
OpenShift Container Platform 4.1

Applications

Creating and managing applications on OpenShift Container Platform 4.1

Last Updated: 2020-03-19

OpenShift Container Platform 4.1 Applications

Creating and managing applications on OpenShift Container Platform 4.1

Legal Notice

Copyright © 2020 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides instructions for the various ways to create and manage instances of user-
provisioned applications running on OpenShift Container Platform. It introduces concepts and tasks
related to building applications using the Operator Framework, as well as provisioning applications
using the Open Service Broker API.

. .

. .

Table of Contents

CHAPTER 1. PROJECTS
1.1. WORKING WITH PROJECTS

1.1.1. Creating a project using the web console
1.1.2. Creating a project using the CLI
1.1.3. Viewing a project using the web console
1.1.4. Viewing a project using the CLI
1.1.5. Adding to a project
1.1.6. Checking project status using the web console
1.1.7. Checking project status using the CLI
1.1.8. Deleting a project using the web console
1.1.9. Deleting a project using the CLI

1.2. CREATING A PROJECT AS ANOTHER USER
1.2.1. API impersonation
1.2.2. Impersonating a user when you create a project

1.3. CONFIGURING PROJECT CREATION
1.3.1. About project creation
1.3.2. Modifying the template for new projects
1.3.3. Disabling project self-provisioning
1.3.4. Customizing the project request message

CHAPTER 2. OPERATORS
2.1. UNDERSTANDING OPERATORS

2.1.1. Why use Operators?
2.1.2. Operator Framework
2.1.3. Operator maturity model

2.2. UNDERSTANDING THE OPERATOR LIFECYCLE MANAGER
2.2.1. Overview of the Operator Lifecycle Manager
2.2.2. ClusterServiceVersions (CSVs)
2.2.3. Operator Lifecycle Manager architecture

2.2.3.1. OLM Operator
2.2.3.2. Catalog Operator
2.2.3.3. Catalog Registry

2.2.4. OperatorGroups
2.2.4.1. OperatorGroup membership

2.2.4.1.1. Troubleshooting OperatorGroup membership
2.2.4.2. Target namespace selection
2.2.4.3. OperatorGroup CSV annotations
2.2.4.4. Provided APIs annotation
2.2.4.5. Role-based access control
2.2.4.6. Copied CSVs
2.2.4.7. Static OperatorGroups
2.2.4.8. OperatorGroup intersection

2.2.4.8.1. Rules for intersection
2.2.5. Metrics

2.3. UNDERSTANDING THE OPERATORHUB
2.3.1. Overview of the OperatorHub
2.3.2. OperatorHub architecture

2.3.2.1. OperatorSource
2.3.2.2. CatalogSourceConfig

2.4. ADDING OPERATORS TO A CLUSTER
2.4.1. Installing Operators from the OperatorHub

8
8
8
8
9
9
9
9

10
10
10
10
10
10
11
11
11

12
14

16
16
16
16
17
17
18
18
19

20
20
21
21
21
22
22
23
23
24
27
27
28
28
29
29
29
30
30
31
31
31

Table of Contents

1

. .

. .

2.4.1.1. Installing from the OperatorHub using the web console
2.4.1.2. Installing from the OperatorHub using the CLI

2.5. DELETING OPERATORS FROM A CLUSTER
2.5.1. Deleting Operators from a cluster using the web console
2.5.2. Deleting Operators from a cluster using the CLI

2.6. CREATING APPLICATIONS FROM INSTALLED OPERATORS
2.6.1. Creating an etcd cluster using an Operator

2.7. MANAGING RESOURCES FROM CUSTOM RESOURCE DEFINITIONS
2.7.1. Custom Resource Definitions
2.7.2. Creating Custom Resources from a file
2.7.3. Inspecting Custom Resources

CHAPTER 3. APPLICATION LIFE CYCLE MANAGEMENT
3.1. CREATING APPLICATIONS

3.1.1. Creating an application by using the CLI
3.1.1.1. Creating an application from source code

3.1.1.1.1. Local
3.1.1.1.2. Remote
3.1.1.1.3. Build strategy detection
3.1.1.1.4. Language Detection

3.1.1.2. Creating an application from an image
3.1.1.2.1. DockerHub MySQL image
3.1.1.2.2. Image in a private registry
3.1.1.2.3. Existing imagestream and optional imagestreamtag

3.1.1.3. Creating an application from a template
3.1.1.3.1. Template Parameters

3.1.1.4. Modifying application creation
3.1.1.4.1. Specifying environment variables
3.1.1.4.2. Specifying build environment variables
3.1.1.4.3. Specifying labels
3.1.1.4.4. Viewing the output without creation
3.1.1.4.5. Creating objects with different names
3.1.1.4.6. Creating objects in a different project
3.1.1.4.7. Creating multiple objects
3.1.1.4.8. Grouping images and source in a single Pod
3.1.1.4.9. Searching for images, templates, and other inputs

CHAPTER 4. SERVICE BROKERS
4.1. INSTALLING THE SERVICE CATALOG

4.1.1. About the service catalog
4.1.2. Installing service catalog
4.1.3. Uninstalling service catalog

4.2. INSTALLING THE TEMPLATE SERVICE BROKER
4.2.1. About the Template Service Broker
4.2.2. Installing the Template Service Broker Operator
4.2.3. Starting the Template Service Broker

4.3. PROVISIONING TEMPLATE APPLICATIONS
4.3.1. Provisioning template applications

4.4. UNINSTALLING THE TEMPLATE SERVICE BROKER
4.4.1. Uninstalling the Template Service Broker

4.5. INSTALLING THE OPENSHIFT ANSIBLE BROKER
4.5.1. About the OpenShift Ansible Broker

4.5.1.1. Ansible playbook bundles

32
35
38
38
39
40
40
42
43
43
44

46
46
46
46
46
46
47
47
48
49
49
49
49
49
50
50
51
51
51
51
52
52
52
52

53
53
53
53
54
55
55
55
56
57
57
58
58
59
59
60

OpenShift Container Platform 4.1 Applications

2

. .

4.5.2. Installing the OpenShift Ansible Service Broker Operator
4.5.3. Starting the OpenShift Ansible Broker

4.5.3.1. OpenShift Ansible Broker configuration options
4.6. CONFIGURING THE OPENSHIFT ANSIBLE BROKER

4.6.1. Configuring the OpenShift Ansible Broker
4.6.1.1. OpenShift Ansible Broker configuration options

4.6.2. Configuring monitoring for the OpenShift Ansible Broker
4.7. PROVISIONING SERVICE BUNDLES

4.7.1. Provisioning service bundles
4.8. UNINSTALLING THE OPENSHIFT ANSIBLE BROKER

4.8.1. Uninstalling the OpenShift Ansible Broker

CHAPTER 5. DEPLOYMENTS
5.1. UNDERSTANDING DEPLOYMENTS AND DEPLOYMENTCONFIGS

5.1.1. Building blocks of a deployment
5.1.1.1. ReplicationControllers
5.1.1.2. ReplicaSets

5.1.2. DeploymentConfigs
5.1.3. Deployments
5.1.4. Comparing Deployments and DeploymentConfigs

5.1.4.1. Design
5.1.4.2. DeploymentConfigs-specific features

Automatic rollbacks
Triggers
Lifecycle hooks
Custom strategies

5.1.4.3. Deployments-specific features
Rollover
Proportional scaling
Pausing mid-rollout

5.2. MANAGING DEPLOYMENT PROCESSES
5.2.1. Managing DeploymentConfigs

5.2.1.1. Starting a deployment
5.2.1.2. Viewing a deployment
5.2.1.3. Retrying a deployment
5.2.1.4. Rolling back a deployment
5.2.1.5. Executing commands inside a container
5.2.1.6. Viewing deployment logs
5.2.1.7. Deployment triggers

ConfigChange deployment triggers
ImageChange deployment triggers
5.2.1.7.1. Setting deployment triggers

5.2.1.8. Setting deployment resources
5.2.1.9. Scaling manually
5.2.1.10. Accessing private repositories from DeploymentConfigs
5.2.1.11. Assigning pods to specific nodes
5.2.1.12. Running a Pod with a different service account

5.3. USING DEPLOYMENTCONFIG STRATEGIES
5.3.1. Rolling strategy

5.3.1.1. Canary deployments
5.3.1.2. Creating a Rolling deployment

5.3.2. Recreate strategy
5.3.3. Custom strategy

60
61

62
64
64
64
66
67
67
68
68

70
70
70
70
71
72
74
74
74
75
75
75
75
75
75
75
75
75
76
76
76
76
76
77
77
78
78
79
79
80
80
81
81

82
82
82
83
85
85
86
87

Table of Contents

3

. .

. .

. .

. .

5.3.4. Lifecycle hooks
Pod-based lifecycle hook
5.3.4.1. Setting lifecycle hooks

5.4. USING ROUTE-BASED DEPLOYMENT STRATEGIES
5.4.1. Proxy shards and traffic splitting
5.4.2. N-1 compatibility
5.4.3. Graceful termination
5.4.4. Blue-green deployments

5.4.4.1. Setting up a blue-green deployment
5.4.5. A/B deployments

5.4.5.1. Load balancing for A/B testing
5.4.5.1.1. Managing weights using the web console
5.4.5.1.2. Managing weights using the CLI
5.4.5.1.3. One service, multiple DeploymentConfigs

CHAPTER 6. CRDS
6.1. EXTENDING THE KUBERNETES API WITH CUSTOM RESOURCE DEFINITIONS

6.1.1. Custom Resource Definitions
6.1.2. Creating a Custom Resource Definition
6.1.3. Creating cluster roles for Custom Resource Definitions
6.1.4. Creating Custom Resources from a file
6.1.5. Inspecting Custom Resources

6.2. MANAGING RESOURCES FROM CUSTOM RESOURCE DEFINITIONS
6.2.1. Custom Resource Definitions
6.2.2. Creating Custom Resources from a file
6.2.3. Inspecting Custom Resources

CHAPTER 7. QUOTAS
7.1. RESOURCE QUOTAS PER PROJECT

7.1.1. Resources managed by quotas
7.1.2. Quota scopes
7.1.3. Quota enforcement
7.1.4. Requests versus limits
7.1.5. Sample resource quota definitions
7.1.6. Creating a quota

7.1.6.1. Creating object count quotas
7.1.6.2. Setting resource quota for extended resources

7.1.7. Viewing a quota
7.1.8. Configuring quota synchronization period

7.2. RESOURCE QUOTAS ACROSS MULTIPLE PROJECTS
7.2.1. Selecting multiple projects during quota creation
7.2.2. Viewing applicable ClusterResourceQuotas
7.2.3. Selection granularity

CHAPTER 8. MONITORING APPLICATION HEALTH
8.1. UNDERSTANDING HEALTH CHECKS

8.1.1. Understanding the types of health checks
8.2. CONFIGURING HEALTH CHECKS

CHAPTER 9. IDLING APPLICATIONS
9.1. IDLING APPLICATIONS

9.1.1. Idling a single service
9.1.2. Idling multiple services

9.2. UNIDLING APPLICATIONS

88
88
90
90
90
90
91
91
91

92
92
94
94
95

97
97
97
97
99

100
101
102
102
102
103

105
105
105
107
108
108
108
112
112
113
115
115
116
116
118
118

119
119

120
121

124
124
124
124
124

OpenShift Container Platform 4.1 Applications

4

. .

. .

CHAPTER 10. PRUNING OBJECTS TO RECLAIM RESOURCES
10.1. BASIC PRUNING OPERATIONS
10.2. PRUNING GROUPS
10.3. PRUNING DEPLOYMENTS
10.4. PRUNING BUILDS
10.5. PRUNING IMAGES

10.5.1. Image prune conditions
10.5.2. Running the image prune operation
10.5.3. Using secure or insecure connections
10.5.4. Image pruning problems

Images not being pruned
Using a secure connection against insecure registry
Using an insecure connection against a secured registry
Using the wrong certificate authority

10.6. HARD PRUNING THE REGISTRY
10.7. PRUNING CRON JOBS

CHAPTER 11. OPERATOR SDK
11.1. GETTING STARTED WITH THE OPERATOR SDK

11.1.1. Architecture of the Operator SDK
11.1.1.1. Workflow
11.1.1.2. Manager file
11.1.1.3. Prometheus Operator support

11.1.2. Installing the Operator SDK CLI
11.1.2.1. Installing from GitHub release
11.1.2.2. Installing from Homebrew
11.1.2.3. Compiling and installing from source

11.1.3. Building a Go-based Memcached Operator using the Operator SDK
11.1.4. Managing a Memcached Operator using the Operator Lifecycle Manager
11.1.5. Additional resources

11.2. CREATING ANSIBLE-BASED OPERATORS
11.2.1. Ansible support in the Operator SDK

11.2.1.1. Custom Resource files
11.2.1.2. Watches file

11.2.1.2.1. Advanced options
11.2.1.3. Extra variables sent to Ansible
11.2.1.4. Ansible Runner directory

11.2.2. Installing the Operator SDK CLI
11.2.2.1. Installing from GitHub release
11.2.2.2. Installing from Homebrew
11.2.2.3. Compiling and installing from source

11.2.3. Building an Ansible-based Operator using the Operator SDK
11.2.4. Managing application lifecycle using the k8s Ansible module

11.2.4.1. Installing the k8s Ansible module
11.2.4.2. Testing the k8s Ansible module locally
11.2.4.3. Testing the k8s Ansible module inside an Operator

11.2.4.3.1. Testing an Ansible-based Operator locally
11.2.4.3.2. Testing an Ansible-based Operator on a cluster

11.2.5. Managing Custom Resource status using the k8s_status Ansible module
11.2.5.1. Using the k8s_status Ansible module when testing locally

11.2.6. Additional resources
11.3. CREATING HELM-BASED OPERATORS

11.3.1. Helm chart support in the Operator SDK

126
126
126
126
127
128
130
131
131
132
132
133
133
133
134
136

138
138
138
138
139
139
139
140
141

142
143
148
150
151
151
151
152
153
154
155
155
155
157
158
158
164
164
165
166
167
168
169
170
170
170
171

Table of Contents

5

11.3.2. Installing the Operator SDK CLI
11.3.2.1. Installing from GitHub release
11.3.2.2. Installing from Homebrew
11.3.2.3. Compiling and installing from source

11.3.3. Building a Helm-based Operator using the Operator SDK
11.3.4. Additional resources

11.4. GENERATING A CLUSTERSERVICEVERSION (CSV)
11.4.1. How CSV generation works

Workflow
11.4.2. CSV composition configuration
11.4.3. Manually-defined CSV fields
11.4.4. Generating a CSV
11.4.5. Understanding your Custom Resource Definitions (CRDs)

11.4.5.1. Owned CRDs
11.4.5.2. Required CRDs
11.4.5.3. CRD templates

11.4.6. Understanding your API services
11.4.6.1. Owned APIServices

11.4.6.1.1. APIService Resource Creation
11.4.6.1.2. APIService Serving Certs

11.4.6.2. Required APIServices
11.5. CONFIGURING BUILT-IN MONITORING WITH PROMETHEUS

11.5.1. Prometheus Operator support
11.5.2. Metrics helper

11.5.2.1. Modifying the metrics port
11.5.3. ServiceMonitor resources

11.5.3.1. Creating ServiceMonitor resources
11.6. CONFIGURING LEADER ELECTION

11.6.1. Using Leader-for-life election
11.6.2. Using Leader-with-lease election

11.7. OPERATOR SDK CLI REFERENCE
11.7.1. build
11.7.2. completion
11.7.3. print-deps
11.7.4. generate
11.7.5. olm-catalog

11.7.5.1. gen-csv
11.7.6. new
11.7.7. add
11.7.8. test

11.7.8.1. local
11.7.9. up

11.7.9.1. local
11.8. APPENDICES

11.8.1. Operator project scaffolding layout
11.8.1.1. Go-based projects
11.8.1.2. Helm-based projects

171
172
173
174
175
180
180
180
181
181

182
183
184
184
186
187
188
188
189
189
189
190
190
190
191
191
191

192
193
193
194
194
195
195
196
196
197
197
198

200
200
201
201

202
202
202
203

OpenShift Container Platform 4.1 Applications

6

Table of Contents

7

CHAPTER 1. PROJECTS

1.1. WORKING WITH PROJECTS

A project allows a community of users to organize and manage their content in isolation from other
communities.

NOTE

Projects starting with openshift- and kube- are default projects. These projects host
cluster components that run as Pods and other infrastructure components. As such,
OpenShift Container Platform does not allow you to create Projects starting with
openshift- or kube- using the oc new-project command. Cluster administrators can
create these Projects using the oc adm new-project command.

1.1.1. Creating a project using the web console

If allowed by your cluster administrator, you can create a new project.

NOTE

Projects starting with openshift- and kube- are considered critical by OpenShift
Container Platform. As such, OpenShift Container Platform does not allow you to create
Projects starting with openshift- using the web console.

Procedure

1. Navigate to Home → Projects.

2. Click Create Project.

3. Enter your project details.

4. Click Create.

1.1.2. Creating a project using the CLI

If allowed by your cluster administrator, you can create a new project.

NOTE

Projects starting with openshift- and kube- are considered critical by OpenShift
Container Platform. As such, OpenShift Container Platform does not allow you to create
Projects starting with openshift- or kube- using the oc new-project command. Cluster
administrators can create these Projects using the oc adm new-project command.

Procedure

1. Run:

$ oc new-project <project_name> \
 --description="<description>" --display-name="<display_name>"

OpenShift Container Platform 4.1 Applications

8

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.1/html-single/authentication/#rbac-default-projects_using-rbac
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.1/html-single/cli_reference/#new-project
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.1/html-single/cli_reference/#new-project

For example:

$ oc new-project hello-openshift \
 --description="This is an example project" \
 --display-name="Hello OpenShift"

NOTE

The number of projects you are allowed to create may be limited by the system
administrator. After your limit is reached, you might have to delete an existing project in
order to create a new one.

1.1.3. Viewing a project using the web console

Procedure

1. Navigate to Home → Projects.

2. Select a project to view.
On this page, click the Resources button to see workloads in the project and click the
Dashboard button to see metrics and details about the project.

1.1.4. Viewing a project using the CLI

When viewing projects, you are restricted to seeing only the projects you have access to view based on
the authorization policy.

Procedure

1. To view a list of projects, run:

$ oc get projects

2. You can change from the current project to a different project for CLI operations. The specified
project is then used in all subsequent operations that manipulate project-scoped content:

$ oc project <project_name>

1.1.5. Adding to a project

Procedure

1. Navigate to Home → Projects.

2. Select a project.

3. In the upper right-hand corner of the Project Status menu, click Add, then choose from the
provided options.

1.1.6. Checking project status using the web console

CHAPTER 1. PROJECTS

9

Procedure

1. Navigate to Home → Projects.

2. Select a project to see its status.

1.1.7. Checking project status using the CLI

Procedure

1. Run:

$ oc status

This command provides a high-level overview of the current project, with its components and
their relationships.

1.1.8. Deleting a project using the web console

Procedure

1. Navigate to Home → Projects.

2. Locate the project that you want to delete from the list of projects.

3. On the far right side of the project listing, select Delete Project from the menu. If you do not
have permissions to delete the project, the Delete Project option is grayed out and the option is
not clickable.

1.1.9. Deleting a project using the CLI

When you delete a project, the server updates the project status to Terminating from Active. Then, the
server clears all content from a project that is in the Terminating state before finally removing the
project. While a project is in Terminating status, you cannot add new content to the project. Projects
can be deleted from the CLI or the web console.

Procedure

1. Run:

$ oc delete project <project_name>

1.2. CREATING A PROJECT AS ANOTHER USER

Impersonation allows you to create a project as a different user.

1.2.1. API impersonation

You can configure a request to the OpenShift Container Platform API to act as though it originated
from another user. For more information, see User impersonation in the Kubernetes documentation.

1.2.2. Impersonating a user when you create a project

OpenShift Container Platform 4.1 Applications

10

https://kubernetes.io/docs/reference/access-authn-authz/authentication/#user-impersonation

You can impersonate a different user when you create a project request. Because
system:authenticated:oauth is the only bootstrap group that can create project requests, you must
impersonate that group.

Procedure

To create a project request on behalf of a different user:

$ oc new-project <project> --as=<user> \
 --as-group=system:authenticated --as-group=system:authenticated:oauth

1.3. CONFIGURING PROJECT CREATION

In OpenShift Container Platform, projects are used to group and isolate related objects. When a request
is made to create a new project using the web console or oc new-project command, an endpoint in
OpenShift Container Platform is used to provision the project according to a template, which can be
customized.

As a cluster administrator, you can allow and configure how developers and service accounts can create,
or self-provision, their own projects.

1.3.1. About project creation

The OpenShift Container Platform API server automatically provisions new projects based on the
project template that is identified by the projectRequestTemplate parameter in the cluster’s project
configuration resource. If the parameter is not defined, the API server creates a default template that
creates a project with the requested name, and assigns the requesting user to the admin role for that
project.

When a project request is submitted, the API substitutes the following parameters into the template:

Table 1.1. Default project template parameters

Parameter Description

PROJECT_NAME The name of the project. Required.

PROJECT_DISPLAYNAME The display name of the project. May be empty.

PROJECT_DESCRIPTION The description of the project. May be empty.

PROJECT_ADMIN_USER The user name of the administrating user.

PROJECT_REQUESTING_U
SER

The user name of the requesting user.

Access to the API is granted to developers with the self-provisioner role and the self-provisioners
cluster role binding. This role is available to all authenticated developers by default.

1.3.2. Modifying the template for new projects

As a cluster administrator, you can modify the default project template so that new projects are created

CHAPTER 1. PROJECTS

11

As a cluster administrator, you can modify the default project template so that new projects are created
using your custom requirements.

To create your own custom project template:

Procedure

1. Log in as a user with cluster-admin privileges.

2. Generate the default project template:

$ oc adm create-bootstrap-project-template -o yaml > template.yaml

3. Use a text editor to modify the generated template.yaml file by adding objects or modifying
existing objects.

4. The project template must be created in the openshift-config namespace. Load your modified
template:

$ oc create -f template.yaml -n openshift-config

5. Edit the project configuration resource using the web console or CLI.

Using the web console:

i. Navigate to the Administration → Cluster Settings page.

ii. Click Global Configuration to view all configuration resources.

iii. Find the entry for Project and click Edit YAML.

Using the CLI:

i. Edit the project.config.openshift.io/cluster resource:

$ oc edit project.config.openshift.io/cluster

6. Update the spec section to include the projectRequestTemplate and name parameters, and
set the name of your uploaded project template. The default name is project-request.

Project configuration resource with custom project template

7. After you save your changes, create a new project to verify that your changes were successfully
applied.

1.3.3. Disabling project self-provisioning

apiVersion: config.openshift.io/v1
kind: Project
metadata:
 ...
spec:
 projectRequestTemplate:
 name: <template_name>

OpenShift Container Platform 4.1 Applications

12

You can prevent an authenticated user group from self-provisioning new projects.

Procedure

1. Log in as a user with cluster-admin privileges.

2. View the self-provisioners cluster role binding usage by running the following command:

$ oc describe clusterrolebinding.rbac self-provisioners

Name: self-provisioners
Labels: <none>
Annotations: rbac.authorization.kubernetes.io/autoupdate=true
Role:
 Kind: ClusterRole
 Name: self-provisioner
Subjects:
 Kind Name Namespace
 ---- ---- ---------
 Group system:authenticated:oauth

Review the subjects in the self-provisioners section.

3. Remove the self-provisioner cluster role from the group system:authenticated:oauth.

If the self-provisioners cluster role binding binds only the self-provisioner role to the
system:authenticated:oauth group, run the following command:

$ oc patch clusterrolebinding.rbac self-provisioners -p '{"subjects": null}'

If the self-provisioners cluster role binding binds the self-provisioner role to more users,
groups, or service accounts than the system:authenticated:oauth group, run the following
command:

$ oc adm policy \
 remove-cluster-role-from-group self-provisioner \
 system:authenticated:oauth

4. Edit the self-provisioners cluster role binding to prevent automatic updates to the role.
Automatic updates reset the cluster roles to the default state.

To update the role binding using the CLI:

i. Run the following command:

$ oc edit clusterrolebinding.rbac self-provisioners

ii. In the displayed role binding, set the rbac.authorization.kubernetes.io/autoupdate
parameter value to false, as shown in the following example:

apiVersion: authorization.openshift.io/v1
kind: ClusterRoleBinding
metadata:

CHAPTER 1. PROJECTS

13

To update the role binding by using a single command:

$ oc patch clusterrolebinding.rbac self-provisioners -p '{ "metadata": { "annotations": {
"rbac.authorization.kubernetes.io/autoupdate": "false" } } }'

5. Login as an authenticated user and verify that it can no longer self-provision a project:

$ oc new-project test

Error from server (Forbidden): You may not request a new project via this API.

Consider customizing this project request message to provide more helpful instructions specific
to your organization.

1.3.4. Customizing the project request message

When a developer or a service account that is unable to self-provision projects makes a project creation
request using the web console or CLI, the following error message is returned by default:

You may not request a new project via this API.

Cluster administrators can customize this message. Consider updating it to provide further instructions
on how to request a new project specific to your organization. For example:

To request a project, contact your system administrator at projectname@example.com.

To request a new project, fill out the project request form located at
https://internal.example.com/openshift-project-request.

To customize the project request message:

Procedure

1. Edit the project configuration resource using the web console or CLI.

Using the web console:

i. Navigate to the Administration → Cluster Settings page.

ii. Click Global Configuration to view all configuration resources.

iii. Find the entry for Project and click Edit YAML.

Using the CLI:

i. Log in as a user with cluster-admin privileges.

ii. Edit the project.config.openshift.io/cluster resource:

$ oc edit project.config.openshift.io/cluster

2. Update the spec section to include the projectRequestMessage parameter and set the value

 annotations:
 rbac.authorization.kubernetes.io/autoupdate: "false"
 ...

OpenShift Container Platform 4.1 Applications

14

2. Update the spec section to include the projectRequestMessage parameter and set the value
to your custom message:

Project configuration resource with custom project request message

For example:

3. After you save your changes, attempt to create a new project as a developer or service account
that is unable to self-provision projects to verify that your changes were successfully applied.

apiVersion: config.openshift.io/v1
kind: Project
metadata:
 ...
spec:
 projectRequestMessage: <message_string>

apiVersion: config.openshift.io/v1
kind: Project
metadata:
 ...
spec:
 projectRequestMessage: To request a project, contact your system administrator at
projectname@example.com.

CHAPTER 1. PROJECTS

15

CHAPTER 2. OPERATORS

2.1. UNDERSTANDING OPERATORS

Conceptually, Operators take human operational knowledge and encode it into software that is more
easily shared with consumers.

Operators are pieces of software that ease the operational complexity of running another piece of
software. They act like an extension of the software vendor’s engineering team, watching over a
Kubernetes environment (such as OpenShift Container Platform) and using its current state to make
decisions in real time. Advanced Operators are designed to handle upgrades seamlessly, react to failures
automatically, and not take shortcuts, like skipping a software backup process to save time.

More technically, Operators are a method of packaging, deploying, and managing a Kubernetes
application.

A Kubernetes application is an app that is both deployed on Kubernetes and managed using the
Kubernetes APIs and kubectl or oc tooling. To be able to make the most of Kubernetes, you require a
set of cohesive APIs to extend in order to service and manage your apps that run on Kubernetes. Think
of Operators as the runtime that manages this type of app on Kubernetes.

2.1.1. Why use Operators?

Operators provide:

Repeatability of installation and upgrade.

Constant health checks of every system component.

Over-the-air (OTA) updates for OpenShift components and ISV content.

A place to encapsulate knowledge from field engineers and spread it to all users, not just one or
two.

Why deploy on Kubernetes?

Kubernetes (and by extension, OpenShift Container Platform) contains all of the primitives needed
to build complex distributed systems – secret handling, load balancing, service discovery, autoscaling
– that work across on-premise and cloud providers.

Why manage your app with Kubernetes APIs and kubectl tooling?

These APIs are feature rich, have clients for all platforms and plug into the cluster’s access
control/auditing. An Operator uses the Kubernetes' extension mechanism, Custom Resource
Definitions (CRDs), so your custom object, for example MongoDB, looks and acts just like the built-
in, native Kubernetes objects.

How do Operators compare with Service Brokers?

A Service Broker is a step towards programmatic discovery and deployment of an app. However,
because it is not a long running process, it cannot execute Day 2 operations like upgrade, failover, or
scaling. Customizations and parameterization of tunables are provided at install time, versus an
Operator that is constantly watching your cluster’s current state. Off-cluster services continue to be
a good match for a Service Broker, although Operators exist for these as well.

2.1.2. Operator Framework

The Operator Framework is a family of tools and capabilities to deliver on the customer experience

OpenShift Container Platform 4.1 Applications

16

described above. It is not just about writing code; testing, delivering, and updating Operators is just as
important. The Operator Framework components consist of open source tools to tackle these
problems:

Operator SDK

Assists Operator authors in bootstrapping, building, testing, and packaging their own Operator based
on their expertise without requiring knowledge of Kubernetes API complexities.

Operator Lifecycle Manager

Controls the installation, upgrade, and role-based access control (RBAC) of Operators in a cluster.
Deployed by default in OpenShift Container Platform 4.1.

Operator Metering

Collects operational metrics about Operators on the cluster for Day 2 management and aggregating
usage metrics.

OperatorHub

Web console for discovering and installing Operators on your cluster. Deployed by default in
OpenShift Container Platform 4.1.

These tools are designed to be composable, so you can use any that are useful to you.

2.1.3. Operator maturity model

The level of sophistication of the management logic encapsulated within an Operator can vary. This
logic is also in general highly dependent on the type of the service represented by the Operator.

One can however generalize the scale of the maturity of an Operator’s encapsulated operations for
certain set of capabilities that most Operators can include. To this end, the following Operator Maturity
model defines five phases of maturity for generic day two operations of an Operator:

Figure 2.1. Operator maturity model

The above model also shows how these capabilities can best be developed through the Operator SDK’s
Helm, Go, and Ansible capabilities.

2.2. UNDERSTANDING THE OPERATOR LIFECYCLE MANAGER

CHAPTER 2. OPERATORS

17

This guide outlines the workflow and architecture of the Operator Lifecycle Manager (OLM) in
OpenShift Container Platform.

2.2.1. Overview of the Operator Lifecycle Manager

In OpenShift Container Platform 4.1, the Operator Lifecycle Manager (OLM) helps users install, update,
and manage the lifecycle of all Operators and their associated services running across their clusters. It is
part of the Operator Framework, an open source toolkit designed to manage Kubernetes native
applications (Operators) in an effective, automated, and scalable way.

Figure 2.2. Operator Lifecycle Manager workflow

The OLM runs by default in OpenShift Container Platform 4.1, which aids cluster administrators in
installing, upgrading, and granting access to Operators running on their cluster. The OpenShift
Container Platform web console provides management screens for cluster administrators to install
Operators, as well as grant specific projects access to use the catalog of Operators available on the
cluster.

For developers, a self-service experience allows provisioning and configuring instances of databases,
monitoring, and big data services without having to be subject matter experts, because the Operator
has that knowledge baked into it.

2.2.2. ClusterServiceVersions (CSVs)

A ClusterServiceVersion (CSV) is a YAML manifest created from Operator metadata that assists the
Operator Lifecycle Manager (OLM) in running the Operator in a cluster. It is the metadata that
accompanies an Operator container image, used to populate user interfaces with information like its
logo, description, and version. It is also a source of technical information needed to run the Operator, like
the RBAC rules it requires and which Custom Resources (CRs) it manages or depends on.

A CSV is composed of:

Metadata

Application metadata:

Name, description, version (semver compliant), links, labels, icon, etc.

Install strategy

Type: Deployment

OpenShift Container Platform 4.1 Applications

18

https://github.com/operator-framework

Set of service accounts and required permissions

Set of Deployments.

Custom Resource Definitions (CRDs)

Type

Owned: Managed by this service

Required: Must exist in the cluster for this service to run

Resources: A list of resources that the Operator interacts with

Descriptors: Annotate CRD spec and status fields to provide semantic information

2.2.3. Operator Lifecycle Manager architecture

The Operator Lifecycle Manager (OLM) is composed of two Operators: the OLM Operator and the
Catalog Operator.

Each of these Operators are responsible for managing the Custom Resource Definitions (CRDs) that
are the basis for the OLM framework:

Table 2.1. CRDs managed by OLM and Catalog Operators

Resource Shor
t
nam
e

Own
er

Description

ClusterService
Version

csv OLM Application metadata: name, version, icon, required resources,
installation, etc.

InstallPlan ip Catal
og

Calculated list of resources to be created in order to automatically install
or upgrade a CSV.

CatalogSource cats
rc

Catal
og

A repository of CSVs, CRDs, and packages that define an application.

Subscription sub Catal
og

Keeps CSVs up to date by tracking a channel in a package.

OperatorGroup og OLM Configures all Operators deployed in the same namespace as the
OperatorGroup object to watch for their Custom Resource (CR) in a list
of namespaces or cluster-wide.

Each of these Operators are also responsible for creating resources:

Table 2.2. Resources created by OLM and Catalog Operators

CHAPTER 2. OPERATORS

19

Resource Owner

Deployments OLM

ServiceAccounts

(Cluster)Roles

(Cluster)RoleBindings

Custom Resource Definitions (CRDs) Catalog

ClusterServiceVersions (CSVs)

2.2.3.1. OLM Operator

The OLM Operator is responsible for deploying applications defined by CSV resources after the
required resources specified in the CSV are present in the cluster.

The OLM Operator is not concerned with the creation of the required resources; users can choose to
manually create these resources using the CLI, or users can choose to create these resources using the
Catalog Operator. This separation of concern enables users incremental buy-in in terms of how much of
the OLM framework they choose to leverage for their application.

While the OLM Operator is often configured to watch all namespaces, it can also be operated alongside
other OLM Operators so long as they all manage separate namespaces.

OLM Operator workflow

Watches for ClusterServiceVersion (CSVs) in a namespace and checks that requirements are
met. If so, runs the install strategy for the CSV.

NOTE

A CSV must be an active member of an OperatorGroup in order for the install
strategy to be run.

2.2.3.2. Catalog Operator

The Catalog Operator is responsible for resolving and installing CSVs and the required resources they
specify. It is also responsible for watching CatalogSources for updates to packages in channels and
upgrading them (optionally automatically) to the latest available versions.

A user that wishes to track a package in a channel creates a Subscription resource configuring the
desired package, channel, and the CatalogSource from which to pull updates. When updates are found,
an appropriate InstallPlan is written into the namespace on behalf of the user.

Users can also create an InstallPlan resource directly, containing the names of the desired CSV and an
approval strategy, and the Catalog Operator creates an execution plan for the creation of all of the
required resources. After it is approved, the Catalog Operator creates all of the resources in an
InstallPlan; this then independently satisfies the OLM Operator, which proceeds to install the CSVs.

OpenShift Container Platform 4.1 Applications

20

Catalog Operator workflow

Has a cache of CRDs and CSVs, indexed by name.

Watches for unresolved InstallPlans created by a user:

Finds the CSV matching the name requested and adds it as a resolved resource.

For each managed or required CRD, adds it as a resolved resource.

For each required CRD, finds the CSV that manages it.

Watches for resolved InstallPlans and creates all of the discovered resources for it (if approved
by a user or automatically).

Watches for CatalogSources and Subscriptions and creates InstallPlans based on them.

2.2.3.3. Catalog Registry

The Catalog Registry stores CSVs and CRDs for creation in a cluster and stores metadata about
packages and channels.

A package manifest is an entry in the Catalog Registry that associates a package identity with sets of
CSVs. Within a package, channels point to a particular CSV. Because CSVs explicitly reference the CSV
that they replace, a package manifest provides the Catalog Operator all of the information that is
required to update a CSV to the latest version in a channel (stepping through each intermediate
version).

2.2.4. OperatorGroups

An OperatorGroup is an OLM resource that provides multitenant configuration to OLM-installed
Operators. An OperatorGroup selects a set of target namespaces in which to generate required RBAC
access for its member Operators. The set of target namespaces is provided by a comma-delimited
string stored in the CSV’s olm.targetNamespaces annotation. This annotation is applied to member
Operator’s CSV instances and is projected into their deployments.

2.2.4.1. OperatorGroup membership

An Operator is considered a member of an OperatorGroup if the following conditions are true:

The Operator’s CSV exists in the same namespace as the OperatorGroup.

The Operator’s CSV’s InstallModes support the set of namespaces targeted by the
OperatorGroup.

An InstallMode consists of an InstallModeType field and a boolean Supported field. A CSV’s spec can
contain a set of InstallModes of four distinct InstallModeTypes:

Table 2.3. InstallModes and supported OperatorGroups

InstallModeType Description

OwnNamespace The Operator can be a member of an OperatorGroup that selects its
own namespace.

CHAPTER 2. OPERATORS

21

SingleNamespace The Operator can be a member of an OperatorGroup that selects one
namespace.

MultiNamespace The Operator can be a member of an OperatorGroup that selects more
than one namespace.

AllNamespaces The Operator can be a member of an OperatorGroup that selects all
namespaces (target namespace set is the empty string "").

InstallModeType Description

NOTE

If a CSV’s spec omits an entry of InstallModeType, then that type is considered
unsupported unless support can be inferred by an existing entry that implicitly supports it.

2.2.4.1.1. Troubleshooting OperatorGroup membership

If more than one OperatorGroup exists in a single namespace, any CSV created in that
namespace will transition to a failure state with the reason TooManyOperatorGroups. CSVs in
a failed state for this reason will transition to pending once the number of OperatorGroups in
their namespaces reaches one.

If a CSV’s InstallModes do not support the target namespace selection of the OperatorGroup in
its namespace, the CSV will transition to a failure state with the reason
UnsupportedOperatorGroup. CSVs in a failed state for this reason will transition to pending
once either the OperatorGroup’s target namespace selection changes to a supported
configuration, or the CSV’s InstallModes are modified to support the OperatorGroup’s target
namespace selection.

2.2.4.2. Target namespace selection

Specify the set of namespaces for the OperatorGroup using a label selector with the spec.selector
field:

You can also explicitly name the target namespaces using the spec.targetNamespaces field:

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: my-group
 namespace: my-namespace
 spec:
 selector:
 matchLabels:
 cool.io/prod: "true"

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:

OpenShift Container Platform 4.1 Applications

22

NOTE

If both spec.targetNamespaces and spec.selector are defined, spec.selector is
ignored.

Alternatively, you can omit both spec.selector and spec.targetNamespaces to specify a global
OperatorGroup, which selects all namespaces:

The resolved set of selected namespaces is shown in an OperatorGroup’s status.namespaces field. A
global OperatorGroup’s status.namespace contains the empty string (""), which signals to a consuming
Operator that it should watch all namespaces.

2.2.4.3. OperatorGroup CSV annotations

Member CSVs of an OperatorGroup have the following annotations:

Annotation Description

olm.operatorGroup=<group_name> Contains the name of the OperatorGroup.

olm.operatorGroupNamespace=
<group_namespace>

Contains the namespace of the OperatorGroup.

olm.targetNamespaces=
<target_namespaces>

Contains a comma-delimited string that lists the
OperatorGroup’s target namespace selection.

NOTE

All annotations except olm.targetNamespaces are included with copied CSVs. Omitting
the olm.targetNamespaces annotation on copied CSVs prevents the duplication of
target namespaces between tenants.

2.2.4.4. Provided APIs annotation

Information about what GroupVersionKinds (GVKs) are provided by an OperatorGroup are shown in an
olm.providedAPIs annotation. The annotation’s value is a string consisting of <kind>.<version>.
<group> delimited with commas. The GVKs of CRDs and APIServices provided by all active member

 name: my-group
 namespace: my-namespace
spec:
 targetNamespaces:
 - my-namespace
 - my-other-namespace
 - my-other-other-namespace

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: my-group
 namespace: my-namespace

CHAPTER 2. OPERATORS

23

CSVs of an OperatorGroup are included.

Review the following example of an OperatorGroup with a single active member CSV that provides the
PackageManifest resource:

2.2.4.5. Role-based access control

When an OperatorGroup is created, three ClusterRoles are generated. Each contains a single
AggregationRule with a ClusterRoleSelector set to match a label, as shown below:

ClusterRole Label to match

<operatorgroup_name>-admin olm.opgroup.permissions/aggregate-to-
admin: <operatorgroup_name>

<operatorgroup_name>-edit olm.opgroup.permissions/aggregate-to-edit:
<operatorgroup_name>

<operatorgroup_name>-view olm.opgroup.permissions/aggregate-to-view:
<operatorgroup_name>

The following RBAC resources are generated when a CSV becomes an active member of an
OperatorGroup, as long as the CSV is watching all namespaces with the AllNamespaces InstallMode
and is not in a failed state with reason InterOperatorGroupOwnerConflict.

ClusterRoles for each API resource from a CRD

ClusterRoles for each API resource from an APIService

Additional Roles and RoleBindings

Table 2.4. ClusterRoles generated for each API resource from a CRD

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 annotations:
 olm.providedAPIs: PackageManifest.v1alpha1.packages.apps.redhat.com
 name: olm-operators
 namespace: local
 ...
spec:
 selector: {}
 serviceAccount:
 metadata:
 creationTimestamp: null
 targetNamespaces:
 - local
status:
 lastUpdated: 2019-02-19T16:18:28Z
 namespaces:
 - local

OpenShift Container Platform 4.1 Applications

24

ClusterRole Settings

<kind>.<group>-<version>-admin Verbs on <kind>:

*

Aggregation labels:

rbac.authorization.k8s.io/aggregate-
to-admin: true

olm.opgroup.permissions/aggregate-
to-admin: <operatorgroup_name>

<kind>.<group>-<version>-edit Verbs on <kind>:

create

update

patch

delete

Aggregation labels:

rbac.authorization.k8s.io/aggregate-
to-edit: true

olm.opgroup.permissions/aggregate-
to-edit: <operatorgroup_name>

<kind>.<group>-<version>-view Verbs on <kind>:

get

list

watch

Aggregation labels:

rbac.authorization.k8s.io/aggregate-
to-view: true

olm.opgroup.permissions/aggregate-
to-view: <operatorgroup_name>

CHAPTER 2. OPERATORS

25

<kind>.<group>-<version>-view-crdview Verbs on apiextensions.k8s.io
customresourcedefinitions <crd-name>:

get

Aggregation labels:

rbac.authorization.k8s.io/aggregate-
to-view: true

olm.opgroup.permissions/aggregate-
to-view: <operatorgroup_name>

ClusterRole Settings

Table 2.5. ClusterRoles generated for each API resource from an APIService

ClusterRole Settings

<kind>.<group>-<version>-admin Verbs on <kind>:

*

Aggregation labels:

rbac.authorization.k8s.io/aggregate-
to-admin: true

olm.opgroup.permissions/aggregate-
to-admin: <operatorgroup_name>

<kind>.<group>-<version>-edit Verbs on <kind>:

create

update

patch

delete

Aggregation labels:

rbac.authorization.k8s.io/aggregate-
to-edit: true

olm.opgroup.permissions/aggregate-
to-edit: <operatorgroup_name>

OpenShift Container Platform 4.1 Applications

26

<kind>.<group>-<version>-view Verbs on <kind>:

get

list

watch

Aggregation labels:

rbac.authorization.k8s.io/aggregate-
to-view: true

olm.opgroup.permissions/aggregate-
to-view: <operatorgroup_name>

ClusterRole Settings

Additional Roles and RoleBindings

If the CSV defines exactly one target namespace that contains *, then a ClusterRole and
corresponding ClusterRoleBinding are generated for each permission defined in the CSV’s
permissions field. All resources generated are given the olm.owner: <csv_name> and
olm.owner.namespace: <csv_namespace> labels.

