‘® redhat.

JBoss Enterprise Application Platform
Common Criteria Certification 5

Getting Started Guide

for Use with JBoss Enterprise Application Platform 5 Common Criteria Certification
Edition 5.1.0

Last Updated: 2017-11-20

JBoss Enterprise Application Platform Common Criteria Certification5
Getting Started Guide

for Use with JBoss Enterprise Application Platform 5 Common Criteria Certification
Edition 5.1.0

Red Hat Documentation Group

Legal Notice

Copyright © 2011 Red Hat, Inc.

This document is licensed by Red Hat under the Creative Commons Attribution-ShareAlike 3.0
Unported License. If you distribute this document, or a modified version of it, you must provide
attribution to Red Hat, Inc. and provide a link to the original. If the document is modified, all Red Hat
trademarks must be removed.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.
Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This Getting Started Guide documents information regarding the initial use of the JBoss Enterprise
Application Platform 5.1.0.

http://creativecommons.org/licenses/by-sa/3.0/

Table of Contents

Table of Contents

INTRODUGCTION ..ttt et et i et sae e saasaasacsansansassasansansansnnsnnnnnsns 2
1. HELP CONTRIBUTE 2
CHAPTER 1. THE JBOSS SERVER-A QUICK TOURttt e tna e aaaannnns 3
1.1. SERVER STRUCTURE 3
1.2. STARTING AND STOPPING THE SERVER 3
1.2.1. Start the Server 3
1.2.2. Start the Server With Alternate Configuration 4
1.2.3. Using run.sh 4
1.2.4. Stopping the Server 5
1.2.5. Running As A System Service 5

1.3. THE JMX CONSOLE 5
1.4. THE JNDIVIEW SERVICE 6
1.5. HOT-DEPLOYMENT OF SERVICES IN JBOSS 8
1.5.1. Hot-deployment configurations 8
1.5.2. Adding a custom deploy folder 9

1.6. BASIC CONFIGURATION ISSUES 10
1.6.1. Setting your application as the default application on the server 10
1.6.2. Bootstrap Configuration 10
1.6.3. Legacy Core Services 10
1.6.4. Logging Service 11
1.6.5. Security Service 13
1.6.6. Additional Services 15

1.7. THE SERVICE BINDING MANAGER 15
CHAPTER 2. USING OTHER DATABASES ittt ta s e ae s ansaesannasaananrnnns 17
2.1. DATASOURCE CONFIGURATION FILES 17
2.2. USING MYSQL AS THE DEFAULT DATASOURCE 18
2.2.1. Creating a Database and User 18
2.2.2. Installing the JDBC Driver and Deploying the datasource 19
2.2.3. Testing the MySQL DataSource 19

2.3. CONFIGURING A DATASOURCE FOR ORACLE DB 19
2.3.1. Installing the JDBC Driver and Deploying the DataSource 20
2.3.2. Testing the Oracle DataSource 20

2.4. CONFIGURING A DATASOURCE FOR MICROSOFT SQL SERVER 200X 21
2.4.1. Installing the JDBC Driver and Deploying the DataSource 21
2.4.1.1. Testing the datasource 21

2.5. CONFIGURING JBOSS MESSAGING PERSISTENCE MANAGER 21
2.6. CREATING A JDBC CLIENT 22
APPENDIX A. REVISION HISTORY ... ittt it i it et et sa s asaesansansasnasaanansnnns 24

Getting Started Guide

INTRODUCTION

JBoss Enterprise Application Platform is the open source implementation of the Java EE suite of
services. It comprises a set of offerings for enterprise customers who are looking for preconfigured
profiles of JBoss Enterprise Middleware components that have been tested and certified together to
provide an integrated experience. lts easy-to-use server architecture and high flexibility makes JBoss the
ideal choice for users just starting out with J2EE, as well as senior architects looking for a customizable
middleware platform.

Because it is Java-based, JBoss Enterprise Application Platform is cross-platform, easy to install and
use on any operating system that supports Java. The readily available source code is a powerful learning
tool to debug the server and understand it. It also gives you the flexibility to create customized versions
for your personal or business use.

1. HELP CONTRIBUTE

If you find a typographical error or if you have thought of a way to make this manual better, submit a
report in JIRA: http://jira.jposs.com against the product JBoss Enterprise Application Platform and
component Documentation.

If you have a suggestion for improving the documentation, try to be as specific as possible when
describing it. If you have found an error, please include the section number and some of the surrounding
text so we can find it easily.

http://jira.jboss.com

CHAPTER 1. THE JBOSS SERVER - A QUICK TOUR

CHAPTER 1. THE JBOSS SERVER - A QUICK TOUR

1.1. SERVER STRUCTURE

For a thorough explanation of the structure of the application server, see Migration chapter of the
Installation Guide that accompanies this release of JBoss Enterprise Application Platform.

1.2. STARTING AND STOPPING THE SERVER

1.2.1. Start the Server

Move to $IJBOSS_HOME/server/$PROFILE/bin directory and execute the run. sh (for Linux) script.

There is no Server Started message shown at the console when the server is started using the
production profile. This message can be found in the server.log file located in the
$JBOSS_HOME/server/$PROFILE/production/log subdirectory.

IMPORTANT

The JBoss Enterprise Application Platform now binds its services to localhost (127.0.0.1)
by default, instead of binding to all available interfaces (0.0.0.0). This was primarily done
for security reasons because of concerns of users going to production without having
secured their servers correctly. To enable remote access by binding JBoss services to a
particular interface, simply run JBoss with the -b option. To bind to all available interfaces
and re-enable the legacy behaviour use ./run.sh -b 0.0.0.0 on Linux. In any case,
be aware you still need to secure your server properly.

Using -b as part of the JBoss Server's command line is equivalent to setting these
individual properties: -Djboss.bind.address, -Djava.rmi.server.hostname, -
Djgroups.bind_addr and -Dbind.address. Passing -Djboss.bind.address to the Java
process as part of the JAVA_OPTS variable in the run scripts will not work as it is a JBoss
property not a JVM property.

For more information including setting up multiple JBoss server instances on one machine and hosting
multiple domains with JBoss, please refer to the Administration and Configuration Guide.

