
OpenShift Container Platform 4.12

Installation configuration

Cluster-wide configuration during installations

Last Updated: 2024-09-11

OpenShift Container Platform 4.12 Installation configuration

Cluster-wide configuration during installations

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document describes how to perform initial OpenShift Container Platform cluster configuration.

. .

. .

. .

Table of Contents

CHAPTER 1. CUSTOMIZING NODES
1.1. CREATING MACHINE CONFIGS WITH BUTANE

1.1.1. About Butane
1.1.2. Installing Butane
1.1.3. Creating a MachineConfig object by using Butane

1.2. ADDING DAY-1 KERNEL ARGUMENTS
1.3. ADDING KERNEL MODULES TO NODES

1.3.1. Building and testing the kernel module container
1.3.2. Provisioning a kernel module to OpenShift Container Platform

1.3.2.1. Provision kernel modules via a MachineConfig object
1.4. ENCRYPTING AND MIRRORING DISKS DURING INSTALLATION

1.4.1. About disk encryption
1.4.1.1. Configuring an encryption threshold

1.4.2. About disk mirroring
1.4.3. Configuring disk encryption and mirroring
1.4.4. Configuring a RAID-enabled data volume

1.5. CONFIGURING CHRONY TIME SERVICE
1.6. ADDITIONAL RESOURCES

CHAPTER 2. CONFIGURING YOUR FIREWALL
2.1. CONFIGURING YOUR FIREWALL FOR OPENSHIFT CONTAINER PLATFORM

CHAPTER 3. ENABLING LINUX CONTROL GROUP VERSION 2 (CGROUP V2)
3.1. ENABLING LINUX CGROUP V2 DURING INSTALLATION

3
3
3
3
4
5
6
7

10
10
12
12
13
14
15
22
24
25

26
26

32
32

Table of Contents

1

OpenShift Container Platform 4.12 Installation configuration

2

CHAPTER 1. CUSTOMIZING NODES
OpenShift Container Platform supports both cluster-wide and per-machine configuration via Ignition,
which allows arbitrary partitioning and file content changes to the operating system. In general, if a
configuration file is documented in Red Hat Enterprise Linux (RHEL), then modifying it via Ignition is
supported.

There are two ways to deploy machine config changes:

Creating machine configs that are included in manifest files to start up a cluster during
openshift-install.

Creating machine configs that are passed to running OpenShift Container Platform nodes via
the Machine Config Operator.

Additionally, modifying the reference config, such as the Ignition config that is passed to coreos-
installer when installing bare-metal nodes allows per-machine configuration. These changes are
currently not visible to the Machine Config Operator.

The following sections describe features that you might want to configure on your nodes in this way.

1.1. CREATING MACHINE CONFIGS WITH BUTANE

Machine configs are used to configure control plane and worker machines by instructing machines how
to create users and file systems, set up the network, install systemd units, and more.

Because modifying machine configs can be difficult, you can use Butane configs to create machine
configs for you, thereby making node configuration much easier.

1.1.1. About Butane

Butane is a command-line utility that OpenShift Container Platform uses to provide convenient, short-
hand syntax for writing machine configs, as well as for performing additional validation of machine
configs. The format of the Butane config file that Butane accepts is defined in the OpenShift Butane
config spec.

1.1.2. Installing Butane

You can install the Butane tool (butane) to create OpenShift Container Platform machine configs from
a command-line interface. You can install butane on Linux, Windows, or macOS by downloading the
corresponding binary file.

TIP

Butane releases are backwards-compatible with older releases and with the Fedora CoreOS Config
Transpiler (FCCT).

Procedure

1. Navigate to the Butane image download page at https://mirror.openshift.com/pub/openshift-
v4/clients/butane/.

2. Get the butane binary:

a. For the newest version of Butane, save the latest butane image to your current directory:

CHAPTER 1. CUSTOMIZING NODES

3

https://coreos.github.io/butane/specs/
https://mirror.openshift.com/pub/openshift-v4/clients/butane/

b. Optional: For a specific type of architecture you are installing Butane on, such as aarch64 or
ppc64le, indicate the appropriate URL. For example:

3. Make the downloaded binary file executable:

4. Move the butane binary file to a directory on your PATH.
To check your PATH, open a terminal and execute the following command:

Verification steps

You can now use the Butane tool by running the butane command:

1.1.3. Creating a MachineConfig object by using Butane

You can use Butane to produce a MachineConfig object so that you can configure worker or control
plane nodes at installation time or via the Machine Config Operator.

Prerequisites

You have installed the butane utility.

Procedure

1. Create a Butane config file. The following example creates a file named 99-worker-custom.bu
that configures the system console to show kernel debug messages and specifies custom
settings for the chrony time service:

$ curl https://mirror.openshift.com/pub/openshift-v4/clients/butane/latest/butane --output
butane

$ curl https://mirror.openshift.com/pub/openshift-v4/clients/butane/latest/butane-aarch64
--output butane

$ chmod +x butane

$ echo $PATH

$ butane <butane_file>

variant: openshift
version: 4.12.0
metadata:
 name: 99-worker-custom
 labels:
 machineconfiguration.openshift.io/role: worker
openshift:
 kernel_arguments:
 - loglevel=7
storage:
 files:
 - path: /etc/chrony.conf
 mode: 0644

OpenShift Container Platform 4.12 Installation configuration

4

NOTE

The 99-worker-custom.bu file is set to create a machine config for worker
nodes. To deploy on control plane nodes, change the role from worker to
master. To do both, you could repeat the whole procedure using different file
names for the two types of deployments.

2. Create a MachineConfig object by giving Butane the file that you created in the previous step:

A MachineConfig object YAML file is created for you to finish configuring your machines.

3. Save the Butane config in case you need to update the MachineConfig object in the future.

4. If the cluster is not running yet, generate manifest files and add the MachineConfig object
YAML file to the openshift directory. If the cluster is already running, apply the file as follows:

Additional resources

Adding kernel modules to nodes

Encrypting and mirroring disks during installation

1.2. ADDING DAY-1 KERNEL ARGUMENTS

Although it is often preferable to modify kernel arguments as a day-2 activity, you might want to add
kernel arguments to all master or worker nodes during initial cluster installation. Here are some reasons
you might want to add kernel arguments during cluster installation so they take effect before the
systems first boot up:

You need to do some low-level network configuration before the systems start.

You want to disable a feature, such as SELinux, so it has no impact on the systems when they
first come up.

 overwrite: true
 contents:
 inline: |
 pool 0.rhel.pool.ntp.org iburst
 driftfile /var/lib/chrony/drift
 makestep 1.0 3
 rtcsync
 logdir /var/log/chrony

$ butane 99-worker-custom.bu -o ./99-worker-custom.yaml

$ oc create -f 99-worker-custom.yaml

CHAPTER 1. CUSTOMIZING NODES

5

WARNING

Disabling SELinux on RHCOS in production is not supported. Once SELinux
has been disabled on a node, it must be re-provisioned before re-inclusion
in a production cluster.

