
JBoss Enterprise Application Platform
Common Criteria Certification 5

JBoss Cache User Guide

for Use with JBoss Enterprise Application Platform 5 Common Criteria Certification
Edition 5.1.0

Last Updated: 2017-11-20

JBoss Enterprise Application Platform Common Criteria Certification 5
JBoss Cache User Guide

for Use with JBoss Enterprise Application Platform 5 Common Criteria Certification
Edition 5.1.0

Manik Surtani
manik@jboss.org

Brian Stansberry
brian.stansberry@jboss.com

Galder Zamarreño
galder.zamarreno@jboss.com

Mircea Markus
mircea.markus@jboss.com

Legal Notice

Copyright © 2011 Red Hat, Inc.

This document is licensed by Red Hat under the Creative Commons Attribution-ShareAlike 3.0
Unported License. If you distribute this document, or a modified version of it, you must provide
attribution to Red Hat, Inc. and provide a link to the original. If the document is modified, all Red Hat
trademarks must be removed.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This book is the User Guide for Cache of the JBoss Enterprise Application Platform 5.1.0.

http://creativecommons.org/licenses/by-sa/3.0/

. .

. .

. .

. .

. .

. .

. .

Table of Contents

PREFACE

PART I. INTRODUCTION TO JBOSS CACHE

CHAPTER 1. OVERVIEW
1.1. WHAT IS JBOSS CACHE?

1.1.1. And what is POJO Cache?
1.2. SUMMARY OF FEATURES

1.2.1. Caching objects
1.2.2. Local and clustered modes
1.2.3. Clustered caches and transactions
1.2.4. Thread safety

1.3. REQUIREMENTS
1.4. LICENSE

CHAPTER 2. USER API
2.1. API CLASSES
2.2. INSTANTIATING AND STARTING THE CACHE
2.3. CACHING AND RETRIEVING DATA

2.3.1. Organizing Your Data and Using the Node Structure
2.4. THE FQN CLASS
2.5. STOPPING AND DESTROYING THE CACHE
2.6. CACHE MODES
2.7. ADDING A CACHE LISTENER - REGISTERING FOR CACHE EVENTS

2.7.1. Synchronous and Asynchronous Notifications
2.8. USING CACHE LOADERS
2.9. USING EVICTION POLICIES

CHAPTER 3. CONFIGURATION
3.1. CONFIGURATION OVERVIEW
3.2. CREATING A CONFIGURATION

3.2.1. Parsing an XML-based Configuration File
3.2.2. Validating Configuration Files
3.2.3. Programmatic Configuration
3.2.4. Using an IOC Framework

3.3. COMPOSITION OF A CONFIGURATION OBJECT
3.4. DYNAMIC RECONFIGURATION

3.4.1. Overriding the Configuration via the Option API

CHAPTER 4. BATCHING API
4.1. INTRODUCTION
4.2. CONFIGURING BATCHING
4.3. BATCHING API

CHAPTER 5. DEPLOYING JBOSS CACHE
5.1. STANDALONE USE/PROGRAMATIC DEPLOYMENT
5.2. VIA JBOSS MICROCONTAINER (JBOSS AS 5.X)
5.3. AUTOMATIC BINDING TO JNDI IN JBOSS AS
5.4. RUNTIME MANAGEMENT INFORMATION

5.4.1. JBoss Cache MBeans
5.4.2. Registering the CacheJmxWrapper with the MBeanServer

5.4.2.1. Programatic Registration with a Cache instance
5.4.2.2. Programatic Registration with a Configuration instance

5

6

7
7
7
7
7
8
8
8
8
9

10
10
10
11
12
12
13
13
14
16
16
16

18
18
18
18
18
19
19
19
20
21

22
22
22
22

23
23
23
25
25
25
25
25
26

Table of Contents

1

. .

. .

. .

. .

. .

5.4.2.3. JMX-Based Deployment in JBoss AS (JBoss AS 5.x)
5.4.3. JBoss Cache Statistics
5.4.4. Receiving JMX Notifications
5.4.5. Accessing Cache MBeans in a Standalone Environment using the jconsole Utility

CHAPTER 6. VERSION COMPATIBILITY AND INTEROPERABILITY
6.1. API COMPATIBILITY
6.2. WIRE-LEVEL INTEROPERABILITY
6.3. COMPATIBILITY MATRIX

PART II. JBOSS CACHE ARCHITECTURE

CHAPTER 7. ARCHITECTURE
7.1. DATA STRUCTURES WITHIN THE CACHE
7.2. SPI INTERFACES
7.3. METHOD INVOCATIONS ON NODES

7.3.1. Interceptors
7.3.1.1. Writing Custom Interceptors

7.3.2. Commands and Visitors
7.3.3. InvocationContexts

7.4. MANAGERS FOR SUBSYSTEMS
7.4.1. RpcManager
7.4.2. BuddyManager
7.4.3. CacheLoaderManager

7.5. MARSHALLING AND WIRE FORMATS
7.5.1. The Marshaller Interface
7.5.2. VersionAwareMarshaller

7.6. CLASS LOADING AND REGIONS

CHAPTER 8. CACHE MODES AND CLUSTERING
8.1. CACHE REPLICATION MODES

8.1.1. Local Mode
8.1.2. Replicated Caches

8.1.2.1. Replicated Caches and Transactions
8.1.2.1.1. One Phase Commits
8.1.2.1.2. Two Phase Commits

8.1.2.2. Buddy Replication
8.1.2.2.1. Selecting Buddies
8.1.2.2.2. BuddyPools
8.1.2.2.3. Failover
8.1.2.2.4. Configuration

8.2. INVALIDATION
8.3. STATE TRANSFER

8.3.1. State Transfer Types
8.3.2. Byte array and streaming based state transfer
8.3.3. Full and partial state transfer
8.3.4. Transient ("in-memory") and persistent state transfer
8.3.5. Configuring State Transfer

CHAPTER 9. CACHE LOADERS
9.1. THE CACHELOADER INTERFACE AND LIFECYCLE
9.2. CONFIGURATION

9.2.1. Singleton Store Configuration
9.3. SHIPPED IMPLEMENTATIONS

26
28
28
30

31
31
31
31

32

33
33
33
34
35
35
35
36
36
36
36
36
36
37
37
38

39
39
39
39
39
39
39
40
40
41
41
42
42
42
42
42
42
43
44

45
45
46
47
49

JBoss Cache User Guide

2

. .

. .

9.3.1. File system based cache loaders
9.3.2. Cache loaders that delegate to other caches
9.3.3. JDBCCacheLoader

9.3.3.1. JDBCCacheLoader configuration
9.3.3.1.1. Table configuration
9.3.3.1.2. DataSource
9.3.3.1.3. JDBC driver
9.3.3.1.4. c3p0 connection pooling
9.3.3.1.5. Configuration example

9.3.4. S3CacheLoader
9.3.4.1. Amazon S3 Library
9.3.4.2. Configuration

9.3.5. TcpDelegatingCacheLoader
9.3.6. Transforming Cache Loaders

9.4. CACHE PASSIVATION
9.4.1. Cache Loader Behavior with Passivation Disabled vs. Enabled

9.5. STRATEGIES
9.5.1. Local Cache With Store
9.5.2. Replicated Caches With All Caches Sharing The Same Store
9.5.3. Replicated Caches With Only One Cache Having A Store
9.5.4. Replicated Caches With Each Cache Having Its Own Store
9.5.5. Hierarchical Caches
9.5.6. Multiple Cache Loaders

CHAPTER 10. EVICTION
10.1. DESIGN

10.1.1. Collecting Statistics
10.1.2. Determining Which Nodes to Evict
10.1.3. How Nodes are Evicted
10.1.4. Eviction threads

10.2. EVICTION REGIONS
10.2.1. Resident Nodes

10.3. CONFIGURING EVICTION
10.3.1. Basic Configuration
10.3.2. Programmatic Configuration

10.4. SHIPPED EVICTION POLICIES
10.4.1. LRUAlgorithm - Least Recently Used
10.4.2. FIFOAlgorithm - First In, First Out
10.4.3. MRUAlgorithm - Most Recently Used
10.4.4. LFUAlgorithm - Least Frequently Used
10.4.5. ExpirationAlgorithm
10.4.6. ElementSizeAlgorithm - Eviction based on number of key/value pairs in a node

CHAPTER 11. TRANSACTIONS AND CONCURRENCY
11.1. CONCURRENT ACCESS

11.1.1. Multi-Version Concurrency Control (MVCC)
11.1.1.1. MVCC Concepts
11.1.1.2. MVCC Implementation

11.1.1.2.1. Isolation Levels
11.1.1.2.2. Concurrent Writers and Write-Skews

11.1.1.3. Configuring Locking
11.1.2. Pessimistic and Optimistic Locking Schemes

11.2. JTA SUPPORT

49
50
50
50
50
51
51
51
51
53
53
54
55
56
56
56
57
57
58
58
59
60
61

63
63
63
63
63
64
64
64
65
65
65
66
66
66
67
67
67
68

69
69
69
69
69
70
70
71
71
71

Table of Contents

3

. .

. .

. .

PART III. JBOSS CACHE CONFIGURATION REFERENCES

CHAPTER 12. CONFIGURATION REFERENCES
12.1. SAMPLE XML CONFIGURATION FILE

12.1.1. XML validation
12.2. CONFIGURATION FILE QUICK REFERENCE

CHAPTER 13. JMX REFERENCES
13.1. JBOSS CACHE STATISTICS
13.2. JMX MBEAN NOTIFICATIONS

73

74
74
78
78

112
112
115

JBoss Cache User Guide

4

PREFACE
This is the official JBoss Cache Users' Guide. Along with its accompanying documents (an FAQ, a
tutorial and a whole set of documents on POJO Cache), this is freely available on the JBoss Cache
documentation website.

When used, JBoss Cache refers to JBoss Cache Core, a tree-structured, clustered, transactional cache.
POJO Cache, also a part of the JBoss Cache distribution, is documented separately. (POJO Cache is a
cache that deals with Plain Old Java Objects, complete with object relationships, with the ability to cluster
such POJOs while maintaining their relationships. Please see the POJO Cache documentation for more
information about this.)

This book is targeted at developers wishing to use JBoss Cache as either a standalone in-memory
cache, a distributed or replicated cache, a clustering library, or an in-memory database. It is targeted at
application developers who wish to use JBoss Cache in their code base, as well as "OEM" developers
who wish to build on and extend JBoss Cache features. As such, this book is split into two major
sections - one detailing the "User" API and the other going much deeper into specialist topics and the
JBoss Cache architecture.

In general, a good knowledge of the Java programming language along with a strong appreciation and
understanding of transactions and concurrent programming is necessary. No prior knowledge of JBoss
Application Server is expected or required.

For further discussion, use the user forum available on the JBoss Cache website. We also provide a
mechanism for tracking bug reports and feature requests on the JBoss Cache JIRA issue tracker.

If you are interested in the development of JBoss Cache or in translating this documentation into other
languages, we'd love to hear from you. Please post a message on the JBoss Cache user forum or
contact us by using the JBoss Cache developer mailing list.

This book is specifically targeted at the JBoss Cache release of the same version number. It may not
apply to older or newer releases of JBoss Cache. It is important that you use the documentation
appropriate to the version of JBoss Cache you intend to use.

I always appreciate feedback, suggestions and corrections, and these should be directed to the
developer mailing list rather than direct emails to any of the authors. We hope you find this book useful,
and wish you happy reading!

Manik Surtani, October 2008

PREFACE

5

http://www.jboss.org/jbosscache
http://www.jboss.org/jbosscache
http://jira.jboss.com/jira/browse/JBCACHE
http://www.jboss.org/jbosscache
https://lists.jboss.org/mailman/listinfo/jbosscache-dev
https://lists.jboss.org/mailman/listinfo/jbosscache-dev

PART I. INTRODUCTION TO JBOSS CACHE

This section covers what developers would need to quickly start using JBoss Cache in their projects. It
covers an overview of the concepts and API, configuration and deployment information.

JBoss Cache User Guide

6

CHAPTER 1. OVERVIEW

1.1. WHAT IS JBOSS CACHE?

JBoss Cache is a tree-structured, clustered, transactional cache. It can be used in a standalone, non-
clustered environment, to cache frequently accessed data in memory thereby removing data retrieval or
calculation bottlenecks while providing "enterprise" features such as JTA compatibility, eviction and
persistence.

JBoss Cache is also a clustered cache, and can be used in a cluster to replicate state providing a high
degree of failover. A variety of replication modes are supported, including invalidation and buddy
replication, and network communications can either be synchronous or asynchronous.

When used in a clustered mode, the cache is an effective mechanism of building high availability, fault
tolerance and even load balancing into custom applications and frameworks. For example, the JBoss
Application Server and Red Hat's Enterprise Application Platform make extensive use of JBoss Cache to
cluster services such as HTTP and EJB sessions, as well as providing a distributed entity cache for JPA.

1.1.1. And what is POJO Cache?

POJO Cache is an extension of the core JBoss Cache API. POJO Cache offers additional functionality
such as:

maintaining object references even after replication or persistence

fine grained replication, where only modified object fields are replicated

"API-less" clustering model where POJOs are simply annotated as being clustered

POJO Cache has a complete and separate set of documentation, including a Users' Guide, FAQ and
tutorial all available on the JBoss Cache documentation website. As such, POJO Cache will not be
discussed further in this book.

1.2. SUMMARY OF FEATURES

1.2.1. Caching objects

JBoss Cache offers a simple and straightforward API, where data - simple Java objects - can be placed
in the cache. Based on configuration options selected, this data may be one or all of:

cached in-memory for efficient, thread-safe retrieval

replicated to some or all cache instances in a cluster

persisted to disk and/or a remote, in-memory cache cluster ("far-cache")

garbage collected from memory when memory runs low, and passivated to disk so state isn't lost

In addition, JBoss Cache offers a rich set of enterprise-class features:

being able to participate in JTA transactions (works with most Java EE compliant transaction
managers).

attach to JMX consoles and provide runtime statistics on the state of the cache.

CHAPTER 1. OVERVIEW

7

http://java.sun.com/products/jta
http://www.jboss.org/projects/jbossas/
http://www.jboss.com
http://java.sun.com/products/ejb/
http://en.wikipedia.org/wiki/Java_Persistence_API
http://www.jboss.org/jbosscache
http://java.sun.com/products/jta

allow client code to attach listeners and receive notifications on cache events.

allow grouping of cache operations into batches, for efficient replication

1.2.2. Local and clustered modes

The cache is organized as a tree, with a single root. Each node in the tree essentially contains a map,
which acts as a store for key/value pairs. The only requirement placed on objects that are cached is that
they implement java.io.Serializable.

JBoss Cache can be either local or replicated. Local caches exist only within the scope of the JVM in
which they are created, whereas replicated caches propagate any changes to some or all other caches
in the same cluster. A cluster may span different hosts on a network or just different JVMs on a single
host.

1.2.3. Clustered caches and transactions

When a change is made to an object in the cache and that change is done in the context of a transaction,
the replication of changes is deferred until the transaction completes successfully. All modifications are
kept in a list associated with the transaction of the caller. When the transaction commits, changes are
replicated. Otherwise, on a rollback, we simply undo the changes locally and discard the modification list,
resulting in zero network traffic and overhead. For example, if a caller makes 100 modifications and then
rolls back the transaction, nothing is replicated, resulting in no network traffic.

If a caller has no transaction or batch associated with it, modifications are replicated immediately. E.g. in
the example used earlier, 100 messages would be broadcast for each modification. In this sense,
running without a batch or transaction can be thought of as analogous as running with auto-commit
switched on in JDBC terminology, where each operation is committed automatically and immediately.

JBoss Cache works out of the box with most popular transaction managers, and even provides an API
where custom transaction manager lookups can be written.

All of the above holds true for batches as well, which has similar behavior.

1.2.4. Thread safety

The cache is completely thread-safe. It employs multi-versioned concurrency control (MVCC) to ensure
thread safety between readers and writers, while maintaining a high degree of concurrency. The specific
MVCC implementation used in JBoss Cache allows for reader threads to be completely free of locks and
synchronized blocks, ensuring a very high degree of performance for read-heavy applications. It also
uses custom, highly performant lock implementations that employ modern compare-and-swap
techniques for writer threads, which are tuned to multi-core CPU architectures.

Multi-versioned concurrency control (MVCC) is the default locking scheme since JBoss Cache 3.x.
Optimistic and pessimistic locking schemes from older versions of JBoss Cache are still available but are
deprecated in favor of MVCC, and will be removed in future releases. Use of these deprecated locking
schemes are strongly discouraged.

The JBoss Cache MVCC implementation only supports READ_COMMITTED and REPEATABLE_READ
isolation levels, corresponding to their database equivalents. See the section on Chapter 11,
Transactions and Concurrency for details on MVCC.

1.3. REQUIREMENTS

JBoss Cache User Guide

8

JBoss Cache requires a Java 5.0 (or newer) compatible virtual machine and set of libraries, and is
developed and tested on Sun's JDK 5.0 and JDK 6.

In addition to Java 5.0, at a minimum, JBoss Cache has dependencies on JGroups, and Apache's
commons-logging. JBoss Cache ships with all dependent libraries necessary to run out of the box, as
well as several optional jars for optional features.

1.4. LICENSE

JBoss Cache is an open source project, using the business and OEM-friendly OSI-approved LGPL
license. Commercial development support, production support and training for JBoss Cache is available
through JBoss, a division of Red Hat Inc.

CHAPTER 1. OVERVIEW

9

http://www.jgroups.org
http://jakarta.apache.org/commons/logging/
http://www.opensource.org/
http://www.gnu.org/copyleft/lesser.html
http://www.jboss.com

CHAPTER 2. USER API

2.1. API CLASSES

The Cache interface is the primary mechanism for interacting with JBoss Cache. It is constructed and
optionally started using the CacheFactory. The CacheFactory allows you to create a Cache either
from a Configuration object or an XML file. The cache organizes data into a tree structure, made up
of nodes. Once you have a reference to a Cache, you can use it to look up Node objects in the tree
structure, and store data in the tree.

Note that the diagram above only depicts some of the more popular API methods. Reviewing the
Javadoc for the above interfaces is the best way to learn the API. Below, we cover some of the main
points.

2.2. INSTANTIATING AND STARTING THE CACHE

An instance of the Cache interface can only be created via a CacheFactory. This is unlike JBoss
Cache 1.x, where an instance of the old TreeCache class could be directly instantiated.

The CacheFactory provides a number of overloaded methods for creating a Cache, but they all
fundamentally do the same thing:

Gain access to a Configuration, either by having one passed in as a method parameter or
by parsing XML content and constructing one. The XML content can come from a provided input
stream, from a classpath or filesystem location. See the Chapter 3, Configuration for more on
obtaining a Configuration.

Instantiate the Cache and provide it with a reference to the Configuration.

Optionally invoke the cache's create() and start() methods.

JBoss Cache User Guide

10

Here is an example of the simplest mechanism for creating and starting a cache, using the default
configuration values:

In this example, we tell the CacheFactory to find and parse a configuration file on the classpath:

In this example, we configure the cache from a file, but want to programatically change a configuration
element. So, we tell the factory not to start the cache, and instead do it ourselves:

2.3. CACHING AND RETRIEVING DATA

Next, lets use the Cache API to access a Node in the cache and then do some simple reads and writes
to that node.

 CacheFactory factory = new DefaultCacheFactory();
 Cache cache = factory.createCache();

 CacheFactory factory = new DefaultCacheFactory();
 Cache cache = factory.createCache("cache-configuration.xml");

 CacheFactory factory = new DefaultCacheFactory();
 Cache cache = factory.createCache("/opt/configurations/cache-
configuration.xml", false);
 Configuration config = cache.getConfiguration();
 config.setClusterName(this.getClusterName());

 // Have to create and start cache before using it
 cache.create();
 cache.start();

 // Let's get a hold of the root node.
 Node rootNode = cache.getRoot();

 // Remember, JBoss Cache stores data in a tree structure.
 // All nodes in the tree structure are identified by Fqn objects.
 Fqn peterGriffinFqn = Fqn.fromString("/griffin/peter");

 // Create a new Node
 Node peterGriffin = rootNode.addChild(peterGriffinFqn);

 // let's store some data in the node
 peterGriffin.put("isCartoonCharacter", Boolean.TRUE);
 peterGriffin.put("favoriteDrink", new Beer());

 // some tests (just assume this code is in a JUnit test case)
 assertTrue(peterGriffin.get("isCartoonCharacter"));
 assertEquals(peterGriffinFqn, peterGriffin.getFqn());
 assertTrue(rootNode.hasChild(peterGriffinFqn));

 Set keys = new HashSet();
 keys.add("isCartoonCharacter");
 keys.add("favoriteDrink");

 assertEquals(keys, peterGriffin.getKeys());

CHAPTER 2. USER API

11

The Cache interface also exposes put/get/remove operations that take an Section 2.4, “ The Fqn Class ”
as an argument, for convenience:

2.3.1. Organizing Your Data and Using the Node Structure

A Node should be viewed as a named logical grouping of data. A node should be used to contain data for
a single data record, for example information about a particular person or account. It should be kept in
mind that all aspects of the cache - locking, cache loading, replication and eviction - happen on a per-
node basis. As such, anything grouped together by being stored in a single node will be treated as a
single atomic unit.

2.4. THE FQN CLASS

The previous section used the Fqn class in its examples; now let's learn a bit more about that class.

A Fully Qualified Name (Fqn) encapsulates a list of names which represent a path to a particular location
in the cache's tree structure. The elements in the list are typically Strings but can be any Object or a
mix of different types.

This path can be absolute (i.e., relative to the root node), or relative to any node in the cache. Reading
the documentation on each API call that makes use of Fqn will tell you whether the API expects a
relative or absolute Fqn.

The Fqn class provides are variety of factory methods; see the Javadoc for all the possibilities. The
following illustrates the most commonly used approaches to creating an Fqn:

 // let's remove some data from the node
 peterGriffin.remove("favoriteDrink");

 assertNull(peterGriffin.get("favoriteDrink");

 // let's remove the node altogether
 rootNode.removeChild(peterGriffinFqn);

 assertFalse(rootNode.hasChild(peterGriffinFqn));

 Fqn peterGriffinFqn = Fqn.fromString("/griffin/peter");

 cache.put(peterGriffinFqn, "isCartoonCharacter", Boolean.TRUE);
 cache.put(peterGriffinFqn, "favoriteDrink", new Beer());

 assertTrue(peterGriffin.get(peterGriffinFqn, "isCartoonCharacter"));
 assertTrue(cache.getRootNode().hasChild(peterGriffinFqn));

 cache.remove(peterGriffinFqn, "favoriteDrink");

 assertNull(cache.get(peterGriffinFqn, "favoriteDrink");

 cache.removeNode(peterGriffinFqn);

 assertFalse(cache.getRootNode().hasChild(peterGriffinFqn));

 // Create an Fqn pointing to node 'Joe' under parent node 'Smith'
 // under the 'people' section of the tree

JBoss Cache User Guide

12

Note that

is the same as

2.5. STOPPING AND DESTROYING THE CACHE

It is good practice to stop and destroy your cache when you are done using it, particularly if it is a
clustered cache and has thus used a JGroups channel. Stopping and destroying a cache ensures
resources like network sockets and maintenance threads are properly cleaned up.

Not also that a cache that has had stop() invoked on it can be started again with a new call to
start() . Similarly, a cache that has had destroy() invoked on it can be created again with a new
call to create() (and then started again with a start() call).

2.6. CACHE MODES

Although technically not part of the API, the mode in which the cache is configured to operate affects the
cluster-wide behavior of any put or remove operation, so we'll briefly mention the various modes here.

JBoss Cache modes are denoted by the org.jboss.cache.config.Configuration.CacheMode
enumeration. They consist of:

LOCAL - local, non-clustered cache. Local caches don't join a cluster and don't communicate
with other caches in a cluster.

