -f servicemeshpeer.yaml

$ oc -n red-mesh-system get servicemeshpeer green-mesh -o yaml

status:
 discoveryStatus:
 active:
 - pod: istiod-red-mesh-b65457658-9wq5j
 remotes:
 - connected: true
 lastConnected: "2021-10-05T13:02:25Z"
 lastFullSync: "2021-10-05T13:02:25Z"
 source: 10.128.2.149
 watch:
 connected: true
 lastConnected: "2021-10-05T13:02:55Z"
 lastDisconnectStatus: 503 Service Unavailable
 lastFullSync: "2021-10-05T13:05:43Z"

Red Hat OpenShift Service on AWS 4 Service Mesh

220

2 つのメッシュ間の接続が確立されていない場合、ServiceMeshPeer ステータス
は、status.discoveryStatus.inactive フィールドにこれを示します。

接続の試みが失敗した理由の詳細は、Istiod ログ、ピアの egress トラフィックを処理する
egress ゲートウェイのアクセスログ、およびピアメッシュ内の現在のメッシュの ingress トラ
フィックを処理する ingress ゲートウェイのアクセスログを調べてください。

たとえば、red メッシュが green メッシュに接続できない場合は、以下のログを確認します。

red-mesh-system の istiod-red-mesh

red-mesh-system の Egress-green-mesh

green-mesh-system の ingress-red-mesh

1.18.11. フェデレーションメッシュからのサービスのエクスポート

サービスをエクスポートすると、メッシュは、フェデレーションされたメッシュの別のメンバーとサー
ビスを共有できます。

ExportedServiceSet リソースを使用して、フェデレーションメッシュ内の別のピアから利用できるよ
うに指定したメッシュからサービスを宣言します。ピアと共有される各サービスを明示的に宣言する必
要があります。

サービスは、namespace または名前別に選択できます。

ワイルドカードを使用してサービスを選択できます。たとえば、namespace 内のすべてのサー
ビスをエクスポートします。

エイリアスを使用してサービスをエクスポートできます。たとえば、foo/bar サービスを
custom-ns/bar としてエクスポートできます。

メッシュのシステム namespace に表示されるサービスのみをエクスポートできます。たとえ
ば、networking.istio.io/exportTo ラベルが '.' に設定された別の namespace のサービスは、エ
クスポートの候補にはなりません。

エクスポートされたサービスの場合、それらのターゲットサービスは、元の要求元 (他のメッ

第1章 SERVICE MESH 2.X

221

エクスポートされたサービスの場合、それらのターゲットサービスは、元の要求元 (他のメッ
シュの egress ゲートウェイや、要求元のワークロードのクライアント ID は表示されない) では
なく、ingress ゲートウェイからのトラフィックのみが表示されます。

以下の例は、red-mesh が green-mesh にエクスポートするサービス向けです。

ExportedServiceSet リソースの例

表1.10 ExportedServiceSet パラメーター

パラメーター 説明 値

metadata:
 name:

このサービスを公開する
ServiceMeshPeer の名前。

ServiceMeshPeer リソースの
メッシュの name 値と一致する
必要があります。

metadata:
 namespace:

このリソースを含むプロジェク
ト/namespace の名前 (メッシュ
のシステム namespace を指定す
る必要があります)。

spec:
 exportRules:
 - type:

このサービスのエクスポートを管
理するルールのタイプ。サービス
で最初に一致するルールがエクス
ポートに使用されます。

NameSelector, LabelSelector

kind: ExportedServiceSet
apiVersion: federation.maistra.io/v1
metadata:
 name: green-mesh
 namespace: red-mesh-system
spec:
 exportRules:
 # export ratings.mesh-x-info as ratings.bookinfo
 - type: NameSelector
 nameSelector:
 namespace: red-mesh-info
 name: red-ratings
 alias:
 namespace: info
 name: ratings
 # export any service in red-mesh-info namespace with label export-service=true
 - type: LabelSelector
 labelSelector:
 namespace: red-mesh-info
 selector:
 matchLabels:
 export-service: "true"
 aliases: # export all matching services as if they were in the info namespace
 - namespace: "*"
 name: "*"
 alias:
 namespace: info

Red Hat OpenShift Service on AWS 4 Service Mesh

222

spec:
 exportRules:
 - type: NameSelector
 nameSelector:
 namespace:
 name:

NameSelector ルールを作成す
るには、サービスの namespace
およびサービスの namespace
を Service リソースで定義され
るとおり指定します。

spec:
 exportRules:
 - type: NameSelector
 nameSelector:
 alias:
 namespace:
 name:

サービスの namespace と
name を指定した後
に、namespace のエイリアス
と、サービスの name として使
用するエイリアスを指定し、この
サービスのエイリアスに使用する
NameSelector ルールを作成し
ます。

spec:
 exportRules:
 - type: LabelSelector
 labelSelector:
 namespace:
<exportingMesh>
 selector:
 matchLabels:
 <labelKey>:
<labelValue>

LabelSelector ルールを作成す
るには、サービスの namespace
を指定し、Service リソースで定
義されている ラベル を指定しま
す。上記の例では、ラベルは
export-service です。

spec:
 exportRules:
 - type: LabelSelector
 labelSelector:
 namespace:
<exportingMesh>
 selector:
 matchLabels:
 <labelKey>:
<labelValue>
 aliases:
 - namespace:
 name:
 alias:
 namespace:
 name:

サービスのエイリアスを使用する
LabelSelector ルールを作成す
るには、selector を指定した後
で、サービスの name または
namespace に使用するエイリア
スを指定します。上記の例では、
一致するすべてのサービスの
namespace エイリアスは info で
す。

パラメーター 説明 値

red-mesh のすべての namespace から blue-mesh へ "ratings" という名前のサービスをエク
スポートします。

第1章 SERVICE MESH 2.X

223

すべてのサービスを west-data-center namespace から green-mesh にエクスポートしま
す。

1.18.11.1. ExportedServiceSet の作成

ExportedServiceSet リソースを作成し、メッシュピアで利用可能なサービスを明示的に宣言します。

サービスは <export-name>.<export-namespace>.svc.<ServiceMeshPeer.name>-exports.local とし
てエクスポートされ、ターゲットサービスに自動的にルーティングされます。これは、エクスポート
メッシュでエクスポートされたサービスで認識される名前です。Ingress ゲートウェイが宛先がこの名
前の要求を受信すると、エクスポートされる実際のサービスにルーティングされます。たとえ
ば、ratings.red-mesh-info という名前のサービスが ratings.bookinfo として green-mesh にエクス
ポートされると、サービスは ratings.bookinfo.svc.green-mesh-exports.local という名前でエクス
ポートされ、そのホスト名の ingress ゲートウェイが受信するトラフィックは ratings.red-mesh-
bookinfo サービスにルーティングされます。

注記

importAsLocal パラメーターを true に設定して、リモートエンドポイントをローカル
サービスで集約する場合は、サービスのエイリアスを使用する必要があります。パラ
メーターを false に設定した場合、エイリアスは必要ありません。

前提条件

クラスターおよび ServiceMeshControlPlane がメッシュフェデレーション用に設定されてい
る。

cluster-admin ロールを持つアカウントがある。

注記

kind: ExportedServiceSet
apiVersion: federation.maistra.io/v1
metadata:
 name: blue-mesh
 namespace: red-mesh-system
spec:
 exportRules:
 - type: NameSelector
 nameSelector:
 namespace: "*"
 name: ratings

kind: ExportedServiceSet
apiVersion: federation.maistra.io/v1
metadata:
 name: green-mesh
 namespace: red-mesh-system
spec:
 exportRules:
 - type: NameSelector
 nameSelector:
 namespace: west-data-center
 name: "*"

Red Hat OpenShift Service on AWS 4 Service Mesh

224

注記

サービスがまだ存在していない場合でも、エクスポート用にサービスを設定できます。
ExportedServiceSet で指定された値に一致するサービスがデプロイされ、自動的にエク
スポートされます。

CLI からの手順

以下の手順に従って、コマンドラインから ExportedServiceSet を作成します。

1. cluster-admin ロールを持つユーザーとして Red Hat OpenShift Service on AWS CLI にログイ
ンします。以下のコマンドを入力します。次に、プロンプトが表示されたら、ユーザー名とパ
スワードを入力します。

2. Service Mesh コントロールプレーンをインストールしたプロジェクト (例: red-mesh-system)
に切り替えます。

3. 以下の例に基づいて、ExportedServiceSet ファイルを作成します。ここでは、red-mesh が
サービスを green-mesh にエクスポートします。

red-mesh から green-mesh への ExportedServiceSet リソースの例

4. 以下のコマンドを実行して、red-mesh-system namespace に ExportedServiceSet リソースを
アップロードおよび作成します。

以下に例を示します。

$ oc login --username=<NAMEOFUSER> <API token> https://<HOSTNAME>:6443

$ oc project red-mesh-system

apiVersion: federation.maistra.io/v1
kind: ExportedServiceSet
metadata:
 name: green-mesh
 namespace: red-mesh-system
spec:
 exportRules:
 - type: NameSelector
 nameSelector:
 namespace: red-mesh-info
 name: ratings
 alias:
 namespace: info
 name: red-ratings
 - type: NameSelector
 nameSelector:
 namespace: red-mesh-info
 name: reviews

$ oc create -n <ControlPlaneNamespace> -f <ExportedServiceSet.yaml>

$ oc create -n red-mesh-system -f export-to-green-mesh.yaml

第1章 SERVICE MESH 2.X

225

5. フェデレーションメッシュのメッシュピアごとに、必要に応じて追加の ExportedServiceSets
を作成します。

検証

以下のコマンドを実行して、red-mesh が green-mesh と共有するためにエクスポートしたサー
ビスを検証します。

以下に例を示します。

red メッシュからエクスポートして green メッシュに共有したサービスの検証例。

status.exportedServices 配列では、現在エクスポートされているサービス (これらのサービス
は ExportedServiceSet オブジェクト のエクスポートルールに一致) をリスト表示します。配
列の各エントリーは、エクスポートされたサービスの名前と、エクスポートされたローカル
サービスの詳細を示します。

エクスポート予定のサービスがない場合は、Service オブジェクトが存在すること、その名前ま
たはラベルが ExportedServiceSet オブジェクトで定義される exportRules と一致すること、
および Service オブジェクトの namespace が ServiceMeshMemberRoll または
ServiceMeshMember オブジェクトを使用して Service Mesh のメンバーとして設定されること
を確認します。

1.18.12. サービスのフェデレーションメッシュへのインポート

サービスをインポートすると、別のメッシュからエクスポートされたサービスの内、サービスメッシュ
内でアクセスできるものを明示的に指定できます。

$ oc get exportedserviceset <PeerMeshExportedTo> -o yaml

$ oc -n red-mesh-system get exportedserviceset green-mesh -o yaml

 status:
 exportedServices:
 - exportedName: red-ratings.info.svc.green-mesh-exports.local
 localService:
 hostname: ratings.red-mesh-info.svc.cluster.local
 name: ratings
 namespace: red-mesh-info
 - exportedName: reviews.red-mesh-info.svc.green-mesh-exports.local
 localService:
 hostname: reviews.red-mesh-info.svc.cluster.local
 name: reviews
 namespace: red-mesh-info

Red Hat OpenShift Service on AWS 4 Service Mesh

226

ImportedServiceSet リソースを使用して、インポートするサービスを選択します。メッシュピアに
よってエクスポートされ、明示的にインポートされるサービスのみがメッシュで利用できます。明示的
にインポートしない場合、サービスは、メッシュ内で利用できません。

サービスは、namespace または名前別に選択できます。

namespace にエクスポートされたすべてのサービスをインポートするなど、ワイルドカードを
使用してサービスを選択できます。

メッシュにグローバルであるか、特定のメンバーの namespace の範囲内にあるラベルセレク
ターを使用してエクスポートするサービスを選択できます。

エイリアスを使用してサービスをインポートできます。たとえば、custom-ns/bar サービスを
other-mesh/bar としてインポートできます。

カスタムドメイン接尾辞を指定できます。これは、bar.other-mesh.imported.local など、イン
ポートされたサービスの name.namespace に、完全修飾ドメイン名として追加されます。

以下の例は、red-mesh でエクスポートされたサービスをインポートする green-mesh の例です。

ImportedServiceSet の例

kind: ImportedServiceSet
apiVersion: federation.maistra.io/v1
metadata:
 name: red-mesh #name of mesh that exported the service
 namespace: green-mesh-system #mesh namespace that service is being imported into
spec:
 importRules: # first matching rule is used
 # import ratings.info as ratings.bookinfo
 - type: NameSelector
 importAsLocal: false
 nameSelector:
 namespace: info
 name: ratings
 alias:

第1章 SERVICE MESH 2.X

227

表1.11 ImportedServiceSet パラメーター

パラメーター 説明 値

metadata:
 name:

サービスをフェデレーションメッ
シュにエクスポートした
ServiceMeshPeer の名前。

metadata:
 namespace:

ServiceMeshPeer リソース (メッ
シュシステム namespace) を含む
namespace の名前。

spec:
 importRules:
 - type:

サービスのインポートを管理する
ルールのタイプ。サービスで最初
に一致するルールがインポートに
使用されます。

NameSelector

spec:
 importRules:
 - type: NameSelector
 nameSelector:
 namespace:
 name:

NameSelector ルールを作成す
るには、namespace およびエク
スポートされたサービスの name
を指定します。

spec:
 importRules:
 - type: NameSelector
 importAsLocal:

リモートエンドポイントをローカ
ルサービスで集約するには、true
に設定します。true の場合、
サービスは <name>.
<namespace>.svc.cluster.loc
al としてインポートされま
す。true の場合、エイリアスが
必要です。false の場合、エイリ
アスは必要ありません。

true/false

spec:
 importRules:
 - type: NameSelector
 nameSelector:
 namespace:
 name:
 alias:
 namespace:
 name:

サービスの namespace と
name を指定した後
に、namespace のエイリアス
と、サービスの name として使
用するエイリアスを指定し、この
サービスのエイリアスに使用する
NameSelector ルールを作成し
ます。

 # service will be imported as ratings.info.svc.red-mesh-imports.local
 namespace: info
 name: ratings

Red Hat OpenShift Service on AWS 4 Service Mesh

228

red-mesh から blue-mesh への "info/ratings" サービスのインポート

red-mesh の west-data-center namespace からすべてのサービスを green-mesh にインポー
トします。これらのサービスは、<name>.west-data-center.svc.red-mesh-imports.local とし
てアクセスできます。

1.18.12.1. ImportedServiceSet の作成

ImportedServiceSet リソースを作成し、メッシュにインポートするサービスを明示的に宣言します。

サービスは、<exported-name>.<exported-namespace>.svc.<ServiceMeshPeer.name>.remote とい
う名前でインポートされます。これは "非表示" のサービスで、egress ゲートウェイ namespace にのみ
表示され、エクスポートされたサービスのホスト名に関連付けられます。このサービスは、ローカルか
ら <export-name>.<export-namespace>.<domainSuffix> として利用可能になります。ここで
は、importAsLocal が true に設定されていない限り、domainSuffix はデフォルトで svc.
<ServiceMeshPeer.name>-imports.local となっています。true の場合、domainSuffix は
svc.cluster.local となります。importAsLocal が false に設定されている場合は、インポートルールの
ドメイン接尾辞が適用されます。ローカルインポートは、メッシュ内の他のサービスと同様に扱うこと
ができます。これは egress ゲートウェイを介して自動的にルーティングされ、エクスポートされた
サービスのリモート名にリダイレクトされます。

前提条件

クラスターおよび ServiceMeshControlPlane がメッシュフェデレーション用に設定されてい
る。

cluster-admin ロールを持つアカウントがある。

注記

kind: ImportedServiceSet
apiVersion: federation.maistra.io/v1
metadata:
 name: red-mesh
 namespace: blue-mesh-system
spec:
 importRules:
 - type: NameSelector
 importAsLocal: false
 nameSelector:
 namespace: info
 name: ratings

kind: ImportedServiceSet
apiVersion: federation.maistra.io/v1
metadata:
 name: red-mesh
 namespace: green-mesh-system
spec:
 importRules:
 - type: NameSelector
 importAsLocal: false
 nameSelector:
 namespace: west-data-center
 name: "*"

第1章 SERVICE MESH 2.X

229

注記

サービスがまだエクスポートされていない場合でも、インポートするように設定できま
す。ImportedServiceSet で指定された値に一致するサービスがデプロイされてエクス
ポートされると、これは自動的にインポートされます。

手順

この手順に従って、コマンドラインから ImportedServiceSet を作成します。

1. cluster-admin ロールを持つユーザーとして Red Hat OpenShift Service on AWS CLI にログイ
ンします。以下のコマンドを入力します。次に、プロンプトが表示されたら、ユーザー名とパ
スワードを入力します。

2. Service Mesh コントロールプレーンをインストールしたプロジェクト (例: green-mesh-
system) に切り替えます。

3. 以下の例に基づいて ImportedServiceSet ファイルを作成します。ここでは、green-mesh
が、red-mesh によって以前にエクスポートされたサービスをインポートします。

red-mesh から green-mesh への ImportedServiceSet リソースの例

4. 以下のコマンドを実行して、green-mesh-system namespace に ImportedServiceSet リソース
をアップロードおよび作成します。

以下に例を示します。

5. フェデレーションメッシュ内のメッシュピアごとに、必要に応じて追加の ImportedServiceSet
リソースを作成します。

$ oc login --username=<NAMEOFUSER> <API token> https://<HOSTNAME>:6443

$ oc project green-mesh-system

kind: ImportedServiceSet
apiVersion: federation.maistra.io/v1
metadata:
 name: red-mesh
 namespace: green-mesh-system
spec:
 importRules:
 - type: NameSelector
 importAsLocal: false
 nameSelector:
 namespace: info
 name: red-ratings
 alias:
 namespace: info
 name: ratings

$ oc create -n <ControlPlaneNamespace> -f <ImportedServiceSet.yaml>

$ oc create -n green-mesh-system -f import-from-red-mesh.yaml

Red Hat OpenShift Service on AWS 4 Service Mesh

230

検証

次のコマンドを実行して、サービスが green-mesh にインポートされたことを確認します。

'green-mesh-system' namespace の importedserviceset/red-mesh オブジェクトの
status セクションを使用して、red mesh からエクスポートされたサービスが green
mesh にインポートされたことを確認する例

上記の例では、localService の入力済みフィールドで示されているように、ratings サービスの
みがインポートされます。Reviews サービスはインポートできますが、ImportedServiceSet オ
ブジェクトの importRules と一致しないため、現時点ではインポートされません。

1.18.13. フェイルオーバー用のフェデレーションメッシュの設定

フェイルオーバーとは、別のサーバーなどの信頼性の高いバックアップシステムに自動的かつシームレ
スに切り替える機能です。フェデレーションメッシュの場合は、あるメッシュのサービスを設定して、
別のメッシュのサービスにフェイルオーバーできます。

ImportedServiceSet リソースで importAsLocal と locality の設定を指定してか
ら、ImportedServiceSet で指定されたローカリティーへのサービスのフェイルオーバーを設定する
DestinationRule を指定することにより、フェイルオーバーのフェデレーションを設定します。

前提条件

2 つ以上の Red Hat OpenShift Service on AWS 4.6 以降のクラスターがすでにネットワーク化
およびフェデレーションされている。

フェデレーションメッシュのメッシュピアごとにすでに作成されている ExportedServiceSet
リソース。

フェデレーションメッシュのメッシュピアごとにすでに作成されている ImportedServiceSet
リソース。

cluster-admin ロールを持つアカウントがある。

1.18.13.1. フェイルオーバー用の ImportedServiceSet の設定

ローカリティ加重負荷分散を使用すると、管理者は、トラフィックの発信元と終了場所のローカリティ

$ oc get importedserviceset <PeerMeshImportedInto> -o yaml

$ oc -n green-mesh-system get importedserviceset/red-mesh -o yaml

status:
 importedServices:
 - exportedName: red-ratings.info.svc.green-mesh-exports.local
 localService:
 hostname: ratings.info.svc.red-mesh-imports.local
 name: ratings
 namespace: info
 - exportedName: reviews.red-mesh-info.svc.green-mesh-exports.local
 localService:
 hostname: ""
 name: ""
 namespace: ""

第1章 SERVICE MESH 2.X

231

ローカリティ加重負荷分散を使用すると、管理者は、トラフィックの発信元と終了場所のローカリティ
に基づいて、エンドポイントへのトラフィックの分散を制御できます。これらのローカリティは、
{region}/{zone}/{sub-zone} 形式でローカリティの階層を指定する任意のラベルを使用して指定しま
す。

このセクションの例では、green-meshは米国us-east地域にあり、us-eastはus-east地域にあります。

red-mesh から green-mesh への ImportedServiceSet リソースの例

表1.12 ImportedServiceLocalityフィールドテーブル

名前 説明 型

region: インポートされたサービスが配置
されている地域。

string

サブゾーン: インポートされたサービスが配置
されているサブゾーン。サブゾー
ンが指定されている場合は、ゾー
ンも指定する必要があります。

string

zone: インポートされたサービスが配置
されているゾーン。ゾーンを指定
する場合は、リージョンも指定す
る必要があります。

string

手順

1. cluster-admin ロールを持つユーザーとして Red Hat OpenShift Service on AWS CLI にログイ
ンし、次のコマンドを入力します。

kind: ImportedServiceSet
apiVersion: federation.maistra.io/v1
metadata:
 name: red-mesh #name of mesh that exported the service
 namespace: green-mesh-system #mesh namespace that service is being imported into
spec:
 importRules: # first matching rule is used
 # import ratings.info as ratings.bookinfo
 - type: NameSelector
 importAsLocal: true
 nameSelector:
 namespace: info
 name: ratings
 alias:
 # service will be imported as ratings.info.svc.red-mesh-imports.local
 namespace: info
 name: ratings
 #Locality within which imported services should be associated.
 locality:
 region: us-west

$ oc login --username=<NAMEOFUSER> <API token> https://<HOSTNAME>:6443

Red Hat OpenShift Service on AWS 4 Service Mesh

232

2. Service Mesh コントロールプレーンをインストールしたプロジェクトに変更し、次のコマンド
を入力します。

たとえば、green-mesh-system です。

3. ImportedServiceSet ファイルを編集します。ここで、<ImportedServiceSet.yaml> には、編
集するファイルへのフルパスが含まれています。以下のコマンドを入力してください。

たとえば、前の ImportedServiceSet の例で示したように、red-mesh-system から green-
mesh-system にインポートするファイルを変更する場合は、以下のようになります。

4. ファイルを変更します。

a. spec.importRules.importAsLocalをtrueに設定します。

b. spec.locality を region、zone、または subzone に設定します。

c. 変更を保存します。

1.18.13.2. フェイルオーバー用の DestinationRule の設定

以下を設定する DestinationRule リソースを作成します。

サービスの外れ値の検出。これは、フェイルオーバーを正しく機能させるには必要です。特
に、サービスのエンドポイントが異常である場合は把握できるようにサイドカープロキシーを
設定し、最終的に次のローカリティへのフェイルオーバーをトリガーします。

リージョン間のフェイルオーバーポリシー。これにより、リージョンの境界を超えたフェイル
オーバーが予測どおりに動作することが保証されます。

手順

1. cluster-admin ロールを持つユーザーとして Red Hat OpenShift Service on AWS CLI にログイ
ンします。以下のコマンドを入力します。次に、プロンプトが表示されたら、ユーザー名とパ
スワードを入力します。

2. Service Mesh コントロールプレーンをインストールしたプロジェクトに変更します。

たとえば、green-mesh-system です。

$ oc project <smcp-system>

$ oc project green-mesh-system

$ oc edit -n <smcp-system> -f <ImportedServiceSet.yaml>

$ oc edit -n green-mesh-system -f import-from-red-mesh.yaml

$ oc login --username=<NAMEOFUSER> <API token> https://<HOSTNAME>:6443

$ oc project <smcp-system>

$ oc project green-mesh-system

第1章 SERVICE MESH 2.X

233

3. 次の例に基づいて DestinationRule ファイルを作成します。ここで、green-mesh が使用でき
ない場合、トラフィックは us-east リージョンの green-mesh から us-west の red-mesh に
ルーティングされます。

DestinationRule の例

4. DestinationRule をデプロイします。次のコマンドを入力します。<DestinationRule> には
ファイルへのフルパスを追加します。

以下に例を示します。

1.18.14. フェデレーションメッシュからのサービスの削除

フェデレーションメッシュからサービスを削除する必要がある場合 (非推奨になるか、別のサービスで
置き換えられる場合など)、削除できます。

1.18.14.1. 単一のメッシュからサービスを削除するには、以下を実行します。

サービスにアクセスすべきでないメッシュピアの ImportedServiceSet リソースからサービスのエント
リーを削除します。

1.18.14.2. フェデレーションメッシュ全体からサービスを削除するには、以下を実行します。

サービスを所有するメッシュの ExportedServiceSet リソースからサービスのエントリーを削除しま
す。

1.18.15. フェデレーションメッシュからのメッシュの削除

フェデレーションからメッシュを削除する必要がある場合は、削除できます。

1. 削除されたメッシュの ServiceMeshControlPlane リソースを編集して、ピアメッシュのすべ

apiVersion: networking.istio.io/v1beta1
kind: DestinationRule
metadata:
 name: default-failover
 namespace: info
spec:
 host: "ratings.info.svc.cluster.local"
 trafficPolicy:
 loadBalancer:
 localityLbSetting:
 enabled: true
 failover:
 - from: us-east
 to: us-west
 outlierDetection:
 consecutive5xxErrors: 3
 interval: 10s
 baseEjectionTime: 1m

$ oc create -n <application namespace> -f <DestinationRule.yaml>

$ oc create -n info -f green-mesh-us-west-DestinationRule.yaml

Red Hat OpenShift Service on AWS 4 Service Mesh

234

1. 削除されたメッシュの ServiceMeshControlPlane リソースを編集して、ピアメッシュのすべ
てのフェデレーション Ingress ゲートウェイを削除します。

2. 削除されたメッシュがフェデレーションされているメッシュピアごとに、以下を実行します。

a. 2 つのメッシュをリンクする ServiceMeshPeer リソースを削除します。

b. ピアメッシュの ServiceMeshControlPlane リソースを編集して、削除されたメッシュに
対応する egress ゲートウェイを削除します。

1.19. 拡張

WebAssembly エクステンションを使用して、Red Hat OpenShift Service Mesh プロキシーに直接新し
い機能を追加できます。これにより、お使いのアプリケーションから、さらに一般的な機能を移動し
て、単一の言語で実装して、WebAssembly bytecode にコンパイルできます。

1.19.1. WebAssembly モジュールの概要

WebAssembly モジュールは、プロキシーなどの多くのプラットフォームで実行でき、これには、幅広
い言語サポート、高速実行、および sandboxed-by-default (デフォルトでサンドボックス化される) セ
キュリティーモデルが含まれます。

Red Hat OpenShift Service Mesh エクステンションとして Envoy HTTP フィルター を使用でき、幅広
い機能を提供します。

要求と応答の本体とヘッダーの操作

認証やポリシーのチェックなど、要求パスにないサービスへの帯域外 HTTP 要求

相互に通信するフィルター用のサイドチャネルデータストレージおよびキュー

注記

新しい WebAssembly エクステンションを作成するときは、WasmPlugin API を使用し
てください。ServiceMeshExtension API は Red Hat OpenShift Service Mesh バージョ
ン 2.2 で非推奨化され、Red Hat OpenShift Service Mesh バージョン 2.3 で廃止されまし
た。

Red Hat OpenShift Service Mesh エクステンションの作成には 2 つの部分があります。

1. proxy-wasm API を公開する SDK を使用してエクステンションを記述し、それを WebAssembly
モジュールにコンパイルする必要があります。

2. 次に、モジュールをコンテナーにパッケージ化する必要があります。

サポートされる言語

WebAssembly バイトコードにコンパイルする言語を使用して Red Hat OpenShift Service Mesh 拡張を
作成できますが、以下の言語には proxy-wasm API を公開する既存の SDK があるため、これを直接使用
できます。

表1.13 サポートされる言語

第1章 SERVICE MESH 2.X

235

https://www.envoyproxy.io/docs/envoy/v1.20.0/intro/arch_overview/http/http_filters#arch-overview-http-filters
https://github.com/proxy-wasm/spec

言語 保守管理者 リポジトリー

AssemblyScript solo.io solo-io/proxy-runtime

C++ proxy-wasm チーム (Istio コミュ
ニティー)

proxy-wasm/proxy-wasm-cpp-
sdk

Go tetrate.io tetratelabs/proxy-wasm-go-sdk

Rust proxy-wasm チーム (Istio コミュ
ニティー)

proxy-wasm/proxy-wasm-rust-
sdk

1.19.2. WasmPlugin コンテナー形式

Istio は、Wasm プラグインメカニズムで Open Container Initiative (OCI) イメージをサポートしていま
す。Wasm プラグインをコンテナーイメージとして配布でき、spec.url フィールドを使用してコンテ
ナーレジストリーの場所を参照できます。たとえば、quay.io/my-username/my-plugin:latest です。

WASM モジュールの各実行環境 (ランタイム) にはランタイム固有の設定パラメーターを設定できるた
め、WASM イメージは次の 2 つの階層で構成できます。

plugin.wasm (必須) - コンテンツレイヤー。このレイヤーは、ランタイムによってロードされ
る WebAssembly モジュールのバイトコードを含む .wasm バイナリーで構成されます。この
ファイルには plugin.wasm という名前を付ける必要があります。

runtime-config.json (オプション) - 設定レイヤー。このレイヤーは、ターゲットランタイムの
モジュールに関するメタデータを記述する JSON 形式の文字列で構成されます。ターゲットラ
ンタイムによっては、設定レイヤーに追加のデータが含まれる場合もあります。たとえば、
WASM Envoy Filter の設定には、フィルターで使用可能な root_ids が含まれています。

1.19.3. WasmPlugin API リファレンス

WasmPlugins API には、WebAssembly フィルターを介して Istio プロキシーによって提供される機能を
拡張するメカニズムがあります。

複数の WasmPlugin をデプロイできます。phase および priority の設定により、実行の順序が (Envoy
のフィルターチェーンの一部として) 決定され、ユーザー提供の WasmPlugins と Istio の内部フィル
ター間の複雑な対話設定が可能になります。

次の例では、認証フィルターが OpenID フローを実装し、Authorization ヘッダーに JSON Web Token
(JWT) を入力します。Istio 認証はこのトークンを消費し、ingress ゲートウェイにデプロイします。
WasmPlugin ファイルはプロキシーサイドカーファイルシステムに存在します。フィールドの URL に
注意してください。

apiVersion: extensions.istio.io/v1alpha1
kind: WasmPlugin
metadata:
 name: openid-connect
 namespace: istio-ingress
spec:
 selector:
 matchLabels:
 istio: ingressgateway

Red Hat OpenShift Service on AWS 4 Service Mesh

236

https://github.com/solo-io/proxy-runtime
https://github.com/proxy-wasm/proxy-wasm-cpp-sdk
https://github.com/tetratelabs/proxy-wasm-go-sdk
https://github.com/proxy-wasm/proxy-wasm-rust-sdk

以下は同じ例ですが、今回はファイルシステム内のファイルの代わりに Open Container Initiative (OCI)
イメージが使用されています。フィールド url、imagePullPolicy、および imagePullSecret に注意し
てください。

表1.14 WasmPlugin フィールドリファレンス

フィールド 型 説明 必須

spec.selector WorkloadSelector このプラグイン設定を適
用する必要がある
Pod/VM の特定のセット
を選択するために使用さ
れる基準。省略した場合
に、この設定は同じ
namespace 内のすべて
のワークロードインスタ
ンスに適用されま
す。WasmPlugin
フィールドが config
root namespace に存在
する場合は、任意の
namespace の該当する
すべてのワークロードに
適用されます。

