
Hybrid committed spend 1-latest

Integrating Microsoft Azure data into hybrid
committed spend

Learn how to add and configure your Microsoft Azure integrations

Last Updated: 2024-06-07

Hybrid committed spend 1-latest Integrating Microsoft Azure data into
hybrid committed spend

Learn how to add and configure your Microsoft Azure integrations

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Learn how to add a Microsoft Azure integration to hybrid committed spend.

. .

. .

. .

Table of Contents

CHAPTER 1. CREATING A MICROSOFT AZURE INTEGRATION
1.1. ADDING A MICROSOFT AZURE ACCOUNT AND NAMING YOUR INTEGRATION
1.2. CREATING A MICROSOFT AZURE RESOURCE GROUP AND STORAGE ACCOUNT
1.3. CREATING A DAILY EXPORT IN MICROSOFT AZURE
1.4. FINDING YOUR MICROSOFT AZURE SUBSCRIPTION ID
1.5. CREATING MICROSOFT AZURE ROLES

CHAPTER 2. FILTERING YOUR MICROSOFT AZURE DATA BEFORE INTEGRATING IT INTO HYBRID
COMMITTED SPEND

2.1. ADDING A MICROSOFT AZURE ACCOUNT AND NAMING YOUR INTEGRATION
2.2. CREATING A MICROSOFT AZURE RESOURCE GROUP AND STORAGE ACCOUNT
2.3. FINDING YOUR MICROSOFT AZURE SUBSCRIPTION ID
2.4. CREATING MICROSOFT AZURE ROLES FOR YOUR STORAGE ACCOUNT
2.5. CREATING A DAILY EXPORT IN MICROSOFT AZURE
2.6. CREATING A FUNCTION IN MICROSOFT AZURE TO FILTER YOUR DATA
2.7. CONFIGURING MICROSOFT AZURE ROLES

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

3
3
4
4
5
5

7
7
7
8
9
9

10
13

14

Table of Contents

1

Hybrid committed spend 1-latest Integrating Microsoft Azure data into hybrid committed spend

2

CHAPTER 1. CREATING A MICROSOFT AZURE INTEGRATION
To add an Microsoft Azure account to hybrid committed spend, you must add it as a integration from the
Red Hat Hybrid Cloud Console user interface and configure Microsoft Azure to provide metrics.

To configure your Microsoft Azure account to be an hybrid committed spend integration, you must
complete the following tasks:

1. Create a storage account and resource group.

2. Configure Storage Account Contributor and Reader roles for access.

3. Create a function to filter the data you want to send to Red Hat.

4. Schedule daily cost exports to a storage account accessible to Red Hat.

NOTE

Because third-party products and documentation can change, instructions for
configuring the third-party integrations provided are general and correct at the time of
publishing. For the most up-to-date information, see the Microsoft Azure documentation.

Add your Microsoft Azure integration to hybrid committed spend from the Integrations page.

1.1. ADDING A MICROSOFT AZURE ACCOUNT AND NAMING YOUR
INTEGRATION

Add your Microsoft Azure account as an integration so hybrid committed spend can process the cost
and usage data.

Procedure

1. From Red Hat Hybrid Cloud Console , click Settings Menu > Integrations.

2. On the Settings page, in the Cloud tab, click Add integration.

3. Click Add integration.

4. In the Add a cloud integration wizard, select Microsoft Azure as the cloud provider type and
click Next.

5. Enter a name for your integration and click Next.

6. In the Select application step, select Hybrid committed spend and click Next.

7. In the Specify cost export scope step, select I am OK with sending the default data to Cost
Management.

8. Select the scope of your cost data export from the menu. You can export data at the
subscription level and other scopes in your subscription.

a. Copy the generated command for the scope you selected.

b. In your Microsoft Azure account, click Cloud Shell.