REPL_SYNC - synchronous replication. Replicated caches replicate all changes to the other
caches in the cluster. Synchronous replication means that changes are replicated and the caller
blocks until replication acknowledgements are received.

REPL_ASYNC - asynchronous replication. Similar to REPL_SYNC above, replicated caches
replicate all changes to the other caches in the cluster. Being asynchronous, the caller does not
block until replication acknowledgements are received.

INVALIDATION_SYNC - if a cache is configured for invalidation rather than replication, every
time data is changed in a cache other caches in the cluster receive a message informing them
that their data is now stale and should be evicted from memory. This reduces replication
overhead while still being able to invalidate stale data on remote caches.

INVALIDATION_ASYNC - as above, except this invalidation mode causes invalidation
messages to be broadcast asynchronously.

 // Parse it from a String
 Fqn abc = Fqn.fromString("/people/Smith/Joe/");

 // Here we want to use types other than String
 Fqn acctFqn = Fqn.fromElements("accounts", "NY", new Integer(12345));

Fqn f = Fqn.fromElements("a", "b", "c");

Fqn f = Fqn.fromString("/a/b/c");

 cache.stop();
 cache.destroy();

CHAPTER 2. USER API

13

See the Chapter 8, Cache Modes and Clustering for more details on how cache mode affects behavior.
See the Chapter 3, Configuration for info on how to configure things like cache mode.

2.7. ADDING A CACHE LISTENER - REGISTERING FOR CACHE
EVENTS

JBoss Cache provides a convenient mechanism for registering notifications on cache events.

Similar methods exist for removing or querying registered listeners. See the Javadocs on the Cache
interface for more details.

Basically any public class can be used as a listener, provided it is annotated with the @CacheListener
annotation. In addition, the class needs to have one or more methods annotated with one of the method-
level annotations (in the org.jboss.cache.notifications.annotation package). Methods
annotated as such need to be public, have a void return type, and accept a single parameter of type
org.jboss.cache.notifications.event.Event or one of its subtypes.

@CacheStarted - methods annotated such receive a notification when the cache is started.
Methods need to accept a parameter type which is assignable from CacheStartedEvent .

@CacheStopped - methods annotated such receive a notification when the cache is stopped.
Methods need to accept a parameter type which is assignable from CacheStoppedEvent .

@NodeCreated - methods annotated such receive a notification when a node is created.
Methods need to accept a parameter type which is assignable from NodeCreatedEvent .

@NodeRemoved - methods annotated such receive a notification when a node is removed.
Methods need to accept a parameter type which is assignable from NodeRemovedEvent .

@NodeModified - methods annotated such receive a notification when a node is modified.
Methods need to accept a parameter type which is assignable from NodeModifiedEvent .

@NodeMoved - methods annotated such receive a notification when a node is moved. Methods
need to accept a parameter type which is assignable from NodeMovedEvent .

@NodeVisited - methods annotated such receive a notification when a node is started.
Methods need to accept a parameter type which is assignable from NodeVisitedEvent .

@NodeLoaded - methods annotated such receive a notification when a node is loaded from a
CacheLoader . Methods need to accept a parameter type which is assignable from
NodeLoadedEvent .

@NodeEvicted - methods annotated such receive a notification when a node is evicted from
memory. Methods need to accept a parameter type which is assignable from
NodeEvictedEvent .

@NodeInvalidated - methods annotated such receive a notification when a node is evicted
from memory due to a remote invalidation event. Methods need to accept a parameter type
which is assignable from NodeInvalidatedEvent .

 Object myListener = new MyCacheListener();
 cache.addCacheListener(myListener);

JBoss Cache User Guide

14

@NodeActivated - methods annotated such receive a notification when a node is activated.
Methods need to accept a parameter type which is assignable from NodeActivatedEvent .

@NodePassivated - methods annotated such receive a notification when a node is passivated.
Methods need to accept a parameter type which is assignable from NodePassivatedEvent .

@TransactionRegistered - methods annotated such receive a notification when the cache
registers a javax.transaction.Synchronization with a registered transaction manager.
Methods need to accept a parameter type which is assignable from
TransactionRegisteredEvent .

@TransactionCompleted - methods annotated such receive a notification when the cache
receives a commit or rollback call from a registered transaction manager. Methods need to
accept a parameter type which is assignable from TransactionCompletedEvent .

@ViewChanged - methods annotated such receive a notification when the group structure of the
cluster changes. Methods need to accept a parameter type which is assignable from
ViewChangedEvent .

@CacheBlocked - methods annotated such receive a notification when the cluster requests that
cache operations are blocked for a state transfer event. Methods need to accept a parameter
type which is assignable from CacheBlockedEvent .

@CacheUnblocked - methods annotated such receive a notification when the cluster requests
that cache operations are unblocked after a state transfer event. Methods need to accept a
parameter type which is assignable from CacheUnblockedEvent .

@BuddyGroupChanged - methods annotated such receive a notification when a node changes
its buddy group, perhaps due to a buddy falling out of the cluster or a newer, closer buddy
joining. Methods need to accept a parameter type which is assignable from
BuddyGroupChangedEvent.

Refer to the Javadocs on the annotations as well as the Event subtypes for details of what is passed in
to your method, and when.

Example:

 @CacheListener
 public class MyListener
 {

 @CacheStarted
 @CacheStopped
 public void cacheStartStopEvent(Event e)
 {
 switch (e.getType())
 {
 case CACHE_STARTED:
 System.out.println("Cache has started");
 break;
 case CACHE_STOPPED:
 System.out.println("Cache has stopped");
 break;
 }
 }

CHAPTER 2. USER API

15

2.7.1. Synchronous and Asynchronous Notifications

By default, all notifications are synchronous, in that they happen on the thread of the caller which
generated the event. As such, it is good practise to ensure cache listener implementations don't hold up
the thread in long-running tasks. Alternatively, you could set the CacheListener.sync attribute to
false, in which case you will not be notified in the caller's thread. See the Table 12.13, “The
<listeners /> Element” on tuning this thread pool and size of blocking queue.

2.8. USING CACHE LOADERS

Cache loaders are an important part of JBoss Cache. They allow persistence of nodes to disk or to
remote cache clusters, and allow for passivation when caches run out of memory. In addition, cache
loaders allow JBoss Cache to perform 'warm starts', where in-memory state can be preloaded from
persistent storage. JBoss Cache ships with a number of cache loader implementations.

org.jboss.cache.loader.FileCacheLoader - a basic, filesystem based cache loader
that persists data to disk. Non-transactional and not very performant, but a very simple solution.
Used mainly for testing and not recommended for production use.

org.jboss.cache.loader.JDBCCacheLoader - uses a JDBC connection to store data.
Connections could be created and maintained in an internal pool (uses the c3p0 pooling library)
or from a configured DataSource. The database this CacheLoader connects to could be local or
remotely located.

org.jboss.cache.loader.BdbjeCacheLoader - uses Oracle's BerkeleyDB file-based
transactional database to persist data. Transactional and very performant, but potentially
restrictive license.

org.jboss.cache.loader.JdbmCacheLoader - an open source alternative to the
BerkeleyDB.

org.jboss.cache.loader.tcp.TcpCacheLoader - uses a TCP socket to "persist" data to
a remote cluster, using a "far cache" pattern.

org.jboss.cache.loader.ClusteredCacheLoader - used as a "read-only" cache loader,
where other nodes in the cluster are queried for state. Useful when full state transfer is too
expensive and it is preferred that state is lazily loaded.

These cache loaders, along with advanced aspects and tuning issues, are discussed in the Chapter 9,
Cache Loaders.

2.9. USING EVICTION POLICIES

 @NodeCreated
 @NodeRemoved
 @NodeVisited
 @NodeModified
 @NodeMoved
 public void logNodeEvent(NodeEvent ne)
 {
 log("An event on node " + ne.getFqn() + " has occured");
 }
 }

JBoss Cache User Guide

16

http://www.jboss.org/community/docs/DOC-10292

Eviction policies are the counterpart to cache loaders. They are necessary to make sure the cache does
not run out of memory and when the cache starts to fill, an eviction algorithm running in a separate thread
evicts in-memory state and frees up memory. If configured with a cache loader, the state can then be
retrieved from the cache loader if needed.

Eviction policies can be configured on a per-region basis, so different subtrees in the cache could have
different eviction preferences. JBoss Cache ships with several eviction policies:

org.jboss.cache.eviction.LRUPolicy - an eviction policy that evicts the least recently
used nodes when thresholds are hit.

org.jboss.cache.eviction.LFUPolicy - an eviction policy that evicts the least frequently
used nodes when thresholds are hit.

org.jboss.cache.eviction.MRUPolicy - an eviction policy that evicts the most recently
used nodes when thresholds are hit.

org.jboss.cache.eviction.FIFOPolicy - an eviction policy that creates a first-in-first-out
queue and evicts the oldest nodes when thresholds are hit.

org.jboss.cache.eviction.ExpirationPolicy - an eviction policy that selects nodes
for eviction based on an expiry time each node is configured with.

org.jboss.cache.eviction.ElementSizePolicy - an eviction policy that selects nodes
for eviction based on the number of key/value pairs held in the node.

Detailed configuration and implementing custom eviction policies are discussed in the Chapter 10,
Eviction.

CHAPTER 2. USER API

17

CHAPTER 3. CONFIGURATION

3.1. CONFIGURATION OVERVIEW

The org.jboss.cache.config.Configuration class (along with its Section 3.3, “Composition of a
Configuration Object ”) is a Java Bean that encapsulates the configuration of the Cache and all of its
architectural elements (cache loaders, evictions policies, etc.)

The Configuration exposes numerous properties which are summarized in the Section 12.2,
“Configuration File Quick Reference” section of this book and many of which are discussed in later
chapters. Any time you see a configuration option discussed in this book, you can assume that the
Configuration class or one of its component parts exposes a simple property setter/getter for that
configuration option.

3.2. CREATING A CONFIGURATION

As discussed in the Section 2.2, “Instantiating and Starting the Cache”, before a Cache can be created,
the CacheFactory must be provided with a Configuration object or with a file name or input stream
to use to parse a Configuration from XML. The following sections describe how to accomplish this.

3.2.1. Parsing an XML-based Configuration File

The most convenient way to configure JBoss Cache is via an XML file. The JBoss Cache distribution
ships with a number of configuration files for common use cases. It is recommended that these files be
used as a starting point, and tweaked to meet specific needs.

The simplest example of a configuration XML file, a cache configured to run in LOCAL mode, looks like
this:

This file uses sensible defaults for isolation levels, lock acquisition timeouts, locking modes, etc.
Another, more complete, sample XML file is included in the Section 12.1, “Sample XML Configuration
File” section of this book, along with Section 12.2, “Configuration File Quick Reference” explaining the
various options.

3.2.2. Validating Configuration Files

By default JBoss Cache will validate your XML configuration file against an XML schema and throw an
exception if the configuration is invalid. This can be overridden with the -
Djbosscache.config.validate=false JVM parameter. Alternately, you could specify your own
schema to validate against, using the -Djbosscache.config.schemaLocation=url parameter.

By default though, configuration files are validated against the JBoss Cache configuration schema,
which is included in the jbosscache-core.jar or on
http://www.jboss.org/jbosscache/jbosscache-config-3.0.xsd. Most XML editing tools

<?xml version="1.0" encoding="UTF-8"?>

<jbosscache xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="urn:jboss:jbosscache-core:config:3.1">
</jbosscache>

JBoss Cache User Guide

18

can be used with this schema to ensure the configuration file you create is correct and valid.

3.2.3. Programmatic Configuration

In addition to the XML-based configuration above, the Configuration can be built up programatically,
using the simple property mutators exposed by Configuration and its components. When
constructed, the Configuration object is preset with JBoss Cache defaults and can even be used as-
is for a quick start.

Even the above fairly simple configuration is pretty tedious programming; hence the preferred use of
XML-based configuration. However, if your application requires it, there is no reason not to use XML-
based configuration for most of the attributes, and then access the Configuration object to
programatically change a few items from the defaults, add an eviction region, etc.

Note that configuration values may not be changed programmatically when a cache is running, except
those annotated as @Dynamic . Dynamic properties are also marked as such in the Section 12.2,
“Configuration File Quick Reference” table. Attempting to change a non-dynamic property will result in a
ConfigurationException .

3.2.4. Using an IOC Framework

The Configuration class and its Section 3.3, “Composition of a Configuration Object ” are all
Java Beans that expose all configuration elements via simple setters and getters. Therefore, any good
IOC framework such as JBoss Microcontainer should be able to build up a Configuration from an
XML file in the framework's own format. See the Section 5.2, “Via JBoss Microcontainer (JBoss AS 5.x)”
section for an example of this.

3.3. COMPOSITION OF A CONFIGURATION OBJECT

A Configuration is composed of a number of subobjects:

Configuration config = new Configuration();
config.setTransactionManagerLookupClass(
 GenericTransactionManagerLookup.class.getName()
);
config.setIsolationLevel(IsolationLevel.READ_COMMITTED);
config.setCacheMode(CacheMode.LOCAL);
config.setLockAcquisitionTimeout(15000);

CacheFactory factory = new DefaultCacheFactory();
Cache cache = factory.createCache(config);

CHAPTER 3. CONFIGURATION

19

Following is a brief overview of the components of a Configuration . See the Javadoc and the linked
chapters in this book for a more complete explanation of the configurations associated with each
component.

Configuration : top level object in the hierarchy; exposes the configuration properties listed
in the Section 12.2, “Configuration File Quick Reference” section of this book.

BuddyReplicationConfig : only relevant if Section 8.1.2.2, “Buddy Replication” is used.
General buddy replication configuration options. Must include a:

BuddyLocatorConfig : implementation-specific configuration object for the BuddyLocator
implementation being used. What configuration elements are exposed depends on the needs of
the BuddyLocator implementation.

EvictionConfig : only relevant if Chapter 10, Eviction is used. General eviction configuration
options. Must include at least one:

EvictionRegionConfig : one for each eviction region; names the region, etc. Must include a:

EvictionAlgorithmConfig : implementation-specific configuration object for the
EvictionAlgorithm implementation being used. What configuration elements are exposed
depends on the needs of the EvictionAlgorithm implementation.

CacheLoaderConfig : only relevant if a Chapter 9, Cache Loaders is used. General cache
loader configuration options. Must include at least one:

IndividualCacheLoaderConfig : implementation-specific configuration object for the
CacheLoader implementation being used. What configuration elements are exposed depends
on the needs of the CacheLoader implementation.

RuntimeConfig : exposes to cache clients certain information about the cache's runtime
environment (e.g. membership in buddy replication groups if Section 8.1.2.2, “Buddy
Replication” is used.) Also allows direct injection into the cache of needed external services like
a JTA TransactionManager or a JGroups ChannelFactory .

3.4. DYNAMIC RECONFIGURATION

JBoss Cache User Guide

20

Dynamically changing the configuration of some options while the cache is running is supported, by
programmatically obtaining the Configuration object from the running cache and changing values.
E.g.,

A complete listing of which options may be changed dynamically is in the Section 12.2, “Configuration
File Quick Reference” section. An org.jboss.cache.config.ConfigurationException will be
thrown if you attempt to change a setting that is not dynamic.

3.4.1. Overriding the Configuration via the Option API

The Option API allows you to override certain behaviors of the cache on a per invocation basis. This
involves creating an instance of org.jboss.cache.config.Option , setting the options you wish to
override on the Option object and passing it in the InvocationContext before invoking your method
on the cache.

E.g., to force a write lock when reading data (when used in a transaction, this provides semantics similar
to SELECT FOR UPDATE in a database)

E.g., to suppress replication of a put call in a REPL_SYNC cache:

See the Javadocs on the Option class for details on the options available.

 Configuration liveConfig = cache.getConfiguration();
 liveConfig.setLockAcquisitionTimeout(2000);

 // first start a transaction

cache.getInvocationContext().getOptionOverrides().setForceWriteLock(true);
 Node n = cache.getNode(Fqn.fromString("/a/b/c"));
 // make changes to the node
 // commit transaction

 Node node = cache.getChild(Fqn.fromString("/a/b/c"));

cache.getInvocationContext().getOptionOverrides().setLocalOnly(true);
 node.put("localCounter", new Integer(2));

CHAPTER 3. CONFIGURATION

21

CHAPTER 4. BATCHING API

4.1. INTRODUCTION

The batching API, introduced in JBoss Cache 3.x, is intended as a mechanism to batch the way calls are
replicated independent of JTA transactions.

This is useful when you want to batch up replication calls within a scope finer than that of any ongoing
JTA transactions.

4.2. CONFIGURING BATCHING

To use batching, you need to enable invocation batching in your cache configuration, either on the
Configuration object:

or in your XML file:

By default, invocation batching is disabled. Note that you do not have to have a transaction manager
defined to use batching.

4.3. BATCHING API

Once you have configured your cache to use batching, you use it by calling startBatch() and
endBatch() on Cache. E.g.,

 Configuration.setInvocationBatchingEnabled(true);

 <invocationBatching enabled="true"/>

 Cache cache = getCache();

 // not using a batch
 cache.put("/a", "key", "value"); // will replicate immediately

 // using a batch
 cache.startBatch();
 cache.put("/a", "key", "value");
 cache.put("/b", "key", "value");
 cache.put("/c", "key", "value");
 cache.endBatch(true); // This will now replicate the modifications
since the batch was started.

 cache.startBatch();
 cache.put("/a", "key", "value");
 cache.put("/b", "key", "value");
 cache.put("/c", "key", "value");
 cache.endBatch(false); // This will "discard" changes made in the batch

JBoss Cache User Guide

22

CHAPTER 5. DEPLOYING JBOSS CACHE

5.1. STANDALONE USE/PROGRAMATIC DEPLOYMENT

When used in a standalone Java program, all that needs to be done is to instantiate the cache using the
CacheFactory and a Configuration instance or an XML file, as discussed in the Section 2.2,
“Instantiating and Starting the Cache” and Section 3.2, “Creating a Configuration ” chapters.

The same techniques can be used when an application running in an application server wishes to
programatically deploy a cache rather than relying on an application server's deployment features. An
example of this would be a webapp deploying a cache via a
javax.servlet.ServletContextListener.

After creation, you could share your cache instance among different application components either by
using an IOC container such as JBoss Microcontainer, or by binding it to JNDI, or simply holding a static
reference to the cache.

If, after deploying your cache you wish to expose a management interface to it in JMX, see Section 5.4.2,
“Registering the CacheJmxWrapper with the MBeanServer”.

5.2. VIA JBOSS MICROCONTAINER (JBOSS AS 5.X)

Beginning with AS 5, JBoss AS supports deployment of POJO services via deployment of a file whose
name ends with -jboss-beans.xml. A POJO service is one whose implementation is via a "Plain Old
Java Object", meaning a simple java bean that isn't required to implement any special interfaces or
extend any particular superclass. A Cache is a POJO service, and all the components in a
Configuration are also POJOs, so deploying a cache in this way is a natural step.

Deployment of the cache is done using the JBoss Microcontainer that forms the core of JBoss AS. JBoss
Microcontainer is a sophisticated IOC framework similar to Spring. A -jboss-beans.xml file is
basically a descriptor that tells the IOC framework how to assemble the various beans that make up a
POJO service.

For each configurable option exposed by the Configuration components, a getter/setter must be
defined in the configuration class. This is required so that JBoss Microcontainer can, in typical IOC way,
call these methods when the corresponding properties have been configured.

You need to ensure that the jbosscache-core.jar and jgroups.jar libraries are in your server's
lib directory. This is usually the case when you use JBoss AS in its all configuration. Note that you
will have to bring in any optional jars you require, such as jdbm.jar based on your cache configuration.

The following is an example -beans.xml file. If you look in the server/all/deploy directory of a
JBoss AS 5 installation, you can find several more examples.

<?xml version="1.0" encoding="UTF-8"?>

<deployment xmlns="urn:jboss:bean-deployer:2.0">

 <!-- First we create a Configuration object for the cache -->
 <bean name="ExampleCacheConfig"
 class="org.jboss.cache.config.Configuration">

 <!-- Externally injected services -->
 <property name="runtimeConfig">

CHAPTER 5. DEPLOYING JBOSS CACHE

23

See the JBoss Microcontainer documentation for details on the above syntax. Basically, each bean
element represents an object and is used to create a Configuration and its Section 3.3, “Composition
of a Configuration Object ” The DefaultCacheFactory bean constructs the cache, conceptually
doing the same thing as is shown in the Section 2.2, “Instantiating and Starting the Cache” chapter.

An interesting thing to note in the above example is the use of the RuntimeConfig object. External
resources like a TransactionManager and a JGroups ChannelFactory that are visible to the
microcontainer are dependency injected into the RuntimeConfig. The assumption here is that in some

 <bean class="org.jboss.cache.config.RuntimeConfig">
 <property name="transactionManager">
 <inject bean="jboss:service=TransactionManager"
 property="TransactionManager"/>
 </property>
 <property name="muxChannelFactory"><inject
bean="JChannelFactory"/></property>
 </bean>
 </property>

 <property name="multiplexerStack">udp</property>

 <property name="clusterName">Example-EntityCache</property>

 <property name="isolationLevel">REPEATABLE_READ</property>

 <property name="cacheMode">REPL_SYNC</property>

 <property name="stateRetrievalTimeout">15000</property>

 <property name="syncReplTimeout">20000</property>

 <property name="lockAcquisitionTimeout">15000</property>

 <property name="exposeManagementStatistics">true</property>
 </bean>

 <!-- Factory to build the Cache. -->
 <bean name="DefaultCacheFactory"
class="org.jboss.cache.DefaultCacheFactory">
 <constructor factoryClass="org.jboss.cache.DefaultCacheFactory"
 factoryMethod="getInstance" />
 </bean>

 <!-- The cache itself -->
 <bean name="ExampleCache" class="org.jboss.cache.Cache">

 <constructor factoryMethod="createCache">
 <factory bean="DefaultCacheFactory"/>
 <parameter class="org.jboss.cache.config.Configuration"><inject
bean="ExampleCacheConfig"/></parameter>
 <parameter class="boolean">false</parameter>
 </constructor>

 </bean>

</deployment>

JBoss Cache User Guide

24

http://www.jboss.org/jbossmc

other deployment descriptor in the AS, the referenced beans have already been described.

5.3. AUTOMATIC BINDING TO JNDI IN JBOSS AS

This feature is not available as of the time of this writing. We will add a wiki page describing how to use it
once it becomes available.

5.4. RUNTIME MANAGEMENT INFORMATION

JBoss Cache includes JMX MBeans to expose cache functionality and provide statistics that can be used
to analyze cache operations. JBoss Cache can also broadcast cache events as MBean notifications for
handling via JMX monitoring tools.

5.4.1. JBoss Cache MBeans

JBoss Cache provides an MBean that can be registered with your environments JMX server to allow
access to the cache instance via JMX. This MBean is the
org.jboss.cache.jmx.CacheJmxWrapper. It is a StandardMBean, so its MBean interface is
org.jboss.cache.jmx.CacheJmxWrapperMBean. This MBean can be used to:

Get a reference to the underlying Cache.

Invoke create/start/stop/destroy lifecycle operations on the underlying Cache.

Inspect various details about the cache's current state (number of nodes, lock information, etc.)

See numerous details about the cache's configuration, and change those configuration items
that can be changed when the cache has already been started.

See the CacheJmxWrapperMBean Javadoc for more details.

If a CacheJmxWrapper is registered, JBoss Cache also provides MBeans for several other internal
components and subsystems. These MBeans are used to capture and expose statistics related to the
subsystems they represent. They are hierarchically associated with the CacheJmxWrapper MBean and
have service names that reflect this relationship. For example, a replication interceptor MBean for the
jboss.cache:service=TomcatClusteringCache instance will be accessible through the service
named jboss.cache:service=TomcatClusteringCache,cache-
interceptor=ReplicationInterceptor.