いいえ

 url: file:///opt/filters/openid.wasm
 sha256: 1ef0c9a92b0420cf25f7fe5d481b231464bc88f486ca3b9c83ed5cc21d2f6210
 phase: AUTHN
 pluginConfig:
 openid_server: authn
 openid_realm: ingress

apiVersion: extensions.istio.io/v1alpha1
kind: WasmPlugin
metadata:
 name: openid-connect
 namespace: istio-system
spec:
 selector:
 matchLabels:
 istio: ingressgateway
 url: oci://private-registry:5000/openid-connect/openid:latest
 imagePullPolicy: IfNotPresent
 imagePullSecret: private-registry-pull-secret
 phase: AUTHN
 pluginConfig:
 openid_server: authn
 openid_realm: ingress

第1章 SERVICE MESH 2.X

237

spec.url string Wasm モジュールまたは
OCI コンテナーの
URL。スキームが存在し
ない場合は、デフォルト
で oci:// になり、OCI イ
メージを参照します。そ
の他の有効なスキームと
して、プロキシーコンテ
ナー内にローカルに存在
する.wasm モジュール
ファイルを参照するため
の file:// と、リモートで
ホストされる.wasm モ
ジュールファイルを参照
するための http[s]:// が
あります。

いいえ

spec.sha256 string Wasm モジュールまたは
OCI コンテナーの検証に
使用される SHA256
チェックサム。url
フィールドがすでに
SHA256 を参照している
場合 (@sha256: 表記を
使用) には、このフィー
ルドの値と一致する必要
があります。OCI イメー
ジがタグによって参照さ
れ、このフィールドが設
定されている場合は、プ
ル後にそのチェックサム
がこのフィールドの内容
に対して検証されます。

いいえ

フィールド 型 説明 必須

Red Hat OpenShift Service on AWS 4 Service Mesh

238

spec.imagePullPolicy PullPolicy OCI イメージをフェッチ
するときに適用されるプ
ル動作。イメージが
SHA ではなくタグで参
照されている場合にのみ
参照します。デフォルト
値は IfNotPresent で
す。ただし、URL
フィールドで OCI イ
メージが参照さ
れ、latest タグが使用
されている場合
は、Always の値がデ
フォルトで、K8s の動作
を反映しています。url
フィールドが file:// また
は http[s]:// を使用して
Wasm モジュールを直接
参照している場合は、設
定が無視されます。

いいえ

spec.imagePullSecret string OCI イメージのプルに使
用するクレデンシャル。
イメージをプルするとき
にレジストリーに対して
認証するためのプルシー
クレットな
ど、WasmPlugin オブ
ジェクトと同じ
namespace 内のシーク
レットの名前。

いいえ

spec.phase PluginPhase フィルターチェーンのど
こにこの WasmPlugin
オブジェクトを挿入する
かを決定します。

いいえ

フィールド 型 説明 必須

第1章 SERVICE MESH 2.X

239

spec.priority int64 phase の値が同じ
WasmPlugins オブ
ジェクトの順序を決定し
ます。複数の
WasmPlugins オブ
ジェクトが同じフェーズ
で同じワークロードに適
用される場合、それらは
優先度と降順をもとに適
用されます。優先度
フィールドが設定されて
いない場合や値が同じ
WasmPlugins オブ
ジェクトが 2 つある場
合、順序は
WasmPlugins オブ
ジェクトの名前と
namespace をもとに決
定されます。デフォルト
値は 0 です。

いいえ

spec.pluginName string Envoy 設定で使用される
プラグイン名。一部の
Wasm モジュールでは、
実行する Wasm プラグ
インを選択するためにこ
の値が必要になる場合が
あります。

いいえ

spec.pluginConfig Struct プラグインに渡される設
定。

いいえ

spec.pluginConfig.verific
ationKey

string 署名された OCI イメー
ジまたは Wasm モ
ジュールの署名を検証す
るために使用される公開
鍵。PEM 形式で指定す
る必要があります。

いいえ

フィールド 型 説明 必須

WorkloadSelector オブジェクトは、フィルターをプロキシーに適用できるかどうかを判別するために
使用される条件を指定します。一致の条件には、プロキシーに関連付けられたメタデータ、Pod/VM に
添付されたラベルなどのワークロードインスタンス情報、またはプロキシーが最初のハンドシェイク中
に Istio に提供するその他の情報が含まれます。複数の条件が指定されている場合、ワークロードイン
スタンスを選択するには、すべての条件が一致する必要があります。現在、ラベルベースの選択メカニ
ズムのみがサポートされています。

表1.15 WorkloadSelector

Red Hat OpenShift Service on AWS 4 Service Mesh

240

フィールド 型 説明 必須

matchLabels map<string, string> ポリシーを適用する必要
がある Pod/VM の特定
のセットを示す 1 つ以上
のラベル。ラベル検索の
範囲は、リソースが存在
する設定 namespace に
限定されます。

はい

PullPolicy オブジェクトは、OCI イメージをフェッチするときに適用されるプル動作を指定します。

表1.16 PullPolicy

値 説明

<empty> デフォルト値は IfNotPresent です。ただし、OCI
イメージのタグが latest の場合、デフォルト値は
Always です。

IfNotPresent イメージの既存のバージョンが以前にプルされてい
る場合は、それが使用されます。イメージのバー
ジョンがローカルに存在しない場合は、最新バー
ジョンをプルします。

Always このプラグインを適用するときは、常に最新バー
ジョンのイメージをプルします。

Struct は、動的に型付けされた値にマップされるフィールドで構成される構造化データ値を表します。
一部の言語では、Struct はネイティブ表現でサポートされている場合があります。たとえば、
JavaScript のようなスクリプト言語では、構造体はオブジェクトとして表されます。

表1.17 Struct

フィールド 型 説明

fields map<string, Value> 動的に型付けされた値のマップ。

PluginPhase は、プラグインが注入されるフィルターチェーンのフェーズを指定します。

表1.18 PluginPhase

フィールド 説明

第1章 SERVICE MESH 2.X

241

<empty> コントロールプレーンは、プラグインを挿入する場
所を決定します。これは通常、フィルターチェーン
の最後かつ、ルーターの直前にあります。プラグイ
ンが他のプラグインから独立している場合は、
PluginPhase を指定しないでください。

AUTHN Istio 認証フィルターの前にプラグインを挿入しま
す。

AUTHZ Istio 認証フィルターの前と Istio 認証フィルターの後
にプラグインを挿入します。

STATS Istio 統計フィルターの前と Istio 認証フィルターの後
にプラグインを挿入します。

フィールド 説明

1.19.3.1. WasmPlugin リソースのデプロイ

WasmPlugin リソースを使用して、Red Hat OpenShift Service Mesh エクステンションを有効にでき
ます。この例では、istio-system が Service Mesh コントロールプレーンプロジェクトの名前となりま
す。次の例では、OpenID Connect フローを実行してユーザーを認証する openid-connect フィルター
を作成します。

手順

1. 以下のリソース例を作成します。

plugin.yaml の例

2. 次のコマンドを使用して plugin.yaml ファイルを適用します。

apiVersion: extensions.istio.io/v1alpha1
kind: WasmPlugin
metadata:
 name: openid-connect
 namespace: istio-system
spec:
 selector:
 matchLabels:
 istio: ingressgateway
 url: oci://private-registry:5000/openid-connect/openid:latest
 imagePullPolicy: IfNotPresent
 imagePullSecret: private-registry-pull-secret
 phase: AUTHN
 pluginConfig:
 openid_server: authn
 openid_realm: ingress

$ oc apply -f plugin.yaml

Red Hat OpenShift Service on AWS 4 Service Mesh

242

1.19.4. ServiceMeshExtension コンテナー形式

コンテナーイメージを有効な拡張イメージにするために、WebAssembly モジュールのバイトコードを
含む .wasm ファイルとコンテナーファイルシステムのルートに manifest.yaml ファイルが必要です。

注記

新しい WebAssembly エクステンションを作成するときは、WasmPlugin API を使用し
てください。ServiceMeshExtension API は Red Hat OpenShift Service Mesh バージョ
ン 2.2 で非推奨化され、Red Hat OpenShift Service Mesh バージョン 2.3 で廃止されまし
た。

manifest.yaml

表1.19 manifest.yml フィールドの参照情報

フィールド 説明 必須

schemaVersion マニフェストスキーマのバージョ
ン管理に使用されます。現時点で
使用できる値は 1 のみです。

これは必須フィールドです。

name 拡張の名前です。 このフィールドは単なるメタデー
タであり、現時点では使用されて
いません。

description 拡張の説明。 このフィールドは単なるメタデー
タであり、現時点では使用されて
いません。

version 拡張のバージョンです。 このフィールドは単なるメタデー
タであり、現時点では使用されて
いません。

phase 拡張のデフォルトの実行フェーズ
です。

これは必須フィールドです。

priority 拡張のデフォルトの優先度です。 これは必須フィールドです。

module コンテナーファイルシステムの
ルートから WebAssembly モ
ジュールへの相対パスです。

これは必須フィールドです。

schemaVersion: 1

name: <your-extension>
description: <description>
version: 1.0.0
phase: PreAuthZ
priority: 100
module: extension.wasm

第1章 SERVICE MESH 2.X

243

1.19.5. ServiceMeshExtension リファレンス

ServiceMeshExtension API には、WebAssembly フィルターを介して Istio プロキシーによって提供され
る機能を拡張するメカニズムがあります。WebAssembly エクステンションの作成には 2 つの部分があ
ります。

1. proxy-wasm API を公開する SDK を使用してエクステンションを記述し、それを WebAssembly
モジュールにコンパイルします。

2. コンテナーにパッケージ化します。

注記

新しい WebAssembly エクステンションを作成するときは、WasmPlugin API を使用し
てください。Red Hat OpenShift Service Mesh バージョン 2.2 で非推奨化された
ServiceMeshExtension API は、Red Hat OpenShift Service Mesh バージョン 2.3 で廃
止されました。

表1.20 ServiceMeshExtension フィールドの参照情報

フィールド 説明

metadata.namespace ServiceMeshExtension ソースの
metadata.namespace フィールドには特殊なセマ
ンティクスが含まれます。これが Control Plane
Namespace と等しい場合、拡張はその
workloadSelector の値に一致する Service Mesh
のすべてのワークロードに適用されます。これは、
その他の Mesh namespace にデプロイされる場合
に、同じ namespace のワークロードにのみ適用され
ます。

spec.workloadSelector spec.workloadSelector フィールドには、Istio
Gateway リソース の spec.selector フィールドと
同じセマンティクスが含まれます。これは Pod ラベ
ルに基づいてワークロードに一致しま
す。workloadSelector の値が指定されていない場
合、拡張は namespace のすべてのワークロードに適
用されます。

spec.config これは、拡張に転送される構造化フィールドで、セ
マンティクスはデプロイしている拡張に依存しま
す。

spec.image 拡張を保持するイメージを参照するコンテナーイ
メージ URI です。

Red Hat OpenShift Service on AWS 4 Service Mesh

244

https://istio.io/v1.6/docs/reference/config/networking/gateway/#Gateway

spec.phase このフェーズでは、認証、認可、メトリクスの生成
などの既存の Istio 機能に関連して、拡張が挿入され
るフィルターチェーン内の場所を決定します。有効
な値は、PreAuthN、PostAuthN、PreAuthZ、
PostAuthZ、PreStats、PostStats です。このフィー
ルドは、拡張の manifest.yaml ファイルで設定され
る値にデフォルト設定されますが、ユーザーが上書
きできます。

spec.priority 同じ spec.phase の値を持つ複数のエクステンショ
ンが同じワークロードインスタンスに適用される場
合、spec.priority は実行の順序を決定します。優
先度が高いエクステンションが最初に実行されま
す。これにより、相互に依存する拡張が使用可能に
なります。このフィールドは、拡張の
manifest.yaml ファイルで設定される値にデフォル
ト設定されますが、ユーザーが上書きできます。

フィールド 説明

1.19.5.1. ServiceMeshExtension リソースのデプロイ

Red Hat OpenShift Service Mesh エクステンションは ServiceMeshExtension リソースを使用して有
効にできます。この例では、istio-system が Service Mesh コントロールプレーンプロジェクトの名前
となります。

注記

新しい WebAssembly エクステンションを作成するときは、WasmPlugin API を使用し
てください。ServiceMeshExtension API は Red Hat OpenShift Service Mesh バージョ
ン 2.2 で非推奨化され、Red Hat OpenShift Service Mesh バージョン 2.3 で廃止されまし
た。

Rust SDK を使用してビルドされる完全なサンプルは、header-append-filter を参照してください。これ
は、拡張の config フィールドから取られた名前および値で HTTP 応答に 1 つ以上のヘッダーを追加す
る単純なフィルターです。以下のスニペットの設定例を参照してください。

手順

1. 以下のリソース例を作成します。

ServiceMeshExtension リソースエクステンションの例

apiVersion: maistra.io/v1
kind: ServiceMeshExtension
metadata:
 name: header-append
 namespace: istio-system
spec:
 workloadSelector:

第1章 SERVICE MESH 2.X

245

https://github.com/maistra/header-append-filter

2. 以下のコマンドを使用して extension.yaml ファイルを適用します。

1.19.6. ServiceMeshExtension リソースから WasmPlugin リソースへの移行

Red Hat OpenShift Service Mesh バージョン 2.2 で非推奨化された ServiceMeshExtension API は、
Red Hat OpenShift Service Mesh バージョン 2.3 で廃止されました。ServiceMeshExtension API を使
用している場合、WebAssembly エクステンションを引き続き使用するには WasmPlugin API に移行す
る必要があります。

API は非常に似ています。移行の手順は、以下の 2 つのステップで構成されます。

1. プラグインファイルの名前を変更し、モジュールパッケージを更新する。

2. 更新されたコンテナーイメージを参照する WasmPlugin リソースを作成する。

1.19.6.1. API の変更

新しい WasmPlugin API は ServiceMeshExtension に似ていますが、いくつかの違いがあります (特
にフィールド名)。

表1.21 ServiceMeshExtensions と WasmPluginの間のフィールドの変更

ServiceMeshExtension WasmPlugin

spec.config spec.pluginConfig

spec.workloadSelector spec.selector

spec.image spec.url

spec.phase 有効な値: PreAuthN、PostAuthN、
PreAuthZ、PostAuthZ、PreStats、PostStats

spec.phase 有効な値: <empty>、AUTHN、
AUTHZ、STATS

以下は、ServiceMeshExtension リソースを WasmPlugin リソースに変換する方法の例になります。

ServiceMeshExtension リソース

 labels:
 app: httpbin
 config:
 first-header: some-value
 another-header: another-value
 image: quay.io/maistra-dev/header-append-filter:2.1
 phase: PostAuthZ
 priority: 100

$ oc apply -f <extension>.yaml

apiVersion: maistra.io/v1
kind: ServiceMeshExtension
metadata:
 name: header-append

Red Hat OpenShift Service on AWS 4 Service Mesh

246

上記の ServiceMeshExtension と等価な新しい WasmPlugin リソース

1.19.6.2. コンテナーイメージの形式の変更

新しい WasmPlugin コンテナーイメージの形式は ServiceMeshExtensions と似ていますが、以下の
ような違いがあります。

ServiceMeshExtension コンテナー形式には、コンテナーファイルシステムのルートディレク
トリーに manifest.yaml という名前のメタデータファイルが必要でした。WasmPlugin コンテ
ナー形式には manifest.yaml ファイルは必要ありません。

任意のファイル名を付けることができた .wasm ファイル (実際のプラグイン) には
plugin.wasm という名前を付け、コンテナーファイルシステムのルートディレクトリーに配置
する必要があります。

1.19.6.3. WasmPlugin リソースへの移行

WebAssembly 拡張を ServiceMeshExtension API から WasmPlugin API にアップグレードするには、
プラグインファイルの名前を変更します。

前提条件

ServiceMeshControlPlane がバージョン 2.2 以降にアップグレードされる。

手順

1. コンテナーイメージを更新します。プラグインがすでにコンテナー内の /plugin.wasm にある

 namespace: istio-system
spec:
 workloadSelector:
 labels:
 app: httpbin
 config:
 first-header: some-value
 another-header: another-value
 image: quay.io/maistra-dev/header-append-filter:2.2
 phase: PostAuthZ
 priority: 100

apiVersion: extensions.istio.io/v1alpha1
kind: WasmPlugin
metadata:
 name: header-append
 namespace: istio-system
spec:
 selector:
 matchLabels:
 app: httpbin
 url: oci://quay.io/maistra-dev/header-append-filter:2.2
 phase: STATS
 pluginConfig:
 first-header: some-value
 another-header: another-value

第1章 SERVICE MESH 2.X

247

1. コンテナーイメージを更新します。プラグインがすでにコンテナー内の /plugin.wasm にある
場合は、次のステップに進みます。そうでない場合は、以下を行います。

a. プラグインファイルの名前が plugin.wasm であることを確認します。拡張ファイルには
plugin.wasm という名前を付ける必要があります。

b. プラグインファイルがルート (/) ディレクトリーにあることを確認します。拡張ファイルを
コンテナーファイルシステムのルートに配置する必要があります。

c. コンテナーイメージを再ビルドして、これをコンテナーレジストリーにプッシュします。

2. ServiceMeshExtension リソースを削除し、ビルドした新しいコンテナーイメージを参照する
WasmPlugin リソースを作成します。

1.20. 3SCALE WEBASSEMBLY モジュールの使用

注記

threescale-wasm-auth モジュールは、3scale API Management 2.11 以降と Red Hat
OpenShift Service Mesh 2.1.0 以降のインテグレーションで実行されます。

threescale-wasm-auth モジュールは、アプリケーションバイナリーインターフェイス (ABI) と呼ばれ
るインターフェイスセットを使用する WebAssembly モジュールです。これは、ABI を実装するソフト
ウェアの一部を駆動する Proxy-WASM 仕様によって定義され、3scale に対する HTTP リクエストを承
認できます。

ABI 仕様として、Proxy-WASM は、host という名前のソフトウェアと、module、program、または
extension という名前のソフトウェアの間の相互作用を定義します。ホストは、モジュールが使用する
サービスセットを公開してタスクを実行し、この場合はプロキシーリクエストを処理します。

ホスト環境は、ソフトウェアの一部 (この場合は HTTP プロキシー) と対話する WebAssembly 仮想マシ
ンで構成されています。

モジュール自体は、仮想マシンで実行する手順と Proxy-WASM によって指定された ABI を除き、外部
環境とは独立して実行されます。これは、ソフトウェアを参照する拡張を提供するのに安全な方法で
す。拡張は、仮想マシンおよびホストと明確に定義された方法でのみ対話できます。対話により、コン
ピューティングモデルと、プロキシーが持つ外部への接続が提供されます。

1.20.1. 互換性

threescale-wasm-auth モジュールは、Proxy-WASM ABI 仕様のすべての実装と完全に互換性を持つよ
うに設計されています。ただし、この時点で、連携することが完全にテストされているのは Envoy リ
バースプロキシーだけです。

1.20.2. スタンドアロンモジュールとしての使用

その自己完結型設計により、このモジュールが Service Mesh と 3scale Istio アダプターのデプロイメン
トとは独立して Proxy-WASM プロキシーと連携するように設定できます。

1.20.3. threescale-wasm-auth モジュールの設定

Red Hat OpenShift Service on AWS のクラスター管理者は、threescale-wasm-auth モジュールを設定
し、アプリケーションバイナリーインターフェイス (ABI) を使用して 3scale API Management への
HTTP 要求を承認できます。ABI は、ホストとモジュール間の対話を定義し、ホストサービスを公開

Red Hat OpenShift Service on AWS 4 Service Mesh

248

https://webassembly.org
https://github.com/proxy-wasm/spec
https://www.envoyproxy.io

1

2

し、モジュールを使用してプロキシー要求を処理できます。

1.20.3.1. WasmPlugin API エクステンション

Service Mesh は、WasmPlugin と呼ばれるサイドカープロキシーに Proxy-WASM エクステンションを
指定して適用するためのカスタムリソース定義を提供します。Service Mesh は、3scale での HTTP API
管理を必要とするワークロードのセットにこのカスタムリソースを適用します。

注記

WebAssembly 拡張の設定は、現在手動プロセスです。3scale システムからサービスの設
定を取得するサポートは、今後のリリースでご利用いただけます。

前提条件

このモジュールを適用する Service Mesh デプロイメントで Kubernetes ワークロードおよび
namespace を特定します。

3scale テナントアカウントが必要です。適合するサービスならびに該当するアプリケーション
およびメトリクスが定義された SaaS または オンプレミス型 3scale 2.11 を参照してください。

以下の例は、threescale-wasm-auth モジュールのカスタムリソースの YAML 形式です。
この例では、アップストリームの Maistra バージョンの Service Mesh WasmPlugin API を
参照します。モジュールが適用されるアプリケーションのセットを特定する selector とと
もに threescale-wasm-auth モジュールがデプロイされる namespace を宣言する必要があ
ります。

namespace

selector

spec.pluginConfig フィールドはモジュール設定に依存し、直前の例では入力されません。こ
の例では、<yaml_configuration> プレースホルダーの値を使用します。このカスタムリソース
の例の形式を使用できます。

spec.pluginConfig フィールドはアプリケーションによって異なります。その他のフィー
ルドはすべて、このカスタムリソースの複数のインスタンス間で永続します。以下に例を
示します。

url: 新しいバージョンのモジュールがデプロイされる場合にのみ変更されます。

apiVersion: extensions.istio.io/v1alpha1
kind: WasmPlugin
metadata:
 name: <threescale_wasm_plugin_name>
 namespace: <info> 1
spec:
 selector: 2
 labels:
 app: <product_page>
 pluginConfig: <yaml_configuration>
 url: oci://registry.redhat.io/3scale-amp2/3scale-auth-wasm-rhel8:0.0.3
 phase: AUTHZ
 priority: 100

第1章 SERVICE MESH 2.X

249

https://www.3scale.net/signup
https://access.redhat.com/documentation/ja-jp/red_hat_3scale_api_management/2.11/html-single/installing_3scale/index#install-threescale-on-openshift-guide

phase: このモジュールは、OpenID Connect (OIDC) トークンの検証など、プロキシー
がローカルの承認を行った後に呼び出す必要があるため、同じままです。

spec.pluginConfig と残りのカスタムリソースにモジュール設定を追加したら、oc apply コマ
ンドでこれを適用します。

関連情報

ServiceMeshExtension リソースから WasmPlugin リソースへの移行

Custom Resources

1.20.4. 3scale 外部 ServiceEntry オブジェクトの適用

threescale-wasm-auth モジュールに 3scale に対するクエストを承認させるには、モジュールは 3scale
サービスにアクセスできる必要があります。Red Hat OpenShift Service Mesh 内でこれを行うには、外
部の ServiceEntry オブジェクトと対応する DestinationRule オブジェクトを TLS 設定に適用して、
HTTPS プロトコルを使用します。

カスタムリソース (CR) は、Service Management API および Account Management API のバックエン
ドおよびシステムコンポーネントのために、Service Mesh 内から 3scale Hosted (SaaS) への安全なア
クセスのためのサービスエントリーと宛先ルールを設定します。Service Management API は、各リク
エストの承認ステータスのクエリーを受信します。Account Management API は、サービスの API 管理
設定を提供します。

手順

1. 以下の外部 ServiceEntry CR および関連する 3scale Hosted バックエンド 用の
DestinationRule CR をクラスターに適用します。

a. ServiceEntry CR を service-entry-threescale-saas-backend.yml というファイルに追加
します。

ServiceEntry CR

b. DestinationRule CR を destination-rule-threescale-saas-backend.yml というファイルに
追加します。

DestinationRule CR

$ oc apply -f threescale-wasm-auth-info.yaml

apiVersion: networking.istio.io/v1beta1
kind: ServiceEntry
metadata:
 name: service-entry-threescale-saas-backend
spec:
 hosts:
 - su1.3scale.net
 ports:
 - number: 443
 name: https
 protocol: HTTPS
 location: MESH_EXTERNAL
 resolution: DNS

Red Hat OpenShift Service on AWS 4 Service Mesh

250

https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources

c. 以下のコマンドを実行して、3scale Hosted バックエンドの外部 ServiceEntry CR をクラ
スターに適用して保存します。

d. 以下のコマンドを実行して、3scale Hosted バックエンドの外部 DestinationRule CR をク
ラスターに適用して保存します。

2. 以下の外部 ServiceEntry CR および関連する 3scale Hosted システム 用の DestinationRule
CR をクラスターに適用します。

a. ServiceEntry CR を service-entry-threescale-saas-system.yml というファイルに追加し
ます。

ServiceEntry CR

b. DestinationRule CR を destination-rule-threescale-saas-system.yml というファイルに
追加します。

DestinationRule CR

apiVersion: networking.istio.io/v1beta1
kind: DestinationRule
metadata:
 name: destination-rule-threescale-saas-backend
spec:
 host: su1.3scale.net
 trafficPolicy:
 tls:
 mode: SIMPLE
 sni: su1.3scale.net

$ oc apply -f service-entry-threescale-saas-backend.yml

$ oc apply -f destination-rule-threescale-saas-backend.yml

apiVersion: networking.istio.io/v1beta1
kind: ServiceEntry
metadata:
 name: service-entry-threescale-saas-system
spec:
 hosts:
 - multitenant.3scale.net
 ports:
 - number: 443
 name: https
 protocol: HTTPS
 location: MESH_EXTERNAL
 resolution: DNS

apiVersion: networking.istio.io/v1beta1
kind: DestinationRule
metadata:
 name: destination-rule-threescale-saas-system
spec:
 host: multitenant.3scale.net

第1章 SERVICE MESH 2.X

251

c. 以下のコマンドを実行して、3scale Hosted システムの外部 ServiceEntry CR をクラス
ターに適用して保存します。

d. 以下のコマンドを実行して、3scale Hosted システムの外部 DestinationRule CR をクラス
ターに適用して保存します。

または、メッシュ内の 3scale サービスをデプロイできます。メッシュ内 3scale サービスをデプロイす
るには、3scale をデプロイしてデプロイにリンクすることにより、CR 内のサービスの場所を変更しま
す。

関連情報

サービスエントリーと宛先ルールのドキュメント

1.20.5. 3scale WebAssembly モジュール設定

WasmPlugin カスタムリソース仕様は、Proxy-WASM モジュールが読み取る設定を提供します。

仕様はホストに組み込まれ、Proxy-WASM モジュールによって読み取られます。通常、設定は、解析
するモジュールの JSON ファイル形式ですが、WasmPlugin リソースは仕様値を YAML として解釈
し、モジュールで使用するために JSON に変換できます。

スタンドアロンモードで Proxy-WASM モジュールを使用する場合は、JSON 形式を使用して設定を作
成する必要があります。JSON 形式を使用する場合は、host 設定ファイル内の必要な場所で、エス
ケープと引用を使用できます (例:Envoy)。WasmPlugin リソースで WebAssembly モジュールを使用す
る場合、設定は YAML 形式になります。この場合は、無効な設定により、JSON 表現に基づいて診断が
モジュールによって強制的にサイドカーコンテナーのロギングストリームに表示されます。

重要

EnvoyFilter カスタムリソースは一部の 3scale Istio アダプターまたは Service Mesh リ
リースで使用できますが、このカスタムリソースはサポートされる API ではありませ
ん。EnvoyFilter カスタムリソースの使用は推奨されていません。EnvoyFilter カスタム
リソースの代わりに WasmPlugin API を使用します。EnvoyFilter カスタムリソースを
使用する必要がある場合は、仕様を JSON 形式で指定する必要があります。

1.20.5.1. 3scale WebAssembly モジュールの設定

3scale の WebAssembly モジュール設定のアーキテクチャーは、3scale アカウントおよび承認サービス
や処理するサービスのリストによって異なります。

前提条件

前提条件は、すべてのケースで最小の必須フィールドのセットです。

 trafficPolicy:
 tls:
 mode: SIMPLE
 sni: multitenant.3scale.net

$ oc apply -f service-entry-threescale-saas-system.yml

$ oc apply -f <destination-rule-threescale-saas-system.yml>

Red Hat OpenShift Service on AWS 4 Service Mesh

252

3scale アカウントおよび承認サービス:backend-listener URL。

処理するサービスリスト: サービス ID と少なくとも 1 つの認証情報の検索方法、およびその検
索場所。

userkey、appid、appkey、および OpenID Connect (OIDC) パターンを処理する例がありま
す。

WebAssembly モジュールは、静的設定で指定した設定を使用します。たとえば、モジュールに
マッピングルール設定を追加する場合は、3scale 管理ポータルにこのようなマッピングルール
が設定されていない場合でも、常に適用されます。残りの WasmPlugin リソースは
spec.pluginConfig YAML エントリーに存在します。

1.20.5.2. 3scale WebAssembly モジュール api オブジェクト

3scale WebAssembly モジュールからの api 最上位文字列は、モジュールが使用する設定のバージョン
を定義します。

注記

存在しないバージョンまたはサポート対象外のバージョンの api オブジェクトの場合、
レンダリングされた 3scale WebAssembly モジュールは操作不能になります。

api 最上位文字列の例

api エントリーは、設定の残りの値を定義します。許可される値は v1 のみです。現在の設定との互換
性を壊す、または v1 を使用するモジュールが処理できないロジックを必要とする新しい設定には、異
なる値が必要になります。

1.20.5.3. 3scale WebAssembly モジュール system オブジェクト

system 最上位オブジェクトは、特定のアカウントの 3scale Account Management API にアクセスする
方法を指定します。upstream フィールドは、オブジェクトの最も重要な部分です。system オブジェ
クトはオプションですが、3scale のsystemコンポーネントへの接続を提供しない場合のオプションで
ある 3scale WebAssembly モジュールに完全な静的設定を提供する場合を除き、推奨されます。

system オブジェクトに加えて静的設定オブジェクトを指定する場合は、静的な設定オブジェクトが優
先されます。

apiVersion: extensions.istio.io/v1alpha1
kind: WasmPlugin
metadata:
 name: <threescale_wasm_plugin_name>
 namespace: <info>
spec:
 pluginConfig:
 api: v1
...

apiVersion: extensions.istio.io/v1alpha1
kind: WasmPlugin
metadata:
 name: <threescale_wasm_plugin_name>
spec:

第1章 SERVICE MESH 2.X

253

表1.22 system オブジェクトフィールド

名前 説明 必須

name 3scale サービスの識別子 (現在、
参照されていません)。

任意

upstream 問い合わせるネットワークホスト
の詳細。upstream は、system
として知られる 3scale Account
Management API ホストを参照し
ます。

はい

token 読み取り権限を持つ 3scale の個
人アクセストークン。

はい

ttl 新規の変更を取得する前に、この
ホストから取得した設定を有効な
ものと見なす最小時間 (秒数)。デ
フォルトは 600 秒 (10 分) で
す。注記: 最大の期間はありませ
んが、モジュールは通常、この
TTL が経過した後に妥当な時間内
に設定を取得します。

任意

1.20.5.4. 3scale WebAssembly モジュール upstream オブジェクト

upstream オブジェクトは、プロキシーが呼び出しを実行できる外部ホストを説明しています。

表1.23 upstream オブジェクトフィールド

名前 説明 必須

 pluginConfig:
 system:
 name: <saas_porta>
 upstream: <object>
 token: <my_account_token>
 ttl: 300
...

apiVersion: maistra.io/v1
upstream:
 name: outbound|443||multitenant.3scale.net
 url: "https://myaccount-admin.3scale.net/"
 timeout: 5000
...

Red Hat OpenShift Service on AWS 4 Service Mesh

254

name name は自由形式の識別子ではあ
りません。これは、プロキシー設
定で定義される外部ホストの識別
子です。スタンドアロン Envoy
設定の場合は、これは他のプロキ
シーの upstream とも呼ばれる
クラスター 名にマッピングしま
す。注記: Service Mesh および
3scale Istio アダプターコントロー
ルプレーンは、複数のフィールド
の区切り文字として垂直バー (|)
を使用する形式に従って名前を設
定します。この統合の目的上、常
に outbound|<port>||
<hostname> の形式を使用しま
す。

はい

url 記述されたサービスにアクセスす
るための完全な URL。スキームに
よって暗示されていない限り、
TCP ポートが含まれている必要が
あります。

はい

Timeout 応答にかかる時間がこの設定を超
えたこのサービスへの接続がエ
ラーとみなされるためのタイムア
ウト (ミリ秒単位)。デフォルトは
1000 秒です。

任意

名前 説明 必須

1.20.5.5. 3scale WebAssembly モジュール backend オブジェクト

backend 最上位オブジェクトは、HTTP リクエストの承認および報告のために 3scale Service
Management API にアクセスする方法を指定します。このサービスは、3scale の バックエンド コン
ポーネントによって提供されます。

表1.24 backend オブジェクトフィールド

apiVersion: extensions.istio.io/v1alpha1
kind: WasmPlugin
metadata:
 name: <threescale_wasm_plugin_name>
spec:
 pluginConfig:
...
 backend:
 name: backend
 upstream: <object>
...