If the CSV does not define exactly one target namespace that contains *, then all Roles and
RoleBindings in the Operator namespace with the olm.owner: <csv_name> and
olm.owner.namespace: <csv_namespace> labels are copied into the target namespace.

2.2.4.6. Copied CSVs

OLM creates copies of all active member CSVs of an OperatorGroup in each of that OperatorGroup’s
target namespaces. The purpose of a copied CSV is to tell users of a target namespace that a specific
Operator is configured to watch resources created there. Copied CSVs have a status reason Copied
and are updated to match the status of their source CSV. The olm.targetNamespaces annotation is
stripped from copied CSVs before they are created on the cluster. Omitting the target namespace
selection avoids the duplication of target namespaces between tenants. Copied CSVs are deleted when
their source CSV no longer exists or the OperatorGroup that their source CSV belongs to no longer
targets the copied CSV’s namespace.

2.2.4.7. Static OperatorGroups

An OperatorGroup is static if its spec.staticProvidedAPIs field is set to true. As a result, OLM does not
modify the OperatorGroup’s olm.providedAPIs annotation, which means that it can be set in advance.
This is useful when a user wants to use an OperatorGroup to prevent resource contention in a set of
namespaces but does not have active member CSVs that provide the APIs for those resources.

Below is an example of an OperatorGroup that protects Prometheus resources in all namespaces with
the something.cool.io/cluster-monitoring: "true" annotation:

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: cluster-monitoring
 namespace: cluster-monitoring

CHAPTER 2. OPERATORS

27

2.2.4.8. OperatorGroup intersection

Two OperatorGroups are said to have intersecting provided APIs if the intersection of their target
namespace sets is not an empty set and the intersection of their provided API sets, defined by
olm.providedAPIs annotations, is not an empty set.

A potential issue is that OperatorGroups with intersecting provided APIs can compete for the same
resources in the set of intersecting namespaces.

NOTE

When checking intersection rules, an OperatorGroup’s namespace is always included as
part of its selected target namespaces.

2.2.4.8.1. Rules for intersection

Each time an active member CSV synchronizes, OLM queries the cluster for the set of intersecting
provided APIs between the CSV’s OperatorGroup and all others. OLM then checks if that set is an
empty set:

If true and the CSV’s provided APIs are a subset of the OperatorGroup’s:

Continue transitioning.

If true and the CSV’s provided APIs are not a subset of the OperatorGroup’s:

If the OperatorGroup is static:

Clean up any deployments that belong to the CSV.

Transition the CSV to a failed state with status reason
CannotModifyStaticOperatorGroupProvidedAPIs.

If the OperatorGroup is not static:

Replace the OperatorGroup’s olm.providedAPIs annotation with the union of itself
and the CSV’s provided APIs.

If false and the CSV’s provided APIs are not a subset of the OperatorGroup’s:

Clean up any deployments that belong to the CSV.

Transition the CSV to a failed state with status reason InterOperatorGroupOwnerConflict.

If false and the CSV’s provided APIs are a subset of the OperatorGroup’s:

If the OperatorGroup is static:

Clean up any deployments that belong to the CSV.

 annotations:
 olm.providedAPIs:
Alertmanager.v1.monitoring.coreos.com,Prometheus.v1.monitoring.coreos.com,PrometheusRule.v1.mo
nitoring.coreos.com,ServiceMonitor.v1.monitoring.coreos.com
spec:
 staticProvidedAPIs: true
 selector:
 matchLabels:
 something.cool.io/cluster-monitoring: "true"

OpenShift Container Platform 4.1 Applications

28

Clean up any deployments that belong to the CSV.

Transition the CSV to a failed state with status reason
CannotModifyStaticOperatorGroupProvidedAPIs.

If the OperatorGroup is not static:

Replace the OperatorGroup’s olm.providedAPIs annotation with the difference
between itself and the CSV’s provided APIs.

NOTE

Failure states caused by OperatorGroups are non-terminal.

The following actions are performed each time an OperatorGroup synchronizes:

The set of provided APIs from active member CSVs is calculated from the cluster. Note that
copied CSVs are ignored.

The cluster set is compared to olm.providedAPIs, and if olm.providedAPIs contains any extra
APIs, then those APIs are pruned.

All CSVs that provide the same APIs across all namespaces are requeued. This notifies
conflicting CSVs in intersecting groups that their conflict has possibly been resolved, either
through resizing or through deletion of the conflicting CSV.

2.2.5. Metrics

The OLM exposes certain OLM-specific resources for use by the Prometheus-based OpenShift
Container Platform cluster monitoring stack.

Table 2.6. Metrics exposed by OLM

Name Description

csv_count Number of CSVs successfully registered.

install_plan_co
unt

Number of InstallPlans.

subscription_co
unt

Number of Subscriptions.

csv_upgrade_c
ount

Monotonic count of CatalogSources.

2.3. UNDERSTANDING THE OPERATORHUB

This guide outlines the architecture of the OperatorHub.

2.3.1. Overview of the OperatorHub

CHAPTER 2. OPERATORS

29

The OperatorHub is available via the OpenShift Container Platform web console and is the interface
that cluster administrators use to discover and install Operators. With one click, an Operator can be
pulled from their off-cluster source, installed and subscribed on the cluster, and made ready for
engineering teams to self-service manage the product across deployment environments using the
Operator Lifecycle Manager (OLM).

Cluster administrators can choose from OperatorSources grouped into the following categories:

Category Description

Red Hat Operators Red Hat products packaged and shipped by Red Hat. Supported by Red Hat.

Certified
Operators

Products from leading independent software vendors (ISVs). Red Hat partners with
ISVs to package and ship. Supported by the ISV.

Community
Operators

Optionally-visible software maintained by relevant representatives in the operator-
framework/community-operators GitHub repository. No official support.

Custom Operators Operators you add to the cluster yourself. If you have not added any Custom
Operators, the Custom category does not appear in the Web console on your
OperatorHub.

The OperatorHub component is installed and run as an Operator by default on OpenShift Container
Platform in the openshift-marketplace namespace.

2.3.2. OperatorHub architecture

The OperatorHub component’s Operator manages two Custom Resource Definitions (CRDs): an
OperatorSource and a CatalogSourceConfig.

NOTE

Although some OperatorSource and CatalogSourceConfig information is exposed
through the OperatorHub user interface, those files are only used directly by those who
are creating their own Operators.

2.3.2.1. OperatorSource

For each Operator, the OperatorSource is used to define the external data store used to store Operator
bundles. A simple OperatorSource includes:

Field Description

type To identify the data store as an application registry, type is set to appregistry.

endpoint Currently, Quay is the external data store used by the OperatorHub, so the endpoint is
set to https://quay.io/cnr for the Quay.io appregistry.

registryNamesp
ace

For a Community Operator, this is set to community-operator.

OpenShift Container Platform 4.1 Applications

30

https://github.com/operator-framework/community-operators
https://github.com/operator-framework/operator-marketplace/blob/release-4.1/deploy/crds/operators_v1_operatorsource_crd.yaml
https://github.com/operator-framework/operator-marketplace/blob/release-4.1/deploy/crds/operators_v1_catalogsourceconfig_crd.yaml
https://github.com/operator-framework/operator-marketplace/blob/master/deploy/examples/community.operatorsource.cr.yaml
https://quay.io/cnr

displayName Optionally set to a name that appears in the OperatorHub user interface for the
Operator.

publisher Optionally set to the person or organization publishing the Operator, so it can be
displayed on the OperatorHub.

Field Description

2.3.2.2. CatalogSourceConfig

An Operator’s CatalogSourceConfig is used to enable an Operator present in the OperatorSource on
the cluster.

A simple CatalogSourceConfig must identify:

Field Description

targetNamespac
e

The location where the Operator would be deployed and updated, such as openshift-
operators. This is a namespace that the OLM watches.

packages A comma-separated list of packages that make up the content of the Operator.

2.4. ADDING OPERATORS TO A CLUSTER

This guide walks cluster administrators through installing Operators to an OpenShift Container Platform
cluster.

2.4.1. Installing Operators from the OperatorHub

As a cluster administrator, you can install an Operator from the OperatorHub using the OpenShift
Container Platform web console or the CLI. You can then subscribe the Operator to one or more
namespaces to make it available for developers on your cluster.

During installation, you must determine the following initial settings for the Operator:

Installation Mode

Choose All namespaces on the cluster (default) to have the Operator installed on all namespaces
or choose individual namespaces, if available, to only install the Operator on selected namespaces.
This example chooses All namespaces…​ to make the Operator available to all users and projects.

Update Channel

If an Operator is available through multiple channels, you can choose which channel you want to
subscribe to. For example, to deploy from the stable channel, if available, select it from the list.

Approval Strategy

You can choose Automatic or Manual updates. If you choose Automatic updates for an installed
Operator, when a new version of that Operator is available, the Operator Lifecycle Manager (OLM)
automatically upgrades the running instance of your Operator without human intervention. If you

CHAPTER 2. OPERATORS

31

https://github.com/operator-framework/operator-marketplace/blob/master/deploy/examples/catalogsourceconfig.cr.yaml

select Manual updates, when a newer version of an Operator is available, the OLM creates an update
request. As a cluster administrator, you must then manually approve that update request to have the
Operator updated to the new version.

2.4.1.1. Installing from the OperatorHub using the web console

This procedure uses the Couchbase Operator as an example to install and subscribe to an Operator from
the OperatorHub using the OpenShift Container Platform web console.

Prerequisites

Access to an OpenShift Container Platform cluster using an account with cluster-admin
permissions.

Procedure

1. Navigate in the web console to the Catalog → OperatorHub page.

2. Scroll or type a keyword into the Filter by keyword box (in this case, Couchbase) to find the
Operator you want.

Figure 2.3. Filter Operators by keyword

OpenShift Container Platform 4.1 Applications

32

3. Select the Operator. For a Community Operator, you are warned that Red Hat does not certify
those Operators. You must acknowledge that warning before continuing. Information about the
Operator is displayed.

4. Read the information about the Operator and click Install.

5. On the Create Operator Subscription page:

a. Select one of the following:

All namespaces on the cluster (default) installs the Operator in the default openshift-
operators namespace to watch and be made available to all namespaces in the cluster.
This option is not always available.

A specific namespace on the cluster allows you to choose a specific, single namespace
in which to install the Operator. The Operator will only watch and be made available for
use in this single namespace.

b. Select an Update Channel (if more than one is available).

c. Select Automatic or Manual approval strategy, as described earlier.

6. Click Subscribe to make the Operator available to the selected namespaces on this OpenShift
Container Platform cluster.

7. From the Catalog → Operator Management page, you can monitor an Operator Subscription’s
installation and upgrade progress.

a. If you selected a Manual approval strategy, the Subscription’s upgrade status will remain
Upgrading until you review and approve its Install Plan.

Figure 2.4. Manually approving from the Install Plan page

CHAPTER 2. OPERATORS

33

Figure 2.4. Manually approving from the Install Plan page

After approving on the Install Plan page, the Subscription upgrade status moves to Up to
date.

b. If you selected an Automatic approval strategy, the upgrade status should resolve to Up to
date without intervention.

Figure 2.5. Subscription upgrade status Up to date

OpenShift Container Platform 4.1 Applications

34

Figure 2.5. Subscription upgrade status Up to date

8. After the Subscription’s upgrade status is Up to date, select Catalog → Installed Operators to
verify that the Couchbase ClusterServiceVersion (CSV) eventually shows up and its Status
ultimately resolves to InstallSucceeded in the relevant namespace.

NOTE

For the All namespaces…​ Installation Mode, the status resolves to
InstallSucceeded in the openshift-operators namespace, but the status is
Copied if you check in other namespaces.

If it does not:

a. Switch to the Catalog → Operator Management page and inspect the Operator
Subscriptions and Install Plans tabs for any failure or errors under Status.

b. Check the logs in any Pods in the openshift-operators project (or other relevant
namespace if A specific namespace…​ Installation Mode was selected) on the Workloads →
Pods page that are reporting issues to troubleshoot further.

2.4.1.2. Installing from the OperatorHub using the CLI

Instead of using the OpenShift Container Platform web console, you can install an Operator from the
OperatorHub using the CLI. Use the oc command to create or update a CatalogSourceConfig object,
then add a Subscription object.

NOTE

CHAPTER 2. OPERATORS

35

1

2

NOTE

The web console version of this procedure handles the creation of the
CatalogSourceConfig and Subscription objects behind the scenes for you, appearing as if
it was one step.

Prerequisites

Access to an OpenShift Container Platform cluster using an account with cluster-admin
permissions.

Install the oc command to your local system.

Procedure

1. View the list of Operators available to the cluster from the OperatorHub:

$ oc get packagemanifests -n openshift-marketplace
NAME AGE
amq-streams 14h
packageserver 15h
couchbase-enterprise 14h
mongodb-enterprise 14h
etcd 14h
myoperator 14h
...

2. To identify the Operators to enable on the cluster, create a CatalogSourceConfig object YAML
file (for example, csc.cr.yaml). Include one or more packages listed in the previous step (such
as couchbase-enterprise or etcd). For example:

Example CatalogSourceConfig

Set the targetNamespace to identify the namespace where you want the Operator to be
available. The openshift-operators namespace is watched by the Operator Lifecycle
Manager (OLM).

Set packages to a comma-separated list of Operators to which you want to subscribe.

The Operator generates a CatalogSource from your CatalogSourceConfig in the namespace
specified in targetNamespace.

3. Create the CatalogSourceConfig to enable the specified Operators in the selected namespace:

$ oc apply -f csc.cr.yaml

apiVersion: operators.coreos.com/v1
kind: CatalogSourceConfig
metadata:
 name: example
 namespace: openshift-marketplace
spec:
 targetNamespace: openshift-operators 1
 packages: myoperator 2

OpenShift Container Platform 4.1 Applications

36

1

2

1

4. Create a Subscription object YAML file (for example, myoperator-sub.yaml) to subscribe a
namespace to an Operator. Note that the namespace you pick must have an OperatorGroup
that matches the installMode (either AllNamespaces or SingleNamespace modes):

Example Subscription

Name of the Operator to subscribe to.

Name of the CatalogSource that was created.

5. Create the Subscription object:

$ oc apply -f myoperator-sub.yaml

At this point, the OLM is now aware of the selected Operator. A ClusterServiceVersion (CSV)
for the Operator should appear in the target namespace, and APIs provided by the Operator
should be available for creation.

6. Later, if you want to install more Operators:

a. Update your CatalogSourceConfig file (in this example, csc.cr.yaml) with more packages.
For example:

Example updated CatalogSourceConfig

Add new packages to existing package list.

b. Update the CatalogSourceConfig object:

$ oc apply -f csc.cr.yaml

c. Create additional Subscription objects for the new Operators.

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: myoperator
 namespace: openshift-operators
spec:
 channel: alpha
 name: myoperator 1
 source: example 2
 sourceNamespace: openshift-operators

apiVersion: operators.coreos.com/v1
kind: CatalogSourceConfig
metadata:
 name: example
 namespace: openshift-marketplace
spec:
 targetNamespace: global
 packages: myoperator,another-operator 1

CHAPTER 2. OPERATORS

37

Additional resources

To install custom Operators to a cluster using the OperatorHub, you must first upload your
Operator artifacts to Quay.io, then add your own OperatorSource to your cluster. Optionally,
you can add Secrets to your Operator to provide authentication. After, you can manage the
Operator in your cluster as you would any other Operator. For these steps, see Testing
Operators.

2.5. DELETING OPERATORS FROM A CLUSTER

To delete (uninstall) an Operator from your cluster, you can simply delete the subscription to remove it
from the subscribed namespace. If you want a clean slate, you can also remove the operator CSV and
deployment, then delete Operator’s entry in the CatalogSourceConfig. The following text describes how
to delete Operators from a cluster using either the web console or the command line.

2.5.1. Deleting Operators from a cluster using the web console

To delete an installed Operator from the selected namespace through the web console, follow these
steps:

Procedure

1. Select the Operator to delete. There are two paths to do this:

From the Catalog → OperatorHub page:

1. Scroll or type a keyword into the Filter by keyword box (in this case, jaeger) to find the
Operator you want and click on it.

2. Click Uninstall.

From the Catalog → Operator Management page:

1. Select the namespace where the Operator is installed from the Project list. For cluster-
wide Operators, the default is openshift-operators.

2. From the Operator Subscriptions tab, find the Operator you want to delete (in this

example, jaeger) and click the Options menu at the end of its entry.

OpenShift Container Platform 4.1 Applications

38

https://github.com/operator-framework/community-operators/blob/master/docs/testing-operators.md

3. Click Remove Subscription.

2. When prompted by the Remove Subscription window, optionally select the Also completely
remove the jaeger Operator from the selected namespace check box if you want all
components related to the installation to be removed. This removes the CSV, which in turn
removes the Pods, Deployments, CRDs, and CRs associated with the Operator.

3. Select Remove. This Operator will stop running and no longer receive updates.

NOTE

Although the Operator is no longer installed or receiving updates, that Operator will still
appear on the Operator Catalogs list, ready to re-subscribe. To remove the Operator
from that listing, you can delete the Operator’s entry in the CatalogSourceConfig from
the command line (as shown in last step of "Deleting operators from a cluster using the
CLI").

2.5.2. Deleting Operators from a cluster using the CLI

Instead of using the OpenShift Container Platform web console, you can delete an Operator from your
cluster by using the CLI. You do this by deleting the Subscription and ClusterServiceVersion from the
targetNamespace, then editing the CatalogSourceConfig to remove the Operator’s package name.

Prerequisites

Access to an OpenShift Container Platform cluster using an account with cluster-admin
permissions.

Install the oc command on your local system.

Procedure

In this example, there are two Operators (Jaeger and Descheduler) installed in the openshift-operators
namespace. The goal is to remove Jaeger without removing Descheduler.

1. Check the current version of the subscribed Operator (for example, jaeger) in the currentCSV
field:

$ oc get subscription jaeger -n openshift-operators -o yaml | grep currentCSV
 currentCSV: jaeger-operator.v1.8.2

2. Delete the Operator’s Subscription (for example, jaeger):

$ oc delete subscription jaeger -n openshift-operators
subscription.operators.coreos.com "jaeger" deleted

3. Delete the CSV for the Operator in the target namespace using the currentCSV value from the
previous step:

$ oc delete clusterserviceversion jaeger-operator.v1.8.2 -n openshift-operators
clusterserviceversion.operators.coreos.com "jaeger-operator.v1.8.2" deleted

4. Display the contents of the CatalogSourceConfig resource and review the list of packages in
the spec section:

CHAPTER 2. OPERATORS

39

$ oc get catalogsourceconfig -n openshift-marketplace \
 installed-community-openshift-operators -o yaml

For example, the spec section might appear as follows:

Example of CatalogSourceConfig

5. Remove the Operator from the CatalogSourceConfig in one of two ways:

If you have multiple Operators, edit the CatalogSourceConfig resource and remove the
Operator’s package:

$ oc edit catalogsourceconfig -n openshift-marketplace \
 installed-community-openshift-operators

Remove the package from the packages line, as shown:

Example of modified packages in CatalogSourceConfig

Save the change and the marketplace-operator will reconcile the CatalogSourceConfig.

If there is only one Operator in the CatalogSourceConfig, you can remove it by deleting the
entire CatalogSourceConfig as follows:

$ oc delete catalogsourceconfig -n openshift-marketplace \
 installed-community-openshift-operators

2.6. CREATING APPLICATIONS FROM INSTALLED OPERATORS

This guide walks developers through an example of creating applications from an installed Operator
using the OpenShift Container Platform 4.1 web console.

2.6.1. Creating an etcd cluster using an Operator

This procedure walks through creating a new etcd cluster using the etcd Operator, managed by the
Operator Lifecycle Manager (OLM).

Prerequisites

Access to an OpenShift Container Platform 4.1 cluster.

The etcd Operator already installed cluster-wide by an administrator.

Procedure

1. Create a new project in the OpenShift Container Platform web console for this procedure. This

spec:
 csDisplayName: Community Operators
 csPublisher: Community
 packages: jaeger,descheduler
 targetNamespace: openshift-operators

 packages: descheduler

OpenShift Container Platform 4.1 Applications

40

1. Create a new project in the OpenShift Container Platform web console for this procedure. This
example uses a project called my-etcd.

2. Navigate to the Catalogs → Installed Operators page. The Operators that have been installed
to the cluster by the cluster administrator and are available for use are shown here as a list of
ClusterServiceVersions (CSVs). CSVs are used to launch and manage the software provided by
the Operator.

TIP

You can get this list from the CLI using:

$ oc get csv

3. On the Installed Operators page, click Copied, and then click the etcd Operator to view more
details and available actions:

Figure 2.6. etcd Operator overview

As shown under Provided APIs, this Operator makes available three new resource types,
including one for an etcd Cluster (the EtcdCluster resource). These objects work similar to the
built-in native Kubernetes ones, such as Deployments or ReplicaSets, but contain logic
specific to managing etcd.

4. Create a new etcd cluster:

a. In the etcd Cluster API box, click Create New.

b. The next screen allows you to make any modifications to the minimal starting template of an
EtcdCluster object, such as the size of the cluster. For now, click Create to finalize. This

CHAPTER 2. OPERATORS

41

triggers the Operator to start up the Pods, Services, and other components of the new etcd
cluster.

5. Click the Resources tab to see that your project now contains a number of resources created
and configured automatically by the Operator.

Figure 2.7. etcd Operator resources

Verify that a Kubernetes service has been created that allows you to access the database from
other Pods in your project.

6. All users with the edit role in a given project can create, manage, and delete application
instances (an etcd cluster, in this example) managed by Operators that have already been
created in the project, in a self-service manner, just like a cloud service. If you want to enable
additional users with this ability, project administrators can add the role using the following
command:

$ oc policy add-role-to-user edit <user> -n <target_project>

You now have an etcd cluster that will react to failures and rebalance data as Pods become unhealthy or
are migrated between nodes in the cluster. Most importantly, cluster administrators or developers with
proper access can now easily use the database with their applications.

2.7. MANAGING RESOURCES FROM CUSTOM RESOURCE
DEFINITIONS

This guide describes how developers can manage Custom Resources (CRs) that come from Custom
Resource Definitions (CRDs).

OpenShift Container Platform 4.1 Applications

42

1

2

3

2.7.1. Custom Resource Definitions

In the Kubernetes API, a resource is an endpoint that stores a collection of API objects of a certain kind.
For example, the built-in Pods resource contains a collection of Pod objects.

A Custom Resource Definition (CRD) object defines a new, unique object Kind in the cluster and lets the
Kubernetes API server handle its entire lifecycle.

Custom Resource (CR) objects are created from CRDs that have been added to the cluster by a cluster
administrator, allowing all cluster users to add the new resource type into projects.

Operators in particular make use of CRDs by packaging them with any required RBAC policy and other
software-specific logic. Cluster administrators can also add CRDs manually to the cluster outside of an
Operator’s lifecycle, making them available to all users.

NOTE

While only cluster administrators can create CRDs, developers can create the CR from an
existing CRD if they have read and write permission to it.

2.7.2. Creating Custom Resources from a file

After a Custom Resource Definition (CRD) has been added to the cluster, Custom Resources (CRs) can
be created with the CLI from a file using the CR specification.

Prerequisites

CRD added to the cluster by a cluster administrator.

Procedure

1. Create a YAML file for the CR. In the following example definition, the cronSpec and image
custom fields are set in a CR of Kind: CronTab. The Kind comes from the spec.kind field of
the CRD object.

Example YAML file for a CR

Specify the group name and API version (name/version) from the Custom Resource
Definition.

Specify the type in the CRD.

Specify a name for the object.

apiVersion: "stable.example.com/v1" 1
kind: CronTab 2
metadata:
 name: my-new-cron-object 3
 finalizers: 4
 - finalizer.stable.example.com
spec: 5
 cronSpec: "* * * * /5"
 image: my-awesome-cron-image

CHAPTER 2. OPERATORS

43

4

5

Specify the finalizers for the object, if any. Finalizers allow controllers to implement
conditions that must be completed before the object can be deleted.

Specify conditions specific to the type of object.

2. After you create the file, create the object:

$ oc create -f <file_name>.yaml

2.7.3. Inspecting Custom Resources

You can inspect Custom Resource (CR) objects that exist in your cluster using the CLI.

Prerequisites

A CR object exists in a namespace to which you have access.

Procedure

1. To get information on a specific Kind of a CR, run:

$ oc get <kind>

For example:

$ oc get crontab

NAME KIND
my-new-cron-object CronTab.v1.stable.example.com

Resource names are not case-sensitive, and you can use either the singular or plural forms
defined in the CRD, as well as any short name. For example:

$ oc get crontabs
$ oc get crontab
$ oc get ct

2. You can also view the raw YAML data for a CR:

$ oc get <kind> -o yaml

$ oc get ct -o yaml

apiVersion: v1
items:
- apiVersion: stable.example.com/v1
 kind: CronTab
 metadata:
 clusterName: ""
 creationTimestamp: 2017-05-31T12:56:35Z
 deletionGracePeriodSeconds: null
 deletionTimestamp: null

OpenShift Container Platform 4.1 Applications

44

https://kubernetes.io/docs/tasks/access-kubernetes-api/extend-api-custom-resource-definitions/#finalizers

1 2

 name: my-new-cron-object
 namespace: default
 resourceVersion: "285"
 selfLink: /apis/stable.example.com/v1/namespaces/default/crontabs/my-new-cron-object
 uid: 9423255b-4600-11e7-af6a-28d2447dc82b
 spec:
 cronSpec: '* * * * /5' 1
 image: my-awesome-cron-image 2

Custom data from the YAML that you used to create the object displays.

CHAPTER 2. OPERATORS

45

CHAPTER 3. APPLICATION LIFE CYCLE MANAGEMENT

3.1. CREATING APPLICATIONS

You can create an OpenShift Container Platform application from components that include source or
binary code, images, and templates by using the OpenShift Container Platform CLI.

The set of objects created by new-app depends on the artifacts passed as input: source repositories,
images, or templates.

3.1.1. Creating an application by using the CLI

3.1.1.1. Creating an application from source code

With the new-app command you can create applications from source code in a local or remote Git
repository.

The new-app command creates a build configuration, which itself creates a new application image from
your source code. The new-app command typically also creates a deployment configuration to deploy
the new image, and a service to provide load-balanced access to the deployment running your image.

OpenShift Container Platform automatically detects whether the Pipeline or Source build strategy
should be used, and in the case of Source builds, detects an appropriate language builder image.

3.1.1.1.1. Local

To create an application from a Git repository in a local directory:

$ oc new-app /<path to source code>

NOTE

If you use a local Git repository, the repository must have a remote named origin that
points to a URL that is accessible by the OpenShift Container Platform cluster. If there is
no recognized remote, running the new-app command will create a binary build.

3.1.1.1.2. Remote

To create an application from a remote Git repository:

$ oc new-app https://github.com/sclorg/cakephp-ex

To create an application from a private remote Git repository:

$ oc new-app https://github.com/youruser/yourprivaterepo --source-secret=yoursecret

NOTE

If you use a private remote Git repository, you can use the --source-secret flag to
specify an existing source clone secret that will get injected into your BuildConfig to
access the repository.

You can use a subdirectory of your source code repository by specifying a --context-dir flag. To create

OpenShift Container Platform 4.1 Applications

46

You can use a subdirectory of your source code repository by specifying a --context-dir flag. To create
an application from a remote Git repository and a context subdirectory:

$ oc new-app https://github.com/sclorg/s2i-ruby-container.git \
 --context-dir=2.0/test/puma-test-app

Also, when specifying a remote URL, you can specify a Git branch to use by appending #
<branch_name> to the end of the URL:

$ oc new-app https://github.com/openshift/ruby-hello-world.git#beta4

3.1.1.1.3. Build strategy detection

If a Jenkinsfile exists in the root or specified context directory of the source repository when creating a
new application, OpenShift Container Platform generates a Pipeline build strategy.

Otherwise, it generates a Source build strategy.

Override the build strategy by setting the --strategy flag to either pipeline or source.

$ oc new-app /home/user/code/myapp --strategy=docker

NOTE

The oc command requires that files containing build sources are available in a remote Git
repository. For all source builds, you must use git remote -v.

3.1.1.1.4. Language Detection

If you use the Source build strategy, new-app attempts to determine the language builder to use by the
presence of certain files in the root or specified context directory of the repository:

Table 3.1. Languages Detected by new-app

Language Files

dotnet project.json, *.csproj

jee pom.xml

nodejs app.json, package.json

perl cpanfile, index.pl

php composer.json, index.php

python requirements.txt, setup.py

ruby Gemfile, Rakefile, config.ru

CHAPTER 3. APPLICATION LIFE CYCLE MANAGEMENT

47

scala build.sbt

golang Godeps, main.go

Language Files

After a language is detected, new-app searches the OpenShift Container Platform server for
imagestreamtags that have a supports annotation matching the detected language, or an imagestream
that matches the name of the detected language. If a match is not found, new-app searches the Docker
Hub registry for an image that matches the detected language based on name.

You can override the image the builder uses for a particular source repository by specifying the image,
either an imagestream or container specification, and the repository with a ~ as a separator. Note that if
this is done, build strategy detection and language detection are not carried out.

For example, to use the myproject/my-ruby imagestream with the source in a remote repository:

$ oc new-app myproject/my-ruby~https://github.com/openshift/ruby-hello-world.git

To use the `openshift/ruby-20-centos7:latest `container imagestream with the source in a local
repository:

$ oc new-app openshift/ruby-20-centos7:latest~/home/user/code/my-ruby-app

NOTE

Language detection requires the Git client to be locally installed so that your repository
can be cloned and inspected. If Git is not available, you can avoid the language detection
step by specifying the builder image to use with your repository with the <image>~
<repository> syntax.

The -i <image> <repository> invocation requires that new-app attempt to clone
repository in order to determine what type of artifact it is, so this will fail if Git is not
available.

The -i <image> --code <repository> invocation requires new-app clone repository in
order to determine whether image should be used as a builder for the source code, or
deployed separately, as in the case of a database image.

3.1.1.2. Creating an application from an image

You can deploy an application from an existing image. Images can come from imagestreams in the
OpenShift Container Platform server, images in a specific registry, or images in the local Docker server.

The new-app command attempts to determine the type of image specified in the arguments passed to
it. However, you can explicitly tell new-app whether the image is a container image using the --docker-
image argument or an imagestream using the -i|--image argument.

NOTE

If you specify an image from your local Docker repository, you must ensure that the same
image is available to the OpenShift Container Platform cluster nodes.

OpenShift Container Platform 4.1 Applications

48

https://registry.hub.docker.com

3.1.1.2.1. DockerHub MySQL image

Create an application from the DockerHub MySQL image, for example:

$ oc new-app mysql

3.1.1.2.2. Image in a private registry

Create an application using an image in a private registry, specify the full container image specification:

$ oc new-app myregistry:5000/example/myimage

3.1.1.2.3. Existing imagestream and optional imagestreamtag

Create an application from an existing imagestream and optional imagestreamtag:

$ oc new-app my-stream:v1

3.1.1.3. Creating an application from a template

You can create an application from a previously stored template or from a template file, by specifying
the name of the template as an argument. For example, you can store a sample application template and
use it to create an application.

Create an application from a stored template, for example:

$ oc create -f examples/sample-app/application-template-stibuild.json
$ oc new-app ruby-helloworld-sample

To directly use a template in your local file system, without first storing it in OpenShift Container
Platform, use the -f|--file argument. For example:

$ oc new-app -f examples/sample-app/application-template-stibuild.json

3.1.1.3.1. Template Parameters

When creating an application based on a template, use the -p|--param argument to set parameter values
that are defined by the template:

$ oc new-app ruby-helloworld-sample \
 -p ADMIN_USERNAME=admin -p ADMIN_PASSWORD=mypassword

You can store your parameters in a file, then use that file with --param-file when instantiating a
template. If you want to read the parameters from standard input, use --param-file=-:

$ cat helloworld.params
ADMIN_USERNAME=admin
ADMIN_PASSWORD=mypassword
$ oc new-app ruby-helloworld-sample --param-file=helloworld.params
$ cat helloworld.params | oc new-app ruby-helloworld-sample --param-file=-

CHAPTER 3. APPLICATION LIFE CYCLE MANAGEMENT

49

3.1.1.4. Modifying application creation

The new-app command generates OpenShift Container Platform objects that build, deploy, and run the
application that is created. Normally, these objects are created in the current project and assigned
names that are derived from the input source repositories or the input images. However, with new-app
you can modify this behavior.

Table 3.2. new-app output objects

Object Description

BuildConfig A BuildConfig is created for each source repository that is specified in the command
line. The BuildConfig specifies the strategy to use, the source location, and the build
output location.

ImageStreams For BuildConfig, two ImageStreams are usually created. One represents the input
image. With Source builds, this is the builder image. With Docker builds, this is the
FROM image. The second one represents the output image. If a container image was
specified as input to new-app, then an imagestream is created for that image as well.

DeploymentCon
fig

A DeploymentConfig is created either to deploy the output of a build, or a specified
image. The new-app command creates emptyDir volumes for all Docker volumes that
are specified in containers included in the resulting DeploymentConfig.

Service The new-app command attempts to detect exposed ports in input images. It uses the
lowest numeric exposed port to generate a service that exposes that port. In order to
expose a different port, after new-app has completed, simply use the oc expose
command to generate additional services.

Other Other objects can be generated when instantiating templates, according to the
template.

3.1.1.4.1. Specifying environment variables

When generating applications from a template, source, or an image, you can use the -e|--env argument
to pass environment variables to the application container at run time:

$ oc new-app openshift/postgresql-92-centos7 \
 -e POSTGRESQL_USER=user \
 -e POSTGRESQL_DATABASE=db \
 -e POSTGRESQL_PASSWORD=password

The variables can also be read from file using the --env-file argument:

$ cat postgresql.env
POSTGRESQL_USER=user
POSTGRESQL_DATABASE=db
POSTGRESQL_PASSWORD=password
$ oc new-app openshift/postgresql-92-centos7 --env-file=postgresql.env

Additionally, environment variables can be given on standard input by using --env-file=-:

OpenShift Container Platform 4.1 Applications

50

$ cat postgresql.env | oc new-app openshift/postgresql-92-centos7 --env-file=-

NOTE

Any BuildConfig objects created as part of new-app processing are not updated with
environment variables passed with the -e|--env or --env-file argument.

3.1.1.4.2. Specifying build environment variables

When generating applications from a template, source, or an image, you can use the --build-env
argument to pass environment variables to the build container at run time:

$ oc new-app openshift/ruby-23-centos7 \
 --build-env HTTP_PROXY=http://myproxy.net:1337/ \
 --build-env GEM_HOME=~/.gem

The variables can also be read from a file using the --build-env-file argument:

$ cat ruby.env
HTTP_PROXY=http://myproxy.net:1337/
GEM_HOME=~/.gem
$ oc new-app openshift/ruby-23-centos7 --build-env-file=ruby.env

Additionally, environment variables can be given on standard input by using --build-env-file=-:

$ cat ruby.env | oc new-app openshift/ruby-23-centos7 --build-env-file=-

3.1.1.4.3. Specifying labels

When generating applications from source, images, or templates, you can use the -l|--label argument to
add labels to the created objects. Labels make it easy to collectively select, configure, and delete
objects associated with the application.

$ oc new-app https://github.com/openshift/ruby-hello-world -l name=hello-world

3.1.1.4.4. Viewing the output without creation

To see a dry-run of running the new-app command, you can use the -o|--output argument with a yaml
or json value. You can then use the output to preview the objects that are created or redirect it to a file
that you can edit. After you are satisfied, you can use oc create to create the OpenShift Container
Platform objects.

To output new-app artifacts to a file, edit them, then create them:

$ oc new-app https://github.com/openshift/ruby-hello-world \
 -o yaml > myapp.yaml
$ vi myapp.yaml
$ oc create -f myapp.yaml

3.1.1.4.5. Creating objects with different names

Objects created by new-app are normally named after the source repository, or the image used to

CHAPTER 3. APPLICATION LIFE CYCLE MANAGEMENT

51

Objects created by new-app are normally named after the source repository, or the image used to
generate them. You can set the name of the objects produced by adding a --name flag to the
command:

$ oc new-app https://github.com/openshift/ruby-hello-world --name=myapp

3.1.1.4.6. Creating objects in a different project

Normally, new-app creates objects in the current project. However, you can create objects in a different
project by using the -n|--namespace argument:

$ oc new-app https://github.com/openshift/ruby-hello-world -n myproject

3.1.1.4.7. Creating multiple objects

The new-app command allows creating multiple applications specifying multiple parameters to new-
app. Labels specified in the command line apply to all objects created by the single command.
Environment variables apply to all components created from source or images.

To create an application from a source repository and a Docker Hub image:

$ oc new-app https://github.com/openshift/ruby-hello-world mysql

NOTE

If a source code repository and a builder image are specified as separate arguments,
new-app uses the builder image as the builder for the source code repository. If this is
not the intent, specify the required builder image for the source using the ~ separator.

3.1.1.4.8. Grouping images and source in a single Pod

The new-app command allows deploying multiple images together in a single Pod. In order to specify
which images to group together, use the + separator. The --group command line argument can also be
used to specify the images that should be grouped together. To group the image built from a source
repository with other images, specify its builder image in the group:

$ oc new-app ruby+mysql

To deploy an image built from source and an external image together:

$ oc new-app \
 ruby~https://github.com/openshift/ruby-hello-world \
 mysql \
 --group=ruby+mysql

3.1.1.4.9. Searching for images, templates, and other inputs

To search for images, templates, and other inputs for the oc new-app command, add the --search and
--list flags. For example, to find all of the images or templates that include PHP:

$ oc new-app --search php

OpenShift Container Platform 4.1 Applications

52

CHAPTER 4. SERVICE BROKERS

4.1. INSTALLING THE SERVICE CATALOG

IMPORTANT

The service catalog is deprecated in OpenShift Container Platform 4. Equivalent and
better functionality is present in the Operator Framework and Operator Lifecycle
Manager (OLM).

4.1.1. About the service catalog

When developing microservices-based applications to run on cloud native platforms, there are many
ways to provision different resources and share their coordinates, credentials, and configuration,
depending on the service provider and the platform.

To give developers a more seamless experience, OpenShift Container Platform includes a service
catalog, an implementation of the Open Service Broker API (OSB API) for Kubernetes. This allows users
to connect any of their applications deployed in OpenShift Container Platform to a wide variety of
service brokers.

The service catalog allows cluster administrators to integrate multiple platforms using a single API
specification. The OpenShift Container Platform web console displays the cluster service classes
offered by service brokers in the service catalog, allowing users to discover and instantiate those
services for use with their applications.

As a result, service users benefit from ease and consistency of use across different types of services
from different providers, while service providers benefit from having one integration point that gives
them access to multiple platforms.

The service catalog is not installed by default in OpenShift Container Platform 4.

4.1.2. Installing service catalog

If you plan on using any of the services from the OpenShift Ansible Broker or Template Service Broker,
you must install the service catalog by completing the following steps.

The custom resources for the service catalog’s API server and controller manager are created by default
in OpenShift Container Platform, but initially have a managementState of Removed. To install the
service catalog, you must change the managementState for these resources to Managed.

Procedure

1. Enable the service catalog API server:

a. Use the following command to edit the service catalog API server resource:

$ oc edit servicecatalogapiservers

b. Under spec, set the managementState field to Managed:

CHAPTER 4. SERVICE BROKERS

53

https://openservicebrokerapi.org/

c. Save the file to apply the changes.
The Operator installs the service catalog API server component. As of OpenShift Container
Platform 4, this component is installed into the openshift-service-catalog-apiserver
namespace.

2. Enable the service catalog controller manager:

a. Use the following command to edit the service catalog controller manager resource:

$ oc edit servicecatalogcontrollermanagers

b. Under spec, set the managementState field to Managed:

c. Save the file to apply the changes.
The Operator installs the service catalog controller manager component. As of OpenShift
Container Platform 4, this component is installed into the openshift-service-catalog-
controller-manager namespace.

4.1.3. Uninstalling service catalog

To uninstall the service catalog, you must change the managementState for the service catalog’s API
server and controller manager resources from Managed to Removed.

Procedure

1. Disable the service catalog API server:

a. Use the following command to edit the service catalog API server resource:

$ oc edit servicecatalogapiservers

b. Under spec, set the managementState field to Removed:

c. Save the file to apply the changes.

2. Disable the service catalog controller manager:

a. Use the following command to edit the service catalog controller manager resource:

$ oc edit servicecatalogcontrollermanagers

spec:
 logLevel: Normal
 managementState: Managed

spec:
 logLevel: Normal
 managementState: Managed

spec:
 logLevel: Normal
 managementState: Removed

OpenShift Container Platform 4.1 Applications

54

b. Under spec, set the managementState field to Removed:

c. Save the file to apply the changes.

IMPORTANT

There is a known issue related to projects getting stuck in a "Terminating" state when
attempting to delete them after disabling the service catalog. See the OpenShift
Container Platform 4.1 Release Notes for a workaround. (BZ#1746174)

4.2. INSTALLING THE TEMPLATE SERVICE BROKER

You can install the Template Service Broker to gain access to the template applications that it provides.

IMPORTANT

The Template Service Broker is deprecated in OpenShift Container Platform 4.
Equivalent and better functionality is present in the Operator Framework and Operator
Lifecycle Manager (OLM).

Prerequisites

Install the service catalog

4.2.1. About the Template Service Broker

The Template Service Broker gives the service catalog visibility into the default Instant App and
Quickstart templates that have shipped with OpenShift Container Platform since its initial release. The
Template Service Broker can also make available as a service anything for which an OpenShift Container
Platform template has been written, whether provided by Red Hat, a cluster administrator or user, or a
third-party vendor.

By default, the Template Service Broker shows objects that are globally available from the openshift
project. It can also be configured to watch any other project that a cluster administrator chooses.

The Template Service Broker is not installed by default in OpenShift Container Platform 4.

4.2.2. Installing the Template Service Broker Operator

Prerequisites

You have installed the service catalog.

Procedure

The following procedure installs the Template Service Broker Operator using the web console.

1. Create a namespace.

a. Navigate in the web console to Administration → Namespaces and click Create
Namespace.

spec:
 logLevel: Normal
 managementState: Removed

CHAPTER 4. SERVICE BROKERS

55

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.1/html-single/release_notes/#ocp-4-1-known-issues
https://bugzilla.redhat.com/show_bug.cgi?id=1746174
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.1/html-single/applications/#sb-install-service-catalog_sb-installing-service-catalog

Namespace.

b. Enter openshift-template-service-broker in the Name field and click Create.

NOTE

The namespace must start with openshift-.