5.4.2. Registering the CacheJmxWrapper with the MBeanServer

The best way to ensure the CacheJmxWrapper is registered in JMX depends on how you are deploying
your cache.

5.4.2.1. Programatic Registration with a Cache instance

Simplest way to do this is to create your Cache and pass it to the JmxRegistrationManager
constructor.

 CacheFactory factory = new DefaultCacheFactory();
 // Build but don't start the cache
 // (although it would work OK if we started it)
 Cache cache = factory.createCache("cache-configuration.xml");

CHAPTER 5. DEPLOYING JBOSS CACHE

25

5.4.2.2. Programatic Registration with a Configuration instance

Alternatively, build a Configuration object and pass it to the CacheJmxWrapper. The wrapper will
construct the Cache on your behalf.

5.4.2.3. JMX-Based Deployment in JBoss AS (JBoss AS 5.x)

CacheJmxWrapper is a POJO, so the microcontainer has no problem creating one. The trick is getting it
to register your bean in JMX. This can be done by specifying the
org.jboss.aop.microcontainer.aspects.jmx.JMX annotation on the CacheJmxWrapper
bean:

 MBeanServer server = getMBeanServer(); // however you do it
 ObjectName on = new ObjectName("jboss.cache:service=Cache");

 JmxRegistrationManager jmxManager = new JmxRegistrationManager(server,
cache, on);
 jmxManager.registerAllMBeans();

 ... use the cache

 ... on application shutdown

 jmxManager.unregisterAllMBeans();
 cache.stop();

 Configuration config = buildConfiguration(); // whatever it does

 CacheJmxWrapperMBean wrapper = new CacheJmxWrapper(config);
 MBeanServer server = getMBeanServer(); // however you do it
 ObjectName on = new ObjectName("jboss.cache:service=TreeCache");
 server.registerMBean(wrapper, on);

 // Call to wrapper.create() will build the Cache if one wasn't injected
 wrapper.create();
 wrapper.start();

 // Now that it's built, created and started, get the cache from the
wrapper
 Cache cache = wrapper.getCache();

 ... use the cache

 ... on application shutdown

 wrapper.stop();
 wrapper.destroy();

<?xml version="1.0" encoding="UTF-8"?>

<deployment xmlns="urn:jboss:bean-deployer:2.0">

 <!-- First we create a Configuration object for the cache -->

JBoss Cache User Guide

26

As discussed in the Section 5.4.2, “Registering the CacheJmxWrapper with the MBeanServer” section,
CacheJmxWrapper can do the work of building, creating and starting the Cache if it is provided with a
Configuration. With the microcontainer, this is the preferred approach, as it saves the boilerplate
XML needed to create the CacheFactory.

 <bean name="ExampleCacheConfig"
 class="org.jboss.cache.config.Configuration">

 ... build up the Configuration

 </bean>

 <!-- Factory to build the Cache. -->
 <bean name="DefaultCacheFactory"
class="org.jboss.cache.DefaultCacheFactory">
 <constructor factoryClass="org.jboss.cache.DefaultCacheFactory"
 factoryMethod="getInstance" />
 </bean>

 <!-- The cache itself -->
 <bean name="ExampleCache" class="org.jboss.cache.CacheImpl">

 <constructor factoryMethod="createnewInstance">
 <factory bean="DefaultCacheFactory"/>
 <parameter><inject bean="ExampleCacheConfig"/></parameter>
 <parameter>false</parameter>
 </constructor>

 </bean>

 <!-- JMX Management -->
 <bean name="ExampleCacheJmxWrapper"
class="org.jboss.cache.jmx.CacheJmxWrapper">

<annotation>@org.jboss.aop.microcontainer.aspects.jmx.JMX(name="jboss.cach
e:service=ExampleTreeCache",

exposedInterface=org.jboss.cache.jmx.CacheJmxWrapperMBean.class,
 registerDirectly=true)</annotation>

 <constructor>
 <parameter><inject bean="ExampleCache"/></parameter>
 </constructor>

 </bean>

</deployment>

<?xml version="1.0" encoding="UTF-8"?>

<deployment xmlns="urn:jboss:bean-deployer:2.0">

 <!-- First we create a Configuration object for the cache -->
 <bean name="ExampleCacheConfig"
 class="org.jboss.cache.config.Configuration">

CHAPTER 5. DEPLOYING JBOSS CACHE

27

5.4.3. JBoss Cache Statistics

JBoss Cache captures statistics in its interceptors and various other components, and exposes these
statistics through a set of MBeans. Gathering of statistics is enabled by default; this can be disabled for a
specific cache instance through the Configuration.setExposeManagementStatistics() setter.
Note that the majority of the statistics are provided by the CacheMgmtInterceptor, so this MBean is
the most significant in this regard. If you want to disable all statistics for performance reasons, you set
Configuration.setExposeManagementStatistics(false) and this will prevent the
CacheMgmtInterceptor from being included in the cache's interceptor stack when the cache is
started.

If a CacheJmxWrapper is registered with JMX, the wrapper also ensures that an MBean is registered in
JMX for each interceptor and component that exposes statistics.

NOTE

Note that if the CacheJmxWrapper is not registered in JMX, the interceptor MBeans will
not be registered either. The JBoss Cache 1.4 releases included code that would try to
"discover" an MBeanServer and automatically register the interceptor MBeans with it.
For JBoss Cache 2.x we decided that this sort of "discovery" of the JMX environment was
beyond the proper scope of a caching library, so we removed this functionality.

. Management tools can then access those MBeans to examine the statistics. See the section in the
Section 13.1, “JBoss Cache Statistics” pertaining to the statistics that are made available via JMX.

5.4.4. Receiving JMX Notifications

JBoss Cache users can register a listener to receive cache events described earlier in the Section 2.7, “
Adding a Cache Listener - registering for cache events ” chapter. Users can alternatively utilize the
cache's management information infrastructure to receive these events via JMX notifications. Cache
events are accessible as notifications by registering a NotificationListener for the
CacheJmxWrapper.

 ... build up the Configuration

 </bean>

 <bean name="ExampleCache" class="org.jboss.cache.jmx.CacheJmxWrapper">

 <annotation>@org.jboss.aop.microcontainer.aspects.jmx.JMX
 (name="jboss.cache:service=ExampleTreeCache",
 exposedInterface=org.jboss.cache.jmx.CacheJmxWrapperMBean.class,
 registerDirectly=true)</annotation>

 <constructor>
 <parameter><inject bean="ExampleCacheConfig"/></parameter>
 </constructor>

 </bean>

</deployment>

JBoss Cache User Guide

28

See the section in the Section 13.2, “JMX MBean Notifications” pertaining to JMX notifications for a list of
notifications that can be received through the CacheJmxWrapper.

The following is an example of how to programmatically receive cache notifications when running in a
JBoss AS environment. In this example, the client uses a filter to specify which events are of interest.

The following is the simple notification listener implementation used in the previous example.

 MyListener listener = new MyListener();
 NotificationFilterSupport filter = null;

 // get reference to MBean server
 Context ic = new InitialContext();
 MBeanServerConnection server =
(MBeanServerConnection)ic.lookup("jmx/invoker/RMIAdaptor");

 // get reference to CacheMgmtInterceptor MBean
 String cache_service = "jboss.cache:service=TomcatClusteringCache";
 ObjectName mgmt_name = new ObjectName(cache_service);

 // configure a filter to only receive node created and removed events
 filter = new NotificationFilterSupport();
 filter.disableAllTypes();
 filter.enableType(CacheNotificationBroadcaster.NOTIF_NODE_CREATED);
 filter.enableType(CacheNotificationBroadcaster.NOTIF_NODE_REMOVED);

 // register the listener with a filter
 // leave the filter null to receive all cache events
 server.addNotificationListener(mgmt_name, listener, filter, null);

 // ...

 // on completion of processing, unregister the listener
 server.removeNotificationListener(mgmt_name, listener, filter, null);

 private class MyListener implements NotificationListener, Serializable
 {
 public void handleNotification(Notification notification, Object
handback)
 {
 String message = notification.getMessage();
 String type = notification.getType();
 Object userData = notification.getUserData();

 System.out.println(type + ": " + message);

 if (userData == null)
 {
 System.out.println("notification data is null");
 }
 else if (userData instanceof String)
 {
 System.out.println("notification data: " + (String) userData);
 }
 else if (userData instanceof Object[])
 {

CHAPTER 5. DEPLOYING JBOSS CACHE

29

Note that the JBoss Cache management implementation only listens to cache events after a client
registers to receive MBean notifications. As soon as no clients are registered for notifications, the MBean
will remove itself as a cache listener.

5.4.5. Accessing Cache MBeans in a Standalone Environment using the jconsole
Utility

JBoss Cache MBeans are easily accessed when running cache instances in an application server that
provides an MBean server interface such as JBoss JMX Console. Refer to your server documentation
for instructions on how to access MBeans running in a server's MBean container.

In addition, though, JBoss Cache MBeans are also accessible when running in a non-server
environment using your JDK's jconsole tool. When running a standalone cache outside of an
application server, you can access the cache's MBeans as follows.

1. Set the system property -Dcom.sun.management.jmxremote when starting the JVM where
the cache will run.

2. Once the JVM is running, start the jconsole utility, located in your JDK's /bin directory.

3. When the utility loads, you will be able to select your running JVM and connect to it. The JBoss
Cache MBeans will be available on the MBeans panel.

Note that the jconsole utility will automatically register as a listener for cache notifications when
connected to a JVM running JBoss Cache instances.

 Object[] ud = (Object[]) userData;
 for (Object data : ud)
 {
 System.out.println("notification data: " +
data.toString());
 }
 }
 else
 {
 System.out.println("notification data class: " +
userData.getClass().getName());
 }
 }
 }

JBoss Cache User Guide

30

CHAPTER 6. VERSION COMPATIBILITY AND
INTEROPERABILITY

6.1. API COMPATIBILITY

Within a major version, releases of JBoss Cache are meant to be compatible and interoperable.
Compatible in the sense that it should be possible to upgrade an application from one version to another
by simply replacing jars. Interoperable in the sense that if two different versions of JBoss Cache are
used in the same cluster, they should be able to exchange replication and state transfer messages. Note
however that interoperability requires use of the same JGroups version in all nodes in the cluster. In
most cases, the version of JGroups used by a version of JBoss Cache can be upgraded.

As such, JBoss Cache 2.x.x is not API or binary compatible with prior 1.x.x versions. On the other hand,
JBoss Cache 2.1.x will be API and binary compatible with 2.0.x.

We have made best efforts, however, to keep JBoss Cache 3.x both binary and API compatible with 2.x.
Still, it is recommended that client code is updated not to use deprecated methods, classes and
configuration files.

6.2. WIRE-LEVEL INTEROPERABILITY

A configuration parameter, Configuration.setReplicationVersion(), is available and is used to
control the wire format of inter-cache communications. They can be wound back from more efficient and
newer protocols to "compatible" versions when talking to older releases. This mechanism allows us to
improve JBoss Cache by using more efficient wire formats while still providing a means to preserve
interoperability.

6.3. COMPATIBILITY MATRIX

A compatibility matrix is maintained on the JBoss Cache website, which contains information on different
versions of JBoss Cache, JGroups and JBoss Application Server.

CHAPTER 6. VERSION COMPATIBILITY AND INTEROPERABILITY

31

http://www.jboss.org/jbosscache/compatibility/index.html

PART II. JBOSS CACHE ARCHITECTURE

This section digs deeper into the JBoss Cache architecture, and is meant for developers wishing to use
the more advanced cache features,extend or enhance the cache, write plugins, or are just looking for
detailed knowledge of how things work under the hood.

JBoss Cache User Guide

32

CHAPTER 7. ARCHITECTURE

7.1. DATA STRUCTURES WITHIN THE CACHE

A Cache consists of a collection of Node instances, organised in a tree structure. Each Node contains a
Map which holds the data objects to be cached. It is important to note that the structure is a mathematical
tree, and not a graph; each Node has one and only one parent, and the root node is denoted by the
constant fully qualified name, Fqn.ROOT.

Figure 7.1. Data structured as a tree

In the diagram above, each box represents a JVM. You see 2 caches in separate JVMs, replicating data
to each other.

Any modifications (see Chapter 2, User API) in one cache instance will be replicated to the other cache.
Naturally, you can have more than 2 caches in a cluster. Depending on the transactional settings, this
replication will occur either after each modification or at the end of a transaction, at commit time. When a
new cache is created, it can optionally acquire the contents from one of the existing caches on startup.

7.2. SPI INTERFACES

In addition to Cache and Node interfaces, JBoss Cache exposes more powerful CacheSPI and
NodeSPI interfaces, which offer more control over the internals of JBoss Cache. These interfaces are
not intended for general use, but are designed for people who wish to extend and enhance JBoss
Cache, or write custom Interceptor or CacheLoader instances.

CHAPTER 7. ARCHITECTURE

33

Figure 7.2. SPI Interfaces

The CacheSPI interface cannot be created, but is injected into Interceptor and CacheLoader
implementations by the setCache(CacheSPI cache) methods on these interfaces. CacheSPI
extends Cache so all the functionality of the basic API is also available.

Similarly, a NodeSPI interface cannot be created. Instead, one is obtained by performing operations on
CacheSPI, obtained as above. For example, Cache.getRoot() : Node is overridden as
CacheSPI.getRoot() : NodeSPI.

It is important to note that directly casting a Cache or Node to its SPI counterpart is not recommended
and is bad practice, since the inheritace of interfaces it is not a contract that is guaranteed to be upheld
moving forward. The exposed public APIs, on the other hand, is guaranteed to be upheld.

7.3. METHOD INVOCATIONS ON NODES

Since the cache is essentially a collection of nodes, aspects such as clustering, persistence, eviction, etc.
need to be applied to these nodes when operations are invoked on the cache as a whole or on individual
nodes. To achieve this in a clean, modular and extensible manner, an interceptor chain is used. The
chain is built up of a series of interceptors, each one adding an aspect or particular functionality. The
chain is built when the cache is created, based on the configuration used.

It is important to note that the NodeSPI offers some methods (such as the xxxDirect() method

JBoss Cache User Guide

34

family) that operate on a node directly without passing through the interceptor stack. Plugin authors
should note that using such methods will affect the aspects of the cache that may need to be applied,
such as locking, replication, etc. To put it simply, don't use such methods unless you really know what
you're doing!

7.3.1. Interceptors

JBoss Cache essentially is a core data structure - an implementation of DataContainer - and aspects
and features are implemented using interceptors in front of this data structure. A CommandInterceptor
is an abstract class, interceptor implementations extend this.

CommandInterceptor implements the Visitor interface so it is able to alter commands in a strongly
typed manner as the command makes its way to the data structure. More on visitors and commands in
the next section.

Interceptor implementations are chained together in the InterceptorChain class, which dispatches a
command across the chain of interceptors. A special interceptor, the CallInterceptor, always sits at
the end of this chain to invoke the command being passed up the chain by calling the command's
process() method.

JBoss Cache ships with several interceptors, representing different behavioral aspects, some of which
are:

TxInterceptor - looks for ongoing transactions and registers with transaction managers to
participate in synchronization events

ReplicationInterceptor - replicates state across a cluster using the RpcManager class

CacheLoaderInterceptor - loads data from a persistent store if the data requested is not
available in memory

The interceptor chain configured for your cache instance can be obtained and inspected by calling
CacheSPI.getInterceptorChain(), which returns an ordered List of interceptors in the order in
which they would be encountered by a command.

7.3.1.1. Writing Custom Interceptors

Custom interceptors to add specific aspects or features can be written by extending
CommandInterceptor and overriding the relevant visitXXX() methods based on the commands you
are interested in intercepting. There are other abstract interceptors you could extend instead, such as
the PrePostProcessingCommandInterceptor and the SkipCheckChainedInterceptor. Please
see their respective javadocs for details on the extra features provided.

The custom interceptor will need to be added to the interceptor chain by using the
Cache.addInterceptor() methods. See the javadocs on these methods for details.

Adding custom interceptors via XML is also supported, please see the Chapter 12, Configuration
References for details.

7.3.2. Commands and Visitors

Internally, JBoss Cache uses a command/visitor pattern to execute API calls. Whenever a method is
called on the cache interface, the CacheInvocationDelegate, which implements the Cache
interface, creates an instance of VisitableCommand and dispatches this command up a chain of

CHAPTER 7. ARCHITECTURE

35

interceptors. Interceptors, which implement the Visitor interface, are able to handle
VisitableCommands they are interested in, and add behavior to the command.

Each command contains all knowledge of the command being executed such as parameters used and
processing behavior, encapsulated in a process() method. For example, the RemoveNodeCommand is
created and passed up the interceptor chain when Cache.removeNode() is called, and
RemoveNodeCommand.process() has the necessary knowledge of how to remove a node from the
data structure.

In addition to being visitable, commands are also replicable. The JBoss Cache marshallers know how to
efficiently marshal commands and invoke them on remote cache instances using an internal RPC
mechanism based on JGroups.

7.3.3. InvocationContexts

InvocationContext holds intermediate state for the duration of a single invocation, and is set up and
destroyed by the InvocationContextInterceptor which sits at the start of the interceptor chain.

InvocationContext, as its name implies, holds contextual information associated with a single cache
method invocation. Contextual information includes associated javax.transaction.Transaction
or org.jboss.cache.transaction.GlobalTransaction, method invocation origin (
InvocationContext.isOriginLocal()) as well as Section 3.4.1, “Overriding the Configuration via
the Option API”, and information around which nodes have been locked, etc.

The InvocationContext can be obtained by calling Cache.getInvocationContext().

7.4. MANAGERS FOR SUBSYSTEMS

Some aspects and functionality is shared by more than a single interceptor. Some of these have been
encapsulated into managers, for use by various interceptors, and are made available by the CacheSPI
interface.

7.4.1. RpcManager

This class is responsible for calls made via the JGroups channel for all RPC calls to remote caches, and
encapsulates the JGroups channel used.

7.4.2. BuddyManager

This class manages buddy groups and invokes group organization remote calls to organize a cluster of
caches into smaller sub-groups.

7.4.3. CacheLoaderManager

Sets up and configures cache loaders. This class wraps individual CacheLoader instances in
delegating classes, such as SingletonStoreCacheLoader or AsyncCacheLoader, or may add the
CacheLoader to a chain using the ChainingCacheLoader.

7.5. MARSHALLING AND WIRE FORMATS

Early versions of JBoss Cache simply wrote cached data to the network by writing to an
ObjectOutputStream during replication. Over various releases in the JBoss Cache 1.x.x series this
approach was gradually deprecated in favor of a more mature marshalling framework. In the JBoss

JBoss Cache User Guide

36

Cache 2.x.x series, this is the only officially supported and recommended mechanism for writing objects
to datastreams.

Figure 7.3. The Marshaller interface

7.5.1. The Marshaller Interface

The Marshaller interface extends RpcDispatcher.Marshaller from JGroups. This interface has
two main implementations - a delegating VersionAwareMarshaller and a concrete
CacheMarshaller300 .

The marshaller can be obtained by calling CacheSPI.getMarshaller(), and defaults to the
VersionAwareMarshaller. Users may also write their own marshallers by implementing the
Marshaller interface or extending the AbstractMarshaller class, and adding it to their
configuration by using the Configuration.setMarshallerClass() setter.

7.5.2. VersionAwareMarshaller

As the name suggests, this marshaller adds a version short to the start of any stream when writing,
enabling similar VersionAwareMarshaller instances to read the version short and know which
specific marshaller implementation to delegate the call to. For example, CacheMarshaller200 is the
marshaller for JBoss Cache 2.0.x. JBoss Cache 3.0.x ships with CacheMarshaller300 with an

CHAPTER 7. ARCHITECTURE

37

improved wire protocol. Using a VersionAwareMarshaller helps achieve wire protocol compatibility
between minor releases but still affords us the flexibility to tweak and improve the wire protocol between
minor or micro releases.

7.6. CLASS LOADING AND REGIONS

When used to cluster state of application servers, applications deployed in the application tend to put
instances of objects specific to their application in the cache (or in an HttpSession object) which would
require replication. It is common for application servers to assign separate ClassLoader instances to
each application deployed, but have JBoss Cache libraries referenced by the application server's
ClassLoader.

To enable us to successfully marshall and unmarshall objects from such class loaders, we use a concept
called regions. A region is a portion of the cache which share a common class loader (a region also has
other uses - see Chapter 10, Eviction).

A region is created by using the Cache.getRegion(Fqn fqn, boolean createIfNotExists)
method, and returns an implementation of the Region interface. Once a region is obtained, a class
loader for the region can be set or unset, and the region can be activated/deactivated. By default,
regions are active unless the InactiveOnStartup configuration attribute is set to true.

JBoss Cache User Guide

38

CHAPTER 8. CACHE MODES AND CLUSTERING
This chapter talks about aspects around clustering JBoss Cache.

8.1. CACHE REPLICATION MODES

JBoss Cache can be configured to be either local (standalone) or clustered. If in a cluster, the cache can
be configured to replicate changes, or to invalidate changes. A detailed discussion on this follows.

8.1.1. Local Mode

Local caches don't join a cluster and don't communicate with other caches in a cluster. The dependency
on the JGroups library is still there, although a JGroups channel is not started.

8.1.2. Replicated Caches

Replicated caches replicate all changes to some or all of the other cache instances in the cluster.
Replication can either happen after each modification (no transactions or batches), or at the end of a
transaction or batch.

Replication can be synchronous or asynchronous. Use of either one of the options is application
dependent. Synchronous replication blocks the caller (e.g. on a put()) until the modifications have
been replicated successfully to all nodes in a cluster. Asynchronous replication performs replication in
the background (the put() returns immediately). JBoss Cache also offers a replication queue, where
modifications are replicated periodically (i.e. interval-based), or when the queue size exceeds a number
of elements, or a combination thereof. A replication queue can therefore offer much higher performance
as the actual replication is performed by a background thread.

Asynchronous replication is faster (no caller blocking), because synchronous replication requires
acknowledgments from all nodes in a cluster that they received and applied the modification successfully
(round-trip time). However, when a synchronous replication returns successfully, the caller knows for sure
that all modifications have been applied to all cache instances, whereas this is not be the case with
asynchronous replication. With asynchronous replication, errors are simply written to a log. Even when
using transactions, a transaction may succeed but replication may not succeed on all cache instances.

8.1.2.1. Replicated Caches and Transactions

When using transactions, replication only occurs at the transaction boundary - i.e., when a transaction
commits. This results in minimizing replication traffic since a single modification is broadcast rather than
a series of individual modifications, and can be a lot more efficient than not using transactions. Another
effect of this is that if a transaction were to roll back, nothing is broadcast across a cluster.

Depending on whether you are running your cluster in asynchronous or synchronous mode, JBoss
Cache will use either a single phase or two-phase commit protocol, respectively.

8.1.2.1.1. One Phase Commits

Used when your cache mode is REPL_ASYNC. All modifications are replicated in a single call, which
instructs remote caches to apply the changes to their local in-memory state and commit locally. Remote
errors/rollbacks are never fed back to the originator of the transaction since the communication is
asynchronous.

8.1.2.1.2. Two Phase Commits

CHAPTER 8. CACHE MODES AND CLUSTERING

39

http://en.wikipedia.org/wiki/Two-phase_commit_protocol

Used when your cache mode is REPL_SYNC. Upon committing your transaction, JBoss Cache
broadcasts a prepare call, which carries all modifications relevant to the transaction. Remote caches
then acquire local locks on their in-memory state and apply the modifications. Once all remote caches
respond to the prepare call, the originator of the transaction broadcasts a commit. This instructs all
remote caches to commit their data. If any of the caches fail to respond to the prepare phase, the
originator broadcasts a rollback.