CHAPTER 1. CREATING A MICROSOFT AZURE INTEGRATION

3

https://console.redhat.com
https://docs.microsoft.com/en-us/azure/
https://console.redhat.com/settings/integrations
https://console.redhat.com
https://azure.microsoft.com/en-us

c. Paste the command you copied from the earlier step.

d. Copy the value for the subscription_id from the returned data.

Example response

9. In the Add a cloud integration wizard, paste the value into the Cost export scope field on the
Specify cost export scope step.

10. Click Next.

1.2. CREATING A MICROSOFT AZURE RESOURCE GROUP AND
STORAGE ACCOUNT

Create a storage account and resource group in Microsoft Azure to house your billing exports so that
hybrid committed spend can collect the information. In the Add a cloud integration wizard in hybrid
committed spend, enter the resource group name and storage account name in the fields in the
Resource group and storage account page.

Prerequisites

You must have a Red Hat user account with Cloud Administrator entitlements.

Procedure

1. In your Microsoft Azure account, search for storage and click Storage accounts.

a. On the Storage accounts page, click Create.

b. In the Resource Group field, click Create new. Enter a name, and click OK. In this example,
use cost-data-group.

c. In the Instance details section, enter a name in the Storage account name field. For
example, use costdata.

d. Copy the names of the resource group and storage account so you can add them to the
Add a cloud integration wizard in Red Hat Hybrid Cloud Console and click Review.

e. Review the storage account and click Create.

2. In the Red Hat Hybrid Cloud Console Add a cloud integration wizard, on the Resource group
and storage account page, enter values in the Resource group name and Storage account
name.

3. Click Next.

1.3. CREATING A DAILY EXPORT IN MICROSOFT AZURE

Create a function in Microsoft Azure to filter your data and export it on a regular schedule. Exports
create a recurring task that sends your Microsoft Azure cost data regularly to a storage account, which
exists within a resource group. Hybrid committed spend must be able to access the resource group

{
 "subscription_id": 00000000-0000-0000-000000000000
 }

Hybrid committed spend 1-latest Integrating Microsoft Azure data into hybrid committed spend

4

https://azure.microsoft.com/en-us
https://console.redhat.com
https://console.redhat.com

toread the Microsoft Azure cost data. This example uses a Python function to filter the data and post it
to the storage account you created earlier.

Procedure

1. To create the export, go to the Portal menu in Microsoft Azure and click Cost Management +
Billing.

2. On the Cost Management + Billing page, click Cost Management.

3. In the Settings menu, in the Cost management overview page, click, Exports.

4. To add an export, click Add.

5. In the Export details section, name the export.

6. In the Storage section, add the resource group you created.

1.4. FINDING YOUR MICROSOFT AZURE SUBSCRIPTION ID

Find your subscription_id in the Microsoft Azure Cloud Shell and add it to the Add a cloud integration
wizard in hybrid committed spend.

Procedure

1. In your Microsoft Azure account, click Cloud Shell.

2. Enter the following command to obtain your Subscription ID:

3. Copy the value for the subscription_id from the returned data.

Example response

4. Paste that value in the Subscription ID field on the Subscription ID page in the Add a cloud
integration wizard.

5. Click Next.

1.5. CREATING MICROSOFT AZURE ROLES

To grant Red Hat access to Azure, you must configure dedicated credentials in Microsoft Azure.

Procedure

1. In the Add a cloud integration wizard, on the Roles step, copy the generated az ad sp create-
for-rbac command from the wizard to create a service principal with the Cost Management
Storage Account Contributor role.

az account show --query "{subscription_id: id }"

{
 "subscription_id": 00000000-0000-0000-000000000000
 }

CHAPTER 1. CREATING A MICROSOFT AZURE INTEGRATION

5

https://azure.microsoft.com/en-us

2. In your Microsoft Azure account, click Cloud Shell.

3. Paste the command you copied in the earlier step in the cloud shell prompt.

4. Copy the Tenant (Directory) ID, Client (Application) ID, and Client secret values and paste
them into the Roles step of the Add a cloud integration wizard.

