
builds for Red Hat OpenShift 1.0

Configure

Configuring Builds

Last Updated: 2024-02-13

builds for Red Hat OpenShift 1.0 Configure

Configuring Builds

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides information about configuring Builds.

. .

. .

. .

Table of Contents

CHAPTER 1. CONFIGURING BUILDS
1.1. CONFIGURABLE FIELDS IN BUILD
1.2. SOURCE DEFINITION
1.3. STRATEGY DEFINITION
1.4. PARAMETER VALUES DEFINITION FOR A BUILD

1.4.1. Example configuration for defining parameter values
1.5. BUILDER OR DOCKER FILE DEFINITION
1.6. OUTPUT DEFINITION
1.7. RETENTION PARAMETERS DEFINITION FOR A BUILD
1.8. VOLUMES DEFINITION FOR A BUILD

CHAPTER 2. CONFIGURING BUILD STRATEGIES
2.1. STRATEGY PARAMETERS DEFINITION
2.2. SYSTEM PARAMETERS DEFINITION
2.3. STEP RESOURCES DEFINITION

2.3.1. Strategies with different resources
2.3.1.1. Buildah strategy with small limit
2.3.1.2. Buildah strategy with medium limit

2.3.2. Resource management in Tekton pipelines
2.4. ANNOTATIONS DEFINITION
2.5. SECURE REFERENCING OF STRING PARAMETERS
2.6. SYSTEM RESULTS DEFINITION
2.7. VOLUMES AND VOLUME MOUNTS DEFINITION

CHAPTER 3. CONFIGURING BUILD RUNS
3.1. CONFIGURABLE FIELDS IN BUILD RUN
3.2. BUILD REFERENCE DEFINITION
3.3. BUILD SPECIFICATION DEFINITION
3.4. PARAMETER VALUES DEFINITION FOR A BUILD RUN
3.5. SERVICE ACCOUNT DEFINITION
3.6. RETENTION PARAMETERS DEFINITION FOR A BUILD RUN
3.7. VOLUMES DEFINITION FOR A BUILD RUN
3.8. ENVIRONMENT VARIABLES DEFINITION
3.9. BUILD RUN STATUS

3.9.1. Build run statuses description
3.9.2. Failed build runs
3.9.3. Step results in build run status
3.9.4. Build snapshot

3.10. RELATIONSHIP OF BUILD RUN WITH TEKTON TASKS
3.11. BUILD RUN CANCELLATION
3.12. AUTOMATIC BUILD RUN DELETION

3
3
4
6
6
7
9

10
11

12

14
14
15
15
15
16
17
18
18
19

20
21

23
23
24
24
25
25
26
26
27
28
28
31
31
32
32
32
33

Table of Contents

1

builds for Red Hat OpenShift 1.0 Configure

2

CHAPTER 1. CONFIGURING BUILDS
In a Build custom resource (CR), you can define the source, build strategy, parameter values, output,
retention parameters, and volumes to configure a build. A Build resource is available for use within a
namespace.

For configuring a build, create a Build resource YAML file and apply it to the OpenShift Container
Platform cluster.

1.1. CONFIGURABLE FIELDS IN BUILD

You can use the following fields in your Build custom resource (CR):

Table 1.1. Fields in the Build CR

Field Presence Description

apiVersion Required Specifies the API version of the resource, for example,
shipwright.io/v1beta1.

kind Required Specifies the type of the resource, for example, Build.

metadata Required Denotes the metadata that identifies the custom resource
definition instance, for example, the name of the Build
resource.

spec.source Required Denotes the location of the source code, for example, a Git
repository or source bundle image.

spec.strategy Required Denotes the name and type of the strategy used for the
Build resource.

spec.output Required Denotes the location where the generated image will be
pushed.

spec.output.pushSecret Required Denotes an existing secret to get access to the container
registry.

spec.paramValues Optional Denotes a name-value list to specify values for parameters
defined in the build strategy.

spec.timeout Optional Defines a custom timeout. The default value is ten
minutes. You can overwrite this field value in your
BuildRun resource.

spec.output.annotations Optional Denotes a list of key-value pair that you can use to
annotate the output image.

spec.output.labels Optional Denotes a list of key-value pair that you can use to label
the output image.

CHAPTER 1. CONFIGURING BUILDS

3

spec.env Optional Defines additional environment variables that you can pass
to the build container. The available variables depend on
the tool that is used by your build strategy.

spec.retention.ttlAfterFail
ed

Optional Specifies the duration for which a failed build run can exist.

spec.retention.ttlAfterSuc
ceeded

Optional Specifies the duration for which a successful build run can
exist.

spec.retention.failedLimit Optional Specifies the number of failed build runs that can exist.

spec.retention.succeeded
Limit

Optional Specifies the number of successful build runs that can
exist.

Field Presence Description

1.2. SOURCE DEFINITION

You can configure the source details for a build in the Build custom resource (CR) by setting the value
of the following fields:

source.git.url: Defines the source location of the image available in a Git repository.

source.git.cloneSecret: References a secret in the namespace that contains the SSH private
key for a private Git repository.

source.git.revision: Defines a specific revision to select from the source Git repository. For
example, a commit, tag, or branch name. This field defaults to the Git repository default branch.

source.contextDir: Specifies the context path for the repositories where the source code is not
present at the root folder.

The build controller does not automatically validate that the Git repository you specified for pulling an
image exists. If you need to validate, set the value of the build.shipwright.io/verify.repository
annotation to true, as shown in the following example:

The build controller validates the existence of a Git repository in the following scenarios:

When you use the endpoint URL with an HTTP or HTTPS protocol.

apiVersion: shipwright.io/v1beta1
kind: Build
metadata:
 name: buildah-golang-build
 annotations:
 build.shipwright.io/verify.repository: "true"
spec:
 source:
 git:
 url: https://github.com/shipwright-io/sample-go
 contextDir: docker-build

builds for Red Hat OpenShift 1.0 Configure

4

When you have defined an SSH protocol, such as git@, but not a referenced secret, such as
source.git.cloneSecret.

The following examples show how you can configure a build with different set of source inputs.

