
Migration Toolkit for Applications 7.0

Rules Development Guide

Create custom rules to enhance migration coverage.

Last Updated: 2024-05-23

Migration Toolkit for Applications 7.0 Rules Development Guide

Create custom rules to enhance migration coverage.

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide describes how to create custom XML rules for the Migration Toolkit for Applications.

. .

. .

. .

. .

Table of Contents

MAKING OPEN SOURCE MORE INCLUSIVE

CHAPTER 1. INTRODUCTION
1.1. ABOUT THE RULE DEVELOPMENT GUIDE

1.1.1. Use of <MTA_HOME> in this guide
1.2. THE MTA RULES

CHAPTER 2. CREATING YAML RULES
2.1. YAML RULE STRUCTURE AND SYNTAX

2.1.1. Rule metadata
2.1.1.1. Rule labels
2.1.1.2. Rule categories
2.1.1.3. Rule Actions
2.1.1.4. Rule conditions

2.1.1.4.1. Provider conditions
2.1.1.4.1.1. builtin provider
2.1.1.4.1.2. java provider
2.1.1.4.1.3. go provider

2.1.1.4.2. Custom variables
2.1.1.5. Logical conditions

2.1.1.5.1. and condition
2.1.1.5.2. or condition

2.1.2. Rulesets
2.2. CREATING A BASIC YAML RULE

2.2.1. Creating a basic YAML rule template
2.2.2. Creating a basic YAML ruleset template
2.2.3. Creating a YAML rule
2.2.4. Running an analysis using a custom YAML rule

2.3. CREATING YOUR FIRST YAML RULE
2.3.1. Creating a YAML file for the rule
2.3.2. Creating data to test the rule
2.3.3. Creating the rule
2.3.4. Installing the rule
2.3.5. Testing the rule
2.3.6. Reviewing the report

CHAPTER 3. TESTING XML RULES
3.1. CREATING A TEST RULE

3.1.1. Test XML rule structure
3.1.2. Test XML rule syntax

3.1.2.1. <not> syntax
Summary

3.1.2.2. <iterable-filter> syntax
Summary
<iterable-filter> element attributes

3.1.2.3. <classification-exists> syntax
<classification-exists> element attributes

3.1.2.4. <hint-exists> syntax
<hint-exists> element attributes

3.1.2.5. <fail> syntax
<fail> element attributes

3.2. MANUALLY TESTING AN XML RULE

4

5
5
5
5

6
6
6
6
8
8
9

10
10
11

12
13
13
14
14
15
15
15
16
16

20
20
20
20
21
22
23
23

24
24
24
24
25
25
25
25
26
26
27
27
28
29
29
29

Table of Contents

1

. .

. .

. .

3.3. TESTING THE RULES BY USING JUNIT
3.4. ABOUT VALIDATION REPORTS

3.4.1. Creating a validation report
3.4.2. Validation report error messages

CHAPTER 4. OVERRIDING RULES
4.1. OVERRIDING A RULE
4.2. DISABLING A RULE

CHAPTER 5. USING CUSTOM RULE CATEGORIES
5.1. ADDING A CUSTOM CATEGORY
5.2. ASSIGNING A RULE TO A CUSTOM CATEGORY

APPENDIX A. REFERENCE MATERIAL
A.1. ABOUT RULE STORY POINTS

A.1.1. What are story points?
A.1.2. How story points are estimated in rules
A.1.3. Task category

A.2. ADDITIONAL RESOURCES
A.2.1. Reviewing existing MTA XML rules

A.2.1.1. Forking and cloning the Migration Toolkit for Applications XML rules
A.2.2. Additional resources

29
31
31
32

34
34
35

36
36
36

38
38
38
38
38
39
39
39
40

Migration Toolkit for Applications 7.0 Rules Development Guide

2

Table of Contents

3

MAKING OPEN SOURCE MORE INCLUSIVE
Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

Migration Toolkit for Applications 7.0 Rules Development Guide

4

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

CHAPTER 1. INTRODUCTION

1.1. ABOUT THE RULE DEVELOPMENT GUIDE

This guide is intended for software engineers who want to create custom YAML-based rules for
Migration Toolkit for Applications (MTA) tools.

See the Introduction to the Migration Toolkit for Applications for an overview and the CLI Guide for
details.

1.1.1. Use of <MTA_HOME> in this guide

This guide uses the <MTA_HOME> replaceable variable to denote the path to your MTA installation.

The mta-7.0.3-cli<OS>.zip* extracts a single binary called mta-cli.

When you encounter <MTA_HOME> in this guide, replace it with the actual path to your MTA
installation.

1.2. THE MTA RULES

The Migration Toolkit for Applications (MTA) contains rule-based migration tools (analyzers) that you
can use to analyze the application user interfaces (APIs), technologies, and architectures used by the
applications you plan to migrate. MTA analyzer rules use the following rule pattern:

when(condition)
 message(message)
 tag(tags)

You can use the MTA rules internally to perform the following tasks:

Extract files from archives.

Decompile files.

Scan and classify file types.

Analyze XML and other file content.

Analyze the application code.

Build the reports.

MTA builds a data model based on the rule execution results and stores component data and
relationships in a graph database. This database can then be queried and updated as required by the
migration rules and for reporting purposes.

NOTE

You can create your own custom analyzer rules. You can use custom rules to identify the
use of custom libraries or other components that might not be covered by the provided
standard migration rules.

CHAPTER 1. INTRODUCTION

5

https://access.redhat.com/documentation/en-us/migration_toolkit_for_applications/7.0/html-single/introduction_to_the_migration_toolkit_for_applications
https://access.redhat.com/documentation/en-us/migration_toolkit_for_applications/7.0/html-single/cli_guide

1

2

3

4

CHAPTER 2. CREATING YAML RULES
Each analyzer rule is a set of instructions that are used to analyze source code and detect issues that are
problematic for migration.

The analyzer parses user-provided rules, applies them to applications' source code, and generates
issues for matched rules. A collection of one or more rules forms a ruleset. Creating rulesets provides a
way of organizing multiple rules that achieve a common goal. The analyzer CLI takes rulesets as input
arguments.

2.1. YAML RULE STRUCTURE AND SYNTAX

MTA rules are written in YAML. Each rule consists of metadata, conditions and actions, which instruct the
analyzer to take specified actions when given conditions match.

A YAML rule file in MTA contains one or more YAML rules.

2.1.1. Rule metadata

Rule metadata contains general information about the rule. The structure of metadata is as follows:

The ID must be unique within the ruleset to which the rule belongs.

See below for a description of the label format.

effort is an integer value that indicates the level of effort needed to fix this issue.

category describes the severity of the issue for migration. The value can be either mandatory,
optional or potential. For a description of these categories, see Rule categories.

2.1.1.1. Rule labels

Labels are key=val pairs specified for rules or rulesets as well as dependencies. For dependencies, a
provider adds the labels to the dependencies when retrieving them. Labels on a ruleset are automatically
inherited by all the rules that belong to it.

