
OpenShift Container Platform 3.11

Scaling and Performance Guide

OpenShift Container Platform 3.11 Scaling and Performance Guide

Last Updated: 2022-05-02

OpenShift Container Platform 3.11 Scaling and Performance Guide

OpenShift Container Platform 3.11 Scaling and Performance Guide

Legal Notice

Copyright © 2022 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Scale up your cluster and tune performance in production environments

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. OVERVIEW

CHAPTER 2. RECOMMENDED INSTALLATION PRACTICES
2.1. PRE-INSTALLING DEPENDENCIES
2.2. ANSIBLE INSTALL OPTIMIZATION
2.3. NETWORKING CONSIDERATIONS

CHAPTER 3. RECOMMENDED HOST PRACTICES
3.1. RECOMMENDED PRACTICES FOR OPENSHIFT CONTAINER PLATFORM MASTER HOSTS
3.2. RECOMMENDED PRACTICES FOR OPENSHIFT CONTAINER PLATFORM NODE HOSTS
3.3. RECOMMENDED PRACTICES FOR OPENSHIFT CONTAINER PLATFORM ETCD HOSTS

3.3.1. Providing Storage to an etcd Node Using PCI Passthrough with OpenStack
3.4. SCALING HOSTS USING THE TUNED PROFILE

CHAPTER 4. OPTIMIZING COMPUTE RESOURCES
4.1. OVERCOMMITTING
4.2. IMAGE CONSIDERATIONS

4.2.1. Using a Pre-deployed Image to Improve Efficiency
4.2.2. Pre-pulling Images

4.3. DEBUGGING USING THE RHEL TOOLS CONTAINER IMAGE
4.4. DEBUGGING USING ANSIBLE-BASED HEALTH CHECKS

CHAPTER 5. OPTIMIZING PERSISTENT STORAGE
5.1. OVERVIEW
5.2. GENERAL STORAGE GUIDELINES
5.3. STORAGE RECOMMENDATIONS

5.3.1. Specific application storage recommendations
5.3.1.1. Registry
5.3.1.2. Scaled registry
5.3.1.3. Monitoring
5.3.1.4. Logging
5.3.1.5. Applications

5.3.2. Other specific application storage recommendations
5.4. CHOOSING A GRAPH DRIVER

5.4.1. Benefits of using OverlayFS or DeviceMapper with SELinux
5.4.2. Comparing the Overlay and Overlay2 graph drivers

CHAPTER 6. OPTIMIZING EPHEMERAL STORAGE
6.1. OVERVIEW
6.2. GENERAL STORAGE GUIDELINES

CHAPTER 7. NETWORK OPTIMIZATION
7.1. OPTIMIZING NETWORK PERFORMANCE

7.1.1. Optimizing the MTU for Your Network
7.2. CONFIGURING NETWORK SUBNETS
7.3. OPTIMIZING IPSEC

CHAPTER 8. ROUTING OPTIMIZATION
8.1. SCALING OPENSHIFT CONTAINER PLATFORM HAPROXY ROUTER

8.1.1. Baseline Performance
8.1.2. Performance Optimizations

8.1.2.1. Setting the Maximum Number of Connections
8.1.2.2. CPU and Interrupt Affinity

4

5
5
5
6

7
7
8
9

13
14

16
16
16
16
17
17
17

19
19
19

20
21
21
21
22
22
22
22
23
27
27

28
28
28

30
30
30
31
31

33
33
33
34
34
34

Table of Contents

1

. .

. .

. .

. .

. .

. .

. .

8.1.2.3. Increasing the Number of Threads
8.1.2.4. Impacts of Buffer Increases
8.1.2.5. Optimizations for HAProxy Reloads

CHAPTER 9. SCALING CLUSTER METRICS
9.1. OVERVIEW
9.2. RECOMMENDATIONS FOR OPENSHIFT CONTAINER PLATFORM
9.3. CAPACITY PLANNING FOR CLUSTER METRICS
9.4. SCALING OPENSHIFT CONTAINER PLATFORM METRICS PODS

9.4.1. Prerequisites
9.4.2. Scaling the Cassandra Components

CHAPTER 10. SCALING CLUSTER MONITORING OPERATOR
10.1. OVERVIEW
10.2. RECOMMENDATIONS FOR OPENSHIFT CONTAINER PLATFORM
10.3. CAPACITY PLANNING FOR CLUSTER MONITORING OPERATOR

10.3.1. Lab Environment
10.3.2. Prerequisites

CHAPTER 11. TESTED MAXIMUMS PER CLUSTER
11.1. OPENSHIFT CONTAINER PLATFORM TESTED CLUSTER MAXIMUMS FOR MAJOR RELEASES
11.2. OPENSHIFT CONTAINER PLATFORM TESTED CLUSTER MAXIMUMS

11.2.1. Route Maximums
11.3. ENVIRONMENT AND CONFIGURATION ON WHICH OPENSHIFT CONTAINER PLATFORM CLUSTER
MAXIMUMS ARE TESTED
11.4. PLANNING YOUR ENVIRONMENT ACCORDING TO CLUSTER MAXIMUMS
11.5. PLANNING YOUR ENVIRONMENT ACCORDING TO APPLICATION REQUIREMENTS

CHAPTER 12. USING CLUSTER LOADER
12.1. WHAT CLUSTER LOADER DOES
12.2. INSTALLING CLUSTER LOADER
12.3. RUNNING CLUSTER LOADER
12.4. CONFIGURING CLUSTER LOADER

12.4.1. Configuration Fields
12.4.2. Example Cluster Loader Configuration File

12.5. KNOWN ISSUES

CHAPTER 13. USING CPU MANAGER
13.1. WHAT CPU MANAGER DOES
13.2. SETTING UP CPU MANAGER

CHAPTER 14. MANAGING HUGE PAGES
14.1. WHAT HUGE PAGES DO
14.2. PREREQUISITES
14.3. CONSUMING HUGE PAGES

CHAPTER 15. OPTIMIZING ON GLUSTERFS STORAGE
15.1. CONVERGED MODE GUIDANCE FOR DATABASES
15.2. TESTED APPLICATIONS
15.3. SUPPORT MATRIX
15.4. TEST RESULTS

35
35
35

36
36
36
36
37
37
37

39
39
39
39
40
40

41
41

42
43

43
44
44

46
46
46
46
46
46
49
51

52
52
52

56
56
56
56

58
58
58
58
59

OpenShift Container Platform 3.11 Scaling and Performance Guide

2

Table of Contents

3

CHAPTER 1. OVERVIEW
This guide provides procedures and examples for how to enhance your OpenShift Container Platform
cluster performance and conduct scaling at different levels of an OpenShift Container Platform
production stack. It includes recommended practices for building, scaling, and tuning OpenShift
Container Platform clusters.

Tuning considerations can vary depending on your cluster setup, and be advised that any performance
recommendations in this guide might come with trade-offs.

OpenShift Container Platform 3.11 Scaling and Performance Guide

4

CHAPTER 2. RECOMMENDED INSTALLATION PRACTICES

2.1. PRE-INSTALLING DEPENDENCIES

A node host will access the network to install any RPMs dependencies, such as atomic-openshift-*,
iptables, and CRI-O or Docker. Pre-installing these dependencies, creates a more efficient install,
because the RPMs are only accessed when necessary, instead of a number of times per host during the
install.

This is also useful for machines that cannot access the registry for security purposes.

2.2. ANSIBLE INSTALL OPTIMIZATION

The OpenShift Container Platform install method uses Ansible. Ansible is useful for running parallel
operations, meaning a fast and efficient installation. However, these can be improved upon with
additional tuning options. See the Configuring Ansible section for a list of available Ansible configuration
options.

IMPORTANT

Parallel behavior can overwhelm a content source, such as your image registry or Red Hat
Satellite server. Preparing your server’s infrastructure pods and operating system
patches can help prevent this issue.

Run the installer from the lowest-possible latency control node (LAN speeds). Running over a wide area
network (WAN) is not advised, neither is running the installation over a lossy network connection.

Ansible provides its own guidance for performance and scaling , including using RHEL 6.6 or later to
ensure the version of OpenSSH supports ControlPersist, and running the installer from the same LAN
as the cluster, but not running it from a machine in the cluster.

The following is an example Ansible configuration for large cluster installation and administration that
incorporates the recommendations documented by Ansible:

Example Output

cat /etc/ansible/ansible.cfg

config file for ansible -- http://ansible.com/
==
[defaults]
forks = 20 1
host_key_checking = False
remote_user = root
roles_path = roles/
gathering = smart
fact_caching = jsonfile
fact_caching_connection = $HOME/ansible/facts
fact_caching_timeout = 600
log_path = $HOME/ansible.log
nocows = 1
callback_whitelist = profile_tasks

CHAPTER 2. RECOMMENDED INSTALLATION PRACTICES

5

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#configuring-ansible
https://www.ansible.com/blog/ansible-performance-tuning

1

2

20 forks is ideal, because larger forks can lead to installations failing.

Pipelining reduces the number of connections between control and target nodes, helping to
improve installer performance.

2.3. NETWORKING CONSIDERATIONS

Network subnets can be changed post-install, but with difficulty. It is much easier to consider the
network subnet size prior to installation, because underestimating the size can create problems with
growing clusters.

See the Network Optimization topic for recommended network subnetting practices.

[privilege_escalation]
become = False

[ssh_connection]
ssh_args = -o ControlMaster=auto -o ControlPersist=600s -o ServerAliveInterval=60
control_path = %(directory)s/%%h-%%r
pipelining = True 2
timeout = 10

OpenShift Container Platform 3.11 Scaling and Performance Guide

6

CHAPTER 3. RECOMMENDED HOST PRACTICES

3.1. RECOMMENDED PRACTICES FOR OPENSHIFT CONTAINER
PLATFORM MASTER HOSTS

In addition to pod traffic, the most-used data-path in an OpenShift Container Platform infrastructure is
between the OpenShift Container Platform master hosts and etcd. The OpenShift Container Platform
API server (part of the master binary) consults etcd for node status, network configuration, secrets, and
more.

Optimize this traffic path by:

Running etcd on master hosts. By default, etcd runs in a static pod on all master hosts.

Ensuring an uncongested, low latency LAN communication link between master hosts.

The OpenShift Container Platform master caches deserialized versions of resources aggressively to
ease CPU load. However, in smaller clusters of less than 1000 pods, this cache can waste a lot of
memory for negligible CPU load reduction. The default cache size is 50,000 entries, which, depending
on the size of your resources, can grow to occupy 1 to 2 GB of memory. This cache size can be reduced
using the following setting the in /etc/origin/master/master-config.yaml :

The number of client requests or API calls that are sent to the API server is determined by the Queries
per second (QPS) value and the number of concurrent requests that can be processed by the API server
is determined by the maxRequestsInFlight setting. The number of requests the client can make in excess
of the QPS rate depends on the burst value, this is helpful for applications that are bursty in nature and
can make irregular number of requests. The Response times for requests might have high latencies
when there are large numbers of concurrent requests being handled by the API server especially for
large and/or dense clusters. It is recommended to monitor the apiserver_request_count rate metric in
Prometheus and adjust the maxRequestsInFlight and QPS accordingly.

There needs to be a good balance when changing the default values as the CPU and memory
consumption of API server and etcd IOPS will increase when it is handling more requests in parallel. Also
note that heavy non-watch requests might overload the API server as they get cancelled after a fixed
60 second timeout and the client starts retrying.

Provided sufficient CPU and memory resources are available on the API server system(s), the API
server requests overloading issue can be safely alleviated by taking into account the factors mentioned
above and bumping up the maxRequestsInFlight, API qps and burst values in the
*_/etc/origin/master/master-config.yaml

NOTE

kubernetesMasterConfig:
 apiServerArguments:
 deserialization-cache-size:
 - "1000"

masterClients:
 openshiftLoopbackClientConnectionOverrides:
 burst: 600
 qps: 300
servingInfo:
 maxRequestsInFlight: 500

CHAPTER 3. RECOMMENDED HOST PRACTICES

7

NOTE

The maxRequestsInFlight, qps and burst values above are defaults for OpenShift
Container Platform. The qps can be higher than maxRequestsInFlight value if the
requests take less than a second. If `maxRequestsInFlight' is set to zero, there is no limit
on the number of concurrent requests that can be processed by the server.

3.2. RECOMMENDED PRACTICES FOR OPENSHIFT CONTAINER
PLATFORM NODE HOSTS

The OpenShift Container Platform node configuration file contains important options, such as the
iptables synchronization period, the Maximum Transmission Unit (MTU) of the SDN network, and the
proxy-mode. To configure your nodes, modify the appropriate node configuration map.

NOTE

Do not edit the node-config.yaml file directly.

