
builds for Red Hat OpenShift 1.0

Work with Builds

Using Builds

Last Updated: 2024-02-16

builds for Red Hat OpenShift 1.0 Work with Builds

Using Builds

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides procedural examples for using Builds.

. .

Table of Contents

CHAPTER 1. RUNNING BUILDS
1.1. CREATING A BUILDAH BUILD
1.2. CREATING A SOURCE-TO-IMAGE BUILD
1.3. VIEWING LOGS
1.4. DELETING A RESOURCE
1.5. ADDITIONAL RESOURCES

3
3
6

10
10
11

Table of Contents

1

builds for Red Hat OpenShift 1.0 Work with Builds

2

1

2

3

CHAPTER 1. RUNNING BUILDS
After installing Builds, you can create a buildah or source-to-image build for use. You can also delete
custom resources that are not required for a build.

1.1. CREATING A BUILDAH BUILD

You can create a buildah build and push the created image to the target registry.

Prerequisites

You have installed the Builds for Red Hat OpenShift Operator on the OpenShift Container
Platform cluster.

You have created a ShipwrightBuild resource.

You have installed the oc CLI.

Optional: You have installed the shp CLI.

Procedure

1. Create a Build resource and apply it to the OpenShift Container Platform cluster by using one
of the CLIs:

Example: Using oc CLI

The location where the source code is placed.

The build strategy that you use to build the container.

The parameter defined in the build strategy. To set the value of the dockerfile strategy
parameter, specify the Dockerfile location required to build the output image.

The location where the built image is pushed. In this procedural example, the built image is

$ oc apply -f - <<EOF
apiVersion: shipwright.io/v1beta1
kind: Build
metadata:
 name: buildah-golang-build
spec:
 source: 1
 git:
 url: https://github.com/shipwright-io/sample-go
 contextDir: docker-build
 strategy: 2
 name: buildah
 kind: ClusterBuildStrategy
 paramValues: 3
 - name: dockerfile
 value: Dockerfile
 output: 4
 image: image-registry.openshift-image-registry.svc:5000/buildah-example/sample-go-app
EOF

CHAPTER 1. RUNNING BUILDS

3

4

1

2

3

4

The location where the built image is pushed. In this procedural example, the built image is
pushed to the OpenShift Container Platform cluster internal registry. buildah-example is

Example: Using shp CLI

The location where the source code is placed.

The build strategy that you use to build the container.

The parameter defined in the build strategy. To set the value of the dockerfile strategy
parameter, specify the Dockerfile location required to build the output image.

The location where the built image is pushed. In this procedural example, the built image is
pushed to the OpenShift Container Platform cluster internal registry. buildah-example is
the name of the current project. Ensure that the specified project exists to allow the image
push.

2. Check if the Build resource is created by using one of the CLIs:

Example: Using oc CLI

Example: Using shp CLI

3. Create a BuildRun resource and apply it to the OpenShift Container Platform cluster by using
one of the CLIs:

Example: Using oc CLI

The spec.build.name field denotes the respective build to run, which is expected to be

$ shp build create buildah-golang-build \
--source-url="https://github.com/shipwright-io/sample-go" --source-context-dir="docker-build"
\ 1
--strategy-name="buildah" \ 2
--dockerfile="Dockerfile" \ 3
--output-image="image-registry.openshift-image-registry.svc:5000/buildah-example/go-app"
4

$ oc get builds.shipwright.io buildah-golang-build

$ shp build list

$ oc apply -f - <<EOF
apiVersion: shipwright.io/v1beta1
kind: BuildRun
metadata:
 name: buildah-golang-buildrun
spec:
 build:
 name: buildah-golang-build 1
EOF

builds for Red Hat OpenShift 1.0 Work with Builds

4

1

1

The spec.build.name field denotes the respective build to run, which is expected to be
available in the same namespace.

Example: Using shp CLI

Optional: By using the --follow flag, you can view the build logs in the output result.

4. Check if the BuildRun resource is created by using one of the CLIs:

Example: Using oc CLI

Example: Using shp CLI

The BuildRun resource creates a TaskRun resource, which then creates the pods to execute
build strategy steps.

