

OpenShift Container Platform 4.12

Installing on any platform

Installing OpenShift Container Platform on any platform

Last Updated: 2024-09-11

OpenShift Container Platform 4.12 Installing on any platform

Installing OpenShift Container Platform on any platform

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is available at

http://creativecommons.org/licenses/by-sa/3.0/

. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert, Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift, Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java [®] is a registered trademark of Oracle and/or its affiliates.

XFS [®] is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack [®] Word Mark and OpenStack logo are either registered trademarks/service marks or trademarks/service marks of the OpenStack Foundation, in the United States and other countries and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document describes how to install OpenShift Container Platform on any platform.

Table of Contents

CHAPTER 1. INSTALLING A CLUSTER ON ANY PLATFORM	. 4
1.1. PREREQUISITES	4
1.2. INTERNET ACCESS FOR OPENSHIFT CONTAINER PLATFORM	4
1.3. REQUIREMENTS FOR A CLUSTER WITH USER-PROVISIONED INFRASTRUCTURE	4
1.3.1. Required machines for cluster installation	5
1.3.2. Minimum resource requirements for cluster installation	5
1.3.3. Certificate signing requests management	6
1.3.4. Networking requirements for user-provisioned infrastructure	6
1.3.4.1. Setting the cluster node hostnames through DHCP	7
1.3.4.2. Network connectivity requirements	7
NTP configuration for user-provisioned infrastructure	8
1.3.5. User-provisioned DNS requirements	9
1.3.5.1. Example DNS configuration for user-provisioned clusters	10
1.3.6. Load balancing requirements for user-provisioned infrastructure	13
1.3.6.1. Example load balancer configuration for user-provisioned clusters	14
1.4. PREPARING THE USER-PROVISIONED INFRASTRUCTURE	16
1.5. VALIDATING DNS RESOLUTION FOR USER-PROVISIONED INFRASTRUCTURE	18
1.6. GENERATING A KEY PAIR FOR CLUSTER NODE SSH ACCESS	20
1.7. OBTAINING THE INSTALLATION PROGRAM	22
1.8. INSTALLING THE OPENSHIFT CLI BY DOWNLOADING THE BINARY	23
Installing the OpenShift CLI on Linux	23
Installing the OpenShift CLI on Windows	24
Installing the OpenShift CLI on macOS	24
1.9. MANUALLY CREATING THE INSTALLATION CONFIGURATION FILE	25
1.9.1. Sample install-config.yaml file for other platforms	26
1.9.2. Configuring the cluster-wide proxy during installation	28
1.9.3. Configuring a three-node cluster	30
1.10. CREATING THE KUBERNETES MANIFEST AND IGNITION CONFIG FILES	31
1.11. INSTALLING RHCOS AND STARTING THE OPENSHIFT CONTAINER PLATFORM BOOTSTRAP PROCE	:SS
	32
1.11.1. Installing RHCOS by using an ISO image	33
1.11.2. Installing RHCOS by using PXE or iPXE booting	37
1.11.3. Advanced RHCOS installation configuration	41
1.11.3.1. Using advanced networking options for PXE and ISO installations	42
1.11.3.2. Disk partitioning	43
1.11.3.2.1. Creating a separate /var partition	43
1.11.3.2.2. Retaining existing partitions	46
1.11.3.3. Identifying Ignition configs	46
1.11.3.4. Advanced RHCOS installation reference	47
1.11.3.4.1. Networking and bonding options for ISO installations	47
Configuring DHCP or static IP addresses	48
Configuring an IP address without a static hostname	48
Specifying multiple network interfaces	48
Configuring default gateway and route	49
Disabling DHCP on a single interface	49
Combining DHCP and static IP configurations	49
Configuring VLANs on individual interfaces	49
Providing multiple DNS servers	49
Bonding multiple network interfaces to a single interface	50
Bonding multiple network interfaces to a single interface	50
Using network teaming	50

1.11.3.4.2. coreos-installer options for ISO and PXE installations	51
1.11.3.4.3. coreos.inst boot options for ISO or PXE installations	55
1.12. WAITING FOR THE BOOTSTRAP PROCESS TO COMPLETE	56
1.13. LOGGING IN TO THE CLUSTER BY USING THE CLI	57
1.14. APPROVING THE CERTIFICATE SIGNING REQUESTS FOR YOUR MACHINES	58
1.15. INITIAL OPERATOR CONFIGURATION	61
1.15.1. Disabling the default OperatorHub catalog sources	62
1.15.2. Image registry removed during installation	62
1.15.3. Image registry storage configuration	62
1.15.3.1. Configuring registry storage for bare metal and other manual installations	62
1.15.3.2. Configuring storage for the image registry in non-production clusters	64
1.15.3.3. Configuring block registry storage for bare metal	64
1.16. COMPLETING INSTALLATION ON USER-PROVISIONED INFRASTRUCTURE	66
1.17. TELEMETRY ACCESS FOR OPENSHIFT CONTAINER PLATFORM	68
1.18. NEXT STEPS	68

CHAPTER 1. INSTALLING A CLUSTER ON ANY PLATFORM

In OpenShift Container Platform version 4.12, you can install a cluster on any infrastructure that you provision, including virtualization and cloud environments.

IMPORTANT

Review the information in the guidelines for deploying OpenShift Container Platform on non-tested platforms before you attempt to install an OpenShift Container Platform cluster in virtualized or cloud environments.

1.1. PREREQUISITES

- You reviewed details about the OpenShift Container Platform installation and update processes.
- You read the documentation on selecting a cluster installation method and preparing it for users.
- If you use a firewall, you configured it to allow the sites that your cluster requires access to.

NOTE

Be sure to also review this site list if you are configuring a proxy.

1.2. INTERNET ACCESS FOR OPENSHIFT CONTAINER PLATFORM

In OpenShift Container Platform 4.12, you require access to the internet to install your cluster.

You must have internet access to:

- Access OpenShift Cluster Manager Hybrid Cloud Console to download the installation program
 and perform subscription management. If the cluster has internet access and you do not disable
 Telemetry, that service automatically entitles your cluster.
- Access Quay.io to obtain the packages that are required to install your cluster.
- Obtain the packages that are required to perform cluster updates.

IMPORTANT

If your cluster cannot have direct internet access, you can perform a restricted network installation on some types of infrastructure that you provision. During that process, you download the required content and use it to populate a mirror registry with the installation packages. With some installation types, the environment that you install your cluster in will not require internet access. Before you update the cluster, you update the content of the mirror registry.

1.3. REQUIREMENTS FOR A CLUSTER WITH USER-PROVISIONED INFRASTRUCTURE

For a cluster that contains user-provisioned infrastructure, you must deploy all of the required machines.

This section describes the requirements for deploying OpenShift Container Platform on user-provisioned infrastructure.

1.3.1. Required machines for cluster installation

The smallest OpenShift Container Platform clusters require the following hosts:

Table 1.1. Minimum required hosts

Hosts	Description
One temporary bootstrap machine	The cluster requires the bootstrap machine to deploy the OpenShift Container Platform cluster on the three control plane machines. You can remove the bootstrap machine after you install the cluster.
Three control plane machines	The control plane machines run the Kubernetes and OpenShift Container Platform services that form the control plane.
At least two compute machines, which are also known as worker machines.	The workloads requested by OpenShift Container Platform users run on the compute machines.

IMPORTANT

To maintain high availability of your cluster, use separate physical hosts for these cluster machines.

The bootstrap and control plane machines must use Red Hat Enterprise Linux CoreOS (RHCOS) as the operating system. However, the compute machines can choose between Red Hat Enterprise Linux CoreOS (RHCOS), Red Hat Enterprise Linux (RHEL) 8.6 and later.

Note that RHCOS is based on Red Hat Enterprise Linux (RHEL) 8 and inherits all of its hardware certifications and requirements. See Red Hat Enterprise Linux technology capabilities and limits .

1.3.2. Minimum resource requirements for cluster installation

Each cluster machine must meet the following minimum requirements:

Table 1.2. Minimum resource requirements

Machine	Operating System	vCPU [1]	Virtual RAM	Storage	Input/Output Per Second (IOPS)[2]
Bootstrap	RHCOS	4	16 GB	100 GB	300
Control plane	RHCOS	4	16 GB	100 GB	300

Machine	Operating System	vCPU [1]	Virtual RAM	Storage	Input/Output Per Second (IOPS)[2]
Compute	RHCOS, RHEL 8.6 and later [3]	2	8 GB	100 GB	300

- 1. One vCPU is equivalent to one physical core when simultaneous multithreading (SMT), or hyperthreading, is not enabled. When enabled, use the following formula to calculate the corresponding ratio: (threads per core × cores) × sockets = vCPUs.
- 2. OpenShift Container Platform and Kubernetes are sensitive to disk performance, and faster storage is recommended, particularly for etcd on the control plane nodes which require a 10 ms p99 fsync duration. Note that on many cloud platforms, storage size and IOPS scale together, so you might need to over-allocate storage volume to obtain sufficient performance.
- 3. As with all user-provisioned installations, if you choose to use RHEL compute machines in your cluster, you take responsibility for all operating system life cycle management and maintenance, including performing system updates, applying patches, and completing all other required tasks. Use of RHEL 7 compute machines is deprecated and has been removed in OpenShift Container Platform 4.10 and later.

If an instance type for your platform meets the minimum requirements for cluster machines, it is supported to use in OpenShift Container Platform.

1.3.3. Certificate signing requests management

Because your cluster has limited access to automatic machine management when you use infrastructure that you provision, you must provide a mechanism for approving cluster certificate signing requests (CSRs) after installation. The **kube-controller-manager** only approves the kubelet client CSRs. The **machine-approver** cannot guarantee the validity of a serving certificate that is requested by using kubelet credentials because it cannot confirm that the correct machine issued the request. You must determine and implement a method of verifying the validity of the kubelet serving certificate requests and approving them.

1.3.4. Networking requirements for user-provisioned infrastructure

All the Red Hat Enterprise Linux CoreOS (RHCOS) machines require networking to be configured in **initramfs** during boot to fetch their Ignition config files.

During the initial boot, the machines require an IP address configuration that is set either through a DHCP server or statically by providing the required boot options. After a network connection is established, the machines download their Ignition config files from an HTTP or HTTPS server. The Ignition config files are then used to set the exact state of each machine. The Machine Config Operator completes more changes to the machines, such as the application of new certificates or keys, after installation.

It is recommended to use a DHCP server for long-term management of the cluster machines. Ensure that the DHCP server is configured to provide persistent IP addresses, DNS server information, and hostnames to the cluster machines.

If a DHCP service is not available for your user-provisioned infrastructure, you can instead provide the IP networking configuration and the address of the DNS server to the nodes at RHCOS install time. These can be passed as boot arguments if you are installing from an ISO image. See the *Installing RHCOS and starting the OpenShift Container Platform bootstrap process* section for more information about static IP provisioning and advanced networking options.

The Kubernetes API server must be able to resolve the node names of the cluster machines. If the API servers and worker nodes are in different zones, you can configure a default DNS search zone to allow the API server to resolve the node names. Another supported approach is to always refer to hosts by their fully-qualified domain names in both the node objects and all DNS requests.

1.3.4.1. Setting the cluster node hostnames through DHCP

On Red Hat Enterprise Linux CoreOS (RHCOS) machines, the hostname is set through NetworkManager. By default, the machines obtain their hostname through DHCP. If the hostname is not provided by DHCP, set statically through kernel arguments, or another method, it is obtained through a reverse DNS lookup. Reverse DNS lookup occurs after the network has been initialized on a node and can take time to resolve. Other system services can start prior to this and detect the hostname as **localhost** or similar. You can avoid this by using DHCP to provide the hostname for each cluster node.

Additionally, setting the hostnames through DHCP can bypass any manual DNS record name configuration errors in environments that have a DNS split-horizon implementation.

1.3.4.2. Network connectivity requirements

You must configure the network connectivity between machines to allow OpenShift Container Platform cluster components to communicate. Each machine must be able to resolve the hostnames of all other machines in the cluster.

This section provides details about the ports that are required.

IMPORTANT

In connected OpenShift Container Platform environments, all nodes are required to have internet access to pull images for platform containers and provide telemetry data to Red Hat.

Table 1.3. Ports used for all-machine to all-machine communications

Protocol	Port	Description
ICMP	N/A	Network reachability tests
TCP	1936	Metrics
	9000-9999	Host level services, including the node exporter on ports 9100-9101 and the Cluster Version Operator on port 9099 .
	10250-10259	The default ports that Kubernetes reserves

Protocol	Port	Description
	10256	openshift-sdn
UDP	4789	VXLAN
	6081	Geneve
	9000-9999	Host level services, including the node exporter on ports 9100-9101 .
	500	IPsec IKE packets
	4500	IPsec NAT-T packets
	123	Network Time Protocol (NTP) on UDP port 123 If an external NTP time server is configured, you must open UDP port 123 .
TCP/UDP	30000-32767	Kubernetes node port
ESP	N/A	IPsec Encapsulating Security Payload (ESP)

Table 1.4. Ports used for all-machine to control plane communications

Protocol	Port	Description
TCP	6443	Kubernetes API

Table 1.5. Ports used for control plane machine to control plane machine communications

Protocol	Port	Description
TCP	2379-2380	etcd server and peer ports

NTP configuration for user-provisioned infrastructure

OpenShift Container Platform clusters are configured to use a public Network Time Protocol (NTP) server by default. If you want to use a local enterprise NTP server, or if your cluster is being deployed in a disconnected network, you can configure the cluster to use a specific time server. For more information, see the documentation for *Configuring chrony time service*.

If a DHCP server provides NTP server information, the chrony time service on the Red Hat Enterprise Linux CoreOS (RHCOS) machines read the information and can sync the clock with the NTP servers.

Additional resources

• Configuring chrony time service

1.3.5. User-provisioned DNS requirements

In OpenShift Container Platform deployments, DNS name resolution is required for the following components:

- The Kubernetes API
- The OpenShift Container Platform application wildcard
- The bootstrap, control plane, and compute machines

Reverse DNS resolution is also required for the Kubernetes API, the bootstrap machine, the control plane machines, and the compute machines.

DNS A/AAAA or CNAME records are used for name resolution and PTR records are used for reverse name resolution. The reverse records are important because Red Hat Enterprise Linux CoreOS (RHCOS) uses the reverse records to set the hostnames for all the nodes, unless the hostnames are provided by DHCP. Additionally, the reverse records are used to generate the certificate signing requests (CSR) that OpenShift Container Platform needs to operate.

NOTE

It is recommended to use a DHCP server to provide the hostnames to each cluster node. See the *DHCP recommendations for user-provisioned infrastructure* section for more information.