On starting your server, your screen output should look like the following (accounting for installation
directory differences) and contain no error or exception messages:

[user@mypc bin]$./run.sh

JBoss Bootstrap Environment

JBOSS_HOME: unzip_locationjboss-as

JAVA: java

JAVA_OPTS: -Dprogram.name=run.sh -server -Xms1503m -Xmx1503m -
Dsun.rmi.dgc.client.

gclnterval=3600000 -Dsun.rmi.dgc.server.gcInterval=3600000 -
Djava.net.preferIPv4Stack=true

http://www.redhat.com/docs/en-US/JBoss_Enterprise_Application_Platform/5.0.0/html-single/Administration_And_Configuration_Guide/index.html

Getting Started Guide

CLASSPATH: unzip_location/jboss-as/bin/run.jar

More options for the JBoss Enterprise Application Platform run script are discussed in Section 1.2.2,
“Start the Server With Alternate Configuration” below.

NOTE

There is no Server Started message shown at the console when the server is started
using the production profile. This message may be observed in the server . log file
located in the server/production/log subdirectory.

1.2.2. Start the Server With Alternate Configuration

Using run. sh without any arguments starts the server using the default server profile file set. To start
with an alternate profile file set, pass the name of the server configuration file set (same as the name of
the server configuration directory under $IJBOSS_HOME/server/$PROFILE/) that you want to use, as
the value to the -¢ command line option. For example, to start with the minimal profile file set you
should specify:

[bin]$./run.sh -c minimal

15:05:40,301 INFO [Server] JBoss (MX MicroKernel) [5.0.0 (build:
SVNTag=JBoss_5_0_0 date=200801092200)] Started in 5s:75ms

1.2.3. Using run.sh

The run script supports the following options:

usage: run.sh [options]

-h, --help Show help message

-V, --version Show version information

-- Stop processing options
-D<name>[=<value>] Set a system property

-d, --bootdir=<dir> Set the boot patch directory; Must be
absolute or url

-p, --patchdir=<dir> Set the patch directory; Must be absolute or
url

-c, --configuration=<name> Set the server configuration name

-B, --bootlib=<filename> Add an extra library to the front
bootclasspath

-L, --library=<filename> Add an extra library to the loaders
classpath

-C, --classpath=<url> Add an extra url to the loaders classpath
-P, --properties=<url> Load system properties from the given url
-b, --host=<host or ip> Bind address for all JBoss services.

-g, --partition=<name> HA Partition name (default=DefaultDomain)
-m, --mcast_port=<ip> UDP multicast port; only used by JGroups

-u, --udp=<ip> UDP multicast address

CHAPTER 1. THE JBOSS SERVER - A QUICK TOUR

I -1, --log=<log4j|jdk> Specify the logger plugin type

1.2.4. Stopping the Server

To shutdown the server, you simply issue a Ctr1-C sequence in the console in which JBoss was
started. Alternatively, you can use the shutdown. sh command.

I [bin]$./shutdown.sh -S
The shutdown script supports the following options:

A JMX client to shutdown (exit or halt) a remote JBoss server.
usage: shutdown [options] <operation>

options:

-h, --help Show this help message (default)
-D<name>[=<value>] Set a system property

-- Stop processing options

-s, --server=<url> Specify the JNDI URL of the remote server

-n, --serverName=<url> Specify the JMX name of the ServerImpl

-a, --adapter=<name> Specify JNDI name of the MBeanServerConnection
to use

-u, --user=<name> Specify the username for authentication

-p, --password=<name> Specify the password for authentication
operations:

-S, --shutdown Shutdown the server

-e, --exit=<code> Force the VM to exit with a status code

-H, --halt=<code> Force the VM to halt with a status code

Using the shutdown command requires a server configuration that contains the jmx-invoker -
service.xml service. Hence you cannot use the shutdown command with the minimal profile.

1.2.5. Running As A System Service

It is possible to run the Application Server as a service under Windows, Linux, and UNIX. Refer to the
post-installation chapter of the JBoss Enterprise Application Platform Installation Guide for instructions.

1.3. THE JMX CONSOLE

When the JBoss Server is running, you can get a live view of the server by going to the JMX console
application at http://localhost:8080/jmx-console.

By default, the JMX console is secured and will prompt you for a username and password. If you
installed JBoss Enterprise Application Platform using the graphical installer and you want to access the
JMX console, you can use the username and password you provided when it was installed. If you
installed using other modes such as .zip, go to the
$JBOSS_HOME/server/$PROFILE/conf/props/directory and uncomment the admin userid and
password code within the jmx-console-users.properties file. You can add other users as
needed. This will allow the defined users access to the JMX console using the username and password
combination specified within the jmx-console-users.properties file.

http://localhost:8080/jmx-console

Getting Started Guide

See Section 1.6.5, “Security Service” for further information about the security service in JBoss
Enterprise Application Platform.

IMPORTANT

If you changed the jmx-console-users.properties file when the server was
running, you may have to restart the server for the changes to take effect. In some cases,
lazy loading can make this change live without restarting the server.

The JMX Console is the JBoss Management Console which provides a raw view of the JMX MBeans
which make up the server. They can provide a lot of information about the running server and allow you
to modify its configuration, start and stop components and so on.

For example, find the service=JNDIView link and click on it. This particular MBean provides a service
to allow you to view the structure of the JNDI namespaces within the server. Now find the operation
called 1ist near the bottom of the MBean view page and click the invoke button. The operation returns
a view of the current names bound into the JNDI tree, which is very useful when you start deploying your
own applications and want to know why you can’t resolve a particular EJB name.

Look at some of the other MBeans and their listed operations; try changing some of the configuration
attributes and see what happens. With a very few exceptions, none of the changes made through the
console are persistent. The original configuration will be reloaded when you restart JBoss, so you can
experiment freely without doing any permanent damage.

1.4. THE JNDIVIEW SERVICE

The JNDIView Service is enabled by default in the JBoss Enterprise Application Platform. This service is
listed in the jmx-console (http:/localhost:8080/jmx-console). Navigate to the
jboss:service=JNDIView Mbean and click on that link. On the MBean operations page, you will find
the 1ist method. Click on the Invoke button adjacent to this 1ist method.

