
OpenShift Container Platform 4.13

Monitoring

Configuring and using the monitoring stack in OpenShift Container Platform

Last Updated: 2024-09-04

OpenShift Container Platform 4.13 Monitoring

Configuring and using the monitoring stack in OpenShift Container Platform

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Use metrics and customized alerts provided by the monitoring stack to track the health and
performance of your applications running on OpenShift Container Platform clusters.

. .

. .

. .

. .

Table of Contents

CHAPTER 1. MONITORING OVERVIEW
1.1. ABOUT OPENSHIFT CONTAINER PLATFORM MONITORING
1.2. UNDERSTANDING THE MONITORING STACK

1.2.1. Default monitoring components
1.2.2. Default monitoring targets
1.2.3. Components for monitoring user-defined projects
1.2.4. Monitoring targets for user-defined projects
1.2.5. Understanding the monitoring stack in high-availability clusters

1.3. GLOSSARY OF COMMON TERMS FOR OPENSHIFT CONTAINER PLATFORM MONITORING
1.4. ADDITIONAL RESOURCES

CHAPTER 2. CONFIGURING THE MONITORING STACK
2.1. PREREQUISITES
2.2. MAINTENANCE AND SUPPORT FOR MONITORING

2.2.1. Support considerations for monitoring
2.2.2. Support policy for monitoring Operators
2.2.3. Support version matrix for monitoring components

2.3. PREPARING TO CONFIGURE THE MONITORING STACK
2.3.1. Creating a cluster monitoring config map
2.3.2. Creating a user-defined workload monitoring config map

2.4. GRANTING USERS PERMISSIONS FOR CORE PLATFORM MONITORING
2.5. CONFIGURING THE MONITORING STACK
2.6. CONFIGURABLE MONITORING COMPONENTS
2.7. USING NODE SELECTORS TO MOVE MONITORING COMPONENTS

2.7.1. How node selectors work with other constraints
2.7.2. Moving monitoring components to different nodes

2.8. ASSIGNING TOLERATIONS TO MONITORING COMPONENTS
2.9. SETTING THE BODY SIZE LIMIT FOR METRICS SCRAPING
2.10. CONFIGURING A DEDICATED SERVICE MONITOR

2.10.1. Enabling a dedicated service monitor
2.11. CONFIGURING PERSISTENT STORAGE

2.11.1. Persistent storage prerequisites
2.11.2. Configuring a persistent volume claim
2.11.3. Resizing a persistent volume
2.11.4. Modifying the retention time and size for Prometheus metrics data
2.11.5. Modifying the retention time for Thanos Ruler metrics data

2.12. CONFIGURING REMOTE WRITE STORAGE
2.12.1. Supported remote write authentication settings
2.12.2. Example remote write authentication settings

2.13. ADDING CLUSTER ID LABELS TO METRICS
2.13.1. Creating cluster ID labels for metrics

2.14. CONFIGURING METRICS COLLECTION PROFILES
2.14.1. About metrics collection profiles
2.14.2. Choosing a metrics collection profile

2.15. CONTROLLING THE IMPACT OF UNBOUND METRICS ATTRIBUTES IN USER-DEFINED PROJECTS
2.15.1. Setting scrape sample and label limits for user-defined projects
2.15.2. Creating scrape sample alerts

CHAPTER 3. CONFIGURING EXTERNAL ALERTMANAGER INSTANCES

CHAPTER 4. CONFIGURING SECRETS FOR ALERTMANAGER
4.1. ADDING A SECRET TO THE ALERTMANAGER CONFIGURATION

6
6
6
7
9

10
10
10
11

14

15
15
15
15
16
17
17
17
18
19

20
23
24
24
25
27
30
31
31
32
32
32
35
38
41

42
46
47
52
53
56
57
57
58
58
60

63

66
66

Table of Contents

1

. .

. .

. .

. .

. .

4.2. ATTACHING ADDITIONAL LABELS TO YOUR TIME SERIES AND ALERTS

CHAPTER 5. CONFIGURING POD TOPOLOGY SPREAD CONSTRAINTS FOR MONITORING
5.1. SETTING UP POD TOPOLOGY SPREAD CONSTRAINTS FOR PROMETHEUS
5.2. SETTING UP POD TOPOLOGY SPREAD CONSTRAINTS FOR ALERTMANAGER
5.3. SETTING UP POD TOPOLOGY SPREAD CONSTRAINTS FOR THANOS RULER
5.4. SETTING LOG LEVELS FOR MONITORING COMPONENTS
5.5. ENABLING THE QUERY LOG FILE FOR PROMETHEUS
5.6. ENABLING QUERY LOGGING FOR THANOS QUERIER
5.7. SETTING AUDIT LOG LEVELS FOR THE PROMETHEUS ADAPTER
5.8. DISABLING THE LOCAL ALERTMANAGER

CHAPTER 6. ENABLING MONITORING FOR USER-DEFINED PROJECTS
6.1. ENABLING MONITORING FOR USER-DEFINED PROJECTS
6.2. GRANTING USERS PERMISSION TO MONITOR USER-DEFINED PROJECTS

6.2.1. Granting user permissions by using the web console
6.2.2. Granting user permissions by using the CLI

6.3. GRANTING USERS PERMISSION TO CONFIGURE MONITORING FOR USER-DEFINED PROJECTS
6.4. ACCESSING METRICS FROM OUTSIDE THE CLUSTER FOR CUSTOM APPLICATIONS
6.5. EXCLUDING A USER-DEFINED PROJECT FROM MONITORING
6.6. DISABLING MONITORING FOR USER-DEFINED PROJECTS

CHAPTER 7. ENABLING ALERT ROUTING FOR USER-DEFINED PROJECTS
7.1. UNDERSTANDING ALERT ROUTING FOR USER-DEFINED PROJECTS
7.2. ENABLING THE PLATFORM ALERTMANAGER INSTANCE FOR USER-DEFINED ALERT ROUTING
7.3. ENABLING A SEPARATE ALERTMANAGER INSTANCE FOR USER-DEFINED ALERT ROUTING
7.4. GRANTING USERS PERMISSION TO CONFIGURE ALERT ROUTING FOR USER-DEFINED PROJECTS

CHAPTER 8. MANAGING METRICS
8.1. UNDERSTANDING METRICS
8.2. SETTING UP METRICS COLLECTION FOR USER-DEFINED PROJECTS

8.2.1. Deploying a sample service
8.2.2. Specifying how a service is monitored
8.2.3. Example service endpoint authentication settings

8.2.3.1. Sample YAML authentication with a bearer token
8.2.3.2. Sample YAML for Basic authentication
8.2.3.3. Sample YAML authentication with OAuth 2.0

8.3. VIEWING A LIST OF AVAILABLE METRICS
8.4. QUERYING METRICS

8.4.1. Querying metrics for all projects as a cluster administrator
8.4.2. Querying metrics for user-defined projects as a developer

8.5. GETTING DETAILED INFORMATION ABOUT A METRICS TARGET

CHAPTER 9. MANAGING ALERTS
9.1. ACCESSING THE ALERTING UI IN THE ADMINISTRATOR AND DEVELOPER PERSPECTIVES
9.2. SEARCHING AND FILTERING ALERTS, SILENCES, AND ALERTING RULES

Understanding alert filters
Understanding silence filters
Understanding alerting rule filters
Searching and filtering alerts, silences, and alerting rules in the Developer perspective

9.3. GETTING INFORMATION ABOUT ALERTS, SILENCES, AND ALERTING RULES
9.4. MANAGING SILENCES

9.4.1. Silencing alerts
9.4.2. Editing silences

68

72
72
73
74
76
78
80
82
84

85
85
86
88
89
89
90
91

92

94
94
94
95
96

98
98
98
98

100
101
101
102
103
104
105
105
107
108

111
111
111
111

112
112
113
114
116
116
117

OpenShift Container Platform 4.13 Monitoring

2

. .