5. Copy the second generated az role assignment create command from the wizard and paste it
in the cloud shell prompt to create a Cost Management Reader role.

6. In the Add a cloud integration wizard, click Next.

7. Review the information you provided in the wizard and click Add.

Hybrid committed spend 1-latest Integrating Microsoft Azure data into hybrid committed spend

6

https://azure.microsoft.com/en-us

CHAPTER 2. FILTERING YOUR MICROSOFT AZURE DATA
BEFORE INTEGRATING IT INTO HYBRID COMMITTED SPEND

To share a subset of your billing data with RH, you can configure a function script in Microsoft Azure. This
script copies exports an object storage bucket that hybrid committed spend can then access and filter.

To integrate your Microsoft Azure account:

1. Create a storage account and resource group.

2. Configure Storage Account Contributor and Reader roles for access.

3. Create a function to filter the data you want to send to Red Hat.

4. Schedule daily cost exports to a storage account accessible to Red Hat.

NOTE

Because third-party products and documentation can change, instructions for
configuring the third-party integrations provided are general and correct at the time of
publishing. For the most up-to-date information, see the Microsoft Azure documentation.

Add your Microsoft Azure integration to hybrid committed spend from the Integrations page.

2.1. ADDING A MICROSOFT AZURE ACCOUNT AND NAMING YOUR
INTEGRATION

Add your Microsoft Azure account as an integration so hybrid committed spend can process the cost
and usage data.

Procedure

1. From Red Hat Hybrid Cloud Console , click Settings Menu > Integrations.

2. On the Settings page, in the Cloud tab, click Add integration.

3. In the Cloud tab, click Add integration.

4. In the Add a cloud integration wizard, select Microsoft Azure as the cloud provider type and
click Next.

5. Enter a name for your integration and click Next.

6. In the Select application step, select Hybrid committed spend and click Next.

7. In the Specify cost export scope step, select I wish to manually customize the data set sent
to Cost Management and click Next.

2.2. CREATING A MICROSOFT AZURE RESOURCE GROUP AND
STORAGE ACCOUNT

Create a storage account in Microsoft Azure to house your billing exports and a second storage account

CHAPTER 2. FILTERING YOUR MICROSOFT AZURE DATA BEFORE INTEGRATING IT INTO HYBRID COMMITTED SPEND

7

https://docs.microsoft.com/en-us/azure/
https://console.redhat.com/settings/integrations
https://console.redhat.com

to house your filtered data so that hybrid committed spend can collect the information. In the Add a
cloud integration wizard in hybrid committed spend, enter the resource group name and storage
account name in the fields in the Resource group and storage account page.

Prerequisites

You must have a Red Hat user account with Cloud Administrator entitlements.

Procedure

1. In your Microsoft Azure account, search for storage and click Storage accounts.

a. On the Storage accounts page, click Create.

b. In the Resource Group field, click Create new. Enter a name, and click OK. In this example,
use filtered-data-group.

c. In the Instance details section, enter a name in the Storage account name field. For
example, use filtereddata.

d. Copy the names of the resource group and storage account so you can add them to the
Add a cloud integration wizard in Red Hat Hybrid Cloud Console and click Review.

e. Review the storage account and click Create.

2. In the Red Hat Hybrid Cloud Console Add a cloud integration wizard, on the Resource group
and storage account page, enter values in the Resource group name and Storage account
name.

3. Click Next.

2.3. FINDING YOUR MICROSOFT AZURE SUBSCRIPTION ID

Find your subscription_id in the Microsoft Azure Cloud Shell and add it to the Add a cloud integration
wizard in hybrid committed spend.

