
OpenShift Container Platform 4.11

Monitoring

Configuring and using the monitoring stack in OpenShift Container Platform

Last Updated: 2024-02-09

OpenShift Container Platform 4.11 Monitoring

Configuring and using the monitoring stack in OpenShift Container Platform

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides instructions for configuring and using the Prometheus monitoring stack in
OpenShift Container Platform.

. .

. .

. .

. .

Table of Contents

CHAPTER 1. MONITORING OVERVIEW
1.1. ABOUT OPENSHIFT CONTAINER PLATFORM MONITORING
1.2. UNDERSTANDING THE MONITORING STACK

1.2.1. Default monitoring components
1.2.2. Default monitoring targets
1.2.3. Components for monitoring user-defined projects
1.2.4. Monitoring targets for user-defined projects

1.3. GLOSSARY OF COMMON TERMS FOR OPENSHIFT CONTAINER PLATFORM MONITORING
1.4. ADDITIONAL RESOURCES
1.5. NEXT STEPS

CHAPTER 2. CONFIGURING THE MONITORING STACK
2.1. PREREQUISITES
2.2. MAINTENANCE AND SUPPORT FOR MONITORING

2.2.1. Support considerations for monitoring
2.2.2. Support policy for monitoring Operators

2.3. PREPARING TO CONFIGURE THE MONITORING STACK
2.3.1. Creating a cluster monitoring config map
2.3.2. Creating a user-defined workload monitoring config map

2.4. CONFIGURING THE MONITORING STACK
2.5. CONFIGURABLE MONITORING COMPONENTS
2.6. USING NODE SELECTORS TO MOVE MONITORING COMPONENTS

2.6.1. How node selectors work with other constraints
2.6.2. Moving monitoring components to different nodes

2.7. ASSIGNING TOLERATIONS TO MONITORING COMPONENTS
2.8. SETTING THE BODY SIZE LIMIT FOR METRICS SCRAPING
2.9. CONFIGURING A DEDICATED SERVICE MONITOR

2.9.1. Enabling a dedicated service monitor
2.10. CONFIGURING PERSISTENT STORAGE

2.10.1. Persistent storage prerequisites
2.10.2. Configuring a local persistent volume claim
2.10.3. Resizing a persistent storage volume
2.10.4. Modifying the retention time and size for Prometheus metrics data
2.10.5. Modifying the retention time for Thanos Ruler metrics data

2.11. CONFIGURING REMOTE WRITE STORAGE
2.11.1. Supported remote write authentication settings

2.11.1.1. Config map location for authentication settings
2.11.1.2. Example remote write authentication settings

2.12. ADDING CLUSTER ID LABELS TO METRICS
2.12.1. Creating cluster ID labels for metrics

2.13. CONTROLLING THE IMPACT OF UNBOUND METRICS ATTRIBUTES IN USER-DEFINED PROJECTS
2.13.1. Setting scrape sample and label limits for user-defined projects
2.13.2. Creating scrape sample alerts

CHAPTER 3. CONFIGURING EXTERNAL ALERTMANAGER INSTANCES
3.1. ATTACHING ADDITIONAL LABELS TO YOUR TIME SERIES AND ALERTS
3.2. SETTING LOG LEVELS FOR MONITORING COMPONENTS
3.3. ENABLING THE QUERY LOG FILE FOR PROMETHEUS
3.4. ENABLING QUERY LOGGING FOR THANOS QUERIER

CHAPTER 4. SETTING AUDIT LOG LEVELS FOR THE PROMETHEUS ADAPTER
4.1. DISABLING THE LOCAL ALERTMANAGER

6
6
6
7
9
9

10
10
12
13

14
14
14
14
15
15
15
16
17

20
21
21
22
24
27
28
28
29
29
30
33
37
40
42
44
45
46
51
52
54
55
56

59
62
65
67
70

72
74

Table of Contents

1

. .

. .

. .

. .

. .

. .

4.2. NEXT STEPS

CHAPTER 5. ENABLING MONITORING FOR USER-DEFINED PROJECTS
5.1. ENABLING MONITORING FOR USER-DEFINED PROJECTS
5.2. GRANTING USERS PERMISSION TO MONITOR USER-DEFINED PROJECTS

5.2.1. Granting user permissions by using the web console
5.2.2. Granting user permissions by using the CLI

5.3. GRANTING USERS PERMISSION TO CONFIGURE MONITORING FOR USER-DEFINED PROJECTS
5.4. ACCESSING METRICS FROM OUTSIDE THE CLUSTER FOR CUSTOM APPLICATIONS
5.5. EXCLUDING A USER-DEFINED PROJECT FROM MONITORING
5.6. DISABLING MONITORING FOR USER-DEFINED PROJECTS
5.7. NEXT STEPS

CHAPTER 6. ENABLING ALERT ROUTING FOR USER-DEFINED PROJECTS
6.1. UNDERSTANDING ALERT ROUTING FOR USER-DEFINED PROJECTS
6.2. ENABLING THE PLATFORM ALERTMANAGER INSTANCE FOR USER-DEFINED ALERT ROUTING
6.3. ENABLING A SEPARATE ALERTMANAGER INSTANCE FOR USER-DEFINED ALERT ROUTING
6.4. GRANTING USERS PERMISSION TO CONFIGURE ALERT ROUTING FOR USER-DEFINED PROJECTS

6.5. NEXT STEPS

CHAPTER 7. MANAGING METRICS
7.1. UNDERSTANDING METRICS
7.2. SETTING UP METRICS COLLECTION FOR USER-DEFINED PROJECTS

7.2.1. Deploying a sample service
7.2.2. Specifying how a service is monitored

7.3. NEXT STEPS

CHAPTER 8. QUERYING METRICS
8.1. ABOUT QUERYING METRICS

8.1.1. Querying metrics for all projects as a cluster administrator
8.1.2. Querying metrics for user-defined projects as a developer
8.1.3. Exploring the visualized metrics

8.2. NEXT STEPS

CHAPTER 9. MANAGING METRICS TARGETS
9.1. ACCESSING THE METRICS TARGETS PAGE IN THE ADMINISTRATOR PERSPECTIVE
9.2. SEARCHING AND FILTERING METRICS TARGETS
9.3. GETTING DETAILED INFORMATION ABOUT A TARGET
9.4. NEXT STEPS

CHAPTER 10. MANAGING ALERTS
10.1. ACCESSING THE ALERTING UI IN THE ADMINISTRATOR AND DEVELOPER PERSPECTIVES
10.2. SEARCHING AND FILTERING ALERTS, SILENCES, AND ALERTING RULES

Understanding alert filters
Understanding silence filters
Understanding alerting rule filters
Searching and filtering alerts, silences, and alerting rules in the Developer perspective

10.3. GETTING INFORMATION ABOUT ALERTS, SILENCES, AND ALERTING RULES
10.4. MANAGING SILENCES

10.4.1. Silencing alerts
10.4.2. Editing silences
10.4.3. Expiring silences

10.5. MANAGING ALERTING RULES FOR USER-DEFINED PROJECTS
10.5.1. Optimizing alerting for user-defined projects

74

76
76
78
78
79
79
80
81
81

82

83
83
83
84

85
86

87
87
87
87
89
90

91
91
91

92
93
94

95
95
95
96
96

97
97
98
98
98
99

100
100
102
102
103
104
105
105

OpenShift Container Platform 4.11 Monitoring

2

. .

. .

. .

. .

. .

10.5.2. About creating alerting rules for user-defined projects
10.5.3. Creating alerting rules for user-defined projects
10.5.4. Accessing alerting rules for user-defined projects
10.5.5. Listing alerting rules for all projects in a single view
10.5.6. Removing alerting rules for user-defined projects

10.6. MANAGING ALERTING RULES FOR CORE PLATFORM MONITORING
10.6.1. Modifying core platform alerting rules
10.6.2. Creating new alerting rules

10.7. SENDING NOTIFICATIONS TO EXTERNAL SYSTEMS
10.7.1. Configuring alert receivers
10.7.2. Creating alert routing for user-defined projects

10.8. APPLYING A CUSTOM ALERTMANAGER CONFIGURATION
10.9. APPLYING A CUSTOM CONFIGURATION TO ALERTMANAGER FOR USER-DEFINED ALERT ROUTING

10.10. NEXT STEPS

CHAPTER 11. REVIEWING MONITORING DASHBOARDS
11.1. REVIEWING MONITORING DASHBOARDS AS A CLUSTER ADMINISTRATOR
11.2. REVIEWING MONITORING DASHBOARDS AS A DEVELOPER
11.3. NEXT STEPS

CHAPTER 12. THE NVIDIA GPU ADMINISTRATION DASHBOARD
12.1. INTRODUCTION
12.2. INSTALLING THE NVIDIA GPU ADMINISTRATION DASHBOARD
12.3. USING THE NVIDIA GPU ADMINISTRATION DASHBOARD

12.3.1. Viewing the cluster GPU overview
12.3.2. Viewing the GPUs dashboard
12.3.3. Viewing the GPU Metrics

CHAPTER 13. ACCESSING THIRD-PARTY MONITORING APIS
13.1. ACCESSING THIRD-PARTY MONITORING WEB SERVICE APIS
13.2. QUERYING METRICS BY USING THE FEDERATION ENDPOINT FOR PROMETHEUS
13.3. ADDITIONAL RESOURCES

CHAPTER 14. TROUBLESHOOTING MONITORING ISSUES
14.1. INVESTIGATING WHY USER-DEFINED METRICS ARE UNAVAILABLE
14.2. DETERMINING WHY PROMETHEUS IS CONSUMING A LOT OF DISK SPACE

CHAPTER 15. CONFIG MAP REFERENCE FOR THE CLUSTER MONITORING OPERATOR
15.1. CLUSTER MONITORING OPERATOR CONFIGURATION REFERENCE
15.2. ADDITIONALALERTMANAGERCONFIG

15.2.1. Description
15.2.2. Required

15.3. ALERTMANAGERMAINCONFIG
15.3.1. Description

15.4. ALERTMANAGERUSERWORKLOADCONFIG
15.4.1. Description

15.5. CLUSTERMONITORINGCONFIGURATION
15.5.1. Description

15.6. DEDICATEDSERVICEMONITORS
15.6.1. Description

15.7. K8SPROMETHEUSADAPTER
15.7.1. Description

15.8. KUBESTATEMETRICSCONFIG

105
106
107
107
108
108
109
110
111
111

113
114

116
117

118
119

120
120

122
122
122
124
124
124
125

126
126
126
128

129
129
132

134
134
134
134
134
135
135
136
136
137
137
138
138
139
139
139

Table of Contents

3

. .

15.8.1. Description
15.9. OPENSHIFTSTATEMETRICSCONFIG

15.9.1. Description
15.10. PROMETHEUSK8SCONFIG

15.10.1. Description
15.11. PROMETHEUSOPERATORCONFIG

15.11.1. Description
15.12. PROMETHEUSRESTRICTEDCONFIG

15.12.1. Description
15.13. REMOTEWRITESPEC

15.13.1. Description
15.13.2. Required

15.14. TELEMETERCLIENTCONFIG
15.14.1. Description
15.14.2. Required

15.15. THANOSQUERIERCONFIG
15.15.1. Description

15.16. THANOSRULERCONFIG
15.16.1. Description

15.17. TLSCONFIG
15.17.1. Description
15.17.2. Required

15.18. USERWORKLOADCONFIGURATION
15.18.1. Description

CHAPTER 16. CLUSTER OBSERVABILITY OPERATOR
16.1. CLUSTER OBSERVABILITY OPERATOR RELEASE NOTES

16.1.1. Cluster Observability Operator 0.1.1
16.1.2. Cluster Observability Operator 0.1

16.2. CLUSTER OBSERVABILITY OPERATOR OVERVIEW
16.2.1. Understanding the Cluster Observability Operator

16.2.1.1. Advantages of using the Cluster Observability Operator
16.3. INSTALLING THE CLUSTER OBSERVABILITY OPERATOR

16.3.1. Uninstalling the Cluster Observability Operator using the web console
16.4. CONFIGURING THE CLUSTER OBSERVABILITY OPERATOR TO MONITOR A SERVICE

16.4.1. Deploying a sample service for Cluster Observability Operator
16.4.2. Specifying how a service is monitored by Cluster Observability Operator
16.4.3. Creating a MonitoringStack object for the Cluster Observability Operator

140
140
140
140
140
142
142
143
143
146
146
146
147
147
147
148
148
148
148
149
149
149
150
150

152
152
152
152
152
153
153
154
154
155
155
156
158

OpenShift Container Platform 4.11 Monitoring

4

Table of Contents

5

CHAPTER 1. MONITORING OVERVIEW

1.1. ABOUT OPENSHIFT CONTAINER PLATFORM MONITORING

OpenShift Container Platform includes a preconfigured, preinstalled, and self-updating monitoring
stack that provides monitoring for core platform components. You also have the option to enable
monitoring for user-defined projects.

A cluster administrator can configure the monitoring stack with the supported configurations. OpenShift
Container Platform delivers monitoring best practices out of the box.

A set of alerts are included by default that immediately notify administrators about issues with a cluster.
Default dashboards in the OpenShift Container Platform web console include visual representations of
cluster metrics to help you to quickly understand the state of your cluster. With the OpenShift Container
Platform web console, you can view and manage metrics, alerts, and review monitoring dashboards.

In the Observe section of OpenShift Container Platform web console, you can access and manage
monitoring features such as metrics, alerts, monitoring dashboards, and metrics targets.

After installing OpenShift Container Platform, cluster administrators can optionally enable monitoring
for user-defined projects. By using this feature, cluster administrators, developers, and other users can
specify how services and pods are monitored in their own projects. As a cluster administrator, you can
find answers to common problems such as user metrics unavailability and high consumption of disk
space by Prometheus in Troubleshooting monitoring issues.

1.2. UNDERSTANDING THE MONITORING STACK

The OpenShift Container Platform monitoring stack is based on the Prometheus open source project
and its wider ecosystem. The monitoring stack includes the following:

Default platform monitoring components. A set of platform monitoring components are
installed in the openshift-monitoring project by default during an OpenShift Container
Platform installation. This provides monitoring for core OpenShift Container Platform
components including Kubernetes services. The default monitoring stack also enables remote
health monitoring for clusters. These components are illustrated in the Installed by default
section in the following diagram.

Components for monitoring user-defined projects. After optionally enabling monitoring for
user-defined projects, additional monitoring components are installed in the openshift-user-
workload-monitoring project. This provides monitoring for user-defined projects. These
components are illustrated in the User section in the following diagram.

OpenShift Container Platform 4.11 Monitoring

6

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/monitoring/#enabling-monitoring-for-user-defined-projects
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/monitoring/#configuring-the-monitoring-stack
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/monitoring/#managing-metrics
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/monitoring/#managing-alerts
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/monitoring/#reviewing-monitoring-dashboards
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/monitoring/#managing-metrics
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/monitoring/#managing-alerts
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/monitoring/#reviewing-monitoring-dashboards
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/monitoring/#managing-metrics-targets
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/monitoring/#troubleshooting-monitoring-issues
https://prometheus.io/

1.2.1. Default monitoring components

By default, the OpenShift Container Platform 4.11 monitoring stack includes these components:

Table 1.1. Default monitoring stack components

Component Description

Cluster Monitoring Operator The Cluster Monitoring Operator (CMO) is a central
component of the monitoring stack. It deploys,
manages, and automatically updates Prometheus
and Alertmanager instances, Thanos Querier,
Telemeter Client, and metrics targets. The CMO is
deployed by the Cluster Version Operator (CVO).

CHAPTER 1. MONITORING OVERVIEW

7

Prometheus Operator The Prometheus Operator (PO) in the openshift-
monitoring project creates, configures, and
manages platform Prometheus instances and
Alertmanager instances. It also automatically
generates monitoring target configurations based on
Kubernetes label queries.

Prometheus Prometheus is the monitoring system on which the
OpenShift Container Platform monitoring stack is
based. Prometheus is a time-series database and a
rule evaluation engine for metrics. Prometheus sends
alerts to Alertmanager for processing.

Prometheus Adapter The Prometheus Adapter (PA in the preceding
diagram) translates Kubernetes node and pod
queries for use in Prometheus. The resource metrics
that are translated include CPU and memory
utilization metrics. The Prometheus Adapter exposes
the cluster resource metrics API for horizontal pod
autoscaling. The Prometheus Adapter is also used by
the oc adm top nodes and oc adm top pods
commands.

Alertmanager The Alertmanager service handles alerts received
from Prometheus. Alertmanager is also responsible
for sending the alerts to external notification
systems.

kube-state-metrics agent The kube-state-metrics exporter agent (KSM in
the preceding diagram) converts Kubernetes objects
to metrics that Prometheus can use.

openshift-state-metrics agent The openshift-state-metrics exporter (OSM in the
preceding diagram) expands upon kube-state-
metrics by adding metrics for OpenShift Container
Platform-specific resources.

node-exporter agent The node-exporter agent (NE in the preceding
diagram) collects metrics about every node in a
cluster. The node-exporter agent is deployed on
every node.

Thanos Querier Thanos Querier aggregates and optionally
deduplicates core OpenShift Container Platform
metrics and metrics for user-defined projects under a
single, multi-tenant interface.

Telemeter Client Telemeter Client sends a subsection of the data from
platform Prometheus instances to Red Hat to
facilitate Remote Health Monitoring for clusters.

Component Description

OpenShift Container Platform 4.11 Monitoring

8

All of the components in the monitoring stack are monitored by the stack and are automatically updated
when OpenShift Container Platform is updated.

NOTE

All components of the monitoring stack use the TLS security profile settings that are
centrally configured by a cluster administrator. If you configure a monitoring stack
component that uses TLS security settings, the component uses the TLS security profile
settings that already exist in the tlsSecurityProfile field in the global OpenShift
Container Platform apiservers.config.openshift.io/cluster resource.

1.2.2. Default monitoring targets

In addition to the components of the stack itself, the default monitoring stack monitors:

CoreDNS

Elasticsearch (if Logging is installed)

etcd

Fluentd (if Logging is installed)

HAProxy

Image registry

Kubelets

Kubernetes API server

Kubernetes controller manager

Kubernetes scheduler

OpenShift API server

OpenShift Controller Manager

Operator Lifecycle Manager (OLM)

NOTE

Each OpenShift Container Platform component is responsible for its monitoring
configuration. For problems with the monitoring of an OpenShift Container Platform
component, open a Jira issue against that component, not against the general monitoring
component.

Other OpenShift Container Platform framework components might be exposing metrics as well. For
details, see their respective documentation.

1.2.3. Components for monitoring user-defined projects

OpenShift Container Platform 4.11 includes an optional enhancement to the monitoring stack that

CHAPTER 1. MONITORING OVERVIEW

9

https://issues.redhat.com/secure/CreateIssueDetails!init.jspa?pid=12332330&summary=Monitoring_issue&issuetype=1&priority=10200&versions=12385624

OpenShift Container Platform 4.11 includes an optional enhancement to the monitoring stack that
enables you to monitor services and pods in user-defined projects. This feature includes the following
components:

Table 1.2. Components for monitoring user-defined projects

Component Description

Prometheus Operator The Prometheus Operator (PO) in the openshift-
user-workload-monitoring project creates,
configures, and manages Prometheus and Thanos
Ruler instances in the same project.

Prometheus Prometheus is the monitoring system through which
monitoring is provided for user-defined projects.
Prometheus sends alerts to Alertmanager for
processing.

Thanos Ruler The Thanos Ruler is a rule evaluation engine for
Prometheus that is deployed as a separate process.
In OpenShift Container Platform 4.11, Thanos Ruler
provides rule and alerting evaluation for the
monitoring of user-defined projects.

Alertmanager The Alertmanager service handles alerts received
from Prometheus and Thanos Ruler. Alertmanager is
also responsible for sending user-defined alerts to
external notification systems. Deploying this service
is optional.

NOTE

The components in the preceding table are deployed after monitoring is enabled for
user-defined projects.

All of the components in the monitoring stack are monitored by the stack and are automatically updated
when OpenShift Container Platform is updated.

1.2.4. Monitoring targets for user-defined projects

When monitoring is enabled for user-defined projects, you can monitor:

Metrics provided through service endpoints in user-defined projects.

Pods running in user-defined projects.

1.3. GLOSSARY OF COMMON TERMS FOR OPENSHIFT CONTAINER
PLATFORM MONITORING

This glossary defines common terms that are used in OpenShift Container Platform architecture.

Alertmanager

OpenShift Container Platform 4.11 Monitoring

10

Alertmanager handles alerts received from Prometheus. Alertmanager is also responsible for sending
the alerts to external notification systems.

Alerting rules

Alerting rules contain a set of conditions that outline a particular state within a cluster. Alerts are
triggered when those conditions are true. An alerting rule can be assigned a severity that defines how
the alerts are routed.

Cluster Monitoring Operator

The Cluster Monitoring Operator (CMO) is a central component of the monitoring stack. It deploys
and manages Prometheus instances such as, the Thanos Querier, the Telemeter Client, and metrics
targets to ensure that they are up to date. The CMO is deployed by the Cluster Version Operator
(CVO).

Cluster Version Operator

The Cluster Version Operator (CVO) manages the lifecycle of cluster Operators, many of which are
installed in OpenShift Container Platform by default.

config map

A config map provides a way to inject configuration data into pods. You can reference the data
stored in a config map in a volume of type ConfigMap. Applications running in a pod can use this
data.

Container

A container is a lightweight and executable image that includes software and all its dependencies.
Containers virtualize the operating system. As a result, you can run containers anywhere from a data
center to a public or private cloud as well as a developer’s laptop.

custom resource (CR)

A CR is an extension of the Kubernetes API. You can create custom resources.

etcd

etcd is the key-value store for OpenShift Container Platform, which stores the state of all resource
objects.

Fluentd

Fluentd gathers logs from nodes and feeds them to Elasticsearch.

Kubelets

Runs on nodes and reads the container manifests. Ensures that the defined containers have started
and are running.

Kubernetes API server

Kubernetes API server validates and configures data for the API objects.

Kubernetes controller manager

Kubernetes controller manager governs the state of the cluster.

Kubernetes scheduler

Kubernetes scheduler allocates pods to nodes.

labels

Labels are key-value pairs that you can use to organize and select subsets of objects such as a pod.

node

A worker machine in the OpenShift Container Platform cluster. A node is either a virtual machine
(VM) or a physical machine.

Operator

The preferred method of packaging, deploying, and managing a Kubernetes application in an

CHAPTER 1. MONITORING OVERVIEW

11

The preferred method of packaging, deploying, and managing a Kubernetes application in an
OpenShift Container Platform cluster. An Operator takes human operational knowledge and
encodes it into software that is packaged and shared with customers.

Operator Lifecycle Manager (OLM)

OLM helps you install, update, and manage the lifecycle of Kubernetes native applications. OLM is an
open source toolkit designed to manage Operators in an effective, automated, and scalable way.

Persistent storage

Stores the data even after the device is shut down. Kubernetes uses persistent volumes to store the
application data.

Persistent volume claim (PVC)

You can use a PVC to mount a PersistentVolume into a Pod. You can access the storage without
knowing the details of the cloud environment.

pod

The pod is the smallest logical unit in Kubernetes. A pod is comprised of one or more containers to
run in a worker node.

Prometheus

Prometheus is the monitoring system on which the OpenShift Container Platform monitoring stack is
based. Prometheus is a time-series database and a rule evaluation engine for metrics. Prometheus
sends alerts to Alertmanager for processing.

Prometheus adapter

The Prometheus Adapter translates Kubernetes node and pod queries for use in Prometheus. The
resource metrics that are translated include CPU and memory utilization. The Prometheus Adapter
exposes the cluster resource metrics API for horizontal pod autoscaling.

Prometheus Operator

The Prometheus Operator (PO) in the openshift-monitoring project creates, configures, and
manages platform Prometheus and Alertmanager instances. It also automatically generates
monitoring target configurations based on Kubernetes label queries.

Silences

A silence can be applied to an alert to prevent notifications from being sent when the conditions for
an alert are true. You can mute an alert after the initial notification, while you work on resolving the
underlying issue.

storage

OpenShift Container Platform supports many types of storage, both for on-premise and cloud
providers. You can manage container storage for persistent and non-persistent data in an OpenShift
Container Platform cluster.

Thanos Ruler

The Thanos Ruler is a rule evaluation engine for Prometheus that is deployed as a separate process.
In OpenShift Container Platform, Thanos Ruler provides rule and alerting evaluation for the
monitoring of user-defined projects.

web console

A user interface (UI) to manage OpenShift Container Platform.

1.4. ADDITIONAL RESOURCES

About remote health monitoring

Granting users permission to monitor user-defined projects

OpenShift Container Platform 4.11 Monitoring

12

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/support/#about-remote-health-monitoring
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/monitoring/#granting-users-permission-to-monitor-user-defined-projects_enabling-monitoring-for-user-defined-projects

Configuring TLS security profiles

1.5. NEXT STEPS

Configuring the monitoring stack

CHAPTER 1. MONITORING OVERVIEW

13

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/security_and_compliance/#tls-security-profiles
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/monitoring/#configuring-the-monitoring-stack

CHAPTER 2. CONFIGURING THE MONITORING STACK
The OpenShift Container Platform 4 installation program provides only a low number of configuration
options before installation. Configuring most OpenShift Container Platform framework components,
including the cluster monitoring stack, happens postinstallation.

This section explains what configuration is supported, shows how to configure the monitoring stack, and
demonstrates several common configuration scenarios.

2.1. PREREQUISITES

The monitoring stack imposes additional resource requirements. Consult the computing
resources recommendations in Scaling the Cluster Monitoring Operator and verify that you
have sufficient resources.

2.2. MAINTENANCE AND SUPPORT FOR MONITORING

The supported way of configuring OpenShift Container Platform Monitoring is by configuring it using the
options described in this document. Do not use other configurations, as they are unsupported.
Configuration paradigms might change across Prometheus releases, and such cases can only be
handled gracefully if all configuration possibilities are controlled. If you use configurations other than
those described in this section, your changes will disappear because the cluster-monitoring-operator
reconciles any differences. The Operator resets everything to the defined state by default and by
design.

2.2.1. Support considerations for monitoring

The following modifications are explicitly not supported:

Creating additional ServiceMonitor, PodMonitor, and PrometheusRule objects in the
openshift-* and kube-* projects.

Modifying any resources or objects deployed in the openshift-monitoring or openshift-user-
workload-monitoring projects. The resources created by the OpenShift Container Platform
monitoring stack are not meant to be used by any other resources, as there are no guarantees
about their backward compatibility.

NOTE

The Alertmanager configuration is deployed as a secret resource in the
openshift-monitoring namespace. If you have enabled a separate Alertmanager
instance for user-defined alert routing, an Alertmanager configuration is also
deployed as a secret resource in the openshift-user-workload-monitoring
namespace. To configure additional routes for any instance of Alertmanager, you
need to decode, modify, and then encode that secret. This procedure is a
supported exception to the preceding statement.

Modifying resources of the stack. The OpenShift Container Platform monitoring stack
ensures its resources are always in the state it expects them to be. If they are modified, the stack
will reset them.

Deploying user-defined workloads to openshift-*, and kube-* projects. These projects are
reserved for Red Hat provided components and they should not be used for user-defined
workloads.

OpenShift Container Platform 4.11 Monitoring

14

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/scalability_and_performance/#scaling-cluster-monitoring-operator

Installing custom Prometheus instances on OpenShift Container Platform. A custom
instance is a Prometheus custom resource (CR) managed by the Prometheus Operator.

Enabling symptom based monitoring by using the Probe custom resource definition (CRD)
in Prometheus Operator.

NOTE

Backward compatibility for metrics, recording rules, or alerting rules is not guaranteed.

2.2.2. Support policy for monitoring Operators

Monitoring Operators ensure that OpenShift Container Platform monitoring resources function as
designed and tested. If Cluster Version Operator (CVO) control of an Operator is overridden, the
Operator does not respond to configuration changes, reconcile the intended state of cluster objects, or
receive updates.

While overriding CVO control for an Operator can be helpful during debugging, this is unsupported and
the cluster administrator assumes full control of the individual component configurations and upgrades.

Overriding the Cluster Version Operator

The spec.overrides parameter can be added to the configuration for the CVO to allow administrators
to provide a list of overrides to the behavior of the CVO for a component. Setting the
spec.overrides[].unmanaged parameter to true for a component blocks cluster upgrades and alerts
the administrator after a CVO override has been set:

WARNING

Setting a CVO override puts the entire cluster in an unsupported state and prevents
the monitoring stack from being reconciled to its intended state. This impacts the
reliability features built into Operators and prevents updates from being received.
Reported issues must be reproduced after removing any overrides for support to
proceed.

2.3. PREPARING TO CONFIGURE THE MONITORING STACK

You can configure the monitoring stack by creating and updating monitoring config maps.

2.3.1. Creating a cluster monitoring config map

To configure core OpenShift Container Platform monitoring components, you must create the cluster-
monitoring-config ConfigMap object in the openshift-monitoring project.

NOTE

Disabling ownership via cluster version overrides prevents upgrades. Please remove overrides before
continuing.

CHAPTER 2. CONFIGURING THE MONITORING STACK

15

NOTE

When you save your changes to the cluster-monitoring-config ConfigMap object, some
or all of the pods in the openshift-monitoring project might be redeployed. It can
sometimes take a while for these components to redeploy.

Prerequisites

You have access to the cluster as a user with the cluster-admin cluster role.

You have installed the OpenShift CLI (oc).

Procedure

1. Check whether the cluster-monitoring-config ConfigMap object exists:

2. If the ConfigMap object does not exist:

a. Create the following YAML manifest. In this example the file is called cluster-monitoring-
config.yaml:

b. Apply the configuration to create the ConfigMap object:

2.3.2. Creating a user-defined workload monitoring config map

To configure the components that monitor user-defined projects, you must create the user-workload-
monitoring-config ConfigMap object in the openshift-user-workload-monitoring project.

NOTE

When you save your changes to the user-workload-monitoring-config ConfigMap
object, some or all of the pods in the openshift-user-workload-monitoring project
might be redeployed. It can sometimes take a while for these components to redeploy.
You can create and configure the config map before you first enable monitoring for
user-defined projects, to prevent having to redeploy the pods often.

Prerequisites

You have access to the cluster as a user with the cluster-admin cluster role.

You have installed the OpenShift CLI (oc).

$ oc -n openshift-monitoring get configmap cluster-monitoring-config

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |

$ oc apply -f cluster-monitoring-config.yaml

OpenShift Container Platform 4.11 Monitoring

16

Procedure

1. Check whether the user-workload-monitoring-config ConfigMap object exists:

2. If the user-workload-monitoring-config ConfigMap object does not exist:

a. Create the following YAML manifest. In this example the file is called user-workload-
monitoring-config.yaml:

b. Apply the configuration to create the ConfigMap object:

NOTE

Configurations applied to the user-workload-monitoring-config
ConfigMap object are not activated unless a cluster administrator has
enabled monitoring for user-defined projects.