Example: Configuring a build with credentials

You can configure a build with a source by specifying your credentials, as shown in the following
example:

Example: Configuring a build with a context path

You can configure a build with a source that specifies a context path in the Git repository, as shown in
the following example:

Example: Configuring a build with a tag

You can configure a build with a source that specifies the tag v.0.1.0 for the Git repository, as shown in
the following example:

Example: Configuring a build with environment variables

You can also configure a build that specifies environment variables, as shown in the following example:

apiVersion: shipwright.io/v1beta1
kind: Build
metadata:
 name: buildah-build
spec:
 source:
 git:
 url: https://github.com/sclorg/nodejs-ex
 cloneSecret: source-repository-credentials

apiVersion: shipwright.io/v1beta1
kind: Build
metadata:
 name: buildah-custom-context-dockerfile
spec:
 source:
 git:
 url: https://github.com/userjohn/npm-simple
 contextDir: docker-build

apiVersion: shipwright.io/v1beta1
kind: Build
metadata:
 name: buildah-golang-build
spec:
 source:
 git:
 url: https://github.com/shipwright-io/sample-go
 revision: v0.1.0

apiVersion: shipwright.io/v1beta1
kind: Build

CHAPTER 1. CONFIGURING BUILDS

5

1.3. STRATEGY DEFINITION

You can configure the strategy for a build in the Build CR. The following build strategies are available
for use:

buildah

source-to-image

To configure a build strategy, define the spec.strategy.name and spec.strategy.kind fields in the
Build CR, as shown in the following example:

1.4. PARAMETER VALUES DEFINITION FOR A BUILD

You can specify values for the build strategy parameters in your Build CR. By specifying parameter
values, you can control how the steps of the build strategy work. You can also overwrite the values in the
BuildRun resource.

For all parameters, you must specify values either directly or by using reference keys from config maps
or secrets.

NOTE

The usage of the parameter in the build strategy steps limits the usage of config maps
and secrets. You can only use config maps and secrets if the parameter is used in the
command, argument, or environment variable.

When using the paramValues field in your Build CR, avoid the following scenarios:

Specifying a spec.paramValues name that does not match one of the spec.parameters
defined in the BuildStrategy CR.

metadata:
 name: buildah-golang-build
spec:
 source:
 git:
 url: https://github.com/shipwright-io/sample-go
 contextDir: docker-build
 env:
 - name: <example_var_1>
 value: "<example_value_1>"
 - name: <example_var_2>
 value: "<example_value_2>"

apiVersion: shipwright.io/v1beta1
kind: Build
metadata:
 name: buildah-build
spec:
 strategy:
 name: buildah
 kind: ClusterBuildStrategy

builds for Red Hat OpenShift 1.0 Configure

6

Specifying a spec.paramValues name that collides with the Shipwright reserved parameters.
These parameters include BUILDER_IMAGE, CONTEXT_DIR, and any name starting with shp-.

Also, ensure that you understand the content of your strategy before defining the paramValues field in
the Build CR.

1.4.1. Example configuration for defining parameter values

The following examples show how to define parameters in a build strategy and assign values to those
parameters by using a Build CR. You can also assign a value to a parameter of the type array in your
Build CR.

Example: Defining parameters in a ClusterBuildStrategy CR

The following example shows a ClusterBuildStrategy CR that defines several parameters:

Example: Assigning values to parameters in a Build CR

The above ClusterBuildStrategy CR defines a storage-driver parameter and you can specify the value
of the storage-driver parameter in your Build CR, as shown in the following example:

apiVersion: shipwright.io/v1beta1
kind: ClusterBuildStrategy
metadata:
 name: buildah
spec:
 parameters:
 - name: build-args
 description: "The values for the args in the Dockerfile. Values must be in the format
KEY=VALUE."
 type: array
 defaults: []
 # ...
 - name: storage-driver
 description: "The storage driver to use, such as 'overlay' or 'vfs'."
 type: string
 default: "vfs"
...
steps:
...

apiVersion: shipwright.io/v1beta1
kind: Build
metadata:
 name: <your_build>
 namespace: <your_namespace>
spec:
 paramValues:
 - name: storage-driver
 value: "overlay"
 strategy:
 name: buildah
 kind: ClusterBuildStrategy
 output:
 # ...

CHAPTER 1. CONFIGURING BUILDS

7

Example: Creating a ConfigMap CR to control a parameter centrally

If you want to use the storage-driver parameter for multiple builds and control its usage centrally, then
you can create a ConfigMap CR, as shown in the following example:

You can use the created ConfigMap CR as a parameter value in your Build CR, as shown in the
following example:

Example: Assigning value to a parameter of the type array in a Build CR

You can assign value to a parameter of the type array. If you use the buildah strategy, you can define a
registries-search parameter to search images in specific registries. The following example shows how
you can assign a value to the registries-search array parameter:

apiVersion: v1
kind: ConfigMap
metadata:
 name: buildah-configuration
 namespace: <your_namespace>
data:
 storage-driver: overlay

apiVersion: shipwright.io/v1beta1
kind: Build
metadata:
 name: <your_build>
 namespace: <your_namespace>
spec:
 paramValues:
 - name: storage-driver
 configMapValue:
 name: buildah-configuration
 key: storage-driver
 strategy:
 name: buildah
 kind: ClusterBuildStrategy
 output:
 # ...

apiVersion: shipwright.io/v1beta1
kind: Build
metadata:
 name: <your_build>
 namespace: <your_namespace>
spec:
 paramValues:
 - name: storage-driver
 configMapValue:
 name: buildah-configuration
 key: storage-driver
 - name: registries-search
 values:
 - value: registry.redhat.io
 strategy:
 name: buildah

builds for Red Hat OpenShift 1.0 Configure

8

1

Example: Referencing a secret in a Build CR

You can reference a secret for a registries-block array parameter, as shown in the following example:

The value references a secret.

1.5. BUILDER OR DOCKER FILE DEFINITION

In your Build CR, you can use the spec.paramValues field to specify the image that contains the tools
to build the output image. The following example specifies a Dockerfile image in a Build CR:

You can also use a builder image as part of the source-to-image build strategy in your Build CR, as

 kind: ClusterBuildStrategy
 output:
 # ...

apiVersion: shipwright.io/v1beta1
kind: Build
metadata:
 name: <your_build>
 namespace: <your_namespace>
spec:
 paramValues:
 - name: storage-driver
 configMapValue:
 name: buildah-configuration
 key: storage-driver
 - name: registries-block
 values:
 - secretValue: 1
 name: registry-configuration
 key: reg-blocked
 strategy:
 name: buildah
 kind: ClusterBuildStrategy
 output:
 # ...

apiVersion: shipwright.io/v1beta1
kind: Build
metadata:
 name: buildah-golang-build
spec:
 source:
 git:
 url: https://github.com/shipwright-io/sample-go
 contextDir: docker-build
 strategy:
 name: buildah
 kind: ClusterBuildStrategy
 paramValues:
 - name: dockerfile
 value: Dockerfile

CHAPTER 1. CONFIGURING BUILDS

9

You can also use a builder image as part of the source-to-image build strategy in your Build CR, as
shown in the following example:

1.6. OUTPUT DEFINITION

In your Build CR, you can specify an output location to push the image. When using an external private
registry as your output location, you must specify a secret to access the image. You can also specify the
annotations and labels for the output image.