. .

. .

. .

9.4.3. Expiring silences
9.5. MANAGING ALERTING RULES FOR USER-DEFINED PROJECTS

9.5.1. Optimizing alerting for user-defined projects
9.5.2. About creating alerting rules for user-defined projects
9.5.3. Creating alerting rules for user-defined projects
9.5.4. Accessing alerting rules for user-defined projects
9.5.5. Listing alerting rules for all projects in a single view
9.5.6. Removing alerting rules for user-defined projects

9.6. MANAGING ALERTING RULES FOR CORE PLATFORM MONITORING
9.6.1. Modifying core platform alerting rules
9.6.2. Creating new alerting rules

9.7. SENDING NOTIFICATIONS TO EXTERNAL SYSTEMS
9.7.1. Configuring alert receivers
9.7.2. Configuring different alert receivers for default platform alerts and user-defined alerts
9.7.3. Creating alert routing for user-defined projects

9.8. CONFIGURING ALERTMANAGER TO SEND NOTIFICATIONS
9.8.1. Configuring notifications for default platform alerts
9.8.2. Configuring notifications for user-defined alerts

9.9. ADDITIONAL RESOURCES

CHAPTER 10. REVIEWING MONITORING DASHBOARDS
10.1. REVIEWING MONITORING DASHBOARDS AS A CLUSTER ADMINISTRATOR
10.2. REVIEWING MONITORING DASHBOARDS AS A DEVELOPER

CHAPTER 11. ACCESSING MONITORING APIS BY USING THE CLI
11.1. ABOUT ACCESSING MONITORING WEB SERVICE APIS
11.2. ACCESSING A MONITORING WEB SERVICE API
11.3. QUERYING METRICS BY USING THE FEDERATION ENDPOINT FOR PROMETHEUS
11.4. ACCESSING METRICS FROM OUTSIDE THE CLUSTER FOR CUSTOM APPLICATIONS
11.5. ADDITIONAL RESOURCES

CHAPTER 12. TROUBLESHOOTING MONITORING ISSUES
12.1. INVESTIGATING WHY USER-DEFINED PROJECT METRICS ARE UNAVAILABLE
12.2. DETERMINING WHY PROMETHEUS IS CONSUMING A LOT OF DISK SPACE
12.3. RESOLVING THE KUBEPERSISTENTVOLUMEFILLINGUP ALERT FIRING FOR PROMETHEUS

CHAPTER 13. CONFIG MAP REFERENCE FOR THE CLUSTER MONITORING OPERATOR
13.1. CLUSTER MONITORING OPERATOR CONFIGURATION REFERENCE
13.2. ADDITIONALALERTMANAGERCONFIG

13.2.1. Description
13.2.2. Required

13.3. ALERTMANAGERMAINCONFIG
13.3.1. Description

13.4. ALERTMANAGERUSERWORKLOADCONFIG
13.4.1. Description

13.5. CLUSTERMONITORINGCONFIGURATION
13.5.1. Description

13.6. DEDICATEDSERVICEMONITORS
13.6.1. Description

13.7. K8SPROMETHEUSADAPTER
13.7.1. Description

13.8. KUBESTATEMETRICSCONFIG
13.8.1. Description

13.9. NODEEXPORTERCOLLECTORBUDDYINFOCONFIG

118
118
119
119

120
121
121
122
122
123
124
126
126
128
128
129
129
132
133

134
135
136

137
137
138
138
140
141

142
142
145
146

149
149
149
149
149
150
150
151
151

153
153
154
154
154
154
155
155
155

Table of Contents

3

13.9.1. Description
13.10. NODEEXPORTERCOLLECTORCONFIG

13.10.1. Description
13.11. NODEEXPORTERCOLLECTORCPUFREQCONFIG

13.11.1. Description
13.12. NODEEXPORTERCOLLECTORNETCLASSCONFIG

13.12.1. Description
13.13. NODEEXPORTERCOLLECTORNETDEVCONFIG

13.13.1. Description
13.14. NODEEXPORTERCOLLECTORTCPSTATCONFIG

13.14.1. Description
13.15. NODEEXPORTERCONFIG

13.15.1. Description
13.16. OPENSHIFTSTATEMETRICSCONFIG

13.16.1. Description
13.17. PROMETHEUSK8SCONFIG

13.17.1. Description
13.18. PROMETHEUSOPERATORCONFIG

13.18.1. Description
13.19. PROMETHEUSRESTRICTEDCONFIG

13.19.1. Description
13.20. REMOTEWRITESPEC

13.20.1. Description
13.20.2. Required

13.21. TLSCONFIG
13.21.1. Description
13.21.2. Required

13.22. TELEMETERCLIENTCONFIG
13.22.1. Description
13.22.2. Required

13.23. THANOSQUERIERCONFIG
13.23.1. Description

13.24. THANOSRULERCONFIG
13.24.1. Description

13.25. USERWORKLOADCONFIGURATION
13.25.1. Description

155
156
156
156
156
157
157
158
158
158
158
158
158
159
159
159
159
162
162
162
162
165
165
165
167
167
167
167
168
168
168
168
168
169
169
169

OpenShift Container Platform 4.13 Monitoring

4

Table of Contents

5

CHAPTER 1. MONITORING OVERVIEW

1.1. ABOUT OPENSHIFT CONTAINER PLATFORM MONITORING

OpenShift Container Platform includes a preconfigured, preinstalled, and self-updating monitoring
stack that provides monitoring for core platform components. You also have the option to enable
monitoring for user-defined projects.

A cluster administrator can configure the monitoring stack with the supported configurations. OpenShift
Container Platform delivers monitoring best practices out of the box.

A set of alerts are included by default that immediately notify administrators about issues with a cluster.
Default dashboards in the OpenShift Container Platform web console include visual representations of
cluster metrics to help you to quickly understand the state of your cluster. With the OpenShift Container
Platform web console, you can view and manage metrics, alerts, and review monitoring dashboards.

In the Observe section of OpenShift Container Platform web console, you can access and manage
monitoring features such as metrics, alerts, monitoring dashboards, and metrics targets.

After installing OpenShift Container Platform, cluster administrators can optionally enable monitoring
for user-defined projects. By using this feature, cluster administrators, developers, and other users can
specify how services and pods are monitored in their own projects. As a cluster administrator, you can
find answers to common problems such as user metrics unavailability and high consumption of disk
space by Prometheus in Troubleshooting monitoring issues.

1.2. UNDERSTANDING THE MONITORING STACK

The OpenShift Container Platform monitoring stack is based on the Prometheus open source project
and its wider ecosystem. The monitoring stack includes the following:

Default platform monitoring components. A set of platform monitoring components are
installed in the openshift-monitoring project by default during an OpenShift Container
Platform installation. This provides monitoring for core cluster components including
Kubernetes services. The default monitoring stack also enables remote health monitoring for
clusters.
These components are illustrated in the Installed by default section in the following diagram.