Additional resources

Enabling monitoring for user-defined projects

2.4. CONFIGURING THE MONITORING STACK

In OpenShift Container Platform 4.11, you can configure the monitoring stack using the cluster-
monitoring-config or user-workload-monitoring-config ConfigMap objects. Config maps configure
the Cluster Monitoring Operator (CMO), which in turn configures the components of the stack.

Prerequisites

If you are configuring core OpenShift Container Platform monitoring components:

You have access to the cluster as a user with the cluster-admin cluster role.

You have created the cluster-monitoring-config ConfigMap object.

If you are configuring components that monitor user-defined projects:

You have access to the cluster as a user with the cluster-admin cluster role, or as a user
with the user-workload-monitoring-config-edit role in the openshift-user-workload-
monitoring project.

You have created the user-workload-monitoring-config ConfigMap object.

$ oc -n openshift-user-workload-monitoring get configmap user-workload-monitoring-config

apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |

$ oc apply -f user-workload-monitoring-config.yaml

CHAPTER 2. CONFIGURING THE MONITORING STACK

17

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/monitoring/#enabling-monitoring-for-user-defined-projects

1

You have installed the OpenShift CLI (oc).

Procedure

1. Edit the ConfigMap object.

To configure core OpenShift Container Platform monitoring components:

a. Edit the cluster-monitoring-config ConfigMap object in the openshift-monitoring
project:

b. Add your configuration under data/config.yaml as a key-value pair
<component_name>: <component_configuration>:

Substitute <component> and <configuration_for_the_component> accordingly.

The following example ConfigMap object configures a persistent volume claim (PVC)
for Prometheus. This relates to the Prometheus instance that monitors core OpenShift
Container Platform components only:

Defines the Prometheus component and the subsequent lines define its
configuration.

To configure components that monitor user-defined projects:

a. Edit the user-workload-monitoring-config ConfigMap object in the openshift-user-

$ oc -n openshift-monitoring edit configmap cluster-monitoring-config

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 <component>:
 <configuration_for_the_component>

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 prometheusK8s: 1
 volumeClaimTemplate:
 spec:
 storageClassName: fast
 volumeMode: Filesystem
 resources:
 requests:
 storage: 40Gi

OpenShift Container Platform 4.11 Monitoring

18

1

2

3

4

a. Edit the user-workload-monitoring-config ConfigMap object in the openshift-user-
workload-monitoring project:

b. Add your configuration under data/config.yaml as a key-value pair
<component_name>: <component_configuration>:

Substitute <component> and <configuration_for_the_component> accordingly.

The following example ConfigMap object configures a data retention period and
minimum container resource requests for Prometheus. This relates to the Prometheus
instance that monitors user-defined projects only:

Defines the Prometheus component and the subsequent lines define its
configuration.

Configures a twenty-four hour data retention period for the Prometheus instance
that monitors user-defined projects.

Defines a minimum resource request of 200 millicores for the Prometheus
container.

Defines a minimum pod resource request of 2 GiB of memory for the Prometheus
container.

NOTE

$ oc -n openshift-user-workload-monitoring edit configmap user-workload-
monitoring-config

apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 <component>:
 <configuration_for_the_component>

apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 prometheus: 1
 retention: 24h 2
 resources:
 requests:
 cpu: 200m 3
 memory: 2Gi 4

CHAPTER 2. CONFIGURING THE MONITORING STACK

19

NOTE

The Prometheus config map component is called prometheusK8s in the
cluster-monitoring-config ConfigMap object and prometheus in the
user-workload-monitoring-config ConfigMap object.

2. Save the file to apply the changes to the ConfigMap object. The pods affected by the new
configuration are restarted automatically.

NOTE

Configurations applied to the user-workload-monitoring-config ConfigMap
object are not activated unless a cluster administrator has enabled monitoring for
user-defined projects.

WARNING

When changes are saved to a monitoring config map, the pods and other
resources in the related project might be redeployed. The running
monitoring processes in that project might also be restarted.

Additional resources

See Preparing to configure the monitoring stack for steps to create monitoring config maps

Enabling monitoring for user-defined projects

2.5. CONFIGURABLE MONITORING COMPONENTS

This table shows the monitoring components you can configure and the keys used to specify the
components in the cluster-monitoring-config and user-workload-monitoring-config ConfigMap
objects:

Table 2.1. Configurable monitoring components

Component cluster-monitoring-config
config map key

user-workload-monitoring-
config config map key

Prometheus Operator prometheusOperator prometheusOperator

Prometheus prometheusK8s prometheus

Alertmanager alertmanagerMain alertmanager

kube-state-metrics kubeStateMetrics

openshift-state-metrics openshiftStateMetrics

OpenShift Container Platform 4.11 Monitoring

20

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/monitoring/#preparing-to-configure-the-monitoring-stack
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/monitoring/#enabling-monitoring-for-user-defined-projects

Telemeter Client telemeterClient

Prometheus Adapter k8sPrometheusAdapter

Thanos Querier thanosQuerier

Thanos Ruler thanosRuler

Component cluster-monitoring-config
config map key

user-workload-monitoring-
config config map key

NOTE

The Prometheus key is called prometheusK8s in the cluster-monitoring-config
ConfigMap object and prometheus in the user-workload-monitoring-config
ConfigMap object.

2.6. USING NODE SELECTORS TO MOVE MONITORING
COMPONENTS

By using the nodeSelector constraint with labeled nodes, you can move any of the monitoring stack
components to specific nodes. By doing so, you can control the placement and distribution of the
monitoring components across a cluster.

By controlling placement and distribution of monitoring components, you can optimize system resource
use, improve performance, and segregate workloads based on specific requirements or policies.

2.6.1. How node selectors work with other constraints

If you move monitoring components by using node selector constraints, be aware that other constraints
to control pod scheduling might exist for a cluster:

Topology spread constraints might be in place to control pod placement.

Hard anti-affinity rules are in place for Prometheus, Thanos Querier, Alertmanager, and other
monitoring components to ensure that multiple pods for these components are always spread
across different nodes and are therefore always highly available.

When scheduling pods onto nodes, the pod scheduler tries to satisfy all existing constraints when
determining pod placement. That is, all constraints compound when the pod scheduler determines which
pods will be placed on which nodes.

Therefore, if you configure a node selector constraint but existing constraints cannot all be satisfied, the
pod scheduler cannot match all constraints and will not schedule a pod for placement onto a node.

To maintain resilience and high availability for monitoring components, ensure that enough nodes are
available and match all constraints when you configure a node selector constraint to move a component.

Additional resources

Understanding how to update labels on nodes

CHAPTER 2. CONFIGURING THE MONITORING STACK

21

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/nodes/#nodes-nodes-working-updating_nodes-nodes-working

Placing pods on specific nodes using node selectors

Placing pods relative to other pods using affinity and anti-affinity rules

Controlling pod placement by using pod topology spread constraints

Kubernetes documentation about node selectors

2.6.2. Moving monitoring components to different nodes

To specify the nodes in your cluster on which monitoring stack components will run, configure the
nodeSelector constraint in the component’s ConfigMap object to match labels assigned to the nodes.

NOTE

You cannot add a node selector constraint directly to an existing scheduled pod.

Prerequisites

If you are configuring core OpenShift Container Platform monitoring components:

You have access to the cluster as a user with the cluster-admin cluster role.

You have created the cluster-monitoring-config ConfigMap object.

If you are configuring components that monitor user-defined projects:

You have access to the cluster as a user with the cluster-admin cluster role or as a user
with the user-workload-monitoring-config-edit role in the openshift-user-workload-
monitoring project.

You have created the user-workload-monitoring-config ConfigMap object.

You have installed the OpenShift CLI (oc).

Procedure

1. If you have not done so yet, add a label to the nodes on which you want to run the monitoring
components:

2. Edit the ConfigMap object:

To move a component that monitors core OpenShift Container Platform projects:

a. Edit the cluster-monitoring-config ConfigMap object in the openshift-monitoring
project:

b. Specify the node labels for the nodeSelector constraint for the component under
data/config.yaml:

$ oc label nodes <node-name> <node-label>

$ oc -n openshift-monitoring edit configmap cluster-monitoring-config

apiVersion: v1

OpenShift Container Platform 4.11 Monitoring

22

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/nodes/#nodes-scheduler-node-selectors
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/nodes/#placing-pods-relative-to-other-pods-using-pod-affinity-and-anti-affinity-rules
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/nodes/#controlling-pod-placement-using-pod-topology-spread-constraints
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#nodeselector

1

2

3

1

2

Substitute <component> with the appropriate monitoring stack component name.

Substitute <node-label-1> with the label you added to the node.

Optional: Specify additional labels. If you specify additional labels, the pods for the
component are only scheduled on the nodes that contain all of the specified labels.

NOTE

If monitoring components remain in a Pending state after configuring
the nodeSelector constraint, check the pod events for errors relating to
taints and tolerations.

To move a component that monitors user-defined projects:

a. Edit the user-workload-monitoring-config ConfigMap object in the openshift-user-
workload-monitoring project:

b. Specify the node labels for the nodeSelector constraint for the component under
data/config.yaml:

Substitute <component> with the appropriate monitoring stack component name.

Substitute <node-label-1> with the label you added to the node.

Optional: Specify additional labels. If you specify additional labels, the pods for the

kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 <component>: 1
 nodeSelector:
 <node-label-1> 2
 <node-label-2> 3
 <...>

$ oc -n openshift-user-workload-monitoring edit configmap user-workload-
monitoring-config

apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 <component>: 1
 nodeSelector:
 <node-label-1> 2
 <node-label-2> 3
 <...>

CHAPTER 2. CONFIGURING THE MONITORING STACK

23

3 Optional: Specify additional labels. If you specify additional labels, the pods for the
component are only scheduled on the nodes that contain all of the specified labels.

NOTE

If monitoring components remain in a Pending state after configuring
the nodeSelector constraint, check the pod events for errors relating to
taints and tolerations.

3. Save the file to apply the changes. The components specified in the new configuration are
moved to the new nodes automatically.

NOTE

Configurations applied to the user-workload-monitoring-config ConfigMap
object are not activated unless a cluster administrator has enabled monitoring for
user-defined projects.

WARNING

When you save changes to a monitoring config map, the pods and other
resources in the project might be redeployed. The running monitoring
processes in that project might also restart.

Additional resources

See Preparing to configure the monitoring stack for steps to create monitoring config maps

Enabling monitoring for user-defined projects

2.7. ASSIGNING TOLERATIONS TO MONITORING COMPONENTS

You can assign tolerations to any of the monitoring stack components to enable moving them to tainted
nodes.

Prerequisites

If you are configuring core OpenShift Container Platform monitoring components:

You have access to the cluster as a user with the cluster-admin cluster role.

You have created the cluster-monitoring-config ConfigMap object.

If you are configuring components that monitor user-defined projects:

You have access to the cluster as a user with the cluster-admin cluster role, or as a user
with the user-workload-monitoring-config-edit role in the openshift-user-workload-
monitoring project.

OpenShift Container Platform 4.11 Monitoring

24

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/monitoring/#preparing-to-configure-the-monitoring-stack
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/monitoring/#enabling-monitoring-for-user-defined-projects

You have created the user-workload-monitoring-config ConfigMap object.

You have installed the OpenShift CLI (oc).

Procedure

1. Edit the ConfigMap object:

To assign tolerations to a component that monitors core OpenShift Container Platform
projects:

a. Edit the cluster-monitoring-config ConfigMap object in the openshift-monitoring
project:

b. Specify tolerations for the component:

Substitute <component> and <toleration_specification> accordingly.

For example, oc adm taint nodes node1 key1=value1:NoSchedule adds a taint to
node1 with the key key1 and the value value1. This prevents monitoring components
from deploying pods on node1 unless a toleration is configured for that taint. The
following example configures the alertmanagerMain component to tolerate the
example taint:

To assign tolerations to a component that monitors user-defined projects:

a. Edit the user-workload-monitoring-config ConfigMap object in the openshift-user-
workload-monitoring project:

$ oc -n openshift-monitoring edit configmap cluster-monitoring-config

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 <component>:
 tolerations:
 <toleration_specification>

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 alertmanagerMain:
 tolerations:
 - key: "key1"
 operator: "Equal"
 value: "value1"
 effect: "NoSchedule"

CHAPTER 2. CONFIGURING THE MONITORING STACK

25

b. Specify tolerations for the component:

Substitute <component> and <toleration_specification> accordingly.

For example, oc adm taint nodes node1 key1=value1:NoSchedule adds a taint to
node1 with the key key1 and the value value1. This prevents monitoring components
from deploying pods on node1 unless a toleration is configured for that taint. The
following example configures the thanosRuler component to tolerate the example
taint:

2. Save the file to apply the changes. The new component placement configuration is applied
automatically.

NOTE

Configurations applied to the user-workload-monitoring-config ConfigMap
object are not activated unless a cluster administrator has enabled monitoring for
user-defined projects.

$ oc -n openshift-user-workload-monitoring edit configmap user-workload-
monitoring-config

apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 <component>:
 tolerations:
 <toleration_specification>

apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 thanosRuler:
 tolerations:
 - key: "key1"
 operator: "Equal"
 value: "value1"
 effect: "NoSchedule"

OpenShift Container Platform 4.11 Monitoring

26

WARNING

When changes are saved to a monitoring config map, the pods and other
resources in the related project might be redeployed. The running
monitoring processes in that project might also be restarted.

Additional resources

See Preparing to configure the monitoring stack for steps to create monitoring config maps

Enabling monitoring for user-defined projects

See the OpenShift Container Platform documentation on taints and tolerations

See the Kubernetes documentation on taints and tolerations

2.8. SETTING THE BODY SIZE LIMIT FOR METRICS SCRAPING

By default, no limit exists for the uncompressed body size for data returned from scraped metrics
targets. You can set a body size limit to help avoid situations in which Prometheus consumes excessive
amounts of memory when scraped targets return a response that contains a large amount of data. In
addition, by setting a body size limit, you can reduce the impact that a malicious target might have on
Prometheus and on the cluster as a whole.

After you set a value for enforcedBodySizeLimit, the alert PrometheusScrapeBodySizeLimitHit fires
when at least one Prometheus scrape target replies with a response body larger than the configured
value.

NOTE

If metrics data scraped from a target has an uncompressed body size exceeding the
configured size limit, the scrape fails. Prometheus then considers this target to be down
and sets its up metric value to 0, which can trigger the TargetDown alert.

Prerequisites

You have access to the cluster as a user with the cluster-admin cluster role.

You have installed the OpenShift CLI (oc).

Procedure

1. Edit the cluster-monitoring-config ConfigMap object in the openshift-monitoring
namespace:

2. Add a value for enforcedBodySizeLimit to data/config.yaml/prometheusK8s to limit the body
size that can be accepted per target scrape:

$ oc -n openshift-monitoring edit configmap cluster-monitoring-config

CHAPTER 2. CONFIGURING THE MONITORING STACK

27

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/monitoring/#preparing-to-configure-the-monitoring-stack
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/monitoring/#enabling-monitoring-for-user-defined-projects
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/nodes/#nodes-scheduler-taints-tolerations
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/

1 Specify the maximum body size for scraped metrics targets. This enforcedBodySizeLimit
example limits the uncompressed size per target scrape to 40 megabytes. Valid numeric
values use the Prometheus data size format: B (bytes), KB (kilobytes), MB (megabytes),
GB (gigabytes), TB (terabytes), PB (petabytes), and EB (exabytes). The default value is 0,
which specifies no limit. You can also set the value to automatic to calculate the limit
automatically based on cluster capacity.

3. Save the file to apply the changes automatically.

WARNING

When you save changes to a cluster-monitoring-config config map, the
pods and other resources in the openshift-monitoring project might be
redeployed. The running monitoring processes in that project might also
restart.

Additional resources

Prometheus scrape configuration documentation

2.9. CONFIGURING A DEDICATED SERVICE MONITOR

You can configure OpenShift Container Platform core platform monitoring to use dedicated service
monitors to collect metrics for the resource metrics pipeline.

When enabled, a dedicated service monitor exposes two additional metrics from the kubelet endpoint
and sets the value of the honorTimestamps field to true.

By enabling a dedicated service monitor, you can improve the consistency of Prometheus Adapter-
based CPU usage measurements used by, for example, the oc adm top pod command or the Horizontal
Pod Autoscaler.

2.9.1. Enabling a dedicated service monitor

You can configure core platform monitoring to use a dedicated service monitor by configuring the
dedicatedServiceMonitors key in the cluster-monitoring-config ConfigMap object in the openshift-
monitoring namespace.

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |-
 prometheusK8s:
 enforcedBodySizeLimit: 40MB 1

OpenShift Container Platform 4.11 Monitoring

28

https://prometheus.io/docs/prometheus/latest/configuration/configuration/#scrape_config

1

Prerequisites

You have installed the OpenShift CLI (oc).

You have access to the cluster as a user with the cluster-admin cluster role.

You have created the cluster-monitoring-config ConfigMap object.

Procedure

1. Edit the cluster-monitoring-config ConfigMap object in the openshift-monitoring
namespace:

2. Add an enabled: true key-value pair as shown in the following sample:

Set the value of the enabled field to true to deploy a dedicated service monitor that
exposes the kubelet /metrics/resource endpoint.

3. Save the file to apply the changes automatically.

WARNING

When you save changes to a cluster-monitoring-config config map, the
pods and other resources in the openshift-monitoring project might be
redeployed. The running monitoring processes in that project might also
restart.

2.10. CONFIGURING PERSISTENT STORAGE

Running cluster monitoring with persistent storage means that your metrics are stored to a persistent
volume (PV) and can survive a pod being restarted or recreated. This is ideal if you require your metrics
or alerting data to be guarded from data loss. For production environments, it is highly recommended to
configure persistent storage. Because of the high IO demands, it is advantageous to use local storage.

2.10.1. Persistent storage prerequisites

$ oc -n openshift-monitoring edit configmap cluster-monitoring-config

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 k8sPrometheusAdapter:
 dedicatedServiceMonitors:
 enabled: true 1

CHAPTER 2. CONFIGURING THE MONITORING STACK

29

Dedicate sufficient local persistent storage to ensure that the disk does not become full. How
much storage you need depends on the number of pods.

Verify that you have a persistent volume (PV) ready to be claimed by the persistent volume
claim (PVC), one PV for each replica. Because Prometheus and Alertmanager both have two
replicas, you need four PVs to support the entire monitoring stack. The PVs are available from
the Local Storage Operator, but not if you have enabled dynamically provisioned storage.

Use Filesystem as the storage type value for the volumeMode parameter when you configure
the persistent volume.

NOTE

If you use a local volume for persistent storage, do not use a raw block volume,
which is described with volumeMode: Block in the LocalVolume object.
Prometheus cannot use raw block volumes.

IMPORTANT

Prometheus does not support file systems that are not POSIX compliant. For
example, some NFS file system implementations are not POSIX compliant. If you
want to use an NFS file system for storage, verify with the vendor that their NFS
implementation is fully POSIX compliant.

2.10.2. Configuring a local persistent volume claim

For monitoring components to use a persistent volume (PV), you must configure a persistent volume
claim (PVC).

Prerequisites

If you are configuring core OpenShift Container Platform monitoring components:

You have access to the cluster as a user with the cluster-admin cluster role.

You have created the cluster-monitoring-config ConfigMap object.

If you are configuring components that monitor user-defined projects:

You have access to the cluster as a user with the cluster-admin cluster role, or as a user
with the user-workload-monitoring-config-edit role in the openshift-user-workload-
monitoring project.

You have created the user-workload-monitoring-config ConfigMap object.

You have installed the OpenShift CLI (oc).

Procedure

1. Edit the ConfigMap object:

To configure a PVC for a component that monitors core OpenShift Container Platform
projects:

a. Edit the cluster-monitoring-config ConfigMap object in the openshift-monitoring
project:

OpenShift Container Platform 4.11 Monitoring

30

b. Add your PVC configuration for the component under data/config.yaml:

See the Kubernetes documentation on PersistentVolumeClaims for information on how
to specify volumeClaimTemplate.

The following example configures a PVC that claims local persistent storage for the
Prometheus instance that monitors core OpenShift Container Platform components:

In the above example, the storage class created by the Local Storage Operator is called
local-storage.

The following example configures a PVC that claims local persistent storage for
Alertmanager:

$ oc -n openshift-monitoring edit configmap cluster-monitoring-config

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 <component>:
 volumeClaimTemplate:
 spec:
 storageClassName: <storage_class>
 resources:
 requests:
 storage: <amount_of_storage>

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 prometheusK8s:
 volumeClaimTemplate:
 spec:
 storageClassName: local-storage
 resources:
 requests:
 storage: 40Gi

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 alertmanagerMain:
 volumeClaimTemplate:

CHAPTER 2. CONFIGURING THE MONITORING STACK

31

https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims

To configure a PVC for a component that monitors user-defined projects:

a. Edit the user-workload-monitoring-config ConfigMap object in the openshift-user-
workload-monitoring project:

b. Add your PVC configuration for the component under data/config.yaml:

See the Kubernetes documentation on PersistentVolumeClaims for information on how
to specify volumeClaimTemplate.

The following example configures a PVC that claims local persistent storage for the
Prometheus instance that monitors user-defined projects:

In the above example, the storage class created by the Local Storage Operator is called
local-storage.

The following example configures a PVC that claims local persistent storage for Thanos

 spec:
 storageClassName: local-storage
 resources:
 requests:
 storage: 10Gi

$ oc -n openshift-user-workload-monitoring edit configmap user-workload-
monitoring-config

apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 <component>:
 volumeClaimTemplate:
 spec:
 storageClassName: <storage_class>
 resources:
 requests:
 storage: <amount_of_storage>

apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 prometheus:
 volumeClaimTemplate:
 spec:
 storageClassName: local-storage
 resources:
 requests:
 storage: 40Gi

OpenShift Container Platform 4.11 Monitoring

32

https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims

The following example configures a PVC that claims local persistent storage for Thanos
Ruler:

NOTE

Storage requirements for the thanosRuler component depend on the
number of rules that are evaluated and how many samples each rule
generates.

2. Save the file to apply the changes. The pods affected by the new configuration are restarted
automatically and the new storage configuration is applied.

NOTE

Configurations applied to the user-workload-monitoring-config ConfigMap
object are not activated unless a cluster administrator has enabled monitoring for
user-defined projects.

WARNING

When changes are saved to a monitoring config map, the pods and other
resources in the related project might be redeployed. The running
monitoring processes in that project might also be restarted.

2.10.3. Resizing a persistent storage volume

OpenShift Container Platform does not support resizing an existing persistent storage volume used by
StatefulSet resources, even if the underlying StorageClass resource used supports persistent volume
sizing. Therefore, even if you update the storage field for an existing persistent volume claim (PVC) with
a larger size, this setting will not be propagated to the associated persistent volume (PV).

However, resizing a PV is still possible by using a manual process. If you want to resize a PV for a
monitoring component such as Prometheus, Thanos Ruler, or Alertmanager, you can update the
appropriate config map in which the component is configured. Then, patch the PVC, and delete and

apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 thanosRuler:
 volumeClaimTemplate:
 spec:
 storageClassName: local-storage
 resources:
 requests:
 storage: 10Gi

CHAPTER 2. CONFIGURING THE MONITORING STACK

33

orphan the pods. Orphaning the pods recreates the StatefulSet resource immediately and automatically
updates the size of the volumes mounted in the pods with the new PVC settings. No service disruption
occurs during this process.

Prerequisites

You have installed the OpenShift CLI (oc).

If you are configuring core OpenShift Container Platform monitoring components:

You have access to the cluster as a user with the cluster-admin cluster role.

You have created the cluster-monitoring-config ConfigMap object.

You have configured at least one PVC for core OpenShift Container Platform monitoring
components.

If you are configuring components that monitor user-defined projects:

You have access to the cluster as a user with the cluster-admin cluster role, or as a user
with the user-workload-monitoring-config-edit role in the openshift-user-workload-
monitoring project.

You have created the user-workload-monitoring-config ConfigMap object.

You have configured at least one PVC for components that monitor user-defined projects.

Procedure

1. Edit the ConfigMap object:

To resize a PVC for a component that monitors core OpenShift Container Platform
projects:

a. Edit the cluster-monitoring-config ConfigMap object in the openshift-monitoring
project:

b. Add a new storage size for the PVC configuration for the component under
data/config.yaml:

$ oc -n openshift-monitoring edit configmap cluster-monitoring-config

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 <component>: 1
 volumeClaimTemplate:
 spec:
 storageClassName: <storage_class> 2
 resources:
 requests:
 storage: <amount_of_storage> 3

OpenShift Container Platform 4.11 Monitoring

34

1

2

3

Specify the core monitoring component.

Specify the storage class.

Specify the new size for the storage volume.

The following example configures a PVC that sets the local persistent storage to 100
gigabytes for the Prometheus instance that monitors core OpenShift Container
Platform components:

The following example configures a PVC that sets the local persistent storage for
Alertmanager to 40 gigabytes:

To resize a PVC for a component that monitors user-defined projects:

NOTE

You can resize the volumes for the Thanos Ruler and Prometheus instances
that monitor user-defined projects.

a. Edit the user-workload-monitoring-config ConfigMap object in the openshift-user-
workload-monitoring project:

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 prometheusK8s:
 volumeClaimTemplate:
 spec:
 storageClassName: local-storage
 resources:
 requests:
 storage: 100Gi

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 alertmanagerMain:
 volumeClaimTemplate:
 spec:
 storageClassName: local-storage
 resources:
 requests:
 storage: 40Gi

CHAPTER 2. CONFIGURING THE MONITORING STACK

35

1

2

3

b. Update the PVC configuration for the monitoring component under data/config.yaml:

Specify the core monitoring component.

Specify the storage class.

Specify the new size for the storage volume.

The following example configures the PVC size to 100 gigabytes for the Prometheus
instance that monitors user-defined projects:

The following example sets the PVC size to 20 gigabytes for Thanos Ruler:

$ oc -n openshift-user-workload-monitoring edit configmap user-workload-
monitoring-config

apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 <component>: 1
 volumeClaimTemplate:
 spec:
 storageClassName: <storage_class> 2
 resources:
 requests:
 storage: <amount_of_storage> 3

apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 prometheus:
 volumeClaimTemplate:
 spec:
 storageClassName: local-storage
 resources:
 requests:
 storage: 100Gi

apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 thanosRuler:

OpenShift Container Platform 4.11 Monitoring

36

NOTE

Storage requirements for the thanosRuler component depend on the
number of rules that are evaluated and how many samples each rule
generates.

2. Save the file to apply the changes. The pods affected by the new configuration restart
automatically.

WARNING

When you save changes to a monitoring config map, the pods and other
resources in the related project might be redeployed. The monitoring
processes running in that project might also be restarted.

3. Manually patch every PVC with the updated storage request. The following example resizes the
storage size for the Prometheus component in the openshift-monitoring namespace to 100Gi:

4. Delete the underlying StatefulSet with the --cascade=orphan parameter:

2.10.4. Modifying the retention time and size for Prometheus metrics data

By default, Prometheus automatically retains metrics data for 15 days. You can modify the retention
time to change how soon data is deleted by specifying a time value in the retention field. You can also
configure the maximum amount of disk space the retained metrics data uses by specifying a size value in
the retentionSize field. If the data reaches this size limit, Prometheus deletes the oldest data first until
the disk space used is again below the limit.

Note the following behaviors of these data retention settings:

The size-based retention policy applies to all data block directories in the /prometheus
directory, including persistent blocks, write-ahead log (WAL) data, and m-mapped chunks.

Data in the /wal and /head_chunks directories counts toward the retention size limit, but

 volumeClaimTemplate:
 spec:
 storageClassName: local-storage
 resources:
 requests:
 storage: 20Gi

$ for p in $(oc -n openshift-monitoring get pvc -l app.kubernetes.io/name=prometheus -o
jsonpath='{range .items[*]}{.metadata.name} {end}'); do \
 oc -n openshift-monitoring patch pvc/${p} --patch '{"spec": {"resources": {"requests":
{"storage":"100Gi"}}}}'; \
 done

$ oc delete statefulset -l app.kubernetes.io/name=prometheus --cascade=orphan

CHAPTER 2. CONFIGURING THE MONITORING STACK

37

Prometheus never purges data from these directories based on size- or time-based retention
policies. Thus, if you set a retention size limit lower than the maximum size set for the /wal and
/head_chunks directories, you have configured the system not to retain any data blocks in the
/prometheus data directories.

The size-based retention policy is applied only when Prometheus cuts a new data block, which
occurs every two hours after the WAL contains at least three hours of data.

If you do not explicitly define values for either retention or retentionSize, retention time
defaults to 15 days, and retention size is not set.

If you define values for both retention and retentionSize, both values apply. If any data blocks
exceed the defined retention time or the defined size limit, Prometheus purges these data
blocks.

If you define a value for retentionSize and do not define retention, only the retentionSize value
applies.

If you do not define a value for retentionSize and only define a value for retention, only the
retention value applies.

Prerequisites

If you are configuring core OpenShift Container Platform monitoring components:

You have access to the cluster as a user with the cluster-admin cluster role.

You have created the cluster-monitoring-config ConfigMap object.

If you are configuring components that monitor user-defined projects:

A cluster administrator has enabled monitoring for user-defined projects.

You have access to the cluster as a user with the cluster-admin cluster role, or as a user
with the user-workload-monitoring-config-edit role in the openshift-user-workload-
monitoring project.

You have created the user-workload-monitoring-config ConfigMap object.

You have installed the OpenShift CLI (oc).

WARNING

Saving changes to a monitoring config map might restart monitoring processes and
redeploy the pods and other resources in the related project. The running
monitoring processes in that project might also restart.

Procedure

1. Edit the ConfigMap object:

To modify the retention time and size for the Prometheus instance that monitors core

OpenShift Container Platform 4.11 Monitoring

38

1

2

To modify the retention time and size for the Prometheus instance that monitors core
OpenShift Container Platform projects:

a. Edit the cluster-monitoring-config ConfigMap object in the openshift-monitoring
project:

b. Add the retention time and size configuration under data/config.yaml:

The retention time: a number directly followed by ms (milliseconds), s (seconds),
m (minutes), h (hours), d (days), w (weeks), or y (years). You can also combine
time values for specific times, such as 1h30m15s.

The retention size: a number directly followed by B (bytes), KB (kilobytes), MB
(megabytes), GB (gigabytes), TB (terabytes), PB (petabytes), and EB (exabytes).

The following example sets the retention time to 24 hours and the retention size to 10
gigabytes for the Prometheus instance that monitors core OpenShift Container
Platform components:

To modify the retention time and size for the Prometheus instance that monitors user-
defined projects:

a. Edit the user-workload-monitoring-config ConfigMap object in the openshift-user-
workload-monitoring project:

b. Add the retention time and size configuration under data/config.yaml:

$ oc -n openshift-monitoring edit configmap cluster-monitoring-config

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 prometheusK8s:
 retention: <time_specification> 1
 retentionSize: <size_specification> 2

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 prometheusK8s:
 retention: 24h
 retentionSize: 10GB

$ oc -n openshift-user-workload-monitoring edit configmap user-workload-
monitoring-config

CHAPTER 2. CONFIGURING THE MONITORING STACK

39

1

2

The retention time: a number directly followed by ms (milliseconds), s (seconds),
m (minutes), h (hours), d (days), w (weeks), or y (years). You can also combine
time values for specific times, such as 1h30m15s.

