‘® redhat.

OpenShift Container Platform 3.7

Architecture

OpenShift Container Platform 3.7 Architecture Information

Last Updated: 2019-04-30

OpenShift Container Platform 3.7 Architecture

OpenShift Container Platform 3.7 Architecture Information

Legal Notice
Copyright © 2019 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative
Commons Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of
CC-BY-SA is available at

http://creativecommons.org/licenses/by-sa/3.0/

. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it,
you must provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to
assert, Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the
Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other
countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the
United States and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European
Union and other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally
related to or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered
trademarks/service marks or trademarks/service marks of the OpenStack Foundation, in
the United States and other countries and are used with the OpenStack Foundation's
permission. We are not affiliated with, endorsed or sponsored by the OpenStack
Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Learn the architecture of OpenShift Container Platform 3.7 including the infrastructure
and core components. These topics also cover authentication, networking and source
code management.

Table of Contents

CHAPTER 1. OVERVIEW it in s s nnnnsnnns

1.1. WHAT ARE THE LAYERS?

1.2. WHAT IS THE OPENSHIFT CONTAINER PLATFORM ARCHITECTURE?

1.3. HOW IS OPENSHIFT CONTAINER PLATFORM SECURED?
1.3.1. TLS Support

CHAPTER 2. INFRASTRUCTURE COMPONENTS00

2.1. KUBERNETES INFRASTRUCTURE
2.1.1. Overview
2.1.2. Masters
2.1.2.1. High Availability Masters
2.1.3. Nodes
2.1.3.1. Kubelet
2.1.3.2. Service Proxy
2.1.3.3. Node Object Definition
2.2. CONTAINER REGISTRY
2.2.1. Overview
2.2.2. Integrated OpenShift Container Registry
2.2.3. Third Party Registries
2.2.3.1. Authentication
2.3. WEB CONSOLE
2.3.1. Overview
2.3.2. CLI Downloads
2.3.3. Browser Requirements
2.3.4. Project Overviews
2.3.5. JVM Console
2.3.6. StatefulSets

CHAPTER 3. CORECONCEPTS:c:itiiunsnnrsnnrnnnsnnn

3.1. OVERVIEW
3.2. CONTAINERS AND IMAGES
3.2.1. Containers
3.2.1.1. Init Containers
3.2.2. Images
Image Version Tag Policy
3.2.3. Container Registries
3.3. PODS AND SERVICES
3.3.1. Pods
3.3.1.1. Pod Restart Policy
3.3.1.2. Injecting Information into Pods Using Pod Presets
3.3.2. Init Containers
3.3.3. Services
3.3.3.1. Service externallPs
3.3.3.2. Service ingressIPs
3.3.3.3. Service NodePort
3.3.3.4. Service Proxy Mode
3.3.3.5. Headless services
3.3.3.5.1. Creating a headless service
3.3.3.5.2. Endpoint discovery by using a headless service
3.3.4. Labels
3.3.5. Endpoints
3.4. PROJECTS AND USERS

Table of Contents

©O© © 00

12
12
12
13
13
14
14
14
15
15
15
15
15
15
15
17
17
17
19
20

22
22
22
23
23
23
24
24
24
27
28
29
30
31
32
32
33
33
33
34
35
35
36

OpenShift Container Platform 3.7 Architecture

3.4.1. Users
3.4.2. Namespaces
3.4.3. Projects
3.4.3.1. Projects provided at installation
3.5. BUILDS AND IMAGE STREAMS
3.5.1. Builds
3.5.1.1. Docker Build
3.5.1.2. Source-to-Image (S21) Build
3.5.1.3. Custom Build
3.5.1.4. Pipeline Build
3.5.2. Image Streams
3.5.2.1. Important terms
3.5.2.2. Configuring Image Streams
3.5.2.3. Image Stream Images
3.5.2.4. Image Stream Tags
3.5.2.5. Image Stream Change Triggers
3.5.2.6. Image Stream Mappings
3.5.2.7. Working with Image Streams
3.5.2.7.1. Getting Information about Image Streams
3.5.2.7.2. Adding Additional Tags to an Image Stream
3.5.2.7.3. Adding Tags for an External Image
3.5.2.7.4. Updating an Image Stream Tag
3.5.2.7.5. Removing Image Stream Tags from an Image Stream
3.5.2.7.6. Configuring Periodic Importing of Tags
3.6. DEPLOYMENTS
3.6.1. Replication controllers
3.6.2. Replica set
3.6.3. Jobs
3.6.4. Deployments and Deployment Configurations
3.7. TEMPLATES
3.7.1. Overview

CHAPTER 4. ADDITIONAL CONCEPTSttt insnrtnnsnsnnnnsnsnnnnsns

4.1. AUTHENTICATION
4.1.1. Overview
4.1.2. Users and Groups
4.1.3. API Authentication
4.1.3.1. Impersonation
4.1.4. OAuth
4.1.4.1. OAuth Clients
4.1.4.2. Service Accounts as OAuth Clients
4.1.4.3. Redirect URIs for Service Accounts as OAuth Clients
4.1.4.3.1. API Events for OAuth
4.1.4.3.1.1. Sample API Event Caused by a Possible Misconfiguration
4.1.4.4. Integrations
4.1.4.5. OAuth Server Metadata
4.1.4.6. Obtaining OAuth Tokens
4.1.4.7. Authentication Metrics for Prometheus
4.2. AUTHORIZATION
4.2.1. Overview
4.2.2. Evaluating Authorization
4.2.3. Cluster and Local RBAC
4.2.4. Cluster Roles and Local Roles

36
36
37
37
37
38
38
38
39
39
40
42
43
44
45
46
47
50
50
51
52
52
52
52
53
53
54
55
55
57
57