2. Navigate to the Catalog → OperatorHub page. Verify that the openshift-template-service-
broker project is selected.

3. Select Template Service Broker Operator.

4. Read the information about the Operator and click Install.

5. Review the default selections and click Subscribe.

Next, you must start the Template Service Broker in order to access the template applications it
provides.

4.2.3. Starting the Template Service Broker

After you have installed the Template Service Broker Operator, you can start the Template Service
Broker using the following procedure.

Prerequisites

You have installed the service catalog.

You have installed the Template Service Broker Operator.

Procedure

1. Navigate in the web console to Catalog → Installed Operators and select the openshift-
template-service-broker project.

2. Select the Template Service Broker Operator.

3. Under Provided APIs, click Create New for Template Service Broker.

4. Review the default YAML and click Create.

5. Verify that the Template Service Broker has started.
After the Template Service Broker has started, you can view the available template applications
by navigating to Catalog → Developer Catalog and selecting the Service Class checkbox.
Note that it may take a few minutes for the Template Service Broker to start and the template
applications to be available.

If you do not yet see these Service classes, you can check the status of the following items:

Template Service Broker Pod status

From the Workloads → Pods page for the openshift-template-service-broker
project, verify that the Pod that starts with apiserver- has a status of Running and
readiness of Ready.

OpenShift Container Platform 4.1 Applications

56

Cluster service broker status

From the Catalog → Broker Management → Service Brokers page, verify that the
template-service-broker service broker has a status of Ready.

Service catalog controller manager Pod logs

From the Workloads → Pods page for the openshift-service-catalog-controller-
manager project, review the logs for each of the Pods and verify that you see a log
entry with the message Successfully fetched catalog entries from broker.

4.3. PROVISIONING TEMPLATE APPLICATIONS

4.3.1. Provisioning template applications

The following procedure provisions an example PostgreSQL template application that was made
available by the Template Service Broker.

Prerequisites

The service catalog is installed.

The Template Service Broker is installed.

Procedure

1. Create a project.

a. Navigate in the web console to Home → Projects and click Create Project.

b. Enter test-postgresql in the Name field and click Create.

2. Create a service instance.

a. Navigate to the Catalog → Developer Catalog page.

b. Select the PostgreSQL (Ephemeral) template application and click Create Service
Instance.

c. Review the default selections and set any other required fields, and click Create.

d. Go to Catalog → Provisioned Services and verify that the postgresql-ephemeral service
instance is created and has a status of Ready.
You can check the progress on the Home → Events page. After a few moments, you should
see an event for postgresql-ephemeral with the message "The instance was provisioned
successfully".

3. Create a service binding.

a. From the Provisioned Services page, click postgresql-ephemeral and click Create
Service Binding.

b. Review the default service binding name and click Create.
This creates a new secret for binding using the name provided.

4. Review the secret that was created.

a. Navigate to Workloads → Secrets and verify that a secret named postgresql-ephemeral

CHAPTER 4. SERVICE BROKERS

57

a. Navigate to Workloads → Secrets and verify that a secret named postgresql-ephemeral
was created.

b. Click postgresql-ephemeral and review the key-value pairs in the Data section, which are
used for binding to other apps.

4.4. UNINSTALLING THE TEMPLATE SERVICE BROKER

You can uninstall the Template Service Broker if you no longer require access to the template
applications that it provides.

IMPORTANT

The Template Service Broker is deprecated in OpenShift Container Platform 4.
Equivalent and better functionality is present in the Operator Framework and Operator
Lifecycle Manager (OLM).

4.4.1. Uninstalling the Template Service Broker

The following procedure uninstalls the Template Service Broker and its Operator using the web console.

WARNING

Do not uninstall the Template Service Broker if there are any provisioned services
from it in your cluster, otherwise you might encounter errors when trying to manage
the services.

Prerequisites

The Template Service Broker is installed.

Procedure

This procedure assumes that you installed the Template Service Broker into the openshift-template-
service-broker project.

1. Uninstall the Template Service Broker.

a. Navigate to Catalog → Installed Operators and select the openshift-template-service-
broker project from the drop-down menu.

b. Click Template Service Broker Operator.

c. Select the Template Service Broker tab.

d. Click template-service-broker.

e. From the Actions drop-down menu, select Delete Template Service Broker.

f. Click Delete from the confirmation pop-up window.

The Template Service Broker is now uninstalled, and template applications will soon be



OpenShift Container Platform 4.1 Applications

58

The Template Service Broker is now uninstalled, and template applications will soon be
removed from the Developer Catalog.

2. Uninstall the Template Service Broker Operator.

a. Navigate to Catalog → Operator Management and select the openshift-template-
service-broker project from the drop-down menu.

b. Click View subscription for the Template Service Broker Operator.

c. Select templateservicebroker.

d. From the Actions drop-down menu, select Remove Subscription.

e. Verify that the checkbox is checked next to Also completely remove the
templateservicebroker Operator from the selected namespace and click Remove.
The Template Service Broker Operator is no longer installed in your cluster.

After the Template Service Broker is uninstalled, users will no longer have access to the template
applications provided by the Template Service Broker.

4.5. INSTALLING THE OPENSHIFT ANSIBLE BROKER

You can install the OpenShift Ansible Broker to gain access to the service bundles that it provides.

IMPORTANT

The OpenShift Ansible Broker is deprecated in OpenShift Container Platform 4.
Equivalent and better functionality is present in the Operator Framework and Operator
Lifecycle Manager (OLM).

Prerequisites

Install the service catalog

4.5.1. About the OpenShift Ansible Broker

The OpenShift Ansible Broker is an implementation of the Open Service Broker (OSB) API that
manages applications defined by Ansible playbook bundles (APBs). APBs provide a method for defining
and distributing container applications in OpenShift Container Platform, and consist of a bundle of
Ansible playbooks built into a container image with an Ansible runtime. APBs leverage Ansible to create a
standard mechanism to automate complex deployments.

The OpenShift Ansible Broker follows this basic workflow:

1. A user requests the list of available applications from the service catalog using the OpenShift
Container Platform web console.

2. The service catalog requests the list of available applications from the OpenShift Ansible
Broker.

3. The OpenShift Ansible Broker communicates with a defined container image registry to learn
which APBs are available.

4. The user issues a request to provision a specific APB.

5. The OpenShift Ansible Broker fulfills the user’s provision request by invoking the provision

CHAPTER 4. SERVICE BROKERS

59

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.1/html-single/applications/#sb-install-service-catalog_sb-installing-service-catalog

5. The OpenShift Ansible Broker fulfills the user’s provision request by invoking the provision
method on the APB.

The OpenShift Ansible Broker is not installed by default in OpenShift Container Platform 4.

4.5.1.1. Ansible playbook bundles

An Ansible playbook bundle (APB) is a lightweight application definition that allows you to leverage
existing investment in Ansible roles and playbooks.

APBs use a simple directory with named playbooks to perform OSB API actions, such as provision and
bind. Metadata defined in the apb.yml file contains a list of required and optional parameters for use
during deployment.

Additional resources

Ansible playbook bundle repository

4.5.2. Installing the OpenShift Ansible Service Broker Operator

Prerequisites

You have installed the service catalog.

Procedure

The following procedure installs the OpenShift Ansible Service Broker Operator using the web console.

1. Create a namespace.

a. Navigate in the web console to Administration → Namespaces and click Create
Namespace.

b. Enter openshift-ansible-service-broker in the Name field and openshift.io/cluster-
monitoring=true in the Labels field and click Create.

NOTE

The namespace must start with openshift-.

2. Create a cluster role binding.

a. Navigate to Administration → Role Bindings and click Create Binding.

b. For the Binding Type, select Cluster-wide Role Binding (ClusterRoleBinding).

c. For the Role Binding, enter ansible-service-broker in the Name field.

d. For the Role, select admin.

e. For the Subject, choose the Service Account option, select the openshift-ansible-
service-broker namespace, and enter openshift-ansible-service-broker-operator in the
Subject Name field.

f. Click Create.

OpenShift Container Platform 4.1 Applications

60

https://github.com/automationbroker/apb

3. Create a secret to connect to the Red Hat Container Catalog.

a. Navigate to Workloads → Secrets. Verify that the openshift-ansible-service-broker
project is selected.

b. Click Create → Key/Value Secret.

c. Enter asb-registry-auth as the Secret Name.

d. Add a Key of username and a Value of your Red Hat Container Catalog user name.

e. Click Add Key/Value and add a Key of password and a Value of your Red Hat Container
Catalog password.

f. Click Create.

4. Navigate to the Catalog → OperatorHub page. Verify that the openshift-ansible-service-
broker project is selected.

5. Select OpenShift Ansible Service Broker Operator.

6. Read the information about the Operator and click Install.

7. Review the default selections and click Subscribe.

Next, you must start the OpenShift Ansible Broker in order to access the service bundles it provides.

4.5.3. Starting the OpenShift Ansible Broker

After you have installed the OpenShift Ansible Service Broker Operator, you can start the OpenShift
Ansible Broker using the following procedure.

Prerequisites

You have installed the service catalog.

You have installed the OpenShift Ansible Service Broker Operator.

Procedure

1. Navigate in the web console to Catalog → Installed Operators and select the openshift-
ansible-service-broker project.

2. Select the OpenShift Ansible Service Broker Operator.

3. Under Provided APIs, click Create New for Automation Broker.

4. Add the following to the spec field in the default YAML provided:

This references the secret that was created when installing the OpenShift Ansible Service

registry:
 - name: rhcc
 type: rhcc
 url: https://registry.redhat.io
 auth_type: secret
 auth_name: asb-registry-auth

CHAPTER 4. SERVICE BROKERS

61

This references the secret that was created when installing the OpenShift Ansible Service
Broker Operator, which allows you to connect to the Red Hat Container Catalog.

5. Set any additional OpenShift Ansible Broker configuration options and click Create.

6. Verify that the OpenShift Ansible Broker has started.
After the OpenShift Ansible Broker has started, you can view the available service bundles by
navigating to Catalog → Developer Catalog and selecting the Service Class checkbox. Note
that it may take a few minutes for the OpenShift Ansible Broker to start and the service bundles
to be available.

If you do not yet see these Service classes, you can check the status of the following items:

OpenShift Ansible Broker Pod status

From the Workloads → Pods page for the openshift-ansible-service-broker project,
verify that the Pod that starts with asb- has a status of Running and readiness of
Ready.

Cluster service broker status

From the Catalog → Broker Management → Service Brokers page, verify that the
ansible-service-broker service broker has a status of Ready.

Service catalog controller manager Pod logs

From the Workloads → Pods page for the openshift-service-catalog-controller-
manager project, review the logs for each of the Pods and verify that you see a log
entry with the message Successfully fetched catalog entries from broker.

4.5.3.1. OpenShift Ansible Broker configuration options

You can set the following options for your OpenShift Ansible Broker.

Table 4.1. OpenShift Ansible Broker configuration options

YAML key Description Default value

brokerName The name used to identify the broker instance. ansible-service-
broker

brokerNamespace The namespace where the broker resides. openshift-ansible-
service-broker

brokerImage The fully qualified image used for the broker. docker.io/ansiblepla
ybookbundle/origin-
ansible-service-
broker:v4.0

brokerImagePullPoli
cy

The pull policy used for the broker image itself. IfNotPresent

brokerNodeSelector The node selector string used for the broker’s
deployment.

''

OpenShift Container Platform 4.1 Applications

62

registries Expressed as a yaml list of broker registry configs,
allowing the user to configure the image registries
the broker will discover and source its APBs from.

See the default
registries array.

logLevel The log level used for the broker’s logs. info

apbPullPolicy The pull policy used for APB Pods. IfNotPresent

sandboxRole The role granted to the service account used to
execute APBs.

edit

keepNamespace Whether the transient namespace created to run the
APB is deleted after the conclusion of the APB,
regardless of the result.

false

keepNamespaceOnE
rror

Whether the transient namespace created to run the
APB is deleted after the conclusion of the APB, only
in the event of an error result.

false

bootstrapOnStartup Whether or not the broker should run its bootstrap
routine on startup.

true

refreshInterval The interval of time between broker bootstraps,
refreshing its inventory of APBs.

600s

launchApbOnBind Experimental: Toggles the broker executing APBs on
bind operations.

false

autoEscalate Whether the broker should escalate the permissions
of a user while running the APB. This should typically
remain false since the broker performs originating
user authorization to ensure that the user has
permissions granted to the APB sandbox.

false

outputRequest Whether to output the low level HTTP requests that
the broker receives.

false

YAML key Description Default value

Default array for registries

- type: rhcc
 name: rhcc
 url: https://registry.redhat.io
 white_list:
 - ".*-apb$"
 auth_type: secret
 auth_name: asb-registry-auth

CHAPTER 4. SERVICE BROKERS

63

4.6. CONFIGURING THE OPENSHIFT ANSIBLE BROKER

IMPORTANT

The OpenShift Ansible Broker is deprecated in OpenShift Container Platform 4.
Equivalent and better functionality is present in the Operator Framework and Operator
Lifecycle Manager (OLM).

4.6.1. Configuring the OpenShift Ansible Broker

The following procedure customizes the settings for your OpenShift Ansible Broker.

Prerequisites

You have installed and started the OpenShift Ansible Broker.

Procedure

This procedure assumes that you used ansible-service-broker both as the OpenShift Ansible Broker
name and the project that it was installed into.

1. Navigate in the web console to Catalog → Installed Operators and select the ansible-service-
broker project.

2. Select the OpenShift Ansible Service Broker Operator.

3. On the Automation Broker tab, select ansible-service-broker.

4. On the YAML tab, add or update any OpenShift Ansible Broker configuration options under the
spec field.
For example:

5. Click Save to apply these changes.

4.6.1.1. OpenShift Ansible Broker configuration options

You can set the following options for your OpenShift Ansible Broker.

Table 4.2. OpenShift Ansible Broker configuration options

YAML key Description Default value

brokerName The name used to identify the broker instance. ansible-service-
broker

brokerNamespace The namespace where the broker resides. openshift-ansible-
service-broker

spec:
 keepNamespace: true
 sandboxRole: edit

OpenShift Container Platform 4.1 Applications

64

brokerImage The fully qualified image used for the broker. docker.io/ansiblepla
ybookbundle/origin-
ansible-service-
broker:v4.0

brokerImagePullPoli
cy

The pull policy used for the broker image itself. IfNotPresent

brokerNodeSelector The node selector string used for the broker’s
deployment.

''

registries Expressed as a yaml list of broker registry configs,
allowing the user to configure the image registries
the broker will discover and source its APBs from.

See the default
registries array.

logLevel The log level used for the broker’s logs. info

apbPullPolicy The pull policy used for APB Pods. IfNotPresent

sandboxRole The role granted to the service account used to
execute APBs.

edit

keepNamespace Whether the transient namespace created to run the
APB is deleted after the conclusion of the APB,
regardless of the result.

false

keepNamespaceOnE
rror

Whether the transient namespace created to run the
APB is deleted after the conclusion of the APB, only
in the event of an error result.

false

bootstrapOnStartup Whether or not the broker should run its bootstrap
routine on startup.

true

refreshInterval The interval of time between broker bootstraps,
refreshing its inventory of APBs.

600s

launchApbOnBind Experimental: Toggles the broker executing APBs on
bind operations.

false

autoEscalate Whether the broker should escalate the permissions
of a user while running the APB. This should typically
remain false since the broker performs originating
user authorization to ensure that the user has
permissions granted to the APB sandbox.

false

YAML key Description Default value

CHAPTER 4. SERVICE BROKERS

65

outputRequest Whether to output the low level HTTP requests that
the broker receives.

false

YAML key Description Default value

Default array for registries

4.6.2. Configuring monitoring for the OpenShift Ansible Broker

In order for Prometheus to monitor the OpenShift Ansible Broker, you must create the following
resources to grant Prometheus permission to access the namespace where the OpenShift Ansible
Broker was installed.

Prerequisites

The OpenShift Ansible Broker is installed.

NOTE

This procedure assumes that you installed the OpenShift Ansible Broker into the
openshift-ansible-service-broker namespace.

Procedure

1. Create the role.

a. Navigate to Administration → Roles and click Create Role.

b. Replace the YAML in the editor with the following:

- type: rhcc
 name: rhcc
 url: https://registry.redhat.io
 white_list:
 - ".*-apb$"
 auth_type: secret
 auth_name: asb-registry-auth

apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
 name: prometheus-k8s
 namespace: openshift-ansible-service-broker
rules:
- apiGroups:
 - ""
 resources:
 - services
 - endpoints
 - pods
 verbs:

OpenShift Container Platform 4.1 Applications

66

c. Click Create.

2. Create the role binding.

a. Navigate to Administration → Role Bindings and click Create Binding.

b. For the Binding Type, select Namespace Role Binding (RoleBinding).

c. For the Role Binding, enter prometheus-k8s in the Name field and openshift-ansible-
service-broker in the Namespace field.

d. For the Role, select prometheus-k8s.

e. For the Subject, choose the Service Account option, select the openshift-monitoring
namespace, and enter prometheus-k8s in the Subject Name field.

f. Click Create.

Prometheus will now have access to OpenShift Ansible Broker metrics.

4.7. PROVISIONING SERVICE BUNDLES

4.7.1. Provisioning service bundles

The following procedure provisions an example PostgreSQL service bundle (APB) that was made
available by the OpenShift Ansible Broker.

Prerequisites

The service catalog is installed.

The OpenShift Ansible Broker is installed.

Procedure

1. Create a project.

a. Navigate in the web console to Home → Projects and click Create Project.

b. Enter test-postgresql-apb in the Name field and click Create.

2. Create a service instance.

a. Navigate to the Catalog → Developer Catalog page.

b. Select the PostgreSQL (APB) service bundle and click Create Service Instance.

c. Review the default selections and set any other required fields, and click Create.

d. Go to Catalog → Provisioned Services and verify that the dh-postgresql-apb service
instance is created and has a status of Ready.

You can check the progress on the Home → Events page. After a few moments, you should

 - get
 - list
 - watch

CHAPTER 4. SERVICE BROKERS

67

You can check the progress on the Home → Events page. After a few moments, you should
see an event for dh-postgresql-apb with the message "The instance was provisioned
successfully".

3. Create a service binding.

a. From the Provisioned Services page, click dh-postgresql-apb and click Create Service
Binding.

b. Review the default service binding name and click Create.
This creates a new secret for binding using the name provided.

4. Review the secret that was created.

a. Navigate to Workloads → Secrets and verify that a secret named dh-postgresql-apb was
created.

b. Click dh-postgresql-apb and review the key-value pairs in the Data section, which are used
for binding to other apps.

4.8. UNINSTALLING THE OPENSHIFT ANSIBLE BROKER

You can uninstall the OpenShift Ansible Broker if you no longer require access to the service bundles
that it provides.

IMPORTANT

The OpenShift Ansible Broker is deprecated in OpenShift Container Platform 4.
Equivalent and better functionality is present in the Operator Framework and Operator
Lifecycle Manager (OLM).

4.8.1. Uninstalling the OpenShift Ansible Broker

The following procedure uninstalls the OpenShift Ansible Broker and its Operator using the web
console.

WARNING

Do not uninstall the OpenShift Ansible Broker if there are any provisioned services
from it in your cluster, otherwise you might encounter errors when trying to manage
the services.

Prerequisites

The OpenShift Ansible Broker is installed.

Procedure

This procedure assumes that you installed the OpenShift Ansible Broker into the openshift-ansible-
service-broker project.



OpenShift Container Platform 4.1 Applications

68

1. Uninstall the OpenShift Ansible Broker.

a. Navigate to Catalog → Installed Operators and select the openshift-ansible-service-
broker project from the drop-down menu.

b. Click OpenShift Ansible Service Broker Operator.

c. Select the Automation Broker tab.

d. Click ansible-service-broker.

e. From the Actions drop-down menu, select Delete Automation Broker.

f. Click Delete from the confirmation pop-up window.
The OpenShift Ansible Broker is now uninstalled, and service bundles will soon be removed
from the Developer Catalog.

2. Uninstall the OpenShift Ansible Service Broker Operator.

a. Navigate to Catalog → Operator Management and select the openshift-ansible-service-
broker project from the drop-down menu.

b. Click View subscription for the OpenShift Ansible Service Broker Operator.

c. Select automationbroker.

d. From the Actions drop-down menu, select Remove Subscription.

e. Verify that the checkbox is checked next to Also completely remove the
automationbroker Operator from the selected namespace and click Remove.
The OpenShift Ansible Service Broker Operator is no longer installed in your cluster.

After the OpenShift Ansible Broker is uninstalled, users will no longer have access to the service bundles
provided by the OpenShift Ansible Broker.

CHAPTER 4. SERVICE BROKERS

69

CHAPTER 5. DEPLOYMENTS

5.1. UNDERSTANDING DEPLOYMENTS AND DEPLOYMENTCONFIGS

Deployments and DeploymentConfigs in OpenShift Container Platform are API objects that provide two
similar but different methods for fine-grained management over common user applications. They are
composed of the following separate API objects:

A DeploymentConfig or a Deployment, either of which describes the desired state of a particular
component of the application as a Pod template.

DeploymentConfigs involve one or more ReplicationControllers, which contain a point-in-time
record of the state of a DeploymentConfig as a Pod template. Similarly, Deployments involve
one or more ReplicaSets, a successor of ReplicationControllers.

One or more Pods, which represent an instance of a particular version of an application.

5.1.1. Building blocks of a deployment

Deployments and DeploymentConfigs are enabled by the use of native Kubernetes API objects
ReplicationControllers and ReplicaSets, respectively, as their building blocks.

Users do not have to manipulate ReplicationControllers, ReplicaSets, or Pods owned by
DeploymentConfigs or Deployments. The deployment systems ensures changes are propagated
appropriately.

TIP

If the existing deployment strategies are not suited for your use case and you must run manual steps
during the lifecycle of your deployment, then you should consider creating a Custom deployment
strategy.

The following sections provide further details on these objects.

5.1.1.1. ReplicationControllers

A ReplicationController ensures that a specified number of replicas of a Pod are running at all times. If
Pods exit or are deleted, the ReplicationController acts to instantiate more up to the defined number.
Likewise, if there are more running than desired, it deletes as many as necessary to match the defined
amount.

A ReplicationController configuration consists of:

The number of replicas desired (which can be adjusted at runtime).

A Pod definition to use when creating a replicated Pod.

A selector for identifying managed Pods.

A selector is a set of labels assigned to the Pods that are managed by the ReplicationController. These
labels are included in the Pod definition that the ReplicationController instantiates. The
ReplicationController uses the selector to determine how many instances of the Pod are already running
in order to adjust as needed.

The ReplicationController does not perform auto-scaling based on load or traffic, as it does not track

OpenShift Container Platform 4.1 Applications

70

1

2

3

4

5

The ReplicationController does not perform auto-scaling based on load or traffic, as it does not track
either. Rather, this requires its replica count to be adjusted by an external auto-scaler.

The following is an example definition of a ReplicationController:

The number of copies of the Pod to run.

The label selector of the Pod to run.

A template for the Pod the controller creates.

Labels on the Pod should include those from the label selector.

The maximum name length after expanding any parameters is 63 characters.

5.1.1.2. ReplicaSets

Similar to a ReplicationController, a ReplicaSet is a native Kubernetes API object that ensures a
specified number of pod replicas are running at any given time. The difference between a ReplicaSet
and a ReplicationController is that a ReplicaSet supports set-based selector requirements whereas a
replication controller only supports equality-based selector requirements.

NOTE

Only use ReplicaSets if you require custom update orchestration or do not require
updates at all. Otherwise, use Deployments. ReplicaSets can be used independently, but
are used by deployments to orchestrate pod creation, deletion, and updates.
Deployments manage their ReplicaSets automatically, provide declarative updates to
pods, and do not have to manually manage the ReplicaSets that they create.

The following is an example ReplicaSet definition:

apiVersion: v1
kind: ReplicationController
metadata:
 name: frontend-1
spec:
 replicas: 1 1
 selector: 2
 name: frontend
 template: 3
 metadata:
 labels: 4
 name: frontend 5
 spec:
 containers:
 - image: openshift/hello-openshift
 name: helloworld
 ports:
 - containerPort: 8080
 protocol: TCP
 restartPolicy: Always

CHAPTER 5. DEPLOYMENTS

71

1

2

3

A label query over a set of resources. The result of matchLabels and matchExpressions are
logically conjoined.

Equality-based selector to specify resources with labels that match the selector.

Set-based selector to filter keys. This selects all resources with key equal to tier and value equal to
frontend.

5.1.2. DeploymentConfigs

Building on ReplicationControllers, OpenShift Container Platform adds expanded support for the
software development and deployment lifecycle with the concept of DeploymentConfigs. In the simplest
case, a DeploymentConfig creates a new ReplicationController and lets it start up Pods.

However, OpenShift Container Platform deployments from DeploymentConfigs also provide the ability
to transition from an existing deployment of an image to a new one and also define hooks to be run
before or after creating the ReplicationController.

The DeploymentConfig deployment system provides the following capabilities:

A DeploymentConfig, which is a template for running applications.

Triggers that drive automated deployments in response to events.

User-customizable deployment strategies to transition from the previous version to the new
version. A strategy runs inside a Pod commonly referred as the deployment process.

A set of hooks (lifecycle hooks) for executing custom behavior in different points during the
lifecycle of a deployment.

apiVersion: apps/v1
kind: ReplicaSet
metadata:
 name: frontend-1
 labels:
 tier: frontend
spec:
 replicas: 3
 selector: 1
 matchLabels: 2
 tier: frontend
 matchExpressions: 3
 - {key: tier, operator: In, values: [frontend]}
 template:
 metadata:
 labels:
 tier: frontend
 spec:
 containers:
 - image: openshift/hello-openshift
 name: helloworld
 ports:
 - containerPort: 8080
 protocol: TCP
 restartPolicy: Always

OpenShift Container Platform 4.1 Applications

72

Versioning of your application in order to support rollbacks either manually or automatically in
case of deployment failure.

Manual replication scaling and autoscaling.

When you create a DeploymentConfig, a ReplicationController is created representing the
DeploymentConfig’s Pod template. If the DeploymentConfig changes, a new ReplicationController is
created with the latest Pod template, and a deployment process runs to scale down the old
ReplicationController and scale up the new one.

Instances of your application are automatically added and removed from both service load balancers
and routers as they are created. As long as your application supports graceful shutdown when it receives
the TERM signal, you can ensure that running user connections are given a chance to complete
normally.

The OpenShift Container Platform DeploymentConfig object defines the following details:

1. The elements of a ReplicationController definition.

2. Triggers for creating a new deployment automatically.

3. The strategy for transitioning between deployments.

4. Lifecycle hooks.

Each time a deployment is triggered, whether manually or automatically, a deployer Pod manages the
deployment (including scaling down the old ReplicationController, scaling up the new one, and running
hooks). The deployment pod remains for an indefinite amount of time after it completes the
Deployment in order to retain its logs of the Deployment. When a deployment is superseded by another,
the previous ReplicationController is retained to enable easy rollback if needed.

Example DeploymentConfig definition

A ConfigChange trigger causes a new Deployment to be created any time the

apiVersion: v1
kind: DeploymentConfig
metadata:
 name: frontend
spec:
 replicas: 5
 selector:
 name: frontend
 template: { ... }
 triggers:
 - type: ConfigChange 1
 - imageChangeParams:
 automatic: true
 containerNames:
 - helloworld
 from:
 kind: ImageStreamTag
 name: hello-openshift:latest
 type: ImageChange 2
 strategy:
 type: Rolling 3

CHAPTER 5. DEPLOYMENTS

73

1

2

3

A ConfigChange trigger causes a new Deployment to be created any time the
ReplicationController template changes.

An ImageChange trigger causes a new Deployment to be created each time a new version of the
backing image is available in the named imagestream.

The default Rolling strategy makes a downtime-free transition between Deployments.

5.1.3. Deployments

Kubernetes provides a first-class, native API object type in OpenShift Container Platform called
Deployments. Deployments serve as a descendant of the OpenShift Container Platform-specific
DeploymentConfig.

Like DeploymentConfigs, Deployments describe the desired state of a particular component of an
application as a Pod template. Deployments create ReplicaSets, which orchestrate Pod lifecycles.

For example, the following Deployment definition creates a ReplicaSet to bring up one hello-openshift
Pod:

Deployment definition

apiVersion: apps/v1
kind: Deployment
metadata:
 name: hello-openshift
spec:
 replicas: 1
 selector:
 matchLabels:
 app: hello-openshift
 template:
 metadata:
 labels:
 app: hello-openshift
 spec:
 containers:
 - name: hello-openshift
 image: openshift/hello-openshift:latest
 ports:
 - containerPort: 80

5.1.4. Comparing Deployments and DeploymentConfigs

Both Kubernetes Deployments and OpenShift Container Platform-provided DeploymentConfigs are
supported in OpenShift Container Platform; however, it is recommended to use Deployments unless you
need a specific feature or behavior provided by DeploymentConfigs.

The following sections go into more detail on the differences between the two object types to further
help you decide which type to use.

5.1.4.1. Design

One important difference between Deployments and DeploymentConfigs is the properties of the CAP

OpenShift Container Platform 4.1 Applications

74

One important difference between Deployments and DeploymentConfigs is the properties of the CAP
theorem that each design has chosen for the rollout process. DeploymentConfigs prefer consistency,
whereas Deployments take availability over consistency.

For DeploymentConfigs, if a node running a deployer Pod goes down, it will not get replaced. The
process waits until the node comes back online or is manually deleted. Manually deleting the node also
deletes the corresponding Pod. This means that you can not delete the Pod to unstick the rollout, as the
kubelet is responsible for deleting the associated Pod.

However, Deployments rollouts are driven from a controller manager. The controller manager runs in
high availability mode on masters and uses leader election algorithms to value availability over
consistency. During a failure it is possible for other masters to act on the same Deployment at the same
time, but this issue will be reconciled shortly after the failure occurs.

5.1.4.2. DeploymentConfigs-specific features

Automatic rollbacks
Currently, Deployments do not support automatically rolling back to the last successfully deployed
ReplicaSet in case of a failure.

Triggers
Deployments have an implicit ConfigChange trigger in that every change in the pod template of a
deployment automatically triggers a new rollout. If you do not want new rollouts on pod template
changes, pause the deployment:

$ oc rollout pause deployments/<name>

Lifecycle hooks
Deployments do not yet support any lifecycle hooks.

Custom strategies
Deployments do not support user-specified Custom deployment strategies yet.

5.1.4.3. Deployments-specific features

Rollover
The deployment process for Deployments is driven by a controller loop, in contrast to
DeploymentConfigs which use deployer pods for every new rollout. This means that a Deployment can
have as many active ReplicaSets as possible, and eventually the deployment controller will scale down all
old ReplicaSets and scale up the newest one.

DeploymentConfigs can have at most one deployer pod running, otherwise multiple deployers end up
conflicting while trying to scale up what they think should be the newest ReplicationController. Because
of this, only two ReplicationControllers can be active at any point in time. Ultimately, this translates to
faster rapid rollouts for Deployments.

Proportional scaling
Because the Deployment controller is the sole source of truth for the sizes of new and old ReplicaSets
owned by a Deployment, it is able to scale ongoing rollouts. Additional replicas are distributed
proportionally based on the size of each ReplicaSet.

DeploymentConfigs cannot be scaled when a rollout is ongoing because the DeploymentConfig
controller will end up having issues with the deployer process about the size of the new
ReplicationController.

Pausing mid-rollout

CHAPTER 5. DEPLOYMENTS

75

https://en.wikipedia.org/wiki/CAP_theorem

Deployments can be paused at any point in time, meaning you can also pause ongoing rollouts. On the
other hand, you cannot pause deployer pods currently, so if you try to pause a DeploymentConfig in the
middle of a rollout, the deployer process will not be affected and will continue until it finishes.

5.2. MANAGING DEPLOYMENT PROCESSES

5.2.1. Managing DeploymentConfigs

DeploymentConfigs can be managed from the OpenShift Container Platform web console’s Workloads
page or using the oc CLI. The following procedures show CLI usage unless otherwise stated.

5.2.1.1. Starting a deployment

You can start a rollout to begin the deployment process of your application.

Procedure

1. To start a new deployment process from an existing DeploymentConfig, run the following
command:

$ oc rollout latest dc/<name>

NOTE

If a deployment process is already in progress, the command displays a message
and a new ReplicationController will not be deployed.

5.2.1.2. Viewing a deployment

You can view a deployment to get basic information about all the available revisions of your application.

Procedure

1. To show details about all recently created ReplicationControllers for the provided
DeploymentConfig, including any currently running deployment process, run the following
command:

$ oc rollout history dc/<name>

2. To view details specific to a revision, add the --revision flag:

$ oc rollout history dc/<name> --revision=1

3. For more detailed information about a deployment configuration and its latest revision, use the
oc describe command:

$ oc describe dc <name>

5.2.1.3. Retrying a deployment

If the current revision of your DeploymentConfig failed to deploy, you can restart the deployment

OpenShift Container Platform 4.1 Applications

76

If the current revision of your DeploymentConfig failed to deploy, you can restart the deployment
process.

Procedure

1. To restart a failed deployment process:

$ oc rollout retry dc/<name>

If the latest revision of it was deployed successfully, the command displays a message and the
deployment process is not be retried.

NOTE

Retrying a deployment restarts the deployment process and does not create a
new deployment revision. The restarted ReplicationController has the same
configuration it had when it failed.

5.2.1.4. Rolling back a deployment

Rollbacks revert an application back to a previous revision and can be performed using the REST API, the
CLI, or the web console.

Procedure

1. To rollback to the last successful deployed revision of your configuration:

$ oc rollout undo dc/<name>

The DeploymentConfig’s template is reverted to match the deployment revision specified in the
undo command, and a new ReplicationController is started. If no revision is specified with --to-
revision, then the last successfully deployed revision is used.

2. Image change triggers on the DeploymentConfig are disabled as part of the rollback to prevent
accidentally starting a new deployment process soon after the rollback is complete.
To re-enable the image change triggers:

$ oc set triggers dc/<name> --auto

NOTE

DeploymentConfigs also support automatically rolling back to the last successful revision
of the configuration in case the latest deployment process fails. In that case, the latest
template that failed to deploy stays intact by the system and it is up to users to fix their
configurations.

5.2.1.5. Executing commands inside a container

You can add a command to a container, which modifies the container’s startup behavior by overruling
the image’s ENTRYPOINT. This is different from a lifecycle hook, which instead can be run once per
deployment at a specified time.

Procedure

CHAPTER 5. DEPLOYMENTS

77

1. Add the command parameters to the spec field of the DeploymentConfig. You can also add an
args field, which modifies the command (or the ENTRYPOINT if command does not exist).

spec:
 containers:
 -
 name: <container_name>
 image: 'image'
 command:
 - '<command>'
 args:
 - '<argument_1>'
 - '<argument_2>'
 - '<argument_3>'

For example, to execute the java command with the -jar and /opt/app-
root/springboots2idemo.jar arguments:

spec:
 containers:
 -
 name: example-spring-boot
 image: 'image'
 command:
 - java
 args:
 - '-jar'
 - /opt/app-root/springboots2idemo.jar

5.2.1.6. Viewing deployment logs

Procedure

1. To stream the logs of the latest revision for a given DeploymentConfig:

$ oc logs -f dc/<name>

If the latest revision is running or failed, the command returns the logs of the process that is
responsible for deploying your pods. If it is successful, it returns the logs from a Pod of your
application.

2. You can also view logs from older failed deployment processes, if and only if these processes
(old ReplicationControllers and their deployer Pods) exist and have not been pruned or deleted
manually:

$ oc logs --version=1 dc/<name>

5.2.1.7. Deployment triggers

A DeploymentConfig can contain triggers, which drive the creation of new deployment processes in
response to events inside the cluster.

OpenShift Container Platform 4.1 Applications

78

1

WARNING

If no triggers are defined on a DeploymentConfig, a ConfigChange trigger is added
by default. If triggers are defined as an empty field, deployments must be started
manually.

ConfigChange deployment triggers
The ConfigChange trigger results in a new ReplicationController whenever configuration changes are
detected in the Pod template of the DeploymentConfig.

NOTE

If a ConfigChange trigger is defined on a DeploymentConfig, the first
ReplicationController is automatically created soon after the DeploymentConfig itself is
created and it is not paused.

ConfigChange deployment trigger

ImageChange deployment triggers
The ImageChange trigger results in a new ReplicationController whenever the content of an
imagestreamtag changes (when a new version of the image is pushed).

ImageChange deployment trigger

If the imageChangeParams.automatic field is set to false, the trigger is disabled.

With the above example, when the latest tag value of the origin-ruby-sample imagestream changes
and the new image value differs from the current image specified in the DeploymentConfig’s helloworld
container, a new ReplicationController is created using the new image for the helloworld container.

NOTE



triggers:
 - type: "ConfigChange"

triggers:
 - type: "ImageChange"
 imageChangeParams:
 automatic: true 1
 from:
 kind: "ImageStreamTag"
 name: "origin-ruby-sample:latest"
 namespace: "myproject"
 containerNames:
 - "helloworld"

CHAPTER 5. DEPLOYMENTS

79

1

2

3

NOTE

If an ImageChange trigger is defined on a DeploymentConfig (with a ConfigChange
trigger and automatic=false, or with automatic=true) and the ImageStreamTag pointed
by the ImageChange trigger does not exist yet, then the initial deployment process will
automatically start as soon as an image is imported or pushed by a build to the
ImageStreamTag.

5.2.1.7.1. Setting deployment triggers

Procedure

1. You can set deployment triggers for a DeploymentConfig using the oc set triggers command.
For example, to set a ImageChangeTrigger, use the following command:

$ oc set triggers dc/<dc_name> \
 --from-image=<project>/<image>:<tag> -c <container_name>

5.2.1.8. Setting deployment resources

NOTE

This resource is available only if a cluster administrator has enabled the ephemeral
storage technology preview. This feature is disabled by default.

A deployment is completed by a Pod that consumes resources (memory, CPU, and ephemeral storage)
on a node. By default, Pods consume unbounded node resources. However, if a project specifies default
container limits, then Pods consume resources up to those limits.

You can also limit resource use by specifying resource limits as part of the deployment strategy.
Deployment resources can be used with the Recreate, Rolling, or Custom deployment strategies.

Procedure

1. In the following example, each of resources, cpu, memory, and ephemeral-storage is optional:

cpu is in CPU units: 100m represents 0.1 CPU units (100 * 1e-3).

memory is in bytes: 256Mi represents 268435456 bytes (256 * 2 ^ 20).

ephemeral-storage is in bytes: 1Gi represents 1073741824 bytes (2 ^ 30). This applies
only if your cluster administrator enabled the ephemeral storage technology preview.

However, if a quota has been defined for your project, one of the following two items is required:

type: "Recreate"
resources:
 limits:
 cpu: "100m" 1
 memory: "256Mi" 2
 ephemeral-storage: "1Gi" 3

OpenShift Container Platform 4.1 Applications

80

1

A resources section set with an explicit requests:

The requests object contains the list of resources that correspond to the list of
resources in the quota.

A limit range defined in your project, where the defaults from the LimitRange object apply
to Pods created during the deployment process.

To set deployment resources, choose one of the above options. Otherwise, deploy Pod creation
fails, citing a failure to satisfy quota.

5.2.1.9. Scaling manually

In addition to rollbacks, you can exercise fine-grained control over the number of replicas by manually
scaling them.

NOTE

Pods can also be autoscaled using the oc autoscale command.

Procedure

1. To manually scale a DeploymentConfig, use the oc scale command. For example, the following
command sets the replicas in the frontend DeploymentConfig to 3.

$ oc scale dc frontend --replicas=3

The number of replicas eventually propagates to the desired and current state of the
deployment configured by the DeploymentConfig frontend.

5.2.1.10. Accessing private repositories from DeploymentConfigs

You can add a Secret to your DeploymentConfig so that it can access images from a private repository.
This procedure shows the OpenShift Container Platform web console method.

Procedure

1. Create a new project.

2. From the Workloads page, create a Secret that contains credentials for accessing a private
image repository.

3. Create a DeploymentConfig.

4. On the DeploymentConfig editor page, set the Pull Secret and save your changes.

 type: "Recreate"
 resources:
 requests: 1
 cpu: "100m"
 memory: "256Mi"
 ephemeral-storage: "1Gi"

CHAPTER 5. DEPLOYMENTS

81

5.2.1.11. Assigning pods to specific nodes

You can use node selectors in conjunction with labeled nodes to control Pod placement.

Cluster administrators can set the default node selector for a project in order to restrict Pod placement
to specific nodes. As a developer, you can set a node selector on a Pod configuration to restrict nodes
even further.

Procedure

1. To add a node selector when creating a pod, edit the Pod configuration, and add the
nodeSelector value. This can be added to a single Pod configuration, or in a Pod template:

apiVersion: v1
kind: Pod
spec:
 nodeSelector:
 disktype: ssd
...

Pods created when the node selector is in place are assigned to nodes with the specified labels.
The labels specified here are used in conjunction with the labels added by a cluster
administrator.

For example, if a project has the type=user-node and region=east labels added to a project by
the cluster administrator, and you add the above disktype: ssd label to a Pod, the Pod is only
ever scheduled on nodes that have all three labels.

NOTE

Labels can only be set to one value, so setting a node selector of region=west in
a Pod configuration that has region=east as the administrator-set default,
results in a Pod that will never be scheduled.

5.2.1.12. Running a Pod with a different service account

You can run a Pod with a service account other than the default.

Procedure

1. Edit the DeploymentConfig:

$ oc edit dc/<deployment_config>

2. Add the serviceAccount and serviceAccountName parameters to the spec field, and specify
the service account you want to use:

spec:
 securityContext: {}
 serviceAccount: <service_account>
 serviceAccountName: <service_account>

5.3. USING DEPLOYMENTCONFIG STRATEGIES

OpenShift Container Platform 4.1 Applications

82

A deployment strategy is a way to change or upgrade an application. The aim is to make the change
without downtime in a way that the user barely notices the improvements.

Because the end user usually accesses the application through a route handled by a router, the
deployment strategy can focus on DeploymentConfig features or routing features. Strategies that
focus on the DeploymentConfig impact all routes that use the application. Strategies that use router
features target individual routes.

Many deployment strategies are supported through the DeploymentConfig, and some additional
strategies are supported through router features. DeploymentConfig strategies are discussed in this
section.

Choosing a deployment strategy

Consider the following when choosing a deployment strategy:

Long-running connections must be handled gracefully.

Database conversions can be complex and must be done and rolled back along with the
application.

If the application is a hybrid of microservices and traditional components, downtime might be
required to complete the transition.

You must have the infrastructure to do this.

If you have a non-isolated test environment, you can break both new and old versions.

A deployment strategy uses readiness checks to determine if a new Pod is ready for use. If a readiness
check fails, the DeploymentConfig retries to run the Pod until it times out. The default timeout is 10m, a
value set in TimeoutSeconds in dc.spec.strategy.*params.

5.3.1. Rolling strategy

A rolling deployment slowly replaces instances of the previous version of an application with instances of
the new version of the application. The Rolling strategy is the default deployment strategy used if no
strategy is specified on a DeploymentConfig.

A rolling deployment typically waits for new pods to become ready via a readiness check before scaling
down the old components. If a significant issue occurs, the rolling deployment can be aborted.