Procedure

1. In your Microsoft Azure account, click Cloud Shell.

2. Enter the following command to obtain your Subscription ID:

3. Copy the value for the subscription_id from the returned data.

Example response

4. Paste that value in the Subscription ID field on the Subscription ID page in the Add a cloud
integration wizard.

az account show --query "{subscription_id: id }"

{
 "subscription_id": 00000000-0000-0000-000000000000
 }

Hybrid committed spend 1-latest Integrating Microsoft Azure data into hybrid committed spend

8

https://azure.microsoft.com/en-us
https://console.redhat.com
https://console.redhat.com
https://azure.microsoft.com/en-us

5. Click Next.

2.4. CREATING MICROSOFT AZURE ROLES FOR YOUR STORAGE
ACCOUNT

Use the Microsoft Azure Cloud Shell to find your Tenant (Directory) ID, Client (Application) ID, and
Client secret.

Procedure

1. In your Microsoft Azure account, click Cloud Shell.

2. Enter the following command to get your client ID, secret, and tenant name. Replace the values
with your subscription ID from the last step and resourceGroup1 with the resource group name
you created before. In this example, use filtered-data-group.

3. Copy the values from the returned data for the client_id, secret, and tenant.

Example response

4. Paste the values of client_id`, secret, and `tenant in the Roles step in the Add a cloud
integration wizard in Red Hat Hybrid Cloud Console .

5. Run the following command in the Cloud shell to create a Cost Management Reader role and
replace {Client ID} with the value from the previous step.

6. Click Next.

2.5. CREATING A DAILY EXPORT IN MICROSOFT AZURE

Create a function in Microsoft Azure to filter your data and export it on a regular schedule. Exports
create a recurring task that sends your Microsoft Azure cost data regularly to a storage account, which
exists within a resource group. Hybrid committed spend must be able to access the resource group
toread the Microsoft Azure cost data. This example uses a Python function to filter the data and post it
to the storage account you created earlier.

Procedure

1. To create the export, go to the Portal menu in Microsoft Azure and click Cost Management +
Billing.

az ad sp create-for-rbac -n "CostManagement" --role "Storage Account Contributor" --scope
/subscriptions/{subscriptionId}/resourceGroups/{resourceGroup1} --query '{"tenant": tenant,
"client_id": appId, "secret": password}'

{
 "client_id": "00000000-0000-0000-000000000000",
 "secret": "00000000-0000-0000-000000000000",
 "tenant": "00000000-0000-0000-000000000000"
}

az role assignment create --assignee {Client_ID} --role "Cost Management Reader"

CHAPTER 2. FILTERING YOUR MICROSOFT AZURE DATA BEFORE INTEGRATING IT INTO HYBRID COMMITTED SPEND

9

https://azure.microsoft.com/en-us
https://console.redhat.com

2. On the Cost Management + Billing page, click Cost Management.

3. In the Settings menu, in the Cost management overview page, click, Exports.

4. To add an export, click Add.

5. In the Export details section, name the export.

6. In the Storage section, add the resource group you created.

2.6. CREATING A FUNCTION IN MICROSOFT AZURE TO FILTER YOUR
DATA

Create the function that filters your data and adds it to the storage account that you created to share
with Red Hat. You can use the example Python script to gather the cost data from your cost exports
related to your Red Hat expenses and add it to the storage account.

Prerequisites

You must have Visual Studio Code installed on your device.

You must have the Microsoft Azure functions extension installed in Visual Studio Code.

Procedure

1. Log in to your Microsoft Azure account.

2. Enter functions in the search bar, select Functions, and click Create.

3. Select a hosting option for your function and click Select.

4. On the Create Function App page, configure your function app by adding your resource group.
=

a. In the Instance Details section, name your function app.

b. In Runtime stack, select Python

c. In Version, select 3.10.

5. Click Review + create:

a. Click Create.

b. Click Go to resource to configure the function.

6. In the function app menu, click Functions to create a time trigger function:

a. Click Create.

b. In the development environment field, select VSCode.