Components for monitoring user-defined projects. After optionally enabling monitoring for
user-defined projects, additional monitoring components are installed in the openshift-user-
workload-monitoring project. This provides monitoring for user-defined projects. These
components are illustrated in the User section in the following diagram.

OpenShift Container Platform 4.13 Monitoring

6

https://prometheus.io/

1.2.1. Default monitoring components

By default, the OpenShift Container Platform 4.13 monitoring stack includes these components:

Table 1.1. Default monitoring stack components

Component Description

Cluster Monitoring Operator The Cluster Monitoring Operator (CMO) is a central
component of the monitoring stack. It deploys,
manages, and automatically updates Prometheus
and Alertmanager instances, Thanos Querier,
Telemeter Client, and metrics targets. The CMO is
deployed by the Cluster Version Operator (CVO).

CHAPTER 1. MONITORING OVERVIEW

7

Prometheus Operator The Prometheus Operator (PO) in the openshift-
monitoring project creates, configures, and
manages platform Prometheus instances and
Alertmanager instances. It also automatically
generates monitoring target configurations based on
Kubernetes label queries.

Prometheus Prometheus is the monitoring system on which the
OpenShift Container Platform monitoring stack is
based. Prometheus is a time-series database and a
rule evaluation engine for metrics. Prometheus sends
alerts to Alertmanager for processing.

Prometheus Adapter The Prometheus Adapter (PA in the preceding
diagram) translates Kubernetes node and pod
queries for use in Prometheus. The resource metrics
that are translated include CPU and memory
utilization metrics. The Prometheus Adapter exposes
the cluster resource metrics API for horizontal pod
autoscaling. The Prometheus Adapter is also used by
the oc adm top nodes and oc adm top pods
commands.

Alertmanager The Alertmanager service handles alerts received
from Prometheus. Alertmanager is also responsible
for sending the alerts to external notification
systems.

kube-state-metrics agent The kube-state-metrics exporter agent (KSM in
the preceding diagram) converts Kubernetes objects
to metrics that Prometheus can use.

openshift-state-metrics agent The openshift-state-metrics exporter (OSM in the
preceding diagram) expands upon kube-state-
metrics by adding metrics for OpenShift Container
Platform-specific resources.

node-exporter agent The node-exporter agent (NE in the preceding
diagram) collects metrics about every node in a
cluster. The node-exporter agent is deployed on
every node.

Thanos Querier Thanos Querier aggregates and optionally
deduplicates core OpenShift Container Platform
metrics and metrics for user-defined projects under a
single, multi-tenant interface.

Telemeter Client Telemeter Client sends a subsection of the data from
platform Prometheus instances to Red Hat to
facilitate Remote Health Monitoring for clusters.

Component Description

OpenShift Container Platform 4.13 Monitoring

8

All of the components in the monitoring stack are monitored by the stack and are automatically updated
when OpenShift Container Platform is updated.

NOTE

All components of the monitoring stack use the TLS security profile settings that are
centrally configured by a cluster administrator. If you configure a monitoring stack
component that uses TLS security settings, the component uses the TLS security profile
settings that already exist in the tlsSecurityProfile field in the global OpenShift
Container Platform apiservers.config.openshift.io/cluster resource.

1.2.2. Default monitoring targets

In addition to the components of the stack itself, the default monitoring stack monitors additional
platform components.

The following are examples of monitoring targets:

CoreDNS

etcd

HAProxy

Image registry

Kubelets

Kubernetes API server

Kubernetes controller manager

Kubernetes scheduler

OpenShift API server

OpenShift Controller Manager

Operator Lifecycle Manager (OLM)

NOTE

The exact list of targets can vary depending on your cluster capabilities and
installed components.

Each OpenShift Container Platform component is responsible for its monitoring
configuration. For problems with the monitoring of an OpenShift Container
Platform component, open a Jira issue against that component, not against the
general monitoring component.

Other OpenShift Container Platform framework components might be exposing metrics as well. For
details, see their respective documentation.

Additional resources

CHAPTER 1. MONITORING OVERVIEW

9

https://issues.redhat.com/secure/CreateIssueDetails!init.jspa?pid=12332330&summary=Monitoring_issue&issuetype=1&priority=10200&versions=12398149

Getting detailed information about a metrics target

1.2.3. Components for monitoring user-defined projects

OpenShift Container Platform includes an optional enhancement to the monitoring stack that enables
you to monitor services and pods in user-defined projects. This feature includes the following
components:

Table 1.2. Components for monitoring user-defined projects

Component Description

Prometheus Operator The Prometheus Operator (PO) in the openshift-
user-workload-monitoring project creates,
configures, and manages Prometheus and Thanos
Ruler instances in the same project.

Prometheus Prometheus is the monitoring system through which
monitoring is provided for user-defined projects.
Prometheus sends alerts to Alertmanager for
processing.

Thanos Ruler The Thanos Ruler is a rule evaluation engine for
Prometheus that is deployed as a separate process.
In OpenShift Container Platform , Thanos Ruler
provides rule and alerting evaluation for the
monitoring of user-defined projects.

Alertmanager The Alertmanager service handles alerts received
from Prometheus and Thanos Ruler. Alertmanager is
also responsible for sending user-defined alerts to
external notification systems. Deploying this service
is optional.

NOTE

The components in the preceding table are deployed after monitoring is enabled for
user-defined projects.

All of these components are monitored by the stack and are automatically updated when OpenShift
Container Platform is updated.

1.2.4. Monitoring targets for user-defined projects

When monitoring is enabled for user-defined projects, you can monitor:

Metrics provided through service endpoints in user-defined projects.

Pods running in user-defined projects.

1.2.5. Understanding the monitoring stack in high-availability clusters

By default, in multi-node clusters, the following components run in high-availability (HA) mode to

OpenShift Container Platform 4.13 Monitoring

10

By default, in multi-node clusters, the following components run in high-availability (HA) mode to
prevent data loss and service interruption:

Prometheus

Alertmanager

Thanos Ruler

Thanos Querier

Prometheus Adapter

The component is replicated across two pods, each running on a separate node. This means that the
monitoring stack can tolerate the loss of one pod.

Prometheus in HA mode

Both replicas independently scrape the same targets and evaluate the same rules.

The replicas do not communicate with each other. Therefore, data might differ between the
pods.

Alertmanager in HA mode

The two replicas synchronize notification and silence states with each other. This ensures
that each notification is sent at least once.

If the replicas fail to communicate or if there is an issue on the receiving side, notifications
are still sent, but they might be duplicated.

IMPORTANT

Prometheus, Alertmanager, and Thanos Ruler are stateful components. To ensure high
availability, you must configure them with persistent storage.

Additional resources

High-availability or single-node cluster detection and support

Configuring persistent storage

Configuring the monitoring stack

1.3. GLOSSARY OF COMMON TERMS FOR OPENSHIFT CONTAINER
PLATFORM MONITORING

This glossary defines common terms that are used in OpenShift Container Platform architecture.

Alertmanager

Alertmanager handles alerts received from Prometheus. Alertmanager is also responsible for sending
the alerts to external notification systems.

Alerting rules

Alerting rules contain a set of conditions that outline a particular state within a cluster. Alerts are

CHAPTER 1. MONITORING OVERVIEW

11

https://docs.redhat.com/en/documentation/openshift_container_platform/4.13/html-single/operators/#osdk-ha-sno

Alerting rules contain a set of conditions that outline a particular state within a cluster. Alerts are
triggered when those conditions are true. An alerting rule can be assigned a severity that defines how
the alerts are routed.