The retention size: a number directly followed by B (bytes), KB (kilobytes), MB
(megabytes), GB (gigabytes), TB (terabytes), PB (petabytes), or EB (exabytes).

The following example sets the retention time to 24 hours and the retention size to 10
gigabytes for the Prometheus instance that monitors user-defined projects:

2. Save the file to apply the changes. The pods affected by the new configuration restart
automatically.

2.10.5. Modifying the retention time for Thanos Ruler metrics data

By default, for user-defined projects, Thanos Ruler automatically retains metrics data for 24 hours. You
can modify the retention time to change how long this data is retained by specifying a time value in the
user-workload-monitoring-config config map in the openshift-user-workload-monitoring
namespace.

Prerequisites

You have installed the OpenShift CLI (oc).

A cluster administrator has enabled monitoring for user-defined projects.

You have access to the cluster as a user with the cluster-admin cluster role or as a user with the
user-workload-monitoring-config-edit role in the openshift-user-workload-monitoring
project.

You have created the user-workload-monitoring-config ConfigMap object.

apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 prometheus:
 retention: <time_specification> 1
 retentionSize: <size_specification> 2

apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 prometheus:
 retention: 24h
 retentionSize: 10GB

OpenShift Container Platform 4.11 Monitoring

40

1

WARNING

Saving changes to a monitoring config map might restart monitoring processes and
redeploy the pods and other resources in the related project. The running
monitoring processes in that project might also restart.

Procedure

1. Edit the user-workload-monitoring-config ConfigMap object in the openshift-user-
workload-monitoring project:

2. Add the retention time configuration under data/config.yaml:

Specify the retention time in the following format: a number directly followed by ms
(milliseconds), s (seconds), m (minutes), h (hours), d (days), w (weeks), or y (years). You
can also combine time values for specific times, such as 1h30m15s. The default is 24h.

The following example sets the retention time to 10 days for Thanos Ruler data:

3. Save the file to apply the changes. The pods affected by the new configuration automatically
restart.

Additional resources

Creating a cluster monitoring config map

Prometheus database storage requirements

$ oc -n openshift-user-workload-monitoring edit configmap user-workload-monitoring-config

apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 thanosRuler:
 retention: <time_specification> 1

apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 thanosRuler:
 retention: 10d

CHAPTER 2. CONFIGURING THE MONITORING STACK

41

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/monitoring/#creating-cluster-monitoring-configmap_configuring-the-monitoring-stack
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/scalability_and_performance/#prometheus-database-storage-requirements_cluster-monitoring-operator

Recommended configurable storage technology

Understanding persistent storage

Optimizing storage

Configure local persistent storage

Enabling monitoring for user-defined projects

2.11. CONFIGURING REMOTE WRITE STORAGE

You can configure remote write storage to enable Prometheus to send ingested metrics to remote
systems for long-term storage. Doing so has no impact on how or for how long Prometheus stores
metrics.

Prerequisites

If you are configuring core OpenShift Container Platform monitoring components:

You have access to the cluster as a user with the cluster-admin cluster role.

You have created the cluster-monitoring-config ConfigMap object.

If you are configuring components that monitor user-defined projects:

You have access to the cluster as a user with the cluster-admin cluster role or as a user
with the user-workload-monitoring-config-edit role in the openshift-user-workload-
monitoring project.

You have created the user-workload-monitoring-config ConfigMap object.

You have installed the OpenShift CLI (oc).

You have set up a remote write compatible endpoint (such as Thanos) and know the endpoint
URL. See the Prometheus remote endpoints and storage documentation for information about
endpoints that are compatible with the remote write feature.

You have set up authentication credentials in a Secret object for the remote write endpoint.
You must create the secret in the same namespace as the Prometheus object for which you
configure remote write: the openshift-monitoring namespace for default platform monitoring
or the openshift-user-workload-monitoring namespace for user workload monitoring.

CAUTION

To reduce security risks, use HTTPS and authentication to send metrics to an endpoint.

Procedure

Follow these steps to configure remote write for default platform monitoring in the cluster-
monitoring-config config map in the openshift-monitoring namespace.

NOTE

OpenShift Container Platform 4.11 Monitoring

42

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/scalability_and_performance/#recommended-configurable-storage-technology_persistent-storage
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/storage/#understanding-persistent-storage
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/scalability_and_performance/#optimizing-storage
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/storage/#persistent-storage-using-local-volume
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/monitoring/#enabling-monitoring-for-user-defined-projects
https://prometheus.io/docs/operating/integrations/#remote-endpoints-and-storage

1

2

1

NOTE

If you configure remote write for the Prometheus instance that monitors user-defined
projects, make similar edits to the user-workload-monitoring-config config map in the
openshift-user-workload-monitoring namespace. Note that the Prometheus config
map component is called prometheus in the user-workload-monitoring-config
ConfigMap object and not prometheusK8s, as it is in the cluster-monitoring-config
ConfigMap object.

1. Edit the cluster-monitoring-config ConfigMap object in the openshift-monitoring project:

2. Add a remoteWrite: section under data/config.yaml/prometheusK8s.

3. Add an endpoint URL and authentication credentials in this section:

The URL of the remote write endpoint.

The authentication method and credentials for the endpoint. Currently supported
authentication methods are AWS Signature Version 4, authentication using HTTP in an
Authorization request header, Basic authentication, OAuth 2.0, and TLS client. See
Supported remote write authentication settings for sample configurations of supported
authentication methods.

4. Add write relabel configuration values after the authentication credentials:

The write relabel configuration settings.

$ oc -n openshift-monitoring edit configmap cluster-monitoring-config

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 prometheusK8s:
 remoteWrite:
 - url: "https://remote-write-endpoint.example.com" 1
 <endpoint_authentication_credentials> 2

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 prometheusK8s:
 remoteWrite:
 - url: "https://remote-write-endpoint.example.com"
 <endpoint_authentication_credentials>
 <write_relabel_configs> 1

CHAPTER 2. CONFIGURING THE MONITORING STACK

43

For <write_relabel_configs> substitute a list of write relabel configurations for metrics that
you want to send to the remote endpoint.

The following sample shows how to forward a single metric called my_metric:

See the Prometheus relabel_config documentation for information about write relabel
configuration options.

5. Save the file to apply the changes to the ConfigMap object. The pods affected by the new
configuration restart automatically.

NOTE

Configurations applied to the user-workload-monitoring-config ConfigMap
object are not activated unless a cluster administrator has enabled monitoring for
user-defined projects.

WARNING

Saving changes to a monitoring ConfigMap object might redeploy the
pods and other resources in the related project. Saving changes might also
restart the running monitoring processes in that project.

2.11.1. Supported remote write authentication settings

You can use different methods to authenticate with a remote write endpoint. Currently supported
authentication methods are AWS Signature Version 4, Basic authentication, authentication using HTTP
in an Authorization request header, OAuth 2.0, and TLS client. The following table provides details
about supported authentication methods for use with remote write.

Authentication method Config map field Description

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 prometheusK8s:
 remoteWrite:
 - url: "https://remote-write-endpoint.example.com"
 writeRelabelConfigs:
 - sourceLabels: [__name__]
 regex: 'my_metric'
 action: keep

OpenShift Container Platform 4.11 Monitoring

44

https://prometheus.io/docs/prometheus/latest/configuration/configuration/#relabel_config

AWS Signature Version 4 sigv4 This method uses AWS Signature
Version 4 authentication to sign
requests. You cannot use this
method simultaneously with
authorization, OAuth 2.0, or Basic
authentication.

Basic authentication basicAuth Basic authentication sets the
authorization header on every
remote write request with the
configured username and
password.

authorization authorization Authorization sets the
Authorization header on every
remote write request using the
configured token.

OAuth 2.0 oauth2 An OAuth 2.0 configuration uses
the client credentials grant type.
Prometheus fetches an access
token from tokenUrl with the
specified client ID and client
secret to access the remote write
endpoint. You cannot use this
method simultaneously with
authorization, AWS Signature
Version 4, or Basic authentication.

TLS client tlsConfig A TLS client configuration
specifies the CA certificate, the
client certificate, and the client
key file information used to
authenticate with the remote
write endpoint server using TLS.
The sample configuration
assumes that you have already
created a CA certificate file, a
client certificate file, and a client
key file.

Authentication method Config map field Description

2.11.1.1. Config map location for authentication settings

The following shows the location of the authentication configuration in the ConfigMap object for
default platform monitoring.

apiVersion: v1
kind: ConfigMap

CHAPTER 2. CONFIGURING THE MONITORING STACK

45

1

2

1

2

The URL of the remote write endpoint.

The required configuration details for the authentication method for the endpoint. Currently
supported authentication methods are Amazon Web Services (AWS) Signature Version 4,
authentication using HTTP in an Authorization request header, Basic authentication, OAuth 2.0,
and TLS client.

NOTE

If you configure remote write for the Prometheus instance that monitors user-defined
projects, edit the user-workload-monitoring-config config map in the openshift-user-
workload-monitoring namespace. Note that the Prometheus config map component is
called prometheus in the user-workload-monitoring-config ConfigMap object and not
prometheusK8s, as it is in the cluster-monitoring-config ConfigMap object.

2.11.1.2. Example remote write authentication settings

The following samples show different authentication settings you can use to connect to a remote write
endpoint. Each sample also shows how to configure a corresponding Secret object that contains
authentication credentials and other relevant settings. Each sample configures authentication for use
with default platform monitoring in the openshift-monitoring namespace.

Sample YAML for AWS Signature Version 4 authentication

The following shows the settings for a sigv4 secret named sigv4-credentials in the openshift-
monitoring namespace.

The AWS API access key.

The AWS API secret key.

The following shows sample AWS Signature Version 4 remote write authentication settings that use a
Secret object named sigv4-credentials in the openshift-monitoring namespace:

metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 prometheusK8s:
 remoteWrite:
 - url: "https://remote-write-endpoint.example.com" 1
 <endpoint_authentication_details> 2

apiVersion: v1
kind: Secret
metadata:
 name: sigv4-credentials
 namespace: openshift-monitoring
stringData:
 accessKey: <AWS_access_key> 1
 secretKey: <AWS_secret_key> 2
type: Opaque

OpenShift Container Platform 4.11 Monitoring

46

1

2 4

3

5

6

7

1

2

The AWS region.

The name of the Secret object containing the AWS API access credentials.

The key that contains the AWS API access key in the specified Secret object.

The key that contains the AWS API secret key in the specified Secret object.

The name of the AWS profile that is being used to authenticate.

The unique identifier for the Amazon Resource Name (ARN) assigned to your role.

Sample YAML for Basic authentication

The following shows sample Basic authentication settings for a Secret object named rw-basic-auth in
the openshift-monitoring namespace:

The username.

The password.

The following sample shows a basicAuth remote write configuration that uses a Secret object named

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 prometheusK8s:
 remoteWrite:
 - url: "https://authorization.example.com/api/write"
 sigv4:
 region: <AWS_region> 1
 accessKey:
 name: sigv4-credentials 2
 key: accessKey 3
 secretKey:
 name: sigv4-credentials 4
 key: secretKey 5
 profile: <AWS_profile_name> 6
 roleArn: <AWS_role_arn> 7

apiVersion: v1
kind: Secret
metadata:
 name: rw-basic-auth
 namespace: openshift-monitoring
stringData:
 user: <basic_username> 1
 password: <basic_password> 2
type: Opaque

CHAPTER 2. CONFIGURING THE MONITORING STACK

47

1 3

2

4

1

The following sample shows a basicAuth remote write configuration that uses a Secret object named
rw-basic-auth in the openshift-monitoring namespace. It assumes that you have already set up
authentication credentials for the endpoint.

The name of the Secret object that contains the authentication credentials.

The key that contains the username in the specified Secret object.

The key that contains the password in the specified Secret object.

Sample YAML for authentication with a bearer token using a Secret Object

The following shows bearer token settings for a Secret object named rw-bearer-auth in the openshift-
monitoring namespace:

The authentication token.

The following shows sample bearer token config map settings that use a Secret object named rw-
bearer-auth in the openshift-monitoring namespace:

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 prometheusK8s:
 remoteWrite:
 - url: "https://basicauth.example.com/api/write"
 basicAuth:
 username:
 name: rw-basic-auth 1
 key: user 2
 password:
 name: rw-basic-auth 3
 key: password 4

apiVersion: v1
kind: Secret
metadata:
 name: rw-bearer-auth
 namespace: openshift-monitoring
stringData:
 token: <authentication_token> 1
type: Opaque

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:

OpenShift Container Platform 4.11 Monitoring

48

1

2

3

1

2

3

The authentication type of the request. The default value is Bearer.

The name of the Secret object that contains the authentication credentials.

The key that contains the authentication token in the specified Secret object.

Sample YAML for OAuth 2.0 authentication

The following shows sample OAuth 2.0 settings for a Secret object named oauth2-credentials in the
openshift-monitoring namespace:

The Oauth 2.0 ID.

The OAuth 2.0 secret.

The OAuth 2.0 token.

The following shows an oauth2 remote write authentication sample configuration that uses a Secret
object named oauth2-credentials in the openshift-monitoring namespace:

 config.yaml: |
 enableUserWorkload: true
 prometheusK8s:
 remoteWrite:
 - url: "https://authorization.example.com/api/write"
 authorization:
 type: Bearer 1
 credentials:
 name: rw-bearer-auth 2
 key: token 3

apiVersion: v1
kind: Secret
metadata:
 name: oauth2-credentials
 namespace: openshift-monitoring
stringData:
 id: <oauth2_id> 1
 secret: <oauth2_secret> 2
 token: <oauth2_authentication_token> 3
type: Opaque

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 prometheusK8s:
 remoteWrite:
 - url: "https://test.example.com/api/write"
 oauth2:
 clientId:

CHAPTER 2. CONFIGURING THE MONITORING STACK

49

1 3

2 4

5

6

7

1

2

3

The name of the corresponding Secret object. Note that ClientId can alternatively refer to a
ConfigMap object, although clientSecret must refer to a Secret object.

The key that contains the OAuth 2.0 credentials in the specified Secret object.

The URL used to fetch a token with the specified clientId and clientSecret.

The OAuth 2.0 scopes for the authorization request. These scopes limit what data the tokens can
access.

The OAuth 2.0 authorization request parameters required for the authorization server.

Sample YAML for TLS client authentication

The following shows sample TLS client settings for a tls Secret object named mtls-bundle in the
openshift-monitoring namespace.

The CA certificate in the Prometheus container with which to validate the server certificate.

The client certificate for authentication with the server.

The client key.

The following sample shows a tlsConfig remote write authentication configuration that uses a TLS
Secret object named mtls-bundle.

 secret:
 name: oauth2-credentials 1
 key: id 2
 clientSecret:
 name: oauth2-credentials 3
 key: secret 4
 tokenUrl: https://example.com/oauth2/token 5
 scopes: 6
 - <scope_1>
 - <scope_2>
 endpointParams: 7
 param1: <parameter_1>
 param2: <parameter_2>

apiVersion: v1
kind: Secret
metadata:
 name: mtls-bundle
 namespace: openshift-monitoring
data:
 ca.crt: <ca_cert> 1
 client.crt: <client_cert> 2
 client.key: <client_key> 3
type: tls

apiVersion: v1
kind: ConfigMap

OpenShift Container Platform 4.11 Monitoring

50

1 3 5

2

4

6

The name of the corresponding Secret object that contains the TLS authentication
credentials. Note that ca and cert can alternatively refer to a ConfigMap object, though

keySecret must refer to a Secret object.

The key in the specified Secret object that contains the CA certificate for the endpoint.

The key in the specified Secret object that contains the client certificate for the endpoint.

The key in the specified Secret object that contains the client key secret.

Additional resources

See Setting up remote write compatible endpoints for steps to create a remote write
compatible endpoint (such as Thanos).

See Tuning remote write settings for information about how to optimize remote write settings
for different use cases.

See Understanding secrets for steps to create and configure Secret objects in OpenShift
Container Platform.

See the Prometheus REST API reference for remote write for information about additional
optional fields.

2.12. ADDING CLUSTER ID LABELS TO METRICS

If you manage multiple OpenShift Container Platform clusters and use the remote write feature to send
metrics data from these clusters to an external storage location, you can add cluster ID labels to identify
the metrics data coming from different clusters. You can then query these labels to identify the source
cluster for a metric and distinguish that data from similar metrics data sent by other clusters.

This way, if you manage many clusters for multiple customers and send metrics data to a single

metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 prometheusK8s:
 remoteWrite:
 - url: "https://remote-write-endpoint.example.com"
 tlsConfig:
 ca:
 secret:
 name: mtls-bundle 1
 key: ca.crt 2
 cert:
 secret:
 name: mtls-bundle 3
 key: client.crt 4
 keySecret:
 name: mtls-bundle 5
 key: client.key 6

CHAPTER 2. CONFIGURING THE MONITORING STACK

51

https://prometheus.io/docs/operating/integrations/#remote-endpoints-and-storage
https://prometheus.io/docs/practices/remote_write/#remote-write-tuning
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/nodes/#nodes-pods-secrets-about_nodes-pods-secrets
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/api_reference/#spec-remotewrite-2

This way, if you manage many clusters for multiple customers and send metrics data to a single
centralized storage system, you can use cluster ID labels to query metrics for a particular cluster or
customer.

Creating and using cluster ID labels involves three general steps:

Configuring the write relabel settings for remote write storage.

Adding cluster ID labels to the metrics.

Querying these labels to identify the source cluster or customer for a metric.

2.12.1. Creating cluster ID labels for metrics

You can create cluster ID labels for metrics for default platform monitoring and for user workload
monitoring.

For default platform monitoring, you add cluster ID labels for metrics in the write_relabel settings for
remote write storage in the cluster-monitoring-config config map in the openshift-monitoring
namespace.

For user workload monitoring, you edit the settings in the user-workload-monitoring-config config
map in the openshift-user-workload-monitoring namespace.

NOTE

When Prometheus scrapes user workload targets that expose a namespace label, the
system stores this label as exported_namespace. This behavior ensures that the final
namespace label value is equal to the namespace of the target pod. You cannot override
this default configuration by setting the value of the honorLabels field to true for
PodMonitor or ServiceMonitor objects.

Prerequisites

You have installed the OpenShift CLI (oc).

You have configured remote write storage.

If you are configuring default platform monitoring components:

You have access to the cluster as a user with the cluster-admin cluster role.

You have created the cluster-monitoring-config ConfigMap object.

If you are configuring components that monitor user-defined projects:

You have access to the cluster as a user with the cluster-admin cluster role or as a user
with the user-workload-monitoring-config-edit role in the openshift-user-workload-
monitoring project.

You have created the user-workload-monitoring-config ConfigMap object.

Procedure

1. Edit the cluster-monitoring-config ConfigMap object in the openshift-monitoring project:

OpenShift Container Platform 4.11 Monitoring

52

1

2

NOTE

If you configure cluster ID labels for metrics for the Prometheus instance that
monitors user-defined projects, edit the user-workload-monitoring-config
config map in the openshift-user-workload-monitoring namespace. Note that
the Prometheus component is called prometheus in this config map and not
prometheusK8s, which is the name used in the cluster-monitoring-config
config map.

2. In the writeRelabelConfigs: section under data/config.yaml/prometheusK8s/remoteWrite,
add cluster ID relabel configuration values:

Add a list of write relabel configurations for metrics that you want to send to the remote
endpoint.

Substitute the label configuration for the metrics sent to the remote write endpoint.

The following sample shows how to forward a metric with the cluster ID label cluster_id in
default platform monitoring:

$ oc -n openshift-monitoring edit configmap cluster-monitoring-config

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 prometheusK8s:
 remoteWrite:
 - url: "https://remote-write-endpoint.example.com"
 <endpoint_authentication_credentials>
 writeRelabelConfigs: 1
 - <relabel_config> 2

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 prometheusK8s:
 remoteWrite:
 - url: "https://remote-write-endpoint.example.com"
 writeRelabelConfigs:
 - sourceLabels:
 - __tmp_openshift_cluster_id__ 1
 targetLabel: cluster_id 2
 action: replace 3

CHAPTER 2. CONFIGURING THE MONITORING STACK

53

1

2

3

The system initially applies a temporary cluster ID source label named
__tmp_openshift_cluster_id__. This temporary label gets replaced by the cluster ID label

Specify the name of the cluster ID label for metrics sent to remote write storage. If you use
a label name that already exists for a metric, that value is overwritten with the name of this
cluster ID label. For the label name, do not use __tmp_openshift_cluster_id__. The final
relabeling step removes labels that use this name.

The replace write relabel action replaces the temporary label with the target label for
outgoing metrics. This action is the default and is applied if no action is specified.

3. Save the file to apply the changes to the ConfigMap object. The pods affected by the updated
configuration automatically restart.

WARNING

Saving changes to a monitoring ConfigMap object might redeploy the
pods and other resources in the related project. Saving changes might also
restart the running monitoring processes in that project.

Additional resources

For details about write relabel configuration, see Configuring remote write storage .

2.13. CONTROLLING THE IMPACT OF UNBOUND METRICS
ATTRIBUTES IN USER-DEFINED PROJECTS

Developers can create labels to define attributes for metrics in the form of key-value pairs. The number
of potential key-value pairs corresponds to the number of possible values for an attribute. An attribute
that has an unlimited number of potential values is called an unbound attribute. For example, a
customer_id attribute is unbound because it has an infinite number of possible values.

Every assigned key-value pair has a unique time series. Using many unbound attributes in labels can
create exponentially more time series, which can impact Prometheus performance and available disk
space.

Cluster administrators can use the following measures to control the impact of unbound metrics
attributes in user-defined projects:

Limit the number of samples that can be accepted per target scrape in user-defined projects

Limit the number of scraped labels, the length of label names, and the length of label values.

Create alerts that fire when a scrape sample threshold is reached or when the target cannot be
scraped

NOTE

OpenShift Container Platform 4.11 Monitoring

54

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/monitoring/#configuring_remote_write_storage_configuring-the-monitoring-stack

NOTE

To prevent issues caused by adding many unbound attributes, limit the number of scrape
samples, label names, and unbound attributes you define for metrics. Also reduce the
number of potential key-value pair combinations by using attributes that are bound to a
limited set of possible values.

2.13.1. Setting scrape sample and label limits for user-defined projects

You can limit the number of samples that can be accepted per target scrape in user-defined projects.
You can also limit the number of scraped labels, the length of label names, and the length of label
values.

WARNING

If you set sample or label limits, no further sample data is ingested for that target
scrape after the limit is reached.

Prerequisites

You have access to the cluster as a user with the cluster-admin cluster role, or as a user with
the user-workload-monitoring-config-edit role in the openshift-user-workload-monitoring
project.

You have enabled monitoring for user-defined projects.

You have installed the OpenShift CLI (oc).

Procedure

1. Edit the user-workload-monitoring-config ConfigMap object in the openshift-user-
workload-monitoring project:

2. Add the enforcedSampleLimit configuration to data/config.yaml to limit the number of
samples that can be accepted per target scrape in user-defined projects:

A value is required if this parameter is specified. This enforcedSampleLimit example limits

$ oc -n openshift-user-workload-monitoring edit configmap user-workload-monitoring-config

apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 prometheus:
 enforcedSampleLimit: 50000 1

CHAPTER 2. CONFIGURING THE MONITORING STACK

55

1

1

2

3

A value is required if this parameter is specified. This enforcedSampleLimit example limits
the number of samples that can be accepted per target scrape in user-defined projects to
50,000.

3. Add the enforcedLabelLimit, enforcedLabelNameLengthLimit, and
enforcedLabelValueLengthLimit configurations to data/config.yaml to limit the number of
scraped labels, the length of label names, and the length of label values in user-defined
projects:

Specifies the maximum number of labels per scrape. The default value is 0, which specifies
no limit.

Specifies the maximum length in characters of a label name. The default value is 0, which
specifies no limit.

Specifies the maximum length in characters of a label value. The default value is 0, which
specifies no limit.

4. Save the file to apply the changes. The limits are applied automatically.

NOTE

Configurations applied to the user-workload-monitoring-config ConfigMap
object are not activated unless a cluster administrator has enabled monitoring for
user-defined projects.

WARNING

When changes are saved to the user-workload-monitoring-config
ConfigMap object, the pods and other resources in the openshift-user-
workload-monitoring project might be redeployed. The running
monitoring processes in that project might also be restarted.

2.13.2. Creating scrape sample alerts

You can create alerts that notify you when:

apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 prometheus:
 enforcedLabelLimit: 500 1
 enforcedLabelNameLengthLimit: 50 2
 enforcedLabelValueLengthLimit: 600 3

OpenShift Container Platform 4.11 Monitoring

56

The target cannot be scraped or is not available for the specified for duration

A scrape sample threshold is reached or is exceeded for the specified for duration

Prerequisites

You have access to the cluster as a user with the cluster-admin cluster role, or as a user with
the user-workload-monitoring-config-edit role in the openshift-user-workload-monitoring
project.

You have enabled monitoring for user-defined projects.

You have created the user-workload-monitoring-config ConfigMap object.

You have limited the number of samples that can be accepted per target scrape in user-defined
projects, by using enforcedSampleLimit.

You have installed the OpenShift CLI (oc).

Procedure

1. Create a YAML file with alerts that inform you when the targets are down and when the
enforced sample limit is approaching. The file in this example is called monitoring-stack-
alerts.yaml:

apiVersion: monitoring.coreos.com/v1
kind: PrometheusRule
metadata:
 labels:
 prometheus: k8s
 role: alert-rules
 name: monitoring-stack-alerts 1
 namespace: ns1 2
spec:
 groups:
 - name: general.rules
 rules:
 - alert: TargetDown 3
 annotations:
 message: '{{ printf "%.4g" $value }}% of the {{ $labels.job }}/{{ $labels.service
 }} targets in {{ $labels.namespace }} namespace are down.' 4
 expr: 100 * (count(up == 0) BY (job, namespace, service) / count(up) BY (job,
 namespace, service)) > 10
 for: 10m 5
 labels:
 severity: warning 6
 - alert: ApproachingEnforcedSamplesLimit 7
 annotations:
 message: '{{ $labels.container }} container of the {{ $labels.pod }} pod in the {{
$labels.namespace }} namespace consumes {{ $value | humanizePercentage }} of the
samples limit budget.' 8
 expr: scrape_samples_scraped/50000 > 0.8 9

CHAPTER 2. CONFIGURING THE MONITORING STACK

57

1

2

3

4

5

6

7

8

9

10

11

Defines the name of the alerting rule.

Specifies the user-defined project where the alerting rule will be deployed.

The TargetDown alert will fire if the target cannot be scraped or is not available for the for
duration.

The message that will be output when the TargetDown alert fires.

The conditions for the TargetDown alert must be true for this duration before the alert is
fired.

Defines the severity for the TargetDown alert.

The ApproachingEnforcedSamplesLimit alert will fire when the defined scrape sample
threshold is reached or exceeded for the specified for duration.

The message that will be output when the ApproachingEnforcedSamplesLimit alert
fires.

The threshold for the ApproachingEnforcedSamplesLimit alert. In this example the alert
will fire when the number of samples per target scrape has exceeded 80% of the enforced
sample limit of 50000. The for duration must also have passed before the alert will fire. The
<number> in the expression scrape_samples_scraped/<number> > <threshold> must
match the enforcedSampleLimit value defined in the user-workload-monitoring-config
ConfigMap object.

The conditions for the ApproachingEnforcedSamplesLimit alert must be true for this
duration before the alert is fired.

Defines the severity for the ApproachingEnforcedSamplesLimit alert.

2. Apply the configuration to the user-defined project:

Additional resources

Creating a user-defined workload monitoring config map

Enabling monitoring for user-defined projects

See Determining why Prometheus is consuming a lot of disk space for steps to query which
metrics have the highest number of scrape samples.

 for: 10m 10
 labels:
 severity: warning 11

$ oc apply -f monitoring-stack-alerts.yaml

OpenShift Container Platform 4.11 Monitoring

58

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/monitoring/#creating-user-defined-workload-monitoring-configmap_configuring-the-monitoring-stack
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/monitoring/#enabling-monitoring-for-user-defined-projects
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/monitoring/#determining-why-prometheus-is-consuming-disk-space_troubleshooting-monitoring-issues

CHAPTER 3. CONFIGURING EXTERNAL ALERTMANAGER
INSTANCES

The OpenShift Container Platform monitoring stack includes a local Alertmanager instance that routes
alerts from Prometheus. You can add external Alertmanager instances by configuring the cluster-
monitoring-config config map in either the openshift-monitoring project or the user-workload-
monitoring-config project.

If you add the same external Alertmanager configuration for multiple clusters and disable the local
instance for each cluster, you can then manage alert routing for multiple clusters by using a single
external Alertmanager instance.

Prerequisites

You have installed the OpenShift CLI (oc).

If you are configuring core OpenShift Container Platform monitoring components in the
openshift-monitoring project:

You have access to the cluster as a user with the cluster-admin cluster role.

You have created the cluster-monitoring-config config map.

If you are configuring components that monitor user-defined projects:

You have access to the cluster as a user with the cluster-admin cluster role, or as a user
with the user-workload-monitoring-config-edit role in the openshift-user-workload-
monitoring project.

You have created the user-workload-monitoring-config config map.

Procedure

1. Edit the ConfigMap object.

To configure additional Alertmanagers for routing alerts from core OpenShift
Container Platform projects:

a. Edit the cluster-monitoring-config config map in the openshift-monitoring project:

b. Add an additionalAlertmanagerConfigs: section under
data/config.yaml/prometheusK8s.

c. Add the configuration details for additional Alertmanagers in this section:

$ oc -n openshift-monitoring edit configmap cluster-monitoring-config

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |

CHAPTER 3. CONFIGURING EXTERNAL ALERTMANAGER INSTANCES

59

For <alertmanager_specification>, substitute authentication and other configuration
details for additional Alertmanager instances. Currently supported authentication
methods are bearer token (bearerToken) and client TLS (tlsConfig). The following
sample config map configures an additional Alertmanager using a bearer token with
client TLS authentication:

To configure additional Alertmanager instances for routing alerts from user-defined
projects:

a. Edit the user-workload-monitoring-config config map in the openshift-user-
workload-monitoring project:

b. Add a <component>/additionalAlertmanagerConfigs: section under
data/config.yaml/.

c. Add the configuration details for additional Alertmanagers in this section:

 prometheusK8s:
 additionalAlertmanagerConfigs:
 - <alertmanager_specification>

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 prometheusK8s:
 additionalAlertmanagerConfigs:
 - scheme: https
 pathPrefix: /
 timeout: "30s"
 apiVersion: v1
 bearerToken:
 name: alertmanager-bearer-token
 key: token
 tlsConfig:
 key:
 name: alertmanager-tls
 key: tls.key
 cert:
 name: alertmanager-tls
 key: tls.crt
 ca:
 name: alertmanager-tls
 key: tls.ca
 staticConfigs:
 - external-alertmanager1-remote.com
 - external-alertmanager1-remote2.com

$ oc -n openshift-user-workload-monitoring edit configmap user-workload-
monitoring-config

apiVersion: v1

OpenShift Container Platform 4.11 Monitoring

60

For <component>, substitute one of two supported external Alertmanager
components: prometheus or thanosRuler.