NOTE

When you specify annotations or labels, the output image is pushed twice. The first push
comes from the build strategy and the second push changes the image configuration to
add the annotations and labels.

The following example defines a public registry where the image is pushed:

The following example defines a private registry where the image is pushed:

apiVersion: shipwright.io/v1beta1
kind: Build
metadata:
 name: s2i-nodejs-build
spec:
 source:
 git:
 url: https://github.com/shipwright-io/sample-nodejs
 contextDir: source-build/
 strategy:
 name: source-to-image
 kind: ClusterBuildStrategy
 paramValues:
 - name: builder-image
 value: docker.io/centos/nodejs-10-centos7

apiVersion: shipwright.io/v1beta1
kind: Build
metadata:
 name: s2i-nodejs-build
spec:
 source:
 git:
 url: https://github.com/shipwright-io/sample-nodejs
 contextDir: source-build/
 strategy:
 name: source-to-image
 kind: ClusterBuildStrategy
 paramValues:
 - name: builder-image
 value: docker.io/centos/nodejs-10-centos7
 output:
 image: image-registry.openshift-image-registry.svc:5000/build-examples/nodejs-ex

apiVersion: shipwright.io/v1beta1

builds for Red Hat OpenShift 1.0 Configure

10

The following example defines annotations and labels for the image:

1.7. RETENTION PARAMETERS DEFINITION FOR A BUILD

You can define retention parameters for the following purposes:

To specify how long a completed build run can exist

To specify the number of succeeded or failed build runs that can exist for a build

Retention parameters provide a way to clean your BuildRun instances or resources automatically. You
can set the value of the following retention parameters in your Build CR:

kind: Build
metadata:
 name: s2i-nodejs-build
spec:
 source:
 git:
 url: https://github.com/shipwright-io/sample-nodejs
 contextDir: source-build/
 strategy:
 name: source-to-image
 kind: ClusterBuildStrategy
 paramValues:
 - name: builder-image
 value: docker.io/centos/nodejs-10-centos7
 output:
 image: us.icr.io/source-to-image-build/nodejs-ex
 pushSecret: icr-knbuild

apiVersion: shipwright.io/v1beta1
kind: Build
metadata:
 name: s2i-nodejs-build
spec:
 source:
 git:
 url: https://github.com/shipwright-io/sample-nodejs
 contextDir: source-build/
 strategy:
 name: source-to-image
 kind: ClusterBuildStrategy
 paramValues:
 - name: builder-image
 value: docker.io/centos/nodejs-10-centos7
 output:
 image: us.icr.io/source-to-image-build/nodejs-ex
 pushSecret: icr-knbuild
 annotations:
 "org.opencontainers.image.source": "https://github.com/org/repo"
 "org.opencontainers.image.url": "https://my-company.com/images"
 labels:
 "maintainer": "team@my-company.com"
 "description": "This is my cool image"

CHAPTER 1. CONFIGURING BUILDS

11

retention.succeededLimit: Defines the number of succeeded build runs that can exist for a
build.

retention.failedLimit: Defines the number of failed build runs that can exist for a build.

retention.ttlAfterFailed: Specifies the duration for which a failed build run can exist.

retention.ttlAfterSucceeded: Specifies the duration for which a successful build run can exist.

The following example shows the usage of retention parameters in a Build CR:

NOTE

When you change the value of the retention.failedLimit and retention.succeededLimit
parameters, the new limit is enforced as soon as those changes are applied on your build.
However, when you change the value of the retention.ttlAfterFailed and
retention.ttlAfterSucceeded parameters, the new retention duration is enforced only on
the new build runs. Old build runs adhere to the old retention duration. If you have defined
retention duration in both BuildRun and Build CRs, the retention duration defined in the
BuildRun CR gets the priority.

1.8. VOLUMES DEFINITION FOR A BUILD

You can define volumes in your Build CR. The defined volumes override the volumes specified in the
BuildStrategy resource. If a volume is not overridden, then the build run fails.

The following example shows the usage of the volumes field in a Build CR:

apiVersion: shipwright.io/v1beta1
kind: Build
metadata:
 name: build-retention-ttl
spec:
 source:
 git:
 url: "https://github.com/shipwright-io/sample-go"
 contextDir: docker-build
 strategy:
 kind: ClusterBuildStrategy
 name: buildah
 output:
 # ...
 retention:
 ttlAfterFailed: 30m
 ttlAfterSucceeded: 1h
 failedLimit: 10
 succeededLimit: 20
 # ...

apiVersion: shipwright.io/v1beta1
kind: Build
metadata:
 name: <build_name>
spec:
 source:

builds for Red Hat OpenShift 1.0 Configure

12

 git:
 url: https://github.com/example/url
 strategy:
 name: buildah
 kind: ClusterBuildStrategy
 paramValues:
 - name: dockerfile
 value: Dockerfile
 output:
 image: registry/namespace/image:latest
 volumes:
 - name: <your_volume_name>
 configMap:
 name: <your_configmap_name>

CHAPTER 1. CONFIGURING BUILDS

13

CHAPTER 2. CONFIGURING BUILD STRATEGIES
In a BuildStrategy or ClusterBuildStrategy custom resource (CR), you can define strategy parameters,
system parameters, step resources definitions, annotations, and volumes to configure a build strategy. A
BuildStrategy resource is available for use within a namespace, and a ClusterBuildStrategy resource is
available for use throughout the cluster.

To configure a build strategy, create a BuildStrategy or ClusterBuildStrategy resource YAML file and
apply it to the OpenShift Container Platform cluster.

2.1. STRATEGY PARAMETERS DEFINITION

You can define strategy parameters in a BuildStrategy or ClusterBuildStrategy custom resource (CR)
and set, or modify, the values of those parameters in your Build or BuildRun CR. You can also configure
or modify strategy parameters at build time when creating your build strategy.

Consider the following points before defining parameters for your strategy:

Define a list of parameters in the spec.parameters field of your build strategy CR. Each list item
contains a name, a description, a type, and an optional default value, or values, for an array type.
If no default value is set, you must define a value in the Build or BuildRun CR.