7. Open Visual Studio Code and ensure that the Microsoft Azure Functions Visual Studio Code
extension is installed. To create an Azure function, Microsoft recommends that you use their
Microsoft Visual Studio Code IDE to develop and deploy code. For more information about

Hybrid committed spend 1-latest Integrating Microsoft Azure data into hybrid committed spend

10

https://azure.microsoft.com/en-us

configuring Visual Studio Code, see Quickstart: Create a function in Azure with Python using
Visual Studio Code .

a. Click the Microsoft Azure tab in Visual Studio Code, sign in to Azure.

b. In the workspaces tab in Visual Studio Code, click Create function.

c. Follow the prompts to set a local location for your function and select a language and
version for your function. In this example, select Python, for and select Python 3.9.

d. In the Select a template for your project’s first function dialog, select Timer trigger,
name the function, and press Enter

e. Set the cron expression for when you want the function to run. In this example, use 0*9*** to
run the function daily at 9 AM.

f. Click Create.

8. After you create the function in your development environment, open the requirements.txt file,
add the following requirements, and save the file:

azure-functions
pandas
requests
azure-identity
azure-storage-blob

9. Open __init__.py and paste the following Python script. Change the values in the section
marked # Required vars to update to the values for your environment. For the USER and
PASS values, you can optionally use Key Vault Credentials to configure your username and
password as environment variables.

import datetime
import logging
import uuid
import requests
import pandas as pd
from azure.identity import DefaultAzureCredential
from azure.storage.blob import BlobServiceClient, ContainerClient

import azure.functions as func

def main(mytimer: func.TimerRequest) -> None:
 utc_timestamp = datetime.datetime.utcnow().replace(
 tzinfo=datetime.timezone.utc).isoformat()

 default_credential = DefaultAzureCredential()

 now = datetime.datetime.now()
 year = now.strftime("%Y")
 month = now.strftime("%m")
 day = now.strftime("%d")
 output_blob_name=f"{year}/{month}/{day}/{uuid.uuid4()}.csv"

 # Required vars to update

CHAPTER 2. FILTERING YOUR MICROSOFT AZURE DATA BEFORE INTEGRATING IT INTO HYBRID COMMITTED SPEND

11

https://learn.microsoft.com/en-us/azure/azure-functions/create-first-function-vs-code-python?pivots=python-mode-configuration
https://github.com/project-koku/koku-data-selector/blob/main/docs/azure/azure.rst#key-vault-credentials

 USER = os.getenv('UsernameFromVault') # Cost management
username
 PASS = os.getenv('PasswordFromVault') # Cost management
password
 integration_id = "<your_integration_id>" # Cost management
integration_id
 cost_export_store = "https://<your-cost-export-storage-account>.blob.core.windows.net"
Cost export storage account url
 cost_export_container = "<your-cost-export-container>" # Cost
export container
 filtered_data_store = "https://<your_filtered_data_container-storage-
account>.blob.core.windows.net" # Filtered data storage account url
 filtered_data_container = "<your_filtered_data_container>" # Filtered
data container

 # Create the BlobServiceClient object
 blob_service_client = BlobServiceClient(filtered_data_store, credential=default_credential)
 container_client = ContainerClient(cost_export_store, credential=default_credential,
container_name=cost_export_container)

 blob_list = container_client.list_blobs()
 latest_blob = None
 for blob in blob_list:
 if latest_blob:
 if blob.last_modified > latest_blob.last_modified:
 latest_blob = blob
 else:
 latest_blob = blob

 bc = container_client.get_blob_client(blob=latest_blob)
 data = bc.download_blob()
 blobjct = "/tmp/blob.csv"
 with open(blobjct, "wb") as f:
 data.readinto(f)
 df = pd.read_csv(blobjct)

 filtered_data = df.loc[((df["publisherType"] == "Marketplace") &
((df["publisherName"].astype(str).str.contains("Red Hat")) | (((df["publisherName"] ==
"Microsoft") | (df["publisherName"] == "Azure")) &
(df['meterSubCategory'].astype(str).str.contains("Red Hat") |
df['serviceInfo2'].astype(str).str.contains("Red Hat")))))]

 filtered_data_csv = filtered_data.to_csv (index_label="idx", encoding = "utf-8")

 blob_client = blob_service_client.get_blob_client(container=filtered_data_container,
blob=output_blob_name)

 blob_client.upload_blob(filtered_data_csv, overwrite=True)