For <alertmanager_specification>, substitute authentication and other configuration
details for additional Alertmanager instances. Currently supported authentication
methods are bearer token (bearerToken) and client TLS (tlsConfig). The following
sample config map configures an additional Alertmanager using Thanos Ruler with a
bearer token and client TLS authentication:

NOTE

Configurations applied to the user-workload-monitoring-config
ConfigMap object are not activated unless a cluster administrator has
enabled monitoring for user-defined projects.

kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 <component>:
 additionalAlertmanagerConfigs:
 - <alertmanager_specification>

apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 thanosRuler:
 additionalAlertmanagerConfigs:
 - scheme: https
 pathPrefix: /
 timeout: "30s"
 apiVersion: v1
 bearerToken:
 name: alertmanager-bearer-token
 key: token
 tlsConfig:
 key:
 name: alertmanager-tls
 key: tls.key
 cert:
 name: alertmanager-tls
 key: tls.crt
 ca:
 name: alertmanager-tls
 key: tls.ca
 staticConfigs:
 - external-alertmanager1-remote.com
 - external-alertmanager1-remote2.com

CHAPTER 3. CONFIGURING EXTERNAL ALERTMANAGER INSTANCES

61

1

2. Save the file to apply the changes to the ConfigMap object. The new component placement
configuration is applied automatically.

3.1. ATTACHING ADDITIONAL LABELS TO YOUR TIME SERIES AND
ALERTS

Using the external labels feature of Prometheus, you can attach custom labels to all time series and
alerts leaving Prometheus.

Prerequisites

If you are configuring core OpenShift Container Platform monitoring components:

You have access to the cluster as a user with the cluster-admin cluster role.

You have created the cluster-monitoring-config ConfigMap object.

If you are configuring components that monitor user-defined projects:

You have access to the cluster as a user with the cluster-admin cluster role, or as a user
with the user-workload-monitoring-config-edit role in the openshift-user-workload-
monitoring project.

You have created the user-workload-monitoring-config ConfigMap object.

You have installed the OpenShift CLI (oc).

Procedure

1. Edit the ConfigMap object:

To attach custom labels to all time series and alerts leaving the Prometheus instance
that monitors core OpenShift Container Platform projects:

a. Edit the cluster-monitoring-config ConfigMap object in the openshift-monitoring
project:

b. Define a map of labels you want to add for every metric under data/config.yaml:

Substitute <key>: <value> with a map of key-value pairs where <key> is a unique
name for the new label and <value> is its value.

$ oc -n openshift-monitoring edit configmap cluster-monitoring-config

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 prometheusK8s:
 externalLabels:
 <key>: <value> 1

OpenShift Container Platform 4.11 Monitoring

62

1

WARNING

Do not use prometheus or prometheus_replica as key names,
because they are reserved and will be overwritten.

For example, to add metadata about the region and environment to all time series and
alerts, use:

To attach custom labels to all time series and alerts leaving the Prometheus instance
that monitors user-defined projects:

a. Edit the user-workload-monitoring-config ConfigMap object in the openshift-user-
workload-monitoring project:

b. Define a map of labels you want to add for every metric under data/config.yaml:

Substitute <key>: <value> with a map of key-value pairs where <key> is a unique
name for the new label and <value> is its value.

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 prometheusK8s:
 externalLabels:
 region: eu
 environment: prod

$ oc -n openshift-user-workload-monitoring edit configmap user-workload-
monitoring-config

apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 prometheus:
 externalLabels:
 <key>: <value> 1

CHAPTER 3. CONFIGURING EXTERNAL ALERTMANAGER INSTANCES

63

WARNING

Do not use prometheus or prometheus_replica as key names,
because they are reserved and will be overwritten.

NOTE

In the openshift-user-workload-monitoring project, Prometheus
handles metrics and Thanos Ruler handles alerting and recording rules.
Setting externalLabels for prometheus in the user-workload-
monitoring-config ConfigMap object will only configure external labels
for metrics and not for any rules.

For example, to add metadata about the region and environment to all time series and
alerts related to user-defined projects, use:

2. Save the file to apply the changes. The new configuration is applied automatically.

NOTE

Configurations applied to the user-workload-monitoring-config ConfigMap
object are not activated unless a cluster administrator has enabled monitoring for
user-defined projects.

WARNING

When changes are saved to a monitoring config map, the pods and other
resources in the related project might be redeployed. The running
monitoring processes in that project might also be restarted.

Additional resources

See Preparing to configure the monitoring stack for steps to create monitoring config maps.

apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 prometheus:
 externalLabels:
 region: eu
 environment: prod

OpenShift Container Platform 4.11 Monitoring

64

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/monitoring/#preparing-to-configure-the-monitoring-stack

Enabling monitoring for user-defined projects

3.2. SETTING LOG LEVELS FOR MONITORING COMPONENTS

You can configure the log level for Alertmanager, Prometheus Operator, Prometheus, Thanos Querier,
and Thanos Ruler.

The following log levels can be applied to the relevant component in the cluster-monitoring-config
and user-workload-monitoring-config ConfigMap objects:

debug. Log debug, informational, warning, and error messages.

info. Log informational, warning, and error messages.

warn. Log warning and error messages only.

error. Log error messages only.

The default log level is info.

Prerequisites

If you are setting a log level for Alertmanager, Prometheus Operator, Prometheus, or
Thanos Querier in the openshift-monitoring project:

You have access to the cluster as a user with the cluster-admin cluster role.

You have created the cluster-monitoring-config ConfigMap object.

If you are setting a log level for Prometheus Operator, Prometheus, or Thanos Ruler in the
openshift-user-workload-monitoring project:

You have access to the cluster as a user with the cluster-admin cluster role, or as a user
with the user-workload-monitoring-config-edit role in the openshift-user-workload-
monitoring project.

You have created the user-workload-monitoring-config ConfigMap object.

You have installed the OpenShift CLI (oc).

Procedure

1. Edit the ConfigMap object:

To set a log level for a component in the openshift-monitoring project:

a. Edit the cluster-monitoring-config ConfigMap object in the openshift-monitoring
project:

b. Add logLevel: <log_level> for a component under data/config.yaml:

$ oc -n openshift-monitoring edit configmap cluster-monitoring-config

apiVersion: v1
kind: ConfigMap
metadata:

CHAPTER 3. CONFIGURING EXTERNAL ALERTMANAGER INSTANCES

65

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/monitoring/#enabling-monitoring-for-user-defined-projects

1

2

1

2

The monitoring stack component for which you are setting a log level. For default
platform monitoring, available component values are prometheusK8s,
alertmanagerMain, prometheusOperator, and thanosQuerier.

The log level to set for the component. The available values are error, warn, info,
and debug. The default value is info.

To set a log level for a component in the openshift-user-workload-monitoring project:

a. Edit the user-workload-monitoring-config ConfigMap object in the openshift-user-
workload-monitoring project:

b. Add logLevel: <log_level> for a component under data/config.yaml:

The monitoring stack component for which you are setting a log level. For user
workload monitoring, available component values are prometheus,
prometheusOperator, and thanosRuler.

The log level to set for the component. The available values are error, warn, info,
and debug. The default value is info.

2. Save the file to apply the changes. The pods for the component restarts automatically when you
apply the log-level change.

NOTE

Configurations applied to the user-workload-monitoring-config ConfigMap
object are not activated unless a cluster administrator has enabled monitoring for
user-defined projects.

 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 <component>: 1
 logLevel: <log_level> 2

$ oc -n openshift-user-workload-monitoring edit configmap user-workload-
monitoring-config

apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 <component>: 1
 logLevel: <log_level> 2

OpenShift Container Platform 4.11 Monitoring

66

WARNING

When changes are saved to a monitoring config map, the pods and other
resources in the related project might be redeployed. The running
monitoring processes in that project might also be restarted.

3. Confirm that the log-level has been applied by reviewing the deployment or pod configuration
in the related project. The following example checks the log level in the prometheus-operator
deployment in the openshift-user-workload-monitoring project:

Example output

4. Check that the pods for the component are running. The following example lists the status of
pods in the openshift-user-workload-monitoring project:

NOTE

If an unrecognized loglevel value is included in the ConfigMap object, the pods
for the component might not restart successfully.

3.3. ENABLING THE QUERY LOG FILE FOR PROMETHEUS

You can configure Prometheus to write all queries that have been run by the engine to a log file. You
can do so for default platform monitoring and for user-defined workload monitoring.

IMPORTANT

Because log rotation is not supported, only enable this feature temporarily when you
need to troubleshoot an issue. After you finish troubleshooting, disable query logging by
reverting the changes you made to the ConfigMap object to enable the feature.

Prerequisites

You have installed the OpenShift CLI (oc).

If you are enabling the query log file feature for Prometheus in the openshift-monitoring
project:

You have access to the cluster as a user with the cluster-admin cluster role.

You have created the cluster-monitoring-config ConfigMap object.

$ oc -n openshift-user-workload-monitoring get deploy prometheus-operator -o yaml | grep
"log-level"

 - --log-level=debug

$ oc -n openshift-user-workload-monitoring get pods

CHAPTER 3. CONFIGURING EXTERNAL ALERTMANAGER INSTANCES

67

1

If you are enabling the query log file feature for Prometheus in the openshift-user-
workload-monitoring project:

You have access to the cluster as a user with the cluster-admin cluster role, or as a user
with the user-workload-monitoring-config-edit role in the openshift-user-workload-
monitoring project.

You have created the user-workload-monitoring-config ConfigMap object.

Procedure

To set the query log file for Prometheus in the openshift-monitoring project:

1. Edit the cluster-monitoring-config ConfigMap object in the openshift-monitoring
project:

2. Add queryLogFile: <path> for prometheusK8s under data/config.yaml:

The full path to the file in which queries will be logged.

3. Save the file to apply the changes.

WARNING

When you save changes to a monitoring config map, pods and other
resources in the related project might be redeployed. The running
monitoring processes in that project might also be restarted.

4. Verify that the pods for the component are running. The following sample command lists
the status of pods in the openshift-monitoring project:

5. Read the query log:

IMPORTANT

$ oc -n openshift-monitoring edit configmap cluster-monitoring-config

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 prometheusK8s:
 queryLogFile: <path> 1

$ oc -n openshift-monitoring get pods

$ oc -n openshift-monitoring exec prometheus-k8s-0 -- cat <path>

OpenShift Container Platform 4.11 Monitoring

68

1

IMPORTANT

Revert the setting in the config map after you have examined the logged
query information.

To set the query log file for Prometheus in the openshift-user-workload-monitoring
project:

1. Edit the user-workload-monitoring-config ConfigMap object in the openshift-user-
workload-monitoring project:

2. Add queryLogFile: <path> for prometheus under data/config.yaml:

The full path to the file in which queries will be logged.

3. Save the file to apply the changes.

NOTE

Configurations applied to the user-workload-monitoring-config
ConfigMap object are not activated unless a cluster administrator has
enabled monitoring for user-defined projects.

WARNING

When you save changes to a monitoring config map, pods and other
resources in the related project might be redeployed. The running
monitoring processes in that project might also be restarted.

4. Verify that the pods for the component are running. The following example command lists
the status of pods in the openshift-user-workload-monitoring project:

5. Read the query log:

$ oc -n openshift-user-workload-monitoring edit configmap user-workload-monitoring-
config

apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 prometheus:
 queryLogFile: <path> 1

$ oc -n openshift-user-workload-monitoring get pods

CHAPTER 3. CONFIGURING EXTERNAL ALERTMANAGER INSTANCES

69

IMPORTANT

Revert the setting in the config map after you have examined the logged
query information.

Additional resources

See Preparing to configure the monitoring stack for steps to create monitoring config maps

See Enabling monitoring for user-defined projects for steps to enable user-defined monitoring.

3.4. ENABLING QUERY LOGGING FOR THANOS QUERIER

For default platform monitoring in the openshift-monitoring project, you can enable the Cluster
Monitoring Operator to log all queries run by Thanos Querier.

IMPORTANT

Because log rotation is not supported, only enable this feature temporarily when you
need to troubleshoot an issue. After you finish troubleshooting, disable query logging by
reverting the changes you made to the ConfigMap object to enable the feature.

Prerequisites

You have installed the OpenShift CLI (oc).

You have access to the cluster as a user with the cluster-admin cluster role.

You have created the cluster-monitoring-config ConfigMap object.

Procedure

You can enable query logging for Thanos Querier in the openshift-monitoring project:

1. Edit the cluster-monitoring-config ConfigMap object in the openshift-monitoring project:

2. Add a thanosQuerier section under data/config.yaml and add values as shown in the following
example:

$ oc -n openshift-user-workload-monitoring exec prometheus-user-workload-0 -- cat
<path>

$ oc -n openshift-monitoring edit configmap cluster-monitoring-config

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 thanosQuerier:
 enableRequestLogging: <value> 1
 logLevel: <value> 2

OpenShift Container Platform 4.11 Monitoring

70

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/monitoring/#preparing-to-configure-the-monitoring-stack
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/monitoring/#enabling-monitoring-for-user-defined-projects

1

2

Set the value to true to enable logging and false to disable logging. The default value is
false.

Set the value to debug, info, warn, or error. If no value exists for logLevel, the log level
defaults to error.

3. Save the file to apply the changes.

WARNING

When you save changes to a monitoring config map, pods and other
resources in the related project might be redeployed. The running
monitoring processes in that project might also be restarted.

Verification

1. Verify that the Thanos Querier pods are running. The following sample command lists the status
of pods in the openshift-monitoring project:

2. Run a test query using the following sample commands as a model:

3. Run the following command to read the query log:

NOTE

Because the thanos-querier pods are highly available (HA) pods, you might be
able to see logs in only one pod.

4. After you examine the logged query information, disable query logging by changing the
enableRequestLogging value to false in the config map.

Additional resources

See Preparing to configure the monitoring stack for steps to create monitoring config maps.

$ oc -n openshift-monitoring get pods

$ token=`oc create token prometheus-k8s -n openshift-monitoring`
$ oc -n openshift-monitoring exec -c prometheus prometheus-k8s-0 -- curl -k -H
"Authorization: Bearer $token" 'https://thanos-querier.openshift-
monitoring.svc:9091/api/v1/query?query=cluster_version'

$ oc -n openshift-monitoring logs <thanos_querier_pod_name> -c thanos-query

CHAPTER 3. CONFIGURING EXTERNAL ALERTMANAGER INSTANCES

71

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/monitoring/#preparing-to-configure-the-monitoring-stack

1

CHAPTER 4. SETTING AUDIT LOG LEVELS FOR THE
PROMETHEUS ADAPTER

In default platform monitoring, you can configure the audit log level for the Prometheus Adapter.

Prerequisites

You have installed the OpenShift CLI (oc).

You have access to the cluster as a user with the cluster-admin cluster role.

You have created the cluster-monitoring-config ConfigMap object.

Procedure

You can set an audit log level for the Prometheus Adapter in the default openshift-monitoring project:

1. Edit the cluster-monitoring-config ConfigMap object in the openshift-monitoring project:

2. Add profile: in the k8sPrometheusAdapter/audit section under data/config.yaml:

The audit log level to apply to the Prometheus Adapter.

3. Set the audit log level by using one of the following values for the profile: parameter:

None: Do not log events.

Metadata: Log only the metadata for the request, such as user, timestamp, and so forth. Do
not log the request text and the response text. Metadata is the default audit log level.

Request: Log only the metadata and the request text but not the response text. This option
does not apply for non-resource requests.

RequestResponse: Log event metadata, request text, and response text. This option does
not apply for non-resource requests.

4. Save the file to apply the changes. The pods for the Prometheus Adapter restart automatically
when you apply the change.

$ oc -n openshift-monitoring edit configmap cluster-monitoring-config

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 k8sPrometheusAdapter:
 audit:
 profile: <audit_log_level> 1

OpenShift Container Platform 4.11 Monitoring

72

WARNING

When changes are saved to a monitoring config map, the pods and other
resources in the related project might be redeployed. The running
monitoring processes in that project might also be restarted.

Verification

1. In the config map, under k8sPrometheusAdapter/audit/profile, set the log level to Request
and save the file.

2. Confirm that the pods for the Prometheus Adapter are running. The following example lists the
status of pods in the openshift-monitoring project:

3. Confirm that the audit log level and audit log file path are correctly configured:

Example output

4. Confirm that the correct log level has been applied in the prometheus-adapter deployment in
the openshift-monitoring project:

Example output

NOTE

If you enter an unrecognized profile value for the Prometheus Adapter in the
ConfigMap object, no changes are made to the Prometheus Adapter, and an
error is logged by the Cluster Monitoring Operator.

$ oc -n openshift-monitoring get pods

$ oc -n openshift-monitoring get deploy prometheus-adapter -o yaml

...
 - --audit-policy-file=/etc/audit/request-profile.yaml
 - --audit-log-path=/var/log/adapter/audit.log

$ oc -n openshift-monitoring exec deploy/prometheus-adapter -c prometheus-adapter -- cat
/etc/audit/request-profile.yaml

"apiVersion": "audit.k8s.io/v1"
"kind": "Policy"
"metadata":
 "name": "Request"
"omitStages":
- "RequestReceived"
"rules":
- "level": "Request"

CHAPTER 4. SETTING AUDIT LOG LEVELS FOR THE PROMETHEUS ADAPTER

73

5. Review the audit log for the Prometheus Adapter:

Additional resources

See Preparing to configure the monitoring stack for steps to create monitoring config maps.

4.1. DISABLING THE LOCAL ALERTMANAGER

A local Alertmanager that routes alerts from Prometheus instances is enabled by default in the
openshift-monitoring project of the OpenShift Container Platform monitoring stack.

If you do not need the local Alertmanager, you can disable it by configuring the cluster-monitoring-
config config map in the openshift-monitoring project.

Prerequisites

You have access to the cluster as a user with the cluster-admin cluster role.

You have created the cluster-monitoring-config config map.

You have installed the OpenShift CLI (oc).

Procedure

1. Edit the cluster-monitoring-config config map in the openshift-monitoring project:

2. Add enabled: false for the alertmanagerMain component under data/config.yaml:

3. Save the file to apply the changes. The Alertmanager instance is disabled automatically when
you apply the change.

Additional resources

Prometheus Alertmanager documentation

Managing alerts

4.2. NEXT STEPS

$ oc -n openshift-monitoring exec -c <prometheus_adapter_pod_name> -- cat
/var/log/adapter/audit.log

$ oc -n openshift-monitoring edit configmap cluster-monitoring-config

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 alertmanagerMain:
 enabled: false

OpenShift Container Platform 4.11 Monitoring

74

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/monitoring/#preparing-to-configure-the-monitoring-stack
https://prometheus.io/docs/alerting/latest/alertmanager/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/monitoring/#

Enabling monitoring for user-defined projects

Learn about remote health reporting and, if necessary, opt out of it.

CHAPTER 4. SETTING AUDIT LOG LEVELS FOR THE PROMETHEUS ADAPTER

75

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/monitoring/#enabling-monitoring-for-user-defined-projects
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/support/#opting-out-remote-health-reporting_opting-out-remote-health-reporting

CHAPTER 5. ENABLING MONITORING FOR USER-DEFINED
PROJECTS

In OpenShift Container Platform 4.11, you can enable monitoring for user-defined projects in addition to
the default platform monitoring. You can monitor your own projects in OpenShift Container Platform
without the need for an additional monitoring solution. Using this feature centralizes monitoring for core
platform components and user-defined projects.

NOTE

Versions of Prometheus Operator installed using Operator Lifecycle Manager (OLM) are
not compatible with user-defined monitoring. Therefore, custom Prometheus instances
installed as a Prometheus custom resource (CR) managed by the OLM Prometheus
Operator are not supported in OpenShift Container Platform.

5.1. ENABLING MONITORING FOR USER-DEFINED PROJECTS

Cluster administrators can enable monitoring for user-defined projects by setting the
enableUserWorkload: true field in the cluster monitoring ConfigMap object.

IMPORTANT

In OpenShift Container Platform 4.11 you must remove any custom Prometheus instances
before enabling monitoring for user-defined projects.

NOTE

You must have access to the cluster as a user with the cluster-admin cluster role to
enable monitoring for user-defined projects in OpenShift Container Platform. Cluster
administrators can then optionally grant users permission to configure the components
that are responsible for monitoring user-defined projects.

Prerequisites

You have access to the cluster as a user with the cluster-admin cluster role.

You have installed the OpenShift CLI (oc).

You have created the cluster-monitoring-config ConfigMap object.

You have optionally created and configured the user-workload-monitoring-config
ConfigMap object in the openshift-user-workload-monitoring project. You can add
configuration options to this ConfigMap object for the components that monitor user-defined
projects.

NOTE

Every time you save configuration changes to the user-workload-monitoring-
config ConfigMap object, the pods in the openshift-user-workload-monitoring
project are redeployed. It can sometimes take a while for these components to
redeploy. You can create and configure the ConfigMap object before you first
enable monitoring for user-defined projects, to prevent having to redeploy the
pods often.

OpenShift Container Platform 4.11 Monitoring

76

1

Procedure

1. Edit the cluster-monitoring-config ConfigMap object:

2. Add enableUserWorkload: true under data/config.yaml:

When set to true, the enableUserWorkload parameter enables monitoring for user-
defined projects in a cluster.

3. Save the file to apply the changes. Monitoring for user-defined projects is then enabled
automatically.

WARNING

When changes are saved to the cluster-monitoring-config ConfigMap
object, the pods and other resources in the openshift-monitoring project
might be redeployed. The running monitoring processes in that project
might also be restarted.

4. Check that the prometheus-operator, prometheus-user-workload and thanos-ruler-user-
workload pods are running in the openshift-user-workload-monitoring project. It might take a
short while for the pods to start:

Example output

Additional resources

Creating a cluster monitoring config map

$ oc -n openshift-monitoring edit configmap cluster-monitoring-config

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 enableUserWorkload: true 1

$ oc -n openshift-user-workload-monitoring get pod

NAME READY STATUS RESTARTS AGE
prometheus-operator-6f7b748d5b-t7nbg 2/2 Running 0 3h
prometheus-user-workload-0 4/4 Running 1 3h
prometheus-user-workload-1 4/4 Running 1 3h
thanos-ruler-user-workload-0 3/3 Running 0 3h
thanos-ruler-user-workload-1 3/3 Running 0 3h

CHAPTER 5. ENABLING MONITORING FOR USER-DEFINED PROJECTS

77

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/monitoring/#creating-cluster-monitoring-configmap_configuring-the-monitoring-stack

Configuring the monitoring stack

Granting users permission to configure monitoring for user-defined projects

5.2. GRANTING USERS PERMISSION TO MONITOR USER-DEFINED
PROJECTS

Cluster administrators can monitor all core OpenShift Container Platform and user-defined projects.

Cluster administrators can grant developers and other users permission to monitor their own projects.
Privileges are granted by assigning one of the following monitoring roles:

The monitoring-rules-view cluster role provides read access to PrometheusRule custom
resources for a project.

The monitoring-rules-edit cluster role grants a user permission to create, modify, and deleting
PrometheusRule custom resources for a project.

The monitoring-edit cluster role grants the same privileges as the monitoring-rules-edit
cluster role. Additionally, it enables a user to create new scrape targets for services or pods. With
this role, you can also create, modify, and delete ServiceMonitor and PodMonitor resources.

You can also grant users permission to configure the components that are responsible for monitoring
user-defined projects:

The user-workload-monitoring-config-edit role in the openshift-user-workload-monitoring
project enables you to edit the user-workload-monitoring-config ConfigMap object. With this
role, you can edit the ConfigMap object to configure Prometheus, Prometheus Operator, and
Thanos Ruler for user-defined workload monitoring.

You can also grant users permission to configure alert routing for user-defined projects:

The alert-routing-edit cluster role grants a user permission to create, update, and delete
AlertmanagerConfig custom resources for a project.

This section provides details on how to assign these roles by using the OpenShift Container Platform
web console or the CLI.

5.2.1. Granting user permissions by using the web console

You can grant users permissions to monitor their own projects, by using the OpenShift Container
Platform web console.

Prerequisites

You have access to the cluster as a user with the cluster-admin cluster role.

The user account that you are assigning the role to already exists.

Procedure

1. In the Administrator perspective within the OpenShift Container Platform web console,
navigate to User Management → Role Bindings → Create Binding.

2. In the Binding Type section, select the "Namespace Role Binding" type.

OpenShift Container Platform 4.11 Monitoring

78

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/monitoring/#configuring-the-monitoring-stack
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/monitoring/#granting-users-permission-to-configure-monitoring-for-user-defined-projects_enabling-monitoring-for-user-defined-projects

1

3. In the Name field, enter a name for the role binding.

4. In the Namespace field, select the user-defined project where you want to grant the access.

IMPORTANT

The monitoring role will be bound to the project that you apply in the
Namespace field. The permissions that you grant to a user by using this
procedure will apply only to the selected project.

5. Select monitoring-rules-view, monitoring-rules-edit, or monitoring-edit in the Role Name
list.

6. In the Subject section, select User.

7. In the Subject Name field, enter the name of the user.

8. Select Create to apply the role binding.

5.2.2. Granting user permissions by using the CLI

You can grant users permissions to monitor their own projects, by using the OpenShift CLI (oc).

Prerequisites

You have access to the cluster as a user with the cluster-admin cluster role.

The user account that you are assigning the role to already exists.

You have installed the OpenShift CLI (oc).

Procedure

Assign a monitoring role to a user for a project:

Substitute <role> with monitoring-rules-view, monitoring-rules-edit, or monitoring-
edit.

IMPORTANT

Whichever role you choose, you must bind it against a specific project as a cluster
administrator.

As an example, substitute <role> with monitoring-edit, <user> with johnsmith, and
<namespace> with ns1. This assigns the user johnsmith permission to set up metrics
collection and to create alerting rules in the ns1 namespace.

5.3. GRANTING USERS PERMISSION TO CONFIGURE MONITORING
FOR USER-DEFINED PROJECTS

$ oc policy add-role-to-user <role> <user> -n <namespace> 1

CHAPTER 5. ENABLING MONITORING FOR USER-DEFINED PROJECTS

79

You can grant users permission to configure monitoring for user-defined projects.

Prerequisites

You have access to the cluster as a user with the cluster-admin cluster role.

The user account that you are assigning the role to already exists.

You have installed the OpenShift CLI (oc).

Procedure

Assign the user-workload-monitoring-config-edit role to a user in the openshift-user-
workload-monitoring project:

5.4. ACCESSING METRICS FROM OUTSIDE THE CLUSTER FOR
CUSTOM APPLICATIONS

Learn how to query Prometheus statistics from the command line when monitoring your own services.
You can access monitoring data from outside the cluster with the thanos-querier route.

Prerequisites

You deployed your own service, following the Enabling monitoring for user-defined projects
procedure.

Procedure

1. Extract a token to connect to Prometheus:

2. Extract your route host:

3. Query the metrics of your own services in the command line. For example:

$ oc -n openshift-user-workload-monitoring adm policy add-role-to-user \
 user-workload-monitoring-config-edit <user> \
 --role-namespace openshift-user-workload-monitoring

$ SECRET=`oc get secret -n openshift-user-workload-monitoring | grep prometheus-user-
workload-token | head -n 1 | awk '{print $1 }'`

$ TOKEN=`echo $(oc get secret $SECRET -n openshift-user-workload-monitoring -o json | jq
-r '.data.token') | base64 -d`

$ THANOS_QUERIER_HOST=`oc get route thanos-querier -n openshift-monitoring -o json |
jq -r '.spec.host'`

$ NAMESPACE=ns1

$ curl -X GET -kG "https://$THANOS_QUERIER_HOST/api/v1/query?" --data-urlencode
"query=up{namespace='$NAMESPACE'}" -H "Authorization: Bearer $TOKEN"

OpenShift Container Platform 4.11 Monitoring

80

The output will show you the duration that your application pods have been up.

Example output

5.5. EXCLUDING A USER-DEFINED PROJECT FROM MONITORING

Individual user-defined projects can be excluded from user workload monitoring. To do so, simply add
the openshift.io/user-monitoring label to the project’s namespace with a value of false.

Procedure

1. Add the label to the project namespace:

2. To re-enable monitoring, remove the label from the namespace:

NOTE

If there were any active monitoring targets for the project, it may take a few
minutes for Prometheus to stop scraping them after adding the label.

5.6. DISABLING MONITORING FOR USER-DEFINED PROJECTS

After enabling monitoring for user-defined projects, you can disable it again by setting
enableUserWorkload: false in the cluster monitoring ConfigMap object.

NOTE

Alternatively, you can remove enableUserWorkload: true to disable monitoring for user-
defined projects.

Procedure

1. Edit the cluster-monitoring-config ConfigMap object:

a. Set enableUserWorkload: to false under data/config.yaml:

{"status":"success","data":{"resultType":"vector","result":[{"metric":
{"__name__":"up","endpoint":"web","instance":"10.129.0.46:8080","job":"prometheus-
example-app","namespace":"ns1","pod":"prometheus-example-app-68d47c4fb6-
jztp2","service":"prometheus-example-app"},"value":[1591881154.748,"1"]}]}}

$ oc label namespace my-project 'openshift.io/user-monitoring=false'

$ oc label namespace my-project 'openshift.io/user-monitoring-'

$ oc -n openshift-monitoring edit configmap cluster-monitoring-config

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring

CHAPTER 5. ENABLING MONITORING FOR USER-DEFINED PROJECTS

81

2. Save the file to apply the changes. Monitoring for user-defined projects is then disabled
automatically.

3. Check that the prometheus-operator, prometheus-user-workload and thanos-ruler-user-
workload pods are terminated in the openshift-user-workload-monitoring project. This might
take a short while:

Example output

NOTE

The user-workload-monitoring-config ConfigMap object in the openshift-user-
workload-monitoring project is not automatically deleted when monitoring for user-
defined projects is disabled. This is to preserve any custom configurations that you may
have created in the ConfigMap object.

5.7. NEXT STEPS

Managing metrics

data:
 config.yaml: |
 enableUserWorkload: false

$ oc -n openshift-user-workload-monitoring get pod

No resources found in openshift-user-workload-monitoring project.

OpenShift Container Platform 4.11 Monitoring

82

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/monitoring/#managing-metrics

CHAPTER 6. ENABLING ALERT ROUTING FOR USER-DEFINED
PROJECTS

In OpenShift Container Platform 4.11, a cluster administrator can enable alert routing for user-defined
projects. This process consists of two general steps:

Enable alert routing for user-defined projects to use the default platform Alertmanager
instance or, optionally, a separate Alertmanager instance only for user-defined projects.

Grant users permission to configure alert routing for user-defined projects.

After you complete these steps, developers and other users can configure custom alerts and alert
routing for their user-defined projects.