The list operation will display the JNDI tree contents. The output will look something similar to this:

java: Namespace

+- securityManagement (class:
org.jboss.security.integration.JNDIBasedSecurityManagement)

+- comp (class: javax.namingMain.Context)

+- XAConnectionFactory (class:
org.jboss.jms.client.JBossConnectionFactory)

+- JmsXA (class: org.jboss.resource.adapter.jms.JmsConnectionFactoryImpl)
+- policyRegistration (class:
org.jboss.security.plugins.JBossPolicyRegistration)

+- TransactionPropagationContextImporter (class:
com.arjuna.ats.internal.jbossatx.jta.PropagationContextManager)

+- app (class: org.jnp.interfaces.NamingContext)

| +- Manager (class: javax.inject.manager.Manager)

+- ClusteredConnectionFactory (class:
org.jboss.jms.client.JBossConnectionFactory)

+- Mail (class: javax.mail.Session)

+- TransactionPropagationContextExporter (class:
com.arjuna.ats.internal.jbossatx.jta.PropagationContextManager)

+- ProfileService (class:
org.jboss.system.server.profileservice.repository.AbstractProfileService)

http://localhost:8080/jmx-console

CHAPTER 1. THE JBOSS SERVER - A QUICK TOUR

+- DefaultDS (class: org.jboss.resource.adapter.jdbc.WrapperDataSource)
+- jaas (class: javax.naming.Context)

| +- HsqlDbRealm (class:
org.jboss.security.plugins.SecurityDomainContext)

+- ClusteredXAConnectionFactory (class:
org.jboss.jms.client.JBossConnectionFactory)

+- TransactionSynchronizationRegistry (class:

com.arjuna.ats.internal.jta.transaction.arjunacore.TransactionSynchronizat
ionRegistryImple)

+- SecurityProxyFactory (class:
org.jboss.security.SubjectSecurityProxyFactory)

+- ConnectionFactory (class: org.jboss.jms.client.JBossConnectionFactory)
+- DefaultJMSProvider (class: org.jboss.jms.jndi.JNDIProviderAdapter)

+- TransactionManager (class:
com.arjuna.ats.jbossatx.jta.TransactionManagerDelegate)

+- timedCacheFactory (class: javax.naming.Context)

Failed to lookup: timedCacheFactory,
errmsg=org.jboss.util.TimedCachePolicy cannot be cast to
javax.naming.NamingEnumeration

Global JNDI Namespace

+- UserTransactionSessionFactory (proxy: $Proxyl09 implements interface
org.jboss.tm.usertx.interfaces.UserTransactionSessionFactory)

+- UUIDKeyGeneratorFactory (class:
org.jboss.ejb.plugins.keygenerator.uuid.UUIDKeyGeneratorFactory)

+- HiLoKeyGeneratorFactory (class:
org.jboss.ejb.plugins.keygenerator.hilo.HiLoKeyGeneratorFactory)

+- SecureDeploymentManager (class: org.jnp.interfaces.NamingContext)

| +- remote[link -> DeploymentManager] (class: javax.naming.LinkRef)
+- SecureManagementView (class: org.jnp.interfaces.NamingContext)

| +- remote[link -> ManagementView] (class: javax.naming.LinkRef)

+- persistence.unit:unitName=jsfejb3.ear (class:
org.jnp.interfaces.NamingContext)

| +- app.jar#helloworld (class: org.hibernate.impl.SessionFactoryImpl)
+- DeploymentManager (class: org.jboss.aop.generatedproxies.AOPProxy$4)
+- XAConnectionFactory (class:
org.jboss.jms.client.JBossConnectionFactory)

+- topic (class: org.jnp.interfaces.NamingContext)

+- ClusteredConnectionFactory (class:
org.jboss.jms.client.JBossConnectionFactory)

+- ProfileService (class: org.jboss.aop.generatedproxies.AOPProxy$2)

+- SecureProfileService (class: org.jnp.interfaces.NamingContext)

| +- remote[link -> ProfileService] (class: javax.naming.LinkRef)

+- queue (class: org.jnp.interfaces.NamingContext)

| +- DLQ (class: org.jboss.jms.destination.JBossQueue)

| +- ExpiryQueue (class: org.jboss.jms.destination.JBossQueue)

+- ClusteredXAConnectionFactory (class:
org.jboss.jms.client.JBossConnectionFactory)

+- UserTransaction (class:
org.jboss.tm.usertx.client.ClientUserTransaction)

+- ConnectionFactory (class: org.jboss.jms.client.JBossConnectionFactory)
+- jmx (class: org.jnp.interfaces.NamingContext)

| +- invoker (class: org.jnp.interfaces.NamingContext)

Getting Started Guide

| [+- RMIAdaptor (proxy: $Proxyl03 implements interface
org.jboss.jmx.adaptor.rmi.RMIAdaptor, interface
org.jboss.jmx.adaptor.rmi.RMIAdaptorExt)

| +- rmi (class: org.jnp.interfaces.NamingContext)

| [+- RMIAdaptor[link -> jmx/invoker/RMIAdaptor] (class:
javax.naming.LinkRef)

+- TomcatAuthenticators (class: java.util.Properties)

+- console (class: org.jnp.interfaces.NamingContext)

| +- PluginManager (proxy: $Proxyl104 implements interface
org.jboss.console.manager.PluginManagerMBean)

+- ManagementView (class: org.jboss.aop.generatedproxies.AOPProxy$3)

This details the JNDI names to which your EJBs are bound.

1.5. HOT-DEPLOYMENT OF SERVICES IN JBOSS

Hot-deployable services are those which can be added to or removed from the running server. These
are placed in the JBOSS_DIST/jboss-as/server/<instance-name>/deploy directory. Let's have
a look at a practical example of hot-deployment of services in JBoss.

Start JBoss if it isn’t already running and take a look at the server/default/deploy directory.
Remove the mail-service.xml file and watch the output from the server:

I 13:10:05,235 INFO [MailService] Mail service 'java:/Mail' removed from
JNDI

Then replace the file and watch JBoss re-install the service:

I 13:58:54,331 INFO [MailService] Mail Service bound to java:/Mail

This is hot-deployment in action.

1.5.1. Hot-deployment configurations

Hot deployment of services in the server is controlled by the HDScanner MC bean configured in
$JBOSS_HOME/server/conf/deploy/hdscanner-jboss-beans.xml file. For the default
server configuration the scanPeriod is set to 5 seconds:

<bean name="HDScanner"
class="org.jboss.system.server.profileservice.hotdeploy.HDScanner">
<property name="deployer"><inject bean="ProfileServiceDeployer"/>
</property>

<property name="profileService"><inject bean="ProfileService"/>
</property>

<property name="scanPeriod">5000</property>

<property name="scanThreadName">HDScanner</property>

</bean>

The scanPeriod attribute controls the interval for thread which picks up the hot deployable changes.