Label format

Labels are specified under the labels field as a list of strings in key=val format as follows:

ruleId: "unique_id" 1
labels: 2
 # key=value pair
 - "label1=val1"
 # valid label with value omitted
 - "label2"
 # valid label with empty value
 - "label3="
 # subdomain prefixed key
 - "konveyor.io/label1=val1"
effort: 1 3
category: mandatory 4

Migration Toolkit for Applications 7.0 Rules Development Guide

6

The key of a label can be subdomain-prefixed:

The value of a label can be empty:

The value of a label can be omitted. In that case, it is treated as an empty value:

Reserved labels

The analyzer defines some labels that have special meaning as follows:

konveyor.io/source: Identifies the source technology to which a rule or a ruleset applies

konveyor.io/target: Identifies the target technology to which a rule or a ruleset applies

Label selector

The analyzer CLI takes the --label-selector field as an option. It is a string expression that supports
logical AND, OR and NOT operations. You can use it to filter-in or filter-out rules by their labels.

Examples:

To filter-in all rules that have a label with the key konveyor.io/source and value eap6:
--label-selector="konveyor.io/source=eap6"

To filter-in all rules that have a label with the key konveyor.io/source and any value:
--label-selector="konveyor.io/source"

To perform logical AND operations on matches of multiple rules using the && operator:
--label-selector="key1=val1 && key2"

To perform logical OR operations on matches of multiple rules using the || operator:
--label-selector="key1=val1 || key2"

To perform a NOT operation to filter-out rules that have key1=val1 label set using the !
operator:
--label-selector="!key1=val1"

To group sub-expressions and control precedence using AND:
--label-selector="(key1=val1 || key2=val2) && !val3"

Dependency labels

The analyzer engine adds labels to dependencies. These labels provide additional information about a

labels:
- "key1=val1"
- "key2=val2"

labels:
- "konveyor.io/key1=val1"

labels:
- "konveyor.io/key="

labels:
- "konveyor.io/key"

CHAPTER 2. CREATING YAML RULES

7

The analyzer engine adds labels to dependencies. These labels provide additional information about a
dependency, such as its programming language and whether the dependency is open-source or internal.

Currently, the analyzer adds the following labels to dependencies:

Dependency label selector

The analyzer CLI accepts the --dep-label-selector option, which allows filtering-in or filtering-out
incidents generated from a dependency by their labels.

For example, the analyzer adds a konveyor.io/dep-source label to dependencies with a value that
indicates whether the dependency is a known open-source dependency.

To exclude incidents for all such open-source dependencies, you can use --dep-label-selector as
follows:

konveyor-analyzer … ​ --dep-label-selector !konveyor.io/dep-source=open-source

The Java provider in the analyzer can also add an exclude label to a list of packages. To exclude all such
packages, you can use --dep-label-selector and the ! operator as follows:

konveyor-analyzer … ​ --dep-label-selector !konveyor.io/exclude

2.1.1.2. Rule categories

mandatory

You must resolve the issue for a successful migration, otherwise, the resulting application is
not expected to build or run successfully. An example of such an issue is proprietary APIs
that are not supported on the target platform.

optional

If you do not resolve the issue, the application is expected to work, but the results might not
be optimal. If you do not make the change at the time of migration, you need to put it on the
schedule soon after your migration is completed. An example of such an issue is EJB 2.x
code not upgraded to EJB 3.

potential

You need to examine the issue during the migration process, but there is not enough
information to determine whether resolving the issue is mandatory for the migration to
succeed. An example of such an issue is migrating a third-party proprietary type when there
is no directly compatible type on the target platform.

2.1.1.3. Rule Actions

Rules can include 2 types of actions: message and tag. Each rule includes one of them or both.

Message actions

A message action creates an issue with a message when the rule matches. The custom data exported by
providers can also be used in the message.

labels:
- konveyor.io/dep-source=internal
- konveyor.io/language=java

Migration Toolkit for Applications 7.0 Rules Development Guide

8

message: "helpful message about the issue"

Example:

Optionally, a message can include hyperlinks to external URLs that provide relevant information about
the issue or a quick fix.

A message can also be a template to include information about the match interpolated through custom
variables on the rule.

Tag actions

A tag action instructs the analyzer to generate one or more tags for the application when a match is
found. Each string in the tag field can be a comma-separated list of tags. Optionally, you can assign
categories to tags.

Example

A tag can be a string or a key=val pair, where the key is treated as a tag category in MTA. Any rule that
has a tag action is referred to as a “tagging rule” in this document.

Note that issues are not created for rules that contain only tag actions.

2.1.1.4. Rule conditions

Each rule has a when block, which specifies a condition that needs to be met for MTA to perform a
certain action.

The when block contains one condition, but that condition can have multiple conditions nested under it.

- ruleID: test-rule
 when:
 <CONDITION>
 message: Test rule matched. Please resolve this migration issue.

links:
 - url: "konveyor.io"
 title: "Short title for the link"

tag:
 - "tag1,tag2,tag3"
 - "Category=tag4,tag5"

- ruleID: test-rule
 when:
 <CONDITION>
 tag:
 - Language=Golang
 - Env=production
 - Source Code

when:
 <condition>
 <nested-condition>

CHAPTER 2. CREATING YAML RULES

9

MTA supports three types of conditions: provider, and, and or.

2.1.1.4.1. Provider conditions

MTA supports multi-language source code analysis. Searching for a specific language in the source
code is enabled using the provider condition. This condition defines a search query for a specific
language provider. The provider condition also specifies which of the provider’s "capabilities" to use for
analyzing the code.

The provider condition has the form <provider_name>.<capability>:

The analyzer currently supports the following provider conditions:

builtin

java

go

2.1.1.4.1.1. builtin provider

builtin is an internal provider that can analyze various files and internal metadata generated by the
engine.

This provider has the following capabilities:

file

filecontent

xml

json

hasTags

file

The file capability enables the provider to search for files in the source code that match a given pattern.

filecontent

The filecontent capability enables the provider to search for content that matches a given pattern.

when:
 <provider_name>.<capability>
 <input_fields>

when:
 builtin.file:
 pattern: "<regex_to_match_filenames>"

when:
 builtin.filecontent:
 filePattern: "<regex_to_match_filenames_to_scope_search>"
 pattern: "<regex_to_match_content_in_the_matching_files>"

Migration Toolkit for Applications 7.0 Rules Development Guide

10

1

2

1

1

xml

The xml capability enables the provider to query XPath expressions on a list of provided XML files. This
capability takes 2 input parameters, xpath and filepaths.

xpath must be a valid XPath expression.

filepaths is a list of files to apply the XPath query to.

json

The json capability enables the provider to query XPath expressions on a list of provided JSON files.
Currently, json only takes XPath as input and performs the search on all JSON files in the codebase.

xpath must be a valid XPath expression.

hasTags

The hasTags capability enables the provider to query application tags. It queries the internal data
structure to check whether the application has the given tags.

When more than one tags is given, a logical AND is implied.

2.1.1.4.1.2. java provider

The java provider analyzes Java source code.

This provider has the following capabilities:

referenced

dependency.

referenced

The referenced capability enables the provider to find references in the source code. This capability

when:
 builtin.xml:
 xpath: "<xpath_expressions>" 1
 filepaths: 2
 - "/src/file1.xml"
 - "/src/file2.xml"

when:
 builtin.json:
 xpath: "<xpath_expressions>" 1

when:
 # when more than one tags are given, a logical AND is implied
 hasTags: 1
 - "tag1"
 - "tag2"

CHAPTER 2. CREATING YAML RULES

11

1

2

1

2

3

The referenced capability enables the provider to find references in the source code. This capability
takes two input parameters, pattern and location.