6.1. UNDERSTANDING ALERT ROUTING FOR USER-DEFINED
PROJECTS

As a cluster administrator, you can enable alert routing for user-defined projects. With this feature, you
can allow users with the alert-routing-edit role to configure alert notification routing and receivers for
user-defined projects. These notifications are routed by the default Alertmanager instance or, if
enabled, an optional Alertmanager instance dedicated to user-defined monitoring.

Users can then create and configure user-defined alert routing by creating or editing the
AlertmanagerConfig objects for their user-defined projects without the help of an administrator.

After a user has defined alert routing for a user-defined project, user-defined alert notifications are
routed as follows:

To the alertmanager-main pods in the openshift-monitoring namespace if using the default
platform Alertmanager instance.

To the alertmanager-user-workload pods in the openshift-user-workload-monitoring
namespace if you have enabled a separate instance of Alertmanager for user-defined projects.

NOTE

The following are limitations of alert routing for user-defined projects:

For user-defined alerting rules, user-defined routing is scoped to the namespace
in which the resource is defined. For example, a routing configuration in
namespace ns1 only applies to PrometheusRules resources in the same
namespace.

When a namespace is excluded from user-defined monitoring,
AlertmanagerConfig resources in the namespace cease to be part of the
Alertmanager configuration.

6.2. ENABLING THE PLATFORM ALERTMANAGER INSTANCE FOR
USER-DEFINED ALERT ROUTING

You can allow users to create user-defined alert routing configurations that use the main platform
instance of Alertmanager.

Prerequisites

CHAPTER 6. ENABLING ALERT ROUTING FOR USER-DEFINED PROJECTS

83

1

Prerequisites

You have access to the cluster as a user with the cluster-admin cluster role.

You have installed the OpenShift CLI (oc).

Procedure

1. Edit the cluster-monitoring-config ConfigMap object:

2. Add enableUserAlertmanagerConfig: true in the alertmanagerMain section under
data/config.yaml:

Set the enableUserAlertmanagerConfig value to true to allow users to create user-
defined alert routing configurations that use the main platform instance of Alertmanager.

3. Save the file to apply the changes.

6.3. ENABLING A SEPARATE ALERTMANAGER INSTANCE FOR USER-
DEFINED ALERT ROUTING

In some clusters, you might want to deploy a dedicated Alertmanager instance for user-defined
projects, which can help reduce the load on the default platform Alertmanager instance and can better
separate user-defined alerts from default platform alerts. In these cases, you can optionally enable a
separate instance of Alertmanager to send alerts for user-defined projects only.

Prerequisites

You have access to the cluster as a user with the cluster-admin cluster role.

You have enabled monitoring for user-defined projects in the cluster-monitoring-config
config map for the openshift-monitoring namespace.

You have installed the OpenShift CLI (oc).

Procedure

1. Edit the user-workload-monitoring-config ConfigMap object:

2. Add enabled: true and enableAlertmanagerConfig: true in the alertmanager section under

$ oc -n openshift-monitoring edit configmap cluster-monitoring-config

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 alertmanagerMain:
 enableUserAlertmanagerConfig: true 1

$ oc -n openshift-user-workload-monitoring edit configmap user-workload-monitoring-config

OpenShift Container Platform 4.11 Monitoring

84

1

2

2. Add enabled: true and enableAlertmanagerConfig: true in the alertmanager section under
data/config.yaml:

Set the enabled value to true to enable a dedicated instance of the Alertmanager for
user-defined projects in a cluster. Set the value to false or omit the key entirely to disable
the Alertmanager for user-defined projects. If you set this value to false or if the key is
omitted, user-defined alerts are routed to the default platform Alertmanager instance.

Set the enableAlertmanagerConfig value to true to enable users to define their own alert
routing configurations with AlertmanagerConfig objects.

3. Save the file to apply the changes. The dedicated instance of Alertmanager for user-defined
projects starts automatically.

Verification

Verify that the user-workload Alertmanager instance has started:

Example output

6.4. GRANTING USERS PERMISSION TO CONFIGURE ALERT ROUTING
FOR USER-DEFINED PROJECTS

You can grant users permission to configure alert routing for user-defined projects.

Prerequisites

You have access to the cluster as a user with the cluster-admin cluster role.

The user account that you are assigning the role to already exists.

You have installed the OpenShift CLI (oc).

You have enabled monitoring for user-defined projects.

Procedure

apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 alertmanager:
 enabled: true 1
 enableAlertmanagerConfig: true 2

oc -n openshift-user-workload-monitoring get alertmanager

NAME VERSION REPLICAS AGE
user-workload 0.24.0 2 100s

CHAPTER 6. ENABLING ALERT ROUTING FOR USER-DEFINED PROJECTS

85

1

Assign the alert-routing-edit cluster role to a user in the user-defined project:

For <namespace>, substitute the namespace for the user-defined project, such as ns1.
For <user>, substitute the username for the account to which you want to assign the role.

Additional resources

Enabling monitoring for user defined projects

Creating alert routing for user-defined projects

6.5. NEXT STEPS

Managing alerts

$ oc -n <namespace> adm policy add-role-to-user alert-routing-edit <user> 1

OpenShift Container Platform 4.11 Monitoring

86

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/monitoring/#enabling-monitoring-for-user-defined-projects
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/monitoring/#creating-alert-routing-for-user-defined-projects_managing-alerts
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/monitoring/#managing-alerts

CHAPTER 7. MANAGING METRICS
You can collect metrics to monitor how cluster components and your own workloads are performing.

7.1. UNDERSTANDING METRICS

In OpenShift Container Platform 4.11, cluster components are monitored by scraping metrics exposed
through service endpoints. You can also configure metrics collection for user-defined projects.

You can define the metrics that you want to provide for your own workloads by using Prometheus client
libraries at the application level.

In OpenShift Container Platform, metrics are exposed through an HTTP service endpoint under the
/metrics canonical name. You can list all available metrics for a service by running a curl query against
http://<endpoint>/metrics. For instance, you can expose a route to the prometheus-example-app
example service and then run the following to view all of its available metrics:

Example output

Additional resources

Prometheus client library documentation

7.2. SETTING UP METRICS COLLECTION FOR USER-DEFINED
PROJECTS

You can create a ServiceMonitor resource to scrape metrics from a service endpoint in a user-defined
project. This assumes that your application uses a Prometheus client library to expose metrics to the
/metrics canonical name.

This section describes how to deploy a sample service in a user-defined project and then create a
ServiceMonitor resource that defines how that service should be monitored.

7.2.1. Deploying a sample service

To test monitoring of a service in a user-defined project, you can deploy a sample service.

Procedure

1. Create a YAML file for the service configuration. In this example, it is called prometheus-
example-app.yaml.

$ curl http://<example_app_endpoint>/metrics

HELP http_requests_total Count of all HTTP requests
TYPE http_requests_total counter
http_requests_total{code="200",method="get"} 4
http_requests_total{code="404",method="get"} 2
HELP version Version information about this binary
TYPE version gauge
version{version="v0.1.0"} 1

CHAPTER 7. MANAGING METRICS

87

https://prometheus.io/docs/instrumenting/clientlibs/

2. Add the following deployment and service configuration details to the file:

This configuration deploys a service named prometheus-example-app in the user-defined ns1
project. This service exposes the custom version metric.

3. Apply the configuration to the cluster:

It takes some time to deploy the service.

4. You can check that the pod is running:

apiVersion: v1
kind: Namespace
metadata:
 name: ns1

apiVersion: apps/v1
kind: Deployment
metadata:
 labels:
 app: prometheus-example-app
 name: prometheus-example-app
 namespace: ns1
spec:
 replicas: 1
 selector:
 matchLabels:
 app: prometheus-example-app
 template:
 metadata:
 labels:
 app: prometheus-example-app
 spec:
 containers:
 - image: ghcr.io/rhobs/prometheus-example-app:0.4.2
 imagePullPolicy: IfNotPresent
 name: prometheus-example-app

apiVersion: v1
kind: Service
metadata:
 labels:
 app: prometheus-example-app
 name: prometheus-example-app
 namespace: ns1
spec:
 ports:
 - port: 8080
 protocol: TCP
 targetPort: 8080
 name: web
 selector:
 app: prometheus-example-app
 type: ClusterIP

$ oc apply -f prometheus-example-app.yaml

OpenShift Container Platform 4.11 Monitoring

88

Example output

7.2.2. Specifying how a service is monitored

To use the metrics exposed by your service, you must configure OpenShift Container Platform
monitoring to scrape metrics from the /metrics endpoint. You can do this using a ServiceMonitor
custom resource definition (CRD) that specifies how a service should be monitored, or a PodMonitor
CRD that specifies how a pod should be monitored. The former requires a Service object, while the
latter does not, allowing Prometheus to directly scrape metrics from the metrics endpoint exposed by a
pod.

This procedure shows you how to create a ServiceMonitor resource for a service in a user-defined
project.

Prerequisites

You have access to the cluster as a user with the cluster-admin cluster role or the monitoring-
edit cluster role.

You have enabled monitoring for user-defined projects.

For this example, you have deployed the prometheus-example-app sample service in the ns1
project.

NOTE

The prometheus-example-app sample service does not support TLS
authentication.

Procedure

1. Create a YAML file for the ServiceMonitor resource configuration. In this example, the file is
called example-app-service-monitor.yaml.

2. Add the following ServiceMonitor resource configuration details:

$ oc -n ns1 get pod

NAME READY STATUS RESTARTS AGE
prometheus-example-app-7857545cb7-sbgwq 1/1 Running 0 81m

apiVersion: monitoring.coreos.com/v1
kind: ServiceMonitor
metadata:
 labels:
 k8s-app: prometheus-example-monitor
 name: prometheus-example-monitor
 namespace: ns1
spec:
 endpoints:
 - interval: 30s
 port: web
 scheme: http

CHAPTER 7. MANAGING METRICS

89

This defines a ServiceMonitor resource that scrapes the metrics exposed by the prometheus-
example-app sample service, which includes the version metric.

NOTE

A ServiceMonitor resource in a user-defined namespace can only discover
services in the same namespace. That is, the namespaceSelector field of the
ServiceMonitor resource is always ignored.

3. Apply the configuration to the cluster:

It takes some time to deploy the ServiceMonitor resource.

4. You can check that the ServiceMonitor resource is running:

Example output

Additional resources

Enabling monitoring for user-defined projects

How to scrape metrics using TLS in a ServiceMonitor configuration in a user-defined project

PodMonitor API

ServiceMonitor API

7.3. NEXT STEPS

Querying metrics

 selector:
 matchLabels:
 app: prometheus-example-app

$ oc apply -f example-app-service-monitor.yaml

$ oc -n ns1 get servicemonitor

NAME AGE
prometheus-example-monitor 81m

OpenShift Container Platform 4.11 Monitoring

90

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/monitoring/#enabling-monitoring-for-user-defined-projects
https://access.redhat.com/articles/6675491
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/api_reference/#podmonitor-monitoring.coreos.com/v1
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/api_reference/#servicemonitor-monitoring.coreos.com/v1
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/monitoring/#querying-metrics

CHAPTER 8. QUERYING METRICS
You can query metrics to view data about how cluster components and your own workloads are
performing.

8.1. ABOUT QUERYING METRICS

The OpenShift Container Platform monitoring dashboard enables you to run Prometheus Query
Language (PromQL) queries to examine metrics visualized on a plot. This functionality provides
information about the state of a cluster and any user-defined workloads that you are monitoring.

As a cluster administrator, you can query metrics for all core OpenShift Container Platform and user-
defined projects.

As a developer, you must specify a project name when querying metrics. You must have the required
privileges to view metrics for the selected project.

8.1.1. Querying metrics for all projects as a cluster administrator

As a cluster administrator or as a user with view permissions for all projects, you can access metrics for all
default OpenShift Container Platform and user-defined projects in the Metrics UI.

Prerequisites

You have access to the cluster as a user with the cluster-admin cluster role or with view
permissions for all projects.

You have installed the OpenShift CLI (oc).

Procedure

1. Select the Administrator perspective in the OpenShift Container Platform web console.

2. Select Observe → Metrics.

3. Select Insert Metric at Cursor to view a list of predefined queries.

4. To create a custom query, add your Prometheus Query Language (PromQL) query to the
Expression field.

NOTE

As you type a PromQL expression, autocomplete suggestions appear in a drop-
down list. These suggestions include functions, metrics, labels, and time tokens.
You can use the keyboard arrows to select one of these suggested items and
then press Enter to add the item to your expression. You can also move your
mouse pointer over a suggested item to view a brief description of that item.

5. To add multiple queries, select Add Query.

6. To duplicate an existing query, select next to the query, then choose Duplicate query.

CHAPTER 8. QUERYING METRICS

91

7. To delete a query, select next to the query, then choose Delete query.

8. To disable a query from being run, select next to the query and choose Disable query.

9. To run queries that you created, select Run Queries. The metrics from the queries are
visualized on the plot. If a query is invalid, the UI shows an error message.

NOTE

Queries that operate on large amounts of data might time out or overload the
browser when drawing time series graphs. To avoid this, select Hide graph and
calibrate your query using only the metrics table. Then, after finding a feasible
query, enable the plot to draw the graphs.

10. Optional: The page URL now contains the queries you ran. To use this set of queries again in the
future, save this URL.

Additional resources

For more information about creating PromQL queries, see the Prometheus query
documentation.

8.1.2. Querying metrics for user-defined projects as a developer

You can access metrics for a user-defined project as a developer or as a user with view permissions for
the project.

In the Developer perspective, the Metrics UI includes some predefined CPU, memory, bandwidth, and
network packet queries for the selected project. You can also run custom Prometheus Query Language
(PromQL) queries for CPU, memory, bandwidth, network packet and application metrics for the project.

NOTE

Developers can only use the Developer perspective and not the Administrator
perspective. As a developer, you can only query metrics for one project at a time in the
Observe -→ Metrics page in the web console for your user-defined project.

Prerequisites

You have access to the cluster as a developer or as a user with view permissions for the project
that you are viewing metrics for.

You have enabled monitoring for user-defined projects.

You have deployed a service in a user-defined project.

You have created a ServiceMonitor custom resource definition (CRD) for the service to define
how the service is monitored.

Procedure

OpenShift Container Platform 4.11 Monitoring

92

https://prometheus.io/docs/prometheus/latest/querying/basics/

1. Select the Developer perspective in the OpenShift Container Platform web console.

2. Select Observe → Metrics.

3. Select the project that you want to view metrics for in the Project: list.

4. Select a query from the Select query list, or create a custom PromQL query based on the
selected query by selecting Show PromQL.

5. Optional: Select Custom query from the Select query list to enter a new query. As you type,
autocomplete suggestions appear in a drop-down list. These suggestions include functions and
metrics. Click a suggested item to select it.

NOTE

In the Developer perspective, you can only run one query at a time.

Additional resources

For more information about creating PromQL queries, see the Prometheus query
documentation.

8.1.3. Exploring the visualized metrics

After running the queries, the metrics are displayed on an interactive plot. The X-axis in the plot
represents time and the Y-axis represents metrics values. Each metric is shown as a colored line on the
graph. You can manipulate the plot interactively and explore the metrics.

Procedure

In the Administrator perspective:

1. Initially, all metrics from all enabled queries are shown on the plot. You can select which metrics
are shown.

NOTE

By default, the query table shows an expanded view that lists every metric and its
current value. You can select ˅ to minimize the expanded view for a query.

To hide all metrics from a query, click for the query and click Hide all series.

To hide a specific metric, go to the query table and click the colored square near the metric
name.

2. To zoom into the plot and change the time range, do one of the following:

Visually select the time range by clicking and dragging on the plot horizontally.

Use the menu in the left upper corner to select the time range.

3. To reset the time range, select Reset Zoom.

4. To display outputs for all queries at a specific point in time, hold the mouse cursor on the plot at

CHAPTER 8. QUERYING METRICS

93

https://prometheus.io/docs/prometheus/latest/querying/basics/

4. To display outputs for all queries at a specific point in time, hold the mouse cursor on the plot at
that point. The query outputs will appear in a pop-up box.

5. To hide the plot, select Hide Graph.

In the Developer perspective:

1. To zoom into the plot and change the time range, do one of the following:

Visually select the time range by clicking and dragging on the plot horizontally.

Use the menu in the left upper corner to select the time range.

2. To reset the time range, select Reset Zoom.

3. To display outputs for all queries at a specific point in time, hold the mouse cursor on the plot at
that point. The query outputs will appear in a pop-up box.

Additional resources

See Querying metrics for details on using the PromQL interface

See Querying metrics for all projects as an administrator for details on accessing metrics for all
projects as an administrator.

See Querying metrics for user-defined projects as a developer for details on accessing non-
cluster metrics as a developer or a privileged user.

8.2. NEXT STEPS

Managing metrics targets

OpenShift Container Platform 4.11 Monitoring

94

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/monitoring/#about-querying-metrics_querying-metrics
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/monitoring/#querying-metrics-for-all-projects-as-an-administrator_querying-metrics
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/monitoring/#querying-metrics-for-user-defined-projects-as-a-developer_querying-metrics
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/monitoring/#managing-metrics-targets

CHAPTER 9. MANAGING METRICS TARGETS
OpenShift Container Platform Monitoring collects metrics from targeted cluster components by
scraping data from exposed service endpoints.

In the Administrator perspective in the OpenShift Container Platform web console, you can use the
Metrics Targets page to view, search, and filter the endpoints that are currently targeted for scraping,
which helps you to identify and troubleshoot problems. For example, you can view the current status of
targeted endpoints to see when OpenShift Container Platform Monitoring is not able to scrape metrics
from a targeted component.

The Metrics Targets page shows targets for default OpenShift Container Platform projects and for
user-defined projects.

9.1. ACCESSING THE METRICS TARGETS PAGE IN THE
ADMINISTRATOR PERSPECTIVE

You can view the Metrics Targets page in the Administrator perspective in the OpenShift Container
Platform web console.

Prerequisites

You have access to the cluster as an administrator for the project for which you want to view
metrics targets.

Procedure

In the Administrator perspective, select Observe → Targets. The Metrics Targets page opens
with a list of all service endpoint targets that are being scraped for metrics.

9.2. SEARCHING AND FILTERING METRICS TARGETS

The list of metrics targets can be long. You can filter and search these targets based on various criteria.

In the Administrator perspective, the Metrics Targets page provides details about targets for default
OpenShift Container Platform and user-defined projects. This page lists the following information for
each target:

the service endpoint URL being scraped

the ServiceMonitor component being monitored

the up or down status of the target

the namespace

the last scrape time

the duration of the last scrape

You can filter the list of targets by status and source. The following filtering options are available:

Status filters:

Up. The target is currently up and being actively scraped for metrics.

CHAPTER 9. MANAGING METRICS TARGETS

95

Down. The target is currently down and not being scraped for metrics.

Source filters:

Platform. Platform-level targets relate only to default OpenShift Container Platform
projects. These projects provide core OpenShift Container Platform functionality.

User. User targets relate to user-defined projects. These projects are user-created and can
be customized.

You can also use the search box to find a target by target name or label. Select Text or Label from the
search box menu to limit your search.

9.3. GETTING DETAILED INFORMATION ABOUT A TARGET

On the Target details page, you can view detailed information about a metric target.

Prerequisites

You have access to the cluster as an administrator for the project for which you want to view
metrics targets.

Procedure

To view detailed information about a target in the Administrator perspective:

1. Open the OpenShift Container Platform web console and navigate to Observe → Targets.

2. Optional: Filter the targets by status and source by selecting filters in the Filter list.

3. Optional: Search for a target by name or label by using the Text or Label field next to the
search box.

4. Optional: Sort the targets by clicking one or more of the Endpoint, Status, Namespace, Last
Scrape, and Scrape Duration column headers.

5. Click the URL in the Endpoint column for a target to navigate to its Target details page. This
page provides information about the target, including:

The endpoint URL being scraped for metrics

The current Up or Down status of the target

A link to the namespace

A link to the ServiceMonitor details

Labels attached to the target

The most recent time that the target was scraped for metrics

9.4. NEXT STEPS

Managing alerts

OpenShift Container Platform 4.11 Monitoring

96

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/monitoring/#managing-alerts

CHAPTER 10. MANAGING ALERTS
In OpenShift Container Platform 4.11, the Alerting UI enables you to manage alerts, silences, and alerting
rules.

Alerting rules. Alerting rules contain a set of conditions that outline a particular state within a
cluster. Alerts are triggered when those conditions are true. An alerting rule can be assigned a
severity that defines how the alerts are routed.

Alerts. An alert is fired when the conditions defined in an alerting rule are true. Alerts provide a
notification that a set of circumstances are apparent within an OpenShift Container Platform
cluster.

Silences. A silence can be applied to an alert to prevent notifications from being sent when the
conditions for an alert are true. You can mute an alert after the initial notification, while you work
on resolving the underlying issue.

NOTE

The alerts, silences, and alerting rules that are available in the Alerting UI relate to the
projects that you have access to. For example, if you are logged in with cluster-admin
privileges, you can access all alerts, silences, and alerting rules.

If you are a non-administrator user, you can create and silence alerts if you are assigned
the following user roles:

The cluster-monitoring-view cluster role, which allows you to access
Alertmanager

The monitoring-alertmanager-edit role, which permits you to create and silence
alerts in the Administrator perspective in the web console

The monitoring-rules-edit cluster role, which permits you to create and silence
alerts in the Developer perspective in the web console

10.1. ACCESSING THE ALERTING UI IN THE ADMINISTRATOR AND
DEVELOPER PERSPECTIVES

The Alerting UI is accessible through the Administrator perspective and the Developer perspective in
the OpenShift Container Platform web console.

In the Administrator perspective, select Observe → Alerting. The three main pages in the
Alerting UI in this perspective are the Alerts, Silences, and Alerting Rules pages.

In the Developer perspective, select Observe → <project_name> → Alerts. In this perspective,
alerts, silences, and alerting rules are all managed from the Alerts page. The results shown in
the Alerts page are specific to the selected project.

NOTE

In the Developer perspective, you can select from core OpenShift Container Platform
and user-defined projects that you have access to in the Project: list. However, alerts,
silences, and alerting rules relating to core OpenShift Container Platform projects are not
displayed if you do not have cluster-admin privileges.

CHAPTER 10. MANAGING ALERTS

97

10.2. SEARCHING AND FILTERING ALERTS, SILENCES, AND ALERTING
RULES

You can filter the alerts, silences, and alerting rules that are displayed in the Alerting UI. This section
provides a description of each of the available filtering options.

Understanding alert filters
In the Administrator perspective, the Alerts page in the Alerting UI provides details about alerts
relating to default OpenShift Container Platform and user-defined projects. The page includes a
summary of severity, state, and source for each alert. The time at which an alert went into its current
state is also shown.

You can filter by alert state, severity, and source. By default, only Platform alerts that are Firing are
displayed. The following describes each alert filtering option:

Alert State filters:

Firing. The alert is firing because the alert condition is true and the optional for duration
has passed. The alert will continue to fire as long as the condition remains true.

Pending. The alert is active but is waiting for the duration that is specified in the alerting
rule before it fires.

Silenced. The alert is now silenced for a defined time period. Silences temporarily mute
alerts based on a set of label selectors that you define. Notifications will not be sent for
alerts that match all the listed values or regular expressions.

Severity filters:

Critical. The condition that triggered the alert could have a critical impact. The alert
requires immediate attention when fired and is typically paged to an individual or to a critical
response team.

Warning. The alert provides a warning notification about something that might require
attention to prevent a problem from occurring. Warnings are typically routed to a ticketing
system for non-immediate review.

Info. The alert is provided for informational purposes only.

None. The alert has no defined severity.

You can also create custom severity definitions for alerts relating to user-defined projects.

Source filters:

Platform. Platform-level alerts relate only to default OpenShift Container Platform
projects. These projects provide core OpenShift Container Platform functionality.

User. User alerts relate to user-defined projects. These alerts are user-created and are
customizable. User-defined workload monitoring can be enabled postinstallation to provide
observability into your own workloads.

Understanding silence filters
In the Administrator perspective, the Silences page in the Alerting UI provides details about silences
applied to alerts in default OpenShift Container Platform and user-defined projects. The page includes
a summary of the state of each silence and the time at which a silence ends.

OpenShift Container Platform 4.11 Monitoring

98

You can filter by silence state. By default, only Active and Pending silences are displayed. The following
describes each silence state filter option:

Silence State filters:

Active. The silence is active and the alert will be muted until the silence is expired.

Pending. The silence has been scheduled and it is not yet active.

Expired. The silence has expired and notifications will be sent if the conditions for an alert
are true.

Understanding alerting rule filters
In the Administrator perspective, the Alerting Rules page in the Alerting UI provides details about
alerting rules relating to default OpenShift Container Platform and user-defined projects. The page
includes a summary of the state, severity, and source for each alerting rule.

You can filter alerting rules by alert state, severity, and source. By default, only Platform alerting rules
are displayed. The following describes each alerting rule filtering option:

Alert State filters:

Firing. The alert is firing because the alert condition is true and the optional for duration
has passed. The alert will continue to fire as long as the condition remains true.

Pending. The alert is active but is waiting for the duration that is specified in the alerting
rule before it fires.

Silenced. The alert is now silenced for a defined time period. Silences temporarily mute
alerts based on a set of label selectors that you define. Notifications will not be sent for
alerts that match all the listed values or regular expressions.

Not Firing. The alert is not firing.

Severity filters:

Critical. The conditions defined in the alerting rule could have a critical impact. When true,
these conditions require immediate attention. Alerts relating to the rule are typically paged
to an individual or to a critical response team.

Warning. The conditions defined in the alerting rule might require attention to prevent a
problem from occurring. Alerts relating to the rule are typically routed to a ticketing system
for non-immediate review.

Info. The alerting rule provides informational alerts only.

None. The alerting rule has no defined severity.

You can also create custom severity definitions for alerting rules relating to user-defined
projects.

Source filters:

Platform. Platform-level alerting rules relate only to default OpenShift Container Platform
projects. These projects provide core OpenShift Container Platform functionality.

User. User-defined workload alerting rules relate to user-defined projects. These alerting

CHAPTER 10. MANAGING ALERTS

99

User. User-defined workload alerting rules relate to user-defined projects. These alerting
rules are user-created and are customizable. User-defined workload monitoring can be
enabled postinstallation to provide observability into your own workloads.

Searching and filtering alerts, silences, and alerting rules in the Developer perspective
In the Developer perspective, the Alerts page in the Alerting UI provides a combined view of alerts and
silences relating to the selected project. A link to the governing alerting rule is provided for each
displayed alert.

In this view, you can filter by alert state and severity. By default, all alerts in the selected project are
displayed if you have permission to access the project. These filters are the same as those described for
the Administrator perspective.

10.3. GETTING INFORMATION ABOUT ALERTS, SILENCES, AND
ALERTING RULES

The Alerting UI provides detailed information about alerts and their governing alerting rules and silences.

Prerequisites

You have access to the cluster as a developer or as a user with view permissions for the project
that you are viewing metrics for.

Procedure

To obtain information about alerts in the Administrator perspective:

1. Open the OpenShift Container Platform web console and navigate to the Observe → Alerting
→ Alerts page.

2. Optional: Search for alerts by name using the Name field in the search list.

3. Optional: Filter alerts by state, severity, and source by selecting filters in the Filter list.

4. Optional: Sort the alerts by clicking one or more of the Name, Severity, State, and Source
column headers.

5. Select the name of an alert to navigate to its Alert Details page. The page includes a graph that
illustrates alert time series data. It also provides information about the alert, including:

A description of the alert

Messages associated with the alerts

Labels attached to the alert

A link to its governing alerting rule

Silences for the alert, if any exist

To obtain information about silences in the Administrator perspective:

1. Navigate to the Observe → Alerting → Silences page.

2. Optional: Filter the silences by name using the Search by name field.

3. Optional: Filter silences by state by selecting filters in the Filter list. By default, Active and

OpenShift Container Platform 4.11 Monitoring

100

3. Optional: Filter silences by state by selecting filters in the Filter list. By default, Active and
Pending filters are applied.

4. Optional: Sort the silences by clicking one or more of the Name, Firing Alerts, and State column
headers.

5. Select the name of a silence to navigate to its Silence Details page. The page includes the
following details:

Alert specification

Start time

End time

Silence state

Number and list of firing alerts

To obtain information about alerting rules in the Administrator perspective:

1. Navigate to the Observe → Alerting → Alerting Rules page.

2. Optional: Filter alerting rules by state, severity, and source by selecting filters in the Filter list.

3. Optional: Sort the alerting rules by clicking one or more of the Name, Severity, Alert State, and
Source column headers.

4. Select the name of an alerting rule to navigate to its Alerting Rule Details page. The page
provides the following details about the alerting rule:

Alerting rule name, severity, and description

The expression that defines the condition for firing the alert

The time for which the condition should be true for an alert to fire

A graph for each alert governed by the alerting rule, showing the value with which the alert is
firing

A table of all alerts governed by the alerting rule

To obtain information about alerts, silences, and alerting rules in the Developer perspective:

1. Navigate to the Observe → <project_name> → Alerts page.

2. View details for an alert, silence, or an alerting rule:

Alert Details can be viewed by selecting > to the left of an alert name and then selecting
the alert in the list.

Silence Details can be viewed by selecting a silence in the Silenced By section of the Alert
Details page. The Silence Details page includes the following information:

Alert specification

Start time

End time

CHAPTER 10. MANAGING ALERTS

101

Silence state

Number and list of firing alerts

Alerting Rule Details can be viewed by selecting View Alerting Rule in the menu on
the right of an alert in the Alerts page.

NOTE

Only alerts, silences, and alerting rules relating to the selected project are displayed in the
Developer perspective.

Additional resources

See the Cluster Monitoring Operator runbooks to help diagnose and resolve issues that trigger
specific OpenShift Container Platform monitoring alerts.

10.4. MANAGING SILENCES

You can create a silence to stop receiving notifications about an alert when it is firing. It might be useful
to silence an alert after being first notified, while you resolve the underlying issue.

When creating a silence, you must specify whether it becomes active immediately or at a later time. You
must also set a duration period after which the silence expires.

You can view, edit, and expire existing silences.

10.4.1. Silencing alerts

You can either silence a specific alert or silence alerts that match a specification that you define.

Prerequisites

You are a cluster administrator and have access to the cluster as a user with the cluster-admin
cluster role.

You are a non-administator user and have access to the cluster as a user with the following user
roles:

The cluster-monitoring-view cluster role, which allows you to access Alertmanager.

The monitoring-alertmanager-edit role, which permits you to create and silence alerts in
the Administrator perspective in the web console.

The monitoring-rules-edit cluster role, which permits you to create and silence alerts in the
Developer perspective in the web console.

Procedure

To silence a specific alert:

In the Administrator perspective:

1. Navigate to the Observe → Alerting → Alerts page of the OpenShift Container Platform

OpenShift Container Platform 4.11 Monitoring

102

https://github.com/openshift/runbooks/tree/master/alerts/cluster-monitoring-operator

1. Navigate to the Observe → Alerting → Alerts page of the OpenShift Container Platform
web console.

2. For the alert that you want to silence, select the in the right-hand column and select
Silence Alert. The Silence Alert form will appear with a pre-populated specification for the
chosen alert.