Note that although the prepare phase is synchronous, the commit and rollback phases are asynchronous.
This is because Sun's JTA specification does not specify how transactional resources should deal with
failures at this stage of a transaction; and other resources participating in the transaction may have
indeterminate state anyway. As such, we do away with the overhead of synchronous communication for
this phase of the transaction. That said, they can be forced to be synchronous using the
SyncCommitPhase and SyncRollbackPhase configuration attributes.

8.1.2.2. Buddy Replication

Buddy Replication allows you to suppress replicating your data to all instances in a cluster. Instead, each
instance picks one or more 'buddies' in the cluster, and only replicates to these specific buddies. This
greatly helps scalability as there is no longer a memory and network traffic impact every time another
instance is added to a cluster.

One of the most common use cases of Buddy Replication is when a replicated cache is used by a servlet
container to store HTTP session data. One of the pre-requisites to buddy replication working well and
being a real benefit is the use of session affinity , more casually known as sticky sessions in HTTP
session replication speak. What this means is that if certain data is frequently accessed, it is desirable
that this is always accessed on one instance rather than in a round-robin fashion as this helps the cache
cluster optimize how it chooses buddies, where it stores data, and minimizes replication traffic.

If this is not possible, Buddy Replication may prove to be more of an overhead than a benefit.

8.1.2.2.1. Selecting Buddies

Figure 8.1. BuddyLocator

Buddy Replication uses an instance of a BuddyLocator which contains the logic used to select buddies
in a network. JBoss Cache currently ships with a single implementation, NextMemberBuddyLocator,
which is used as a default if no implementation is provided. The NextMemberBuddyLocator selects
the next member in the cluster, as the name suggests, and guarantees an even spread of buddies for
each instance.

The NextMemberBuddyLocator takes in 2 parameters, both optional.

numBuddies - specifies how many buddies each instance should pick to back its data onto.
This defaults to 1.

JBoss Cache User Guide

40

http://java.sun.com/products/jta/

ignoreColocatedBuddies - means that each instance will try to select a buddy on a different
physical host. If not able to do so though, it will fall back to co-located instances. This defaults to
true .

8.1.2.2.2. BuddyPools

Also known as replication groups, a buddy pool is an optional construct where each instance in a cluster
may be configured with a buddy pool name. Think of this as an 'exclusive club membership' where when
selecting buddies, BuddyLocator s that support buddy pools would try and select buddies sharing the
same buddy pool name. This allows system administrators a degree of flexibility and control over how
buddies are selected. For example, a sysadmin may put two instances on two separate physical servers
that may be on two separate physical racks in the same buddy pool. So rather than picking an instance
on a different host on the same rack, BuddyLocator s would rather pick the instance in the same
buddy pool, on a separate rack which may add a degree of redundancy.

8.1.2.2.3. Failover

In the unfortunate event of an instance crashing, it is assumed that the client connecting to the cache
(directly or indirectly, via some other service such as HTTP session replication) is able to redirect the
request to any other random cache instance in the cluster. This is where a concept of Data Gravitation
comes in.

Data Gravitation is a concept where if a request is made on a cache in the cluster and the cache does
not contain this information, it asks other instances in the cluster for the data. In other words, data is lazily
transferred, migrating only when other nodes ask for it. This strategy prevents a network storm effect
where lots of data is pushed around healthy nodes because only one (or a few) of them die.

If the data is not found in the primary section of some node, it would (optionally) ask other instances to
check in the backup data they store for other caches. This means that even if a cache containing your
session dies, other instances will still be able to access this data by asking the cluster to search through
their backups for this data.

Once located, this data is transferred to the instance which requested it and is added to this instance's
data tree. The data is then (optionally) removed from all other instances (and backups) so that if session
affinity is used, the affinity should now be to this new cache instance which has just taken ownership of
this data.

Data Gravitation is implemented as an interceptor. The following (all optional) configuration properties
pertain to data gravitation.

dataGravitationRemoveOnFind - forces all remote caches that own the data or hold
backups for the data to remove that data, thereby making the requesting cache the new data
owner. This removal, of course, only happens after the new owner finishes replicating data to its
buddy. If set to false an evict is broadcast instead of a remove, so any state persisted in cache
loaders will remain. This is useful if you have a shared cache loader configured. Defaults to
true .

dataGravitationSearchBackupTrees - Asks remote instances to search through their
backups as well as main data trees. Defaults to true . The resulting effect is that if this is true
then backup nodes can respond to data gravitation requests in addition to data owners.

autoDataGravitation - Whether data gravitation occurs for every cache miss. By default this
is set to false to prevent unnecessary network calls. Most use cases will know when it may
need to gravitate data and will pass in an Option to enable data gravitation on a per-invocation
basis. If autoDataGravitation is true this Option is unnecessary.

CHAPTER 8. CACHE MODES AND CLUSTERING

41

8.1.2.2.4. Configuration

See the Chapter 12, Configuration References for details on configuring buddy replication.

8.2. INVALIDATION

If a cache is configured for invalidation rather than replication, every time data is changed in a cache
other caches in the cluster receive a message informing them that their data is now stale and should be
evicted from memory. Invalidation, when used with a shared cache loader (see chapter on Chapter 9,
Cache Loaders) would cause remote caches to refer to the shared cache loader to retrieve modified
data. The benefit of this is twofold: network traffic is minimized as invalidation messages are very small
compared to replicating updated data, and also that other caches in the cluster look up modified data in a
lazy manner, only when needed.

Invalidation messages are sent after each modification (no transactions or batches), or at the end of a
transaction or batch, upon successful commit. This is usually more efficient as invalidation messages
can be optimized for the transaction as a whole rather than on a per-modification basis.

Invalidation too can be synchronous or asynchronous, and just as in the case of replication, synchronous
invalidation blocks until all caches in the cluster receive invalidation messages and have evicted stale
data while asynchronous invalidation works in a 'fire-and-forget' mode, where invalidation messages are
broadcast but doesn't block and wait for responses.

8.3. STATE TRANSFER

State Transfer refers to the process by which a JBoss Cache instance prepares itself to begin providing
a service by acquiring the current state from another cache instance and integrating that state into its
own state.

8.3.1. State Transfer Types

There are three divisions of state transfer types depending on a point of view related to state transfer.
First, in the context of particular state transfer implementation, the underlying plumbing, there are two
starkly different state transfer types: byte array and streaming based state transfer. Second, state
transfer can be full or partial state transfer depending on a subtree being transferred. Entire cache tree
transfer represents full transfer while transfer of a particular subtree represents partial state transfer. And
finally state transfer can be "in-memory" and "persistent" transfer depending on a particular use of cache.

8.3.2. Byte array and streaming based state transfer

Byte array based transfer was a default and only transfer methodology for cache in all previous releases
up to 2.0. Byte array based transfer loads entire state transferred into a byte array and sends it to a state
receiving member. Major limitation of this approach is that the state transfer that is very large (>1GB)
would likely result in OutOfMemoryException. Streaming state transfer provides an InputStream to a
state reader and an OutputStream to a state writer. OutputStream and InputStream abstractions enable
state transfer in byte chunks thus resulting in smaller memory requirements. For example, if application
state is represented as a tree whose aggregate size is 1GB, rather than having to provide a 1GB byte
array streaming state transfer transfers the state in chunks of N bytes where N is user configurable.

Byte array and streaming based state transfer are completely API transparent, interchangeable, and
statically configured through a standard cache configuration XML file. Refer to JGroups documentation
on how to change from one type of transfer to another.

8.3.3. Full and partial state transfer

JBoss Cache User Guide

42

If either in-memory or persistent state transfer is enabled, a full or partial state transfer will be done at
various times, depending on how the cache is used. "Full" state transfer refers to the transfer of the state
related to the entire tree -- i.e. the root node and all nodes below it. A "partial" state transfer is one where
just a portion of the tree is transferred -- i.e. a node at a given Fqn and all nodes below it.

If either in-memory or persistent state transfer is enabled, state transfer will occur at the following times:

1. Initial state transfer. This occurs when the cache is first started (as part of the processing of the
start() method). This is a full state transfer. The state is retrieved from the cache instance that

has been operational the longest. [1] If there is any problem receiving or integrating the state, the
cache will not start.

Initial state transfer will occur unless:

1. The cache's InactiveOnStartup property is true. This property is used in conjunction
with region-based marshalling.

2. Buddy replication is used. See below for more on state transfer with buddy replication.

2. Partial state transfer following region activation. When region-based marshalling is used, the
application needs to register a specific class loader with the cache. This class loader is used to
unmarshall the state for a specific region (subtree) of the cache.

After registration, the application calls cache.getRegion(fqn, true).activate(), which
initiates a partial state transfer of the relevant subtree's state. The request is first made to the
oldest cache instance in the cluster. However, if that instance responds with no state, it is then
requested from each instance in turn until one either provides state or all instances have been
queried.

Typically when region-based marshalling is used, the cache's InactiveOnStartup property is
set to true. This suppresses initial state transfer, which would fail due to the inability to
deserialize the transferred state.

3. Buddy replication. When buddy replication is used, initial state transfer is disabled. Instead,
when a cache instance joins the cluster, it becomes the buddy of one or more other instances,
and one or more other instances become its buddy. Each time an instance determines it has a
new buddy providing backup for it, it pushes its current state to the new buddy. This "pushing" of
state to the new buddy is slightly different from other forms of state transfer, which are based on
a "pull" approach (i.e. recipient asks for and receives state). However, the process of preparing
and integrating the state is the same.

This "push" of state upon buddy group formation only occurs if the InactiveOnStartup
property is set to false. If it is true, state transfer amongst the buddies only occurs when the
application activates the region on the various members of the group.

Partial state transfer following a region activation call is slightly different in the buddy replication
case as well. Instead of requesting the partial state from one cache instance, and trying all
instances until one responds, with buddy replication the instance that is activating a region will
request partial state from each instance for which it is serving as a backup.

8.3.4. Transient ("in-memory") and persistent state transfer

The state that is acquired and integrated can consist of two basic types:

1. "Transient" or "in-memory" state. This consists of the actual in-memory state of another cache
instance - the contents of the various in-memory nodes in the cache that is providing state are

CHAPTER 8. CACHE MODES AND CLUSTERING

43

serialized and transferred; the recipient deserializes the data, creates corresponding nodes in its
own in-memory tree, and populates them with the transferred data.

"In-memory" state transfer is enabled by setting the cache's FetchInMemoryState
configuration attribute to true.

2. "Persistent" state. Only applicable if a non-shared cache loader is used. The state stored in the
state-provider cache's persistent store is deserialized and transferred; the recipient passes the
data to its own cache loader, which persists it to the recipient's persistent store.

"Persistent" state transfer is enabled by setting a cache loader's fetchPersistentState
attribute to true. If multiple cache loaders are configured in a chain, only one can have this
property set to true; otherwise you will get an exception at startup.

Persistent state transfer with a shared cache loader does not make sense, as the same
persistent store that provides the data will just end up receiving it. Therefore, if a shared cache
loader is used, the cache will not allow a persistent state transfer even if a cache loader has
fetchPersistentState set to true.

Which of these types of state transfer is appropriate depends on the usage of the cache.

1. If a write-through cache loader is used, the current cache state is fully represented by the
persistent state. Data may have been evicted from the in-memory state, but it will still be in the
persistent store. In this case, if the cache loader is not shared, persistent state transfer is used
to ensure the new cache has the correct state. In-memory state can be transferred as well if the
desire is to have a "hot" cache -- one that has all relevant data in memory when the cache
begins providing service. (Note that the <preload> element in the <loaders> configuration
element can be used as well to provide a "warm" or "hot" cache without requiring an in-memory
state transfer. This approach somewhat reduces the burden on the cache instance providing
state, but increases the load on the persistent store on the recipient side.)

2. If a cache loader is used with passivation, the full representation of the state can only be
obtained by combining the in-memory (i.e. non-passivated) and persistent (i.e. passivated)
states. Therefore an in-memory state transfer is necessary. A persistent state transfer is
necessary if the cache loader is not shared.

3. If no cache loader is used and the cache is solely a write-aside cache (i.e. one that is used to
cache data that can also be found in a persistent store, e.g. a database), whether or not in-
memory state should be transferred depends on whether or not a "hot" cache is desired.

8.3.5. Configuring State Transfer

To ensure state transfer behaves as expected, it is important that all nodes in the cluster are configured
with the same settings for persistent and transient state. This is because byte array based transfers,
when requested, rely only on the requester's configuration while stream based transfers rely on both the
requester and sender's configuration, and this is expected to be identical.

[1] The longest operating cache instance is always, in JGroups terms, the coordinator.

JBoss Cache User Guide

44

CHAPTER 9. CACHE LOADERS
JBoss Cache can use a CacheLoader to back up the in-memory cache to a backend datastore. If
JBoss Cache is configured with a cache loader, then the following features are provided:

Whenever a cache element is accessed, and that element is not in the cache (e.g. due to eviction
or due to server restart), then the cache loader transparently loads the element into the cache if
found in the backend store.

Whenever an element is modified, added or removed, then that modification is persisted in the
backend store via the cache loader. If transactions are used, all modifications created within a
transaction are persisted. To this end, the CacheLoader takes part in the two phase commit
protocol run by the transaction manager, although it does not do so explicitly.

9.1. THE CACHELOADER INTERFACE AND LIFECYCLE

Figure 9.1. The CacheLoader interface

The interaction between JBoss Cache and a CacheLoader implementation is as follows. When
CacheLoaderConfiguration (see below) is non-null, an instance of each configured CacheLoader
is created when the cache is created, and started when the cache is started.

CacheLoader.create() and CacheLoader.start() are called when the cache is started.
Correspondingly, stop() and destroy() are called when the cache is stopped.

Next, setConfig() and setCache() are called. The latter can be used to store a reference to the
cache, the former is used to configure this instance of the CacheLoader . For example, here a database
cache loader could establish a connection to the database.

CHAPTER 9. CACHE LOADERS

45

The CacheLoader interface has a set of methods that are called when no transactions are used: get()
, put() , remove() and removeData() : they get/set/remove the value immediately. These methods
are described as javadoc comments in the interface.

Then there are three methods that are used with transactions: prepare() , commit() and
rollback() . The prepare() method is called when a transaction is to be committed. It has a
transaction object and a list of modfications as argument. The transaction object can be used as a key
into a hashmap of transactions, where the values are the lists of modifications. Each modification list has
a number of Modification elements, which represent the changes made to a cache for a given
transaction. When prepare() returns successfully, then the cache loader must be able to commit (or
rollback) the transaction successfully.

JBoss Cache takes care of calling prepare(), commit() and rollback() on the cache loaders at the right
time.

The commit() method tells the cache loader to commit the transaction, and the rollback() method
tells the cache loader to discard the changes associated with that transaction.

See the javadocs on this interface for a detailed explanation on each method and the contract
implementations would need to fulfill.

9.2. CONFIGURATION

Cache loaders are configured as follows in the JBoss Cache XML file. Note that you can define several
cache loaders, in a chain. The impact is that the cache will look at all of the cache loaders in the order
they've been configured, until it finds a valid, non-null element of data. When performing writes, all cache
loaders are written to, except if the ignoreModifications element has been set to true for a specific
cache loader. See the configuration section below for details.

The class element defines the class of the cache loader implementation. (Note that, because of a bug
in the properties editor in JBoss AS, backslashes in variables for Windows filenames might not get

...

<!-- Cache loader config block -->
<!-- if passivation is true, only the first cache loader is used; the rest
are ignored -->
<loaders passivation="false" shared="false">
 <preload>
 <!-- Fqns to preload -->
 <node fqn="/some/stuff"/>
 </preload>
 <!-- if passivation is true, only the first cache loader is used;
the rest are ignored -->
 <loader class="org.jboss.cache.loader.JDBCCacheLoader" async="false"
fetchPersistentState="true"
 ignoreModifications="false" purgeOnStartup="false">
 <properties>
 cache.jdbc.driver=com.mysql.jdbc.Driver
 cache.jdbc.url=jdbc:mysql://localhost:3306/jbossdb
 cache.jdbc.user=root
 cache.jdbc.password=
 </properties>
 </loader>
 </loaders>

JBoss Cache User Guide

46

expanded correctly, so replace="false" may be necessary). Note that an implementation of cache loader
has to have an empty constructor.

The properties element defines a configuration specific to the given implementation. The filesystem-
based implementation for example defines the root directory to be used, whereas a database
implementation might define the database URL, name and password to establish a database connection.
This configuration is passed to the cache loader implementation via
CacheLoader.setConfig(Properties). Note that backspaces may have to be escaped.

preload allows us to define a list of nodes, or even entire subtrees, that are visited by the cache on
startup, in order to preload the data associated with those nodes. The default ("/") loads the entire data
available in the backend store into the cache, which is probably not a good idea given that the data in the
backend store might be large. As an example, /a, /product/catalogue loads the subtrees /a and
/product/catalogue into the cache, but nothing else. Anything else is loaded lazily when accessed.
Preloading makes sense when one anticipates using elements under a given subtree frequently. .

fetchPersistentState determines whether or not to fetch the persistent state of a cache when
joining a cluster. Only one configured cache loader may set this property to true; if more than one cache
loader does so, a configuration exception will be thrown when starting your cache service.

async determines whether writes to the cache loader block until completed, or are run on a separate
thread so writes return immediately. If this is set to true, an instance of
org.jboss.cache.loader.AsyncCacheLoader is constructed with an instance of the actual cache
loader to be used. The AsyncCacheLoader then delegates all requests to the underlying cache loader,
using a separate thread if necessary. See the Javadocs on AsyncCacheLoader for more details. If
unspecified, the async element defaults to false.

NOTE

There is always the possibility of dirty reads since all writes are performed
asynchronously, and it is thus impossible to guarantee when (and even if) a write
succeeds. This needs to be kept in mind when setting the async element to true.

ignoreModifications determines whether write methods are pushed down to the specific cache
loader. Situations may arise where transient application data should only reside in a file based cache
loader on the same server as the in-memory cache, for example, with a further shared
JDBCCacheLoader used by all servers in the network. This feature allows you to write to the 'local' file
cache loader but not the shared JDBCCacheLoader. This property defaults to false, so writes are
propagated to all cache loaders configured.

purgeOnStatup empties the specified cache loader (if ignoreModifications is false) when the
cache loader starts up.

shared indicates that the cache loader is shared among different cache instances, for example where
all instances in a cluster use the same JDBC settings t talk to the same remote, shared database. Setting
this to true prevents repeated and unnecessary writes of the same data to the cache loader by different
cache instances. Default value is false .

9.2.1. Singleton Store Configuration

 <loaders passivation="false" shared="true">
 <preload>
 <node fqn="/a/b/c"/>
 <node fqn="/f/r/s"/>

CHAPTER 9. CACHE LOADERS

47

singletonStore element enables modifications to be stored by only one node in the cluster, the
coordinator. Essentially, whenever any data comes in to some node it is always replicated so as to keep
the caches' in-memory states in sync; the coordinator, though, has the sole responsibility of pushing that
state to disk. This functionality can be activated setting the enabled subelement to true in all nodes, but
again only the coordinator of the cluster will store the modifications in the underlying cache loader as
defined in loader element. You cannot define a cache loader as shared and with singletonStore
enabled at the same time. Default value for enabled is false.

Optionally, within the singletonStore element, you can define a class element that specifies the
implementation class that provides the singleton store functionality. This class must extend
org.jboss.cache.loader.AbstractDelegatingCacheLoader, and if absent, it defaults to
org.jboss.cache.loader.SingletonStoreCacheLoader.

The properties subelement defines properties that allow changing the behavior of the class providing
the singleton store functionality. By default, pushStateWhenCoordinator and
pushStateWhenCoordinatorTimeout properties have been defined, but more could be added as
required by the user-defined class providing singleton store functionality.

pushStateWhenCoordinator allows the in-memory state to be pushed to the cache store when a
node becomes the coordinator, as a result of the new election of coordinator due to a cluster topology
change. This can be very useful in situations where the coordinator crashes and there's a gap in time
until the new coordinator is elected. During this time, if this property was set to false and the cache was
updated, these changes would never be persisted. Setting this property to true would ensure that any
changes during this process also get stored in the cache loader. You would also want to set this property
to true if each node's cache loader is configured with a different location. Default value is true.

pushStateWhenCoordinatorTimeout is only relevant if pushStateWhenCoordinator is true in
which case, sets the maximum number of milliseconds that the process of pushing the in-memory state
to the underlying cache loader should take, reporting a PushStateException if exceeded. Default
value is 20000.

 </preload>

 <!-- we can now have multiple cache loaders, which get chained -->
 <loader class="org.jboss.cache.loader.JDBCCacheLoader" async="false"
fetchPersistentState="false"
 ignoreModifications="false" purgeOnStartup="false">
 <properties>
 cache.jdbc.datasource=java:/DefaultDS
 </properties>
 <singletonStore enabled="true"
class="org.jboss.cache.loader.SingletonStoreCacheLoader">
 <properties>
 pushStateWhenCoordinator=true
 pushStateWhenCoordinatorTimeout=20000
 </properties>
 </singletonStore>
 </loader>
 </loaders>

JBoss Cache User Guide

48

NOTE

Setting up a cache loader as a singleton and using cache passivation (via evictions) can
lead to undesired effects. If a node is to be passivated as a result of an eviction, while the
cluster is in the process of electing a new coordinator, the data will be lost. This is
because no coordinator is active at that time and therefore, none of the nodes in the
cluster will store the passivated node. A new coordinator is elected in the cluster when
either, the coordinator leaves the cluster, the coordinator crashes or stops responding.

9.3. SHIPPED IMPLEMENTATIONS

The currently available implementations shipped with JBoss Cache are as follows.

9.3.1. File system based cache loaders

JBoss Cache ships with several cache loaders that utilize the file system as a data store. They all require
that the <loader><properties> configuration element contains a location property, which maps to
a directory to be used as a persistent store (e.g., location=/tmp/myDataStore). Used mainly for
testing and not recommended for production use.

FileCacheLoader, which is a simple filesystem-based implementation. By default, this cache
loader checks for any potential character portability issues in the location or tree node names,
for example invalid characters, producing warning messages. These checks can be disabled
adding check.character.portability property to the <properties> element and setting
it to false (e.g., check.character.portability=false).

The FileCacheLoader has some severe limitations which restrict its use in a production
environment, or if used in such an environment, it should be used with due care and sufficient
understanding of these limitations.

Due to the way the FileCacheLoader represents a tree structure on disk (directories and
files) traversal is inefficient for deep trees.

Usage on shared filesystems like NFS, Windows shares, etc. should be avoided as these do
not implement proper file locking and can cause data corruption.

Usage with an isolation level of NONE can cause corrupt writes as multiple threads attempt
to write to the same file.

File systems are inherently not transactional, so when attempting to use your cache in a
transactional context, failures when writing to the file (which happens during the commit
phase) cannot be recovered.

As a rule of thumb, it is recommended that the FileCacheLoader not be used in a highly
concurrent, transactional or stressful environment, and its use is restricted to testing.

BdbjeCacheLoader , which is a cache loader implementation based on the Oracle/Sleepycat's
BerkeleyDB Java Edition.

JdbmCacheLoader, which is a cache loader implementation based on the JDBM engine, a fast
and free alternative to BerkeleyDB.

Note that the BerkeleyDB implementation is much more efficient than the filesystem-based
implementation, and provides transactional guarantees, but requires a commercial license if distributed
with an application (see http://www.oracle.com/database/berkeley-db/index.html for details).

CHAPTER 9. CACHE LOADERS

49

http://www.oracle.com/database/berkeley-db/index.html
http://jdbm.sourceforge.net/
http://www.oracle.com/database/berkeley-db/index.html

9.3.2. Cache loaders that delegate to other caches

LocalDelegatingCacheLoader , which enables loading from and storing to another local
(same JVM) cache.

