& RedHat

.NET 8.0

Getting started with .NET on OpenShift
Container Platform

Installing and running .NET 8.0 on OpenShift Container Platform

Last Updated: 2024-02-09

NET 8.0 Getting started with .NET on OpenShift Container Platform

Installing and running .NET 8.0 on OpenShift Container Platform

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide describes how to install and run .NET 8.0 on OpenShift Container Platform.

Table of Contents

MAKING OPEN SOURCEMOREINCLUSIVE

PROVIDING FEEDBACK ON RED HAT DOCUMENTATIONoooiatt

CHAPTER 1.OVERVIEW .. i i

CHAPTER 2. INSTALLING .NET IMAGE STREAMS i

CHAPTER 3. DEPLOYING APPLICATIONS WITH OPENSHIFT CLIENT

3.1. DEPLOYING APPLICATIONS FROM SOURCE USING OC
3.2. DEPLOYING APPLICATIONS FROM BINARY ARTIFACTS USING OC

CHAPTER 4. ENVIRONMENT VARIABLES FOR.NET 8.0coiiiiiiian,

CHAPTER 5. CREATING SAMPLE APPLICATIONS WITH.NET8.0

5.1. CREATING THE MVC SAMPLE APPLICATION
5.2. CREATING THE CRUD SAMPLE APPLICATION

Table of Contents

.NET 8.0 Getting started with .NET on OpenShift Container Platform

MAKING OPEN SOURCE MORE INCLUSIVE

MAKING OPEN SOURCE MORE INCLUSIVE

Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright's message.

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

.NET 8.0 Getting started with .NET on OpenShift Container Platform

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

We appreciate your feedback on our documentation. Let us know how we can improve it.

Submitting feedback through Jira (account required)

1. Login to the Jira website.
2. Click Create in the top navigation bar
3. Enter a descriptive title in the Summary field.

4. Enter your suggestion for improvement in the Description field. Include links to the relevant
parts of the documentation.

5. Click Create at the bottom of the dialogue.

https://issues.redhat.com/projects/RHELDOCS/issues

CHAPTER 1. OVERVIEW

CHAPTER 1. OVERVIEW

NET images are added to OpenShift by importing imagestream definitions froms2i-dotnetcore.

The imagestream definitions include the dotnet imagestream which contains sdk images for different
supported versions of .NET. Life Cycle and Support Policies for the .NET Program provides an up-to-
date overview of supported versions.

Version Tag Alias

.NET 6.0 dotnet:6.0-ubi8 dotnet:6.0
.NET 7.0 dotnet:7.0-ubi8 dotnet:7.0
.NET 8.0 dotnet:8.0-ubi8 dotnet:8.0

The sdk images have corresponding runtime images which are defined under the dotnet-runtime
imagestream.

The container images work across different versions of Red Hat Enterprise Linux and OpenShift. The
UBI-8 based images (suffix -ubi8) are hosted on the registry.access.redhat.com and do not require
authentication.

https://github.com/redhat-developer/s2i-dotnetcore
https://access.redhat.com/support/policy/updates/net-core

.NET 8.0 Getting started with .NET on OpenShift Container Platform

CHAPTER 2. INSTALLING .NET IMAGE STREAMS

To install .NET image streams, use image stream definitions from s2i-dotnetcore with the OpenShift
Client (oc) binary. Image streams can be installed from Linux, Mac, and Windows.

You can define .NET image streams in the global openshift namespace or locally in a project
namespace. Sufficient permissions are required to update the openshift namespace definitions.

Procedure

1. Install (or update) the image streams:

$ oc apply [-n namespace] -f
https://raw.githubusercontent.com/redhat-developer/s2i-
dotnetcore/main/dotnet_imagestreams.json

https://github.com/redhat-developer/s2i-dotnetcore/

CHAPTER 3. DEPLOYING APPLICATIONS WITH OPENSHIFT CLIENT

CHAPTER 3. DEPLOYING APPLICATIONS WITH OPENSHIFT
CLIENT

You can use OpenShift Client (oc) for application deployment. You can deploy applications from source
or from binary artifacts.