The node configuration file allows you to pass arguments to the kubelet (node) process. You can view a
list of possible options by running kubelet --help.

NOTE

Not all kubelet options are supported by OpenShift Container Platform, and are used in
the upstream Kubernetes. This means certain options are in limited support.

NOTE

See the Cluster maximums page for the maximum supported limits for each version of
OpenShift Container Platform.

In the /etc/origin/node/node-config.yaml file, one parameter controls the maximum number of pods
that can be scheduled to a node: max-pods. When the max-pods option is in use, it limits the number of
pods on a node. Exceeding this value can result in:

Increased CPU utilization on both OpenShift Container Platform and Docker.

Slow pod scheduling.

Potential out-of-memory scenarios (depends on the amount of memory in the node).

Exhausting the pool of IP addresses.

Resource overcommitting, leading to poor user application performance.

NOTE

In Kubernetes, a pod that is holding a single container actually uses two containers. The
second container is used to set up networking prior to the actual container starting.
Therefore, a system running 10 pods will actually have 20 containers running.

max-pods sets the number of pods the node can run to a fixed value, regardless of the properties of the
node. Cluster Limits documents maximum supported values for max-pods.

OpenShift Container Platform 3.11 Scaling and Performance Guide

8

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cluster_administration/#modifying-nodes

Using the above example, the default value for max-pods is 250.

See the Sizing Considerations section in the installation documentation for the recommended limits for
an OpenShift Container Platform cluster. The recommended sizing accounts for OpenShift Container
Platform and container engine coordination for container status updates. This coordination puts CPU
pressure on the master and container engine processes, which can include writing a large amount of log
data.

The rate at which kubelet talks to API server depends on qps and burst values. The default values are
good enough if there are limited pods running on each node. Provided there are enough CPU and
memory resources on the node, the qps and burst values can be tweaked in the
/etc/origin/node/node-config.yaml file:

NOTE

The qps and burst values above are defaults for OpenShift Container Platform.

3.3. RECOMMENDED PRACTICES FOR OPENSHIFT CONTAINER
PLATFORM ETCD HOSTS

etcd is a distributed key-value store that OpenShift Container Platform uses for configuration.

OpenShift Container Platform
Version

etcd version storage schema version

3.3 and earlier 2.x v2

3.4 and 3.5 3.x v2

3.6 3.x v2 (upgrades)

3.6 3.x v3 (new installations)

3.7 and later 3.x v3

etcd 3.x introduces important scalability and performance improvements that reduce CPU, memory,
network, and disk requirements for any size cluster. etcd 3.x also implements a backwards compatible
storage API that facilitates a two-step migration of the on-disk etcd database. For migration purposes,
the storage mode used by etcd 3.x in OpenShift Container Platform 3.5 remained in v2 mode. As of

kubeletArguments:
 max-pods:
 - "250"

kubeletArguments:
 kube-api-qps:
 - "20"
 kube-api-burst:
 - "40"

CHAPTER 3. RECOMMENDED HOST PRACTICES

9

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#sizing

OpenShift Container Platform 3.6, new installations use storage mode v3. Upgrades from previous
versions of OpenShift Container Platform will not automatically migrate data from v2 to v3. You must
use the supplied playbooks and follow the documented process to migrate the data.

Version 3 of etcd implements a backwards compatible storage API that facilitates a two-step migration
of the on-disk etcd database. For migration purposes, the storage mode used by etcd 3.x in OpenShift
Container Platform 3.5 remained in v2 mode. As of OpenShift Container Platform 3.6, new installations
use storage mode v3. As part of the process to upgrade to OpenShift Container Platform 3.7, you
upgrade your etcd storage API to v3, if required. In versions 3.7 and later, you must use the v3 API.

In addition to changing the storage mode for new installs to v3, OpenShift Container Platform 3.6 also
begins enforcing quorum reads for all OpenShift Container Platform types. This is done to ensure that
queries against etcd do not return stale data. In single-node etcd clusters, stale data is not a concern. In
highly available etcd deployments typically found in production clusters, quorum reads ensure valid
query results. A quorum read is linearizable in database terms - every client sees the latest updated
state of the cluster, and all clients see the same sequence of reads and writes. See the etcd 3.1
announcement for more information on performance improvements.

It is important to note that OpenShift Container Platform uses etcd for storing additional information
beyond what Kubernetes itself requires. For example, OpenShift Container Platform stores information
about images, builds, and other components in etcd, as is required by features that OpenShift Container
Platform adds on top of Kubernetes. Ultimately, this means that guidance around performance and
sizing for etcd hosts will differ from Kubernetes and other recommendations in salient ways. Red Hat
tests etcd scalability and performance with the OpenShift Container Platform use-case and parameters
in mind to generate the most accurate recommendations.

Performance improvements were quantified using a 300-node OpenShift Container Platform 3.6
cluster using the cluster-loader utility. Comparing etcd 3.x (storage mode v2) versus etcd 3.x (storage
mode v3), clear improvements are identified in the charts below.

Storage IOPS under load is significantly reduced:

Storage IOPS in steady state is also significantly reduced:

OpenShift Container Platform 3.11 Scaling and Performance Guide

10

https://coreos.com/blog/etcd-3-1-announcement.html
https://github.com/openshift/svt/tree/master/openshift_scalability

Viewing the same I/O data, plotting the average IOPS in both modes:

CPU utilization by both the API server (master) and etcd processes is reduced:

CHAPTER 3. RECOMMENDED HOST PRACTICES

11

Memory utilization by both the API server (master) and etcd processes is also reduced:

IMPORTANT

After profiling etcd under OpenShift Container Platform, etcd frequently performs small
amounts of storage input and output. Using etcd with storage that handles small
read/write operations quickly, such as SSD, is highly recommended.

OpenShift Container Platform 3.11 Scaling and Performance Guide

12

Looking at the size I/O operations done by a 3-node cluster of etcd 3.1 (using storage v3 mode and with
quorum reads enforced), read sizes are as follows:

And writes:

NOTE

etcd processes are typically memory intensive. Master / API server processes are CPU
intensive. This makes them a reasonable co-location pair within a single machine or virtual
machine (VM). Optimize communication between etcd and master hosts either by co-
locating them on the same host, or providing a dedicated network.

3.3.1. Providing Storage to an etcd Node Using PCI Passthrough with OpenStack

To provide fast storage to an etcd node so that etcd is stable at large scale, use PCI passthrough to
pass a non-volatile memory express (NVMe) device directly to the etcd node. To set this up with Red
Hat OpenStack 11 or later, complete the following on the OpenStack compute nodes where the PCI
device exists.

CHAPTER 3. RECOMMENDED HOST PRACTICES

13

1. Ensure Intel Vt-x is enabled in BIOS.

2. Enable the input–output memory management unit (IOMMU). In the /etc/sysconfig/grub file,
add intel_iommu=on iommu=pt to the end of the GRUB_CMDLINX_LINUX line, within the
quotation marks.

3. Regenerate /etc/grub2.cfg by running:

4. Reboot the system.

5. On controllers in /etc/nova.conf:

[filter_scheduler]

enabled_filters=RetryFilter,AvailabilityZoneFilter,RamFilter,DiskFilter,ComputeFilter,ComputeC
apabilitiesFilter,ImagePropertiesFilter,ServerGroupAntiAffinityFilter,ServerGroupAffinityFilter,Pci
PassthroughFilter

available_filters=nova.scheduler.filters.all_filters

[pci]

alias = { "vendor_id":"144d", "product_id":"a820",
"device_type":"type-PCI", "name":"nvme" }

6. Restart nova-api and nova-scheduler on the controllers.

7. On compute nodes in /etc/nova/nova.conf:

[pci]

passthrough_whitelist = { "address": "0000:06:00.0" }

alias = { "vendor_id":"144d", "product_id":"a820",
"device_type":"type-PCI", "name":"nvme" }

To retrieve the required address, vendor_id, and product_id values of the NVMe device you
want to passthrough, run:

8. Restart nova-compute on the compute nodes.

9. Configure the OpenStack version you are running to use the NVMe and launch the etcd node.

3.4. SCALING HOSTS USING THE TUNED PROFILE

Tuned is a tuning profile delivery mechanism enabled by default in Red Hat Enterprise Linux (RHEL) and
other Red Hat products. Tuned customizes Linux settings, such as sysctls, power management, and
kernel command line options, to optimize the operating system for different workload performance and
scalability requirements.

OpenShift Container Platform leverages the tuned daemon and includes Tuned profiles called

$ grub2-mkconfig -o /etc/grub2.cfg

lspci -nn | grep devicename

OpenShift Container Platform 3.11 Scaling and Performance Guide

14

OpenShift Container Platform leverages the tuned daemon and includes Tuned profiles called
openshift, openshift-node and openshift-control-plane. These profiles safely increase some of the
commonly encountered vertical scaling limits present in the kernel, and are automatically applied to your
system during installation.

The Tuned profiles support inheritance between profiles. They also support an auto-parent functionality
which selects a parent profile based on whether the profile is used in a virtual environment. The
openshift profile uses both of these features and is a parent of openshift-node and openshift-control-
plane profiles. It contains tuning relevant to both OpenShift Container Platform application nodes and
control plane nodes respectively. The openshift-node and openshift-control-plane profiles are set on
application and control plane nodes respectively.

The profile hierarchy with the openshift profile as a parent ensures the tuning delivered to the
OpenShift Container Platform system is a union of throughput-performance (the default for RHEL)
for bare metal hosts and virtual-guest for RHEL and atomic-guest for RHEL Atomic Host nodes.

To see which Tuned profile is enabled on your system, run:

Example Output

See the Red Hat Enterprise Linux Performance Tuning Guide for more information about Tuned.

tuned-adm active

Current active profile: openshift-node

CHAPTER 3. RECOMMENDED HOST PRACTICES

15

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html-single/Performance_Tuning_Guide/index.html#chap-Red_Hat_Enterprise_Linux-Performance_Tuning_Guide-Tuned

CHAPTER 4. OPTIMIZING COMPUTE RESOURCES

4.1. OVERCOMMITTING

You can use overcommit procedures so that resources such as CPU and memory are more accessible to
the parts of your cluster that need them.

IMPORTANT

To avoid erratic cluster behavior due to scheduling collisions between the hypervisor and
Kubernetes, do not overcommit at the hypervisor level.

Note that when you overcommit, there is a risk that another application may not have access to the
resources it requires when it needs them, which will result in reduced performance. However, this may be
an acceptable trade-off in favor of increased density and reduced costs. For example, development,
quality assurance (QA), or test environments may be overcommitted, whereas production might not be.

OpenShift Container Platform implements resource management through the compute resource model
and quota system. See the documentation for more information about the OpenShift resource model .

For more information and strategies for overcommitting, see the Overcommitting documentation in the
Cluster Administration Guide.

4.2. IMAGE CONSIDERATIONS

4.2.1. Using a Pre-deployed Image to Improve Efficiency

You can create a base OpenShift Container Platform image with a number of tasks built-in to improve
efficiency, maintain configuration consistency on all node hosts, and reduce repetitive tasks. This is
known as a pre-deployed image.

For example, because every node requires the ose-pod image in order to run pods, each node has to
periodically connect to the container image registry in order to pull the latest image. This can become
problematic when you have 100 nodes attempting this at the same time, and can lead to resource
contention on the image registry, waste of network bandwidth, and increased pod launch times.

To build a pre-deployed image:

Create an instance of the type and size required.

Ensure a dedicated storage device is available for CRI-O or Docker local image or container
storage, separate from any persistent volumes for containers.

Fully update the system, and ensure CRI-O or Docker is installed.

Ensure the host has access to all yum repositories.

Set up thin-provisioned LVM storage .

Pre-seed your commonly used images (such as the rhel7 base image), as well as OpenShift
Container Platform infrastructure container images (ose-pod, ose-deployer, etc.) into your
pre-deployed image.

Ensure that pre-deployed images are configured for any appropriate cluster configurations, such as

OpenShift Container Platform 3.11 Scaling and Performance Guide

16

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/developer_guide/#dev-guide-compute-resources
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cluster_administration/#admin-guide-overcommit
https://access.redhat.com/documentation/en/red-hat-enterprise-linux-atomic-host/7/getting-started-with-containers/chapter-8-managing-storage-with-docker-formatted-containers

Ensure that pre-deployed images are configured for any appropriate cluster configurations, such as
being able to run on OpenStack, or AWS, as well as any other cluster configurations.

4.2.2. Pre-pulling Images

To efficiently produce images, you can pre-pull any necessary container images to all node hosts. This
means the image does not have to be initially pulled, which saves time and performance over slow
connections, especially for images, such as S2I, metrics, and logging, which can be large.