ClusteredCacheLoader, which allows querying of other caches in the same cluster for in-
memory data via the same clustering protocols used to replicate data. Writes are not 'stored'
though, as replication would take care of any updates needed. You need to specify a property
called timeout, a long value telling the cache loader how many milliseconds to wait for
responses from the cluster before assuming a null value. For example, timeout = 3000 would
use a timeout value of 3 seconds.

9.3.3. JDBCCacheLoader

JBossCache is distributed with a JDBC-based cache loader implementation that stores/loads nodes'
state into a relational database. The implementing class is
org.jboss.cache.loader.JDBCCacheLoader.

The current implementation uses just one table. Each row in the table represents one node and contains
three columns:

column for Fqn (which is also a primary key column)

column for node contents (attribute/value pairs)

column for parent Fqn

Fqns are stored as strings. Node content is stored as a BLOB.

WARNING

JBoss Cache does not impose any limitations on the types of objects used in Fqn
but this implementation of cache loader requires Fqn to contain only objects of type
java.lang.String. Another limitation for Fqn is its length. Since Fqn is a
primary key, its default column type is VARCHAR which can store text values up to
some maximum length determined by the database in use.

See this wiki page for configuration tips with specific database systems.

9.3.3.1. JDBCCacheLoader configuration

9.3.3.1.1. Table configuration

Table and column names as well as column types are configurable with the following properties.

cache.jdbc.table.name - the name of the table. Can be prepended with schema name for the
given table: {schema_name}.{table_name}. The default value is 'jbosscache'.

cache.jdbc.table.primarykey - the name of the primary key for the table. The default value is
'jbosscache_pk'.



JBoss Cache User Guide

50

http://www.jboss.org/community/docs/DOC-10864

cache.jdbc.table.create - can be true or false. Indicates whether to create the table during
startup. If true, the table is created if it doesn't already exist. The default value is true.

cache.jdbc.table.drop - can be true or false. Indicates whether to drop the table during shutdown.
The default value is true.

cache.jdbc.fqn.column - FQN column name. The default value is 'fqn'.

cache.jdbc.fqn.type - FQN column type. The default value is 'varchar(255)'.

cache.jdbc.node.column - node contents column name. The default value is 'node'.

cache.jdbc.node.type - node contents column type. The default value is 'blob'. This type must
specify a valid binary data type for the database being used.

9.3.3.1.2. DataSource

If you are using JBossCache in a managed environment (e.g., an application server) you can specify the
JNDI name of the DataSource you want to use.

cache.jdbc.datasource - JNDI name of the DataSource. The default value is java:/DefaultDS
.

9.3.3.1.3. JDBC driver

If you are not using DataSource you have the following properties to configure database access using a
JDBC driver.

cache.jdbc.driver - fully qualified JDBC driver name.

cache.jdbc.url - URL to connect to the database.

cache.jdbc.user - user name to connect to the database.

cache.jdbc.password - password to connect to the database.

9.3.3.1.4. c3p0 connection pooling

JBoss Cache implements JDBC connection pooling when running outside of an application server
standalone using the c3p0:JDBC DataSources/Resource Pools library. In order to enable it, just edit the
following property:

cache.jdbc.connection.factory - Connection factory class name. If not set, it defaults to standard
non-pooled implementation. To enable c3p0 pooling, just set the connection factory class for
c3p0. See example below.

You can also set any c3p0 parameters in the same cache loader properties section but don't forget to
start the property name with 'c3p0.'. To find a list of available properties, please check the c3p0
documentation for the c3p0 library version distributed in c3p0:JDBC DataSources/Resource Pools .
Also, in order to provide quick and easy way to try out different pooling parameters, any of these
properties can be set via a System property overriding any values these properties might have in the
JBoss Cache XML configuration file, for example: -Dc3p0.maxPoolSize=20 . If a c3p0 property is not
defined in either the configuration file or as a System property, default value, as indicated in the c3p0
documentation, will apply.

9.3.3.1.5. Configuration example

CHAPTER 9. CACHE LOADERS

51

http://sourceforge.net/projects/c3p0

Below is an example of a JDBCCacheLoader using Oracle as database. The CacheLoaderConfiguration
XML element contains an arbitrary set of properties which define the database-related configuration.

As an alternative to configuring the entire JDBC connection, the name of an existing data source can be
given:

Configuration example for a cache loader using c3p0 JDBC connection pooling:

<loaders passivation="false" shared="false">
 <preload>
 <node fqn="/some/stuff"/>
 </preload>
 <!-- if passivation is true, only the first cache loader is used;
the rest are ignored -->
 <loader class="org.jboss.cache.loader.JDBCCacheLoader" async="false"
fetchPersistentState="true"
 ignoreModifications="false" purgeOnStartup="false">
 <properties>
 cache.jdbc.table.name=jbosscache
 cache.jdbc.table.create=true
 cache.jdbc.table.drop=true
 cache.jdbc.table.primarykey=jbosscache_pk
 cache.jdbc.fqn.column=fqn
 cache.jdbc.fqn.type=VARCHAR(255)
 cache.jdbc.node.column=node
 cache.jdbc.node.type=BLOB
 cache.jdbc.parent.column=parent
 cache.jdbc.driver=oracle.jdbc.OracleDriver
 cache.jdbc.url=jdbc:oracle:thin:@localhost:1521:JBOSSDB
 cache.jdbc.user=SCOTT
 cache.jdbc.password=TIGER
 </properties>
 </loader>
 </loaders>

 <loaders passivation="false" shared="false">
 <preload>
 <node fqn="/some/stuff"/>
 </preload>
 <!-- if passivation is true, only the first cache loader is used;
the rest are ignored -->
 <loader class="org.jboss.cache.loader.JDBCCacheLoader" async="false"
fetchPersistentState="true"
 ignoreModifications="false" purgeOnStartup="false">
 <properties>
 cache.jdbc.datasource=java:/DefaultDS
 </properties>
 </loader>
 </loaders>

 <loaders passivation="false" shared="false">
 <preload>
 <node fqn="/some/stuff"/>
 </preload>
 <!-- if passivation is true, only the first cache loader is used;

JBoss Cache User Guide

52

9.3.4. S3CacheLoader

The S3CacheLoader uses the Amazon S3 (Simple Storage Solution) for storing cache data. Since
Amazon S3 is remote network storage and has fairly high latency, it is really best for caches that store
large pieces of data, such as media or files. But consider this cache loader over the JDBC or file system
based cache loaders if you want remotely managed, highly reliable storage. Or, use it for applications
running on Amazon's EC2 (Elastic Compute Cloud).

If you're planning to use Amazon S3 for storage, consider using it with JBoss Cache. JBoss Cache itself
provides in-memory caching for your data to minimize the amount of remote access calls, thus reducing
the latency and cost of fetching your Amazon S3 data. With cache replication, you are also able to load
data from your local cluster without having to remotely access it every time.

Note that Amazon S3 does not support transactions. If transactions are used in your application then
there is some possibility of state inconsistency when using this cache loader. However, writes are
atomic, in that if a write fails nothing is considered written and data is never corrupted.

Data is stored in keys based on the Fqn of the Node and Node data is serialized as a java.util.Map using
the CacheSPI.getMarshaller() instance. Read the javadoc on how data is structured and stored.
Data is stored using Java serialization. Be aware this means data is not readily accessible over HTTP to
non-JBoss Cache clients. Your feedback and help would be appreciated to extend this cache loader for
that purpose.

With this cache loader, single-key operations such as Node.remove(Object) and
Node.put(Object, Object) are the slowest as data is stored in a single Map instance. Use bulk
operations such as Node.replaceAll(Map) and Node.clearData() for more efficiency. Try the
cache.s3.optimize option as well.

9.3.4.1. Amazon S3 Library

the rest are ignored -->
 <loader class="org.jboss.cache.loader.JDBCCacheLoader" async="false"
fetchPersistentState="true"
 ignoreModifications="false" purgeOnStartup="false">
 <properties>
 cache.jdbc.table.name=jbosscache
 cache.jdbc.table.create=true
 cache.jdbc.table.drop=true
 cache.jdbc.table.primarykey=jbosscache_pk
 cache.jdbc.fqn.column=fqn
 cache.jdbc.fqn.type=VARCHAR(255)
 cache.jdbc.node.column=node
 cache.jdbc.node.type=BLOB
 cache.jdbc.parent.column=parent
 cache.jdbc.driver=oracle.jdbc.OracleDriver
 cache.jdbc.url=jdbc:oracle:thin:@localhost:1521:JBOSSDB
 cache.jdbc.user=SCOTT
 cache.jdbc.password=TIGER

cache.jdbc.connection.factory=org.jboss.cache.loader.C3p0ConnectionFactory
 c3p0.maxPoolSize=20
 c3p0.checkoutTimeout=5000
 </properties>
 </loader>
 </loaders>

CHAPTER 9. CACHE LOADERS

53

http://aws.amazon.com/

The S3 cache loader is provided with the default distribution but requires a library to access the service
at runtime. This runtime library may be obtained through a Sourceforge Maven Repository. Include the
following sections in your pom.xml file:

If you do not use Maven, you can still download the amazon-s3 library by navigating the repository or
through this URL.

9.3.4.2. Configuration

At a minimum, you must configure your Amazon S3 access key and secret access key. The following
configuration keys are listed in general order of utility.

cache.s3.accessKeyId - Amazon S3 Access Key, available from your account profile.

cache.s3.secretAccessKey - Amazon S3 Secret Access Key, available from your account
profile. As this is a password, be careful not to distribute it or include this secret key in built
software.

cache.s3.secure - The default is false: Traffic is sent unencrypted over the public Internet.
Set to true to use HTTPS. Note that unencrypted uploads and downloads use less CPU.

cache.s3.bucket - Name of the bucket to store data. For different caches using the same
access key, use a different bucket name. Read the S3 documentation on the definition of a
bucket. The default value is jboss-cache.

cache.s3.callingFormat - One ofPATH, SUBDOMAIN, or VANITY. Read the S3
documentation on the use of calling domains. The default value is SUBDOMAIN.

cache.s3.optimize - The default is false. If true, put(Map) operations replace the data
stored at an Fqn rather than attempt to fetch and merge. (This option is fairly experimental at the
moment.)

cache.s3.parentCache - The default is true. Set this value to false if you are using
multiple caches sharing the same S3 bucket, that remove parent nodes of nodes being created
in other caches. (This is not a common use case.)

JBoss Cache stores nodes in a tree format and automatically creates intermediate parent nodes
as necessary. The S3 cache loader must also create these parent nodes as well to allow for
operations such as getChildrenNames to work properly. Checking if all parent nodes exists
for every put operation is fairly expensive, so by default the cache loader caches the existence
of these parent nodes.

 <repository>
 <id>e-xml.sourceforge.net</id>
 <url>http://e-xml.sourceforge.net/maven2/repository</url>
 </repository>
 ...
 <dependency>
 <groupId>net.noderunner</groupId>
 <artifactId>amazon-s3</artifactId>
 <version>1.0.0.0</version>
 <scope>runtime</scope>
 </dependency>

JBoss Cache User Guide

54

http://e-xml.sourceforge.net/maven2/repository/net/noderunner/amazon-s3/1.0.0.0/amazon-s3-1.0.0.0.jar

cache.s3.location - This choses a primary storage location for your data to reduce loading
and retrieval latency. Set to EU to store data in Europe. The default isnull, to store data in the
United States.

9.3.5. TcpDelegatingCacheLoader

This cache loader allows to delegate loads and stores to another instance of JBoss Cache, which could
reside (a) in the same address space, (b) in a different process on the same host, or (c) in a different
process on a different host.

A TcpDelegatingCacheLoader talks to a remote org.jboss.cache.loader.tcp.TcpCacheServer
, which can be a standalone process started on the command line, or embedded as an MBean inside
JBoss AS. The TcpCacheServer has a reference to another JBoss Cache instance, which it can create
itself, or which is given to it (e.g. by JBoss, using dependency injection).

As of JBoss Cache 2.1.0, the TcpDelegatingCacheLoader transparently handles reconnects if the
connection to the TcpCacheServer is lost.

The TcpDelegatingCacheLoader is configured with the host and port of the remote TcpCacheServer, and
uses this to communicate to it. In addition, 2 new optional parameters are used to control transparent
reconnecting to the TcpCacheServer. The timeout property (defaults to 5000) specifies the length of
time the cache loader must continue retrying to connect to the TcpCacheServer before giving up and
throwing an exception. The reconnectWaitTime (defaults to 500) is how long the cache loader should
wait before attempting a reconnect if it detects a communication failure. The last two parameters can be
used to add a level of fault tolerance to the cache loader, do deal with TcpCacheServer restarts.

The configuration looks as follows:

This means this instance of JBoss Cache will delegate all load and store requests to the remote
TcpCacheServer running on myRemoteServer:7500 .

A typical use case could be multiple replicated instances of JBoss Cache in the same cluster, all
delegating to the same TcpCacheServer instance. The TcpCacheServer might itself delegate to a
database via JDBCCacheLoader, but the point here is that - if we have 5 nodes all accessing the same
dataset - they will load the data from the TcpCacheServer, which has do execute one SQL statement per
unloaded data set. If the nodes went directly to the database, then we'd have the same SQL executed
multiple times. So TcpCacheServer serves as a natural cache in front of the DB (assuming that a
network round trip is faster than a DB access (which usually also include a network round trip)).

 <loaders passivation="false" shared="false">
 <preload>
 <node fqn="/"/>
 </preload>
 <!-- if passivation is true, only the first cache loader is used;
the rest are ignored -->
 <loader class="org.jboss.cache.loader.TcpDelegatingCacheLoader">
 <properties>
 host=myRemoteServer
 port=7500
 timeout=10000
 reconnectWaitTime=250
 </properties>
 </loader>
 </loaders>

CHAPTER 9. CACHE LOADERS

55

To alleviate single point of failure, we could configure several cache loaders. The first cache loader is a
ClusteredCacheLoader, the second a TcpDelegatingCacheLoader, and the last a JDBCacheLoader,
effectively defining our cost of access to a cache in increasing order.

9.3.6. Transforming Cache Loaders

The way cached data is written to FileCacheLoader and JDBCCacheLoader based cache stores has
changed in JBoss Cache 2.0 in such way that these cache loaders now write and read data using the
same marhalling framework used to replicate data across the network. Such change is trivial for
replication purposes as it just requires the rest of the nodes to understand this format. However,
changing the format of the data in cache stores brings up a new problem: how do users, which have their
data stored in JBoss Cache 1.x.x format, migrate their stores to JBoss Cache 2.0 format?

With this in mind, JBoss Cache 2.0 comes with two cache loader implementations called
org.jboss.cache.loader.TransformingFileCacheLoader and
org.jboss.cache.loader.TransformingJDBCCacheLoader located within the optional
jbosscache-cacheloader-migration.jar file. These are one-off cache loaders that read data from the cache
store in JBoss Cache 1.x.x format and write data to cache stores in JBoss Cache 2.0 format.

The idea is for users to modify their existing cache configuration file(s) momentarily to use these cache
loaders and for them to create a small Java application that creates an instance of this cache, recursively
reads the entire cache and writes the data read back into the cache. Once the data is transformed, users
can revert back to their original cache configuration file(s). In order to help the users with this task, a
cache loader migration example has been constructed which can be located under the
examples/cacheloader-migration directory within the JBoss Cache distribution. This example,
called examples.TransformStore , is independent of the actual data stored in the cache as it writes
back whatever it was read recursively. It is highly recommended that anyone interested in porting their
data run this example first, which contains a readme.txt file with detailed information about the
example itself, and also use it as base for their own application.

9.4. CACHE PASSIVATION

A cache loader can be used to enforce node passivation and activation on eviction in a cache.

Cache Passivation is the process of removing an object from in-memory cache and writing it to a
secondary data store (e.g., file system, database) on eviction. Cache Activation is the process of
restoring an object from the data store into the in-memory cache when it's needed to be used. In both
cases, the configured cache loader will be used to read from the data store and write to the data store.

When an eviction policy in effect evicts a node from the cache, if passivation is enabled, a notification
that the node is being passivated will be emitted to the cache listeners and the node and its children will
be stored in the cache loader store. When a user attempts to retrieve a node that was evicted earlier, the
node is loaded (lazy loaded) from the cache loader store into memory. When the node and its children
have been loaded, they're removed from the cache loader and a notification is emitted to the cache
listeners that the node has been activated.

To enable cache passivation/activation, you can set passivation to true. The default is false . When
passivation is used, only the first cache loader configured is used and all others are ignored.

9.4.1. Cache Loader Behavior with Passivation Disabled vs. Enabled

When passivation is disabled, whenever an element is modified, added or removed, then that
modification is persisted in the backend store via the cache loader. There is no direct relationship
between eviction and cache loading. If you don't use eviction, what's in the persistent store is basically a

JBoss Cache User Guide

56

copy of what's in memory. If you do use eviction, what's in the persistent store is basically a superset of
what's in memory (i.e. it includes nodes that have been evicted from memory).

When passivation is enabled, there is a direct relationship between eviction and the cache loader. Writes
to the persistent store via the cache loader only occur as part of the eviction process. Data is deleted
from the persistent store when the application reads it back into memory. In this case, what's in memory
and what's in the persistent store are two subsets of the total information set, with no intersection
between the subsets.

Following is a simple example, showing what state is in RAM and in the persistent store after each step
of a 6 step process:

1. Insert /A

2. Insert /B

3. Eviction thread runs, evicts /A

4. Read /A

5. Eviction thread runs, evicts /B

6. Remove /B

When passivation is disabled:

When passivation is enabled:

9.5. STRATEGIES

This section discusses different patterns of combining different cache loader types and configuration
options to achieve specific outcomes.

9.5.1. Local Cache With Store

This is the simplest case. We have a JBoss Cache instance, whose cache mode is LOCAL , therefore no
replication is going on. The cache loader simply loads non-existing elements from the store and stores
modifications back to the store. When the cache is started, depending on the preload element, certain
data can be preloaded, so that the cache is partly warmed up.

 1) Memory: /A Disk: /A
 2) Memory: /A, /B Disk: /A, /B
 3) Memory: /B Disk: /A, /B
 4) Memory: /A, /B Disk: /A, /B
 5) Memory: /A Disk: /A, /B
 6) Memory: /A Disk: /A

 1) Memory: /A Disk:
 2) Memory: /A, /B Disk:
 3) Memory: /B Disk: /A
 4) Memory: /A, /B Disk:
 5) Memory: /A Disk: /B
 6) Memory: /A Disk:

CHAPTER 9. CACHE LOADERS

57

9.5.2. Replicated Caches With All Caches Sharing The Same Store

The following figure shows 2 JBoss Cache instances sharing the same backend store:

Figure 9.2. 2 nodes sharing a backend store

Both nodes have a cache loader that accesses a common shared backend store. This could for example
be a shared filesystem (using the FileCacheLoader), or a shared database. Because both nodes access
the same store, they don't necessarily need state transfer on startup.

NOTE

Of course they can enable state transfer, if they want to have a warm or hot cache after
startup.

Rather, the FetchInMemoryState attribute could be set to false, resulting in a 'cold' cache, that
gradually warms up as elements are accessed and loaded for the first time. This would mean that
individual caches in a cluster might have different in-memory state at any given time (largely depending
on their preloading and eviction strategies).

When storing a value, the writer takes care of storing the change in the backend store. For example, if
node1 made change C1 and node2 C2, then node1 would tell its cache loader to store C1, and node2
would tell its cache loader to store C2.

9.5.3. Replicated Caches With Only One Cache Having A Store

JBoss Cache User Guide

58

Figure 9.3. 2 nodes but only one accesses the backend store

This is a similar case to the previous one, but here only one node in the cluster interacts with a backend
store via its cache loader. All other nodes perform in-memory replication. The idea here is all application
state is kept in memory in each node, with the existence of multiple caches making the data highly
available. (This assumes that a client that needs the data is able to somehow fail over from one cache to
another.) The single persistent backend store then provides a backup copy of the data in case all caches
in the cluster fail or need to be restarted.

Note that here it may make sense for the cache loader to store changes asynchronously, that is not on
the caller's thread, in order not to slow down the cluster by accessing (for example) a database. This is a
non-issue when using asynchronous replication.

A weakness with this architecture is that the cache with access to the cache loader becomes a single
point of failure. Furthermore, if the cluster is restarted, the cache with the cache loader must be started
first (easy to forget). A solution to the first problem is to configure a cache loader on each node, but set
the singletonStore configuration to true. With this kind of setup, one but only one node will always
be writing to a persistent store. However, this complicates the restart problem, as before restarting you
need to determine which cache was writing before the shutdown/failure and then start that cache first.

9.5.4. Replicated Caches With Each Cache Having Its Own Store

CHAPTER 9. CACHE LOADERS

59

Figure 9.4. 2 nodes each having its own backend store

Here, each node has its own datastore. Modifications to the cache are (a) replicated across the cluster
and (b) persisted using the cache loader. This means that all datastores have exactly the same state.
When replicating changes synchronously and in a transaction, the two-phase commit protocol takes care
that all modifications are replicated and persisted in each datastore, or none is replicated and persisted
(atomic updates).

Note that JBoss Cache is not an XA Resource, that means it doesn't implement recovery. When used
with a transaction manager that supports recovery, this functionality is not available.

The challenge here is state transfer: when a new node starts it needs to do the following:

1. Tell the coordinator (oldest node in a cluster) to send it the state. This is always a full state
transfer, overwriting any state that may already be present.

2. The coordinator then needs to wait until all in-flight transactions have completed. During this
time, it will not allow for new transactions to be started.

3. Then the coordinator asks its cache loader for the entire state using loadEntireState() . It
then sends back that state to the new node.

4. The new node then tells its cache loader to store that state in its store, overwriting the old state.
This is the CacheLoader.storeEntireState() method

5. As an option, the transient (in-memory) state can be transferred as well during the state transfer.

6. The new node now has the same state in its backend store as everyone else in the cluster, and
modifications received from other nodes will now be persisted using the local cache loader.

9.5.5. Hierarchical Caches

If you need to set up a hierarchy within a single JVM, you can use the
LocalDelegatingCacheLoader . This type of hierarchy can currently only be set up
programmatically.

Hierarchical caches could also be set up spanning more than one JVM or server, using the
TcpDelegatingCacheLoader .

JBoss Cache User Guide

60

Figure 9.5. TCP delegating cache loader

9.5.6. Multiple Cache Loaders

You can set up more than one cache loader in a chain. Internally, a delegating ChainingCacheLoader
is used, with references to each cache loader you have configured. Use cases vary depending on the
type of cache loaders used in the chain. One example is using a filesystem based cache loader, co-
located on the same host as the JVM, used as an overflow for memory. This ensures data is available
relatively easily and with low cost. An additional remote cache loader, such as a
TcpDelegatingCacheLoader provides resilience between server restarts.

CHAPTER 9. CACHE LOADERS

61

Figure 9.6. Multiple cache loaders in a chain

JBoss Cache User Guide

62

CHAPTER 10. EVICTION
Eviction controls JBoss Cache's memory management by restricting how many nodes are allowed to be
stored in memory, and for how long. Memory constraints on servers mean caches cannot grow
indefinitely, so eviction needs to occur to prevent out of memory errors. Eviction is most often used
alongside Chapter 9, Cache Loaders.

10.1. DESIGN

Eviction in JBoss Cache is designed around four concepts:

1. Collecting statistics

2. Determining which nodes to evict

3. How nodes are evicted

4. Eviction threads.

In addition, Regions play a key role in eviction, as eviction is always configured on a per-region basis so
that different subtrees in the cache can have different eviction characteristics.

10.1.1. Collecting Statistics

This is done on the caller's thread whenever anyone interacts with the cache. If eviction is enabled, an
EvictionInterceptor is added to the interceptor chain and events are recorded in an event queue.
Events are denoted by the EvictionEvent class. Event queues are held on specific Regions so each
region has its own event queue.

This aspect of eviction is not configurable, except that the EvictionInterceptor is either added to
the interceptor chain or not, depending on whether eviction is enabled.