第1章 SERVICE MESH 2.X

255

https://www.envoyproxy.io/docs/envoy/v1.19.0/api-v3/config/cluster/v3/cluster.proto#config-cluster-v3-cluster

名前 説明 必須

name 3scale バックエンドの識別子 (現
在、参照されていません)。

任意

upstream 問い合わせるネットワークホスト
の詳細。これは、system として
知られる 3scale Account
Management API ホストを参照す
る必要があります。

有効。最も重要な必須フィールド
です。

1.20.5.6. 3scale WebAssembly モジュール services オブジェクト

services の最上位オブジェクトは、module のこの特定のインスタンスで処理されるサービス識別子を
指定します。

アカウントには複数のサービスがあるため、どのサービスを処理するかを指定する必要があります。残
りの設定は、サービスの設定方法に関するものです。

services フィールドは必須です。有用とするサービスを少なくとも 1 つ含める必要がある配列です。

services 配列の各要素は、3scale サービスを表します。

表1.25 services オブジェクトフィールド

名前 説明 必須

ID この 3scale サービスの識別子 (現
在、参照されていません)。

はい

apiVersion: extensions.istio.io/v1alpha1
kind: WasmPlugin
metadata:
 name: <threescale_wasm_plugin_name>
spec:
 pluginConfig:
...
 services:
 - id: "2555417834789"
 token: service_token
 authorities:
 - "*.app"
 - 0.0.0.0
 - "0.0.0.0:8443"
 credentials: <object>
 mapping_rules: <object>
...

Red Hat OpenShift Service on AWS 4 Service Mesh

256

token この token は、System 内のサー
ビスのプロキシー設定にあるか、
以下の curl コマンドを使用して
System から取得できます。

curl
https://<system_host>/admin
/api/services/<service_id>/pr
oxy/configs/production/lates
t.json?access_token=
<access_token>" | jq
'.proxy_config.content.backe
nd_authentication_value

任意

authorities 文字列の配列。それぞれが一致す
る URL の 認証局 を表します。こ
れらの文字列は、アスタリスク
(*)、正符号 (+)、および疑問符
(?) マッチャーに対応する glob パ
ターンを受け入れます。

はい

credentials 検索する認証情報の種類と場所を
定義するオブジェクト。

はい

mapping_rules ヒットするマッピングルールおよ
び 3scale メソッドを表すオブ
ジェクトの配列。

任意

名前 説明 必須

1.20.5.7. 3scale WebAssembly モジュール credentials オブジェクト

credentials オブジェクトは service オブジェクトのコンポーネントです。credentials は、検索する認
証情報の種類と、このアクションを実行する手順を指定します。

すべてのフィールドはオプションですが、少なくとも 1 つの user_key または app_id を指定する必要
があります。各認証情報を指定する順番は、モジュールによって事前確立されているために無関係で
す。各認証情報の 1 つのインスタンスのみを指定します。

apiVersion: extensions.istio.io/v1alpha1
kind: WasmPlugin
metadata:
 name: <threescale_wasm_plugin_name>
spec:
 pluginConfig:
...
 services:
 - credentials:
 user_key: <array_of_lookup_queries>
 app_id: <array_of_lookup_queries>
 app_key: <array_of_lookup_queries>
...

第1章 SERVICE MESH 2.X

257

表1.26 credentials オブジェクトフィールド

名前 説明 必須

user_key これは、3scale ユーザーキーを定
義する検索クエリーの配列です。
ユーザーキーは、一般に API キー
と呼ばれます。

任意

app_id これは、3scale のアプリケーショ
ン識別子を定義する検索クエリー
の配列です。アプリケーションの
識別子は、3scale または Red Hat
Single Sign-On (RH-SS0) や
OpenID Connect (OIDC) などの
アイデンティティープロバイダー
を使用して提供されます。成功し
て 2 つの値に解決するたびに、こ
こで指定された検索クエリーの解
決で、app_id と app_key が設
定されます。

任意

app_key これは、3scale のアプリケーショ
ンキーを定義する検索クエリーの
配列です。解決される app_id の
ないアプリケーションキーは無意
味なため、app_id が指定されて
いる場合のみこのフィールドを指
定します。

任意

1.20.5.8. 3scale WebAssembly モジュール検索クエリー

lookup query オブジェクトは、credentials オブジェクトのフィールドの一部になります。特定の認証
情報フィールドが検出され、処理される方法を指定します。評価されると、解決に成功すると、1 つ以
上の値が見つかったことを意味します。解決に失敗したことは、値が見つからなかったことを意味しま
す。

lookup queries の配列は、ショートサーキットまたは関係を定義しています。いずれかのクエリーの
正常な解決により、残りのクエリーの評価が停止され、値を指定の credential-type に割り当てます。
アレイの各クエリーは、互いに独立しています。

lookup query は、1 つのフィールド (ソースオブジェクト) で構成されています。これは、複数のソー
スタイプの 1 つになります。以下の例を参照してください。

apiVersion: extensions.istio.io/v1alpha1
kind: WasmPlugin
metadata:
 name: <threescale_wasm_plugin_name>
spec:
 pluginConfig:
...
 services:
 - credentials:
 user_key:

Red Hat OpenShift Service on AWS 4 Service Mesh

258

https://access.redhat.com/products/red-hat-single-sign-on

1.20.5.9. 3scale WebAssembly モジュール source オブジェクト

source オブジェクトは、任意の credentials オブジェクトフィールド内のソースの配列の一部として
存在します。source-type として参照されるオブジェクトフィールド名は、以下のいずれかになりま
す。

header: 検索クエリーは、HTTP リクエストヘッダーを入力として受け取ります。

query_string: lookup query は、URL クエリー文字列パラメーターを入力として受け取りま
す。

filter: lookup query は、フィルターメタデータをインプットとして受け取ります。

すべての source-type オブジェクトには、少なくとも以下の 2 つのフィールドがあります。

表1.27 source-type オブジェクトフィールド

名前 説明 必須

keys 文字列の配列。それぞれが key
で、入力データで検索されたエン
トリーを参照します。

はい

ops key エントリーの照合を行う
operations の配列。配列は、操
作が入力を受け取り、次の操作の
出力を生成するパイプラインで
す。出力に失敗した operation
は、lookup query を失敗として
解決します。操作のパイプライン
順序によって評価順序が決まりま
す。

任意

filter フィールド名には、データの検索に使用するメタデータのパスを表示するのに必要な path エント
リーがあります。

key が入力データと一致する場合は、残りの鍵は評価されず、ソース解決アルゴリズムは、指定した
operations (ops) の実行にジャンプします。ops を指定しないと、一致する key の結果値 (ある場合)
が返されます。

Operations は、最初のフェーズが key を検索した後に、入力に対する特定の条件および変換を指定す
る方法を提供します。プロパティーを変換、デコード、および要求する必要があるときに、operations
を使用しますが、すべてのニーズに対応する成熟した言語は提供されず、Turing-completeness はあ
りません。

 - <source_type>: <object>
 - <source_type>: <object>
...
 app_id:
 - <source_type>: <object>
...
 app_key:
 - <source_type>: <object>
...

第1章 SERVICE MESH 2.X

259

スタックは operations の出力を保存します。評価されると、認証情報が消費する値の数に応じて、ス
タックの下部に値を割り当てて、lookup query は終了します。

1.20.5.10. 3scale WebAssembly モジュール operations オブジェクト

特定の source type に属する ops 配列の各要素は、値に変換を適用するか、テストを実行する
operation オブジェクトです。このようなオブジェクトに使用するフィールド名は operation 自体の名
前で、値は operation に対するパラメーターです。これは、フィールドと値のマップ、リスト、または
文字列など、構造化オブジェクトになります。

ほとんどの operations は、1 つ以上の入力を処理し、1 つ以上の出力を生成します。入力を使用した
り、出力を生成したりする場合、それらは値のスタックで作業します。操作によって消費される各値
は、値のスタックからポップアップされ、source マッチと共に初期入力されます。出力される値はス
タックにプッシュされます。他の operations は、特定のプロパティーを要求する以外、出力を使用ま
たは生成しませんが、値のスタックを検査します。

注記

解決が完了すると、次の手順 (値を app_id、app_key、または user_key に割り当てる
など) でピックアップされる値はスタックの下部の値から取得されます。

operations カテゴリーはいくつかあります。

decode: 別の形式を取得するために、入力値をデコードして変換します。

string: 文字列値を入力として取り、変換を実行し、確認します。

stack: 入力の値のセットを取得し、複数のスタック変換とスタック内の特定の位置の選択を実
行します。

check: 影響を及ぼさない方法で、操作セットに関するプロパティーを要求します。

control: 評価フローを変更できる操作を実施します。

format: 入力値の形式固有の構造を解析し、その値を検索します。

すべての操作は、name 識別子で文字列として指定されます。

関連情報

利用可能な 操作

1.20.5.11. 3scale WebAssembly モジュール mapping_rules オブジェクト

mapping_rules オブジェクトは service オブジェクトの一部です。これは、REST パスパターンのセッ
トならびに関連する 3scale メトリクスおよびパターンが一致する時に使用するカウント増分を指定し
ます。

system 最上位オブジェクトに動的設定が提供されていない場合は、値が必要です。system 最上位エ
ントリーに加えてオブジェクトが提供されると、mapping_rules オブジェクトが最初に評価されま
す。

mapping_rules は配列オブジェクトです。そのアレイの各要素は mapping_rule オブジェクトです。
受信したリクエストの評価されたマッチするマッピングルールにより、承認および APIManager への
レポート用の 3scale methods のセットが提供されます。複数のマッチングルールが同じ methods を

Red Hat OpenShift Service on AWS 4 Service Mesh

260

https://github.com/3scale/threescale-wasm-auth/blob/main/docs/operations.md

参照する場合は、3scale への呼び出し時に deltas の合算があります。たとえば、2 つのルールが、1 と
3 の deltas で Hits メソッドを 2 回増やすと、3scale にレポートする Hits の単一のメソッドエントリー
の delta は 4 になります。

1.20.5.12. 3scale WebAssembly モジュール mapping_rule オブジェクト

mapping_rule オブジェクトは mapping_rules オブジェクトの配列の一部です。

mapping_rule オブジェクトフィールドは、以下の情報を指定します。

照合する HTTP 要求メソッド。

パスに一致するパターン。

報告する量と共にレポートする 3scale メソッド。フィールドを指定する順序によって評価順序
が決まります。

表1.28 mapping_rule オブジェクトフィールド

名前 説明 必須

メソッド HTTP リクエストメソッド (動詞)
を表す文字列を指定します。許可
される値は、許可される HTTP メ
ソッド名の 1 つと一致し、大文字
と小文字を区別しません。すべて
のマッチのすべてのメソッドの特
殊な値。

はい

pattern HTTP リクエストの URI パスコン
ポーネントに一致するパターン。
このパターンは、3scale で説明さ
れている構文に従います。{this}
などの中括弧間の文字のシーケン
スを使用するワイルドカード (ア
スタリスク (*) 文字の使用) が許
可されます。

はい

usages usage オブジェクトのリスト。
ルールがマッチすると、deltas
を持つすべてのメソッドが、承認
およびレポートのために 3scale
に送信されるメソッドのリストに
追加されます。

以下の必須フィールドに usages
オブジェクトを埋め込みます。

name: レポートする
method のシステム名。

delta: その method の
増分。

はい

第1章 SERVICE MESH 2.X

261

last このルールが正常にマッチした場
合に、それ以外のマッピングルー
ルの評価を停止する必要があるか
どうか。

任意のブール値。デフォルトは
false です。

名前 説明 必須

以下の例は、3scale のメソッド間の既存の階層とは独立しています。つまり、3scale 側で実行されたす
べての内容はこれには影響しません。たとえば、Hits メトリクスは、それらすべての親となる可能性が
あるため、承認されたリクエストで報告されたすべてのメソッドの合計により 4 ヒットを保管し、
3scale Authrep API エンドポイントを呼び出します。

以下の例では、すべてのルールに一致する、パス /products/1/sold への GET リクエストを使用しま
す。

mapping_rules GET リクエストの例

すべての usages は、モジュールが使用状況データを使用して 3scale に実施するリクエストに追加さ
れます。

Hits: 1

products: 2

sales: 1

apiVersion: extensions.istio.io/v1alpha1
kind: WasmPlugin
metadata:
 name: <threescale_wasm_plugin_name>
spec:
 pluginConfig:
...
 mapping_rules:
 - method: GET
 pattern: /
 usages:
 - name: hits
 delta: 1
 - method: GET
 pattern: /products/
 usages:
 - name: products
 delta: 1
 - method: ANY
 pattern: /products/{id}/sold
 usages:
 - name: sales
 delta: 1
 - name: products
 delta: 1
...

Red Hat OpenShift Service on AWS 4 Service Mesh

262

1.20.6. 認証情報ユースケースの 3scale WebAssembly モジュールの例

ほとんどの時間を費やして、設定手順を適用してサービスへのリクエストの認証情報を取得します。

以下は credentials の例です。これは、特定のユースケースに合わせて変更できます。

複数のソースオブジェクトと独自の lookup queries を指定する場合、これらはすべて組み合わせるこ
とができますが、いずれか 1 つが正しく解決されるまで、それらは順番に評価されます。

1.20.6.1. クエリー文字列パラメーターの API キー (user_key)

以下の例では、クエリー文字列パラメーターまたは同じ名前のヘッダーで user_key を検索します。

1.20.6.2. アプリケーション ID およびキー

以下の例では、クエリーまたはヘッダーの app_key および app_id 認証情報を検索します。

apiVersion: extensions.istio.io/v1alpha1
kind: WasmPlugin
metadata:
 name: <threescale_wasm_plugin_name>
spec:
...
 services:
...
 credentials:
 user_key:
 - query_string:
 keys:
 - <user_key>
 - header:
 keys:
 - <user_key>
...

apiVersion: extensions.istio.io/v1alpha1
kind: WasmPlugin
metadata:
 name: <threescale_wasm_plugin_name>
spec:
...
 services:
...
 credentials:
 app_id:
 - query_string:
 keys:
 - <app_id>
 - header:
 keys:
 - <app_id>
 app_key:
 - query_string:
 keys:
 - <app_key>

第1章 SERVICE MESH 2.X

263

1.20.6.3. 認証ヘッダー

リクエストには、authorization ヘッダーに app_id および app_key が含まれます。最後に出力される
値が 1 つまたは 2 つある場合は、app_key を割り当てることができます。

ここでの解決は、最後に出力された 1 つまたは 2 つの出力がある場合は app_key を割り当てます。

authorization ヘッダーは承認の種類で値を指定し、その値は Base64 としてエンコードされます。つ
まり、値を空白文字で分割し、2 番目の出力を取得して、コロン (:) をセパレーターとして使用して再
度分割できます。たとえば、app_id:app_key という形式を使用する場合、ヘッダーは以下の
credential の例のようになります。

aladdin:opensesame: Authorization: Basic YWxhZGRpbjpvcGVuc2VzYW1l

以下の例のように、小文字のヘッダーフィールド名を使用する必要があります。

前述のユースケースの例は、authorization のヘッダーを確認します。

1. これは文字列の値を取り、スペースで分割し、credential-type および credential 自体の少な
くとも 2 つの値を生成することを確認してから、credential-type をドロップします。

 - header:
 keys:
 - <app_key>
...

apiVersion: extensions.istio.io/v1alpha1
kind: WasmPlugin
metadata:
 name: <threescale_wasm_plugin_name>
spec:
...
 services:
...
 credentials:
 app_id:
 - header:
 keys:
 - authorization
 ops:
 - split:
 separator: " "
 max: 2
 - length:
 min: 2
 - drop:
 head: 1
 - base64_urlsafe
 - split:
 max: 2
 app_key:
 - header:
 keys:
 - app_key
...

Red Hat OpenShift Service on AWS 4 Service Mesh

264

2. 次に、必要なデータが含まれる 2 番目の値をデコードし、最初の app_id の後にもしあれば
app_key が含まれる操作スタックとなるように、コロン (:) 文字を使用して分割します。

a. app_key が認証ヘッダーに存在しない場合は、特定のソースがチェックされます (この場
合は、キー app_key のヘッダーなど)。

3. credentials に追加の条件を追加するには、Basic 認証を許可します。ここで、app_id は
aladdin もしくは admin、または長さが 8 文字以上の任意の app_id になります。

4. app_key には値が含まれ、以下の例のように最小で 64 文字を指定する必要があります。

apiVersion: extensions.istio.io/v1alpha1
kind: WasmPlugin
metadata:
 name: <threescale_wasm_plugin_name>
spec:
...
 services:
...
 credentials:
 app_id:
 - header:
 keys:
 - authorization
 ops:
 - split:
 separator: " "
 max: 2
 - length:
 min: 2
 - reverse
 - glob:
 - Basic
 - drop:
 tail: 1
 - base64_urlsafe
 - split:
 max: 2
 - test:
 if:
 length:
 min: 2
 then:
 - strlen:
 max: 63
 - or:
 - strlen:
 min: 1
 - drop:
 tail: 1
 - assert:
 - and:
 - reverse
 - or:
 - strlen:
 min: 8

第1章 SERVICE MESH 2.X

265

5. authorization ヘッダーの値を選択したら、タイプが上部に配置されるようにスタックを逆にし
て Basic credential-type を取得します。

6. glob マッチを実行します。検証し、認証情報がデコードされ、分割されると、スタックの下部
に app_id を取得し、上部に app_key を取得する可能性があります。

7. test: を実行します。スタックに 2 つの値がある場合は、app_key が取得されたことになりま
す。

a. app_id および app_key を含め、文字列の長さが 1 から 63 文字になるようにします。キー
の長さがゼロの場合は破棄し、キーが存在しないものとして続行します。app_id のみがあ
り、app_key がない場合、不明なブランチは、テストに成功し、評価が続行されます。

最後の操作は assert で、スタックに副作用がないことを示します。その後、スタックを変更できま
す。

1. app_id が最上部になるように、スタックを逆にします。

a. app_key が存在するかどうかで、スタックを逆にすると、app_id が上部になります。

2. and を使用して、テスト間でスタックの内容を保持します。
次に、以下のいずれかの方法を使用します。

app_id に 8 文字以上の文字列が設定されていることを確認してください。

app_id が aladdin または admin と一致していることを確認します。

1.20.6.4. OpenID Connect (OIDC) のユースケース

Service Mesh および 3scale Istio アダプターの場合は、以下の例のように RequestAuthentication をデ
プロイし、独自のワークロードデータおよび jwtRules を入力する必要があります。

RequestAuthentication を適用するとき、JWT トークンを検証するためにネイティブプラグインで
Envoy を設定します。プロキシーは、モジュールを実行する前にすべてを検証します。したがって、失
敗したリクエストが 3scale WebAssembly モジュールに実行されません。

 - glob:
 - aladdin
 - admin
...

apiVersion: security.istio.io/v1beta1
kind: RequestAuthentication
metadata:
 name: jwt-example
 namespace: info
spec:
 selector:
 matchLabels:
 app: productpage
 jwtRules:
 - issuer: >-
 http://keycloak-keycloak.34.242.107.254.nip.io/auth/realms/3scale-keycloak
 jwksUri: >-
 http://keycloak-keycloak.34.242.107.254.nip.io/auth/realms/3scale-keycloak/protocol/openid-
connect/certs

Red Hat OpenShift Service on AWS 4 Service Mesh

266

https://www.envoyproxy.io/docs/envoy/v1.19.0/api-v3/extensions/filters/http/jwt_authn/v3/config.proto.html

JWT トークンが検証されると、プロキシーはそのコンテンツを内部メタデータオブジェクトに格納し
ます。エントリーのキーは、プラグインの特定の設定に依存します。このユースケースでは、不明な
キー名が含まれる単一のエントリーを持つ構造化オブジェクトを検索できます。

OIDC の 3scale app_id は、OAuth client_id と一致します。これは JWT トークンの azp フィールドま
たは aud フィールドにあります。

Envoy のネイティブ JWT 認証フィルターから app_id フィールドを取得するには、以下の例を参照し
てください。

この例では、モジュールに対し、filter ソースタイプを使用して Envoy 固有の JWT 認証ネイティブプ
ラグインからオブジェクトのフィルターメタデータを検索するよう指示します。このプラグインには、1
つのエントリーと事前に設定された名前を持つ構造化オブジェクトの一部として JWT トークンが含ま
れます。0 を使用して、単一のエントリーのみにアクセスするように指定します。

結果の値は、以下の 2 つのフィールドを解決する構造です。

azp: app_id が見つけられる値。

aud: この情報も見つけられる値。

この操作により、割り当て用に 1 つの値のみが保持されます。

1.20.6.5. ヘッダーからの JWT トークンの取得

一部のセットアップには、JWT トークンの検証プロセスがあり、検証されたトークンが JSON 形式の
ヘッダーを介してこのモジュールに到達する場合があります。

app_id を取得するには、以下の例を参照してください。

apiVersion: extensions.istio.io/v1alpha1
kind: WasmPlugin
metadata:
 name: <threescale_wasm_plugin_name>
spec:
...
 services:
...
 credentials:
 app_id:
 - filter:
 path:
 - envoy.filters.http.jwt_authn
 - "0"
 keys:
 - azp
 - aud
 ops:
 - take:
 head: 1
...

apiVersion: extensions.istio.io/v1alpha1
kind: WasmPlugin
metadata:
 name: <threescale_wasm_plugin_name>

第1章 SERVICE MESH 2.X

267

1.20.7. 3scale WebAssembly モジュールの機能する最低限の設定

以下は、3scale WebAssembly モジュールの機能する最低限の設定の例です。これをコピーアンドペー
ストし、これを独自の設定で機能するように編集できます。

spec:
...
 services:
...
 credentials:
 app_id:
 - header:
 keys:
 - x-jwt-payload
 ops:
 - base64_urlsafe
 - json:
 - keys:
 - azp
 - aud
 - take:
 head: 1
,,,

apiVersion: extensions.istio.io/v1alpha1
kind: WasmPlugin
metadata:
 name: <threescale_wasm_plugin_name>
spec:
 url: oci://registry.redhat.io/3scale-amp2/3scale-auth-wasm-rhel8:0.0.3
 imagePullSecret: <optional_pull_secret_resource>
 phase: AUTHZ
 priority: 100
 selector:
 labels:
 app: <product_page>
 pluginConfig:
 api: v1
 system:
 name: <system_name>
 upstream:
 name: outbound|443||multitenant.3scale.net
 url: https://istiodevel-admin.3scale.net/
 timeout: 5000
 token: <token>
 backend:
 name: <backend_name>
 upstream:
 name: outbound|443||su1.3scale.net
 url: https://su1.3scale.net/
 timeout: 5000
 extensions:
 - no_body
 services:
 - id: '2555417834780'

Red Hat OpenShift Service on AWS 4 Service Mesh

268

1.21. 3SCALE ISTIO アダプターの使用

3scale Istio アダプターはオプションのアダプターであり、これを使用すると、Red Hat OpenShift
Service Mesh 内で実行中のサービスにラベルを付け、そのサービスを 3scale API Management ソ
リューションと統合できます。これは Red Hat OpenShift Service Mesh には必要ありません。

重要

3scale Istio アダプターは、Red Hat OpenShift Service Mesh バージョン 2.0 以前でのみ
使用できます。Mixer コンポーネントはリリース 2.0 で非推奨となり、リリース 2.1 で削
除されました。Red Hat OpenShift Service Mesh バージョン 2.1.0 以降では、3scale
WebAssembly モジュール を使用する必要があります。

3scale Istio アダプターで 3scale バックエンドキャッシュを有効にする必要がある場合
は、Mixer ポリシーと Mixer Telemetry も有効にする必要があります。Red Hat
OpenShift Service Mesh コントロールプレーンのデプロイ を参照してください。

1.21.1. 3scale アダプターと Red Hat OpenShift Service Mesh の統合

これらの例を使用して、3scale Istio アダプターを使用してサービスに対する要求を設定できます。

前提条件

Red Hat OpenShift Service Mesh バージョン 2.x

稼働している 3scale アカウント (SaaS または 3scale 2.9 On-Premises)

バックエンドキャッシュを有効にするには 3scale 2.9 以上が必要です。

Red Hat OpenShift Service Mesh の前提条件

 authorities:
 - "*"
 credentials:
 user_key:
 - query_string:
 keys:
 - <user_key>
 - header:
 keys:
 - <user_key>
 app_id:
 - query_string:
 keys:
 - <app_id>
 - header:
 keys:
 - <app_id>
 app_key:
 - query_string:
 keys:
 - <app_key>
 - header:
 keys:
 - <app_key>

第1章 SERVICE MESH 2.X

269

https://www.3scale.net/signup/
https://access.redhat.com/documentation/ja-jp/red_hat_3scale_api_management/2.9/html/installing_3scale/install-threescale-on-openshift-guide

Mixer ポリシーの適用が有効になっていることを確認します。「Mixer ポリシー適用の更新」セ
クションでは、現在の Mixer ポリシーの適用ステータスをチェックし、ポリシーの適用を有効
にする手順が説明されています。

Mixer プラグインを使用している場合は、Mixer ポリシーと Telemetry は有効にする必要があり
ます。

アップグレード時に、Service Mesh コントロールプレーン (SMCP) を適切に設定する必要
があります。

注記

3scale Istio アダプターを設定するために、アダプターパラメーターをカスタムリソース
ファイルに追加する手順は、Red Hat OpenShift Service Mesh カスタムリソースを参照
してください。

注記

kind: handler リソースにとくに注意してください。これを 3scale アカウントの認証情
報を使用して更新する必要があります。オプションで service_id をハンドラーに追加で
きますが、この設定は 3scale アカウントの 1 つのサービスに対してのみ有効で、後方互
換性を確保するためにだけ維持されています。service_id をハンドラーに追加し、他の
サービスに対して 3scale を有効にする必要がある場合は、別の service_ids で追加のハ
ンドラーを作成する必要があります。

以下の手順に従って、3scale アカウントごとに単一のハンドラーを使用します。

手順

1. 3scale アカウントのハンドラーを作成し、アカウントの認証情報を指定します。サービス識別
子を省略します。

オプションで、params セクション内の backend_url フィールドを指定して、3scale 設定に
よって提供される URL を上書きできます。これは、アダプターが 3scale のオンプレミスイン
スタンスと同じクラスターで実行され、内部クラスター DNS を利用する必要がある場合に役立
ちます。

2. 3scale アカウントに属するサービスの Deployment リソースを編集するか、パッチを適用しま
す。

a. 有効な service_id に対応する値を使用して "service-mesh.3scale.net/service-id" ラベル
を追加します。

b. 手順 1 の ハンドラーリソースの名前 の値を使用して "service-

 apiVersion: "config.istio.io/v1alpha2"
 kind: handler
 metadata:
 name: threescale
 spec:
 adapter: threescale
 params:
 system_url: "https://<organization>-admin.3scale.net/"
 access_token: "<ACCESS_TOKEN>"
 connection:
 address: "threescale-istio-adapter:3333"

Red Hat OpenShift Service on AWS 4 Service Mesh

270

b. 手順 1 の ハンドラーリソースの名前 の値を使用して "service-
mesh.3scale.net/credentials" ラベルを追加します。

3. 他のサービスを追加する場合は、手順 2 を実行して、3scale アカウントの認証情報とそのサー
ビス識別子にリンクします。

4. 3scale 設定でルールの設定を変更し、ルールを 3scale ハンドラーにディスパッチします。

ルール設定の例

1.21.1.1. 3scale カスタムリソースの生成

アダプターには、handler、instance、および rule カスタムリソースの生成を可能にするツールが含ま
れます。

表1.29 使用法

オプション 説明 必須 デフォルト値

-h, --help 利用可能なオプションの
ヘルプ出力を生成します

いいえ

--name この URL の一意の名
前、トークンのペア

はい

-n, --namespace テンプレートを生成する
namespace

いいえ istio-system

-t, --token 3scale アクセストークン はい

-u, --url 3scale 管理ポータル
URL

はい

--backend-url 3scale バックエンド
URL。これが設定されて
いる場合は、システム設
定から読み込まれる値が
オーバーライドされま
す。

いいえ

-s, --service 3scale API/サービス ID いいえ

 apiVersion: "config.istio.io/v1alpha2"
 kind: rule
 metadata:
 name: threescale
 spec:
 match: destination.labels["service-mesh.3scale.net"] == "true"
 actions:
 - handler: threescale.handler
 instances:
 - threescale-authorization.instance

第1章 SERVICE MESH 2.X

271

--auth 指定する 3scale 認証パ
ターン (1=API Key,
2=App Id/App Key,
3=OIDC)

いいえ ハイブリッド

-o, --output 生成されたマニフェスト
を保存するファイル

いいえ 標準出力

--version CLI バージョンを出力
し、即座に終了する

いいえ

オプション 説明 必須 デフォルト値

1.21.1.1.1. URL サンプルからのテンプレートの生成

注記

デプロイされたアダプターからのマニフェストの生成 で、3scale アダプターコ
ンテナーイメージからの oc exec を使用して以下のコマンドを実行します。

3scale-config-gen コマンドを使用すると、YAML 構文とインデントエラーを回
避するのに役立ちます。

このアノテーションを使用する場合は --service を省略できます。

このコマンドは、oc exec を使用してコンテナーイメージ内から起動する必要が
あります。

手順

3scale-config-gen コマンドを使用して、トークンと URL のペアを 1 つのハンドラーとして複
数のサービスで共有できるようにテンプレートを自動生成します。

$ 3scale-config-gen --name=admin-credentials --url="https://<organization>-
admin.3scale.net:443" --token="[redacted]"

以下の例では、ハンドラーに埋め込まれたサービス ID を使用してテンプレートを生成します。

$ 3scale-config-gen --url="https://<organization>-admin.3scale.net" --name="my-unique-id" --
service="123456789" --token="[redacted]"

関連情報

トークン

1.21.1.2. デプロイされたアダプターからのマニフェストの生成

注記

Red Hat OpenShift Service on AWS 4 Service Mesh

272

https://access.redhat.com/documentation/ja-jp/red_hat_3scale_api_management/2.10/html-single/admin_portal_guide/index#tokens

注記

NAME は、3scale で管理するサービスの識別に使用する識別子です。

CREDENTIALS_NAME 参照は、ルール設定の match セクションに対応する識
別子です。CLI ツールを使用している場合は、NAME 識別子に自動設定されま
す。

この値は具体的なものでなくても構いませんが、ラベル値はルールの内容と一致
させる必要があります。詳細は、アダプター経由でのサービストラフィックの
ルーティング を参照してください。

1. このコマンドを実行して、istio-system namespace でデプロイされたアダプターからマニフェ
ストを生成します。

$ export NS="istio-system" URL="https://replaceme-admin.3scale.net:443" NAME="name"
TOKEN="token"
oc exec -n ${NS} $(oc get po -n ${NS} -o jsonpath='{.items[?
(@.metadata.labels.app=="3scale-istio-adapter")].metadata.name}') \
-it -- ./3scale-config-gen \
--url ${URL} --name ${NAME} --token ${TOKEN} -n ${NS}