To add kernel arguments to master or worker nodes, you can create a MachineConfig object and inject
that object into the set of manifest files used by Ignition during cluster setup.

For a listing of arguments you can pass to a RHEL 8 kernel at boot time, see Kernel.org kernel
parameters. It is best to only add kernel arguments with this procedure if they are needed to complete
the initial OpenShift Container Platform installation.

Procedure

1. Change to the directory that contains the installation program and generate the Kubernetes
manifests for the cluster:

2. Decide if you want to add kernel arguments to worker or control plane nodes.

3. In the openshift directory, create a file (for example, 99-openshift-machineconfig-master-
kargs.yaml) to define a MachineConfig object to add the kernel settings. This example adds a
loglevel=7 kernel argument to control plane nodes:

You can change master to worker to add kernel arguments to worker nodes instead. Create a
separate YAML file to add to both master and worker nodes.

You can now continue on to create the cluster.

1.3. ADDING KERNEL MODULES TO NODES

For most common hardware, the Linux kernel includes the device driver modules needed to use that
hardware when the computer starts up. For some hardware, however, modules are not available in Linux.
Therefore, you must find a way to provide those modules to each host computer. This procedure
describes how to do that for nodes in an OpenShift Container Platform cluster.

When a kernel module is first deployed by following these instructions, the module is made available for



$./openshift-install create manifests --dir <installation_directory>

$ cat << EOF > 99-openshift-machineconfig-master-kargs.yaml
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
 labels:
 machineconfiguration.openshift.io/role: master
 name: 99-openshift-machineconfig-master-kargs
spec:
 kernelArguments:
 - loglevel=7
EOF

OpenShift Container Platform 4.12 Installation configuration

6

https://www.kernel.org/doc/Documentation/admin-guide/kernel-parameters.txt

When a kernel module is first deployed by following these instructions, the module is made available for
the current kernel. If a new kernel is installed, the kmods-via-containers software will rebuild and deploy
the module so a compatible version of that module is available with the new kernel.

The way that this feature is able to keep the module up to date on each node is by:

Adding a systemd service to each node that starts at boot time to detect if a new kernel has
been installed and

If a new kernel is detected, the service rebuilds the module and installs it to the kernel

For information on the software needed for this procedure, see the kmods-via-containers github site.

A few important issues to keep in mind:

This procedure is Technology Preview.

Software tools and examples are not yet available in official RPM form and can only be obtained
for now from unofficial github.com sites noted in the procedure.

Third-party kernel modules you might add through these procedures are not supported by Red
Hat.

In this procedure, the software needed to build your kernel modules is deployed in a RHEL 8
container. Keep in mind that modules are rebuilt automatically on each node when that node
gets a new kernel. For that reason, each node needs access to a yum repository that contains
the kernel and related packages needed to rebuild the module. That content is best provided
with a valid RHEL subscription.

1.3.1. Building and testing the kernel module container

Before deploying kernel modules to your OpenShift Container Platform cluster, you can test the
process on a separate RHEL system. Gather the kernel module’s source code, the KVC framework, and
the kmod-via-containers software. Then build and test the module. To do that on a RHEL 8 system, do
the following:

Procedure

1. Register a RHEL 8 system:

2. Attach a subscription to the RHEL 8 system:

3. Install software that is required to build the software and container:

4. Clone the kmod-via-containers repository:

a. Create a folder for the repository:

subscription-manager register

subscription-manager attach --auto

yum install podman make git -y

$ mkdir kmods; cd kmods

CHAPTER 1. CUSTOMIZING NODES

7

https://github.com/kmods-via-containers/kmods-via-containers

b. Clone the repository:

5. Install a KVC framework instance on your RHEL 8 build host to test the module. This adds a
kmods-via-container systemd service and loads it:

a. Change to the kmod-via-containers directory:

b. Install the KVC framework instance:

c. Reload the systemd manager configuration:

6. Get the kernel module source code. The source code might be used to build a third-party
module that you do not have control over, but is supplied by others. You will need content
similar to the content shown in the kvc-simple-kmod example that can be cloned to your
system as follows:

7. Edit the configuration file, simple-kmod.conf file, in this example, and change the name of the
Dockerfile to Dockerfile.rhel:

a. Change to the kvc-simple-kmod directory:

b. Rename the Dockerfile:

Example Dockerfile

8. Create an instance of kmods-via-containers@.service for your kernel module, simple-kmod
in this example:

9. Enable the kmods-via-containers@.service instance:

$ git clone https://github.com/kmods-via-containers/kmods-via-containers

$ cd kmods-via-containers/

$ sudo make install

$ sudo systemctl daemon-reload

$ cd .. ; git clone https://github.com/kmods-via-containers/kvc-simple-kmod

$ cd kvc-simple-kmod

$ cat simple-kmod.conf

KMOD_CONTAINER_BUILD_CONTEXT="https://github.com/kmods-via-containers/kvc-
simple-kmod.git"
KMOD_CONTAINER_BUILD_FILE=Dockerfile.rhel
KMOD_SOFTWARE_VERSION=dd1a7d4
KMOD_NAMES="simple-kmod simple-procfs-kmod"

$ sudo make install

OpenShift Container Platform 4.12 Installation configuration

8

10. Enable and start the systemd service:

a. Review the service status:

Example output

11. To confirm that the kernel modules are loaded, use the lsmod command to list the modules:

Example output

12. Optional. Use other methods to check that the simple-kmod example is working:

Look for a "Hello world" message in the kernel ring buffer with dmesg:

Example output

Check the value of simple-procfs-kmod in /proc:

Example output

Run the spkut command to get more information from the module:

Example output

$ sudo kmods-via-containers build simple-kmod $(uname -r)

$ sudo systemctl enable kmods-via-containers@simple-kmod.service --now

$ sudo systemctl status kmods-via-containers@simple-kmod.service

● kmods-via-containers@simple-kmod.service - Kmods Via Containers - simple-kmod
 Loaded: loaded (/etc/systemd/system/kmods-via-containers@.service;
 enabled; vendor preset: disabled)
 Active: active (exited) since Sun 2020-01-12 23:49:49 EST; 5s ago...

$ lsmod | grep simple_

simple_procfs_kmod 16384 0
simple_kmod 16384 0

$ dmesg | grep 'Hello world'

[6420.761332] Hello world from simple_kmod.

$ sudo cat /proc/simple-procfs-kmod

simple-procfs-kmod number = 0

$ sudo spkut 44

CHAPTER 1. CUSTOMIZING NODES

9

Going forward, when the system boots this service will check if a new kernel is running. If there is a new
kernel, the service builds a new version of the kernel module and then loads it. If the module is already
built, it will just load it.

1.3.2. Provisioning a kernel module to OpenShift Container Platform

Depending on whether or not you must have the kernel module in place when OpenShift Container
Platform cluster first boots, you can set up the kernel modules to be deployed in one of two ways:

Provision kernel modules at cluster install time (day-1): You can create the content as a
MachineConfig object and provide it to openshift-install by including it with a set of manifest
files.