When to use a Rolling deployment:

When you want to take no downtime during an application update.

When your application supports having old code and new code running at the same time.

A Rolling deployment means you to have both old and new versions of your code running at the same
time. This typically requires that your application handle N-1 compatibility.

Example Rolling strategy definition

strategy:
 type: Rolling
 rollingParams:
 updatePeriodSeconds: 1 1

CHAPTER 5. DEPLOYMENTS

83

1

2

3

4

5

6

The time to wait between individual Pod updates. If unspecified, this value defaults to 1.

The time to wait between polling the deployment status after update. If unspecified, this value
defaults to 1.

The time to wait for a scaling event before giving up. Optional; the default is 600. Here, giving up
means automatically rolling back to the previous complete deployment.

maxSurge is optional and defaults to 25% if not specified. See the information below the following
procedure.

maxUnavailable is optional and defaults to 25% if not specified. See the information below the
following procedure.

pre and post are both lifecycle hooks.

The Rolling strategy:

1. Executes any pre lifecycle hook.

2. Scales up the new ReplicationController based on the surge count.

3. Scales down the old ReplicationController based on the max unavailable count.

4. Repeats this scaling until the new ReplicationController has reached the desired replica count
and the old ReplicationController has been scaled to zero.

5. Executes any post lifecycle hook.

IMPORTANT

When scaling down, the Rolling strategy waits for Pods to become ready so it can decide
whether further scaling would affect availability. If scaled up Pods never become ready,
the deployment process will eventually time out and result in a deployment failure.

The maxUnavailable parameter is the maximum number of Pods that can be unavailable during the
update. The maxSurge parameter is the maximum number of Pods that can be scheduled above the
original number of Pods. Both parameters can be set to either a percentage (e.g., 10%) or an absolute
value (e.g., 2). The default value for both is 25%.

These parameters allow the deployment to be tuned for availability and speed. For example:

maxUnavailable*=0 and maxSurge*=20% ensures full capacity is maintained during the
update and rapid scale up.

maxUnavailable*=10% and maxSurge*=0 performs an update using no extra capacity (an in-
place update).

maxUnavailable*=10% and maxSurge*=10% scales up and down quickly with some potential

 intervalSeconds: 1 2
 timeoutSeconds: 120 3
 maxSurge: "20%" 4
 maxUnavailable: "10%" 5
 pre: {} 6
 post: {}

OpenShift Container Platform 4.1 Applications

84

maxUnavailable*=10% and maxSurge*=10% scales up and down quickly with some potential
for capacity loss.

Generally, if you want fast rollouts, use maxSurge. If you have to take into account resource quota and
can accept partial unavailability, use maxUnavailable.

5.3.1.1. Canary deployments

All Rolling deployments in OpenShift Container Platform are canary deployments ; a new version (the
canary) is tested before all of the old instances are replaced. If the readiness check never succeeds, the
canary instance is removed and the DeploymentConfig will be automatically rolled back.

The readiness check is part of the application code and can be as sophisticated as necessary to ensure
the new instance is ready to be used. If you must implement more complex checks of the application
(such as sending real user workloads to the new instance), consider implementing a Custom deployment
or using a blue-green deployment strategy.

5.3.1.2. Creating a Rolling deployment

Rolling deployments are the default type in OpenShift Container Platform. You can create a Rolling
deployment using the CLI.

Procedure

1. Create an application based on the example deployment images found in DockerHub:

$ oc new-app openshift/deployment-example

2. If you have the router installed, make the application available via a route (or use the service IP
directly)

$ oc expose svc/deployment-example

3. Browse to the application at deployment-example.<project>.<router_domain> to verify you
see the v1 image.

4. Scale the DeploymentConfig up to three replicas:

$ oc scale dc/deployment-example --replicas=3

5. Trigger a new deployment automatically by tagging a new version of the example as the latest
tag:

$ oc tag deployment-example:v2 deployment-example:latest

6. In your browser, refresh the page until you see the v2 image.

7. When using the CLI, the following command shows how many Pods are on version 1 and how
many are on version 2. In the web console, the Pods are progressively added to v2 and removed
from v1:

$ oc describe dc deployment-example

During the deployment process, the new ReplicationController is incrementally scaled up. After the new

CHAPTER 5. DEPLOYMENTS

85

https://hub.docker.com/r/openshift/deployment-example/

1

2

During the deployment process, the new ReplicationController is incrementally scaled up. After the new
Pods are marked as ready (by passing their readiness check), the deployment process continues.

If the Pods do not become ready, the process aborts, and the DeploymentConfig rolls back to its
previous version.

5.3.2. Recreate strategy

The Recreate strategy has basic rollout behavior and supports lifecycle hooks for injecting code into the
deployment process.

Example Recreate strategy definition

recreateParams are optional.

pre, mid, and post are lifecycle hooks.

The Recreate strategy:

1. Executes any pre lifecycle hook.

2. Scales down the previous deployment to zero.

3. Executes any mid lifecycle hook.

4. Scales up the new deployment.

5. Executes any post lifecycle hook.

IMPORTANT

During scale up, if the replica count of the deployment is greater than one, the first
replica of the deployment will be validated for readiness before fully scaling up the
deployment. If the validation of the first replica fails, the deployment will be considered a
failure.

When to use a Recreate deployment:

When you must run migrations or other data transformations before your new code starts.

When you do not support having new and old versions of your application code running at the
same time.

When you want to use a RWO volume, which is not supported being shared between multiple
replicas.

A Recreate deployment incurs downtime because, for a brief period, no instances of your application are

strategy:
 type: Recreate
 recreateParams: 1
 pre: {} 2
 mid: {}
 post: {}

OpenShift Container Platform 4.1 Applications

86

A Recreate deployment incurs downtime because, for a brief period, no instances of your application are
running. However, your old code and new code do not run at the same time.

5.3.3. Custom strategy

The Custom strategy allows you to provide your own deployment behavior.

Example Custom strategy definition

In the above example, the organization/strategy container image provides the deployment behavior.
The optional command array overrides any CMD directive specified in the image’s Dockerfile. The
optional environment variables provided are added to the execution environment of the strategy
process.

Additionally, OpenShift Container Platform provides the following environment variables to the
deployment process:

Environment variable Description

OPENSHIFT_DEPLOYMENT_
NAME

The name of the new deployment (a ReplicationController).

OPENSHIFT_DEPLOYMENT_
NAMESPACE

The name space of the new deployment.

The replica count of the new deployment will initially be zero. The responsibility of the strategy is to
make the new deployment active using the logic that best serves the needs of the user.

Alternatively, use customParams to inject the custom deployment logic into the existing deployment
strategies. Provide a custom shell script logic and call the openshift-deploy binary. Users do not have to
supply their custom deployer container image; in this case, the default OpenShift Container Platform
deployer image is used instead:

strategy:
 type: Custom
 customParams:
 image: organization/strategy
 command: ["command", "arg1"]
 environment:
 - name: ENV_1
 value: VALUE_1

strategy:
 type: Rolling
 customParams:
 command:
 - /bin/sh
 - -c
 - |
 set -e
 openshift-deploy --until=50%

CHAPTER 5. DEPLOYMENTS

87

1

This results in following deployment:

Started deployment #2
--> Scaling up custom-deployment-2 from 0 to 2, scaling down custom-deployment-1 from 2 to 0
(keep 2 pods available, don't exceed 3 pods)
 Scaling custom-deployment-2 up to 1
--> Reached 50% (currently 50%)
Halfway there
--> Scaling up custom-deployment-2 from 1 to 2, scaling down custom-deployment-1 from 2 to 0
(keep 2 pods available, don't exceed 3 pods)
 Scaling custom-deployment-1 down to 1
 Scaling custom-deployment-2 up to 2
 Scaling custom-deployment-1 down to 0
--> Success
Complete

If the custom deployment strategy process requires access to the OpenShift Container Platform API or
the Kubernetes API the container that executes the strategy can use the service account token available
inside the container for authentication.

5.3.4. Lifecycle hooks

The Rolling and Recreate strategies support lifecycle hooks, or deployment hooks, which allow behavior
to be injected into the deployment process at predefined points within the strategy:

Example pre lifecycle hook

execNewPod is a Pod-based lifecycle hook.

Every hook has a failurePolicy, which defines the action the strategy should take when a hook failure is
encountered:

Abort The deployment process will be considered a failure if the hook fails.

Retry The hook execution should be retried until it succeeds.

Ignore Any hook failure should be ignored and the deployment should proceed.

Hooks have a type-specific field that describes how to execute the hook. Currently, Pod-based hooks
are the only supported hook type, specified by the execNewPod field.

Pod-based lifecycle hook

Pod-based lifecycle hooks execute hook code in a new Pod derived from the template in a

 echo Halfway there
 openshift-deploy
 echo Complete

pre:
 failurePolicy: Abort
 execNewPod: {} 1

OpenShift Container Platform 4.1 Applications

88

1

2

3

4

Pod-based lifecycle hooks execute hook code in a new Pod derived from the template in a
DeploymentConfig.

The following simplified example DeploymentConfig uses the Rolling strategy. Triggers and some other
minor details are omitted for brevity:

The helloworld name refers to spec.template.spec.containers[0].name.

This command overrides any ENTRYPOINT defined by the openshift/origin-ruby-sample image.

env is an optional set of environment variables for the hook container.

volumes is an optional set of volume references for the hook container.

In this example, the pre hook will be executed in a new Pod using the openshift/origin-ruby-sample
image from the helloworld container. The hook Pod has the following properties:

The hook command is /usr/bin/command arg1 arg2.

The hook container has the CUSTOM_VAR1=custom_value1 environment variable.

The hook failure policy is Abort, meaning the deployment process fails if the hook fails.

The hook Pod inherits the data volume from the DeploymentConfig Pod.

kind: DeploymentConfig
apiVersion: v1
metadata:
 name: frontend
spec:
 template:
 metadata:
 labels:
 name: frontend
 spec:
 containers:
 - name: helloworld
 image: openshift/origin-ruby-sample
 replicas: 5
 selector:
 name: frontend
 strategy:
 type: Rolling
 rollingParams:
 pre:
 failurePolicy: Abort
 execNewPod:
 containerName: helloworld 1
 command: ["/usr/bin/command", "arg1", "arg2"] 2
 env: 3
 - name: CUSTOM_VAR1
 value: custom_value1
 volumes:
 - data 4

CHAPTER 5. DEPLOYMENTS

89

5.3.4.1. Setting lifecycle hooks

You can set lifecycle hooks, or deployment hooks, for a DeploymentConfig using the CLI.

Procedure

1. Use the oc set deployment-hook command to set the type of hook you want: --pre, --mid, or --
post. For example, to set a pre-deployment hook:

$ oc set deployment-hook dc/frontend \
 --pre -c helloworld -e CUSTOM_VAR1=custom_value1 \
 -v data --failure-policy=abort -- /usr/bin/command arg1 arg2

5.4. USING ROUTE-BASED DEPLOYMENT STRATEGIES

Deployment strategies provide a way for the application to evolve. Some strategies use
DeploymentConfigs to make changes that are seen by users of all routes that resolve to the application.
Other advanced strategies, such as the ones described in this section, use router features in conjunction
with DeploymentConfigs to impact specific routes.

The most common route-based strategy is to use a blue-green deployment . The new version (the blue
version) is brought up for testing and evaluation, while the users still use the stable version (the green
version). When ready, the users are switched to the blue version. If a problem arises, you can switch back
to the green version.

A common alternative strategy is to use A/B versions that are both active at the same time and some
users use one version, and some users use the other version. This can be used for experimenting with
user interface changes and other features to get user feedback. It can also be used to verify proper
operation in a production context where problems impact a limited number of users.

A canary deployment tests the new version but when a problem is detected it quickly falls back to the
previous version. This can be done with both of the above strategies.

The route-based deployment strategies do not scale the number of Pods in the services. To maintain
desired performance characteristics the deployment configurations might have to be scaled.

5.4.1. Proxy shards and traffic splitting

In production environments, you can precisely control the distribution of traffic that lands on a particular
shard. When dealing with large numbers of instances, you can use the relative scale of individual shards
to implement percentage based traffic. That combines well with a proxy shard , which forwards or splits
the traffic it receives to a separate service or application running elsewhere.

In the simplest configuration, the proxy forwards requests unchanged. In more complex setups, you can
duplicate the incoming requests and send to both a separate cluster as well as to a local instance of the
application, and compare the result. Other patterns include keeping the caches of a DR installation
warm, or sampling incoming traffic for analysis purposes.

Any TCP (or UDP) proxy could be run under the desired shard. Use the oc scale command to alter the
relative number of instances serving requests under the proxy shard. For more complex traffic
management, consider customizing the OpenShift Container Platform router with proportional
balancing capabilities.

5.4.2. N-1 compatibility

Applications that have new code and old code running at the same time must be careful to ensure that

OpenShift Container Platform 4.1 Applications

90

Applications that have new code and old code running at the same time must be careful to ensure that
data written by the new code can be read and handled (or gracefully ignored) by the old version of the
code. This is sometimes called schema evolution and is a complex problem.

This can take many forms: data stored on disk, in a database, in a temporary cache, or that is part of a
user’s browser session. While most web applications can support rolling deployments, it is important to
test and design your application to handle it.

For some applications, the period of time that old code and new code is running side by side is short, so
bugs or some failed user transactions are acceptable. For others, the failure pattern may result in the
entire application becoming non-functional.

One way to validate N-1 compatibility is to use an A/B deployment: run the old code and new code at the
same time in a controlled way in a test environment, and verify that traffic that flows to the new
deployment does not cause failures in the old deployment.

5.4.3. Graceful termination

OpenShift Container Platform and Kubernetes give application instances time to shut down before
removing them from load balancing rotations. However, applications must ensure they cleanly terminate
user connections as well before they exit.

On shutdown, OpenShift Container Platform sends a TERM signal to the processes in the container.
Application code, on receiving SIGTERM, stop accepting new connections. This ensures that load
balancers route traffic to other active instances. The application code then waits until all open
connections are closed (or gracefully terminate individual connections at the next opportunity) before
exiting.

After the graceful termination period expires, a process that has not exited is sent the KILL signal, which
immediately ends the process. The terminationGracePeriodSeconds attribute of a Pod or Pod
template controls the graceful termination period (default 30 seconds) and may be customized per
application as necessary.

5.4.4. Blue-green deployments

Blue-green deployments involve running two versions of an application at the same time and moving
traffic from the in-production version (the green version) to the newer version (the blue version). You
can use a Rolling strategy or switch services in a route.

Because many applications depend on persistent data, you must have an application that supports N-1
compatibility, which means it shares data and implements live migration between the database, store, or
disk by creating two copies of the data layer.

Consider the data used in testing the new version. If it is the production data, a bug in the new version
can break the production version.

5.4.4.1. Setting up a blue-green deployment

Blue-green deployments use two DeploymentConfigs. Both are running, and the one in production
depends on the service the route specifies, with each DeploymentConfig exposed to a different service.

NOTE

Routes are intended for web (HTTP and HTTPS) traffic, so this technique is best suited
for web applications.

CHAPTER 5. DEPLOYMENTS

91

You can create a new route to the new version and test it. When ready, change the service in the
production route to point to the new service and the new (blue) version is live.

If necessary, you can roll back to the older (green) version by switching the service back to the previous
version.

Procedure

1. Create two copies of the example application:

$ oc new-app openshift/deployment-example:v1 --name=example-green
$ oc new-app openshift/deployment-example:v2 --name=example-blue

This creates two independent application components: one running the v1 image under the
example-green service, and one using the v2 image under the example-blue service.

2. Create a route that points to the old service:

$ oc expose svc/example-green --name=bluegreen-example

3. Browse to the application at example-green.<project>.<router_domain> to verify you see the
v1 image.

4. Edit the route and change the service name to example-blue:

$ oc patch route/bluegreen-example -p '{"spec":{"to":{"name":"example-blue"}}}'

5. To verify that the route has changed, refresh the browser until you see the v2 image.

5.4.5. A/B deployments

The A/B deployment strategy lets you try a new version of the application in a limited way in the
production environment. You can specify that the production version gets most of the user requests
while a limited fraction of requests go to the new version.

Because you control the portion of requests to each version, as testing progresses you can increase the
fraction of requests to the new version and ultimately stop using the previous version. As you adjust the
request load on each version, the number of Pods in each service might have to be scaled as well to
provide the expected performance.

In addition to upgrading software, you can use this feature to experiment with versions of the user
interface. Since some users get the old version and some the new, you can evaluate the user’s reaction
to the different versions to inform design decisions.

For this to be effective, both the old and new versions must be similar enough that both can run at the
same time. This is common with bug fix releases and when new features do not interfere with the old.
The versions require N-1 compatibility to properly work together.

OpenShift Container Platform supports N-1 compatibility through the web console as well as the CLI.

5.4.5.1. Load balancing for A/B testing

The user sets up a route with multiple services. Each service handles a version of the application.

Each service is assigned a weight and the portion of requests to each service is the service_weight

OpenShift Container Platform 4.1 Applications

92

Each service is assigned a weight and the portion of requests to each service is the service_weight
divided by the sum_of_weights. The weight for each service is distributed to the service’s endpoints so
that the sum of the endpoint weights is the service weight.

The route can have up to four services. The weight for the service can be between 0 and 256. When the
weight is 0, the service does not participate in load-balancing but continues to serve existing persistent
connections. When the service weight is not 0, each endpoint has a minimum weight of 1. Because of
this, a service with a lot of endpoints can end up with higher weight than desired. In this case, reduce the
number of Pods to get the desired load balance weight.

Procedure

To set up the A/B environment:

1. Create the two applications and give them different names. Each creates a DeploymentConfig.
The applications are versions of the same program; one is usually the current production version
and the other the proposed new version:

$ oc new-app openshift/deployment-example --name=ab-example-a
$ oc new-app openshift/deployment-example --name=ab-example-b

Both applications are deployed and services are created.

2. Make the application available externally via a route. At this point, you can expose either. It can
be convenient to expose the current production version first and later modify the route to add
the new version.

$ oc expose svc/ab-example-a

Browse to the application at ab-example-<project>.<router_domain> to verify that you see
the desired version.

3. When you deploy the route, the router balances the traffic according to the weights specified
for the services. At this point, there is a single service with default weight=1 so all requests go to
it. Adding the other service as an alternateBackends and adjusting the weights brings the A/B
setup to life. This can be done by the oc set route-backends command or by editing the route.
Setting the oc set route-backend to 0 means the service does not participate in load-
balancing, but continues to serve existing persistent connections.

NOTE

Changes to the route just change the portion of traffic to the various services.
You might have to scale the DeploymentConfigs to adjust the number of Pods to
handle the anticipated loads.

To edit the route, run:

$ oc edit route <route_name>
...
metadata:
 name: route-alternate-service
 annotations:
 haproxy.router.openshift.io/balance: roundrobin
spec:
 host: ab-example.my-project.my-domain

CHAPTER 5. DEPLOYMENTS

93

 to:
 kind: Service
 name: ab-example-a
 weight: 10
 alternateBackends:
 - kind: Service
 name: ab-example-b
 weight: 15
...

5.4.5.1.1. Managing weights using the web console

Procedure

1. Navigate to the Route details page (Applications/Routes).

2. Select Edit from the Actions menu.

3. Check Split traffic across multiple services.

4. The Service Weights slider sets the percentage of traffic sent to each service.
For traffic split between more than two services, the relative weights are specified by integers
between 0 and 256 for each service.

Traffic weightings are shown on the Overview in the expanded rows of the applications
between which traffic is split.

5.4.5.1.2. Managing weights using the CLI

Procedure

1. To manage the services and corresponding weights load balanced by the route, use the oc set
route-backends command:

$ oc set route-backends ROUTENAME \
 [--zero|--equal] [--adjust] SERVICE=WEIGHT[%] [...] [options]

For example, the following sets ab-example-a as the primary service with weight=198 and ab-
example-b as the first alternate service with a weight=2:

$ oc set route-backends ab-example ab-example-a=198 ab-example-b=2

This means 99% of traffic is sent to service ab-example-a and 1% to service ab-example-b.

This command does not scale the DeploymentConfigs. You might be required to do so to have
enough Pods to handle the request load.

2. Run the command with no flags to verify the current configuration:

$ oc set route-backends ab-example
NAME KIND TO WEIGHT
routes/ab-example Service ab-example-a 198 (99%)
routes/ab-example Service ab-example-b 2 (1%)

3. To alter the weight of an individual service relative to itself or to the primary service, use the --

OpenShift Container Platform 4.1 Applications

94

3. To alter the weight of an individual service relative to itself or to the primary service, use the --
adjust flag. Specifying a percentage adjusts the service relative to either the primary or the first
alternate (if you specify the primary). If there are other backends, their weights are kept
proportional to the changed.
For example:

$ oc set route-backends ab-example --adjust ab-example-a=200 ab-example-b=10
$ oc set route-backends ab-example --adjust ab-example-b=5%
$ oc set route-backends ab-example --adjust ab-example-b=+15%

The --equal flag sets the weight of all services to 100:

$ oc set route-backends ab-example --equal

The --zero flag sets the weight of all services to 0. All requests then return with a 503 error.

NOTE

Not all routers may support multiple or weighted backends.

5.4.5.1.3. One service, multiple DeploymentConfigs

Procedure

1. Create a new application, adding a label ab-example=true that will be common to all shards:

$ oc new-app openshift/deployment-example --name=ab-example-a

The application is deployed and a service is created. This is the first shard.

2. Make the application available via a route (or use the service IP directly):

$ oc expose svc/ab-example-a --name=ab-example

3. Browse to the application at ab-example-<project>.<router_domain> to verify you see the v1
image.

4. Create a second shard based on the same source image and label as the first shard, but with a
different tagged version and unique environment variables:

$ oc new-app openshift/deployment-example:v2 \
 --name=ab-example-b --labels=ab-example=true \
 SUBTITLE="shard B" COLOR="red"

5. At this point, both sets of Pods are being served under the route. However, because both
browsers (by leaving a connection open) and the router (by default, through a cookie) attempt
to preserve your connection to a back-end server, you might not see both shards being
returned to you.
To force your browser to one or the other shard:

a. Use the oc scale command to reduce replicas of ab-example-a to 0.

$ oc scale dc/ab-example-a --replicas=0

CHAPTER 5. DEPLOYMENTS

95

Refresh your browser to show v2 and shard B (in red).

b. Scale ab-example-a to 1 replica and ab-example-b to 0:

$ oc scale dc/ab-example-a --replicas=1; oc scale dc/ab-example-b --replicas=0

Refresh your browser to show v1 and shard A (in blue).

6. If you trigger a deployment on either shard, only the Pods in that shard are affected. You can
trigger a deployment by changing the SUBTITLE environment variable in either
DeploymentConfig:

$ oc edit dc/ab-example-a

or

$ oc edit dc/ab-example-b

OpenShift Container Platform 4.1 Applications

96

CHAPTER 6. CRDS

6.1. EXTENDING THE KUBERNETES API WITH CUSTOM RESOURCE
DEFINITIONS

This guide describes how cluster administrators can extend their OpenShift Container Platform cluster
by creating and managing Custom Resource Definitions (CRDs).

6.1.1. Custom Resource Definitions

In the Kubernetes API, a resource is an endpoint that stores a collection of API objects of a certain kind.
For example, the built-in Pods resource contains a collection of Pod objects.

A Custom Resource Definition (CRD) object defines a new, unique object Kind in the cluster and lets the
Kubernetes API server handle its entire lifecycle.

Custom Resource (CR) objects are created from CRDs that have been added to the cluster by a cluster
administrator, allowing all cluster users to add the new resource type into projects.

When a cluster administrator adds a new CRD to the cluster, the Kubernetes API server reacts by
creating a new RESTful resource path that can be accessed by the entire cluster or a single project
(namespace) and begins serving the specified CR.

Cluster administrators that want to grant access to the CRD to other users can use cluster role
aggregation to grant access to users with the admin, edit, or view default cluster roles. Cluster role
aggregation allows the insertion of custom policy rules into these cluster roles. This behavior integrates
the new resource into the cluster’s RBAC policy as if it was a built-in resource.

Operators in particular make use of CRDs by packaging them with any required RBAC policy and other
software-specific logic. Cluster administrators can also add CRDs manually to the cluster outside of an
Operator’s lifecycle, making them available to all users.

NOTE

While only cluster administrators can create CRDs, developers can create the CR from an
existing CRD if they have read and write permission to it.

6.1.2. Creating a Custom Resource Definition

To create Custom Resource (CR) objects, cluster administrators must first create a Custom Resource
Definition (CRD).

Prerequisites

Access to an OpenShift Container Platform cluster with cluster-admin user privileges.

Procedure

To create a CRD:

1. Create a YAML file that contains the following field types:

Example YAML file for a CRD

CHAPTER 6. CRDS

97

1

2

3

4

5

6

7

8

9

Use the apiextensions.k8s.io/v1beta1 API.

Specify a name for the definition. This must be in the <plural-name>.<group> format using
the values from the group and plural fields.

Specify a group name for the API. An API group is a collection of objects that are logically
related. For example, all batch objects like Job or ScheduledJob could be in the batch API
Group (such as batch.api.example.com). A good practice is to use a fully-qualified-domain
name of your organization.

Specify a version name to be used in the URL. Each API Group can exist in multiple
versions. For example: v1alpha, v1beta, v1.

Specify whether the custom objects are available to a project (Namespaced) or all
projects in the cluster (Cluster).

Specify the plural name to use in the URL. The plural field is the same as a resource in an
API URL.

Specify a singular name to use as an alias on the CLI and for display.

Specify the kind of objects that can be created. The type can be in CamelCase.

Specify a shorter string to match your resource on the CLI.

NOTE

By default, a CRD is cluster-scoped and available to all projects.

2. Create the CRD object:

$ oc create -f <file_name>.yaml

A new RESTful API endpoint is created at:

/apis/<spec:group>/<spec:version>/<scope>/*/<names-plural>/...

apiVersion: apiextensions.k8s.io/v1beta1 1
kind: CustomResourceDefinition
metadata:
 name: crontabs.stable.example.com 2
spec:
 group: stable.example.com 3
 version: v1 4
 scope: Namespaced 5
 names:
 plural: crontabs 6
 singular: crontab 7
 kind: CronTab 8
 shortNames:
 - ct 9

OpenShift Container Platform 4.1 Applications

98

For example, using the example file, the following endpoint is created:

/apis/stable.example.com/v1/namespaces/*/crontabs/...

You can now use this endpoint URL to create and manage CRs. The object Kind is based on the
spec.kind field of the CRD object you created.

6.1.3. Creating cluster roles for Custom Resource Definitions

Cluster administrators can grant permissions to existing cluster-scoped Custom Resource Definitions
(CRDs). If you use the admin, edit, and view default cluster roles, take advantage of cluster role
aggregation for their rules.

IMPORTANT

You must explicitly assign permissions to each of these roles. The roles with more
permissions do not inherit rules from roles with fewer permissions. If you assign a rule to a
role, you must also assign that verb to roles that have more permissions. For example, if
you grant the get crontabs permission to the view role, you must also grant it to the edit
and admin roles. The admin or edit role is usually assigned to the user that created a
project through the project template.

Prerequisites

Create a CRD.

Procedure

1. Create a cluster role definition file for the CRD. The cluster role definition is a YAML file that
contains the rules that apply to each cluster role. The OpenShift Container Platform controller
adds the rules that you specify to the default cluster roles.

Example YAML file for a cluster role definition

kind: ClusterRole
apiVersion: rbac.authorization.k8s.io/v1 1
metadata:
 name: aggregate-cron-tabs-admin-edit 2
 labels:
 rbac.authorization.k8s.io/aggregate-to-admin: "true" 3
 rbac.authorization.k8s.io/aggregate-to-edit: "true" 4
rules:
- apiGroups: ["stable.example.com"] 5
 resources: ["crontabs"] 6
 verbs: ["get", "list", "watch", "create", "update", "patch", "delete", "deletecollection"] 7

kind: ClusterRole
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 name: aggregate-cron-tabs-view 8
 labels:
 # Add these permissions to the "view" default role.
 rbac.authorization.k8s.io/aggregate-to-view: "true" 9

CHAPTER 6. CRDS

99

1

2 8

3

4

5 11

6 12

7 13

9

10

Use the rbac.authorization.k8s.io/v1 API.

Specify a name for the definition.

Specify this label to grant permissions to the admin default role.

Specify this label to grant permissions to the edit default role.

Specify the group name of the CRD.

Specify the plural name of the CRD that these rules apply to.

Specify the verbs that represent the permissions that are granted to the role. For example,
apply read and write permissions to the admin and edit roles and only read permission to
the view role.

Specify this label to grant permissions to the view default role.

Specify this label to grant permissions to the cluster-reader default role.

2. Create the cluster role:

$ oc create -f <file_name>.yaml

6.1.4. Creating Custom Resources from a file

After a Custom Resource Definition (CRD) has been added to the cluster, Custom Resources (CRs) can
be created with the CLI from a file using the CR specification.

Prerequisites

CRD added to the cluster by a cluster administrator.

Procedure

1. Create a YAML file for the CR. In the following example definition, the cronSpec and image
custom fields are set in a CR of Kind: CronTab. The Kind comes from the spec.kind field of
the CRD object.

Example YAML file for a CR

 rbac.authorization.k8s.io/aggregate-to-cluster-reader: "true" 10
rules:
- apiGroups: ["stable.example.com"] 11
 resources: ["crontabs"] 12
 verbs: ["get", "list", "watch"] 13

apiVersion: "stable.example.com/v1" 1
kind: CronTab 2
metadata:
 name: my-new-cron-object 3
 finalizers: 4
 - finalizer.stable.example.com

OpenShift Container Platform 4.1 Applications

100

1

2

3

4

5

Specify the group name and API version (name/version) from the Custom Resource
Definition.

Specify the type in the CRD.

Specify a name for the object.

Specify the finalizers for the object, if any. Finalizers allow controllers to implement
conditions that must be completed before the object can be deleted.

Specify conditions specific to the type of object.

2. After you create the file, create the object:

$ oc create -f <file_name>.yaml

6.1.5. Inspecting Custom Resources

You can inspect Custom Resource (CR) objects that exist in your cluster using the CLI.

Prerequisites

A CR object exists in a namespace to which you have access.

Procedure

1. To get information on a specific Kind of a CR, run:

$ oc get <kind>

For example:

$ oc get crontab

NAME KIND
my-new-cron-object CronTab.v1.stable.example.com

Resource names are not case-sensitive, and you can use either the singular or plural forms
defined in the CRD, as well as any short name. For example:

$ oc get crontabs
$ oc get crontab
$ oc get ct

2. You can also view the raw YAML data for a CR:

$ oc get <kind> -o yaml

spec: 5
 cronSpec: "* * * * /5"
 image: my-awesome-cron-image

CHAPTER 6. CRDS

101

https://kubernetes.io/docs/tasks/access-kubernetes-api/extend-api-custom-resource-definitions/#finalizers

1 2

$ oc get ct -o yaml

apiVersion: v1
items:
- apiVersion: stable.example.com/v1
 kind: CronTab
 metadata:
 clusterName: ""
 creationTimestamp: 2017-05-31T12:56:35Z
 deletionGracePeriodSeconds: null
 deletionTimestamp: null
 name: my-new-cron-object
 namespace: default
 resourceVersion: "285"
 selfLink: /apis/stable.example.com/v1/namespaces/default/crontabs/my-new-cron-object
 uid: 9423255b-4600-11e7-af6a-28d2447dc82b
 spec:
 cronSpec: '* * * * /5' 1
 image: my-awesome-cron-image 2

Custom data from the YAML that you used to create the object displays.

6.2. MANAGING RESOURCES FROM CUSTOM RESOURCE
DEFINITIONS

This guide describes how developers can manage Custom Resources (CRs) that come from Custom
Resource Definitions (CRDs).

6.2.1. Custom Resource Definitions

In the Kubernetes API, a resource is an endpoint that stores a collection of API objects of a certain kind.
For example, the built-in Pods resource contains a collection of Pod objects.

A Custom Resource Definition (CRD) object defines a new, unique object Kind in the cluster and lets the
Kubernetes API server handle its entire lifecycle.

Custom Resource (CR) objects are created from CRDs that have been added to the cluster by a cluster
administrator, allowing all cluster users to add the new resource type into projects.

Operators in particular make use of CRDs by packaging them with any required RBAC policy and other
software-specific logic. Cluster administrators can also add CRDs manually to the cluster outside of an
Operator’s lifecycle, making them available to all users.

NOTE

While only cluster administrators can create CRDs, developers can create the CR from an
existing CRD if they have read and write permission to it.

6.2.2. Creating Custom Resources from a file

After a Custom Resource Definition (CRD) has been added to the cluster, Custom Resources (CRs) can
be created with the CLI from a file using the CR specification.

OpenShift Container Platform 4.1 Applications

102

1

2

3

4

5

Prerequisites

CRD added to the cluster by a cluster administrator.

Procedure

1. Create a YAML file for the CR. In the following example definition, the cronSpec and image
custom fields are set in a CR of Kind: CronTab. The Kind comes from the spec.kind field of
the CRD object.

Example YAML file for a CR

Specify the group name and API version (name/version) from the Custom Resource
Definition.

Specify the type in the CRD.

Specify a name for the object.

Specify the finalizers for the object, if any. Finalizers allow controllers to implement
conditions that must be completed before the object can be deleted.

Specify conditions specific to the type of object.

2. After you create the file, create the object:

$ oc create -f <file_name>.yaml

6.2.3. Inspecting Custom Resources

You can inspect Custom Resource (CR) objects that exist in your cluster using the CLI.

Prerequisites

A CR object exists in a namespace to which you have access.

Procedure

1. To get information on a specific Kind of a CR, run:

$ oc get <kind>

For example:

apiVersion: "stable.example.com/v1" 1
kind: CronTab 2
metadata:
 name: my-new-cron-object 3
 finalizers: 4
 - finalizer.stable.example.com
spec: 5
 cronSpec: "* * * * /5"
 image: my-awesome-cron-image

CHAPTER 6. CRDS

103

https://kubernetes.io/docs/tasks/access-kubernetes-api/extend-api-custom-resource-definitions/#finalizers

1 2

$ oc get crontab

NAME KIND
my-new-cron-object CronTab.v1.stable.example.com

Resource names are not case-sensitive, and you can use either the singular or plural forms
defined in the CRD, as well as any short name. For example:

$ oc get crontabs
$ oc get crontab
$ oc get ct

2. You can also view the raw YAML data for a CR:

$ oc get <kind> -o yaml

$ oc get ct -o yaml

apiVersion: v1
items:
- apiVersion: stable.example.com/v1
 kind: CronTab
 metadata:
 clusterName: ""
 creationTimestamp: 2017-05-31T12:56:35Z
 deletionGracePeriodSeconds: null
 deletionTimestamp: null
 name: my-new-cron-object
 namespace: default
 resourceVersion: "285"
 selfLink: /apis/stable.example.com/v1/namespaces/default/crontabs/my-new-cron-object
 uid: 9423255b-4600-11e7-af6a-28d2447dc82b
 spec:
 cronSpec: '* * * * /5' 1
 image: my-awesome-cron-image 2

Custom data from the YAML that you used to create the object displays.

OpenShift Container Platform 4.1 Applications

104

CHAPTER 7. QUOTAS

7.1. RESOURCE QUOTAS PER PROJECT

A resource quota, defined by a ResourceQuota object, provides constraints that limit aggregate
resource consumption per project. It can limit the quantity of objects that can be created in a project by
type, as well as the total amount of compute resources and storage that may be consumed by resources
in that project.

This guide describes how resource quotas work, how cluster administrators can set and manage
resource quotas on a per project basis, and how developers and cluster administrators can view them.

7.1.1. Resources managed by quotas

The following describes the set of compute resources and object types that can be managed by a
quota.

NOTE

A pod is in a terminal state if status.phase in (Failed, Succeeded) is true.

Table 7.1. Compute resources managed by quota

Resource Name Description

cpu The sum of CPU requests across all pods in a non-terminal state cannot exceed
this value. cpu and requests.cpu are the same value and can be used
interchangeably.

memory The sum of memory requests across all pods in a non-terminal state cannot
exceed this value. memory and requests.memory are the same value and
can be used interchangeably.

ephemeral-storage The sum of local ephemeral storage requests across all pods in a non-terminal
state cannot exceed this value. ephemeral-storage and
requests.ephemeral-storage are the same value and can be used
interchangeably. This resource is available only if you enabled the ephemeral
storage technology preview. This feature is disabled by default.

requests.cpu The sum of CPU requests across all pods in a non-terminal state cannot exceed
this value. cpu and requests.cpu are the same value and can be used
interchangeably.

requests.memory The sum of memory requests across all pods in a non-terminal state cannot
exceed this value. memory and requests.memory are the same value and
can be used interchangeably.

CHAPTER 7. QUOTAS

105

requests.ephemeral-
storage

The sum of ephemeral storage requests across all pods in a non-terminal state
cannot exceed this value. ephemeral-storage and requests.ephemeral-
storage are the same value and can be used interchangeably. This resource is
available only if you enabled the ephemeral storage technology preview. This
feature is disabled by default.

limits.cpu The sum of CPU limits across all pods in a non-terminal state cannot exceed
this value.

limits.memory The sum of memory limits across all pods in a non-terminal state cannot exceed
this value.

limits.ephemeral-
storage

The sum of ephemeral storage limits across all pods in a non-terminal state
cannot exceed this value. This resource is available only if you enabled the
ephemeral storage technology preview. This feature is disabled by default.

Resource Name Description

Table 7.2. Storage resources managed by quota

Resource Name Description

requests.storage The sum of storage requests across all persistent volume claims in any state
cannot exceed this value.

persistentvolumeclaim
s

The total number of persistent volume claims that can exist in the project.

<storage-class-
name>.storageclass.st
orage.k8s.io/requests.
storage

The sum of storage requests across all persistent volume claims in any state
that have a matching storage class, cannot exceed this value.

<storage-class-
name>.storageclass.st
orage.k8s.io/persistent
volumeclaims

The total number of persistent volume claims with a matching storage class
that can exist in the project.

Table 7.3. Object counts managed by quota

Resource Name Description

pods The total number of pods in a non-terminal state that can exist in the project.

replicationcontrollers The total number of ReplicationControllers that can exist in the project.

resourcequotas The total number of resource quotas that can exist in the project.

OpenShift Container Platform 4.1 Applications

106

services The total number of services that can exist in the project.

services.loadbalancers The total number of services of type LoadBalancer that can exist in the
project.

services.nodeports The total number of services of type NodePort that can exist in the project.

secrets The total number of secrets that can exist in the project.

configmaps The total number of ConfigMap objects that can exist in the project.

persistentvolumeclaim
s

The total number of persistent volume claims that can exist in the project.

openshift.io/imagestre
ams

The total number of imagestreams that can exist in the project.

Resource Name Description

7.1.2. Quota scopes

Each quota can have an associated set of scopes. A quota only measures usage for a resource if it
matches the intersection of enumerated scopes.

Adding a scope to a quota restricts the set of resources to which that quota can apply. Specifying a
resource outside of the allowed set results in a validation error.

Scope Description

Terminating Match pods where spec.activeDeadlineSeconds
>= 0.

NotTerminating Match pods where spec.activeDeadlineSeconds
is nil.

BestEffort Match pods that have best effort quality of service
for either cpu or memory.

NotBestEffort Match pods that do not have best effort quality of
service for cpu and memory.

A BestEffort scope restricts a quota to limiting the following resources:

pods

A Terminating, NotTerminating, and NotBestEffort scope restricts a quota to tracking the following
resources:

pods

CHAPTER 7. QUOTAS

107

memory

requests.memory

limits.memory

cpu

requests.cpu

limits.cpu

ephemeral-storage

requests.ephemeral-storage

limits.ephemeral-storage

NOTE

Ephemeral storage requests and limits apply only if you enabled the ephemeral storage
technology preview. This feature is disabled by default.

7.1.3. Quota enforcement

After a resource quota for a project is first created, the project restricts the ability to create any new
resources that may violate a quota constraint until it has calculated updated usage statistics.

After a quota is created and usage statistics are updated, the project accepts the creation of new
content. When you create or modify resources, your quota usage is incremented immediately upon the
request to create or modify the resource.

When you delete a resource, your quota use is decremented during the next full recalculation of quota
statistics for the project. A configurable amount of time determines how long it takes to reduce quota
usage statistics to their current observed system value.

If project modifications exceed a quota usage limit, the server denies the action, and an appropriate
error message is returned to the user explaining the quota constraint violated, and what their currently
observed usage statistics are in the system.

7.1.4. Requests versus limits

When allocating compute resources, each container might specify a request and a limit value each for
CPU, memory, and ephemeral storage. Quotas can restrict any of these values.

If the quota has a value specified for requests.cpu or requests.memory, then it requires that every
incoming container make an explicit request for those resources. If the quota has a value specified for
limits.cpu or limits.memory, then it requires that every incoming container specify an explicit limit for
those resources.

7.1.5. Sample resource quota definitions

core-object-counts.yaml

apiVersion: v1

OpenShift Container Platform 4.1 Applications

108

1

2

3

4

5

6

1

The total number of ConfigMap objects that can exist in the project.

The total number of persistent volume claims (PVCs) that can exist in the project.

The total number of ReplicationControllers that can exist in the project.

The total number of secrets that can exist in the project.

The total number of services that can exist in the project.

The total number of services of type LoadBalancer that can exist in the project.

openshift-object-counts.yaml

The total number of imagestreams that can exist in the project.

compute-resources.yaml

kind: ResourceQuota
metadata:
 name: core-object-counts
spec:
 hard:
 configmaps: "10" 1
 persistentvolumeclaims: "4" 2
 replicationcontrollers: "20" 3
 secrets: "10" 4
 services: "10" 5
 services.loadbalancers: "2" 6

apiVersion: v1
kind: ResourceQuota
metadata:
 name: openshift-object-counts
spec:
 hard:
 openshift.io/imagestreams: "10" 1

apiVersion: v1
kind: ResourceQuota
metadata:
 name: compute-resources
spec:
 hard:
 pods: "4" 1
 requests.cpu: "1" 2
 requests.memory: 1Gi 3
 requests.ephemeral-storage: 2Gi 4
 limits.cpu: "2" 5
 limits.memory: 2Gi 6
 limits.ephemeral-storage: 4Gi 7

CHAPTER 7. QUOTAS

109

1

2

3

4

5

6

7

1

2

1

2

3

The total number of pods in a non-terminal state that can exist in the project.

Across all pods in a non-terminal state, the sum of CPU requests cannot exceed 1 core.

Across all pods in a non-terminal state, the sum of memory requests cannot exceed 1Gi.

Across all pods in a non-terminal state, the sum of ephemeral storage requests cannot exceed 2Gi.

Across all pods in a non-terminal state, the sum of CPU limits cannot exceed 2 cores.

Across all pods in a non-terminal state, the sum of memory limits cannot exceed 2Gi.

Across all pods in a non-terminal state, the sum of ephemeral storage limits cannot exceed 4Gi.

besteffort.yaml

The total number of pods in a non-terminal state with BestEffort quality of service that can exist in
the project.

Restricts the quota to only matching pods that have BestEffort quality of service for either
memory or CPU.

compute-resources-long-running.yaml

The total number of pods in a non-terminal state.