Cluster Monitoring Operator

The Cluster Monitoring Operator (CMO) is a central component of the monitoring stack. It deploys
and manages Prometheus instances such as, the Thanos Querier, the Telemeter Client, and metrics
targets to ensure that they are up to date. The CMO is deployed by the Cluster Version Operator
(CVO).

Cluster Version Operator

The Cluster Version Operator (CVO) manages the lifecycle of cluster Operators, many of which are
installed in OpenShift Container Platform by default.

config map

A config map provides a way to inject configuration data into pods. You can reference the data
stored in a config map in a volume of type ConfigMap. Applications running in a pod can use this
data.

Container

A container is a lightweight and executable image that includes software and all its dependencies.
Containers virtualize the operating system. As a result, you can run containers anywhere from a data
center to a public or private cloud as well as a developer’s laptop.

custom resource (CR)

A CR is an extension of the Kubernetes API. You can create custom resources.

etcd

etcd is the key-value store for OpenShift Container Platform, which stores the state of all resource
objects.

Fluentd

Fluentd is a log collector that resides on each OpenShift Container Platform node. It gathers
application, infrastructure, and audit logs and forwards them to different outputs.

NOTE

Fluentd is deprecated and is planned to be removed in a future release. Red Hat
provides bug fixes and support for this feature during the current release lifecycle, but
this feature no longer receives enhancements. As an alternative to Fluentd, you can
use Vector instead.

Kubelets

Runs on nodes and reads the container manifests. Ensures that the defined containers have started
and are running.

Kubernetes API server

Kubernetes API server validates and configures data for the API objects.

Kubernetes controller manager

Kubernetes controller manager governs the state of the cluster.

Kubernetes scheduler

Kubernetes scheduler allocates pods to nodes.

labels

Labels are key-value pairs that you can use to organize and select subsets of objects such as a pod.

node

OpenShift Container Platform 4.13 Monitoring

12

A worker machine in the OpenShift Container Platform cluster. A node is either a virtual machine
(VM) or a physical machine.

Operator

The preferred method of packaging, deploying, and managing a Kubernetes application in an
OpenShift Container Platform cluster. An Operator takes human operational knowledge and
encodes it into software that is packaged and shared with customers.

Operator Lifecycle Manager (OLM)

OLM helps you install, update, and manage the lifecycle of Kubernetes native applications. OLM is an
open source toolkit designed to manage Operators in an effective, automated, and scalable way.

Persistent storage

Stores the data even after the device is shut down. Kubernetes uses persistent volumes to store the
application data.

Persistent volume claim (PVC)

You can use a PVC to mount a PersistentVolume into a Pod. You can access the storage without
knowing the details of the cloud environment.

pod

The pod is the smallest logical unit in Kubernetes. A pod is comprised of one or more containers to
run in a worker node.

Prometheus

Prometheus is the monitoring system on which the OpenShift Container Platform monitoring stack is
based. Prometheus is a time-series database and a rule evaluation engine for metrics. Prometheus
sends alerts to Alertmanager for processing.

Prometheus adapter

The Prometheus Adapter translates Kubernetes node and pod queries for use in Prometheus. The
resource metrics that are translated include CPU and memory utilization. The Prometheus Adapter
exposes the cluster resource metrics API for horizontal pod autoscaling.

Prometheus Operator

The Prometheus Operator (PO) in the openshift-monitoring project creates, configures, and
manages platform Prometheus and Alertmanager instances. It also automatically generates
monitoring target configurations based on Kubernetes label queries.

Silences

A silence can be applied to an alert to prevent notifications from being sent when the conditions for
an alert are true. You can mute an alert after the initial notification, while you work on resolving the
underlying issue.

storage

OpenShift Container Platform supports many types of storage, both for on-premise and cloud
providers. You can manage container storage for persistent and non-persistent data in an OpenShift
Container Platform cluster.

Thanos Ruler

The Thanos Ruler is a rule evaluation engine for Prometheus that is deployed as a separate process.
In OpenShift Container Platform, Thanos Ruler provides rule and alerting evaluation for the
monitoring of user-defined projects.

Vector

Vector is a log collector that deploys to each OpenShift Container Platform node. It collects log data
from each node, transforms the data, and forwards it to configured outputs.

web console

A user interface (UI) to manage OpenShift Container Platform.

CHAPTER 1. MONITORING OVERVIEW

13

1.4. ADDITIONAL RESOURCES

About remote health monitoring

Granting users permission to monitor user-defined projects

Configuring TLS security profiles

OpenShift Container Platform 4.13 Monitoring

14

https://docs.redhat.com/en/documentation/openshift_container_platform/4.13/html-single/support/#about-remote-health-monitoring
https://docs.redhat.com/en/documentation/openshift_container_platform/4.13/html-single/security_and_compliance/#tls-security-profiles

CHAPTER 2. CONFIGURING THE MONITORING STACK
The OpenShift Container Platform installation program provides only a low number of configuration
options before installation. Configuring most OpenShift Container Platform framework components,
including the cluster monitoring stack, happens after the installation.

This section explains what configuration is supported, shows how to configure the monitoring stack, and
demonstrates several common configuration scenarios.

IMPORTANT

Not all configuration parameters for the monitoring stack are exposed. Only the
parameters and fields listed in the Config map reference for the Cluster Monitoring
Operator are supported for configuration.

2.1. PREREQUISITES

The monitoring stack imposes additional resource requirements. Consult the computing
resources recommendations in Scaling the Cluster Monitoring Operator and verify that you
have sufficient resources.

2.2. MAINTENANCE AND SUPPORT FOR MONITORING

Not all configuration options for the monitoring stack are exposed. The only supported way of
configuring OpenShift Container Platform monitoring is by configuring the Cluster Monitoring Operator
(CMO) using the options described in the Config map reference for the Cluster Monitoring Operator .
Do not use other configurations, as they are unsupported.

Configuration paradigms might change across Prometheus releases, and such cases can only be
handled gracefully if all configuration possibilities are controlled. If you use configurations other than
those described in the Config map reference for the Cluster Monitoring Operator , your changes will
disappear because the CMO automatically reconciles any differences and resets any unsupported
changes back to the originally defined state by default and by design.

2.2.1. Support considerations for monitoring

NOTE

Backward compatibility for metrics, recording rules, or alerting rules is not guaranteed.

The following modifications are explicitly not supported:

Creating additional ServiceMonitor, PodMonitor, and PrometheusRule objects in the
openshift-* and kube-* projects.

Modifying any resources or objects deployed in the openshift-monitoring or openshift-user-
workload-monitoring projects. The resources created by the OpenShift Container Platform
monitoring stack are not meant to be used by any other resources, as there are no guarantees
about their backward compatibility.

NOTE

CHAPTER 2. CONFIGURING THE MONITORING STACK

15

https://docs.redhat.com/en/documentation/openshift_container_platform/4.13/html-single/scalability_and_performance/#scaling-cluster-monitoring-operator

NOTE

The Alertmanager configuration is deployed as the alertmanager-main secret
resource in the openshift-monitoring namespace. If you have enabled a
separate Alertmanager instance for user-defined alert routing, an Alertmanager
configuration is also deployed as the alertmanager-user-workload secret
resource in the openshift-user-workload-monitoring namespace. To configure
additional routes for any instance of Alertmanager, you need to decode, modify,
and then encode that secret. This procedure is a supported exception to the
preceding statement.