The following DNS records are required for a user-provisioned OpenShift Container Platform cluster and they must be in place before installation. In each record, **<cluster_name>** is the cluster name and **<base_domain>** is the base domain that you specify in the **install-config.yaml** file. A complete DNS record takes the form: **<component>.<cluster_name>.<base_domain>**..

Table 1.6. Required DNS records

Compo nent	Record	Description
Kuberne tes API	api. <cluster_name>. <base_domain>.</base_domain></cluster_name>	A DNS A/AAAA or CNAME record, and a DNS PTR record, to identify the API load balancer. These records must be resolvable by both clients external to the cluster and from all the nodes within the cluster.
	api-int. <cluster_name>. <base_domain>.</base_domain></cluster_name>	A DNS A/AAAA or CNAME record, and a DNS PTR record, to internally identify the API load balancer. These records must be resolvable from all the nodes within the cluster.
		IMPORTANT The API server must be able to resolve the worker nodes by the hostnames that are recorded in Kubernetes. If the API server cannot resolve the node names, then proxied API calls can fail, and you cannot retrieve logs from pods.

Compo nent	Record	Description
Routes	*.apps. <cluster_name>. ase_domain>.</br></cluster_name>	A wildcard DNS A/AAAA or CNAME record that refers to the application ingress load balancer. The application ingress load balancer targets the machines that run the Ingress Controller pods. The Ingress Controller pods run on the compute machines by default. These records must be resolvable by both clients external to the cluster and from all the nodes within the cluster. For example, console-openshift-console.apps. <cluster_name>.<base_domain> is used as a wildcard route to the OpenShift Container Platform console.</base_domain></cluster_name>
Bootstra p machine	bootstrap. <cluster_name>. <base_domain>.</base_domain></cluster_name>	A DNS A/AAAA or CNAME record, and a DNS PTR record, to identify the bootstrap machine. These records must be resolvable by the nodes within the cluster.
Control plane machine s	<pre><control_plane><n>. <cluster_name>. <base_domain>.</base_domain></cluster_name></n></control_plane></pre>	DNS A/AAAA or CNAME records and DNS PTR records to identify each machine for the control plane nodes. These records must be resolvable by the nodes within the cluster.
Comput e machine s	<pre><compute><n>. <cluster_name>. <base_domain>.</base_domain></cluster_name></n></compute></pre>	DNS A/AAAA or CNAME records and DNS PTR records to identify each machine for the worker nodes. These records must be resolvable by the nodes within the cluster.

In OpenShift Container Platform 4.4 and later, you do not need to specify etcd host and SRV records in your DNS configuration.

TIP

You can use the **dig** command to verify name and reverse name resolution. See the section on *Validating DNS resolution for user-provisioned infrastructure* for detailed validation steps.

1.3.5.1. Example DNS configuration for user-provisioned clusters

This section provides A and PTR record configuration samples that meet the DNS requirements for deploying OpenShift Container Platform on user-provisioned infrastructure. The samples are not meant to provide advice for choosing one DNS solution over another.

In the examples, the cluster name is **ocp4** and the base domain is **example.com**.

Example DNS A record configuration for a user-provisioned cluster

The following example is a BIND zone file that shows sample A records for name resolution in a user-provisioned cluster.

Example 1.1. Sample DNS zone database

```
$TTL 1W
@ IN SOA ns1.example.com. root (
 2019070700; serial
 3H; refresh (3 hours)
 30M; retry (30 minutes)
 2W; expiry (2 weeks)
 1W); minimum (1 week)
IN NS ns1.example.com.
IN MX 10 smtp.example.com.
ns1.example.com. IN A 192.168.1.5
smtp.example.com. IN A 192.168.1.5
helper.example.com. IN A 192.168.1.5
helper.ocp4.example.com. IN A 192.168.1.5
api.ocp4.example.com. IN A 192.168.1.5 1
api-int.ocp4.example.com. IN A 192.168.1.5 2
*.apps.ocp4.example.com. IN A 192.168.1.5 3
bootstrap.ocp4.example.com. IN A 192.168.1.96 4
control-plane0.ocp4.example.com. IN A 192.168.1.97 5
control-plane1.ocp4.example.com. IN A 192.168.1.98 6
control-plane2.ocp4.example.com. IN A 192.168.1.99 7
compute0.ocp4.example.com. IN A 192.168.1.11 8
compute1.ocp4.example.com. IN A 192.168.1.7 9
;EOF
```

- 1 Provides name resolution for the Kubernetes API. The record refers to the IP address of the API load balancer.
- Provides name resolution for the Kubernetes API. The record refers to the IP address of the API load balancer and is used for internal cluster communications.
- Provides name resolution for the wildcard routes. The record refers to the IP address of the application ingress load balancer. The application ingress load balancer targets the machines that run the Ingress Controller pods. The Ingress Controller pods run on the compute machines by default.

NOTE

In the example, the same load balancer is used for the Kubernetes API and application ingress traffic. In production scenarios, you can deploy the API and application ingress load balancers separately so that you can scale the load balancer infrastructure for each in isolation.

- Provides name resolution for the bootstrap machine.
- 5 6 7 Provides name resolution for the control plane machines.
- 8 9 Provides name resolution for the compute machines.

Example DNS PTR record configuration for a user-provisioned cluster

The following example BIND zone file shows sample PTR records for reverse name resolution in a user-provisioned cluster.

Example 1.2. Sample DNS zone database for reverse records

```
$TTL 1W
@ IN SOA ns1.example.com. root (
 2019070700; serial
 3H; refresh (3 hours)
 30M; retry (30 minutes)
 2W; expiry (2 weeks)
 1W); minimum (1 week)
IN NS ns1.example.com.
5.1.168.192.in-addr.arpa. IN PTR api.ocp4.example.com. 1
5.1.168.192.in-addr.arpa. IN PTR api-int.ocp4.example.com. 2
96.1.168.192.in-addr.arpa. IN PTR bootstrap.ocp4.example.com. 3
97.1.168.192.in-addr.arpa. IN PTR control-plane0.ocp4.example.com. 4
98.1.168.192.in-addr.arpa. IN PTR control-plane1.ocp4.example.com. 5
99.1.168.192.in-addr.arpa. IN PTR control-plane2.ocp4.example.com. 6
11.1.168.192.in-addr.arpa. IN PTR compute0.ocp4.example.com. 7
7.1.168.192.in-addr.arpa. IN PTR compute1.ocp4.example.com. 8
:EOF
```

- Provides reverse DNS resolution for the Kubernetes API. The PTR record refers to the record name of the API load balancer.
- 2 Provides reverse DNS resolution for the Kubernetes API. The PTR record refers to the record name of the API load balancer and is used for internal cluster communications.
- 3 Provides reverse DNS resolution for the bootstrap machine.
- 4 5 6 Provides reverse DNS resolution for the control plane machines.
- 78 Provides reverse DNS resolution for the compute machines.

A PTR record is not required for the OpenShift Container Platform application wildcard.

1.3.6. Load balancing requirements for user-provisioned infrastructure

Before you install OpenShift Container Platform, you must provision the API and application ingress load balancing infrastructure. In production scenarios, you can deploy the API and application ingress load balancers separately so that you can scale the load balancer infrastructure for each in isolation.

NOTE

If you want to deploy the API and application Ingress load balancers with a Red Hat Enterprise Linux (RHEL) instance, you must purchase the RHEL subscription separately.

The load balancing infrastructure must meet the following requirements:

- 1. **API load balancer**. Provides a common endpoint for users, both human and machine, to interact with and configure the platform. Configure the following conditions:
 - Layer 4 load balancing only. This can be referred to as Raw TCP or SSL Passthrough mode.
 - A stateless load balancing algorithm. The options vary based on the load balancer implementation.

IMPORTANT

Do not configure session persistence for an API load balancer. Configuring session persistence for a Kubernetes API server might cause performance issues from excess application traffic for your OpenShift Container Platform cluster and the Kubernetes API that runs inside the cluster.

Configure the following ports on both the front and back of the load balancers:

Table 1.7. API load balancer

Port	Back-end machines (pool members)	Internal	External	Description
6443	Bootstrap and control plane. You remove the bootstrap machine from the load balancer after the bootstrap machine initializes the cluster control plane. You must configure the /readyz endpoint for the API server health check probe.	X	X	Kubernetes API server
22623	Bootstrap and control plane. You remove the bootstrap machine from the load balancer after the bootstrap machine initializes the cluster control plane.	X		Machine config server

The load balancer must be configured to take a maximum of 30 seconds from the time the API server turns off the /**readyz** endpoint to the removal of the API server instance from the pool. Within the time frame after /**readyz** returns an error or becomes healthy, the endpoint must have been removed or added. Probing every 5 or 10 seconds, with two successful requests to become healthy and three to become unhealthy, are well-tested values.

- 2. **Application Ingress load balancer**: Provides an ingress point for application traffic flowing in from outside the cluster. A working configuration for the Ingress router is required for an OpenShift Container Platform cluster.
 - Configure the following conditions:
 - Layer 4 load balancing only. This can be referred to as Raw TCP or SSL Passthrough mode.
 - A connection-based or session-based persistence is recommended, based on the options available and types of applications that will be hosted on the platform.

TIP

If the true IP address of the client can be seen by the application Ingress load balancer, enabling source IP-based session persistence can improve performance for applications that use end-to-end TLS encryption.

Configure the following ports on both the front and back of the load balancers:

Table 1.8. Application Ingress load balancer

Port	Back-end machines (pool members)	Internal	External	Description
443	The machines that run the Ingress Controller pods, compute, or worker, by default.	X	X	HTTPS traffic
80	The machines that run the Ingress Controller pods, compute, or worker, by default.	X	X	HTTP traffic

NOTE

If you are deploying a three-node cluster with zero compute nodes, the Ingress Controller pods run on the control plane nodes. In three-node cluster deployments, you must configure your application Ingress load balancer to route HTTP and HTTPS traffic to the control plane nodes.

1.3.6.1. Example load balancer configuration for user-provisioned clusters

This section provides an example API and application ingress load balancer configuration that meets the load balancing requirements for user-provisioned clusters. The sample is an /etc/haproxy/haproxy.cfg configuration for an HAProxy load balancer. The example is not meant to provide advice for choosing one load balancing solution over another.

In the example, the same load balancer is used for the Kubernetes API and application ingress traffic. In production scenarios, you can deploy the API and application ingress load balancers separately so that you can scale the load balancer infrastructure for each in isolation.

NOTE

If you are using HAProxy as a load balancer and SELinux is set to **enforcing**, you must ensure that the HAProxy service can bind to the configured TCP port by running **setsebool -P haproxy_connect_any=1**.

Example 1.3. Sample API and application Ingress load balancer configuration

```
global
 log
         127.0.0.1 local2
 pidfile
         /var/run/haproxy.pid
 maxconn
            4000
 daemon
defaults
 mode
                  http
                global
 log
 option
                 dontlognull
 option http-server-close
 option
                 redispatch
 retries
                 3
 timeout http-request 10s
 timeout queue
                     1m
 timeout connect
                     10s
 timeout client
                   1m
 timeout server
                    1m
 timeout http-keep-alive 10s
 timeout check
                    10s
 maxconn
                    3000
listen api-server-6443 1
 bind *:6443
 mode tcp
 option httpchk GET /readyz HTTP/1.0
 option log-health-checks
 balance roundrobin
 server bootstrap bootstrap.ocp4.example.com:6443 verify none check check-ssl inter 10s fall 2
rise 3 backup 2
 server master0 master0.ocp4.example.com:6443 weight 1 verify none check check-ssl inter 10s
 server master1 master1.ocp4.example.com:6443 weight 1 verify none check check-ssl inter 10s
fall 2 rise 3
 server master2 master2.ocp4.example.com:6443 weight 1 verify none check check-ssl inter 10s
listen machine-config-server-22623 3
 bind *:22623
 mode tcp
 server bootstrap bootstrap.ocp4.example.com:22623 check inter 1s backup 4
 server master0 master0.ocp4.example.com:22623 check inter 1s
 server master1 master1.ocp4.example.com:22623 check inter 1s
 server master2 master2.ocp4.example.com:22623 check inter 1s
listen ingress-router-443 5
```

bind *:443

mode tcp

balance source

server worker0 worker0.ocp4.example.com:443 check inter 1s server worker1 worker1.ocp4.example.com:443 check inter 1s

listen ingress-router-80 6

bind *:80

mode tcp

balance source

server worker0 worker0.ocp4.example.com:80 check inter 1s server worker1 worker1.ocp4.example.com:80 check inter 1s

- Port **6443** handles the Kubernetes API traffic and points to the control plane machines.
- The bootstrap entries must be in place before the OpenShift Container Platform cluster installation and they must be removed after the bootstrap process is complete.
- Port **22623** handles the machine config server traffic and points to the control plane machines.
- Port **443** handles the HTTPS traffic and points to the machines that run the Ingress Controller pods. The Ingress Controller pods run on the compute machines by default.
- Port **80** handles the HTTP traffic and points to the machines that run the Ingress Controller pods. The Ingress Controller pods run on the compute machines by default.

NOTE

If you are deploying a three-node cluster with zero compute nodes, the Ingress Controller pods run on the control plane nodes. In three-node cluster deployments, you must configure your application Ingress load balancer to route HTTP and HTTPS traffic to the control plane nodes.

TIP

If you are using HAProxy as a load balancer, you can check that the **haproxy** process is listening on ports **6443**, **22623**, **443**, and **80** by running **netstat -nltupe** on the HAProxy node.

1.4. PREPARING THE USER-PROVISIONED INFRASTRUCTURE

Before you install OpenShift Container Platform on user-provisioned infrastructure, you must prepare the underlying infrastructure.

This section provides details about the high-level steps required to set up your cluster infrastructure in preparation for an OpenShift Container Platform installation. This includes configuring IP networking and network connectivity for your cluster nodes, enabling the required ports through your firewall, and setting up the required DNS and load balancing infrastructure.

After preparation, your cluster infrastructure must meet the requirements outlined in the *Requirements* for a cluster with user-provisioned infrastructure section.

Prerequisites

- You have reviewed the OpenShift Container Platform 4.x Tested Integrations page.
- You have reviewed the infrastructure requirements detailed in the *Requirements for a cluster* with user-provisioned infrastructure section.

Procedure

- 1. If you are using DHCP to provide the IP networking configuration to your cluster nodes, configure your DHCP service.
 - a. Add persistent IP addresses for the nodes to your DHCP server configuration. In your configuration, match the MAC address of the relevant network interface to the intended IP address for each node.
 - b. When you use DHCP to configure IP addressing for the cluster machines, the machines also obtain the DNS server information through DHCP. Define the persistent DNS server address that is used by the cluster nodes through your DHCP server configuration.

