‘® redhat.

JBoss Enterprise Application Platform
Common Criteria Certification 5

Hibernate Validator Reference Guide

for use with JBoss Enterprise Application Platform 5 Common Criteria Certification
Edition 5.1.0

Last Updated: 2017-11-20

JBoss Enterprise Application Platform Common Criteria Certification5
Hibernate Validator Reference Guide

for use with JBoss Enterprise Application Platform 5 Common Criteria Certification
Edition 5.1.0

Red Hat Documentation Group

Legal Notice

Copyright © 2011 Red Hat, Inc.

This document is licensed by Red Hat under the Creative Commons Attribution-ShareAlike 3.0
Unported License. If you distribute this document, or a modified version of it, you must provide
attribution to Red Hat, Inc. and provide a link to the original. If the document is modified, all Red Hat
trademarks must be removed.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.
Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

The Hibernate Validator Reference Guide for JBoss Enterprise Application Platform and its patch
releases.

http://creativecommons.org/licenses/by-sa/3.0/

Table of Contents

e] Y 0

CHAPTER 1. DEFINING CONSTRAINTS it i e s e e e

1.1. WHAT IS A CONSTRAINT?

1.2. BUILT IN CONSTRAINTS

1.3. ERROR MESSAGES

1.4. WRITING YOUR OWN CONSTRAINTS
1.5. ANNOTATING YOUR DOMAIN MODEL

CHAPTER 2. USING THE VALIDATOR FRAMEWORKcciiiiennt.

2.1. DATABASE SCHEMA-LEVEL VALIDATION
2.2. ORM INTEGRATION

2.2.1. Hibernate event-based validation

2.2.2. Java Persistence event-based validation
2.3. APPLICATION-LEVEL VALIDATION
2.4. PRESENTATION LAYER VALIDATION
2.5. VALIDATION INFORMATIONS

APPENDIX A. REVISION HISTORY ... ittt et a e a e

Table of Contents

N OO WwoWw

Hibernate Validator Reference Guide

PREFACE

Annotations are a very convenient and elegant way to specify invariant constraints for a domain model.
You can, for example, express that a property should never be null, that the account balance should be
strictly positive, etc. These domain model constraints are declared in the bean itself by annotating its
properties. A validator can then read them and check for constraint violations. The validation mechanism
can be executed in different layers in your application without having to duplicate any of these rules
(presentation layer, data access layer). Following the DRY principle, Hibernate Validator has been
designed for that purpose.

Hibernate Validator works at two levels. First, it is able to check in-memory instances of a class for
constraint violations. Second, it can apply the constraints to the Hibernate metamodel and incorporate
them into the generated database schema.

Each constraint annotation is associated to a validator implementation responsible for checking the
constraint on the entity instance. A validator can also (optionally) apply the constraint to the Hibernate
metamodel, allowing Hibernate to generate DDL that expresses the constraint. With the appropriate
event listener, you can execute the checking operation on inserts and updates done by Hibernate.
Hibernate Validator is not limited to use with Hibernate. You can easily use it anywhere in your
application as well as with any Java Persistence provider (entity listener provided).

When checking instances at runtime, Hibernate Validator returns information about constraint violations
in an array of InvalidValue s. Among other information, the InvalidValue contains an error
description message that can embed the parameter values bundle with the annotation (eg. length limit),
and message strings that may be externalized to a ResourceBundle .

CHAPTER 1. DEFINING CONSTRAINTS

CHAPTER 1. DEFINING CONSTRAINTS

1.1. WHAT IS A CONSTRAINT?

A constraint is a rule that a given element (field, property or bean) has to comply to. The rule semantic is
expressed by an annotation. A constraint usually has some attributes used to parameterize the
constraints limits. The constraint applies to the annotated element.

1.2. BUILT IN CONSTRAINTS

Hibernate Validator comes with some built-in constraints, which covers most basic data checks. As we'll
see later, you're not limited to them, you can literally in a minute write your own constraints.

Table 1.1. Built-in constraints

Annotation

Apply on

Runtime checking

Hibernate Metadata

impact

@Length(min=, max=)

@Max(value=)

@Min(value=)

@NotNull

@NotEmpty

@Past

@Future

@Pattern(regex="regexp
", flag=) or @Patterns(
{@Pattern(...)})

property (String)

property (numeric or
string representation of a
numeric)

property (numeric or
string representation of a
numeric)

property

property

property (date or
calendar)

property (date or
calendar)

property (string)

check if the string length
match the range

check if the value is less
than or equals to max

check if the value is
more than or equals to
min

check if the value is not
null

check if the string is not
null nor empty. Check if
the connection is not null
nor empty

check if the date is in
the past

check if the date is in
the future

check if the property
match the regular
expression given a
match flag (see
java.util.regex.
Pattern)