3.1. DEPLOYING APPLICATIONS FROM SOURCE USINGoc

The following example demonstrates how to deploy the example-app application using oc¢, which is in
the app folder on the dotnet-8.0 branch of the redhat-developer/s2i-dotnetcore-ex GitHub repository:

Procedure
1. Create a new OpenShift project:
I $ oc new-project sample-project
2. Add the ASP.NET Core application:

$ oc new-app --name=example-app 'dotnet:8.0-ubi8~https://github.com/redhat-developer/s2i-
dotnetcore-ex#dotnet-8.0' --build-env DOTNET_STARTUP_PROJECT=app

3. Track the progress of the build:
I $ oc logs -f bc/example-app

4. View the deployed application once the build is finished:
I $ oc logs -f dc/example-app

The application is now accessible within the project.

5. Optional: Make the project accessible externally:
I $ oc expose svc/example-app
6. Obtain the shareable URL:

I $ oc get routes

3.2. DEPLOYING APPLICATIONS FROM BINARY ARTIFACTS USINGoc

You can use .NET Source-to-Image (S2I) builder image to build applications using binary artifacts that
you provide.

Prerequisites

1. Published application.
For more information, see

.NET 8.0 Getting started with .NET on OpenShift Container Platform
Procedure
1. Create a new binary build:
I $ oc new-build --name=my-web-app dotnet:8.0-ubi8 --binary=true
2. Start the build and specify the path to the binary artifacts on your local machine:
I $ oc start-build my-web-app --from-dir=bin/Release/net8.0/publish
3. Create a new application:

I $ oc new-app my-web-app

CHAPTER 4. ENVIRONMENT VARIABLES FOR .NET 8.C

CHAPTER 4. ENVIRONMENT VARIABLES FOR .NET 8.0

The .NET images support several environment variables to control the build behavior of your NET
application. You can set these variables as part of the build configuration, or add them to the
.s2i/environment file in the application source code repository.

Variable Name

Default

Description

DOTNET_STARTUP_PROJECT

DOTNET_ASSEMBLY_NAME

DOTNET_PUBLISH_READYTORUN

DOTNET_RESTORE_SOURCES

DOTNET_RESTORE_CONFIGFILE

DOTNET_TOOLS

DOTNET_NPM_TOOLS

Selects the project to run. This must
be a project file (for example,
csproj orfsproj) or a folder
containing a single project file.

Selects the assembly to run. This The name of the csproj file
must not include the .dll extension.

Set this to the output assembly

name specified in CSProj

(PropertyGroup/AssemblyName).

When set to true, the application false
will be compiled ahead of time. This

reduces startup time by reducing

the amount of work the JIT needs

to perform when the application is

loading.

Specifies the space-separated list
of NuGet package sources used
during the restore operation. This
overrides all of the sources
specified in the NuGet.config file.
This variable cannot be combined
with
DOTNET_RESTORE_CONFIGF
ILE.

Specifies a NuGet.Config file to
be used for restore operations. This
variable cannot be combined with
DOTNET_RESTORE_SOURCE
S.

Specifies a list of .NET tools to
install before building the app. It is
possible to install a specific version
by post pending the package name
with @<versions.

Specifies a list of NPM packages to
install before building the
application.

.NET 8.0 Getting started with .NET on OpenShift Container Platform

Variable Name Description

DOTNET_TEST_PROJECTS Specifies the list of test projects to
test. This must be project files or
folders containing a single project
file. dotnet test is invoked for each
item.

DOTNET_CONFIGURATION Runs the application in Debug or
Release mode. This value should be
either Release or Debug.

DOTNET_VERBOSITY Specifies the verbosity of the
dotnet build commands. When
set, the environment variables are
printed at the start of the build. This
variable can be set to one of the
msbuild verbosity values (q[uiet],
m[inimal], n[ormal], d[etailed],
and diag[nostic]).

HTTP_PROXY, HTTPS_PROXY Configures the HTTP or HTTPS
proxy used when building and
running the application,
respectively.

DOTNET_RM_SRC When set to true, the source code
will not be included in the image.