Provision kernel modules via Machine Config Operator (day-2): If you can wait until the
cluster is up and running to add your kernel module, you can deploy the kernel module software
via the Machine Config Operator (MCO).

In either case, each node needs to be able to get the kernel packages and related software packages at
the time that a new kernel is detected. There are a few ways you can set up each node to be able to
obtain that content.

Provide RHEL entitlements to each node.

Get RHEL entitlements from an existing RHEL host, from the /etc/pki/entitlement directory and
copy them to the same location as the other files you provide when you build your Ignition
config.

Inside the Dockerfile, add pointers to a yum repository containing the kernel and other
packages. This must include new kernel packages as they are needed to match newly installed
kernels.

1.3.2.1. Provision kernel modules via a MachineConfig object

By packaging kernel module software with a MachineConfig object, you can deliver that software to
worker or control plane nodes at installation time or via the Machine Config Operator.

Procedure

1. Register a RHEL 8 system:

2. Attach a subscription to the RHEL 8 system:

3. Install software needed to build the software:

KVC: wrapper simple-kmod for 4.18.0-147.3.1.el8_1.x86_64
Running userspace wrapper using the kernel module container...
+ podman run -i --rm --privileged
 simple-kmod-dd1a7d4:4.18.0-147.3.1.el8_1.x86_64 spkut 44
simple-procfs-kmod number = 0
simple-procfs-kmod number = 44

subscription-manager register

subscription-manager attach --auto

OpenShift Container Platform 4.12 Installation configuration

10

4. Create a directory to host the kernel module and tooling:

5. Get the kmods-via-containers software:

a. Clone the kmods-via-containers repository:

b. Clone the kvc-simple-kmod repository:

6. Get your module software. In this example, kvc-simple-kmod is used.

7. Create a fakeroot directory and populate it with files that you want to deliver via Ignition, using
the repositories cloned earlier:

a. Create the directory:

b. Change to the kmod-via-containers directory:

c. Install the KVC framework instance:

d. Change to the kvc-simple-kmod directory:

e. Create the instance:

8. Clone the fakeroot directory, replacing any symbolic links with copies of their targets, by running
the following command:

9. Create a Butane config file, 99-simple-kmod.bu, that embeds the kernel module tree and
enables the systemd service.

NOTE

See "Creating machine configs with Butane" for information about Butane.

yum install podman make git -y

$ mkdir kmods; cd kmods

$ git clone https://github.com/kmods-via-containers/kmods-via-containers

$ git clone https://github.com/kmods-via-containers/kvc-simple-kmod

$ FAKEROOT=$(mktemp -d)

$ cd kmods-via-containers

$ make install DESTDIR=${FAKEROOT}/usr/local CONFDIR=${FAKEROOT}/etc/

$ cd ../kvc-simple-kmod

$ make install DESTDIR=${FAKEROOT}/usr/local CONFDIR=${FAKEROOT}/etc/

$ cd .. && rm -rf kmod-tree && cp -Lpr ${FAKEROOT} kmod-tree

CHAPTER 1. CUSTOMIZING NODES

11

1 To deploy on control plane nodes, change worker to master. To deploy on both control
plane and worker nodes, perform the remainder of these instructions once for each node
type.

10. Use Butane to generate a machine config YAML file, 99-simple-kmod.yaml, containing the files
and configuration to be delivered:

11. If the cluster is not up yet, generate manifest files and add this file to the openshift directory. If
the cluster is already running, apply the file as follows:

Your nodes will start the kmods-via-containers@simple-kmod.service service and the kernel
modules will be loaded.

12. To confirm that the kernel modules are loaded, you can log in to a node (using oc debug
node/<openshift-node>, then chroot /host). To list the modules, use the lsmod command:

Example output

1.4. ENCRYPTING AND MIRRORING DISKS DURING INSTALLATION

During an OpenShift Container Platform installation, you can enable boot disk encryption and mirroring
on the cluster nodes.

1.4.1. About disk encryption

You can enable encryption for the boot disks on the control plane and compute nodes at installation
time. OpenShift Container Platform supports the Trusted Platform Module (TPM) v2 and Tang
encryption modes.

variant: openshift
version: 4.12.0
metadata:
 name: 99-simple-kmod
 labels:
 machineconfiguration.openshift.io/role: worker 1
storage:
 trees:
 - local: kmod-tree
systemd:
 units:
 - name: kmods-via-containers@simple-kmod.service
 enabled: true

$ butane 99-simple-kmod.bu --files-dir . -o 99-simple-kmod.yaml

$ oc create -f 99-simple-kmod.yaml

$ lsmod | grep simple_

simple_procfs_kmod 16384 0
simple_kmod 16384 0

OpenShift Container Platform 4.12 Installation configuration

12

TPM v2

This is the preferred mode. TPM v2 stores passphrases in a secure cryptoprocessor on the server.
You can use this mode to prevent decryption of the boot disk data on a cluster node if the disk is
removed from the server.

Tang

Tang and Clevis are server and client components that enable network-bound disk encryption
(NBDE). You can bind the boot disk data on your cluster nodes to one or more Tang servers. This
prevents decryption of the data unless the nodes are on a secure network where the Tang servers are
accessible. Clevis is an automated decryption framework used to implement decryption on the client
side.

IMPORTANT

The use of the Tang encryption mode to encrypt your disks is only supported for bare
metal and vSphere installations on user-provisioned infrastructure.

In earlier versions of Red Hat Enterprise Linux CoreOS (RHCOS), disk encryption was configured by
specifying /etc/clevis.json in the Ignition config. That file is not supported in clusters created with
OpenShift Container Platform 4.7 or later. Configure disk encryption by using the following procedure.

When the TPM v2 or Tang encryption modes are enabled, the RHCOS boot disks are encrypted using
the LUKS2 format.

This feature:

Is available for installer-provisioned infrastructure, user-provisioned infrastructure, and Assisted
Installer deployments

For Assisted installer deployments:

Each cluster can only have a single encryption method, Tang or TPM

Encryption can be enabled on some or all nodes

There is no Tang threshold; all servers must be valid and operational

Encryption applies to the installation disks only, not to the workload disks

Is supported on Red Hat Enterprise Linux CoreOS (RHCOS) systems only

Sets up disk encryption during the manifest installation phase, encrypting all data written to disk,
from first boot forward

Requires no user intervention for providing passphrases

Uses AES-256-XTS encryption, or AES-256-CBC if FIPS mode is enabled

1.4.1.1. Configuring an encryption threshold

In OpenShift Container Platform, you can specify a requirement for more than one Tang server. You can
also configure the TPM v2 and Tang encryption modes simultaneously. This enables boot disk data
decryption only if the TPM secure cryptoprocessor is present and the Tang servers are accessible over a
secure network.