10.1.2. Determining Which Nodes to Evict

An EvictionAlgorithm implementation processes the eviction queue to decide which nodes to evict.
JBoss Cache ships with a number of implementations, including FIFOAlgorithm, LRUAlgorithm,
LFUAlgorithm, etc. Each implementation has a corresponding EvictionAlgorithmConfig
implementation with configuration details for the algorithm.

Custom EvictionAlgorithm implementations can be provided by implementing the interface or
extending one of the provided implementations.

Algorithms are executed by calling its process() method and passing in the event queue to process.
This is typically done by calling Region.processEvictionQueues(), which will locate the Algorithm
assigned to the region.

10.1.3. How Nodes are Evicted

Once the EvictionAlgorithm decides which nodes to evict, it uses an implementation of
EvictionActionPolicy to determine how to evict nodes. This is configurable on a per-region basis,
and defaults to DefaultEvictionActionPolicy, which invokes Cache.evict() for each node that
needs to be evicted.

CHAPTER 10. EVICTION

63

JBoss Cache also ships with RemoveOnEvictActionPolicy, which calls Cache.removeNode() for
each node that needs to be evicted, instead of Cache.evict().

Custom EvictionActionPolicy implementations can be used as well.

10.1.4. Eviction threads

By default, a single cache-wide eviction thread is used to periodically iterate through registered regions
and call Region.processEvictionQueues() on each region. The frequency with which this thread
runs can be configured using the wakeUpInterval attribute in the eviction configuration element,
and defaults to 5000 milliseconds if not specified.

The eviction thread can be disabled by setting wakeUpInterval to 0. This can be useful if you have
your own periodic maintenance thread running and would like to iterate through regions and call
Region.processEvictionQueues() yourself.

10.2. EVICTION REGIONS

The concept of regions and the Region class were Section 7.6, “Class Loading and Regions” when
talking about marshalling. Regions are also used to define the eviction behavior for nodes within that
region. In addition to using a region-specific configuration, you can also configure default, cache-wide
eviction behavior for nodes that do not fall into predefined regions or if you do not wish to define specific
regions. It is important to note that when defining regions using the configuration XML file, all elements of
the Fqn that defines the region are String objects.

For each region, you can define eviction parameters.

It's possible to define regions that overlap. In other words, one region can be defined for /a/b/c, and
another defined for /a/b/c/d (which is just the d subtree of the /a/b/c sub-tree). The algorithm, in
order to handle scenarios like this consistently, will always choose the first region it encounters. In this
way, if the algorithm needed to decide how to handle node /a/b/c/d/e, it would start from there and
work its way up the tree until it hits the first defined region - in this case /a/b/c/d.

10.2.1. Resident Nodes

Nodes marked as resident (using Node.setResident() API) will be ignored by the eviction policies
both when checking whether to trigger the eviction and when proceeding with the actual eviction of
nodes. E.g. if a region is configured to have a maximum of 10 nodes, resident nodes won't be counted
when deciding whether to evict nodes in that region. In addition, resident nodes will not be considered for
eviction when the region's eviction threshold is reached.

In order to mark a node as resident the Node.setResident() API should be used. By default, the
newly created nodes are not resident. The resident attribute of a node is neither replicated, persisted
nor transaction-aware.

A sample use case for resident nodes would be ensuring "path" nodes don't add "noise" to an eviction
policy. E.g.,:

...
 Map lotsOfData = generateData();
 cache.put("/a/b/c", lotsOfData);
 cache.getRoot().getChild("/a").setResident(true);
 cache.getRoot().getChild("/a/b").setResident(true);
...

JBoss Cache User Guide

64

In this example, the nodes /a and /a/b are paths which exist solely to support the existence of node
/a/b/c and don't hold any data themselves. As such, they are good candidates for being marked as
resident. This would lead to better memory management as no eviction events would be generated when
accessing /a and/a/b.

NOTE

When adding attributes to a resident node, e.g. cache.put("/a", "k", "v") in the
above example, it would make sense to mark the nodes as non-resident again and let
them be considered for eviction.

10.3. CONFIGURING EVICTION

10.3.1. Basic Configuration

The basic eviction configuration element looks like:

wakeUpInterval - this required parameter defines how often the eviction thread runs, in
milliseconds.

eventQueueSize - this optional parameter defines the size of the bounded queue which holds
eviction events. If your eviction thread does not run often enough, you may find that the event
queue fills up. It may then be necessary to get your eviction thread to run more frequently, or
increase the size of your event queue. This configuration is just the default event queue size,
and can be overridden in specific eviction regions. If not specified, this defaults to 200000.

algorithmClass - this is required, unless you set individual algorithmClass attributes on
each and every region. This defines the default eviction algorithm to use if one is not defined for
a region.

Algorithm configuration attributes - these are specific to the algorithm specified in
algorithmClass. See the section specific to the algorithm you are interested in for details.

10.3.2. Programmatic Configuration

Configuring eviction using the Configuration object entails the use of the
org.jboss.cache.config.EvictionConfig bean, which is passed into
Configuration.setEvictionConfig(). See the Chapter 3, Configuration for more on building a
Configuration programatically.

The use of simple POJO beans to represent all elements in a cache's configuration also makes it fairly
easy to programatically add eviction regions after the cache is started. For example, assume we had an
existing cache configured via XML with the EvictionConfig element shown above. Now at runtime we

 ...
 <eviction wakeUpInterval="500" eventQueueSize="100000">
 <default algorithmClass="org.jboss.cache.eviction.LRUAlgorithm">
 <property name="maxNodes" value="5000" />
 <property name="timeToLive" value="1000" />
 </default>
 </eviction>
 ...

CHAPTER 10. EVICTION

65

wished to add a new eviction region named "/org/jboss/fifo", using LRUAlgorithm but a different
number of maxNodes:

10.4. SHIPPED EVICTION POLICIES

This section details the different algorithms shipped with JBoss Cache, and the various configuration
parameters used for each algorithm.

10.4.1. LRUAlgorithm - Least Recently Used

org.jboss.cache.eviction.LRUAlgorithm controls both the node lifetime and age. This policy
guarantees a constant order (O (1)) for adds, removals and lookups (visits). It has the following
configuration parameters:

maxNodes - This is the maximum number of nodes allowed in this region. 0 denotes immediate
expiry, -1 denotes no limit.

timeToLive - The amount of time a node is not written to or read (in milliseconds) before the
node is swept away. 0 denotes immediate expiry, -1 denotes no limit.

maxAge - Lifespan of a node (in milliseconds) regardless of idle time before the node is swept
away. 0 denotes immediate expiry, -1 denotes no limit.

minTimeToLive - the minimum amount of time a node must be allowed to live after being
accessed before it is allowed to be considered for eviction. 0 denotes that this feature is
disabled, which is the default value.

10.4.2. FIFOAlgorithm - First In, First Out

org.jboss.cache.eviction.FIFOAlgorithm controls the eviction in a proper first in first out
order. This policy guarantees a constant order (O (1)) for adds, removals and lookups (visits). It has
the following configuration parameters:

maxNodes - This is the maximum number of nodes allowed in this region. 0 denotes immediate
expiry, -1 denotes no limit.

minTimeToLive - the minimum amount of time a node must be allowed to live after being
accessed before it is allowed to be considered for eviction. 0 denotes that this feature is
disabled, which is the default value.

 Fqn fqn = Fqn.fromString("/org/jboss/fifo");

 // Create a configuration for an LRUPolicy
 LRUAlgorithmConfig lruc = new LRUAlgorithmConfig();
 lruc.setMaxNodes(10000);

 // Create an eviction region config
 EvictionRegionConfig erc = new EvictionRegionConfig(fqn, lruc);

 // Create the region and set the config
 Region region = cache.getRegion(fqn, true);
 region.setEvictionRegionConfig(erc);

JBoss Cache User Guide

66

10.4.3. MRUAlgorithm - Most Recently Used

org.jboss.cache.eviction.MRUAlgorithm controls the eviction in based on most recently used
algorithm. The most recently used nodes will be the first to evict with this policy. This policy guarantees a
constant order (O (1)) for adds, removals and lookups (visits). It has the following configuration
parameters:

maxNodes - This is the maximum number of nodes allowed in this region. 0 denotes immediate
expiry, -1 denotes no limit.

minTimeToLive - the minimum amount of time a node must be allowed to live after being
accessed before it is allowed to be considered for eviction. 0 denotes that this feature is
disabled, which is the default value.

10.4.4. LFUAlgorithm - Least Frequently Used

org.jboss.cache.eviction.LFUAlgorithm controls the eviction in based on least frequently used
algorithm. The least frequently used nodes will be the first to evict with this policy. Node usage starts at 1
when a node is first added. Each time it is visited, the node usage counter increments by 1. This number
is used to determine which nodes are least frequently used. LFU is also a sorted eviction algorithm. The
underlying EvictionQueue implementation and algorithm is sorted in ascending order of the node visits
counter. This class guarantees a constant order (O (1)) for adds, removal and searches. However,
when any number of nodes are added/visited to the queue for a given processing pass, a single
quasilinear (O (n * log n)) operation is used to resort the queue in proper LFU order. Similarly if
any nodes are removed or evicted, a single linear (O (n)) pruning operation is necessary to clean up
the EvictionQueue. LFU has the following configuration parameters:

maxNodes - This is the maximum number of nodes allowed in this region. 0 denotes immediate
expiry, -1 denotes no limit.

minNodes - This is the minimum number of nodes allowed in this region. This value determines
what the eviction queue should prune down to per pass. e.g. If minNodes is 10 and the cache
grows to 100 nodes, the cache is pruned down to the 10 most frequently used nodes when the
eviction timer makes a pass through the eviction algorithm.

minTimeToLive - the minimum amount of time a node must be allowed to live after being
accessed before it is allowed to be considered for eviction. 0 denotes that this feature is
disabled, which is the default value.

10.4.5. ExpirationAlgorithm

org.jboss.cache.eviction.ExpirationAlgorithm is a policy that evicts nodes based on an
absolute expiration time. The expiration time is indicated using the org.jboss.cache.Node.put()
method, using a String key expiration and the absolute time as a java.lang.Long object, with a
value indicated as milliseconds past midnight January 1st, 1970 UTC (the same relative time as
provided by java.lang.System.currentTimeMillis()).

This policy guarantees a constant order (O (1)) for adds and removals. Internally, a sorted set
(TreeSet) containing the expiration time and Fqn of the nodes is stored, which essentially functions as a
heap.

This policy has the following configuration parameters:

expirationKeyName - This is the Node key name used in the eviction algorithm. The
configuration default is expiration .

CHAPTER 10. EVICTION

67

maxNodes - This is the maximum number of nodes allowed in this region. 0 denotes immediate
expiry, -1 denotes no limit.

The following listing shows how the expiration date is indicated and how the policy is applied:

Note that the expiration time of nodes is only checked when the region manager wakes up every
wakeUpIntervalSeconds , so eviction may happen a few seconds later than indicated.

10.4.6. ElementSizeAlgorithm - Eviction based on number of key/value pairs in a
node

org.jboss.cache.eviction.ElementSizeAlgorithm controls the eviction in based on the
number of key/value pairs in the node. Nodes The most recently used nodes will be the first to evict with
this policy. It has the following configuration parameters:

maxNodes - This is the maximum number of nodes allowed in this region. 0 denotes immediate
expiry, -1 denotes no limit.

maxElementsPerNode - This is the trigger number of attributes per node for the node to be
selected for eviction. 0 denotes immediate expiry, -1 denotes no limit.

minTimeToLive - the minimum amount of time a node must be allowed to live after being
accessed before it is allowed to be considered for eviction. 0 denotes that this feature is
disabled, which is the default value.

 Cache cache = DefaultCacheFactory.createCache();
 Fqn fqn1 = Fqn.fromString("/node/1");
 Long future = new Long(System.currentTimeMillis() + 2000);

 // sets the expiry time for a node

cache.getRoot().addChild(fqn1).put(ExpirationConfiguration.EXPIRATION_KEY,
future);

 assertTrue(cache.getRoot().hasChild(fqn1));
 Thread.sleep(5000);

 // after 5 seconds, expiration completes
 assertFalse(cache.getRoot().hasChild(fqn1));

JBoss Cache User Guide

68

CHAPTER 11. TRANSACTIONS AND CONCURRENCY

11.1. CONCURRENT ACCESS

JBoss Cache is a thread safe caching API, and uses its own efficient mechanisms of controlling
concurrent access. It uses an innovative implementation of multi-versioned concurrency control (MVCC)
as the default locking scheme. Versions of JBoss Cache prior to 3.x offered Optimistic and Pessimistic
Locking schemes, both of which are now deprecated in favor of MVCC.

11.1.1. Multi-Version Concurrency Control (MVCC)

MVCC is a locking scheme commonly used by modern database implementations to control fast, safe
concurrent access to shared data.

11.1.1.1. MVCC Concepts

MVCC is designed to provide the following features for concurrent access:

Readers that don't block writers

Writers that fail fast

and achieves this by using data versioning and copying for concurrent writers. The theory is that readers
continue reading shared state, while writers copy the shared state, increment a version id, and write that
shared state back after verifying that the version is still valid (i.e., another concurrent writer has not
changed this state first).

This allows readers to continue reading while not preventing writers from writing, and repeatable read
semantics are maintained by allowing readers to read off the old version of the state.

11.1.1.2. MVCC Implementation

JBoss Cache's implementation of MVCC is based on a few features:

Readers don't acquire any locks

Only one additional version is maintained for shared state, for a single writer

All writes happen sequentially, to provide fail-fast semantics

The extremely high performance of JBoss Cache's MVCC implementation for reading threads is
achieved by not requiring any synchronization or locking for readers. For each reader thread, the
MVCCLockingInterceptor wraps state in a lightweight container object, which is placed in the
thread's InvocationContext (or TransactionContext if running in a transaction). All subsequent
operations on the state happens via the container object. This use of Java references allows for
repeatable read semantics even if the actual state changes simultaneously.

Writer threads, on the other hand, need to acquire a lock before any writing can commence. Currently,
we use lock striping to improve the memory performance of the cache, and the size of the shared lock
pool can be tuned using the concurrencyLevel attribute of the locking element. See the
Chapter 12, Configuration References for details. After acquiring an exclusive lock on an Fqn, the writer
thread then wraps the state to be modified in a container as well, just like with reader threads, and then
copies this state for writing. When copying, a reference to the original version is still maintained in the
container (for rollbacks). Changes are then made to the copy and the copy is finally written to the data
structure when the write completes.

CHAPTER 11. TRANSACTIONS AND CONCURRENCY

69

http://en.wikipedia.org/wiki/Multiversion_concurrency_control
http://en.wikipedia.org/wiki/Multiversion_concurrency_control

This way, subsequent readers see the new version while existing readers still hold a reference to the
original version in their context.

If a writer is unable to acquire the write lock after some time, a TimeoutException is thrown. This lock
acquisition timeout defaults to 10000 millis and can be configured using the
lockAcquisitionTimeout attribute of the locking element. See the Chapter 12, Configuration
References for details.

11.1.1.2.1. Isolation Levels

JBoss Cache 3.x supports two isolation levels: REPEATABLE_READ and READ_COMMITTED, which
correspond in semantic to database-style isolation levels. Previous versions of JBoss Cache supported
all 5 database isolation levels, and if an unsupported isolation level is configured, it is either upgraded or
downgraded to the closest supported level.

REPEATABLE_READ is the default isolation level, to maintain compatibility with previous versions of
JBoss Cache. READ_COMMITTED, while providing a slightly weaker isolation, has a significant
performance benefit over REPEATABLE_READ.

11.1.1.2.2. Concurrent Writers and Write-Skews

Although MVCC forces writers to obtain a write lock, a phenomenon known as write skews may occur
when using REPEATABLE_READ:

This happens when concurrent transactions performing a read and then a write, based on the value that
was read. Since reads involve holding on to the reference to the state in the transaction context, a
subsequent write would work off that original state read, which may now be stale.

JBoss Cache User Guide

70

http://en.wikipedia.org/wiki/Isolation_level

The default behavior with dealing with a write skew is to throw a DataVersioningException, when it
is detected when copying state for writing. However, in most applications, a write skew may not be an
issue (for example, if the state written has no relationship to the state originally read) and should be
allowed. If your application does not care about write skews, you can allow them to happen by setting the
writeSkewCheck configuration attribute to false. See the Chapter 12, Configuration References for
details.

Note that write skews cannot happen when using READ_COMMITTED since threads always work off
committed state.

11.1.1.3. Configuring Locking

Configuring MVCC involves using the <locking /> configuration tag, as follows:

nodeLockingScheme - the node locking scheme used. Defaults to MVCC if not provided,
deprecated schemes such as pessimistic or optimistic may be used but is not
encouraged.

isolationLevel - transaction isolation level. Defaults to REPEATABLE_READ if not
provided.

writeSkewCheck - defaults to true if not provided.

concurrencyLevel - defaults to 500 if not provided.

lockAcquisitionTimeout - only applies to writers when using MVCC. Defaults to 10000 if
not provided.

11.1.2. Pessimistic and Optimistic Locking Schemes

From JBoss Cache 3.x onwards, pessimistic and optimistic locking schemes are deprecated in favor of
Section 11.1.1, “Multi-Version Concurrency Control (MVCC)”. It is recommended that existing
applications move off these legacy locking schemes as support for them will eventually be dropped
altogether in future releases.

Documentation for legacy locking schemes are not included in this user guide, and if necessary, can be
referenced in previous versions of this document, which can be found on the JBoss Cache website.

11.2. JTA SUPPORT

JBoss Cache can be configured to use and participate in JTA compliant transactions. Alternatively, if
transaction support is disabled, it is equivalent to using autocommit in JDBC calls, where modifications
are potentially replicated after every change (if replication is enabled).

What JBoss Cache does on every incoming call is:

1. Retrieve the current javax.transaction.Transaction associated with the thread

 <locking
 isolationLevel="REPEATABLE_READ"
 lockAcquisitionTimeout="10234"
 nodeLockingScheme="mvcc"
 writeSkewCheck="false"
 concurrencyLevel="1000" />

CHAPTER 11. TRANSACTIONS AND CONCURRENCY

71

http://www.jboss.org/jbosscache
http://java.sun.com/javaee/technologies/jta/

2. If not already done, register a javax.transaction.Synchronization with the transaction
manager to be notified when a transaction commits or is rolled back.

In order to do this, the cache has to be provided with a reference to environment's
javax.transaction.TransactionManager. This is usually done by configuring the cache with the
class name of an implementation of the TransactionManagerLookup interface. When the cache
starts, it will create an instance of this class and invoke its getTransactionManager() method, which
returns a reference to the TransactionManager.

JBoss Cache ships with JBossTransactionManagerLookup and
GenericTransactionManagerLookup. The JBossTransactionManagerLookup is able to bind to
a running JBoss AS instance and retrieve a TransactionManager while the
GenericTransactionManagerLookup is able to bind to most popular Java EE application servers
and provide the same functionality. A dummy implementation - DummyTransactionManagerLookup -
is also provided for unit tests. Being a dummy, this is not recommended for production use a it has some
severe limitations to do with concurrent transactions and recovery.

An alternative to configuring a TransactionManagerLookup is to programatically inject a reference to
the TransactionManager into the Configuration object's RuntimeConfig element:

Injecting the TransactionManager is the recommended approach when the Configuration is built
by some sort of IOC container that already has a reference to the TransactionManager.

When the transaction commits, we initiate either a one-phase or two-phase commit protocol. See
Section 8.1.2.1, “Replicated Caches and Transactions” for details.

 TransactionManager tm = getTransactionManager(); // magic method
 cache.getConfiguration().getRuntimeConfig().setTransactionManager(tm);

JBoss Cache User Guide

72

PART III. JBOSS CACHE CONFIGURATION REFERENCES

This section contains technical references for easy looking up.

PART III. JBOSS CACHE CONFIGURATION REFERENCES

73

CHAPTER 12. CONFIGURATION REFERENCES

12.1. SAMPLE XML CONFIGURATION FILE

This is what a typical XML configuration file looks like. It is recommended that you use one of the
configurations shipped with the JBoss Cache distribution and tweak according to your needs rather than
write one from scratch.

<?xml version="1.0" encoding="UTF-8"?>

<jbosscache xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="urn:jboss:jbosscache-core:config:3.1">

 <!--
 isolation levels supported: READ_COMMITTED and REPEATABLE_READ
 nodeLockingSchemes: mvcc, pessimistic (deprecated), optimistic
(deprecated)
 -->
 <locking
 isolationLevel="REPEATABLE_READ"
 lockParentForChildInsertRemove="false"
 lockAcquisitionTimeout="20000"
 nodeLockingScheme="mvcc"
 writeSkewCheck="false"
 useLockStriping="true"
 concurrencyLevel="500"/>

 <!--
 Used to register a transaction manager and participate in ongoing
transactions.
 -->
 <transaction

transactionManagerLookupClass="org.jboss.cache.transaction.GenericTransact
ionManagerLookup"
 syncRollbackPhase="false"
 syncCommitPhase="false"/>

 <!--
 Used to register JMX statistics in any available MBean server
 -->
 <jmxStatistics
 enabled="false"/>

 <!--
 If region based marshalling is used, defines whether new regions are
inactive on startup.
 -->
 <startup
 regionsInactiveOnStartup="true"/>

 <!--
 Used to register JVM shutdown hooks.
 hookBehavior: DEFAULT, REGISTER, DONT_REGISTER

JBoss Cache User Guide

74

 -->
 <shutdown
 hookBehavior="DEFAULT"/>

 <!--
 Used to define async listener notification thread pool size
 -->
 <listeners
 asyncPoolSize="1"
 asyncQueueSize="100000"/>

 <!--
 Used to enable invocation batching and allow the use of
Cache.startBatch()/endBatch() methods.
 -->
 <invocationBatching
 enabled="false"/>

 <!--
 serialization related configuration, used for replication and cache
loading
 -->
 <serialization
 objectInputStreamPoolSize="12"
 objectOutputStreamPoolSize="14"
 version="3.0.0"
 marshallerClass="org.jboss.cache.marshall.VersionAwareMarshaller"
 useLazyDeserialization="false"
 useRegionBasedMarshalling="false"/>

 <!--
 This element specifies that the cache is clustered.
 modes supported: replication (r) or invalidation (i).
 -->
 <clustering mode="replication" clusterName="JBossCache-cluster">

 <!--
 Defines whether to retrieve state on startup
 -->
 <stateRetrieval timeout="20000" fetchInMemoryState="false"/>

 <!--
 Network calls are synchronous.
 -->
 <sync replTimeout="20000"/>
 <!--
 Uncomment this for async replication.
 -->
 <!--<async useReplQueue="true" replQueueInterval="10000"
replQueueMaxElements="500" serializationExecutorPoolSize="20"
serializationExecutorQueueSize="5000000"/>-->

 <!-- Uncomment to use Buddy Replication -->
 <!--
 <buddy enabled="true" poolName="myBuddyPoolReplicationGroup"
communicationTimeout="2000">

CHAPTER 12. CONFIGURATION REFERENCES

75

 <dataGravitation auto="true" removeOnFind="true"
searchBackupTrees="true"/>
 <locator
class="org.jboss.cache.buddyreplication.NextMemberBuddyLocator">
 <properties>
 numBuddies = 1
 ignoreColocatedBuddies = true
 </properties>
 </locator>
 </buddy>
 -->

 <!--
 Configures the JGroups channel. Looks up a JGroups config file
on the classpath or filesystem. udp.xml
 ships with jgroups.jar and will be picked up by the class loader.
 -->
 <jgroupsConfig configFile="udp.xml">
 <!-- uncomment to define a JGroups stack here

 <PING timeout="2000" num_initial_members="3"/>
 <MERGE2 max_interval="30000" min_interval="10000"/>
 <FD_SOCK/>
 <FD timeout="10000" max_tries="5" shun="true"/>
 <VERIFY_SUSPECT timeout="1500"/>
 <pbcast.NAKACK use_mcast_xmit="false" gc_lag="0"
 retransmit_timeout="300,600,1200,2400,4800"
 discard_delivered_msgs="true"/>
 <UNICAST timeout="300,600,1200,2400,3600"/>
 <pbcast.STABLE stability_delay="1000" desired_avg_gossip="50000"
 max_bytes="400000"/>
 <pbcast.GMS print_local_addr="true" join_timeout="5000"
shun="false"
 view_bundling="true"
view_ack_collection_timeout="5000"/>
 <FRAG2 frag_size="60000"/>
 <pbcast.STREAMING_STATE_TRANSFER use_reading_thread="true"/>
 <pbcast.FLUSH timeout="0"/>
 -->
 </jgroupsConfig>
 </clustering>

 <!--
 Eviction configuration. WakeupInterval defines how often the
eviction thread runs, in milliseconds. 0 means
 the eviction thread will never run.
 -->
 <eviction wakeUpInterval="500">
 <default algorithmClass="org.jboss.cache.eviction.LRUAlgorithm"
eventQueueSize="200000">
 <property name="maxNodes" value="5000" />
 <property name="timeToLive" value="1000" />
 </default>
 <region name="/org/jboss/data1">
 <property name="timeToLive" value="2000" />
 </region>

JBoss Cache User Guide

76

 <region name="/org/jboss/data2"
algorithmClass="org.jboss.cache.eviction.FIFOAlgorithm"
eventQueueSize="100000">
 <property name="maxNodes" value="3000" />
 <property name="minTimeToLive" value="4000" />
 </region>
 </eviction>

 <!--
 Cache loaders.