3. Optional: Modify the silence.

4. You must add a comment before creating the silence.

5. To create the silence, select Silence.

In the Developer perspective:

1. Navigate to the Observe → <project_name> → Alerts page in the OpenShift Container
Platform web console.

2. Expand the details for an alert by selecting > to the left of the alert name. Select the name
of the alert in the expanded view to open the Alert Details page for the alert.

3. Select Silence Alert. The Silence Alert form will appear with a prepopulated specification
for the chosen alert.

4. Optional: Modify the silence.

5. You must add a comment before creating the silence.

6. To create the silence, select Silence.

To silence a set of alerts by creating an alert specification in the Administrator perspective:

1. Navigate to the Observe → Alerting → Silences page in the OpenShift Container Platform web
console.

2. Select Create Silence.

3. Set the schedule, duration, and label details for an alert in the Create Silence form. You must
also add a comment for the silence.

4. To create silences for alerts that match the label sectors that you entered in the previous step,
select Silence.

10.4.2. Editing silences

You can edit a silence, which will expire the existing silence and create a new one with the changed
configuration.

Procedure

To edit a silence in the Administrator perspective:

1. Navigate to the Observe → Alerting → Silences page.

CHAPTER 10. MANAGING ALERTS

103

2. For the silence you want to modify, select the in the last column and choose Edit silence.
Alternatively, you can select Actions → Edit Silence in the Silence Details page for a silence.

3. In the Edit Silence page, enter your changes and select Silence. This will expire the existing
silence and create one with the chosen configuration.

To edit a silence in the Developer perspective:

1. Navigate to the Observe → <project_name> → Alerts page.

2. Expand the details for an alert by selecting > to the left of the alert name. Select the name of
the alert in the expanded view to open the Alert Details page for the alert.

3. Select the name of a silence in the Silenced By section in that page to navigate to the Silence
Details page for the silence.

4. Select the name of a silence to navigate to its Silence Details page.

5. Select Actions → Edit Silence in the Silence Details page for a silence.

6. In the Edit Silence page, enter your changes and select Silence. This will expire the existing
silence and create one with the chosen configuration.

10.4.3. Expiring silences

You can expire a silence. Expiring a silence deactivates it forever.

NOTE

You cannot delete expired, silenced alerts. Expired silences older than 120 hours are
garbage collected.

Procedure

To expire a silence in the Administrator perspective:

1. Navigate to the Observe → Alerting → Silences page.

2. For the silence you want to modify, select the in the last column and choose Expire
silence.
Alternatively, you can select Actions → Expire Silence in the Silence Details page for a silence.

To expire a silence in the Developer perspective:

1. Navigate to the Observe → <project_name> → Alerts page.

2. Expand the details for an alert by selecting > to the left of the alert name. Select the name of
the alert in the expanded view to open the Alert Details page for the alert.

3. Select the name of a silence in the Silenced By section in that page to navigate to the Silence
Details page for the silence.

4. Select the name of a silence to navigate to its Silence Details page.

OpenShift Container Platform 4.11 Monitoring

104

5. Select Actions → Expire Silence in the Silence Details page for a silence.

10.5. MANAGING ALERTING RULES FOR USER-DEFINED PROJECTS

OpenShift Container Platform monitoring ships with a set of default alerting rules. As a cluster
administrator, you can view the default alerting rules.

In OpenShift Container Platform 4.11, you can create, view, edit, and remove alerting rules in user-
defined projects.

Alerting rule considerations

The default alerting rules are used specifically for the OpenShift Container Platform cluster.

Some alerting rules intentionally have identical names. They send alerts about the same event
with different thresholds, different severity, or both.

Inhibition rules prevent notifications for lower severity alerts that are firing when a higher
severity alert is also firing.

10.5.1. Optimizing alerting for user-defined projects

You can optimize alerting for your own projects by considering the following recommendations when
creating alerting rules:

Minimize the number of alerting rules that you create for your project. Create alerting rules
that notify you of conditions that impact you. It is more difficult to notice relevant alerts if you
generate many alerts for conditions that do not impact you.

Create alerting rules for symptoms instead of causes. Create alerting rules that notify you of
conditions regardless of the underlying cause. The cause can then be investigated. You will
need many more alerting rules if each relates only to a specific cause. Some causes are then
likely to be missed.

Plan before you write your alerting rules. Determine what symptoms are important to you and
what actions you want to take if they occur. Then build an alerting rule for each symptom.

Provide clear alert messaging. State the symptom and recommended actions in the alert
message.

Include severity levels in your alerting rules. The severity of an alert depends on how you need
to react if the reported symptom occurs. For example, a critical alert should be triggered if a
symptom requires immediate attention by an individual or a critical response team.

Additional resources

See the Prometheus alerting documentation for further guidelines on optimizing alerts

See Monitoring overview for details about OpenShift Container Platform 4.11 monitoring
architecture

10.5.2. About creating alerting rules for user-defined projects

If you create alerting rules for a user-defined project, consider the following key behaviors and
important limitations when you define the new rules:

CHAPTER 10. MANAGING ALERTS

105

https://prometheus.io/docs/practices/alerting/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/monitoring/#monitoring-overview

A user-defined alerting rule can include metrics exposed by its own project in addition to the
default metrics from core platform monitoring. You cannot include metrics from another user-
defined project.
For example, an alerting rule for the ns1 user-defined project can use metrics exposed by the
ns1 project in addition to core platform metrics, such as CPU and memory metrics. However,
the rule cannot include metrics from a different ns2 user-defined project.

To reduce latency and to minimize the load on core platform monitoring components, you can
add the openshift.io/prometheus-rule-evaluation-scope: leaf-prometheus label to a rule.
This label forces only the Prometheus instance deployed in the openshift-user-workload-
monitoring project to evaluate the alerting rule and prevents the Thanos Ruler instance from
doing so.

IMPORTANT

If an alerting rule has this label, your alerting rule can use only those metrics
exposed by your user-defined project. Alerting rules you create based on default
platform metrics might not trigger alerts.

10.5.3. Creating alerting rules for user-defined projects

You can create alerting rules for user-defined projects. Those alerting rules will trigger alerts based on
the values of the chosen metrics.

Prerequisites

You have enabled monitoring for user-defined projects.

You are logged in as a user that has the monitoring-rules-edit cluster role for the project where
you want to create an alerting rule.

You have installed the OpenShift CLI (oc).

Procedure

1. Create a YAML file for alerting rules. In this example, it is called example-app-alerting-
rule.yaml.

2. Add an alerting rule configuration to the YAML file. For example:

NOTE

When you create an alerting rule, a project label is enforced on it if a rule with the
same name exists in another project.

apiVersion: monitoring.coreos.com/v1
kind: PrometheusRule
metadata:
 name: example-alert
 namespace: ns1
spec:
 groups:
 - name: example

OpenShift Container Platform 4.11 Monitoring

106

This configuration creates an alerting rule named example-alert. The alerting rule fires an alert
when the version metric exposed by the sample service becomes 0.

3. Apply the configuration file to the cluster:

See Monitoring overview for details about OpenShift Container Platform 4.11 monitoring
architecture.

10.5.4. Accessing alerting rules for user-defined projects

To list alerting rules for a user-defined project, you must have been assigned the monitoring-rules-
view cluster role for the project.

Prerequisites

You have enabled monitoring for user-defined projects.

You are logged in as a user that has the monitoring-rules-view cluster role for your project.

You have installed the OpenShift CLI (oc).

Procedure

1. You can list alerting rules in <project>:

2. To list the configuration of an alerting rule, run the following:

10.5.5. Listing alerting rules for all projects in a single view

As a cluster administrator, you can list alerting rules for core OpenShift Container Platform and user-
defined projects together in a single view.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

You have installed the OpenShift CLI (oc).

Procedure

1. In the Administrator perspective, navigate to Observe → Alerting → Alerting Rules.

2. Select the Platform and User sources in the Filter drop-down menu.

NOTE

 rules:
 - alert: VersionAlert
 expr: version{job="prometheus-example-app"} == 0

$ oc apply -f example-app-alerting-rule.yaml

$ oc -n <project> get prometheusrule

$ oc -n <project> get prometheusrule <rule> -o yaml

CHAPTER 10. MANAGING ALERTS

107

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/monitoring/#monitoring-overview

NOTE

The Platform source is selected by default.

10.5.6. Removing alerting rules for user-defined projects

You can remove alerting rules for user-defined projects.

Prerequisites

You have enabled monitoring for user-defined projects.

You are logged in as a user that has the monitoring-rules-edit cluster role for the project where
you want to create an alerting rule.

You have installed the OpenShift CLI (oc).

Procedure

To remove rule <foo> in <namespace>, run the following:

Additional resources

See the Alertmanager documentation

10.6. MANAGING ALERTING RULES FOR CORE PLATFORM
MONITORING

IMPORTANT

Creating and modifying alerting rules for core platform monitoring is a Technology
Preview feature only. Technology Preview features are not supported with Red Hat
production service level agreements (SLAs) and might not be functionally complete. Red
Hat does not recommend using them in production. These features provide early access
to upcoming product features, enabling customers to test functionality and provide
feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

OpenShift Container Platform 4.11 monitoring ships with a large set of default alerting rules for platform
metrics. As a cluster administrator, you can customize this set of rules in two ways:

Modify the settings for existing platform alerting rules by adjusting thresholds or by adding and
modifying labels. For example, you can change the severity label for an alert from warning to
critical to help you route and triage issues flagged by an alert.

Define and add new custom alerting rules by constructing a query expression based on core
platform metrics in the openshift-monitoring namespace.

Core platform alerting rule considerations

$ oc -n <namespace> delete prometheusrule <foo>

OpenShift Container Platform 4.11 Monitoring

108

https://prometheus.io/docs/alerting/alertmanager/
https://access.redhat.com/support/offerings/techpreview/

1

2

3

4

New alerting rules must be based on the default OpenShift Container Platform monitoring
metrics.

You can only add and modify alerting rules. You cannot create new recording rules or modify
existing recording rules.

If you modify existing platform alerting rules by using an AlertRelabelConfig object, your
modifications are not reflected in the Prometheus alerts API. Therefore, any dropped alerts still
appear in the OpenShift Container Platform web console even though they are no longer
forwarded to Alertmanager. Additionally, any modifications to alerts, such as a changed severity
label, do not appear in the web console.

10.6.1. Modifying core platform alerting rules

As a cluster administrator, you can modify core platform alerts before Alertmanager routes them to a
receiver. For example, you can change the severity label of an alert, add a custom label, or exclude an
alert from being sent to Alertmanager.

Prerequisites

You have access to the cluster as a user with the cluster-admin cluster role.

You have installed the OpenShift CLI (oc).

You have enabled Technology Preview features, and all nodes in the cluster are ready.

Procedure

1. Create a new YAML configuration file named example-modified-alerting-rule.yaml in the
openshift-monitoring namespace.

2. Add an AlertRelabelConfig resource to the YAML file. The following example modifies the
severity setting to critical for the default platform watchdog alerting rule:

The source labels for the values you want to modify.

The regular expression against which the value of sourceLabels is matched.

The target label of the value you want to modify.

The new value to replace the target label.

The relabel action that replaces the old value based on regex matching. The default action

apiVersion: monitoring.openshift.io/v1alpha1
kind: AlertRelabelConfig
metadata:
 name: watchdog
 namespace: openshift-monitoring
spec:
 configs:
 - sourceLabels: [alertname,severity] 1
 regex: "Watchdog;none" 2
 targetLabel: severity 3
 replacement: critical 4
 action: Replace 5

CHAPTER 10. MANAGING ALERTS

109

5

1

2

The relabel action that replaces the old value based on regex matching. The default action
is Replace. Other possible values are Keep, Drop, HashMod, LabelMap, LabelDrop, and

3. Apply the configuration file to the cluster:

10.6.2. Creating new alerting rules

As a cluster administrator, you can create new alerting rules based on platform metrics. These alerting
rules trigger alerts based on the values of chosen metrics.

NOTE

If you create a customized AlertingRule resource based on an existing platform alerting
rule, silence the original alert to avoid receiving conflicting alerts.

Prerequisites

You have access to the cluster as a user that has the cluster-admin cluster role.

You have installed the OpenShift CLI (oc).

You have enabled Technology Preview features, and all nodes in the cluster are ready.

Procedure

1. Create a new YAML configuration file named example-alerting-rule.yaml in the openshift-
monitoring namespace.

2. Add an AlertingRule resource to the YAML file. The following example creates a new alerting
rule named example, similar to the default watchdog alert:

The name of the alerting rule you want to create.

The PromQL query expression that defines the new rule.

3. Apply the configuration file to the cluster:

$ oc apply -f example-modified-alerting-rule.yaml

apiVersion: monitoring.openshift.io/v1alpha1
kind: AlertingRule
metadata:
 name: example
 namespace: openshift-monitoring
spec:
 groups:
 - name: example-rules
 rules:
 - alert: ExampleAlert 1
 expr: vector(1) 2

$ oc apply -f example-alerting-rule.yaml

OpenShift Container Platform 4.11 Monitoring

110

Additional resources

See Monitoring overview for details about OpenShift Container Platform 4.11 monitoring
architecture.

See the Alertmanager documentation for information about alerting rules.

See the Prometheus relabeling documentation for information about how relabeling works.

See the Prometheus alerting documentation for further guidelines on optimizing alerts.

10.7. SENDING NOTIFICATIONS TO EXTERNAL SYSTEMS

In OpenShift Container Platform 4.11, firing alerts can be viewed in the Alerting UI. Alerts are not
configured by default to be sent to any notification systems. You can configure OpenShift Container
Platform to send alerts to the following receiver types:

PagerDuty

Webhook

Email

Slack

Routing alerts to receivers enables you to send timely notifications to the appropriate teams when
failures occur. For example, critical alerts require immediate attention and are typically paged to an
individual or a critical response team. Alerts that provide non-critical warning notifications might instead
be routed to a ticketing system for non-immediate review.

Checking that alerting is operational by using the watchdog alert

OpenShift Container Platform monitoring includes a watchdog alert that fires continuously.
Alertmanager repeatedly sends watchdog alert notifications to configured notification providers. The
provider is usually configured to notify an administrator when it stops receiving the watchdog alert. This
mechanism helps you quickly identify any communication issues between Alertmanager and the
notification provider.

10.7.1. Configuring alert receivers

You can configure alert receivers to ensure that you learn about important issues with your cluster.

Prerequisites

You have access to the cluster as a user with the cluster-admin cluster role.

Procedure

1. In the Administrator perspective, navigate to Administration → Cluster Settings →
Configuration → Alertmanager.

NOTE

CHAPTER 10. MANAGING ALERTS

111

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/monitoring/#monitoring-overview
https://prometheus.io/docs/alerting/alertmanager/
https://prometheus.io/docs/prometheus/latest/configuration/configuration/#relabel_config
https://prometheus.io/docs/practices/alerting/

NOTE

Alternatively, you can navigate to the same page through the notification drawer.
Select the bell icon at the top right of the OpenShift Container Platform web
console and choose Configure in the AlertmanagerReceiverNotConfigured
alert.

2. Select Create Receiver in the Receivers section of the page.

3. In the Create Receiver form, add a Receiver Name and choose a Receiver Type from the list.

4. Edit the receiver configuration:

For PagerDuty receivers:

a. Choose an integration type and add a PagerDuty integration key.

b. Add the URL of your PagerDuty installation.

c. Select Show advanced configuration if you want to edit the client and incident details
or the severity specification.

For webhook receivers:

a. Add the endpoint to send HTTP POST requests to.

b. Select Show advanced configuration if you want to edit the default option to send
resolved alerts to the receiver.

For email receivers:

a. Add the email address to send notifications to.

b. Add SMTP configuration details, including the address to send notifications from, the
smarthost and port number used for sending emails, the hostname of the SMTP server,
and authentication details.

c. Choose whether TLS is required.

d. Select Show advanced configuration if you want to edit the default option not to send
resolved alerts to the receiver or edit the body of email notifications configuration.

For Slack receivers:

a. Add the URL of the Slack webhook.

b. Add the Slack channel or user name to send notifications to.

c. Select Show advanced configuration if you want to edit the default option not to send
resolved alerts to the receiver or edit the icon and username configuration. You can
also choose whether to find and link channel names and usernames.

5. By default, firing alerts with labels that match all of the selectors will be sent to the receiver. If
you want label values for firing alerts to be matched exactly before they are sent to the receiver:

a. Add routing label names and values in the Routing Labels section of the form.

b. Select Regular Expression if want to use a regular expression.

OpenShift Container Platform 4.11 Monitoring

112

c. Select Add Label to add further routing labels.

6. Select Create to create the receiver.

10.7.2. Creating alert routing for user-defined projects

If you are a non-administrator user who has been given the alert-routing-edit cluster role, you can
create or edit alert routing for user-defined projects.

Prerequisites

A cluster administrator has enabled monitoring for user-defined projects.

A cluster administrator has enabled alert routing for user-defined projects.

You are logged in as a user that has the alert-routing-edit cluster role for the project for which
you want to create alert routing.

You have installed the OpenShift CLI (oc).

Procedure

1. Create a YAML file for alert routing. The example in this procedure uses a file called example-
app-alert-routing.yaml.

2. Add an AlertmanagerConfig YAML definition to the file. For example:

NOTE

For user-defined alerting rules, user-defined routing is scoped to the namespace
in which the resource is defined. For example, a routing configuration defined in
the AlertmanagerConfig object for namespace ns1 only applies to
PrometheusRules resources in the same namespace.

3. Save the file.

4. Apply the resource to the cluster:

apiVersion: monitoring.coreos.com/v1beta1
kind: AlertmanagerConfig
metadata:
 name: example-routing
 namespace: ns1
spec:
 route:
 receiver: default
 groupBy: [job]
 receivers:
 - name: default
 webhookConfigs:
 - url: https://example.org/post

$ oc apply -f example-app-alert-routing.yaml

CHAPTER 10. MANAGING ALERTS

113

1

2

The configuration is automatically applied to the Alertmanager pods.

10.8. APPLYING A CUSTOM ALERTMANAGER CONFIGURATION

You can overwrite the default Alertmanager configuration by editing the alertmanager-main secret in
the openshift-monitoring namespace for the platform instance of Alertmanager.

Prerequisites

You have access to the cluster as a user with the cluster-admin cluster role.

Procedure

To change the Alertmanager configuration from the CLI:

1. Print the currently active Alertmanager configuration into file alertmanager.yaml:

2. Edit the configuration in alertmanager.yaml:

The group_wait value specifies how long Alertmanager waits before sending an initial
notification for a group of alerts. This value controls how long Alertmanager waits while
collecting initial alerts for the same group before sending a notification.

The group_interval value specifies how much time must elapse before Alertmanager
sends a notification about new alerts added to a group of alerts for which an initial
notification was already sent.

The repeat_interval value specifies the minimum amount of time that must pass before an

$ oc -n openshift-monitoring get secret alertmanager-main --template='{{ index .data
"alertmanager.yaml" }}' | base64 --decode > alertmanager.yaml

global:
 resolve_timeout: 5m
route:
 group_wait: 30s 1
 group_interval: 5m 2
 repeat_interval: 12h 3
 receiver: default
 routes:
 - matchers:
 - "alertname=Watchdog"
 repeat_interval: 2m
 receiver: watchdog
 - matchers:
 - "service=<your_service>" 4
 routes:
 - matchers:
 - <your_matching_rules> 5
 receiver: <receiver> 6
receivers:
- name: default
- name: watchdog
- name: <receiver>
<receiver_configuration>

OpenShift Container Platform 4.11 Monitoring

114

3

4

5

6

The repeat_interval value specifies the minimum amount of time that must pass before an
alert notification is repeated. If you want a notification to repeat at each group interval, set

The service value specifies the service that fires the alerts.

The <your_matching_rules> value specifies the target alerts.

The receiver value specifies the receiver to use for the alert.

NOTE

Use the matchers key name to indicate the matchers that an alert has to fulfill to
match the node. Do not use the match or match_re key names, which are both
deprecated and planned for removal in a future release.

In addition, if you define inhibition rules, use the target_matchers key name to
indicate the target matchers and the source_matchers key name to indicate the
source matchers. Do not use the target_match, target_match_re,
source_match, or source_match_re key names, which are deprecated and
planned for removal in a future release.

The following Alertmanager configuration example configures PagerDuty as an alert receiver:

With this configuration, alerts of critical severity that are fired by the example-app service are
sent using the team-frontend-page receiver. Typically these types of alerts would be paged to
an individual or a critical response team.

3. Apply the new configuration in the file:

global:
 resolve_timeout: 5m
route:
 group_wait: 30s
 group_interval: 5m
 repeat_interval: 12h
 receiver: default
 routes:
 - matchers:
 - "alertname=Watchdog"
 repeat_interval: 2m
 receiver: watchdog
 - matchers:
 - "service=example-app"
 routes:
 - matchers:
 - "severity=critical"
 receiver: team-frontend-page*
receivers:
- name: default
- name: watchdog
- name: team-frontend-page
 pagerduty_configs:
 - service_key: "_your-key_"

CHAPTER 10. MANAGING ALERTS

115

1

2

To change the Alertmanager configuration from the OpenShift Container Platform web console:

1. Navigate to the Administration → Cluster Settings → Configuration → Alertmanager →
YAML page of the web console.

2. Modify the YAML configuration file.

3. Select Save.

10.9. APPLYING A CUSTOM CONFIGURATION TO ALERTMANAGER
FOR USER-DEFINED ALERT ROUTING

If you have enabled a separate instance of Alertmanager dedicated to user-defined alert routing, you
can overwrite the configuration for this instance of Alertmanager by editing the alertmanager-user-
workload secret in the openshift-user-workload-monitoring namespace.

Prerequisites

You have access to the cluster as a user with the cluster-admin cluster role.

Procedure

1. Print the currently active Alertmanager configuration into the file alertmanager.yaml:

2. Edit the configuration in alertmanager.yaml:

Specifies which alerts match the route. This example shows all alerts that have the
service="prometheus-example-monitor" label.

Specifies the receiver to use for the alerts group.

3. Apply the new configuration in the file:

$ oc -n openshift-monitoring create secret generic alertmanager-main --from-
file=alertmanager.yaml --dry-run=client -o=yaml | oc -n openshift-monitoring replace secret -
-filename=-

$ oc -n openshift-user-workload-monitoring get secret alertmanager-user-workload --
template='{{ index .data "alertmanager.yaml" }}' | base64 --decode > alertmanager.yaml

route:
 receiver: Default
 group_by:
 - name: Default
 routes:
 - matchers:
 - "service = prometheus-example-monitor" 1
 receiver: <receiver> 2
receivers:
- name: Default
- name: <receiver>
<receiver_configuration>

OpenShift Container Platform 4.11 Monitoring

116

Additional resources

See the PagerDuty official site for more information on PagerDuty.

See the PagerDuty Prometheus Integration Guide to learn how to retrieve the service_key.

See Alertmanager configuration for configuring alerting through different alert receivers.

See Enabling alert routing for user-defined projects to learn how to enable a dedicated
instance of Alertmanager for user-defined alert routing.

10.10. NEXT STEPS

Reviewing monitoring dashboards

$ oc -n openshift-user-workload-monitoring create secret generic alertmanager-user-
workload --from-file=alertmanager.yaml --dry-run=client -o=yaml | oc -n openshift-user-
workload-monitoring replace secret --filename=-

CHAPTER 10. MANAGING ALERTS

117

https://www.pagerduty.com/
https://www.pagerduty.com/docs/guides/prometheus-integration-guide/
https://prometheus.io/docs/alerting/configuration/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/monitoring/#enabling-alert-routing-for-user-defined-projects
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/monitoring/#reviewing-monitoring-dashboards

CHAPTER 11. REVIEWING MONITORING DASHBOARDS
OpenShift Container Platform 4.11 provides a comprehensive set of monitoring dashboards that help
you understand the state of cluster components and user-defined workloads.

Use the Administrator perspective to access dashboards for the core OpenShift Container Platform
components, including the following items:

API performance

etcd

Kubernetes compute resources

Kubernetes network resources

Prometheus

USE method dashboards relating to cluster and node performance

Figure 11.1. Example dashboard in the Administrator perspective

Use the Developer perspective to access Kubernetes compute resources dashboards that provide the
following application metrics for a selected project:

CPU usage

Memory usage

Bandwidth information

Packet rate information

Figure 11.2. Example dashboard in the Developer perspective

OpenShift Container Platform 4.11 Monitoring

118

Figure 11.2. Example dashboard in the Developer perspective

NOTE

In the Developer perspective, you can view dashboards for only one project at a time.

11.1. REVIEWING MONITORING DASHBOARDS AS A CLUSTER
ADMINISTRATOR

In the Administrator perspective, you can view dashboards relating to core OpenShift Container
Platform cluster components.

Prerequisites

You have access to the cluster as a user with the cluster-admin cluster role.

Procedure

1. In the Administrator perspective in the OpenShift Container Platform web console, navigate to
Observe → Dashboards.

2. Choose a dashboard in the Dashboard list. Some dashboards, such as etcd and Prometheus
dashboards, produce additional sub-menus when selected.

3. Optional: Select a time range for the graphs in the Time Range list.

Select a pre-defined time period.

Set a custom time range by selecting Custom time range in the Time Range list.

CHAPTER 11. REVIEWING MONITORING DASHBOARDS

119

a. Input or select the From and To dates and times.

b. Click Save to save the custom time range.

4. Optional: Select a Refresh Interval.

5. Hover over each of the graphs within a dashboard to display detailed information about specific
items.

11.2. REVIEWING MONITORING DASHBOARDS AS A DEVELOPER

Use the Developer perspective to view Kubernetes compute resources dashboards of a selected
project.

Prerequisites

You have access to the cluster as a developer or as a user.

You have view permissions for the project that you are viewing the dashboard for.

Procedure

1. In the Developer perspective in the OpenShift Container Platform web console, navigate to
Observe → Dashboard.

2. Select a project from the Project: drop-down list.

3. Select a dashboard from the Dashboard drop-down list to see the filtered metrics.

NOTE

All dashboards produce additional sub-menus when selected, except
Kubernetes / Compute Resources / Namespace (Pods).

4. Optional: Select a time range for the graphs in the Time Range list.

Select a pre-defined time period.

Set a custom time range by selecting Custom time range in the Time Range list.

a. Input or select the From and To dates and times.

b. Click Save to save the custom time range.

5. Optional: Select a Refresh Interval.

6. Hover over each of the graphs within a dashboard to display detailed information about specific
items.

Additional resources

Monitoring project and application metrics using the Developer perspective

11.3. NEXT STEPS

OpenShift Container Platform 4.11 Monitoring

120

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/building_applications/#monitoring-project-and-application-metrics-using-developer-perspective

Accessing third-party monitoring APIs

CHAPTER 11. REVIEWING MONITORING DASHBOARDS

121

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/monitoring/#accessing-third-party-monitoring-apis

CHAPTER 12. THE NVIDIA GPU ADMINISTRATION
DASHBOARD

12.1. INTRODUCTION

The OpenShift Console NVIDIA GPU plugin is a dedicated administration dashboard for NVIDIA GPU
usage visualization in the OpenShift Container Platform (OCP) Console. The visualizations in the
administration dashboard provide guidance on how to best optimize GPU resources in clusters, such as
when a GPU is under- or over-utilized.

The OpenShift Console NVIDIA GPU plugin works as a remote bundle for the OCP console. To run the
plugin the OCP console must be running.

12.2. INSTALLING THE NVIDIA GPU ADMINISTRATION DASHBOARD

Install the NVIDIA GPU plugin by using Helm on the OpenShift Container Platform (OCP) Console to
add GPU capabilities.

The OpenShift Console NVIDIA GPU plugin works as a remote bundle for the OCP console. To run the
OpenShift Console NVIDIA GPU plugin an instance of the OCP console must be running.

Prerequisites

Red Hat OpenShift 4.11+

NVIDIA GPU operator

Helm

Procedure

Use the following procedure to install the OpenShift Console NVIDIA GPU plugin.

1. Add the Helm repository:

2. Install the Helm chart in the default NVIDIA GPU operator namespace:

Example output

$ helm repo add rh-ecosystem-edge https://rh-ecosystem-edge.github.io/console-plugin-
nvidia-gpu

$ helm repo update

$ helm install -n nvidia-gpu-operator console-plugin-nvidia-gpu rh-ecosystem-edge/console-
plugin-nvidia-gpu

NAME: console-plugin-nvidia-gpu
LAST DEPLOYED: Tue Aug 23 15:37:35 2022
NAMESPACE: nvidia-gpu-operator
STATUS: deployed
REVISION: 1
NOTES:

OpenShift Container Platform 4.11 Monitoring

122

https://helm.sh/docs/intro/install/

The dashboard relies mostly on Prometheus metrics exposed by the NVIDIA DCGM Exporter,
but the default exposed metrics are not enough for the dashboard to render the required
gauges. Therefore, the DGCM exporter is configured to expose a custom set of metrics, as
shown here.

View the Console Plugin NVIDIA GPU deployed resources by running the following
command:

$ oc -n {{ .Release.Namespace }} get all -l app.kubernetes.io/name=console-plugin-nvidia-
gpu

Enable the plugin by running the following command:

Check if a plugins field is specified
$ oc get consoles.operator.openshift.io cluster --output=jsonpath="{.spec.plugins}"

if not, then run the following command to enable the plugin
$ oc patch consoles.operator.openshift.io cluster --patch '{ "spec": { "plugins": ["console-
plugin-nvidia-gpu"] } }' --type=merge

if yes, then run the following command to enable the plugin
$ oc patch consoles.operator.openshift.io cluster --patch '[{"op": "add", "path":
"/spec/plugins/-", "value": "console-plugin-nvidia-gpu" }]' --type=json

add the required DCGM Exporter metrics ConfigMap to the existing NVIDIA operator
ClusterPolicy CR:
oc patch clusterpolicies.nvidia.com gpu-cluster-policy --patch '{ "spec": { "dcgmExporter": {
"config": { "name": "console-plugin-nvidia-gpu" } } } }' --type=merge

apiVersion: v1
data:
 dcgm-metrics.csv: |
 DCGM_FI_PROF_GR_ENGINE_ACTIVE, gauge, gpu utilization.
 DCGM_FI_DEV_MEM_COPY_UTIL, gauge, mem utilization.
 DCGM_FI_DEV_ENC_UTIL, gauge, enc utilization.
 DCGM_FI_DEV_DEC_UTIL, gauge, dec utilization.
 DCGM_FI_DEV_POWER_USAGE, gauge, power usage.
 DCGM_FI_DEV_POWER_MGMT_LIMIT_MAX, gauge, power mgmt limit.
 DCGM_FI_DEV_GPU_TEMP, gauge, gpu temp.
 DCGM_FI_DEV_SM_CLOCK, gauge, sm clock.
 DCGM_FI_DEV_MAX_SM_CLOCK, gauge, max sm clock.
 DCGM_FI_DEV_MEM_CLOCK, gauge, mem clock.
 DCGM_FI_DEV_MAX_MEM_CLOCK, gauge, max mem clock.
kind: ConfigMap
metadata:
 annotations:
 meta.helm.sh/release-name: console-plugin-nvidia-gpu
 meta.helm.sh/release-namespace: nvidia-gpu-operator
 creationTimestamp: "2022-10-26T19:46:41Z"
 labels:
 app.kubernetes.io/component: console-plugin-nvidia-gpu
 app.kubernetes.io/instance: console-plugin-nvidia-gpu
 app.kubernetes.io/managed-by: Helm
 app.kubernetes.io/name: console-plugin-nvidia-gpu
 app.kubernetes.io/part-of: console-plugin-nvidia-gpu
 app.kubernetes.io/version: latest

CHAPTER 12. THE NVIDIA GPU ADMINISTRATION DASHBOARD

123

Install the ConfigMap and edit the NVIDIA Operator ClusterPolicy CR to add that ConfigMap in
the DCGM exporter configuration. The installation of the ConfigMap is done by the new version
of the Console Plugin NVIDIA GPU Helm Chart, but the ClusterPolicy CR editing is done by the
user.