Define parameters of string or array type in the spec.steps field of your build strategy.

Specify a parameter of string type by using the $(params.your-parameter-name) syntax. You
can set a value for the your-parameter-name parameter in your Build or BuildRun CR that
references your strategy. You can define the following string parameters based on your needs:

Table 2.1. String parameters

Parameter Description

image Use this parameter to define a custom tag, such
as golang:$(params.go-version)

args Use this parameter to pass data into your builder
commands

env Use this parameter to provide a value for an
environment variable

Specify a parameter of array type by using the $(params.your-array-parameter-name[*])
syntax. After specifying the array, you can use it in an argument or a command. For each item in
the array, an argument will be set. The following example uses an array parameter in the
spec.steps field of the build strategy:

apiVersion: shipwright.io/v1beta1
kind: ClusterBuildStrategy
metadata:
 name: <cluster_build_strategy_name>
 # ...
spec:
 parameters:

builds for Red Hat OpenShift 1.0 Configure

14

Provide parameter values as simple strings or as references to keys in config maps or secrets.
For a parameter, you can use a config map or secret value only if it is defined in the command,
args, or env section of the spec.steps field.

2.2. SYSTEM PARAMETERS DEFINITION

You can use system parameters when defining the steps of a build strategy to access system
information, or user-defined information in a Build or BuildRun custom resource (CR). You cannot
configure or modify system parameters as they are defined at runtime by the build run controller.

You can define the following system parameters in your build strategy definition:

Table 2.2. System parameters

Parameter Description

$(params.shp-source-root) Denotes the absolute path to the directory that
contains the source code.

$(params.shp-source-context) Denotes the absolute path to the context directory
of the source code. If you do not specify any value for
spec.source.contextDir in the Build CR, this
parameter uses the value of the $(params.shp-
source-root) system parameter.

$(params.shp-output-image) Denotes the URL of the image to push as defined in
the spec.output.image field of your Build or
BuildRun CR.

2.3. STEP RESOURCES DEFINITION

You can include a definition of resources, such as the limit imposed on CPU, memory, and disk usage for
all steps in a build strategy. For strategies with multiple steps, a step might require more resources than
others. As a strategy administrator, you can define the resource values that are optimal for each step.

For example, you can install strategies with the same steps, but different names and step resources on
the cluster so that users can create a build with smaller or larger resource requirements.

2.3.1. Strategies with different resources

Define multiple types of the same strategy with varying limits on the resources. The following examples

 - name: tool-args
 description: Parameters for the tool
 type: array
 steps:
 - name: a-step
 command:
 - some-tool
 args:
 - --tool-args
 - $(params.tool-args[*])

CHAPTER 2. CONFIGURING BUILD STRATEGIES

15

Define multiple types of the same strategy with varying limits on the resources. The following examples
use the same buildah strategy with small and medium limits defined for the resources. These examples
provide a strategy administrator more control over the step resources definition.

2.3.1.1. Buildah strategy with small limit

Define the spec.steps[].resources field with a small resource limit for the buildah strategy, as shown in
the following example:

Example: buildah strategy with small limit

apiVersion: shipwright.io/v1beta1
kind: ClusterBuildStrategy
metadata:
 name: buildah-small
spec:
 steps:
 - name: build-and-push
 image: quay.io/containers/buildah:v1.31.0
 workingDir: $(params.shp-source-root)
 securityContext:
 capabilities:
 add:
 - "SETFCAP"
 command:
 - /bin/bash
 args:
 - -c
 - |
 set -euo pipefail
 # Parse parameters
 # ...
 # That's the separator between the shell script and its args
 - --
 - --context
 - $(params.shp-source-context)
 - --dockerfile
 - $(build.dockerfile)
 - --image
 - $(params.shp-output-image)
 - --build-args
 - $(params.build-args[*])
 - --registries-block
 - $(params.registries-block[*])
 - --registries-insecure
 - $(params.registries-insecure[*])
 - --registries-search
 - $(params.registries-search[*])
 resources:
 limits:
 cpu: 250m
 memory: 65Mi
 requests:
 cpu: 250m
 memory: 65Mi
 parameters:

builds for Red Hat OpenShift 1.0 Configure

16

2.3.1.2. Buildah strategy with medium limit

Define the spec.steps[].resources field with a medium resource limit for the buildah strategy, as
shown in the following example:

Example: buildah strategy with medium limit

 - name: build-args
 description: "The values for the args in the Dockerfile. Values must be in the format
KEY=VALUE."
 type: array
 defaults: []
 # ...

apiVersion: shipwright.io/v1beta1
kind: ClusterBuildStrategy
metadata:
 name: buildah-medium
spec:
 steps:
 - name: build-and-push
 image: quay.io/containers/buildah:v1.31.0
 workingDir: $(params.shp-source-root)
 securityContext:
 capabilities:
 add:
 - "SETFCAP"
 command:
 - /bin/bash
 args:
 - -c
 - |
 set -euo pipefail
 # Parse parameters
 # ...
 # That's the separator between the shell script and its args
 - --
 - --context
 - $(params.shp-source-context)
 - --dockerfile
 - $(build.dockerfile)
 - --image
 - $(params.shp-output-image)
 - --build-args
 - $(params.build-args[*])
 - --registries-block
 - $(params.registries-block[*])
 - --registries-insecure
 - $(params.registries-insecure[*])
 - --registries-search
 - $(params.registries-search[*])
 resources:
 limits:
 cpu: 500m
 memory: 1Gi

CHAPTER 2. CONFIGURING BUILD STRATEGIES

17

After configuring the resource definition for a strategy, you must reference the strategy in your Build
CR, as shown in the following example:

2.3.2. Resource management in Tekton pipelines

The build controller works with the Tekton pipeline controller so that it can schedule pods for executing
the strategy steps. At runtime, the build controller creates a Tekton TaskRun resource, and the
TaskRun resource creates a new pod in the specific namespace. This pod then sequentially executes all
of the strategy steps to build an image.

2.4. ANNOTATIONS DEFINITION

You can define annotations for a build strategy or a cluster build strategy like for any other Kubernetes
object. The build strategy first propagates annotations to the TaskRun resource. Then, Tekton
propagates them to the pod.

You can use annotations for the following purposes:

To limit the network bandwidth the pod is allowed to use, the kubernetes.io/ingress-
bandwidth and kubernetes.io/egress-bandwidth annotations are defined in the Kubernetes
network traffic shaping feature.

To define the AppArmor profile of a container, the
container.apparmor.security.beta.kubernetes.io/<container_name> annotation is used.