58
58
58
58
59
60
60
61
61
63
65
67
68
69
72
72
72
78
79
79

Table of Contents

4.2.4.1. Updating Cluster Roles 80
4.2.4.2. Applying Custom Roles and Permissions 80
4.2.5. Security Context Constraints 81
4.2.5.1. SCC Strategies 84
4.2.5.1.1. RunAsUser 84
4.2.5.1.2. SELinuxContext 85
4.2.5.1.3. SupplementalGroups 85
4.2.5.1.4. FSGroup 85
4.2.5.2. Controlling Volumes 85
4.2.5.3. Restricting Access to FlexVolumes 87
4.2.5.4. Seccomp 87
4.2.5.5. Admission 87
4.2.5.5.1. SCC Prioritization 88
4.2.5.5.2. Understanding Pre-allocated Values and Security Context Constraints 88
4.2.6. Determining What You Can Do as an Authenticated User 89
4.3. PERSISTENT STORAGE 90
4.3.1. Overview 90
4.3.2. Lifecycle of a Volume and Claim 91
4.3.2.1. Provisioning 91
4.3.2.2. Binding 91
4.3.2.3. Using 91
4.3.2.4. Releasing 91
4.3.2.5. Reclaiming 91
4.3.2.5.1. Recycling 92
4.3.3. Persistent Volumes 93
4.3.3.1. Types of Persistent Volumes 93
4.3.3.2. Capacity 94
4.3.3.3. Access Modes 94
4.3.3.4. Reclaim Policy 96
4.3.3.5. Phase 96
4.3.3.6. Mount Options 97
4.3.4. Persistent Volume Claims 98
4.3.4.1. Storage Class 98
4.3.4.2. Access Modes 99
4.3.4.3. Resources 99
4.3.4.4. Claims As Volumes 99
4.4. SOURCE CONTROL MANAGEMENT 99
4.5. ADMISSION CONTROLLERS 99
4.5.1. Overview 99
4.5.2. General Admission Rules 100
4.5.3. Customizable Admission Plug-ins 101
4.5.4. Admission Controllers Using Containers 101
4.6. OTHER API OBJECTS 101
4.6.1. LimitRange 101
4.6.2. ResourceQuota 101
4.6.3. Resource 102
4.6.4. Secret 102
4.6.5. PersistentVolume 102
4.6.6. PersistentVolumeClaim 102
4.6.6.1. Custom Resources 102
4.6.7. OAuth Objects 102
4.6.7.1. OAuthClient 102
4.6.7.2. OAuthClientAuthorization 104

OpenShift Container Platform 3.7 Architecture

4.6.7.3. OAuthAuthorizeToken

4.6.7.4. OAuthAccessToken
4.6.8. User Objects

4.6.8.1. Identity

4.6.8.2. User

4.6.8.3. UserldentityMapping

4.6.8.4. Group

CHAPTER 5. NETWORKING it in s nnnnsnrnnnnsnnnns

5.1. NETWORKING
5.1.1. Overview
5.1.2. OpenShift Container Platform DNS
5.2. OPENSHIFT SDN
5.2.1. Overview
5.2.2. Design on Masters
5.2.3. Design on Nodes
5.2.4. Packet Flow
5.2.5. Network Isolation
5.3. NETWORK PLUG-INS
5.3.1. Overview
5.3.2. OpenShift SDN
5.3.3. Flannel SDN
5.3.3.1. Architecture
5.3.4. Nuage SDN for OpenShift Container Platform
5.3.4.1. Integration Components
5.3.5. F5 BIG-IP® Router Plug-in
5.3.5.1. Routing Traffic to Pods Through the SDN
5.3.5.2. F5 Integration Details
5.3.5.3. F5 Native Integration
Connection
Data Flow: Packets to Pods
Data Flow from the F5 Host
Data Flow: Return Traffic to the F5 Host
5.4. PORT FORWARDING
5.4.1. Overview
5.4.2. Server Operation
5.5. REMOTE COMMANDS
5.5.1. Overview
5.5.2. Server Operation
5.6. HAPROXY ROUTER PLUG-IN
5.6.1. Overview
5.6.2. HAProxy Template Router
5.6.2.1. HAProxy Template Router Metrics
5.7. ROUTES
5.7.1. Overview
5.7.2. Routers
5.7.2.1. Template Routers
5.7.3. Available Router Plug-ins
5.7.3.1. HAProxy Template Router
5.7.3.2. Sticky Sessions
5.7.4. Router Environment Variables
5.7.5. Timeouts
5.7.6. Load-balancing Strategy

104
105
106
106
106
107
108

109
109
109
110
110
111
111
112
112
113
113
113
113
113
114
117
118
118
118
119
119
120
121
121
122
122
122
122
122
122
123
123
123
124
127
127
127
128
129
129
129
131
136
136

Table of Contents

5.7.7. HAProxy Strict SNI 137
5.7.8. Router Cipher Suite 137
5.7.9. Route Host Names 137
5.7.10. Route Types 139
5.7.11. Path Based Routes 139
5.7.12. Secured Routes 140
5.7.13. Router Sharding 144
5.7.14. Alternate Backends and Weights 145
5.7.15. Route-specific Annotations 146
5.7.16. Route-specific IP Whitelists 148
5.7.17. Creating Routes Specifying a Wildcard Subdomain Policy 149
5.7.18. Route Status 149
5.7.19. Denying or Allowing Certain Domains in Routes 150
5.7.20. Disabling the Namespace Ownership Check 151
CHAPTER 6. SERVICE CATALOG COMPONENTSt cinrnnnannsannsnns 153
6.1. SERVICE CATALOG 153
6.1.1. Overview 153
6.1.2. Design 153
6.1.2.1. Deleting Resources 154
6.1.3. Concepts and Terminology 154
6.1.4. Provided Cluster Service Brokers 157
6.2. TEMPLATE SERVICE BROKER 157
6.3. OPENSHIFT ANSIBLE BROKER 157
6.3.1. Overview 157
6.3.2. Ansible Playbook Bundles 158
CHAPTER 7. REVISION HISTORY: ARCHITECTUREt ennrnnnsnns 159
7.1. TUE FEB 06 2018 159
7.2. THU JAN 25 2018 159
7.3. WED NOV 29 2017 159

OpenShift Container Platform 3.7 Architecture

CHAPTER 1. OVERVIEW

CHAPTER 1. OVERVIEW

OpenShift v3 is a layered system designed to expose underlying Docker-formatted
container image and Kubernetes concepts as accurately as possible, with a focus on easy
composition of applications by a developer. For example, install Ruby, push code, and add
MySQL.

Unlike OpenShift v2, more flexibility of configuration is exposed after creation in all aspects
of the model. The concept of an application as a separate object is removed in favor of

more flexible composition of "services", allowing two web containers to reuse a database or
expose a database directly to the edge of the network.