NOTE

If you are not using a DHCP service, you must provide the IP networking configuration and the address of the DNS server to the nodes at RHCOS install time. These can be passed as boot arguments if you are installing from an ISO image. See the *Installing RHCOS and starting the OpenShift Container Platform bootstrap process* section for more information about static IP provisioning and advanced networking options.

c. Define the hostnames of your cluster nodes in your DHCP server configuration. See the Setting the cluster node hostnames through DHCP section for details about hostname considerations.

NOTE

If you are not using a DHCP service, the cluster nodes obtain their hostname through a reverse DNS lookup.

- 2. Ensure that your network infrastructure provides the required network connectivity between the cluster components. See the *Networking requirements for user-provisioned infrastructure* section for details about the requirements.
- 3. Configure your firewall to enable the ports required for the OpenShift Container Platform cluster components to communicate. See *Networking requirements for user-provisioned infrastructure* section for details about the ports that are required.

IMPORTANT

By default, port **1936** is accessible for an OpenShift Container Platform cluster, because each control plane node needs access to this port.

Avoid using the Ingress load balancer to expose this port, because doing so might result in the exposure of sensitive information, such as statistics and metrics, related to Ingress Controllers.

4. Setup the required DNS infrastructure for your cluster.

- a. Configure DNS name resolution for the Kubernetes API, the application wildcard, the bootstrap machine, the control plane machines, and the compute machines.
- b. Configure reverse DNS resolution for the Kubernetes API, the bootstrap machine, the control plane machines, and the compute machines.
 See the *User-provisioned DNS requirements* section for more information about the OpenShift Container Platform DNS requirements.
- 5. Validate your DNS configuration.
 - a. From your installation node, run DNS lookups against the record names of the Kubernetes API, the wildcard routes, and the cluster nodes. Validate that the IP addresses in the responses correspond to the correct components.
 - b. From your installation node, run reverse DNS lookups against the IP addresses of the load balancer and the cluster nodes. Validate that the record names in the responses correspond to the correct components.
 See the Validating DNS resolution for user-provisioned infrastructure, section for detailed.
 - See the *Validating DNS resolution for user-provisioned infrastructure* section for detailed DNS validation steps.
- 6. Provision the required API and application ingress load balancing infrastructure. See the *Load* balancing requirements for user-provisioned infrastructure section for more information about the requirements.

Some load balancing solutions require the DNS name resolution for the cluster nodes to be in place before the load balancing is initialized.

1.5. VALIDATING DNS RESOLUTION FOR USER-PROVISIONED INFRASTRUCTURE

You can validate your DNS configuration before installing OpenShift Container Platform on user-provisioned infrastructure.

IMPORTANT

The validation steps detailed in this section must succeed before you install your cluster.

Prerequisites

• You have configured the required DNS records for your user-provisioned infrastructure.

Procedure

- From your installation node, run DNS lookups against the record names of the Kubernetes API, the wildcard routes, and the cluster nodes. Validate that the IP addresses contained in the responses correspond to the correct components.
 - a. Perform a lookup against the Kubernetes API record name. Check that the result points to the IP address of the API load balancer:
 - \$ dig +noall +answer @<nameserver_ip> api.<cluster_name>.<base_domain> 1

Replace <nameserver_ip> with the IP address of the nameserver, <cluster_name> with your cluster name, and

 domain> with your base domain name.

Example output

api.ocp4.example.com. 604800 IN A 192.168.1.5

- b. Perform a lookup against the Kubernetes internal API record name. Check that the result points to the IP address of the API load balancer:
 - \$ dig +noall +answer @<nameserver_ip> api-int.<cluster_name>.<base_domain>

Example output

api-int.ocp4.example.com. 604800 IN A 192.168.1.5

- c. Test an example *.apps.<cluster_name>.<base_domain> DNS wildcard lookup. All of the application wildcard lookups must resolve to the IP address of the application ingress load balancer:
 - \$ dig +noall +answer @<nameserver_ip> random.apps.<cluster_name>.<base_domain>

Example output

random.apps.ocp4.example.com. 604800 IN A 192.168.1.5

NOTE

In the example outputs, the same load balancer is used for the Kubernetes API and application ingress traffic. In production scenarios, you can deploy the API and application ingress load balancers separately so that you can scale the load balancer infrastructure for each in isolation.

You can replace **random** with another wildcard value. For example, you can query the route to the OpenShift Container Platform console:

\$ dig +noall +answer @<nameserver_ip> console-openshift-console.apps. <cluster_name>.
base_domain>

Example output

console-openshift-console.apps.ocp4.example.com. 604800 IN A 192.168.1.5

- d. Run a lookup against the bootstrap DNS record name. Check that the result points to the IP address of the bootstrap node:
 - \$ dig +noall +answer @<nameserver_ip> bootstrap.<cluster_name>.<base_domain>

Example output

bootstrap.ocp4.example.com. 604800 IN A 192.168.1.96

- e. Use this method to perform lookups against the DNS record names for the control plane and compute nodes. Check that the results correspond to the IP addresses of each node.
- 2. From your installation node, run reverse DNS lookups against the IP addresses of the load balancer and the cluster nodes. Validate that the record names contained in the responses correspond to the correct components.
 - a. Perform a reverse lookup against the IP address of the API load balancer. Check that the response includes the record names for the Kubernetes API and the Kubernetes internal API:

 $\$ dig +noall +answer @<nameserver_ip> -x 192.168.1.5

Example output

5.1.168.192.in-addr.arpa. 604800 IN PTR api-int.ocp4.example.com. 1 5.1.168.192.in-addr.arpa. 604800 IN PTR api.ocp4.example.com. 2

- Provides the record name for the Kubernetes internal API.
- Provides the record name for the Kubernetes API.

NOTE

A PTR record is not required for the OpenShift Container Platform application wildcard. No validation step is needed for reverse DNS resolution against the IP address of the application ingress load balancer.

b. Perform a reverse lookup against the IP address of the bootstrap node. Check that the result points to the DNS record name of the bootstrap node:

\$ dig +noall +answer @<nameserver_ip> -x 192.168.1.96

Example output

96.1.168.192.in-addr.arpa. 604800 IN PTR bootstrap.ocp4.example.com.

c. Use this method to perform reverse lookups against the IP addresses for the control plane and compute nodes. Check that the results correspond to the DNS record names of each node.

1.6. GENERATING A KEY PAIR FOR CLUSTER NODE SSH ACCESS

During an OpenShift Container Platform installation, you can provide an SSH public key to the installation program. The key is passed to the Red Hat Enterprise Linux CoreOS (RHCOS) nodes through their Ignition config files and is used to authenticate SSH access to the nodes. The key is added to the ~/.ssh/authorized_keys list for the core user on each node, which enables password-less authentication.

After the key is passed to the nodes, you can use the key pair to SSH in to the RHCOS nodes as the user **core**. To access the nodes through SSH, the private key identity must be managed by SSH for your local user.

If you want to SSH in to your cluster nodes to perform installation debugging or disaster recovery, you must provide the SSH public key during the installation process. The ./openshift-install gather command also requires the SSH public key to be in place on the cluster nodes.

IMPORTANT

Do not skip this procedure in production environments, where disaster recovery and debugging is required.

NOTE

You must use a local key, not one that you configured with platform-specific approaches such as AWS key pairs.

Procedure


- 1. If you do not have an existing SSH key pair on your local machine to use for authentication onto your cluster nodes, create one. For example, on a computer that uses a Linux operating system, run the following command:
 - \$ ssh-keygen -t ed25519 -N " -f <path>/<file_name> 1
 - Specify the path and file name, such as ~/.ssh/id_ed25519, of the new SSH key. If you have an existing key pair, ensure your public key is in the your ~/.ssh directory.

NOTE

If you plan to install an OpenShift Container Platform cluster that uses FIPS validated or Modules In Process cryptographic libraries on the **x86_64**, **ppc64le**, and **s390x** architectures. do not create a key that uses the **ed25519** algorithm. Instead, create a key that uses the **rsa** or **ecdsa** algorithm.

2. View the public SSH key:

For example, run the following to view the ~/.ssh/id_ed25519.pub public key:

- \$ cat ~/.ssh/id_ed25519.pub
- 3. Add the SSH private key identity to the SSH agent for your local user, if it has not already been added. SSH agent management of the key is required for password-less SSH authentication onto your cluster nodes, or if you want to use the ./openshift-install gather command.

NOTE

On some distributions, default SSH private key identities such as ~/.ssh/id_rsa and ~/.ssh/id_dsa are managed automatically.

a. If the **ssh-agent** process is not already running for your local user, start it as a background task:

\$ eval "\$(ssh-agent -s)"

Example output

Agent pid 31874

NOTE

If your cluster is in FIPS mode, only use FIPS-compliant algorithms to generate the SSH key. The key must be either RSA or ECDSA.

- 4. Add your SSH private key to the **ssh-agent**:
 - \$ ssh-add <path>/<file_name> 1
 - Specify the path and file name for your SSH private key, such as ~/.ssh/id_ed25519

Example output

Identity added: /home/<you>/<path>/<file_name> (<computer_name>)

Next steps

 When you install OpenShift Container Platform, provide the SSH public key to the installation program. If you install a cluster on infrastructure that you provision, you must provide the key to the installation program.

1.7. OBTAINING THE INSTALLATION PROGRAM

Before you install OpenShift Container Platform, download the installation file on the host you are using for installation.

Prerequisites

You have a computer that runs Linux or macOS, with 500 MB of local disk space.

Procedure

- 1. Access the Infrastructure Provider page on the OpenShift Cluster Manager site. If you have a Red Hat account, log in with your credentials. If you do not, create an account.
- 2. Select your infrastructure provider.
- 3. Navigate to the page for your installation type, download the installation program that corresponds with your host operating system and architecture, and place the file in the directory where you will store the installation configuration files.

The installation program creates several files on the computer that you use to install your cluster. You must keep the installation program and the files that the installation program creates after you finish installing the cluster. Both files are required to delete the cluster.

IMPORTANT

Deleting the files created by the installation program does not remove your cluster, even if the cluster failed during installation. To remove your cluster, complete the OpenShift Container Platform uninstallation procedures for your specific cloud provider.

4. Extract the installation program. For example, on a computer that uses a Linux operating system, run the following command:

\$ tar -xvf openshift-install-linux.tar.gz

Download your installation pull secret from the Red Hat OpenShift Cluster Manager. This pull
secret allows you to authenticate with the services that are provided by the included authorities,
including Quay.io, which serves the container images for OpenShift Container Platform
components.

1.8. INSTALLING THE OPENSHIFT CLI BY DOWNLOADING THE BINARY

You can install the OpenShift CLI (oc) to interact with OpenShift Container Platform from a command-line interface. You can install oc on Linux, Windows, or macOS.

IMPORTANT

If you installed an earlier version of **oc**, you cannot use it to complete all of the commands in OpenShift Container Platform 4.12. Download and install the new version of **oc**.

Installing the OpenShift CLI on Linux

You can install the OpenShift CLI (oc) binary on Linux by using the following procedure.

Procedure

- Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal
- 2. Select the architecture from the **Product Variant** drop-down list.
- 3. Select the appropriate version from the **Version** drop-down list.
- 4. Click **Download Now** next to the **OpenShift v4.12 Linux Client** entry and save the file.
- 5. Unpack the archive:

\$ tar xvf <file>

6. Place the oc binary in a directory that is on your PATH. To check your PATH, execute the following command:

\$ echo \$PATH

Verification

• After you install the OpenShift CLI, it is available using the **oc** command:

\$ oc <command>

Installing the OpenShift CLI on Windows

You can install the OpenShift CLI (oc) binary on Windows by using the following procedure.

Procedure

- Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
- 2. Select the appropriate version from the Version drop-down list.
- 3. Click Download Now next to the OpenShift v4.12 Windows Client entry and save the file.
- 4. Unzip the archive with a ZIP program.
- Move the oc binary to a directory that is on your PATH.
 To check your PATH, open the command prompt and execute the following command:

C:\> path

Verification

• After you install the OpenShift CLI, it is available using the **oc** command:

C:\> oc <command>

Installing the OpenShift CLI on macOS

You can install the OpenShift CLI (oc) binary on macOS by using the following procedure.

Procedure

- Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
- 2. Select the appropriate version from the **Version** drop-down list.
- 3. Click **Download Now** next to the **OpenShift v4.12 macOS Client** entry and save the file.

NOTE

For macOS arm64, choose the **OpenShift v4.12 macOS arm64 Client** entry.

- 4. Unpack and unzip the archive.
- Move the oc binary to a directory on your PATH.
 To check your PATH, open a terminal and execute the following command:

\$ echo \$PATH

Verification

• After you install the OpenShift CLI, it is available using the **oc** command:

\$ oc <command>

1.9. MANUALLY CREATING THE INSTALLATION CONFIGURATION FILE

Installing the cluster requires that you manually create the installation configuration file.

Prerequisites

- You have an SSH public key on your local machine to provide to the installation program. The
 key will be used for SSH authentication onto your cluster nodes for debugging and disaster
 recovery.
- You have obtained the OpenShift Container Platform installation program and the pull secret for your cluster.

Procedure

1. Create an installation directory to store your required installation assets in:

\$ mkdir <installation_directory>

IMPORTANT

You must create a directory. Some installation assets, like bootstrap X.509 certificates have short expiration intervals, so you must not reuse an installation directory. If you want to reuse individual files from another cluster installation, you can copy them into your directory. However, the file names for the installation assets might change between releases. Use caution when copying installation files from an earlier OpenShift Container Platform version.

2. Customize the sample **install-config.yaml** file template that is provided and save it in the **<installation directory>**.

NOTE

You must name this configuration file install-config.yaml.

3. Back up the install-config.yaml file so that you can use it to install multiple clusters.

The **install-config.yaml** file is consumed during the next step of the installation process. You must back it up now.

1.9.1. Sample install-config.yaml file for other platforms

You can customize the **install-config.yaml** file to specify more details about your OpenShift Container Platform cluster's platform or modify the values of the required parameters.

apiVersion: v1 baseDomain: example.com 1 compute: 2 - hyperthreading: Enabled 3 name: worker replicas: 0 4 controlPlane: 5 hyperthreading: Enabled 6 name: master replicas: 3 7 metadata: name: test 8 networking: clusterNetwork: - cidr: 10.128.0.0/14 9 hostPrefix: 23 10 networkType: OVNKubernetes 11 serviceNetwork: 12 - 172.30.0.0/16 platform: none: {} 13 fips: false 14 pullSecret: '{"auths": ...}' 15 sshKey: 'ssh-ed25519 AAAA...' 16

- The base domain of the cluster. All DNS records must be sub-domains of this base and include the cluster name.
- The **controlPlane** section is a single mapping, but the **compute** section is a sequence of mappings. To meet the requirements of the different data structures, the first line of the **compute** section must begin with a hyphen, -, and the first line of the **controlPlane** section must not. Only one control plane pool is used.
- 3 6 Specifies whether to enable or disable simultaneous multithreading (SMT), or hyperthreading. By default, SMT is enabled to increase the performance of the cores in your machines. You can disable it by setting the parameter value to **Disabled**. If you disable SMT, you must disable it in all cluster machines; this includes both control plane and compute machines.