2. これでターミナルにサンプル出力が生成されます。必要に応じて、これらのサンプルを編集
し、oc create コマンドを使用してオブジェクトを作成します。

3. 要求がアダプターに到達すると、アダプターはサービスが 3scale の API にどのようにマッピン
グされるかを認識している必要があります。この情報は、以下のいずれかの方法で提供できま
す。

a. ワークロードにラベルを付ける (推奨)

b. ハンドラーを service_id としてハードコーディングする

4. 必要なアノテーションでワークロードを更新します。

注記

ハンドラーにまだ組み込まれていない場合は、このサンプルで提供されたサービ
ス ID のみを更新する必要があります。ハンドラーの設定が優先されます。

$ export CREDENTIALS_NAME="replace-me"
export SERVICE_ID="replace-me"
export DEPLOYMENT="replace-me"
patch="$(oc get deployment "${DEPLOYMENT}"
patch="$(oc get deployment "${DEPLOYMENT}" --template='{"spec":{"template":{"metadata":
{"labels":{ {{ range $k,$v := .spec.template.metadata.labels }}"{{ $k }}":"{{ $v }}",{{ end
}}"service-mesh.3scale.net/service-id":"'"${SERVICE_ID}"'","service-
mesh.3scale.net/credentials":"'"${CREDENTIALS_NAME}"'"}}}}}')"
oc patch deployment "${DEPLOYMENT}" --patch ''"${patch}"''

1.21.1.3. アダプター経由でのサービストラフィックのルーティング

以下の手順に従って、3scale アダプターを使用してサービスのトラフィックを処理します。

前提条件

第1章 SERVICE MESH 2.X

273

https://github.com/3scale/3scale-istio-adapter/blob/v2.X/README.md#routing-service-traffic-through-the-adapter

前提条件

3scale 管理者から受け取る認証情報とサービス ID

手順

1. kind: rule リソース内で、以前に設定で作成した destination.labels["service-
mesh.3scale.net/credentials"] == "threescale" ルールと一致させます。

2. 上記のラベルを、ターゲットワークロードのデプロイメントで PodTemplateSpec に追加し、
サービスを統合します。値 threescale は生成されたハンドラーの名前を参照します。このハン
ドラーは、3scale を呼び出すのに必要なアクセストークンを保存します。

3. destination.labels["service-mesh.3scale.net/service-id"] == "replace-me" ラベルをワーク
ロードに追加し、要求時にサービス ID をインスタンス経由でアダプターに渡します。

1.21.2. 3scale での統合設定

以下の手順に従って、3scale の統合設定を行います。

注記

3scale SaaS を使用している場合は、Red Hat OpenShift Service Mesh は Early Access
プログラムの一部として有効になっています。

手順

1. [your_API_name] → Integration の順に移動します。

2. Settings をクリックします。

3. Deployment で Istio オプションを選択します。

デフォルトでは Authentication の API Key (user_key) オプションが選択されます。

4. Update Product をクリックして選択内容を保存します。

5. Configuration をクリックします。

6. 設定の更新 をクリックします。

1.21.3. キャッシング動作

3scale System API からの応答は、アダプター内でデフォルトでキャッシュされま
す。cacheTTLSeconds 値よりも古いと、エントリーはキャッシュから消去されます。また、デフォル
トでキャッシュされたエントリーの自動更新は、cacheRefreshSeconds 値に基づいて、期限が切れる
前に数秒間試行されます。cacheTTLSeconds 値よりも高い値を設定することで、自動更新を無効にで
きます。

cacheEntriesMax を正の値以外に設定すると、キャッシングを完全に無効にできます。

更新プロセスを使用すると、到達不能になるホストのキャッシュされた値が、期限が切れて最終的に消
去される前に再試行されます。

1.21.4. 認証要求

Red Hat OpenShift Service on AWS 4 Service Mesh

274

このリリースでは、以下の認証方法をサポートします。

標準 API キー: 単一のランダム文字列またはハッシュが識別子およびシークレットトークンとし
て機能します。

アプリケーション ID とキーのペア: イミュータブルな識別子とミュータブルなシークレット
キー文字列。

OpenID 認証方法: JSON Web トークンから解析されるクライアント ID 文字列。

1.21.4.1. 認証パターンの適用

以下の認証方法の例に従って instance カスタムリソースを変更し、認証動作を設定します。認証情報
は、以下から受け取ることができます。

要求ヘッダー

要求パラメーター

要求ヘッダーとクエリーパラメーターの両方

注記

ヘッダーの値を指定する場合、この値は小文字である必要があります。たとえば、ヘッ
ダーを User-Key として送信する必要がある場合、これは設定で
request.headers["user-key"] として参照される必要があります。

1.21.4.1.1. API キー認証方法

Service Mesh は、subject カスタムリソースパラメーターの user オプションで指定されたクエリーパ
ラメーターと要求ヘッダーで API キーを検索します。これは、カスタムリソースファイルで指定される
順序で値をチェックします。不要なオプションを省略することで、API キーの検索をクエリーパラメー
ターまたは要求ヘッダーに制限できます。

この例では、Service Mesh は user_key クエリーパラメーターの API キーを検索します。API キーがク
エリーパラメーターにない場合、Service Mesh は user-key ヘッダーを確認します。

API キー認証方法の例

アダプターが異なるクエリーパラメーターまたは要求ヘッダーを検査するようにする場合は、名前を適

apiVersion: "config.istio.io/v1alpha2"
kind: instance
metadata:
 name: threescale-authorization
 namespace: istio-system
spec:
 template: authorization
 params:
 subject:
 user: request.query_params["user_key"] | request.headers["user-key"] | ""
 action:
 path: request.url_path
 method: request.method | "get"

第1章 SERVICE MESH 2.X

275

アダプターが異なるクエリーパラメーターまたは要求ヘッダーを検査するようにする場合は、名前を適
宜変更します。たとえば、“key” というクエリーパラメーターの API キーを確認するに
は、request.query_params["user_key"] を request.query_params["key"] に変更します。

1.21.4.1.2. アプリケーション ID およびアプリケーションキーペアの認証方法

Service Mesh は、subject カスタムリソースパラメーターの properties オプションで指定されるよう
に、クエリーパラメーターと要求ヘッダーでアプリケーション ID とアプリケーションキーを検索しま
す。アプリケーションキーはオプションです。これは、カスタムリソースファイルで指定される順序で
値をチェックします。不要なオプションを含めないことで、認証情報の検索をクエリーパラメーターま
たは要求ヘッダーのいずれかに制限できます。

この例では、Service Mesh は最初にクエリーパラメーターのアプリケーション ID とアプリケーション
キーを検索し、必要に応じて要求ヘッダーに移動します。

アプリケーション ID およびアプリケーションキーペアの認証方法の例

アダプターが異なるクエリーパラメーターまたは要求ヘッダーを検査するようにする場合は、名前を適
宜変更します。たとえば、identification という名前のクエリーパラメーターのアプリケーション ID を
確認するには、request.query_params["app_id"] を request.query_params["identification"] に変更
します。

1.21.4.1.3. OpenID 認証方法

OpenID Connect (OIDC) 認証方法 を使用するには、subject フィールドで properties 値を使用して
client_id および任意で app_key を設定します。

このオブジェクトは、前述の方法を使用して操作できます。以下の設定例では、クライアント識別子
(アプリケーション ID) は、azp ラベルの JSON Web Token (JWT) から解析されます。これは必要に応
じて変更できます。

OpenID 認証方法の例

apiVersion: "config.istio.io/v1alpha2"
kind: instance
metadata:
 name: threescale-authorization
 namespace: istio-system
spec:
 template: authorization
 params:
 subject:
 app_id: request.query_params["app_id"] | request.headers["app-id"] | ""
 app_key: request.query_params["app_key"] | request.headers["app-key"] | ""
 action:
 path: request.url_path
 method: request.method | "get"

apiVersion: "config.istio.io/v1alpha2"
kind: instance
metadata:
 name: threescale-authorization
spec:
 template: threescale-authorization
 params:

Red Hat OpenShift Service on AWS 4 Service Mesh

276

この統合を正常に機能させるには、クライアントがアイデンティティープロバイダー (IdP) で作成され
るよう OIDC を 3scale で実行する必要があります。保護するサービスと同じ namespace でサービスの
に要求の認証 を作成する必要があります。JWT は要求の Authorization ヘッダーに渡されます。

以下に定義されるサンプル RequestAuthentication で、issuer、jwksUri、および selector を適宜置き
換えます。

OpenID Policy の例

1.21.4.1.4. ハイブリッド認証方法

特定の認証方法を適用せず、いずれかの方法の有効な認証情報を受け入れる方法を選択できます。API
キーとアプリケーション ID/アプリケーションキーペアの両方が提供される場合は、Service Mesh は
API キーを使用します。

この例では、Service Mesh がクエリーパラメーターの API キーをチェックし、次に要求ヘッダーを確認
します。API キーがない場合は、クエリーパラメーターのアプリケーション ID とキーをチェックし、次
に要求ヘッダーを確認します。

ハイブリッド認証方法の例

 subject:
 properties:
 app_key: request.query_params["app_key"] | request.headers["app-key"] | ""
 client_id: request.auth.claims["azp"] | ""
 action:
 path: request.url_path
 method: request.method | "get"
 service: destination.labels["service-mesh.3scale.net/service-id"] | ""

apiVersion: security.istio.io/v1beta1
kind: RequestAuthentication
metadata:
 name: jwt-example
 namespace: info
spec:
 selector:
 matchLabels:
 app: productpage
 jwtRules:
 - issuer: >-
 http://keycloak-keycloak.34.242.107.254.nip.io/auth/realms/3scale-keycloak
 jwksUri: >-
 http://keycloak-keycloak.34.242.107.254.nip.io/auth/realms/3scale-keycloak/protocol/openid-
connect/certs

apiVersion: "config.istio.io/v1alpha2"
kind: instance
metadata:
 name: threescale-authorization
spec:
 template: authorization
 params:
 subject:
 user: request.query_params["user_key"] | request.headers["user-key"] |

第1章 SERVICE MESH 2.X

277

https://istio.io/latest/docs/tasks/security/authorization/authz-jwt/

1.21.5. 3scale アダプターメトリクス

アダプターはデフォルトで、/metrics エンドポイントのポート 8080 で公開されるさまざまな
Prometheus メトリクスを報告します。これらのメトリクスは、アダプターと 3scale の間の相互作用が
どのように実行されているかに関する洞察を提供します。サービスには、自動的に検出され、
Prometheus によって収集されるようにラベルが付けられます。

注記

3scale Istio Adapter メトリクスには、Service Mesh 1.x の以前のリリース以降、互換性の
ない変更があります。

Prometheus では、以下のメトリクスが Service Mesh 2.0 の時点で使用できるように、バックエンド
キャッシュの 1 つの追加と共にメトリクスの名前が変更されています。

表1.30 Prometheus メトリクス

メトリクス 型 説明

threescale_latency ヒストグラム アダプターと 3scale 間の要求レ
イテンシーです。

threescale_http_total カウンター 3scale バックエンドへの要求に関
する HTTP ステータスの応答コー
ド。

threescale_system_cache_hi
ts

カウンター 設定キャッシュからフェッチされ
る 3scale システムへの要求の合
計数。

threescale_backend_cache_
hits

カウンター バックエンドキャッシュから
フェッチされる 3scale バックエ
ンドへの要求の合計数。

1.21.6. 3scale バックエンドキャッシュ

3scale バックエンドキャッシュは、3scale Service Management API のクライアントの認証およびレ
ポートキャッシュを提供します。このキャッシュはアダプターに組み込まれ、管理者がトレードオフを
受け入れることが予想される特定の状況での応答の低レイテンシーが可能になります。

注記

 properties:
 app_id: request.query_params["app_id"] | request.headers["app-id"] | ""
 app_key: request.query_params["app_key"] | request.headers["app-key"] | ""
 client_id: request.auth.claims["azp"] | ""
 action:
 path: request.url_path
 method: request.method | "get"
 service: destination.labels["service-mesh.3scale.net/service-id"] | ""

Red Hat OpenShift Service on AWS 4 Service Mesh

278

注記

3scale バックエンドキャッシュはデフォルトで無効になっています。3scale バックエン
ドキャッシュ機能では、低レイテンシーとプロセッサーおよびメモリーのリソースの高
い使用率と引き換えに、速度制限における不正確な状況が生じたり、フラッシュの最後
の実行からのヒットを失う可能性があります。

1.21.6.1. バックエンドキャッシュを有効にする利点

バックエンドキャッシュを有効にする利点には以下が含まれます。

3scale Istio Adapter が管理するサービスへのアクセス時にレイテンシーが高くなる場合にバッ
クエンドキャッシュを有効にします。

バックエンドキャッシュを有効にすると、アダプターは 3scale API マネージャーによるリクエ
ストの承認の継続的なチェックを停止し、レイテンシーが短縮されます。

これにより、3scale API マネージャーにアクセスして認証を試行する前に、3scale Istio ア
ダプターが保存し、再利用する 3scale 認証のインメモリーキャッシュが作成されます。こ
れにより、認証の許可または拒否にかかる時間が大幅に少なくなります。

バックエンドキャッシュは、3scale Istio アダプターを実行する Service Mesh とは異なる地理的
な場所で 3scale API マネージャーをホストする場合に役立ちます。

通常、これは 3scale のホスト型 (SaaS) プラットフォームに該当しますが、ユーザーが異
なるアベイラビリティーゾーンの地理的に異なる場所にある別のクラスターで 3scale API
マネージャーをホストする場合や、3scale API マネージャーに到達するためのネットワー
クのオーバーヘッドを考慮する必要がある場合にも使用できます。

1.21.6.2. 低レイテンシーを確保するためのトレードオフ

以下は、低レイテンシーを確保するためのトレードオフです。

フラッシュが発生するたびに、3scale アダプターの承認状態が更新されます。

つまり、アダプターのインスタンスが 2 つ以上あると、フラッシュ期間の間隔に関する不
正確さがさらに大きくなることを意味します。

要求が過剰になり、制限を超過し、誤った動作を生じさせ、さらには各要求を処理するア
ダプターによって処理される要求と処理されない要求とが発生する高い可能性がありま
す。

データをフラッシュできず、その認証情報を更新できないアダプターキャッシュは、その情報
を API マネージャーに報告せずにシャットダウンまたはクラッシュする可能性があります。

アダプターのキャッシュで、API マネージャーと通信する際のネットワーク接続が原因と予想
される問題などにより、要求を許可/拒否する必要があるかどうかを判別できない場合に、fail
open または fail closed ポリシーが適用されます。

キャッシュミスが発生すると、通常はアダプターの起動直後、または接続なしの状態が長く続
いた後に、API マネージャーのクエリーを行うためにレイテンシーが増加します。

アダプターキャッシュでは、キャッシュを有効にしない場合よりも、認証の計算により多くの
作業が必要になります。これにより、より多くのプロセッサーリソースが必要になります。

メモリー要件は、キャッシュで管理される制限、アプリケーションおよびサービスの量の組み
合わせに比例して増加します。

第1章 SERVICE MESH 2.X

279

1.21.6.3. バックエンドキャッシュ設定

以下では、バックエンドキャッシュの設定を説明します。

3scale 設定オプションでバックエンドキャッシュを設定するための設定を見つけます。

最後の 3 つの設定では、バックエンドキャッシュの有効化を制御します。

PARAM_USE_CACHE_BACKEND: バックエンドキャッシュを有効にするには true に設定
します。

PARAM_BACKEND_CACHE_FLUSH_INTERVAL_SECONDS: キャッシュデータの API マ
ネージャーへのフラッシュの試行間の時間 (秒単位) を設定します。

PARAM_BACKEND_CACHE_POLICY_FAIL_CLOSED: キャッシュされたデータが十分に
なく、3scale API マネージャーに到達できない場合にサービスへの要求を許可/オープン/ま
たは拒否/クローズするかどうかを設定します。

1.21.7. 3scale Istio Adapter APIcast エミュレーション

3scale Istio アダプターは、以下の条件が満たされる場合に APIcast と同様に動作します。

要求が定義されるマッピングルールと一致しない場合、返される HTTP コードは 404 Not
Found になります。これは、以前は 403 Forbidden でした。

要求が制限を超えるために拒否されると、返される HTTP コードは 429 Too Many Requests に
なります。これは、以前は 403 Forbidden でした。

CLI でデフォルトのテンプレートを生成する場合、ヘッダーにはハイフンではなくアンダース
コアが使用されます (例: user-key ではなく user_key が使用されます)。

1.21.8. 3scale Istio Adapter の検証

3scale Istio Adapter が予想通りに機能しているかどうかを確認します。アダプターが機能しない場合
は、以下の手順に従って問題のトラブルシューティングを行うことができます。

手順

1. 3scale-adapter Pod が Service Mesh コントロールプレーン namespace で実行されていること
を確認します。

2. そのバージョンなど、3scale-adapter Pod が起動に関する情報を出力したことを確認します。

3. 3scale アダプターの統合で保護されているサービスに対して要求を実行すると、正しい認証情
報がかけているという要求を必ず試し、その要求が失敗することを確認します。3scale
Adapter ログをチェックして、追加情報を収集します。

関連情報

Pod およびコンテナーログの検査

$ oc get pods -n istio-system

$ oc logs istio-system

Red Hat OpenShift Service on AWS 4 Service Mesh

280

https://docs.openshift.com/container-platform/4.7/support/troubleshooting/investigating-pod-issues.html#inspecting-pod-and-container-logs_investigating-pod-issues

1.21.9. 3scale Istio adapter のトラブルシューティングのチェックリスト

管理者が 3scale Istio adapter をインストールすると、統合が適切に機能しなくなる可能性のあるシナリ
オが複数あります。以下のリストを使用して、インストールのトラブルシューティングを行います。

YAML のインデントが間違っている。

YAML セクションがない。

YAML の変更をクラスターに適用するのを忘れている。

service-mesh.3scale.net/credentials キーでサービスのワークロードにラベルを付けるのを忘
れている。

service_id が含まれないハンドラーを使用してアカウントごとに再利用できるようにする時に
service-mesh.3scale.net/service-id サービスワークロードにラベルを付けるのを忘れてい
る。

Rule カスタムリソースが誤ったハンドラーまたはインスタンスカスタムリソースを参照してい
るか、対応する namespace の接尾辞がかけている参照を指定している。

Rule カスタムリソースの match セクションは、設定中のサービスと同じでない可能性がある
か、現在実行中でない、または存在しない宛先ワークロードを参照している。

ハンドラーの 3scale 管理ポータルのアクセストークンまたは URL が正しくない。

クエリーパラメーター、ヘッダー、認可要求などの誤った場所を指定しているか、パラメー
ター名がテストで使用する要求と一致しないため、インスタンス のカスタムリソースの
params/subject/properties セクションで、app_id、app_key または client_id の正しいパラ
メーターの表示に失敗する。

設定ジェネレーターがアダプターコンテナーイメージに実際に存在しており、oc exec で呼び
出す必要があることに気づかなかったため、設定ジェネレーターの使用に失敗する。

1.22. SERVICE MESH のトラブルシューティング

このセクションでは、Red Hat OpenShift Service Mesh で一般的な問題を特定し、解決する方法を説明
します。以下のセクションを使用して、Red Hat OpenShift Service on AWS に Red Hat OpenShift
Service Mesh をデプロイする際の問題のトラブルシューティングおよびデバッグに役立ちます。

1.22.1. Service Mesh のバージョンについて

ご使用のシステムにデプロイした Red Hat OpenShift Service Mesh のバージョンを理解するには、各コ
ンポーネントのバージョンがどのように管理されるかを理解する必要があります。

Operator バージョン - 最新の Operator バージョンは 2.6.7 です。Operator バージョン番号
は、現在インストールされている Operator のバージョンのみを示します。Red Hat OpenShift
Service Mesh Operator は Service Mesh コントロールプレーンの複数のバージョンをサポート
するため、Operator のバージョンはデプロイされた ServiceMeshControlPlane リソースの
バージョンを決定しません。

重要

最新の Operator バージョンにアップグレードすると、パッチの更新が自動的に
適用されますが、Service Mesh コントロールプレーンは最新のマイナーバー
ジョンに自動的にアップグレードされません。

第1章 SERVICE MESH 2.X

281

ServiceMeshControlPlane バージョン: ServiceMeshControlPlane バージョンは、使用してい
る Red Hat OpenShift Service Mesh のバージョンを決定します。ServiceMeshControlPlane
リソースの spec.version フィールドの値は、Red Hat OpenShift Service Mesh のインストー
ルとデプロイに使用されるアーキテクチャーと設定を制御します。Service Mesh コントロール
プレーンを作成する場合は、以下の 2 つの方法のいずれかでバージョンを設定できます。

Form View で設定するには、Control Plane Version メニューからバージョンを選択しま
す。

YAML View で設定するには、YAML ファイルに spec.version の値を設定します。

Operator Lifecycle Manager (OLM) は Service Mesh コントロールプレーンのアップグレードをを管理
しないため、SMCP を手動でアップグレードしない限り、Operator および ServiceMeshControlPlane
(SMCP) のバージョン番号が一致しない可能性があります。

1.22.2. Operator インストールのトラブルシューティング

1.22.2.1. Operator インストールの検証

Red Hat OpenShift Service Mesh Operator のインストール時に、OpenShift は正常な Operator インス
トールの一部として以下のオブジェクトを自動的に作成します。

config map

カスタムリソース定義

デプロイメント

pods

レプリカセット

roles

ロールバインディング

secrets

サービスアカウント

services

Red Hat OpenShift Service on AWS コンソールの使用

Red Hat OpenShift Service on AWS コンソールを使用して、Operator Pod が使用可能であり、実行し
ていることを確認できます。

1. Workloads → Pods に移動します。

2. openshift-operators namespace を選択します。

3. 以下の Pod が存在し、ステータスが running であることを確認します。

istio-operator

jaeger-operator

Red Hat OpenShift Service on AWS 4 Service Mesh

282

kiali-operator

4. openshift-operators-redhat namespace を選択します。

5. elasticsearch-operator Pod が存在し、ステータスが running であることを確認します。

コマンドラインで以下を行います。

1. 以下のコマンドを使用して、Operator Pod が利用可能で、openshift-operators namespace で
実行していることを確認します。

出力例

2. 以下のコマンドを使用して Elasticsearch Operator を確認します。

出力例

1.22.2.2. Service Mesh Operator のトラブルシューティング

Operator に問題が発生した場合は、以下を実行します。

Operator サブスクリプションのステータスを確認します。

サポートされる Red Hat バージョンではなく、コミュニティーバージョンの Operator をイン
ストールしていないことを確認します。

Red Hat OpenShift Service Mesh をインストールするために cluster-admin ロールがあること
を確認します。

問題が Operator のインストールに関連する場合は、Operator Pod ログでエラーの有無を確認
します。

注記

Operator は OpenShift コンソールからのみインストールでき、OperatorHub はコマン
ドラインからアクセスできません。

1.22.2.2.1. Operator Pod ログの表示

oc logs コマンドを使用して、Operator ログを表示できます。Red Hat は、サポートケースの解決に役
立つログをリクエストする場合があります。

$ oc get pods -n openshift-operators

NAME READY STATUS RESTARTS AGE
istio-operator-bb49787db-zgr87 1/1 Running 0 15s
jaeger-operator-7d5c4f57d8-9xphf 1/1 Running 0 2m42s
kiali-operator-f9c8d84f4-7xh2v 1/1 Running 0 64s

$ oc get pods -n openshift-operators-redhat

NAME READY STATUS RESTARTS AGE
elasticsearch-operator-d4f59b968-796vq 1/1 Running 0 15s

第1章 SERVICE MESH 2.X

283

手順

Operator Pod ログを表示するには、以下のコマンドを入力します。

以下に例を示します。

1.22.3. コントロールプレーンのトラブルシューティング

Service Mesh コントロールプレーン は Istiod で構成されており、以前のいくつかのコントロールプ
レーンコンポーネント (Citadel、Galley、Pilot) を単一バイナリーに統合しま
す。ServiceMeshControlPlane をデプロイすると、アーキテクチャー のトピックで説明されているよ
うに、Red Hat OpenShift Service Mesh を設定する他のコンポーネントも作成されます。

1.22.3.1. Service Mesh コントロールプレーンのインストールの検証

Service Mesh コントロールプレーンの作成時に、Service Mesh Operator は
ServiceMeshControlPlane リソースファイルに指定したパラメーターを使用して以下を実行します。

Istio コンポーネントを作成し、以下の Pod をデプロイします。

istiod

istio-ingressgateway

istio-egressgateway

grafana

prometheus

SMCP または Kiali カスタムリソースのいずれかの設定に基づいて Kaili デプロイメントを作成す
るには、Kiali Operator を呼び出します。

注記

Service Mesh Operator ではなく、Kiali Operator で Kiali コンポーネントを表示
します。

Red Hat OpenShift 分散トレーシング Platform (Jaeger) Operator を呼び出して、SMCP また
は Jaeger カスタムリソースの設定に基づいて分散トレーシング Platform (Jaeger) コンポーネ
ントを作成します。

注記

Jaeger コンポーネントは、Service Mesh Operator ではなく、Red Hat
OpenShift 分散トレーシング Platform (Jaeger) Operator の下に表示されます。
Elasticsearch コンポーネントは、Red Hat Elasticsearch Operator の下に表示さ
れます。

Red Hat OpenShift Service on AWS コンソールの使用

$ oc logs -n openshift-operators <podName>

$ oc logs -n openshift-operators istio-operator-bb49787db-zgr87

Red Hat OpenShift Service on AWS 4 Service Mesh

284

Red Hat OpenShift Service on AWS Web コンソールで Service Mesh コントロールプレーンの
インストールを確認できます。

1. Operators → Installed Operators に移動します。

2. istio-system namespace を選択します。

3. Red Hat OpenShift Service Mesh Operator を選択します。

a. Istio Service Mesh Control Plane タブをクリックします。

b. コントロールプレーンの名前 (basic など) をクリックします。

c. デプロイメントによって作成されたリソースを表示するには、Resources タブをク
リックします。フィルターを使用してビューを絞り込むことができます。たとえば、す
べての Pod のステータスが running になっていることを確認できます。

d. SMCP のステータスが問題を示す場合は、YAML ファイルの status: 出力で詳細を確認
してください。

4. Operators → Installed Operators に戻ります。

5. OpenShift Elasticsearch Operator を選択します。

a. Elasticsearch タブをクリックします。

b. デプロイメントの名前をクリックします (例: elasticsearch)。

c. デプロイメントによって作成されたリソースを表示するには、Resources タブをク
リックします。

d. ステータス 列に問題がある場合は、YAML タブの ステータス: 出力で詳細を確認して
ください。

6. Operators → Installed Operators に戻ります。

7. Red Hat OpenShift 分散トレーシング Platform (Jaeger) Operator を選択します。

a. Jaeger タブをクリックします。

b. デプロイメントの名前をクリックします (例: jaeger)。

c. デプロイメントによって作成されたリソースを表示するには、Resources タブをク
リックします。

d. ステータス 列に問題がある場合は、YAML タブの status: 出力で詳細を確認してくだ
さい。

8. Operators → Installed Operators に移動します。

9. Kiali Operator を選択します。

a. Istio Service Mesh Control Plane タブをクリックします。

b. デプロイメントの名前をクリックします (例: kiali)。

c. デプロイメントによって作成されたリソースを表示するには、Resources タブをク
リックします。

第1章 SERVICE MESH 2.X

285

d. ステータス 列に問題がある場合は、YAML タブの ステータス: 出力で詳細を確認して
ください。

コマンドラインで以下を行います。

1. 以下のコマンドを実行して、Service Mesh コントロールプレーン Pod が利用可能かどうか確認
します。istio-system は SMCP をインストールした namespace になります。

出力例

2. 次のコマンドを使用して、Service Mesh コントロールプレーンのデプロイのステータスを確認
します。istio-system は、SMCP をデプロイした namespace に置き換えます。

STATUS 列が ComponentsReady の場合、インストールは正常に終了しています。

出力例

Service Mesh コントロールプレーンを変更および再デプロイする場合、ステータスは
UpdateSuccessful が表示されるはずです。

出力例

3. SMCP のステータスが ComponentsReady 以外の場合は、SCMP リソースの status: 出力で詳
細を確認してください。

出力例

4. 以下のコマンドを使用して、Jaeger デプロイメントのステータスを確認します。ここで
は、istio-system は SMCP をデプロイした namespace に置き換えます。

$ oc get pods -n istio-system

NAME READY STATUS RESTARTS AGE
grafana-6776785cfc-6fz7t 2/2 Running 0 102s
istio-egressgateway-5f49dd99-l9ppq 1/1 Running 0 103s
istio-ingressgateway-6dc885c48-jjd8r 1/1 Running 0 103s
istiod-basic-6c9cc55998-wg4zq 1/1 Running 0 2m14s
jaeger-6865d5d8bf-zrfss 2/2 Running 0 100s
kiali-579799fbb7-8mwc8 1/1 Running 0 46s
prometheus-5c579dfb-6qhjk 2/2 Running 0 115s

$ oc get smcp -n istio-system

NAME READY STATUS PROFILES VERSION AGE
basic 10/10 ComponentsReady ["default"] 2.1.3 4m2s

NAME READY STATUS TEMPLATE VERSION AGE
basic-install 10/10 UpdateSuccessful default v1.1 3d16h

$ oc describe smcp <smcp-name> -n <controlplane-namespace>

$ oc describe smcp basic -n istio-system

Red Hat OpenShift Service on AWS 4 Service Mesh

286

出力例

5. 以下のコマンドを使用して、Kiali デプロイメントのステータスを確認します。ここでは、istio-
system は SMCP をデプロイした namespace に置き換えます。

出力例

1.22.3.1.1. Kiali コンソールへのアクセス

Kiali コンソールでアプリケーションのトポロジー、健全性、およびメトリクスを表示できます。サービ
スで問題が発生した場合、Kiali コンソールは、サービス経由でデータフローを表示できます。抽象アプ
リケーションからサービスおよびワークロードまで、さまざまなレベルでのメッシュコンポーネントに
関する洞察を得ることができます。Kiali は、リアルタイムで namespace のインタラクティブなグラフ
ビューも提供します。

Kiali コンソールにアクセスするには、Red Hat OpenShift Service Mesh がインストールされ、Kiali がイ
ンストールおよび設定されている必要があります。

インストールプロセスにより、Kiali コンソールにアクセスするためのルートが作成されます。

Kiali コンソールの URL が分かっている場合は、直接アクセスできます。URL が分からない場合は、以
下の指示を使用します。

管理者の手順

1. 管理者ロールで Red Hat OpenShift Service on AWS Web コンソールにログインします。

2. Home → Projects をクリックします。

3. Projects ページで、必要に応じてフィルターを使用してプロジェクトの名前を検索します。

4. プロジェクトの名前 (例: info) をクリックします。

5. Project details ページの Launcher セクションで、Kiali リンクをクリックします。

6. Red Hat OpenShift Service on AWS コンソールにアクセスするときに使用するものと同じユー
ザー名とパスワードを使用して Kiali コンソールにログインします。
初回の Kiali コンソールへのログイン時に、表示するパーミッションを持つ Service Mesh 内の
すべての namespace を表示する Overview ページが表示されます。

コンソールのインストールを検証中で、namespace がまだメッシュに追加されていない
と、istio-system 以外のデータは表示されない可能性があります。

開発者の手順

$ oc get jaeger -n istio-system

NAME STATUS VERSION STRATEGY STORAGE AGE
jaeger Running 1.30.0 allinone memory 15m

$ oc get kiali -n istio-system

NAME AGE
kiali 15m

第1章 SERVICE MESH 2.X

287

1. 開発者ロールで Red Hat OpenShift Service on AWS Web コンソールにログインします。

2. Project をクリックします。

3. 必要に応じて、Project Details ページで、フィルターを使用してプロジェクトの名前を検索し
ます。

4. プロジェクトの名前 (例: info) をクリックします。

5. Project ページの Launcher セクションで、Kiali リンクをクリックします。

6. Log In With OpenShift をクリックします。

1.22.3.1.2. Jaeger コンソールへのアクセス

Jaeger コンソールにアクセスするには、Red Hat OpenShift Service Mesh がインストールされ、Red
Hat OpenShift 分散トレーシング Platform (Jaeger) がインストールおよび設定されている必要があり
ます。