1.1. WHAT ARE THE LAYERS?
The Docker service provides the abstraction for packaging and creating Linux-based,
lightweight container images. Kubernetes provides thecluster management and
orchestrates containers on multiple hosts.
OpenShift Container Platform adds:

e Source code management, builds, and deployments for developers

e Managing and promoting images at scale as they flow through your system

o Application management at scale

e Team and user tracking for organizing a large developer organization

o Networking infrastructure that supports the cluster

OpenShift Container Platform 3.7 Architecture

Figure 1.1. OpenShift Container Platform Architecture Overview

@ ROUTING LAYER
Developer
MASTER NODE _
API/ Management/
SCM (Git/Svn) > Pl e Data Store Scheduler Replication ﬁ
Gluster
! Storage
1
RED HAT ENTERPRISE LINUX OR ATOMIC HOST
Cl/CD —
NODE INFRA NODE -
Existing ______________________________ ﬁ
Automation — POD 1 L oA POD 1 b oA Ceph
Toolsets' | [el | | |] [Storage
POD 2 i oA POD 2 P oA
@ POD N i App i POD N i App E
Operations RHEL OR ATOMIC HOST RHEL OR ATOMIC HOST —_ ﬁ
Other Storage
Vendors
OPENSHIFT

SERVICE LAYER

CERTIFIED HARDWARE / CLOUD PROVIDER

1.2. WHAT IS THE OPENSHIFT CONTAINER PLATFORM
ARCHITECTURE?

OpenShift Container Platform has a microservices-based architecture of smaller, decoupled
units that work together. It runs on top of a Kubernetes cluster, with data about the objects
stored in etcd, a reliable clustered key-value store. Those services are broken down by
function:

e REST APIs, which expose each of the core objects.

o Controllers, which read those APIs, apply changes to other objects, and report status
or write back to the object.

Users make calls to the REST API to change the state of the system. Controllers use the
REST API to read the user’s desired state, and then try to bring the other parts of the
system into sync. For example, when a user requests a build they create a "build" object.
The build controller sees that a new build has been created, and runs a process on the
cluster to perform that build. When the build completes, the controller updates the build
object via the REST APl and the user sees that their build is complete.

The controller pattern means that much of the functionality in OpenShift Container Platform
is extensible. The way that builds are run and launched can be customized independently
of how images are managed, or how deployments happen. The controllers are performing

CHAPTER 1. OVERVIEW

the "business logic" of the system, taking user actions and transforming them into reality.
By customizing those controllers or replacing them with your own logic, different behaviors
can be implemented. From a system administration perspective, this also means the API
can be used to script common administrative actions on a repeating schedule. Those scripts
are also controllers that watch for changes and take action. OpenShift Container Platform
makes the ability to customize the cluster in this way a first-class behavior.

To make this possible, controllers leverage a reliable stream of changes to the system to
sync their view of the system with what users are doing. This event stream pushes changes
from etcd to the REST API and then to the controllers as soon as changes occur, so
changes can ripple out through the system very quickly and efficiently. However, since
failures can occur at any time, the controllers must also be able to get the latest state of
the system at startup, and confirm that everything is in the right state. This
resynchronization is important, because it means that even if something goes wrong, then
the operator can restart the affected components, and the system double checks
everything before continuing. The system should eventually converge to the user’s intent,
since the controllers can always bring the system into sync.

1.3. HOW IS OPENSHIFT CONTAINER PLATFORM SECURED?

The OpenShift Container Platform and Kubernetes APIs authenticate users who present
credentials, and then authorize them based on their role. Both developers and
administrators can be authenticated via a number of means, primarily OAuth tokens and
X.509 client certificates. OAuth tokens are signed with JSON Web Algorithm R5256, which is
RSA signature algorithm PKCS#1 v1.5 with SHA-256.

Developers (clients of the system) typically make REST API calls from a client program like
oc or to theweb console via their browser, and use OAuth bearer tokens for most
communications. Infrastructure components (like nodes) use client certificates generated
by the system that contain their identities. Infrastructure components that run in containers
use a token associated with their service account to connect to the API.

Authorization is handled in the OpenShift Container Platform policy engine, which defines
actions like "create pod" or "list services" and groups them into roles in a policy document.
Roles are bound to users or groups by the user or group identifier. When a user or service
account attempts an action, the policy engine checks for one or more of the roles assigned
to the user (e.qg., cluster administrator or administrator of the current project) before
allowing it to continue.

Since every container that runs on the cluster is associated with a service account, it is also
possible to associate secrets to those service accounts and have them automatically
delivered into the container. This enables the infrastructure to manage secrets for pulling
and pushing images, builds, and the deployment components, and also allows application
code to easily leverage those secrets.

1.3.1. TLS Support

All communication channels with the REST API, as well as between master components
such as etcd and the API server, are secured with TLS. TLS provides strong encryption, data
integrity, and authentication of servers with X.509 server certificates and public key
infrastructure. By default, a new internal PKI is created for each deployment of OpenShift
Container Platform. The internal PKI uses 2048 bit RSA keys and SHA-256 signatures.
Custom certificates for public hosts are supported as well.

OpenShift Container Platform uses Golang’s standard library implementation of crypto/tls
and does not depend on any external crypto and TLS libraries. Additionally, the client

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/cli_reference/#cli-reference-index
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/developer_guide/#dev-guide-service-accounts
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/developer_guide/#dev-guide-secrets
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/installation_and_configuration/#install-config-certificate-customization
https://golang.org/pkg/crypto/tls/

OpenShift Container Platform 3.7 Architecture

depends on external libraries for GSSAPI authentication and OpenPGP signatures. GSSAPI is
typically provided by either MIT Kerberos or Heimdal Kerberos, which both use OpenSSL’s
libcrypto. OpenPGP signature verification is handled by libgpgme and GnuPG.

The insecure versions SSL 2.0 and SSL 3.0 are unsupported and not available. The
OpenShift Container Platform server and oc client only provide TLS 1.2 by default. TLS 1.0
and TLS 1.1 can be enabled in the server configuration. Both server and client prefer
modern cipher suites with authenticated encryption algorithms and perfect forward
secrecy. Cipher suites with deprecated and insecure algorithms such as RC4, 3DES, and
MD5 are disabled. Some internal clients (for example, LDAP authentication) have less
restrict settings with TLS 1.0 to 1.2 and more cipher suites enabled.

Table 1.1. Supported TLS Versions

TLS Version OpenShift oc Client Other Clients

Container Platform
Server

SSL 2.0 Unsupported Unsupported Unsupported
SSL 3.0 Unsupported Unsupported Unsupported
TLS 1.0 No [al No [a] Maybe [P]
TLS 1.1 No [2l No [al Maybe [P]
TLS 1.2 Yes Yes Yes

TLS 1.3 N/A [l N/A [€] N/A [c]

[a] Disabled by default, but can be enabled in the server configuration.
[b] Some internal clients, such as the LDAP client.