 If passivation is enabled, state is offloaded to the cache loaders
ONLY when evicted. Similarly, when the state
 is accessed again, it is removed from the cache loader and loaded
into memory.

 Otherwise, state is always maintained in the cache loader as well as
in memory.

 Set 'shared' to true if all instances in the cluster use the same
cache loader instance, e.g., are talking to the
 same database.
 -->
 <loaders passivation="false" shared="false">
 <preload>
 <node fqn="/org/jboss"/>
 <node fqn="/org/tempdata"/>
 </preload>

 <!--
 we can have multiple cache loaders, which get chained
 -->
 <loader class="org.jboss.cache.loader.JDBCCacheLoader" async="true"
fetchPersistentState="true"
 ignoreModifications="true" purgeOnStartup="true">
 <properties>
 cache.jdbc.table.name=jbosscache
 cache.jdbc.table.create=true
 cache.jdbc.table.drop=true
 </properties>
 <singletonStore enabled="true"
class="org.jboss.cache.loader.SingletonStoreCacheLoader">
 <properties>
 pushStateWhenCoordinator=true
 pushStateWhenCoordinatorTimeout=20000
 </properties>
 </singletonStore>
 </loader>
 </loaders>

 <!--
 Define custom interceptors. All custom interceptors need to extend
org.jboss.cache.interceptors.base.CommandInterceptor
 -->
 <!--
 <customInterceptors>

CHAPTER 12. CONFIGURATION REFERENCES

77

12.1.1. XML validation

Configuration XML files are validated using an XSD schema. This schema is included in jbosscache-
core.jar and is also available online: http://www.jboss.org/jbosscache/jbosscache-
config-3.0.xsd. Most IDEs and XML authoring tools will be able to use this schema to validate your
configuration file as you write it.

JBoss Cache also validates your configuration file when you start up, and will throw an exception if it
encounters an invalid file. You can suppress this behavior by passing in -
Djbosscache.config.validate=false to your JVM when you start up. Alternatively, you can point
the validator to a different schema by passing in -Djbosscache.config.schemaLocation=url.

12.2. CONFIGURATION FILE QUICK REFERENCE

A list of definitions of each of the XML elements attributes used above, and their bean counterparts for
programmatic configuration. If the description of an attribute states that it is dynamic, that means it can
be changed after the cache is created and started.

Table 12.1. The <jbosscache /> Element

The <jbosscache /> Element

Description This is the root element for the JBoss Cache
configuration file. This is the only mandatory element
in a valid JBoss Cache configuration file.

 <interceptor position="first"

class="org.jboss.cache.config.parsing.custominterceptors.AaaCustomIntercep
tor">
 <property name="attrOne" value="value1" />
 <property name="attrTwo" value="value2" />
 </interceptor>
 <interceptor position="last"

class="org.jboss.cache.config.parsing.custominterceptors.BbbCustomIntercep
tor"/>
 <interceptor index="3"

class="org.jboss.cache.config.parsing.custominterceptors.AaaCustomIntercep
tor"/>
 <interceptor before="org.jboss.cache.interceptors.CallInterceptor"

class="org.jboss.cache.config.parsing.custominterceptors.BbbCustomIntercep
tor"/>
 <interceptor after="org.jboss.cache.interceptors.CallInterceptor"

class="org.jboss.cache.config.parsing.custominterceptors.AaaCustomIntercep
tor"/>
 </customInterceptors>
 -->
</jbosscache>

JBoss Cache User Guide

78

Parent none (is root element)

Children Table 12.40, “The <clustering /> Element”,
Table 12.37, “The <customInterceptors />
Element”, Table 12.19, “The <eviction />
Element”, Table 12.15, “The
<invocationBatching /> Element”,
Table 12.7, “The <jmxStatistics /> Element”,
Table 12.13, “The <listeners /> Element”,
Table 12.27, “The <loaders /> Element”,
Table 12.3, “The <locking /> Element”,
Table 12.17, “The <serialization />
Element”, Table 12.11, “The <shutdown />
Element”, Table 12.9, “The <startup />
Element”, Table 12.5, “The <transaction />
Element”

Bean Equivalent Configuration

The <jbosscache /> Element

Table 12.2. <jbosscache /> Attributes

<jbosscache
/> Attributes

Attribute Bean Field Allowed Default Description

xmlns - urn:jboss:jbosscac
he-core:config:3.1

urn:jboss:jbosscac
he-core:config:3.1

Defines the XML
namespace for all
configuration
entries.

xmlns:xsi - http://www.w3.org/
2001/XMLSchema-
instance

http://www.w3.org/
2001/XMLSchema-
instance

Defines the XML
schema instance
for the
configuration.

Table 12.3. The <locking /> Element

The <locking /> Element

Description This element specifies locking behavior on the cache.

Parent Table 12.1, “The <jbosscache /> Element”

Children

Bean equivalent Configuration

CHAPTER 12. CONFIGURATION REFERENCES

79

Table 12.4. <locking /> Attributes

<locking />
Attributes

Attribute Bean Field Allowed Default Description

isolationLevel isolationLevel READ_COMMITT
ED,
REPEATABLE_RE
AD

REPEATABLE_RE
AD

The isolation level
used for
transactions.

lockParentForChi
ldInsertRemove

lockParentForChil
dInsertRemove

true, false false Specifies whether
parent nodes are
locked when
inserting or
removing children.
This can also be
configured on a
per-node basis
(see
Node.setLock
ForChildInse
rtRemove()

lockAcquisitionTi
meout

lockAcquisitionTim
eout (dynamic)

Any positive long
value

10000 Length of time, in
milliseconds, that a
thread will try and
acquire a lock. A
TimeoutExcep
tion is usually
thrown if a lock
cannot be acquired
in this given
timeframe. Can be
overridden on a
per-invocation
basis using
Option.setLo
ckAcquisitio
nTimeout()

nodeLockingSch
eme (deprecated)

nodeLockingSche
me

mvcc, pessimistic,
optimistic

mvcc Specifies the node
locking scheme to
be used.

JBoss Cache User Guide

80

writeSkewCheck writeSkewCheck true, false false Specifies whether
to check for write
skews. Only used
if
nodeLockingS
cheme is mvcc
and
isolationLev
el is
REPEATABLE_R
EAD. See the
Section 11.1.1.2.2,
“Concurrent
Writers and Write-
Skews” for a more
detailed
discussion.

useLockStriping useLockStriping true, false true Specifies whether
lock striping is
used. Only used if
nodeLockingS
cheme is mvcc.
Lock striping
usually offers
greater
performance and
better memory
usage, although in
certain cases
deadlocks may
occur where
several Fqns map
to the same shared
lock. This can be
mitigated by
increasing your
concurrency level,
though the only
concrete solution is
to disable lock
striping altogether.

<locking />
Attributes

Attribute Bean Field Allowed Default Description

CHAPTER 12. CONFIGURATION REFERENCES

81

concurrencyLeve
l

concurrencyLevel Any positive
integer; 0 not
allowed.

500 Specifies the
number of shared
locks to use for
write locks
acquired. Only
used if
nodeLockingS
cheme is mvcc.
See the
Section 11.1.1.2,
“MVCC
Implementation”
for a more detailed
discussion.

<locking />
Attributes

Attribute Bean Field Allowed Default Description

Table 12.5. The <transaction /> Element

The <transaction /> Element

Description This element specifies transactional behavior on the
cache.

Parent Table 12.1, “The <jbosscache /> Element”

Children

Bean equivalent Configuration

Table 12.6. <transaction /> Attributes

<transaction
/> Attributes

Attribute Bean Field Allowed Default Description

JBoss Cache User Guide

82

transactionMana
gerLookupClass

transactionManag
erLookupClass

A valid class that is
available on the
classpath

none Specifies the
TransactionM
anagerLookup
Class
implementation to
use to obtain a
transaction
manager. If not
specified (and a
TransactionM
anager is not
injected using
RuntimeConfi
g.setTransac
tionManager(
)), the cache will
not be able to
participate in any
transactions.

syncCommitPhas
e

syncCommitPhase
(dynamic)

true, false false If enabled, commit
messages that are
broadcast around
a cluster are done
so synchronously.
This is usually of
little value since
detecting a failure
in broadcasting a
commit means
little else can be
done except log a
message, since
some nodes in a
cluster may have
already committed
and cannot
rollback.

<transaction
/> Attributes

Attribute Bean Field Allowed Default Description

CHAPTER 12. CONFIGURATION REFERENCES

83

syncRollbackPha
se

syncRollbackPhas
e (dynamic)

true, false false If enabled, rollback
messages that are
broadcast around
a cluster are done
so synchronously.
This is usually of
little value since
detecting a failure
in broadcasting a
rollback means
little else can be
done except log a
message, since
some nodes in a
cluster may have
already committed
and cannot
rollback.

<transaction
/> Attributes

Attribute Bean Field Allowed Default Description

Table 12.7. The <jmxStatistics /> Element

The <jmxStatistics /> Element

Description This element specifies whether cache statistics are
gathered and reported via JMX.

Parent Table 12.1, “The <jbosscache /> Element”

Children

Bean equivalent Configuration

Table 12.8. <jmxStatistics /> Attributes

<jmxStatisti
cs /> Attributes

Attribute Bean Field Allowed Default Description

enabled exposeManageme
ntStatistics

true, false true Controls whether
cache statistics are
gathered and
exposed via JMX.

Table 12.9. The <startup /> Element

JBoss Cache User Guide

84

The <startup /> Element

Description This element specifies behavior when the cache
starts up.

Parent Table 12.1, “The <jbosscache /> Element”

Children

Bean equivalent Configuration

Table 12.10. <startup /> Attributes

<startup />
Attributes

Attribute Bean Field Allowed Default Description

regionsInactiveO
nStartup

inactiveOnStartup true, false false If Section 7.6,
“Class Loading and
Regions” is
enabled, this
attribute controls
whether new
regions created
are inactive on
startup.

Table 12.11. The <shutdown /> Element

The <shutdown /> Element

Description This element specifies behavior when the cache
shuts down.

Parent Table 12.1, “The <jbosscache /> Element”

Children

Bean equivalent Configuration

Table 12.12. <shutdown /> Attributes

CHAPTER 12. CONFIGURATION REFERENCES

85

<shutdown />
Attributes

Attribute Bean Field Allowed Default Description

hookBehavior shutdownHookBeh
avior

DEFAULT,
DONT_REGISTER
, REGISTER

DEFAULT This attribute
determines
whether the cache
registers a JVM
shutdown hook so
that it can clean up
resources if the
JVM is receives a
shutdown signal.
By default a
shutdown hook is
registered if no
MBean server
(apart from the
JDK default) is
detected.
REGSTER forces
the cache to
register a
shutdown hook
even if an MBean
server is detected,
and
DONT_REGISTER
forces the cache
NOT to register a
shutdown hook,
even if no MBean
server is detected.

Table 12.13. The <listeners /> Element

The <listeners /> Element

Description This element specifies behavior of registered cache
listeners.

Parent Table 12.1, “The <jbosscache /> Element”

Children

Bean equivalent Configuration

Table 12.14. <listeners /> Attributes

JBoss Cache User Guide

86

<listeners
/> Attributes

Attribute Bean Field Allowed Default Description

asyncPoolSize listenerAsyncPool
Size

integer 1 The size of the
thread pool used to
dispatch events to
cache listeners
that have
registered as
asynchronous
listeners. If this
number is less
than 1, all
asynchronous
listeners will be
treated as
synchronous
listeners and
notified
synchronously.

asyncQueueSize listenerAsyncQueu
eSize

positive integer 50000 The size of the
bounded queue
used by the async
listener thread
pool. Only
considered if
asyncPoolSiz
e is greater than 0.
Increase this if you
see a lot of threads
blocking trying to
add events to this
queue.

Table 12.15. The <invocationBatching /> Element

The <invocationBatching /> Element

Description This element specifies behavior of invocation
batching.

Parent Table 12.1, “The <jbosscache /> Element”

Children

Bean equivalent Configuration

Table 12.16. <invocationBatching /> Attributes

CHAPTER 12. CONFIGURATION REFERENCES

87

<invocationB
atching />
Attributes

Attribute Bean Field Allowed Default Description

enabled invocationBatching
Enabled

true, false false Whether
invocation batching
is enabled or not.
See the chapter on
Chapter 4,
Batching API for
details.

Table 12.17. The <serialization /> Element

The <serialization /> Element

Description This element specifies behavior of object serialization
in JBoss Cache.

Parent Table 12.1, “The <jbosscache /> Element”

Children

Bean equivalent Configuration

Table 12.18. <serialization /> Attributes

<serializati
on /> Attributes

Attribute Bean Field Allowed Default Description

marshallerClass marshallerClass A valid class that is
available on the
classpath

VersionAwareMars
haller

Specifies the
marshaller to use
when serializing
and deserializing
objects, either for
replication or
persistence.

JBoss Cache User Guide

88

useLazyDeseriali
zation

useLazyDeserializ
ation

true, false false A mechanism by
which serialization
and deserialization
of objects is
deferred till the
point in time in
which they are
used and needed.
This typically
means that any
deserialization
happens using the
thread context
class loader of the
invocation that
requires
deserialization,
and is an effective
mechanism to
provide
classloader
isolation.

useRegionBased
Marshalling
(deprecated)

useRegionBasedM
arshalling

true, false false An older
mechanism by
which classloader
isolation was
achieved, by
registering
classloaders on
specific regions.

<serializati
on /> Attributes

Attribute Bean Field Allowed Default Description

CHAPTER 12. CONFIGURATION REFERENCES

89

version replicationVersion Valid JBoss Cache
version string

Current version Used by the
VersionAware
Marshaller in
determining which
version stream
parser to use by
default when
initiating
communications in
a cluster. Useful
when you need to
run a newer
version of JBoss
Cache in a cluster
containing older
versions, and can
be used to perform
rolling upgrades.

objectInputStrea
mPoolSize

objectInputStream
PoolSize

Positive integer 50 Not used at the
moment.

objectOutputStre
amPoolSize

objectOutputStrea
mPoolSize

Positive integer 50 Not used at the
moment.

<serializati
on /> Attributes

Attribute Bean Field Allowed Default Description

Table 12.19. The <eviction /> Element

The <eviction /> Element

Description This element controls how eviction works in the
cache.

Parent Table 12.1, “The <jbosscache /> Element”

Children Table 12.21, “The <default /> Element”,
Table 12.23, “The <region /> Element”

Bean equivalent EvictionConfig

Table 12.20. <eviction /> Attributes

JBoss Cache User Guide

90

<eviction />
Attributes

Attribute Bean Field Allowed Default Description

wakeUpInterval wakeupInterval integer 5000 The frequency with
which the eviction
thread runs, in
milliseconds. If set
to less than 1, the
eviction thread
never runs and is
effectively
disabled.

Table 12.21. The <default /> Element

The <default /> Element

Description This element defines the default eviction region.

Parent Table 12.19, “The <eviction /> Element”

Children Table 12.25, “The <property /> Element”

Bean equivalent EvictionRegionConfig

Table 12.22. <default /> Attributes

<default />
Attributes

Attribute Bean Field Allowed Default Description

CHAPTER 12. CONFIGURATION REFERENCES

91

algorithmClass evictionAlgorithmC
onfig

A valid class that is
available on the
classpath

none This attribute
needs to be
specified if this tag
is being used. Note
that if being
configured
programmatically,
the eviction
algorithm's
corresponding
EvictionAlgo
rithmConfig
file should be used
instead. E.g.,
where you would
use
LRUAlgorithm
in XML, you would
use an instance of
LRUAlgorithm
Config
programmatically.

actionPolicyClas
s

evictionActionPolic
yClassName

A valid class that is
available on the
classpath

DefaultEvictionActi
onPolicy

The eviction action
policy class,
defining what
happens when a
node needs to be
evicted.

eventQueueSize eventQueueSize
(dynamic

integer 200000 The size of the
bounded eviction
event queue.

<default />
Attributes

Attribute Bean Field Allowed Default Description

Table 12.23. The <region /> Element

The <region /> Element

Description This element defines an eviction region. Multiple
instances of this tag can exist provided they have
unique name attributes.

Parent Table 12.19, “The <eviction /> Element”

Children Table 12.25, “The <property /> Element”

JBoss Cache User Guide

92

Bean equivalent EvictionRegionConfig

The <region /> Element

Table 12.24. <region /> Attributes

<region />
Attributes

Attribute Bean Field Allowed Default Description

name regionFqn A String that could
be parsed using
Fqn.fromString()

none This should be a
unique name that
defines this region.
See the
Section 10.2,
“Eviction Regions”
for details of
eviction regions.

algorithmClass evictionAlgorithmC
onfig

A valid class that is
available on the
classpath

none This attribute
needs to be
specified if this tag
is being used. Note
that if being
configured
programmatically,
the eviction
algorithm's
corresponding
EvictionAlgo
rithmConfig
file should be used
instead. E.g.,
where you would
use
LRUAlgorithm
in XML, you would
use an instance of
LRUAlgorithm
Config
programmatically.

actionPolicyClas
s

evictionActionPolic
yClassName

A valid class that is
available on the
classpath

DefaultEvictionActi
onPolicy

The eviction action
policy class,
defining what
happens when a
node needs to be
evicted.

CHAPTER 12. CONFIGURATION REFERENCES

93

eventQueueSize eventQueueSize
(dynamic

integer 200000 The size of the
bounded eviction
event queue.

<region />
Attributes

Attribute Bean Field Allowed Default Description

Table 12.25. The <property /> Element

The <property /> Element

Description A mechanism of passing in name-value properties to
the enclosing configuration element.

Parent Table 12.21, “The <default /> Element”,
Table 12.23, “The <region /> Element”,
Table 12.38, “The <interceptor /> Element”

Children

Bean equivalent Either direct setters or setProperties()
enclosing bean

Table 12.26. <property /> Attributes

<property />
Attributes

Attribute Bean Field Allowed Default Description

name Either direct
setters or
setPropertie
s() enclosing
bean

String none Property name

value Either direct
setters or
setPropertie
s() enclosing
bean

String none Property value

Table 12.27. The <loaders /> Element

The <loaders /> Element

Description Defines any cache loaders.

JBoss Cache User Guide

94

Parent Table 12.1, “The <jbosscache /> Element”

Children Table 12.29, “The <preload /> Element”,
Table 12.32, “The <loader /> Element”

Bean equivalent CacheLoaderConfig

The <loaders /> Element

Table 12.28. <loaders /> Attributes

<loaders />
Attributes

Attribute Bean Field Allowed Default Description

passivation passivation true, false false If true, cache
loaders are used in
passivation mode.
See the Chapter 9,
Cache Loaders for
a detailed
discussion on this.

shared shared true, false false If true, cache
loaders are used in
shared mode. See
the Chapter 9,
Cache Loaders for
a detailed
discussion on this.

Table 12.29. The <preload /> Element

The <preload /> Element

Description Defines preloading of Fqn subtrees when a cache
starts up. This element has no attributes.

Parent Table 12.27, “The <loaders /> Element”

Children Table 12.30, “The <node /> Element”

Bean equivalent CacheLoaderConfig

Table 12.30. The <node /> Element

CHAPTER 12. CONFIGURATION REFERENCES

95

The <node /> Element

Description This element defines a subtree under which all
content will be preloaded from the cache loaders
when the cache starts. Multiple subtrees can be
preloaded, although it only makes sense to define
more than one subtree if they do not overlap.

Parent Table 12.29, “The <preload /> Element”

Children

Bean equivalent CacheLoaderConfig

Table 12.31. <node /> Attributes

<node />
Attributes

Attribute Bean Field Allowed Default Description

fqn preload String none An Fqn to preload.
This should be a
String that can be
parsed with
Fqn.fromString().
When doing this
programmatically,
you should create
a single String
containing all of
the Fqns you wish
to preload,
separated by
spaces, and pass
that into
CacheLoaderC
onfig.setPre
load().

Table 12.32. The <loader /> Element

The <loader /> Element

Description This element defines a cache loader. Multiple
elements may be used to create cache loader chains.

Parent Table 12.27, “The <loaders /> Element”

JBoss Cache User Guide

96

Children Table 12.34, “The <properties /> Element”,
Table 12.35, “The <singletonStore />
Element”

Bean equivalent IndividualCacheLoaderConfig

The <loader /> Element

Table 12.33. <loader /> Attributes

<loader />
Attributes

Attribute Bean Field Allowed Default Description

class className A valid class that is
available on the
classpath

none A cache loader
implementation to
use.

async async true, false false All modifications to
this cache loader
happen
asynchronously,
on a separate
thread.

fetchPersistentSt
ate

fetchPersistentStat
e

true, false false When a cache
starts up, retrieve
persistent state
from the cache
loaders in other
caches in the
cluster. Only one
loader element
may set this to
true. Also, only
makes sense if the
Table 12.40, “The
<clustering
/> Element” tag is
present.

purgeOnStartup purgeOnStartup true, false false Purges this cache
loader when it
starts up.

Table 12.34. The <properties /> Element

CHAPTER 12. CONFIGURATION REFERENCES

97

The <properties /> Element

Description This element contains a set of properties that can be
read by a java.util.Properties instance.
This tag has no attributes, and the contents of this
tag will be parsed by Properties.load().

Parent Table 12.32, “The <loader /> Element”,
Table 12.35, “The <singletonStore />
Element”, Table 12.52, “The <locator />
Element”

Children

Bean equivalent IndividualCacheLoaderConfig.setProperties()

Table 12.35. The <singletonStore /> Element

The <singletonStore /> Element

Description This element configures the enclosing cache loader
as a Section 9.2.1, “Singleton Store Configuration” .

Parent Table 12.32, “The <loader /> Element”

Children Table 12.34, “The <properties /> Element”

Bean equivalent SingletonStoreConfig

Table 12.36. <singletonStore /> Attributes

<singletonSt
ore />
Attributes

Attribute Bean Field Allowed Default Description

class className A valid class that is
available on the
classpath

SingletonStoreCac
heLoader

A singleton store
wrapper
implementation to
use.

enabled enabled true, false false If true, the
singleton store
cache loader is
enabled.