インストールプロセスにより、Jaeger コンソールにアクセスするためのルートが作成されます。

Jaeger コンソールの URL が分かっている場合は、これに直接アクセスできます。URL が分からない場
合は、以下の指示を使用します。

重要

Red Hat OpenShift Service Mesh 2.5 以降、Red Hat OpenShift 分散トレーシング
Platform (Jaeger) および OpenShift Elasticsearch Operator は非推奨となり、今後のリ
リースで削除される予定です。Red Hat は、現在のリリースのライフサイクル中にこの
機能のバグ修正とサポートを提供しますが、この機能は今後、機能拡張を受け取らず、
削除されます。Red Hat OpenShift 分散トレーシング Platform (Jaeger) の代わりに、
Red Hat OpenShift 分散トレーシング Platform を使用することもできます。

OpenShift コンソールからの手順

1. cluster-admin 権限を持つユーザーとして Red Hat OpenShift Service on AWS Web コンソール
にログインします。(Red Hat OpenShift Dedicated を使用する場合) dedicated-admin ロール
があるアカウント。

2. Networking → Routes に移動します。

3. Routes ページで、Namespace メニューから Service Mesh コントロールプレーンプロジェク
トを選択します (例: istio-system)。
Location 列には、各ルートのリンク先アドレスが表示されます。

4. 必要な場合は、フィルターを使用して jaeger ルートを検索します。ルートの Location をク
リックしてコンソールを起動します。

5. Log In With OpenShift をクリックします。

Kiali コンソールからの手順

1. Kiali コンソールを起動します。

2. 左側のナビゲーションペインで Distributed Tracing をクリックします。

Red Hat OpenShift Service on AWS 4 Service Mesh

288

3. Log In With OpenShift をクリックします。

CLI からの手順

1. cluster-admin ロールを持つユーザーとして Red Hat OpenShift Service on AWS CLI にログイ
ンします。(Red Hat OpenShift Dedicated を使用する場合) dedicated-admin ロールがあるア
カウント。

2. コマンドラインを使用してルートの詳細をクエリーするには、以下のコマンドを入力します。
この例では、istio-system が Service Mesh コントロールプレーンの namespace です。

3. ブラウザーを起動し、https://<JAEGER_URL> に移動します。ここで、<JAEGER_URL> は直
前の手順で検出されたルートです。

4. Red Hat OpenShift Service on AWS コンソールにアクセスするときに使用するものと同じユー
ザー名とパスワードを使用してログインします。

5. Service Mesh にサービスを追加し、トレースを生成している場合は、フィルターと Find
Traces ボタンを使用してトレースデータを検索します。
コンソールインストールを検証すると、表示するトレースデータはありません。

1.22.3.2. Service Mesh コントロールプレーンのトラブルシューティング

Service Mesh コントロールプレーンのデプロイ時に問題が発生した場合は、

ServiceMeshControlPlane リソースがサービスおよび Operator とは別のプロジェクトにイン
ストールされていることを確認します。このドキュメントでは istio-system プロジェクトをサ
ンプルとして使用しますが、Operator およびサービスが含まれるプロジェクトから分離されて
いる限り、コントロールプレーンを任意のプロジェクトにデプロイできます。

ServiceMeshControlPlane および Jaeger カスタムリソースが同じプロジェクトにデプロイさ
れていることを確認します。たとえば、両方の istio-system プロジェクトを使用します。

1.22.4. データプレーンのトラブルシューティング

データプレーン は、Service Mesh 内のサービス間の受信および送信ネットワーク通信をすべて傍受
し、制御するインテリジェントプロキシーのセットです。

Red Hat OpenShift Service Mesh は、アプリケーションの Pod 内のプロキシーサイドカーに依存し
て、アプリケーションに Service Mesh 機能を提供します。

1.22.4.1. サイドカーインジェクションのトラブルシューティング

Red Hat OpenShift Service Mesh は、プロキシーサイドカーコンテナーを Pod に自動的に挿入しませ
ん。サイドカーインジェクションをオプトインする必要があります。

1.22.4.1.1. Istio サイドカーインジェクションのトラブルシューティング

アプリケーションのデプロイメントで自動インジェクションが有効になっているかどうかを確認しま
す。Envoy プロキシーの自動インジェクションが有効になっている場合

$ oc login --username=<NAMEOFUSER> https://<HOSTNAME>:6443

$ oc get route -n istio-system jaeger -o jsonpath='{.spec.host}'

第1章 SERVICE MESH 2.X

289

は、spec.template.metadata.annotations の下の Deployment リソースに
sidecar.istio.io/inject:"true" アノテーションがなければなりません。

1.22.4.1.2. Jaeger エージェントのサイドカーインジェクションのトラブルシューティング

アプリケーションのデプロイメントで自動インジェクションが有効になっているかどうかを確認しま
す。Jaeger エージェントの自動インジェクションが有効な場合は、Deployment リソースに
sidecar.jaegertracing.io/inject:"true" アノテーションが必要です。

サイドカーインジェクションの詳細は、自動インジェクションの有効化 を参照してください。

1.23. ENVOY プロキシーのトラブルシューティング

Envoy プロキシーは、Service Mesh 内の全サービスの受信トラフィックおよび送信トラフィックをすべ
てインターセプトします。Envoy は Service Mesh でテレメトリーを収集し、報告します。Envoy は、
同じ Pod の関連するサービスに対してサイドカーコンテナーとしてデプロイされます。

1.23.1. Envoy アクセスログの有効化

Envoy アクセスログは、トラフィックの障害およびフローの診断に役立ち、エンドツーエンドのトラ
フィックフロー分析に役立ちます。

すべての istio-proxy コンテナーのアクセスロギングを有効にするには、ServiceMeshControlPlane
(SMCP) オブジェクトを編集してロギングの出力のファイル名を追加します。

手順

1. cluster-admin ロールを持つユーザーとして OpenShift Container Platform CLI にログインしま
す。以下のコマンドを入力します。次に、プロンプトが表示されたら、ユーザー名とパスワー
ドを入力します。

2. Service Mesh コントロールプレーンをインストールしたプロジェクト (例: istio-system) に切
り替えます。

3. ServiceMeshControlPlane ファイルを編集します。

4. 以下の例で示すように、name を使用してプロキシーログのファイル名を指定します。name
の値を指定しないと、ログエントリーは書き込まれません。

$ oc login --username=<NAMEOFUSER> https://<HOSTNAME>:6443

$ oc project istio-system

$ oc edit smcp <smcp_name>

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
metadata:
 name: basic
 namespace: istio-system
spec:
 proxy:

Red Hat OpenShift Service on AWS 4 Service Mesh

290

1.23.2. サポート

このドキュメントで説明されている手順、または Red Hat OpenShift Service on AWS 全般で問題が発
生した場合は、Red Hat カスタマーポータル にアクセスしてください。

カスタマーポータルでは、以下を行うことができます。

Red Hat 製品に関するアーティクルおよびソリューションを対象とした Red Hat ナレッジベー
スの検索またはブラウズ。

Red Hat サポートに対するサポートケースの送信。

その他の製品ドキュメントへのアクセス。

クラスターの問題を特定するには、OpenShift Cluster Manager で Insights を使用できます。Insights に
より、問題の詳細と、利用可能な場合は問題の解決方法に関する情報が提供されます。

このドキュメントの改善への提案がある場合、またはエラーを見つけた場合は、最も関連性の高いド
キュメントコンポーネントの Jira Issue を送信してください。セクション名や Red Hat OpenShift
Service on AWS のバージョンなど、具体的な情報を指定してください。

1.23.2.1. Red Hat ナレッジベースについて

Red Hat ナレッジベース は、お客様が Red Hat の製品やテクノロジーを最大限に活用できるようにす
るための豊富なコンテンツを提供します。Red Hat ナレッジベースは、Red Hat 製品のインストール、
設定、および使用に関する記事、製品ドキュメント、および動画で構成されています。さらに、既知の
問題に対する解決策を検索でき、それぞれに根本原因の簡潔な説明と修復手順が記載されています。

1.23.2.2. Red Hat ナレッジベースの検索

Red Hat OpenShift Service on AWS の問題が発生した場合には、初期検索を実行して、Red Hat ナレッ
ジベースにソリューションがすでに存在しているかどうかを確認できます。

前提条件

Red Hat カスタマーポータルのアカウントがある。

手順

1. Red Hat カスタマーポータル にログインします。

2. Search をクリックします。

3. 検索フィールドに、問題に関連する次のようなキーワードと文字列を入力します。

Red Hat OpenShift Service on AWS コンポーネント (etcd など)

関連する手順 (installation など)

明示的な失敗に関連する警告、エラーメッセージ、およびその他の出力

 accessLogging:
 file:
 name: /dev/stdout #file name

第1章 SERVICE MESH 2.X

291

http://access.redhat.com
https://console.redhat.com/openshift
https://issues.redhat.com/secure/CreateIssueDetails!init.jspa?pid=12332330&summary=Documentation_issue&issuetype=1&components=12367614&priority=10200&versions=12385624
https://access.redhat.com/knowledgebase
http://access.redhat.com

4. Enter キーをクリックします。

5. オプション: Red Hat OpenShift Service on AWS 製品フィルターを選択します。

6. オプション: Documentation コンテンツタイプフィルターを選択します。

1.23.2.3. サポートケースの送信

前提条件

dedicated-admin ロールを持つユーザーとしてクラスターにアクセスできる。

OpenShift CLI (oc) がインストールされている。

Red Hat OpenShift Cluster Manager にアクセスできる。

手順

1. Red Hat カスタマーポータルの Customer Support ページ にログインします。

2. Get support をクリックします。

3. Customer Support ページの Cases タブで、以下を行います。

a. オプション: 必要に応じて、事前に入力されたアカウントと所有者の詳細を変更します。

b. 問題に該当するカテゴリー (Bug、Defect など) を選択し、Continue をクリックします。

4. 以下の情報を入力します。

a. Summary フィールドには､問題の簡潔で説明的な概要と、確認されている現象および予想
される動作の詳細情報を入力します。

b. Product ドロップダウンメニューから Red Hat OpenShift Service on AWS を選択しま
す。

5. Red Hat ナレッジベースで推奨されるソリューション一覧を確認してください。この一覧に上
げられているソリューションは、報告しようとしている問題に適用される可能性があります。
提案されている記事が問題に対応していない場合は、Continue をクリックします。

6. 報告している問題に対する一致に基づいて推奨される Red Hat ナレッジベースソリューション
の一覧が更新されることを確認してください。ケース作成プロセスでより多くの情報を提供す
ると、このリストの絞り込みが行われます。提案されている記事が問題に対応していない場合
は、Continue をクリックします。

7. アカウント情報が予想通りに表示されていることを確認し、そうでない場合は適宜修正しま
す。

8. 自動入力された Red Hat OpenShift Service on AWS クラスター ID が正しいことを確認しま
す。正しくない場合は、クラスター ID を手動で取得します。

Red Hat OpenShift Service on AWS Web コンソールを使用して手動でクラスター ID を取
得するには以下を実行します。

a. Home → Overview に移動します。

b. Details セクションの Cluster ID フィールドで値を見つけます。

または、Red Hat OpenShift Service on AWS Web コンソールから新しいサポートケースを

Red Hat OpenShift Service on AWS 4 Service Mesh

292

https://access.redhat.com/support/cases/#/case/list

または、Red Hat OpenShift Service on AWS Web コンソールから新しいサポートケースを
開き、クラスター ID を自動入力することもできます。

a. ツールバーから、(?)Help → Open Support Case に移動します。

b. Cluster ID 値が自動的に入力されます。

OpenShift CLI (oc) を使用してクラスター ID を取得するには、以下のコマンドを実行しま
す。

9. プロンプトが表示されたら、以下の質問に回答し、Continue をクリックします。

What are you experiencing? What are you expecting to happen?

Define the value or impact to you or the business.

Where are you experiencing this behavior? What environment?

When does this behavior occur? Frequency? Repeatedly? At certain times?

10. 関連する診断データファイルをアップロードし、Continue をクリックします。

11. 関連するケース管理の詳細情報を入力し、Continue をクリックします。

12. ケースの詳細をプレビューし、Submit をクリックします。

1.24. SERVICE MESH コントロールプレーン設定の参照

デフォルトの ServiceMeshControlPlane (SMCP) リソースを変更するか、完全にカスタムの SMCP リ
ソースを作成して Red Hat OpenShift Service Mesh をカスタマイズできます。このリファレンスセク
ションでは、SMCP リソースで利用可能な設定オプションを説明します。

1.24.1. Service Mesh コントロールプレーンのパラメーター

以下の表は、ServiceMeshControlPlane リソースのトップレベルのパラメーターを一覧表示していま
す。

表1.31 ServiceMeshControlPlane リソースパラメーター

名前 説明 型

apiVersion APIVersion はオブジェクトのこの
表現のバージョンスキーマを定義
します。サーバーは認識されたス
キーマを最新の内部値に変換し、
認識されない値は拒否することが
ありま
す。ServiceMeshControlPlan
e バージョン 2.0 の値は
maistra.io/v2 です。

ServiceMeshControlPlane
バージョン 2.0 の値は
maistra.io/v2 です。

$ oc get clusterversion -o jsonpath='{.items[].spec.clusterID}{"\n"}'

第1章 SERVICE MESH 2.X

293

kind kind はこのオブジェクトが表す
REST リソースを表す文字列の値
です。

ServiceMeshControlPlane で唯一
有効な値
は、ServiceMeshControlPlan
e です。

metadata この
ServiceMeshControlPlane イ
ンスタンスに関するメタデータ。
Service Mesh コントロールプレー
ンインストールの名前を指定して
作業を追跡できます (basic な
ど)。

string

spec この
ServiceMeshControlPlane の
必要な状態の仕様です。これに
は、Service Mesh コントロールプ
レーンを構成するすべてのコン
ポーネントの設定オプションが含
まれます。

詳細は、表 2 を参照してくださ
い。

status この
ServiceMeshControlPlane
と、Service Mesh コントロールプ
レーンを構成するコンポーネント
の現在のステータス。

詳細は、表 3 を参照してくださ
い。

名前 説明 型

以下の表は、ServiceMeshControlPlane リソースの仕様を一覧表示しています。これらのパラメー
ターを変更すると、Red Hat OpenShift Service Mesh コンポーネントが設定されます。

表1.32 ServiceMeshControlPlane リソース仕様

名前 説明 設定可能なパラメーター

addons addons パラメーターを使用し
て、可視化やメトリクスストレー
ジなど、コアの Service Mesh コ
ントロールプレーンコンポーネン
ト以外の追加機能を設定します。

3scale、grafana、jaeger、kia
li、および prometheus

cluster cluster パラメーターは、クラス
ターの一般的な設定 (クラスター
名、ネットワーク名、マルチクラ
スター、メッシュ拡張など) の設
定を行います。

meshExpansion、multiClust
er、name、および network

Red Hat OpenShift Service on AWS 4 Service Mesh

294

gateways gateways パラメーターを使用し
て、メッシュの ingress および
egress ゲートウェイを設定しま
す。

enabled、additionalEgress、
additionalIngress、egress、i
ngress、および
openshiftRoute

general general パラメーターは、その他
の場所には適合しない一般的な
Service Mesh コントロールプレー
ンの設定を表します。

logging および
validationMessages

policy policy パラメーターを使用し
て、Service Mesh コントロールプ
レーンのポリシーチェックを設定
します。ポリシーチェックを有効
にするに
は、spec.policy.enabled を
true に設定します。

mixer remote、または
type。type は Istiod、Mixer ま
たは None に設定できます。

profiles profiles パラメーターを使用し
て、デフォルト値に使用するため
に ServiceMeshControlPlane
プロファイルを選択します。

default

proxy proxy パラメーターを使用してサ
イドカーのデフォルト動作を設定
します。

accessLogging、adminPort
、concurrency、および
envoyMetricsService

runtime ランタイム パラメーターを使用
して、Service Mesh コントロール
プレーンコンポーネントを設定し
ます。

components、および defaults

security security パラメーターを使用す
ると、Service Mesh コントロール
プレーンのセキュリティーの各種
機能を設定できます。

certificateAuthority、control
Plane、identity、dataPlane お
よび trust

techPreview techPreview パラメーターを使
用すると、テクノロジープレ
ビュー機能への早期アクセスが可
能になります。

該当なし

telemetry spec.mixer.telemetry.enable
d が true に設定されている場
合、telemetry は有効にされま
す。

mixer、remote、および
type。type は Istiod、Mixer ま
たは None に設定できます。

名前 説明 設定可能なパラメーター

第1章 SERVICE MESH 2.X

295

tracing tracing パラメーターを使用し
て、メッシュの分散トレースを有
効にします。

sampling、type。type は
Jaeger または None に設定でき
ます。

version version パラメーターは、インス
トールする Service Mesh コント
ロールプレーンの Maistra バー
ジョンを指定します。空のバー
ジョンで
ServiceMeshControlPlane を
作成する場合、受付 Webhook は
バージョンを現行バージョンに設
定します。空のバージョンの新規
の
ServiceMeshControlPlanes
は v2.0 に設定されます。空の
バージョンの既存の
ServiceMeshControlPlanes
はそれらの設定を保持します。

string

名前 説明 設定可能なパラメーター

ControlPlaneStatus は Service Mesh の現在の状態を表します。

表1.33 ServiceMeshControlPlane リソース ControlPlaneStatus

名前 説明 型

annotations annotations パラメーターは、
通常は
ServiceMeshControlPlane に
よってデプロイされるコンポーネ
ントの数などの追加の余分なス
テータス情報を保存します。これ
らのステータスは、JSONPath 式
でオブジェクトのカウントを許可
しないコマンドラインツールの
oc で使用されます。

設定不可

Red Hat OpenShift Service on AWS 4 Service Mesh

296

conditions オブジェクトの現在の状態として
観察される最新の状態を表しま
す。Reconcile は、Operator が
デプロイされるコンポーネントの
実際の状態の調整を
ServiceMeshControlPlane リ
ソースの設定を使用して完了した
かどうかを示します。Installed
は、Service Mesh コントロールプ
レーンがインストールされている
かどうかを示します。Ready
は、すべての Service Mesh コン
トロールプレーンコンポーネント
の準備ができているかどうかを示
します。

string

コンポーネント デプロイされた各 Service Mesh
コントロールプレーンコンポーネ
ントのステータスを表示します。

string

appliedSpec すべてのプロファイルが適用され
た後に生成される設定の仕様で
す。

ControlPlaneSpec

appliedValues チャートの生成に使用される生成
される values.yaml です。

ControlPlaneSpec

chartVersion このリソースに対して最後に処理
されたチャートのバージョンで
す。

string

observedGeneration 直近の調整時にコントローラーに
よって観察される生成です。ス
テータスの情報は、オブジェクト
の特定の生成に関連するもので
す。status.conditions
は、status.observedGenerati
on フィールドが
metadata.generation に一致し
ない場合は最新の状態ではありま
せん。

integer

operatorVersion このリソースを最後に処理した
Operator のバージョンです。

string

readiness コンポーネントおよび所有リソー
スの準備状態 (readiness) のス
テータス

string

名前 説明 型

第1章 SERVICE MESH 2.X

297

この例の ServiceMeshControlPlane の定義には、サポート対象のパラメーターがすべて含まれます。

ServiceMeshControlPlane リソースの例

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
metadata:
 name: basic
spec:
 version: v2.6
 proxy:
 runtime:
 container:
 resources:
 requests:
 cpu: 100m
 memory: 128Mi
 limits:
 cpu: 500m
 memory: 128Mi
 tracing:
 type: Jaeger
 gateways:
 ingress: # istio-ingressgateway
 service:
 type: ClusterIP
 ports:
 - name: status-port
 port: 15020
 - name: http2
 port: 80
 targetPort: 8080
 - name: https
 port: 443
 targetPort: 8443
 meshExpansionPorts: []
 egress: # istio-egressgateway
 service:
 type: ClusterIP
 ports:
 - name: status-port
 port: 15020
 - name: http2
 port: 80
 targetPort: 8080
 - name: https
 port: 443
 targetPort: 8443
 additionalIngress:
 some-other-ingress-gateway: {}
 additionalEgress:
 some-other-egress-gateway: {}

 policy:
 type: Mixer
 mixer: # only applies if policy.type: Mixer

Red Hat OpenShift Service on AWS 4 Service Mesh

298

 enableChecks: true
 failOpen: false

 telemetry:
 type: Istiod # or Mixer
 mixer: # only applies if telemetry.type: Mixer, for v1 telemetry
 sessionAffinity: false
 batching:
 maxEntries: 100
 maxTime: 1s
 adapters:
 kubernetesenv: true
 stdio:
 enabled: true
 outputAsJSON: true
 addons:
 grafana:
 enabled: true
 install:
 config:
 env: {}
 envSecrets: {}
 persistence:
 enabled: true
 storageClassName: ""
 accessMode: ReadWriteOnce
 capacity:
 requests:
 storage: 5Gi
 service:
 ingress:
 contextPath: /grafana
 tls:
 termination: reencrypt
 kiali:
 name: kiali
 enabled: true
 install: # install kiali CR if not present
 dashboard:
 viewOnly: false
 enableGrafana: true
 enableTracing: true
 enablePrometheus: true
 service:
 ingress:
 contextPath: /kiali
 jaeger:
 name: jaeger
 install:
 storage:
 type: Elasticsearch # or Memory
 memory:
 maxTraces: 100000
 elasticsearch:
 nodeCount: 3
 storage: {}

第1章 SERVICE MESH 2.X

299

1.24.2. 仕様パラメーター

1.24.2.1. 一般的なパラメーター

以下の例は、ServiceMeshControlPlane オブジェクトの spec.general パラメーターと適切な値を持つ
利用可能なパラメーターの説明を示しています。

一般的なパラメーターの例

表1.34 Istio の一般的なパラメーター

パラメーター 説明 値 デフォルト値

 redundancyPolicy: SingleRedundancy
 indexCleaner: {}
 ingress: {} # jaeger ingress configuration
 runtime:
 components:
 pilot:
 deployment:
 replicas: 2
 pod:
 affinity: {}
 container:
 resources:
 requests:
 cpu: 100m
 memory: 128Mi
 limits:
 cpu: 500m
 memory: 128Mi
 grafana:
 deployment: {}
 pod: {}
 kiali:
 deployment: {}
 pod: {}

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
metadata:
 name: basic
spec:
 general:
 logging:
 componentLevels: {}
 # misc: error
 logAsJSON: false
 validationMessages: true

Red Hat OpenShift Service on AWS 4 Service Mesh

300

logging:
Service Mesh コント
ロールプレーンコンポー
ネントのロギングを設定
するために使用します。

 該当なし

logging:
 componentLevels:

コンポーネントのロギン
グレベルを指定するため
に使用します。

使用できる値
は、debug、info、wa
rn、error、fatal で
す。

該当なし

logging:
 logAsJSON:

JSON ロギングを有効ま
たは無効にします。

true/false 該当なし

validationMessages
:

istio.io リソースの
status フィールドへの検
証メッセージを有効また
は無効にするのに使用し
ます。これは、リソース
で設定エラーを検出する
のに役立ちます。

true/false 該当なし

パラメーター 説明 値 デフォルト値

1.24.2.2. プロファイルパラメーター

ServiceMeshControlPlane オブジェクトプロファイルを使用すると、再利用可能な設定を作成できま
す。profile 設定を設定しない場合は、Red Hat OpenShift Service Mesh は default プロファイルを使用
します。

以下の例は、ServiceMeshControlPlane オブジェクトの spec.profiles パラメーターを示していま
す。

プロファイルパラメーターの例

プロファイルの作成に関する詳細は、コントロールプレーンプロファイルの作成 を参照してください。

セキュリティー設定の詳細な例は、Mutual Transport Layer Security (mTLS) を参照してください。

1.24.2.3. トレースパラメーター

以下の例は、ServiceMeshControlPlane オブジェクトの spec.tracing パラメーターと適切な値を持つ
利用可能なパラメーターの説明を示しています。

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
metadata:
 name: basic
spec:
 profiles:
 - YourProfileName

第1章 SERVICE MESH 2.X

301

トレースパラメーターの例

表1.35 Istio トレースパラメーター

パラメーター 説明 値 デフォルト値

tracing:
 sampling:

サンプリングレートは、
Envoy プロキシーがト
レースを生成する頻度を
決定します。サンプリン
グレートを使用して、ト
レースシステムに報告さ
れる要求の割合を制御し
ます。

0 から 10000 までの整
数値で、インクリメント
は 0.01% (0 から 100%)
になります。たとえば、
値を 10 に設定するとリ
クエストの 0.1% がサン
プリングされ、値を 100
に設定するとリクエスト
の 1% がサンプリングさ
れ、値を 500 に設定す
るとリクエストの 5% が
サンプリングさ
れ、10000 に設定する
とリクエストの 100% が
サンプリングされます。

10000 (トレースの
100%)

tracing:
 type:

現在、サポートされるト
レーサーの唯一のタイプ
は Jaeger です。
Jaeger はデフォルトで
有効になっています。ト
レースを無効にするに
は、type パラメーター
を None に設定しま
す。

none、Jaeger Jaeger

1.24.2.4. バージョンパラメーター

Red Hat OpenShift Service Mesh Operator は、さまざまなバージョンの ServiceMeshControlPlane
のインストールをサポートしています。version パラメーターは、インストールする Service Mesh コン
トロールプレーンのバージョンを指定します。SMCP の作成時にバージョンパラメーターを指定しない
と、Operator は値を最新バージョン (2.6) に設定します。既存の ServiceMeshControlPlane オブジェ
クトは、Operator のアップグレード中にバージョン設定を保持します。

1.24.2.5. 3scale の設定

以下の表では、ServiceMeshControlPlane リソースの 3scale Istio アダプターのパラメーターを説明し

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
metadata:
 name: basic
spec:
 version: v2.6
 tracing:
 sampling: 100
 type: Jaeger

Red Hat OpenShift Service on AWS 4 Service Mesh

302

以下の表では、ServiceMeshControlPlane リソースの 3scale Istio アダプターのパラメーターを説明し
ています。

3scale パラメーターの例

表1.36 3scale パラメーター

パラメーター 説明 値 デフォルト値

enabled 3scale アダプターを使用
するかどうか

true/false false

PARAM_THREESCA
LE_LISTEN_ADDR

gRPC サーバーのリッス
ンアドレスを設定しま
す。

有効なポート番号 3333

PARAM_THREESCA
LE_LOG_LEVEL

ログ出力の最小レベルを
設定します。

debug、info、warn、
error、または none

info

PARAM_THREESCA
LE_LOG_JSON

ログが JSON として
フォーマットされるかど
うかを制御します。

true/false true

PARAM_THREESCA
LE_LOG_GRPC

ログに gRPC 情報を含む
かどうかを制御します。

true/false true

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
metadata:
 name: basic
spec:
 addons:
 3Scale:
 enabled: false
 PARAM_THREESCALE_LISTEN_ADDR: 3333
 PARAM_THREESCALE_LOG_LEVEL: info
 PARAM_THREESCALE_LOG_JSON: true
 PARAM_THREESCALE_LOG_GRPC: false
 PARAM_THREESCALE_REPORT_METRICS: true
 PARAM_THREESCALE_METRICS_PORT: 8080
 PARAM_THREESCALE_CACHE_TTL_SECONDS: 300
 PARAM_THREESCALE_CACHE_REFRESH_SECONDS: 180
 PARAM_THREESCALE_CACHE_ENTRIES_MAX: 1000
 PARAM_THREESCALE_CACHE_REFRESH_RETRIES: 1
 PARAM_THREESCALE_ALLOW_INSECURE_CONN: false
 PARAM_THREESCALE_CLIENT_TIMEOUT_SECONDS: 10
 PARAM_THREESCALE_GRPC_CONN_MAX_SECONDS: 60
 PARAM_USE_CACHED_BACKEND: false
 PARAM_BACKEND_CACHE_FLUSH_INTERVAL_SECONDS: 15
 PARAM_BACKEND_CACHE_POLICY_FAIL_CLOSED: true
...