3. View the deployed resources:

Example output

12.3. USING THE NVIDIA GPU ADMINISTRATION DASHBOARD

After deploying the OpenShift Console NVIDIA GPU plugin, log in to the OpenShift Container Platform
web console using your login credentials to access the Administrator perspective.

To view the changes, you need to refresh the console to see the GPUs tab under Compute.

12.3.1. Viewing the cluster GPU overview

You can view the status of your cluster GPUs in the Overview page by selecting Overview in the Home
section.

The Overview page provides information about the cluster GPUs, including:

Details about the GPU providers

Status of the GPUs

Cluster utilization of the GPUs

12.3.2. Viewing the GPUs dashboard

You can view the NVIDIA GPU administration dashboard by selecting GPUs in the Compute section of
the OpenShift Console.

 helm.sh/chart: console-plugin-nvidia-gpu-0.2.3
 name: console-plugin-nvidia-gpu
 namespace: nvidia-gpu-operator
 resourceVersion: "19096623"
 uid: 96cdf700-dd27-437b-897d-5cbb1c255068

$ oc -n nvidia-gpu-operator get all -l app.kubernetes.io/name=console-plugin-nvidia-gpu

NAME READY STATUS RESTARTS AGE
pod/console-plugin-nvidia-gpu-7dc9cfb5df-ztksx 1/1 Running 0 2m6s

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
service/console-plugin-nvidia-gpu ClusterIP 172.30.240.138 <none> 9443/TCP
2m6s

NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/console-plugin-nvidia-gpu 1/1 1 1 2m6s

NAME DESIRED CURRENT READY AGE
replicaset.apps/console-plugin-nvidia-gpu-7dc9cfb5df 1 1 1 2m6s

OpenShift Container Platform 4.11 Monitoring

124

Charts on the GPUs dashboard include:

GPU utilization: Shows the ratio of time the graphics engine is active and is based on the
DCGM_FI_PROF_GR_ENGINE_ACTIVE metric.

Memory utilization: Shows the memory being used by the GPU and is based on the
DCGM_FI_DEV_MEM_COPY_UTIL metric.

Encoder utilization: Shows the video encoder rate of utilization and is based on the
DCGM_FI_DEV_ENC_UTIL metric.

Decoder utilization: Encoder utilization: Shows the video decoder rate of utilization and is
based on the DCGM_FI_DEV_DEC_UTIL metric.

Power consumption: Shows the average power usage of the GPU in Watts and is based on the
DCGM_FI_DEV_POWER_USAGE metric.

GPU temperature: Shows the current GPU temperature and is based on the
DCGM_FI_DEV_GPU_TEMP metric. The maximum is set to 110, which is an empirical number,
as the actual number is not exposed via a metric.

GPU clock speed: Shows the average clock speed utilized by the GPU and is based on the
DCGM_FI_DEV_SM_CLOCK metric.

Memory clock speed: Shows the average clock speed utilized by memory and is based on the
DCGM_FI_DEV_MEM_CLOCK metric.

12.3.3. Viewing the GPU Metrics

You can view the metrics for the GPUs by selecting the metric at the bottom of each GPU to view the
Metrics page.

On the Metrics page, you can:

Specify a refresh rate for the metrics

Add, run, disable, and delete queries

Insert Metrics

Reset the zoom view

CHAPTER 12. THE NVIDIA GPU ADMINISTRATION DASHBOARD

125

CHAPTER 13. ACCESSING THIRD-PARTY MONITORING APIS
In OpenShift Container Platform 4.11, you can access web service APIs for some third-party monitoring
components from the command line interface (CLI).

13.1. ACCESSING THIRD-PARTY MONITORING WEB SERVICE APIS

You can directly access third-party web service APIs from the command line for the following
monitoring stack components: Prometheus, Alertmanager, Thanos Ruler, and Thanos Querier.

The following example commands show how to query the service API receivers for Alertmanager. This
example requires that the associated user account be bound against the monitoring-alertmanager-
edit role in the openshift-monitoring namespace and that the account has the privilege to view the
route. This access only supports using a Bearer Token for authentication.

NOTE

To access Thanos Ruler and Thanos Querier service APIs, the requesting account must
have get permission on the namespaces resource, which can be done by granting the
cluster-monitoring-view cluster role to the account.

13.2. QUERYING METRICS BY USING THE FEDERATION ENDPOINT
FOR PROMETHEUS

You can use the federation endpoint to scrape platform and user-defined metrics from a network
location outside the cluster. To do so, access the Prometheus /federate endpoint for the cluster via an
OpenShift Container Platform route.

$ oc login -u <username> -p <password>

$ host=$(oc -n openshift-monitoring get route alertmanager-main -ojsonpath={.spec.host})

$ token=$(oc whoami -t)

$ curl -H "Authorization: Bearer $token" -k "https://$host/api/v2/receivers"

OpenShift Container Platform 4.11 Monitoring

126

1

WARNING

A delay in retrieving metrics data occurs when you use federation. This delay can
affect the accuracy and timeliness of the scraped metrics.

Using the federation endpoint can also degrade the performance and scalability of
your cluster, especially if you use the federation endpoint to retrieve large amounts
of metrics data. To avoid these issues, follow these recommendations:

Do not try to retrieve all metrics data via the federation endpoint. Query it
only when you want to retrieve a limited, aggregated data set. For example,
retrieving fewer than 1,000 samples for each request helps minimize the
risk of performance degradation.

Avoid querying the federation endpoint frequently. Limit queries to a
maximum of one every 30 seconds.

If you need to forward large amounts of data outside the cluster, use remote write
instead. For more information, see the Configuring remote write storage section.

Prerequisites

You have installed the OpenShift CLI (oc).

You have obtained the host URL for the OpenShift Container Platform route.

You have access to the cluster as a user with the cluster-monitoring-view cluster role or have
obtained a bearer token with get permission on the namespaces resource.

NOTE

You can only use bearer token authentication to access the federation endpoint.

Procedure

1. Retrieve the bearer token:

2. Query metrics from the /federate route. The following example queries up metrics:

For <federation_host>, substitute the host URL for the federation route.

Example output

$ token=`oc whoami -t`

$ curl -G -s -k -H "Authorization: Bearer $token" \
 'https:/<federation_host>/federate' \ 1
 --data-urlencode 'match[]=up'

CHAPTER 13. ACCESSING THIRD-PARTY MONITORING APIS

127

13.3. ADDITIONAL RESOURCES

Configuring remote write storage

Managing metrics

Managing alerts

TYPE up untyped
up{apiserver="kube-
apiserver",endpoint="https",instance="10.0.143.148:6443",job="apiserver",namespace="default
",service="kubernetes",prometheus="openshift-
monitoring/k8s",prometheus_replica="prometheus-k8s-0"} 1 1657035322214
up{apiserver="kube-
apiserver",endpoint="https",instance="10.0.148.166:6443",job="apiserver",namespace="default
",service="kubernetes",prometheus="openshift-
monitoring/k8s",prometheus_replica="prometheus-k8s-0"} 1 1657035338597
up{apiserver="kube-
apiserver",endpoint="https",instance="10.0.173.16:6443",job="apiserver",namespace="default",
service="kubernetes",prometheus="openshift-
monitoring/k8s",prometheus_replica="prometheus-k8s-0"} 1 1657035343834
...

OpenShift Container Platform 4.11 Monitoring

128

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/monitoring/#configuring_remote_write_storage_configuring-the-monitoring-stack
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/monitoring/#managing-metrics
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/monitoring/#managing-alerts

CHAPTER 14. TROUBLESHOOTING MONITORING ISSUES

14.1. INVESTIGATING WHY USER-DEFINED METRICS ARE
UNAVAILABLE

ServiceMonitor resources enable you to determine how to use the metrics exposed by a service in user-
defined projects. Follow the steps outlined in this procedure if you have created a ServiceMonitor
resource but cannot see any corresponding metrics in the Metrics UI.

Prerequisites

You have access to the cluster as a user with the cluster-admin cluster role.

You have installed the OpenShift CLI (oc).

You have enabled and configured monitoring for user-defined workloads.

You have created the user-workload-monitoring-config ConfigMap object.

You have created a ServiceMonitor resource.

Procedure

1. Check that the corresponding labels match in the service and ServiceMonitor resource
configurations.

a. Obtain the label defined in the service. The following example queries the prometheus-
example-app service in the ns1 project:

Example output

b. Check that the matchLabels app label in the ServiceMonitor resource configuration
matches the label output in the preceding step:

Example output

apiVersion: v1
kind: Service
...
spec:
 endpoints:
 - interval: 30s
 port: web
 scheme: http
 selector:

$ oc -n ns1 get service prometheus-example-app -o yaml

 labels:
 app: prometheus-example-app

$ oc -n ns1 get servicemonitor prometheus-example-monitor -o yaml

CHAPTER 14. TROUBLESHOOTING MONITORING ISSUES

129

 matchLabels:
 app: prometheus-example-app
...

NOTE

You can check service and ServiceMonitor resource labels as a developer
with view permissions for the project.

2. Inspect the logs for the Prometheus Operator in the openshift-user-workload-monitoring
project.

a. List the pods in the openshift-user-workload-monitoring project:

Example output

b. Obtain the logs from the prometheus-operator container in the prometheus-operator
pod. In the following example, the pod is called prometheus-operator-776fcbbd56-2nbfm:

If there is a issue with the service monitor, the logs might include an error similar to this
example:

3. Review the target status for your endpoint on the Metrics targets page in the OpenShift
Container Platform web console UI.

a. Log in to the OpenShift Container Platform web console and navigate to Observe →
Targets in the Administrator perspective.

b. Locate the metrics endpoint in the list, and review the status of the target in the Status
column.

c. If the Status is Down, click the URL for the endpoint to view more information on the
Target Details page for that metrics target.

4. Configure debug level logging for the Prometheus Operator in the openshift-user-
workload-monitoring project.

$ oc -n openshift-user-workload-monitoring get pods

NAME READY STATUS RESTARTS AGE
prometheus-operator-776fcbbd56-2nbfm 2/2 Running 0 132m
prometheus-user-workload-0 5/5 Running 1 132m
prometheus-user-workload-1 5/5 Running 1 132m
thanos-ruler-user-workload-0 3/3 Running 0 132m
thanos-ruler-user-workload-1 3/3 Running 0 132m

$ oc -n openshift-user-workload-monitoring logs prometheus-operator-776fcbbd56-
2nbfm -c prometheus-operator

level=warn ts=2020-08-10T11:48:20.906739623Z caller=operator.go:1829
component=prometheusoperator msg="skipping servicemonitor" error="it accesses file
system via bearer token file which Prometheus specification prohibits"
servicemonitor=eagle/eagle namespace=openshift-user-workload-monitoring
prometheus=user-workload

OpenShift Container Platform 4.11 Monitoring

130

a. Edit the user-workload-monitoring-config ConfigMap object in the openshift-user-
workload-monitoring project:

b. Add logLevel: debug for prometheusOperator under data/config.yaml to set the log
level to debug:

c. Save the file to apply the changes.

NOTE

The prometheus-operator in the openshift-user-workload-monitoring
project restarts automatically when you apply the log-level change.

d. Confirm that the debug log-level has been applied to the prometheus-operator
deployment in the openshift-user-workload-monitoring project:

Example output

Debug level logging will show all calls made by the Prometheus Operator.

e. Check that the prometheus-operator pod is running:

NOTE

If an unrecognized Prometheus Operator loglevel value is included in the
config map, the prometheus-operator pod might not restart successfully.

f. Review the debug logs to see if the Prometheus Operator is using the ServiceMonitor
resource. Review the logs for other related errors.

Additional resources

$ oc -n openshift-user-workload-monitoring edit configmap user-workload-monitoring-
config

apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 prometheusOperator:
 logLevel: debug
...

$ oc -n openshift-user-workload-monitoring get deploy prometheus-operator -o yaml |
grep "log-level"

 - --log-level=debug

$ oc -n openshift-user-workload-monitoring get pods

CHAPTER 14. TROUBLESHOOTING MONITORING ISSUES

131

Creating a user-defined workload monitoring config map

See Specifying how a service is monitored for details on how to create a ServiceMonitor or
PodMonitor resource

See Accessing metrics targets in the Administrator perspective

14.2. DETERMINING WHY PROMETHEUS IS CONSUMING A LOT OF
DISK SPACE

Developers can create labels to define attributes for metrics in the form of key-value pairs. The number
of potential key-value pairs corresponds to the number of possible values for an attribute. An attribute
that has an unlimited number of potential values is called an unbound attribute. For example, a
customer_id attribute is unbound because it has an infinite number of possible values.

Every assigned key-value pair has a unique time series. The use of many unbound attributes in labels
can result in an exponential increase in the number of time series created. This can impact Prometheus
performance and can consume a lot of disk space.

You can use the following measures when Prometheus consumes a lot of disk:

Check the number of scrape samples that are being collected.

Check the time series database (TSDB) status using the Prometheus HTTP API for more
information about which labels are creating the most time series. Doing so requires cluster
administrator privileges.

Reduce the number of unique time series that are created by reducing the number of
unbound attributes that are assigned to user-defined metrics.

NOTE

Using attributes that are bound to a limited set of possible values reduces the
number of potential key-value pair combinations.

Enforce limits on the number of samples that can be scraped across user-defined projects.
This requires cluster administrator privileges.

Prerequisites

You have access to the cluster as a user with the cluster-admin cluster role.

You have installed the OpenShift CLI (oc).

Procedure

1. In the Administrator perspective, navigate to Observe → Metrics.

2. Run the following Prometheus Query Language (PromQL) query in the Expression field. This
returns the ten metrics that have the highest number of scrape samples:

3. Investigate the number of unbound label values assigned to metrics with higher than expected

topk(10,count by (job)({__name__=~".+"}))

OpenShift Container Platform 4.11 Monitoring

132

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/monitoring/#creating-user-defined-workload-monitoring-configmap_configuring-the-monitoring-stack
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/monitoring/#specifying-how-a-service-is-monitored_managing-metrics
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/monitoring/#monitoring-accessing-the-metrics-targets-page_managing-metrics-targets

3. Investigate the number of unbound label values assigned to metrics with higher than expected
scrape sample counts.

If the metrics relate to a user-defined project, review the metrics key-value pairs
assigned to your workload. These are implemented through Prometheus client libraries at
the application level. Try to limit the number of unbound attributes referenced in your labels.

If the metrics relate to a core OpenShift Container Platform project, create a Red Hat
support case on the Red Hat Customer Portal .

4. Review the TSDB status using the Prometheus HTTP API by running the following commands as
a cluster administrator:

Example output

Additional resources

See Setting a scrape sample limit for user-defined projects for details on how to set a scrape
sample limit and create related alerting rules

Submitting a support case

$ oc login -u <username> -p <password>

$ host=$(oc -n openshift-monitoring get route prometheus-k8s -ojsonpath={.spec.host})

$ token=$(oc whoami -t)

$ curl -H "Authorization: Bearer $token" -k "https://$host/api/v1/status/tsdb"

"status": "success",

CHAPTER 14. TROUBLESHOOTING MONITORING ISSUES

133

https://access.redhat.com/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/monitoring/#setting-scrape-sample-and-label-limits-for-user-defined-projects_configuring-the-monitoring-stack
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/support/#support-submitting-a-case_getting-support

CHAPTER 15. CONFIG MAP REFERENCE FOR THE CLUSTER
MONITORING OPERATOR

15.1. CLUSTER MONITORING OPERATOR CONFIGURATION
REFERENCE

Parts of OpenShift Container Platform cluster monitoring are configurable. The API is accessible by
setting parameters defined in various config maps.

To configure monitoring components, edit the ConfigMap object named cluster-monitoring-
config in the openshift-monitoring namespace. These configurations are defined by
ClusterMonitoringConfiguration.

To configure monitoring components that monitor user-defined projects, edit the ConfigMap
object named user-workload-monitoring-config in the openshift-user-workload-monitoring
namespace. These configurations are defined by UserWorkloadConfiguration.

The configuration file is always defined under the config.yaml key in the config map data.

NOTE

Not all configuration parameters are exposed.

Configuring cluster monitoring is optional.

If a configuration does not exist or is empty, default values are used.

If the configuration is invalid YAML data, the Cluster Monitoring Operator stops
reconciling the resources and reports Degraded=True in the status conditions of
the Operator.

15.2. ADDITIONALALERTMANAGERCONFIG

15.2.1. Description

The AdditionalAlertmanagerConfig resource defines settings for how a component communicates
with additional Alertmanager instances.

15.2.2. Required

apiVersion

Appears in: PrometheusK8sConfig, PrometheusRestrictedConfig, ThanosRulerConfig

Property Type Description

apiVersion string Defines the API version of
Alertmanager. Possible values are
v1 or v2. The default is v2.

OpenShift Container Platform 4.11 Monitoring

134

bearerToken *v1.SecretKeySelector Defines the secret key reference
containing the bearer token to
use when authenticating to
Alertmanager.

pathPrefix string Defines the path prefix to add in
front of the push endpoint path.

scheme string Defines the URL scheme to use
when communicating with
Alertmanager instances. Possible
values are http or https. The
default value is http.

staticConfigs []string A list of statically configured
Alertmanager endpoints in the
form of <hosts>:<port>.

timeout *string Defines the timeout value used
when sending alerts.

tlsConfig TLSConfig Defines the TLS settings to use
for Alertmanager connections.

Property Type Description

15.3. ALERTMANAGERMAINCONFIG

15.3.1. Description

The AlertmanagerMainConfig resource defines settings for the Alertmanager component in the
openshift-monitoring namespace.

Appears in: ClusterMonitoringConfiguration

Property Type Description

enabled *bool A Boolean flag that enables or
disables the main Alertmanager
instance in the openshift-
monitoring namespace. The
default value is true.

CHAPTER 15. CONFIG MAP REFERENCE FOR THE CLUSTER MONITORING OPERATOR

135

enableUserAlertmanagerConfig bool A Boolean flag that enables or
disables user-defined
namespaces to be selected for
AlertmanagerConfig lookups.
This setting only applies if the user
workload monitoring instance of
Alertmanager is not enabled. The
default value is false.

logLevel string Defines the log level setting for
Alertmanager. The possible values
are: error, warn, info, debug.
The default value is info.

nodeSelector map[string]string Defines the nodes on which the
Pods are scheduled.

resources *v1.ResourceRequirements Defines resource requests and
limits for the Alertmanager
container.

tolerations []v1.Toleration Defines tolerations for the pods.

volumeClaimTemplate *monv1.EmbeddedPersistentVolu
meClaim

Defines persistent storage for
Alertmanager. Use this setting to
configure the persistent volume
claim, including storage class,
volume size, and name.

Property Type Description

15.4. ALERTMANAGERUSERWORKLOADCONFIG

15.4.1. Description

The AlertmanagerUserWorkloadConfig resource defines the settings for the Alertmanager instance
used for user-defined projects.

Appears in: UserWorkloadConfiguration

Property Type Description

enabled bool A Boolean flag that enables or
disables a dedicated instance of
Alertmanager for user-defined
alerts in the openshift-user-
workload-monitoring
namespace. The default value is
false.

OpenShift Container Platform 4.11 Monitoring

136

enableAlertmanagerConfig bool A Boolean flag to enable or
disable user-defined namespaces
to be selected for
AlertmanagerConfig lookup.
The default value is false.

logLevel string Defines the log level setting for
Alertmanager for user workload
monitoring. The possible values
are error, warn, info, and
debug. The default value is info.

resources *v1.ResourceRequirements Defines resource requests and
limits for the Alertmanager
container.

nodeSelector map[string]string Defines the nodes on which the
pods are scheduled.

tolerations []v1.Toleration Defines tolerations for the pods.

volumeClaimTemplate *monv1.EmbeddedPersistentVolu
meClaim

Defines persistent storage for
Alertmanager. Use this setting to
configure the persistent volume
claim, including storage class,
volume size and name.

Property Type Description

15.5. CLUSTERMONITORINGCONFIGURATION

15.5.1. Description

The ClusterMonitoringConfiguration resource defines settings that customize the default platform
monitoring stack through the cluster-monitoring-config config map in the openshift-monitoring
namespace.

Property Type Description

alertmanagerMain *AlertmanagerMainConfig AlertmanagerMainConfig
defines settings for the
Alertmanager component in the
openshift-monitoring
namespace.

enableUserWorkload *bool UserWorkloadEnabled is a
Boolean flag that enables
monitoring for user-defined
projects.

CHAPTER 15. CONFIG MAP REFERENCE FOR THE CLUSTER MONITORING OPERATOR

137

k8sPrometheusAdapter *K8sPrometheusAdapter K8sPrometheusAdapter
defines settings for the
Prometheus Adapter component.

kubeStateMetrics *KubeStateMetricsConfig KubeStateMetricsConfig
defines settings for the kube-
state-metrics agent.

prometheusK8s *PrometheusK8sConfig PrometheusK8sConfig
defines settings for the
Prometheus component.

prometheusOperator *PrometheusOperatorConfig PrometheusOperatorConfig
defines settings for the
Prometheus Operator
component.

openshiftStateMetrics *OpenShiftStateMetricsConfig OpenShiftMetricsConfig
defines settings for the
openshift-state-metrics agent.

telemeterClient *TelemeterClientConfig TelemeterClientConfig defines
settings for the Telemeter Client
component.

thanosQuerier *ThanosQuerierConfig ThanosQuerierConfig defines
settings for the Thanos Querier
component.

Property Type Description

15.6. DEDICATEDSERVICEMONITORS

15.6.1. Description

You can use the DedicatedServiceMonitors resource to configure dedicated Service Monitors for the
Prometheus Adapter

Appears in: K8sPrometheusAdapter

Property Type Description

OpenShift Container Platform 4.11 Monitoring

138

enabled bool When enabled is set to true, the
Cluster Monitoring Operator
(CMO) deploys a dedicated
Service Monitor that exposes the
kubelet /metrics/resource
endpoint. This Service Monitor
sets honorTimestamps: true
and only keeps metrics that are
relevant for the pod resource
queries of Prometheus Adapter.
Additionally, Prometheus Adapter
is configured to use these
dedicated metrics. Overall, this
feature improves the consistency
of Prometheus Adapter-based
CPU usage measurements used
by, for example, the oc adm top
pod command or the Horizontal
Pod Autoscaler.

Property Type Description

15.7. K8SPROMETHEUSADAPTER

15.7.1. Description

The K8sPrometheusAdapter resource defines settings for the Prometheus Adapter component.

Appears in: ClusterMonitoringConfiguration

Property Type Description

audit *Audit Defines the audit configuration
used by the Prometheus Adapter
instance. Possible profile values
are: metadata, request,
requestresponse, and none.
The default value is metadata.

nodeSelector map[string]string Defines the nodes on which the
pods are scheduled.

tolerations []v1.Toleration Defines tolerations for the pods.

dedicatedServiceMonitors *DedicatedServiceMonitors Defines dedicated service
monitors.

15.8. KUBESTATEMETRICSCONFIG

CHAPTER 15. CONFIG MAP REFERENCE FOR THE CLUSTER MONITORING OPERATOR

139

15.8.1. Description

The KubeStateMetricsConfig resource defines settings for the kube-state-metrics agent.

Appears in: ClusterMonitoringConfiguration

Property Type Description

nodeSelector map[string]string Defines the nodes on which the
pods are scheduled.

tolerations []v1.Toleration Defines tolerations for the pods.

15.9. OPENSHIFTSTATEMETRICSCONFIG

15.9.1. Description

The OpenShiftStateMetricsConfig resource defines settings for the openshift-state-metrics agent.

Appears in: ClusterMonitoringConfiguration

Property Type Description

nodeSelector map[string]string Defines the nodes on which the
pods are scheduled.

tolerations []v1.Toleration Defines tolerations for the pods.

15.10. PROMETHEUSK8SCONFIG

15.10.1. Description

The PrometheusK8sConfig resource defines settings for the Prometheus component.

Appears in: ClusterMonitoringConfiguration

Property Type Description

additionalAlertmanagerConfigs []AdditionalAlertmanagerConfig Configures additional
Alertmanager instances that
receive alerts from the
Prometheus component. By
default, no additional
Alertmanager instances are
configured.

OpenShift Container Platform 4.11 Monitoring

140

enforcedBodySizeLimit string Enforces a body size limit for
Prometheus scraped metrics. If a
scraped target’s body response is
larger than the limit, the scrape
will fail. The following values are
valid: an empty value to specify
no limit, a numeric value in
Prometheus size format (such as
64MB), or the string automatic,
which indicates that the limit will
be automatically calculated based
on cluster capacity. The default
value is empty, which indicates no
limit.

externalLabels map[string]string Defines labels to be added to any
time series or alerts when
communicating with external
systems such as federation,
remote storage, and
Alertmanager. By default, no
labels are added.

logLevel string Defines the log level setting for
Prometheus. The possible values
are: error, warn, info, and
debug. The default value is info.

nodeSelector map[string]string Defines the nodes on which the
pods are scheduled.

queryLogFile string Specifies the file to which
PromQL queries are logged. This
setting can be either a filename, in
which case the queries are saved
to an emptyDir volume at
/var/log/prometheus, or a full
path to a location where an
emptyDir volume will be
mounted and the queries saved.
Writing to /dev/stderr,
/dev/stdout or /dev/null is
supported, but writing to any
other /dev/ path is not supported.
Relative paths are also not
supported. By default, PromQL
queries are not logged.

Property Type Description

CHAPTER 15. CONFIG MAP REFERENCE FOR THE CLUSTER MONITORING OPERATOR

141

remoteWrite []RemoteWriteSpec Defines the remote write
configuration, including URL,
authentication, and relabeling
settings.

resources *v1.ResourceRequirements Defines resource requests and
limits for the Prometheus
container.

retention string Defines the duration for which
Prometheus retains data. This
definition must be specified using
the following regular expression
pattern: [0-9]+(ms|s|m|h|d|w|y)
(ms = milliseconds, s= seconds,m
= minutes, h = hours, d = days, w =
weeks, y = years). The default
value is 15d.

retentionSize string Defines the maximum amount of
disk space used by data blocks
plus the write-ahead log (WAL).
Supported values are B, KB, KiB,
MB, MiB, GB, GiB, TB, TiB, PB,
PiB, EB, and EiB. By default, no
limit is defined.

tolerations []v1.Toleration Defines tolerations for the pods.

volumeClaimTemplate *monv1.EmbeddedPersistentVolu
meClaim

Defines persistent storage for
Prometheus. Use this setting to
configure the persistent volume
claim, including storage class,
volume size and name.

Property Type Description

15.11. PROMETHEUSOPERATORCONFIG

15.11.1. Description

The PrometheusOperatorConfig resource defines settings for the Prometheus Operator component.

Appears in: ClusterMonitoringConfiguration, UserWorkloadConfiguration

Property Type Description

OpenShift Container Platform 4.11 Monitoring

142

logLevel string Defines the log level settings for
Prometheus Operator. The
possible values are error, warn,
info, and debug. The default
value is info.

nodeSelector map[string]string Defines the nodes on which the
pods are scheduled.

tolerations []v1.Toleration Defines tolerations for the pods.

Property Type Description

15.12. PROMETHEUSRESTRICTEDCONFIG

15.12.1. Description

The PrometheusRestrictedConfig resource defines the settings for the Prometheus component that
monitors user-defined projects.

Appears in: UserWorkloadConfiguration

Property Type Description

additionalAlertmanagerConfigs []AdditionalAlertmanagerConfig Configures additional
Alertmanager instances that
receive alerts from the
Prometheus component. By
default, no additional
Alertmanager instances are
configured.

enforcedLabelLimit *uint64 Specifies a per-scrape limit on
the number of labels accepted for
a sample. If the number of labels
exceeds this limit after metric
relabeling, the entire scrape is
treated as failed. The default
value is 0, which means that no
limit is set.

enforcedLabelNameLengthLimit *uint64 Specifies a per-scrape limit on
the length of a label name for a
sample. If the length of a label
name exceeds this limit after
metric relabeling, the entire
scrape is treated as failed. The
default value is 0, which means
that no limit is set.

CHAPTER 15. CONFIG MAP REFERENCE FOR THE CLUSTER MONITORING OPERATOR

143

enforcedLabelValueLengthLimit *uint64 Specifies a per-scrape limit on
the length of a label value for a
sample. If the length of a label
value exceeds this limit after
metric relabeling, the entire
scrape is treated as failed. The
default value is 0, which means
that no limit is set.

enforcedSampleLimit *uint64 Specifies a global limit on the
number of scraped samples that
will be accepted. This setting
overrides the SampleLimit value
set in any user-defined
ServiceMonitor or
PodMonitor object if the value is
greater than
enforcedTargetLimit.
Administrators can use this setting
to keep the overall number of
samples under control. The
default value is 0, which means
that no limit is set.

enforcedTargetLimit *uint64 Specifies a global limit on the
number of scraped targets. This
setting overrides the
TargetLimit value set in any
user-defined ServiceMonitor or
PodMonitor object if the value is
greater than
enforcedSampleLimit.
Administrators can use this setting
to keep the overall number of
targets under control. The default
value is 0.

externalLabels map[string]string Defines labels to be added to any
time series or alerts when
communicating with external
systems such as federation,
remote storage, and
Alertmanager. By default, no
labels are added.

logLevel string Defines the log level setting for
Prometheus. The possible values
are error, warn, info, and
debug. The default setting is
info.