This is also useful for machines that cannot access the registry for security purposes.

Alternatively, you can use a local image instead of the default of a specified registry. To do this:

1. Pull from local images by setting the imagePullPolicy parameter of a pod configuration to
IfNotPresent or Never.

2. Ensure that all nodes in the cluster have the same images saved locally.

NOTE

Pulling from a local registry is suitable if you can control node configuration. However, it
will not work reliably on cloud providers that do not replace nodes automatically, such as
GCE. If you are running on Google Container Engine (GKE), there will already be a
.dockercfg file on each node with Google Container Registry credentials.

4.3. DEBUGGING USING THE RHEL TOOLS CONTAINER IMAGE

Red Hat distributes a rhel-tools container image, packaging tools that aid in debugging scaling or
performance problems. This container image:

Allows users to deploy minimal footprint container hosts by moving packages out of the base
distribution and into this support container.

Provides debugging capabilities for Red Hat Enterprise Linux 7 Atomic Host, which has an
immutable package tree. rhel-tools includes utilities such as tcpdump, sosreport, git, gdb, perf,
and many more common system administration utilities.

Use the rhel-tools container with the following:

See the RHEL Tools Container documentation for more information.

4.4. DEBUGGING USING ANSIBLE-BASED HEALTH CHECKS

Additional diagnostic health checks are available through the Ansible-based tooling used to install and
manage OpenShift Container Platform clusters. They can report common deployment problems for the
current OpenShift Container Platform installation.

These checks can be run either using the ansible-playbook command (the same method used during
cluster installations) or as a containerized version of openshift-ansible. For the ansible-playbook
method, the checks are provided by the openshift-ansible RPM package. For the containerized
method, the openshift3/ose-ansible container image is distributed via the Red Hat Container Registry .

See Ansible-based Health Checks in the Cluster Administration guide for information on the available

atomic run rhel7/rhel-tools

CHAPTER 4. OPTIMIZING COMPUTE RESOURCES

17

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/configuring_clusters/#install-config-configuring-openstack
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/configuring_clusters/#install-config-configuring-aws
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/creating_images/#creating-images-s2i
https://access.redhat.com/documentation/en/red-hat-enterprise-linux-atomic-host/7/getting-started-with-containers/chapter-11-using-the-atomic-tools-container-image
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#install-planning
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#install-running-installation-playbooks
https://github.com/openshift/openshift-ansible/blob/master/README_CONTAINER_IMAGE.md
https://registry.redhat.io

See Ansible-based Health Checks in the Cluster Administration guide for information on the available
health checks and example usage.

OpenShift Container Platform 3.11 Scaling and Performance Guide

18

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cluster_administration/#ansible-based-tooling-health-checks

CHAPTER 5. OPTIMIZING PERSISTENT STORAGE

5.1. OVERVIEW

Optimizing storage helps to minimize storage use across all resources. By optimizing storage,
administrators help ensure that existing storage resources are working in an efficient manner.

NOTE

This guide primarily focuses on optimizing persistent storage. Local ephemeral storage
for data utilized during the lifetime of pods has fewer options. Ephemeral storage is only
available if you enabled the ephemeral storage technology preview. This feature is
disabled by default. See configuring for ephemeral storage for more information.

5.2. GENERAL STORAGE GUIDELINES

The following table lists the available persistent storage technologies for OpenShift Container Platform.

Table 5.1. Available storage options

Storage
type

Description Examples

Block
Presented to the operating system (OS) as
a block device

Suitable for applications that need full
control of storage and operate at a low
level on files bypassing the file system

Also referred to as a Storage Area Network
(SAN)

Non-shareable, which means that only one
client at a time can mount an endpoint of
this type

converged mode/independent mode

GlusterFS [1], iSCSI, Fibre Channel,
Ceph RBD, OpenStack Cinder, AWS

EBS [1], Dell/EMC Scale.IO, VMware
vSphere Volume, GCE Persistent Disk
[1], Azure Disk

File
Presented to the OS as a file system export
to be mounted

Also referred to as Network Attached
Storage (NAS)

Concurrency, latency, file locking
mechanisms, and other capabilities vary
widely between protocols,
implementations, vendors, and scales.

converged mode/independent mode

GlusterFS [1], RHEL NFS, NetApp NFS
[2], Azure File, Vendor NFS, Vendor

GlusterFS [3], Azure File, AWS EFS

CHAPTER 5. OPTIMIZING PERSISTENT STORAGE

19

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/configuring_clusters/#install-config-configuring-ephemeral-storage

Object
Accessible through a REST API endpoint

Configurable for use in the OpenShift
Container Platform Registry

Applications must build their drivers into
the application and/or container.

converged mode/independent mode

GlusterFS [1], Ceph Object Storage
(RADOS Gateway), OpenStack Swift,
Aliyun OSS, AWS S3, Google Cloud
Storage, Azure Blob Storage, Vendor

S3 [3], Vendor Swift [3]

Storage
type

Description Examples

1. converged mode/independent mode GlusterFS, Ceph RBD, OpenStack Cinder, AWS EBS,
Azure Disk, GCE persistent disk, and VMware vSphere support dynamic persistent volume (PV)
provisioning natively in OpenShift Container Platform.

2. NetApp NFS supports dynamic PV provisioning when using the Trident plug-in.

3. Vendor GlusterFS, Vendor S3, and Vendor Swift supportability and configurability might vary.

You can use converged mode GlusterFS (a hyperconverged or cluster-hosted storage solution) or
independent mode GlusterFS (an externally hosted storage solution) for block, file, and object storage
for OpenShift Container Platform registry, logging, and monitoring.

5.3. STORAGE RECOMMENDATIONS

The following table summarizes the recommended and configurable storage technologies for the given
OpenShift Container Platform cluster application.

Table 5.2. Recommended and configurable storage technology

Storage
type

RWO [1] ROX [2] RWX [3] Registry Scaled
registry

Monitori
ng

Logging Apps

Block Yes Yes [4] No Configur
able

Not
configur
able

Recomm
ended

Recomm
ended

Recomm
ended

File Yes Yes [4] Yes Configur
able

Configur
able

Configur

able [5]

Configur

able [6]

Recomm
ended

Object Yes Yes Yes Recomm
ended

Recomm
ended

Not
configur
able

Not
configur
able

Not
configur

able [7]

1. ReadWriteOnce

2. ReadOnlyMany

3. ReadWriteMany

OpenShift Container Platform 3.11 Scaling and Performance Guide

20

4. This does not apply to physical disk, VM physical disk, VMDK, loopback over NFS, AWS EBS,
Azure Disk and Cinder (the latter for block).

5. For monitoring components, using file storage with the ReadWriteMany (RWX) access mode is
unreliable. If you use file storage, do not configure the RWX access mode on any persistent
volume claims (PVCs) that are configured for use with monitoring.

6. For logging, using any shared storage would be an anti-pattern. One volume per logging-es is
required.

7. Object storage is not consumed through OpenShift Container Platform’s PVs or PVCs. Apps
must integrate with the object storage REST API.

NOTE

A scaled registry is an OpenShift Container Platform registry where three or more pod
replicas are running.

5.3.1. Specific application storage recommendations

IMPORTANT

Testing shows issues with using the RHEL NFS server as storage backend for the
container image registry. This includes the OpenShift Container Registry and Quay,
Prometheus for metrics storage, and ElasticSearch for logging storage. Therefore, using
the RHEL NFS server to back PVs used by core services is not recommended.

Other NFS implementations on the marketplace might not have these issues. Contact
the individual NFS implementation vendor for more information on any testing that was
possibly completed against these OpenShift core components.

5.3.1.1. Registry

In a non-scaled/high-availability (HA) OpenShift Container Platform registry cluster deployment:

The preferred storage technology is object storage followed by block storage. The storage
technology does not need to support RWX access mode.

The storage technology must ensure read-after-write consistency. All NAS storage (excluding
converged mode/independent mode GlusterFS as it uses an object storage interface) are not
recommended for OpenShift Container Platform Registry cluster deployment with production
workloads.

While hostPath volumes are configurable for a non-scaled/HA OpenShift Container Platform
Registry, they are not recommended for cluster deployment.

5.3.1.2. Scaled registry

In a scaled/HA OpenShift Container Platform registry cluster deployment:

The preferred storage technology is object storage. The storage technology must support RWX
access mode and must ensure read-after-write consistency.

File storage and block storage are not recommended for a scaled/HA OpenShift Container
Platform registry cluster deployment with production workloads.

CHAPTER 5. OPTIMIZING PERSISTENT STORAGE

21

All NAS storage (excluding converged mode/independent mode GlusterFS as it uses an object
storage interface) are not recommended for OpenShift Container Platform Registry cluster
deployment with production workloads.

5.3.1.3. Monitoring

In an OpenShift Container Platform hosted monitoring cluster deployment:

The preferred storage technology is block storage.

If you decide to configure file storage, make sure that it follows POSIX standards.

IMPORTANT

Testing shows significant unrecoverable corruptions using NFS and, therefore, is not
recommended for use.

Other NFS implementations on the marketplace might not have these issues. Contact
the individual NFS implementation vendor for more information on any testing that was
possibly completed against these OpenShift core components.

5.3.1.4. Logging

In an OpenShift Container Platform hosted logging cluster deployment:

The preferred storage technology is block storage.

It is not recommended to use NAS storage (excluding converged mode/independent mode
GlusterFS as it uses a block storage interface from iSCSI) for a hosted metrics cluster
deployment with production workloads.

IMPORTANT

Testing shows issues with using the NFS server on RHEL as storage backend for the
container image registry. This includes ElasticSearch for logging storage. Therefore, using
NFS to back PVs used by core services is not recommended.

Other NFS implementations on the marketplace might not have these issues. Contact
the individual NFS implementation vendor for more information on any testing that was
possibly completed against these OpenShift core components.

5.3.1.5. Applications

Application use cases vary from application to application, as described in the following examples:

Storage technologies that support dynamic PV provisioning have low mount time latencies, and
are not tied to nodes to support a healthy cluster.

Application developers are responsible for knowing and understanding the storage
requirements for their application, and how it works with the provided storage to ensure that
issues do not occur when an application scales or interacts with the storage layer.

5.3.2. Other specific application storage recommendations

OpenShift Container Platform Internal etcd: For the best etcd reliability, the lowest consistent

OpenShift Container Platform 3.11 Scaling and Performance Guide

22

OpenShift Container Platform Internal etcd: For the best etcd reliability, the lowest consistent
latency storage technology is preferable.

Databases: Databases (RDBMSs, NoSQL DBs, etc.) tend to perform best with dedicated block
storage.

5.4. CHOOSING A GRAPH DRIVER

Container runtimes store images and containers in a graph driver (a pluggable storage technology),
such as DeviceMapper and OverlayFS. Each has advantages and disadvantages.

For more information about OverlayFS, including supportability and usage caveats, see the Red Hat
Enterprise Linux (RHEL) 7 Release Notes for your version.

Table 5.3. Graph driver comparisons

Name Description Benefits Limitations

OverlayFS

overlay

overlay2

Combines a lower
(parent) and upper
(child) filesystem and a
working directory (on
the same filesystem as
the child). The lower
filesystem is the base
image, and when you
create new containers, a
new upper filesystem is
created containing the
deltas.

Faster than
Device Mapper
at starting and
stopping
containers. The
startup time
difference
between
Device Mapper
and Overlay is
generally less
than one
second.

Allows for page
cache sharing.

Not POSIX compliant.

Device Mapper Thin
Provisioning

Uses LVM, Device
Mapper, and the dm-
thinp kernel module. It
differs by removing the
loopback device, talking
straight to a raw
partition (no filesystem).

There are
measurable
performance
advantages at
moderate load
and high
density.

It gives you
per-container
limits for
capacity (10G
by default).

You have to
have a
dedicated
partition for it.

It is not set up
by default in
Red Hat
Enterprise
Linux (RHEL).

All containers
and images
share the same
pool of
capacity. It
cannot be
resized without
destroying and
re-creating the
pool.

CHAPTER 5. OPTIMIZING PERSISTENT STORAGE

23

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/7.5_release_notes/technology_previews_file_systems

Device Mapper loop-
lvm

Uses the Device Mapper
thin provisioning module
(dm-thin-pool) to
implement copy-on-
write (CoW) snapshots.
For each device mapper
graph location, thin pool
is created based on two
block devices, one for
data and one for
metadata. By default,
these block devices are
created automatically by
using loopback mounts
of automatically created
sparse files.

It works out of the box,
so it is useful for
prototyping and
development purposes.

Not all Portable
Operating
System
Interface for
Unix (POSIX)
features work
(for example,
O_DIRECT).
Most
importantly,
this mode is
unsupported
for production
workloads.