The following example shows the usage of annotations in a build strategy:

 requests:
 cpu: 500m
 memory: 1Gi
 parameters:
 - name: build-args
 description: "The values for the args in the Dockerfile. Values must be in the format
KEY=VALUE."
 type: array
 defaults: []
 # ...

apiVersion: shipwright.io/v1beta1
kind: Build
metadata:
 name: buildah-medium
spec:
 source:
 git:
 url: https://github.com/shipwright-io/sample-go
 contextDir: docker-build
 strategy:
 name: buildah-medium
 kind: ClusterBuildStrategy
 # ...

apiVersion: shipwright.io/v1beta1
kind: ClusterBuildStrategy

builds for Red Hat OpenShift 1.0 Configure

18

The following annotations are not propagated:

kubectl.kubernetes.io/last-applied-configuration

clusterbuildstrategy.shipwright.io/*

buildstrategy.shipwright.io/*

build.shipwright.io/*

buildrun.shipwright.io/*

A strategy administrator can further restrict the usage of annotations by using policy engines.

2.5. SECURE REFERENCING OF STRING PARAMETERS

String parameters are used when you define environment variables, arguments, or images in a
BuildStrategy or ClusterBuildStrategy custom resource (CR). In your build strategy steps, you can
reference string parameters by using the $(params.your-parameter-name) syntax.

NOTE

You can also reference system parameters and strategy parameters by using the
$(params.your-parameter-name) syntax in your build strategy steps.

In the pod, all $(params.your-parameter-name) variables are replaced by actual strings. However, you
must pay attention when you reference a string parameter in an argument by using an inline script. For
example, to securely pass a parameter value into an argument defined with a script, you can choose one
of the following approaches:

Use environment variables

Use arguments

Example: Referencing a string parameter into an environment variable

You can pass the string parameter into an environment variable, instead of directly using it inside the
script. By using quoting around the environment variable, you can avoid the command injection
vulnerability. You can use this approach for strategies, such as buildah. The following example uses an
environment variable inside the script to reference a string parameter:

metadata:
 name: <cluster_build_strategy_name>
 annotations:
 container.apparmor.security.beta.kubernetes.io/step-build-and-push: unconfined
 container.seccomp.security.alpha.kubernetes.io/step-build-and-push: unconfined
spec:
 # ...

apiVersion: shipwright.io/v1beta1
kind: BuildStrategy
metadata:
 name: sample-strategy
spec:
 parameters:

CHAPTER 2. CONFIGURING BUILD STRATEGIES

19

Example: Referencing a string parameter into an argument

You can pass the string parameter into an argument defined within your script. Appropriate shell quoting
guards against command injection. You can use this approach for strategies, such as buildah. The
following example uses an argument defined within your script to reference a string parameter:

2.6. SYSTEM RESULTS DEFINITION

You can store the size and digest of the image that is created by your build strategy to a set of result
files. You can also store error details for debugging purposes when a BuildRun resource fails. You can
define the following result parameters in your BuildStrategy or ClusterBuildStrategy CR:

Table 2.3. Result parameters

 - name: sample-parameter
 description: A sample parameter
 type: string
 steps:
 - name: sample-step
 env:
 - name: PARAM_SAMPLE_PARAMETER
 value: $(params.sample-parameter)
 command:
 - /bin/bash
 args:
 - -c
 - |
 set -euo pipefail

 some-tool --sample-argument "${PARAM_SAMPLE_PARAMETER}"

apiVersion: shipwright.io/v1beta1
kind: BuildStrategy
metadata:
 name: sample-strategy
spec:
 parameters:
 - name: sample-parameter
 description: A sample parameter
 type: string
 steps:
 - name: sample-step
 command:
 - /bin/bash
 args:
 - -c
 - |
 set -euo pipefail

 SAMPLE_PARAMETER="$1"

 some-tool --sample-argument "${SAMPLE_PARAMETER}"
 - --
 - $(params.sample-parameter)

builds for Red Hat OpenShift 1.0 Configure

20

Parameter Description

$(results.shp-image-digest.path) Denotes the path to the file that stores the digest of
the image.

$(results.shp-image-size.path) Denotes the path to the file that stores the
compressed size of the image.

$(results.shp-error-reason.path) Denotes the path to the file that stores the error
reason.

$(results.shp-error-message.path) Denotes the path to the file that stores the error
message.

The following example shows the size and digest of the image in the .status.output field of the
BuildRun CR:

The following example shows the error reason and message in the .status.failureDetails field of the
BuildRun CR:

2.7. VOLUMES AND VOLUME MOUNTS DEFINITION

A build strategy includes the definition of volumes and volume mounts. The volumes defined in a build
strategy support all of the usual volumeSource types. The build steps refer to the volumes by creating
a volume mount.

NOTE

apiVersion: shipwright.io/v1beta1
kind: BuildRun
...
status:
 # ...
 output:
 digest: sha256:07626e3c7fdd28d5328a8d6df8d29cd3da760c7f5e2070b534f9b880ed093a53
 size: 1989004
 # ...

apiVersion: shipwright.io/v1beta1
kind: BuildRun
...
status:
 # ...
 failureDetails:
 location:
 container: step-source-default
 pod: baran-build-buildrun-gzmv5-b7wbf-pod-bbpqr
 message: The source repository does not exist, or you have insufficient permission
 to access it.
 reason: GitRemotePrivate

CHAPTER 2. CONFIGURING BUILD STRATEGIES

21

NOTE

The volume mount defined in build steps allows you to access volumes defined in a
BuildStrategy, Build or BuildRun resource.

Volumes in build strategy use an overridable boolean flag, which is set to false by default. If a Build or
BuildRun resource tries to override the volumes defined in a BuildStrategy resource, it will fail because
the default value of the overridable flag is false.

The following example shows a BuildStrategy resource that defines the volumes and volumeMounts
fields:

apiVersion: shipwright.io/v1beta1
kind: BuildStrategy
metadata:
 name: buildah
spec:
 steps:
 - name: build
 image: quay.io/containers/buildah:v1.23.3
 # ...
 volumeMounts:
 - name: varlibcontainers
 mountPath: /var/lib/containers
 volumes:
 - name: varlibcontainers
 overridable: true
 emptyDir: {}

builds for Red Hat OpenShift 1.0 Configure

22

CHAPTER 3. CONFIGURING BUILD RUNS
In a BuildRun custom resource (CR), you can define the build reference, build specification, parameter
values, service account, output, retention parameters, and volumes to configure a build run. A BuildRun
resource is available for use within a namespace.