CHAPTER 1. THE JBOSS SERVER - A QUICK TOUR

NOTE

The changes to the hdscanner - jboss-beans.xml file itself are hot deployable. No
server restart is needed.

_,f"

1.5.2. Adding a custom deploy folder

JBoss server by default looks for deployments under the JBOSS_DIST/jboss-
as/server/<instance-name>/deploy folder. However you can configure the server to even
include your custom folder for scanning deployments. This can be done by configuring the
BootstrapProfileFactory MC bean in
$JBOSS_HOME/server/$PROFILE/conf/bootstrap/profile.xml file. The applicationURIs
property of the BootstrapProfileFactory accepts a list of URLs which will be scanned for
applications. You can add your custom deploy folder to this list. For example, if you want
/home/me/myapps to be scanned for deployments, then you can add the following:

<bean name="BootstrapProfileFactory"
class="org.jboss.system.server.profileservice.repository.
StaticProfileFactory">

<property name="applicationURIs">

<list elementClass="java.net.URI">
<value>${jboss.server.home.url}deploy</value>
<value>file:///home/me/myapps</value>

</list>

IMPORTANT

Modifying the $IJBOSS_HOME/server/$PROFILE/conf/bootstrap/profile.xml
requires a server restart, for the changes to take effect.

For performance reasons, adding a new deployment folder to the BootstrapProfileFactory also
requires the same URL to be added to the VFSCache MC bean configuration in
$JBOSS_HOME/server/$PROFILE/conf/bootstrap/vfs.xml. For example:

<bean name="VFSCache">

<property name="permanentRoots">
<map keyClass="java.net.URL"
valueClass="org.jboss.virtual.spi.ExceptionHandler">
<entry>
<key>file:///home/me/myapps</key>
<value><inject bean="VfsNamesExceptionHandler"/></value>
</entry>
</map>
</property>

Getting Started Guide

IMPORTANT

Not adding the custom deployment folder to VFSCache might result in growing disk space
usage by the server, over a period of time.

1.6. BASIC CONFIGURATION ISSUES

Now that we have examined the JBoss server, we will take a look at some of the main configuration files
and what they are used for. All paths are relative to the server configuration directory
(server/default, for example).

1.6.1. Setting your application as the default application on the server

JBoss server by default configures $IB0SS_HOME/server/$PROFILE/deploy/ROOT.war as the
default application on the server. So accessing http://localhost:8080/ results in displaying the
index page of this application. If you want your application to be available as the default application, then
you will wish to follow these steps:

e Rename ROOT.war in $IJBOSS_HOME/server/$PROFILE/deploy to something else, for
example, jboss.war.

e In your WAR file (the one which you want to be the default application), add a jboss-web.xml,
in the WEB- INF folder, with a configuration for the context-root:

<?xml version="1.0"?>
<!DOCTYPE jboss-web PUBLIC "-//JBoss//DTD Web Application 5.0//EN"
"http://www.jboss.org/j2ee/dtd/jboss-web_5_0.dtd">

<jboss-web>
<context-root>/</context-root>

<!-- Other configurations as needed -->
</jboss-web>

By setting the context-root to / you are making your application the default application. Your
application will now be available at http://localhost:8080/.

NOTE

Renaming the ROOT .war to jboss.war will make that application be available at
http://localhost:8080/jboss

1.6.2. Bootstrap Configuration

The microcontainer bootstrap configuration is described by the conf/bootstrap.xml and the
conf/bootstrap/*.xml it references. It is expected that the number of bootstrap beans will be
reduced in the future. It is not expected that you would need to edit the bootstrap configuration files for a
typical installation.

1.6.3. Legacy Core Services

The legacy core services specified in the conf/jboss-service.xml file are started just after server
starts up the microcontainer. If you have a look at this file in an editor you will see MBeans for various

10

CHAPTER 1. THE JBOSS SERVER - A QUICK TOUR

services including logging, security, JNDI, JNDIView etc. Try commenting out the entry for the
JNDIView service.

NOTE

Eventually this file will be dropped as the services are converted to microcontainer beans
or mbeans that are deployed as deploy directory services.

Note that because the mbeans definition had nested comments, we had to comment out the mbean in
two sections, leaving the original comment as it was.

<!-- Section 1 commented out
<mbean code="org.jboss.naming.JNDIView"
name="jboss:service=JNDIView"
xmbean-dd="resource:xmdesc/JNDIView-xmbean.xml">
-->
<!-- The HANamingService service name -->
<!-- Section two commented out
<attribute name="HANamingService'">jboss:service=HAJNDI</attribute>
</mbean>
-->

If you then restart JBoss, you will see that the INDIView service no longer appears in the JMX
Management Console (JMX Console) listing. In practice, you should rarely, if ever, need to modify this
file, though there is nothing to stop you adding extra MBean entries in here if you want to. The
alternative is to use a separate file in the deploy directory, which allows your service to be hot
deployable.

1.6.4. Logging Service

In JBoss 1og4j is used for logging. If you are not familiar with the 1og4j package and would like to use
it in your applications, you can read more about it at the Jakarta web site
(http://jakarta.apache.org/log4j/).

Logging is controlled from a central conf/jboss-1log4j . xml file. This file defines a set of appenders
specifying the log files, what categories of messages should go there, the message format and the level
of filtering. By default, JBoss produces output to both the console and a log file (Log/server.log).

There are six basic log levels used: TRACE, DEBUG, INFO, WARN, ERROR and FATAL. The logging
threshold on the console is INFO, which means that you will see informational messages, warning
messages and error messages on the console but not general debug and trace messages. In contrast,
there is no threshold set for the server . log file, so all generated logging messages will be logged
there.

If things are going wrong and there doesn’t seem to be any useful information in the console, always
check the server . log file to see if there are any debug messages which might help you to track down
the problem. However, be aware that just because the logging threshold allows debug messages to be
displayed, that doesn't mean that all of JBoss will produce detailed debug information for the log file. You
will also have to boost the logging limits set for individual categories. Take the following category for
example.