[c] TLS 1.3 is still under development.

The following list of enabled cipher suites of OpenShift Container Platform’s server and oc
client are sorted in preferred order:

o TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305
o TLS_ECDHE_RSA_WITH_CHACHA20 POLY1305

o TLS_ECDHE_ECDSA_WITH_AES_128 GCM_SHA256
o TLS_ECDHE_RSA_WITH_AES_128 GCM_SHA256

o TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
o TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384

o TLS_ECDHE_ECDSA_WITH_AES_128 CBC_SHA256

10

TLS_ECDHE_RSA_WITH_AES_128 CBC_SHA256
TLS_ECDHE_ECDSA_WITH_AES_128 CBC_SHA
TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
TLS_ECDHE_RSA_WITH_AES_128 CBC_SHA
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
TLS_RSA_WITH_AES_128 GCM_SHA256
TLS_RSA_WITH_AES_256_GCM_SHA384
TLS_RSA_WITH_AES_128 CBC_SHA

TLS_RSA_WITH_AES_256_CBC_SHA

CHAPTER 1. OVERVIEW

11

OpenShift Container Platform 3.7 Architecture

CHAPTER 2. INFRASTRUCTURE COMPONENTS

2.1. KUBERNETES INFRASTRUCTURE

2.1.1. Overview

Within OpenShift Container Platform, Kubernetes manages containerized applications
across a set of containers or hosts and provides mechanisms for deployment, maintenance,
and application-scaling. The Docker service packages, instantiates, and runs containerized
applications.

A Kubernetes cluster consists of one or more masters and a set of nodes. You can optionally

configure your masters for high availability (HA) to ensure that the cluster has no single
point of failure.

NOTE

OpenShift Container Platform uses Kubernetes 1.7 and Docker 1.12.

2.1.2. Masters

The master is the host or hosts that contain the master components, including the API
server, controller manager server, and etcd. The master managesnodes in its Kubernetes
cluster and schedules pods to run on nodes.

Table 2.1. Master Components

Component Description

API Server The Kubernetes API server validates and configures the data for pods,
services, and replication controllers. It also assigns pods to nodes and
synchronizes pod information with service configuration. Can be run as a
standalone process.

etcd etcd stores the persistent master state while other components watch eted
for changes to bring themselves into the desired state. etcd can be
optionally configured for high availability, typically deployed with 2n+1 peer
services.

Controller The controller manager server watches eted for changes to replication

Manager Server controller objects and then uses the API to enforce the desired state. Can be
run as a standalone process. Several such processes create a cluster with
one active leader at a time.

HAProxy Optional, used when configuring highly-available masters with the native
method to balance load between APl master endpoints.

The advanced installation method can configure HAProxy for you with the
native method. Alternatively, you can use the native method but pre-
configure your own load balancer of choice.

12

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/installation_and_configuration/#install-config-install-advanced-install

CHAPTER 2. INFRASTRUCTURE COMPONENTS

2.1.2.1. High Availability Masters

You can optionally configure your masters for high availability (HA) to ensure that the
cluster has no single point of failure.

To mitigate concerns about availability of the master, two activities are recommended:

1. Arunbook entry should be created for reconstructing the master. A runbook entry is
a necessary backstop for any highly-available service. Additional solutions merely
control the frequency that the runbook must be consulted. For example, a cold
standby of the master host can adequately fulfill SLAs that require no more than
minutes of downtime for creation of new applications or recovery of failed
application components.

2. Use a high availability solution to configure your masters and ensure that the cluster
has no single point of failure. The advanced installation method

provides specific examples using the native HA method and configuring HAProxy. You can
also take the concepts and apply them towards your existing HA solutions using the native
method instead of HAProxy.

When using the native HA method with HAProxy, master components have the following
availability:

Table 2.2. Availability Matrix with HAProxy

Role Style Notes

etcd Active-active Fully redundant deployment with load balancing
API Server Active-active Managed by HAProxy

Controller Active-passive One instance is elected as a cluster leader at a time

Manager Server

HAProxy Active-passive Balances load between API master endpoints

2.1.3. Nodes

A node provides the runtime environments for containers. Each node in a Kubernetes
cluster has the required services to be managed by the master. Nodes also have the
required services to run pods, including the Docker service, a kubelet, and a service proxy.

OpenShift Container Platform creates nodes from a cloud provider, physical systems, or
virtual systems. Kubernetes interacts with node objects that are a representation of those
nodes. The master uses the information from node objects to validate nodes with health
checks. A node is ignored until it passes the health checks, and the master continues
checking nodes until they are valid. The Kubernetes documentation has more information
on node management.

Administrators can manage nodes in an OpenShift Container Platform instance using the

CLI. To define full configuration and security options when launching node servers, use
dedicated node configuration files.

13

https://en.wikipedia.org/wiki/Runbook
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/installation_and_configuration/#install-config-install-advanced-install
https://kubernetes.io/docs/concepts/architecture/nodes/#management
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/cluster_administration/#admin-guide-manage-nodes
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/installation_and_configuration/#install-config-master-node-configuration

OpenShift Container Platform 3.7 Architecture

IMPORTANT

See the cluster limits section for the recommended maximum number of
nodes.

2.1.3.1. Kubelet

Each node has a kubelet that updates the node as specified by a container manifest, which
is a YAML file that describes a pod. The kubelet uses a set of manifests to ensure that its
containers are started and that they continue to run.

A container manifest can be provided to a kubelet by:
o A file path on the command line that is checked every 20 seconds.
e An HTTP endpoint passed on the command line that is checked every 20 seconds.

e The kubelet watching an etcd server, such as/registry/hosts/$(hostname -f),
and acting on any changes.

e The kubelet listening for HTTP and responding to a simple API to submit a new
manifest.

2.1.3.2. Service Proxy

Each node also runs a simple network proxy that reflects the services defined in the API on
that node. This allows the node to do simple TCP and UDP stream forwarding across a set of
back ends.