Modifying resources of the stack. The OpenShift Container Platform monitoring stack
ensures its resources are always in the state it expects them to be. If they are modified, the stack
will reset them.

Deploying user-defined workloads to openshift-*, and kube-* projects. These projects are
reserved for Red Hat provided components and they should not be used for user-defined
workloads.

Enabling symptom based monitoring by using the Probe custom resource definition (CRD)
in Prometheus Operator.

Manually deploying monitoring resources into namespaces that have the
openshift.io/cluster-monitoring: "true" label.

Adding the openshift.io/cluster-monitoring: "true" label to namespaces. This label is
reserved only for the namespaces with core OpenShift Container Platform components and
Red Hat certified components.

Installing custom Prometheus instances on OpenShift Container Platform. A custom
instance is a Prometheus custom resource (CR) managed by the Prometheus Operator.

2.2.2. Support policy for monitoring Operators

Monitoring Operators ensure that OpenShift Container Platform monitoring resources function as
designed and tested. If Cluster Version Operator (CVO) control of an Operator is overridden, the
Operator does not respond to configuration changes, reconcile the intended state of cluster objects, or
receive updates.

While overriding CVO control for an Operator can be helpful during debugging, this is unsupported and
the cluster administrator assumes full control of the individual component configurations and upgrades.

Overriding the Cluster Version Operator

The spec.overrides parameter can be added to the configuration for the CVO to allow administrators
to provide a list of overrides to the behavior of the CVO for a component. Setting the
spec.overrides[].unmanaged parameter to true for a component blocks cluster upgrades and alerts
the administrator after a CVO override has been set:

Disabling ownership via cluster version overrides prevents upgrades. Please remove overrides before
continuing.

OpenShift Container Platform 4.13 Monitoring

16

WARNING

Setting a CVO override puts the entire cluster in an unsupported state and prevents
the monitoring stack from being reconciled to its intended state. This impacts the
reliability features built into Operators and prevents updates from being received.
Reported issues must be reproduced after removing any overrides for support to
proceed.

2.2.3. Support version matrix for monitoring components

The following matrix contains information about versions of monitoring components for OpenShift
Container Platform 4.11 and later releases:

Table 2.1. OpenShift Container Platform and component versions

OpenShif
t
Container
Platform

Promethe
us
Operator

Promethe
us

Promethe
us
Adapter

Alertman
ager

kube-
state-
metrics
agent

node-
exporter
agent

Thanos

4.13 0.63.0 2.42.0 0.10.0 0.25.0 2.8.1 1.5.0 0.30.2

4.12 0.60.1 2.39.1 0.10.0 0.24.0 2.6.0 1.4.0 0.28.1

4.11 0.57.0 2.36.2 0.9.1 0.24.0 2.5.0 1.3.1 0.26.0

NOTE

The openshift-state-metrics agent and Telemeter Client are OpenShift-specific
components. Therefore, their versions correspond with the versions of OpenShift
Container Platform.

2.3. PREPARING TO CONFIGURE THE MONITORING STACK

You can configure the monitoring stack by creating and updating monitoring config maps. These config
maps configure the Cluster Monitoring Operator (CMO), which in turn configures the components of
the monitoring stack.

2.3.1. Creating a cluster monitoring config map

You can configure the core OpenShift Container Platform monitoring components by creating the
cluster-monitoring-config ConfigMap object in the openshift-monitoring project. The Cluster
Monitoring Operator (CMO) then configures the core components of the monitoring stack.

Prerequisites

You have access to the cluster as a user with the cluster-admin cluster role.



CHAPTER 2. CONFIGURING THE MONITORING STACK

17

You have installed the OpenShift CLI (oc).

Procedure

1. Check whether the cluster-monitoring-config ConfigMap object exists:

2. If the ConfigMap object does not exist:

a. Create the following YAML manifest. In this example the file is called cluster-monitoring-
config.yaml:

b. Apply the configuration to create the ConfigMap object:

2.3.2. Creating a user-defined workload monitoring config map

You can configure the user workload monitoring components with the user-workload-monitoring-
config ConfigMap object in the openshift-user-workload-monitoring project. The Cluster Monitoring
Operator (CMO) then configures the components that monitor user-defined projects.

NOTE

If you enable monitoring for user-defined projects, the user-workload-
monitoring-config ConfigMap object is created by default.

When you save your changes to the user-workload-monitoring-config
ConfigMap object, some or all of the pods in the openshift-user-workload-
monitoring project might be redeployed. It can sometimes take a while for these
components to redeploy.

Prerequisites

You have access to the cluster as a user with the cluster-admin cluster role.

You have installed the OpenShift CLI (oc).

Procedure

1. Check whether the user-workload-monitoring-config ConfigMap object exists:

$ oc -n openshift-monitoring get configmap cluster-monitoring-config

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |

$ oc apply -f cluster-monitoring-config.yaml

$ oc -n openshift-user-workload-monitoring get configmap user-workload-monitoring-config

OpenShift Container Platform 4.13 Monitoring

18

2. If the user-workload-monitoring-config ConfigMap object does not exist:

a. Create the following YAML manifest. In this example the file is called user-workload-
monitoring-config.yaml:

b. Apply the configuration to create the ConfigMap object:

NOTE

Configurations applied to the user-workload-monitoring-config
ConfigMap object are not activated unless a cluster administrator has
enabled monitoring for user-defined projects.

Additional resources

Enabling monitoring for user-defined projects

2.4. GRANTING USERS PERMISSIONS FOR CORE PLATFORM
MONITORING

As a cluster administrator, you can monitor all core OpenShift Container Platform and user-defined
projects.

You can also grant developers and other users different permissions for core platform monitoring. You
can grant the permissions by assigning one of the following monitoring roles or cluster roles:

Name Description Project

cluster-monitoring-metrics-
api

Users with this role have the
ability to access Thanos Querier
API endpoints. Additionally, it
grants access to the core platform
Prometheus API and user-defined
Thanos Ruler API endpoints.

openshift-monitoring

cluster-monitoring-operator-
alert-customization

Users with this role can manage
AlertingRule and
AlertRelabelConfig resources
for core platform monitoring.
These permissions are required
for the alert customization
feature.

openshift-monitoring

apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |

$ oc apply -f user-workload-monitoring-config.yaml

CHAPTER 2. CONFIGURING THE MONITORING STACK

19

monitoring-alertmanager-
edit

Users with this role can manage
the Alertmanager API for core
platform monitoring. They can
also manage alert silences in the
Administrator perspective of the
OpenShift Container Platform
web console.

openshift-monitoring

monitoring-alertmanager-
view

Users with this role can monitor
the Alertmanager API for core
platform monitoring. They can
also view alert silences in the
Administrator perspective of the
OpenShift Container Platform
web console.

openshift-monitoring

cluster-monitoring-view Users with this cluster role have
the same access rights as
cluster-monitoring-metrics-
api role, with additional
permissions, providing access to
the /federate endpoint for the
user-defined Prometheus.

Must be bound with
ClusterRoleBinding to gain
access to the /federate endpoint
for the user-defined Prometheus.

Name Description Project

Additional resources

Granting user permissions by using the web console

Granting user permissions by using the CLI

2.5. CONFIGURING THE MONITORING STACK

In OpenShift Container Platform 4.13, you can configure the monitoring stack using the cluster-
monitoring-config or user-workload-monitoring-config ConfigMap objects. Config maps configure
the Cluster Monitoring Operator (CMO), which in turn configures the components of the stack.