<!-- Limit JBoss categories to INFO -->
<category name="org.jboss">

11

http://jakarta.apache.org/log4j/

Getting Started Guide

<priority value="INFO"/>
I </category>

This limits the level of logging to INFO for all JBoss classes, apart from those which have more specific
overrides provided. By default the root logger in the jboss-1og4j.xml is set to INFO. This effectively
means that any TRACE or DEBUG logger from any logger categories will not be logged in any files or the
console appender. This setting is controlled through the jboss.server.log.threshold property. By default

this is INFO. If you were to change this to DEBUG, it would produce much more detailed logging output.

In order to change this there are two options:

e You can pass the -Djboss.server.log.threshold=DEBUG parameter while starting the server:

I ./run.sh -Djboss.server.log.threshold=DEBUG

e You can edit the $IJBOSS_HOME/server/$PROFILE/conf/jboss-1log4j.xml file directly in
order to set this property:

<root>

<!-- Let's comment this out to set our own value
<priority value="${jboss.server.log.threshold}"/>-->
<priority value="DEBUG"/>

<appender-ref ref="CONSOLE"/>

<appender-ref ref="FILE"/>
</root>

NOTE

The $IBOSS_HOME/server/$PROFILE/conf/jboss-1log4j.xml is scanned
every 60 seconds (by default) to check for any changes. Changing this file does
not require a server restart as the changes will be hot deployed within the next 60
seconds following the change.

As another example, let’s say you wanted to set the output from the container-managed persistence
engine to DEBUG level and to redirect it to a separate file, cmp . 1log, in order to analyze the generated
SQL commands. You would add the following code to the conf/jboss-1log4j . xml file:

<appender name="CMP"
class="org.jboss.logging.appender.RollingFileAppender">
<errorHandler class="org.jboss.logging.util.OnlyOnceErrorHandler"/>
<param name="File" value="${jboss.server.home.dir}/log/cmp.log"/>
<param name="Append" value="false"/>
<param name="MaxFileSize" value="500KB"/>
<param name="MaxBackupIndex" value="1"/>

<layout class="org.apache.log4j.PatternLayout">
<param name="ConversionPattern" value="%d %-5p [%C] %m%n"/>
</layout>
</appender>

<category name="org.jboss.ejb.plugins.cmp">
<priority value="DEBUG" />
<appender-ref ref="CMP"/>

</category>

12

CHAPTER 1. THE JBOSS SERVER - A QUICK TOUR

This creates a new file appender and specifies that it should be used by the logger (or category) for the
package org.jhoss.ejb.plugins.cmp.

The file appender is set up to produce a new log file every day rather than producing a new one every
time you restart the server or writing to a single file indefinitely. The current log file is cmp . 1og. Older
files have the date they were written added to their filenames. Please note that the log directory also
contains HTTP request logs which are produced by the web container.

By default the server.log appender is configured to retain log messages between server restarts.
This is controlled by the Append property on the FILE appender which corresponds to the server.log
file. By default this property is set to true; if you want the server . 1log contents to be wiped out on
server restarts then you can edit the $IJBOSS_HOME/server/$PROFILE/conf/jboss-1log4j.xml
file to set this property value to false. For example:

<appender name="FILE"

class="org.jboss.logging.appender.DailyRollingFileAppender">
<errorHandler class="org.jboss.logging.util.OnlyOnceErrorHandler"/>
<param name="File" value="${jboss.server.log.dir}/server.log"/>
<param name="Append" value="false"/>

1.6.5. Security Service

The security domain information is stored in the file conf/login-config.xml as a list of named

security domains, each of which specifies a number of JAAS [1] login modules which are used for
authentication purposes in that domain. When you want to use security in an application, you specify the
name of the domain you want to use in the application’s JBoss-specific deployment descriptors,
jboss.xml (used in defining jboss specific configurations for an application) and/or jboss -web . xml
(used in defining JBoss for a Web application. We'll quickly look at how to do this to secure the JMX
Console application which ships with JBoss.

Almost every aspect of the JBoss server can be controlled through the JMX Console, so it is important to
make sure that, at the very least, the application is password protected. Otherwise, any remote user
could completely control your server. To protect it, we will add a security domain to cover the application.
This can be done in the jboss-web . xml file for the JMX Console, which can be found in
deploy/jmx-console.war/WEB-INF/ directory. Uncomment the security-domain in that file, as
shown below.

<jboss-web>
<security-domain>java:/jaas/jmx-console</security-domain>
</jboss-web>

This links the security domain to the web application, but it doesn't tell the web application what security
policy to enforce, what URLs are we trying to protect, and who is allowed to access them. To configure
this, go to the web . xm1l file in the same directory and uncomment the security-constraint thatis
already there. This security constraint will require a valid user name and password for a user in the
JBossAdmin group.

<l--
A security constraint that restricts access to the HTML JMX console
to users with the role JBossAdmin. Edit the roles to what you want and
uncomment the WEB-INF/jboss-web.xml/security-domain element to enable
secured access to the HTML JMX console.

13

Getting Started Guide

<security-constraint>
<web-resource-collection>
<web-resource-name>HtmlAdaptor</web-resource-name>
<description>
An example security config that only allows users with the
role JBossAdmin to access the HTML JMX console web application
</description>
<url-pattern>/*</url-pattern>
<http-method>GET</http-method>
<http-method>P0ST</http-method>
</web-resource-collection>
<auth-constraint>
<role-name>JBossAdmin</role-name>
</auth-constraint>
</security-constraint>

That's great, but where do the user names and passwords come from? They come from the jmx-
console security domain we linked the application to. We have provided the configuration for this in the
conf/login-config.xml

<application-policy name="jmx-console">
<authentication>
<login-module
code="org.jboss.security.auth.spi.UsersRolesLoginModule"
flag="required">
<module-option name="usersProperties'">
props/jmx-console-users.properties
</module-option>
<module-option name="rolesProperties'">
props/jmx-console-roles.properties
</module-option>
</login-module>
</authentication>
</application-policy>

This configuration uses a simple file based security policy. The configuration files are found in the
conf/props directory of your server configuration. The usernames and passwords are stored in the
conf/props/jmx-console-users.properties file and take the form "username=password". To
assign a user to the JBossAdmin group add "username=JBossAdmin" to the jmx-console-
roles.properties file (additional roles on that username can be added comma separated). The
existing file creates an admin user with the password admin. For security, please either remove the
user or change the password to a stronger one

JBoss will re-deploy the JMX Console whenever you update its web . xm1. You can check the server
console to verify that JBoss has seen your changes. If you have configured everything correctly and re-
deployed the application, the next time you try to access the JMX Console, it will ask you for a name and

password. []

The JMX Console is not the only web based management interface to JBoss. There is also the Web
Console. Although it is a Java applet, the corresponding web application can be secured in the same
way as the JMX Console. The Web Console is in the file deploy/management/console-

mgr .sar/web-console.war .. The only difference is that the Web Console is provided as a simple
WAR file instead of using the exploded directory structure that the JMX Console did. The only real
difference between the two is that editing the files inside the WAR file is a bit more cumbersome.