2.1.3.3. Node Object Definition

The following is an example node object definition in Kubernetes:

apiVersion: vl Q

kind: Node @

metadata:
creationTimestamp: null

labels: 9

kubernetes.io/hostname: nodel.example.com
name: nodel.example.com Q
spec:
externallID: nodel.example.com Ga
status:
nodeInfo:
bootID: ""
containerRuntimeVersion:
kernelVersion: ""
kubeProxyVersion:
kubeletVersion: ""
machineID: ""
osImage: ""
systemUuIiD: ""

6 apiVersion defines the API version to use.

14

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/scaling_and_performance_guide/#scaling-performance-cluster-limits

CHAPTER 2. INFRASTRUCTURE COMPONENTS

kind set to Node identifies this as a definition for a node object.
metadata.labels lists any labels that have been added to the node.

metadata.name is a required value that defines the name of the node object. This
value is shown in the NAME column when running theoc get nodes command.

spec.externallID defines the fully-qualified domain name where the node can be
reached. Defaults to the metadata.name value when empty.

® 000

2.2. CONTAINER REGISTRY

2.2.1. Overview

OpenShift Container Platform can utilize any server implementing the Docker registry API
as a source of images, including the Docker Hub, private registries run by third parties, and
the integrated OpenShift Container Platform registry.

2.2.2. Integrated OpenShift Container Registry

OpenShift Container Platform provides an integrated container registry called OpenShift
Container Registry (OCR) that adds the ability to automatically provision new image
repositories on demand. This provides users with a built-in location for their application
builds to push the resulting images.

Whenever a new image is pushed to OCR, the registry notifies OpenShift Container Platform
about the new image, passing along all the information about it, such as the namespace,
name, and image metadata. Different pieces of OpenShift Container Platform react to new
images, creating new builds and deployments.

OCR can also be deployed as a stand-alone component that acts solely as a container
registry, without the build and deployment integration. See Installing a Stand-alone
Deployment of OpenShift Container Registry for details.

2.2.3. Third Party Registries

OpenShift Container Platform can create containers using images from third party
registries, but it is unlikely that these registries offer the same image notification support
as the integrated OpenShift Container Platform registry. In this situation OpenShift
Container Platform will fetch tags from the remote registry upon imagestream creation.
Refreshing the fetched tags is as simple as running oc import-image <stream>. When new
images are detected, the previously-described build and deployment reactions occur.

2.2.3.1. Authentication

OpenShift Container Platform can communicate with registries to access private image
repositories using credentials supplied by the user. This allows OpenShift to push and pull
images to and from private repositories. The Authentication topic has more information.

2.3. WEB CONSOLE

2.3.1. Overview

15

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/installation_and_configuration/#install-config-installing-stand-alone-registry

OpenShift Container Platform 3.7 Architecture

The OpenShift Container Platform web console is a user interface accessible from a web
browser. Developers can use the web console to visualize, browse, and manage the
contents of projects.

NOTE

JavaScript must be enabled to use the web console. For the best experience,
use a web browser that supports WebSockets.

The web console is started as part of the master. All static assets required to run the web
console are served from the openshift binary. Administrators can alsocustomize the web
console using extensions, which let you run scripts and load custom stylesheets when the
web console loads. You can change the look and feel of nearly any aspect of the user
interface in this way.

When you access the web console from a browser, it first loads all required static assets. It
then makes requests to the OpenShift Container Platform APIs using the values defined
from the openshift start option --public-master, or from the relatedmaster
configuration file parameter masterPublicURL. The web console uses WebSockets to
maintain a persistent connection with the API server and receive updated information as
soon as it is available.

Figure 2.1. Web Console Request Architecture

BROWSER MASTER

load static assets (JS, CSS, HTML)

Page Load Asset Server

v

Request initial lists of resources from API

JS Runtime API Server

F
vy

Establish websocket connections to watch
for changes to resources

The configured host names and IP addresses for the web console are whitelisted to access
the API server safely even when the browser would consider the requests to be cross-origin.
To access the APl server from a web application using a different host name, you must
whitelist that host name by specifying the --cors-allowed-origins option on openshift
start or from the relatedmaster configuration file parameter corsAllowedOrigins.

The corsAllowedOrigins parameter is controlled by the configuration field. No pinning or

escaping is done to the value. The following is an example of how you can pin a host name
and escape dots:

corsAllowedOrigins:
- (?1)//my\.subdomain\.domain\.com(:|\z)

e The (?i) makes it case-insensitive.

e The // pins to the beginning of the domain (and matches the double slash following
http: orhttps:).

e The \. escapes dots in the domain name.

e The (:]\z) matches the end of the domain name(\z) or a port separator (:).

16

http://caniuse.com/#feat=websockets
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/installation_and_configuration/#install-config-web-console-customization
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/installation_and_configuration/#master-configuration-files
http://www.w3.org/TR/cors/
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/installation_and_configuration/#master-configuration-files

CHAPTER 2. INFRASTRUCTURE COMPONENTS

2.3.2. CLI Downloads

You can access CLI downloads from the Help icon in the web console:

£ O+ Ade

Documentation Add to Project ~

lour Home Page

Command Line Tools

About

Application ~

Cluster administrators can customize these links further.

Command Line Tools

With the OpenShift command line interface (CLI), you can create applications and manage OpenShift projects from a
terminal. You can download the oc client tool using the links below. For more information about downloading and
installing it, please refer to the Get Started with the CLI documentation.

Download oc:

Latest Release @

After downloading and installing it, you can start by logging in. You are currently logged into this console as developer.
If you want to log into the CLI using the same session token:

oc login https://127.0.0.1:8443 --token=<hidden> &

A token is a form of a password. Do not share your API token. To reveal your token, press the copy to
clipboard button and then paste the clipboard contents.

After you login to your account you will get a list of projects that you can switch between:
oc project <project-name> 1)

If you do not have any existing projects, you can create one:

0C new-project <project-name> 0

To show a high level overview of the current project:

oc status 1)

For other information about the command line tools, check the CLI Reference and Basic CLI Operations.

2.3.3. Browser Requirements

Review the tested integrations for OpenShift Container Platform.

2.3.4. Project Overviews

17

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/installation_and_configuration/#adding-or-changing-links-to-download-the-cli
https://access.redhat.com/articles/2176281

OpenShift Container Platform 3.7 Architecture

After logging in, the web console provides developers with an overview for the currently
selected project:

Figure 2.2. Web Console Project Overview

18

OPENSHIFT) K

My Project v 4§

Overview 4 Name v L Listby | Application ~

Applications

php-helloworld-sample https://www.example.com &
Builds
e database, #1 o 1 pod
Resources
frontend, #2 O 5 pods

Manitoring

Other Resources

> mongod.b, #2) 2 pods

> nodejs-mongo-persistent, o 1 pod
#1

Provisioned Services

Node.js + MongoDB
> (Persistent)

The project selector allows you to switch between projects you have access to.
Create new applications using a source repository or service from the service catalog.
Notifications related to your project.