For configuring a build run, create a BuildRun resource YAML file and apply it to the OpenShift
Container Platform cluster.

3.1. CONFIGURABLE FIELDS IN BUILD RUN

You can use the following fields in your BuildRun custom resource (CR):

Table 3.1. Fields in the BuildRun CR

Field Presence Description

apiVersion Required Specifies the API version of the resource. For example,
shipwright.io/v1beta1.

kind Required Specifies the type of the resource. For example,
BuildRun.

metadata Required Indicates the metadata that identifies the custom resource
definition instance. For example, the name of the
BuildRun resource.

spec.build.name Optional Specifies an existing Build resource instance to use. You
cannot use this field with the spec.build.spec field.

spec.build.spec Optional Specifies an embedded Build resource instance to use.
You cannot use this field with the spec.build.name field.

spec.serviceAccount Optional Indicates the service account to use when building the
image.

spec.timeout Optional Defines a custom timeout. This field value overwrites the
value of the spec.timeout field defined in your Build
resource.

spec.paramValues Optional Indicates a name-value list to specify values for
parameters defined in the build strategy. The parameter
value overwrites the value of the parameter that is defined
with the same name in your Build resource.

spec.output.image Optional Indicates a custom location where the generated image will
be pushed. This field value overwrites the value of the
output.image field defined in your Build resource.

CHAPTER 3. CONFIGURING BUILD RUNS

23

spec.output.pushSecret Optional Indicates an existing secret to get access to the container
registry. This secret will be added to the service account
along with other secrets requested by the Build resource.

spec.env Optional Defines additional environment variables that you can pass
to the build container. This field value overrides any
environment variables that are specified in the Build
resource. The available variables depend on the tool that is
used by your build strategy.

Field Presence Description

NOTE

You cannot use the spec.build.name and spec.build.spec fields together in the same
CR because they are mutually exclusive.

3.2. BUILD REFERENCE DEFINITION

You can configure the spec.build.name field in your BuildRun resource to reference a Build resource
that indicates an image to build. The following example shows a BuildRun CR that configures the
spec.build.name field:

3.3. BUILD SPECIFICATION DEFINITION

You can embed a complete build specification into your BuildRun resource using the spec.build.spec
field. By embedding specifications, you can build an image without creating and maintaining a dedicated
Build custom resource. The following example shows a BuildRun CR that configures the
spec.build.spec field:

apiVersion: shipwright.io/v1beta1
kind: BuildRun
metadata:
 name: buildah-buildrun
spec:
 build:
 name: buildah-build

apiVersion: shipwright.io/v1beta1
kind: BuildRun
metadata:
 name: standalone-buildrun
spec:
 build:
 spec:
 source:
 git:
 url: https://github.com/shipwright-io/sample-go.git
 contextDir: source-build
 strategy:
 kind: ClusterBuildStrategy

builds for Red Hat OpenShift 1.0 Configure

24

NOTE

You cannot use the spec.build.name and spec.build.spec fields together in the same
CR because they are mutually exclusive.

3.4. PARAMETER VALUES DEFINITION FOR A BUILD RUN

You can specify values for the build strategy parameters in your BuildRun CR. If you have provided a
value for a parameter that is also defined in the Build resource with the same name, then the value
defined in the BuildRun resource takes priority.

In the following example, the value of the cache parameter in the BuildRun resource overrides the
value of the cache parameter, which is defined in the Build resource:

3.5. SERVICE ACCOUNT DEFINITION

You can define a service account in your BuildRun resource. The service account hosts all secrets
referenced in your Build resource, as shown in the following example:

 name: buildah
 output:
 image: <path_to_image>

apiVersion: shipwright.io/v1beta1
kind: Build
metadata:
 name: <your_build>
 namespace: <your_namespace>
spec:
 paramValues:
 - name: cache
 value: disabled
 strategy:
 name: <your_strategy>
 kind: ClusterBuildStrategy
 source:
 # ...
 output:
 # ...

apiVersion: shipwright.io/v1beta1
kind: BuildRun
metadata:
 name: <your_buildrun>
 namespace: <your_namespace>
spec:
 build:
 name: <your_build>
 paramValues:
 - name: cache
 value: registry

apiVersion: shipwright.io/v1beta1

CHAPTER 3. CONFIGURING BUILD RUNS

25

1 You can also set the value of the spec.serviceAccount field to ".generate" to generate the
service account during runtime. The name of the generated service account corresponds with the
name of the BuildRun resource.

NOTE

When you do not define the service account, the BuildRun resource uses the pipeline
service account if it exists in the namespace. Otherwise, the BuildRun resource uses the
default service account.

3.6. RETENTION PARAMETERS DEFINITION FOR A BUILD RUN

You can specify the duration for which a completed build run can exist in your BuildRun resource.
Retention parameters provide a way to clean your BuildRun instances automatically. You can set the
value of the following retention parameters in your BuildRun CR:

retention.ttlAfterFailed: Specifies the duration for which a failed build run can exist

retention.ttlAfterSucceeded: Specifies the duration for which a successful build run can exist

The following example shows how to define retention parameters in your BuildRun CR:

NOTE

If you have defined a retention parameter in both BuildRun and Build CRs, the value
defined in the BuildRun CR overrides the value of the retention parameter defined in the
Build CR.

3.7. VOLUMES DEFINITION FOR A BUILD RUN

You can define volumes in your BuildRun CR. The defined volumes override the volumes specified in
the BuildStrategy resource. If a volume is not overridden, then the build run fails.

In case the Build and BuildRun resources override the same volume, the volume defined in the

kind: BuildRun
metadata:
 name: buildah-buildrun
spec:
 build:
 name: buildah-build
 serviceAccount: pipeline 1

apiVersion: shipwright.io/v1beta1
kind: BuildRun
metadata:
 name: buidrun-retention-ttl
spec:
 build:
 name: build-retention-ttl
 retention:
 ttlAfterFailed: 10m
 ttlAfterSucceeded: 10m

builds for Red Hat OpenShift 1.0 Configure

26

In case the Build and BuildRun resources override the same volume, the volume defined in the
BuildRun resource is used for overriding.