Prerequisites

If you are configuring core OpenShift Container Platform monitoring components:

You have access to the cluster as a user with the cluster-admin cluster role.

You have created the cluster-monitoring-config ConfigMap object.

If you are configuring components that monitor user-defined projects:

You have access to the cluster as a user with the cluster-admin cluster role, or as a user
with the user-workload-monitoring-config-edit role in the openshift-user-workload-
monitoring project.

A cluster administrator has enabled monitoring for user-defined projects.

OpenShift Container Platform 4.13 Monitoring

20

1

You have installed the OpenShift CLI (oc).

Procedure

1. Edit the ConfigMap object.

To configure core OpenShift Container Platform monitoring components:

a. Edit the cluster-monitoring-config ConfigMap object in the openshift-monitoring
project:

b. Add your configuration under data/config.yaml as a key-value pair
<component_name>: <component_configuration>:

Substitute <component> and <configuration_for_the_component> accordingly.

The following example ConfigMap object configures a persistent volume claim (PVC)
for Prometheus. This relates to the Prometheus instance that monitors core OpenShift
Container Platform components only:

Defines the Prometheus component and the subsequent lines define its
configuration.

To configure components that monitor user-defined projects:

a. Edit the user-workload-monitoring-config ConfigMap object in the openshift-user-

$ oc -n openshift-monitoring edit configmap cluster-monitoring-config

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 <component>:
 <configuration_for_the_component>

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 prometheusK8s: 1
 volumeClaimTemplate:
 spec:
 storageClassName: fast
 volumeMode: Filesystem
 resources:
 requests:
 storage: 40Gi

CHAPTER 2. CONFIGURING THE MONITORING STACK

21

1

2

3

4

a. Edit the user-workload-monitoring-config ConfigMap object in the openshift-user-
workload-monitoring project:

b. Add your configuration under data/config.yaml as a key-value pair
<component_name>: <component_configuration>:

Substitute <component> and <configuration_for_the_component> accordingly.

The following example ConfigMap object configures a data retention period and
minimum container resource requests for Prometheus. This relates to the Prometheus
instance that monitors user-defined projects only:

Defines the Prometheus component and the subsequent lines define its
configuration.

Configures a twenty-four hour data retention period for the Prometheus instance
that monitors user-defined projects.

Defines a minimum resource request of 200 millicores for the Prometheus
container.

Defines a minimum pod resource request of 2 GiB of memory for the Prometheus
container.

NOTE

$ oc -n openshift-user-workload-monitoring edit configmap user-workload-
monitoring-config

apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 <component>:
 <configuration_for_the_component>

apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 prometheus: 1
 retention: 24h 2
 resources:
 requests:
 cpu: 200m 3
 memory: 2Gi 4

OpenShift Container Platform 4.13 Monitoring

22

NOTE

The Prometheus config map component is called prometheusK8s in the
cluster-monitoring-config ConfigMap object and prometheus in the
user-workload-monitoring-config ConfigMap object.

2. Save the file to apply the changes to the ConfigMap object.

WARNING

Different configuration changes to the ConfigMap object result in different
outcomes:

The pods are not redeployed. Therefore, there is no service outage.

The affected pods are redeployed:

For single-node clusters, this results in temporary service outage.

For multi-node clusters, because of high-availability, the affected
pods are gradually rolled out and the monitoring stack remains
available.

Configuring and resizing a persistent volume always results in a
service outage, regardless of high availability.

Each procedure that requires a change in the config map includes its
expected outcome.

Additional resources

Configuration reference for the cluster-monitoring-config config map

Configuration reference for the user-workload-monitoring-config config map

See Preparing to configure the monitoring stack for steps to create monitoring config maps

Enabling monitoring for user-defined projects

2.6. CONFIGURABLE MONITORING COMPONENTS

This table shows the monitoring components you can configure and the keys used to specify the
components in the cluster-monitoring-config and user-workload-monitoring-config ConfigMap
objects.

Table 2.2. Configurable monitoring components



CHAPTER 2. CONFIGURING THE MONITORING STACK

23

Component cluster-monitoring-config
config map key

user-workload-monitoring-
config config map key

Prometheus Operator prometheusOperator prometheusOperator

Prometheus prometheusK8s prometheus

Alertmanager alertmanagerMain alertmanager

kube-state-metrics kubeStateMetrics

openshift-state-metrics openshiftStateMetrics

Telemeter Client telemeterClient

Prometheus Adapter k8sPrometheusAdapter

Thanos Querier thanosQuerier

Thanos Ruler thanosRuler

NOTE

The Prometheus key is called prometheusK8s in the cluster-monitoring-config
ConfigMap object and prometheus in the user-workload-monitoring-config
ConfigMap object.

2.7. USING NODE SELECTORS TO MOVE MONITORING
COMPONENTS

By using the nodeSelector constraint with labeled nodes, you can move any of the monitoring stack
components to specific nodes. By doing so, you can control the placement and distribution of the
monitoring components across a cluster.

By controlling placement and distribution of monitoring components, you can optimize system resource
use, improve performance, and segregate workloads based on specific requirements or policies.

2.7.1. How node selectors work with other constraints

If you move monitoring components by using node selector constraints, be aware that other constraints
to control pod scheduling might exist for a cluster:

Topology spread constraints might be in place to control pod placement.

Hard anti-affinity rules are in place for Prometheus, Thanos Querier, Alertmanager, and other
monitoring components to ensure that multiple pods for these components are always spread
across different nodes and are therefore always highly available.

When scheduling pods onto nodes, the pod scheduler tries to satisfy all existing constraints when

OpenShift Container Platform 4.13 Monitoring

24

When scheduling pods onto nodes, the pod scheduler tries to satisfy all existing constraints when
determining pod placement. That is, all constraints compound when the pod scheduler determines which
pods will be placed on which nodes.

Therefore, if you configure a node selector constraint but existing constraints cannot all be satisfied, the
pod scheduler cannot match all constraints and will not schedule a pod for placement onto a node.

To maintain resilience and high availability for monitoring components, ensure that enough nodes are
available and match all constraints when you configure a node selector constraint to move a component.

Additional resources

Understanding how to update labels on nodes

Placing pods on specific nodes using node selectors

Placing pods relative to other pods using affinity and anti-affinity rules

Controlling pod placement by using pod topology spread constraints

Configuring pod topology spread constraints for monitoring

Kubernetes documentation about node selectors

2.7.2. Moving monitoring components to different nodes

To specify the nodes in your cluster on which monitoring stack components will run, configure the
nodeSelector constraint in the component’s ConfigMap object to match labels assigned to the nodes.

NOTE

You cannot add a node selector constraint directly to an existing scheduled pod.

Prerequisites

If you are configuring core OpenShift Container Platform monitoring components:

You have access to the cluster as a user with the cluster-admin cluster role.

You have created the cluster-monitoring-config ConfigMap object.

If you are configuring components that monitor user-defined projects:

You have access to the cluster as a user with the cluster-admin cluster role or as a user
with the user-workload-monitoring-config-edit role in the openshift-user-workload-
monitoring project.

A cluster administrator has enabled monitoring for user-defined projects.

You have installed the OpenShift CLI (oc).