All containers
and images
share the same
pool of
capacity. It
cannot be
resized without
destroying and
re-creating the
pool.

Name Description Benefits Limitations

For better performance, Red Hat strongly recommends using the overlayFS storage driver over Device
Mapper. However, if you are already using Device Mapper in a production environment, Red Hat strongly
recommends using thin provisioning for container images and container root file systems. Otherwise,
always use overlayfs2 for Docker engine or overlayFS for CRI-O.

Using a loop device can affect performance. While you can still continue to use it, the following warning
message is logged:

devmapper: Usage of loopback devices is strongly discouraged for production use.
Please use `--storage-opt dm.thinpooldev` or use `man docker` to refer to
dm.thinpooldev section.

To ease storage configuration, use the docker-storage-setup utility, which automates much of the
configuration details:

For Overlay

1. Edit the /etc/sysconfig/docker-storage-setup file to specify the device driver:

NOTE

If using CRI-O, specify STORAGE_DRIVER=overlay.

With CRI-O, the default overlay storage driver uses the overlay2 optimizations.

STORAGE_DRIVER=overlay2

OpenShift Container Platform 3.11 Scaling and Performance Guide

24

1

With OverlayFS, if you want to have imagefs on a different logical volume, then you must set
CONTAINER_ROOT_LV_NAME and CONTAINER _ROOT_LV_MOUNT_PATH. Setting
CONTAINER_ROOT_LV_MOUNT_PATH requires CONTAINER_ROOT_LV_NAME to be set.
For example, CONTAINER_ROOT_LV_NAME="container-root-lv". See Using the Overlay
Graph Driver for more information.

2. If you had a separate disk drive dedicated to docker storage (for example, /dev/xvdb), add the
following to the /etc/sysconfig/docker-storage-setup file:

3. Restart the docker-storage-setup service:

4. To verify that docker is using overlay2, and to monitor disk space use, run the docker info
command:

Example Output

The docker info output when using overlay2.

OverlayFS is also supported for container runtimes use cases as of Red Hat Enterprise Linux
7.2, and provides faster start up time and page cache sharing, which can potentially improve
density by reducing overall memory utilization.

For Thinpool

1. Edit the /etc/sysconfig/docker-storage-setup file to specify the device driver:

2. If you had a separate disk drive dedicated to docker storage (for example, /dev/xvdb), add the
following to the /etc/sysconfig/docker-storage-setup file:

3. Restart the docker-storage-setup service:

After the restart, docker-storage-setup sets up a volume group named docker_vg and creates
a thin-pool logical volume. Documentation for thin provisioning on RHEL is available in the LVM
Administrator Guide. View the newly created volumes with the lsblk command:

DEVS=/dev/xvdb
VG=docker_vg

systemctl restart docker-storage-setup

docker info | egrep -i 'storage|pool|space|filesystem'

Storage Driver: overlay2 1
 Backing Filesystem: extfs

STORAGE_DRIVER=devicemapper

DEVS=/dev/xvdb
VG=docker_vg

systemctl restart docker-storage-setup

CHAPTER 5. OPTIMIZING PERSISTENT STORAGE

25

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/7/html/managing_containers/managing_storage_with_docker_formatted_containers#using_the_overlay_graph_driver
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html-single/Logical_Volume_Manager_Administration/index.html

1

2

Example Output

NOTE

Thin-provisioned volumes are not mounted and have no file system (individual
containers do have an XFS file system), thus they do not show up in df output.

4. To verify that docker is using an LVM thinpool, and to monitor disk space use, run the docker
info command:

Example Output

The docker info output when using devicemapper.

Corresponds to the VG you specified in /etc/sysconfig/docker-storage-setup.

By default, a thin pool is configured to use 40% of the underlying block device. As you use the storage,
LVM automatically extends the thin pool up to 100%. This is why the Data Space Total value does not
match the full size of the underlying LVM device.

In development, docker in Red Hat distributions defaults to a loopback mounted sparse file. To see if
your system is using the loopback mode:

Example Output

lsblk /dev/xvdb

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
xvdb 202:16 0 20G 0 disk
└─xvdb1 202:17 0 10G 0 part
 ├─docker_vg-docker--pool_tmeta 253:0 0 12M 0 lvm
 │ └─docker_vg-docker--pool 253:2 0 6.9G 0 lvm
 └─docker_vg-docker--pool_tdata 253:1 0 6.9G 0 lvm
 └─docker_vg-docker--pool 253:2 0 6.9G 0 lvm

docker info | egrep -i 'storage|pool|space|filesystem'

Storage Driver: devicemapper 1
 Pool Name: docker_vg-docker--pool 2
 Pool Blocksize: 524.3 kB
 Backing Filesystem: xfs
 Data Space Used: 62.39 MB
 Data Space Total: 6.434 GB
 Data Space Available: 6.372 GB
 Metadata Space Used: 40.96 kB
 Metadata Space Total: 16.78 MB
 Metadata Space Available: 16.74 MB

docker info|grep loop0

 Data file: /dev/loop0

OpenShift Container Platform 3.11 Scaling and Performance Guide

26

5.4.1. Benefits of using OverlayFS or DeviceMapper with SELinux

The main advantage of the OverlayFS graph is Linux page cache sharing among containers that share an
image on the same node. This attribute of OverlayFS leads to reduced input/output (I/O) during
container startup (and, thus, faster container startup time by several hundred milliseconds), as well as
reduced memory usage when similar images are running on a node. Both of these results are beneficial
in many environments, especially those with the goal of optimizing for density and have high container
churn rate (such as a build farm), or those that have significant overlap in image content.

Page cache sharing is not possible with DeviceMapper because thin-provisioned devices are allocated
on a per-container basis.

NOTE

OverlayFS is the default Docker storage driver for Red Hat Enterprise Linux (RHEL) 7.5
and is supported in 7.3 and later. Set OverlayFS to the default Docker storage
configuration on RHEL to improve performance. See the instructions for configuring
OverlayFS for use with the Docker container runtime.

5.4.2. Comparing the Overlay and Overlay2 graph drivers

OverlayFS is a type of union file system. It allows you to overlay one file system on top of another.
Changes are recorded in the upper file system, while the lower file system remains unmodified. This
allows multiple users to share a file-system image, such as a container or a DVD-ROM, where the base
image is on read-only media.

OverlayFS layers two directories on a single Linux host and presents them as a single directory. These
directories are called layers, and the unification process is referred to as a union mount.

OverlayFS uses one of two graph drivers, overlay or overlay2. As of Red Hat Enterprise Linux 7.2,
overlaybecame a supported graph driver . As of Red Hat Enterprise Linux 7.4, overlay2 became
supported. SELinux on the docker daemon became supported in Red Hat Enterprise Linux 7.4. See the
Red Hat Enterprise Linux release notes for information on using OverlayFS with your version of RHEL,
including supportability and usage caveats.

The overlay2 driver natively supports up to 128 lower OverlayFS layers but, the overlay driver works
only with a single lower OverlayFS layer. Because of this capability, the overlay2 driver provides better
performance for layer-related Docker commands, such as docker build, and consumes fewer inodes on
the backing filesystem.

Because the overlay driver works with a single lower OverlayFS layer, you cannot implement multi-
layered images as multiple OverlayFS layers. Instead, each image layer is implemented as its own
directory under /var/lib/docker/overlay. Hard links are then used as a space-efficient way to reference
data shared with lower layers.

Docker recommends using the overlay2 driver with OverlayFS rather than the overlay driver, because it
is more efficient in terms of inode utilization.

CHAPTER 5. OPTIMIZING PERSISTENT STORAGE

27

https://access.redhat.com/solutions/2908851
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/7.2_release_notes/technology-preview-file_systems
https://access.redhat.com/solutions/2908851
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/?version=7
https://docs.docker.com/storage/storagedriver/overlayfs-driver/

CHAPTER 6. OPTIMIZING EPHEMERAL STORAGE

6.1. OVERVIEW

NOTE

This topic applies only if you enabled the ephemeral storage technology preview. This
feature is disabled by default. To enable this feature, see configuring for ephemeral
storage.

NOTE

Technology Preview releases are not supported with Red Hat production service-level
agreements (SLAs) and might not be functionally complete, and Red Hat does not
recommend using them for production. These features provide early access to upcoming
product features, enabling customers to test functionality and provide feedback during
the development process. For more information see Red Hat Technology Preview
Features Support Scope.

Pods use ephemeral storage for their internal operation such as saving temporary files. The lifetime of
this ephemeral storage does not extend beyond the life of the individual pod, and this ephemeral
storage cannot be shared across pods.

Prior to OpenShift Container Platform 3.10, ephemeral local storage was exposed to pods through the
container’s writable layer, logs directory, and EmptyDir volumes. Issues related to the lack of local
storage accounting and isolation include the following:

Pods do not know how much local storage is available to them.

Pods cannot request guaranteed local storage.

Local storage is a best effort resource.

Pods can get evicted due to other pods filling the local storage, after which, new pods are not
admitted until sufficient storage has been reclaimed.

Ephemeral storage is still exposed to pods in the same way, but there are new methods for
implementing requests and limits on pods' consumption of ephemeral storage.

NOTE

Management of container logs applies only if using CRI-O as the container runtime and
file-based logging for logging.

It is important to understand that ephemeral storage is shared among all pods in the system, and that
OpenShift Container Platform does not provide any mechanism for guaranteeing any level of service
beyond the requests and limits established by the administrator and users. For example, ephemeral
storage does not provide any guarantees of throughput, I/O operations per second, or any other
measure of storage performance.

6.2. GENERAL STORAGE GUIDELINES

A node’s local storage can be broken into primary and secondary partitions. Primary partitions are the

OpenShift Container Platform 3.11 Scaling and Performance Guide

28

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/configuring_clusters/#install-config-configuring-ephemeral-storage
https://access.redhat.com/support/offerings/techpreview/

A node’s local storage can be broken into primary and secondary partitions. Primary partitions are the
only ones you can use for ephemeral local storage. There are two supported primary partitions, root and
runtime.

Root
Root partitions hold the kubelet’s root directory, /var/lib/kubelet/ by default, and /var/log/
directory. You can share this partition among pods, the operating system, and OpenShift
Container Platform system daemons. Pods can access this partition by using EmptyDir volumes,
container logs, image layers, and container writable layers. OpenShift Container Platform
manages shared access and isolation of this partition.

Runtime
Runtime partitions are optional partitions you can use for overlay file systems. OpenShift
Container Platform attempts to identify and provide shared access along with isolation to this
partition. This partition contains container image layers and writable layers. If the runtime
partition exists, the root partition does not hold any image layer or writable layers.

CHAPTER 6. OPTIMIZING EPHEMERAL STORAGE

29

CHAPTER 7. NETWORK OPTIMIZATION

7.1. OPTIMIZING NETWORK PERFORMANCE

The OpenShift SDN uses OpenvSwitch, virtual extensible LAN (VXLAN) tunnels, OpenFlow rules, and
iptables. This network can be tuned by using jumbo frames, network interface cards (NIC) offloads,
multi-queue, and ethtool settings.

VXLAN provides benefits over VLANs, such as an increase in networks from 4096 to over 16 million, and
layer 2 connectivity across physical networks. This allows for all pods behind a service to communicate
with each other, even if they are running on different systems.

VXLAN encapsulates all tunneled traffic in user datagram protocol (UDP) packets. However, this leads
to increased CPU utilization. Both these outer- and inner-packets are subject to normal checksumming
rules to guarantee data has not been corrupted during transit. Depending on CPU performance, this
additional processing overhead can cause a reduction in throughput and increased latency when
compared to traditional, non-overlay networks.

Cloud, VM, and bare metal CPU performance can be capable of handling much more than one Gbps
network throughput. When using higher bandwidth links such as 10 or 40 Gbps, reduced performance
can occur. This is a known issue in VXLAN-based environments and is not specific to containers or
OpenShift Container Platform. Any network that relies on VXLAN tunnels will perform similarly because
of the VXLAN implementation.

If you are looking to push beyond one Gbps, you can:

Use Native Container Routing . This option has important operational caveats that do not exist
when using OpenShift SDN, such as updating routing tables on a router.

Evaluate network plug-ins that implement different routing techniques, such as border gateway
protocol (BGP).

Use VXLAN-offload capable network adapters. VXLAN-offload moves the packet checksum
calculation and associated CPU overhead off of the system CPU and onto dedicated hardware
on the network adapter. This frees up CPU cycles for use by pods and applications, and allows
users to utilize the full bandwidth of their network infrastructure.

VXLAN-offload does not reduce latency. However, CPU utilization is reduced even in latency tests.

7.1.1. Optimizing the MTU for Your Network

There are two important maximum transmission units (MTUs): the network interface card (NIC) MTU
and the SDN overlay’s MTU.