Column length will be
set to max

Add a check constraint
on the column

Add a check constraint
on the column

Column(s) are not null

Column(s) are not null
(for String)

Add a check constraint
on the column

none

none

Annotation

Hibernate Validator Reference Guide

Apply on

Runtime checking

Hibernate Metadata

impact

@Range(min=, max=)

@Size(min=, max=)

@AssertFalse

@AssertTrue

@Valid

@Email

@CreditCardNumber

@Digits(integerDigits=1)

property (numeric or
string representation of a
numeric)

property (array,
collection, map)

property

property

property (object)

property (String)

property (String)

property (numeric or
string representation of a
numeric)

check if the value is
between min and max
(included)

check if the element size
is between min and max
(included)

check that the method
evaluates to false

(useful for constraints
expressed in code rather
than annotations)

check that the method
evaluates to true (useful
for constraints
expressed in code rather
than annotations)

perform validation
recursively on the
associated object. If the
object is a Collection or
an array, the elements
are validated recursively.
If the object is a Map,
the value elements are
validated recursively.

check whether the string
is conform to the email
address specification

check whether the string
is a well formated credit
card number (derivative
of the Luhn algorithm)

check whether the
property is a number
having up to
integerDigits
integer digits and
fractionalDigits
fractonal digits

Add a check constraint
on the column

none

none

none

none

none

none

define column precision
and scale

CHAPTER 1. DEFINING CONSTRAINTS

Annotation Apply on Runtime checking Hibernate Metadata

impact

@EAN property (string) check whether the string none
is a properly formated
EAN or UPC-A code

1.3. ERROR MESSAGES

Hibernate Validator comes with a default set of error messages translated in about ten languages (if
yours is not part of it, please sent us a patch). You can override those messages by creating a
ValidatorMessages.properties or (ValidatorMessages_loc.properties) and override the
needed keys. You can even add your own additional set of messages while writing your validator
annotations. If Hibernate Validator cannot resolve a key from your resourceBundle nor from
ValidatorMessage, it falls back to the default built-in values.

Alternatively you can provide a ResourceBundle while checking programmatically the validation rules
on a bean or if you want a completly different interpolation mechanism, you can provide an
implementation of org.hibernate.validator.MessageInterpolator (check the JavaDoc for
more informations).

1.4. WRITING YOUR OWN CONSTRAINTS

Extending the set of built-in constraints is extremely easy. Any constraint consists of two pieces: the
constraint descriptor (the annotation) and the constraint validator (the implementation class). Here is a
simple user-defined descriptor:

@validatorClass(Capitalizedvalidator.class)
@Target (METHOD)
@Retention(RUNTIME)
@Documented
public @interface Capitalized {
CapitalizeType type() default Capitalize.FIRST;
String message() default "has incorrect capitalization"

type is a parameter describing how the property should to be capitalized. This is a user parameter fully
dependant on the annotation business.

message is the default string used to describe the constraint violation and is mandatory. You can hard
code the string or you can externalize part/all of it through the Java ResourceBundle mechanism.
Parameters values are going to be injected inside the message when the {parameter} string is found
(in our example Capitalization is not {type} would generate Capitalization is not
FIRST), externalizing the whole string in ValidatorMessages.properties is considered good
practice. See Section 1.3, “Error messages” .

@validatorClass(Capitalizedvalidator.class)
@Target (METHOD)
@Retention(RUNTIME)
@Documented
public @interface Capitalized {
CapitalizeType type() default Capitalize.FIRST;

Hibernate Validator Reference Guide

String message() default "{validator.capitalized}";

#1n ValidatorMessages.properties
validator.capitalized = Capitalization is not {type}

As you can see the {} notation is recursive.

To link a descriptor to its validator implementation, we use the @ValidatorClass meta-annotation.
The validator class parameter must name a class which implements
Validator<ConstraintAnnotation>.

We now have to implement the validator (ie. the rule checking implementation). A validation
implementation can check the value of the a property (by implementing PropertyConstraint) and/or
can modify the hibernate mapping metadata to express the constraint at the database level (by
implementing PersistentClassConstraint)

public class Capitalizedvalidator
implements Validator<Capitalized>, PropertyConstraint {
private CapitalizeType type;

//part of the Validator<Annotation> contract,

//allows to get and use the annotation values

public void initialize(Capitalized parameters) {
type = parameters.type();

}

//part of the property constraint contract
public boolean isValid(Object value) {
if (value==null) return true;
if (!'(value instanceof String)) return false;
String string = (String) value;
if (type == CapitalizeType.ALL) {
return string.equals(string.toUpperCase());

}
else {
String first = string.substring(0,1);
return first.equals(first.toUpperCase();
}

The isValid () method should return false if the constraint has been violated. For more examples,
refer to the built-in validator implementations.