第1章 SERVICE MESH 2.X

303

PARAM_THREESCA
LE_REPORT_METRI
CS

3scale システムおよび
バックエンドメトリクス
が収集され、
Prometheus に報告され
るかどうかを制御しま
す。

true/false true

PARAM_THREESCA
LE_METRICS_PORT

3scale /metrics エンド
ポイントをスクラップで
きるポートを設定しま
す。

有効なポート番号 8080

PARAM_THREESCA
LE_CACHE_TTL_SE
CONDS

キャッシュから期限切れ
のアイテムを消去するま
で待機する時間 (秒単
位)。

時間 (秒単位) 300

PARAM_THREESCA
LE_CACHE_REFRES
H_SECONDS

キャッシュ要素の更新を
試行する場合の期限

時間 (秒単位) 180

PARAM_THREESCA
LE_CACHE_ENTRIE
S_MAX

キャッシュにいつでも保
存できるアイテムの最大
数。キャッシュを無効に
するには 0 に設定しま
す。

有効な数字 1000

PARAM_THREESCA
LE_CACHE_REFRES
H_RETRIES

キャッシュ更新ループ時
に到達できないホストが
再試行される回数

有効な数字 1

PARAM_THREESCA
LE_ALLOW_INSECU
RE_CONN

3scale API 呼び出し時
の証明書の検証を省略で
きるようにします。この
有効化は推奨されていま
せん。

true/false false

PARAM_THREESCA
LE_CLIENT_TIMEOU
T_SECONDS

3scale システムおよび
バックエンドへの要求を
終了するまで待機する秒
数を設定します。

時間 (秒単位) 10

PARAM_THREESCA
LE_GRPC_CONN_M
AX_SECONDS

接続を閉じるまでの最大
秒数 (+/-10% のジッ
ター) を設定します。

時間 (秒単位) 60

パラメーター 説明 値 デフォルト値

Red Hat OpenShift Service on AWS 4 Service Mesh

304

PARAM_USE_CACH
E_BACKEND

true の場合は、認可要求
のインメモリー
apisonator キャッシュの
作成を試行します。

true/false false

PARAM_BACKEND_
CACHE_FLUSH_INT
ERVAL_SECONDS

バックエンドキャッシュ
が有効な場合は、3scale
に対してキャッシュをフ
ラッシュする間隔を秒単
位で設定します。

時間 (秒単位) 15

PARAM_BACKEND_
CACHE_POLICY_FAI
L_CLOSED

バックエンドキャッシュ
が承認データを取得でき
ない場合は常に、要求を
拒否する (クローズする)
か、許可する (オープン
する) かどうか。

true/false true

パラメーター 説明 値 デフォルト値

1.24.3. ステータスパラメーター

status パラメーターは、Service Mesh の現在の状態を記述します。この情報は Operator によって生成
され、読み取り専用です。

表1.37 Istio ステータスパラメーター

名前 説明 型

observedGeneration 直近の調整時にコントローラーに
よって観察される生成です。ス
テータスの情報は、オブジェクト
の特定の生成に関連するもので
す。status.conditions
は、status.observedGenerati
on フィールドが
metadata.generation に一致し
ない場合は最新の状態ではありま
せん。

integer

第1章 SERVICE MESH 2.X

305

annotations annotations パラメーターは、
通常は
ServiceMeshControlPlane オ
ブジェクトによってデプロイされ
るコンポーネントの数などの追加
の余分なステータス情報を保存し
ます。これらのステータスは、
JSONPath 式でオブジェクトのカ
ウントを許可しないコマンドライ
ンツールの oc で使用されます。

設定不可

readiness コンポーネントおよび所有リソー
スの readiness ステータスです。

string

operatorVersion このリソースを最後に処理した
Operator のバージョンです。

string

コンポーネント デプロイされた各 Service Mesh
コントロールプレーンコンポーネ
ントのステータスを表示します。

string

appliedSpec すべてのプロファイルが適用され
た後に生成される設定の仕様で
す。

ControlPlaneSpec

conditions オブジェクトの現在の状態として
観察される最新の状態を表しま
す。Reconciled は、Operator
がデプロイされるコンポーネント
の実際の状態の調整を
ServiceMeshControlPlane リ
ソースの設定を使用して完了した
かどうかを示します。インス
トール 済みは、Service Mesh コ
ントロールプレーンがインストー
ルされていることを示しま
す。Ready は、すべての Service
Mesh コントロールプレーンコン
ポーネントの準備が整っているこ
とを示します。

string

chartVersion このリソースに対して最後に処理
されたチャートのバージョンで
す。

string

appliedValues チャートの生成に使用された、生
成される values.yaml ファイ
ル。

ControlPlaneSpec

名前 説明 型

Red Hat OpenShift Service on AWS 4 Service Mesh

306

1.24.4. 関連情報

ServiceMeshControlPlane リソースで機能を設定する方法の詳細は、以下のリンクを参照して
ください。

セキュリティー

トラフィック管理

メトリクスとトレース

1.25. KIALI 設定リファレンス

Service Mesh Operator は ServiceMeshControlPlane を作成する際に、Kiali リソースも処理します。
次に Kiali Operator は Kiali インスタンスの作成時にこのオブジェクトを使用します。

1.25.1. SMCP での Kiali 設定の指定

Kiali は、ServiceMeshControlPlane リソースの addons セクションで設定できます。Kiali はデフォル
トで有効です。Kiali を無効にするには、spec.addons.kiali.enabled を false に設定します。

Kiali 設定は、以下の 2 つの方法のいずれかで指定できます。

spec.addons.kiali.install の ServiceMeshControlPlane リソースで Kiali 設定を指定します。
Kiali 設定の完全なリストが SMCP で利用できないため、このアプローチにはいくつかの制限が
あります。

Kiali インスタンスを設定してデプロイし、Kiali リソースの名前を ServiceMeshControlPlane
リソースの spec.addons.kiali.name の値として指定します。CR は、Service Mesh コントロー
ルプレーンと同じ namespace (例: istio-system) に作成する必要があります。name の値に一
致する Kiali リソースが存在する場合、コントロールプレーンは、そのコントロールプレーンで
使用するために対象の Kiali リソースを設定します。このアプローチにより、Kiali リソースで
Kiali 設定を完全にカスタマイズできます。このアプローチでは、Kiali リソースのさまざまな
フィールド (例: accessible_namespaces リスト)、および Grafana、Prometheus、およびト
レースのエンドポイントが上書きされることに注意してください。

Kiali の SMCP パラメーターの例

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
metadata:
 name: basic
spec:
 addons:
 kiali:
 name: kiali
 enabled: true
 install:
 dashboard:
 viewOnly: false
 enableGrafana: true
 enableTracing: true
 enablePrometheus: true
 service:
 ingress:
 contextPath: /kiali

第1章 SERVICE MESH 2.X

307

表1.38 ServiceMeshControlPlane Kiali パラメーター

パラメーター 説明 値 デフォルト値

spec:
 addons:
 kiali:
 name:

Kiali カスタムリソースの
名前。name の値に一
致する Kiali CR が存在す
る場合、Service Mesh
Operator はその CR を
インストールに使用しま
す。Kiali CR が存在しな
い場合は、Operator は
この 名前 と SMCP で指
定された設定オプション
を使用して Kiali CR を作
成します。

string kiali

kiali:
 enabled:

このパラメーターは、
Kiali を有効または無効に
します。Kiali はデフォル
トで有効です。

true/false true

kiali:
 install:

指定された Kiali リソー
スが存在しない場合は、
Kiali リソースをインス
トールしま
す。addons.kiali.ena
bled が false に設定さ
れている場合
は、install セクション
は無視されます。

kiali:
 install:
 dashboard:

Kiali に付属のダッシュ
ボードの設定パラメー
ター。

kiali:
 install:
 dashboard:
 viewOnly:

このパラメーターは、
Kiali コンソールの表示専
用 (view-only) モードを
有効または無効にしま
す。表示専用モードを有
効にすると、ユーザーは
Kiali コンソールを使用し
て Service Mesh を変更
できなくなります。

true/false false

Red Hat OpenShift Service on AWS 4 Service Mesh

308

kiali:
 install:
 dashboard:
 enableGrafana:

spec.addons.grafana
設定に基づいて設定され
た Grafana エンドポイ
ント。

true/false true

kiali:
 install:
 dashboard:

enablePrometheus:

spec.addons.promet
heus 設定に基づいて設
定された Prometheus エ
ンドポイント。

true/false true

kiali:
 install:
 dashboard:
 enableTracing:

Jaeger カスタムリソー
ス設定に基づいて設定さ
れたトレースエンドポイ
ント。

true/false true

kiali:
 install:
 service:

Kiali インストールに関連
付けられた Kubernetes
サービスの設定パラメー
ター。

kiali:
 install:
 service:
 metadata:

リソースに適用する追加
のメタデータを指定する
ために使用します。

該当なし 該当なし

kiali:
 install:
 service:
 metadata:
 annotations:

コンポーネントのサービ
スに適用するアノテー
ションを追加で指定する
ために使用します。

string 該当なし

kiali:
 install:
 service:
 metadata:
 labels:

コンポーネントのサービ
スに適用するラベルを追
加で指定するために使用
します。

string 該当なし

パラメーター 説明 値 デフォルト値

第1章 SERVICE MESH 2.X

309

kiali:
 install:
 service:
 ingress:

OpenShift Route を介し
てコンポーネントのサー
ビスにアクセスする詳細
を指定するために使用し
ます。

該当なし 該当なし

kiali:
 install:
 service:
 ingress:
 metadata:
 annotations:

コンポーネントのサービ
ス入力に適用する注アノ
テーションを追加で指定
するために使用します。

string 該当なし

kiali:
 install:
 service:
 ingress:
 metadata:
 labels:

コンポーネントのサービ
ス ingress に適用するラ
ベルを追加で指定するた
めに使用します。

string 該当なし

kiali:
 install:
 service:
 ingress:
 enabled:

コンポーネントに関連付
けられたサービスの
OpenShift ルートをカス
タマイズするために使用
します。

true/false true

kiali:
 install:
 service:
 ingress:
 contextPath:

サービスへのコンテキス
トパスを指定するために
使用します。

string 該当なし

install:
 service:
 ingress:
 hosts:

OpenShift ルートごとに
単一のホスト名を指定す
るために使用します。空
のホスト名は、ルートの
デフォルトのホスト名を
意味します。

string 該当なし

パラメーター 説明 値 デフォルト値

Red Hat OpenShift Service on AWS 4 Service Mesh

310

install:
 service:
 ingress:
 tls:

OpenShift ルートの TLS
を設定するために使用し
ます。

 該当なし

kiali:
 install:
 service:
 nodePort:

コンポーネントのサービ
ス Values。
<component>.servic
e.nodePort.port の
nodePort を指定するた
めに使用します

integer 該当なし

パラメーター 説明 値 デフォルト値

1.25.2. Kiali カスタムリソースでの Kiali 設定の指定

ServiceMeshControlPlane (SMCP) リソースではなく、Kiali カスタムリソース (CR) で Kiali を設定す
ることにより、Kiali デプロイメントを完全にカスタマイズできます。この設定は SMCP の外部で指定
されるため、"外部 Kiali" と呼ばれることもあります。

注記

ServiceMeshControlPlane と Kiali カスタムリソースを同じ namespace にデプロイする
必要があります。たとえば、istio-system です。

Kiali インスタンスを設定してデプロイしてから、SMCP リソースの spec.addons.kiali.name の値とし
て Kiali リソースの name を指定できます。name の値に一致する Kiali CR が存在する場合、Service
Mesh コントロールプレーンは既存のインストールを使用します。この方法では、Kiali 設定を完全にカ
スタマイズできます。

1.26. JAEGER 設定リファレンス

Service Mesh Operator は ServiceMeshControlPlane リソースをデプロイする際に、分散トレースの
リソースを作成することもできます。Service Mesh は分散トレースに Jaeger を使用します。

重要

Jaeger は、FIPS 検証済みの暗号化モジュールを使用しません。

Red Hat OpenShift Service Mesh 2.5 以降、Red Hat OpenShift 分散トレーシン
グ Platform (Jaeger) は非推奨となり、今後のリリースで削除される予定です。
Red Hat は、現在のリリースのライフサイクル中にこの機能のバグ修正とサポー
トを提供しますが、この機能は今後、機能拡張を受け取らず、削除されます。
Red Hat OpenShift 分散トレーシング Platform (Jaeger) の代わりに、Red Hat
OpenShift 分散トレーシング Platform を使用することもできます。

1.26.1. トレースの有効化および無効化

ServiceMeshControlPlane リソースでトレースタイプおよびサンプリングレートを指定して、分散ト
レースを有効にします。

第1章 SERVICE MESH 2.X

311

デフォルトの all-in-one Jaeger パラメーター

Red Hat OpenShift Service Mesh 2.6 では、トレースタイプ Jaeger は非推奨となり、デフォルトで無
効になっています。

Red Hat OpenShift Service Mesh 2.5 以前では、トレースタイプ Jaeger がデフォルトで有効になって
います。Jaeger トレースを無効にするには、ServiceMeshControlPlane リソースの
spec.tracing.type パラメーターを None に設定します。

サンプリングレートは、Envoy プロキシーがトレースを生成する頻度を決定します。サンプリングレー
トオプションを使用して、トレースシステムに報告される要求の割合を制御できます。この設定は、
メッシュ内のトラフィックおよび収集するトレースデータ量に基づいて設定できます。sampling は
0.01% の増分を表すスケーリングされた整数として設定します。たとえば、値を 10 サンプル (0.1% ト
レース)、および 500 サンプル (5% トレース)、および 10000 サンプル (100% トレース) に設定しま
す。

注記

SMCP サンプリング設定オプションは Envoy サンプリングレートを制御します。Jaeger
トレースサンプリングレートを Jaeger カスタムリソースで設定します。

1.26.2. SMCP での Jaeger 設定の指定

Jaeger は、ServiceMeshControlPlane リソースの addons セクションで設定します。ただし、SMCP
で設定可能な内容にはいくつかの制限があります。

SMCP が Red Hat OpenShift 分散トレーシング Platform (Jaeger) Operator に設定情報を渡す
と、allInOne、production、または streaming の 3 つのデプロイメントストラテジーのいずれかがト
リガーされます。

1.26.3. 分散トレースプラットフォームのデプロイ

分散トレーシングプラットフォーム (Jaeger) には、事前定義されたデプロイメントストラテジーがあ
ります。Jaeger カスタムリソース (CR) ファイルでデプロイメントストラテジーを指定します。分散ト
レーシング Platform (Jaeger) のインスタンスを作成すると、Red Hat OpenShift 分散トレーシング
Platform (Jaeger) Operator はこの設定ファイルを使用して、デプロイメントに必要なオブジェクトを
作成します。

Red Hat OpenShift 分散トレーシング Platform (Jaeger) Operator は現在、次のデプロイメントストラ
テジーをサポートしています。

allInOne (デフォルト): このストラテジーは、開発、テスト、およびデモを目的としたものであ
り、実稼働での使用を目的としたものではありません。主なバックエンドコンポーネントであ
る Agent、Collector、および Query サービスはすべて、インメモリーストレージを使用するよ

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
metadata:
 name: basic
spec:
 version: v2.6
 tracing:
 sampling: 100
 type: Jaeger

Red Hat OpenShift Service on AWS 4 Service Mesh

312

うに (デフォルトで) 設定された単一の実行可能ファイルにパッケージ化されます。このデプロ
イメントストラテジーは、SMCP で設定できます。

注記

インメモリーストレージには永続性がありません。つまり、Jaeger インスタン
スがシャットダウンするか、再起動するか、置き換えられると、トレースデータ
が失われます。各 Pod には独自のメモリーがあるため、インメモリーストレー
ジはスケーリングできません。永続ストレージの場合は、デフォルトのストレー
ジとして Elasticsearch を使用する production または streaming ストラテジー
を使用する必要があります。

production: production ストラテジーは、実稼働環境向けのストラテジーであり、トレース
データの長期の保存が重要となり、より拡張性および高可用性のあるアーキテクチャーも必要
になります。そのため、バックエンドの各コンポーネントは別々にデプロイされます。エー
ジェントは、インストルメント化されたアプリケーションのサイドカーとして挿入できます。
Query および Collector サービスは、サポートされているストレージタイプ (現時点では
Elasticsearch) で設定されます。これらの各コンポーネントの複数のインスタンスは、パフォー
マンスと回復性を確保するために、必要に応じてプロビジョニングできます。このデプロイメ
ントストラテジーを SMCP に設定できますが、完全にカスタマイズするには、Jaeger CR で設
定を指定し、SMCP にリンクする必要があります。

streaming: streaming ストラテジーは、Collector と Elasticsearch バックエンドストレージ間に
配置されるストリーミング機能を提供することで、production ストラテジーを増強する目的で
設計されています。これにより、負荷の高い状況でバックエンドストレージに加わる圧力を軽
減し、他のトレース処理後の機能がストリーミングプラットフォーム (AMQ Streams/ Kafka)
から直接リアルタイムのスパンデータを利用できるようにします。このデプロイメントストラ
テジーを SMCP で設定することはできません。Jaeger CR を設定し、SMCP へのリンクを設定
する必要があります。

注記

streaming ストラテジーには、AMQ Streams 用の追加の Red Hat サブスクリプションが
必要です。

1.26.3.1. デフォルトの分散トレーシングプラットフォーム (Jaeger) デプロイメント

Jaeger 設定オプションを指定しない場合、ServiceMeshControlPlane リソースはデフォルトで
allInOne Jaeger デプロイメントストラテジーを使用します。デフォルトの allInOne デプロイメントス
トラテジーを使用する場合は、spec.addons.jaeger.install.storage.type を Memory に設定します。
デフォルトを使用するか、install で追加設定オプションを許可できます。

コントロールプレーンのデフォルト Jaeger パラメーター (Memory)

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
metadata:
 name: basic
spec:
 version: v2.6
 tracing:
 sampling: 10000
 type: Jaeger
 addons:

第1章 SERVICE MESH 2.X

313

https://access.redhat.com/documentation/ja-jp/red_hat_amq/7.6/html/using_amq_streams_on_openshift/index
https://kafka.apache.org/documentation/

1.26.3.2. 実稼働環境向け分散トレーシングプラットフォーム (Jaeger) のデプロイメント (最小
限)

production デプロイメントストラテジーのデフォルト設定を使用するに
は、spec.addons.jaeger.install.storage.type を Elasticsearch に設定し、install で追加設定オプショ
ンを指定します。SMCP は Elasticsearch リソースおよびイメージ名の設定のみをサポートすることに
注意してください。

コントロールプレーンのデフォルト Jaeger パラメーター (Elasticsearch)

1.26.3.3. 実稼働環境向け分散トレーシングプラットフォーム (Jaeger) のデプロイメント (完全
カスタマイズ)

SMCP は最小限の Elasticsearch パラメーターのみをサポートします。実稼働環境を完全にカスタマイ
ズし、すべての Elasticsearch 設定パラメーターにアクセスするには、Jaeger カスタムリソース (CR)
を使用して Jaeger を設定します。

または、Jaeger インスタンスを作成および設定し、spec.addons.jaeger.name を Jaeger インスタン
スの名前 (この例では MyJaegerInstance) に設定できます。

Jaeger production CR がリンクされたコントロールプレーン

 jaeger:
 name: jaeger
 install:
 storage:
 type: Memory

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
metadata:
 name: basic
spec:
 version: v2.6
 tracing:
 sampling: 10000
 type: Jaeger
 addons:
 jaeger:
 name: jaeger #name of Jaeger CR
 install:
 storage:
 type: Elasticsearch
 ingress:
 enabled: true
 runtime:
 components:
 tracing.jaeger.elasticsearch: # only supports resources and image name
 container:
 resources: {}

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
metadata:

Red Hat OpenShift Service on AWS 4 Service Mesh

314

1.26.3.4. Jaeger デプロイメントのストリーミング

streaming デプロイメントストラテジーを使用するには、まず Jaeger インスタンスを作成および設定
してから、spec.addons.jaeger.name を Jaeger インスタンスの名前 (この例では MyJaegerInstance)
に設定します。

リンクされた Jaeger ストリーミング CR を使用したコントロールプレーン

1.26.4. Jaeger カスタムリソースでの Jaeger 設定の指定

ServiceMeshControlPlane (SMCP) リソースではなく Jaeger カスタムリソース (CR) に Jaeger を設
定し、Jaeger デプロイメントを完全にカスタマイズできます。この設定は SMCP の外部に指定されて
いるため、"外部 Jaeger" と呼ばれることもあります。

注記

SMCP と Jaeger CR を同じ namespace にデプロイする必要があります。たとえ
ば、istio-system です。

スタンドアロンの Jaeger インスタンスを設定し、デプロイしてから、Jaeger リソースの name を、
SMCP リソースの spec.addons.jaeger.name の値として指定できます。name の値に一致する Jaeger
CR が存在する場合、Service Mesh コントロールプレーンは既存のインストールを使用します。この方
法では、Jaeger 設定を完全にカスタマイズできます。

1.26.4.1. デプロイメントのベストプラクティス

Red Hat OpenShift 分散トレーシング Platform インスタンス名は一意である必要があります。

 name: basic
spec:
 version: v2.6
 tracing:
 sampling: 1000
 type: Jaeger
 addons:
 jaeger:
 name: MyJaegerInstance #name of Jaeger CR
 install:
 storage:
 type: Elasticsearch
 ingress:
 enabled: true

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
metadata:
 name: basic
spec:
 version: v2.6
 tracing:
 sampling: 1000
 type: Jaeger
 addons:
 jaeger:
 name: MyJaegerInstance #name of Jaeger CR

第1章 SERVICE MESH 2.X

315

Red Hat OpenShift 分散トレーシング Platform インスタンス名は一意である必要があります。
複数の Red Hat OpenShift 分散トレーシング Platform (Jaeger) インスタンスが必要で、サイ
ドカー注入エージェントを使用している場合は、Red Hat OpenShift 分散トレーシング
Platform (Jaeger) インスタンスに一意の名前を付け、注入アノテーションでトレースデータの
レポート先となる Red Hat OpenShift 分散トレーシング Platform (Jaeger) インスタンス名を
明示的に指定する必要があります。

マルチテナント実装があり、テナントが名前空間によって分離されている場合は、各テナント
名前空間に Red Hat OpenShift 分散トレーシング Platform (Jaeger) インスタンスをデプロイ
します。

1.26.4.2. Service Mesh の分散トレースセキュリティーの設定

分散トレーシング Platform (Jaeger) は、デフォルトの認証に OAuth を使用します。ただし、Red Hat
OpenShift Service Mesh は、Grafana、Kiali、分散トレーシング Platform (Jaeger) などの依存サービス
間の通信を容易にするために、htpasswd と呼ばれるシークレットを使用しま
す。ServiceMeshControlPlane で分散トレーシング Platform (Jaeger) を設定すると、Service Mesh
は htpasswd を使用するようにセキュリティー設定を自動的に設定します。

Jaeger カスタムリソースで分散トレーシング Platform (Jaeger) 設定を指定する場合は、htpasswd 設
定を手動で設定し、Kiali が通信できるように htpasswd シークレットが Jaeger インスタンスにマウン
トされていることを確認する必要があります。

1.26.4.2.1. Web コンソールからの Service Mesh の分散トレースセキュリティーの設定

Jaeger リソースを変更して、Web コンソールで Service Mesh で使用するための分散トレーシング
Platform (Jaeger) セキュリティーを設定できます。

前提条件

cluster-admin ロールを持つユーザーとしてクラスターにアクセスできる。(Red Hat
OpenShift Dedicated を使用する場合) dedicated-admin ロールがあるアカウント。

Red Hat OpenShift Service Mesh Operator がインストールされている。

クラスターにデプロイされた ServiceMeshControlPlane。

Red Hat OpenShift Service on AWS Web コンソールにアクセスできる。

手順

1. cluster-admin ロールを持つユーザーとして Red Hat OpenShift Service on AWS Web コンソー
ルにログインします。

2. Operators → Installed Operators に移動します。

3. Project メニューをクリックし、リストから ServiceMeshControlPlane リソースがデプロイさ
れているプロジェクト (例: istio-system) を選択します。

4. Red Hat OpenShift 分散トレーシング Platform (Jaeger) Operator を クリックします。

5. Operator の詳細 ページで、Jaeger タブをクリックします。

6. Jaeger インスタンスの名前をクリックします。

7. Jaeger の詳細ページで、YAML タブをクリックして設定を変更します。

8. 次の例に示すように、Jaeger カスタムリソースファイルを編集して、htpasswd 設定を追加し

Red Hat OpenShift Service on AWS 4 Service Mesh

316

8. 次の例に示すように、Jaeger カスタムリソースファイルを編集して、htpasswd 設定を追加し
ます。

spec.ingress.openshift.htpasswdFile

spec.volumes

spec.volumeMounts

htpasswd 設定を示す Jaeger リソースの例

9. Save をクリックします。

1.26.4.2.2. コマンドラインからの Service Mesh の分散トレースセキュリティーの設定

OpenShift CLI (oc) を実行して、コマンドラインから Service Mesh で使用するために、Jaeger リソー
スを変更して分散トレーシング Platform (Jaeger) のセキュリティーを設定できます。

前提条件

cluster-admin ロールを持つユーザーとしてクラスターにアクセスできる。(Red Hat
OpenShift Dedicated を使用する場合) dedicated-admin ロールがあるアカウント。

Red Hat OpenShift Service Mesh Operator がインストールされている。

apiVersion: jaegertracing.io/v1
kind: Jaeger
spec:
 ingress:
 enabled: true
 openshift:
 htpasswdFile: /etc/proxy/htpasswd/auth
 sar: '{"namespace": "istio-system", "resource": "pods", "verb": "get"}'
 options: {}
 resources: {}
 security: oauth-proxy
 volumes:
 - name: secret-htpasswd
 secret:
 secretName: htpasswd
 - configMap:
 defaultMode: 420
 items:
 - key: ca-bundle.crt
 path: tls-ca-bundle.pem
 name: trusted-ca-bundle
 optional: true
 name: trusted-ca-bundle
 volumeMounts:
 - mountPath: /etc/proxy/htpasswd
 name: secret-htpasswd
 - mountPath: /etc/pki/ca-trust/extracted/pem/
 name: trusted-ca-bundle
 readOnly: true
...

第1章 SERVICE MESH 2.X

317

クラスターにデプロイされた ServiceMeshControlPlane。

Red Hat OpenShift Service on AWS バージョンに一致する OpenShift CLI (oc) にアクセスでき
る。

手順

1. 以下のコマンドを実行して、cluster-admin ロールが割り当てられたユーザーとして
OpenShift CLI (oc) にログインします。(Red Hat OpenShift Dedicated を使用する場合)
dedicated-admin ロールがあるアカウント。

2. 次のコマンドを入力して、コントロールプレーンをインストールしたプロジェクト (istio-
system など) に変更します。

3. 次のコマンドを実行して、Jaeger カスタムリソースファイルを編集します。

4. 次の例に示すように、Jaeger カスタムリソースファイルを編集して、htpasswd 設定を追加し
ます。

spec.ingress.openshift.htpasswdFile

spec.volumes

spec.volumeMounts

htpasswd 設定を示す Jaeger リソースの例

$ oc login https://<HOSTNAME>:6443

$ oc project istio-system

$ oc edit -n openshift-distributed-tracing -f jaeger.yaml

apiVersion: jaegertracing.io/v1
kind: Jaeger
spec:
 ingress:
 enabled: true
 openshift:
 htpasswdFile: /etc/proxy/htpasswd/auth
 sar: '{"namespace": "istio-system", "resource": "pods", "verb": "get"}'
 options: {}
 resources: {}
 security: oauth-proxy
 volumes:
 - name: secret-htpasswd
 secret:
 secretName: htpasswd
 - configMap:
 defaultMode: 420
 items:
 - key: ca-bundle.crt
 path: tls-ca-bundle.pem
 name: trusted-ca-bundle
 optional: true

Red Hat OpenShift Service on AWS 4 Service Mesh

318

5. Pod のデプロイメントの進行状況を監視するには、次のコマンドを実行します。

1.26.4.3. 分散トレースのデフォルト設定オプション

Jaeger カスタムリソース (CR) は、分散トレーシング Platform (Jaeger) リソースを作成するときに使
用するアーキテクチャーと設定を定義します。これらのパラメーターを変更して、分散トレーシング
Platform (Jaeger) の実装をビジネスニーズに合わせてカスタマイズできます。

Jaeger CR の汎用 YAML の例

表1.39 Jaeger パラメーター

パラメーター 説明 値 デフォルト値

 name: trusted-ca-bundle
 volumeMounts:
 - mountPath: /etc/proxy/htpasswd
 name: secret-htpasswd
 - mountPath: /etc/pki/ca-trust/extracted/pem/
 name: trusted-ca-bundle
 readOnly: true

$ oc get pods -n openshift-distributed-tracing

apiVersion: jaegertracing.io/v1
kind: Jaeger
metadata:
 name: name
spec:
 strategy: <deployment_strategy>
 allInOne:
 options: {}
 resources: {}
 agent:
 options: {}
 resources: {}
 collector:
 options: {}
 resources: {}
 sampling:
 options: {}
 storage:
 type:
 options: {}
 query:
 options: {}
 resources: {}
 ingester:
 options: {}
 resources: {}
 options: {}

第1章 SERVICE MESH 2.X

319

apiVersion: オブジェクトの作成時に
使用する API バージョ
ン。

jaegertracing.io/v1 jaegertracing.io/v1

kind: 作成する Kubernetes オ
ブジェクトの種類を定義
します。

jaeger

metadata: name 文字列、UID、お
よびオプションの
namespace などのオ
ブジェクトを一意に特定
するのに役立つデータ。

 Red Hat OpenShift
Service on AWS は UID
を自動的に生成し、オブ
ジェクトが作成されるプ
ロジェクトの名前で
namespace を完了し
ます。

name: オブジェクトの名前。 分散トレーシング
Platform (Jaeger) イン
スタンスの名前。

jaeger-all-in-one-
inmemory

spec: 作成するオブジェクトの
仕様。

分散トレーシング
Platform (Jaeger) イン
スタンスのすべての設定
パラメーターが含まれま
す。すべての Jaeger コ
ンポーネントの共通定義
が必要な場合、これは
spec ノードで定義され
ます。定義が個々のコン
ポーネントに関連する場
合
は、spec/<componen
t> ノードに置かれま
す。

該当なし

strategy: Jaeger デプロイメント
ストラテジー

allInOne、production
、または streaming

allInOne

allInOne: allInOne イメージは
Agent、Collector、
Query、Ingester、およ
び Jaeger UI を単一 Pod
にデプロイするため、こ
のデプロイメントの設定
は、コンポーネント設定
を allInOne パラメー
ターの下でネストする必
要があります。

パラメーター 説明 値 デフォルト値

Red Hat OpenShift Service on AWS 4 Service Mesh

320

agent: Agent を定義する設定オ
プション。

collector: Jaeger Collector を定義
する設定オプション。

sampling: トレース用のサンプリン
グストラテジーを定義す
る設定オプション。

storage: ストレージを定義する設
定オプション。すべての
ストレージ関連のオプ
ションは、allInOne ま
たは他のコンポーネント
オプションではな
く、storage に配置さ
れる必要があります。

query: Query サービスを定義す
る設定オプション。

ingester: Ingester サービスを定義
する設定オプション。

パラメーター 説明 値 デフォルト値

次の YAML の例は、デフォルト設定を使用して Red Hat OpenShift 分散トレーシング Platform
(Jaeger) デプロイメントを作成するために必要な最小限のものです。

最小限必要な dist-tracing-all-in-one.yaml の例

1.26.4.4. Jaeger Collector 設定オプション

Jaeger Collector は、トレーサーによってキャプチャーされたスパンを受信し、production ストラテ
ジーを使用する場合はそれらを永続 Elasticsearch ストレージに書き込み、streaming ストラテジーを
使用する場合は AMQ Streams に書き込むコンポーネントです。

Collector はステートレスであるため、Jaeger Collector のインスタンスの多くは並行して実行できま
す。Elasticsearch クラスターの場所を除き、Collector では設定がほとんど必要ありません。

表1.40 Operator によって使用される Jaeger Collector パラメーターを定義するためのパラメーター

apiVersion: jaegertracing.io/v1
kind: Jaeger
metadata:
 name: jaeger-all-in-one-inmemory

第1章 SERVICE MESH 2.X

321

パラメーター 説明 値

collector:
 replicas:

作成する Collector レプリカの数
を指定します。

整数 (例: 5)。

表1.41 Collector に渡される設定パラメーター

パラメーター 説明 値

spec:
 collector:
 options: {}

Jaeger Collector を定義する設定
オプション。

options:
 collector:
 num-workers:

キューからプルするワーカーの
数。

整数 (例: 50)。

options:
 collector:
 queue-size:

Collector キューのサイズ。 整数 (例: 2000)。

options:
 kafka:
 producer:
 topic: jaeger-spans

topic パラメーターは、Collector
によってメッセージを生成するた
めに使用され、Ingester によって
メッセージを消費するために使用
される Kafka 設定を特定します。

プロデューサーのラベル。

options:
 kafka:
 producer:
 brokers: my-cluster-
kafka-brokers.kafka:9092

メッセージを生成するために
Collector によって使用される
Kafka 設定を特定します。ブロー
カーが指定されておらず、AMQ
Streams 1.4.0+ がインストールさ
れている場合、Red Hat
OpenShift 分散トレーシング
Platform (Jaeger) Operator が
Kafka をセルフプロビジョニング
します。

options:
 log-level:

Collector のロギングレベル。 使用できる値
は、debug、info、warn、erro
r、fatal、panic です。

Red Hat OpenShift Service on AWS 4 Service Mesh

322

options:
 otlp:
 enabled: true
 grpc:
 host-port: 4317
 max-connection-age: 0s
 max-connection-age-
grace: 0s
 max-message-size:
4194304
 tls:
 enabled: false
 cert: /path/to/cert.crt
 cipher-suites:
"TLS_AES_256_GCM_SHA
384,TLS_CHACHA20_POL
Y1305_SHA256"
 client-ca:
/path/to/cert.ca
 reload-interval: 0s
 min-version: 1.2
 max-version: 1.3

OTLP/gRPC を受け入れるに
は、otlp を明示的に有効にしま
す。他はすべて任意のオプション
です。

パラメーター 説明 値

第1章 SERVICE MESH 2.X

323

options:
 otlp:
 enabled: true
 http:
 cors:
 allowed-headers:
[<header-name>[, <header-
name>]*]
 allowed-origins: *
 host-port: 4318
 max-connection-age: 0s
 max-connection-age-
grace: 0s
 max-message-size:
4194304
 read-timeout: 0s
 read-header-timeout: 2s
 idle-timeout: 0s
 tls:
 enabled: false
 cert: /path/to/cert.crt
 cipher-suites:
"TLS_AES_256_GCM_SHA
384,TLS_CHACHA20_POL
Y1305_SHA256"
 client-ca:
/path/to/cert.ca
 reload-interval: 0s
 min-version: 1.2
 max-version: 1.3

OTLP/HTTP を受け入れるに
は、otlp を明示的に有効にしま
す。他はすべて任意のオプション
です。

パラメーター 説明 値

1.26.4.5. 分散トレースのサンプリング設定オプション

Red Hat OpenShift 分散トレーシング Platform (Jaeger) Operator を使用すると、リモートサンプラー
を使用するように設定されたトレーサーに提供されるサンプリングストラテジーを定義できます。

すべてのトレースが生成される間に、それらの一部のみがサンプリングされます。トレースをサンプリ
ングすると、追加の処理や保存のためにトレースにマークが付けられます。

注記

これは、トレースがサンプリングの意思決定が行われる際に Envoy プロキシーによって
開始されている場合に関連がありません。Jaeger サンプリングの意思決定は、トレース
がクライアントを使用してアプリケーションによって開始される場合にのみ関連しま
す。

サービスがトレースコンテキストが含まれていない要求を受信すると、クライアントは新しいトレース
を開始し、これにランダムなトレース ID を割り当て、現在インストールされているサンプリングスト
ラテジーに基づいてサンプリングの意思決定を行います。サンプリングの意思決定はトレース内の後続
のすべての要求に伝播され、他のサービスが再度サンプリングの意思決定を行わないようにします。