Procedure

1. If you have not done so yet, add a label to the nodes on which you want to run the monitoring
components:

CHAPTER 2. CONFIGURING THE MONITORING STACK

25

https://docs.redhat.com/en/documentation/openshift_container_platform/4.13/html-single/nodes/#nodes-nodes-working-updating_nodes-nodes-working
https://docs.redhat.com/en/documentation/openshift_container_platform/4.13/html-single/nodes/#nodes-scheduler-node-selectors
https://docs.redhat.com/en/documentation/openshift_container_platform/4.13/html-single/nodes/#placing-pods-relative-to-other-pods-using-pod-affinity-and-anti-affinity-rules
https://docs.redhat.com/en/documentation/openshift_container_platform/4.13/html-single/nodes/#controlling-pod-placement-using-pod-topology-spread-constraints
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#nodeselector

1

2

3

2. Edit the ConfigMap object:

To move a component that monitors core OpenShift Container Platform projects:

a. Edit the cluster-monitoring-config ConfigMap object in the openshift-monitoring
project:

b. Specify the node labels for the nodeSelector constraint for the component under
data/config.yaml:

Substitute <component> with the appropriate monitoring stack component name.

Substitute <node-label-1> with the label you added to the node.

Optional: Specify additional labels. If you specify additional labels, the pods for the
component are only scheduled on the nodes that contain all of the specified labels.

NOTE

If monitoring components remain in a Pending state after configuring
the nodeSelector constraint, check the pod events for errors relating to
taints and tolerations.

To move a component that monitors user-defined projects:

a. Edit the user-workload-monitoring-config ConfigMap object in the openshift-user-
workload-monitoring project:

b. Specify the node labels for the nodeSelector constraint for the component under
data/config.yaml:

$ oc label nodes <node-name> <node-label>

$ oc -n openshift-monitoring edit configmap cluster-monitoring-config

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 <component>: 1
 nodeSelector:
 <node-label-1> 2
 <node-label-2> 3
 <...>

$ oc -n openshift-user-workload-monitoring edit configmap user-workload-
monitoring-config

apiVersion: v1
kind: ConfigMap

OpenShift Container Platform 4.13 Monitoring

26

1

2

3

Substitute <component> with the appropriate monitoring stack component name.

Substitute <node-label-1> with the label you added to the node.

Optional: Specify additional labels. If you specify additional labels, the pods for the
component are only scheduled on the nodes that contain all of the specified labels.

NOTE

If monitoring components remain in a Pending state after configuring
the nodeSelector constraint, check the pod events for errors relating to
taints and tolerations.

3. Save the file to apply the changes. The components specified in the new configuration are
automatically moved to the new nodes, and the pods affected by the new configuration are
redeployed.

Additional resources

See Preparing to configure the monitoring stack for steps to create monitoring config maps

Enabling monitoring for user-defined projects

Understanding how to update labels on nodes

Placing pods on specific nodes using node selectors

See the Kubernetes documentation for details on the nodeSelector constraint

2.8. ASSIGNING TOLERATIONS TO MONITORING COMPONENTS

You can assign tolerations to any of the monitoring stack components to enable moving them to tainted
nodes.

Prerequisites

If you are configuring core OpenShift Container Platform monitoring components:

You have access to the cluster as a user with the cluster-admin cluster role.

You have created the cluster-monitoring-config ConfigMap object.

If you are configuring components that monitor user-defined projects:

metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 <component>: 1
 nodeSelector:
 <node-label-1> 2
 <node-label-2> 3
 <...>

CHAPTER 2. CONFIGURING THE MONITORING STACK

27

https://docs.redhat.com/en/documentation/openshift_container_platform/4.13/html-single/nodes/#nodes-nodes-working-updating_nodes-nodes-working
https://docs.redhat.com/en/documentation/openshift_container_platform/4.13/html-single/nodes/#nodes-scheduler-node-selectors
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#nodeselector

You have access to the cluster as a user with the cluster-admin cluster role, or as a user
with the user-workload-monitoring-config-edit role in the openshift-user-workload-
monitoring project.

A cluster administrator has enabled monitoring for user-defined projects.

You have installed the OpenShift CLI (oc).

Procedure

1. Edit the ConfigMap object:

To assign tolerations to a component that monitors core OpenShift Container Platform
projects:

a. Edit the cluster-monitoring-config ConfigMap object in the openshift-monitoring
project:

b. Specify tolerations for the component:

Substitute <component> and <toleration_specification> accordingly.

For example, oc adm taint nodes node1 key1=value1:NoSchedule adds a taint to
node1 with the key key1 and the value value1. This prevents monitoring components
from deploying pods on node1 unless a toleration is configured for that taint. The
following example configures the alertmanagerMain component to tolerate the
example taint:

$ oc -n openshift-monitoring edit configmap cluster-monitoring-config

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 <component>:
 tolerations:
 <toleration_specification>

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 alertmanagerMain:
 tolerations:
 - key: "key1"
 operator: "Equal"
 value: "value1"
 effect: "NoSchedule"

OpenShift Container Platform 4.13 Monitoring

28

To assign tolerations to a component that monitors user-defined projects:

a. Edit the user-workload-monitoring-config ConfigMap object in the openshift-user-
workload-monitoring project:

b. Specify tolerations for the component:

Substitute <component> and <toleration_specification> accordingly.

For example, oc adm taint nodes node1 key1=value1:NoSchedule adds a taint to
node1 with the key key1 and the value value1. This prevents monitoring components
from deploying pods on node1 unless a toleration is configured for that taint. The
following example configures the thanosRuler component to tolerate the example
taint:

2. Save the file to apply the changes. The pods affected by the new configuration are
automatically redeployed.

Additional resources

See Preparing to configure the monitoring stack for steps to create monitoring config maps

Enabling monitoring for user-defined projects

See the OpenShift Container Platform documentation on taints and tolerations

See the Kubernetes documentation on taints and tolerations

$ oc -n openshift-user-workload-monitoring edit configmap user-workload-
monitoring-config

apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 <component>:
 tolerations:
 <toleration_specification>

apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 thanosRuler:
 tolerations:
 - key: "key1"
 operator: "Equal"
 value: "value1"
 effect: "NoSchedule"

CHAPTER 2. CONFIGURING THE MONITORING STACK

29

https://docs.redhat.com/en/documentation/openshift_container_platform/4.13/html-single/nodes/#nodes-scheduler-taints-tolerations
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/

1

2.9. SETTING THE BODY SIZE LIMIT FOR METRICS SCRAPING

By default, no limit exists for the uncompressed body size for data returned from scraped metrics
targets. You can set a body size limit to help avoid situations in which Prometheus consumes excessive
amounts of memory when scraped targets return a response that contains a large amount of data. In
addition, by setting a body size limit, you can reduce the impact that a malicious target might have on
Prometheus and on the cluster as a whole.

After you set a value for enforcedBodySizeLimit, the alert PrometheusScrapeBodySizeLimitHit fires
when at least one Prometheus scrape target replies with a response body larger than the configured
value.

NOTE

If metrics data scraped from a target has an uncompressed body size exceeding the
configured size limit, the scrape fails. Prometheus then considers this target to be down
and sets its up metric value to 0, which can trigger the TargetDown alert.

Prerequisites

You have access to the cluster as a user with the cluster-admin cluster role.

You have installed the OpenShift CLI (oc).