You can use the threshold attribute in your Butane configuration to define the minimum number of

CHAPTER 1. CUSTOMIZING NODES

13

1

2

3

4

TPM v2 and Tang encryption conditions required for decryption to occur. The threshold is met when the
stated value is reached through any combination of the declared conditions. For example, the
threshold value of 2 in the following configuration can be reached by accessing the two Tang servers, or
by accessing the TPM secure cryptoprocessor and one of the Tang servers:

Example Butane configuration for disk encryption

Set this field to the instruction set architecture of the cluster nodes. Some examples include,
x86_64, aarch64, or ppc64le.

Include this field if you want to use a Trusted Platform Module (TPM) to encrypt the root file
system.

Include this section if you want to use one or more Tang servers.

Specify the minimum number of TPM v2 and Tang encryption conditions required for decryption to
occur.

IMPORTANT

The default threshold value is 1. If you include multiple encryption conditions in your
configuration but do not specify a threshold, decryption can occur if any of the conditions
are met.

NOTE

If you require TPM v2 and Tang for decryption, the value of the threshold attribute must
equal the total number of stated Tang servers plus one. If the threshold value is lower, it
is possible to reach the threshold value by using a single encryption mode. For example, if
you set tpm2 to true and specify two Tang servers, a threshold of 2 can be met by
accessing the two Tang servers, even if the TPM secure cryptoprocessor is not available.

1.4.2. About disk mirroring

During OpenShift Container Platform installation on control plane and worker nodes, you can enable

variant: openshift
version: 4.12.0
metadata:
 name: worker-storage
 labels:
 machineconfiguration.openshift.io/role: worker
boot_device:
 layout: x86_64 1
 luks:
 tpm2: true 2
 tang: 3
 - url: http://tang1.example.com:7500
 thumbprint: jwGN5tRFK-kF6pIX89ssF3khxxX
 - url: http://tang2.example.com:7500
 thumbprint: VCJsvZFjBSIHSldw78rOrq7h2ZF
 threshold: 2 4
openshift:
 fips: true

OpenShift Container Platform 4.12 Installation configuration

14

During OpenShift Container Platform installation on control plane and worker nodes, you can enable
mirroring of the boot and other disks to two or more redundant storage devices. A node continues to
function after storage device failure provided one device remains available.

Mirroring does not support replacement of a failed disk. Reprovision the node to restore the mirror to a
pristine, non-degraded state.

NOTE

For user-provisioned infrastructure deployments, mirroring is available only on RHCOS
systems. Support for mirroring is available on x86_64 nodes booted with BIOS or UEFI
and on ppc64le nodes.

1.4.3. Configuring disk encryption and mirroring

You can enable and configure encryption and mirroring during an OpenShift Container Platform
installation.

Prerequisites

You have downloaded the OpenShift Container Platform installation program on your
installation node.

You installed Butane on your installation node.

NOTE

Butane is a command-line utility that OpenShift Container Platform uses to offer
convenient, short-hand syntax for writing and validating machine configs. For
more information, see "Creating machine configs with Butane".

You have access to a Red Hat Enterprise Linux (RHEL) 8 machine that can be used to generate
a thumbprint of the Tang exchange key.

Procedure

1. If you want to use TPM v2 to encrypt your cluster, check to see if TPM v2 encryption needs to be
enabled in the host firmware for each node. This is required on most Dell systems. Check the
manual for your specific system.

2. If you want to use Tang to encrypt your cluster, follow these preparatory steps:

a. Set up a Tang server or access an existing one. See Network-bound disk encryption for
instructions.

b. Install the clevis package on a RHEL 8 machine, if it is not already installed:

c. On the RHEL 8 machine, run the following command to generate a thumbprint of the
exchange key. Replace http://tang.example.com:7500 with the URL of your Tang server:

$ sudo yum install clevis

$ clevis-encrypt-tang '{"url":"http://tang.example.com:7500"}' < /dev/null > /dev/null 1

CHAPTER 1. CUSTOMIZING NODES

15

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/security_hardening/configuring-automated-unlocking-of-encrypted-volumes-using-policy-based-decryption_security-hardening#network-bound-disk-encryption_configuring-automated-unlocking-of-encrypted-volumes-using-policy-based-decryption

1

1

1

In this example, tangd.socket is listening on port 7500 on the Tang server.

NOTE

The clevis-encrypt-tang command generates a thumbprint of the exchange
key. No data passes to the encryption command during this step; /dev/null
exists here as an input instead of plain text. The encrypted output is also sent
to /dev/null, because it is not required for this procedure.

Example output

The thumbprint of the exchange key.

When the Do you wish to trust these keys? [ynYN] prompt displays, type Y.

NOTE

RHEL 8 provides Clevis version 15, which uses the SHA-1 hash algorithm to
generate thumbprints. Some other distributions provide Clevis version 17 or
later, which use the SHA-256 hash algorithm for thumbprints. You must use a
Clevis version that uses SHA-1 to create the thumbprint, to prevent Clevis
binding issues when you install Red Hat Enterprise Linux CoreOS (RHCOS)
on your OpenShift Container Platform cluster nodes.

d. If the nodes are configured with static IP addressing, run coreos-installer iso customize --
dest-karg-append or use the coreos-installer --append-karg option when installing
RHCOS nodes to set the IP address of the installed system. Append the ip= and other
arguments needed for your network.

IMPORTANT

Some methods for configuring static IPs do not affect the initramfs after the
first boot and will not work with Tang encryption. These include the coreos-
installer --copy-network option, the coreos-installer iso customize --
network-keyfile option, and the coreos-installer pxe customize --
network-keyfile option, as well as adding ip= arguments to the kernel
command line of the live ISO or PXE image during installation. Incorrect
static IP configuration causes the second boot of the node to fail.

3. On your installation node, change to the directory that contains the installation program and
generate the Kubernetes manifests for the cluster:

Replace <installation_directory> with the path to the directory that you want to store the
installation files in.

The advertisement contains the following signing keys:

PLjNyRdGw03zlRoGjQYMahSZGu9 1

$./openshift-install create manifests --dir <installation_directory> 1

OpenShift Container Platform 4.12 Installation configuration

16

1 2

3

4

5

6

7

8

9

10

11

4. Create a Butane config that configures disk encryption, mirroring, or both. For example, to
configure storage for compute nodes, create a $HOME/clusterconfig/worker-storage.bu file.

Butane config example for a boot device

For control plane configurations, replace worker with master in both of these locations.

Set this field to the instruction set architecture of the cluster nodes. Some examples
include, x86_64, aarch64, or ppc64le.

Include this section if you want to encrypt the root file system. For more details, see "About
disk encryption".

Include this field if you want to use a Trusted Platform Module (TPM) to encrypt the root
file system.

Include this section if you want to use one or more Tang servers.

Specify the URL of a Tang server. In this example, tangd.socket is listening on port 7500
on the Tang server.

Specify the exchange key thumbprint, which was generated in a preceding step.

Specify the minimum number of TPM v2 and Tang encryption conditions that must be met
for decryption to occur. The default value is 1. For more information about this topic, see
"Configuring an encryption threshold".