NOTE

Simultaneous multithreading (SMT) is enabled by default. If SMT is not enabled in your BIOS settings, the **hyperthreading** parameter has no effect.

If you disable **hyperthreading**, whether in the BIOS or in the **install-config.yaml** file, ensure that your capacity planning accounts for the dramatically decreased machine performance.

You must set this value to **0** when you install OpenShift Container Platform on user-provisioned infrastructure. In installer-provisioned installations, the parameter controls the number of compute machines that the cluster creates and manages for you. In user-provisioned installations, you must manually deploy the compute machines before you finish installing the cluster.

NOTE

If you are installing a three-node cluster, do not deploy any compute machines when you install the Red Hat Enterprise Linux CoreOS (RHCOS) machines.

- The number of control plane machines that you add to the cluster. Because the cluster uses these values as the number of etcd endpoints in the cluster, the value must match the number of control plane machines that you deploy.
- The cluster name that you specified in your DNS records.
- A block of IP addresses from which pod IP addresses are allocated. This block must not overlap with existing physical networks. These IP addresses are used for the pod network. If you need to access the pods from an external network, you must configure load balancers and routers to manage the traffic.

NOTE

Class E CIDR range is reserved for a future use. To use the Class E CIDR range, you must ensure your networking environment accepts the IP addresses within the Class E CIDR range.

- The subnet prefix length to assign to each individual node. For example, if **hostPrefix** is set to **23**, then each node is assigned a /**23** subnet out of the given **cidr**, which allows for 510 (2^(32 23) 2) pod IP addresses. If you are required to provide access to nodes from an external network, configure load balancers and routers to manage the traffic.
- The cluster network plugin to install. The supported values are **OVNKubernetes** and **OpenShiftSDN**. The default value is **OVNKubernetes**.
- The IP address pool to use for service IP addresses. You can enter only one IP address pool. This block must not overlap with existing physical networks. If you need to access the services from an external network, configure load balancers and routers to manage the traffic.
- You must set the platform to **none**. You cannot provide additional platform configuration variables for your platform.

Clusters that are installed with the platform type **none** are unable to use some features, such as managing compute machines with the Machine API. This limitation applies even if the compute machines that are attached to the cluster are installed on a platform that would normally support the feature. This parameter cannot be changed after installation.

Whether to enable or disable FIPS mode. By default, FIPS mode is not enabled. If FIPS mode is enabled, the Red Hat Enterprise Linux CoreOS (RHCOS) machines that OpenShift Container Platform runs on bypass the default Kubernetes cryptography suite and use the cryptography modules that are provided with RHCOS instead.

IMPORTANT

To enable FIPS mode for your cluster, you must run the installation program from a Red Hat Enterprise Linux (RHEL) computer configured to operate in FIPS mode. For more information about configuring FIPS mode on RHEL, see Installing the system in FIPS mode. The use of FIPS validated or Modules In Process cryptographic libraries is only supported on OpenShift Container Platform deployments on the **x86 64**, **ppc64le**, and **s390x** architectures.

- The pull secret from the Red Hat OpenShift Cluster Manager . This pull secret allows you to authenticate with the services that are provided by the included authorities, including Quay.io, which serves the container images for OpenShift Container Platform components.
- The SSH public key for the **core** user in Red Hat Enterprise Linux CoreOS (RHCOS).

NOTE

For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your **ssh-agent** process uses.

1.9.2. Configuring the cluster-wide proxy during installation

Production environments can deny direct access to the internet and instead have an HTTP or HTTPS proxy available. You can configure a new OpenShift Container Platform cluster to use a proxy by configuring the proxy settings in the **install-config.yaml** file.

Prerequisites

- You have an existing install-config.yaml file.
- You reviewed the sites that your cluster requires access to and determined whether any of them need to bypass the proxy. By default, all cluster egress traffic is proxied, including calls to hosting cloud provider APIs. You added sites to the **Proxy** object's **spec.noProxy** field to bypass the proxy if necessary.

The **Proxy** object **status.noProxy** field is populated with the values of the **networking.machineNetwork[].cidr**, **networking.clusterNetwork[].cidr**, and **networking.serviceNetwork[]** fields from your installation configuration.

For installations on Amazon Web Services (AWS), Google Cloud Platform (GCP), Microsoft Azure, and Red Hat OpenStack Platform (RHOSP), the **Proxy** object **status.noProxy** field is also populated with the instance metadata endpoint (**169.254.169.254**).

Procedure

1. Edit your **install-config.yaml** file and add the proxy settings. For example:

apiVersion: v1
baseDomain: my.domain.com
proxy:
httpProxy: http://<username>:<pswd>@<ip>:<port> 1
httpsProxy: https://<username>:<pswd>@<ip>:<port> 2
noProxy: example.com 3
additionalTrustBundle: | 4
-----BEGIN CERTIFICATE----<MY_TRUSTED_CA_CERT>
-----END CERTIFICATE----additionalTrustBundlePolicy: <policy_to_add_additionalTrustBundle> 5

- A proxy URL to use for creating HTTP connections outside the cluster. The URL scheme must be **http**.
- A proxy URL to use for creating HTTPS connections outside the cluster.
- A comma-separated list of destination domain names, IP addresses, or other network CIDRs to exclude from proxying. Preface a domain with . to match subdomains only. For example, .y.com matches x.y.com, but not y.com. Use * to bypass the proxy for all destinations.
- If provided, the installation program generates a config map that is named **user-ca-bundle** in the **openshift-config** namespace that contains one or more additional CA certificates that are required for proxying HTTPS connections. The Cluster Network Operator then creates a **trusted-ca-bundle** config map that merges these contents with the Red Hat Enterprise Linux CoreOS (RHCOS) trust bundle, and this config map is referenced in the **trustedCA** field of the **Proxy** object. The **additionalTrustBundle** field is required unless the proxy's identity certificate is signed by an authority from the RHCOS trust bundle.
- Optional: The policy to determine the configuration of the **Proxy** object to reference the **user-ca-bundle** config map in the **trustedCA** field. The allowed values are **Proxyonly** and **Always**. Use **Proxyonly** to reference the **user-ca-bundle** config map only when **http/https** proxy is configured. Use **Always** to always reference the **user-ca-bundle** config map. The default value is **Proxyonly**.

NOTE

The installation program does not support the proxy **readinessEndpoints** field.

If the installer times out, restart and then complete the deployment by using the **wait-for** command of the installer. For example:

\$./openshift-install wait-for install-complete --log-level debug

2. Save the file and reference it when installing OpenShift Container Platform.

The installation program creates a cluster-wide proxy that is named **cluster** that uses the proxy settings in the provided **install-config.yaml** file. If no proxy settings are provided, a **cluster Proxy** object is still created, but it will have a nil **spec**.

NOTE

Only the **Proxy** object named **cluster** is supported, and no additional proxies can be created.

1.9.3. Configuring a three-node cluster

Optionally, you can deploy zero compute machines in a bare metal cluster that consists of three control plane machines only. This provides smaller, more resource efficient clusters for cluster administrators and developers to use for testing, development, and production.

In three-node OpenShift Container Platform environments, the three control plane machines are schedulable, which means that your application workloads are scheduled to run on them.

Prerequisites

• You have an existing **install-config.yaml** file.

Procedure

• Ensure that the number of compute replicas is set to **0** in your **install-config.yaml** file, as shown in the following **compute** stanza:

compute:

name: worker platform: {} replicas: 0

NOTE

You must set the value of the **replicas** parameter for the compute machines to **0** when you install OpenShift Container Platform on user-provisioned infrastructure, regardless of the number of compute machines you are deploying. In installer-provisioned installations, the parameter controls the number of compute machines that the cluster creates and manages for you. This does not apply to user-provisioned installations, where the compute machines are deployed manually.

For three-node cluster installations, follow these next steps:

- If you are deploying a three-node cluster with zero compute nodes, the Ingress Controller pods run on the control plane nodes. In three-node cluster deployments, you must configure your application ingress load balancer to route HTTP and HTTPS traffic to the control plane nodes. See the Load balancing requirements for user-provisioned infrastructure section for more information.
- When you create the Kubernetes manifest files in the following procedure, ensure that the mastersSchedulable parameter in the <installation_directory>/manifests/clusterscheduler-02-config.yml file is set to true. This enables your application workloads to run on the control plane nodes.
- Do not deploy any compute nodes when you create the Red Hat Enterprise Linux CoreOS (RHCOS) machines.

1.10. CREATING THE KUBERNETES MANIFEST AND IGNITION CONFIG **FILES**

Because you must modify some cluster definition files and manually start the cluster machines, you must generate the Kubernetes manifest and Ignition config files that the cluster needs to configure the machines.

The installation configuration file transforms into the Kubernetes manifests. The manifests wrap into the Ignition configuration files, which are later used to configure the cluster machines.

IMPORTANT

- The Ignition config files that the OpenShift Container Platform installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending node-bootstrapper certificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information.
- It is recommended that you use Ignition config files within 12 hours after they are generated because the 24-hour certificate rotates from 16 to 22 hours after the cluster is installed. By using the Ignition config files within 12 hours, you can avoid installation failure if the certificate update runs during installation.

Prerequisites

- You obtained the OpenShift Container Platform installation program.
- You created the **install-config.yaml** installation configuration file.

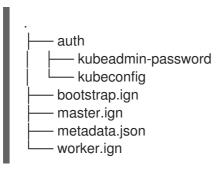
Procedure

- 1. Change to the directory that contains the OpenShift Container Platform installation program and generate the Kubernetes manifests for the cluster:
 - ./openshift-install create manifests --dir <installation_directory>

For **<installation_directory>**, specify the installation directory that contains the **install-config.yaml** file you created.

WARNING

If you are installing a three-node cluster, skip the following step to allow the control plane nodes to be schedulable.



IMPORTANT

When you configure control plane nodes from the default unschedulable to schedulable, additional subscriptions are required. This is because control plane nodes then become compute nodes.

- Check that the mastersSchedulable parameter in the <installation_directory>/manifests/cluster-scheduler-02-config.yml Kubernetes manifest file is set to false. This setting prevents pods from being scheduled on the control plane machines:
 - a. Open the <installation_directory>/manifests/cluster-scheduler-02-config.yml file.
 - b. Locate the **mastersSchedulable** parameter and ensure that it is set to **false**.
 - c. Save and exit the file.
- 3. To create the Ignition configuration files, run the following command from the directory that contains the installation program:
 - \$./openshift-install create ignition-configs --dir <installation_directory>
 - For **<installation_directory>**, specify the same installation directory.

Ignition config files are created for the bootstrap, control plane, and compute nodes in the installation directory. The **kubeadmin-password** and **kubeconfig** files are created in the **./<installation_directory>/auth** directory:

1.11. INSTALLING RHCOS AND STARTING THE OPENSHIFT CONTAINER PLATFORM BOOTSTRAP PROCESS

To install OpenShift Container Platform on bare metal infrastructure that you provision, you must install Red Hat Enterprise Linux CoreOS (RHCOS) on the machines. When you install RHCOS, you must provide the Ignition config file that was generated by the OpenShift Container Platform installation program for the type of machine you are installing. If you have configured suitable networking, DNS, and load balancing infrastructure, the OpenShift Container Platform bootstrap process begins automatically after the RHCOS machines have rebooted.

To install RHCOS on the machines, follow either the steps to use an ISO image or network PXE booting.

NOTE

The compute node deployment steps included in this installation document are RHCOS-specific. If you choose instead to deploy RHEL-based compute nodes, you take responsibility for all operating system life cycle management and maintenance, including performing system updates, applying patches, and completing all other required tasks. Only RHEL 8 compute machines are supported.

You can configure RHCOS during ISO and PXE installations by using the following methods:

- Kernel arguments: You can use kernel arguments to provide installation-specific information. For example, you can specify the locations of the RHCOS installation files that you uploaded to your HTTP server and the location of the Ignition config file for the type of node you are installing. For a PXE installation, you can use the APPEND parameter to pass the arguments to the kernel of the live installer. For an ISO installation, you can interrupt the live installation boot process to add the kernel arguments. In both installation cases, you can use special coreos.inst.* arguments to direct the live installer, as well as standard installation boot arguments for turning standard kernel services on or off.
- Ignition configs: OpenShift Container Platform Ignition config files (*.ign) are specific to the type of node you are installing. You pass the location of a bootstrap, control plane, or compute node Ignition config file during the RHCOS installation so that it takes effect on first boot. In special cases, you can create a separate, limited Ignition config to pass to the live system. That Ignition config could do a certain set of tasks, such as reporting success to a provisioning system after completing installation. This special Ignition config is consumed by the coreos-installer to be applied on first boot of the installed system. Do not provide the standard control plane and compute node Ignition configs to the live ISO directly.
- coreos-installer: You can boot the live ISO installer to a shell prompt, which allows you to
 prepare the permanent system in a variety of ways before first boot. In particular, you can run
 the coreos-installer command to identify various artifacts to include, work with disk partitions,
 and set up networking. In some cases, you can configure features on the live system and copy
 them to the installed system.

Whether to use an ISO or PXE install depends on your situation. A PXE install requires an available DHCP service and more preparation, but can make the installation process more automated. An ISO install is a more manual process and can be inconvenient if you are setting up more than a few machines.

NOTE

As of OpenShift Container Platform 4.6, the RHCOS ISO and other installation artifacts provide support for installation on disks with 4K sectors.

1.11.1. Installing RHCOS by using an ISO image

You can use an ISO image to install RHCOS on the machines.

Prerequisites

- You have created the Ignition config files for your cluster.
- You have configured suitable network, DNS and load balancing infrastructure.
- You have an HTTP server that can be accessed from your computer, and from the machines that you create.
- You have reviewed the Advanced RHCOS installation configuration section for different ways to configure features, such as networking and disk partitioning.

Procedure

1. Obtain the SHA512 digest for each of your Ignition config files. For example, you can use the following on a system running Linux to get the SHA512 digest for your **bootstrap.ign** Ignition config file:

\$ sha512sum <installation_directory>/bootstrap.ign

The digests are provided to the **coreos-installer** in a later step to validate the authenticity of the Ignition config files on the cluster nodes.

2. Upload the bootstrap, control plane, and compute node Ignition config files that the installation program created to your HTTP server. Note the URLs of these files.

IMPORTANT

You can add or change configuration settings in your Ignition configs before saving them to your HTTP server. If you plan to add more compute machines to your cluster after you finish installation, do not delete these files.