The Overview tab (currently selected) visualizes the contents of your project with a
high-level view of each component.

Applications tab: Browse and perform actions on your deployments, pods, services,
and routes.

Builds tab: Browse and perform actions on your builds and image streams.
Resources tab: View your current quota consumption and other resources.
Storage tab: View persistent volume claims and request storage for your applications.

Monitoring tab: View logs for builds, pods, and deployments, as well as event
notifications for all objects in your project.

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/developer_guide/#dev-guide-authentication
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/developer_guide/#dev-guide-projects
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/developer_guide/#view-projects
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/developer_guide/#using-the-web-console-na

CHAPTER 2. INFRASTRUCTURE COMPONENTS

NOTE

Cockpit is automatically installed and enabled in OpenShift Container Platform
3.1 and later to help you monitor your development environment. Red Hat
Enterprise Linux Atomic Host: Getting Started with Cockpit provides more
information on using Cockpit.

2.3.5. JVM Console

For pods based on Java images, the web console also exposes access to a hawt.io-based
JVM console for viewing and managing any relevant integration components. A Connect
link is displayed in the pod’s details on the Browse - Pods page, provided the container has
a port named jolokia.

Figure 2.3. Pod with a Link to the JVM Console

Template

COMTAINER: 5TI-BUILD

Image: openshift/origin-sti-builder:latest

Mount: docker-socket — /var/run/docker.sock

Mount: builder-dockercfg-p7gmj-push — /var/run/secrets/openshift.io/push

Mount: builder-token-t6b9i — /var/run/secrets/kubernetes.io/serviceaccount

3 (0 o (o G

Open |Java Consocle

Volumes

docker-socket

Type: host path (bare host directory volume)
Path: Mvarfrun/docker.sock

After connecting to the JVM console, different pages are displayed depending on which
components are relevant to the connected pod.

19

http://cockpit-project.org
https://access.redhat.com/documentation/en/red-hat-enterprise-linux-atomic-host/version-7/getting-started-with-cockpit/
http://hawt.io/

OpenShift Container Platform 3.7 Architecture

Figure 2.4. JVM Console

Connected to quickstart-java-camel-spring-container

JMX Threads Camel
Total: 9 Runnable: 3 2 -
D State Name Waited Time Blocked Time Native Suspended
15 Thread-5 1 hour
14 Camel (camel-1) thread 1 hour

#0 - filew//src/data

9 |olokia Agent Cleanup
Thread
8 Thread-3 279 ms
6 server-timer 1 hour
4 Signal Dispatcher
3 Finalizer 1 hour
2 Reference Handler 1 hour 10ms
1 main

The following pages are available:

Page Description

JMX View and manage JMX domains and mbeans.

Threads View and monitor the state of threads.

ActiveMQ View and manage Apache ActiveMQ brokers.

Camel View and and manage Apache Camel routes and dependencies.
OSGi View and manage the JBoss Fuse OSGi environment.

2.3.6. StatefulSets

StatefulSet was introduced as aTechnology Preview feature in OpenShift Container
Platform 3.5 and remains in Technology Preview.

A StatefulSet controller provides a unique identity to its pods and determines the order of

deployments and scaling. StatefulSet is useful for unique network identifiers, persistent
storage, graceful deployment and scaling, and graceful deletion and termination.

20

https://access.redhat.com/support/offerings/techpreview

CHAPTER 2. INFRASTRUCTURE COMPONENTS

Figure 2.5. StatefulSet in OpenShift Container Platform

OPENSHIFT

A

@+ A developer v

Add to Project v

My Project

Stateful Sets hello

hello

> app name

Details Environment Metrics

Status: < Active
Replicas: 1 replica
Template
Containers

CONTAINER: HELLO

£ Image: aosqe/hello-openshift
- Ports: 8080/TCP (web)
[# Memory: 256 MiB limit

Volumes

none

Pods

Name

hello-0

Show Annotations

Events

Status

< Running

pod

Containers
Ready

m”m

Container
Restarts

Technology Preview

Actions v

Age

2 minutes

21

OpenShift Container Platform 3.7 Architecture

CHAPTER 3. CORE CONCEPTS

3.1. OVERVIEW

The following topics provide high-level, architectural information on core concepts and
objects you will encounter when using OpenShift Container Platform. Many of these objects
come from Kubernetes, which is extended by OpenShift Container Platform to provide a
more feature-rich development lifecycle platform.

o Containers and images are the building blocks for deploying your applications.

e Pods and services allow for containers to communicate with each other and proxy
connections.

e Projects and users provide the space and means for communities to organize and
manage their content together.

e Builds and image streamsallow you to build working images and react to new
images.

e Deployments add expanded support for the software development and deployment
lifecycle.

e Routes announce your service to the world.

e Templates allow for many objects to be created at once based on customized
parameters.

3.2. CONTAINERS AND IMAGES

3.2.1. Containers

The basic units of OpenShift Container Platform applications are called containers. Linux
container technologies are lightweight mechanisms for isolating running processes so that
they are limited to interacting with only their designated resources.

Many application instances can be running in containers on a single host without visibility
into each others' processes, files, network, and so on. Typically, each container provides a
single service (often called a "micro-service"), such as a web server or a database, though
containers can be used for arbitrary workloads.

The Linux kernel has been incorporating capabilities for container technologies for years.
More recently the Docker project has developed a convenient management interface for
Linux containers on a host. OpenShift Container Platform and Kubernetes add the ability to
orchestrate Docker-formatted containers across multi-host installations.

Though you do not directly interact with the Docker CLI or service when using OpenShift
Container Platform, understanding their capabilities and terminology is important for
understanding their role in OpenShift Container Platform and how your applications function
inside of containers. The docker RPM is available as part of RHEL 7, as well as CentOS and
Fedora, so you can experiment with it separately from OpenShift Container Platform. Refer
to the article Get Started with Docker Formatted Container Images on Red Hat Systemsfor

a guided introduction.