Include this section if you want to mirror the boot disk. For more details, see "About disk
mirroring".

List all disk devices that should be included in the boot disk mirror, including the disk that
RHCOS will be installed onto.

variant: openshift
version: 4.12.0
metadata:
 name: worker-storage 1
 labels:
 machineconfiguration.openshift.io/role: worker 2
boot_device:
 layout: x86_64 3
 luks: 4
 tpm2: true 5
 tang: 6
 - url: http://tang.example.com:7500 7
 thumbprint: PLjNyRdGw03zlRoGjQYMahSZGu9 8
 threshold: 1 9
 mirror: 10
 devices: 11
 - /dev/sda
 - /dev/sdb
openshift:
 fips: true 12

CHAPTER 1. CUSTOMIZING NODES

17

12 Include this directive to enable FIPS mode on your cluster.

IMPORTANT

To enable FIPS mode for your cluster, you must run the installation program from
a Red Hat Enterprise Linux (RHEL) computer configured to operate in FIPS
mode. For more information about configuring FIPS mode on RHEL, see
Installing the system in FIPS mode . If you are configuring nodes to use both disk
encryption and mirroring, both features must be configured in the same Butane
configuration file. If you are configuring disk encryption on a node with FIPS
mode enabled, you must include the fips directive in the same Butane
configuration file, even if FIPS mode is also enabled in a separate manifest.

5. Create a control plane or compute node manifest from the corresponding Butane configuration
file and save it to the <installation_directory>/openshift directory. For example, to create a
manifest for the compute nodes, run the following command:

Repeat this step for each node type that requires disk encryption or mirroring.

6. Save the Butane configuration file in case you need to update the manifests in the future.

7. Continue with the remainder of the OpenShift Container Platform installation.

TIP

You can monitor the console log on the RHCOS nodes during installation for error messages
relating to disk encryption or mirroring.

IMPORTANT

If you configure additional data partitions, they will not be encrypted unless
encryption is explicitly requested.

Verification

After installing OpenShift Container Platform, you can verify if boot disk encryption or mirroring is
enabled on the cluster nodes.

1. From the installation host, access a cluster node by using a debug pod:

a. Start a debug pod for the node, for example:

b. Set /host as the root directory within the debug shell. The debug pod mounts the root file
system of the node in /host within the pod. By changing the root directory to /host, you can
run binaries contained in the executable paths on the node:

NOTE

$ butane $HOME/clusterconfig/worker-storage.bu -o <installation_directory>/openshift/99-
worker-storage.yaml

$ oc debug node/compute-1

chroot /host

OpenShift Container Platform 4.12 Installation configuration

18

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/security_hardening/assembly_installing-the-system-in-fips-mode_security-hardening

1

2

3

1

1

NOTE

OpenShift Container Platform cluster nodes running Red Hat Enterprise
Linux CoreOS (RHCOS) are immutable and rely on Operators to apply
cluster changes. Accessing cluster nodes using SSH is not recommended.
However, if the OpenShift Container Platform API is not available, or kubelet
is not properly functioning on the target node, oc operations will be
impacted. In such situations, it is possible to access nodes using ssh
core@<node>.<cluster_name>.<base_domain> instead.

2. If you configured boot disk encryption, verify if it is enabled:

a. From the debug shell, review the status of the root mapping on the node:

Example output

The encryption format. When the TPM v2 or Tang encryption modes are enabled, the
RHCOS boot disks are encrypted using the LUKS2 format.

The encryption algorithm used to encrypt the LUKS2 volume. The aes-cbc-
essiv:sha256 cipher is used if FIPS mode is enabled.

The device that contains the encrypted LUKS2 volume. If mirroring is enabled, the
value will represent a software mirror device, for example /dev/md126.

b. List the Clevis plugins that are bound to the encrypted device:

Specify the device that is listed in the device field in the output of the preceding step.

Example output

In the example output, the Tang plugin is used by the Shamir’s Secret Sharing (SSS)
Clevis plugin for the /dev/sda4 device.

cryptsetup status root

/dev/mapper/root is active and is in use.
 type: LUKS2 1
 cipher: aes-xts-plain64 2
 keysize: 512 bits
 key location: keyring
 device: /dev/sda4 3
 sector size: 512
 offset: 32768 sectors
 size: 15683456 sectors
 mode: read/write

clevis luks list -d /dev/sda4 1

1: sss '{"t":1,"pins":{"tang":[{"url":"http://tang.example.com:7500"}]}}' 1

CHAPTER 1. CUSTOMIZING NODES

19

1

2

3. If you configured mirroring, verify if it is enabled:

a. From the debug shell, list the software RAID devices on the node:

Example output

The /dev/md126 software RAID mirror device uses the /dev/sda3 and /dev/sdb3 disk
devices on the cluster node.

The /dev/md127 software RAID mirror device uses the /dev/sda4 and /dev/sdb4 disk
devices on the cluster node.

b. Review the details of each of the software RAID devices listed in the output of the
preceding command. The following example lists the details of the /dev/md126 device:

Example output

cat /proc/mdstat

Personalities : [raid1]
md126 : active raid1 sdb3[1] sda3[0] 1
 393152 blocks super 1.0 [2/2] [UU]

md127 : active raid1 sda4[0] sdb4[1] 2
 51869632 blocks super 1.2 [2/2] [UU]

unused devices: <none>

mdadm --detail /dev/md126

/dev/md126:
 Version : 1.0
 Creation Time : Wed Jul 7 11:07:36 2021
 Raid Level : raid1 1
 Array Size : 393152 (383.94 MiB 402.59 MB)
 Used Dev Size : 393152 (383.94 MiB 402.59 MB)
 Raid Devices : 2
 Total Devices : 2
 Persistence : Superblock is persistent

 Update Time : Wed Jul 7 11:18:24 2021
 State : clean 2
 Active Devices : 2 3
 Working Devices : 2 4
 Failed Devices : 0 5
 Spare Devices : 0

Consistency Policy : resync

 Name : any:md-boot 6
 UUID : ccfa3801:c520e0b5:2bee2755:69043055
 Events : 19

OpenShift Container Platform 4.12 Installation configuration

20

1

2

3 4

5

6

7 8

Specifies the RAID level of the device. raid1 indicates RAID 1 disk mirroring.

Specifies the state of the RAID device.

States the number of underlying disk devices that are active and working.

States the number of underlying disk devices that are in a failed state.

The name of the software RAID device.

Provides information about the underlying disk devices used by the software RAID
device.

c. List the file systems mounted on the software RAID devices:

Example output

In the example output, the /boot file system is mounted on the /dev/md126 software RAID
device and the root file system is mounted on /dev/md127.