3. From the installation host, validate that the Ignition config files are available on the URLs. The following example gets the Ignition config file for the bootstrap node:

\$ curl -k http://<HTTP_server>/bootstrap.ign 1

Example output

Replace **bootstrap.ign** with **master.ign** or **worker.ign** in the command to validate that the Ignition config files for the control plane and compute nodes are also available.

4. Although it is possible to obtain the RHCOS images that are required for your preferred method of installing operating system instances from the RHCOS image mirror page, the recommended way to obtain the correct version of your RHCOS images are from the output of **openshift-install** command:

\$ openshift-install coreos print-stream-json | grep '\.iso[^.]'

Example output

"location": "<url>/art/storage/releases/rhcos-4.12-aarch64/<release>/aarch64/rhcos-<release>-live.aarch64.iso",

"location": "<url>/art/storage/releases/rhcos-4.12-ppc64le/<release>/ppc64le/rhcos-

<release>-live.ppc64le.iso",

"location": "<url>/art/storage/releases/rhcos-4.12-s390x/<release>/s390x/rhcos-<release>-live.s390x.iso",

"location": "<url>/art/storage/releases/rhcos-4.12/<release>/x86_64/rhcos-<release>-live.x86_64.iso",

IMPORTANT

The RHCOS images might not change with every release of OpenShift Container Platform. You must download images with the highest version that is less than or equal to the OpenShift Container Platform version that you install. Use the image versions that match your OpenShift Container Platform version if they are available. Use only ISO images for this procedure. RHCOS qcow2 images are not supported for this installation type.

ISO file names resemble the following example:

rhcos-<version>-live.<architecture>.iso

- 5. Use the ISO to start the RHCOS installation. Use one of the following installation options:
 - Burn the ISO image to a disk and boot it directly.
 - Use ISO redirection by using a lights-out management (LOM) interface.
- 6. Boot the RHCOS ISO image without specifying any options or interrupting the live boot sequence. Wait for the installer to boot into a shell prompt in the RHCOS live environment.

NOTE

It is possible to interrupt the RHCOS installation boot process to add kernel arguments. However, for this ISO procedure you should use the **coreos-installer** command as outlined in the following steps, instead of adding kernel arguments.

7. Run the **coreos-installer** command and specify the options that meet your installation requirements. At a minimum, you must specify the URL that points to the Ignition config file for the node type, and the device that you are installing to:

\$ sudo coreos-installer install --ignition-url=http://<HTTP_server>/<node_type>.ign <device> --ignition-hash=sha512-<digest> 12

- 111 You must run the **coreos-installer** command by using **sudo**, because the **core** user does not have the required root privileges to perform the installation.
- The **--ignition-hash** option is required when the Ignition config file is obtained through an HTTP URL to validate the authenticity of the Ignition config file on the cluster node. **<digest>** is the Ignition config file SHA512 digest obtained in a preceding step.

NOTE

If you want to provide your Ignition config files through an HTTPS server that uses TLS, you can add the internal certificate authority (CA) to the system trust store before running **coreos-installer**.

The following example initializes a bootstrap node installation to the /**dev/sda** device. The Ignition config file for the bootstrap node is obtained from an HTTP web server with the IP address 192.168.1.2:

\$ sudo coreos-installer install --ignitionurl=http://192.168.1.2:80/installation_directory/bootstrap.ign /dev/sda --ignition-hash=sha512a5a2d43879223273c9b60af66b44202a1d1248fc01cf156c46d4a79f552b6bad47bc8cc78ddf011 6e80c59d2ea9e32ba53bc807afbca581aa059311def2c3e3b

8. Monitor the progress of the RHCOS installation on the console of the machine.

IMPORTANT

Be sure that the installation is successful on each node before commencing with the OpenShift Container Platform installation. Observing the installation process can also help to determine the cause of RHCOS installation issues that might arise.

- 9. After RHCOS installs, you must reboot the system. During the system reboot, it applies the Ignition config file that you specified.
- 10. Check the console output to verify that Ignition ran.

Example command

Ignition: ran on 2022/03/14 14:48:33 UTC (this boot)

Ignition: user-provided config was applied

11. Continue to create the other machines for your cluster.

IMPORTANT

You must create the bootstrap and control plane machines at this time. If the control plane machines are not made schedulable, also create at least two compute machines before you install OpenShift Container Platform.

If the required network, DNS, and load balancer infrastructure are in place, the OpenShift Container Platform bootstrap process begins automatically after the RHCOS nodes have rebooted.

NOTE

RHCOS nodes do not include a default password for the **core** user. You can access the nodes by running **ssh core@<node>.<cluster_name>. <base_domain>** as a user with access to the SSH private key that is paired to the public key that you specified in your **install_config.yaml** file. OpenShift Container Platform 4 cluster nodes running RHCOS are immutable and rely on Operators to apply cluster changes. Accessing cluster nodes by using SSH is not recommended. However, when investigating installation issues, if the OpenShift Container Platform API is not available, or the kubelet is not properly functioning on a target node, SSH access might be required for debugging or disaster recovery.

1.11.2. Installing RHCOS by using PXE or iPXE booting

You can use PXE or iPXE booting to install RHCOS on the machines.

Prerequisites

- You have created the Ignition config files for your cluster.
- You have configured suitable network, DNS and load balancing infrastructure.
- You have configured suitable PXE or iPXE infrastructure.
- You have an HTTP server that can be accessed from your computer, and from the machines that you create.
- You have reviewed the *Advanced RHCOS installation configuration* section for different ways to configure features, such as networking and disk partitioning.

Procedure

1. Upload the bootstrap, control plane, and compute node Ignition config files that the installation program created to your HTTP server. Note the URLs of these files.

IMPORTANT

You can add or change configuration settings in your Ignition configs before saving them to your HTTP server. If you plan to add more compute machines to your cluster after you finish installation, do not delete these files.

2. From the installation host, validate that the Ignition config files are available on the URLs. The following example gets the Ignition config file for the bootstrap node:

Example output

```
% Total % Received % Xferd Average Speed Time Time Current
Dload Upload Total Spent Left Speed
0 0 0 0 0 0 0 0 --:--:-- 0{"ignition":

{"version":"3.2.0"},"passwd":{"users":[{"name":"core","sshAuthorizedKeys":["ssh-rsa...
```

Replace **bootstrap.ign** with **master.ign** or **worker.ign** in the command to validate that the Ignition config files for the control plane and compute nodes are also available.

3. Although it is possible to obtain the RHCOS **kernel**, **initramfs** and **rootfs** files that are required for your preferred method of installing operating system instances from the RHCOS image mirror page, the recommended way to obtain the correct version of your RHCOS files are from the output of **openshift-install** command:

\$ openshift-install coreos print-stream-json | grep -Eo "https.*(kernel-|initramfs.|rootfs.)\w+ (\.img)?"

Example output

- "<url>/art/storage/releases/rhcos-4.12-aarch64/<release>/aarch64/rhcos-<release>-live-kernel-aarch64"
- "<url>/art/storage/releases/rhcos-4.12-aarch64/<release>/aarch64/rhcos-<release>-live-initramfs.aarch64.img"
- "<url>/art/storage/releases/rhcos-4.12-aarch64/<release>/aarch64/rhcos-<release>-liverootfs.aarch64.img"
- "<url>/art/storage/releases/rhcos-4.12-ppc64le/49.84.202110081256-0/ppc64le/rhcos-<release>-live-kernel-ppc64le"
- "<url>/art/storage/releases/rhcos-4.12-ppc64le/<release>/ppc64le/rhcos-<release>-live-initramfs.ppc64le.img"
- "<url>/art/storage/releases/rhcos-4.12-ppc64le/<release>/ppc64le/rhcos-<release>-live-rootfs.ppc64le.img"
- "<url>/art/storage/releases/rhcos-4.12-s390x/<release>/s390x/rhcos-<release>-live-kernel-s390x"
- "<url>/art/storage/releases/rhcos-4.12-s390x/<release>/s390x/rhcos-<release>-live-initramfs.s390x.img"
- "<url>/art/storage/releases/rhcos-4.12-s390x/<release>/s390x/rhcos-<release>-live-rootfs.s390x.img"
- "<url>/art/storage/releases/rhcos-4.12/<release>/x86_64/rhcos-<release>-live-kernel-x86_64"
- "<url>/art/storage/releases/rhcos-4.12/<release>/x86_64/rhcos-<release>-live-initramfs.x86 64.img"
- "<url>/art/storage/releases/rhcos-4.12/<release>/x86_64/rhcos-<release>-liverootfs.x86_64.img"

IMPORTANT

The RHCOS artifacts might not change with every release of OpenShift Container Platform. You must download images with the highest version that is less than or equal to the OpenShift Container Platform version that you install. Only use the appropriate **kernel**, **initramfs**, and **rootfs** artifacts described below for this procedure. RHCOS QCOW2 images are not supported for this installation type.

The file names contain the OpenShift Container Platform version number. They resemble the following examples:

- kernel: rhcos-<version>-live-kernel-<architecture>
- initramfs: rhcos-<version>-live-initramfs.<architecture>.img

- rootfs: rhcos-<version>-live-rootfs.<architecture>.img
- 4. Upload the **rootfs**, **kernel**, and **initramfs** files to your HTTP server.

IMPORTANT

If you plan to add more compute machines to your cluster after you finish installation, do not delete these files.

- 5. Configure the network boot infrastructure so that the machines boot from their local disks after RHCOS is installed on them.
- 6. Configure PXE or iPXE installation for the RHCOS images and begin the installation. Modify one of the following example menu entries for your environment and verify that the image and Ignition files are properly accessible:
 - For PXE (x86_64):

DEFAULT pxeboot TIMEOUT 20 PROMPT 0 LABEL pxeboot

KERNEL http://<http_server>/rhcos-<version>-live-kernel-<architecture> 1
APPEND initrd=http://<http_server>/rhcos-<version>-live-initramfs.
<architecture>.img coreos.live.rootfs_url=http://<http_server>/rhcos-<version>-live-rootfs.<architecture>.img coreos.inst.install_dev=/dev/sda
coreos.inst.ignition_url=http://<http_server>/bootstrap.ign 2 3

- 1) 1) Specify the location of the live **kernel** file that you uploaded to your HTTP server. The URL must be HTTP, TFTP, or FTP; HTTPS and NFS are not supported.
- If you use multiple NICs, specify a single interface in the **ip** option. For example, to use DHCP on a NIC that is named **eno1**, set **ip=eno1:dhcp**.
- Specify the locations of the RHCOS files that you uploaded to your HTTP server. The initrd parameter value is the location of the initramfs file, the coreos.live.rootfs_url parameter value is the location of the rootfs file, and the coreos.inst.ignition_url parameter value is the location of the bootstrap Ignition config file. You can also add more kernel arguments to the APPEND line to configure networking or other boot options.

NOTE

This configuration does not enable serial console access on machines with a graphical console. To configure a different console, add one or more **console=** arguments to the **APPEND** line. For example, add **console=tty0 console=ttyS0** to set the first PC serial port as the primary console and the graphical console as a secondary console. For more information, see How does one set up a serial terminal and/or console in Red Hat Enterprise Linux? and "Enabling the serial console for PXE and ISO installation" in the "Advanced RHCOS installation configuration" section.

• For iPXE (x86 64 + aarch64):

-

kernel http://<HTTP_server>/rhcos-<version>-live-kernel-<architecture> initrd=main coreos.live.rootfs_url=http://<HTTP_server>/rhcos-<version>-live-rootfs.
<architecture>.img coreos.inst.install_dev=/dev/sda
coreos.inst.ignition_url=http://<HTTP_server>/bootstrap.ign 1 2
initrd --name main http://<HTTP_server>/rhcos-<version>-live-initramfs.
<architecture>.img 3
boot

- Specify the locations of the RHCOS files that you uploaded to your HTTP server. The **kernel** parameter value is the location of the **kernel** file, the **initrd=main** argument is needed for booting on UEFI systems, the **coreos.live.rootfs_url** parameter value is the location of the **rootfs** file, and the **coreos.inst.ignition_url** parameter value is the location of the bootstrap Ignition config file.
- If you use multiple NICs, specify a single interface in the **ip** option. For example, to use DHCP on a NIC that is named **eno1**, set **ip=eno1:dhcp**.
- 3 Specify the location of the **initramfs** file that you uploaded to your HTTP server.

NOTE

This configuration does not enable serial console access on machines with a graphical console. To configure a different console, add one or more **console=** arguments to the **kernel** line. For example, add **console=tty0 console=ttyS0** to set the first PC serial port as the primary console and the graphical console as a secondary console. For more information, see How does one set up a serial terminal and/or console in Red Hat Enterprise Linux? and "Enabling the serial console for PXE and ISO installation" in the "Advanced RHCOS installation configuration" section.

NOTE

To network boot the CoreOS **kernel** on **aarch64** architecture, you need to use a version of iPXE build with the **IMAGE_GZIP** option enabled. See **IMAGE_GZIP** option in iPXE.

• For PXE (with UEFI and Grub as second stage) on aarch64:

- Specify the locations of the RHCOS files that you uploaded to your HTTP/TFTP server. The **kernel** parameter value is the location of the **kernel** file on your TFTP server. The **coreos.live.rootfs_url** parameter value is the location of the **rootfs** file, and the **coreos.inst.ignition_url** parameter value is the location of the bootstrap Ignition config file on your HTTP Server.
- If you use multiple NICs, specify a single interface in the **ip** option. For example, to use

DHCP on a MIC that is named **end t**, set **ip=end t:uncp**.

Specify the location of the **initramfs** file that you uploaded to your TFTP server.

7. Monitor the progress of the RHCOS installation on the console of the machine.

IMPORTANT

Be sure that the installation is successful on each node before commencing with the OpenShift Container Platform installation. Observing the installation process can also help to determine the cause of RHCOS installation issues that might arise.

- 8. After RHCOS installs, the system reboots. During reboot, the system applies the Ignition config file that you specified.
- 9. Check the console output to verify that Ignition ran.

Example command

Ignition: ran on 2022/03/14 14:48:33 UTC (this boot)

Ignition: user-provided config was applied

10. Continue to create the machines for your cluster.

IMPORTANT

You must create the bootstrap and control plane machines at this time. If the control plane machines are not made schedulable, also create at least two compute machines before you install the cluster.

If the required network, DNS, and load balancer infrastructure are in place, the OpenShift Container Platform bootstrap process begins automatically after the RHCOS nodes have rebooted.

NOTE

RHCOS nodes do not include a default password for the **core** user. You can access the nodes by running **ssh core@<node>.<cluster_name>. <base_domain>** as a user with access to the SSH private key that is paired to the public key that you specified in your **install_config.yaml** file. OpenShift Container Platform 4 cluster nodes running RHCOS are immutable and rely on Operators to apply cluster changes. Accessing cluster nodes by using SSH is not recommended. However, when investigating installation issues, if the OpenShift Container Platform API is not available, or the kubelet is not properly functioning on a target node, SSH access might be required for debugging or disaster recovery.