22

https://access.redhat.com/articles/1353593
https://access.redhat.com/articles/881893

CHAPTER 3. CORE CONCEPTS

3.2.1.1. Init Containers

A pod can have init containers in addition to application containers. Init containers allow
you to reorganize setup scripts and binding code. An init container differs from a regular
container in that it always runs to completion. Each init container must complete
successfully before the next one is started.

For more information, see Pods and Services.

3.2.2. Images

Containers in OpenShift Container Platform are based on Docker-formatted container
images. An image is a binary that includes all of the requirements for running a single
container, as well as metadata describing its needs and capabilities.

You can think of it as a packaging technology. Containers only have access to resources
defined in the image unless you give the container additional access when creating it. By
deploying the same image in multiple containers across multiple hosts and load balancing
between them, OpenShift Container Platform can provide redundancy and horizontal
scaling for a service packaged into an image.

You can use the Docker CLI directly to build images, but OpenShift Container Platform also
supplies builder images that assist with creating new images by adding your code or
configuration to existing images.

Because applications develop over time, a single image name can actually refer to many
different versions of the "same" image. Each different image is referred to uniquely by its
hash (a long hexadecimal number e.g. fd44297e2ddb050ec4f..) which is usually shortened
to 12 characters (e.g. fd44297e2ddb).

Image Version Tag Policy

Rather than version numbers, the Docker service allows applying tags (such as v1, v2.1, GA,
or the default latest) in addition to the image name to further specify the image desired,
so you may see the same image referred to as centos (implying the latest tag),
centos:centos7, or fd44297e2ddb.

WARNING
Do not use the latest tag for any official OpenShift Container Platform

images. These are images that start with openshift3/. latest can refer
to a number of versions, such as 3.4, or3.5.

How you tag the images dictates the updating policy. The more specific you are, the less
frequently the image will be updated. Use the following to determine your chosen
OpenShift Container Platform images policy:

vX.Y

The vX.Y tag points to X.Y.Z-<number>. For example, if the registry-console image is
updated to v3.4, it points to the newest 3.4.Z-<number> tag, such as 3.4.1-8.

X.Y.Z

23

OpenShift Container Platform 3.7 Architecture

Similar to the vX.Y example above, the X.Y.Z tag points to the latest X.Y.Z-<number>.
For example, 3.4.1 would point to 3.4.1-8

X.Y.Z-<number>

The tag is unique and does not change. When using this tag, the image does not update
if an image is updated. For example, the 3.4.1-8 will always point to 3.4.1-8, even if an
image is updated.

3.2.3. Container Registries

A container registry is a service for storing and retrieving Docker-formatted container
images. A registry contains a collection of one or more image repositories. Each image
repository contains one or more tagged images. Docker provides its own registry, the
Docker Hub, and you can also use private or third-party registries. Red Hat provides a
registry at registry.access.redhat. com for subscribers. OpenShift Container Platform can
also supply its own internal registry for managing custom container images.

The relationship between containers, images, and registries is depicted in the following
diagram:

REGISTRY SERVICE

IMAGE REPOSITORY

O Image (v1)

docker push
Built Image Image (v2)

Image (latest)

v

docker pull

HOST1 HOST 2 HOSTN

CONTAINER CONTAINER CONTAINER

Image Image Image

3.3. PODS AND SERVICES

3.3.1. Pods

OpenShift Container Platform leverages the Kubernetes concept of a pod, which is one or
more containers deployed together on one host, and the smallest compute unit that can be
defined, deployed, and managed.

24

https://registry.hub.docker.com/

CHAPTER 3. CORE CONCEPTS

Pods are the rough equivalent of a machine instance (physical or virtual) to a container.
Each pod is allocated its own internal IP address, therefore owning its entire port space, and
containers within pods can share their local storage and networking.

Pods have a lifecycle; they are defined, then they are assigned to run on a node, then they
run until their container(s) exit or they are removed for some other reason. Pods,
depending on policy and exit code, may be removed after exiting, or may be retained in
order to enable access to the logs of their containers.

OpenShift Container Platform treats pods as largely immutable; changes cannot be made to
a pod definition while it is running. OpenShift Container Platform implements changes by
terminating an existing pod and recreating it with modified configuration, base image(s), or
both. Pods are also treated as expendable, and do not maintain state when recreated.
Therefore pods should usually be managed by higher-level controllers, rather than directly
by users.

NOTE

For the maximum number of pods per OpenShift Container Platform node
host, see the Cluster Limits.

WARNING
Bare pods that are not managed by a replication controller will be not

rescheduled upon node disruption.

Below is an example definition of a pod that provides a long-running service, which is
actually a part of the OpenShift Container Platform infrastructure: the integrated container
registry. It demonstrates many features of pods, most of which are discussed in other
topics and thus only briefly mentioned here:

labels: Q

Example 3.1. Pod Object Definition (YAML)
apiVersion: vl
kind: Pod
metadata:
annotations: { ... }
deployment: docker-registry-1
deploymentconfig: docker-registry
docker-registry: default
generateName: docker-registry-1-
spec:
containers:
- env:
- name: OPENSHIFT CA DATA
value:
- name: OPENSHIFT CERT DATA
value:
- name: OPENSHIFT INSECURE

o0 ©

25

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/scaling_and_performance_guide/#scaling-performance-current-cluster-limits

OpenShift Container Platform 3.7 Architecture

O 66 6 © 0o

26

value: "false"
- name: OPENSHIFT KEY DATA
value:
- name: OPENSHIFT MASTER
value: https://master.example.com:8443
image: openshift/origin-docker-registry:v0.6.2 G’
imagePullPolicy: IfNotPresent
name: registry
ports: G
- containerPort: 5000
protocol: TCP
resources: {}

securityContext: { ... } 3

volumeMounts:
- mountPath: /registry
name: registry-storage
- mountPath: /var/run/secrets/kubernetes.io/serviceaccount
name: default-token-broéyz
readOnly: true
dnsPolicy: ClusterFirst

imagePullSecrets:

- name: default-dockercfg-at@6w
restartPolicy: Always 9
serviceAccount: default 10
volumes: 11

- emptyDir: {}
name: registry-storage
- name: default-token-broéyz
secret:
secretName: default-token-bréyz

Pods can be "tagged" with one or more labels, which can then be used to select and
manage groups of pods in a single operation. The labels are stored in key/value format
in the metadata hash. One label in this example isdocker-registry=default.

Pods must have a unique name within their namespace. A pod definition may specify
the basis of a name with the generateName attribute, and random characters will be
added automatically to generate a uniqgue name.

containers specifies an array of container definitions; in this case (as with most), just
one.