14

CHAPTER 1. THE JBOSS SERVER - A QUICK TOUR

1.6.6. Additional Services

The non-core, hot-deployable services are added to the deploy directory. They can be either XML
descriptor files, *-service.xml, *-jboss-beans.xml, MC .beans archive, or JBoss Service
Archive (SAR) files. SARs contains an META-INF/jboss-service.xml descriptor and additional
resources the service requires (for example, classes, library JAR files or other archives), all packaged
up into a single archive. Similarly, a . beans archive contains a META-INF/jboss-beans.xml and
additional resources.

Detailed information on all these services can be found in the JBoss Enterprise Application Platform:
Aministration and Configuration Guide, which also provides comprehensive information on server
internals and the implementation of services such as JTA and the J2EE Connector Architecture (JCA).

1.7. THE SERVICE BINDING MANAGER

JBoss server uses various ports for the services that it provides (for example, port 8080 for HTTP, 1099
for JNDI). The Service Binding Manager (SBM) service provides a centralized location where settings for
all services that need to bind to ports can be configured. SBM can be used to configure different sets of
port bindings for a server instance. A system property on the SBM controls which named set (for
example, ports-default, ports-01) is used by a particular server instance. If you want to run multiple
server instances on the same system then you can configure the SBM on each instance to use a
different named binding set. You can even use SBM to switch to a different binding set (for example,
8180 port for HTTP instead of the default 8080) for a server instance.

In a typical configuration, the ports-default set uses the standard ports (for example, JNDI on port
1099), with ports-01 increasing each port value by 100 (for example, JNDI on 1199), ports-02 by
200 and so on.

SBM is configured through the $IJBOSS_HOME/server/$PROFILE/conf/bindingservice.beans/
META-INF/bindings-jboss-beans.xml file. The configuration of the ServiceBindingManager
involves three primary elements :

e A set of beans containing standard (default) binding configuration data. These are the base
values (for example, JNDI on 1099) used to drive ports-default, ports-01 and so on.

e A number of beans defining ServiceBindingSets, for example, ports-default, ports-
01, ports-02. The sets of standard bindings are combined with each of these, along with an
offset value (for example, 100 for ports-01) that should be applied to the standard port values
to create the binding values for that set.

e The ServiceBindingManager service bean itself. This has the standard bindings and the
ServiceBindingSets injected into it. It is also configured with the name of the binding set the
particular server instance should use. The name of the binding set to be used is configurable
from the command line by using the system property jboss.service.binding.set. The default value
is ports-default.

<bean name="ServiceBindingManagementObject"
class="org.jboss.services.binding.managed.ServiceBindingManagementOb
ject">

<constructor>

<parameter>

${jboss.service.binding.set:ports-default}
</parameter>

15

Getting Started Guide

To switch to a different set of ports than the ones used by default, you can start the server by
passing the -Djboss.service.binding.set property to the run command as follows:

I ./run.sh -Djboss.service.binding.set=ports-01

This will instruct the server to use the group of ports configured in the ports-01 binding set.

[1] The Java Authentication and Authorization Service. JBoss uses JAAS to provide pluggable authentication
modules. You can use the ones that are provided or write your own if you have more specific requirements.

[2] Since the username and password are session variables in the web browser you may need to restart your
browser to use the login dialog window.

16

CHAPTER 2. USING OTHER DATABASES

CHAPTER 2. USING OTHER DATABASES

In the previous chapters, we’ve been using the JBoss Enterprise Application Platform server default
datasource in our applications. This datasource is configured to use the embedded Hypersonic database
instance shipped by default with the distribution. This datasource is bound to the JNDI name
java:/DefaultDS and its descriptor is named hsqldb-ds.xml under the deploy directory.

g WARNING
The default persistence configuration works out of the box with Hypersonic

(HSQLDB) so that the JBoss Enterprise Platforms are able to run "out of the box".
However, Hypersonic is not supported in production and should not be used in a
production environment.

Known issues with the Hypersonic Database include:
e no transaction isolation

e thread and socket leaks (connection.close() does not tidy up
resources)

e persistence quality (logs commonly become corrupted after a failure,
preventing automatic recovery)

e database corruption

e stability under load (database processes cease when dealing with too much
data)

e not viable in clustered environments

In this chapter we will explain in detail how to configure and deploy a datasource to connect the JBoss
Enterprise Application Platform to the most popular database servers available on the market today.

2.1. DATASOURCE CONFIGURATION FILES

Datasource configuration file names end with the suffix -ds.xml so that they will be recognized
correctly by the JCA deployer. The docs/example/jca directory contains sample files for a wide
selection of databases and it is a good idea to use one of these as a starting point. For a full description
of the configuration format, the best place to look is the DTD file docs/dtd/jboss-ds_1_5.dtd.
Additional documentation on the files and the JBoss JCA implementation can also be found in the JBoss
Enterprise Application Platform Administration and Server Configuration Guide available at
http://www.redhat.com/docs/en-US/JBoss_Enterprise_Application_Platform/.

Local transaction datasources are configured using the 1local-tx-datasource element and XA-
compliant ones using xa-tx-datasource. The example file generic-ds.xml shows how to use both

types and also some of the other elements that are available for things like connection pool configuration.
Examples of both local and XA configurations are available for Oracle, DB2 and Informix.

If you look at the example files firebird-ds.xml, facets-ds.xml and sap3-ds.xml, you'll

17

http://www.redhat.com/docs/en-US/JBoss_Enterprise_Application_Platform/

Getting Started Guide

notice that they have a completely different format, with the root element being connection-
factories rather than datasources. These use an alternative, more generic JCA configuration
syntax used with a pre-packaged JCA resource adapter. The syntax is not specific to datasource
configuration and is used, for example, in the
$JBOSS_HOME/server/$PROFILE/deploy/messaging/jms-ds.xml file to configure the JMS
resource adapter.