1.11.3. Advanced RHCOS installation configuration

A key benefit for manually provisioning the Red Hat Enterprise Linux CoreOS (RHCOS) nodes for OpenShift Container Platform is to be able to do configuration that is not available through default OpenShift Container Platform installation methods. This section describes some of the configurations

that you can do using techniques that include:

- Passing kernel arguments to the live installer
- Running coreos-installer manually from the live system
- Customizing a live ISO or PXE boot image

The advanced configuration topics for manual Red Hat Enterprise Linux CoreOS (RHCOS) installations detailed in this section relate to disk partitioning, networking, and using Ignition configs in different ways.

1.11.3.1. Using advanced networking options for PXE and ISO installations

Networking for OpenShift Container Platform nodes uses DHCP by default to gather all necessary configuration settings. To set up static IP addresses or configure special settings, such as bonding, you can do one of the following:

- Pass special kernel parameters when you boot the live installer.
- Use a machine config to copy networking files to the installed system.
- Configure networking from a live installer shell prompt, then copy those settings to the installed system so that they take effect when the installed system first boots.

To configure a PXE or iPXE installation, use one of the following options:

- See the "Advanced RHCOS installation reference" tables.
- Use a machine config to copy networking files to the installed system.

To configure an ISO installation, use the following procedure.

Procedure

- 1. Boot the ISO installer.
- 2. From the live system shell prompt, configure networking for the live system using available RHEL tools, such as **nmcli** or **nmtui**.
- 3. Run the **coreos-installer** command to install the system, adding the **--copy-network** option to copy networking configuration. For example:

\$ sudo coreos-installer install --copy-network \ --ignition-url=http://host/worker.ign /dev/sda

IMPORTANT

The **--copy-network** option only copies networking configuration found under /etc/NetworkManager/system-connections. In particular, it does not copy the system hostname.

4. Reboot into the installed system.

Additional resources

 See Getting started with nmcli and Getting started with nmtui in the RHEL 8 documentation for more information about the **nmcli** and **nmtui** tools.

1.11.3.2. Disk partitioning

Disk partitions are created on OpenShift Container Platform cluster nodes during the Red Hat Enterprise Linux CoreOS (RHCOS) installation. Each RHCOS node of a particular architecture uses the same partition layout, unless you override the default partitioning configuration. During the RHCOS installation, the size of the root file system is increased to use any remaining available space on the target device.

IMPORTANT

The use of a custom partition scheme on your node might result in OpenShift Container Platform not monitoring or alerting on some node partitions. If you override the default partitioning, see Understanding OpenShift File System Monitoring (eviction conditions) for more information about how OpenShift Container Platform monitors your host file systems.

OpenShift Container Platform monitors the following two filesystem identifiers:

- nodefs, which is the filesystem that contains /var/lib/kubelet
- imagefs, which is the filesystem that contains /var/lib/containers

For the default partition scheme, **nodefs** and **imagefs** monitor the same root filesystem, /.

To override the default partitioning when installing RHCOS on an OpenShift Container Platform cluster node, you must create separate partitions.

IMPORTANT

For disk sizes larger than 100GB, and especially disk sizes larger than 1TB, create a separate /var partition. See "Creating a separate /var partition" and this Red Hat Knowledgebase article for more information.

Consider a situation where you want to add a separate storage partition for your containers and container images. For example, by mounting /var/lib/containers in a separate partition, the kubelet separately monitors /var/lib/containers as the imagefs directory and the root file system as the nodefs directory.

IMPORTANT

If you have resized your disk size to host a larger file system, consider creating a separate /var/lib/containers partition. Consider resizing a disk that has an xfs format to reduce CPU time issues caused by a high number of allocation groups.

1.11.3.2.1. Creating a separate /var partition

In general, you should use the default disk partitioning that is created during the RHCOS installation. However, there are cases where you might want to create a separate partition for a directory that you expect to grow.

OpenShift Container Platform supports the addition of a single partition to attach storage to either the /var directory or a subdirectory of /var. For example:

- /var/lib/containers: Holds container-related content that can grow as more images and containers are added to a system.
- /var/lib/etcd: Holds data that you might want to keep separate for purposes such as performance optimization of etcd storage.
- /var: Holds data that you might want to keep separate for purposes such as auditing.

IMPORTANT

For disk sizes larger than 100GB, and especially larger than 1TB, create a separate /var partition.

Storing the contents of a /**var** directory separately makes it easier to grow storage for those areas as needed and reinstall OpenShift Container Platform at a later date and keep that data intact. With this method, you will not have to pull all your containers again, nor will you have to copy massive log files when you update systems.

The use of a separate partition for the /var directory or a subdirectory of /var also prevents data growth in the partitioned directory from filling up the root file system.

The following procedure sets up a separate /var partition by adding a machine config manifest that is wrapped into the Ignition config file for a node type during the preparation phase of an installation.

Procedure

- 1. On your installation host, change to the directory that contains the OpenShift Container Platform installation program and generate the Kubernetes manifests for the cluster:
 - \$ openshift-install create manifests --dir <installation_directory>
- 2. Create a Butane config that configures the additional partition. For example, name the file \$HOME/clusterconfig/98-var-partition.bu, change the disk device name to the name of the storage device on the worker systems, and set the storage size as appropriate. This example places the /var directory on a separate partition:

```
variant: openshift
version: 4.12.0
metadata:
 labels:
  machineconfiguration.openshift.io/role: worker
 name: 98-var-partition
storage:
 disks:
 - device: /dev/<device_name> 1
  partitions:
  - label: var
   start_mib: <partition_start_offset> 2
   size_mib: <partition_size> 3
   number: 5
 filesystems:
  - device: /dev/disk/by-partlabel/var
```

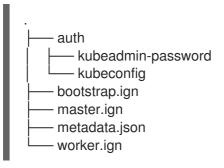
path: /var format: xfs

mount_options: [defaults, prjquota] 4

with mount unit: true

- 1 The storage device name of the disk that you want to partition.
- When adding a data partition to the boot disk, a minimum offset value of 25000 mebibytes is recommended. The root file system is automatically resized to fill all available space up to the specified offset. If no offset value is specified, or if the specified value is smaller than the recommended minimum, the resulting root file system will be too small, and future reinstalls of RHCOS might overwrite the beginning of the data partition.
- The size of the data partition in mebibytes.
- The **priquota** mount option must be enabled for filesystems used for container storage.

NOTE


When creating a separate /var partition, you cannot use different instance types for compute nodes, if the different instance types do not have the same device name.

3. Create a manifest from the Butane config and save it to the **clusterconfig/openshift** directory. For example, run the following command:

\$ butane \$HOME/clusterconfig/98-var-partition.bu -o \$HOME/clusterconfig/openshift/98-var-partition.yaml

- 4. Create the Ignition config files:
 - \$ openshift-install create ignition-configs --dir <installation_directory> 1
 - For **<installation_directory>**, specify the same installation directory.

Ignition config files are created for the bootstrap, control plane, and compute nodes in the installation directory:

The files in the **<installation_directory>/manifest** and **<installation_directory>/openshift** directories are wrapped into the Ignition config files, including the file that contains the **98-var-partition** custom **MachineConfig** object.

Next steps

 You can apply the custom disk partitioning by referencing the Ignition config files during the RHCOS installations.

1.11.3.2.2. Retaining existing partitions

For an ISO installation, you can add options to the **coreos-installer** command that cause the installer to maintain one or more existing partitions. For a PXE installation, you can add **coreos.inst.*** options to the **APPEND** parameter to preserve partitions.

Saved partitions might be data partitions from an existing OpenShift Container Platform system. You can identify the disk partitions you want to keep either by partition label or by number.

NOTE

If you save existing partitions, and those partitions do not leave enough space for RHCOS, the installation will fail without damaging the saved partitions.

Retaining existing partitions during an ISO installation

This example preserves any partition in which the partition label begins with **data** (**data***):

```
# coreos-installer install --ignition-url http://10.0.2.2:8080/user.ign \ --save-partlabel 'data*' /dev/sda
```

The following example illustrates running the **coreos-installer** in a way that preserves the sixth (6) partition on the disk:

```
# coreos-installer install --ignition-url http://10.0.2.2:8080/user.ign \ --save-partindex 6 /dev/sda
```

This example preserves partitions 5 and higher:

```
# coreos-installer install --ignition-url http://10.0.2.2:8080/user.ign --save-partindex 5- /dev/sda
```

In the previous examples where partition saving is used, **coreos-installer** recreates the partition immediately.

Retaining existing partitions during a PXE installation

This **APPEND** option preserves any partition in which the partition label begins with 'data' ('data*'):

coreos.inst.save_partlabel=data*

This **APPEND** option preserves partitions 5 and higher:

coreos.inst.save_partindex=5-

This **APPEND** option preserves partition 6:

coreos.inst.save_partindex=6

1.11.3.3. Identifying Ignition configs

When doing an RHCOS manual installation, there are two types of Ignition configs that you can provide, with different reasons for providing each one:

 Permanent install Ignition config: Every manual RHCOS installation needs to pass one of the Ignition config files generated by openshift-installer, such as bootstrap.ign, master.ign and worker.ign, to carry out the installation.

IMPORTANT

It is not recommended to modify these Ignition config files directly. You can update the manifest files that are wrapped into the Ignition config files, as outlined in examples in the preceding sections.

For PXE installations, you pass the Ignition configs on the **APPEND** line using the **coreos.inst.ignition_url=** option. For ISO installations, after the ISO boots to the shell prompt, you identify the Ignition config on the **coreos-installer** command line with the **--ignition-url=** option. In both cases, only HTTP and HTTPS protocols are supported.

Live install Ignition config: This type can be created by using the coreos-installer customize
subcommand and its various options. With this method, the Ignition config passes to the live
install medium, runs immediately upon booting, and performs setup tasks before or after the
RHCOS system installs to disk. This method should only be used for performing tasks that must
be done once and not applied again later, such as with advanced partitioning that cannot be
done using a machine config.

For PXE or ISO boots, you can create the Ignition config and **APPEND** the **ignition.config.url**= option to identify the location of the Ignition config. You also need to append **ignition.firstboot ignition.platform.id=metal** or the **ignition.config.url** option will be ignored.

1.11.3.4. Advanced RHCOS installation reference

This section illustrates the networking configuration and other advanced options that allow you to modify the Red Hat Enterprise Linux CoreOS (RHCOS) manual installation process. The following tables describe the kernel arguments and command-line options you can use with the RHCOS live installer and the **coreos-installer** command.

1.11.3.4.1. Networking and bonding options for ISO installations

If you install RHCOS from an ISO image, you can add kernel arguments manually when you boot the image to configure networking for a node. If no networking arguments are specified, DHCP is activated in the initramfs when RHCOS detects that networking is required to fetch the Ignition config file.

IMPORTANT

When adding networking arguments manually, you must also add the **rd.neednet=1** kernel argument to bring the network up in the initramfs.

The following information provides examples for configuring networking and bonding on your RHCOS nodes for ISO installations. The examples describe how to use the **ip=**, **nameserver=**, and **bond=** kernel arguments.

NOTE

Ordering is important when adding the kernel arguments: **ip=**, **nameserver=**, and then **bond=**.

The networking options are passed to the **dracut** tool during system boot. For more information about the networking options supported by **dracut**, see the **dracut.cmdline** manual page.

The following examples are the networking options for ISO installation.

Configuring DHCP or static IP addresses

To configure an IP address, either use DHCP (**ip=dhcp**) or set an individual static IP address (**ip=<host_ip>**). If setting a static IP, you must then identify the DNS server IP address (**nameserver=<dns_ip>**) on each node. The following example sets:

- The node's IP address to 10.10.10.2
- The gateway address to 10.10.10.254
- The netmask to 255.255.255.0
- The hostname to core0.example.com
- The DNS server address to 4.4.4.41
- The auto-configuration value to **none**. No auto-configuration is required when IP networking is configured statically.

ip=10.10.10.2::10.10.10.254:255.255.255.0:core0.example.com:enp1s0:none nameserver=4.4.4.41

NOTE

When you use DHCP to configure IP addressing for the RHCOS machines, the machines also obtain the DNS server information through DHCP. For DHCP-based deployments, you can define the DNS server address that is used by the RHCOS nodes through your DHCP server configuration.

Configuring an IP address without a static hostname

You can configure an IP address without assigning a static hostname. If a static hostname is not set by the user, it will be picked up and automatically set by a reverse DNS lookup. To configure an IP address without a static hostname refer to the following example:

- The node's IP address to 10.10.10.2
- The gateway address to 10.10.10.254
- The netmask to 255.255.255.0
- The DNS server address to 4.4.4.41
- The auto-configuration value to **none**. No auto-configuration is required when IP networking is configured statically.

ip=10.10.10.2::10.10.10.254:255.255.255.0::enp1s0:none nameserver=4.4.4.41

Specifying multiple network interfaces

You can specify multiple network interfaces by setting multiple ip= entries.

ip=10.10.10.2::10.10.10.254:255.255.255.0:core0.example.com:enp1s0:none ip=10.10.10.3::10.10.10.254:255.255.255.0:core0.example.com:enp2s0:none

Configuring default gateway and route

Optional: You can configure routes to additional networks by setting an rd.route= value.

NOTE

When you configure one or multiple networks, one default gateway is required. If the additional network gateway is different from the primary network gateway, the default gateway must be the primary network gateway.

• Run the following command to configure the default gateway:

ip=::10.10.10.254::::

• Enter the following command to configure the route for the additional network:

rd.route=20.20.20.0/24:20.20.20.254:enp2s0

Disabling DHCP on a single interface

You can disable DHCP on a single interface, such as when there are two or more network interfaces and only one interface is being used. In the example, the **enp1s0** interface has a static networking configuration and DHCP is disabled for **enp2s0**, which is not used:

ip=10.10.10.2::10.10.10.254:255.255.255.0:core0.example.com:enp1s0:none ip=::::core0.example.com:enp2s0:none

Combining DHCP and static IP configurations

You can combine DHCP and static IP configurations on systems with multiple network interfaces, for example:

ip=enp1s0:dhcp

ip = 10.10.10.2::10.10.10.254:255.255.255.0: core 0. example. com: enp2s 0: none to the core of the

Configuring VLANs on individual interfaces

Optional: You can configure VLANs on individual interfaces by using the **vlan=** parameter.