A RegEx pattern to match, for example, org.kubernetes.*

Specifies the exact location where the pattern needs to be matched, for example, IMPORT

The supported locations are the following:

CONSTRUCTOR_CALL

TYPE

INHERITANCE

METHOD_CALL

ANNOTATION

IMPLEMENTS_TYPE

ENUM_CONSTANT

RETURN_TYPE

IMPORT

VARIABLE_DECLARATION

dependency

The dependency capability enables the provider to find dependencies for a given application. MTA
generates a list of the application’s dependencies, and you can use this capability to query the list and
check whether a certain dependency exists for the application within a given range of the dependency’s
versions.

Name of the dependency to search for

Upper bound on the version of the dependency

Lower bound on the version of the dependency

2.1.1.4.1.3. go provider

when:
 java.referenced:
 pattern: "<pattern>" 1
 location: "<location>" 2

when:
 java.dependency:
 name: "<dependency_name>" 1
 upperbound: "<version_string>" 2
 lowerbound: "<version_string>" 3

Migration Toolkit for Applications 7.0 Rules Development Guide

12

1

2

3

1

2

3

The go provider analyzes Go source code. This provider’s capabilities are referenced and dependency.

referenced

The referenced capability enables the provider to find references in the source code.

dependency

The dependency capability enables the provider to find dependencies for an application.

Name of the dependency to search for

Upper bound on the version of the dependency

Lower bound on the version of the dependency

2.1.1.4.2. Custom variables

Provider conditions can have associated custom variables. You can use custom variables to capture
relevant information from the matched line in the source code. The values of these variables are
interpolated with data matched in the source code. These values can be used to generate detailed
templated messages in a rule’s action (see Message actions). They can be added to a rule in the
customVariables field:

pattern: A RegEx pattern that is matched on the source code line when a match is found

name: The name of the variable that can be used in templates

message: A template for a message using a custom variable

2.1.1.5. Logical conditions

The analyzer provides two basic logical conditions, and and or, which enable you to aggregate results of

when:
 go.referenced: "<regex_to_find_reference>"

when:
 go.dependency:
 name: "<dependency_name>" 1
 upperbound: "<version_string>" 2
 lowerbound: "<version_string>" 3

- ruleID: lang-ref-004
 customVariables:
 - pattern: '([A-z]+)\.get\(\)' 1
 name: VariableName 2
 message: "Found generic call - {{ VariableName }}" 3
 when:
 java.referenced:
 location: METHOD_CALL
 pattern: com.example.apps.GenericClass.get

CHAPTER 2. CREATING YAML RULES

13

The analyzer provides two basic logical conditions, and and or, which enable you to aggregate results of
other conditions and create more complex queries.

2.1.1.5.1. and condition

The and condition performs a logical AND operation on the results of an array of conditions. An and
condition matches when all of its child conditions match.

Example

Conditions can also be nested within other conditions.

Example

2.1.1.5.2. or condition

The or condition performs a logical OR operation on the results of an array of conditions. An or
condition matches when any of its child conditions matches.

Example

when:
 and:
 - <condition1>
 - <condition2>

when:
 and:
 - java.dependency:
 name: junit.junit
 upperbound: 4.12.2
 lowerbound: 4.4.0
 - java.referenced:
 location: IMPORT
 pattern: junit.junit

when:
 and:
 - and:
 - go.referenced: "*CustomResourceDefinition*"
 - java.referenced:
 pattern: "*CustomResourceDefinition*"
 - go.referenced: "*CustomResourceDefinition*"

when:
 or:
 - <condition1>
 - <condition2>

when:
 or:
 - java.dependency:
 name: junit.junit
 upperbound: 4.12.2

Migration Toolkit for Applications 7.0 Rules Development Guide

14

1

2

2.1.2. Rulesets

A set of rules forms a ruleset. MTA does not require every rule file to belong to a ruleset, but you can use
rulesets to group multiple rules that achieve a common goal and to pass the rules to the rules engine.

You can create a ruleset by placing one or more YAML rules in a directory and creating a ruleset.yaml
file at the directory root. When you pass this directory as input to the MTA CLI using the --rules option,
all rules in this directory are treated as a part of the ruleset defined by ruleset.yaml file.

The ruleset.yaml file stores the metadata of the ruleset.

The name must be unique within the provided rulesets.

Ruleset labels are inherited by all rules that belong to the ruleset.

2.2. CREATING A BASIC YAML RULE

This section describes how to create a basic MTA YAML rule. This assumes that you already have MTA
installed. See the MTA CLI Guide for installation instructions.

2.2.1. Creating a basic YAML rule template

MTA YAML-based rules have the following basic structure:

Procedure

1. In the /home/<USER>/ directory, create a file containing the basic syntax for YAML rules as
follows:

 lowerbound: 4.4.0
 - java.referenced:
 location: IMPORT
 pattern: junit.junit

name: "Name of the ruleset" 1
description: "Description of the ruleset"
labels: 2
 - key=val

when(condition)
 message(message)
 tag(tags)

- category: mandatory
 description: |
 <DESCRIPTION TITLE>
 <DESCRIPTION TEXT>
 effort: <EFFORT>
 labels:
 - konveyor.io/source=<SOURCE_TECH>
 - konveyor.io/target=<TARGET_TECH>
 links:

CHAPTER 2. CREATING YAML RULES

15

https://access.redhat.com/documentation/en-us/migration_toolkit_for_applications/7.0/html-single/cli_guide

1

2

2.2.2. Creating a basic YAML ruleset template

If you want to group multiple similar rules, you can create a ruleset for them by placing their files in a
directory and creating a ruleset.yaml file at the directory’s root. When you pass this directory as input
to the MTA CLI using the --rules option, MTA treats all the files in the directory as belonging to the
ruleset defined in the ruleset.yaml file.

Procedure

1. Create a template for ruleset.yaml files if you want to pass the entire directory using the --
rules option:

The name must be unique within the provided rulesets.

Ruleset labels are inherited by all rules that belong to the ruleset.

2.2.3. Creating a YAML rule

Each rule file contains one or more YAML rules. Every rule comprises metadata, conditions and actions.

Procedure

1. Create a when condition.
The when condition of a YAML rule can be provider, and or or.

a. Create a provider condition
The provider condition is used to define a search query for a specific language provider and
to invoke a certain capability of the provider.

The condition’s general format is <provider_name>.<capability>. The condition also has
inner fields to specify details of the search. The way you create a provider condition and its
inner fields depends on which provider you use and which capability you invoke.

The table below lists the available providers and their capabilities. Select a provider and its
capability that suit the purpose of the rule you want to create. This part of the condition
does not contain any of the condition’s fields yet.

 - url: <HYPERLINK>
 title: <HYPERLINK_TITLE>
 message: <MESSAGE>
 tag:
 - <TAG1>
 - <TAG2>
 ruleID: <RULE_ID>
 when:
 <CONDITIONS>

name: <RULESET_NAME> 1
description: <RULESET_DESCRIPTION>
labels: 2
 - key=val

Migration Toolkit for Applications 7.0 Rules Development Guide

16

Provider Capability Description

java referenced Finds references of a pattern with an optional code
location for detailed searches

dependency Checks whether the application has a given dependency

builtin xml Searches XML files using XPath queries

json Searches JSON files using JSONPath queries

filecontent Searches content in regular files using RegEx patterns

file Finds files with names matching a given pattern

hasTags Checks whether a tag is created for the application
through a tagging rule

go referenced Finds references of a pattern

dependency Checks whether the application has a given dependency

The example below shows a java provider condition that uses the referenced capability.