Across all pods in a non-terminal state, the sum of CPU limits cannot exceed this value.

Across all pods in a non-terminal state, the sum of memory limits cannot exceed this value.

apiVersion: v1
kind: ResourceQuota
metadata:
 name: besteffort
spec:
 hard:
 pods: "1" 1
 scopes:
 - BestEffort 2

apiVersion: v1
kind: ResourceQuota
metadata:
 name: compute-resources-long-running
spec:
 hard:
 pods: "4" 1
 limits.cpu: "4" 2
 limits.memory: "2Gi" 3
 limits.ephemeral-storage: "4Gi" 4
 scopes:
 - NotTerminating 5

OpenShift Container Platform 4.1 Applications

110

4

5

1

2

3

4

5

1

Across all pods in a non-terminal state, the sum of ephemeral storage limits cannot exceed this
value.

Restricts the quota to only matching pods where spec.activeDeadlineSeconds is set to nil. Build
pods will fall under NotTerminating unless the RestartNever policy is applied.

compute-resources-time-bound.yaml

The total number of pods in a non-terminal state.

Across all pods in a non-terminal state, the sum of CPU limits cannot exceed this value.

Across all pods in a non-terminal state, the sum of memory limits cannot exceed this value.

Across all pods in a non-terminal state, the sum of ephemeral storage limits cannot exceed this
value.

Restricts the quota to only matching pods where spec.activeDeadlineSeconds >=0. For example,
this quota would charge for build or deployer pods, but not long running pods like a web server or
database.

storage-consumption.yaml

The total number of persistent volume claims in a project

apiVersion: v1
kind: ResourceQuota
metadata:
 name: compute-resources-time-bound
spec:
 hard:
 pods: "2" 1
 limits.cpu: "1" 2
 limits.memory: "1Gi" 3
 limits.ephemeral-storage: "1Gi" 4
 scopes:
 - Terminating 5

apiVersion: v1
kind: ResourceQuota
metadata:
 name: storage-consumption
spec:
 hard:
 persistentvolumeclaims: "10" 1
 requests.storage: "50Gi" 2
 gold.storageclass.storage.k8s.io/requests.storage: "10Gi" 3
 silver.storageclass.storage.k8s.io/requests.storage: "20Gi" 4
 silver.storageclass.storage.k8s.io/persistentvolumeclaims: "5" 5
 bronze.storageclass.storage.k8s.io/requests.storage: "0" 6
 bronze.storageclass.storage.k8s.io/persistentvolumeclaims: "0" 7

CHAPTER 7. QUOTAS

111

2

3

4

5

6

7

Across all persistent volume claims in a project, the sum of storage requested cannot exceed this
value.

Across all persistent volume claims in a project, the sum of storage requested in the gold storage
class cannot exceed this value.

Across all persistent volume claims in a project, the sum of storage requested in the silver storage
class cannot exceed this value.

Across all persistent volume claims in a project, the total number of claims in the silver storage class
cannot exceed this value.

Across all persistent volume claims in a project, the sum of storage requested in the bronze storage
class cannot exceed this value. When this is set to 0, it means bronze storage class cannot request
storage.

Across all persistent volume claims in a project, the sum of storage requested in the bronze storage
class cannot exceed this value. When this is set to 0, it means bronze storage class cannot create
claims.

7.1.6. Creating a quota

You can create a quota to constrain resource usage in a given project.

Procedure

1. Define the quota in a file.

2. Use the file to create the quota and apply it to a project:

$ oc create -f <file> [-n <project_name>]

For example:

$ oc create -f core-object-counts.yaml -n demoproject

7.1.6.1. Creating object count quotas

You can create an object count quota for all OpenShift Container Platform standard namespaced
resource types, such as BuildConfig, and DeploymentConfig. An object quota count places a defined
quota on all standard namespaced resource types.

When using a resource quota, an object is charged against the quota if it exists in server storage. These
types of quotas are useful to protect against exhaustion of storage resources.

Procedure

To configure an object count quota for a resource:

1. Run the following command:

$ oc create quota <name> \
 --hard=count/<resource>.<group>=<quota>,count/<resource>.<group>=<quota> 1

OpenShift Container Platform 4.1 Applications

112

1 <resource> is the name of the resource, and <group> is the API group, if applicable. Use
the oc api-resources command for a list of resources and their associated API groups.

For example:

$ oc create quota test \
 --
hard=count/deployments.extensions=2,count/replicasets.extensions=4,count/pods=3,count/secr
ets=4
resourcequota "test" created

This example limits the listed resources to the hard limit in each project in the cluster.

2. Verify that the quota was created:

$ oc describe quota test
Name: test
Namespace: quota
Resource Used Hard
-------- ---- ----
count/deployments.extensions 0 2
count/pods 0 3
count/replicasets.extensions 0 4
count/secrets 0 4

7.1.6.2. Setting resource quota for extended resources

Overcommitment of resources is not allowed for extended resources, so you must specify requests and
limits for the same extended resource in a quota. Currently, only quota items with the prefix requests.
is allowed for extended resources. The following is an example scenario of how to set resource quota for
the GPU resource nvidia.com/gpu.

Procedure

1. Determine how many GPUs are available on a node in your cluster. For example:

oc describe node ip-172-31-27-209.us-west-2.compute.internal | egrep
'Capacity|Allocatable|gpu'
 openshift.com/gpu-accelerator=true
Capacity:
 nvidia.com/gpu: 2
Allocatable:
 nvidia.com/gpu: 2
 nvidia.com/gpu 0 0

In this example, 2 GPUs are available.

2. Set a quota in the namespace nvidia. In this example, the quota is 1:

cat gpu-quota.yaml
apiVersion: v1
kind: ResourceQuota
metadata:
 name: gpu-quota

CHAPTER 7. QUOTAS

113

 namespace: nvidia
spec:
 hard:
 requests.nvidia.com/gpu: 1

3. Create the quota:

oc create -f gpu-quota.yaml
resourcequota/gpu-quota created

4. Verify that the namespace has the correct quota set:

oc describe quota gpu-quota -n nvidia
Name: gpu-quota
Namespace: nvidia
Resource Used Hard
-------- ---- ----
requests.nvidia.com/gpu 0 1

5. Run a pod that asks for a single GPU:

oc create -f gpu-pod.yaml

apiVersion: v1
kind: Pod
metadata:
 generateName: gpu-pod-
 namespace: nvidia
spec:
 restartPolicy: OnFailure
 containers:
 - name: rhel7-gpu-pod
 image: rhel7
 env:
 - name: NVIDIA_VISIBLE_DEVICES
 value: all
 - name: NVIDIA_DRIVER_CAPABILITIES
 value: "compute,utility"
 - name: NVIDIA_REQUIRE_CUDA
 value: "cuda>=5.0"
 command: ["sleep"]
 args: ["infinity"]
 resources:
 limits:
 nvidia.com/gpu: 1

6. Verify that the pod is running:

oc get pods
NAME READY STATUS RESTARTS AGE
gpu-pod-s46h7 1/1 Running 0 1m

7. Verify that the quota Used counter is correct:

OpenShift Container Platform 4.1 Applications

114

oc describe quota gpu-quota -n nvidia
Name: gpu-quota
Namespace: nvidia
Resource Used Hard
-------- ---- ----
requests.nvidia.com/gpu 1 1

8. Attempt to create a second GPU pod in the nvidia namespace. This is technically available on
the node because it has 2 GPUs:

oc create -f gpu-pod.yaml
Error from server (Forbidden): error when creating "gpu-pod.yaml": pods "gpu-pod-f7z2w" is
forbidden: exceeded quota: gpu-quota, requested: requests.nvidia.com/gpu=1, used:
requests.nvidia.com/gpu=1, limited: requests.nvidia.com/gpu=1

This Forbidden error message is expected because you have a quota of 1 GPU and this pod
tried to allocate a second GPU, which exceeds its quota.

7.1.7. Viewing a quota

You can view usage statistics related to any hard limits defined in a project’s quota by navigating in the
web console to the project’s Quota page.

You can also use the CLI to view quota details.

Procedure

1. Get the list of quotas defined in the project. For example, for a project called demoproject:

$ oc get quota -n demoproject
NAME AGE
besteffort 11m
compute-resources 2m
core-object-counts 29m

2. Describe the quota you are interested in, for example the core-object-counts quota:

$ oc describe quota core-object-counts -n demoproject
Name: core-object-counts
Namespace: demoproject
Resource Used Hard
-------- ---- ----
configmaps 3 10
persistentvolumeclaims 0 4
replicationcontrollers 3 20
secrets 9 10
services 2 10

7.1.8. Configuring quota synchronization period

When a set of resources are deleted, but before quota usage is restored, a user might encounter
problems when attempting to reuse the resources. The synchronization time frame of resources is
determined by the resource-quota-sync-period setting, which can be configured by a cluster

CHAPTER 7. QUOTAS

115

administrator.

Adjusting the regeneration time can be helpful for creating resources and determining resource usage
when automation is used.

NOTE

The resource-quota-sync-period setting is designed to balance system performance.
Reducing the sync period can result in a heavy load on the master.

Procedure

To configure the quota synchronization period:

1. Edit the Kubernetes controller manager.

$ oc edit kubecontrollermanager cluster

2. Change the unsupportedconfigOverrides field to have the following settings, specifying the
amount of time, in seconds, for the resource-quota-sync-period field:

7.2. RESOURCE QUOTAS ACROSS MULTIPLE PROJECTS

A multi-project quota, defined by a ClusterResourceQuota object, allows quotas to be shared across
multiple projects. Resources used in each selected project are aggregated and that aggregate is used to
limit resources across all the selected projects.

This guide describes how cluster administrators can set and manage resource quotas across multiple
projects.

7.2.1. Selecting multiple projects during quota creation

When creating quotas, you can select multiple projects based on annotation selection, label selection, or
both.

Procedure

1. To select projects based on annotations, run the following command:

$ oc create clusterquota for-user \
 --project-annotation-selector openshift.io/requester=<user_name> \
 --hard pods=10 \
 --hard secrets=20

This creates the following ClusterResourceQuota object:

 unsupportedConfigOverrides:
 extendedArguments:
 resource-quota-sync-period:
 - 60s

apiVersion: v1
kind: ClusterResourceQuota

OpenShift Container Platform 4.1 Applications

116

1

2

3

4

5

1

2

The ResourceQuotaSpec object that will be enforced over the selected projects.

A simple key-value selector for annotations.

A label selector that can be used to select projects.

A per-namespace map that describes current quota usage in each selected project.

The aggregate usage across all selected projects.

This multi-project quota document controls all projects requested by <user_name> using the
default project request endpoint. You are limited to 10 pods and 20 secrets.

2. Similarly, to select projects based on labels, run this command:

$ oc create clusterresourcequota for-name \ 1
 --project-label-selector=name=frontend \ 2
 --hard=pods=10 --hard=secrets=20

Both clusterresourcequota and clusterquota are aliases of the same command. for-
name is the name of the ClusterResourceQuota object.

To select projects by label, provide a key-value pair by using the format --project-label-
selector=key=value.

metadata:
 name: for-user
spec:
 quota: 1
 hard:
 pods: "10"
 secrets: "20"
 selector:
 annotations: 2
 openshift.io/requester: <user_name>
 labels: null 3
status:
 namespaces: 4
 - namespace: ns-one
 status:
 hard:
 pods: "10"
 secrets: "20"
 used:
 pods: "1"
 secrets: "9"
 total: 5
 hard:
 pods: "10"
 secrets: "20"
 used:
 pods: "1"
 secrets: "9"

CHAPTER 7. QUOTAS

117

This creates the following ClusterResourceQuota object definition:

7.2.2. Viewing applicable ClusterResourceQuotas

A project administrator is not allowed to create or modify the multi-project quota that limits his or her
project, but the administrator is allowed to view the multi-project quota documents that are applied to
his or her project. The project administrator can do this via the AppliedClusterResourceQuota
resource.

Procedure

1. To view quotas applied to a project, run:

$ oc describe AppliedClusterResourceQuota

For example:

Name: for-user
Namespace: <none>
Created: 19 hours ago
Labels: <none>
Annotations: <none>
Label Selector: <null>
AnnotationSelector: map[openshift.io/requester:<user-name>]
Resource Used Hard
-------- ---- ----
pods 1 10
secrets 9 20

7.2.3. Selection granularity

Because of the locking consideration when claiming quota allocations, the number of active projects
selected by a multi-project quota is an important consideration. Selecting more than 100 projects under
a single multi-project quota can have detrimental effects on API server responsiveness in those
projects.

apiVersion: v1
kind: ClusterResourceQuota
metadata:
 creationTimestamp: null
 name: for-name
spec:
 quota:
 hard:
 pods: "10"
 secrets: "20"
 selector:
 annotations: null
 labels:
 matchLabels:
 name: frontend

OpenShift Container Platform 4.1 Applications

118

CHAPTER 8. MONITORING APPLICATION HEALTH
In software systems, components can become unhealthy due to transient issues such as temporary
connectivity loss, configuration errors, or problems with external dependencies. OpenShift Container
Platform applications have a number of options to detect and handle unhealthy containers.

8.1. UNDERSTANDING HEALTH CHECKS

A probe is a Kubernetes action that periodically performs diagnostics on a running container. Currently,
two types of probes exist, each serving a different purpose.

Readiness Probe

A Readiness check determines if the container in which it is scheduled is ready to service requests. If
the readiness probe fails a container, the endpoints controller ensures the container has its IP
address removed from the endpoints of all services. A readiness probe can be used to signal to the
endpoints controller that even though a container is running, it should not receive any traffic from a
proxy.

For example, a Readiness check can control which Pods are used. When a Pod is not ready, it is removed.

Liveness Probe

A Liveness checks determines if the container in which it is scheduled is still running. If the liveness
probe fails due to a condition such as a deadlock, the kubelet kills the container The container then
responds based on its restart policy.

For example, a liveness probe on a node with a restartPolicy of Always or OnFailure kills and restarts
the Container on the node.

Sample Liveness Check

apiVersion: v1
kind: Pod
metadata:
 labels:
 test: liveness
 name: liveness-http
spec:
 containers:
 - name: liveness-http
 image: k8s.gcr.io/liveness 1
 args:
 - /server
 livenessProbe: 2
 httpGet: 3
 # host: my-host
 # scheme: HTTPS
 path: /healthz
 port: 8080
 httpHeaders:
 - name: X-Custom-Header
 value: Awesome
 initialDelaySeconds: 15 4
 timeoutSeconds: 1 5
 name: liveness 6

CHAPTER 8. MONITORING APPLICATION HEALTH

119

1

2

3

4

5

Specifies the image to use for the liveness probe.

Specifies the type of heath check.

Specifies the type of Liveness check:

HTTP Checks. Specify httpGet.

Container Execution Checks. Specify exec.

TCP Socket Check. Specify tcpSocket.

Specifies the number of seconds before performing the first probe after the container starts.

Specifies the number of seconds between probes.

Sample Liveness check output wth unhealthy container

$ oc describe pod pod1

....

FirstSeen LastSeen Count From SubobjectPath Type Reason Message
--------- -------- ----- ---- ------------- -------- ------ -------
37s 37s 1 {default-scheduler } Normal Scheduled Successfully assigned
liveness-exec to worker0
36s 36s 1 {kubelet worker0} spec.containers{liveness} Normal Pulling pulling image
"k8s.gcr.io/busybox"
36s 36s 1 {kubelet worker0} spec.containers{liveness} Normal Pulled Successfully
pulled image "k8s.gcr.io/busybox"
36s 36s 1 {kubelet worker0} spec.containers{liveness} Normal Created Created
container with docker id 86849c15382e; Security:[seccomp=unconfined]
36s 36s 1 {kubelet worker0} spec.containers{liveness} Normal Started Started
container with docker id 86849c15382e
2s 2s 1 {kubelet worker0} spec.containers{liveness} Warning Unhealthy Liveness
probe failed: cat: can't open '/tmp/healthy': No such file or directory

8.1.1. Understanding the types of health checks

Liveness checks and Readiness checks can be configured in three ways:

HTTP Checks

The kubelet uses a web hook to determine the healthiness of the container. The check is deemed
successful if the HTTP response code is between 200 and 399.

A HTTP check is ideal for applications that return HTTP status codes when completely initialized.

Container Execution Checks

The kubelet executes a command inside the container. Exiting the check with status 0 is considered a
success.

TCP Socket Checks

The kubelet attempts to open a socket to the container. The container is only considered healthy if

OpenShift Container Platform 4.1 Applications

120

1

2

3

The kubelet attempts to open a socket to the container. The container is only considered healthy if
the check can establish a connection. A TCP socket check is ideal for applications that do not start
listening until initialization is complete.

8.2. CONFIGURING HEALTH CHECKS

To configure health checks, create a pod for each type of check you want.

Procedure

To create health checks:

1. Create a Liveness Container Execution Check:

a. Create a YAML file similar to the following:

Specify a Liveness check and the type of Liveness check.

Specify the commands to use in the container.

Specify the number of seconds before performing the first probe after the container
starts.

b. Verify the state of the health check pod:

$ oc describe pod liveness-exec

Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal Scheduled 9s default-scheduler Successfully assigned
openshift-logging/liveness-exec to ip-10-0-143-40.ec2.internal
 Normal Pulling 2s kubelet, ip-10-0-143-40.ec2.internal pulling image
"k8s.gcr.io/liveness"
 Normal Pulled 1s kubelet, ip-10-0-143-40.ec2.internal Successfully pulled image

apiVersion: v1
kind: Pod
metadata:
 labels:
 test: liveness
 name: liveness-exec
spec:
 containers:
 - args:
 image: k8s.gcr.io/liveness
 livenessProbe:
 exec: 1
 command: 2
 - cat
 - /tmp/health
 initialDelaySeconds: 15 3
...

CHAPTER 8. MONITORING APPLICATION HEALTH

121

1

"k8s.gcr.io/liveness"
 Normal Created 1s kubelet, ip-10-0-143-40.ec2.internal Created container
 Normal Started 1s kubelet, ip-10-0-143-40.ec2.internal Started container

NOTE

The timeoutSeconds parameter has no effect on the Readiness and
Liveness probes for Container Execution Checks. You can implement a
timeout inside the probe itself, as OpenShift Container Platform cannot time
out on an exec call into the container. One way to implement a timeout in a
probe is by using the timeout parameter to run your liveness or readiness
probe:

Timeout value and path to the probe script.

c. Create the check:

$ oc create -f <file-name>.yaml

2. Create a Liveness TCP Socket Check:

a. Create a YAML file similar to the following:

spec:
 containers:
 livenessProbe:
 exec:
 command:
 - /bin/bash
 - '-c'
 - timeout 60 /opt/eap/bin/livenessProbe.sh 1
 timeoutSeconds: 1
 periodSeconds: 10
 successThreshold: 1
 failureThreshold: 3

apiVersion: v1
kind: Pod
metadata:
 labels:
 test: liveness
 name: liveness-tcp
spec:
 containers:
 - name: contaier1 1
 image: k8s.gcr.io/liveness
 ports:
 - containerPort: 8080 2
 livenessProbe: 3
 tcpSocket:
 port: 8080
 initialDelaySeconds: 15 4
 timeoutSeconds: 1 5

OpenShift Container Platform 4.1 Applications

122

1 2

3

4

5

1

2

3

4

5

6

Specify the container name and port for the check to connect to.

Specify the Liveness heath check and the type of Liveness check.

Specify the number of seconds before performing the first probe after the container
starts.

Specify the number of seconds between probes.

b. Create the check:

$ oc create -f <file-name>.yaml

3. Create an Readiness HTTP Check:

a. Create a YAML file similar to the following:

Specify the image to use for the liveness probe.

Specify the Readiness heath check and the type of Readiness check.

Specify a host IP address. When host is not defined, the PodIP is used.

Specify HTTP or HTTPS. When scheme is not defined, the HTTP scheme is used.

Specify the number of seconds before performing the first probe after the container
starts.

Specify the number of seconds between probes.

b. Create the check:

$ oc create -f <file-name>.yaml

apiVersion: v1
kind: Pod
metadata:
 labels:
 test: readiness
 name: readiness-http
spec:
 containers:
 - args:
 image: k8s.gcr.io/readiness 1
 readinessProbe: 2
 httpGet:
 # host: my-host 3
 # scheme: HTTPS 4
 path: /healthz
 port: 8080
 initialDelaySeconds: 15 5
 timeoutSeconds: 1 6

CHAPTER 8. MONITORING APPLICATION HEALTH

123

CHAPTER 9. IDLING APPLICATIONS
Cluster administrators can idle applications to reduce resource consumption. This is useful when the
cluster is deployed on a public cloud where cost is related to resource consumption.

If any scalable resources are not in use, OpenShift Container Platform discovers and idles them by
scaling their replicas to 0. The next time network traffic is directed to the resources, the resources are
unidled by scaling up the replicas, and normal operation continues.

Applications are made of services, as well as other scalable resources, such as DeploymentConfigs. The
action of idling an application involves idling all associated resources.

9.1. IDLING APPLICATIONS

Idling an application involves finding the scalable resources (deployment configurations, replication
controllers, and others) associated with a service. Idling an application finds the service and marks it as
idled, scaling down the resources to zero replicas.

You can use the oc idle command to idle a single service, or use the --resource-names-file option to
idle multiple services.

9.1.1. Idling a single service

Procedure

1. To idle a single service, run:

$ oc idle <service>

9.1.2. Idling multiple services

Idling multiple services is helpful if an application spans across a set of services within a project, or when
idling multiple services in conjunction with a script in order to idle multiple applications in bulk within the
same project.

Procedure

1. Create a file containing a list of the services, each on their own line.

2. Idle the services using the --resource-names-file option:

$ oc idle --resource-names-file <filename>

NOTE

The idle command is limited to a single project. For idling applications across a cluster,
run the idle command for each project individually.

9.2. UNIDLING APPLICATIONS

Application services become active again when they receive network traffic and are scaled back up their
previous state. This includes both traffic to the services and traffic passing through routes.

OpenShift Container Platform 4.1 Applications

124

Applications can also be manually unidled by scaling up the resources.

Procedure

1. To scale up a DeploymentConfig, run:

$ oc scale --replicas=1 dc <dc_name>

NOTE

Automatic unidling by a router is currently only supported by the default HAProxy router.

CHAPTER 9. IDLING APPLICATIONS

125

CHAPTER 10. PRUNING OBJECTS TO RECLAIM RESOURCES
Over time, API objects created in OpenShift Container Platform can accumulate in the cluster’s etcd
data store through normal user operations, such as when building and deploying applications.

Cluster administrators can periodically prune older versions of objects from the cluster that are no
longer required. For example, by pruning images you can delete older images and layers that are no
longer in use, but are still taking up disk space.

10.1. BASIC PRUNING OPERATIONS

The CLI groups prune operations under a common parent command:

$ oc adm prune <object_type> <options>

This specifies:

The <object_type> to perform the action on, such as groups, builds, deployments, or images.

The <options> supported to prune that object type.

10.2. PRUNING GROUPS

To prune groups records from an external provider, administrators can run the following command:

$ oc adm prune groups \
 --sync-config=path/to/sync/config [<options>]

Table 10.1. Prune groups CLI configuration options

Options Description

--confirm Indicate that pruning should occur, instead of performing a dry-run.

--blacklist Path to the group blacklist file.

--whitelist Path to the group whitelist file.

--sync-config Path to the synchronization configuration file.

To see the groups that the prune command deletes:

$ oc adm prune groups --sync-file=ldap-sync-config.yaml

To perform the prune operation:

$ oc adm prune groups --sync-file=ldap-sync-config.yaml --confirm

10.3. PRUNING DEPLOYMENTS

OpenShift Container Platform 4.1 Applications

126

In order to prune deployments that are no longer required by the system due to age and status,
administrators can run the following command:

$ oc adm prune deployments [<options>]

Table 10.2. Prune deployments CLI configuration options

Option Description

--confirm Indicate that pruning should occur, instead of performing a dry-run.

--orphans Prune all deployments that no longer have a DeploymentConfig, has
status is Complete or Failed, and has a replica count of zero.

--keep-complete=<N> Per DeploymentConfig, keep the last N deployments that have a status
of Complete and replica count of zero. (default 5)

--keep-failed=<N> Per DeploymentConfig, keep the last N deployments that have a status
of Failed and replica count of zero. (default 1)

--keep-younger-than=
<duration>

Do not prune any object that is younger than <duration> relative to the
current time. (default 60m) Valid units of measurement include
nanoseconds (ns), microseconds (us), milliseconds (ms), seconds (s),
minutes (m), and hours (h).

To see what a pruning operation would delete:

$ oc adm prune deployments --orphans --keep-complete=5 --keep-failed=1 \
 --keep-younger-than=60m

To actually perform the prune operation:

$ oc adm prune deployments --orphans --keep-complete=5 --keep-failed=1 \
 --keep-younger-than=60m --confirm

10.4. PRUNING BUILDS

In order to prune builds that are no longer required by the system due to age and status, administrators
can run the following command:

$ oc adm prune builds [<options>]

Table 10.3. Prune builds CLI configuration options

Option Description

--confirm Indicate that pruning should occur, instead of performing a dry-run.

CHAPTER 10. PRUNING OBJECTS TO RECLAIM RESOURCES

127

--orphans Prune all builds whose Build Configuration no longer exists, status is
complete, failed, error, or canceled.

--keep-complete=<N> Per Build Configuration, keep the last N builds whose status is complete
(default 5).

--keep-failed=<N> Per Build Configuration, keep the last N builds whose status is failed,
error, or canceled (default 1).

--keep-younger-than=
<duration>

Do not prune any object that is younger than <duration> relative to the
current time (default 60m).

Option Description

To see what a pruning operation would delete:

$ oc adm prune builds --orphans --keep-complete=5 --keep-failed=1 \
 --keep-younger-than=60m

To actually perform the prune operation:

$ oc adm prune builds --orphans --keep-complete=5 --keep-failed=1 \
 --keep-younger-than=60m --confirm

NOTE

Developers can enable automatic build pruning by modifying their Build Configuration.

Additional resources

Performing advanced builds → Pruning builds

10.5. PRUNING IMAGES

In order to prune images that are no longer required by the system due to age, status, or exceed limits,
administrators can run the following command:

$ oc adm prune images [<options>]

Currently, to prune images you must first log in to the CLI as a user with an access token. The user must
also have the cluster role system:image-pruner or greater (for example, cluster-admin).

Pruning images removes data from the integrated registry unless --prune-registry=false is used. For
this operation to work properly, the registry must be configured with storage:delete:enabled set to
true.

Pruning images with the --namespace flag does not remove images, only image streams. Images are
non-namespaced resources. Therefore, limiting pruning to a particular namespace makes it impossible
to calculate their current usage.

By default, the integrated registry caches blobs metadata to reduce the number of requests to storage,

OpenShift Container Platform 4.1 Applications

128

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.1/html-single/builds/#builds-build-pruning-advanced-build-operations

and increase the speed of processing the request. Pruning does not update the integrated registry
cache. Images pushed after pruning that contain pruned layers will be broken, because the pruned layers
that have metadata in the cache will not be pushed. Therefore it is necessary to clear the cache after
pruning. This can be accomplished by redeploying the registry:

oc patch deployment image-registry -n openshift-image-registry --type=merge --patch="{\"spec\":
{\"template\":{\"metadata\":{\"annotations\":{\"kubectl.kubernetes.io/restartedAt\": \"$(date '+%Y-%m-
%dT%H:%M:%SZ' -u)\"}}}}}"

If the integrated registry uses a Redis cache, you must clean the database manually.

oc adm prune images operations require a route for your registry. Registry routes are not created by
default. See Image Registry Operator in OpenShift Container Platform for information on how to create
a registry route and see Exposing the registry for details on how to expose the registry service.

Table 10.4. Prune images CLI configuration options

Option Description

--all Include images that were not pushed to the registry, but have been
mirrored by pullthrough. This is on by default. To limit the pruning to
images that were pushed to the integrated registry, pass --all=false.

--certificate-authority The path to a certificate authority file to use when communicating with
the OpenShift Container Platform-managed registries. Defaults to the
certificate authority data from the current user’s configuration file. If
provided, a secure connection is initiated.

--confirm Indicate that pruning should occur, instead of performing a dry-run. This
requires a valid route to the integrated container image registry. If this
command is run outside of the cluster network, the route must be
provided using --registry-url.

--force-insecure Use caution with this option. Allow an insecure connection to the
container registry that is hosted via HTTP or has an invalid HTTPS
certificate.

--keep-tag-revisions=<N> For each imagestream, keep up to at most N image revisions per tag
(default 3).

--keep-younger-than=
<duration>

Do not prune any image that is younger than <duration> relative to the
current time. Do not prune any image that is referenced by any other
object that is younger than <duration> relative to the current time
(default 60m).

--prune-over-size-limit Prune each image that exceeds the smallest limit defined in the same
project. This flag cannot be combined with --keep-tag-revisions nor --
keep-younger-than.

CHAPTER 10. PRUNING OBJECTS TO RECLAIM RESOURCES

129

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.1/html-single/registry/#configuring-registry-operator
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.1/html-single/registry/#securing-exposing-registry

--registry-url The address to use when contacting the registry. The command
attempts to use a cluster-internal URL determined from managed
images and imagestreams. In case it fails (the registry cannot be resolved
or reached), an alternative route that works needs to be provided using
this flag. The registry host name can be prefixed by https:// or http://
which enforces particular connection protocol.

--prune-registry In conjunction with the conditions stipulated by the other options, this
option controls whether the data in the registry corresponding to the
OpenShift Container Platform image API object is pruned. By default,
image pruning processes both the image API objects and corresponding
data in the registry. This options is useful when you are only concerned
with removing etcd content, possibly to reduce the number of image
objects (but are not concerned with cleaning up registry storage) or
intend to do that separately by hard pruning the registry, possibly during
an appropriate maintenance window for the registry.

Option Description

10.5.1. Image prune conditions

Remove any image "managed by OpenShift Container Platform" (images with the annotation
openshift.io/image.managed) that was created at least --keep-younger-than minutes ago
and is not currently referenced by:

any Pod created less than --keep-younger-than minutes ago.

any imagestream created less than --keep-younger-than minutes ago.

any running Pods.

any pending Pods.

any ReplicationControllers.

any DeploymentConfigs.

any Build Configurations.

any Builds.

the --keep-tag-revisions most recent items in stream.status.tags[].items.

Remove any image "managed by OpenShift Container Platform" (images with the annotation
openshift.io/image.managed) that is exceeding the smallest limit defined in the same project
and is not currently referenced by:

any running Pods.

any pending Pods.

any ReplicationControllers.

any DeploymentConfigs.

OpenShift Container Platform 4.1 Applications

130

any Build Configurations.

any Builds.

There is no support for pruning from external registries.

When an image is pruned, all references to the image are removed from all imagestreams that
have a reference to the image in status.tags.

Image layers that are no longer referenced by any images are removed.

NOTE

The --prune-over-size-limit flag cannot be combined with --keep-tag-revisions nor --
keep-younger-than flags. Doing so returns information that this operation is not allowed.

Separating the removal of OpenShift Container Platform image API objects and image data from the
Registry by using --prune-registry=false followed by hard pruning the registry narrows some timing
windows and is safer when compared to trying to prune both through one command. However, timing
windows are not completely removed.

For example, you can still create a Pod referencing an image as pruning identifies that image for pruning.
You should still keep track of an API Object created during the pruning operations that might reference
images, so you can mitigate any references to deleted content.

Also, keep in mind that re-doing the pruning without the --prune-registry option or with --prune-
registry=true does not lead to pruning the associated storage in the image registry for images
previously pruned by --prune-registry=false. Any images that were pruned with --prune-registry=false
can only be deleted from registry storage by hard pruning the registry.

10.5.2. Running the image prune operation

Procedure

1. To see what a pruning operation would delete:

a. Keeping up to three tag revisions, and keeping resources (images, image streams and Pods)
younger than sixty minutes:

$ oc adm prune images --keep-tag-revisions=3 --keep-younger-than=60m

b. Pruning every image that exceeds defined limits:

$ oc adm prune images --prune-over-size-limit

2. To actually perform the prune operation with the options from the previous step:

$ oc adm prune images --keep-tag-revisions=3 --keep-younger-than=60m --confirm

$ oc adm prune images --prune-over-size-limit --confirm

10.5.3. Using secure or insecure connections

The secure connection is the preferred and recommended approach. It is done over HTTPS protocol

CHAPTER 10. PRUNING OBJECTS TO RECLAIM RESOURCES

131

The secure connection is the preferred and recommended approach. It is done over HTTPS protocol
with a mandatory certificate verification. The prune command always attempts to use it if possible. If it
is not possible, in some cases it can fall-back to insecure connection, which is dangerous. In this case,
either certificate verification is skipped or plain HTTP protocol is used.

The fall-back to insecure connection is allowed in the following cases unless --certificate-authority is
specified:

1. The prune command is run with the --force-insecure option.

2. The provided registry-url is prefixed with the http:// scheme.

3. The provided registry-url is a local-link address or localhost.

4. The configuration of the current user allows for an insecure connection. This can be caused by
the user either logging in using --insecure-skip-tls-verify or choosing the insecure connection
when prompted.

IMPORTANT

If the registry is secured by a certificate authority different from the one used by
OpenShift Container Platform, it must be specified using the --certificate-authority flag.
Otherwise, the prune command fails with an error.

10.5.4. Image pruning problems

Images not being pruned
If your images keep accumulating and the prune command removes just a small portion of what you
expect, ensure that you understand the image prune conditions that must apply for an image to be
considered a candidate for pruning.

Ensure that images you want removed occur at higher positions in each tag history than your chosen tag
revisions threshold. For example, consider an old and obsolete image named sha:abz. By running the
following command in namespace N, where the image is tagged, the image is tagged three times in a
single imagestream named myapp:

$ image_name="sha:abz"
$ oc get is -n N -o go-template='{{range $isi, $is := .items}}{{range $ti, $tag := $is.status.tags}}'\
 '{{range $ii, $item := $tag.items}}{{if eq $item.image "'"${image_name}"\
 $'"}}{{$is.metadata.name}}:{{$tag.tag}} at position {{$ii}} out of {{len $tag.items}}\n'\
 '{{end}}{{end}}{{end}}{{end}}'
myapp:v2 at position 4 out of 5
myapp:v2.1 at position 2 out of 2
myapp:v2.1-may-2016 at position 0 out of 1

When default options are used, the image is never pruned because it occurs at position 0 in a history of
myapp:v2.1-may-2016 tag. For an image to be considered for pruning, the administrator must either:

Specify --keep-tag-revisions=0 with the oc adm prune images command.

CAUTION

This action effectively removes all the tags from all the namespaces with underlying images,
unless they are younger or they are referenced by objects younger than the specified threshold.

OpenShift Container Platform 4.1 Applications

132

Delete all the istags where the position is below the revision threshold, which means
myapp:v2.1 and myapp:v2.1-may-2016.

Move the image further in the history, either by running new Builds pushing to the same istag, or
by tagging other image. Unfortunately, this is not always desirable for old release tags.

Tags having a date or time of a particular image’s Build in their names should be avoided, unless the
image must be preserved for an undefined amount of time. Such tags tend to have just one image in its
history, which effectively prevents them from ever being pruned.

Using a secure connection against insecure registry
If you see a message similar to the following in the output of the oadm prune images command, then
your registry is not secured and the oadm prune images client attempts to use a secure connection:

error: error communicating with registry: Get https://172.30.30.30:5000/healthz: http: server gave
HTTP response to HTTPS client

1. The recommend solution is to secure the registry. Otherwise, you can force the client to use an
insecure connection by appending --force-insecure to the command, however this is not
recommended.

Using an insecure connection against a secured registry
If you see one of the following errors in the output of the oadm prune images command, it means that
your registry is secured using a certificate signed by a certificate authority other than the one used by
oadm prune images client for connection verification:

error: error communicating with registry: Get http://172.30.30.30:5000/healthz: malformed HTTP
response "\x15\x03\x01\x00\x02\x02"
error: error communicating with registry: [Get https://172.30.30.30:5000/healthz: x509: certificate
signed by unknown authority, Get http://172.30.30.30:5000/healthz: malformed HTTP response
"\x15\x03\x01\x00\x02\x02"]

By default, the certificate authority data stored in the user’s configuration file are used; the same is true
for communication with the master API.

Use the --certificate-authority option to provide the right certificate authority for the container image
registry server.

Using the wrong certificate authority
The following error means that the certificate authority used to sign the certificate of the secured
container image registry is different than the authority used by the client:

error: error communicating with registry: Get https://172.30.30.30:5000/: x509: certificate signed by
unknown authority

Make sure to provide the right one with the flag --certificate-authority.

As a workaround, the --force-insecure flag can be added instead. However, this is not recommended.

Additional resources

Accessing the registry

Exposing the registry

CHAPTER 10. PRUNING OBJECTS TO RECLAIM RESOURCES

133

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.1/html-single/registry/#accessing-the-registry
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.1/html-single/registry/#securing-exposing-registry

10.6. HARD PRUNING THE REGISTRY

The OpenShift Container Registry can accumulate blobs that are not referenced by the OpenShift
Container Platform cluster’s etcd. The basic pruning images procedure, therefore, is unable to operate
on them. These are called orphaned blobs.

Orphaned blobs can occur from the following scenarios:

Manually deleting an image with oc delete image <sha256:image-id> command, which only
removes the image from etcd, but not from the registry’s storage.

Pushing to the registry initiated by docker daemon failures, which causes some blobs to get
uploaded, but the image manifest (which is uploaded as the very last component) does not. All
unique image blobs become orphans.

OpenShift Container Platform refusing an image because of quota restrictions.

The standard image pruner deleting an image manifest, but is interrupted before it deletes the
related blobs.

A bug in the registry pruner, which fails to remove the intended blobs, causing the image objects
referencing them to be removed and the blobs becoming orphans.

Hard pruning the registry, a separate procedure from basic image pruning, allows cluster administrators
to remove orphaned blobs. You should hard prune if you are running out of storage space in your
OpenShift Container Registry and believe you have orphaned blobs.

This should be an infrequent operation and is necessary only when you have evidence that significant
numbers of new orphans have been created. Otherwise, you can perform standard image pruning at
regular intervals, for example, once a day (depending on the number of images being created).

Procedure

To hard prune orphaned blobs from the registry:

1. Log in.
Log in to the cluster with the CLI as a user with an access token.

2. Run a basic image prune.
Basic image pruning removes additional images that are no longer needed. The hard prune does
not remove images on its own. It only removes blobs stored in the registry storage. Therefore,
you should run this just before the hard prune.

3. Switch the registry to read-only mode.
If the registry is not running in read-only mode, any pushes happening at the same time as the
prune will either:

fail and cause new orphans, or

succeed although the images cannot be pulled (because some of the referenced blobs were
deleted).

Pushes will not succeed until the registry is switched back to read-write mode. Therefore, the
hard prune must be carefully scheduled.

To switch the registry to read-only mode:

OpenShift Container Platform 4.1 Applications

134

a. Set the following environment variable:

$ oc set env -n default \
 dc/docker-registry \
 'REGISTRY_STORAGE_MAINTENANCE_READONLY={"enabled":true}'

b. By default, the registry automatically redeploys when the previous step completes; wait for
the redeployment to complete before continuing. However, if you have disabled these
triggers, you must manually redeploy the registry so that the new environment variables are
picked up:

$ oc rollout -n default \
 latest dc/docker-registry

4. Add the system:image-pruner role.
The service account used to run the registry instances requires additional permissions in order
to list some resources.

a. Get the service account name:

$ service_account=$(oc get -n default \
 -o jsonpath=$'system:serviceaccount:{.metadata.namespace}:
{.spec.template.spec.serviceAccountName}\n' \
 dc/docker-registry)

b. Add the system:image-pruner cluster role to the service account:

$ oc adm policy add-cluster-role-to-user \
 system:image-pruner \
 ${service_account}

5. (Optional) Run the pruner in dry-run mode.
To see how many blobs would be removed, run the hard pruner in dry-run mode. No changes
are actually made:

$ oc -n default \
 exec -i -t "$(oc -n default get pods -l deploymentconfig=docker-registry \
 -o jsonpath=$'{.items[0].metadata.name}\n')" \
 -- /usr/bin/dockerregistry -prune=check

Alternatively, to get the exact paths for the prune candidates, increase the logging level:

$ oc -n default \
 exec "$(oc -n default get pods -l deploymentconfig=docker-registry \
 -o jsonpath=$'{.items[0].metadata.name}\n')" \
 -- /bin/sh \
 -c 'REGISTRY_LOG_LEVEL=info /usr/bin/dockerregistry -prune=check'

Truncated sample output

$ oc exec docker-registry-3-vhndw \
 -- /bin/sh -c 'REGISTRY_LOG_LEVEL=info /usr/bin/dockerregistry -prune=check'

CHAPTER 10. PRUNING OBJECTS TO RECLAIM RESOURCES

135

time="2017-06-22T11:50:25.066156047Z" level=info msg="start prune (dry-run mode)"
distribution_version="v2.4.1+unknown" kubernetes_version=v1.6.1+$Format:%h$
openshift_version=unknown
time="2017-06-22T11:50:25.092257421Z" level=info msg="Would delete blob:
sha256:00043a2a5e384f6b59ab17e2c3d3a3d0a7de01b2cabeb606243e468acc663fa5"
go.version=go1.7.5 instance.id=b097121c-a864-4e0c-ad6c-cc25f8fdf5a6
time="2017-06-22T11:50:25.092395621Z" level=info msg="Would delete blob:
sha256:0022d49612807cb348cabc562c072ef34d756adfe0100a61952cbcb87ee6578a"
go.version=go1.7.5 instance.id=b097121c-a864-4e0c-ad6c-cc25f8fdf5a6
time="2017-06-22T11:50:25.092492183Z" level=info msg="Would delete blob:
sha256:0029dd4228961086707e53b881e25eba0564fa80033fbbb2e27847a28d16a37c"
go.version=go1.7.5 instance.id=b097121c-a864-4e0c-ad6c-cc25f8fdf5a6
time="2017-06-22T11:50:26.673946639Z" level=info msg="Would delete blob:
sha256:ff7664dfc213d6cc60fd5c5f5bb00a7bf4a687e18e1df12d349a1d07b2cf7663"
go.version=go1.7.5 instance.id=b097121c-a864-4e0c-ad6c-cc25f8fdf5a6
time="2017-06-22T11:50:26.674024531Z" level=info msg="Would delete blob:
sha256:ff7a933178ccd931f4b5f40f9f19a65be5eeeec207e4fad2a5bafd28afbef57e"
go.version=go1.7.5 instance.id=b097121c-a864-4e0c-ad6c-cc25f8fdf5a6
time="2017-06-22T11:50:26.674675469Z" level=info msg="Would delete blob:
sha256:ff9b8956794b426cc80bb49a604a0b24a1553aae96b930c6919a6675db3d5e06"
go.version=go1.7.5 instance.id=b097121c-a864-4e0c-ad6c-cc25f8fdf5a6
...
Would delete 13374 blobs
Would free up 2.835 GiB of disk space
Use -prune=delete to actually delete the data

6. Run the hard prune.
Execute the following command inside one running instance of a docker-registry pod to run
the hard prune:

$ oc -n default \
 exec -i -t "$(oc -n default get pods -l deploymentconfig=docker-registry -o
jsonpath=$'{.items[0].metadata.name}\n')" \
 -- /usr/bin/dockerregistry -prune=delete

Sample output

$ oc exec docker-registry-3-vhndw \
 -- /usr/bin/dockerregistry -prune=delete

Deleted 13374 blobs
Freed up 2.835 GiB of disk space

7. Switch the registry back to read-write mode.
After the prune is finished, the registry can be switched back to read-write mode by executing:

$ oc set env -n default dc/docker-registry
REGISTRY_STORAGE_MAINTENANCE_READONLY-

10.7. PRUNING CRON JOBS

Cron jobs can perform pruning of successful jobs, but might not properly handle failed jobs. Therefore,
the cluster administrator should perform regular cleanup of jobs manually. They should also restrict the

OpenShift Container Platform 4.1 Applications

136

access to cron jobs to a small group of trusted users and set appropriate quota to prevent the cron job
from creating too many jobs and pods.