The NIC MTU must be less than or equal to the maximum supported value of the NIC of your network. If
you are optimizing for throughput, pick the largest possible value. If you are optimizing for lowest
latency, pick a lower value.

The SDN overlay’s MTU must be less than the NIC MTU by 50 bytes at a minimum. This accounts for
the SDN overlay header. So, on a normal ethernet network, set this to 1450. On a jumbo frame ethernet
network, set this to 8950.

NOTE

OpenShift Container Platform 3.11 Scaling and Performance Guide

30

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#openshift-sdn
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/configuring_clusters/#install-config-configuring-native-container-routing

1

2

NOTE

This 50 byte overlay header is relevant to the OpenShift SDN. Other SDN solutions
might require the value to be more or less.

To configure the MTU, edit the appropriate node configuration map and modify the following section:

Maximum transmission unit (MTU) for the pod overlay network.

Set to redhat/openshift-ovs-subnet for the ovs-subnet plug-in, redhat/openshift-ovs-
multitenant for the ovs-multitenant plug-in, or redhat/openshift-ovs-networkpolicy for the
ovs-networkpolicy plug-in. This can also be set to any other CNI-compatible plug-in as well.

NOTE

You must change the MTU size on all masters and nodes that are part of the OpenShift
Container Platform SDN. Also, the MTU size of the tun0 interface must be the same
across all nodes that are part of the cluster.

7.2. CONFIGURING NETWORK SUBNETS

OpenShift Container Platform provides IP address management for both pods and services. The
default values allow for:

A maximum cluster size of 1024 nodes

Each of the 1024 nodes having a /23 allocated to it (510 usable IPs for pods)

Around 65,536 IP addresses for services

Under most circumstances, these networks cannot be changed after deployment. So, planning ahead for
growth is important.

Restrictions for resizing networks are document in the Configuring SDN documentation.

To plan for a larger environment, the following are suggested values to consider adding to the
[OSE3:vars] section in your Ansible inventory file:

[OSE3:vars]
osm_cluster_network_cidr=10.128.0.0/10

This will allow for 8192 nodes, each with 510 usable IP addresses.

See the supportability limits in the OpenShift Container Platform documentation for node/pod limits for
the version of software you are installing.

7.3. OPTIMIZING IPSEC

Because encrypting and decrypting node hosts uses CPU power, performance is affected both in

networkConfig:
 mtu: 1450 1
 networkPluginName: "redhat/openshift-ovs-subnet" 2

CHAPTER 7. NETWORK OPTIMIZATION

31

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cluster_administration/#modifying-nodes
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/configuring_clusters/#configuring-the-pod-network-on-masters

Because encrypting and decrypting node hosts uses CPU power, performance is affected both in
throughput and CPU usage on the nodes when encryption is enabled, regardless of the IP security
system being used.

IPSec encrypts traffic at the IP payload level, before it hits the NIC, protecting fields that would
otherwise be used for NIC offloading. This means that some NIC acceleration features may not be
usable when IPSec is enabled and will lead to decreased throughput and increased CPU usage.

OpenShift Container Platform 3.11 Scaling and Performance Guide

32

CHAPTER 8. ROUTING OPTIMIZATION

8.1. SCALING OPENSHIFT CONTAINER PLATFORM HAPROXY ROUTER

8.1.1. Baseline Performance

The OpenShift Container Platform router is the ingress point for all external traffic destined for
OpenShift Container Platform services.

When evaluating a single HAProxy router performance in terms of HTTP requests handled per second,
the performance varies depending on many factors. In particular:

HTTP keep-alive/close mode,

route type

TLS session resumption client support

number of concurrent connections per target route

number of target routes

backend server page size

underlying infrastructure (network/SDN solution, CPU, and so on)

While performance in your specific environment will vary, our lab tests on a public cloud instance of size
4 vCPU/16GB RAM, a single HAProxy router handling 100 routes terminated by backends serving 1kB
static pages is able to handle the following number of transactions per second.

In HTTP keep-alive mode scenarios:

Encryption ROUTER_THREADS unset ROUTER_THREADS=4

none 23681 24327

edge 14981 22768

passthrough 34358 34331

re-encrypt 13288 24605

In HTTP close (no keep-alive) scenarios:

Encryption ROUTER_THREADS unset ROUTER_THREADS=4

none 3245 4527

edge 1910 3043

CHAPTER 8. ROUTING OPTIMIZATION

33

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/configuring_clusters/#install-config-router-overview
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#route-types

passthrough 3408 3922

re-encrypt 1333 2239

Encryption ROUTER_THREADS unset ROUTER_THREADS=4

TLS session resumption was used for encrypted routes. With HTTP keep-alive, a single HAProxy router
is capable of saturating 1 Gbit NIC at page sizes as small as 8 kB.

When running on bare metal with modern processors, you can expect roughly twice the performance of
the public cloud instance above. This overhead is introduced by the virtualization layer in place on public
clouds and holds mostly true for private cloud-based virtualization as well. The following table is a guide
on how many applications to use behind the router:

Number of applications Application type

5-10 static file/web server or caching proxy

100-1000 applications generating dynamic content

In general, HAProxy can support routes for 5 to 1000 applications, depending on the technology in use.
Router performance might be limited by the capabilities and performance of the applications behind it,
such as language or static versus dynamic content.

Router sharding should be used to serve more routes towards applications and help horizontally scale
the routing tier.

8.1.2. Performance Optimizations

8.1.2.1. Setting the Maximum Number of Connections

One of the most important tunable parameters for HAProxy scalability is the maxconn parameter, which
sets the maximum per-process number of concurrent connections to a given number. Adjust this
parameter by editing the ROUTER_MAX_CONNECTIONS environment variable in the OpenShift
Container Platform HAProxy router’s deployment configuration file.

NOTE

A connection includes the frontend and internal backend. This counts as two connections.
Be sure to set ROUTER_MAX_CONNECTIONS to double than the number of
connections you intend to create.

8.1.2.2. CPU and Interrupt Affinity

In OpenShift Container Platform, the HAProxy router runs as a single process. The OpenShift Container
Platform HAProxy router typically performs better on a system with fewer but high frequency cores,
rather than on an symmetric multiprocessing (SMP) system with a high number of lower frequency
cores.

Pinning the HAProxy process to one CPU core and the network interrupts to another CPU core tends to

OpenShift Container Platform 3.11 Scaling and Performance Guide

34

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#router-sharding
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/configuring_clusters/#concurrent-connections

increase network performance. Having processes and interrupts on the same non-uniform memory
access (NUMA) node helps avoid memory accesses by ensuring a shared L3 cache. However, this level
of control is generally not possible on a public cloud environment. On bare metal hosts, irqbalance
automatically handles peripheral component interconnect (PCI) locality and NUMA affinity for interrupt
request lines (IRQs). On a cloud environment, this level of information is generally not provided to the
operating system.

CPU pinning is performed either by taskset or by using HAProxy’s cpu-map parameter. This directive
takes two arguments: the process ID and the CPU core ID. For example, to pin HAProxy process 1 onto
CPU core 0, add the following line to the global section of HAProxy’s configuration file:

 cpu-map 1 0

To modify the HAProxy configuration file, refer to Deploying a Customized HAProxy Router .

8.1.2.3. Increasing the Number of Threads

The HAProxy router comes with support for multithreading in OpenShift Container Platform. On a
multiple CPU core system, increasing the number of threads can help the performance, especially when
terminating SSL on the router.

To specify the number of threads for the HAProxy router, refer to Enable HAProxy Threading and
Router Environment Variables .

8.1.2.4. Impacts of Buffer Increases

The OpenShift Container Platform HAProxy router request buffer configuration limits the size of
headers in incoming requests and responses from applications. The HAProxy parameter tune.bufsize
can be increased to allow processing of larger headers and to allow applications with very large cookies
to work, such as those accepted by load balancers provided by many public cloud providers. However,
this affects the total memory use, especially when large numbers of connections are open. With very
large numbers of open connections, the memory usage will be nearly proportionate to the increase of
this tunable parameter.

8.1.2.5. Optimizations for HAProxy Reloads

Long-lasting connections, such as WebSocket connections, combined with long client/server HAProxy
timeouts and short HAProxy reload intervals, can cause instantiation of many HAProxy processes. These
processes must handle old connections, which were started before the HAProxy configuration reload. A
large number of these processes is undesirable, as it will exert unnecessary load on the system and can
lead to issues, such as out of memory conditions.

Router environment variables affecting this behavior are ROUTER_DEFAULT_TUNNEL_TIMEOUT,
ROUTER_DEFAULT_CLIENT_TIMEOUT, ROUTER_DEFAULT_SERVER_TIMEOUT, and
RELOAD_INTERVAL in particular.

CHAPTER 8. ROUTING OPTIMIZATION

35

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/configuring_clusters/#install-config-router-customized-haproxy
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/configuring_clusters/#router-threading
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#env-variables

CHAPTER 9. SCALING CLUSTER METRICS

9.1. OVERVIEW

OpenShift Container Platform exposes metrics that can be collected and stored in back-ends by
Heapster. As an OpenShift Container Platform administrator, you can view containers and components
metrics in one user interface. These metrics are also used by horizontal pod autoscalers in order to
determine when and how to scale.

This topic provides information for scaling the metrics components.

NOTE

Autoscaling the metrics components, such as Hawkular and Heapster, is not supported by
OpenShift Container Platform.

9.2. RECOMMENDATIONS FOR OPENSHIFT CONTAINER PLATFORM

Run metrics pods on dedicated OpenShift Container Platform infrastructure nodes.

Use persistent storage when configuring metrics. Set USE_PERSISTENT_STORAGE=true.

Keep the METRICS_RESOLUTION=30 parameter in OpenShift Container Platform metrics
deployments. Using a value lower than the default value of 30 for METRICS_RESOLUTION is
not recommended. When using the Ansible metrics installation procedure, this is the
openshift_metrics_resolution parameter.

Closely monitor OpenShift Container Platform nodes with host metrics pods to detect early
capacity shortages (CPU and memory) on the host system. These capacity shortages can cause
problems for metrics pods.

In OpenShift Container Platform version 3.7 testing, test cases up to 25,000 pods were
monitored in a OpenShift Container Platform cluster.

9.3. CAPACITY PLANNING FOR CLUSTER METRICS

In tests performed with 210 and 990 OpenShift Container Platform nodes, where 10500 pods and 11000
pods were monitored respectively, the Cassandra database grew at the speed shown in the table below:

Table 9.1. Cassandra Database storage requirements based on number of nodes/pods in the cluster

Number of Nodes Number of Pods Cassandra
Storage growth
speed

Cassandra
storage growth
per day

Cassandra
storage growth
per week

210 10500 500 MB per hour 15 GB 75 GB

990 11000 1 GB per hour 30 GB 210 GB

In the above calculation, approximately 20 percent of the expected size was added as overhead to
ensure that the storage requirements do not exceed calculated value.

If the METRICS_DURATION and METRICS_RESOLUTION values are kept at the default (7 days and

OpenShift Container Platform 3.11 Scaling and Performance Guide

36

https://github.com/kubernetes/heapster
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/developer_guide/#dev-guide-pod-autoscaling
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cluster_administration/#infrastructure-nodes

If the METRICS_DURATION and METRICS_RESOLUTION values are kept at the default (7 days and
15 seconds respectively), it is safe to plan Cassandra storage size requirements for week, as in the values
above.

WARNING

Because OpenShift Container Platform metrics uses the Cassandra database as a
datastore for metrics data, if USE_PERSISTENT_STORAGE=true is set during the
metrics set up process, PV will be on top in the network storage, with NFS as the
default. However, using network storage in combination with Cassandra is not
recommended.

If you use a Cassandra database as a datastore for metrics data, see the Cassandra
documentation for their recommendations.

9.4. SCALING OPENSHIFT CONTAINER PLATFORM METRICS PODS

One set of metrics pods (Cassandra/Hawkular/Heapster) is able to monitor at least 25,000 pods.

CAUTION

Pay attention to system load on nodes where OpenShift Container Platform metrics pods run. Use that
information to determine if it is necessary to scale out a number of OpenShift Container Platform
metrics pods and spread the load across multiple OpenShift Container Platform nodes. Scaling
OpenShift Container Platform metrics heapster pods is not recommended.

9.4.1. Prerequisites

If persistent storage was used to deploy OpenShift Container Platform metrics, then you must create a
persistent volume (PV) for the new Cassandra pod to use before you can scale out the number of
OpenShift Container Platform metrics Cassandra pods. However, if Cassandra was deployed with
dynamically provisioned PVs, then this step is not necessary.