Example

2. Add suitable fields to the provider condition.
The table below lists all available providers, their capabilities, and their fields. Select the fields
that belong to the provider and capability that you have chosen. Note that some fields are
mandatory.

Provider Capability Field Required? Description

java reference
d

pattern Yes RegEx pattern

location No Source code location; see below
for a list of all supported search
locations

dependen
cy

name Yes Name of the dependency

nameregex No RegEx pattern to match the
name

when:
 java.referenced:

CHAPTER 2. CREATING YAML RULES

17

upperbound No Matches version numbers lower
than or equal to

lowerbound No Matches version numbers
greater than or equal to

builtin xml xpath Yes XPath query

namespaces No A map to scope down query to
namespaces

filepaths No Optional list of files to scope
down search

json xpath Yes XPath query

filepaths No Optional list of files to scope
down search

fileconten
t

pattern Yes RegEx pattern to match in
content

filePattern No Only searches in files with
names matching this pattern

file pattern Yes Finds files with names matching
this pattern

hasTags This is an inline list of string tags. See Tag Action for details on tag
format.

go reference
d

pattern Yes RegEx pattern

dependen
cy

name Yes Name of the dependency

nameregex No RegEx pattern to match the
name

upperbound No Matches version numbers lower
than or equal to

lowerbound No Matches version numbers
greater than or equal to

Provider Capability Field Required? Description

The following search locations can be used to scope down java searches:

Migration Toolkit for Applications 7.0 Rules Development Guide

18

CONSTRUCTOR_CALL

TYPE

INHERITANCE

METHOD_CALL

ANNOTATION

IMPLEMENTS_TYPE

ENUM_CONSTANT

RETURN_TYPE

IMPORT

VARIABLE_DECLARATION
The example below shows the when condition of a rule that searches for references of a
package.

Example

3. Create an AND or OR condition

An and condition matches when all of its child conditions match. Create an and condition as
follows:

An or condition matches when any of its child conditions match. Create an or condition as
follows:

when:
 java.referenced:
 location: PACKAGE
 pattern: org.jboss.*

when:
 and:
 - java.dependency:
 name: junit.junit
 upperbound: 4.12.2
 lowerbound: 4.4.0
 - java.referenced:
 location: IMPORT
 pattern: junit.junit

when:
 or:
 - java.dependency:
 name: junit.junit
 upperbound: 4.12.2
 lowerbound: 4.4.0
 - java.referenced:
 location: IMPORT
 pattern: junit.junit

CHAPTER 2. CREATING YAML RULES

19

2.2.4. Running an analysis using a custom YAML rule

To run an analysis, use the --rules option in the CLI.

Procedure

To use the rules in a single rule file, /home/<USER>/rule.yaml, run the following command:

where:

/home/<USER>/data/ - the directory of the source code or binary

/home/<USER>/output/ - the directory for reports (HTML and YAML)

To use multiple rule files, you need to place them in a directory and to add a ruleset.yaml file.
Then the directory is treated as a ruleset, and you can pass it as input to the --rules option.

Note that if you wish to use the --target or --source option in the CLI, the engine will only select rules
that match the label for that target. Therefore, make sure that you have added target or source labels
on your rules. See Reserved labels for more details.

2.3. CREATING YOUR FIRST YAML RULE

This section guides you through the process of creating and testing your first MTA YAML-based rule.
This assumes that you have already installed MTA. See Installing and running the CLI in the CLI Guide
for installation instructions.

In this example, you will create a rule to discover instances where an application defines a jboss-web.xml
file containing a <class-loading> element and to provide a link to the documentation that describes
how to migrate the code.

2.3.1. Creating a YAML file for the rule

Create a YAML file for your first rule.

$ mkdir /home/<USER>/rule.yaml

2.3.2. Creating data to test the rule

1. Create jboss-web.xml and pom.xml files in a directory:

mkdir /home/<USER>/data/
touch /home/<USER>/data/jboss-web.xml
touch /home/<USER>/data/pom.xml

2. In the jboss-web.xml file you created, paste the following content:

<!DOCTYPE jboss-web PUBLIC "-//JBoss//DTD Web Application 4.2//EN"
"http://www.jboss.org/j2ee/dtd/jboss-web_4_2.dtd">
<jboss-web>
 <class-loading java2ClassLoadingCompliance="false">

mta-cli analyze --input /home/<USER>/data/ --output /home/<USER>/output/ --rules
/home/<USER>/rule.yaml

Migration Toolkit for Applications 7.0 Rules Development Guide

20

https://access.redhat.com/documentation/en-us/migration_toolkit_for_applications/7.0/html-single/cli_guide/index#installing_and_running_the_cli

1

2

 <loader-repository>
 seam.jboss.org:loader=@projectName@
 <loader-repository-config>java2ParentDelegation=false</loader-repository-config>
 </loader-repository>
 </class-loading>
</jboss-web>

3. In the pom.xml file you created, paste the following content:

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>

 <groupId>test</groupId>
 <artifactId>test</artifactId>
 <version>1.1.0-SNAPSHOT</version>

 <properties>
 <maven.compiler.source>1.7</maven.compiler.source>
 <maven.compiler.target>1.7</maven.compiler.target>
 </properties>

 <dependencies>
 </dependencies>
</project>

2.3.3. Creating the rule

MTA YAML-based rules use the following rule pattern:

when(condition)
 perform(action)

Procedure

1. In the rule.yaml file you created, paste the following contents:

- ruleID: <UNIQUE_RULE_ID> 1
 description: <DESCRIPTION> 2
 when:
 <CONDITION(S)> 3
 message: <MESSAGE> 4
 labels: <LABELS> 5
 effort: <EFFORT> 6
 links:
 - <LINKS> 7

Unique ID for your rule, for instance, jboss5-web-class-loading.

Text description of the rule.

CHAPTER 2. CREATING YAML RULES

21

3

4

5

6

7

Complete the when block specifying one or more conditions:

a. Use the builtin provider’s XML capability because this rule checks for a match in an
XML file.

b. To match on the class-loading element that is a child of jboss-web, use the XPath
expression jboss-web/web-loading as an XML query. In this case, you need just one
condition:

when:
 builtin.xml:
 xpath: jboss-web/class-loading

Helpful message explaining the migration issue. The message is generated in the report
when the rule matches. For example:

message: The class-loading element is no longer valid in the jboss-web.xml file.

List of string labels for the rule.

Number of expected story points to fix this issue.