Additional resources

Running tasks in pods using jobs

Resource quotas across multiple projects

Using RBAC to define and apply permissions

CHAPTER 10. PRUNING OBJECTS TO RECLAIM RESOURCES

137

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.1/html-single/nodes/#nodes-nodes-jobs_nodes-nodes-jobs
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.1/html-single/applications/#setting-quotas-across-multiple-projects
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.1/html-single/authentication/#using-rbac

CHAPTER 11. OPERATOR SDK

11.1. GETTING STARTED WITH THE OPERATOR SDK

This guide outlines the basics of the Operator SDK and walks Operator authors with cluster
administrator access to a Kubernetes-based cluster (such as OpenShift Container Platform) through an
example of building a simple Go-based Memcached Operator and managing its lifecycle from
installation to upgrade.

This is accomplished using two centerpieces of the Operator Framework: the Operator SDK (the
operator-sdk CLI tool and controller-runtime library API) and the Operator Lifecycle Manager (OLM).

NOTE

OpenShift Container Platform 4 supports Operator SDK v0.7.0 or later.

11.1.1. Architecture of the Operator SDK

The Operator Framework is an open source toolkit to manage Kubernetes native applications, called
Operators, in an effective, automated, and scalable way. Operators take advantage of Kubernetes'
extensibility to deliver the automation advantages of cloud services like provisioning, scaling, and
backup and restore, while being able to run anywhere that Kubernetes can run.

Operators make it easy to manage complex, stateful applications on top of Kubernetes. However,
writing an Operator today can be difficult because of challenges such as using low-level APIs, writing
boilerplate, and a lack of modularity, which leads to duplication.

The Operator SDK is a framework designed to make writing Operators easier by providing:

High-level APIs and abstractions to write the operational logic more intuitively

Tools for scaffolding and code generation to quickly bootstrap a new project

Extensions to cover common Operator use cases

11.1.1.1. Workflow

The Operator SDK provides the following workflow to develop a new Operator:

1. Create a new Operator project using the Operator SDK command line interface (CLI).

2. Define new resource APIs by adding Custom Resource Definitions (CRDs).

3. Specify resources to watch using the Operator SDK API.

4. Define the Operator reconciling logic in a designated handler and use the Operator SDK API to
interact with resources.

5. Use the Operator SDK CLI to build and generate the Operator deployment manifests.

Figure 11.1. Operator SDK workflow

OpenShift Container Platform 4.1 Applications

138

https://coreos.com/operators/

Figure 11.1. Operator SDK workflow

At a high level, an Operator using the Operator SDK processes events for watched resources in an
Operator author-defined handler and takes actions to reconcile the state of the application.

11.1.1.2. Manager file

The main program for the Operator is the manager file at cmd/manager/main.go. The manager
automatically registers the scheme for all Custom Resources (CRs) defined under pkg/apis/ and runs all
controllers under pkg/controller/.

The manager can restrict the namespace that all controllers watch for resources:

mgr, err := manager.New(cfg, manager.Options{Namespace: namespace})

By default, this is the namespace that the Operator is running in. To watch all namespaces, you can
leave the namespace option empty:

mgr, err := manager.New(cfg, manager.Options{Namespace: ""})

11.1.1.3. Prometheus Operator support

Prometheus is an open-source systems monitoring and alerting toolkit. The Prometheus Operator
creates, configures, and manages Prometheus clusters running on Kubernetes-based clusters, such as
OpenShift Container Platform.

Helper functions exist in the Operator SDK by default to automatically set up metrics in any generated
Go-based Operator for use on clusters where the Prometheus Operator is deployed.

11.1.2. Installing the Operator SDK CLI

The Operator SDK has a CLI tool that assists developers in creating, building, and deploying a new
Operator project. You can install the SDK CLI on your workstation so you are prepared to start authoring
your own Operators.

NOTE

CHAPTER 11. OPERATOR SDK

139

https://prometheus.io/

NOTE

This guide uses minikube v0.25.0+ as the local Kubernetes cluster and Quay.io for the
public registry.

11.1.2.1. Installing from GitHub release

You can download and install a pre-built release binary of the SDK CLI from the project on GitHub.

Prerequisites

docker v17.03+

OpenShift CLI (oc) v4.1+ installed

Access to a cluster based on Kubernetes v1.11.3+

Access to a container registry

Procedure

1. Set the release version variable:

RELEASE_VERSION=v0.8.0

2. Download the release binary.

For Linux:

$ curl -OJL https://github.com/operator-framework/operator-
sdk/releases/download/${RELEASE_VERSION}/operator-sdk-${RELEASE_VERSION}-
x86_64-linux-gnu

For macOS:

$ curl -OJL https://github.com/operator-framework/operator-
sdk/releases/download/${RELEASE_VERSION}/operator-sdk-${RELEASE_VERSION}-
x86_64-apple-darwin

3. Verify the downloaded release binary.

a. Download the provided ASC file.

For Linux:

$ curl -OJL https://github.com/operator-framework/operator-
sdk/releases/download/${RELEASE_VERSION}/operator-sdk-
${RELEASE_VERSION}-x86_64-linux-gnu.asc

For macOS:

$ curl -OJL https://github.com/operator-framework/operator-
sdk/releases/download/${RELEASE_VERSION}/operator-sdk-
${RELEASE_VERSION}-x86_64-apple-darwin.asc

OpenShift Container Platform 4.1 Applications

140

https://github.com/kubernetes/minikube#installation
https://quay.io/
https://docs.docker.com/install/

1

1

b. Place the binary and corresponding ASC file into the same directory and run the following
command to verify the binary:

For Linux:

$ gpg --verify operator-sdk-${RELEASE_VERSION}-x86_64-linux-gnu.asc

For macOS:

$ gpg --verify operator-sdk-${RELEASE_VERSION}-x86_64-apple-darwin.asc

If you do not have the maintainer’s public key on your workstation, you will get the following
error:

$ gpg --verify operator-sdk-${RELEASE_VERSION}-x86_64-apple-darwin.asc
$ gpg: assuming signed data in 'operator-sdk-${RELEASE_VERSION}-x86_64-apple-
darwin'
$ gpg: Signature made Fri Apr 5 20:03:22 2019 CEST
$ gpg: using RSA key <key_id> 1
$ gpg: Can't check signature: No public key

RSA key string.

To download the key, run the following command, replacing <key_id> with the RSA key
string provided in the output of the previous command:

$ gpg [--keyserver keys.gnupg.net] --recv-key "<key_id>" 1

If you do not have a key server configured, specify one with the --keyserver option.

4. Install the release binary in your PATH:

For Linux:

$ chmod +x operator-sdk-${RELEASE_VERSION}-x86_64-linux-gnu
$ sudo cp operator-sdk-${RELEASE_VERSION}-x86_64-linux-gnu
/usr/local/bin/operator-sdk
$ rm operator-sdk-${RELEASE_VERSION}-x86_64-linux-gnu

For macOS:

$ chmod +x operator-sdk-${RELEASE_VERSION}-x86_64-apple-darwin
$ sudo cp operator-sdk-${RELEASE_VERSION}-x86_64-apple-darwin
/usr/local/bin/operator-sdk
$ rm operator-sdk-${RELEASE_VERSION}-x86_64-apple-darwin

5. Verify that the CLI tool was installed correctly:

$ operator-sdk version

11.1.2.2. Installing from Homebrew

CHAPTER 11. OPERATOR SDK

141

You can install the SDK CLI using Homebrew.

Prerequisites

Homebrew

docker v17.03+

OpenShift CLI (oc) v4.1+ installed

Access to a cluster based on Kubernetes v1.11.3+

Access to a container registry

Procedure

1. Install the SDK CLI using the brew command:

$ brew install operator-sdk

2. Verify that the CLI tool was installed correctly:

$ operator-sdk version

11.1.2.3. Compiling and installing from source

You can obtain the Operator SDK source code to compile and install the SDK CLI.

Prerequisites

dep v0.5.0+

Git

Go v1.10+

docker v17.03+

OpenShift CLI (oc) v4.1+ installed

Access to a cluster based on Kubernetes v1.11.3+

Access to a container registry

Procedure

1. Clone the operator-sdk repository:

$ mkdir -p $GOPATH/src/github.com/operator-framework
$ cd $GOPATH/src/github.com/operator-framework
$ git clone https://github.com/operator-framework/operator-sdk
$ cd operator-sdk

2. Check out the desired release branch:

OpenShift Container Platform 4.1 Applications

142

https://brew.sh/
https://docs.docker.com/install/
https://golang.github.io/dep/docs/installation.html
https://git-scm.com/downloads
https://golang.org/dl/
https://docs.docker.com/install/

$ git checkout master

3. Compile and install the SDK CLI:

$ make dep
$ make install

This installs the CLI binary operator-sdk at $GOPATH/bin.

4. Verify that the CLI tool was installed correctly:

$ operator-sdk version

11.1.3. Building a Go-based Memcached Operator using the Operator SDK

The Operator SDK makes it easier to build Kubernetes native applications, a process that can require
deep, application-specific operational knowledge. The SDK not only lowers that barrier, but it also helps
reduce the amount of boilerplate code needed for many common management capabilities, such as
metering or monitoring.

This procedure walks through an example of building a simple Memcached Operator using tools and
libraries provided by the SDK.

Prerequisites

Operator SDK CLI installed on the development workstation

Operator Lifecycle Manager (OLM) installed on a Kubernetes-based cluster (v1.8 or above to
support the apps/v1beta2 API group), for example OpenShift Container Platform 4.1

Access to the cluster using an account with cluster-admin permissions

OpenShift CLI (oc) v4.1+ installed

Procedure

1. Create a new project.
Use the CLI to create a new memcached-operator project:

$ mkdir -p $GOPATH/src/github.com/example-inc/
$ cd $GOPATH/src/github.com/example-inc/
$ operator-sdk new memcached-operator --dep-manager dep
$ cd memcached-operator

2. Add a new Custom Resource Definition (CRD).

a. Use the CLI to add a new CRD API called Memcached, with APIVersion set to
cache.example.com/v1apha1 and Kind set to Memcached:

$ operator-sdk add api \
 --api-version=cache.example.com/v1alpha1 \
 --kind=Memcached

This scaffolds the Memcached resource API under pkg/apis/cache/v1alpha1/.
b. Modify the spec and status of the Memcached Custom Resource (CR) at the

CHAPTER 11. OPERATOR SDK

143

b. Modify the spec and status of the Memcached Custom Resource (CR) at the
pkg/apis/cache/v1alpha1/memcached_types.go file:

type MemcachedSpec struct {
 // Size is the size of the memcached deployment
 Size int32 `json:"size"`
}
type MemcachedStatus struct {
 // Nodes are the names of the memcached pods
 Nodes []string `json:"nodes"`
}

c. After modifying the *_types.go file, always run the following command to update the
generated code for that resource type:

$ operator-sdk generate k8s

3. Add a new Controller.

a. Add a new Controller to the project to watch and reconcile the Memcached resource:

$ operator-sdk add controller \
 --api-version=cache.example.com/v1alpha1 \
 --kind=Memcached

This scaffolds a new Controller implementation under pkg/controller/memcached/.

b. For this example, replace the generated controller file
pkg/controller/memcached/memcached_controller.go with the example implementation.
The example controller executes the following reconciliation logic for each Memcached CR:

Create a Memcached Deployment if it does not exist.

Ensure that the Deployment size is the same as specified by the Memcached CR spec.

Update the Memcached CR status with the names of the Memcached Pods.

The next two sub-steps inspect how the Controller watches resources and how the
reconcile loop is triggered. You can skip these steps to go directly to building and running
the Operator.

c. Inspect the Controller implementation at the
pkg/controller/memcached/memcached_controller.go file to see how the Controller
watches resources.
The first watch is for the Memcached type as the primary resource. For each Add, Update,
or Delete event, the reconcile loop is sent a reconcile Request (a <namespace>:<name>
key) for that Memcached object:

err := c.Watch(
 &source.Kind{Type: &cachev1alpha1.Memcached{}},
&handler.EnqueueRequestForObject{})

The next watch is for Deployments, but the event handler maps each event to a reconcile
Request for the owner of the Deployment. In this case, this is the Memcached object for
which the Deployment was created. This allows the controller to watch Deployments as a

OpenShift Container Platform 4.1 Applications

144

https://github.com/operator-framework/operator-sdk/blob/master/example/memcached-operator/memcached_controller.go.tmpl

secondary resource:

err := c.Watch(&source.Kind{Type: &appsv1.Deployment{}},
&handler.EnqueueRequestForOwner{
 IsController: true,
 OwnerType: &cachev1alpha1.Memcached{},
 })

d. Every Controller has a Reconciler object with a Reconcile() method that implements the
reconcile loop. The reconcile loop is passed the Request argument which is a
<namespace>:<name> key used to lookup the primary resource object, Memcached, from
the cache:

func (r *ReconcileMemcached) Reconcile(request reconcile.Request) (reconcile.Result,
error) {
 // Lookup the Memcached instance for this reconcile request
 memcached := &cachev1alpha1.Memcached{}
 err := r.client.Get(context.TODO(), request.NamespacedName, memcached)
 ...
}

Based on the return value of Reconcile() the reconcile Request may be requeued and the
loop may be triggered again:

// Reconcile successful - don't requeue
return reconcile.Result{}, nil
// Reconcile failed due to error - requeue
return reconcile.Result{}, err
// Requeue for any reason other than error
return reconcile.Result{Requeue: true}, nil

4. Build and run the Operator.

a. Before running the Operator, the CRD must be registered with the Kubernetes API server:

$ oc create \
 -f deploy/crds/cache_v1alpha1_memcached_crd.yaml

b. After registering the CRD, there are two options for running the Operator:

As a Deployment inside a Kubernetes cluster

As Go program outside a cluster

Choose one of the following methods.

i. Option A: Running as a Deployment inside the cluster.

A. Build the memcached-operator image and push it to a registry:

$ operator-sdk build quay.io/example/memcached-operator:v0.0.1

B. The Deployment manifest is generated at deploy/operator.yaml. Update the
Deployment image as follows since the default is just a placeholder:

CHAPTER 11. OPERATOR SDK

145

$ sed -i 's|REPLACE_IMAGE|quay.io/example/memcached-operator:v0.0.1|g'
deploy/operator.yaml

C. Ensure you have an account on Quay.io for the next step, or substitute your
preferred container registry. On the registry, create a new public image repository
named memcached-operator.

D. Push the image to the registry:

$ docker push quay.io/example/memcached-operator:v0.0.1

E. Setup RBAC and deploy memcached-operator:

$ oc create -f deploy/role.yaml
$ oc create -f deploy/role_binding.yaml
$ oc create -f deploy/service_account.yaml
$ oc create -f deploy/operator.yaml

F. Verify that memcached-operator is up and running:

$ oc get deployment
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
memcached-operator 1 1 1 1 1m

ii. Option B: Running locally outside the cluster.
This method is preferred during development cycle to deploy and test faster.

Run the Operator locally with the default Kubernetes configuration file present at
$HOME/.kube/config:

$ operator-sdk up local --namespace=default

You can use a specific kubeconfig using the flag --kubeconfig=<path/to/kubeconfig>.

5. Verify that the Operator can deploy a Memcached application by creating a Memcached CR.

a. Create the example Memcached CR that was generated at
deploy/crds/cache_v1alpha1_memcached_cr.yaml:

$ cat deploy/crds/cache_v1alpha1_memcached_cr.yaml
apiVersion: "cache.example.com/v1alpha1"
kind: "Memcached"
metadata:
 name: "example-memcached"
spec:
 size: 3

$ oc apply -f deploy/crds/cache_v1alpha1_memcached_cr.yaml

b. Ensure that memcached-operator creates the Deployment for the CR:

$ oc get deployment
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
memcached-operator 1 1 1 1 2m

OpenShift Container Platform 4.1 Applications

146

https://quay.io
https://quay.io/new/

example-memcached 3 3 3 3 1m

c. Check the Pods and CR status to confirm the status is updated with the memcached Pod
names:

$ oc get pods
NAME READY STATUS RESTARTS AGE
example-memcached-6fd7c98d8-7dqdr 1/1 Running 0 1m
example-memcached-6fd7c98d8-g5k7v 1/1 Running 0 1m
example-memcached-6fd7c98d8-m7vn7 1/1 Running 0 1m
memcached-operator-7cc7cfdf86-vvjqk 1/1 Running 0 2m

$ oc get memcached/example-memcached -o yaml
apiVersion: cache.example.com/v1alpha1
kind: Memcached
metadata:
 clusterName: ""
 creationTimestamp: 2018-03-31T22:51:08Z
 generation: 0
 name: example-memcached
 namespace: default
 resourceVersion: "245453"
 selfLink:
/apis/cache.example.com/v1alpha1/namespaces/default/memcacheds/example-
memcached
 uid: 0026cc97-3536-11e8-bd83-0800274106a1
spec:
 size: 3
status:
 nodes:
 - example-memcached-6fd7c98d8-7dqdr
 - example-memcached-6fd7c98d8-g5k7v
 - example-memcached-6fd7c98d8-m7vn7

6. Verify that the Operator can manage a deployed Memcached application by updating the
size of the deployment.

a. Change the spec.size field in the memcached CR from 3 to 4:

$ cat deploy/crds/cache_v1alpha1_memcached_cr.yaml
apiVersion: "cache.example.com/v1alpha1"
kind: "Memcached"
metadata:
 name: "example-memcached"
spec:
 size: 4

b. Apply the change:

$ oc apply -f deploy/crds/cache_v1alpha1_memcached_cr.yaml

c. Confirm that the Operator changes the Deployment size:

CHAPTER 11. OPERATOR SDK

147

$ oc get deployment
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
example-memcached 4 4 4 4 5m

7. Clean up the resources:

$ oc delete -f deploy/crds/cache_v1alpha1_memcached_cr.yaml
$ oc delete -f deploy/crds/cache_v1alpha1_memcached_crd.yaml
$ oc delete -f deploy/operator.yaml
$ oc delete -f deploy/role.yaml
$ oc delete -f deploy/role_binding.yaml
$ oc delete -f deploy/service_account.yaml

11.1.4. Managing a Memcached Operator using the Operator Lifecycle Manager

The previous section has covered manually running an Operator. In the next sections, we will explore
using the Operator Lifecycle Manager (OLM), which is what enables a more robust deployment model
for Operators being run in production environments.

The OLM helps you to install, update, and generally manage the lifecycle of all of the Operators (and
their associated services) on a Kubernetes cluster. It runs as an Kubernetes extension and lets you use
oc for all the lifecycle management functions without any additional tools.

Prerequisites

OLM installed on a Kubernetes-based cluster (v1.8 or above to support the apps/v1beta2 API
group), for example OpenShift Container Platform 4.1 Preview OLM enabled

Memcached Operator built

Procedure

1. Generate an Operator manifest.
An Operator manifest describes how to display, create, and manage the application, in this case
Memcached, as a whole. It is defined by a ClusterServiceVersion (CSV) object and is required
for the OLM to function.

You can use the following command to generate CSV manifests:

$ operator-sdk olm-catalog gen-csv --csv-version 0.0.1

NOTE

This command is run from the memcached-operator/ directory that was created
when you built the Memcached Operator.

For the purpose of this guide, we will continue with this predefined manifest file for the next
steps. You can alter the image field within this manifest to reflect the image you built in previous
steps, but it is unnecessary.

NOTE

OpenShift Container Platform 4.1 Applications

148

https://github.com/operator-framework/getting-started/blob/master/memcachedoperator.0.0.1.csv.yaml

NOTE

See Building a CSV for the Operator Framework for more information on
manually defining a manifest file.

2. Deploy the Operator.

a. Create an OperatorGroup that specifies the namespaces that the Operator will target.
Create the following OperatorGroup in the namespace where you will create the CSV. In
this example, the default namespace is used:

b. Apply the Operator’s CSV manifest to the specified namespace in the cluster:

$ curl -Lo memcachedoperator.0.0.1.csv.yaml
https://raw.githubusercontent.com/operator-framework/getting-
started/master/memcachedoperator.0.0.1.csv.yaml
$ oc apply -f memcachedoperator.0.0.1.csv.yaml
$ oc get csv memcachedoperator.v0.0.1 -n default -o json | jq '.status'

When you apply this manifest, the cluster does not immediately update because it does not
yet meet the requirements specified in the manifest.

c. Create the role, role binding, and service account to grant resource permissions to the
Operator, and the Custom Resource Definition (CRD) to create the Memcached type that
the Operator manages:

$ oc create -f deploy/crds/cache_v1alpha1_memcached_crd.yaml
$ oc create -f deploy/service_account.yaml
$ oc create -f deploy/role.yaml
$ oc create -f deploy/role_binding.yaml

NOTE

These files were generated into the deploy/ directory by the Operator SDK
when you built the Memcached Operator.

Because the OLM creates Operators in a particular namespace when a manifest is applied,
administrators can leverage the native Kubernetes RBAC permission model to restrict which
users are allowed to install Operators.

3. Create an application instance.
The Memcached Operator is now running in the default namespace. Users interact with
Operators via instances of CustomResources; in this case, the resource has the kind
Memcached. Native Kubernetes RBAC also applies to CustomResources, providing
administrators control over who can interact with each Operator.

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: memcached-operator-group
 namespace: default
spec:
 targetNamespaces:
 - default

CHAPTER 11. OPERATOR SDK

149

https://github.com/operator-framework/operator-lifecycle-manager/blob/master/doc/design/building-your-csv.md

Creating instances of Memcached in this namespace will now trigger the Memcached Operator
to instantiate pods running the memcached server that are managed by the Operator. The
more CustomResources you create, the more unique instances of Memcached are managed
by the Memcached Operator running in this namespace.

$ cat <<EOF | oc apply -f -
apiVersion: "cache.example.com/v1alpha1"
kind: "Memcached"
metadata:
 name: "memcached-for-wordpress"
spec:
 size: 1
EOF

$ cat <<EOF | oc apply -f -
apiVersion: "cache.example.com/v1alpha1"
kind: "Memcached"
metadata:
 name: "memcached-for-drupal"
spec:
 size: 1
EOF

$ oc get Memcached
NAME AGE
memcached-for-drupal 22s
memcached-for-wordpress 27s

$ oc get pods
NAME READY STATUS RESTARTS AGE
memcached-app-operator-66b5777b79-pnsfj 1/1 Running 0 14m
memcached-for-drupal-5476487c46-qbd66 1/1 Running 0 3s
memcached-for-wordpress-65b75fd8c9-7b9x7 1/1 Running 0 8s

4. Update an application.
Manually apply an update to the Operator by creating a new Operator manifest with a replaces
field that references the old Operator manifest. The OLM ensures that all resources being
managed by the old Operator have their ownership moved to the new Operator without fear of
any programs stopping execution. It is up to the Operators themselves to execute any data
migrations required to upgrade resources to run under a new version of the Operator.

The following command demonstrates applying a new Operator manifest file using a new version
of the Operator and shows that the pods remain executing:

$ curl -Lo memcachedoperator.0.0.2.csv.yaml https://raw.githubusercontent.com/operator-
framework/getting-started/master/memcachedoperator.0.0.2.csv.yaml
$ oc apply -f memcachedoperator.0.0.2.csv.yaml
$ oc get pods
NAME READY STATUS RESTARTS AGE
memcached-app-operator-66b5777b79-pnsfj 1/1 Running 0 3s
memcached-for-drupal-5476487c46-qbd66 1/1 Running 0 14m
memcached-for-wordpress-65b75fd8c9-7b9x7 1/1 Running 0 14m

11.1.5. Additional resources

OpenShift Container Platform 4.1 Applications

150

https://github.com/operator-framework/getting-started/blob/master/memcachedoperator.0.0.2.csv.yaml

See Appendices to learn about the project directory structures created by the Operator SDK.

Operator Development Guide for Red Hat Partners

11.2. CREATING ANSIBLE-BASED OPERATORS

This guide outlines Ansible support in the Operator SDK and walks Operator authors through examples
building and running Ansible-based Operators with the operator-sdk CLI tool that use Ansible
playbooks and modules.

11.2.1. Ansible support in the Operator SDK

The Operator Framework is an open source toolkit to manage Kubernetes native applications, called
Operators, in an effective, automated, and scalable way. This framework includes the Operator SDK,
which assists developers in bootstrapping and building an Operator based on their expertise without
requiring knowledge of Kubernetes API complexities.

One of the Operator SDK’s options for generating an Operator project includes leveraging existing
Ansible playbooks and modules to deploy Kubernetes resources as a unified application, without having
to write any Go code.

11.2.1.1. Custom Resource files

Operators use the Kubernetes' extension mechanism, Custom Resource Definitions (CRDs), so your
Custom Resource (CR) looks and acts just like the built-in, native Kubernetes objects.

The CR file format is a Kubernetes resource file. The object has mandatory and optional fields:

Table 11.1. Custom Resource fields

Field Description

apiVersion Version of the CR to be created.

kind Kind of the CR to be created.

metadata Kubernetes-specific metadata to be created.

spec (optional) Key-value list of variables which are passed to Ansible. This field is empty by
default.

status Summarizes the current state of the object. For Ansible-based Operators,
the status subresource is enabled for CRDs and managed by the
k8s_status Ansible module by default, which includes condition
information to the CR’s status.

annotations Kubernetes-specific annotations to be appended to the CR.

The following list of CR annotations modify the behavior of the Operator:

Table 11.2. Ansible-based Operator annotations

CHAPTER 11. OPERATOR SDK

151

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.1/html-single/applications/#osdk-project-scaffolding-layout_operator-appendices
https://operators.gitbook.io/operator-developer-guide-for-red-hat-partners/
https://coreos.com/operators/
https://kubernetes.io/docs/tasks/access-kubernetes-api/custom-resources/custom-resource-definitions/#status-subresource

Annotation Description

ansible.operator-
sdk/reconcile-period

Specifies the reconciliation interval for the CR. This value is parsed using the
standard Golang package time. Specifically, ParseDuration is used which
applies the default suffix of s, giving the value in seconds.

Example Ansible-based Operator annotation

11.2.1.2. Watches file

The Watches file contains a list of mappings from Custom Resources (CRs), identified by its Group,
Version, and Kind, to an Ansible role or playbook. The Operator expects this mapping file in a
predefined location, /opt/ansible/watches.yaml.

Table 11.3. Watches file mappings

Field Description

group Group of CR to watch.

version Version of CR to watch.

kind Kind of CR to watch

role (default) Path to the Ansible role added to the container. For example, if your roles
directory is at /opt/ansible/roles/ and your role is named busybox, this
value would be /opt/ansible/roles/busybox. This field is mutually
exclusive with the playbook field.

playbook Path to the Ansible playbook added to the container. This playbook is
expected to be simply a way to call roles. This field is mutually exclusive with
the role field.

reconcilePeriod (optional) The reconciliation interval, how often the role or playbook is run, for a given
CR.

manageStatus (optional) When set to true (default), the Operator manages the status of the CR
generically. When set to false, the status of the CR is managed elsewhere,
by the specified role or playbook or in a separate controller.

Example Watches file

apiVersion: "foo.example.com/v1alpha1"
kind: "Foo"
metadata:
 name: "example"
annotations:
 ansible.operator-sdk/reconcile-period: "30s"

OpenShift Container Platform 4.1 Applications

152

https://golang.org/pkg/time/
https://golang.org/pkg/time/#ParseDuration

1

2

3

Simple example mapping Foo to the Foo role.

Simple example mapping Bar to a playbook.

More complex example for the Baz kind. Disables re-queuing and managing the CR status in the
playbook.

11.2.1.2.1. Advanced options

Advanced features can be enabled by adding them to your Watches file per GVK (group, version, and
kind). They can go below the group, version, kind and playbook or role fields.

Some features can be overridden per resource using an annotation on that Custom Resource (CR). The
options that can be overridden have the annotation specified below.

Table 11.4. Advanced Watches file options

Feature YAML key Description Annotation for
override

Defa
ult
valu
e

Reconcile period reconcilePeri
od

Time between reconcile runs for a
particular CR.

ansbile.oper
ator-
sdk/reconcil
e-period

1m

Manage status manageStatu
s

Allows the Operator to manage
the conditions section of each
CR’s status section.

 true

Watch dependent
resources

watchDepen
dentResourc
es

Allows the Operator to
dynamically watch resources that
are created by Ansible.

 true

- version: v1alpha1 1
 group: foo.example.com
 kind: Foo
 role: /opt/ansible/roles/Foo

- version: v1alpha1 2
 group: bar.example.com
 kind: Bar
 playbook: /opt/ansible/playbook.yml

- version: v1alpha1 3
 group: baz.example.com
 kind: Baz
 playbook: /opt/ansible/baz.yml
 reconcilePeriod: 0
 manageStatus: false

CHAPTER 11. OPERATOR SDK

153

Watch cluster-scoped
resources

watchCluster
ScopedReso
urces

Allows the Operator to watch
cluster-scoped resources that
are created by Ansible.

 fals
e

Max runner artifacts maxRunnerA
rtifacts

Manages the number of artifact
directories that Ansible Runner
keeps in the Operator container
for each individual resource.

ansible.oper
ator-
sdk/max-
runner-
artifacts

20

Feature YAML key Description Annotation for
override

Defa
ult
valu
e

Example Watches file with advanced options

11.2.1.3. Extra variables sent to Ansible

Extra variables can be sent to Ansible, which are then managed by the Operator. The spec section of the
Custom Resource (CR) passes along the key-value pairs as extra variables. This is equivalent to extra
variables passed in to the ansible-playbook command.

The Operator also passes along additional variables under the meta field for the name of the CR and
the namespace of the CR.

For the following CR example:

The structure passed to Ansible as extra variables is:

- version: v1alpha1
 group: app.example.com
 kind: AppService
 playbook: /opt/ansible/playbook.yml
 maxRunnerArtifacts: 30
 reconcilePeriod: 5s
 manageStatus: False
 watchDependentResources: False

apiVersion: "app.example.com/v1alpha1"
kind: "Database"
metadata:
 name: "example"
spec:
 message:"Hello world 2"
 newParameter: "newParam"

{ "meta": {
 "name": "<cr_name>",
 "namespace": "<cr_namespace>",

OpenShift Container Platform 4.1 Applications

154

https://ansible-runner.readthedocs.io/en/latest/intro.html#runner-artifacts-directory-hierarchy

The message and newParameter fields are set in the top level as extra variables, and meta provides
the relevant metadata for the CR as defined in the Operator. The meta fields can be accessed using dot
notation in Ansible, for example:

11.2.1.4. Ansible Runner directory

Ansible Runner keeps information about Ansible runs in the container. This is located at /tmp/ansible-
operator/runner/<group>/<version>/<kind>/<namespace>/<name>.

Additional resources

To learn more about the runner directory, see the Ansible Runner documentation.

11.2.2. Installing the Operator SDK CLI

The Operator SDK has a CLI tool that assists developers in creating, building, and deploying a new
Operator project. You can install the SDK CLI on your workstation so you are prepared to start authoring
your own Operators.

NOTE

This guide uses minikube v0.25.0+ as the local Kubernetes cluster and Quay.io for the
public registry.

11.2.2.1. Installing from GitHub release

You can download and install a pre-built release binary of the SDK CLI from the project on GitHub.

Prerequisites

docker v17.03+

OpenShift CLI (oc) v4.1+ installed

Access to a cluster based on Kubernetes v1.11.3+

Access to a container registry

Procedure

1. Set the release version variable:

RELEASE_VERSION=v0.8.0

 },
 "message": "Hello world 2",
 "new_parameter": "newParam",
 "_app_example_com_database": {
 <full_crd>
 },
}

- debug:
 msg: "name: {{ meta.name }}, {{ meta.namespace }}"

CHAPTER 11. OPERATOR SDK

155

https://ansible-runner.readthedocs.io/en/latest/index.html
https://github.com/kubernetes/minikube#installation
https://quay.io/
https://docs.docker.com/install/

1

2. Download the release binary.

For Linux:

$ curl -OJL https://github.com/operator-framework/operator-
sdk/releases/download/${RELEASE_VERSION}/operator-sdk-${RELEASE_VERSION}-
x86_64-linux-gnu

For macOS:

$ curl -OJL https://github.com/operator-framework/operator-
sdk/releases/download/${RELEASE_VERSION}/operator-sdk-${RELEASE_VERSION}-
x86_64-apple-darwin

3. Verify the downloaded release binary.

a. Download the provided ASC file.

For Linux:

$ curl -OJL https://github.com/operator-framework/operator-
sdk/releases/download/${RELEASE_VERSION}/operator-sdk-
${RELEASE_VERSION}-x86_64-linux-gnu.asc

For macOS:

$ curl -OJL https://github.com/operator-framework/operator-
sdk/releases/download/${RELEASE_VERSION}/operator-sdk-
${RELEASE_VERSION}-x86_64-apple-darwin.asc

b. Place the binary and corresponding ASC file into the same directory and run the following
command to verify the binary:

For Linux:

$ gpg --verify operator-sdk-${RELEASE_VERSION}-x86_64-linux-gnu.asc

For macOS:

$ gpg --verify operator-sdk-${RELEASE_VERSION}-x86_64-apple-darwin.asc

If you do not have the maintainer’s public key on your workstation, you will get the following
error:

$ gpg --verify operator-sdk-${RELEASE_VERSION}-x86_64-apple-darwin.asc
$ gpg: assuming signed data in 'operator-sdk-${RELEASE_VERSION}-x86_64-apple-
darwin'
$ gpg: Signature made Fri Apr 5 20:03:22 2019 CEST
$ gpg: using RSA key <key_id> 1
$ gpg: Can't check signature: No public key

RSA key string.

To download the key, run the following command, replacing <key_id> with the RSA key

OpenShift Container Platform 4.1 Applications

156

1

To download the key, run the following command, replacing <key_id> with the RSA key
string provided in the output of the previous command:

$ gpg [--keyserver keys.gnupg.net] --recv-key "<key_id>" 1

If you do not have a key server configured, specify one with the --keyserver option.

4. Install the release binary in your PATH:

For Linux:

$ chmod +x operator-sdk-${RELEASE_VERSION}-x86_64-linux-gnu
$ sudo cp operator-sdk-${RELEASE_VERSION}-x86_64-linux-gnu
/usr/local/bin/operator-sdk
$ rm operator-sdk-${RELEASE_VERSION}-x86_64-linux-gnu

For macOS:

$ chmod +x operator-sdk-${RELEASE_VERSION}-x86_64-apple-darwin
$ sudo cp operator-sdk-${RELEASE_VERSION}-x86_64-apple-darwin
/usr/local/bin/operator-sdk
$ rm operator-sdk-${RELEASE_VERSION}-x86_64-apple-darwin

5. Verify that the CLI tool was installed correctly:

$ operator-sdk version

11.2.2.2. Installing from Homebrew

You can install the SDK CLI using Homebrew.

Prerequisites

Homebrew

docker v17.03+

OpenShift CLI (oc) v4.1+ installed

Access to a cluster based on Kubernetes v1.11.3+

Access to a container registry

Procedure

1. Install the SDK CLI using the brew command:

$ brew install operator-sdk

2. Verify that the CLI tool was installed correctly:

$ operator-sdk version

CHAPTER 11. OPERATOR SDK

157

https://brew.sh/
https://docs.docker.com/install/

11.2.2.3. Compiling and installing from source

You can obtain the Operator SDK source code to compile and install the SDK CLI.

Prerequisites

dep v0.5.0+

Git

Go v1.10+

docker v17.03+

OpenShift CLI (oc) v4.1+ installed

Access to a cluster based on Kubernetes v1.11.3+

Access to a container registry

Procedure

1. Clone the operator-sdk repository:

$ mkdir -p $GOPATH/src/github.com/operator-framework
$ cd $GOPATH/src/github.com/operator-framework
$ git clone https://github.com/operator-framework/operator-sdk
$ cd operator-sdk

2. Check out the desired release branch:

$ git checkout master

3. Compile and install the SDK CLI:

$ make dep
$ make install

This installs the CLI binary operator-sdk at $GOPATH/bin.

4. Verify that the CLI tool was installed correctly:

$ operator-sdk version

11.2.3. Building an Ansible-based Operator using the Operator SDK

This procedure walks through an example of building a simple Memcached Operator powered by Ansible
playbooks and modules using tools and libraries provided by the Operator SDK.

Prerequisites

Operator SDK CLI installed on the development workstation

Access to a Kubernetes-based cluster v1.11.3+ (for example OpenShift Container Platform 4.1)

OpenShift Container Platform 4.1 Applications

158

https://golang.github.io/dep/docs/installation.html
https://git-scm.com/downloads
https://golang.org/dl/
https://docs.docker.com/install/

Access to a Kubernetes-based cluster v1.11.3+ (for example OpenShift Container Platform 4.1)
using an account with cluster-admin permissions

OpenShift CLI (oc) v4.1+ installed

ansible v2.6.0+

ansible-runner v1.1.0+

ansible-runner-http v1.0.0+

Procedure

1. Create a new Operator project, either namespace-scoped or cluster-scoped, using the
operator-sdk new command. Choose one of the following:

a. A namespace-scoped Operator (the default) watches and manages resources in a single
namespace. Namespace-scoped operators are preferred because of their flexibility. They
enable decoupled upgrades, namespace isolation for failures and monitoring, and differing
API definitions.
To create a new Ansible-based, namespace-scoped memcached-operator project and
change to its directory, use the following commands:

$ operator-sdk new memcached-operator \
 --api-version=cache.example.com/v1alpha1 \
 --kind=Memcached \
 --type=ansible
$ cd memcached-operator

This creates the memcached-operator project specifically for watching the Memcached
resource with APIVersion example.com/v1apha1 and Kind Memcached.

b. A cluster-scoped Operator watches and manages resources cluster-wide, which can be
useful in certain cases. For example, the cert-manager operator is often deployed with
cluster-scoped permissions and watches so that it can manage issuing certificates for an
entire cluster.
To create your memcached-operator project to be cluster-scoped and change to its
directory, use the following commands:

$ operator-sdk new memcached-operator \
 --cluster-scoped \
 --api-version=cache.example.com/v1alpha1 \
 --kind=Memcached \
 --type=ansible
$ cd memcached-operator

Using the --cluster-scoped flag scaffolds the new Operator with the following
modifications:

deploy/operator.yaml: Set WATCH_NAMESPACE="" instead of setting it to the Pod’s
namespace.

deploy/role.yaml: Use ClusterRole instead of Role.

deploy/role_binding.yaml:

CHAPTER 11. OPERATOR SDK

159

https://docs.ansible.com/ansible/latest/index.html
https://ansible-runner.readthedocs.io/en/latest/install.html
https://github.com/ansible/ansible-runner-http

Use ClusterRoleBinding instead of RoleBinding.

Set the subject namespace to REPLACE_NAMESPACE. This must be changed to
the namespace in which the Operator is deployed.

2. Customize the Operator logic.
For this example, the memcached-operator executes the following reconciliation logic for each
Memcached Custom Resource (CR):

Create a memcached Deployment if it does not exist.

Ensure that the Deployment size is the same as specified by the Memcached CR.

By default, the memcached-operator watches Memcached resource events as shown in the
watches.yaml file and executes the Ansible role Memcached:

You can optionally customize the following logic in the watches.yaml file:

a. Specifying a role option configures the Operator to use this specified path when launching
ansible-runner with an Ansible role. By default, the new command fills in an absolute path
to where your role should go:

b. Specifying a playbook option in the watches.yaml file configures the Operator to use this
specified path when launching ansible-runner with an Ansible playbook:

3. Build the Memcached Ansible role.
Modify the generated Ansible role under the roles/memcached/ directory. This Ansible role
controls the logic that is executed when a resource is modified.

a. Define the Memcached spec.
Defining the spec for an Ansible-based Operator can be done entirely in Ansible. The
Ansible Operator passes all key-value pairs listed in the CR spec field along to Ansible as
variables. The names of all variables in the spec field are converted to snake case
(lowercase with an underscore) by the Operator before running Ansible. For example,
serviceAccount in the spec becomes service_account in Ansible.

TIP

You should perform some type validation in Ansible on the variables to ensure that your
application is receiving expected input.

In case the user does not set the spec field, set a default by modifying the

- version: v1alpha1
 group: cache.example.com
 kind: Memcached

- version: v1alpha1
 group: cache.example.com
 kind: Memcached
 role: /opt/ansible/roles/memcached

- version: v1alpha1
 group: cache.example.com
 kind: Memcached
 playbook: /opt/ansible/playbook.yaml

OpenShift Container Platform 4.1 Applications

160

https://docs.ansible.com/ansible/2.5/user_guide/playbooks_variables.html#passing-variables-on-the-command-line

In case the user does not set the spec field, set a default by modifying the
roles/memcached/defaults/main.yml file:

b. Define the Memcached Deployment.
With the Memcached spec now defined, you can define what Ansible is actually executed
on resource changes. Because this is an Ansible role, the default behavior executes the
tasks in the roles/memcached/tasks/main.yml file.

The goal is for Ansible to create a Deployment if it does not exist, which runs the
memcached:1.4.36-alpine image. Ansible 2.7+ supports the k8s Ansible module , which this
example leverages to control the Deployment definition.

Modify the roles/memcached/tasks/main.yml to match the following:

NOTE

This example used the size variable to control the number of replicas of the
Memcached Deployment. This example sets the default to 1, but any user
can create a CR that overwrites the default.

4. Deploy the CRD.

Before running the Operator, Kubernetes needs to know about the new Custom Resource

size: 1

- name: start memcached
 k8s:
 definition:
 kind: Deployment
 apiVersion: apps/v1
 metadata:
 name: '{{ meta.name }}-memcached'
 namespace: '{{ meta.namespace }}'
 spec:
 replicas: "{{size}}"
 selector:
 matchLabels:
 app: memcached
 template:
 metadata:
 labels:
 app: memcached
 spec:
 containers:
 - name: memcached
 command:
 - memcached
 - -m=64
 - -o
 - modern
 - -v
 image: "docker.io/memcached:1.4.36-alpine"
 ports:
 - containerPort: 11211

CHAPTER 11. OPERATOR SDK

161

https://docs.ansible.com/ansible/2.7/modules/k8s_module.html

Before running the Operator, Kubernetes needs to know about the new Custom Resource
Definition (CRD) the Operator will be watching. Deploy the Memcached CRD:

$ oc create -f deploy/crds/cache_v1alpha1_memcached_crd.yaml

5. Build and run the Operator.
There are two ways to build and run the Operator:

As a Pod inside a Kubernetes cluster.