Verification

1. After all the containers complete their tasks, verify the following:

Check whether the pod shows the STATUS field as Completed:

Example output

Check whether the respective TaskRun resource shows the SUCCEEDED field as True:

Example output

Check whether the respective BuildRun resource shows the SUCCEEDED field as True:

$ shp build run buildah-golang-build --follow 1

$ oc get buildrun buildah-golang-buildrun

$ shp buildrun list

$ oc get pods -w

NAME READY STATUS RESTARTS AGE
buildah-golang-buildrun-dtrg2-pod 2/2 Running 0 4s
buildah-golang-buildrun-dtrg2-pod 1/2 NotReady 0 7s
buildah-golang-buildrun-dtrg2-pod 0/2 Completed 0 55s

$ oc get tr

NAME SUCCEEDED REASON STARTTIME COMPLETIONTIME
buildah-golang-buildrun-dtrg2 True Succeeded 11m 8m51s

$ oc get br

CHAPTER 1. RUNNING BUILDS

5

1

Example output

During verification, if a build run fails, you can check the status.failureDetails field in your
BuildRun resource to identify the exact point where the failure happened in the pod or
container.

NOTE

The pod might switch to a NotReady state because one of the containers
has completed its task. This is an expected behavior.

2. Validate whether the image has been pushed to the registry that is specified in the
build.spec.output.image field. You can try to pull the image by running the following command
from a node that can access the internal registry:

The project name and image name used when creating the Build resource. For example,
you can use buildah-example as the project name and sample-go-app as the image
name.

1.2. CREATING A SOURCE-TO-IMAGE BUILD

You can create a source-to-image build and push the created image to a custom Quay repository.

Prerequisites

You have installed the Builds for Red Hat OpenShift Operator on the OpenShift Container
Platform cluster.

You have created a ShipwrightBuild resource.

You have installed the oc CLI.

Optional: You have installed the shp CLI.

Procedure

1. Create a Build resource and apply it to the OpenShift Container Platform cluster by using one
of the CLIs:

Example: Using oc CLI

NAME SUCCEEDED REASON STARTTIME COMPLETIONTIME
buildah-golang-buildrun True Succeeded 13m 11m

$ podman pull image-registry.openshift-image-registry.svc:5000/<project>/<image> 1

$ oc apply -f - <<EOF
apiVersion: shipwright.io/v1beta1
kind: Build
metadata:
 name: s2i-nodejs-build
spec:

builds for Red Hat OpenShift 1.0 Work with Builds

6

1

2

3

4

5

1

2

3

4

5

The location where the source code is placed.

The build strategy that you use to build the container.

The parameter defined in the build strategy. To set the value of the builder-image
strategy parameter, specify the builder image location required to build the output image.

The location where the built image is pushed. You can push the built image to a custom
Quay.io repository. Replace repo with a valid Quay.io organization or your Quay user name.

The secret name that stores the credentials for pushing container images. To generate a
secret of the type docker-registry for authentication, see "Authentication to container
registries".

Example: Using shp CLI

The location where the source code is placed.

The build strategy that you use to build the container.

The parameter defined in the build strategy. To set the value of the builder-image
strategy parameter, specify the builder image location required to build the output image.

The location where the built image is pushed. You can push the built image to a custom
Quay.io repository. Replace repo with a valid Quay.io organization or your Quay user name.

The secret name that stores the credentials for pushing container images. To generate a
secret of the type docker-registry for authentication, see "Authentication to container
registries".

 source: 1
 git:
 url: https://github.com/shipwright-io/sample-nodejs
 contextDir: source-build/
 strategy: 2
 name: source-to-image
 kind: ClusterBuildStrategy
 paramValues: 3
 - name: builder-image
 value: quay.io/centos7/nodejs-12-centos7
 output:
 image: quay.io/<repo>/s2i-nodejs-example 4
 pushSecret: registry-credential 5
EOF

$ shp build create s2i-nodejs-build \
--source-url="https://github.com/shipwright-io/sample-nodejs" --source-context-dir="source-
build" \ 1
--strategy-name="source-to-image" \ 2
--builder-image="quay.io/centos7/nodejs-12-centos7" \ 3
--output-image="quay.io/<repo>/s2i-nodejs-example" \ 4
--output-credentials-secret="registry-credential" 5

CHAPTER 1. RUNNING BUILDS

7

1

1

2. Check if the Build resource is created by using one of the CLIs:

Example: Using oc CLI

Example: Using shp CLI

3. Create a BuildRun resource and apply it to the OpenShift Container Platform cluster by using
one of the CLIs:

Example: Using oc CLI

The spec.build.name field denotes the respective build to run, which is expected to be
available in the same namespace.

Example: Using shp CLI

Optional: By using the --follow flag, you can view the build logs in the output result.

4. Check if the BuildRun resource is created by using one of the CLIs:

Example: Using oc CLI

Example: Using shp CLI

The BuildRun resource creates a TaskRun resource, which then creates the pods to execute
build strategy steps.