Environment variables can be specified to pass necessary values to each container.

Each container in the pod is instantiated from its own Docker-formatted container
image.

The container can bind to ports which will be made available on the pod’s IP.

OpenShift Container Platform defines a security context for containers which specifies
whether they are allowed to run as privileged containers, run as a user of their choice,
and more. The default context is very restrictive but administrators can modify this as
needed.

CHAPTER 3. CORE CONCEPTS

9 The container specifies where external storage volumes should be mounted within the
container. In this case, there is a volume for storing the registry’s data, and one for
access to credentials the registry needs for making requests against the OpenShift
Container Platform API.

Q The pod restart policy with possible values Always, OnFailure, and Never. The default
value is Always.

m‘ Pods making requests against the OpenShift Container Platform API is a common
enough pattern that there is a serviceAccount field for specifying whichservice
account user the pod should authenticate as when making the requests. This enables
fine-grained access control for custom infrastructure components.

@ The pod defines storage volumes that are available to its container(s) to use. In this
case, it provides an ephemeral volume for the reqgistry storage and a secret volume
containing the service account credentials.

NOTE

This pod definition does not include attributes that are filled by OpenShift
Container Platform automatically after the pod is created and its lifecycle
begins. The Kubernetes pod documentation has details about the functionality
and purpose of pods.

3.3.1.1. Pod Restart Policy

A pod restart policy determines how OpenShift Container Platform responds when
containers in that pod exit. The policy applies to all containers in that pod.

The possible values are:
o Always - Tries restarting a successfully exited container on the pod continuously,
with an exponential back-off delay (10s, 20s, 40s) until the pod is restarted. The
default is Always.

e OnFailure - Tries restarting a failed container on the pod with an exponential back-
off delay (10s, 20s, 40s) capped at 5 minutes.

o Never - Does not try to restart exited or failed containers on the pod. Pods
immediately fail and exit.

Once bound to a node, a pod will never be bound to another node. This means that a
controller is necessary in order for a pod to survive node failure:

Condition Controller Type Restart Policy

Pods that are expected to Job OnFailure or Never
terminate (such as batch
computations)

Pods that are expected to not Replication Controller Always.
terminate (such as web
servers)

27

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/developer_guide/#dev-guide-service-accounts
https://kubernetes.io/docs/concepts/workloads/pods/pod/

OpenShift Container Platform 3.7 Architecture

Condition Controller Type Restart Policy
Pods that need to run one-per- Daemonset Any
machine

If a container on a pod fails and the restart policy is set to OnFailure, the pod stays on the
node and the container is restarted. If you do not want the container to restart, use a
restart policy of Never.

If an entire pod fails, OpenShift Container Platform starts a new pod. Developers need to
address the possibility that applications might be restarted in a new pod. In particular,
applications need to handle temporary files, locks, incomplete output, and so forth caused
by previous runs.

For details on how OpenShift Container Platform uses restart policy with failed containers,
see the Example States in the Kubernetes documentation.

3.3.1.2. Injecting Information into Pods Using Pod Presets

A pod preset is an object that injects user-specified information into pods as they are
created.

IMPORTANT

As of OpenShift Container Platform 3.7, pod presets are no longer supported.

Using pod preset objects you can inject:

e secret objects

e ConfigMap objects

e storage volumes

e container volume mounts

e environment variables
Developers need to ensure the pod labels match the label selector on the PodPreset in
order to add all that information to the pod. The label on a pod associates the pod with one
or more pod preset objects that have a matching label selectors.
Using pod presets, a developer can provision pods without needing to know the details

about the services the pod will consume. An administrator can keep configuration items of
a service invisible from a developer without preventing the developer from deploying pods.

NOTE

The Pod Preset feature is available only if the Service Catalog has been
installed.

28

https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#example-states
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/developer_guide/#dev-guide-secrets
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/developer_guide/#consuming-configmap-in-pods
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/developer_guide/#dev-guide-volumes

CHAPTER 3. CORE CONCEPTS

You can exclude specific pods from being injected using the
podpreset.admission.kubernetes.io/exclude: "true" parameter in the pod
specification. See the example pod specification.

For more information, see Injecting Information into Pods Using Pod Presets

3.3.2. Init Containers

An init containeris a container in a pod that is started before the pod app containers are
started. Init containers can share volumes, perform network operations, and perform
computations before the remaining containers start. Init containers can also block or delay
the startup of application containers until some precondition is met.

When a pod starts, after the network and volumes are initialized, the init containers are
started in order. Each init container must exit successfully before the next is invoked. If an
init container fails to start (due to the runtime) or exits with failure, it is retried according to
the pod restart policy.

A pod cannot be ready until all init containers have succeeded.
See the Kubernetes documentation for some init container usage examples

The following example outlines a simple pod which has two init containers. The first init
container waits for myservice and the second waits formydb. Once both containers
succeed, the Pod starts.

Example 3.2. Sample Init Container Pod Object Definition (YAML)

apiVersion: vl
kind: Pod
metadata:
name: myapp-pod
labels:
app: myapp
spec:
containers:
- name: myapp-container
image: busybox
command: ['sh', '-c', 'echo The app is running! && sleep 3600']
initContainers:
- name: init-myservice i’
image: busybox
command: ['sh', '-c', 'until nslookup myservice; do echo waiting for
myservice; sleep 2; done;']
- name: init-mydb g
image: busybox
command: ['sh', '-c', 'until nslookup mydb; do echo waiting for
mydb; sleep 2; done; ']

Q Specifies the myservice container.

9 Specifies the mydb container.

29

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/developer_guide/#sample-pod-spec-exclude-preset
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/developer_guide/#dev-guide-pod-presets
https://kubernetes.io/docs/concepts/workloads/pods/init-containers/
https://kubernetes.io/docs/concepts/workloads/pods/init-containers/#examples

OpenShift Container Platform 3.7 Architecture

Each init container has all of the fields of an app container except for readinessProbe. Init
containers must exit for pod startup to continue and cannot define readiness other than
completion.

Init containers can include activeDeadlineSeconds on the pod and LlivenessProbe on the
container to prevent init containers from failing forever. The active deadline includes init
containers.

3.3.3. Services

A Kubernetes service serves as an internal load balancer. It identifies a set of replicated
pods in order to proxy the connections it receives to them. Backing pods can be added to
or removed from a service arbitra