As a Go program outside the cluster using the operator-sdk up command.

Choose one of the following methods:

a. Run as a Pod inside a Kubernetes cluster. This is the preferred method for production use.

i. Build the memcached-operator image and push it to a registry:

$ operator-sdk build quay.io/example/memcached-operator:v0.0.1
$ podman push quay.io/example/memcached-operator:v0.0.1

ii. Deployment manifests are generated in the deploy/operator.yaml file. The deployment
image in this file needs to be modified from the placeholder REPLACE_IMAGE to the
previous built image. To do this, run:

$ sed -i 's|REPLACE_IMAGE|quay.io/example/memcached-operator:v0.0.1|g'
deploy/operator.yaml

iii. If you created your Operator using the --cluster-scoped=true flag, update the service
account namespace in the generated ClusterRoleBinding to match where you are
deploying your Operator:

$ export OPERATOR_NAMESPACE=$(oc config view --minify -o
jsonpath='{.contexts[0].context.namespace}')
$ sed -i "s|REPLACE_NAMESPACE|$OPERATOR_NAMESPACE|g"
deploy/role_binding.yaml

If you are performing these steps on OSX, use the following commands instead:

$ sed -i "" 's|REPLACE_IMAGE|quay.io/example/memcached-operator:v0.0.1|g'
deploy/operator.yaml
$ sed -i "" "s|REPLACE_NAMESPACE|$OPERATOR_NAMESPACE|g"
deploy/role_binding.yaml

iv. Deploy the memcached-operator:

$ oc create -f deploy/service_account.yaml
$ oc create -f deploy/role.yaml
$ oc create -f deploy/role_binding.yaml
$ oc create -f deploy/operator.yaml

v. Verify that the memcached-operator is up and running:

OpenShift Container Platform 4.1 Applications

162

$ oc get deployment
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
memcached-operator 1 1 1 1 1m

b. Run outside the cluster. This method is preferred during the development cycle to speed
up deployment and testing.
Ensure that Ansible Runner and Ansible Runner HTTP Plug-in are installed or else you will
see unexpected errors from Ansible Runner when a CR is created.

It is also important that the role path referenced in the watches.yaml file exists on your
machine. Because normally a container is used where the role is put on disk, the role must be
manually copied to the configured Ansible roles path (for example /etc/ansible/roles).

i. To run the Operator locally with the default Kubernetes configuration file present at
$HOME/.kube/config:

$ operator-sdk up local

To run the Operator locally with a provided Kubernetes configuration file:

$ operator-sdk up local --kubeconfig=config

6. Create a Memcached CR.

a. Modify the deploy/crds/cache_v1alpha1_memcached_cr.yaml file as shown and create a
Memcached CR:

$ cat deploy/crds/cache_v1alpha1_memcached_cr.yaml
apiVersion: "cache.example.com/v1alpha1"
kind: "Memcached"
metadata:
 name: "example-memcached"
spec:
 size: 3

$ oc apply -f deploy/crds/cache_v1alpha1_memcached_cr.yaml

b. Ensure that the memcached-operator creates the Deployment for the CR:

$ oc get deployment
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
memcached-operator 1 1 1 1 2m
example-memcached 3 3 3 3 1m

c. Check the Pods to confirm three replicas were created:

$ oc get pods
NAME READY STATUS RESTARTS AGE
example-memcached-6fd7c98d8-7dqdr 1/1 Running 0 1m
example-memcached-6fd7c98d8-g5k7v 1/1 Running 0 1m
example-memcached-6fd7c98d8-m7vn7 1/1 Running 0 1m
memcached-operator-7cc7cfdf86-vvjqk 1/1 Running 0 2m

7. Update the size.

CHAPTER 11. OPERATOR SDK

163

a. Change the spec.size field in the memcached CR from 3 to 4 and apply the change:

$ cat deploy/crds/cache_v1alpha1_memcached_cr.yaml
apiVersion: "cache.example.com/v1alpha1"
kind: "Memcached"
metadata:
 name: "example-memcached"
spec:
 size: 4

$ oc apply -f deploy/crds/cache_v1alpha1_memcached_cr.yaml

b. Confirm that the Operator changes the Deployment size:

$ oc get deployment
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
example-memcached 4 4 4 4 5m

8. Clean up the resources:

$ oc delete -f deploy/crds/cache_v1alpha1_memcached_cr.yaml
$ oc delete -f deploy/operator.yaml
$ oc delete -f deploy/role_binding.yaml
$ oc delete -f deploy/role.yaml
$ oc delete -f deploy/service_account.yaml
$ oc delete -f deploy/crds/cache_v1alpha1_memcached_crd.yaml

11.2.4. Managing application lifecycle using the k8s Ansible module

To manage the lifecycle of your application on Kubernetes using Ansible, you can use the k8s Ansible
module. This Ansible module allows a developer to either leverage their existing Kubernetes resource
files (written in YAML) or express the lifecycle management in native Ansible.

One of the biggest benefits of using Ansible in conjunction with existing Kubernetes resource files is the
ability to use Jinja templating so that you can customize resources with the simplicity of a few variables
in Ansible.

This section goes into detail on usage of the k8s Ansible module. To get started, install the module on
your local workstation and test it using a playbook before moving on to using it within an Operator.

11.2.4.1. Installing the k8s Ansible module

To install the k8s Ansible module on your local workstation:

Procedure

1. Install Ansible 2.6+:

$ sudo yum install ansible

2. Install the OpenShift python client package using pip:

$ pip install openshift

OpenShift Container Platform 4.1 Applications

164

https://docs.ansible.com/ansible/2.7/modules/k8s_module.html
https://github.com/openshift/openshift-restclient-python

1

11.2.4.2. Testing the k8s Ansible module locally

Sometimes, it is beneficial for a developer to run the Ansible code from their local machine as opposed
to running and rebuilding the Operator each time.

Procedure

1. Initialize a new Ansible-based Operator project:

$ operator-sdk new --type ansible --kind Foo --api-version foo.example.com/v1alpha1 foo-
operator
Create foo-operator/tmp/init/galaxy-init.sh
Create foo-operator/tmp/build/Dockerfile
Create foo-operator/tmp/build/test-framework/Dockerfile
Create foo-operator/tmp/build/go-test.sh
Rendering Ansible Galaxy role [foo-operator/roles/Foo]...
Cleaning up foo-operator/tmp/init
Create foo-operator/watches.yaml
Create foo-operator/deploy/rbac.yaml
Create foo-operator/deploy/crd.yaml
Create foo-operator/deploy/cr.yaml
Create foo-operator/deploy/operator.yaml
Run git init ...
Initialized empty Git repository in /home/dymurray/go/src/github.com/dymurray/opsdk/foo-
operator/.git/
Run git init done

$ cd foo-operator

2. Modify the roles/Foo/tasks/main.yml file with the desired Ansible logic. This example creates
and deletes a namespace with the switch of a variable.

Setting ignore_errors: true ensures that deleting a nonexistent project does not fail.

3. Modify the roles/Foo/defaults/main.yml file to set state to present by default.

4. Create an Ansible playbook playbook.yml in the top-level directory, which includes the Foo
role:

5. Run the playbook:

- name: set test namespace to {{ state }}
 k8s:
 api_version: v1
 kind: Namespace
 state: "{{ state }}"
 ignore_errors: true 1

state: present

- hosts: localhost
 roles:
 - Foo

CHAPTER 11. OPERATOR SDK

165

$ ansible-playbook playbook.yml
 [WARNING]: provided hosts list is empty, only localhost is available. Note that the implicit
localhost does not match 'all'

PLAY [localhost] ***

TASK [Gathering Facts] ***
ok: [localhost]

Task [Foo : set test namespace to present]
changed: [localhost]

PLAY RECAP ***
localhost : ok=2 changed=1 unreachable=0 failed=0

6. Check that the namespace was created:

$ oc get namespace
NAME STATUS AGE
default Active 28d
kube-public Active 28d
kube-system Active 28d
test Active 3s

7. Rerun the playbook setting state to absent:

$ ansible-playbook playbook.yml --extra-vars state=absent
 [WARNING]: provided hosts list is empty, only localhost is available. Note that the implicit
localhost does not match 'all'

PLAY [localhost] ***

TASK [Gathering Facts] ***
ok: [localhost]

Task [Foo : set test namespace to absent]
changed: [localhost]

PLAY RECAP ***
localhost : ok=2 changed=1 unreachable=0 failed=0

8. Check that the namespace was deleted:

$ oc get namespace
NAME STATUS AGE
default Active 28d
kube-public Active 28d
kube-system Active 28d

11.2.4.3. Testing the k8s Ansible module inside an Operator

After you are familiar using the k8s Ansible module locally, you can trigger the same Ansible logic inside
of an Operator when a Custom Resource (CR) changes. This example maps an Ansible role to a specific
Kubernetes resource that the Operator watches. This mapping is done in the Watches file.

OpenShift Container Platform 4.1 Applications

166

11.2.4.3.1. Testing an Ansible-based Operator locally

After getting comfortable testing Ansible workflows locally, you can test the logic inside of an Ansible-
based Operator running locally.

To do so, use the operator-sdk up local command from the top-level directory of your Operator
project. This command reads from the ./watches.yaml file and uses the ~/.kube/config file to
communicate with a Kubernetes cluster just as the k8s Ansible module does.

Procedure

1. Because the up local command reads from the ./watches.yaml file, there are options available
to the Operator author. If role is left alone (by default, /opt/ansible/roles/<name>) you must
copy the role over to the /opt/ansible/roles/ directory from the Operator directly.
This is cumbersome because changes are not reflected from the current directory. Instead,
change the role field to point to the current directory and comment out the existing line:

2. Create a Custom Resource Definiton (CRD) and proper role-based access control (RBAC)
definitions for the Custom Resource (CR) Foo. The operator-sdk command autogenerates
these files inside of the deploy/ directory:

$ oc create -f deploy/crds/foo_v1alpha1_foo_crd.yaml
$ oc create -f deploy/service_account.yaml
$ oc create -f deploy/role.yaml
$ oc create -f deploy/role_binding.yaml

3. Run the up local command:

$ operator-sdk up local
[...]
INFO[0000] Starting to serve on 127.0.0.1:8888
INFO[0000] Watching foo.example.com/v1alpha1, Foo, default

4. Now that the Operator is watching the resource Foo for events, the creation of a CR triggers
your Ansible role to execute. View the deploy/cr.yaml file:

Because the spec field is not set, Ansible is invoked with no extra variables. The next section
covers how extra variables are passed from a CR to Ansible. This is why it is important to set
sane defaults for the Operator.

5. Create a CR instance of Foo with the default variable state set to present:

$ oc create -f deploy/cr.yaml

- version: v1alpha1
 group: foo.example.com
 kind: Foo
 # role: /opt/ansible/roles/Foo
 role: /home/user/foo-operator/Foo

apiVersion: "foo.example.com/v1alpha1"
kind: "Foo"
metadata:
 name: "example"

CHAPTER 11. OPERATOR SDK

167

6. Check that the namespace test was created:

$ oc get namespace
NAME STATUS AGE
default Active 28d
kube-public Active 28d
kube-system Active 28d
test Active 3s

7. Modify the deploy/cr.yaml file to set the state field to absent:

8. Apply the changes and confirm that the namespace is deleted:

$ oc apply -f deploy/cr.yaml

$ oc get namespace
NAME STATUS AGE
default Active 28d
kube-public Active 28d
kube-system Active 28d

11.2.4.3.2. Testing an Ansible-based Operator on a cluster

After getting familiar running Ansible logic inside of an Ansible-based Operator locally, you can test the
Operator inside of a Pod on a Kubernetes cluster, such as OpenShift Container Platform. Running as a
Pod on a cluster is preferred for production use.

Procedure

1. Build the foo-operator image and push it to a registry:

$ operator-sdk build quay.io/example/foo-operator:v0.0.1
$ podman push quay.io/example/foo-operator:v0.0.1

2. Deployment manifests are generated in the deploy/operator.yaml file. The Deployment image
in this file must be modified from the placeholder REPLACE_IMAGE to the previously-built
image. To do so, run the following command:

$ sed -i 's|REPLACE_IMAGE|quay.io/example/foo-operator:v0.0.1|g' deploy/operator.yaml

If you are performing these steps on OSX, use the following command instead:

$ sed -i "" 's|REPLACE_IMAGE|quay.io/example/foo-operator:v0.0.1|g' deploy/operator.yaml

3. Deploy the foo-operator:

apiVersion: "foo.example.com/v1alpha1"
kind: "Foo"
metadata:
 name: "example"
spec:
 state: "absent"

OpenShift Container Platform 4.1 Applications

168

$ oc create -f deploy/crds/foo_v1alpha1_foo_crd.yaml # if CRD doesn't exist already
$ oc create -f deploy/service_account.yaml
$ oc create -f deploy/role.yaml
$ oc create -f deploy/role_binding.yaml
$ oc create -f deploy/operator.yaml

4. Verify that the foo-operator is up and running:

$ oc get deployment
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
foo-operator 1 1 1 1 1m

11.2.5. Managing Custom Resource status using the k8s_status Ansible module

Ansible-based Operators automatically update Custom Resource (CR) status subresources with
generic information about the previous Ansible run. This includes the number of successful and failed
tasks and relevant error messages as shown:

Ansible-based Operators also allow Operator authors to supply custom status values with the
k8s_status Ansible module. This allows the author to update the status from within Ansible with any
key-value pair as desired.

By default, Ansible-based Operators always include the generic Ansible run output as shown above. If
you would prefer your application did not update the status with Ansible output, you can track the status
manually from your application.

Procedure

1. To track CR status manually from your application, update the Watches file with a
manageStatus field set to false:

status:
 conditions:
 - ansibleResult:
 changed: 3
 completion: 2018-12-03T13:45:57.13329
 failures: 1
 ok: 6
 skipped: 0
 lastTransitionTime: 2018-12-03T13:45:57Z
 message: 'Status code was -1 and not [200]: Request failed: <urlopen error [Errno
 113] No route to host>'
 reason: Failed
 status: "True"
 type: Failure
 - lastTransitionTime: 2018-12-03T13:46:13Z
 message: Running reconciliation
 reason: Running
 status: "True"
 type: Running

- version: v1
 group: api.example.com
 kind: Foo

CHAPTER 11. OPERATOR SDK

169

https://kubernetes.io/docs/tasks/access-kubernetes-api/custom-resources/custom-resource-definitions/#status-subresource
https://github.com/fabianvf/ansible-k8s-status-module

2. Then, use the k8s_status Ansible module to update the subresource. For example, to update
with key foo and value bar, k8s_status can be used as shown:

Additional resources

For more details about user-driven status management from Ansible-based Operators, see the
Ansible Operator Status Proposal.

11.2.5.1. Using the k8s_status Ansible module when testing locally

If your Operator takes advantage of the k8s_status Ansible module and you want to test the Operator
locally with the operator-sdk up local command, you must install the module in a location that Ansible
expects. This is done with the library configuration option for Ansible.

For this example, assume the user is placing third-party Ansible modules in the
/usr/share/ansible/library/ directory.

Procedure

1. To install the k8s_status module, set the ansible.cfg file to search in the
/usr/share/ansible/library/ directory for installed Ansible modules:

$ echo "library=/usr/share/ansible/library/" >> /etc/ansible/ansible.cfg

2. Add the k8s_status.py file to the /usr/share/ansible/library/ directory:

$ wget https://raw.githubusercontent.com/openshift/ocp-release-operator-
sdk/master/library/k8s_status.py -O /usr/share/ansible/library/k8s_status.py

11.2.6. Additional resources

See Appendices to learn about the project directory structures created by the Operator SDK.

Reaching for the Stars with Ansible Operator - Red Hat OpenShift Blog

Operator Development Guide for Red Hat Partners

11.3. CREATING HELM-BASED OPERATORS

This guide outlines Helm chart support in the Operator SDK and walks Operator authors through an
example of building and running an Nginx Operator with the operator-sdk CLI tool that uses an existing
Helm chart.

 role: /opt/ansible/roles/Foo
 manageStatus: false

- k8s_status:
 api_version: app.example.com/v1
 kind: Foo
 name: "{{ meta.name }}"
 namespace: "{{ meta.namespace }}"
 status:
 foo: bar

OpenShift Container Platform 4.1 Applications

170

https://github.com/operator-framework/operator-sdk/blob/master/doc/proposals/ansible-operator-status.md
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.1/html-single/applications/#osdk-project-scaffolding-layout_operator-appendices
https://blog.openshift.com/reaching-for-the-stars-with-ansible-operator/
https://operators.gitbook.io/operator-developer-guide-for-red-hat-partners/

11.3.1. Helm chart support in the Operator SDK

The Operator Framework is an open source toolkit to manage Kubernetes native applications, called
Operators, in an effective, automated, and scalable way. This framework includes the Operator SDK,
which assists developers in bootstrapping and building an Operator based on their expertise without
requiring knowledge of Kubernetes API complexities.

One of the Operator SDK’s options for generating an Operator project includes leveraging an existing
Helm chart to deploy Kubernetes resources as a unified application, without having to write any Go
code. Such Helm-based Operators are designed to excel at stateless applications that require very little
logic when rolled out, because changes should be applied to the Kubernetes objects that are generated
as part of the chart. This may sound limiting, but can be sufficient for a surprising amount of use-cases
as shown by the proliferation of Helm charts built by the Kubernetes community.

The main function of an Operator is to read from a custom object that represents your application
instance and have its desired state match what is running. In the case of a Helm-based Operator, the
object’s spec field is a list of configuration options that are typically described in Helm’s values.yaml
file. Instead of setting these values with flags using the Helm CLI (for example, helm install -f
values.yaml), you can express them within a Custom Resource (CR), which, as a native Kubernetes
object, enables the benefits of RBAC applied to it and an audit trail.

For an example of a simple CR called Tomcat:

apiVersion: apache.org/v1alpha1
kind: Tomcat
metadata:
 name: example-app
spec:
 replicaCount: 2

The replicaCount value, 2 in this case, is propagated into the chart’s templates where following is used:

{{ .Values.replicaCount }}

After an Operator is built and deployed, you can deploy a new instance of an app by creating a new
instance of a CR, or list the different instances running in all environments using the oc command:

$ oc get Tomcats --all-namespaces

There is no requirement use the Helm CLI or install Tiller; Helm-based Operators import code from the
Helm project. All you have to do is have an instance of the Operator running and register the CR with a
Custom Resource Definition (CRD). And because it obeys RBAC, you can more easily prevent
production changes.

11.3.2. Installing the Operator SDK CLI

The Operator SDK has a CLI tool that assists developers in creating, building, and deploying a new
Operator project. You can install the SDK CLI on your workstation so you are prepared to start authoring
your own Operators.

NOTE

This guide uses minikube v0.25.0+ as the local Kubernetes cluster and Quay.io for the
public registry.

CHAPTER 11. OPERATOR SDK

171

https://coreos.com/operators/
https://github.com/kubernetes/minikube#installation
https://quay.io/

11.3.2.1. Installing from GitHub release

You can download and install a pre-built release binary of the SDK CLI from the project on GitHub.

Prerequisites

docker v17.03+

OpenShift CLI (oc) v4.1+ installed

Access to a cluster based on Kubernetes v1.11.3+

Access to a container registry

Procedure

1. Set the release version variable:

RELEASE_VERSION=v0.8.0

2. Download the release binary.

For Linux:

$ curl -OJL https://github.com/operator-framework/operator-
sdk/releases/download/${RELEASE_VERSION}/operator-sdk-${RELEASE_VERSION}-
x86_64-linux-gnu

For macOS:

$ curl -OJL https://github.com/operator-framework/operator-
sdk/releases/download/${RELEASE_VERSION}/operator-sdk-${RELEASE_VERSION}-
x86_64-apple-darwin

3. Verify the downloaded release binary.

a. Download the provided ASC file.

For Linux:

$ curl -OJL https://github.com/operator-framework/operator-
sdk/releases/download/${RELEASE_VERSION}/operator-sdk-
${RELEASE_VERSION}-x86_64-linux-gnu.asc

For macOS:

$ curl -OJL https://github.com/operator-framework/operator-
sdk/releases/download/${RELEASE_VERSION}/operator-sdk-
${RELEASE_VERSION}-x86_64-apple-darwin.asc

b. Place the binary and corresponding ASC file into the same directory and run the following
command to verify the binary:

For Linux:

OpenShift Container Platform 4.1 Applications

172

https://docs.docker.com/install/

1

1

$ gpg --verify operator-sdk-${RELEASE_VERSION}-x86_64-linux-gnu.asc

For macOS:

$ gpg --verify operator-sdk-${RELEASE_VERSION}-x86_64-apple-darwin.asc

If you do not have the maintainer’s public key on your workstation, you will get the following
error:

$ gpg --verify operator-sdk-${RELEASE_VERSION}-x86_64-apple-darwin.asc
$ gpg: assuming signed data in 'operator-sdk-${RELEASE_VERSION}-x86_64-apple-
darwin'
$ gpg: Signature made Fri Apr 5 20:03:22 2019 CEST
$ gpg: using RSA key <key_id> 1
$ gpg: Can't check signature: No public key

RSA key string.

To download the key, run the following command, replacing <key_id> with the RSA key
string provided in the output of the previous command:

$ gpg [--keyserver keys.gnupg.net] --recv-key "<key_id>" 1

If you do not have a key server configured, specify one with the --keyserver option.

4. Install the release binary in your PATH:

For Linux:

$ chmod +x operator-sdk-${RELEASE_VERSION}-x86_64-linux-gnu
$ sudo cp operator-sdk-${RELEASE_VERSION}-x86_64-linux-gnu
/usr/local/bin/operator-sdk
$ rm operator-sdk-${RELEASE_VERSION}-x86_64-linux-gnu

For macOS:

$ chmod +x operator-sdk-${RELEASE_VERSION}-x86_64-apple-darwin
$ sudo cp operator-sdk-${RELEASE_VERSION}-x86_64-apple-darwin
/usr/local/bin/operator-sdk
$ rm operator-sdk-${RELEASE_VERSION}-x86_64-apple-darwin

5. Verify that the CLI tool was installed correctly:

$ operator-sdk version

11.3.2.2. Installing from Homebrew

You can install the SDK CLI using Homebrew.

Prerequisites

CHAPTER 11. OPERATOR SDK

173

Homebrew

docker v17.03+

OpenShift CLI (oc) v4.1+ installed

Access to a cluster based on Kubernetes v1.11.3+

Access to a container registry

Procedure

1. Install the SDK CLI using the brew command:

$ brew install operator-sdk

2. Verify that the CLI tool was installed correctly:

$ operator-sdk version

11.3.2.3. Compiling and installing from source

You can obtain the Operator SDK source code to compile and install the SDK CLI.

Prerequisites

dep v0.5.0+

Git

Go v1.10+

docker v17.03+

OpenShift CLI (oc) v4.1+ installed

Access to a cluster based on Kubernetes v1.11.3+

Access to a container registry

Procedure

1. Clone the operator-sdk repository:

$ mkdir -p $GOPATH/src/github.com/operator-framework
$ cd $GOPATH/src/github.com/operator-framework
$ git clone https://github.com/operator-framework/operator-sdk
$ cd operator-sdk

2. Check out the desired release branch:

$ git checkout master

3. Compile and install the SDK CLI:

OpenShift Container Platform 4.1 Applications

174

https://brew.sh/
https://docs.docker.com/install/
https://golang.github.io/dep/docs/installation.html
https://git-scm.com/downloads
https://golang.org/dl/
https://docs.docker.com/install/

$ make dep
$ make install

This installs the CLI binary operator-sdk at $GOPATH/bin.

4. Verify that the CLI tool was installed correctly:

$ operator-sdk version

11.3.3. Building a Helm-based Operator using the Operator SDK

This procedure walks through an example of building a simple Nginx Operator powered by a Helm chart
using tools and libraries provided by the Operator SDK.

TIP

It is best practice to build a new Operator for each chart. This can allow for more native-behaving
Kubernetes APIs (for example, oc get Nginx) and flexibility if you ever want to write a fully-fledged
Operator in Go, migrating away from a Helm-based Operator.

Prerequisites

Operator SDK CLI installed on the development workstation

Access to a Kubernetes-based cluster v1.11.3+ (for example OpenShift Container Platform 4.1)
using an account with cluster-admin permissions

OpenShift CLI (oc) v4.1+ installed

Procedure

1. Create a new Operator project, either namespace-scoped or cluster-scoped, using the
operator-sdk new command. Choose one of the following:

a. A namespace-scoped Operator (the default) watches and manages resources in a single
namespace. Namespace-scoped operators are preferred because of their flexibility. They
enable decoupled upgrades, namespace isolation for failures and monitoring, and differing
API definitions.
To create a new Helm-based, namespace-scoped nginx-operator project, use the following
command:

$ operator-sdk new nginx-operator \
 --api-version=example.com/v1alpha1 \
 --kind=Nginx \
 --type=helm
$ cd nginx-operator

This creates the nginx-operator project specifically for watching the Nginx resource with
APIVersion example.com/v1apha1 and Kind Nginx.

b. A cluster-scoped Operator watches and manages resources cluster-wide, which can be
useful in certain cases. For example, the cert-manager operator is often deployed with
cluster-scoped permissions and watches so that it can manage issuing certificates for an
entire cluster.

CHAPTER 11. OPERATOR SDK

175

To create your nginx-operator project to be cluster-scoped, use the following command:

$ operator-sdk new nginx-operator \
 --cluster-scoped \
 --api-version=example.com/v1alpha1 \
 --kind=Nginx \
 --type=helm

Using the --cluster-scoped flag scaffolds the new Operator with the following
modifications:

deploy/operator.yaml: Set WATCH_NAMESPACE="" instead of setting it to the Pod’s
namespace.

deploy/role.yaml: Use ClusterRole instead of Role.

deploy/role_binding.yaml:

Use ClusterRoleBinding instead of RoleBinding.

Set the subject namespace to REPLACE_NAMESPACE. This must be changed to
the namespace in which the Operator is deployed.

2. Customize the Operator logic.
For this example, the nginx-operator executes the following reconciliation logic for each Nginx
Custom Resource (CR):

Create a Nginx Deployment if it does not exist.

Create a Nginx Service if it does not exist.

Create a Nginx Ingress if it is enabled and does not exist.

Ensure that the Deployment, Service, and optional Ingress match the desired configuration
(for example, replica count, image, service type) as specified by the Nginx CR.

By default, the nginx-operator watches Nginx resource events as shown in the watches.yaml
file and executes Helm releases using the specified chart:

a. Review the Nginx Helm chart.
When a Helm Operator project is created, the Operator SDK creates an example Helm chart
that contains a set of templates for a simple Nginx release.

For this example, templates are available for Deployment, Service, and Ingress resources,
along with a NOTES.txt template, which Helm chart developers use to convey helpful
information about a release.

If you are not already familiar with Helm Charts, take a moment to review the Helm Chart
developer documentation.

b. Understand the Nginx CR spec.

- version: v1alpha1
 group: example.com
 kind: Nginx
 chart: /opt/helm/helm-charts/nginx

OpenShift Container Platform 4.1 Applications

176

https://docs.helm.sh/developing_charts/

Helm uses a concept called values to provide customizations to a Helm chart’s defaults,
which are defined in the Helm chart’s values.yaml file.

Override these defaults by setting the desired values in the CR spec. You can use the
number of replicas as an example:

i. First, inspect the helm-charts/nginx/values.yaml file to find that the chart has a value
called replicaCount and it is set to 1 by default. To have 2 Nginx instances in your
deployment, your CR spec must contain replicaCount: 2.
Update the deploy/crds/example_v1alpha1_nginx_cr.yaml file to look like the
following:

ii. Similarly, the default service port is set to 80. To instead use 8080, update the
deploy/crds/example_v1alpha1_nginx_cr.yaml file again by adding the service port
override:

The Helm Operator applies the entire spec as if it was the contents of a values file, just
like the helm install -f ./overrides.yaml command works.

3. Deploy the CRD.
Before running the Operator, Kubernetes needs to know about the new custom resource
definition (CRD) the operator will be watching. Deploy the following CRD:

$ oc create -f deploy/crds/example_v1alpha1_nginx_crd.yaml

4. Build and run the Operator.
There are two ways to build and run the Operator:

As a Pod inside a Kubernetes cluster.

As a Go program outside the cluster using the operator-sdk up command.

Choose one of the following methods:

a. Run as a Pod inside a Kubernetes cluster. This is the preferred method for production use.

i. Build the nginx-operator image and push it to a registry:

apiVersion: example.com/v1alpha1
kind: Nginx
metadata:
 name: example-nginx
spec:
 replicaCount: 2

apiVersion: example.com/v1alpha1
kind: Nginx
metadata:
 name: example-nginx
spec:
 replicaCount: 2
 service:
 port: 8080

CHAPTER 11. OPERATOR SDK

177

https://docs.helm.sh/using_helm/#customizing-the-chart-before-installing

$ operator-sdk build quay.io/example/nginx-operator:v0.0.1
$ docker push quay.io/example/nginx-operator:v0.0.1

ii. Deployment manifests are generated in the deploy/operator.yaml file. The deployment
image in this file needs to be modified from the placeholder REPLACE_IMAGE to the
previous built image. To do this, run:

$ sed -i 's|REPLACE_IMAGE|quay.io/example/nginx-operator:v0.0.1|g'
deploy/operator.yaml

iii. If you created your Operator using the --cluster-scoped=true flag, update the service
account namespace in the generated ClusterRoleBinding to match where you are
deploying your Operator:

$ export OPERATOR_NAMESPACE=$(oc config view --minify -o
jsonpath='{.contexts[0].context.namespace}')
$ sed -i "s|REPLACE_NAMESPACE|$OPERATOR_NAMESPACE|g"
deploy/role_binding.yaml

If you are performing these steps on OSX, use the following commands instead:

$ sed -i "" 's|REPLACE_IMAGE|quay.io/example/nginx-operator:v0.0.1|g'
deploy/operator.yaml
$ sed -i "" "s|REPLACE_NAMESPACE|$OPERATOR_NAMESPACE|g"
deploy/role_binding.yaml

iv. Deploy the nginx-operator:

$ oc create -f deploy/service_account.yaml
$ oc create -f deploy/role.yaml
$ oc create -f deploy/role_binding.yaml
$ oc create -f deploy/operator.yaml

v. Verify that the nginx-operator is up and running:

$ oc get deployment
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
nginx-operator 1 1 1 1 1m

b. Run outside the cluster. This method is preferred during the development cycle to speed
up deployment and testing.
It is important that the chart path referenced in the watches.yaml file exists on your
machine. By default, the watches.yaml file is scaffolded to work with an Operator image
built with the operator-sdk build command. When developing and testing your operator
with the operator-sdk up local command, the SDK looks in your local file system for this
path.

i. Create a symlink at this location to point to your Helm chart’s path:

$ sudo mkdir -p /opt/helm/helm-charts
$ sudo ln -s $PWD/helm-charts/nginx /opt/helm/helm-charts/nginx

ii. To run the Operator locally with the default Kubernetes configuration file present at

OpenShift Container Platform 4.1 Applications

178

ii. To run the Operator locally with the default Kubernetes configuration file present at
$HOME/.kube/config:

$ operator-sdk up local

To run the Operator locally with a provided Kubernetes configuration file:

$ operator-sdk up local --kubeconfig=<path_to_config>

5. Deploy the Nginx CR.
Apply the Nginx CR that you modified earlier:

$ oc apply -f deploy/crds/example_v1alpha1_nginx_cr.yaml

Ensure that the nginx-operator creates the Deployment for the CR:

$ oc get deployment
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
example-nginx-b9phnoz9spckcrua7ihrbkrt1 2 2 2 2 1m

Check the Pods to confirm two replicas were created:

$ oc get pods
NAME READY STATUS RESTARTS AGE
example-nginx-b9phnoz9spckcrua7ihrbkrt1-f8f9c875d-fjcr9 1/1 Running 0 1m
example-nginx-b9phnoz9spckcrua7ihrbkrt1-f8f9c875d-ljbzl 1/1 Running 0 1m

Check that the Service port is set to 8080:

$ oc get service
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
example-nginx-b9phnoz9spckcrua7ihrbkrt1 ClusterIP 10.96.26.3 <none> 8080/TCP
1m

6. Update the replicaCount and remove the port.
Change the spec.replicaCount field from 2 to 3, remove the spec.service field, and apply the
change:

$ cat deploy/crds/example_v1alpha1_nginx_cr.yaml
apiVersion: "example.com/v1alpha1"
kind: "Nginx"
metadata:
 name: "example-nginx"
spec:
 replicaCount: 3

$ oc apply -f deploy/crds/example_v1alpha1_nginx_cr.yaml

Confirm that the Operator changes the Deployment size:

$ oc get deployment
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
example-nginx-b9phnoz9spckcrua7ihrbkrt1 3 3 3 3 1m

CHAPTER 11. OPERATOR SDK

179

Check that the Service port is set to the default 80:

$ oc get service
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
example-nginx-b9phnoz9spckcrua7ihrbkrt1 ClusterIP 10.96.26.3 <none> 80/TCP
1m

7. Clean up the resources:

$ oc delete -f deploy/crds/example_v1alpha1_nginx_cr.yaml
$ oc delete -f deploy/operator.yaml
$ oc delete -f deploy/role_binding.yaml
$ oc delete -f deploy/role.yaml
$ oc delete -f deploy/service_account.yaml
$ oc delete -f deploy/crds/example_v1alpha1_nginx_crd.yaml

11.3.4. Additional resources

See Appendices to learn about the project directory structures created by the Operator SDK.

Operator Development Guide for Red Hat Partners

11.4. GENERATING A CLUSTERSERVICEVERSION (CSV)

A ClusterServiceVersion (CSV) is a YAML manifest created from Operator metadata that assists the
Operator Lifecycle Manager (OLM) in running the Operator in a cluster. It is the metadata that
accompanies an Operator container image, used to populate user interfaces with information like its
logo, description, and version. It is also a source of technical information that is required to run the
Operator, like the RBAC rules it requires and which Custom Resources (CRs) it manages or depends on.

The Operator SDK includes the olm-catalog gen-csv subcommand to generate a ClusterServiceVersion
(CSV) for the current Operator project customized using information contained in manually-defined
YAML manifests and Operator source files.

A CSV-generating command removes the responsibility of Operator authors having in-depth Operator
Lifecycle Manager (OLM) knowledge in order for their Operator to interact with OLM or publish
metadata to the Catalog Registry. Further, because the CSV spec will likely change over time as new
Kubernetes and OLM features are implemented, the Operator SDK is equipped to easily extend its
update system to handle new CSV features going forward.

The CSV version is the same as the Operator’s, and a new CSV is generated when upgrading Operator
versions. Operator authors can use the --csv-version flag to have their Operators' state encapsulated in
a CSV with the supplied semantic version:

$ operator-sdk olm-catalog gen-csv --csv-version <version>

This action is idempotent and only updates the CSV file when a new version is supplied, or a YAML
manifest or source file is changed. Operator authors should not have to directly modify most fields in a
CSV manifest. Those that require modification are defined in this guide. For example, the CSV version
must be included in metadata.name.

11.4.1. How CSV generation works

An Operator project’s deploy/ directory is the standard location for all manifests required to deploy an

OpenShift Container Platform 4.1 Applications

180

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.1/html-single/applications/#osdk-project-scaffolding-layout_operator-appendices
https://operators.gitbook.io/operator-developer-guide-for-red-hat-partners/

An Operator project’s deploy/ directory is the standard location for all manifests required to deploy an
Operator. The Operator SDK can use data from manifests in deploy/ to write a CSV. The following
command:

$ operator-sdk olm-catalog gen-csv --csv-version <version>

writes a CSV YAML file to the deploy/olm-catalog/ directory by default.

Exactly three types of manifests are required to generate a CSV:

operator.yaml

*_{crd,cr}.yaml

RBAC role files, for example role.yaml

Operator authors may have different versioning requirements for these files and can configure which
specific files are included in the deploy/olm-catalog/csv-config.yaml file.

Workflow
Depending on whether an existing CSV is detected, and assuming all configuration defaults are used,
the olm-catalog gen-csv subcommand either:

Creates a new CSV, with the same location and naming convention as exists currently, using
available data in YAML manifests and source files.

a. The update mechanism checks for an existing CSV in deploy/. When one is not found, it
creates a ClusterServiceVersion object, referred to here as a cache, and populates fields
easily derived from Operator metadata, such as Kubernetes API ObjectMeta.

b. The update mechanism searches deploy/ for manifests that contain data a CSV uses, such
as a Deployment resource, and sets the appropriate CSV fields in the cache with this data.

c. After the search completes, every cache field populated is written back to a CSV YAML file.

or:

Updates an existing CSV at the currently pre-defined location, using available data in YAML
manifests and source files.

a. The update mechanism checks for an existing CSV in deploy/. When one is found, the CSV
YAML file contents are marshaled into a ClusterServiceVersion cache.

b. The update mechanism searches deploy/ for manifests that contain data a CSV uses, such
as a Deployment resource, and sets the appropriate CSV fields in the cache with this data.

c. After the search completes, every cache field populated is written back to a CSV YAML file.

NOTE

Individual YAML fields are overwritten and not the entire file, as descriptions and other
non-generated parts of a CSV should be preserved.

11.4.2. CSV composition configuration

Operator authors can configure CSV composition by populating several fields in the deploy/olm-

CHAPTER 11. OPERATOR SDK

181

Operator authors can configure CSV composition by populating several fields in the deploy/olm-
catalog/csv-config.yaml file:

Field Description

operator-path
(string)

The Operator resource manifest file path. Defaults to deploy/operator.yaml.

crd-cr-path-list
(string(, string)*)

A list of CRD and CR manifest file paths. Defaults to [deploy/crds/*_{crd,cr}.yaml].

rbac-path-list
(string(, string)*)

A list of RBAC role manifest file paths. Defaults to [deploy/role.yaml].

11.4.3. Manually-defined CSV fields

Many CSV fields cannot be populated using generated, non-SDK-specific manifests. These fields are
mostly human-written, English metadata about the Operator and various Custom Resource Definitions
(CRDs).

Operator authors must directly modify their CSV YAML file, adding personalized data to the following
required fields. The Operator SDK gives a warning CSV generation when a lack of data in any of the
required fields is detected.

Table 11.5. Required

Field Description

metadata.name A unique name for this CSV. Operator version should be included in the name to ensure
uniqueness, for example app-operator.v0.1.1.

spec.displayNa
me

A public name to identify the Operator.

spec.descriptio
n

A short description of the Operator’s functionality.

spec.keywords Keywords describing the operator.

spec.maintainer
s

Human or organizational entities maintaining the Operator, with a name and email.

spec.provider The Operators' provider (usually an organization), with a name.

spec.labels Key-value pairs to be used by Operator internals.

spec.version Semantic version of the Operator, for example 0.1.1.

OpenShift Container Platform 4.1 Applications

182

spec.customres
ourcedefinitions

Any CRDs the Operator uses. This field is populated automatically by the Operator SDK
if any CRD YAML files are present in deploy/. However, several fields not in the CRD
manifest spec require user input:

description: description of the CRD.

resources: any Kubernetes resources leveraged by the CRD, for example
Pods and StatefulSets.

specDescriptors: UI hints for inputs and outputs of the Operator.

Field Description

Table 11.6. Optional

Field Description

spec.replaces The name of the CSV being replaced by this CSV.

spec.links URLs (for example, websites and documentation) pertaining to the Operator or
application being managed, each with a name and url.

spec.selector Selectors by which the Operator can pair resources in a cluster.

spec.icon A base64-encoded icon unique to the Operator, set in a base64data field with a
mediatype.

spec.maturity The Operator’s capability level according to the Operator maturity model, for example
Seamless Upgrades.

Further details on what data each field above should hold are found in the CSV spec.

NOTE

Several YAML fields currently requiring user intervention can potentially be parsed from
Operator code; such Operator SDK functionality will be addressed in a future design
document.

Additional resources

Operator maturity model

11.4.4. Generating a CSV

Prerequisites

An Operator project generated using the Operator SDK

CHAPTER 11. OPERATOR SDK

183

https://github.com/operator-framework/operator-lifecycle-manager/blob/master/doc/design/building-your-csv.md
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.1/html-single/applications/#olm-maturity-model_olm-what-operators-are

Procedure

1. In your Operator project, configure your CSV composition by modifying the deploy/olm-
catalog/csv-config.yaml file, if desired.

2. Generate the CSV:

$ operator-sdk olm-catalog gen-csv --csv-version <version>

3. In the new CSV generated in the deploy/olm-catalog/ directory, ensure all required, manually-
defined fields are set appropriately.

11.4.5. Understanding your Custom Resource Definitions (CRDs)

There are two types of Custom Resource Definitions (CRDs) that your Operator may use: ones that are
owned by it and ones that it depends on, which are required.

11.4.5.1. Owned CRDs

The CRDs owned by your Operator are the most important part of your CSV. This establishes the link
between your Operator and the required RBAC rules, dependency management, and other Kubernetes
concepts.

It is common for your Operator to use multiple CRDs to link together concepts, such as top-level
database configuration in one object and a representation of ReplicaSets in another. Each one should be
listed out in the CSV file.

Table 11.7. Owned CRD fields

Field Description Required/Optional

Name The full name of your CRD. Required

Version The version of that object API. Required

Kind The machine readable name of your CRD. Required

DisplayName A human readable version of your CRD name, for example
MongoDB Standalone.

Required

Description A short description of how this CRD is used by the Operator
or a description of the functionality provided by the CRD.

Required

Group The API group that this CRD belongs to, for example
database.example.com.

Optional

OpenShift Container Platform 4.1 Applications

184

Resources Your CRDs own one or more types of Kubernetes objects.
These are listed in the resources section to inform your
users of the objects they might need to troubleshoot or how
to connect to the application, such as the Service or Ingress
rule that exposes a database.

It is recommended to only list out the objects that are
important to a human, not an exhaustive list of everything
you orchestrate. For example, ConfigMaps that store
internal state that should not be modified by a user should
not appear here.

Optional

SpecDescriptors,
StatusDescriptors
, and
ActionDescriptors

These Descriptors are a way to hint UIs with certain inputs
or outputs of your Operator that are most important to an
end user. If your CRD contains the name of a Secret or
ConfigMap that the user must provide, you can specify that
here. These items are linked and highlighted in compatible
UIs.

There are three types of descriptors:

SpecDescriptors: A reference to fields in the
spec block of an object.

StatusDescriptors: A reference to fields in the
status block of an object.

ActionDescriptors: A reference to actions that
can be performed on an object.

All Descriptors accept the following fields:

DisplayName: A human readable name for the
Spec, Status, or Action.

Description: A short description of the Spec,
Status, or Action and how it is used by the
Operator.

Path: A dot-delimited path of the field on the
object that this descriptor describes.

X-Descriptors: Used to determine which
"capabilities" this descriptor has and which UI
component to use. See the openshift/console
project for a canonical list of React UI X-
Descriptors for OpenShift Container Platform.

Also see the openshift/console project for more
information on Descriptors in general.