Table 12.37. The <customInterceptors /> Element

JBoss Cache User Guide

98

The <customInterceptors /> Element

Description This element allows you to define custom
interceptors for the cache. This tag has no attributes.

Parent Table 12.1, “The <jbosscache /> Element”

Children Table 12.38, “The <interceptor /> Element”

Bean equivalent None. At runtime, instantiate your own interceptor
and pass it in to the cache using
Cache.addInterceptor().

Table 12.38. The <interceptor /> Element

The <interceptor /> Element

Description This element allows you configure a custom
interceptor. This tag may appear multiple times.

Parent Table 12.37, “The <customInterceptors />
Element”

Children Table 12.25, “The <property /> Element”

Bean equivalent None. At runtime, instantiate your own interceptor
and pass it in to the cache using
Cache.addInterceptor().

Table 12.39. <interceptor /> Attributes

<interceptor
/> Attributes

Attribute Bean Field Allowed Default Description

class - A valid class that is
available on the
classpath

none An implementation
of
CommandInter
ceptor.

CHAPTER 12. CONFIGURATION REFERENCES

99

position - first, last A position at which
to place this
interceptor in the
chain. First is the
first interceptor
encountered when
an invocation is
made on the
cache, last is the
last interceptor
before the call is
passed on to the
data structure.
Note that this
attribute is
mutually exclusive
with before,
after and
index.

before - Fully qualified
class name of an
interceptor

Will place the new
interceptor directly
before the instance
of the named
interceptor. Note
that this attribute is
mutually exclusive
with position,
after and
index.

after - Fully qualified
class name of an
interceptor

Will place the new
interceptor directly
after the instance
of the named
interceptor. Note
that this attribute is
mutually exclusive
with position,
before and
index.

<interceptor
/> Attributes

Attribute Bean Field Allowed Default Description

JBoss Cache User Guide

100

index - Positive integers A position at which
to place this
interceptor in the
chain, with 0 being
the first position.
Note that this
attribute is
mutually exclusive
with position,
before and
after.

<interceptor
/> Attributes

Attribute Bean Field Allowed Default Description

Table 12.40. The <clustering /> Element

The <clustering /> Element

Description If this element is present, the cache is started in
clustered mode. Attributes and child elements define
clustering characteristics.

Parent Table 12.1, “The <jbosscache /> Element”

Children Table 12.46, “The <stateRetrieval />
Element”, Table 12.42, “The <sync /> Element”,
Table 12.44, “The <async /> Element”,
Table 12.48, “The <buddy /> Element”,
Table 12.54, “The <jgroupsConfig /> Element”

Bean equivalent Configuration

Table 12.41. <clustering /> Attributes

<clustering
/> Attributes

Attribute Bean Field Allowed Default Description

CHAPTER 12. CONFIGURATION REFERENCES

101

mode cacheMode replication,
invalidation, r, i

replication See the Chapter 8,
Cache Modes and
Clustering for the
differences
between
replication and
invalidation. When
using the bean,
synchronous and
asynchronous
communication is
combined with
clustering mode to
give you the
enumberation
Configuratio
n.CacheMode.

clusterName clusterName String JBossCache-
cluster

A cluster name
which is used to
identify the cluster
to join.

<clustering
/> Attributes

Attribute Bean Field Allowed Default Description

Table 12.42. The <sync /> Element

The <sync /> Element

Description If this element is present, all communications are
synchronous, in that whenever a thread sends a
message sent over the wire, it blocks until it receives
an acknowledgement from the recipient. This element
is mutually exclusive with the Table 12.44, “The
<async /> Element” element.

Parent Table 12.40, “The <clustering /> Element”

Children

Bean equivalent Configuration.setCacheMode()

Table 12.43. <sync /> Attributes

JBoss Cache User Guide

102

<sync />
Attributes

Attribute Bean Field Allowed Default Description

replTimeout syncReplTimeout
(dynamic)

positive integer 15000 This is the timeout
used to wait for an
acknowledgement
when making a
remote call, after
which an exception
is thrown.

Table 12.44. The <async /> Element

The <async /> Element

Description If this element is present, all communications are
asynchronous, in that whenever a thread sends a
message sent over the wire, it does not wait for an
acknowledgement before returning. This element is
mutually exclusive with the Table 12.42, “The <sync
/> Element” element.

Parent Table 12.40, “The <clustering /> Element”

Children

Bean equivalent Configuration.setCacheMode()

Table 12.45. <async /> Attributes

<async />
Attributes

Attribute Bean Field Allowed Default Description

CHAPTER 12. CONFIGURATION REFERENCES

103

serializationExec
utorPoolSize

serializationExecut
orPoolSize

positive integer 25 In addition to
replication
happening
asynchronously,
even serialization
of contents for
replication
happens in a
separate thread to
allow the caller to
return as quickly as
possible. This
setting controls the
size of the
serializer thread
pool. Setting this to
any value less
than 1 means
serialization does
not happen
asynchronously.

serializationExec
utorQueueSize

serializationExecut
orQueueSize

positive integer 50000 This is used to
define the size of
the bounded
queue that holds
tasks for the
serialization
executor. This is
ignored if a
serialization
executor is not
used, such as
when
serializatio
nExecutorPoo
lSize is less
than 1.

useReplQueue useReplQueue true, false false If true, this forces
all async
communications to
be queued up and
sent out
periodically as a
batch.

<async />
Attributes

Attribute Bean Field Allowed Default Description

JBoss Cache User Guide

104

replQueueInterva
l

replQueueInterval positive integer 5000 If
useReplQueue
is set to true, this
attribute controls
how often the
asynchronous
thread used to
flush the
replication queue
runs. This should
be a positive
integer which
represents thread
wakeup time in
milliseconds.

replQueueMaxEle
ments

replQueueMaxEle
ments

positive integer 1000 If
useReplQueue
is set to true, this
attribute can be
used to trigger
flushing of the
queue when it
reaches a specific
threshold.

<async />
Attributes

Attribute Bean Field Allowed Default Description

Table 12.46. The <stateRetrieval /> Element

The <stateRetrieval /> Element

Description This tag controls ho state is retrieved from
neighboring caches when this cache instance starts.

Parent Table 12.40, “The <clustering /> Element”

Children

Bean equivalent Configuration

Table 12.47. <stateRetrieval /> Attributes

CHAPTER 12. CONFIGURATION REFERENCES

105

<stateRetrie
val />
Attributes

Attribute Bean Field Allowed Default Description

fetchInMemorySt
ate

fetchInMemoryStat
e

true, false true If true, this will
cause the cache to
ask neighboring
caches for state
when it starts up,
so the cache starts
"warm".

timeout stateRetrievalTime
out

positive integer 10000 This is the
maximum amount
of time - in
milliseconds - to
wait for state from
neighboring
caches, before
throwing an
exception and
aborting startup.

nonBlocking useNonBlockingSt
ateTransfer

true, false false This configuration
switch enables the
Non-Blocking
State Transfer
mechanism, new
in 3.1.0. Note that
this requires
MVCC as a node
locking scheme,
and that
STREAMING_STA
TE_TRANSFER is
present in the
JGroups stack
used.

Table 12.48. The <buddy /> Element

The <buddy /> Element

Description If this tag is present, then state is not replicated
across the entire cluster. Instead, buddy replication is
used to select cache instances to maintain backups
on. See Section 8.1.2.2, “Buddy Replication” for
details. Note that this is only used if the clustering
mode is replication, and not if it is
invalidation.

JBoss Cache User Guide

106

Parent Table 12.40, “The <clustering /> Element”

Children Table 12.50, “The <dataGravitation />
Element”, Table 12.52, “The <locator />
Element”,

Bean equivalent BuddyReplicationConfig

The <buddy /> Element

Table 12.49. <buddy /> Attributes

<buddy />
Attributes

Attribute Bean Field Allowed Default Description

enabled enabled true, false false If true, buddy
replication is
enabled.

communicationTi
meout

buddyCommunicat
ionTimeout

positive integer 10000 This is the
maximum amount
of time - in
milliseconds - to
wait for buddy
group organization
communications
from buddy
caches.

poolName buddyPoolName String This is used as a
means to identify
cache instances
and provide hints
to the buddy
selection
algorithms. More
information on
Section 8.1.2.2,
“Buddy
Replication”.

Table 12.50. The <dataGravitation /> Element

The <dataGravitation /> Element

Description This tag configures how data gravitation is
conducted. See Section 8.1.2.2, “Buddy Replication”
for details.

CHAPTER 12. CONFIGURATION REFERENCES

107

Parent Table 12.48, “The <buddy /> Element”

Children

Bean equivalent BuddyReplicationConfig

The <dataGravitation /> Element

Table 12.51. <dataGravitation /> Attributes

<dataGravita
tion />
Attributes

Attribute Bean Field Allowed Default Description

auto autoDataGravitatio
n

true, false true If true, when a
get() is performed
on a cache and
nothing is found, a
gravitation from
neighboring
caches is
attempted. If this is
false, then
gravitations can
only occur if the
Option.setFo
rceDataGravi
tation() option
is provided.

removeOnFind dataGravitationRe
moveOnFind

true, false true If true, when
gravitation occurs,
the instance that
requests the
gravitation takes
ownership of the
state and requests
that all other
instances remove
the gravitated state
from memory.

JBoss Cache User Guide

108

searchBackupTre
es

dataGravitationSe
archBackupTrees

true, false true If true, incoming
gravitation
requests will cause
the cache to
search not just its
primary data
structure but its
backup structure
as well.

<dataGravita
tion />
Attributes

Attribute Bean Field Allowed Default Description

Table 12.52. The <locator /> Element

The <locator /> Element

Description This tag provides a pluggable mechanism for
providing buddy location algorithms.

Parent Table 12.48, “The <buddy /> Element”

Children Table 12.34, “The <properties /> Element”

Bean equivalent BuddyLocatorConfig

Table 12.53. <locator /> Attributes

<locator />
Attributes

Attribute Bean Field Allowed Default Description

class className A valid class that is
available on the
classpath

NextMemberBuddy
Locator

A
BuddyLocator
implementation to
use when selecting
buddies from the
cluster. Please
refer to
BuddyLocator
javadocs for
details.

Table 12.54. The <jgroupsConfig /> Element

CHAPTER 12. CONFIGURATION REFERENCES

109

The <jgroupsConfig /> Element

Description This tag provides a configuration which is used with
JGroups to create a network communication channel.

Parent Table 12.40, “The <clustering /> Element”

Children A series of elements representing JGroups protocols
(see JGroups documentation). Note that there are no
child elements if any of the element attributes are
used instead. See section on attributes.

Bean equivalent Configuration

Table 12.55. <jgroupsConfig /> Attributes

<jgroupsConf
ig /> Attributes

Attribute Bean Field Allowed Default Description

configFile clusterConfig A JGroups
configuration file
on the classpath

udp.xml If this attribute is
used, then any
JGroups elements
representing
protocols within
this tag are
ignored. Instead,
JGroups settings
are read from the
file specified. Note
that this cannot be
used with the
multiplexerS
tack attribute.

JBoss Cache User Guide

110

http://www.jgroups.org/javagroupsnew/docs/ug.html

multiplexerStack muxStackName A valid multiplexer
stack name that
exists in the
channel factory
passed in to the
RuntimeConfi
g

This can only be
used with the
RuntimeConfi
g, where you pass
in a JGroups
ChannelFacto
ry instance using
RuntimeConfi
g.setMuxChan
nelFactory().
If this attribute is
used, then any
JGroups elements
representing
protocols within
this tag are
ignored. Instead,
the JGroups
channel is created
using the factory
passed in. Note
that this cannot be
used with the
configFile
attribute.

<jgroupsConf
ig /> Attributes

Attribute Bean Field Allowed Default Description

CHAPTER 12. CONFIGURATION REFERENCES

111

CHAPTER 13. JMX REFERENCES

13.1. JBOSS CACHE STATISTICS

There is a whole wealth of information being gathered and exposed on to JMX for monitoring the cache.
Some of these are detailed below:

Table 13.1. JBoss Cache JMX MBeans

MBean Attribute/Operation Name Description

DataContainerImpl getNumberOfAttributes() Returns the number of attributes
in all nodes in the data container

getNumberOfNodes() Returns the number of nodes in
the data container

printDetails() Prints details of the data container

RPCManagerImpl localAddressString String representation of the local
address

membersString String representation of the cluster
view

statisticsEnabled Whether RPC statistics are being
gathered

replicationCount Number of successful replications

replicationFailures Number of failed replications

successRatio RPC call success ratio

RegionManagerImpl dumpRegions() Dumps a String representation of
all registered regions, including
eviction regions depicting their
event queue sizes

numRegions Number of registered regions

BuddyManager buddyGroup A String representation of the
cache's buddy group

buddyGroupsIParticipateIn String representations of all buddy
groups the cache participates in

TransactionTable numberOfRegisteredTransactions The number of registered, ongoing
transactions

JBoss Cache User Guide

112

transactionMap A String representation of all
currently registered transactions
mapped to internal
GlobalTransaction instances

MVCCLockManager concurrencyLevel The configured concurrency level

numberOfLocksAvailable Number of locks in the shared
lock pool that are not used

numberOfLocksHeld Number of locks in the shared
lock pool that are in use

testHashing(String fqn) Tests the spreading of locks
across Fqns. For a given (String
based) Fqn, this method returns
the index in the lock array that it
maps to.

ActivationInterceptor Activations Number of passivated nodes that
have been activated.

CacheLoaderInterceptor CacheLoaderLoads Number of nodes loaded through
a cache loader.

CacheLoaderMisses Number of unsuccessful attempts
to load a node through a cache
loader.

CacheMgmtInterceptor Hits Number of successful attribute
retrievals.

Misses Number of unsuccessful attribute
retrievals.

Stores Number of attribute store
operations.

Evictions Number of node evictions.

NumberOfAttributes Number of attributes currently
cached.

NumberOfNodes Number of nodes currently
cached.

ElapsedTime Number of seconds that the cache
has been running.

MBean Attribute/Operation Name Description

CHAPTER 13. JMX REFERENCES

113

TimeSinceReset Number of seconds since the
cache statistics have been reset.

AverageReadTime Average time in milliseconds to
retrieve a cache attribute,
including unsuccessful attribute
retrievals.

AverageWriteTime Average time in milliseconds to
write a cache attribute.

HitMissRatio Ratio of hits to hits and misses. A
hit is a get attribute operation that
results in an object being returned
to the client. The retrieval may be
from a cache loader if the entry
isn't in the local cache.

ReadWriteRatio Ratio of read operations to write
operations. This is the ratio of
cache hits and misses to cache
stores.

CacheStoreInterceptor CacheLoaderStores Number of nodes written to the
cache loader.

InvalidationInterceptor Invalidations Number of cached nodes that
have been invalidated.

PassivationInterceptor Passivations Number of cached nodes that
have been passivated.

TxInterceptor Prepares Number of transaction prepare
operations performed by this
interceptor.

Commits Number of transaction commit
operations performed by this
interceptor.

Rollbacks Number of transaction rollbacks
operations performed by this
interceptor.

MBean Attribute/Operation Name Description

JBoss Cache User Guide

114

numberOfSyncsRegistered Number of synchronizations
registered with the transaction
manager pending completion and
removal.

MBean Attribute/Operation Name Description

13.2. JMX MBEAN NOTIFICATIONS

The following table depicts the JMX notifications available for JBoss Cache as well as the cache events
to which they correspond. These are the notifications that can be received through the
CacheJmxWrapper MBean. Each notification represents a single event published by JBoss Cache and
provides user data corresponding to the parameters of the event.

Table 13.2. JBoss Cache MBean Notifications

Notification Type Notification Data CacheListener Event

org.jboss.cache.CacheStarted String: cache service name @CacheStarted

org.jboss.cache.CacheStopped String: cache service name @CacheStopped

org.jboss.cache.NodeCreated String: fqn, boolean: isPre,
boolean: isOriginLocal

@NodeCreated

org.jboss.cache.NodeEvicted String: fqn, boolean: isPre,
boolean: isOriginLocal

@NodeEvicted

org.jboss.cache.NodeLoaded String: fqn, boolean: isPre @NodeLoaded

org.jboss.cache.NodeModifed String: fqn, boolean: isPre,
boolean: isOriginLocal

@NodeModifed

org.jboss.cache.NodeRemoved String: fqn, boolean: isPre,
boolean: isOriginLocal

@NodeRemoved

org.jboss.cache.NodeVisited String: fqn, boolean: isPre @NodeVisited

org.jboss.cache.ViewChanged String: view @ViewChanged

org.jboss.cache.NodeActivated String: fqn @NodeActivated

org.jboss.cache.NodeMoved String: fromFqn, String: toFqn,
boolean: isPre

@NodeMoved

org.jboss.cache.NodePassivated String: fqn @NodePassivated

CHAPTER 13. JMX REFERENCES

115

JBoss Cache User Guide

116

	Table of Contents
	PREFACE
	PART I. INTRODUCTION TO JBOSS CACHE
	CHAPTER 1. OVERVIEW
	1.1. WHAT IS JBOSS CACHE?
	1.1.1. And what is POJO Cache?

	1.2. SUMMARY OF FEATURES
	1.2.1. Caching objects
	1.2.2. Local and clustered modes
	1.2.3. Clustered caches and transactions
	1.2.4. Thread safety

	1.3. REQUIREMENTS
	1.4. LICENSE

	CHAPTER 2. USER API
	2.1. API CLASSES
	2.2. INSTANTIATING AND STARTING THE CACHE
	2.3. CACHING AND RETRIEVING DATA
	2.3.1. Organizing Your Data and Using the Node Structure

	2.4. THE FQN CLASS
	2.5. STOPPING AND DESTROYING THE CACHE
	2.6. CACHE MODES
	2.7. ADDING A CACHE LISTENER - REGISTERING FOR CACHE EVENTS
	2.7.1. Synchronous and Asynchronous Notifications

	2.8. USING CACHE LOADERS
	2.9. USING EVICTION POLICIES

	CHAPTER 3. CONFIGURATION
	3.1. CONFIGURATION OVERVIEW
	3.2. CREATING A CONFIGURATION
	3.2.1. Parsing an XML-based Configuration File
	3.2.2. Validating Configuration Files
	3.2.3. Programmatic Configuration
	3.2.4. Using an IOC Framework

	3.3. COMPOSITION OF A CONFIGURATION OBJECT
	3.4. DYNAMIC RECONFIGURATION
	3.4.1. Overriding the Configuration via the Option API

	CHAPTER 4. BATCHING API
	4.1. INTRODUCTION
	4.2. CONFIGURING BATCHING
	4.3. BATCHING API

	CHAPTER 5. DEPLOYING JBOSS CACHE
	5.1. STANDALONE USE/PROGRAMATIC DEPLOYMENT
	5.2. VIA JBOSS MICROCONTAINER (JBOSS AS 5.X)
	5.3. AUTOMATIC BINDING TO JNDI IN JBOSS AS
	5.4. RUNTIME MANAGEMENT INFORMATION
	5.4.1. JBoss Cache MBeans
	5.4.2. Registering the CacheJmxWrapper with the MBeanServer
	5.4.2.1. Programatic Registration with a Cache instance
	5.4.2.2. Programatic Registration with a Configuration instance
	5.4.2.3. JMX-Based Deployment in JBoss AS (JBoss AS 5.x)

	5.4.3. JBoss Cache Statistics
	5.4.4. Receiving JMX Notifications
	5.4.5. Accessing Cache MBeans in a Standalone Environment using the jconsole Utility

	CHAPTER 6. VERSION COMPATIBILITY AND INTEROPERABILITY
	6.1. API COMPATIBILITY
	6.2. WIRE-LEVEL INTEROPERABILITY
	6.3. COMPATIBILITY MATRIX

	PART II. JBOSS CACHE ARCHITECTURE
	CHAPTER 7. ARCHITECTURE
	7.1. DATA STRUCTURES WITHIN THE CACHE
	7.2. SPI INTERFACES
	7.3. METHOD INVOCATIONS ON NODES
	7.3.1. Interceptors
	7.3.1.1. Writing Custom Interceptors

	7.3.2. Commands and Visitors
	7.3.3. InvocationContexts

	7.4. MANAGERS FOR SUBSYSTEMS
	7.4.1. RpcManager
	7.4.2. BuddyManager
	7.4.3. CacheLoaderManager

	7.5. MARSHALLING AND WIRE FORMATS
	7.5.1. The Marshaller Interface
	7.5.2. VersionAwareMarshaller

	7.6. CLASS LOADING AND REGIONS

	CHAPTER 8. CACHE MODES AND CLUSTERING
	8.1. CACHE REPLICATION MODES
	8.1.1. Local Mode
	8.1.2. Replicated Caches
	8.1.2.1. Replicated Caches and Transactions
	8.1.2.2. Buddy Replication

	8.2. INVALIDATION
	8.3. STATE TRANSFER
	8.3.1. State Transfer Types
	8.3.2. Byte array and streaming based state transfer
	8.3.3. Full and partial state transfer
	8.3.4. Transient ("in-memory") and persistent state transfer
	8.3.5. Configuring State Transfer

	CHAPTER 9. CACHE LOADERS
	9.1. THE CACHELOADER INTERFACE AND LIFECYCLE
	9.2. CONFIGURATION
	9.2.1. Singleton Store Configuration

	9.3. SHIPPED IMPLEMENTATIONS
	9.3.1. File system based cache loaders
	9.3.2. Cache loaders that delegate to other caches
	9.3.3. JDBCCacheLoader
	9.3.3.1. JDBCCacheLoader configuration

	9.3.4. S3CacheLoader
	9.3.4.1. Amazon S3 Library
	9.3.4.2. Configuration

	9.3.5. TcpDelegatingCacheLoader
	9.3.6. Transforming Cache Loaders

	9.4. CACHE PASSIVATION
	9.4.1. Cache Loader Behavior with Passivation Disabled vs. Enabled

	9.5. STRATEGIES
	9.5.1. Local Cache With Store
	9.5.2. Replicated Caches With All Caches Sharing The Same Store
	9.5.3. Replicated Caches With Only One Cache Having A Store
	9.5.4. Replicated Caches With Each Cache Having Its Own Store
	9.5.5. Hierarchical Caches
	9.5.6. Multiple Cache Loaders

	CHAPTER 10. EVICTION
	10.1. DESIGN
	10.1.1. Collecting Statistics
	10.1.2. Determining Which Nodes to Evict
	10.1.3. How Nodes are Evicted
	10.1.4. Eviction threads

	10.2. EVICTION REGIONS
	10.2.1. Resident Nodes

	10.3. CONFIGURING EVICTION
	10.3.1. Basic Configuration
	10.3.2. Programmatic Configuration

	10.4. SHIPPED EVICTION POLICIES
	10.4.1. LRUAlgorithm - Least Recently Used
	10.4.2. FIFOAlgorithm - First In, First Out
	10.4.3. MRUAlgorithm - Most Recently Used
	10.4.4. LFUAlgorithm - Least Frequently Used
	10.4.5. ExpirationAlgorithm
	10.4.6. ElementSizeAlgorithm - Eviction based on number of key/value pairs in a node

	CHAPTER 11. TRANSACTIONS AND CONCURRENCY
	11.1. CONCURRENT ACCESS
	11.1.1. Multi-Version Concurrency Control (MVCC)
	11.1.1.1. MVCC Concepts
	11.1.1.2. MVCC Implementation
	11.1.1.3. Configuring Locking

	11.1.2. Pessimistic and Optimistic Locking Schemes

	11.2. JTA SUPPORT

	PART III. JBOSS CACHE CONFIGURATION REFERENCES
	CHAPTER 12. CONFIGURATION REFERENCES
	12.1. SAMPLE XML CONFIGURATION FILE
	12.1.1. XML validation

	12.2. CONFIGURATION FILE QUICK REFERENCE

	CHAPTER 13. JMX REFERENCES
	13.1. JBOSS CACHE STATISTICS
	13.2. JMX MBEAN NOTIFICATIONS