One or more hyperlinks pointing to documentation around the migration issues that you
find.

links:
- url: https://access.redhat.com/documentation/en-
US/JBoss_Enterprise_Application_Platform/6.4/html-
single/Migration_Guide/index.html#Create_or_Modify_Files_That_Control_Class_Loading
_in_JBoss_Enterprise_Application_Platform_6
 title: Create or Modify Files That Control Class Loading in JBoss EAP 6

The rule is now complete and looks similar to the following:

- ruleID: jboss5-web-class-loading
 description: Find class loading element in JBoss XML file.
 when:
 builtin.xml:
 xpath: jboss-web/class-loading
 message: The class-loading element is no longer valid in the jboss-web.xml file.
 effort: 3
 links:
 - url: https://access.redhat.com/documentation/en-
US/JBoss_Enterprise_Application_Platform/6.4/html-
single/Migration_Guide/index.html#Create_or_Modify_Files_That_Control_Class_Loading
_in_JBoss_Enterprise_Application_Platform_6
 title: Create or Modify Files That Control Class Loading in JBoss EAP 6

2.3.4. Installing the rule

Procedure

1. Point the CLI to the rule file you created :

Migration Toolkit for Applications 7.0 Rules Development Guide

22

–rules /home/<USER>/rules.yaml

2.3.5. Testing the rule

Procedure

To test the rule, point the input to the test data you created and pass the rule using the rules option in
MTA CLI:

mta-cli analyze --input /home/<USER>/data/ --output /home/<USER>/output/ --rules
/home/<USER>/rules.yaml

2.3.6. Reviewing the report

Review the report to be sure that it provides the expected results.

Procedure

1. Once the analysis is complete, the command outputs the path to the HTML report:

INFO[0066] Static report created. Access it at this URL:
URL="file:/home/<USER>/output/static-report/index.html"

Open /home/<USER_NAME>/output/static-report/index.html in a web browser.

2. Navigate to the Issues tab in the left menu.

3. Verify that the rule is executed:

a. In the Issues table, type JBoss XML in the search bar.

b. Verify that the issue with the title Find class loading element in JBoss XML file is
present in the table.

4. Click the jboss-web.xml link to open the affected file.

CHAPTER 2. CREATING YAML RULES

23

CHAPTER 3. TESTING XML RULES
After you have created an XML rule, you should create a test rule to ensure that it works.

3.1. CREATING A TEST RULE

Test rules are created using a process similar to the process for creating an XML rule, with the following
differences:

Test rules should be placed in a tests/ directory beneath the rule to be tested.

Any data, such as test classes, should be placed in a data/ directory beneath the tests/ directory.

Test rules should use the .windup.test.xml extension.

These rules use the structure defined in the Test XML Rule Structure.

In addition, it is recommended to create a test rule that follows the name of the rule it tests. For
instance, if a rule were created with a filename of proprietary-rule.mta.xml, the test rule should be
called proprietary-rule.windup.test.xml.

3.1.1. Test XML rule structure

All test XML rules are defined as elements within ruletests which contain one or more rulesets. For
more details, see the MTA XML rule schema.

A ruletest is a group of one or more tests that targets a specific area of migration. This is the basic
structure of the <ruletest> element.

<ruletest id="<RULE_TOPIC>-test">: Defines this as a unique MTA ruletest and gives it a
unique ruletest id.

<testDataPath>: Defines the path to any data, such as classes or files, used for testing.

<sourceMode>: Indicates if the passed in data only contains source files. If an archive, such
as an EAR, WAR, or JAR, is in use, then this should be set to false. Defaults to true.

<rulePath>: The path to the rule to be tested. This should end in the name of the rule to
test.

<ruleset>: Rulesets containing the logic of the test cases. These are identical to the ones
defined in Rulesets.

3.1.2. Test XML rule syntax

In addition to the tags in the standard XML rule syntax, the following when conditions are commonly
used for creating test rules:

<not>

<iterable-filter>

<classification-exists>

<hint-exists>

In addition to the tags in the standard perform action syntax, the following perform conditions are

Migration Toolkit for Applications 7.0 Rules Development Guide

24

http://windup.jboss.org/schema/windup-jboss-ruleset.xsd

In addition to the tags in the standard perform action syntax, the following perform conditions are
commonly used as actions in test rules:

<fail>

3.1.2.1. <not> syntax

Summary
The <not> element is the standard logical not operator, and is commonly used to perform a <fail> if the
condition is not met.

The following is an example of a test rule that fails if only a specific message exists at the end of the
analysis.

The <not> element has no unique attributes or child elements.

3.1.2.2. <iterable-filter> syntax

Summary

The <iterable-filter> element counts the number of times a condition is verified. For additional

<ruletest xmlns="http://windup.jboss.org/schema/jboss-ruleset"
 id="proprietary-servlet-test" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://windup.jboss.org/schema/jboss-ruleset
http://windup.jboss.org/schema/jboss-ruleset/windup-jboss-ruleset.xsd">
 <testDataPath>data/</testDataPath>
 <rulePath>../proprietary-servlet.windup.xml</rulePath>
 <ruleset>
 <rules>
 <rule id="proprietary-servlet-01000-test">
 <when>
 <!--
 The `<not>` will perform a logical _not_ operator on the elements within.
 -->
 <not>
 <!--
 The defined `<iterable-filter>` has a size of `1`. This rule will only match on a single instance of
the defined hint.
 -->
 <iterable-filter size="1">
 <hint-exists message="Replace the proprietary @ProprietaryServlet annotation with the Java
EE 7 standard @WebServlet annotation*" />
 </iterable-filter>
 </not>
 </when>
 <!--
 This `<perform>` element is only executed if the previous `<when>` condition is false.
 This ensures that it only executes if there is not a single instance of the defined hint.
 -->
 <perform>
 <fail message="Hint for @ProprietaryServlet was not found!" />
 </perform>
 </rule>
 </rules>
 </ruleset>
</ruletest>

CHAPTER 3. TESTING XML RULES

25

The <iterable-filter> element counts the number of times a condition is verified. For additional
information, see the IterableFilter class.

The following is an example that looks for four instances of the specified message.

The <iterable-filter> element has no unique child elements.

<iterable-filter> element attributes

Attribute Name Type Description

size integer The number of times to be verified.

3.1.2.3. <classification-exists> syntax

The <classification-exists> element determines if a specific classification title has been included in the
analysis. For additional information, see the ClassificationExists class.

IMPORTANT

<ruletest xmlns="http://windup.jboss.org/schema/jboss-ruleset"
 id="proprietary-servlet-test" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://windup.jboss.org/schema/jboss-ruleset
http://windup.jboss.org/schema/jboss-ruleset/windup-jboss-ruleset.xsd">
 <testDataPath>data/</testDataPath>
 <rulePath>../proprietary-servlet.mta.xml</rulePath>
 <ruleset>
 <rules>
 <rule id="proprietary-servlet-03000-test">
 <when>
 <!--
 The `<not>` will perform a logical _not_ operator on the elements within.
 -->
 <not>
 <!--
 The defined `<iterable-filter>` has a size of `4`. This rule will only match on four instances of the
defined hint.
 -->
 <iterable-filter size="4">
 <hint-exists message="Replace the proprietary @ProprietaryInitParam annotation with the
Java EE 7 standard @WebInitParam annotation*" />
 </iterable-filter>
 </not>
 </when>
 <!--
 This `<perform>` element is only executed if the previous `<when>` condition is false.
 In this configuration, it only executes if there are not four instances of the defined hint.
 -->
 <perform>
 <fail message="Hint for @ProprietaryInitParam was not found!" />
 </perform>
 </rule>
 </rules>
 </ruleset>
</ruletest>

Migration Toolkit for Applications 7.0 Rules Development Guide

26

http://windup.github.io/windup/docs/latest/javadoc/org/jboss/windup/rules/general/IterableFilter.html
http://windup.github.io/windup/docs/latest/javadoc/org/jboss/windup/reporting/config/ClassificationExists.html

IMPORTANT

When testing for a message that contains special characters, such as [or ', you must
escape each special character with a backslash (\) to correctly match.