Next, we’ll work through some step-by-step examples to illustrate what’s involved setting up a datasource
for a specific database.

2.2. USING MYSQL AS THE DEFAULT DATASOURCE

The MySQL® database has become the world's most popular open source database thanks to its
consistent fast performance, high reliability and ease of use. This database server is used in millions of
installations ranging from large corporations to specialized embedded applications across every
continent of the world. The official JDBC driver is called Connector/J. For this example we’ve used
MySQL 5.1.31 and Connector/J 5.1.8. Both are available at http://www.mysql.com.

2.2.1. Creating a Database and User

We'll assume that you’ve already installed MySQL and that you have it running and are familiar with the
basics. Run the MySQL client program from the command line so we can execute some administration
commands. You should make sure that you are connected as a user with sufficient privileges (for
example, by specifying the -u root option to run as the MySQL root user).

First create a database called jboss within MySQL for use by JBoss:

mysql> CREATE DATABASE jboss;

Query OK, 1 row affected (0.05 sec)
Then check that it has been created:

mysql> SHOW DATABASES;

Fommmm oo - +
| Database |
R +
| jboss |
R +

1 rows in set (0.00 sec)
Next, create a user called jboss with 'password’ as the password to access the database:

mysql> GRANT ALL PRIVILEGES ON jboss.* TO jboss@localhost IDENTIFIED BY
'"password’;

Query OK, O rows affected (0.06 sec)
Again, you can check that everything has gone smoothly:

mysql> select User,Host,Password from mysql.User;

18

http://www.mysql.com

CHAPTER 2. USING OTHER DATABASES

S SR S o e e e o +
| User | Host | Password |
S SR S o e e e o +
root	localhost	
root	% [
	localhost	
	% I I	
jboss	localhost	5d2e19393cc5ef67
S SR S o e e e o +

5 rows in set (0.02 sec)

2.2.2. Installing the JDBC Driver and Deploying the datasource

To make the JDBC driver classes available to the JBoss Enterprise Application Platform, copy the
archive mysqgl-connector-java-5.1.8-bin. jar from the Connector/J distribution to the 1ib
directory in the default server configuration (assuming that is the server configuration you’re running).

Then create a file in the deploy directory called mysql-ds.xml with the following datasource
configuration. Note that the databse user name and password corresponds to the MySQL user that we
created in the previous section:

<?xml version="1.0" encoding="UTF-8"?>

<datasources>

<local-tx-datasource>
<jndi-name>MySqlDS</jndi-name>
<connection-url>jdbc:mysql://localhost:3306/jboss</connection-url>
<driver-class>com.mysqgl.jdbc.Driver</driver-class>
<user-name>jboss</user-name>
<password>password</password>

</local-tx-datasource>

</datasources>

To ensure that you have correctly configured the datasource in
$JBOSS_HOME/server/$PROFILE/deploy folder, start the server and you will notice messages like
these in the logs:

INFO [ConnectionFactoryBindingService] Bound ConnectionManager
'jboss. jca:service=DataSourceBinding, name=MySqlDS' to JNDI name
'java:MySqlDS'

NOTE

Configuring other datasources is a similar process.

2.2.3. Testing the MySQL DataSource

Using the test client described in Section 2.6, “Creating a JDBC client”, you may now verify the proper
installation of your datasource.

2.3. CONFIGURING A DATASOURCE FOR ORACLE DB

19

Getting Started Guide

Oracle is one of the main players in the commercial database field and most readers will probably have
come across it at some point. You can download it freely for non-commercial purposes from
http://www.oracle.com/technology/products/database/xe/index.html

In this section, we'll connect the server to Oracle Database 11g Express Edition using the latest JDBC
driver (11g) available at http://www.oracle.com/technology/software/tech/java/sqlj_jdbc/index.html

2.3.1. Installing the JDBC Driver and Deploying the DataSource

To make the JDBC driver classes available to the JBoss Enterprise Application Platform, copy the
archive ojdbc6. jar to the lib directory in the default server configuration (assuming that is the server
configuration you’re running).

Then create a text file in the deploy directory called oracle-ds.xml with the following datasource
descriptor :

<?xml version="1.0" encoding="UTF-8"7?>
<datasources>
<local-tx-datasource>
<jndi-name>DefaultDS</jndi-name>
<connection-url>jdbc:oracle:thin:@localhost:1521:xe</connection-url>
<driver-class>oracle.jdbc.driver.OracleDriver</driver-class>
<user-name>SYSTEM</user -name>
<password>jboss</password>
<valid-connection-checker-class-
name>org.jboss.resource.adapter.jdbc.vendor.OraclevalidConnectionChecker</
valid-connection-checker-class-name>
<metadata>
<type-mapping>0Oracle9i</type-mapping>
</metadata>
</local-tx-datasource>
</datasources>

The datasource is pointing at the database/SID called xe provided by default with Oracle XE.

Of course, you need to update the connection url attributes as well as the username/password
combination to match your environment setup.

2.3.2. Testing the Oracle DataSource

Before you can verify the datasource configuration, Oracle XE should be reconfigured to avoid port
conflict with the JBoss Enterprise Application Platform as by default they both start a web server on port
8080.

Open up an Oracle SQLcommand line and execute the following commands:

SQL> connect; Enter user-name: SYSTEM Enter password:
Connected.

SQL> begin 2 dbms_xdb.sethttpport('8090'); 3 end; 4 /
PL/SQL procedure successfully completed.

SQL> select dbms_xdb.gethttpport from dual;
GETHTTPPORT

20

http://www.oracle.com/technology/products/database/xe/index.html
http://www.oracle.com/technology/software/tech/java/sqlj_jdbc/index.html

CHAPTER 2. USING OTHER DATABASES

The web server started by Oracle XE to provide http-based administration tools is now running on port
8090. Start the JBoss Enterprise Application Platform server instance as you would normally do. You are
now ready to use the test client to verify the proper installation of your datasource.

2.4. CONFIGURING A DATASOURCE FOR MICROSOFT SQL SERVER
200X

In this section, we'll connect the server to MS SQL Server 2005 using the latest JDBC driver (v2.0)
available at http://msdn2.microsoft.com/en-us/data/aa937724.aspx.

2.4.1. Installing the JDBC Driver and Deploying the DataSource

To make the JDBC driver classes available to the JBoss Enterprise Application Platform, copy the
archive sqljdbc. jar from the sqljdbc_2.0 distribution to the 1ib directory in the default server
configuration (assuming that is the server configuration you’re running).