9.4.2. Scaling the Cassandra Components

Cassandra nodes use persistent storage. Therefore, scaling up or down is not possible with replication
controllers.

Scaling a Cassandra cluster requires modifying the openshift_metrics_cassandra_replicas variable
and re-running the deployment. By default, the Cassandra cluster is a single-node cluster.

To scale up the number of OpenShift Container Platform metrics hawkular pods to two replicas, run:

Alternatively, update your inventory file and re-run the deployment.

NOTE



oc scale -n openshift-infra --replicas=2 rc hawkular-metrics

CHAPTER 9. SCALING CLUSTER METRICS

37

http://cassandra.apache.org/doc/latest/operating/hardware.html#disks
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/developer_guide/#dev-guide-persistent-volumes
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/configuring_clusters/#deploying-the-metrics-components
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/configuring_clusters/#deploying-the-metrics-components

NOTE

If you add a new node to or remove an existing node from a Cassandra cluster, the data
stored in the cluster rebalances across the cluster.

To scale down:

1. If remotely accessing the container, run the following for the Cassandra node you want to
remove:

If locally accessing the container, run the following instead:

This command can take a while to run since it copies data across the cluster. You can monitor
the decommission progress with nodetool netstats -H.

2. Once the previous command succeeds, scale down the rc for the Cassandra instance to 0.

This will remove the Cassandra pod.

IMPORTANT

If the scale down process completed and the existing Cassandra nodes are functioning as
expected, you can also delete the rc for this Cassandra instance and its corresponding
persistent volume claim (PVC). Deleting the PVC can permanently delete any data
associated with this Cassandra instance, so if the scale down did not fully and successfully
complete, you will not be able to recover the lost data.

$ oc exec -it <hawkular-cassandra-pod> nodetool decommission

$ oc rsh <hawkular-cassandra-pod> nodetool decommission

oc scale -n openshift-infra --replicas=0 rc <hawkular-cassandra-rc>

OpenShift Container Platform 3.11 Scaling and Performance Guide

38

CHAPTER 10. SCALING CLUSTER MONITORING OPERATOR

10.1. OVERVIEW

OpenShift Container Platform exposes metrics that can be collected and stored in back-ends by the
cluster-monitoring-operator. As an OpenShift Container Platform administrator, you can view system
resources, containers and components metrics in one dashboard interface, Grafana.

This topic provides information on scaling the cluster monitoring operator.

If you want to use Prometheus with persistent storage, you must set the
openshift_cluster_monitoring_operator_prometheus_storage_enabled variable in your Ansible
inventory file to true.

10.2. RECOMMENDATIONS FOR OPENSHIFT CONTAINER PLATFORM

Use at least three infrastructure (infra) nodes.

Use at least three openshift-container-storage nodes with non-volatile memory express
(NVMe) drives.

Use persistent block storage, such as OpenShift Container Storage (OCS) Block .

10.3. CAPACITY PLANNING FOR CLUSTER MONITORING OPERATOR

Various tests were performed for different scale sizes. The Prometheus database grew, as reflected in
the table below.

NOTE

The Prometheus storage requirements below are not prescriptive. Higher resource
consumption might be observed in your cluster depending on workload activity and
resource use.

Table 10.1. Prometheus Database storage requirements based on number of nodes/pods in the
cluster

Number of
Nodes

Number of
Pods

Prometheus
storage
growth per
day

Prometheus
storage
growth per 15
days

RAM Space
(per scale
size)

Network (per
tsdb chunk)

50 1800 6.3 GB 94 GB 6 GB 16 MB

100 3600 13 GB 195 GB 10 GB 26 MB

150 5400 19 GB 283 GB 12 GB 36 MB

200 7200 25 GB 375 GB 14 GB 46 MB

In the above calculation, approximately 20 percent of the expected size was added as overhead to

CHAPTER 10. SCALING CLUSTER MONITORING OPERATOR

39

https://github.com/openshift/cluster-monitoring-operator
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cluster_administration/#infrastructure-nodes
https://www.redhat.com/en/technologies/cloud-computing/openshift-container-storage
https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/3.11/html/operations_guide/block_storage

In the above calculation, approximately 20 percent of the expected size was added as overhead to
ensure that the storage requirements do not exceed the calculated value.

The above calculation was developed for the default OpenShift Container Platform cluster-
monitoring-operator. For higher scale, edit the
openshift_cluster_monitoring_operator_prometheus_storage_capacity variable in the Ansible
inventory file, which defaults to 50Gi.

NOTE

CPU utilization has minor impact. The ratio is approximately 1 core out of 40 per 50
nodes and 1800 pods.

10.3.1. Lab Environment

All experiments were performed in an OpenShift Container Platform on OpenStack environment:

Infra nodes (VMs) - 40 cores, 157 GB RAM.

CNS nodes (VMs) - 16 cores, 62 GB RAM, NVMe drives.

10.3.2. Prerequisites

Based on your scale destination, compute and set the relevant PV size for the Prometheus data store.
Since the default Prometheus pods replicas is 2, for 100 nodes with 3600 pods you will need 188 GB.

For example:

195 GB (space per 15 days) * 2 (pods) = 390 GB free

Based on this equation, set
openshift_cluster_monitoring_operator_prometheus_storage_capacity=195Gi.

OpenShift Container Platform 3.11 Scaling and Performance Guide

40

CHAPTER 11. TESTED MAXIMUMS PER CLUSTER
Consider the following tested cluster object maximums when you plan your OpenShift Container
Platform cluster.

These guidelines are based on the largest possible cluster. For smaller clusters, the maximums are
proportionally lower. There are many factors that influence the stated thresholds, including the etcd
version or storage data format.

In most cases, exceeding these numbers results in lower overall performance. It does not necessarily
mean that the cluster will fail.

Tested Cloud Platforms for OpenShift Container Platform 3.x: Red Hat OpenStack, Amazon Web
Services, and Microsoft Azure.

11.1. OPENSHIFT CONTAINER PLATFORM TESTED CLUSTER
MAXIMUMS FOR MAJOR RELEASES

Maximum Type 3.x Tested Maximum

Number of Nodes 2,000

Number of Pods [1] 150,000

Number of Pods per Node 250

Number of Pods per Core There is no default value.

Number of Namespaces 10,000

Number of Builds: Pipeline Strategy 10,000 (Default pod RAM 512Mi)

Number of Pods per Namespace [2] 25,000

Number of Services [3] 10,000

Number of Services per Namespace 5,000

Number of Back-ends per Service 5,000

Number of Deployments per Namespace [2] 2,000

1. The Pod count displayed here is the number of test Pods. The actual number of Pods depends
on the application’s memory, CPU, and storage requirements.

2. There are a number of control loops in the system that need to iterate over all objects in a given
namespace as a reaction to some changes in state. Having a large number of objects of a given
type in a single namespace can make those loops expensive and slow down processing given

CHAPTER 11. TESTED MAXIMUMS PER CLUSTER

41

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cluster_administration/#admin-guide-max-pods-per-node
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cluster_administration/#admin-guide-max-pods-per-node

state changes. The maximum assumes that the system has enough CPU, memory, and disk to
satisfy the application requirements.

3. Each Service port and each Service back-end has a corresponding entry in iptables. The number
of back-ends of a given Service impact the size of the endpoints objects, which impacts the size
of data that is being sent all over the system.

11.2. OPENSHIFT CONTAINER PLATFORM TESTED CLUSTER
MAXIMUMS

Maximum Type 3.7 Tested
Maximum

3.9 Tested
Maximum

3.10 Tested
Maximum

3.11 Tested
Maximum

Number of Nodes 2,000 2,000 2,000 2,000

Number of Pods [1] 120,000 120,000 150,000 150,000

Number of Pods
per Node

250 250 250 250

Number of Pods
per Core

10 is the default
value.

10 is the default
value.

There is no default
value.

There is no default
value.

Number of
Namespaces

10,000 10,000 10,000 10,000

Number of Builds:
Pipeline Strategy

N/A 10,000 (Default
pod RAM 512Mi)

10,000 (Default
pod RAM 512Mi)

10,000 (Default
pod RAM 512Mi)

Number of Pods

per Namespace [2]

3,000 3,000 3,000 25,000

Number of

Services [3]

10,000 10,000 10,000 10,000

Number of
Services per
Namespace

N/A N/A 5,000 5,000

Number of Back-
ends per Service

5,000 5,000 5,000 5,000

Number of
Deployments per

Namespace [2]

2,000 2,000 2,000 2,000

1. The Pod count displayed here is the number of test Pods. The actual number of Pods depends
on the application’s memory, CPU, and storage requirements.

OpenShift Container Platform 3.11 Scaling and Performance Guide

42

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cluster_administration/#admin-guide-max-pods-per-node
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cluster_administration/#admin-guide-max-pods-per-node

2. There are a number of control loops in the system that need to iterate over all objects in a given
namespace as a reaction to some changes in state. Having a large number of objects of a given
type in a single namespace can make those loops expensive and slow down processing given
state changes. The maximum assumes that the system has enough CPU, memory, and disk to
satisfy the application requirements.

3. Each Service port and each Service back-end has a corresponding entry in iptables. The number
of back-ends of a given service impact the size of the endpoints objects, which impacts the size
of data that is being sent all over the system.

11.2.1. Route Maximums

In OpenShift Container Platform 3.11.53, router tests were completed in a 3-node environment on
Amazon Web Services (AWS). There were 100 HTTP routes, specifically 100 back-end Nginx pods, with
keepalive set to 100. The results were:

1 connection per target route = 24,327 requests per second

40 connections per target route = 20,729 requests per second

200 connections per target route = 17,253 requests per second

11.3. ENVIRONMENT AND CONFIGURATION ON WHICH OPENSHIFT
CONTAINER PLATFORM CLUSTER MAXIMUMS ARE TESTED

Infrastructure as a service provider: OpenStack

Node vCPU RAM(MiB) Disk size(GiB) pass-through
disk

Count

Master/Etcd [1] 16 124672 128 Yes, NVMe 3

Infra [2] 40 163584 256 Yes, NVMe 3

Cluster DNS 1 1740 71 No 1

Load Balancer 4 16128 96 No 1

Container
Native Storage
[3]

16 65280 200 Yes, NVMe 3

Bastion [4] 16 65280 200 No 1

Worker 2 7936 96 No 2000

1. The master/etcd nodes are backed by NVMe disks as etcd is I/O intensive and latency sensitive.

2. Infra nodes host the Router, Registry, Logging and Monitoring and are backed by NVMe disks.

CHAPTER 11. TESTED MAXIMUMS PER CLUSTER

43

3. Container Native Storage or Ceph storage nodes are backed by NVMe disks.

4. The Bastion node is part of the OpenShift Container Platform network and is used to
orchestrate the performance and scale tests.

11.4. PLANNING YOUR ENVIRONMENT ACCORDING TO CLUSTER
MAXIMUMS

IMPORTANT

Oversubscribing the physical resources on a node affects resource guarantees the
Kubernetes scheduler makes during pod placement. Learn what measures you can take
to avoid memory swapping.

Some of the tested maximums are stretched only in a single dimension, so they might
vary when a lot of objects are running on the cluster.

The numbers noted in this documentation are based on Red Hat’s test methodology,
setup, configuration, and tunings. These numbers can vary based on your own individual
setup and environments.

While planning your environment , determine how many pods are expected to fit per node:

Maximum Pods per Cluster / Expected Pods per Node = Total Number of Nodes

The number of pods expected to fit on a node is dependent on the application itself. Consider the
application’s memory, CPU, and storage requirements.

Example Scenario

If you want to scope your cluster for 2200 pods per cluster, you would need at least nine nodes,
assuming that there are 250 maximum pods per node:

2200 / 250 = 8.8

If you increase the number of nodes to 20, then the pod distribution changes to 110 pods per node:

2200 / 20 = 110

11.5. PLANNING YOUR ENVIRONMENT ACCORDING TO APPLICATION
REQUIREMENTS

Consider an example application environment:

Pod Type Pod Quantity Max Memory CPU Cores Persistent
Storage

apache 100 500MB 0.5 1GB

node.js 200 1GB 1 1GB

OpenShift Container Platform 3.11 Scaling and Performance Guide

44

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cluster_administration/#disabling-swap-memory
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#install-planning

postgresql 100 1GB 2 10GB

JBoss EAP 100 1GB 1 1GB

Pod Type Pod Quantity Max Memory CPU Cores Persistent
Storage

Extrapolated requirements: 550 CPU cores, 450GB RAM, and 1.4TB storage.

Instance size for nodes can be modulated up or down, depending on your preference. Nodes are often
resource overcommitted. In this deployment scenario, you can choose to run additional smaller nodes or
fewer larger nodes to provide the same amount of resources. Factors such as operational agility and
cost-per-instance should be considered.