The following example shows a BuildRun CR that uses the volumes field:

3.8. ENVIRONMENT VARIABLES DEFINITION

You can use environment variables in your BuildRun CR based on your needs. The following example
shows how to define environment variables:

Example: Defining a BuildRun resource with environment variables

The following example shows a BuildRun resource that uses the Kubernetes downward API to expose a
pod as an environment variable:

Example: Defining a BuildRun resource to expose a pod as an environment variable

apiVersion: shipwright.io/v1beta1
kind: BuildRun
metadata:
 name: <buildrun_name>
spec:
 build:
 name: <build_name>
 volumes:
 - name: <volume_name>
 configMap:
 name: <configmap_name>

apiVersion: shipwright.io/v1beta1
kind: BuildRun
metadata:
 name: buildah-buildrun
spec:
 build:
 name: buildah-build
 env:
 - name: <example_var_1>
 value: "<example_value_1>"
 - name: <example_var_2>
 value: "<example_value_2>"

apiVersion: shipwright.io/v1beta1
kind: BuildRun
metadata:
 name: buildah-buildrun
spec:
 build:
 name: buildah-build
 env:
 - name: <pod_name>
 valueFrom:
 fieldRef:
 fieldPath: metadata.name

CHAPTER 3. CONFIGURING BUILD RUNS

27

The following example shows a BuildRun resource that uses the Kubernetes downward API to expose a
container as an environment variable:

Example: Defining a BuildRun resource to expose a container as an environment variable

3.9. BUILD RUN STATUS

The BuildRun resource updates whenever the image building status changes, as shown in the following
examples:

Example: BuildRun with Unknown status

Example: BuildRun with True status

A BuildRun resource stores the status-related information in the status.conditions field. For example,
a condition with the type Succeeded indicates that resources have successfully completed their
operation. The status.conditions field includes significant information like status, reason, and message
for the BuildRun resource.

3.9.1. Build run statuses description

A BuildRun custom resource (CR) can have different statuses during the image building process. The
following table covers the different statuses of a build run:

Table 3.2. Statuses of a build run

Status Cause Description

Unknown Pending The BuildRun resource waits for a pod in status
Pending.

apiVersion: shipwright.io/v1beta1
kind: BuildRun
metadata:
 name: buildah-buildrun
spec:
 build:
 name: buildah-build
 env:
 - name: MEMORY_LIMIT
 valueFrom:
 resourceFieldRef:
 containerName: <my_container>
 resource: limits.memory

$ oc get buildrun buildah-buildrun-mp99r
NAME SUCCEEDED REASON STARTTIME COMPLETIONTIME
buildah-buildrun-mp99r Unknown Unknown 1s

$ oc get buildrun buildah-buildrun-mp99r
NAME SUCCEEDED REASON STARTTIME COMPLETIONTIME
buildah-buildrun-mp99r True Succeeded 29m 20m

builds for Red Hat OpenShift 1.0 Configure

28

Unknown Running The BuildRun resource has been validated and started to
perform its work.

Unknown BuildRunCanceled The user has requested to cancel the build run. This
request triggers the build run controller to make a request
for canceling the related task runs. Cancellation is still
under process when this status is present.

True Succeeded The pod for the BuildRun resource is created.

False Failed The BuildRun resource is failed in one of the steps.

False BuildRunTimeout The execution of the BuildRun resource is timed out.

False UnknownStrategyKind The strategy type defined in the Kind field is unknown.
You can define these strategy types:
ClusterBuildStrategy and BuildStrategy.

False ClusterBuildStrategyNotF
ound

The referenced cluster-scoped strategy was not found in
the cluster.

False BuildStrategyNotFound The referenced namespace-scoped strategy was not
found in the cluster.

False SetOwnerReferenceFaile
d

Setting the ownerReferences field from the BuildRun
resource to the related TaskRun resource failed.

False TaskRunIsMissing The TaskRun resource related to the BuildRun resource
was not found.

False TaskRunGenerationFaile
d

The generation of a TaskRun specification has failed.

False MissingParameterValues You have not provided any value for some parameters that
are defined in the build strategy without any default. You
must provide the values for those parameters in the Build
or the BuildRun CR.

False RestrictedParametersInU
se

A value for a system parameter was provided, which is not
allowed.

False UndefinedParameter A value for a parameter was provided that is not defined in
the build strategy.

Status Cause Description

CHAPTER 3. CONFIGURING BUILD RUNS

29

False WrongParameterValueTy
pe

A value was provided for a build strategy parameter with
the wrong type. For example, if the parameter is defined as
an array or a string in the build strategy, you must provide
a set of values or a direct value accordingly.

False InconsistentParameterVal
ues

A value for a parameter contained more than one of these
values: value, configMapValue, and secretValue. You
must provide only one of the mentioned values to maintain
consistency.

False EmptyArrayItemParamete
rValues

An item inside the values of an array parameter contained
none of these values: value,configMapValue, and
secretValue. You must provide only one of the
mentioned values as null array items are not allowed.

False IncompleteConfigMapVal
ueParameterValues

A value for a parameter contained a configMapValue
value where the name or the value field was empty. You
must specify the empty field to point to an existing config
map key in your namespace.

False IncompleteSecretValuePa
rameterValues

A value for a parameter contained a secretValue value
where the name or the value field was empty. You must
specify the empty field to point to an existing secret key in
your namespace.

False ServiceAccountNotFound The referenced service account was not found in the
cluster.

False BuildRegistrationFailed The referenced build in the BuildRun resource is in a
Failed state.

False BuildNotFound The referenced build in the BuildRun resource was not
found.

False BuildRunCanceled The BuildRun and related TaskRun resources were
canceled successfully.

False BuildRunNameInvalid The defined build run name in the metadata.name field is
invalid. You must provide a valid label value for the build
run name in your BuildRun CR.

False BuildRunNoRefOrSpec The BuildRun resource does not have either the
spec.build.name or spec.build.spec field defined.

False BuildRunAmbiguousBuil
d

The defined BuildRun resource uses both the
spec.build.name and spec.build.spec fields. Only one
of the parameters is allowed at a time.

Status Cause Description

builds for Red Hat OpenShift 1.0 Configure

30

False BuildRunBuildFieldOverri
deForbidden

The defined spec.build.name field uses an override in
combination with the spec.build.spec field, which is not
allowed. Use the spec.build.spec field to directly specify
the respective value.

False PodEvicted The build run pod was evicted from the node it was running
on.

Status Cause Description

3.9.2. Failed build runs

When a build run fails, you can check the status.failureDetails field in your BuildRun CR to identify the
exact point where the failure happened in the pod or container. The status.failureDetails field includes
an error message and a reason for the failure. You only see the message and reason for failure if they
are defined in your build strategy.

The following example shows a failed build run:

NOTE

The status.failureDetails field also provides error details for all operations related to Git.