Optional

Field Description Required/Optional

The following example depicts a MongoDB Standalone CRD that requires some user input in the form
of a Secret and ConfigMap, and orchestrates Services, StatefulSets, Pods and ConfigMaps:

CHAPTER 11. OPERATOR SDK

185

https://github.com/openshift/console/blob/master/frontend/public/components/operator-lifecycle-manager/descriptors/types.ts#L5-L26
https://github.com/openshift/console/tree/master/frontend/public/components/operator-lifecycle-manager/descriptors

Example owned CRD

11.4.5.2. Required CRDs

Relying on other required CRDs is completely optional and only exists to reduce the scope of individual
Operators and provide a way to compose multiple Operators together to solve an end-to-end use case.

An example of this is an Operator that might set up an application and install an etcd cluster (from an
etcd Operator) to use for distributed locking and a Postgres database (from a Postgres Operator) for
data storage.

The Operator Lifecycle Manager (OLM) checks against the available CRDs and Operators in the cluster

 - displayName: MongoDB Standalone
 group: mongodb.com
 kind: MongoDbStandalone
 name: mongodbstandalones.mongodb.com
 resources:
 - kind: Service
 name: ''
 version: v1
 - kind: StatefulSet
 name: ''
 version: v1beta2
 - kind: Pod
 name: ''
 version: v1
 - kind: ConfigMap
 name: ''
 version: v1
 specDescriptors:
 - description: Credentials for Ops Manager or Cloud Manager.
 displayName: Credentials
 path: credentials
 x-descriptors:
 - 'urn:alm:descriptor:com.tectonic.ui:selector:core:v1:Secret'
 - description: Project this deployment belongs to.
 displayName: Project
 path: project
 x-descriptors:
 - 'urn:alm:descriptor:com.tectonic.ui:selector:core:v1:ConfigMap'
 - description: MongoDB version to be installed.
 displayName: Version
 path: version
 x-descriptors:
 - 'urn:alm:descriptor:com.tectonic.ui:label'
 statusDescriptors:
 - description: The status of each of the Pods for the MongoDB cluster.
 displayName: Pod Status
 path: pods
 x-descriptors:
 - 'urn:alm:descriptor:com.tectonic.ui:podStatuses'
 version: v1
 description: >-
 MongoDB Deployment consisting of only one host. No replication of
 data.

OpenShift Container Platform 4.1 Applications

186

The Operator Lifecycle Manager (OLM) checks against the available CRDs and Operators in the cluster
to fulfill these requirements. If suitable versions are found, the Operators are started within the desired
namespace and a Service Account created for each Operator to create, watch, and modify the
Kubernetes resources required.

Table 11.8. Required CRD fields

Field Description Required/Optional

Name The full name of the CRD you require. Required

Version The version of that object API. Required

Kind The Kubernetes object kind. Required

DisplayName A human readable version of the CRD. Required

Description A summary of how the component fits in your larger
architecture.

Required

Example required CRD

11.4.5.3. CRD templates

Users of your Operator will need to be aware of which options are required versus optional. You can
provide templates for each of your CRDs with a minimum set of configuration as an annotation named
alm-examples. Compatible UIs will pre-fill this template for users to further customize.

The annotation consists of a list of the kind, for example, the CRD name and the corresponding
metadata and spec of the Kubernetes object.

The following full example provides templates for EtcdCluster, EtcdBackup and EtcdRestore:

 required:
 - name: etcdclusters.etcd.database.coreos.com
 version: v1beta2
 kind: EtcdCluster
 displayName: etcd Cluster
 description: Represents a cluster of etcd nodes.

metadata:
 annotations:
 alm-examples: >-
 [{"apiVersion":"etcd.database.coreos.com/v1beta2","kind":"EtcdCluster","metadata":
{"name":"example","namespace":"default"},"spec":{"size":3,"version":"3.2.13"}},
{"apiVersion":"etcd.database.coreos.com/v1beta2","kind":"EtcdRestore","metadata":
{"name":"example-etcd-cluster"},"spec":{"etcdCluster":{"name":"example-etcd-
cluster"},"backupStorageType":"S3","s3":{"path":"<full-s3-path>","awsSecret":"<aws-secret>"}}},
{"apiVersion":"etcd.database.coreos.com/v1beta2","kind":"EtcdBackup","metadata":
{"name":"example-etcd-cluster-backup"},"spec":{"etcdEndpoints":["<etcd-cluster-
endpoints>"],"storageType":"S3","s3":{"path":"<full-s3-path>","awsSecret":"<aws-secret>"}}}]

CHAPTER 11. OPERATOR SDK

187

11.4.6. Understanding your API services

As with CRDs, there are two types of APIServices that your Operator may use: owned and required.

11.4.6.1. Owned APIServices

When a CSV owns an APIService, it is responsible for describing the deployment of the extension api-
server that backs it and the group-version-kinds it provides.

An APIService is uniquely identified by the group-version it provides and can be listed multiple times to
denote the different kinds it is expected to provide.

Table 11.9. Owned APIService fields

Field Description Required/Optional

Group Group that the APIService provides, for example
database.example.com.

Required

Version Version of the APIService, for example v1alpha1. Required

Kind A kind that the APIService is expected to provide. Required

Name The plural name for the APIService provided Required

DeploymentName Name of the deployment defined by your CSV that
corresponds to your APIService (required for owned
APIServices). During the CSV pending phase, the OLM
Operator searches your CSV’s InstallStrategy for a
deployment spec with a matching name, and if not found,
does not transition the CSV to the install ready phase.

Required

DisplayName A human readable version of your APIService name, for
example MongoDB Standalone.

Required

Description A short description of how this APIService is used by the
Operator or a description of the functionality provided by
the APIService.

Required

Resources Your APIServices own one or more types of Kubernetes
objects. These are listed in the resources section to inform
your users of the objects they might need to troubleshoot
or how to connect to the application, such as the Service or
Ingress rule that exposes a database.

It is recommended to only list out the objects that are
important to a human, not an exhaustive list of everything
you orchestrate. For example, ConfigMaps that store
internal state that should not be modified by a user should
not appear here.

Optional

OpenShift Container Platform 4.1 Applications

188

SpecDescriptors,
StatusDescriptors
, and
ActionDescriptors

Essentially the same as for owned CRDs. Optional

Field Description Required/Optional

11.4.6.1.1. APIService Resource Creation

The Operator Lifecycle Manager (OLM) is responsible for creating or replacing the Service and
APIService resources for each unique owned APIService:

Service Pod selectors are copied from the CSV deployment matching the
APIServiceDescription’s DeploymentName.

A new CA key/cert pair is generated for for each installation and the base64-encoded CA
bundle is embedded in the respective APIService resource.

11.4.6.1.2. APIService Serving Certs

The OLM handles generating a serving key/cert pair whenever an owned APIService is being installed.
The serving certificate has a CN containing the host name of the generated Service resource and is
signed by the private key of the CA bundle embedded in the corresponding APIService resource.

The cert is stored as a type kubernetes.io/tls Secret in the deployment namespace, and a Volume
named apiservice-cert is automatically appended to the Volumes section of the deployment in the CSV
matching the APIServiceDescription’s DeploymentName field.

If one does not already exist, a VolumeMount with a matching name is also appended to all containers of
that deployment. This allows users to define a VolumeMount with the expected name to accommodate
any custom path requirements. The generated VolumeMount’s path defaults to
/apiserver.local.config/certificates and any existing VolumeMounts with the same path are replaced.

11.4.6.2. Required APIServices

The OLM ensures all required CSVs have an APIService that is available and all expected group-
version-kinds are discoverable before attempting installation. This allows a CSV to rely on specific
kinds provided by APIServices it does not own.

Table 11.10. Required APIService fields

Field Description Required/Optional

Group Group that the APIService provides, for example
database.example.com.

Required

Version Version of the APIService, for example v1alpha1. Required

Kind A kind that the APIService is expected to provide. Required

CHAPTER 11. OPERATOR SDK

189

DisplayName A human readable version of your APIService name, for
example MongoDB Standalone.

Required

Description A short description of how this APIService is used by the
Operator or a description of the functionality provided by
the APIService.

Required

Field Description Required/Optional

11.5. CONFIGURING BUILT-IN MONITORING WITH PROMETHEUS

This guide describes the built-in monitoring support provided by the Operator SDK using the
Prometheus Operator and details usage for Operator authors.

11.5.1. Prometheus Operator support

Prometheus is an open-source systems monitoring and alerting toolkit. The Prometheus Operator
creates, configures, and manages Prometheus clusters running on Kubernetes-based clusters, such as
OpenShift Container Platform.

Helper functions exist in the Operator SDK by default to automatically set up metrics in any generated
Go-based Operator for use on clusters where the Prometheus Operator is deployed.

11.5.2. Metrics helper

In Go-based Operators generated using the Operator SDK, the following function exposes general
metrics about the running program:

These metrics are inherited from the controller-runtime library API. By default, the metrics are served
on 0.0.0.0:8383/metrics.

A Service object is created with the metrics port exposed, which can be then accessed by Prometheus.
The Service object is garbage collected when the leader Pod’s root owner is deleted.

The following example is present in the cmd/manager/main.go file in all Operators generated using the
Operator SDK:

func ExposeMetricsPort(ctx context.Context, port int32) (*v1.Service, error)

import(
 "github.com/operator-framework/operator-sdk/pkg/metrics"
 "machine.openshift.io/controller-runtime/pkg/manager"
)

var (
 // Change the below variables to serve metrics on a different host or port.
 metricsHost = "0.0.0.0" 1
 metricsPort int32 = 8383 2
)
...
func main() {

OpenShift Container Platform 4.1 Applications

190

https://prometheus.io/

1

2

The host that the metrics are exposed on.

The port that the metrics are exposed on.

11.5.2.1. Modifying the metrics port

Operator authors can modify the port that metrics are exposed on.

Prerequisites

Go-based Operator generated using the Operator SDK

Kubernetes-based cluster with the Prometheus Operator deployed

Procedure

In the generated Operator’s cmd/manager/main.go file, change the value of metricsPort in
the line var metricsPort int32 = 8383.

11.5.3. ServiceMonitor resources

A ServiceMonitor is a Custom Resource Definition (CRD) provided by the Prometheus Operator that
discovers the Endpoints in Service objects and configures Prometheus to monitor those Pods.

In Go-based Operators generated using the Operator SDK, the GenerateServiceMonitor() helper
function can take a Service object and generate a ServiceMonitor Custom Resource (CR) based on it.

Additional resources

See the Prometheus Operator documentation for more information about the ServiceMonitor
CRD.

11.5.3.1. Creating ServiceMonitor resources

Operator authors can add Service target discovery of created monitoring Services using the
metrics.CreateServiceMonitor() helper function, which accepts the newly created Service.

 ...
 // Pass metrics address to controller-runtime manager
 mgr, err := manager.New(cfg, manager.Options{
 Namespace: namespace,
 MetricsBindAddress: fmt.Sprintf("%s:%d", metricsHost, metricsPort),
 })

 ...
 // Create Service object to expose the metrics port.
 _, err = metrics.ExposeMetricsPort(ctx, metricsPort)
 if err != nil {
 // handle error
 log.Info(err.Error())
 }
 ...
}

CHAPTER 11. OPERATOR SDK

191

https://github.com/coreos/prometheus-operator/blob/7a25bf6b6bb2347dacb235659b73bc210117acc7/Documentation/design.md#servicemonitor

Prerequisites

Go-based Operator generated using the Operator SDK

Kubernetes-based cluster with the Prometheus Operator deployed

Procedure

Add the metrics.CreateServiceMonitor() helper function to your Operator code:

11.6. CONFIGURING LEADER ELECTION

During the lifecycle of an Operator, it is possible that there may be more than one instance running at
any given time, for example when rolling out an upgrade for the Operator. In such a scenario, it is
necessary to avoid contention between multiple Operator instances using leader election. This ensures
only one leader instance handles the reconciliation while the other instances are inactive but ready to
take over when the leader steps down.

There are two different leader election implementations to choose from, each with its own trade-off:

Leader-for-life: The leader Pod only gives up leadership (using garbage collection) when it is
deleted. This implementation precludes the possibility of two instances mistakenly running as
leaders (split brain). However, this method can be subject to a delay in electing a new leader. For
example, when the leader Pod is on an unresponsive or partitioned node, the pod-eviction-
timeout dictates how it takes for the leader Pod to be deleted from the node and step down
(default 5m). See the Leader-for-life Go documentation for more.

Leader-with-lease: The leader Pod periodically renews the leader lease and gives up leadership
when it cannot renew the lease. This implementation allows for a faster transition to a new

import(
 "k8s.io/api/core/v1"
 "github.com/operator-framework/operator-sdk/pkg/metrics"
 "machine.openshift.io/controller-runtime/pkg/client/config"
)
func main() {

 ...
 // Populate below with the Service(s) for which you want to create ServiceMonitors.
 services := []*v1.Service{}
 // Create one ServiceMonitor per application per namespace.
 // Change the below value to name of the Namespace you want the ServiceMonitor to be
created in.
 ns := "default"
 // restConfig is used for talking to the Kubernetes apiserver
 restConfig := config.GetConfig()

 // Pass the Service(s) to the helper function, which in turn returns the array of
ServiceMonitor objects.
 serviceMonitors, err := metrics.CreateServiceMonitors(restConfig, ns, services)
 if err != nil {
 // Handle errors here.
 }
 ...
}

OpenShift Container Platform 4.1 Applications

192

https://kubernetes.io/docs/reference/command-line-tools-reference/kube-controller-manager/#options
https://godoc.org/github.com/operator-framework/operator-sdk/pkg/leader

leader when the existing leader is isolated, but there is a possibility of split brain in certain
situations. See the Leader-with-lease Go documentation for more.

By default, the Operator SDK enables the Leader-for-life implementation. Consult the related Go
documentation for both approaches to consider the trade-offs that make sense for your use case,

The following examples illustrate how to use the two options.

11.6.1. Using Leader-for-life election

With the Leader-for-life election implementation, a call to leader.Become() blocks the Operator as it
retries until it can become the leader by creating the ConfigMap named memcached-operator-lock:

If the Operator is not running inside a cluster, leader.Become() simply returns without error to skip the
leader election since it cannot detect the Operator’s namespace.

11.6.2. Using Leader-with-lease election

The Leader-with-lease implementation can be enabled using the Manager Options for leader election:

When the Operator is not running in a cluster, the Manager returns an error when starting since it cannot
detect the Operator’s namespace in order to create the ConfigMap for leader election. You can override
this namespace by setting the Manager’s LeaderElectionNamespace option.

import (
 ...
 "github.com/operator-framework/operator-sdk/pkg/leader"
)

func main() {
 ...
 err = leader.Become(context.TODO(), "memcached-operator-lock")
 if err != nil {
 log.Error(err, "Failed to retry for leader lock")
 os.Exit(1)
 }
 ...
}

import (
 ...
 "sigs.k8s.io/controller-runtime/pkg/manager"
)

func main() {
 ...
 opts := manager.Options{
 ...
 LeaderElection: true,
 LeaderElectionID: "memcached-operator-lock"
 }
 mgr, err := manager.New(cfg, opts)
 ...
}

CHAPTER 11. OPERATOR SDK

193

https://github.com/kubernetes/client-go/blob/30b06a83d67458700a5378239df6b96948cb9160/tools/leaderelection/leaderelection.go#L21-L24
https://godoc.org/github.com/kubernetes-sigs/controller-runtime/pkg/leaderelection
https://godoc.org/github.com/kubernetes-sigs/controller-runtime/pkg/manager#Options

11.7. OPERATOR SDK CLI REFERENCE

This guide documents the Operator SDK CLI commands and their syntax:

$ operator-sdk <command> [<subcommand>] [<argument>] [<flags>]

11.7.1. build

The operator-sdk build command compiles the code and builds the executables. After build completes,
the image is built locally in docker. It must then be pushed to a remote registry.

Table 11.11. build arguments

Argument Description

<image> The container image to be built, e.g., quay.io/example/operator:v0.0.1.

Table 11.12. build flags

Flag Description

--enable-tests (bool) Enable in-cluster testing by adding test binary to the image.

--namespaced-
manifest (string)

Path of namespaced resources manifest for tests. Default:
deploy/operator.yaml.

--test-location (string) Location of tests. Default: ./test/e2e

-h, --help Usage help output.

If --enable-tests is set, the build command also builds the testing binary, adds it to the container image,
and generates a deploy/test-pod.yaml file that allows a user to run the tests as a Pod on a cluster.

Example output

$ operator-sdk build quay.io/example/operator:v0.0.1

building example-operator...

building container quay.io/example/operator:v0.0.1...
Sending build context to Docker daemon 163.9MB
Step 1/4 : FROM alpine:3.6
 ---> 77144d8c6bdc
Step 2/4 : ADD tmp/_output/bin/example-operator /usr/local/bin/example-operator
 ---> 2ada0d6ca93c
Step 3/4 : RUN adduser -D example-operator
 ---> Running in 34b4bb507c14
Removing intermediate container 34b4bb507c14
 ---> c671ec1cff03
Step 4/4 : USER example-operator
 ---> Running in bd336926317c

OpenShift Container Platform 4.1 Applications

194

Removing intermediate container bd336926317c
 ---> d6b58a0fcb8c
Successfully built d6b58a0fcb8c
Successfully tagged quay.io/example/operator:v0.0.1

11.7.2. completion

The operator-sdk completion command generates shell completions to make issuing CLI commands
quicker and easier.

Table 11.13. completion subcommands

Subcommand Description

bash Generate bash completions.

zsh Generate zsh completions.

Table 11.14. completion flags

Flag Description

-h, --help Usage help output.

Example output

$ operator-sdk completion bash

bash completion for operator-sdk -*- shell-script -*-
...
ex: ts=4 sw=4 et filetype=sh

11.7.3. print-deps

The operator-sdk print-deps command prints the most recent Golang packages and versions required
by Operators. It prints in columnar format by default.

Table 11.15. print-deps flags

Flag Description

--as-file Print packages and versions in Gopkg.toml format.

Example output

$ operator-sdk print-deps --as-file
required = [
 "k8s.io/code-generator/cmd/defaulter-gen",
 "k8s.io/code-generator/cmd/deepcopy-gen",

CHAPTER 11. OPERATOR SDK

195

 "k8s.io/code-generator/cmd/conversion-gen",
 "k8s.io/code-generator/cmd/client-gen",
 "k8s.io/code-generator/cmd/lister-gen",
 "k8s.io/code-generator/cmd/informer-gen",
 "k8s.io/code-generator/cmd/openapi-gen",
 "k8s.io/gengo/args",
]

[[override]]
 name = "k8s.io/code-generator"
 revision = "6702109cc68eb6fe6350b83e14407c8d7309fd1a"
...

11.7.4. generate

The operator-sdk generate command invokes a specific generator to generate code as needed.

Table 11.16. generate subcommands

Subcommand Description

k8s Runs the Kubernetes code-generators for all CRD APIs under pkg/apis/.
Currently, k8s only runs deepcopy-gen to generate the required DeepCopy()
functions for all Custom Resource (CR) types.

NOTE

This command must be run every time the API (spec and status) for a custom resource
type is updated.

Example output

$ tree pkg/apis/app/v1alpha1/
pkg/apis/app/v1alpha1/
├── appservice_types.go
├── doc.go
├── register.go

$ operator-sdk generate k8s
Running code-generation for Custom Resource (CR) group versions: [app:v1alpha1]
Generating deepcopy funcs

$ tree pkg/apis/app/v1alpha1/
pkg/apis/app/v1alpha1/
├── appservice_types.go
├── doc.go
├── register.go
└── zz_generated.deepcopy.go

11.7.5. olm-catalog

The operator-sdk olm-catalog is the parent command for all Operator Lifecycle Manager (OLM)

OpenShift Container Platform 4.1 Applications

196

https://github.com/kubernetes/code-generator

The operator-sdk olm-catalog is the parent command for all Operator Lifecycle Manager (OLM)
Catalog-related commands.

11.7.5.1. gen-csv

The gen-csv subcommand writes a Cluster Service Version (CSV) manifest and optionally Custom
Resource Definition (CRD) files to deploy/olm-catalog/<operator_name>/<csv_version>.

Table 11.17. olm-catalog gen-csv flags

Flag Description

--csv-version (string) Semantic version of the CSV manifest. Required.

--from-version
(string)

Semantic version of CSV manifest to use as a base for a new version.

--csv-config (string) Path to CSV configuration file. Default: deploy/olm-catalog/csv-config.yaml.

--update-crds Updates CRD manifests in deploy/<operator_name>/<csv_version> using
the latest CRD manifests.

Example output

$ operator-sdk olm-catalog gen-csv --csv-version 0.1.0 --update-crds
INFO[0000] Generating CSV manifest version 0.1.0
INFO[0000] Fill in the following required fields in file deploy/olm-catalog/operator-
name/0.1.0/operator-name.v0.1.0.clusterserviceversion.yaml:
 spec.keywords
 spec.maintainers
 spec.provider
 spec.labels
INFO[0000] Created deploy/olm-catalog/operator-name/0.1.0/operator-
name.v0.1.0.clusterserviceversion.yaml

11.7.6. new

The operator-sdk new command creates a new Operator application and generates (or scaffolds) a
default project directory layout based on the input <project_name>.

Table 11.18. new arguments

Argument Description

<project_name> Name of the new project.

Table 11.19. new flags

CHAPTER 11. OPERATOR SDK

197

Flag Description

--api-version CRD APIVersion in the format $GROUP_NAME/$VERSION, for example
app.example.com/v1alpha1. Used with ansible or helm types.

--dep-manager
[dep|modules]

Dependency manager the new project will use. Used with go type. (Default:
modules)

--generate-playbook Generate an Ansible playbook skeleton. Used with ansible type.

--header-file <string> Path to file containing headers for generated Go files. Copied to
hack/boilerplate.go.txt.

--helm-chart <string> Initialize Helm operator with existing Helm chart: <url>, <repo>/<name>, or
local path.

--helm-chart-repo
<string>

Chart repository URL for the requested Helm chart.

--helm-chart-version
<string>

Specific version of the Helm chart. (Default: latest version)

--help, -h Usage and help output.

--kind <string> CRD Kind, for example AppService. Used with ansible or helm types.

--skip-git-init Do not initialize the directory as a Git repository.

--type Type of Operator to initialize: go, ansible or helm. (Default: go)

Example usage for Go project

$ mkdir $GOPATH/src/github.com/example.com/
$ cd $GOPATH/src/github.com/example.com/
$ operator-sdk new app-operator

Example usage for Ansible project

$ operator-sdk new app-operator \
 --type=ansible \
 --api-version=app.example.com/v1alpha1 \
 --kind=AppService

11.7.7. add

The operator-sdk add command adds a controller or resource to the project. The command must be
run from the Operator project root directory.

OpenShift Container Platform 4.1 Applications

198

Table 11.20. add subcommands

Subcommand Description

api Adds a new API definition for a new Custom Resource (CR) under pkg/apis and
generates the Customer Resource Definition (CRD) and Custom Resource (CR)
files under deploy/crds/. If the API already exists at
pkg/apis/<group>/<version>, then the command does not overwrite and
returns an error.

controller Adds a new controller under pkg/controller/<kind>/. The controller expects to
use the CR type that should already be defined under
pkg/apis/<group>/<version> via the operator-sdk add api --kind=
<kind> --api-version=<group/version> command. If the controller package
for that Kind already exists at pkg/controller/<kind>, then the command does
not overwrite and returns an error.

crd Adds a CRD and the CR files. The <project-name>/deploy path must already
exist. The --api-version and --kind flags are required to generate the new
Operator application.

Generated CRD filename: <project-
name>/deploy/crds/<group>_<version>_<kind>_crd.yaml

Generated CR filename: <project-
name>/deploy/crds/<group>_<version>_<kind>_cr.yaml

Table 11.21. add api flags

Flag Description

--api-version (string) CRD APIVersion in the format $GROUP_NAME/$VERSION (e.g.,
app.example.com/v1alpha1).

--kind (string) CRD Kind (e.g., AppService).

Example add api output

$ operator-sdk add api --api-version app.example.com/v1alpha1 --kind AppService
Create pkg/apis/app/v1alpha1/appservice_types.go
Create pkg/apis/addtoscheme_app_v1alpha1.go
Create pkg/apis/app/v1alpha1/register.go
Create pkg/apis/app/v1alpha1/doc.go
Create deploy/crds/app_v1alpha1_appservice_cr.yaml
Create deploy/crds/app_v1alpha1_appservice_crd.yaml
Running code-generation for Custom Resource (CR) group versions: [app:v1alpha1]
Generating deepcopy funcs

$ tree pkg/apis
pkg/apis/
├── addtoscheme_app_appservice.go
├── apis.go

CHAPTER 11. OPERATOR SDK

199

└── app
 └── v1alpha1
 ├── doc.go
 ├── register.go
 ├── types.go

Example add controller output

$ operator-sdk add controller --api-version app.example.com/v1alpha1 --kind AppService
Create pkg/controller/appservice/appservice_controller.go
Create pkg/controller/add_appservice.go

$ tree pkg/controller
pkg/controller/
├── add_appservice.go
├── appservice
│ └── appservice_controller.go
└── controller.go

Example add crd output

$ operator-sdk add crd --api-version app.example.com/v1alpha1 --kind AppService
Generating Custom Resource Definition (CRD) files
Create deploy/crds/app_v1alpha1_appservice_crd.yaml
Create deploy/crds/app_v1alpha1_appservice_cr.yaml

11.7.8. test

The operator-sdk test command can test the Operator locally.

11.7.8.1. local

The local subcommand runs Go tests built using the Operator SDK’s test framework locally.

Table 11.22. test local arguments

Arguments Description

<test_location>
(string)

Location of e2e test files (e.g., ./test/e2e/).

Table 11.23. test local flags

Flags Description

--kubeconfig (string) Location of kubeconfig for a cluster. Default: ~/.kube/config.

--global-manifest
(string)

Path to manifest for global resources. Default: deploy/crd.yaml.

OpenShift Container Platform 4.1 Applications

200

--namespaced-
manifest (string)

Path to manifest for per-test, namespaced resources. Default: combines
deploy/service_account.yaml, deploy/rbac.yaml, and
deploy/operator.yaml.

--namespace (string) If non-empty, a single namespace to run tests in (e.g., operator-test). Default: ""

--go-test-flags (string) Extra arguments to pass to go test (e.g., -f "-v -parallel=2").

--up-local Enable running the Operator locally with go run instead of as an image in the
cluster.

--no-setup Disable test resource creation.

--image (string) Use a different Operator image from the one specified in the namespaced
manifest.

-h, --help Usage help output.

Flags Description

Example output

$ operator-sdk test local ./test/e2e/

Output:
ok github.com/operator-framework/operator-sdk-samples/memcached-operator/test/e2e 20.410s

11.7.9. up

The operator-sdk up command has subcommands that can launch the Operator in various ways.

11.7.9.1. local

The local subcommand launches the Operator on the local machine by building the Operator binary
with the ability to access a Kubernetes cluster using a kubeconfig file.

Table 11.24. up local arguments

Arguments Description

--kubeconfig (string) The file path to a Kubernetes configuration file. Defaults: $HOME/.kube/config

--namespace (string) The namespace where the Operator watches for changes. Default: default

--operator-flags Flags that the local Operator may need. Example: --flag1 value1 --
flag2=value2

CHAPTER 11. OPERATOR SDK

201

-h, --help Usage help output.

Arguments Description

Example output

$ operator-sdk up local \
 --kubeconfig "mycluster.kubecfg" \
 --namespace "default" \
 --operator-flags "--flag1 value1 --flag2=value2"

The following example uses the default kubeconfig, the default namespace environment variable, and
passes in flags for the Operator. To use the Operator flags, your Operator must know how to handle the
option. For example, for an Operator that understands the resync-interval flag:

$ operator-sdk up local --operator-flags "--resync-interval 10"

If you are planning on using a different namespace than the default, use the --namespace flag to
change where the Operator is watching for Custom Resources (CRs) to be created:

$ operator-sdk up local --namespace "testing"

For this to work, your Operator must handle the WATCH_NAMESPACE environment variable. This can
be accomplished using the utility functionk8sutil.GetWatchNamespace in your Operator.

11.8. APPENDICES

11.8.1. Operator project scaffolding layout

The operator-sdk CLI generates a number of packages for each Operator project. The following
sections describes a basic rundown of each generated file and directory.

11.8.1.1. Go-based projects

Go-based Operator projects (the default type) generated using the operator-sdk new command
contain the following directories and files:

File/folders Purpose

cmd/ Contains manager/main.go file, which is the main program of the
Operator. This instantiates a new manager which registers all Custom
Resource Definitions under pkg/apis/ and starts all controllers under
pkg/controllers/.

pkg/apis/ Contains the directory tree that defines the APIs of the Custom
Resource Definitions (CRDs). Users are expected to edit the
pkg/apis/<group>/<version>/<kind>_types.go files to define the
API for each resource type and import these packages in their
controllers to watch for these resource types.

OpenShift Container Platform 4.1 Applications

202

https://github.com/operator-framework/operator-sdk/blob/89bf021063d18b6769bdc551ed08fc37027939d5/pkg/util/k8sutil/k8sutil.go#L140

pkg/controller This pkg contains the controller implementations. Users are expected to
edit the pkg/controller/<kind>/<kind>_controller.go files to define
the controller’s reconcile logic for handling a resource type of the
specified kind.

build/ Contains the Dockerfile and build scripts used to build the Operator.

deploy/ Contains various YAML manifests for registering CRDs, setting up
RBAC, and deploying the Operator as a Deployment.

Gopkg.toml
Gopkg.lock

The Go Dep manifests that describe the external dependencies of this
Operator.

vendor/ The golang vendor folder that contains the local copies of the external
dependencies that satisfy the imports of this project. Go Dep manages
the vendor directly.

File/folders Purpose

11.8.1.2. Helm-based projects

Helm-based Operator projects generated using the operator-sdk new --type helm command contain
the following directories and files:

File/folders Purpose

deploy/ Contains various YAML manifests for registering CRDs, setting up
RBAC, and deploying the Operator as a Deployment.

helm-charts/<kind> Contains a Helm chart initialized using the equivalent of the helm
create command.

build/ Contains the Dockerfile and build scripts used to build the Operator.

watches.yaml Contains Group, Version, Kind, and Helm chart location.

CHAPTER 11. OPERATOR SDK

203

https://github.com/golang/dep
https://golang.org/cmd/go/#hdr-Vendor_Directories
https://github.com/golang/dep
https://docs.helm.sh/helm/#helm-create

	Table of Contents
	CHAPTER 1. PROJECTS
	1.1. WORKING WITH PROJECTS
	1.1.1. Creating a project using the web console
	1.1.2. Creating a project using the CLI
	1.1.3. Viewing a project using the web console
	1.1.4. Viewing a project using the CLI
	1.1.5. Adding to a project
	1.1.6. Checking project status using the web console
	1.1.7. Checking project status using the CLI
	1.1.8. Deleting a project using the web console
	1.1.9. Deleting a project using the CLI

	1.2. CREATING A PROJECT AS ANOTHER USER
	1.2.1. API impersonation
	1.2.2. Impersonating a user when you create a project

	1.3. CONFIGURING PROJECT CREATION
	1.3.1. About project creation
	1.3.2. Modifying the template for new projects
	1.3.3. Disabling project self-provisioning
	1.3.4. Customizing the project request message

	CHAPTER 2. OPERATORS
	2.1. UNDERSTANDING OPERATORS
	2.1.1. Why use Operators?
	2.1.2. Operator Framework
	2.1.3. Operator maturity model

	2.2. UNDERSTANDING THE OPERATOR LIFECYCLE MANAGER
	2.2.1. Overview of the Operator Lifecycle Manager
	2.2.2. ClusterServiceVersions (CSVs)
	2.2.3. Operator Lifecycle Manager architecture
	2.2.3.1. OLM Operator
	2.2.3.2. Catalog Operator
	2.2.3.3. Catalog Registry

	2.2.4. OperatorGroups
	2.2.4.1. OperatorGroup membership
	2.2.4.2. Target namespace selection
	2.2.4.3. OperatorGroup CSV annotations
	2.2.4.4. Provided APIs annotation
	2.2.4.5. Role-based access control
	2.2.4.6. Copied CSVs
	2.2.4.7. Static OperatorGroups
	2.2.4.8. OperatorGroup intersection

	2.2.5. Metrics

	2.3. UNDERSTANDING THE OPERATORHUB
	2.3.1. Overview of the OperatorHub
	2.3.2. OperatorHub architecture
	2.3.2.1. OperatorSource
	2.3.2.2. CatalogSourceConfig

	2.4. ADDING OPERATORS TO A CLUSTER
	2.4.1. Installing Operators from the OperatorHub
	2.4.1.1. Installing from the OperatorHub using the web console
	2.4.1.2. Installing from the OperatorHub using the CLI

	2.5. DELETING OPERATORS FROM A CLUSTER
	2.5.1. Deleting Operators from a cluster using the web console
	2.5.2. Deleting Operators from a cluster using the CLI

	2.6. CREATING APPLICATIONS FROM INSTALLED OPERATORS
	2.6.1. Creating an etcd cluster using an Operator

	2.7. MANAGING RESOURCES FROM CUSTOM RESOURCE DEFINITIONS
	2.7.1. Custom Resource Definitions
	2.7.2. Creating Custom Resources from a file
	2.7.3. Inspecting Custom Resources

	CHAPTER 3. APPLICATION LIFE CYCLE MANAGEMENT
	3.1. CREATING APPLICATIONS
	3.1.1. Creating an application by using the CLI
	3.1.1.1. Creating an application from source code
	3.1.1.2. Creating an application from an image
	3.1.1.3. Creating an application from a template
	3.1.1.4. Modifying application creation

	CHAPTER 4. SERVICE BROKERS
	4.1. INSTALLING THE SERVICE CATALOG
	4.1.1. About the service catalog
	4.1.2. Installing service catalog
	4.1.3. Uninstalling service catalog

	4.2. INSTALLING THE TEMPLATE SERVICE BROKER
	4.2.1. About the Template Service Broker
	4.2.2. Installing the Template Service Broker Operator
	4.2.3. Starting the Template Service Broker

	4.3. PROVISIONING TEMPLATE APPLICATIONS
	4.3.1. Provisioning template applications

	4.4. UNINSTALLING THE TEMPLATE SERVICE BROKER
	4.4.1. Uninstalling the Template Service Broker

	4.5. INSTALLING THE OPENSHIFT ANSIBLE BROKER
	4.5.1. About the OpenShift Ansible Broker
	4.5.1.1. Ansible playbook bundles

	4.5.2. Installing the OpenShift Ansible Service Broker Operator
	4.5.3. Starting the OpenShift Ansible Broker
	4.5.3.1. OpenShift Ansible Broker configuration options

	4.6. CONFIGURING THE OPENSHIFT ANSIBLE BROKER
	4.6.1. Configuring the OpenShift Ansible Broker
	4.6.1.1. OpenShift Ansible Broker configuration options

	4.6.2. Configuring monitoring for the OpenShift Ansible Broker

	4.7. PROVISIONING SERVICE BUNDLES
	4.7.1. Provisioning service bundles

	4.8. UNINSTALLING THE OPENSHIFT ANSIBLE BROKER
	4.8.1. Uninstalling the OpenShift Ansible Broker

	CHAPTER 5. DEPLOYMENTS
	5.1. UNDERSTANDING DEPLOYMENTS AND DEPLOYMENTCONFIGS
	5.1.1. Building blocks of a deployment
	5.1.1.1. ReplicationControllers
	5.1.1.2. ReplicaSets

	5.1.2. DeploymentConfigs
	5.1.3. Deployments
	5.1.4. Comparing Deployments and DeploymentConfigs
	5.1.4.1. Design
	5.1.4.2. DeploymentConfigs-specific features
	5.1.4.3. Deployments-specific features

	5.2. MANAGING DEPLOYMENT PROCESSES
	5.2.1. Managing DeploymentConfigs
	5.2.1.1. Starting a deployment
	5.2.1.2. Viewing a deployment
	5.2.1.3. Retrying a deployment
	5.2.1.4. Rolling back a deployment
	5.2.1.5. Executing commands inside a container
	5.2.1.6. Viewing deployment logs
	5.2.1.7. Deployment triggers
	5.2.1.8. Setting deployment resources
	5.2.1.9. Scaling manually
	5.2.1.10. Accessing private repositories from DeploymentConfigs
	5.2.1.11. Assigning pods to specific nodes
	5.2.1.12. Running a Pod with a different service account

	5.3. USING DEPLOYMENTCONFIG STRATEGIES
	5.3.1. Rolling strategy
	5.3.1.1. Canary deployments
	5.3.1.2. Creating a Rolling deployment

	5.3.2. Recreate strategy
	5.3.3. Custom strategy
	5.3.4. Lifecycle hooks
	Pod-based lifecycle hook
	5.3.4.1. Setting lifecycle hooks

	5.4. USING ROUTE-BASED DEPLOYMENT STRATEGIES
	5.4.1. Proxy shards and traffic splitting
	5.4.2. N-1 compatibility
	5.4.3. Graceful termination
	5.4.4. Blue-green deployments
	5.4.4.1. Setting up a blue-green deployment

	5.4.5. A/B deployments
	5.4.5.1. Load balancing for A/B testing

	CHAPTER 6. CRDS
	6.1. EXTENDING THE KUBERNETES API WITH CUSTOM RESOURCE DEFINITIONS
	6.1.1. Custom Resource Definitions
	6.1.2. Creating a Custom Resource Definition
	6.1.3. Creating cluster roles for Custom Resource Definitions
	6.1.4. Creating Custom Resources from a file
	6.1.5. Inspecting Custom Resources

	6.2. MANAGING RESOURCES FROM CUSTOM RESOURCE DEFINITIONS
	6.2.1. Custom Resource Definitions
	6.2.2. Creating Custom Resources from a file
	6.2.3. Inspecting Custom Resources

	CHAPTER 7. QUOTAS
	7.1. RESOURCE QUOTAS PER PROJECT
	7.1.1. Resources managed by quotas
	7.1.2. Quota scopes
	7.1.3. Quota enforcement
	7.1.4. Requests versus limits
	7.1.5. Sample resource quota definitions
	7.1.6. Creating a quota
	7.1.6.1. Creating object count quotas
	7.1.6.2. Setting resource quota for extended resources

	7.1.7. Viewing a quota
	7.1.8. Configuring quota synchronization period

	7.2. RESOURCE QUOTAS ACROSS MULTIPLE PROJECTS
	7.2.1. Selecting multiple projects during quota creation
	7.2.2. Viewing applicable ClusterResourceQuotas
	7.2.3. Selection granularity

	CHAPTER 8. MONITORING APPLICATION HEALTH
	8.1. UNDERSTANDING HEALTH CHECKS
	8.1.1. Understanding the types of health checks

	8.2. CONFIGURING HEALTH CHECKS

	CHAPTER 9. IDLING APPLICATIONS
	9.1. IDLING APPLICATIONS
	9.1.1. Idling a single service
	9.1.2. Idling multiple services

	9.2. UNIDLING APPLICATIONS

	CHAPTER 10. PRUNING OBJECTS TO RECLAIM RESOURCES
	10.1. BASIC PRUNING OPERATIONS
	10.2. PRUNING GROUPS
	10.3. PRUNING DEPLOYMENTS
	10.4. PRUNING BUILDS
	10.5. PRUNING IMAGES
	10.5.1. Image prune conditions
	10.5.2. Running the image prune operation
	10.5.3. Using secure or insecure connections
	10.5.4. Image pruning problems
	Images not being pruned
	Using a secure connection against insecure registry
	Using an insecure connection against a secured registry
	Using the wrong certificate authority

	10.6. HARD PRUNING THE REGISTRY
	10.7. PRUNING CRON JOBS

	CHAPTER 11. OPERATOR SDK
	11.1. GETTING STARTED WITH THE OPERATOR SDK
	11.1.1. Architecture of the Operator SDK
	11.1.1.1. Workflow
	11.1.1.2. Manager file
	11.1.1.3. Prometheus Operator support

	11.1.2. Installing the Operator SDK CLI
	11.1.2.1. Installing from GitHub release
	11.1.2.2. Installing from Homebrew
	11.1.2.3. Compiling and installing from source

	11.1.3. Building a Go-based Memcached Operator using the Operator SDK
	11.1.4. Managing a Memcached Operator using the Operator Lifecycle Manager
	11.1.5. Additional resources

	11.2. CREATING ANSIBLE-BASED OPERATORS
	11.2.1. Ansible support in the Operator SDK
	11.2.1.1. Custom Resource files
	11.2.1.2. Watches file
	11.2.1.3. Extra variables sent to Ansible
	11.2.1.4. Ansible Runner directory

	11.2.2. Installing the Operator SDK CLI
	11.2.2.1. Installing from GitHub release
	11.2.2.2. Installing from Homebrew
	11.2.2.3. Compiling and installing from source

	11.2.3. Building an Ansible-based Operator using the Operator SDK
	11.2.4. Managing application lifecycle using the k8s Ansible module
	11.2.4.1. Installing the k8s Ansible module
	11.2.4.2. Testing the k8s Ansible module locally
	11.2.4.3. Testing the k8s Ansible module inside an Operator

	11.2.5. Managing Custom Resource status using the k8s_status Ansible module
	11.2.5.1. Using the k8s_status Ansible module when testing locally

	11.2.6. Additional resources

	11.3. CREATING HELM-BASED OPERATORS
	11.3.1. Helm chart support in the Operator SDK
	11.3.2. Installing the Operator SDK CLI
	11.3.2.1. Installing from GitHub release
	11.3.2.2. Installing from Homebrew
	11.3.2.3. Compiling and installing from source

	11.3.3. Building a Helm-based Operator using the Operator SDK
	11.3.4. Additional resources

	11.4. GENERATING A CLUSTERSERVICEVERSION (CSV)
	11.4.1. How CSV generation works
	Workflow

	11.4.2. CSV composition configuration
	11.4.3. Manually-defined CSV fields
	11.4.4. Generating a CSV
	11.4.5. Understanding your Custom Resource Definitions (CRDs)
	11.4.5.1. Owned CRDs
	11.4.5.2. Required CRDs
	11.4.5.3. CRD templates

	11.4.6. Understanding your API services
	11.4.6.1. Owned APIServices
	11.4.6.2. Required APIServices

	11.5. CONFIGURING BUILT-IN MONITORING WITH PROMETHEUS
	11.5.1. Prometheus Operator support
	11.5.2. Metrics helper
	11.5.2.1. Modifying the metrics port

	11.5.3. ServiceMonitor resources
	11.5.3.1. Creating ServiceMonitor resources

	11.6. CONFIGURING LEADER ELECTION
	11.6.1. Using Leader-for-life election
	11.6.2. Using Leader-with-lease election

	11.7. OPERATOR SDK CLI REFERENCE
	11.7.1. build
	11.7.2. completion
	11.7.3. print-deps
	11.7.4. generate
	11.7.5. olm-catalog
	11.7.5.1. gen-csv

	11.7.6. new
	11.7.7. add
	11.7.8. test
	11.7.8.1. local

	11.7.9. up
	11.7.9.1. local

	11.8. APPENDICES
	11.8.1. Operator project scaffolding layout
	11.8.1.1. Go-based projects
	11.8.1.2. Helm-based projects