Node Type Quantity CPUs RAM (GB)

Nodes (option 1) 100 4 16

Nodes (option 2) 50 8 32

Nodes (option 3) 25 16 64

Some applications lend themselves well to overcommitted environments, and some do not. Most Java
applications and applications that use huge pages are examples of applications that would not allow for
overcommitment. That memory can not be used for other applications. In the example above, the
environment would be roughly 30 percent overcommitted, a common ratio.

CHAPTER 11. TESTED MAXIMUMS PER CLUSTER

45

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cluster_administration/#admin-guide-overcommit

1

CHAPTER 12. USING CLUSTER LOADER

12.1. WHAT CLUSTER LOADER DOES

Cluster Loader is a tool that deploys large numbers of various objects to a cluster, which creates user-
defined cluster objects. Build, configure, and run Cluster Loader to measure performance metrics of
your OpenShift Container Platform deployment at various cluster states.

12.2. INSTALLING CLUSTER LOADER

Cluster Loader is included in the atomic-openshift-tests package. To install it, run:

After installation, the test executable extended.test is located in /usr/libexec/atomic-
openshift/extended.test.

12.3. RUNNING CLUSTER LOADER

1. Set the KUBECONFIG variable to the location of the administrator kubeconfig:

2. Execute Cluster Loader using the built-in test configuration, which deploys five template builds
and waits for them to complete:

Alternatively, execute Cluster Loader with a user-defined configuration by adding the flag for --
viper-config:

In this example, there is a subdirectory called config/ with a configuration file called
test.yml. In the command line, exclude the extension of the configuration file, as the tool
will automatically determine the file type and extension.

12.4. CONFIGURING CLUSTER LOADER

Create multiple namespaces (projects), which contain multiple templates or pods.

Locate the configuration files for Cluster Loader in the config/ subdirectory. The pod files and
template files referenced in these configuration examples are found in the content/ subdirectory.

12.4.1. Configuration Fields

Table 12.1. Top-level Cluster Loader Fields

$ yum install atomic-openshift-tests

$ export KUBECONFIG=${KUBECONFIG-$HOME/.kube/config}

$ cd /usr/libexec/atomic-openshift/

$./extended.test --ginkgo.focus="Load cluster"

$./extended.test --ginkgo.focus="Load cluster" --viper-config=config/test 1

OpenShift Container Platform 3.11 Scaling and Performance Guide

46

Field Description

cleanup Set to true or false. One definition per
configuration. If set to true, cleanup will delete all
namespaces (projects) created by Cluster Loader at
the end of the test.

projects A sub-object with one or many definition(s). Under
projects, each namespace to create is defined and
projects has several mandatory subheadings.

tuningsets A sub-object with one definition per configuration.
tuningsets allows the user to define a tuning set to
add configurable timing to project or object creation
(pods, templates, and so on).

sync An optional sub-object with one definition per
configuration. Adds synchronization possibilities
during object creation.

Table 12.2. Fields under projects

Field Description

num An integer. One definition of the count of how many
projects to create.

basename A string. One definition of the base name for the
project. The count of identical namespaces will be
appended to Basename to prevent collisions.

tuning A string. One definition of what tuning set you want
to apply to the objects, which you deploy inside this
namespace.

ifexists A string containing either reuse or delete. Defines
what the tool does if it finds a project or namespace
that has the same name of the project or namespace
it creates during execution.

configmaps A list of key-value pairs. The key is the ConfigMap
name and the value is a path to a file from which you
create the ConfigMap.

secrets A list of key-value pairs. The key is the secret name
and the value is a path to a file from which you
create the secret.

pods A sub-object with one or many definition(s) of pods
to deploy.

CHAPTER 12. USING CLUSTER LOADER

47

templates A sub-object with one or many definition(s) of
templates to deploy.

Field Description

Table 12.3. Fields under pods and templates

Field Description

total This field is not used.

num An integer. The number of pods or templates to
deploy.

image A string. The container image URL to a repository
where it can be pulled.

basename A string. One definition of the base name for the
template (or pod) that you want to create.

file A string. The path to a local file, which is either a
PodSpec or template to be created.

parameters Key-value pairs. Under parameters, you can specify
a list of values to override in the pod or template.

Table 12.4. Fields under tuningsets

Field Description

name A string. The name of the tuning set which will match
the name specified when defining a tuning in a
project.

pods A sub-object identifying the tuningsets that will
apply to pods.

templates A sub-object identifying the tuningsets that will
apply to templates.

Table 12.5. Fields under tuningsets pods or tuningsets templates

Field Description

stepping A sub-object. A stepping configuration used if you
want to create an object in a step creation pattern.

OpenShift Container Platform 3.11 Scaling and Performance Guide

48

rate_limit A sub-object. A rate-limiting tuning set configuration
to limit the object creation rate.

Field Description

Table 12.6. Fields under tuningsets pods or tuningsets templates, stepping

Field Description

stepsize An integer. How many objects to create before
pausing object creation.

pause An integer. How many seconds to pause after
creating the number of objects defined in stepsize.

timeout An integer. How many seconds to wait before failure
if the object creation is not successful.

delay An integer. How many milliseconds (ms) to wait
between creation requests.

Table 12.7. Fields under sync

Field Description

server A sub-object with enabled and port fields. The
boolean enabled defines whether to start a HTTP
server for pod synchronization. The integer port
defines the HTTP server port to listen on (9090 by
default).

running A boolean. Wait for pods with labels matching
selectors to go into Running state.

succeeded A boolean. Wait for pods with labels matching
selectors to go into Completed state.

selectors A list of selectors to match pods in Running or
Completed states.

timeout A string. The synchronization timeout period to wait
for pods in Running or Completed states. For
values that are not 0, use units: [ns|us|ms|s|m|h].

12.4.2. Example Cluster Loader Configuration File

Cluster Loader’s configuration file is a basic YAML file:

CHAPTER 12. USING CLUSTER LOADER

49

1

2

Optional setting for end-to-end tests. Set to local to avoid extra log messages.

The tuning sets allow rate limiting and stepping, the ability to create several batches of pods while
pausing in between sets. Cluster Loader monitors completion of the previous step before

provider: local 1
ClusterLoader:
 cleanup: true
 projects:
 - num: 1
 basename: clusterloader-cakephp-mysql
 tuning: default
 ifexists: reuse
 templates:
 - num: 1
 file: ./examples/quickstarts/cakephp-mysql.json

 - num: 1
 basename: clusterloader-dancer-mysql
 tuning: default
 ifexists: reuse
 templates:
 - num: 1
 file: ./examples/quickstarts/dancer-mysql.json

 - num: 1
 basename: clusterloader-django-postgresql
 tuning: default
 ifexists: reuse
 templates:
 - num: 1
 file: ./examples/quickstarts/django-postgresql.json

 - num: 1
 basename: clusterloader-nodejs-mongodb
 tuning: default
 ifexists: reuse
 templates:
 - num: 1
 file: ./examples/quickstarts/nodejs-mongodb.json

 - num: 1
 basename: clusterloader-rails-postgresql
 tuning: default
 templates:
 - num: 1
 file: ./examples/quickstarts/rails-postgresql.json

 tuningsets: 2
 - name: default
 pods:
 stepping: 3
 stepsize: 5
 pause: 0 s
 rate_limit: 4
 delay: 0 ms

OpenShift Container Platform 3.11 Scaling and Performance Guide

50

3

4

pausing in between sets. Cluster Loader monitors completion of the previous step before
continuing.

Stepping will pause for M seconds after each N objects are created.

Rate limiting will wait M milliseconds between the creation of objects.

12.5. KNOWN ISSUES

If the IDENTIFIER parameter is not defined in user templates, template creation fails with error:
unknown parameter name "IDENTIFIER". If you deploy templates, add this parameter to your
template to avoid this error:

{
 "name": "IDENTIFIER",
 "description": "Number to append to the name of resources",
 "value": "1"
}

If you deploy pods, adding the parameter is unnecessary.

CHAPTER 12. USING CLUSTER LOADER

51

1

CHAPTER 13. USING CPU MANAGER

13.1. WHAT CPU MANAGER DOES

CPU Manager manages groups of CPUs and constrains workloads to specific CPUs.

CPU Manager is useful for workloads that have some of these attributes:

Require as much CPU time as possible.

Are sensitive to processor cache misses.

Are low-latency network applications.

Coordinate with other processes and benefit from sharing a single processor cache.

13.2. SETTING UP CPU MANAGER

To set up CPU Manager:

1. Optionally, label a node:

2. Enable CPU manager support on the target node:

For example:

Example Output

system-reserved is a required setting. The value might need to be adjusted depending on
your environment.

3. Create a pod that requests a core or multiple cores. Both limits and requests must have their

oc label node perf-node.example.com cpumanager=true

oc edit configmap <name> -n openshift-node

oc edit cm node-config-compute -n openshift-node

...
kubeletArguments:
...
 feature-gates:
 - CPUManager=true
 cpu-manager-policy:
 - static
 cpu-manager-reconcile-period:
 - 5s
 system-reserved: 1
 - cpu=500m

systemctl restart atomic-openshift-node

OpenShift Container Platform 3.11 Scaling and Performance Guide

52

3. Create a pod that requests a core or multiple cores. Both limits and requests must have their
CPU value set to a whole integer. That is the number of cores that will be dedicated to this pod:

Example Output

4. Create the pod:

5. Verify that the pod is scheduled to the node that you labeled:

Example Output

6. Verify that the cgroups are set up correctly. Get the PID of the pause process:

cat cpumanager.yaml

apiVersion: v1
kind: Pod
metadata:
 generateName: cpumanager-
spec:
 containers:
 - name: cpumanager
 image: gcr.io/google_containers/pause-amd64:3.0
 resources:
 requests:
 cpu: 1
 memory: "1G"
 limits:
 cpu: 1
 memory: "1G"
 nodeSelector:
 cpumanager: "true"

oc create -f cpumanager.yaml

oc describe pod cpumanager

Name: cpumanager-4gdtn
Namespace: test
Node: perf-node.example.com/172.31.62.105
...
 Limits:
 cpu: 1
 memory: 1G
 Requests:
 cpu: 1
 memory: 1G
...
QoS Class: Guaranteed
Node-Selectors: cpumanager=true
 region=primary

systemd-cgls -l

CHAPTER 13. USING CPU MANAGER

53

Example Output

Pods of QoS tier Guaranteed are placed within the kubepods.slice. Pods of other QoS tiers
end up in child cgroups of kubepods.

Example Output

7. Check the allowed CPU list for the task:

Example Output

8. Verify that another pod (in this case, the pod in the burstable QoS tier) on the system can not
run on the core allocated for the Guaranteed pod:

Example Output

├─1 /usr/lib/systemd/systemd --system --deserialize 20
├─kubepods.slice
│ ├─kubepods-pod0ec1ab8b_e1c4_11e7_bb22_027b30990a24.slice
│ │ ├─docker-
b24e29bc4021064057f941dc5f3538595c317d294f2c8e448b5e61a29c026d1c.scope
│ │ │ └─44216 /pause

cd /sys/fs/cgroup/cpuset/kubepods.slice/kubepods-
pod0ec1ab8b_e1c4_11e7_bb22_027b30990a24.slice/docker-
b24e29bc4021064057f941dc5f3538595c317d294f2c8e448b5e61a29c026d1c.scope
for i in `ls cpuset.cpus tasks` ; do echo -n "$i "; cat $i ; done

cpuset.cpus 2
tasks 44216

grep ^Cpus_allowed_list /proc/44216/status

Cpus_allowed_list: 2

cat /sys/fs/cgroup/cpuset/kubepods.slice/kubepods-burstable.slice/kubepods-burstable-
podbe76ff22_dead_11e7_b99e_027b30990a24.slice/docker-
da621bea7569704fc39f84385a179923309ab9d832f6360cccbff102e73f9557.scope/cpuset.cpus

0-1,3

oc describe node perf-node.example.com

...
Capacity:
 cpu: 4
 memory: 16266720Ki
 pods: 40
Allocatable:
 cpu: 3500m
 memory: 16164320Ki
 pods: 40

OpenShift Container Platform 3.11 Scaling and Performance Guide

54

This VM has four CPU cores. You set system-reserved to 500 millicores, meaning half of one
core is subtracted from the total capacity of the node to arrive at the Node Allocatable
amount.

You can see that Allocatable CPU is 3500 millicores. This means we can run three of our CPU
manager pods since each will take one whole core. A whole core is equivalent to 1000 millicores.