The following is an example that searches for a specific classification title.

The <classification-exists> has no unique child elements.

<classification-exists> element attributes

Attribute Name Type Description

classification String The <classification> title to search for.

in String An optional argument that restricts matching to files that
contain the defined filename.

3.1.2.4. <hint-exists> syntax

<ruletest xmlns="http://windup.jboss.org/schema/jboss-ruleset"
 id="proprietary-servlet-test" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://windup.jboss.org/schema/jboss-ruleset
http://windup.jboss.org/schema/jboss-ruleset/windup-jboss-ruleset.xsd">
 <testDataPath>data/</testDataPath>
 <rulePath>../weblogic.mta.xml</rulePath>
 <ruleset>
 <rules>
 <rule id="weblogic-01000-test">
 <when>
 <!--
 The `<not>` will perform a logical _not_ operator on the elements within.
 -->
 <not>
 <!--
 The defined `<classification-exists>` is attempting to match on the defined title.
 This classification would have been generated by a matching `<classification title="WebLogic
scheduled job" .../>` rule.
 -->
 <classification-exists classification="WebLogic scheduled job" />
 </not>
 </when>
 <!--
 This `<perform>` element is only executed if the previous `<when>` condition is false.
 In this configuration, it only executes if there is not a matching classification.
 -->
 <perform>
 <fail message="Triggerable not found" />
 </perform>
 </rule>
 </rules>
 </ruleset>
</ruletest>

CHAPTER 3. TESTING XML RULES

27

The <hint-exists> element determines if a specific hint has been included in the analysis. It searches for
any instances of the defined message, and is typically used to search for the beginning or a specific class
inside of a <message> element. For additional information, see the HintExists class.

IMPORTANT

When testing for a message that contains special characters, such as [or ', you must
escape each special character with a backslash (\) to correctly match.

The following is an example that searches for a specific hint.

The <hint-exists> element has no unique child elements.

<hint-exists> element attributes

Attribute Name Type Description

message String The <hint> message to search for.

<ruletest xmlns="http://windup.jboss.org/schema/jboss-ruleset"
 id="proprietary-servlet-test" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://windup.jboss.org/schema/jboss-ruleset
http://windup.jboss.org/schema/jboss-ruleset/windup-jboss-ruleset.xsd">
 <testDataPath>data/</testDataPath>
 <rulePath>../weblogic.windup.xml</rulePath>
 <ruleset>
 <rules>
 <rule id="weblogic-eap7-05000-test">
 <when>
 <!--
 The `<not>` will perform a logical _not_ operator on the elements within.
 -->
 <not>
 <!--
 The defined `<hint-exists>` is attempting to match on the defined message.
 This message would have been generated by a matching `<message>` element on the `<hint>`
condition.
 -->
 <hint-exists message="Replace with the Java EE standard method
.*javax\.transaction\.TransactionManager\.resume\(Transaction tx\).*" />
 </not>
 </when>
 <!--
 This `<perform>` element is only executed if the previous `<when>` condition is false.
 In this configuration, it only executes if there is not a matching hint.
 -->
 <perform>
 <fail message="Note to replace with standard TransactionManager.resume is missing!" />
 </perform>
 </rule>
 </rules>
 </ruleset>
</ruletest>

Migration Toolkit for Applications 7.0 Rules Development Guide

28

http://windup.github.io/windup/docs/latest/javadoc/org/jboss/windup/reporting/config/HintExists.html

in String An optional argument that restricts matching to
InLineHintModels that reference the given filename.

Attribute Name Type Description

3.1.2.5. <fail> syntax

The <fail> element reports the execution as a failure and displays the associated message. It is
commonly used in conjunction with the <not> condition to display a message only if the conditions are
not met.

The <fail> element has no unique child elements.

<fail> element attributes

Attribute Name Type Description

message String The message to be displayed.

3.2. MANUALLY TESTING AN XML RULE

You can run an XML rule against your application file to test it:

You should see the following result:

Report created: <OUTPUT_REPORT_DIRECTORY>/index.html
 Access it at this URL: file:///<OUTPUT_REPORT_DIRECTORY>/index.html

More examples of how to run MTA are located in the Migration Toolkit for Applications CLI Guide.

3.3. TESTING THE RULES BY USING JUNIT

Once a test rule has been created, it can be analyzed as part of a JUnit test to confirm that the rule
meets all criteria for execution. The WindupRulesMultipleTests class in the MTA rules repository is
designed to test multiple rules simultaneously, and provides feedback on any missing requirements.

Prerequisites

Fork and clone the MTA XML rules. The location of this repository will be referred to as
<RULESETS_REPO>.

Create a test XML rule.

Creating the JUnit test configuration

The following instructions detail creating a JUnit test using Eclipse. When using a different IDE, it is
recommended to consult your IDE’s documentation for instructions on creating a JUnit test.

$ <MTA_HOME>/mta-cli [--sourceMode] --input <INPUT_ARCHIVE_OR_FOLDER> --output
<OUTPUT_REPORT_DIRECTORY> --target <TARGET_TECHNOLOGY> --packages
<PACKAGE_1> <PACKAGE_2> <PACKAGE_N>

CHAPTER 3. TESTING XML RULES

29

https://access.redhat.com/documentation/en-us/migration_toolkit_for_applications/7.0/html-single/cli_guide

1. Import the MTA rulesets repository into your IDE.

2. Copy the custom rules, along with the corresponding tests and data, into
</path/to/RULESETS_REPO>/rules-reviewed/<RULE_NAME>/. This should create the
following directory structure.

Directory structure

├── *rules-reviewed/* _(Root directory of the rules found within the project)_
│ ├── *<RULE_NAME>/* _(Directory to contain the newly developed rule and tests)_
│ │ ├── *<RULE_NAME>.windup.xml* _(Custom rule)_
│ │ ├── *tests/* _(Directory that contains any test rules and data)_
│ │ │ ├── *<RULE_NAME>.windup.test.xml* _(Test rule)_
│ │ │ └── *data/* _(Optional directory to contain test rule data)_

3. Select Run from the top menu bar.

4. Select Run Configurations…​ from the drop down that appears.

5. Right-click JUnit from the options on the left side and select New.

6. Enter the following:

Name: A name for your JUnit test, such as WindupRulesMultipleTests.

Project: Ensure this is set to windup-rulesets.

Test class: Set this to org.jboss.windup.rules.tests.WindupRulesMultipleTests.

7. Select the Arguments tab, and add the -DrunTestsMatching=<RULE_NAME> VM argument.
For instance, if your rule name was community-rules, then you would add -
DrunTestsMatching=community-rules as seen in the following image.

Migration Toolkit for Applications 7.0 Rules Development Guide

30

8. Click Run in the bottom right corner to begin the test.
When the execution completes, the results are available for analysis. If all tests passed, then the
test rule is correctly formatted. If all tests did not pass, it is recommended to address each of the
issues raised in the test failures.

3.4. ABOUT VALIDATION REPORTS

Validation reports provide details about test rules and failures and contain the following sections:

Summary
This section contains the total number of tests run and reports the number of errors and
failures. It displays the total success rate and the time taken, in seconds, for the report to be
generated.

Package List
This section contains the number of tests executed for each package and reports the number of
errors and failures. It displays the success rate and the time taken, in seconds, for each package
to be analyzed.