Red Hat OpenShift Service on AWS 4 Service Mesh

324

分散トレーシング Platform (Jaeger) ライブラリーは、次のサンプラーをサポートしています。

Probabilistic: サンプラーは、sampling.param プロパティーの値と等しいサンプリングの確率
で、ランダムなサンプリングの意思決定を行います。たとえば、sampling.param=0.1 を使用
した場合は、約 10 のうち 1 トレースがサンプリングされます。

Rate Limiting: サンプラーは、リーキーバケット (leaky bucket) レートリミッターを使用して、
トレースが一定のレートでサンプリングされるようにします。たとえば、sampling.param=2.0
を使用した場合は、1 秒あたり 2 トレースの割合で要求がサンプリングされます。

表1.42 Jaeger サンプリングのオプション

パラメーター 説明 値 デフォルト値

spec:
 sampling:
 options: {}
 default_strategy:

service_strategy:

トレース用のサンプリン
グストラテジーを定義す
る設定オプション。

 設定を指定しない場合、
Collector はすべての
サービスの確率 0.001
(0.1%) のデフォルトの確
率的なサンプリングポリ
シーを返します。

default_strategy:
 type:
service_strategy:
 type:

使用するサンプリングス
トラテジー。上記の説明
を参照してください。

有効な値は
probabilistic、および
ratelimiting です。

probabilistic

default_strategy:
 param:
service_strategy:
 param:

選択したサンプリングス
トラテジーのパラメー
ター

10 進値および整数値
(0、.1、1、10)

1

この例では、トレースインスタンスをサンプリングする確率が 50% の確率的なデフォルトサンプリン
グストラテジーを定義します。

確率的なサンプリングの例

apiVersion: jaegertracing.io/v1
kind: Jaeger
metadata:
 name: with-sampling
spec:
 sampling:
 options:
 default_strategy:
 type: probabilistic
 param: 0.5
 service_strategies:
 - service: alpha
 type: probabilistic

第1章 SERVICE MESH 2.X

325

ユーザー指定の設定がない場合、分散トレーシング Platform (Jaeger) は次の設定を使用します。

デフォルトのサンプリング

1.26.4.6. 分散トレースのストレージ設定オプション

spec.storage の下で Collector、Ingester、および Query サービスのストレージを設定します。これら
の各コンポーネントの複数のインスタンスは、パフォーマンスと回復性を確保するために、必要に応じ
てプロビジョニングできます。

表1.43 Red Hat OpenShift 分散トレーシング Platform (Jaeger) Operator が分散トレーシングスト
レージを定義するために使用する一般的なストレージパラメーター

パラメーター 説明 値 デフォルト値

spec:
 storage:
 type:

デプロイメントに使用す
るストレージのタイプ。

memory または
elasticsearchメモリー
ストレージは、Pod が
シャットダウンした場合
にデータが永続化されな
いため、開発、テスト、
デモ、および概念検証用
の環境にのみに適してい
ます。実稼働環境では、
分散トレーシング
Platform (Jaeger) が永
続ストレージ用の
Elasticsearch をサポー
トします。

memory

storage:
 secretname:

シークレットの名前
(例:tracing-secret)。

 該当なし

 param: 0.8
 operation_strategies:
 - operation: op1
 type: probabilistic
 param: 0.2
 - operation: op2
 type: probabilistic
 param: 0.4
 - service: beta
 type: ratelimiting
 param: 5

spec:
 sampling:
 options:
 default_strategy:
 type: probabilistic
 param: 1

Red Hat OpenShift Service on AWS 4 Service Mesh

326

storage:
 options: {}

ストレージを定義する設
定オプション。

パラメーター 説明 値 デフォルト値

表1.44 Elasticsearch インデックスクリーナーのパラメーター

パラメーター 説明 値 デフォルト値

storage:
 esIndexCleaner:
 enabled:

Elasticsearch ストレー
ジを使用する場合は、デ
フォルトでジョブが作成
され、古いトレースをイ
ンデックスからクリーン
アップします。このパラ
メーターは、インデック
スクリーナージョブを有
効または無効にします。

true/ false true

storage:
 esIndexCleaner:
 numberOfDays:

インデックスの削除を待
機する日数。

整数値 7

storage:
 esIndexCleaner:
 schedule:

Elasticsearch インデッ
クスを消去する頻度に関
するスケジュールを定義
します。

cron 式 "55 23 * * *"

1.26.4.6.1. Elasticsearch インスタンスの自動プロビジョニング

Jaeger カスタムリソースをデプロイすると、Red Hat OpenShift 分散トレーシング Platform (Jaeger)
Operator は OpenShift Elasticsearch Operator を使用して、カスタムリソースファイルの ストレージ
セクションで指定された設定に基づいて Elasticsearch クラスターを作成します。Red Hat OpenShift 分
散トレーシング Platform (Jaeger) Operator は、次の設定が設定されている場合、Elasticsearch をプロ
ビジョニングします。

spec.storage:type は elasticsearch に設定されている

spec.storage.elasticsearch.doNotProvision は false に設定されている

spec.storage.options.es.server-urls が定義されていない。つまり、OpenShift Elasticsearch
Operator によってプロビジョニングされていない Elasticsearch インスタンスへの接続がな
い。

Elasticsearch をプロビジョニングする場合、Red Hat OpenShift 分散トレーシング Platform (Jaeger)
Operator は、Elasticsearch カスタムリソース 名を Jaeger カスタムリソースの
spec.storage.elasticsearch.name の値に設定します。spec.storage.elasticsearch.name に値を指定
しない場合、Operator は elasticsearch を使用します。

第1章 SERVICE MESH 2.X

327

制約

名前空間ごとに、セルフプロビジョニングされた Elasticsearch インスタンスを備えた分散ト
レーシングプラットフォーム (Jaeger) を 1 つだけ持つことができます。Elasticsearch クラス
ターは、単一の分散トレーシング Platform (Jaeger) インスタンス専用となります。

namespace ごとに 1 つの Elasticsearch のみを使用できます。

注記

OpenShift ロギングの一部として Elasticsearch がすでにインストールされている場合、
Red Hat OpenShift 分散トレーシング Platform (Jaeger) Operator はインストールされ
た OpenShift Elasticsearch Operator を使用してストレージをプロビジョニングできま
す。

以下の設定パラメーターは、セルフプロビジョニングされた Elasticsearch インスタンス用です。セル
フプロビジョニングされた Elasticsearch インスタンスとは、OpenShift Elasticsearch Operator を使用
して Red Hat OpenShift 分散トレーシング Platform (Jaeger) Operator によって作成されたインスタン
スです。セルフプロビジョニングされた Elasticsearch の設定オプションは、設定ファイルの
spec:storage:elasticsearch の下で指定します。

表1.45 Elasticsearch リソース設定パラメーター

パラメーター 説明 値 デフォルト値

elasticsearch:
 properties:
 doNotProvision:

Elasticsearch インスタ
ンスを Red Hat
OpenShift 分散トレーシ
ング Platform (Jaeger)
Operator によってプロ
ビジョニングするかどう
かを指定するために使用
します。

true/false true

elasticsearch:
 properties:
 name:

Elasticsearch インスタ
ンスの名前。Red Hat
OpenShift 分散トレーシ
ング Platform (Jaeger)
Operator は、このパラ
メーターで指定された
Elasticsearch インスタ
ンスを使用して
Elasticsearch に接続し
ます。

string elasticsearch

elasticsearch:
 nodeCount:

Elasticsearch ノードの
数。高可用性を確保する
には、少なくとも 3 つの
ノードを使用します。
“スプリットブレイン“ の
問題が生じる可能性があ
るため、2 つのノードを
使用しないでください。

整数値。例: 概念実証用
= 1、最小デプロイメント
= 3

3

Red Hat OpenShift Service on AWS 4 Service Mesh

328

elasticsearch:
 resources:
 requests:
 cpu:

ご使用の環境設定に基づ
く、要求に対する中央処
理単位の数。

コアまたはミリコアで指
定されます (例: 200m、
0.5、1)。例: 概念実証用
= 500m、最小デプロイ
メント = 1

1

elasticsearch:
 resources:
 requests:
 memory:

ご使用の環境設定に基づ
く、要求に使用できるメ
モリー。

バイト単位で指定します
(例:200Ki、50Mi、
5Gi)。例: 概念実証用 =
1Gi、最小デプロイメン
ト = 16Gi*

16Gi

elasticsearch:
 resources:
 limits:
 cpu:

ご使用の環境設定に基づ
く、中央処理単位数の制
限。

コアまたはミリコアで指
定されます (例: 200m、
0.5、1)。例: 概念実証用
= 500m、最小デプロイ
メント = 1

elasticsearch:
 resources:
 limits:
 memory:

ご使用の環境設定に基づ
く、利用可能なメモリー
制限。

バイト単位で指定します
(例:200Ki、50Mi、
5Gi)。例: 概念実証用 =
1Gi、最小デプロイメン
ト = 16Gi*

elasticsearch:

redundancyPolicy:

データレプリケーション
ポリシーは、
Elasticsearch シャード
をクラスター内のデータ
ノードにレプリケートす
る方法を定義します。指
定されていない場合は、
Red Hat OpenShift 分散
トレーシング Platform
(Jaeger) Operator が
ノード数に基づいて最適
なレプリケーションを自
動的に決定します。

ZeroRedundancy(レ
プリカシャードな
し)、SingleRedunda
ncy(レプリカシャード 1
つ)、MultipleRedund
ancy(各インデックスは
データノードの半分に分
散され
る)、FullRedundancy
(各インデックスはクラ
スター内のすべてのデー
タノードに完全にレプリ
ケートされます)

パラメーター 説明 値 デフォルト値

第1章 SERVICE MESH 2.X

329

elasticsearch:

useCertManageme
nt:

分散トレーシング
Platform (Jaeger) が
OpenShift Elasticsearch
Operator の証明書管理
機能を使用するかどうか
を指定するために使用し
ます。この機能は、Red
Hat OpenShift Service
on AWS 4.7 の {logging-
title} 5.2 に追加されまし
た。新しい Jaeger デプ
ロイメントでは推奨され
る設定です。

true/false true

パラメーター 説明 値 デフォルト値

各 Elasticsearch ノードはこれより低い値のメモリー設定でも動作しますが、これは実稼働環境でのデ
プロイメントには推奨されません。実稼働環境で使用する場合は、デフォルトで各 Pod に割り当てる
設定を 16 Gi 未満にすることはできず、Pod ごとに最大 64 Gi を割り当てる必要があります。

実稼働ストレージの例

永続ストレージを含むストレージの例

apiVersion: jaegertracing.io/v1
kind: Jaeger
metadata:
 name: simple-prod
spec:
 strategy: production
 storage:
 type: elasticsearch
 elasticsearch:
 nodeCount: 3
 resources:
 requests:
 cpu: 1
 memory: 16Gi
 limits:
 memory: 16Gi

apiVersion: jaegertracing.io/v1
kind: Jaeger
metadata:
 name: simple-prod
spec:
 strategy: production
 storage:
 type: elasticsearch
 elasticsearch:
 nodeCount: 1
 storage: 1
 storageClassName: gp2

Red Hat OpenShift Service on AWS 4 Service Mesh

330

1 永続ストレージの設定。この場合、AWS gp2 のサイズは 5Gi です。値が指定されていない場合、
分散トレーシング Platform (Jaeger) は emptyDir を使用します。OpenShift Elasticsearch
Operator は、分散トレーシング Platform (Jaeger) インスタンスで削除されない
PersistentVolumeClaim と PersistentVolume をプロビジョニングします。同じ名前と名前空間
を持つ分散トレーシング Platform (Jaeger) インスタンスを作成すると、同じボリュームをマウン
トできます。

1.26.4.6.2. 既存の Elasticsearch インスタンスへの接続

分散トレーシング Platform では、既存の Elasticsearch クラスターをストレージとして使用できます。
既存の Elasticsearch クラスター (外部 Elasticsearch インスタンスとも呼ばれます) は、Red Hat
OpenShift 分散トレーシング Platform (Jaeger) Operator または OpenShift Elasticsearch Operator に
よってインストールされなかったインスタンスです。

Jaeger カスタムリソースをデプロイするときに、次の設定が設定されている場合は、Red Hat
OpenShift 分散トレーシング Platform (Jaeger) Operator は Elasticsearch をプロビジョニングしませ
ん。

spec.storage.elasticsearch.doNotProvision が true に設定されている

spec.storage.options.es.server-urls に値がある

spec.storage.elasticsearch.name に値がある場合、または Elasticsearch インスタンス名が
elasticsearch の場合。

Red Hat OpenShift 分散トレーシング Platform (Jaeger) Operator
は、spec.storage.elasticsearch.name で指定された Elasticsearch インスタンスを使用して
Elasticsearch に接続します。

制約

Red Hat OpenShift Service on AWS ログ Elasticsearch インスタンスを分散トレーシング
Platform (Jaeger) で共有または再利用することはできません。Elasticsearch クラスターは、単
一の分散トレーシング Platform (Jaeger) インスタンス専用となります。

以下の設定パラメーターは、外部 Elasticsearch インスタンスとして知られる、既存の Elasticsearch イ
ンスタンス向けです。この場合は、カスタムリソースファイルの spec:storage:options:es で、
Elasticsearch の設定オプションを指定します。

表1.46 汎用 ES 設定パラメーター

 size: 5Gi
 resources:
 requests:
 cpu: 200m
 memory: 4Gi
 limits:
 memory: 4Gi
 redundancyPolicy: ZeroRedundancy

第1章 SERVICE MESH 2.X

331

パラメーター 説明 値 デフォルト値

es:
 server-urls:

Elasticsearch インスタ
ンスの URL。

Elasticsearch サーバー
の完全修飾ドメイン名。

http://elasticsearch.
<namespace>.svc:92
00

es:
 max-doc-count:

Elasticsearch クエリー
から返す最大ドキュメン
ト数。これは集約にも適
用されます。es.max-
doc-count と es.max-
num-spans の両方を
設定する場合は、
Elasticsearch は 2 つの
内の小さい方の値を使用
します。

 10000

es:
 max-num-spans:

[非推奨: 今後のリリース
で削除されます。代わり
に es.max-doc-count
を使用してください。]
Elasticsearch のクエ
リーごとに、1 度に
フェッチするスパンの最
大数。es.max-num-
spans と es.max-doc-
count の両方を設定す
る場合、Elasticsearch
は 2 つの内の小さい方の
値を使用します。

 10000

es:
 max-span-age:

Elasticsearch のスパン
の最大ルックバック。

 72h0m0s

es:
 sniffer:

Elasticsearch のスニ
ファー設定。クライアン
トはスニッフィングプロ
セスを使用してすべての
ノードを自動的に検索し
ます。デフォルトでは無
効になっています。

true/ false false

Red Hat OpenShift Service on AWS 4 Service Mesh

332

http://:9200

es:
 sniffer-tls-
enabled:

Elasticsearch クラス
ターに対してスニッフィ
ングする際に TLS を有
効にするためのオプショ
ン。クライアントはス
ニッフィングプロセスを
使用してすべてのノード
を自動的に検索します。
デフォルトでは無効に
なっています。

true/ false false

es:
 timeout:

クエリーに使用されるタ
イムアウト。ゼロに設定
するとタイムアウトはあ
りません。

 0s

es:
 username:

Elasticsearch で必要な
ユーザー名。Basic 認証
は、指定されている場合
に CA も読み込みま
す。es.password も参
照してください。

es:
 password:

Elasticsearch で必要な
パスワー
ド。es.username も参
照してください。

es:
 version:

主要な Elasticsearch
バージョン。指定されて
いない場合、値は
Elasticsearch から自動
検出されます。

 0

パラメーター 説明 値 デフォルト値

表1.47 ES データレプリケーションパラメーター

パラメーター 説明 値 デフォルト値

es:
 num-replicas:

Elasticsearch のイン
デックスごとのレプリカ
数。

 1

es:
 num-shards:

Elasticsearch のイン
デックスごとのシャード
数。

 5

表1.48 ES インデックス設定パラメーター

第1章 SERVICE MESH 2.X

333

パラメーター 説明 値 デフォルト値

es:
 create-index-
templates:

true に設定されている
場合は、アプリケーショ
ンの起動時にインデック
ステンプレートを自動的
に作成します。テンプ
レートが手動でインス
トールされる場合
は、false に設定されま
す。

true/ false true

es:
 index-prefix:

分散トレーシング
Platform (Jaeger) イン
デックスのオプションの
接頭辞。たとえば、これ
を “production“ に設定
すると、“production-
tracing-*“ という名前の
インデックスが作成され
ます。

表1.49 ES バルクプロセッサー設定パラメーター

パラメーター 説明 値 デフォルト値

es:
 bulk:
 actions:

バルクプロセッサーが
ディスクへの更新のコ
ミットを決定する前に
キューに追加できる要求
の数。

 1000

es:
 bulk:
 flush-interval:

time.Duration: この後
に、他のしきい値に関係
なく一括要求がコミット
されます。バルクプロ
セッサーのフラッシュ間
隔を無効にするには、こ
れをゼロに設定します。

 200ms

es:
 bulk:
 size:

バルクプロセッサーが
ディスクへの更新をコ
ミットするまでに一括要
求が発生する可能性のあ
るバイト数。

 5000000

es:
 bulk:
 workers:

一括要求を受信し、
Elasticsearch にコミッ
トできるワーカーの数。

 1

Red Hat OpenShift Service on AWS 4 Service Mesh

334

表1.50 ES TLS 設定パラメーター

パラメーター 説明 値 デフォルト値

es:
 tls:
 ca:

リモートサーバーの検証
に使用される TLS 認証
局 (CA) ファイルへのパ
ス。

 デフォルトではシステム
トラストストアを使用し
ます。

es:
 tls:
 cert:

リモートサーバーに対す
るこのプロセスの特定に
使用される TLS 証明書
ファイルへのパス。

es:
 tls:
 enabled:

リモートサーバーと通信
する際に、トランスポー
ト層セキュリティー
(TLS) を有効にします。
デフォルトでは無効に
なっています。

true/ false false

es:
 tls:
 key:

リモートサーバーに対す
るこのプロセスの特定に
使用される TLS 秘密鍵
ファイルへのパス。

es:
 tls:
 server-name:

リモートサーバーの証明
書の予想される TLS
サーバー名を上書きしま
す。

es:
 token-file:

ベアラートークンが含ま
れるファイルへのパス。
このフラグは、指定され
ている場合は認証局
(CA) ファイルも読み込
みます。

表1.51 ES アーカイブ設定パラメーター

パラメーター 説明 値 デフォルト値

es-archive:
 bulk:
 actions:

バルクプロセッサーが
ディスクへの更新のコ
ミットを決定する前に
キューに追加できる要求
の数。

 0

第1章 SERVICE MESH 2.X

335

es-archive:
 bulk:
 flush-interval:

time.Duration: この後
に、他のしきい値に関係
なく一括要求がコミット
されます。バルクプロ
セッサーのフラッシュ間
隔を無効にするには、こ
れをゼロに設定します。

 0s

es-archive:
 bulk:
 size:

バルクプロセッサーが
ディスクへの更新をコ
ミットするまでに一括要
求が発生する可能性のあ
るバイト数。

 0

es-archive:
 bulk:
 workers:

一括要求を受信し、
Elasticsearch にコミッ
トできるワーカーの数。

 0

es-archive:
 create-index-
templates:

true に設定されている
場合は、アプリケーショ
ンの起動時にインデック
ステンプレートを自動的
に作成します。テンプ
レートが手動でインス
トールされる場合
は、false に設定されま
す。

true/ false false

es-archive:
 enabled:

追加ストレージを有効に
します。

true/ false false

es-archive:
 index-prefix:

分散トレーシング
Platform (Jaeger) イン
デックスのオプションの
接頭辞。たとえば、これ
を “production“ に設定
すると、“production-
tracing-*“ という名前の
インデックスが作成され
ます。

es-archive:
 max-doc-count:

Elasticsearch クエリー
から返す最大ドキュメン
ト数。これは集約にも適
用されます。

 0

パラメーター 説明 値 デフォルト値

Red Hat OpenShift Service on AWS 4 Service Mesh

336

es-archive:
 max-num-spans:

[非推奨: 今後のリリース
で削除されます。代わり
に es-archive.max-
doc-count を使用して
ください。]
Elasticsearch のクエ
リーごとに、1 度に
フェッチするスパンの最
大数。

 0

es-archive:
 max-span-age:

Elasticsearch のスパン
の最大ルックバック。

 0s

es-archive:
 num-replicas:

Elasticsearch のイン
デックスごとのレプリカ
数。

 0

es-archive:
 num-shards:

Elasticsearch のイン
デックスごとのシャード
数。

 0

es-archive:
 password:

Elasticsearch で必要な
パスワー
ド。es.username も参
照してください。

es-archive:
 server-urls:

Elasticsearch サーバー
のコンマ区切りの一覧。
完全修飾 URL(例:
http://localhost:9200
) として指定される必要
があります。

es-archive:
 sniffer:

Elasticsearch のスニ
ファー設定。クライアン
トはスニッフィングプロ
セスを使用してすべての
ノードを自動的に検索し
ます。デフォルトでは無
効になっています。

true/ false false

パラメーター 説明 値 デフォルト値

第1章 SERVICE MESH 2.X

337

es-archive:
 sniffer-tls-
enabled:

Elasticsearch クラス
ターに対してスニッフィ
ングする際に TLS を有
効にするためのオプショ
ン。クライアントはス
ニッフィングプロセスを
使用してすべてのノード
を自動的に検索します。
デフォルトでは無効に
なっています。

true/ false false

es-archive:
 timeout:

クエリーに使用されるタ
イムアウト。ゼロに設定
するとタイムアウトはあ
りません。

 0s

es-archive:
 tls:
 ca:

リモートサーバーの検証
に使用される TLS 認証
局 (CA) ファイルへのパ
ス。

 デフォルトではシステム
トラストストアを使用し
ます。

es-archive:
 tls:
 cert:

リモートサーバーに対す
るこのプロセスの特定に
使用される TLS 証明書
ファイルへのパス。

es-archive:
 tls:
 enabled:

リモートサーバーと通信
する際に、トランスポー
ト層セキュリティー
(TLS) を有効にします。
デフォルトでは無効に
なっています。

true/ false false

es-archive:
 tls:
 key:

リモートサーバーに対す
るこのプロセスの特定に
使用される TLS 秘密鍵
ファイルへのパス。

es-archive:
 tls:
 server-name:

リモートサーバーの証明
書の予想される TLS
サーバー名を上書きしま
す。

パラメーター 説明 値 デフォルト値

Red Hat OpenShift Service on AWS 4 Service Mesh

338

es-archive:
 token-file:

ベアラートークンが含ま
れるファイルへのパス。
このフラグは、指定され
ている場合は認証局
(CA) ファイルも読み込
みます。

es-archive:
 username:

Elasticsearch で必要な
ユーザー名。Basic 認証
は、指定されている場合
に CA も読み込みま
す。es-
archive.password も
参照してください。

es-archive:
 version:

主要な Elasticsearch
バージョン。指定されて
いない場合、値は
Elasticsearch から自動
検出されます。

 0

パラメーター 説明 値 デフォルト値

ボリュームマウントを含むストレージの例

以下の例は、ボリュームからマウントされる TLS CA 証明書およびシークレットに保存されるユー
ザー/パスワードを使用して外部 Elasticsearch クラスターを使用する Jaeger CR を示しています。

外部 Elasticsearch の例:

apiVersion: jaegertracing.io/v1
kind: Jaeger
metadata:
 name: simple-prod
spec:
 strategy: production
 storage:
 type: elasticsearch
 options:
 es:
 server-urls: https://quickstart-es-http.default.svc:9200
 index-prefix: my-prefix
 tls:
 ca: /es/certificates/ca.crt
 secretName: tracing-secret
 volumeMounts:
 - name: certificates
 mountPath: /es/certificates/
 readOnly: true
 volumes:
 - name: certificates
 secret:
 secretName: quickstart-es-http-certs-public

第1章 SERVICE MESH 2.X

339

1

2

3

4

デフォルト namespace で実行されている Elasticsearch サービスへの URL。

TLS 設定。この場合は、CA 証明書のみを使用できますが、相互 TLS を使用する場合に es.tls.key
および es.tls.cert を含めることもできます。

環境変数 ES_PASSWORD および ES_USERNAME を定義するシークレット。kubectl create secret
generic tracing-secret --from-literal=ES_PASSWORD=changeme --from-
literal=ES_USERNAME=elastic により作成されます

すべてのストレージコンポーネントにマウントされるボリュームのマウントとボリューム。

1.26.4.7. クエリー設定オプション

Query とは、ストレージからトレースを取得し、ユーザーインターフェイスをホストしてそれらを表示
するサービスです。

表1.52 Red Hat OpenShift 分散トレーシング Platform (Jaeger) Operator がクエリーを定義するため
に使用するパラメーター

パラメーター 説明 値 デフォルト値

spec:
 query:
 replicas:

作成する Query レプリ
カの数を指定します。

整数 (例: 2)

表1.53 Query に渡される設定パラメーター

apiVersion: jaegertracing.io/v1
kind: Jaeger
metadata:
 name: simple-prod
spec:
 strategy: production
 storage:
 type: elasticsearch
 options:
 es:
 server-urls: https://quickstart-es-http.default.svc:9200 1
 index-prefix: my-prefix
 tls: 2
 ca: /es/certificates/ca.crt
 secretName: tracing-secret 3
 volumeMounts: 4
 - name: certificates
 mountPath: /es/certificates/
 readOnly: true
 volumes:
 - name: certificates
 secret:
 secretName: quickstart-es-http-certs-public

Red Hat OpenShift Service on AWS 4 Service Mesh

340

パラメーター 説明 値 デフォルト値

spec:
 query:
 options: {}

Query サービスを定義す
る設定オプション。

options:
 log-level:

Query のロギングレベ
ル。

使用できる値
は、debug、info、wa
rn、error、fatal、pan
ic です。

options:
 query:
 base-path:

すべての jaeger-query
HTTP ルートのベースパ
スは、root 以外の値に
設定できます。たとえ
ば、/jaeger ではすべて
の UI URL が /jaeger で
開始するようになりま
す。これは、リバースプ
ロキシーの背後で
jaeger-query を実行する
場合に役立ちます。

/<path>

Query 設定の例

1.26.4.8. Ingester 設定オプション

Ingester は、Kafka トピックから読み取り、Elasticsearch ストレージバックエンドに書き込むサービス
です。allInOne または production デプロイメントストラテジーを使用している場合は、Ingester サー
ビスを設定する必要はありません。

表1.54 Ingester に渡される Jaeger パラメーター

apiVersion: jaegertracing.io/v1
kind: "Jaeger"
metadata:
 name: "my-jaeger"
spec:
 strategy: allInOne
 allInOne:
 options:
 log-level: debug
 query:
 base-path: /jaeger

第1章 SERVICE MESH 2.X

341

パラメーター 説明 値

spec:
 ingester:
 options: {}

Ingester サービスを定義する設定
オプション。

options:
 deadlockInterval:

Ingester が終了するまでメッセー
ジを待機する間隔 (秒単位または
分単位) を指定します。システム
の初期化中にメッセージが到着し
ない場合に Ingester が終了しない
ように、デッドロックの間隔はデ
フォルトで無効化 (0 に設定) され
ます。

分と秒 (例: 1m0s)デフォルト値
は 0 です。

options:
 kafka:
 consumer:
 topic:

topic パラメーターは、コレク
ターによってメッセージを生成す
るために使用され、Ingester に
よってメッセージを消費するため
に使用される Kafka 設定を特定し
ます。

コンシューマーのラベル例:
jaeger-spans

options:
 kafka:
 consumer:
 brokers:

メッセージを消費するために
Ingester によって使用される
Kafka 設定を特定します。

ブローカーのラベル (例: my-
cluster-kafka-
brokers.kafka:9092)

options:
 log-level:

Ingester のロギングレベル。 使用できる値
は、debug、info、warn、erro
r、fatal、dpanic、panic で
す。

ストリーミング Collector および Ingester の例

apiVersion: jaegertracing.io/v1
kind: Jaeger
metadata:
 name: simple-streaming
spec:
 strategy: streaming
 collector:
 options:
 kafka:
 producer:
 topic: jaeger-spans
 brokers: my-cluster-kafka-brokers.kafka:9092
 ingester:
 options:
 kafka:

Red Hat OpenShift Service on AWS 4 Service Mesh

342

1.27. SERVICE MESH のアンインストール

Red Hat OpenShift Service Mesh を既存の Red Hat OpenShift Service on AWS インスタンスからアン
インストールし、そのリソースを削除するには、コントロールプレーンと Operator を削除してから、
コマンドを実行してリソースを手動で削除する必要があります。

1.27.1. Red Hat OpenShift Service Mesh コントロールプレーンの削除

Service Mesh を既存の Red Hat OpenShift Service on AWS インスタンスからアンインストールするに
は、最初に Service Mesh コントロールプレーンと Operator を削除します。次に、コマンドを実行して
残りのリソースを削除します。

1.27.1.1. Web コンソールを使用した Service Mesh コントロールプレーンの削除

Web コンソールを使用して Red Hat OpenShift Service Mesh コントロールプレーンを削除します。

手順

1. Red Hat OpenShift Service on AWS Web コンソールにログインします。

2. Project メニューをクリックし、Service Mesh コントロールプレーンをインストールしたプロ
ジェクト (例: istio-system) を選択します。

3. Operators → Installed Operators に移動します。

4. Provided APIs の Service Mesh Control Plane をクリックします。

5. ServiceMeshControlPlane メニュー をクリックします。

6. Delete Service Mesh Control Plane をクリックします。

7. 確認ダイアログウィンドウで Delete をクリックし、ServiceMeshControlPlane を削除しま
す。

1.27.1.2. CLI を使用した Service Mesh コントロールプレーンの削除

CLI を使用して Red Hat OpenShift Service Mesh コントロールプレーンを削除します。この例で
は、istio-system は、コントロールプレーンプロジェクトです。

手順

1. Red Hat OpenShift Service on AWS CLI にログインします。

 consumer:
 topic: jaeger-spans
 brokers: my-cluster-kafka-brokers.kafka:9092
 ingester:
 deadlockInterval: 5
 storage:
 type: elasticsearch
 options:
 es:
 server-urls: http://elasticsearch:9200

第1章 SERVICE MESH 2.X

343

2. 次のコマンドを実行して、ServiceMeshMemberRoll リソースを削除します。

3. 以下のコマンドを実行して、インストールした ServiceMeshControlPlane の名前を取得しま
す。

4. <name_of_custom_resource> を先のコマンドの出力に置き換え、以下のコマンドを実行して
カスタムリソースを削除します。

1.27.2. インストールされた Operator の削除

Red Hat OpenShift Service Mesh を正常に削除するには、Operator を削除する必要があります。Red
Hat OpenShift Service Mesh Operator を削除した後、Kiali Operator、Red Hat OpenShift 分散トレー
シング Platform (Jaeger) Operator、および OpenShift Elasticsearch Operator を削除する必要があり
ます。

1.27.2.1. Operator の削除

以下の手順に従って、Red Hat OpenShift Service Mesh を設定する Operator を削除します。以下の
Operator ごとに手順を繰り返します。

Red Hat OpenShift Service Mesh

Kiali

Red Hat OpenShift 分散トレーシングプラットフォーム (Jaeger)

OpenShift Elasticsearch

手順

1. Red Hat OpenShift Service on AWS Web コンソールにログインします。

2. Operator → Installed Operators ページから、スクロールするか、キーワードを Filter by
name に入力して各 Operator を見つけます。次に、Operator 名をクリックします。

3. Operator Details ページで、Actions メニューから Uninstall Operator を選択します。プロン
プトに従って各 Operator をアンインストールします。

1.27.3. Operator リソースのクリーンアップ

Red Hat OpenShift Service on AWS Web コンソールを使用して、Red Hat OpenShift Service Mesh
Operator を削除した後に残ったリソースを手動で削除できます。

前提条件

クラスター管理アクセスを持つアカウント。(Red Hat OpenShift Dedicated を使用する場合)
dedicated-admin ロールがあるアカウント。