 To configure a VLAN on a network interface and use a static IP address, run the following command:

ip = 10.10.10.2::10.10.10.254:255.255.255.0: core 0. example. com: enp2s 0.100: none vlan = enp2s 0.100: enp2s 0

• To configure a VLAN on a network interface and to use DHCP, run the following command:

ip=enp2s0.100:dhcp vlan=enp2s0.100:enp2s0

Providing multiple DNS servers

You can provide multiple DNS servers by adding a **nameserver**= entry for each server, for example:

nameserver=1.1.1.1 nameserver=8.8.8.8

Bonding multiple network interfaces to a single interface

Optional: You can bond multiple network interfaces to a single interface by using the **bond=** option. Refer to the following examples:

- The syntax for configuring a bonded interface is: **bond=name[:network_interfaces][:options]** name is the bonding device name (**bond0**), network_interfaces represents a comma-separated list of physical (ethernet) interfaces (**em1,em2**), and options is a comma-separated list of bonding options. Enter **modinfo bonding** to see available options.
- When you create a bonded interface using **bond=**, you must specify how the IP address is assigned and other information for the bonded interface.
- To configure the bonded interface to use DHCP, set the bond's IP address to dhcp. For example:

bond=bond0:em1,em2:mode=active-backup ip=bond0:dhcp

To configure the bonded interface to use a static IP address, enter the specific IP address you
want and related information. For example:

bond=bond0:em1,em2:mode=active-backup ip=10.10.10.2::10.10.10.254:255.255.0:core0.example.com:bond0:none

Bonding multiple network interfaces to a single interface

Optional: You can configure VLANs on bonded interfaces by using the **vlan=** parameter and to use DHCP, for example:

ip=bond0.100:dhcp bond=bond0:em1,em2:mode=active-backup vlan=bond0.100:bond0

Use the following example to configure the bonded interface with a VLAN and to use a static IP address:

ip=10.10.10.2::10.10.10.254:255.255.0:core0.example.com:bond0.100:none bond=bond0:em1,em2:mode=active-backup vlan=bond0.100:bond0

Using network teaming

Optional: You can use a network teaming as an alternative to bonding by using the **team=** parameter:

The syntax for configuring a team interface is: team=name[:network_interfaces]
 name is the team device name (team0) and network_interfaces represents a comma-separated
 list of physical (ethernet) interfaces (em1, em2).

NOTE

Teaming is planned to be deprecated when RHCOS switches to an upcoming version of RHEL. For more information, see this Red Hat Knowledgebase Article .

Use the following example to configure a network team:

team=team0:em1,em2 ip=team0:dhcp

1.11.3.4.2. coreos-installer options for ISO and PXE installations

You can install RHCOS by running **coreos-installer install <options> <device>** at the command prompt, after booting into the RHCOS live environment from an ISO image.

The following table shows the subcommands, options, and arguments you can pass to the **coreosinstaller** command.

Table 1.9. coreos-installer subcommands, command-line options, and arguments

coreos-installer install subcommand		
Subcommand	Description	
\$ coreos-installer install <options> <device></device></options>	Embed an Ignition config in an ISO image.	
coreos-installer install subcommand options		
Option	Description	
-u,image-url <url></url>	Specify the image URL manually.	
-f,image-file <path></path>	Specify a local image file manually. Used for debugging.	
-i,ignition-file <path></path>	Embed an Ignition config from a file.	
-I,ignition-url <url></url>	Embed an Ignition config from a URL.	
ignition-hash <digest></digest>	Digest type-value of the Ignition config.	
-p,platform <name></name>	Override the Ignition platform ID for the installed system.	
console <spec></spec>	Set the kernel and bootloader console for the installed system. For more information about the format of <spec></spec> , see the Linux kernel serial console documentation.	
append-karg <arg></arg>	Append a default kernel argument to the installed system.	
delete-karg <arg></arg>	Delete a default kernel argument from the installed system.	

-n,copy-network	Copy the network configuration from the install environment.		
	IMPORTANT Thecopy-network option only copies networking configuration found under /etc/NetworkManager/system-connections. In particular, it does not copy the system hostname.		
network-dir <path></path>	For use with -n . Default is /etc/NetworkManager/system-connections/.		
save-partlabel <lx></lx>	Save partitions with this label glob.		
save-partindex <id></id>	Save partitions with this number or range.		
insecure	Skip RHCOS image signature verification.		
insecure-ignition	Allow Ignition URL without HTTPS or hash.		
architecture <name></name>	Target CPU architecture. Valid values are x86_64 and aarch64 .		
preserve-on-error	Do not clear partition table on error.		
-h,help	Print help information.		
coreos-installer install subcommand argument			
Argument	Description		
<device></device>	The destination device.		
coreos-installer ISO subcommands			
Subcommand	Description		
\$ coreos-installer iso customize <options> <iso_image></iso_image></options>	Customize a RHCOS live ISO image.		
coreos-installer iso reset <options> <iso_image></iso_image></options>	Restore a RHCOS live ISO image to default settings.		
coreos-installer iso ignition remove <pre><options> <iso_image></iso_image></options></pre>	Remove the embedded Ignition config from an ISO image.		

coreos-installer ISO customize subcommar	nd options
Option	Description
dest-ignition <path></path>	Merge the specified Ignition config file into a new configuration fragment for the destination system.
dest-console <spec></spec>	Specify the kernel and bootloader console for the destination system.
dest-device <path></path>	Install and overwrite the specified destination device.
dest-karg-append <arg></arg>	Add a kernel argument to each boot of the destination system.
dest-karg-delete <arg></arg>	Delete a kernel argument from each boot of the destination system.
network-keyfile <path></path>	Configure networking by using the specified NetworkManager keyfile for live and destination systems.
ignition-ca <path></path>	Specify an additional TLS certificate authority to be trusted by Ignition.
pre-install <path></path>	Run the specified script before installation.
post-install <path></path>	Run the specified script after installation.
installer-config <path></path>	Apply the specified installer configuration file.
live-ignition <path></path>	Merge the specified Ignition config file into a new configuration fragment for the live environment.
live-karg-append <arg></arg>	Add a kernel argument to each boot of the live environment.
live-karg-delete <arg></arg>	Delete a kernel argument from each boot of the live environment.
live-karg-replace <k=o=n></k=o=n>	Replace a kernel argument in each boot of the live environment, in the form key=old=new .
-f,force	Overwrite an existing Ignition config.
-o,output <path></path>	Write the ISO to a new output file.
-h,help	Print help information.

coreos-installer PXE subcommands		
Subcommand	Description	
Note that not all of these options are accepted by all su	ubcommands.	
coreos-installer pxe customize <options> <path></path></options>	Customize a RHCOS live PXE boot config.	
coreos-installer pxe ignition wrap <options></options>	Wrap an Ignition config in an image.	
coreos-installer pxe ignition unwrap <pre><options> <image_name></image_name></options></pre>	Show the wrapped Ignition config in an image.	
coreos-installer PXE customize subcommand option	s	
Option	Description	
Note that not all of these options are accepted by all subcommands.		
dest-ignition <path></path>	Merge the specified Ignition config file into a new configuration fragment for the destination system.	
dest-console <spec></spec>	Specify the kernel and bootloader console for the destination system.	
dest-device <path></path>	Install and overwrite the specified destination device.	
network-keyfile <path></path>	Configure networking by using the specified NetworkManager keyfile for live and destination systems.	
ignition-ca <path></path>	Specify an additional TLS certificate authority to be trusted by Ignition.	
pre-install <path></path>	Run the specified script before installation.	
post-install <path></path>	Run the specified script after installation.	
installer-config <path></path>	Apply the specified installer configuration file.	
live-ignition <path></path>	Merge the specified Ignition config file into a new configuration fragment for the live environment.	

-o,output <path></path>	Write the initramfs to a new output file.			
		NOTE This option is required for PXE environments.		
-h,help	Print help info	rmation.		

1.11.3.4.3. **coreos.inst** boot options for ISO or PXE installations

You can automatically invoke **coreos-installer** options at boot time by passing **coreos.inst** boot arguments to the RHCOS live installer. These are provided in addition to the standard boot arguments.

- For ISO installations, the **coreos.inst** options can be added by interrupting the automatic boot at the bootloader menu. You can interrupt the automatic boot by pressing **TAB** while the **RHEL CoreOS (Live)** menu option is highlighted.
- For PXE or iPXE installations, the **coreos.inst** options must be added to the **APPEND** line before the RHCOS live installer is booted.

The following table shows the RHCOS live installer **coreos.inst** boot options for ISO and PXE installations.

Table 1.10. coreos.inst boot options

Argument	Description
coreos.inst.install_dev	Required. The block device on the system to install to. It is recommended to use the full path, such as /dev/sda, although sda is allowed.
coreos.inst.ignition_url	Optional: The URL of the Ignition config to embed into the installed system. If no URL is specified, no Ignition config is embedded. Only HTTP and HTTPS protocols are supported.
coreos.inst.save_partlabel	Optional: Comma-separated labels of partitions to preserve during the install. Glob-style wildcards are permitted. The specified partitions do not need to exist.
coreos.inst.save_partindex	Optional: Comma-separated indexes of partitions to preserve during the install. Ranges m-n are permitted, and either m or n can be omitted. The specified partitions do not need to exist.
coreos.inst.insecure	Optional: Permits the OS image that is specified by coreos.inst.image_url to be unsigned.

Argument	Description		
coreos.inst.image_url	Optional: Download and install the specified RHCOS image.		
	 This argument should not be used in production environments and is intended for debugging purposes only. 		
	 While this argument can be used to install a version of RHCOS that does not match the live media, it is recommended that you instead use the media that matches the version you want to install. 		
	 If you are using coreos.inst.image_url, you must also use coreos.inst.insecure. This is because the bare-metal media are not GPG-signed for OpenShift Container Platform. 		
	 Only HTTP and HTTPS protocols are supported. 		
coreos.inst.skip_reboot	Optional: The system will not reboot after installing. After the install finishes, you will receive a prompt that allows you to inspect what is happening during installation. This argument should not be used in production environments and is intended for debugging purposes only.		
coreos.inst.platform_id	Optional: The Ignition platform ID of the platform the RHCOS image is being installed on. Default is metal . This option determines whether or not to request an Ignition config from the cloud provider, such as VMware. For example: coreos.inst.platform_id=vmware.		
ignition.config.url	Optional: The URL of the Ignition config for the live boot. For example, this can be used to customize how coreos-installer is invoked, or to run code before or after the installation. This is different from coreos.inst.ignition_url , which is the Ignition config for the installed system.		

1.12. WAITING FOR THE BOOTSTRAP PROCESS TO COMPLETE

The OpenShift Container Platform bootstrap process begins after the cluster nodes first boot into the persistent RHCOS environment that has been installed to disk. The configuration information provided through the Ignition config files is used to initialize the bootstrap process and install OpenShift Container Platform on the machines. You must wait for the bootstrap process to complete.

Prerequisites

- You have created the Ignition config files for your cluster.
- You have configured suitable network, DNS and load balancing infrastructure.
- You have obtained the installation program and generated the Ignition config files for your cluster.
- You installed RHCOS on your cluster machines and provided the Ignition config files that the OpenShift Container Platform installation program generated.
- Your machines have direct internet access or have an HTTP or HTTPS proxy available.

Procedure

- 1. Monitor the bootstrap process:
 - \$./openshift-install --dir <installation_directory> wait-for bootstrap-complete \ 1 --log-level=info 2
- For **<installation_directory>**, specify the path to the directory that you stored the installation files in.
- To view different installation details, specify warn, debug, or error instead of info.

Example output

INFO Waiting up to 30m0s for the Kubernetes API at https://api.test.example.com:6443...

INFO API v1.25.0 up

INFO Waiting up to 30m0s for bootstrapping to complete...

INFO It is now safe to remove the bootstrap resources

The command succeeds when the Kubernetes API server signals that it has been bootstrapped on the control plane machines.

2. After the bootstrap process is complete, remove the bootstrap machine from the load balancer.

IMPORTANT

You must remove the bootstrap machine from the load balancer at this point. You can also remove or reformat the bootstrap machine itself.

1.13. LOGGING IN TO THE CLUSTER BY USING THE CLI

You can log in to your cluster as a default system user by exporting the cluster **kubeconfig** file. The **kubeconfig** file contains information about the cluster that is used by the CLI to connect a client to the correct cluster and API server. The file is specific to a cluster and is created during OpenShift Container Platform installation.

Prerequisites

- You deployed an OpenShift Container Platform cluster.
- You installed the oc CLI.

Procedure

1. Export the **kubeadmin** credentials:

- For **<installation_directory>**, specify the path to the directory that you stored the installation files in.
- 2. Verify you can run **oc** commands successfully using the exported configuration:

\$ oc whoami

Example output

system:admin

1.14. APPROVING THE CERTIFICATE SIGNING REQUESTS FOR YOUR MACHINES

When you add machines to a cluster, two pending certificate signing requests (CSRs) are generated for each machine that you added. You must confirm that these CSRs are approved or, if necessary, approve them yourself. The client requests must be approved first, followed by the server requests.

Prerequisites

• You added machines to your cluster.

Procedure

1. Confirm that the cluster recognizes the machines:

\$ oc get nodes

Example output

```
NAME STATUS ROLES AGE VERSION master-0 Ready master 63m v1.25.0 master-1 Ready master 63m v1.25.0 master-2 Ready master 64m v1.25.0
```

The output lists all of the machines that you created.

NOTE

The preceding output might not include the compute nodes, also known as worker nodes, until some CSRs are approved.

2. Review the pending CSRs and ensure that you see the client requests with the **Pending** or **Approved** status for each machine that you added to the cluster:

\$ oc get csr

Example output

NAME AGE REQUESTOR CONDITION csr-8b2br 15m system:serviceaccount:openshift-machine-config-operator:node-bootstrapper Pending csr-8vnps 15m system:serviceaccount:openshift-machine-config-operator:node-bootstrapper Pending ...

In this example, two machines are joining the cluster. You might see more approved CSRs in the list.

3. If the CSRs were not approved, after all of the pending CSRs for the machines you added are in **Pending** status, approve the CSRs for your cluster machines:

NOTE

Because the CSRs rotate automatically, approve your CSRs within an hour of adding the machines to the cluster. If you do not approve them within an hour, the certificates will rotate, and more than two certificates will be present for each node. You must approve all of these certificates. After the client CSR is approved, the Kubelet creates a secondary CSR for the serving certificate, which requires manual approval. Then, subsequent serving certificate renewal requests are automatically approved by the **machine-approver** if the Kubelet requests a new certificate with identical parameters.

NOTE

For clusters running on platforms that are not machine API enabled, such as bare metal and other user-provisioned infrastructure, you must implement a method of automatically approving the kubelet serving certificate requests (CSRs). If a request is not approved, then the **oc exec**, **oc rsh**, and **oc logs** commands cannot succeed, because a serving certificate is required when the API server connects to the kubelet. Any operation that contacts the Kubelet endpoint requires this certificate approval to be in place. The method must watch for new CSRs, confirm that the CSR was submitted by the **node-bootstrapper** service account in the **system:node** or **system:admin** groups, and confirm the identity of the node.