A single package named org.jboss.windup.rules.tests is displayed unless additional test cases
have been defined.

Test Cases
This section describes the test cases. Each failure includes a Details section that can be
expanded to show the stack trace for the assertion, including a human-readable line indicating
the source of the error.

3.4.1. Creating a validation report

You can create a validation report for your custom rules.

Prerequisites

CHAPTER 3. TESTING XML RULES

31

1

2

You must fork and clone the MTA XML rules.

You must have one or more test XML rules to validate.

Procedure

1. Navigate to the local windup-rulesets repository.

2. Create a directory for your custom rules and tests: windup-rulesets/rules-reviewed/myTests.

3. Copy your custom rules and tests to the windup-rulesets/rules-reviewed/<myTests>
directory.

4. Run the following command from the root directory of the windup-rulesets repository:

$ mvn -Dtest=WindupRulesMultipleTests -DrunTestsMatching=<myTests> clean
<myReport>:report 1 2

Specify the directory containing your custom rules and tests. If you omit the -
DrunTestsMatching argument, the validation report will include all the tests and take
much longer to generate.

Specify your report name.

The validation report is created in the windup-rulesets/target/site/ repository.

3.4.2. Validation report error messages

Validation reports contain errors encountered while running the rules and tests.

The following table contains error messages and how to resolve the errors.

Table 3.1. Validation report error messages

Error message Description Resolution

No test file matching
rule

This error occurs when a rule file
exists without a corresponding test
file.

Create a test file for the existing rule.

Test rule Ids
<RULE_NAME> not
found!

This error is thrown when a rule
exists without a corresponding
ruletest.

Create a test for the existing rule.

XML parse fail on file
<FILE_NAME>

The syntax in the XML file is invalid,
and unable to be parsed
successfully by the rule validator.

Correct the invalid syntax.

Migration Toolkit for Applications 7.0 Rules Development Guide

32

Test file path from
<testDataPath> tag
has not been found.
Expected path to test
file is:
<RULE_DATA_PATH>

No files are found in the path
defined in the <testDataPath> tag
within the test rule.

Create the path defined in the
<testDataPath> tag, and ensure all
necessary data files are located within
this directory.

The rule with id="
<RULE_ID>" has not
been executed.

The rule with the provided id has
not been executed during this
validation.

Ensure that a test data file exists that
matches the conditions defined in the
specified rule.

Error message Description Resolution

CHAPTER 3. TESTING XML RULES

33

CHAPTER 4. OVERRIDING RULES
You can override core rules distributed with MTA or even custom rules. For example, you can change the
matching conditions, effort, or hint text for a rule. This is done by making a copy of the original rule,
marking it as a rule override, and making the necessary adjustments.

You can disable a rule by creating a rule override with an empty <rule> element.

4.1. OVERRIDING A RULE

You can override a core or custom rule.

Procedure

1. Copy the XML file that contains the rule you want to override to the custom rules directory.
Custom rules can be placed in <MTA_HOME>/rules, ${user.home}/.mta/rules/, or a directory
specified by the --userRulesDirectory command-line argument.

2. Edit the XML file so that it contains only the <rule> elements for the rules that you want to
override.

NOTE

Rules from the original ruleset that are not overridden by the new ruleset are run
as normal.

3. Ensure that you keep the same rule and ruleset IDs. When you copy the original rule XML, this
ensures that the IDs match.

4. Ensure that the target technology in the override ruleset matches one of the targets that you
specified for running the analysis.

5. Add the <overrideRules>true</overrideRules> element to the ruleset metadata.

6. Update the rule definition.
You can change anything in the rule definition. The new rule overrides the original rule in its
entirety.

The following rule override example changes the effort of the weblogic-02000 rule in the weblogic
ruleset from 1 to 3:

Rule override definition example

<?xml version="1.0"?>
<ruleset id="weblogic"
 xmlns="http://windup.jboss.org/schema/jboss-ruleset"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://windup.jboss.org/schema/jboss-ruleset
http://windup.jboss.org/schema/jboss-ruleset/windup-jboss-ruleset.xsd"> 1
 <metadata>
 ...
 <overrideRules>true</overrideRules> 2
 </metadata>
 <rules>

Migration Toolkit for Applications 7.0 Rules Development Guide

34

1

2

3

4

1

Ensure that the ruleset id matches the original ruleset id.

Add <overrideRules>true</overrideRules> to the <metadata> section.

Ensure that the rule id matches the original rule id.

Updated effort.

When you run MTA, this rule overrides the original rule with the same rule ID. You can verify that the new
rule was used by viewing the contents of the Rule Provider Executions Overview.

4.2. DISABLING A RULE

To disable a rule, create a rule override definition with an empty <rule> element according to the
following example:

Rule override definition example to disable a rule

The <rule> element is empty so that the weblogic-02000 rule in the weblogic ruleset is disabled.

 <rule id="weblogic-02000" xmlns="http://windup.jboss.org/schema/jboss-ruleset"> 3
 <when>
 <javaclass references="weblogic.utils.StringUtils.{*}"/>
 </when>
 <perform>
 <hint effort="3" category-id="mandatory" title="WebLogic StringUtils Usage"> 4
 <message>Replace with the StringUtils class from Apache Commons.</message>
 <link href="https://commons.apache.org/proper/commons-lang/" title="Apache Commons
Lang"/>
 <tag>weblogic</tag>
 </hint>
 </perform>
 </rule>
 </rules>
</ruleset>

<?xml version="1.0"?>
<ruleset id="weblogic"
 xmlns="http://windup.jboss.org/schema/jboss-ruleset"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://windup.jboss.org/schema/jboss-ruleset
http://windup.jboss.org/schema/jboss-ruleset/windup-jboss-ruleset.xsd">
 <metadata>
 ...
 <overrideRules>true</overrideRules>
 </metadata>
 <rules>
 <rule id="weblogic-02000" xmlns="http://windup.jboss.org/schema/jboss-ruleset">
 1
 </rule>
 </rules>
</ruleset>

CHAPTER 4. OVERRIDING RULES

35

CHAPTER 5. USING CUSTOM RULE CATEGORIES
You can create custom rule categories and assign MTA rules to them.

NOTE

Although MTA processes rules with the legacy severity field, you must update your
custom rules to use the new category-id field.

5.1. ADDING A CUSTOM CATEGORY

You can add a custom category to the rule category file.

Procedure

1. Edit the rule category file, which is located at <MTA_HOME>/rules/migration-
core/core.windup.categories.xml.

2. Add a new <category> element and fill in the following parameters:

id: The ID that MTA rules use to reference the category.

priority: The sorting priority relative to other categories. The category with the lowest value
is displayed first.

name: The display name of the category.

description: The description of the category.

Custom rule category example

This category is ready to be referenced by MTA rules.

5.2. ASSIGNING A RULE TO A CUSTOM CATEGORY

You can assign a rule to your new custom category.

Procedure

In your MTA rule, update the category-id field as in the following example.

<?xml version="1.0"?>
<categories>
 ...
 <category id="custom-category" priority="20000">
 <name>Custom Category</name>
 <description>This is a custom category.</description>
 </category>
</categories>

<rule id="rule-id">
 <when>
 ...
 </when>

Migration Toolkit for Applications 7.0 Rules Development Guide

36

If this rule condition is met, incidents identified by this rule use your custom category. The custom
category is displayed on the dashboard and in the Issues report.