 Number Major Minor RaidDevice State
 0 252 3 0 active sync /dev/sda3 7
 1 252 19 1 active sync /dev/sdb3 8

mount | grep /dev/md

/dev/md127 on / type xfs
(rw,relatime,seclabel,attr2,inode64,logbufs=8,logbsize=32k,prjquota)
/dev/md127 on /etc type xfs
(rw,relatime,seclabel,attr2,inode64,logbufs=8,logbsize=32k,prjquota)
/dev/md127 on /usr type xfs
(ro,relatime,seclabel,attr2,inode64,logbufs=8,logbsize=32k,prjquota)
/dev/md127 on /sysroot type xfs
(ro,relatime,seclabel,attr2,inode64,logbufs=8,logbsize=32k,prjquota)
/dev/md127 on /var type xfs
(rw,relatime,seclabel,attr2,inode64,logbufs=8,logbsize=32k,prjquota)
/dev/md127 on /var/lib/containers/storage/overlay type xfs
(rw,relatime,seclabel,attr2,inode64,logbufs=8,logbsize=32k,prjquota)
/dev/md127 on /var/lib/kubelet/pods/e5054ed5-f882-4d14-b599-99c050d4e0c0/volume-
subpaths/etc/tuned/1 type xfs
(rw,relatime,seclabel,attr2,inode64,logbufs=8,logbsize=32k,prjquota)
/dev/md127 on /var/lib/kubelet/pods/e5054ed5-f882-4d14-b599-99c050d4e0c0/volume-
subpaths/etc/tuned/2 type xfs
(rw,relatime,seclabel,attr2,inode64,logbufs=8,logbsize=32k,prjquota)
/dev/md127 on /var/lib/kubelet/pods/e5054ed5-f882-4d14-b599-99c050d4e0c0/volume-
subpaths/etc/tuned/3 type xfs
(rw,relatime,seclabel,attr2,inode64,logbufs=8,logbsize=32k,prjquota)
/dev/md127 on /var/lib/kubelet/pods/e5054ed5-f882-4d14-b599-99c050d4e0c0/volume-
subpaths/etc/tuned/4 type xfs
(rw,relatime,seclabel,attr2,inode64,logbufs=8,logbsize=32k,prjquota)
/dev/md127 on /var/lib/kubelet/pods/e5054ed5-f882-4d14-b599-99c050d4e0c0/volume-
subpaths/etc/tuned/5 type xfs
(rw,relatime,seclabel,attr2,inode64,logbufs=8,logbsize=32k,prjquota)
/dev/md126 on /boot type ext4 (rw,relatime,seclabel)

CHAPTER 1. CUSTOMIZING NODES

21

4. Repeat the verification steps for each OpenShift Container Platform node type.

Additional resources

For more information about the TPM v2 and Tang encryption modes, see Configuring
automated unlocking of encrypted volumes using policy-based decryption.

1.4.4. Configuring a RAID-enabled data volume

You can enable software RAID partitioning to provide an external data volume. OpenShift Container
Platform supports RAID 0, RAID 1, RAID 4, RAID 5, RAID 6, and RAID 10 for data protection and fault
tolerance. See "About disk mirroring" for more details.

Prerequisites

You have downloaded the OpenShift Container Platform installation program on your
installation node.

You have installed Butane on your installation node.

NOTE

Butane is a command-line utility that OpenShift Container Platform uses to
provide convenient, short-hand syntax for writing machine configs, as well as for
performing additional validation of machine configs. For more information, see
the Creating machine configs with Butane section.

Procedure

1. Create a Butane config that configures a data volume by using software RAID.

To configure a data volume with RAID 1 on the same disks that are used for a mirrored boot
disk, create a $HOME/clusterconfig/raid1-storage.bu file, for example:

RAID 1 on mirrored boot disk

variant: openshift
version: 4.12.0
metadata:
 name: raid1-storage
 labels:
 machineconfiguration.openshift.io/role: worker
boot_device:
 mirror:
 devices:
 - /dev/sda
 - /dev/sdb
storage:
 disks:
 - device: /dev/sda
 partitions:
 - label: root-1
 size_mib: 25000 1
 - label: var-1
 - device: /dev/sdb

OpenShift Container Platform 4.12 Installation configuration

22

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/security_hardening/configuring-automated-unlocking-of-encrypted-volumes-using-policy-based-decryption_security-hardening

1 2 When adding a data partition to the boot disk, a minimum value of 25000 mebibytes is
recommended. If no value is specified, or if the specified value is smaller than the
recommended minimum, the resulting root file system will be too small, and future
reinstalls of RHCOS might overwrite the beginning of the data partition.

To configure a data volume with RAID 1 on secondary disks, create a
$HOME/clusterconfig/raid1-alt-storage.bu file, for example:

RAID 1 on secondary disks

 partitions:
 - label: root-2
 size_mib: 25000 2
 - label: var-2
 raid:
 - name: md-var
 level: raid1
 devices:
 - /dev/disk/by-partlabel/var-1
 - /dev/disk/by-partlabel/var-2
 filesystems:
 - device: /dev/md/md-var
 path: /var
 format: xfs
 wipe_filesystem: true
 with_mount_unit: true

variant: openshift
version: 4.12.0
metadata:
 name: raid1-alt-storage
 labels:
 machineconfiguration.openshift.io/role: worker
storage:
 disks:
 - device: /dev/sdc
 wipe_table: true
 partitions:
 - label: data-1
 - device: /dev/sdd
 wipe_table: true
 partitions:
 - label: data-2
 raid:
 - name: md-var-lib-containers
 level: raid1
 devices:
 - /dev/disk/by-partlabel/data-1
 - /dev/disk/by-partlabel/data-2
 filesystems:
 - device: /dev/md/md-var-lib-containers
 path: /var/lib/containers
 format: xfs
 wipe_filesystem: true
 with_mount_unit: true

CHAPTER 1. CUSTOMIZING NODES

23

1

1 2

3

2. Create a RAID manifest from the Butane config you created in the previous step and save it to
the <installation_directory>/openshift directory. For example, to create a manifest for the
compute nodes, run the following command:

Replace <butane_config> and <manifest_name> with the file names from the previous
step. For example, raid1-alt-storage.bu and raid1-alt-storage.yaml for secondary disks.

3. Save the Butane config in case you need to update the manifest in the future.

4. Continue with the remainder of the OpenShift Container Platform installation.

1.5. CONFIGURING CHRONY TIME SERVICE

You can set the time server and related settings used by the chrony time service (chronyd) by
modifying the contents of the chrony.conf file and passing those contents to your nodes as a machine
config.

Procedure

1. Create a Butane config including the contents of the chrony.conf file. For example, to
configure chrony on worker nodes, create a 99-worker-chrony.bu file.

NOTE

See "Creating machine configs with Butane" for information about Butane.

On control plane nodes, substitute master for worker in both of these locations.

Specify an octal value mode for the mode field in the machine config file. After creating
the file and applying the changes, the mode is converted to a decimal value. You can check

$ butane $HOME/clusterconfig/<butane_config>.bu -o
<installation_directory>/openshift/<manifest_name>.yaml 1

variant: openshift
version: 4.12.0
metadata:
 name: 99-worker-chrony 1
 labels:
 machineconfiguration.openshift.io/role: worker 2
storage:
 files:
 - path: /etc/chrony.conf
 mode: 0644 3
 overwrite: true
 contents:
 inline: |
 pool 0.rhel.pool.ntp.org iburst 4
 driftfile /var/lib/chrony/drift
 makestep 1.0 3
 rtcsync
 logdir /var/log/chrony

OpenShift Container Platform 4.12 Installation configuration

24

4

the file and applying the changes, the mode is converted to a decimal value. You can check
the YAML file with the command oc get mc <mc-name> -o yaml.