 # Post results to console.redhat.com API
 url = "https://console.redhat.com/api/cost-management/v1/ingress/reports/"
 json_data = {"source": integration_id, "reports_list": [f"
{filtered_data_container}/{output_blob_name}"], "bill_year": year, "bill_month": month}
 resp = requests.post(url, json=json_data, auth=(USER, PASS))
 logging.info(f'Post result: {resp}')

Hybrid committed spend 1-latest Integrating Microsoft Azure data into hybrid committed spend

12

10. Save the file.

11. Deploy the function to Microsoft Azure.

2.7. CONFIGURING MICROSOFT AZURE ROLES

Configure dedicated credentials to grant your function blob access to Microsoft Azure cost data so it
can transfer the data from the original storage container to the filtered storage container.

Procedure

1. In your Microsoft Azure account, type functions in the search bar.

2. Find your function and select it.

3. In the Settings menu, click Identity.

4. On the Identity page, click Azure role assignments.

5. On the Role assignments page, click Add role assignment.

6. In the Scope field, select the Storage scope.

7. In the Resource field, select the storage account that you created. In this example, use
filtereddata.

8. In the role field, select Storage Blob Data Contributor.

9. Click Save.

10. Repeat these steps to create a role for Storage Queue Data Contributor.

11. Repeat this process for the other storage account that you created. In this example, use
billingexportdata.

12. In the Add a cloud integration wizard in Red Hat Hybrid Cloud Console , click Next.

13. Review the information you provided in the wizard and click Add.

 if mytimer.past_due:
 logging.info('The timer is past due!')

 logging.info('Python timer trigger function ran at %s', utc_timestamp)

CHAPTER 2. FILTERING YOUR MICROSOFT AZURE DATA BEFORE INTEGRATING IT INTO HYBRID COMMITTED SPEND

13

https://azure.microsoft.com/en-us
https://console.redhat.com

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
If you found an error or have a suggestion on how to improve these guidelines, open an issue in the cost
management Jira board and add the Documentation label.

We appreciate your feedback!

Hybrid committed spend 1-latest Integrating Microsoft Azure data into hybrid committed spend

14

https://issues.redhat.com/projects/COST/

	Table of Contents
	CHAPTER 1. CREATING A MICROSOFT AZURE INTEGRATION
	1.1. ADDING A MICROSOFT AZURE ACCOUNT AND NAMING YOUR INTEGRATION
	1.2. CREATING A MICROSOFT AZURE RESOURCE GROUP AND STORAGE ACCOUNT
	1.3. CREATING A DAILY EXPORT IN MICROSOFT AZURE
	1.4. FINDING YOUR MICROSOFT AZURE SUBSCRIPTION ID
	1.5. CREATING MICROSOFT AZURE ROLES

	CHAPTER 2. FILTERING YOUR MICROSOFT AZURE DATA BEFORE INTEGRATING IT INTO HYBRID COMMITTED SPEND
	2.1. ADDING A MICROSOFT AZURE ACCOUNT AND NAMING YOUR INTEGRATION
	2.2. CREATING A MICROSOFT AZURE RESOURCE GROUP AND STORAGE ACCOUNT
	2.3. FINDING YOUR MICROSOFT AZURE SUBSCRIPTION ID
	2.4. CREATING MICROSOFT AZURE ROLES FOR YOUR STORAGE ACCOUNT
	2.5. CREATING A DAILY EXPORT IN MICROSOFT AZURE
	2.6. CREATING A FUNCTION IN MICROSOFT AZURE TO FILTER YOUR DATA
	2.7. CONFIGURING MICROSOFT AZURE ROLES

	PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