$ oc delete smmr -n istio-system default

$ oc get smcp -n istio-system

$ oc delete smcp -n istio-system <name_of_custom_resource>

Red Hat OpenShift Service on AWS 4 Service Mesh

344

OpenShift CLI (oc) へのアクセスがある。

手順

1. Red Hat OpenShift Service on AWS CLI にクラスター管理者としてログインします。

2. 以下のコマンドを実行して、Operator のアンインストール後にリソースをクリーンアップしま
す。サービスメッシュなしで分散トレーシング Platform (Jaeger) をスタンドアロンサービスと
して引き続き使用する場合は、Jaeger リソースを削除しないでください。

注記

OpenShift Elasticsearch Operator はデフォルトで openshift-operators-redhat
にインストールされます。他の Operator はデフォルトで openshift-operators
namespace にインストールされます。Operator を別の namespace にインス
トールしている場合は、openshift-operators を Red Hat OpenShift Service
Mesh Operator がインストールされていたプロジェクトの名前に置き換えます。

$ oc delete svc maistra-admission-controller -n openshift-operators

$ oc -n openshift-operators delete ds -lmaistra-version

$ oc delete clusterrole/istio-admin clusterrole/istio-cni clusterrolebinding/istio-cni

$ oc delete clusterrole istio-view istio-edit

$ oc delete clusterrole jaegers.jaegertracing.io-v1-admin jaegers.jaegertracing.io-v1-crdview
jaegers.jaegertracing.io-v1-edit jaegers.jaegertracing.io-v1-view

$ oc delete cm -n openshift-operators maistra-operator-cabundle

$ oc delete cm -n openshift-operators istio-cni-config istio-cni-config-v2-3

$ oc delete sa -n openshift-operators istio-cni

第1章 SERVICE MESH 2.X

345

	目次
	第1章 SERVICE MESH 2.X
	1.1. OPENSHIFT SERVICE MESH について
	1.1.1. Red Hat OpenShift Service Mesh の概要
	1.1.2. コア機能

	1.2. SERVICE MESH リリースノート
	1.2.1. Red Hat OpenShift Service Mesh バージョン 2.6.7
	1.2.1.1. コンポーネントの更新

	1.2.2. Red Hat OpenShift Service Mesh バージョン 2.5.10
	1.2.2.1. コンポーネントの更新

	1.2.3. Red Hat OpenShift Service Mesh バージョン 2.6.6
	1.2.3.1. コンポーネントの更新
	1.2.3.2. 新機能

	1.2.4. Red Hat OpenShift Service Mesh バージョン 2.5.9
	1.2.4.1. コンポーネントの更新

	1.2.5. Red Hat OpenShift Service Mesh バージョン 2.4.15
	1.2.5.1. コンポーネントの更新

	1.2.6. Red Hat OpenShift Service Mesh バージョン 2.6.5
	1.2.6.1. コンポーネントの更新
	1.2.6.2. 新機能
	1.2.6.3. 修正された問題

	1.2.7. Red Hat OpenShift Service Mesh バージョン 2.5.8
	1.2.7.1. コンポーネントの更新
	1.2.7.2. 修正された問題

	1.2.8. Red Hat OpenShift Service Mesh バージョン 2.4.14
	1.2.8.1. コンポーネントの更新
	1.2.8.2. 修正された問題

	1.2.9. Red Hat OpenShift Service Mesh バージョン 2.6.4
	1.2.9.1. コンポーネントの更新

	1.2.10. Red Hat OpenShift Service Mesh バージョン 2.5.7
	1.2.10.1. コンポーネントの更新

	1.2.11. Red Hat OpenShift Service Mesh バージョン 2.4.13
	1.2.11.1. コンポーネントの更新

	1.2.12. Red Hat OpenShift Service Mesh バージョン 2.6.3
	1.2.12.1. コンポーネントの更新

	1.2.13. Red Hat OpenShift Service Mesh バージョン 2.5.6
	1.2.13.1. コンポーネントの更新

	1.2.14. Red Hat OpenShift Service Mesh バージョン 2.4.12
	1.2.14.1. コンポーネントの更新

	1.2.15. Red Hat OpenShift Service Mesh バージョン 2.6.2
	1.2.15.1. コンポーネントの更新
	1.2.15.2. 新機能
	1.2.15.3. 修正された問題

	1.2.16. Red Hat OpenShift Service Mesh バージョン 2.5.5
	1.2.16.1. コンポーネントの更新
	1.2.16.2. 修正された問題

	1.2.17. Red Hat OpenShift Service Mesh バージョン 2.4.11
	1.2.17.1. コンポーネントの更新
	1.2.17.2. 修正された問題

	1.2.18. Red Hat OpenShift Service Mesh バージョン 2.6.1
	1.2.18.1. コンポーネントの更新
	1.2.18.2. 修正された問題

	1.2.19. Red Hat OpenShift Service Mesh バージョン 2.5.4
	1.2.19.1. コンポーネントの更新

	1.2.20. Red Hat OpenShift Service Mesh バージョン 2.4.10
	1.2.20.1. コンポーネントの更新

	1.2.21. Red Hat OpenShift Service Mesh バージョン 2.6.0
	1.2.21.1. コンポーネントの更新
	1.2.21.2. Istio 1.20 サポート
	1.2.21.3. Istio および Kiali バンドルイメージ名の変更
	1.2.21.4. Red Hat OpenShift 分散トレーシングプラットフォームと Red Hat build of OpenTelemetry との統合
	1.2.21.5. Red Hat OpenShift 分散トレーシング Platform (Jaeger) のデフォルト設定の変更
	1.2.21.6. Gateway API の使用は、Red Hat OpenShift Service Mesh のクラスター全体のデプロイメントで一般提供となりました。
	1.2.21.7. 修正された問題
	1.2.21.8. Kiali の既知の問題

	1.2.22. Red Hat OpenShift Service Mesh バージョン 2.5.3
	1.2.22.1. コンポーネントの更新

	1.2.23. Red Hat OpenShift Service Mesh バージョン 2.4.9
	1.2.23.1. コンポーネントの更新

	1.2.24. Red Hat OpenShift Service Mesh バージョン 2.5.2
	1.2.24.1. コンポーネントの更新
	1.2.24.2. 修正された問題

	1.2.25. Red Hat OpenShift Service Mesh バージョン 2.4.8
	1.2.25.1. コンポーネントの更新

	1.2.26. Red Hat OpenShift Service Mesh バージョン 2.3.12
	1.2.26.1. コンポーネントの更新

	1.2.27. 以前のリリース
	1.2.27.1. Red Hat OpenShift Service Mesh バージョン 2.5.1 の新機能
	1.2.27.2. Red Hat OpenShift Service Mesh バージョン 2.5 の新機能
	1.2.27.3. Red Hat OpenShift Service Mesh バージョン 2.4.7 の新機能
	1.2.27.4. Red Hat OpenShift Service Mesh バージョン 2.4.6 の新機能
	1.2.27.5. Red Hat OpenShift Service Mesh バージョン 2.4.5 の新機能
	1.2.27.6. Red Hat OpenShift Service Mesh バージョン 2.4.4 の新機能
	1.2.27.7. Red Hat OpenShift Service Mesh バージョン 2.4.3 の新機能
	1.2.27.8. Red Hat OpenShift Service Mesh バージョン 2.4.2 の新機能
	1.2.27.9. Red Hat OpenShift Service Mesh バージョン 2.4.1 の新機能
	1.2.27.10. Red Hat OpenShift Service Mesh バージョン 2.4 の新機能
	1.2.27.11. Red Hat OpenShift Service Mesh バージョン 2.3.11 の新機能
	1.2.27.12. Red Hat OpenShift Service Mesh バージョン 2.3.10 の新機能
	1.2.27.13. Red Hat OpenShift Service Mesh バージョン 2.3.9 の新機能
	1.2.27.14. Red Hat OpenShift Service Mesh バージョン 2.3.8 の新機能
	1.2.27.15. Red Hat OpenShift Service Mesh バージョン 2.3.7 の新機能
	1.2.27.16. Red Hat OpenShift Service Mesh バージョン 2.3.6 の新機能
	1.2.27.17. Red Hat OpenShift Service Mesh バージョン 2.3.5 の新機能
	1.2.27.18. Red Hat OpenShift Service Mesh バージョン 2.3.4 の新機能
	1.2.27.19. Red Hat OpenShift Service Mesh バージョン 2.3.3 の新機能
	1.2.27.20. Red Hat OpenShift Service Mesh バージョン 2.3.2 の新機能
	1.2.27.21. Red Hat OpenShift Service Mesh バージョン 2.3.1 の新機能
	1.2.27.22. Red Hat OpenShift Service Mesh バージョン 2.3 の新機能
	1.2.27.23. Red Hat OpenShift Service Mesh バージョン 2.2.12 の新機能
	1.2.27.24. Red Hat OpenShift Service Mesh バージョン 2.2.11 の新機能
	1.2.27.25. Red Hat OpenShift Service Mesh バージョン 2.2.10 の新機能
	1.2.27.26. Red Hat OpenShift Service Mesh バージョン 2.2.9 の新機能
	1.2.27.27. Red Hat OpenShift Service Mesh バージョン 2.2.8 の新機能
	1.2.27.28. Red Hat OpenShift Service Mesh バージョン 2.2.7 の新機能
	1.2.27.29. Red Hat OpenShift Service Mesh バージョン 2.2.6 の新機能
	1.2.27.30. Red Hat OpenShift Service Mesh バージョン 2.2.5 の新機能
	1.2.27.31. Red Hat OpenShift Service Mesh バージョン 2.2.4 の新機能
	1.2.27.32. Red Hat OpenShift Service Mesh バージョン 2.2.3 の新機能
	1.2.27.33. Red Hat OpenShift Service Mesh バージョン 2.2.2 の新機能
	1.2.27.34. Red Hat OpenShift Service Mesh バージョン 2.2.1 の新機能
	1.2.27.35. Red Hat OpenShift Service Mesh 2.2 の新機能
	1.2.27.36. Red Hat OpenShift Service Mesh 2.1.6 の新機能
	1.2.27.37. Red Hat OpenShift Service Mesh 2.1.5.2 の新機能
	1.2.27.38. Red Hat OpenShift Service Mesh 2.1.5.1 の新機能
	1.2.27.39. Red Hat OpenShift Service Mesh 2.1.5 の新機能
	1.2.27.40. Red Hat OpenShift Service Mesh 2.1.4 の新機能
	1.2.27.41. Red Hat OpenShift Service Mesh 2.1.3 の新機能
	1.2.27.42. Red Hat OpenShift Service Mesh 2.1.2.1 の新機能
	1.2.27.43. Red Hat OpenShift Service Mesh 2.1.2 の新機能
	1.2.27.44. Red Hat OpenShift Service Mesh 2.1.1 の新機能
	1.2.27.45. Red Hat OpenShift Service Mesh 2.1 の新機能および機能拡張
	1.2.27.46. Red Hat OpenShift Service Mesh 2.0.11.1 の新機能
	1.2.27.47. Red Hat OpenShift Service Mesh 2.0.11 の新機能
	1.2.27.48. Red Hat OpenShift Service Mesh 2.0.10 の新機能
	1.2.27.49. Red Hat OpenShift Service Mesh 2.0.9 の新機能
	1.2.27.50. Red Hat OpenShift Service Mesh 2.0.8 の新機能
	1.2.27.51. Red Hat OpenShift Service Mesh 2.0.7.1 の新機能
	1.2.27.52. Red Hat OpenShift Service Mesh 2.0.7 の新機能
	1.2.27.53. Red Hat OpenShift Dedicated 上の Red Hat OpenShift Service Mesh
	1.2.27.54. Red Hat OpenShift Service Mesh 2.0.6 の新機能
	1.2.27.55. Red Hat OpenShift Service Mesh 2.0.5 の新機能
	1.2.27.56. Red Hat OpenShift Service Mesh 2.0.4 の新機能
	1.2.27.57. Red Hat OpenShift Service Mesh 2.0.3 の新機能
	1.2.27.58. Red Hat OpenShift Service Mesh 2.0.2 の新機能
	1.2.27.59. Red Hat OpenShift Service Mesh 2.0.1 の新機能
	1.2.27.60. Red Hat OpenShift Service Mesh 2.0 の新機能

	1.2.28. 非推奨の機能と削除された機能
	1.2.28.1. Red Hat OpenShift Service Mesh 2.5 で非推奨化および削除された機能
	1.2.28.2. Red Hat OpenShift Service Mesh 2.4 で非推奨化および削除された機能
	1.2.28.3. Red Hat OpenShift Service Mesh 2.3 で非推奨化および削除された機能
	1.2.28.4. 非推奨になった Red Hat OpenShift Service Mesh 2.2 の機能
	1.2.28.5. Red Hat OpenShift Service Mesh 2.2 で削除された機能
	1.2.28.6. Red Hat OpenShift Service Mesh 2.1 で削除された機能
	1.2.28.7. 非推奨になった Red Hat OpenShift Service Mesh 2.0 の機能

	1.2.29. 既知の問題
	1.2.29.1. Service Mesh の既知の問題
	1.2.29.2. Kiali の既知の問題

	1.2.30. 修正された問題
	1.2.30.1. Service Mesh の修正された問題

	1.3. SERVICE MESH について
	1.3.1. Red Hat OpenShift Service Mesh とは
	1.3.2. Service Mesh アーキテクチャー
	1.3.3. Kiali について
	1.3.3.1. Kiali の概要
	1.3.3.2. Kiali アーキテクチャー
	1.3.3.3. Kiali の機能

	1.3.4. 分散トレースについて
	1.3.4.1. 分散トレースの概要
	1.3.4.2. Red Hat OpenShift 分散トレーシングプラットフォームアーキテクチャー
	1.3.4.3. Red Hat OpenShift 分散トレーシングプラットフォームの機能

	1.3.5. 次のステップ

	1.4. SERVICE MESH のデプロイメントモデル
	1.4.1. クラスター全体 (シングルテナント) メッシュデプロイメントモデル
	1.4.2. マルチテナントデプロイメントモデル
	1.4.2.1. クラスター全体のメッシュへの移行について

	1.4.3. マルチテーマまたはフェデレーションされたデプロイメントモデル

	1.5. SERVICE MESH と ISTIO の相違点
	1.5.1. Istio と Red Hat OpenShift Service Mesh の相違点
	1.5.1.1. コマンドラインツール
	1.5.1.2. インストールおよびアップグレード
	1.5.1.3. 自動的な挿入
	1.5.1.4. Istio ロールベースアクセス制御機能
	1.5.1.5. OpenSSL
	1.5.1.6. 外部ワークロード
	1.5.1.7. 仮想マシンのサポート
	1.5.1.8. コンポーネントの変更
	1.5.1.9. Envoy フィルター
	1.5.1.10. Envoy サービス
	1.5.1.11. Istio Container Network Interface (CNI) プラグイン
	1.5.1.12. グローバル mTLS 設定
	1.5.1.13. ゲートウェイ
	1.5.1.14. マルチクラスター設定
	1.5.1.15. カスタム証明書署名要求 (CSR)
	1.5.1.16. Istio ゲートウェイのルート

	1.5.2. マルチテナントインストール
	1.5.2.1. マルチテナンシーとクラスター全体のインストールの比較
	1.5.2.2. クラスタースコープのリソース

	1.5.3. Kiali と Service Mesh
	1.5.4. 分散トレースと Service Mesh

	1.6. SERVICE MESH のインストールの準備
	1.6.1. 前提条件
	1.6.2. サポートされる構成
	1.6.2.1. サポート対象のプラットフォーム
	1.6.2.2. サポートされない設定
	1.6.2.3. サポートされるネットワーク設定
	1.6.2.4. Service Mesh でサポートされる設定
	1.6.2.5. Kiali のサポートされる設定
	1.6.2.6. 分散トレースのサポートされる設定
	1.6.2.7. サポート対象の WebAssembly モジュール

	1.6.3. 次のステップ

	1.7. OPERATOR のインストール
	1.7.1. Service Mesh Operator の概要
	1.7.2. Operator のインストール
	1.7.3. 次のステップ

	1.8. SERVICEMESHCONTROLPLANE の作成
	1.8.1. About ServiceMeshControlPlane
	1.8.1.1. Web コンソールからの Service Mesh コントロールプレーンのデプロイ
	1.8.1.2. CLI を使用した Service Mesh コントロールプレーンのデプロイ
	1.8.1.3. CLI を使用した SMCP インストールの検証

	1.8.2. コントロールプレーンとクラスター全体のデプロイメントについて
	1.8.2.1. Web コンソールを使用したクラスター全体のデプロイメント用のコントロールプレーンの設定
	1.8.2.2. CLI を使用したクラスター全体のデプロイメント用のコントロールプレーンの設定
	1.8.2.3. クラスター全体のメッシュのメンバーロールのカスタマイズ

	1.8.3. Kiali を使用した SMCP インストールの検証
	1.8.4. 関連情報
	1.8.5. 次のステップ

	1.9. SERVICE MESH へのサービスの追加
	1.9.1. Service Mesh へのプロジェクトの追加
	1.9.2. Red Hat OpenShift Service Mesh メンバーロールの作成
	1.9.2.1. Web コンソールからのメンバーロールの作成
	1.9.2.2. CLI からのメンバーロールの作成

	1.9.3. ServiceMeshMemberRoll リソースを使用したプロジェクトの追加について
	1.9.3.1. Web コンソールで ServiceMeshMemberRoll リソースを使用してメッシュにプロジェクトを追加または削除する
	1.9.3.2. CLI で ServiceMeshMemberRoll リソースを使用してメッシュにプロジェクトを追加または削除する

	1.9.4. ServiceMeshMember リソースを使用したプロジェクトの追加について
	1.9.4.1. Web コンソールで ServiceMeshMember リソースを使用してメッシュにプロジェクトを追加
	1.9.4.2. CLI で ServiceMeshMember リソースを使用してメッシュにプロジェクトを追加する

	1.9.5. ラベルセレクターを使用したプロジェクトの追加について
	1.9.5.1. Web コンソールでラベルセレクターを使用してメッシュにプロジェクトを追加する
	1.9.5.2. CLI でラベルセレクターを使用してメッシュにプロジェクトを追加する

	1.9.6. Bookinfo サンプルアプリケーション
	1.9.6.1. Bookinfo アプリケーションのインストール
	1.9.6.2. デフォルトの宛先ルールの追加
	1.9.6.3. Bookinfo インストールの検証
	1.9.6.4. Bookinfo アプリケーションの削除

	1.9.7. 次のステップ

	1.10. サイドカーコンテナーの挿入の有効化
	1.10.1. 前提条件
	1.10.2. サイドカーコンテナーの自動挿入の有効化
	1.10.3. サイドカーインジェクションの検証
	1.10.4. アノテーションによるプロキシー環境変数の設定
	1.10.5. サイドカープロキシーの更新
	1.10.6. 次のステップ

	1.11. SERVICE MESH のアップグレード
	1.11.1. バージョニングについて
	1.11.1.1. バージョニングが Service Mesh のアップグレードに与える影響
	1.11.1.2. Service Mesh のバージョンについて

	1.11.2. アップグレードに関する考慮事項
	1.11.2.1. アップグレードに影響する可能性のある既知の問題

	1.11.3. Operator のアップグレード
	1.11.4. コントロールプレーンのアップグレード
	1.11.4.1. バージョン 2.5 からバージョン 2.6 へのアップグレードの変更
	1.11.4.2. バージョン 2.4 から 2.5 へのアップグレードに伴う変更
	1.11.4.3. バージョン 2.3 から 2.4 へのアップグレードに伴う変更
	1.11.4.4. バージョン 2.2 から 2.3 へのアップグレードに伴う変更
	1.11.4.5. バージョン 2.1 から 2.2 へのアップグレードに伴う変更
	1.11.4.6. バージョン 2.0 から 2.1 へのアップグレードに伴う変更
	1.11.4.7. Service Mesh コントロールプレーンのアップグレード
	1.11.4.8. Red Hat OpenShift Service Mesh のバージョン 1.1 からバージョン 2.0 への移行

	1.11.5. データプレーンのアップグレード
	1.11.5.1. アプリケーションおよびワークロードの更新

	1.12. ユーザーおよびプロファイルの管理
	1.12.1. Red Hat OpenShift Service Mesh メンバーの作成
	1.12.2. Service Mesh コントロールプレーンプロファイルの作成
	1.12.2.1. ConfigMap の作成
	1.12.2.2. 適切なネットワークポリシーの設定

	1.13. セキュリティー
	1.13.1. Mutual Transport Layer Security (mTLS) について
	1.13.1.1. Service Mesh 全体での厳密な mTLS の有効化
	1.13.1.2. Kiali による暗号化の検証

	1.13.2. ロールベースアクセス制御 (RBAC) の設定
	1.13.2.1. プロジェクト内通信の設定
	1.13.2.2. ingress ゲートウェイへのアクセスの許可または拒否
	1.13.2.3. JSON Web トークンを使用したアクセスの制限

	1.13.3. 暗号化スイートおよび ECDH 曲線の設定
	1.13.4. JSON Web キーセットリゾルバー認証局の設定
	1.13.5. 外部認証局キーおよび証明書の追加
	1.13.5.1. 既存の証明書およびキーの追加
	1.13.5.2. 証明書の確認
	1.13.5.3. 証明書の削除

	1.13.6. Service Mesh と cert-manager および istio-csr の統合について
	1.13.6.1. cert-manager のインストール

	1.13.7. 関連情報

	1.14. SERVICE MESH でのトラフィックの管理
	1.14.1. ゲートウェイの使用
	1.14.1.1. Ingress トラフィックの管理
	1.14.1.2. Ingress ゲートウェイの設定

	1.14.2. 自動ルートについて
	1.14.2.1. サブドメインのあるルート
	1.14.2.2. サブドメインルートの作成
	1.14.2.3. ルートラベルとアノテーション
	1.14.2.4. 自動ルート作成の無効化

	1.14.3. サービスエントリーについて
	1.14.4. VirtualServices の使用
	1.14.4.1. VirtualServices の設定
	1.14.4.2. VirtualService 設定リファレンス

	1.14.5. 宛先ルールについて
	1.14.6. ネットワークポリシーについて
	1.14.6.1. NetworkPolicy 自動作成の無効化

	1.14.7. トラフィック管理のサイドカーの設定
	1.14.8. ルーティングチュートリアル
	1.14.8.1. Bookinfo ルーティングチュートリアル
	1.14.8.2. 仮想サービスの適用
	1.14.8.3. 新規ルート設定のテスト
	1.14.8.4. ユーザーアイデンティティーに基づくルート

	1.15. メトリクス、ログ、およびトレース
	1.15.1. コンソールアドレスの検出
	1.15.2. Kiali コンソールへのアクセス
	1.15.3. Kiali コンソールでの Service Mesh データの表示
	1.15.3.1. Kiali でのグラフレイアウトの変更
	1.15.3.2. Kiali コンソールでのログの表示
	1.15.3.3. Kiali コンソールでのメトリクスの表示

	1.15.4. 分散トレース
	1.15.4.1. Red Hat OpenShift 分散トレーシングプラットフォームと Red Hat build of OpenTelemetry の設定
	1.15.4.2. 既存の分散トレーシングの Jaeger インスタンスへの接続
	1.15.4.3. サンプリングレートの調整

	1.15.5. Jaeger コンソールへのアクセス
	1.15.6. Grafana コンソールへのアクセス
	1.15.7. Prometheus コンソールへのアクセス
	1.15.8. ユーザーのワークロード監視との統合

	1.16. パフォーマンスおよびスケーラビリティー
	1.16.1. コンピュートリソースでの制限の設定
	1.16.2. テスト結果の読み込み
	1.16.2.1. Service Mesh コントロールプレーンのパフォーマンス
	1.16.2.2. データプレーンのパフォーマンス

	1.17. 実稼働環境の SERVICE MESH の設定
	1.17.1. 実稼働環境用の ServiceMeshControlPlane リソース設定
	1.17.2. 関連情報

	1.18. SERVICE MESH の接続
	1.18.1. フェデレーションの概要
	1.18.2. フェデレーション機能
	1.18.3. フェデレーションセキュリティー
	1.18.4. フェデレーションの制限
	1.18.5. フェデレーションの前提条件
	1.18.6. メッシュフェデレーションのプランニング
	1.18.7. クラスター全体でのメッシュフェデレーション
	1.18.7.1. ベアメタルで実行されるクラスターでのフェデレーション Ingress の公開
	1.18.7.2. Amazon Web Services(AWS) でのフェデレーション Ingress の公開

	1.18.8. フェデレーション実装のチェックリスト
	1.18.9. フェデレーション用の Service Mesh コントロールプレーンの設定
	1.18.9.1. フェデレーションゲートウェイについて
	1.18.9.2. フェデレーション信頼ドメインパラメーターについて

	1.18.10. フェデレーションメッシュへの参加
	1.18.10.1. ServiceMeshPeer リソースの作成

	1.18.11. フェデレーションメッシュからのサービスのエクスポート
	1.18.11.1. ExportedServiceSet の作成

	1.18.12. サービスのフェデレーションメッシュへのインポート
	1.18.12.1. ImportedServiceSet の作成

	1.18.13. フェイルオーバー用のフェデレーションメッシュの設定
	1.18.13.1. フェイルオーバー用の ImportedServiceSet の設定
	1.18.13.2. フェイルオーバー用の DestinationRule の設定

	1.18.14. フェデレーションメッシュからのサービスの削除
	1.18.14.1. 単一のメッシュからサービスを削除するには、以下を実行します。
	1.18.14.2. フェデレーションメッシュ全体からサービスを削除するには、以下を実行します。

	1.18.15. フェデレーションメッシュからのメッシュの削除

	1.19. 拡張
	1.19.1. WebAssembly モジュールの概要
	1.19.2. WasmPlugin コンテナー形式
	1.19.3. WasmPlugin API リファレンス
	1.19.3.1. WasmPlugin リソースのデプロイ

	1.19.4. ServiceMeshExtension コンテナー形式
	1.19.5. ServiceMeshExtension リファレンス
	1.19.5.1. ServiceMeshExtension リソースのデプロイ

	1.19.6. ServiceMeshExtension リソースから WasmPlugin リソースへの移行
	1.19.6.1. API の変更
	1.19.6.2. コンテナーイメージの形式の変更
	1.19.6.3. WasmPlugin リソースへの移行

	1.20. 3SCALE WEBASSEMBLY モジュールの使用
	1.20.1. 互換性
	1.20.2. スタンドアロンモジュールとしての使用
	1.20.3. threescale-wasm-auth モジュールの設定
	1.20.3.1. WasmPlugin API エクステンション

	1.20.4. 3scale 外部 ServiceEntry オブジェクトの適用
	1.20.5. 3scale WebAssembly モジュール設定
	1.20.5.1. 3scale WebAssembly モジュールの設定
	1.20.5.2. 3scale WebAssembly モジュール api オブジェクト
	1.20.5.3. 3scale WebAssembly モジュール system オブジェクト
	1.20.5.4. 3scale WebAssembly モジュール upstream オブジェクト
	1.20.5.5. 3scale WebAssembly モジュール backend オブジェクト
	1.20.5.6. 3scale WebAssembly モジュール services オブジェクト
	1.20.5.7. 3scale WebAssembly モジュール credentials オブジェクト
	1.20.5.8. 3scale WebAssembly モジュール検索クエリー
	1.20.5.9. 3scale WebAssembly モジュール source オブジェクト
	1.20.5.10. 3scale WebAssembly モジュール operations オブジェクト
	1.20.5.11. 3scale WebAssembly モジュール mapping_rules オブジェクト
	1.20.5.12. 3scale WebAssembly モジュール mapping_rule オブジェクト

	1.20.6. 認証情報ユースケースの 3scale WebAssembly モジュールの例
	1.20.6.1. クエリー文字列パラメーターの API キー (user_key)
	1.20.6.2. アプリケーション ID およびキー
	1.20.6.3. 認証ヘッダー
	1.20.6.4. OpenID Connect (OIDC) のユースケース
	1.20.6.5. ヘッダーからの JWT トークンの取得

	1.20.7. 3scale WebAssembly モジュールの機能する最低限の設定

	1.21. 3SCALE ISTIO アダプターの使用
	1.21.1. 3scale アダプターと Red Hat OpenShift Service Mesh の統合
	1.21.1.1. 3scale カスタムリソースの生成
	1.21.1.2. デプロイされたアダプターからのマニフェストの生成
	1.21.1.3. アダプター経由でのサービストラフィックのルーティング

	1.21.2. 3scale での統合設定
	1.21.3. キャッシング動作
	1.21.4. 認証要求
	1.21.4.1. 認証パターンの適用

	1.21.5. 3scale アダプターメトリクス
	1.21.6. 3scale バックエンドキャッシュ
	1.21.6.1. バックエンドキャッシュを有効にする利点
	1.21.6.2. 低レイテンシーを確保するためのトレードオフ
	1.21.6.3. バックエンドキャッシュ設定

	1.21.7. 3scale Istio Adapter APIcast エミュレーション
	1.21.8. 3scale Istio Adapter の検証
	1.21.9. 3scale Istio adapter のトラブルシューティングのチェックリスト

	1.22. SERVICE MESH のトラブルシューティング
	1.22.1. Service Mesh のバージョンについて
	1.22.2. Operator インストールのトラブルシューティング
	1.22.2.1. Operator インストールの検証
	1.22.2.2. Service Mesh Operator のトラブルシューティング

	1.22.3. コントロールプレーンのトラブルシューティング
	1.22.3.1. Service Mesh コントロールプレーンのインストールの検証
	1.22.3.2. Service Mesh コントロールプレーンのトラブルシューティング

	1.22.4. データプレーンのトラブルシューティング
	1.22.4.1. サイドカーインジェクションのトラブルシューティング

	1.23. ENVOY プロキシーのトラブルシューティング
	1.23.1. Envoy アクセスログの有効化
	1.23.2. サポート
	1.23.2.1. Red Hat ナレッジベースについて
	1.23.2.2. Red Hat ナレッジベースの検索
	1.23.2.3. サポートケースの送信

	1.24. SERVICE MESH コントロールプレーン設定の参照
	1.24.1. Service Mesh コントロールプレーンのパラメーター
	1.24.2. 仕様パラメーター
	1.24.2.1. 一般的なパラメーター
	1.24.2.2. プロファイルパラメーター
	1.24.2.3. トレースパラメーター
	1.24.2.4. バージョンパラメーター
	1.24.2.5. 3scale の設定

	1.24.3. ステータスパラメーター
	1.24.4. 関連情報

	1.25. KIALI 設定リファレンス
	1.25.1. SMCP での Kiali 設定の指定
	1.25.2. Kiali カスタムリソースでの Kiali 設定の指定

	1.26. JAEGER 設定リファレンス
	1.26.1. トレースの有効化および無効化
	1.26.2. SMCP での Jaeger 設定の指定
	1.26.3. 分散トレースプラットフォームのデプロイ
	1.26.3.1. デフォルトの分散トレーシングプラットフォーム (Jaeger) デプロイメント
	1.26.3.2. 実稼働環境向け分散トレーシングプラットフォーム (Jaeger) のデプロイメント (最小限)
	1.26.3.3. 実稼働環境向け分散トレーシングプラットフォーム (Jaeger) のデプロイメント (完全カスタマイズ)
	1.26.3.4. Jaeger デプロイメントのストリーミング

	1.26.4. Jaeger カスタムリソースでの Jaeger 設定の指定
	1.26.4.1. デプロイメントのベストプラクティス
	1.26.4.2. Service Mesh の分散トレースセキュリティーの設定
	1.26.4.3. 分散トレースのデフォルト設定オプション
	1.26.4.4. Jaeger Collector 設定オプション
	1.26.4.5. 分散トレースのサンプリング設定オプション
	1.26.4.6. 分散トレースのストレージ設定オプション
	1.26.4.7. クエリー設定オプション
	1.26.4.8. Ingester 設定オプション

	1.27. SERVICE MESH のアンインストール
	1.27.1. Red Hat OpenShift Service Mesh コントロールプレーンの削除
	1.27.1.1. Web コンソールを使用した Service Mesh コントロールプレーンの削除
	1.27.1.2. CLI を使用した Service Mesh コントロールプレーンの削除

	1.27.2. インストールされた Operator の削除
	1.27.2.1. Operator の削除

	1.27.3. Operator リソースのクリーンアップ