• To approve them individually, run the following command for each valid CSR:

<csr_name> is the name of a CSR from the list of current CSRs.

• To approve all pending CSRs, run the following command:

 $\ c = \ c - o go-template = '{\{range .items\}}{\{if not .status\}}{\{.metadata.name\}}{\{"\n"\}} = \{end\}}{\{end\}}' | xargs --no-run-if-empty oc adm certificate approve$

NOTE

Some Operators might not become available until some CSRs are approved.

4. Now that your client requests are approved, you must review the server requests for each machine that you added to the cluster:

\$ oc get csr

Example output

```
NAME AGE REQUESTOR CONDITION csr-bfd72 5m26s system:node:ip-10-0-50-126.us-east-2.compute.internal Pending csr-c57lv 5m26s system:node:ip-10-0-95-157.us-east-2.compute.internal Pending ...
```

- 5. If the remaining CSRs are not approved, and are in the **Pending** status, approve the CSRs for your cluster machines:
 - To approve them individually, run the following command for each valid CSR:
 - \$ oc adm certificate approve <csr_name> 1
 - **csr_name>** is the name of a CSR from the list of current CSRs.
 - To approve all pending CSRs, run the following command:

6. After all client and server CSRs have been approved, the machines have the **Ready** status. Verify this by running the following command:

\$ oc get nodes

Example output

```
NAME STATUS ROLES AGE VERSION master-0 Ready master 73m v1.25.0 master-1 Ready master 73m v1.25.0 master-2 Ready master 74m v1.25.0 worker-0 Ready worker 11m v1.25.0 worker-1 Ready worker 11m v1.25.0
```


NOTE

It can take a few minutes after approval of the server CSRs for the machines to transition to the ${\it Ready}$ status.

Additional information

• For more information on CSRs, see Certificate Signing Requests.

1.15. INITIAL OPERATOR CONFIGURATION

After the control plane initializes, you must immediately configure some Operators so that they all become available.

Prerequisites

• Your control plane has initialized.

Procedure

1. Watch the cluster components come online:

\$ watch -n5 oc get clusteroperators

Example output

NAME	VERSION AVAILABLE PROGRESSING DEGRADED
SINCE authentication	4.12.0 True False False 19m
	4.12.0 True False False 1911 4.12.0 True False False 37m
baremetal	
cloud-credential	4.12.0 True False False 40m
cluster-autoscaler	4.12.0 True False False 37m
config-operator	4.12.0 True False False 38m
console	4.12.0 True False False 26m
csi-snapshot-controller	4.12.0 True False False 37m
dns	4.12.0 True False False 37m
etcd	4.12.0 True False False 36m
image-registry	4.12.0 True False False 31m
ingress	4.12.0 True False False 30m
insights	4.12.0 True False False 31m
kube-apiserver	4.12.0 True False False 26m
kube-controller-manager	4.12.0 True False False 36m
kube-scheduler	4.12.0 True False False 36m
kube-storage-version-migra	tor 4.12.0 True False False 37m
machine-api	4.12.0 True False False 29m
machine-approver	4.12.0 True False False 37m
machine-config	4.12.0 True False False 36m
marketplace	4.12.0 True False False 37m
monitoring	4.12.0 True False False 29m
network	4.12.0 True False False 38m
node-tuning	4.12.0 True False False 37m
openshift-apiserver	4.12.0 True False False 32m
openshift-controller-manage	er 4.12.0 True False False 30m
openshift-samples	4.12.0 True False False 32m
operator-lifecycle-manager	4.12.0 True False False 37m
operator-lifecycle-manager-	catalog 4.12.0 True False False 37m
	packageserver 4.12.0 True False False 32m
service-ca	4.12.0 True False False 38m
storage	4.12.0 True False False 37m
ı ~	

2. Configure the Operators that are not available.

1.15.1. Disabling the default OperatorHub catalog sources

Operator catalogs that source content provided by Red Hat and community projects are configured for OperatorHub by default during an OpenShift Container Platform installation. In a restricted network environment, you must disable the default catalogs as a cluster administrator.

Procedure

 Disable the sources for the default catalogs by adding disableAllDefaultSources: true to the OperatorHub object:

```
$ oc patch OperatorHub cluster --type json \
-p '[{"op": "add", "path": "/spec/disableAllDefaultSources", "value": true}]'
```

TIP

Alternatively, you can use the web console to manage catalog sources. From the **Administration** → **Cluster Settings** → **Configuration** → **OperatorHub** page, click the **Sources** tab, where you can create, update, delete, disable, and enable individual sources.

1.15.2. Image registry removed during installation

On platforms that do not provide shareable object storage, the OpenShift Image Registry Operator bootstraps itself as **Removed**. This allows **openshift-installer** to complete installations on these platform types.

After installation, you must edit the Image Registry Operator configuration to switch the **managementState** from **Removed** to **Managed**. When this has completed, you must configure storage.

1.15.3. Image registry storage configuration

The Image Registry Operator is not initially available for platforms that do not provide default storage. After installation, you must configure your registry to use storage so that the Registry Operator is made available.

Instructions are shown for configuring a persistent volume, which is required for production clusters. Where applicable, instructions are shown for configuring an empty directory as the storage location, which is available for only non-production clusters.

Additional instructions are provided for allowing the image registry to use block storage types by using the **Recreate** rollout strategy during upgrades.

1.15.3.1. Configuring registry storage for bare metal and other manual installations

As a cluster administrator, following installation you must configure your registry to use storage.

Prerequisites

- You have access to the cluster as a user with the **cluster-admin** role.
- You have a cluster that uses manually-provisioned Red Hat Enterprise Linux CoreOS (RHCOS) nodes, such as bare metal.

• You have provisioned persistent storage for your cluster, such as Red Hat OpenShift Data Foundation.

IMPORTANT

OpenShift Container Platform supports **ReadWriteOnce** access for image registry storage when you have only one replica. **ReadWriteOnce** access also requires that the registry uses the **Recreate** rollout strategy. To deploy an image registry that supports high availability with two or more replicas, **ReadWriteMany** access is required.

• Must have 100Gi capacity.

Procedure

1. To configure your registry to use storage, change the **spec.storage.pvc** in the **configs.imageregistry/cluster** resource.

NOTE

When you use shared storage, review your security settings to prevent outside access.

2. Verify that you do not have a registry pod:

\$ oc get pod -n openshift-image-registry -l docker-registry=default

Example output

No resources found in openshift-image-registry namespace

NOTE

If you do have a registry pod in your output, you do not need to continue with this procedure.

3. Check the registry configuration:

\$ oc edit configs.imageregistry.operator.openshift.io

Example output

storage: pvc: claim:

Leave the claim field blank to allow the automatic creation of an image-registry-storage PVC.

4. Check the **clusteroperator** status:

\$ oc get clusteroperator image-registry

Example output

NAME VERSION AVAILABLE PROGRESSING DEGRADED SINCE MESSAGE image-registry 4.12 True False False 6h50m

- 5. Ensure that your registry is set to managed to enable building and pushing of images.
 - Run:

\$ oc edit configs.imageregistry/cluster

Then, change the line

managementState: Removed

to

managementState: Managed

1.15.3.2. Configuring storage for the image registry in non-production clusters

You must configure storage for the Image Registry Operator. For non-production clusters, you can set the image registry to an empty directory. If you do so, all images are lost if you restart the registry.

Procedure

To set the image registry storage to an empty directory:

\$ oc patch configs.imageregistry.operator.openshift.io cluster --type merge --patch '{"spec": {"storage":{"emptyDir":{}}}}'

WARNING

Configure this option for only non-production clusters.

If you run this command before the Image Registry Operator initializes its components, the **oc patch** command fails with the following error:

Error from server (NotFound): configs.imageregistry.operator.openshift.io "cluster" not found

Wait a few minutes and run the command again.

1.15.3.3. Configuring block registry storage for bare metal

To allow the image registry to use block storage types during upgrades as a cluster administrator, you can use the **Recreate** rollout strategy.

IMPORTANT

Block storage volumes, or block persistent volumes, are supported but not recommended for use with the image registry on production clusters. An installation where the registry is configured on block storage is not highly available because the registry cannot have more than one replica.

If you choose to use a block storage volume with the image registry, you must use a filesystem persistent volume claim (PVC).

Procedure

1. Enter the following command to set the image registry storage as a block storage type, patch the registry so that it uses the **Recreate** rollout strategy, and runs with only one (1) replica:

\$ oc patch config.imageregistry.operator.openshift.io/cluster --type=merge -p '{"spec": {"rolloutStrategy":"Recreate","replicas":1}}'

- 2. Provision the PV for the block storage device, and create a PVC for that volume. The requested block volume uses the ReadWriteOnce (RWO) access mode.
 - a. Create a **pvc.yaml** file with the following contents to define a VMware vSphere **PersistentVolumeClaim** object:

kind: PersistentVolumeClaim
apiVersion: v1
metadata:
name: image-registry-storage 1
namespace: openshift-image-registry 2
spec:
accessModes:
- ReadWriteOnce 3
resources:
requests:
storage: 100Gi 4

- A unique name that represents the **PersistentVolumeClaim** object.
- The namespace for the PersistentVolumeClaim object, which is openshift-imageregistry.
- The access mode of the persistent volume claim. With **ReadWriteOnce**, the volume can be mounted with read and write permissions by a single node.
- The size of the persistent volume claim.
- b. Enter the following command to create the **PersistentVolumeClaim** object from the file:
 - \$ oc create -f pvc.yaml -n openshift-image-registry
- 3. Enter the following command to edit the registry configuration so that it references the correct PVC:

\$ oc edit config.imageregistry.operator.openshift.io -o yaml

_

Example output

storage: pvc:

claim: 1

By creating a custom PVC, you can leave the **claim** field blank for the default automatic creation of an **image-registry-storage** PVC.

1.16. COMPLETING INSTALLATION ON USER-PROVISIONED INFRASTRUCTURE

After you complete the Operator configuration, you can finish installing the cluster on infrastructure that you provide.

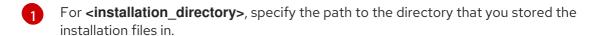
Prerequisites

- Your control plane has initialized.
- You have completed the initial Operator configuration.

Procedure

1. Confirm that all the cluster components are online with the following command:

\$ watch -n5 oc get clusteroperators


Example output

NAME SINCE	VERSION AVAILABLE PROGRESSING DEGRADED
authentication	4.12.0 True False False 19m
baremetal	4.12.0 True False False 37m
cloud-credential	4.12.0 True False False 40m
cluster-autoscaler	4.12.0 True False False 37m
config-operator	4.12.0 True False False 38m
console	4.12.0 True False False 26m
csi-snapshot-controller	4.12.0 True False False 37m
dns	4.12.0 True False False 37m
etcd	4.12.0 True False False 36m
image-registry	4.12.0 True False False 31m
ingress	4.12.0 True False False 30m
insights	4.12.0 True False False 31m
kube-apiserver	4.12.0 True False False 26m
kube-controller-manager	4.12.0 True False False 36m
kube-scheduler	4.12.0 True False False 36m
kube-storage-version-migra	
machine-api	4.12.0 True False False 29m
machine-approver	4.12.0 True False False 37m
machine-config	4.12.0 True False False 36m
marketplace	4.12.0 True False False 37m

4.12.0 True False False 29m monitoring network 4.12.0 True False False 38m False False node-tuning 4.12.0 True 37m openshift-apiserver 4.12.0 True False False 32m openshift-controller-manager 4.12.0 True False False 30m openshift-samples 4.12.0 True False False 32m operator-lifecycle-manager 4.12.0 True False False 37m operator-lifecycle-manager-catalog 4.12.0 True False False 37m operator-lifecycle-manager-packageserver 4.12.0 True False False 32m 4.12.0 True service-ca False False 38m 4.12.0 True False False 37m storage

Alternatively, the following command notifies you when all of the clusters are available. It also retrieves and displays credentials:

\$./openshift-install --dir <installation_directory> wait-for install-complete

Example output

INFO Waiting up to 30m0s for the cluster to initialize...

The command succeeds when the Cluster Version Operator finishes deploying the OpenShift Container Platform cluster from Kubernetes API server.

IMPORTANT

- The Ignition config files that the installation program generates contain
 certificates that expire after 24 hours, which are then renewed at that time. If
 the cluster is shut down before renewing the certificates and the cluster is
 later restarted after the 24 hours have elapsed, the cluster automatically
 recovers the expired certificates. The exception is that you must manually
 approve the pending node-bootstrapper certificate signing requests (CSRs)
 to recover kubelet certificates. See the documentation for Recovering from
 expired control plane certificates for more information.
- It is recommended that you use Ignition config files within 12 hours after they are generated because the 24-hour certificate rotates from 16 to 22 hours after the cluster is installed. By using the Ignition config files within 12 hours, you can avoid installation failure if the certificate update runs during installation.
- 2. Confirm that the Kubernetes API server is communicating with the pods.
 - a. To view a list of all pods, use the following command:

\$ oc get pods --all-namespaces

Example output

NAMESPACE NAME READY STATUS

RESTARTS AGE openshift-apiserver-operator	or openshift-apiserver-operator-85	5cb746	d55-zghs8	1/1
Running 1 9m openshift-apiserver	apiserver-67b9g	1/1	Running	0
3m openshift-apiserver	apiserver-ljcmx	1/1	Running	0
1m openshift-apiserver	apiserver-z25h4	1/1	Running	0
2m	·	.,.	J	1/1
Running 0 5m	erator authentication-operator-69d5	100104	-VIIZIIO	1/1

b. View the logs for a pod that is listed in the output of the previous command by using the following command:

Specify the pod name and namespace, as shown in the output of the previous command.

If the pod logs display, the Kubernetes API server can communicate with the cluster machines.

3. For an installation with Fibre Channel Protocol (FCP), additional steps are required to enable multipathing. Do not enable multipathing during installation.

See "Enabling multipathing with kernel arguments on RHCOS" in the *Post-installation machine configuration tasks* documentation for more information.

1.17. TELEMETRY ACCESS FOR OPENSHIFT CONTAINER PLATFORM

In OpenShift Container Platform 4.12, the Telemetry service, which runs by default to provide metrics about cluster health and the success of updates, requires internet access. If your cluster is connected to the internet, Telemetry runs automatically, and your cluster is registered to OpenShift Cluster Manager Hybrid Cloud Console.

After you confirm that your OpenShift Cluster Manager Hybrid Cloud Console inventory is correct, either maintained automatically by Telemetry or manually by using OpenShift Cluster Manager, use subscription watch to track your OpenShift Container Platform subscriptions at the account or multicluster level.

Additional resources

• See About remote health monitoring for more information about the Telemetry service

1.18. NEXT STEPS

- Customize your cluster.
- If necessary, you can opt out of remote health reporting.
- Set up your registry and configure registry storage.