Property Type Description

OpenShift Container Platform 4.11 Monitoring

144

nodeSelector map[string]string Defines the nodes on which the
pods are scheduled.

queryLogFile string Specifies the file to which
PromQL queries are logged. This
setting can be either a filename, in
which case the queries are saved
to an emptyDir volume at
/var/log/prometheus, or a full
path to a location where an
emptyDir volume will be
mounted and the queries saved.
Writing to /dev/stderr,
/dev/stdout or /dev/null is
supported, but writing to any
other /dev/ path is not supported.
Relative paths are also not
supported. By default, PromQL
queries are not logged.

remoteWrite []RemoteWriteSpec Defines the remote write
configuration, including URL,
authentication, and relabeling
settings.

resources *v1.ResourceRequirements Defines resource requests and
limits for the Prometheus
container.

retention string Defines the duration for which
Prometheus retains data. This
definition must be specified using
the following regular expression
pattern: [0-9]+(ms|s|m|h|d|w|y)
(ms = milliseconds, s= seconds,m
= minutes, h = hours, d = days, w =
weeks, y = years). The default
value is 15d.

retentionSize string Defines the maximum amount of
disk space used by data blocks
plus the write-ahead log (WAL).
Supported values are B, KB, KiB,
MB, MiB, GB, GiB, TB, TiB, PB,
PiB, EB, and EiB. The default
value is nil.

tolerations []v1.Toleration Defines tolerations for the pods.

Property Type Description

CHAPTER 15. CONFIG MAP REFERENCE FOR THE CLUSTER MONITORING OPERATOR

145

volumeClaimTemplate *monv1.EmbeddedPersistentVolu
meClaim

Defines persistent storage for
Prometheus. Use this setting to
configure the storage class and
size of a volume.

Property Type Description

15.13. REMOTEWRITESPEC

15.13.1. Description

The RemoteWriteSpec resource defines the settings for remote write storage.

15.13.2. Required

url

Appears in: PrometheusK8sConfig, PrometheusRestrictedConfig

Property Type Description

authorization *monv1.SafeAuthorization Defines the authorization settings
for remote write storage.

basicAuth *monv1.BasicAuth Defines basic authentication
settings for the remote write
endpoint URL.

bearerTokenFile string Defines the file that contains the
bearer token for the remote write
endpoint. However, because you
cannot mount secrets in a pod, in
practice you can only reference
the token of the service account.

headers map[string]string Specifies the custom HTTP
headers to be sent along with
each remote write request.
Headers set by Prometheus
cannot be overwritten.

metadataConfig *monv1.MetadataConfig Defines settings for sending series
metadata to remote write
storage.

name string Defines the name of the remote
write queue. This name is used in
metrics and logging to
differentiate queues. If specified,
this name must be unique.

OpenShift Container Platform 4.11 Monitoring

146

oauth2 *monv1.OAuth2 Defines OAuth2 authentication
settings for the remote write
endpoint.

proxyUrl string Defines an optional proxy URL.

queueConfig *monv1.QueueConfig Allows tuning configuration for
remote write queue parameters.

remoteTimeout string Defines the timeout value for
requests to the remote write
endpoint.

sigv4 *monv1.Sigv4 Defines AWS Signature Version 4
authentication settings.

tlsConfig *monv1.SafeTLSConfig Defines TLS authentication
settings for the remote write
endpoint.

url string Defines the URL of the remote
write endpoint to which samples
will be sent.

writeRelabelConfigs []monv1.RelabelConfig Defines the list of remote write
relabel configurations.

Property Type Description

15.14. TELEMETERCLIENTCONFIG

15.14.1. Description

The TelemeterClientConfig resource defines settings for the telemeter-client component.

15.14.2. Required

nodeSelector

tolerations

Appears in: ClusterMonitoringConfiguration

Property Type Description

nodeSelector map[string]string Defines the nodes on which the
pods are scheduled.

tolerations []v1.Toleration Defines tolerations for the pods.

CHAPTER 15. CONFIG MAP REFERENCE FOR THE CLUSTER MONITORING OPERATOR

147

Property Type Description

15.15. THANOSQUERIERCONFIG

15.15.1. Description

The ThanosQuerierConfig resource defines settings for the Thanos Querier component.

Appears in: ClusterMonitoringConfiguration

Property Type Description

enableRequestLogging bool A Boolean flag that enables or
disables request logging. The
default value is false.

logLevel string Defines the log level setting for
Thanos Querier. The possible
values are error, warn, info, and
debug. The default value is info.

nodeSelector map[string]string Defines the nodes on which the
pods are scheduled.

resources *v1.ResourceRequirements Defines resource requests and
limits for the Thanos Querier
container.

tolerations []v1.Toleration Defines tolerations for the pods.

15.16. THANOSRULERCONFIG

15.16.1. Description

The ThanosRulerConfig resource defines configuration for the Thanos Ruler instance for user-defined
projects.

Appears in: UserWorkloadConfiguration

Property Type Description

additionalAlertmanagerConfigs []AdditionalAlertmanagerConfig Configures how the Thanos Ruler
component communicates with
additional Alertmanager
instances. The default value is nil.

OpenShift Container Platform 4.11 Monitoring

148

logLevel string Defines the log level setting for
Thanos Ruler. The possible values
are error, warn, info, and
debug. The default value is info.

nodeSelector map[string]string Defines the nodes on which the
Pods are scheduled.

resources *v1.ResourceRequirements Defines resource requests and
limits for the Thanos Ruler
container.

retention string Defines the duration for which
Prometheus retains data. This
definition must be specified using
the following regular expression
pattern: [0-9]+(ms|s|m|h|d|w|y)
(ms = milliseconds, s= seconds,m
= minutes, h = hours, d = days, w =
weeks, y = years). The default
value is 15d.

tolerations []v1.Toleration Defines tolerations for the pods.

volumeClaimTemplate *monv1.EmbeddedPersistentVolu
meClaim

Defines persistent storage for
Thanos Ruler. Use this setting to
configure the storage class and
size of a volume.

Property Type Description

15.17. TLSCONFIG

15.17.1. Description

The TLSConfig resource configures the settings for TLS connections.

15.17.2. Required

insecureSkipVerify

Appears in: AdditionalAlertmanagerConfig

Property Type Description

CHAPTER 15. CONFIG MAP REFERENCE FOR THE CLUSTER MONITORING OPERATOR

149

ca *v1.SecretKeySelector Defines the secret key reference
containing the Certificate
Authority (CA) to use for the
remote host.

cert *v1.SecretKeySelector Defines the secret key reference
containing the public certificate
to use for the remote host.

key *v1.SecretKeySelector Defines the secret key reference
containing the private key to use
for the remote host.

serverName string Used to verify the hostname on
the returned certificate.

insecureSkipVerify bool When set to true, disables the
verification of the remote host’s
certificate and name.

Property Type Description

15.18. USERWORKLOADCONFIGURATION

15.18.1. Description

The UserWorkloadConfiguration resource defines the settings responsible for user-defined projects
in the user-workload-monitoring-config config map in the openshift-user-workload-monitoring
namespace. You can only enable UserWorkloadConfiguration after you have set
enableUserWorkload to true in the cluster-monitoring-config config map under the openshift-
monitoring namespace.

Property Type Description

alertmanager *AlertmanagerUserWorkloadConf
ig

Defines the settings for the
Alertmanager component in user
workload monitoring.

prometheus *PrometheusRestrictedConfig Defines the settings for the
Prometheus component in user
workload monitoring.

prometheusOperator *PrometheusOperatorConfig Defines the settings for the
Prometheus Operator
component in user workload
monitoring.

OpenShift Container Platform 4.11 Monitoring

150

thanosRuler *ThanosRulerConfig Defines the settings for the
Thanos Ruler component in user
workload monitoring.

Property Type Description

CHAPTER 15. CONFIG MAP REFERENCE FOR THE CLUSTER MONITORING OPERATOR

151

CHAPTER 16. CLUSTER OBSERVABILITY OPERATOR

16.1. CLUSTER OBSERVABILITY OPERATOR RELEASE NOTES

IMPORTANT

The Cluster Observability Operator is a Technology Preview feature only. Technology
Preview features are not supported with Red Hat production service level agreements
(SLAs) and might not be functionally complete. Red Hat does not recommend using
them in production. These features provide early access to upcoming product features,
enabling customers to test functionality and provide feedback during the development
process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

The Cluster Observability Operator (COO) is an optional OpenShift Container Platform Operator that
enables administrators to create standalone monitoring stacks that are independently configurable for
use by different services and users.

The COO complements the built-in monitoring capabilities of OpenShift Container Platform. You can
deploy it in parallel with the default platform and user workload monitoring stacks managed by the
Cluster Monitoring Operator (CMO).

These release notes track the development of the Cluster Observability Operator in OpenShift
Container Platform.

16.1.1. Cluster Observability Operator 0.1.1

This release updates the Cluster Observability Operator to support installing the Operator in restricted
networks or disconnected environments.

16.1.2. Cluster Observability Operator 0.1

This release makes a Technology Preview version of the Cluster Observability Operator available on
OperatorHub.

16.2. CLUSTER OBSERVABILITY OPERATOR OVERVIEW

IMPORTANT

The Cluster Observability Operator is a Technology Preview feature only. Technology
Preview features are not supported with Red Hat production service level agreements
(SLAs) and might not be functionally complete. Red Hat does not recommend using
them in production. These features provide early access to upcoming product features,
enabling customers to test functionality and provide feedback during the development
process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

The Cluster Observability Operator (COO) is an optional component of the OpenShift Container

OpenShift Container Platform 4.11 Monitoring

152

https://access.redhat.com/support/offerings/techpreview/
https://access.redhat.com/support/offerings/techpreview/

The Cluster Observability Operator (COO) is an optional component of the OpenShift Container
Platform. You can deploy it to create standalone monitoring stacks that are independently configurable
for use by different services and users.

The COO deploys the following monitoring components:

Prometheus

Thanos Querier (optional)

Alertmanager (optional)

The COO components function independently of the default in-cluster monitoring stack, which is
deployed and managed by the Cluster Monitoring Operator (CMO). Monitoring stacks deployed by the
two Operators do not conflict. You can use a COO monitoring stack in addition to the default platform
monitoring components deployed by the CMO.

16.2.1. Understanding the Cluster Observability Operator

A default monitoring stack created by the Cluster Observability Operator (COO) includes a highly
available Prometheus instance capable of sending metrics to an external endpoint by using remote
write.

Each COO stack also includes an optional Thanos Querier component, which you can use to query a
highly available Prometheus instance from a central location, and an optional Alertmanager component,
which you can use to set up alert configurations for different services.

16.2.1.1. Advantages of using the Cluster Observability Operator

The MonitoringStack CRD used by the COO offers an opinionated default monitoring configuration for
COO-deployed monitoring components, but you can customize it to suit more complex requirements.

Deploying a COO-managed monitoring stack can help meet monitoring needs that are difficult or
impossible to address by using the core platform monitoring stack deployed by the Cluster Monitoring
Operator (CMO). A monitoring stack deployed using COO has the following advantages over core
platform and user workload monitoring:

Extendability

Users can add more metrics to a COO-deployed monitoring stack, which is not possible with core
platform monitoring without losing support. In addition, COO-managed stacks can receive certain
cluster-specific metrics from core platform monitoring by using federation.

Multi-tenancy support

The COO can create a monitoring stack per user namespace. You can also deploy multiple stacks per
namespace or a single stack for multiple namespaces. For example, cluster administrators, SRE
teams, and development teams can all deploy their own monitoring stacks on a single cluster, rather
than having to use a single shared stack of monitoring components. Users on different teams can
then independently configure features such as separate alerts, alert routing, and alert receivers for
their applications and services.

Scalability

You can create COO-managed monitoring stacks as needed. Multiple monitoring stacks can run on a
single cluster, which can facilitate the monitoring of very large clusters by using manual sharding. This
ability addresses cases where the number of metrics exceeds the monitoring capabilities of a single
Prometheus instance.

Flexibility

Deploying the COO with Operator Lifecycle Manager (OLM) decouples COO releases from

CHAPTER 16. CLUSTER OBSERVABILITY OPERATOR

153

Deploying the COO with Operator Lifecycle Manager (OLM) decouples COO releases from
OpenShift Container Platform release cycles. This method of deployment enables faster release
iterations and the ability to respond rapidly to changing requirements and issues. Additionally, by
deploying a COO-managed monitoring stack, users can manage alerting rules independently of
OpenShift Container Platform release cycles.

Highly customizable

The COO can delegate ownership of single configurable fields in custom resources to users by using
Server-Side Apply (SSA), which enhances customization.

Additional resources

Kubernetes documentation for Server-Side Apply (SSA)

16.3. INSTALLING THE CLUSTER OBSERVABILITY OPERATOR

IMPORTANT

The Cluster Observability Operator is a Technology Preview feature only. Technology
Preview features are not supported with Red Hat production service level agreements
(SLAs) and might not be functionally complete. Red Hat does not recommend using
them in production. These features provide early access to upcoming product features,
enabling customers to test functionality and provide feedback during the development
process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

As a cluster administrator, you can install the Cluster Observability Operator (COO) from OperatorHub
by using the OpenShift Container Platform web console or CLI. OperatorHub is a user interface that
works in conjunction with Operator Lifecycle Manager (OLM), which installs and manages Operators on
a cluster.

To install the COO using OperatorHub, follow the procedure described in Adding Operators to a cluster .

16.3.1. Uninstalling the Cluster Observability Operator using the web console

If you have installed the Cluster Observability Operator (COO) by using OperatorHub, you can uninstall
it in the OpenShift Container Platform web console.

Prerequisites

You have access to the cluster as a user with the cluster-admin cluster role.

You have logged in to the OpenShift Container Platform web console.

Procedure

1. Go to Operators → Installed Operators.

2. Locate the Cluster Observability Operator entry in the list.

3. Click for this entry and select Uninstall Operator.

OpenShift Container Platform 4.11 Monitoring

154

https://kubernetes.io/docs/reference/using-api/server-side-apply/
https://access.redhat.com/support/offerings/techpreview/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#adding-operators-to-a-cluster

16.4. CONFIGURING THE CLUSTER OBSERVABILITY OPERATOR TO
MONITOR A SERVICE

IMPORTANT

The Cluster Observability Operator is a Technology Preview feature only. Technology
Preview features are not supported with Red Hat production service level agreements
(SLAs) and might not be functionally complete. Red Hat does not recommend using
them in production. These features provide early access to upcoming product features,
enabling customers to test functionality and provide feedback during the development
process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

You can monitor metrics for a service by configuring monitoring stacks managed by the Cluster
Observability Operator (COO).

To test monitoring a service, follow these steps:

Deploy a sample service that defines a service endpoint.

Create a ServiceMonitor object that specifies how the service is to be monitored by the COO.

Create a MonitoringStack object to discover the ServiceMonitor object.

16.4.1. Deploying a sample service for Cluster Observability Operator

This configuration deploys a sample service named prometheus-coo-example-app in the user-defined
ns1-coo project. The service exposes the custom version metric.

Prerequisites

You have access to the cluster as a user with the cluster-admin cluster role or as a user with
administrative permissions for the namespace.

Procedure

1. Create a YAML file named prometheus-coo-example-app.yaml that contains the following
configuration details for a namespace, deployment, and service:

apiVersion: v1
kind: Namespace
metadata:
 name: ns1-coo

apiVersion: apps/v1
kind: Deployment
metadata:
 labels:
 app: prometheus-coo-example-app
 name: prometheus-coo-example-app
 namespace: ns1-coo
spec:

CHAPTER 16. CLUSTER OBSERVABILITY OPERATOR

155

https://access.redhat.com/support/offerings/techpreview/

2. Save the file.

3. Apply the configuration to the cluster by running the following command:

4. Verify that the pod is running by running the following command and observing the output:

Example output

16.4.2. Specifying how a service is monitored by Cluster Observability Operator

To use the metrics exposed by the sample service you created in the "Deploying a sample service for
Cluster Observability Operator" section, you must configure monitoring components to scrape metrics
from the /metrics endpoint.

You can create this configuration by using a ServiceMonitor object that specifies how the service is to
be monitored, or a PodMonitor object that specifies how a pod is to be monitored. The ServiceMonitor

 replicas: 1
 selector:
 matchLabels:
 app: prometheus-coo-example-app
 template:
 metadata:
 labels:
 app: prometheus-coo-example-app
 spec:
 containers:
 - image: ghcr.io/rhobs/prometheus-example-app:0.4.2
 imagePullPolicy: IfNotPresent
 name: prometheus-coo-example-app

apiVersion: v1
kind: Service
metadata:
 labels:
 app: prometheus-coo-example-app
 name: prometheus-coo-example-app
 namespace: ns1-coo
spec:
 ports:
 - port: 8080
 protocol: TCP
 targetPort: 8080
 name: web
 selector:
 app: prometheus-coo-example-app
 type: ClusterIP

$ oc apply -f prometheus-coo-example-app.yaml

$ oc -n -ns1-coo get pod

NAME READY STATUS RESTARTS AGE
prometheus-coo-example-app-0927545cb7-anskj 1/1 Running 0 81m

OpenShift Container Platform 4.11 Monitoring

156

object requires a Service object. The PodMonitor object does not, which enables the MonitoringStack
object to scrape metrics directly from the metrics endpoint exposed by a pod.

This procedure shows how to create a ServiceMonitor object for a sample service named prometheus-
coo-example-app in the ns1-coo namespace.

Prerequisites

You have access to the cluster as a user with the cluster-admin cluster role or as a user with
administrative permissions for the namespace.

You have installed the Cluster Observability Operator.

You have deployed the prometheus-coo-example-app sample service in the ns1-coo
namespace.

NOTE

The prometheus-coo-example-app sample service does not support TLS
authentication.

Procedure

1. Create a YAML file named example-coo-app-service-monitor.yaml that contains the
following ServiceMonitor object configuration details:

This configuration defines a ServiceMonitor object that the MonitoringStack object will
reference to scrape the metrics data exposed by the prometheus-coo-example-app sample
service.

2. Apply the configuration to the cluster by running the following command:

3. Verify that the ServiceMonitor resource is created by running the following command and
observing the output:

Example output

apiVersion: monitoring.rhobs/v1alpha1
kind: ServiceMonitor
metadata:
 labels:
 k8s-app: prometheus-coo-example-monitor
 name: prometheus-coo-example-monitor
 namespace: ns1-coo
spec:
 endpoints:
 - interval: 30s
 port: web
 scheme: http
 selector:
 matchLabels:
 app: prometheus-coo-example-app

$ oc apply -f example-app-service-monitor.yaml

$ oc -n ns1-coo get servicemonitor

CHAPTER 16. CLUSTER OBSERVABILITY OPERATOR

157

Example output

16.4.3. Creating a MonitoringStack object for the Cluster Observability Operator

To scrape the metrics data exposed by the target prometheus-coo-example-app service, create a
MonitoringStack object that references the ServiceMonitor object you created in the "Specifying how
a service is monitored for Cluster Observability Operator" section. This MonitoringStack object can
then discover the service and scrape the exposed metrics data from it.

Prerequisites

You have access to the cluster as a user with the cluster-admin cluster role or as a user with
administrative permissions for the namespace.

You have installed the Cluster Observability Operator.

You have deployed the prometheus-coo-example-app sample service in the ns1-coo
namespace.

You have created a ServiceMonitor object named prometheus-coo-example-monitor in the
ns1-coo namespace.

Procedure

1. Create a YAML file for the MonitoringStack object configuration. For this example, name the
file example-coo-monitoring-stack.yaml.

2. Add the following MonitoringStack object configuration details:

Example MonitoringStack object

3. Apply the MonitoringStack object by running the following command:

4. Verify that the MonitoringStack object is available by running the following command and
inspecting the output:

NAME AGE
prometheus-coo-example-monitor 81m

apiVersion: monitoring.rhobs/v1alpha1
kind: MonitoringStack
metadata:
 name: example-coo-monitoring-stack
 namespace: ns1-coo
spec:
 logLevel: debug
 retention: 1d
 resourceSelector:
 matchLabels:
 k8s-app: prometheus-coo-example-monitor

$ oc apply -f example-coo-monitoring-stack.yaml

$ oc -n ns1-coo get monitoringstack

OpenShift Container Platform 4.11 Monitoring

158

Example output

NAME AGE
example-coo-monitoring-stack 81m

CHAPTER 16. CLUSTER OBSERVABILITY OPERATOR

159

	Table of Contents
	CHAPTER 1. MONITORING OVERVIEW
	1.1. ABOUT OPENSHIFT CONTAINER PLATFORM MONITORING
	1.2. UNDERSTANDING THE MONITORING STACK
	1.2.1. Default monitoring components
	1.2.2. Default monitoring targets
	1.2.3. Components for monitoring user-defined projects
	1.2.4. Monitoring targets for user-defined projects

	1.3. GLOSSARY OF COMMON TERMS FOR OPENSHIFT CONTAINER PLATFORM MONITORING
	1.4. ADDITIONAL RESOURCES
	1.5. NEXT STEPS

	CHAPTER 2. CONFIGURING THE MONITORING STACK
	2.1. PREREQUISITES
	2.2. MAINTENANCE AND SUPPORT FOR MONITORING
	2.2.1. Support considerations for monitoring
	2.2.2. Support policy for monitoring Operators

	2.3. PREPARING TO CONFIGURE THE MONITORING STACK
	2.3.1. Creating a cluster monitoring config map
	2.3.2. Creating a user-defined workload monitoring config map

	2.4. CONFIGURING THE MONITORING STACK
	2.5. CONFIGURABLE MONITORING COMPONENTS
	2.6. USING NODE SELECTORS TO MOVE MONITORING COMPONENTS
	2.6.1. How node selectors work with other constraints
	2.6.2. Moving monitoring components to different nodes

	2.7. ASSIGNING TOLERATIONS TO MONITORING COMPONENTS
	2.8. SETTING THE BODY SIZE LIMIT FOR METRICS SCRAPING
	2.9. CONFIGURING A DEDICATED SERVICE MONITOR
	2.9.1. Enabling a dedicated service monitor

	2.10. CONFIGURING PERSISTENT STORAGE
	2.10.1. Persistent storage prerequisites
	2.10.2. Configuring a local persistent volume claim
	2.10.3. Resizing a persistent storage volume
	2.10.4. Modifying the retention time and size for Prometheus metrics data
	2.10.5. Modifying the retention time for Thanos Ruler metrics data

	2.11. CONFIGURING REMOTE WRITE STORAGE
	2.11.1. Supported remote write authentication settings
	2.11.1.1. Config map location for authentication settings
	2.11.1.2. Example remote write authentication settings

	2.12. ADDING CLUSTER ID LABELS TO METRICS
	2.12.1. Creating cluster ID labels for metrics

	2.13. CONTROLLING THE IMPACT OF UNBOUND METRICS ATTRIBUTES IN USER-DEFINED PROJECTS
	2.13.1. Setting scrape sample and label limits for user-defined projects
	2.13.2. Creating scrape sample alerts

	CHAPTER 3. CONFIGURING EXTERNAL ALERTMANAGER INSTANCES
	3.1. ATTACHING ADDITIONAL LABELS TO YOUR TIME SERIES AND ALERTS
	3.2. SETTING LOG LEVELS FOR MONITORING COMPONENTS
	3.3. ENABLING THE QUERY LOG FILE FOR PROMETHEUS
	3.4. ENABLING QUERY LOGGING FOR THANOS QUERIER

	CHAPTER 4. SETTING AUDIT LOG LEVELS FOR THE PROMETHEUS ADAPTER
	4.1. DISABLING THE LOCAL ALERTMANAGER
	4.2. NEXT STEPS

	CHAPTER 5. ENABLING MONITORING FOR USER-DEFINED PROJECTS
	5.1. ENABLING MONITORING FOR USER-DEFINED PROJECTS
	5.2. GRANTING USERS PERMISSION TO MONITOR USER-DEFINED PROJECTS
	5.2.1. Granting user permissions by using the web console
	5.2.2. Granting user permissions by using the CLI

	5.3. GRANTING USERS PERMISSION TO CONFIGURE MONITORING FOR USER-DEFINED PROJECTS
	5.4. ACCESSING METRICS FROM OUTSIDE THE CLUSTER FOR CUSTOM APPLICATIONS
	5.5. EXCLUDING A USER-DEFINED PROJECT FROM MONITORING
	5.6. DISABLING MONITORING FOR USER-DEFINED PROJECTS
	5.7. NEXT STEPS

	CHAPTER 6. ENABLING ALERT ROUTING FOR USER-DEFINED PROJECTS
	6.1. UNDERSTANDING ALERT ROUTING FOR USER-DEFINED PROJECTS
	6.2. ENABLING THE PLATFORM ALERTMANAGER INSTANCE FOR USER-DEFINED ALERT ROUTING
	6.3. ENABLING A SEPARATE ALERTMANAGER INSTANCE FOR USER-DEFINED ALERT ROUTING
	6.4. GRANTING USERS PERMISSION TO CONFIGURE ALERT ROUTING FOR USER-DEFINED PROJECTS
	6.5. NEXT STEPS

	CHAPTER 7. MANAGING METRICS
	7.1. UNDERSTANDING METRICS
	7.2. SETTING UP METRICS COLLECTION FOR USER-DEFINED PROJECTS
	7.2.1. Deploying a sample service
	7.2.2. Specifying how a service is monitored

	7.3. NEXT STEPS

	CHAPTER 8. QUERYING METRICS
	8.1. ABOUT QUERYING METRICS
	8.1.1. Querying metrics for all projects as a cluster administrator
	8.1.2. Querying metrics for user-defined projects as a developer
	8.1.3. Exploring the visualized metrics

	8.2. NEXT STEPS

	CHAPTER 9. MANAGING METRICS TARGETS
	9.1. ACCESSING THE METRICS TARGETS PAGE IN THE ADMINISTRATOR PERSPECTIVE
	9.2. SEARCHING AND FILTERING METRICS TARGETS
	9.3. GETTING DETAILED INFORMATION ABOUT A TARGET
	9.4. NEXT STEPS

	CHAPTER 10. MANAGING ALERTS
	10.1. ACCESSING THE ALERTING UI IN THE ADMINISTRATOR AND DEVELOPER PERSPECTIVES
	10.2. SEARCHING AND FILTERING ALERTS, SILENCES, AND ALERTING RULES
	Understanding alert filters
	Understanding silence filters
	Understanding alerting rule filters
	Searching and filtering alerts, silences, and alerting rules in the Developer perspective

	10.3. GETTING INFORMATION ABOUT ALERTS, SILENCES, AND ALERTING RULES
	10.4. MANAGING SILENCES
	10.4.1. Silencing alerts
	10.4.2. Editing silences
	10.4.3. Expiring silences

	10.5. MANAGING ALERTING RULES FOR USER-DEFINED PROJECTS
	10.5.1. Optimizing alerting for user-defined projects
	10.5.2. About creating alerting rules for user-defined projects
	10.5.3. Creating alerting rules for user-defined projects
	10.5.4. Accessing alerting rules for user-defined projects
	10.5.5. Listing alerting rules for all projects in a single view
	10.5.6. Removing alerting rules for user-defined projects

	10.6. MANAGING ALERTING RULES FOR CORE PLATFORM MONITORING
	10.6.1. Modifying core platform alerting rules
	10.6.2. Creating new alerting rules

	10.7. SENDING NOTIFICATIONS TO EXTERNAL SYSTEMS
	10.7.1. Configuring alert receivers
	10.7.2. Creating alert routing for user-defined projects

	10.8. APPLYING A CUSTOM ALERTMANAGER CONFIGURATION
	10.9. APPLYING A CUSTOM CONFIGURATION TO ALERTMANAGER FOR USER-DEFINED ALERT ROUTING
	10.10. NEXT STEPS

	CHAPTER 11. REVIEWING MONITORING DASHBOARDS
	11.1. REVIEWING MONITORING DASHBOARDS AS A CLUSTER ADMINISTRATOR
	11.2. REVIEWING MONITORING DASHBOARDS AS A DEVELOPER
	11.3. NEXT STEPS

	CHAPTER 12. THE NVIDIA GPU ADMINISTRATION DASHBOARD
	12.1. INTRODUCTION
	12.2. INSTALLING THE NVIDIA GPU ADMINISTRATION DASHBOARD
	12.3. USING THE NVIDIA GPU ADMINISTRATION DASHBOARD
	12.3.1. Viewing the cluster GPU overview
	12.3.2. Viewing the GPUs dashboard
	12.3.3. Viewing the GPU Metrics

	CHAPTER 13. ACCESSING THIRD-PARTY MONITORING APIS
	13.1. ACCESSING THIRD-PARTY MONITORING WEB SERVICE APIS
	13.2. QUERYING METRICS BY USING THE FEDERATION ENDPOINT FOR PROMETHEUS
	13.3. ADDITIONAL RESOURCES

	CHAPTER 14. TROUBLESHOOTING MONITORING ISSUES
	14.1. INVESTIGATING WHY USER-DEFINED METRICS ARE UNAVAILABLE
	14.2. DETERMINING WHY PROMETHEUS IS CONSUMING A LOT OF DISK SPACE

	CHAPTER 15. CONFIG MAP REFERENCE FOR THE CLUSTER MONITORING OPERATOR
	15.1. CLUSTER MONITORING OPERATOR CONFIGURATION REFERENCE
	15.2. ADDITIONALALERTMANAGERCONFIG
	15.2.1. Description
	15.2.2. Required

	15.3. ALERTMANAGERMAINCONFIG
	15.3.1. Description

	15.4. ALERTMANAGERUSERWORKLOADCONFIG
	15.4.1. Description

	15.5. CLUSTERMONITORINGCONFIGURATION
	15.5.1. Description

	15.6. DEDICATEDSERVICEMONITORS
	15.6.1. Description

	15.7. K8SPROMETHEUSADAPTER
	15.7.1. Description

	15.8. KUBESTATEMETRICSCONFIG
	15.8.1. Description

	15.9. OPENSHIFTSTATEMETRICSCONFIG
	15.9.1. Description

	15.10. PROMETHEUSK8SCONFIG
	15.10.1. Description

	15.11. PROMETHEUSOPERATORCONFIG
	15.11.1. Description

	15.12. PROMETHEUSRESTRICTEDCONFIG
	15.12.1. Description

	15.13. REMOTEWRITESPEC
	15.13.1. Description
	15.13.2. Required

	15.14. TELEMETERCLIENTCONFIG
	15.14.1. Description
	15.14.2. Required

	15.15. THANOSQUERIERCONFIG
	15.15.1. Description

	15.16. THANOSRULERCONFIG
	15.16.1. Description

	15.17. TLSCONFIG
	15.17.1. Description
	15.17.2. Required

	15.18. USERWORKLOADCONFIGURATION
	15.18.1. Description

	CHAPTER 16. CLUSTER OBSERVABILITY OPERATOR
	16.1. CLUSTER OBSERVABILITY OPERATOR RELEASE NOTES
	16.1.1. Cluster Observability Operator 0.1.1
	16.1.2. Cluster Observability Operator 0.1

	16.2. CLUSTER OBSERVABILITY OPERATOR OVERVIEW
	16.2.1. Understanding the Cluster Observability Operator
	16.2.1.1. Advantages of using the Cluster Observability Operator

	16.3. INSTALLING THE CLUSTER OBSERVABILITY OPERATOR
	16.3.1. Uninstalling the Cluster Observability Operator using the web console

	16.4. CONFIGURING THE CLUSTER OBSERVABILITY OPERATOR TO MONITOR A SERVICE
	16.4.1. Deploying a sample service for Cluster Observability Operator
	16.4.2. Specifying how a service is monitored by Cluster Observability Operator
	16.4.3. Creating a MonitoringStack object for the Cluster Observability Operator