3.9.3. Step results in build run status

After a BuildRun resource completes its execution, the .status field contains the .status.taskResults
result emitted from the steps generated by the build run controller. The result includes the image digest
or the commit SHA of the source code that is used for building the image. In a BuildRun resource, the
.status.sources field contains the result from the execution of source steps and the .status.output
field contains the result from the execution of output steps.

The following example shows a BuildRun resource with step results for a Git source:

Example: A BuildRun resource with step results for a Git source

...
status:
 # ...
 failureDetails:
 location:
 container: step-source-default
 pod: baran-build-buildrun-gzmv5-b7wbf-pod-bbpqr
 message: The source repository does not exist, or you have insufficient permission
 to access it.
 reason: GitRemotePrivate

...
status:
 buildSpec:
 # ...
 output:
 digest: sha256:07626e3c7fdd28d5328a8d6df8d29cd3da760c7f5e2070b534f9b880ed093a53

CHAPTER 3. CONFIGURING BUILD RUNS

31

The following example shows a BuildRun resource with step results for a local source code:

Example: A BuildRun resource with step results for a local source code

NOTE

You get to see the digest and size of the output image only if it is defined in your build
strategy.

3.9.4. Build snapshot

For each build run reconciliation, the buildSpec field in the status of the BuildRun resource updates if
an existing task run is part of that build run.

During this update, a Build resource snapshot generates and embeds into the status.buildSpec field of
the BuildRun resource. Due to this, the buildSpec field contains an exact copy of the original Build
specification, which was used to execute a particular image build. By using the build snapshot, you can
see the original Build resource configuration.

3.10. RELATIONSHIP OF BUILD RUN WITH TEKTON TASKS

The BuildRun resource delegates the task of image construction to the Tekton TaskRun resource,
which runs all steps until either the completion of the task, or a failure occurs in the task.

During the build run reconciliation, the build run controller generates a new TaskRun resource. The
controller embeds the required steps for a build run execution in the TaskRun resource. The embedded
steps are defined in your build strategy.

3.11. BUILD RUN CANCELLATION

You can cancel an active BuildRun instance by setting its state to BuildRunCanceled. When you
cancel a BuildRun instance, the underlying TaskRun resource is also marked as canceled.

The following example shows a canceled build run for a BuildRun resource:

 size: 1989004
 sources:
 - name: default
 git:
 commitAuthor: xxx xxxxxx
 commitSha: f25822b85021d02059c9ac8a211ef3804ea8fdde
 branchName: main

...
status:
 buildSpec:
 # ...
 output:
 digest: sha256:07626e3c7fdd28d5328a8d6df8d29cd3da760c7f5e2070b534f9b880ed093a53
 size: 1989004
 sources:
 - name: default
 bundle:
 digest: sha256:0f5e2070b534f9b880ed093a537626e3c7fdd28d5328a8d6df8d29cd3da760c7

builds for Red Hat OpenShift 1.0 Configure

32

3.12. AUTOMATIC BUILD RUN DELETION

To automatically delete a build run, you can add the following retention parameters in the build or
buildrun specification:

buildrun TTL parameters: Ensures that build runs only exist for a defined duration of time after
completion.

buildrun.spec.retention.ttlAfterFailed: The build run is deleted if the specified time has
passed and the build run has failed.

buildrun.spec.retention.ttlAfterSucceeded: The build run is deleted if the specified time
has passed and the build run has succeeded.

build TTL parameters: Ensures that build runs for a build only exist for a defined duration of
time after completion.

build.spec.retention.ttlAfterFailed: The build run is deleted if the specified time has
passed and the build run has failed for the build.

build.spec.retention.ttlAfterSucceeded: The build run is deleted if the specified time has
passed and the build run has succeeded for the build.

build limit parameters: Ensures that only a limited number of succeeded or failed build runs can
exist for a build.

build.spec.retention.succeededLimit: Defines the number of succeeded build runs that
can exist for the build.

build.spec.retention.failedLimit: Defines the number of failed build runs that can exist for
the build.

apiVersion: shipwright.io/v1beta1
kind: BuildRun
metadata:
 name: buildah-buildrun
spec:
 # [...]
 state: "BuildRunCanceled"

CHAPTER 3. CONFIGURING BUILD RUNS

33

	Table of Contents
	CHAPTER 1. CONFIGURING BUILDS
	1.1. CONFIGURABLE FIELDS IN BUILD
	1.2. SOURCE DEFINITION
	1.3. STRATEGY DEFINITION
	1.4. PARAMETER VALUES DEFINITION FOR A BUILD
	1.4.1. Example configuration for defining parameter values

	1.5. BUILDER OR DOCKER FILE DEFINITION
	1.6. OUTPUT DEFINITION
	1.7. RETENTION PARAMETERS DEFINITION FOR A BUILD
	1.8. VOLUMES DEFINITION FOR A BUILD

	CHAPTER 2. CONFIGURING BUILD STRATEGIES
	2.1. STRATEGY PARAMETERS DEFINITION
	2.2. SYSTEM PARAMETERS DEFINITION
	2.3. STEP RESOURCES DEFINITION
	2.3.1. Strategies with different resources
	2.3.1.1. Buildah strategy with small limit
	2.3.1.2. Buildah strategy with medium limit

	2.3.2. Resource management in Tekton pipelines

	2.4. ANNOTATIONS DEFINITION
	2.5. SECURE REFERENCING OF STRING PARAMETERS
	2.6. SYSTEM RESULTS DEFINITION
	2.7. VOLUMES AND VOLUME MOUNTS DEFINITION

	CHAPTER 3. CONFIGURING BUILD RUNS
	3.1. CONFIGURABLE FIELDS IN BUILD RUN
	3.2. BUILD REFERENCE DEFINITION
	3.3. BUILD SPECIFICATION DEFINITION
	3.4. PARAMETER VALUES DEFINITION FOR A BUILD RUN
	3.5. SERVICE ACCOUNT DEFINITION
	3.6. RETENTION PARAMETERS DEFINITION FOR A BUILD RUN
	3.7. VOLUMES DEFINITION FOR A BUILD RUN
	3.8. ENVIRONMENT VARIABLES DEFINITION
	3.9. BUILD RUN STATUS
	3.9.1. Build run statuses description
	3.9.2. Failed build runs
	3.9.3. Step results in build run status
	3.9.4. Build snapshot

	3.10. RELATIONSHIP OF BUILD RUN WITH TEKTON TASKS
	3.11. BUILD RUN CANCELLATION
	3.12. AUTOMATIC BUILD RUN DELETION