DOTNET_SSL_DIRS Deprecated: Use
SSL_CERT_DIR instead

SSL_CERT_DIR Specifies a list of folders or files
with additional SSL certificates to
trust. The certificates are trusted by
each process that runs during the
build and all processes that run in
the image after the build (including
the application that was built). The
items can be absolute paths
(starting with /) or paths in the
source repository (for example,
certificates).

NPM_MIRROR Uses a custom NPM registry mirror
to download packages during the
build process.

10

CHAPTER 4. ENVIRONMENT VARIABLES FOR .NET 8.C

Variable Name Description Default

ASPNETCORE_URLS This variable is set to http://*:8080 http://*:8080
to configure ASP.NET Core to use
the port exposed by the image.
Changing this is not recommended.

DOTNET_RESTORE_DISABLE_PAR When set to true, disables restoring ~ false
ALLEL multiple projects in parallel. This

reduces restore timeout errors

when the build container is running

with low CPU limits.

DOTNET_INCREMENTAL When set to true, the NuGet false
packages will be kept so they can be
re-used for an incremental build.

DOTNET_PACK When set to true, creates atar.gz
file at /opt/app-root/app.tar.gz
that contains the published
application.

1

.NET 8.0 Getting started with .NET on OpenShift Container Platform

CHAPTER 5. CREATING SAMPLE APPLICATIONS WITH .NET
8.0

5.1. CREATING THE MVC SAMPLE APPLICATION
s2i-dotnetcore-ex is the default Model, View, Controller (MVC) template application for NET.

This application is used as the example application by the .NET S2Il image and can be created directly
from the OpenShift Ul using the Try Example link.

The application can also be created with the OpenShift client binary (o¢).

Procedure

To create the sample application using oc:

1. Add the .NET application:

$ oc new-app dotnet:8.0-ubi8~https://github.com/redhat-developer/s2i-dotnetcore-ex#dotnet-
8.0 --context-dir=app

2. Make the application accessible externally:

I $ oc expose service s2i-dotnetcore-ex

3. Obtain the sharable URL:

I $ oc get route s2i-dotnetcore-ex

Additional resources

e s2j-dotnetcore-ex application repository on GitHub

5.2. CREATING THE CRUD SAMPLE APPLICATION

s2i-dotnetcore-persistent-ex is a simple Create, Read, Update, Delete (CRUD) .NET web application
that stores data in a PostgreSQL database.

Procedure

To create the sample application using oc:

1. Add the database:
I $ oc new-app postgresql-ephemeral
2. Add the .NET application:

$ oc new-app dotnet:8.0-ubi8~https://github.com/redhat-developer/s2i-dotnetcore-persistent-
ex#dotnet-8.0 --context-dir app

3. Add environment variables from the postgresql secret and database service name environment
variable:

12

https://github.com/redhat-developer/s2i-dotnetcore-ex/tree/dotnet-8.0

CHAPTER 5. CREATING SAMPLE APPLICATIONS WITH .NET 8.0

$ oc set env dc/s2i-dotnetcore-persistent-ex --from=secret/postgresql -e database-
service=postgresq|

4. Make the application accessible externally:
I $ oc expose service s2i-dotnetcore-persistent-ex

5. Obtain the sharable URL:

I $ oc get route s2i-dotnetcore-persistent-ex

Additional resources

® s2i-dotnetcore-ex application repository on GitHub

13

https://github.com/redhat-developer/s2i-dotnetcore-persistent-ex

	Table of Contents
	MAKING OPEN SOURCE MORE INCLUSIVE
	PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
	CHAPTER 1. OVERVIEW
	CHAPTER 2. INSTALLING .NET IMAGE STREAMS
	CHAPTER 3. DEPLOYING APPLICATIONS WITH OPENSHIFT CLIENT
	3.1. DEPLOYING APPLICATIONS FROM SOURCE USING OC
	3.2. DEPLOYING APPLICATIONS FROM BINARY ARTIFACTS USING OC

	CHAPTER 4. ENVIRONMENT VARIABLES FOR .NET 8.0
	CHAPTER 5. CREATING SAMPLE APPLICATIONS WITH .NET 8.0
	5.1. CREATING THE MVC SAMPLE APPLICATION
	5.2. CREATING THE CRUD SAMPLE APPLICATION