Specify any valid, reachable time source, such as the one provided by your DHCP server.
Alternately, you can specify any of the following NTP servers: 1.rhel.pool.ntp.org,
2.rhel.pool.ntp.org, or 3.rhel.pool.ntp.org.

2. Use Butane to generate a MachineConfig object file, 99-worker-chrony.yaml, containing the
configuration to be delivered to the nodes:

3. Apply the configurations in one of two ways:

If the cluster is not running yet, after you generate manifest files, add the MachineConfig
object file to the <installation_directory>/openshift directory, and then continue to create
the cluster.

If the cluster is already running, apply the file:

1.6. ADDITIONAL RESOURCES

For information on Butane, see Creating machine configs with Butane .

For information on FIPS support, see Support for FIPS cryptography .

$ butane 99-worker-chrony.bu -o 99-worker-chrony.yaml

$ oc apply -f ./99-worker-chrony.yaml

CHAPTER 1. CUSTOMIZING NODES

25

https://docs.redhat.com/en/documentation/openshift_container_platform/4.12/html-single/installation_overview/#installing-fips

CHAPTER 2. CONFIGURING YOUR FIREWALL
If you use a firewall, you must configure it so that OpenShift Container Platform can access the sites
that it requires to function. You must always grant access to some sites, and you grant access to more if
you use Red Hat Insights, the Telemetry service, a cloud to host your cluster, and certain build
strategies.

2.1. CONFIGURING YOUR FIREWALL FOR OPENSHIFT CONTAINER
PLATFORM

Before you install OpenShift Container Platform, you must configure your firewall to grant access to the
sites that OpenShift Container Platform requires.

There are no special configuration considerations for services running on only controller nodes
compared to worker nodes.

NOTE

If your environment has a dedicated load balancer in front of your OpenShift Container
Platform cluster, review the allowlists between your firewall and load balancer to prevent
unwanted network restrictions to your cluster.

Procedure

1. Allowlist the following registry URLs:

URL Port Function

registry.redhat.io 443 Provides core container images

access.redhat.com 443 Hosts a signature store that a container
client requires for verifying images pulled
from registry.access.redhat.com. In a
firewall environment, ensure that this
resource is on the allowlist.

registry.access.redhat.co
m

443 Hosts all the container images that are
stored on the Red Hat Ecosystem Catalog,
including core container images.

quay.io 443 Provides core container images

cdn.quay.io 443 Provides core container images

cdn01.quay.io 443 Provides core container images

cdn02.quay.io 443 Provides core container images

cdn03.quay.io 443 Provides core container images

cdn04.quay.io 443 Provides core container images

OpenShift Container Platform 4.12 Installation configuration

26

cdn05.quay.io 443 Provides core container images

cdn06.quay.io 443 Provides core container images

sso.redhat.com 443 The https://console.redhat.com site
uses authentication from
sso.redhat.com

URL Port Function

You can use the wildcards *.quay.io and *.openshiftapps.com instead of cdn.quay.io and
cdn0[1-6].quay.io in your allowlist.

You can use the wildcard *.access.redhat.com to simplify the configuration and ensure
that all subdomains, including registry.access.redhat.com, are allowed.

When you add a site, such as quay.io, to your allowlist, do not add a wildcard entry, such as
*.quay.io, to your denylist. In most cases, image registries use a content delivery network
(CDN) to serve images. If a firewall blocks access, image downloads are denied when the
initial download request redirects to a hostname such as cdn01.quay.io.

2. Allowlist any site that provides resources for a language or framework that your builds require.

3. If you do not disable Telemetry, you must grant access to the following URLs to access Red Hat
Insights:

URL Port Function

cert-
api.access.redhat.com

443 Required for Telemetry

api.access.redhat.com 443 Required for Telemetry

infogw.api.openshift.com 443 Required for Telemetry

console.redhat.com 443 Required for Telemetry and for insights-
operator

4. If you use Alibaba Cloud, Amazon Web Services (AWS), Microsoft Azure, or Google Cloud
Platform (GCP) to host your cluster, you must grant access to the URLs that provide the cloud
provider API and DNS for that cloud:

Cloud URL Port Function

Alibab
a

*.aliyuncs.com 443 Required to access Alibaba Cloud
services and resources. Review the
Alibaba endpoints_config.go file to
determine the exact endpoints to
allow for the regions that you use.

CHAPTER 2. CONFIGURING YOUR FIREWALL

27

https://console.redhat.com
https://github.com/aliyun/alibaba-cloud-sdk-go/blob/master/sdk/endpoints/endpoints_config.go?spm=a2c4g.11186623.0.0.47875873ciGnC8&file=endpoints_config.go

AWS *.amazonaws.com

Alternatively, if you choose to not use
a wildcard for AWS APIs, you must
allowlist the following URLs:

443 Required to access AWS services and
resources. Review the AWS Service
Endpoints in the AWS documentation
to determine the exact endpoints to
allow for the regions that you use.

ec2.amazonaws.com 443 Used to install and manage clusters in
an AWS environment.

events.amazonaws.com 443 Used to install and manage clusters in
an AWS environment.

iam.amazonaws.com 443 Used to install and manage clusters in
an AWS environment.

route53.amazonaws.com 443 Used to install and manage clusters in
an AWS environment.

*.s3.amazonaws.com 443 Used to install and manage clusters in
an AWS environment.

*.s3.
<aws_region>.amazonaws.com

443 Used to install and manage clusters in
an AWS environment.

*.s3.dualstack.
<aws_region>.amazonaws.com

443 Used to install and manage clusters in
an AWS environment.

sts.amazonaws.com 443 Used to install and manage clusters in
an AWS environment.

sts.
<aws_region>.amazonaws.com

443 Used to install and manage clusters in
an AWS environment.

tagging.us-east-
1.amazonaws.com

443 Used to install and manage clusters in
an AWS environment. This endpoint is
always us-east-1, regardless of the
region the cluster is deployed in.

ec2.
<aws_region>.amazonaws.com

443 Used to install and manage clusters in
an AWS environment.

elasticloadbalancing.
<aws_region>.amazonaws.com

443 Used to install and manage clusters in
an AWS environment.

servicequotas.
<aws_region>.amazonaws.com

443 Required. Used to confirm quotas for
deploying the service.

Cloud URL Port Function

OpenShift Container Platform 4.12 Installation configuration

28

https://docs.aws.amazon.com/general/latest/gr/rande.html

tagging.
<aws_region>.amazonaws.com

443 Allows the assignment of metadata
about AWS resources in the form of
tags.

GCP *.googleapis.com 443 Required to access GCP services and
resources. Review Cloud Endpoints in
the GCP documentation to determine
the endpoints to allow for your APIs.

accounts.google.com 443 Required to access your GCP
account.