Verification

1. After all the containers complete their tasks, verify the following:

$ oc get builds.shipwright.io s2i-nodejs-build

$ shp build list

$ oc apply -f - <<EOF
apiVersion: shipwright.io/v1beta1
kind: BuildRun
metadata:
 name: s2i-nodejs-buildrun
spec:
 build:
 name: s2i-nodejs-build 1
EOF

$ shp build run s2i-nodejs-build --follow 1

$ oc get buildrun s2i-nodejs-buildrun

$ shp buildrun list

builds for Red Hat OpenShift 1.0 Work with Builds

8

1

Check whether the pod shows the STATUS field as Completed:

Example output

Check whether the respective TaskRun resource shows the SUCCEEDED field as True:

Example output

Check whether the respective BuildRun resource shows the SUCCEEDED field as True:

Example output

During verification, if a build run fails, you can check the status.failureDetails field in your
BuildRun resource to identify the exact point where the failure happened in the pod or
container.

NOTE

The pod might switch to a NotReady state because one of the containers
has completed its task. This is an expected behavior.

2. Validate whether the image has been pushed to the registry that is specified in the
build.spec.output.image field. You can try to pull the image by running the following command
after logging in to the registry:

The repository name and image name used when creating the Build resource. For
example, you can use s2i-nodejs-example as the image name.

Additional resources

Authentication to container registries

$ oc get pods -w

NAME READY STATUS RESTARTS AGE
s2i-nodejs-buildrun-phxxm-pod 2/2 Running 0 10s
s2i-nodejs-buildrun-phxxm-pod 1/2 NotReady 0 14s
s2i-nodejs-buildrun-phxxm-pod 0/2 Completed 0 2m

$ oc get tr

NAME SUCCEEDED REASON STARTTIME COMPLETIONTIME
s2i-nodejs-buildrun-phxxm True Succeeded 2m39s 13s

$ oc get br

NAME SUCCEEDED REASON STARTTIME COMPLETIONTIME
s2i-nodejs-buildrun True Succeeded 2m41s 15s

$ podman pull quay.io/<repo>/<image> 1

CHAPTER 1. RUNNING BUILDS

9

https://access.redhat.com/documentation/en-us/builds_for_red_hat_openshift/1.0/html-single/authentication/#ob-authentication-to-container-registries_understanding-authentication-at-runtime

1.3. VIEWING LOGS

You can view the logs of a build run to identify any runtime errors and to resolve them.

Prerequisites

You have installed the oc CLI.

Optional: You have installed the shp CLI.

Procedure

View logs of a build run by using one of the CLIs:

Using oc CLI

Using shp CLI

1.4. DELETING A RESOURCE

You can delete a Build, BuildRun, or BuildStrategy resource if it is not required in your project.

Prerequisites

You have installed the oc CLI.

Optional: You have installed the shp CLI.

Procedure

Delete a Build resource by using one of the CLIs:

Using oc CLI

Using shp CLI

Delete a BuildRun resource by using one of the CLIs:

Using oc CLI

Using shp CLI

$ oc logs <buildrun_resource_name>

$ shp buildrun logs <buildrun_resource_name>

$ oc delete builds.shipwright.io <build_resource_name>

$ shp build delete <build_resource_name>

$ oc delete buildrun <buildrun_resource_name>

builds for Red Hat OpenShift 1.0 Work with Builds

10

Delete a BuildStrategy resource by running the following command:

Using oc CLI

1.5. ADDITIONAL RESOURCES

Authentication to container registries

Creating a ShipwrightBuild resource by using the web console

$ shp buildrun delete <buildrun_resource_name>

$ oc delete buildstrategies <buildstartegy_resource_name>

CHAPTER 1. RUNNING BUILDS

11

https://access.redhat.com/documentation/en-us/builds_for_red_hat_openshift/1.0/html-single/authentication/#ob-authentication-to-container-registries_understanding-authentication-at-runtime
https://access.redhat.com/documentation/en-us/builds_for_red_hat_openshift/1.0/html-single/install/#creating-a-shipwright-build-resource-console_installing-openshift-builds

	Table of Contents
	CHAPTER 1. RUNNING BUILDS
	1.1. CREATING A BUILDAH BUILD
	1.2. CREATING A SOURCE-TO-IMAGE BUILD
	1.3. VIEWING LOGS
	1.4. DELETING A RESOURCE
	1.5. ADDITIONAL RESOURCES