If you try to schedule a fourth pod, the system will accept the pod, but it will never be scheduled:

Example Output

 Namespace Name CPU Requests CPU Limits Memory Requests
Memory Limits
 --------- ---- ------------ ---------- --------------- -------------
 test cpumanager-4gdtn 1 (28%) 1 (28%) 1G (6%) 1G (6%)
 test cpumanager-hczts 1 (28%) 1 (28%) 1G (6%) 1G (6%)
 test cpumanager-r9wrq 1 (28%) 1 (28%) 1G (6%) 1G (6%)
...
Allocated resources:
 (Total limits may be over 100 percent, i.e., overcommitted.)
 CPU Requests CPU Limits Memory Requests Memory Limits
 ------------ ---------- --------------- -------------
 3 (85%) 3 (85%) 5437500k (32%) 9250M (55%)

oc get pods --all-namespaces |grep test

test cpumanager-4gdtn 1/1 Running 0 8m
test cpumanager-hczts 1/1 Running 0 8m
test cpumanager-nb9d5 0/1 Pending 0 8m
test cpumanager-r9wrq 1/1 Running 0 8m

CHAPTER 13. USING CPU MANAGER

55

CHAPTER 14. MANAGING HUGE PAGES

14.1. WHAT HUGE PAGES DO

Memory is managed in blocks known as pages. On most systems, a page is 4Ki. 1Mi of memory is equal to
256 pages; 1Gi of memory is 262,144 pages, and so on. CPUs have a built-in memory management unit
that manages a list of these pages in hardware. The Translation Lookaside Buffer (TLB) is a small
hardware cache of virtual-to-physical page mappings. If the virtual address passed in a hardware
instruction can be found in the TLB, the mapping can be determined quickly. If not, a TLB miss occurs,
and the system falls back to slower, software-based address translation, resulting in performance issues.
Since the size of the TLB is fixed, the only way to reduce the chance of a TLB miss is to increase the
page size.

A huge page is a memory page that is larger than 4Ki. On x86_64 architectures, there are two common
huge page sizes: 2Mi and 1Gi. Sizes vary on other architectures. In order to use huge pages, code must
be written so that applications are aware of them. Transparent Huge Pages (THP) attempt to automate
the management of huge pages without application knowledge, but they have limitations. In particular,
they are limited to 2Mi page sizes. THP can lead to performance degradation on nodes with high
memory utilization or fragmentation due to defragmenting efforts of THP, which can lock memory
pages. For this reason, some applications may be designed to (or recommend) usage of pre-allocated
huge pages instead of THP.

In OpenShift Container Platform, applications in a pod can allocate and consume pre-allocated huge
pages. This topic describes how.

14.2. PREREQUISITES

1. Nodes must pre-allocate huge pages in order for the node to report its huge page capacity. A
node can only pre-allocate huge pages for a single size.

14.3. CONSUMING HUGE PAGES

Huge pages can be consumed via container level resource requirements using the resource name
hugepages-<size>, where size is the most compact binary notation using integer values supported on a
particular node. For example, if a node supports 2048KiB page sizes, it will expose a schedulable
resource hugepages-2Mi. Unlike CPU or memory, huge pages do not support overcommitment.

kind: Pod
metadata:
 generateName: hugepages-volume-
spec:
 containers:
 - securityContext:
 privileged: true
 image: rhel7:latest
 command:
 - sleep
 - inf
 name: example
 volumeMounts:
 - mountPath: /hugepages
 name: hugepage
 resources:
 limits:

OpenShift Container Platform 3.11 Scaling and Performance Guide

56

1 Specify the amount of memory for hugepages as the exact amount to be allocated. Do not specify
this value as the amount of memory for hugepages multiplied by the size of the page. For
example, given a huge page size of 2MB, if you want to use 100MB of huge-page-backed RAM for
your application, then you would allocate 50 huge pages. OpenShift Container Platform handles
the math for you. As in the above example, you can specify 100MB directly.

Some platforms support multiple huge page sizes. To allocate huge pages of a specific size, precede the
huge pages boot command parameters with a huge page size selection parameter hugepagesz=<size>.
The <size> value must be specified in bytes with an optional scale suffix [kKmMgG]. The default huge
page size can be defined with the default_hugepagesz=<size> boot parameter. See Configuring
Transparent Huge Pages for more information.

Huge page requests must equal the limits. This is the default if limits are specified, but requests are not.

Huge pages are isolated at a pod scope. Container isolation is planned in a future iteration.

EmptyDir volumes backed by huge pages must not consume more huge page memory than the pod
request.

Applications that consume huge pages via shmget() with SHM_HUGETLB must run with a
supplemental group that matches proc/sys/vm/hugetlb_shm_group.

 hugepages-2Mi: 100Mi 1
 volumes:
 - name: hugepage
 emptyDir:
 medium: HugePages

CHAPTER 14. MANAGING HUGE PAGES

57

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/performance_tuning_guide/sect-red_hat_enterprise_linux-performance_tuning_guide-configuring_transparent_huge_pages

CHAPTER 15. OPTIMIZING ON GLUSTERFS STORAGE

15.1. CONVERGED MODE GUIDANCE FOR DATABASES

When you use converged mode for applications, follow the guidance and best practices provided in this
topic so that you can make informed choices between gluster-block and GlusterFS modes based on
your type of workload.

15.2. TESTED APPLICATIONS

In OpenShift Container Platform 3.10, extensive testing was done with these (no)SQL databases:

Postgresql SQL v9.6

MongoDB noSQL v3.2

The storage for these databases originated from a converged mode storage cluster.

For Postgresql SQL benchmarking pgbench was used for database benchmarking. For MongoDB
noSQL benchmarking YCSB Yahoo! Cloud Serving Benchmark was used for benchmarking and
workloada,workloadb,workloadf were tested

15.3. SUPPORT MATRIX

Table 15.1. Table Title - GlusterFS

Database Storage backend:
GlusterFS

Turn off Performance
Translators

Turn on Performance
Translators

Postgresql SQL Yes
performance.st
at-prefetch

performance.re
ad-ahead

performance.wr
ite-behind

performance.re
addir-ahead

performance.io
-cache

performance.q
uick-read

performance.o
pen-behind

performance.st
rict-o-direct

OpenShift Container Platform 3.11 Scaling and Performance Guide

58

https://www.postgresql.org/docs/10/static/pgbench.html
https://github.com/brianfrankcooper/YCSB/tree/master/mongodb
https://github.com/brianfrankcooper/YCSB/tree/master/workloads

MongoDB noSQL Yes
performance.st
at-prefetch

performance.re
ad-ahead

performance.wr
ite-behind

performance.re
addir-ahead

performance.io
-cache

performance.q
uick-read

performance.o
pen-behind

performance.st
rict-o-direct

Table 15.2. Table Title - gluster-block

Database Storage backend: gluster-block

Postgresql Yes

MongoDB Yes

The performance translators for GlusterFS, as mentioned above, are already part of the database profile
delivered with the latest converged mode images.

15.4. TEST RESULTS

For Postgresql SQL databases, GlusterFS and gluster-block showed approximately the same
performance results. For MongoDB noSQL databases, gluster-block performed better. Therefore, use
gluster-block based storage for MongoDB noSQL databases.

CHAPTER 15. OPTIMIZING ON GLUSTERFS STORAGE

59

	Table of Contents
	CHAPTER 1. OVERVIEW
	CHAPTER 2. RECOMMENDED INSTALLATION PRACTICES
	2.1. PRE-INSTALLING DEPENDENCIES
	2.2. ANSIBLE INSTALL OPTIMIZATION
	2.3. NETWORKING CONSIDERATIONS

	CHAPTER 3. RECOMMENDED HOST PRACTICES
	3.1. RECOMMENDED PRACTICES FOR OPENSHIFT CONTAINER PLATFORM MASTER HOSTS
	3.2. RECOMMENDED PRACTICES FOR OPENSHIFT CONTAINER PLATFORM NODE HOSTS
	3.3. RECOMMENDED PRACTICES FOR OPENSHIFT CONTAINER PLATFORM ETCD HOSTS
	3.3.1. Providing Storage to an etcd Node Using PCI Passthrough with OpenStack

	3.4. SCALING HOSTS USING THE TUNED PROFILE

	CHAPTER 4. OPTIMIZING COMPUTE RESOURCES
	4.1. OVERCOMMITTING
	4.2. IMAGE CONSIDERATIONS
	4.2.1. Using a Pre-deployed Image to Improve Efficiency
	4.2.2. Pre-pulling Images

	4.3. DEBUGGING USING THE RHEL TOOLS CONTAINER IMAGE
	4.4. DEBUGGING USING ANSIBLE-BASED HEALTH CHECKS

	CHAPTER 5. OPTIMIZING PERSISTENT STORAGE
	5.1. OVERVIEW
	5.2. GENERAL STORAGE GUIDELINES
	5.3. STORAGE RECOMMENDATIONS
	5.3.1. Specific application storage recommendations
	5.3.1.1. Registry
	5.3.1.2. Scaled registry
	5.3.1.3. Monitoring
	5.3.1.4. Logging
	5.3.1.5. Applications

	5.3.2. Other specific application storage recommendations

	5.4. CHOOSING A GRAPH DRIVER
	5.4.1. Benefits of using OverlayFS or DeviceMapper with SELinux
	5.4.2. Comparing the Overlay and Overlay2 graph drivers

	CHAPTER 6. OPTIMIZING EPHEMERAL STORAGE
	6.1. OVERVIEW
	6.2. GENERAL STORAGE GUIDELINES

	CHAPTER 7. NETWORK OPTIMIZATION
	7.1. OPTIMIZING NETWORK PERFORMANCE
	7.1.1. Optimizing the MTU for Your Network

	7.2. CONFIGURING NETWORK SUBNETS
	7.3. OPTIMIZING IPSEC

	CHAPTER 8. ROUTING OPTIMIZATION
	8.1. SCALING OPENSHIFT CONTAINER PLATFORM HAPROXY ROUTER
	8.1.1. Baseline Performance
	8.1.2. Performance Optimizations
	8.1.2.1. Setting the Maximum Number of Connections
	8.1.2.2. CPU and Interrupt Affinity
	8.1.2.3. Increasing the Number of Threads
	8.1.2.4. Impacts of Buffer Increases
	8.1.2.5. Optimizations for HAProxy Reloads

	CHAPTER 9. SCALING CLUSTER METRICS
	9.1. OVERVIEW
	9.2. RECOMMENDATIONS FOR OPENSHIFT CONTAINER PLATFORM
	9.3. CAPACITY PLANNING FOR CLUSTER METRICS
	9.4. SCALING OPENSHIFT CONTAINER PLATFORM METRICS PODS
	9.4.1. Prerequisites
	9.4.2. Scaling the Cassandra Components

	CHAPTER 10. SCALING CLUSTER MONITORING OPERATOR
	10.1. OVERVIEW
	10.2. RECOMMENDATIONS FOR OPENSHIFT CONTAINER PLATFORM
	10.3. CAPACITY PLANNING FOR CLUSTER MONITORING OPERATOR
	10.3.1. Lab Environment
	10.3.2. Prerequisites

	CHAPTER 11. TESTED MAXIMUMS PER CLUSTER
	11.1. OPENSHIFT CONTAINER PLATFORM TESTED CLUSTER MAXIMUMS FOR MAJOR RELEASES
	11.2. OPENSHIFT CONTAINER PLATFORM TESTED CLUSTER MAXIMUMS
	11.2.1. Route Maximums

	11.3. ENVIRONMENT AND CONFIGURATION ON WHICH OPENSHIFT CONTAINER PLATFORM CLUSTER MAXIMUMS ARE TESTED
	11.4. PLANNING YOUR ENVIRONMENT ACCORDING TO CLUSTER MAXIMUMS
	11.5. PLANNING YOUR ENVIRONMENT ACCORDING TO APPLICATION REQUIREMENTS

	CHAPTER 12. USING CLUSTER LOADER
	12.1. WHAT CLUSTER LOADER DOES
	12.2. INSTALLING CLUSTER LOADER
	12.3. RUNNING CLUSTER LOADER
	12.4. CONFIGURING CLUSTER LOADER
	12.4.1. Configuration Fields
	12.4.2. Example Cluster Loader Configuration File

	12.5. KNOWN ISSUES

	CHAPTER 13. USING CPU MANAGER
	13.1. WHAT CPU MANAGER DOES
	13.2. SETTING UP CPU MANAGER

	CHAPTER 14. MANAGING HUGE PAGES
	14.1. WHAT HUGE PAGES DO
	14.2. PREREQUISITES
	14.3. CONSUMING HUGE PAGES

	CHAPTER 15. OPTIMIZING ON GLUSTERFS STORAGE
	15.1. CONVERGED MODE GUIDANCE FOR DATABASES
	15.2. TESTED APPLICATIONS
	15.3. SUPPORT MATRIX
	15.4. TEST RESULTS