We only have seen property level validation, but you can write a Bean level validation annotation. Instead
of receiving the return instance of a property, the bean itself will be passed to the validator. To activate
the validation checking, just annotated the bean itself instead. A small sample can be found in the unit
test suite.

If your constraint can be applied multiple times (with different parameters) on the same property or type,
you can use the following annotation form:

I @Target (METHOD)

CHAPTER 1. DEFINING CONSTRAINTS

@Retention(RUNTIME)

@Documented

public @interface Patterns {
Pattern[] value();

}

@Target (METHOD)
@Retention(RUNTIME)
@Documented
@validatorClass(Patternvalidator.class)
public @interface Pattern {

String regexp();
}

Basically an annotation containing the value attribute as an array of validator annotations.

1.5. ANNOTATING YOUR DOMAIN MODEL

Since you are already familiar with annotations now, the syntax should be very familiar

public class Address {
private String linel;
private String line2;
private String zip;
private String state;
private String country;
private long id;

// a not null string of 20 characters maximum
@Length(max=20)
@NotNull
public String getCountry() {
return country;

}

// a non null string

@NotNull

public String getLinel() {
return linel;

}

//no constraint
public String getLine2() {
return line2;

}

// a not null string of 3 characters maximum
@Length(max=3) @NotNull
public String getState() {

return state;

}

// a not null numeric string of 5 characters maximum
// if the string is longer, the message will
//be searched in the resource bundle at key 'long'

Hibernate Validator Reference Guide

@Length(max=5, message="{long}")
@Pattern(regex="[0-9]+")
@NotNull
public String getzZip() {

return zip;

}

// should always be true

@AssertTrue

public boolean isValid() {
return true;

}

// a numeric between 1 and 2000
@Id @Min(1)
@Range (max=2000)
public long getId() {
return id;

}

While the example only shows public property validation, you can also annotate fields of any kind of
visibility

@MyBeanConstraint(max=45)

public class Dog {

@AssertTrue private boolean isMale;
@NotNull protected String getName() { ... };

You can also annotate interfaces. Hibernate Validator will check all superclasses and interfaces
extended or implemented by a given bean to read the appropriate validator annotations.

public interface Named {
@NotNull String getName();

}

public class Dog implements Named {
@AssertTrue private boolean isMale;

public String getName() { ... };

The name property will be checked for nullity when the Dog bean is validated.

CHAPTER 2. USING THE VALIDATOR FRAMEWORK

CHAPTER 2. USING THE VALIDATOR FRAMEWORK

Hibernate Validator is intended to be used to implement multi-layered data validation, where constraints
are expressed in a single place (the annotated domain model) and checked in various different layers of
the application.

This chapter will cover Hibernate Validator usage for different layers

2.1. DATABASE SCHEMA-LEVEL VALIDATION

Out of the box, Hibernate Annotations will translate the constraints you have defined for your entities into
mapping metadata. For example, if a property of your entity is annotated @NotNull, its columns will be
declared as not null in the DDL schema generated by Hibernate.

Using hbm2ddl, domain model constraints will be expressed into the database schema.

If, for some reason, the feature needs to be disabled, set hibernate.validator.apply_ to_ddl to
false.

2.2. ORM INTEGRATION

Hibernate Validator integrates with both Hibernate and all pure Java Persistence providers

2.2.1. Hibernate event-based validation

Hibernate Validator has two built-in Hibernate event listeners. Whenever a PreInsertEvent or
PreUpdateEvent occurs, the listeners will verify all constraints of the entity instance and throw an
exception if any constraint is violated. Basically, objects will be checked before any inserts and before
any updates made by Hibernate. This includes changes applied by cascade! This is the most convenient
and the easiest way to activate the validation process. On constraint violation, the event will raise a
runtime InvalidStateException which contains an array of InvalidValues describing each
failure.

If Hibernate Validator is present in the classpath, Hibernate Annotations (or Hibernate EntityManager)

will use it transparently. If, for some reason, you want to disable this integration, set
hibernate.validator.autoregister_listeners to false

NOTE

If the beans are not annotated with validation annotations, there is no runtime
performance cost.

In case you need to manually set the event listeners for Hibernate Core, use the following configuration
in hibernate.cfg.xml:

<hibernate-configuration>

<event type="pre-update'">
<listener
class="org.hibernate.validator.event.vValidateEventListener"/>
</event>
<event type="pre-insert'">
<listener

Hibernate Validator Reference Guide

class="org.hibernate.validator.event.ValidateEventListener"/>
</event>
</hibernate-configuration>

2.2.2. Java Persistence event-based validation

Hibernate Validator is not tied to Hibernate for event based validation: a Java Persistence entity listener
is available. Whenever an listened entity is persisted or updated, Hibernate Validator will verify all
constraints of the entity instance and throw an exception if any constraint is violated. Basically, objects
will be checked before any inserts and before any updates made by the Java Persistence provider. This
includes changes applied by cascade! On constraint violation, the event will raise a runtime
InvalidStateException which contains an array of InvalidValues describing each failure.