Azure management.azure.com 443 Required to access Azure services and
resources. Review the Azure REST API
reference in the Azure documentation
to determine the endpoints to allow
for your APIs.

*.blob.core.windows.net 443 Required to download Ignition files.

login.microsoftonline.com 443 Required to access Azure services and
resources. Review the Azure REST API
reference in the Azure documentation
to determine the endpoints to allow
for your APIs.

Cloud URL Port Function

5. Allowlist the following URLs:

URL Port Function

mirror.openshift.com 443 Required to access mirrored installation
content and images. This site is also a
source of release image signatures,
although the Cluster Version Operator
needs only a single functioning source.

storage.googleapis.com/o
penshift-release

443 A source of release image signatures,
although the Cluster Version Operator
needs only a single functioning source.

*.apps.<cluster_name>.
<base_domain>

443 Required to access the default cluster
routes unless you set an ingress wildcard
during installation.

quayio-production-
s3.s3.amazonaws.com

443 Required to access Quay image content in
AWS.

CHAPTER 2. CONFIGURING YOUR FIREWALL

29

https://cloud.google.com/endpoints/
https://docs.microsoft.com/en-us/rest/api/azure/
https://docs.microsoft.com/en-us/rest/api/azure/

api.openshift.com 443 Required both for your cluster token and
to check if updates are available for the
cluster.

rhcos.mirror.openshift.co
m

443 Required to download Red Hat Enterprise
Linux CoreOS (RHCOS) images.

console.redhat.com 443 Required for your cluster token.

sso.redhat.com 443 The https://console.redhat.com site
uses authentication from
sso.redhat.com

URL Port Function

Operators require route access to perform health checks. Specifically, the authentication and
web console Operators connect to two routes to verify that the routes work. If you are the
cluster administrator and do not want to allow *.apps.<cluster_name>.<base_domain>, then
allow these routes:

oauth-openshift.apps.<cluster_name>.<base_domain>

console-openshift-console.apps.<cluster_name>.<base_domain>, or the hostname that
is specified in the spec.route.hostname field of the consoles.operator/cluster object if
the field is not empty.

6. Allowlist the following URLs for optional third-party content:

URL Port Function

registry.connect.redhat.co
m

443 Required for all third-party images and
certified operators.

rhc4tp-prod-z8cxf-image-
registry-us-east-1-
evenkyleffocxqvofrk.s3.du
alstack.us-east-
1.amazonaws.com

443 Provides access to container images
hosted on
registry.connect.redhat.com

oso-rhc4tp-docker-
registry.s3-us-west-
2.amazonaws.com

443 Required for Sonatype Nexus, F5 Big IP
operators.

7. If you use a default Red Hat Network Time Protocol (NTP) server allow the following URLs:

1.rhel.pool.ntp.org

2.rhel.pool.ntp.org

3.rhel.pool.ntp.org

OpenShift Container Platform 4.12 Installation configuration

30

https://console.redhat.com

NOTE

If you do not use a default Red Hat NTP server, verify the NTP server for your platform
and allow it in your firewall.

CHAPTER 2. CONFIGURING YOUR FIREWALL

31

CHAPTER 3. ENABLING LINUX CONTROL GROUP VERSION 2
(CGROUP V2)

You can enable Linux control group version 2 (cgroup v2) in your cluster by editing the node.config
object. Enabling cgroup v2 in OpenShift Container Platform disables all cgroups version 1 controllers and
hierarchies in your cluster. cgroup v1 is enabled by default.

cgroup v2 is the next version of the Linux cgroup API. cgroup v2 offers several improvements over
cgroup v1, including a unified hierarchy, safer sub-tree delegation, new features such as Pressure Stall
Information, and enhanced resource management and isolation.

IMPORTANT

OpenShift Container Platform cgroups version 2 support is a Technology Preview feature
only. Technology Preview features are not supported with Red Hat production service
level agreements (SLAs) and might not be functionally complete. Red Hat does not
recommend using them in production. These features provide early access to upcoming
product features, enabling customers to test functionality and provide feedback during
the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

3.1. ENABLING LINUX CGROUP V2 DURING INSTALLATION

You can enable Linux control group version 2 (cgroup v2) when you install a cluster by creating
installation manifests.

Procedure

1. Create or edit the node.config object to specify the v2 cgroup:

2. Create or edit the FeatureGate object to enable the TechPreviewNoUpgrade feature set:

3. Proceed with the installation as usual.

Additional resources

Enabling OpenShift Container Platform features using FeatureGates

apiVersion: config.openshift.io/v1
kind: Node
metadata:
 name: cluster
spec:
 cgroupMode: "v1"

apiVersion: config.openshift.io/v1
kind: FeatureGate
metadata:
 name: cluster
 spec:
 featureSet: "TechPreviewNoUpgrade"

OpenShift Container Platform 4.12 Installation configuration

32

https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html
https://www.kernel.org/doc/html/latest/accounting/psi.html
https://access.redhat.com/support/offerings/techpreview/
https://docs.redhat.com/en/documentation/openshift_container_platform/4.12/html-single/nodes/#nodes-cluster-enabling

OpenShift Container Platform installation overview

CHAPTER 3. ENABLING LINUX CONTROL GROUP VERSION 2 (CGROUP V2)

33

https://docs.redhat.com/en/documentation/openshift_container_platform/4.12/html-single/installation_overview/#ocp-installation-overview

	Table of Contents
	CHAPTER 1. CUSTOMIZING NODES
	1.1. CREATING MACHINE CONFIGS WITH BUTANE
	1.1.1. About Butane
	1.1.2. Installing Butane
	1.1.3. Creating a MachineConfig object by using Butane

	1.2. ADDING DAY-1 KERNEL ARGUMENTS
	1.3. ADDING KERNEL MODULES TO NODES
	1.3.1. Building and testing the kernel module container
	1.3.2. Provisioning a kernel module to OpenShift Container Platform
	1.3.2.1. Provision kernel modules via a MachineConfig object

	1.4. ENCRYPTING AND MIRRORING DISKS DURING INSTALLATION
	1.4.1. About disk encryption
	1.4.1.1. Configuring an encryption threshold

	1.4.2. About disk mirroring
	1.4.3. Configuring disk encryption and mirroring
	1.4.4. Configuring a RAID-enabled data volume

	1.5. CONFIGURING CHRONY TIME SERVICE
	1.6. ADDITIONAL RESOURCES

	CHAPTER 2. CONFIGURING YOUR FIREWALL
	2.1. CONFIGURING YOUR FIREWALL FOR OPENSHIFT CONTAINER PLATFORM

	CHAPTER 3. ENABLING LINUX CONTROL GROUP VERSION 2 (CGROUP V2)
	3.1. ENABLING LINUX CGROUP V2 DURING INSTALLATION