Figure 5.1. Custom category on the dashboard

 <perform>
 <hint title="Rule Title" effort="1" category-id="custom-category">
 <message>Hint message.</message>
 </hint>
 </perform>
 </rule>

CHAPTER 5. USING CUSTOM RULE CATEGORIES

37

APPENDIX A. REFERENCE MATERIAL

A.1. ABOUT RULE STORY POINTS

A.1.1. What are story points?

Story points are an abstract metric commonly used in Agile software development to estimate the level
of effort needed to implement a feature or change.

The Migration Toolkit for Applications uses story points to express the level of effort needed to migrate
particular application constructs, and the application as a whole. It does not necessarily translate to man-
hours, but the value should be consistent across tasks.

A.1.2. How story points are estimated in rules

Estimating the level of effort for the story points for a rule can be tricky. The following are the general
guidelines MTA uses when estimating the level of effort required for a rule.

Level of Effort Story Points Description

Information 0 An informational warning with very low or no priority for
migration.

Trivial 1 The migration is a trivial change or a simple library swap with no
or minimal API changes.

Complex 3 The changes required for the migration task are complex, but
have a documented solution.

Redesign 5 The migration task requires a redesign or a complete library
change, with significant API changes.

Rearchitecture 7 The migration requires a complete rearchitecture of the
component or subsystem.

Unknown 13 The migration solution is not known and may need a complete
rewrite.

A.1.3. Task category

In addition to the level of effort, you can categorize migration tasks to indicate the severity of the task.
The following categories are used to group issues to help prioritize the migration effort.

Mandatory

The task must be completed for a successful migration. If the changes are not made, the resulting
application will not build or run successfully. Examples include replacement of proprietary APIs that
are not supported in the target platform.

Optional

If the migration task is not completed, the application should work, but the results may not be

Migration Toolkit for Applications 7.0 Rules Development Guide

38

If the migration task is not completed, the application should work, but the results may not be
optimal. If the change is not made at the time of migration, it is recommended to put it on the
schedule soon after your migration is completed.

Potential

The task should be examined during the migration process, but there is not enough detailed
information to determine if the task is mandatory for the migration to succeed. An example of this
would be migrating a third-party proprietary type where there is no directly compatible type.

Information

The task is included to inform you of the existence of certain files. These may need to be examined
or modified as part of the modernization effort, but changes are typically not required.

For more information on categorizing tasks, see Using custom rule categories.

A.2. ADDITIONAL RESOURCES

A.2.1. Reviewing existing MTA XML rules

MTA XML-based rules are located on GitHub at the following location:
https://github.com/windup/windup-rulesets/tree/master/rules/rules-reviewed.

You can fork and clone the MTA XML rules on your local machine.

Rules are grouped by target platform and function. When you create a new rule, it is helpful to find a rule
that is similar to the one you need and use it as a starting template.

New rules are continually added, so it is a good idea to check back frequently to review the updates.

A.2.1.1. Forking and cloning the Migration Toolkit for Applications XML rules

The Migration Toolkit for Applications windup-rulesets repository provides working examples of how
to create custom Java-based rule add-ons and XML rules. You can use them as a starting point for
creating your own custom rules.

You must have the git client installed on your machine.

1. Click the Fork link on the Migration Toolkit for Applications Rulesets GitHub page to create the
project in your own Git. The forked GitHub repository URL created by the fork should look like
this: https://github.com/<YOUR_USER_NAME>/windup-rulesets.git.

2. Clone your Migration Toolkit for Applications rulesets repository to your local file system:

$ git clone https://github.com/<YOUR_USER_NAME>/windup-rulesets.git

3. This creates and populates a windup-rulesets directory on your local file system. Navigate to
the newly created directory, for example

$ cd windup-rulesets/

4. If you want to be able to retrieve the latest code updates, add the remote upstream repository
so you can fetch any changes to the original forked repository.

$ git remote add upstream https://github.com/windup/windup-rulesets.git

APPENDIX A. REFERENCE MATERIAL

39

https://github.com/windup/windup-rulesets/tree/master/rules/rules-reviewed
http://git-scm.com/
https://github.com/windup/windup-rulesets/

5. Get the latest files from the upstream repository.

$ git fetch upstream

A.2.2. Additional resources

MTA Javadoc: http://windup.github.io/windup/docs/latest/javadoc

MTA Jira issue tracker: https://issues.redhat.com/projects/MTA/issues

MTA mailing list: windup-eng@redhat.com

Revised on 2024-05-23 14:02:26 UTC

Migration Toolkit for Applications 7.0 Rules Development Guide

40

http://windup.github.io/windup/docs/latest/javadoc
https://issues.redhat.com/projects/MTA/issues
mailto:windup-eng@redhat.com

	Table of Contents
	MAKING OPEN SOURCE MORE INCLUSIVE
	CHAPTER 1. INTRODUCTION
	1.1. ABOUT THE RULE DEVELOPMENT GUIDE
	1.1.1. Use of <MTA_HOME> in this guide

	1.2. THE MTA RULES

	CHAPTER 2. CREATING YAML RULES
	2.1. YAML RULE STRUCTURE AND SYNTAX
	2.1.1. Rule metadata
	2.1.1.1. Rule labels
	2.1.1.2. Rule categories
	2.1.1.3. Rule Actions
	2.1.1.4. Rule conditions
	2.1.1.5. Logical conditions

	2.1.2. Rulesets

	2.2. CREATING A BASIC YAML RULE
	2.2.1. Creating a basic YAML rule template
	2.2.2. Creating a basic YAML ruleset template
	2.2.3. Creating a YAML rule
	2.2.4. Running an analysis using a custom YAML rule

	2.3. CREATING YOUR FIRST YAML RULE
	2.3.1. Creating a YAML file for the rule
	2.3.2. Creating data to test the rule
	2.3.3. Creating the rule
	2.3.4. Installing the rule
	2.3.5. Testing the rule
	2.3.6. Reviewing the report

	CHAPTER 3. TESTING XML RULES
	3.1. CREATING A TEST RULE
	3.1.1. Test XML rule structure
	3.1.2. Test XML rule syntax
	3.1.2.1. <not> syntax
	3.1.2.2. <iterable-filter> syntax
	3.1.2.3. <classification-exists> syntax
	3.1.2.4. <hint-exists> syntax
	3.1.2.5. <fail> syntax

	3.2. MANUALLY TESTING AN XML RULE
	3.3. TESTING THE RULES BY USING JUNIT
	3.4. ABOUT VALIDATION REPORTS
	3.4.1. Creating a validation report
	3.4.2. Validation report error messages

	CHAPTER 4. OVERRIDING RULES
	4.1. OVERRIDING A RULE
	4.2. DISABLING A RULE

	CHAPTER 5. USING CUSTOM RULE CATEGORIES
	5.1. ADDING A CUSTOM CATEGORY
	5.2. ASSIGNING A RULE TO A CUSTOM CATEGORY

	APPENDIX A. REFERENCE MATERIAL
	A.1. ABOUT RULE STORY POINTS
	A.1.1. What are story points?
	A.1.2. How story points are estimated in rules
	A.1.3. Task category

	A.2. ADDITIONAL RESOURCES
	A.2.1. Reviewing existing MTA XML rules
	A.2.1.1. Forking and cloning the Migration Toolkit for Applications XML rules

	A.2.2. Additional resources