Here is how to make a class validatable:

@Entity
@EntitylListeners(JPAValidatelListener.class)
public class Submarine {

}

NOTE

Compared to the Hibernate event, the Java Persistence listener has two drawbacks. You
need to define the entity listener on every validatable entity. The DDL generated by your
provider will not reflect the constraints.

2.3. APPLICATION-LEVEL VALIDATION

Hibernate Validator can be applied anywhere in your application code.

ClassValidator personValidator = new ClassValidator(Person.class);
ClassValidator addressValidator = new ClassValidator(Address.class,
ResourceBundle.getBundle("messages", Locale.ENGLISH));

Invalidvalue[] validationMessages =
addressValidator.getInvalidValues(address);

The first two lines prepare the Hibernate Validator for class checking. The first one relies upon the error
messages embedded in Hibernate Validator (see Section 1.3, “Error messages”), the second one uses a
resource bundle for these messages. It is considered a good practice to execute these lines once and
cache the validator instances.

The third line actually validates the Address instance and returns an array of InvalidValues. Your
application logic will then be able to react to the failure.

You can also check a particular property instead of the whole bean. This might be useful for property per
property user interaction

ClassValidator addressValidator = new ClassValidator(Address.class,
ResourceBundle.getBundle("messages", Locale.ENGLISH));

//only get city property invalid values

10

CHAPTER 2. USING THE VALIDATOR FRAMEWORK

Invalidvalue[] validationMessages =
addressValidator.getInvalidValues(address, '"city");

//only get potential city property invalid values
Invalidvalue[] validationMessages =
addressValidator.getPotentialInvalidValues("city", "Paris");

2.4. PRESENTATION LAYER VALIDATION

When working with JSF and JBoss Seam , one can triggers the validation process at the presentation
layer using Seam's JSF tags <s:validate> and <s:validateAll/>, letting the constraints be
expressed on the model, and the violations presented in the view

<h:form>
<div>
<h:messages/>
</div>
<s:validateAll>
<div>
Country:
<h:inputText value="#{location.country}" required="true"/>
</div>
<div>
Zip code:
<h:inputText value="#{location.zip}" required="true"/>
</div>
<div>
<h:commandButton/>
</div>
</s:validateAll>
</h:form>

Going even further, and adding Ajax4JSF to the loop will bring client side validation with just a couple of
additional JSF tags, again without validation definition duplication.

Check the JBoss Seam documentation for more information.

2.5. VALIDATION INFORMATIONS

As a validation information carrier, hibernate provide an array of InvalidValue. Each InvalidvValue
has a buch of methods describing the individual issues.

getBeanClass() retrieves the failing bean type

getBean()retrieves the failing instance (if any ie not when using getPotentianInvalidValues())
getValue() retrieves the failing value

getMessage () retrieves the proper internationalized error message

getRootBean() retrieves the root bean instance generating the issue (useful in conjunction with
@valid), is null if getPotentianinvalidValues() is used.

getPropertyPath () retrieves the dotted path of the failing property starting from the root bean

11

http://www.jboss.com/products/seam

Hibernate Validator Reference Guide

APPENDIX A. REVISION HISTORY

Revision 5.1.0-110.33.400 2013-10-31 Riidiger Landmann
Rebuild with publican 4.0.0

Revision 5.1.0-110.33 July 24 2012 Ruediger Landmann
Rebuild for Publican 3.0

Revision 5.1-0 Wed Sep 15 2010 Laura Bailey

Changed version number in line with new versioning requirements.
Revised for JBoss Enterprise Application Platform 5.1.0.GA.

12

	Table of Contents
	PREFACE
	CHAPTER 1. DEFINING CONSTRAINTS
	1.1. WHAT IS A CONSTRAINT?
	1.2. BUILT IN CONSTRAINTS
	1.3. ERROR MESSAGES
	1.4. WRITING YOUR OWN CONSTRAINTS
	1.5. ANNOTATING YOUR DOMAIN MODEL

	CHAPTER 2. USING THE VALIDATOR FRAMEWORK
	2.1. DATABASE SCHEMA-LEVEL VALIDATION
	2.2. ORM INTEGRATION
	2.2.1. Hibernate event-based validation
	2.2.2. Java Persistence event-based validation

	2.3. APPLICATION-LEVEL VALIDATION
	2.4. PRESENTATION LAYER VALIDATION
	2.5. VALIDATION INFORMATIONS

	APPENDIX A. REVISION HISTORY