Then create a text file in the deploy directory called mssql-ds.xml with the following datasource
descriptor :

<?xml version="1.0" encoding="UTF-8"?>
<datasources>

<local-tx-datasource>

<jndi-name>DefaultDS</jndi-name>

<connection-
url>jdbc:sqlserver://localhost:1433;DatabaseName=pubs</connection-url>

<driver-class>com.microsoft.sqlserver.jdbc.SQLServerDriver</driver -
class>

<user-name>sa</user -name>

<password>jboss</password>

<check-valid-connection-sql>SELECT 1 FROM sysobjects</check-valid-
connection-sql>

<metadata>

<type-mapping>MS SQLSERVER2000</type-mapping>

</metadata>

</local-tx-datasource>
</datasources>

The datasource is pointing at a database pubs provided by default with MS SQL Server 2000.

Remember to update the connection url attributes as well as the username/password combination to
match your environment setup.

2.4.1.1. Testing the datasource

Using the test client described in Section 2.6, “Creating a JDBC client”, you may now verify the proper
installation of your datasource.

2.5. CONFIGURING JBOSS MESSAGING PERSISTENCE MANAGER

The persistence manager of JBoss Messaging uses the default datasource to create tables to store
messages, transaction data and other indexes. Configuration of "persistence" is grouped in xXxx -
persistence-service.xml files. JBoss Enterprise Application Platform ships with a default

21

http://msdn2.microsoft.com/en-us/data/aa937724.aspx

Getting Started Guide

hsqldb-persistence-service.xml file, which configures the Messaging server to use the
Hypersonic database instance that ships by default with the JBoss Enterprise Application Platform.

You can view the hsqldb-persistence-service.xml file in configurations based on the all or
default configurations:

<JBoss_Home>/server/all/deploy/messaging/hsqldb-persistence-service.xml
and

<JBoss_Home>/server/default/deploy/messaging/hsqldb-persistence-
service.xml

g WARNING
The Hypersonic database is not recommended for production environments due to

its limited support for transaction isolation and its low reliability under high load

More information on configuring JBoss Messaging can be found in the Administration and Configuration
Guide.

2.6. CREATING A JDBC CLIENT

When testing a newly configured datasource we suggest using some very basic JDBC client code
embedded in a JSP page. First of all, you should create an exploded WAR archive under the deploy
directory which is simply a folder named "jdbcclient .war". In this folder, create a text document
named client.jsp and paste the code below:

<%@page contentType="text/html"
import="java.util.*, javax.naming.*, javax.sqgl.DataSource, java.sql.*"
%>
<%

DataSource ds = null;

Connection con = null;

PreparedStatement pr = null;

InitialContext ic;

try {

ic = new InitialContext();

ds = (DataSource)ic.lookup("java:/DefaultDS");

con = ds.getConnection();

pr = con.prepareStatement("SELECT USER_ID, PASSWD FROM JBM_USER");

ResultSet rs = pr.executeQuery();

while (rs.next()) {

out.println("
 " +rs.getString("USER_ID") + " "
+rs.getString("PASSWD"));

}

rs.close();

pr.close();

}catch(Exception e){

out.println("Exception thrown " +e);

22

http://www.redhat.com/docs/en-US/JBoss_Enterprise_Application_Platform/5.0.0/html-single/Administration_And_Configuration_Guide/index.html

CHAPTER 2. USING OTHER DATABASES

}finally{
if(con !'= null){
con.close();

}
;%>

Open up a web browser and hit the url: http://localhost:8080/jdbcclient/client.jsp. A list of users and
password should show up as a result of the JDBC query:

dynsub | dynsub
guest | guest
j2ee | j2ee
john | needle
nobody | nobody

23

http://localhost:8080/jdbcclient/client.jsp

Getting Started Guide

APPENDIX A. REVISION HISTORY

Revision 5.1.0-110.33.400 2013-10-31 Riidiger Landmann
Rebuild with publican 4.0.0

Revision 5.1.0-110.33 July 24 2012 Ruediger Landmann
Rebuild for Publican 3.0

Revision 5.1-0 Wed Sep 15 2010 Laura Bailey

Changed version number in line with new versioning requirements.
Revised for JBoss Enterprise Application Platform 5.1.0.GA.

24

	Table of Contents
	INTRODUCTION
	1. HELP CONTRIBUTE

	CHAPTER 1. THE JBOSS SERVER - A QUICK TOUR
	1.1. SERVER STRUCTURE
	1.2. STARTING AND STOPPING THE SERVER
	1.2.1. Start the Server
	1.2.2. Start the Server With Alternate Configuration
	1.2.3. Using run.sh
	1.2.4. Stopping the Server
	1.2.5. Running As A System Service

	1.3. THE JMX CONSOLE
	1.4. THE JNDIVIEW SERVICE
	1.5. HOT-DEPLOYMENT OF SERVICES IN JBOSS
	1.5.1. Hot-deployment configurations
	1.5.2. Adding a custom deploy folder

	1.6. BASIC CONFIGURATION ISSUES
	1.6.1. Setting your application as the default application on the server
	1.6.2. Bootstrap Configuration
	1.6.3. Legacy Core Services
	1.6.4. Logging Service
	1.6.5. Security Service
	1.6.6. Additional Services

	1.7. THE SERVICE BINDING MANAGER

	CHAPTER 2. USING OTHER DATABASES
	2.1. DATASOURCE CONFIGURATION FILES
	2.2. USING MYSQL AS THE DEFAULT DATASOURCE
	2.2.1. Creating a Database and User
	2.2.2. Installing the JDBC Driver and Deploying the datasource
	2.2.3. Testing the MySQL DataSource

	2.3. CONFIGURING A DATASOURCE FOR ORACLE DB
	2.3.1. Installing the JDBC Driver and Deploying the DataSource
	2.3.2. Testing the Oracle DataSource

	2.4. CONFIGURING A DATASOURCE FOR MICROSOFT SQL SERVER 200X
	2.4.1. Installing the JDBC Driver and Deploying the DataSource
	2.4.1.1. Testing the datasource

	2.5. CONFIGURING JBOSS MESSAGING PERSISTENCE MANAGER
	2.6. CREATING A JDBC CLIENT

	APPENDIX A. REVISION HISTORY