Procedure

1. Edit the cluster-monitoring-config ConfigMap object in the openshift-monitoring
namespace:

2. Add a value for enforcedBodySizeLimit to data/config.yaml/prometheusK8s to limit the body
size that can be accepted per target scrape:

Specify the maximum body size for scraped metrics targets. This enforcedBodySizeLimit
example limits the uncompressed size per target scrape to 40 megabytes. Valid numeric
values use the Prometheus data size format: B (bytes), KB (kilobytes), MB (megabytes),
GB (gigabytes), TB (terabytes), PB (petabytes), and EB (exabytes). The default value is 0,
which specifies no limit. You can also set the value to automatic to calculate the limit
automatically based on cluster capacity.

3. Save the file to apply the changes. The new configuration is applied automatically.

Additional resources

$ oc -n openshift-monitoring edit configmap cluster-monitoring-config

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |-
 prometheusK8s:
 enforcedBodySizeLimit: 40MB 1

OpenShift Container Platform 4.13 Monitoring

30

1

Additional resources

Prometheus scrape configuration documentation

2.10. CONFIGURING A DEDICATED SERVICE MONITOR

You can configure OpenShift Container Platform core platform monitoring to use dedicated service
monitors to collect metrics for the resource metrics pipeline.

When enabled, a dedicated service monitor exposes two additional metrics from the kubelet endpoint
and sets the value of the honorTimestamps field to true.

By enabling a dedicated service monitor, you can improve the consistency of Prometheus Adapter-
based CPU usage measurements used by, for example, the oc adm top pod command or the Horizontal
Pod Autoscaler.

2.10.1. Enabling a dedicated service monitor

You can configure core platform monitoring to use a dedicated service monitor by configuring the
dedicatedServiceMonitors key in the cluster-monitoring-config ConfigMap object in the openshift-
monitoring namespace.

Prerequisites

You have installed the OpenShift CLI (oc).

You have access to the cluster as a user with the cluster-admin cluster role.

You have created the cluster-monitoring-config ConfigMap object.

Procedure

1. Edit the cluster-monitoring-config ConfigMap object in the openshift-monitoring
namespace:

2. Add an enabled: true key-value pair as shown in the following sample:

Set the value of the enabled field to true to deploy a dedicated service monitor that
exposes the kubelet /metrics/resource endpoint.

3. Save the file to apply the changes automatically.

$ oc -n openshift-monitoring edit configmap cluster-monitoring-config

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 k8sPrometheusAdapter:
 dedicatedServiceMonitors:
 enabled: true 1

CHAPTER 2. CONFIGURING THE MONITORING STACK

31

https://prometheus.io/docs/prometheus/latest/configuration/configuration/#scrape_config

WARNING

When you save changes to a cluster-monitoring-config config map, the
pods and other resources in the openshift-monitoring project might be
redeployed. The running monitoring processes in that project might also
restart.

2.11. CONFIGURING PERSISTENT STORAGE

Run cluster monitoring with persistent storage to gain the following benefits:

Protect your metrics and alerting data from data loss by storing them in a persistent volume
(PV). As a result, they can survive pods being restarted or recreated.

Avoid getting duplicate notifications and losing silences for alerts when the Alertmanager pods
are restarted.

For production environments, it is highly recommended to configure persistent storage.

IMPORTANT

In multi-node clusters, you must configure persistent storage for Prometheus,
Alertmanager, and Thanos Ruler to ensure high availability.

2.11.1. Persistent storage prerequisites

Dedicate sufficient persistent storage to ensure that the disk does not become full.

Use Filesystem as the storage type value for the volumeMode parameter when you configure
the persistent volume.

IMPORTANT

Do not use a raw block volume, which is described with volumeMode: Block
in the PersistentVolume resource. Prometheus cannot use raw block
volumes.

Prometheus does not support file systems that are not POSIX compliant. For
example, some NFS file system implementations are not POSIX compliant. If
you want to use an NFS file system for storage, verify with the vendor that
their NFS implementation is fully POSIX compliant.

2.11.2. Configuring a persistent volume claim

To use a persistent volume (PV) for monitoring components, you must configure a persistent volume
claim (PVC).

Prerequisites

If you are configuring core OpenShift Container Platform monitoring components:



OpenShift Container Platform 4.13 Monitoring

32

1

2

3

You have access to the cluster as a user with the cluster-admin cluster role.

You have created the cluster-monitoring-config ConfigMap object.

If you are configuring components that monitor user-defined projects:

You have access to the cluster as a user with the cluster-admin cluster role, or as a user
with the user-workload-monitoring-config-edit role in the openshift-user-workload-
monitoring project.

A cluster administrator has enabled monitoring for user-defined projects.

You have installed the OpenShift CLI (oc).

Procedure

1. Edit the ConfigMap object:

To configure a PVC for a component that monitors core OpenShift Container Platform
projects:

a. Edit the cluster-monitoring-config ConfigMap object in the openshift-monitoring
project:

b. Add your PVC configuration for the component under data/config.yaml:

Specify the core monitoring component for which you want to configure the PVC.

Specify an existing storage class. If a storage class is not specified, the default
storage class is used.

Specify the amount of required storage.

See the Kubernetes documentation on PersistentVolumeClaims for information on how
to specify volumeClaimTemplate.

The following example configures a PVC that claims persistent storage for the
Prometheus instance that monitors core OpenShift Container Platform components:

$ oc -n openshift-monitoring edit configmap cluster-monitoring-config

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 <component>: 1
 volumeClaimTemplate:
 spec:
 storageClassName: <storage_class> 2
 resources:
 requests:
 storage: <amount_of_storage> 3

CHAPTER 2. CONFIGURING THE MONITORING STACK

33

https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims

1

2

3

To configure a PVC for a component that monitors user-defined projects:

a. Edit the user-workload-monitoring-config ConfigMap object in the openshift-user-
workload-monitoring project:

b. Add your PVC configuration for the component under data/config.yaml:

Specify the component for user-defined monitoring for which you want to
configure the PVC.

Specify an existing storage class. If a storage class is not specified, the default
storage class is used.

Specify the amount of required storage.

See the Kubernetes documentation on PersistentVolumeClaims for information on how
to specify volumeClaimTemplate.

The following example configures a PVC that claims persistent storage for Thanos
Ruler:

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 prometheusK8s:
 volumeClaimTemplate:
 spec:
 storageClassName: my-storage-class
 resources:
 requests:
 storage: 40Gi

$ oc -n openshift-user-workload-monitoring edit configmap user-workload-
monitoring-config

apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 <component>: 1
 volumeClaimTemplate:
 spec:
 storageClassName: <storage_class> 2
 resources:
 requests:
 storage: <amount_of_storage> 3

OpenShift Container Platform 4.13 Monitoring

34

https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims

NOTE

Storage requirements for the thanosRuler component depend on the
number of rules that are evaluated and how many samples each rule
generates.

2. Save the file to apply the changes. The pods affected by the new configuration are
automatically redeployed and the new storage configuration is applied.

WARNING

When you update the config map with a PVC configuration, the affected
StatefulSet object is recreated, resulting in a temporary service outage.

2.11.3. Resizing a persistent volume

You can resize a persistent volume (PV) for monitoring components, such as Prometheus, Thanos Ruler,
or Alertmanager. You need to manually expand a persistent volume claim (PVC), and then update the
config map in which the component is configured.

IMPORTANT

You can only expand the size of the PVC. Shrinking the storage size is not possible.

Prerequisites

You have installed the OpenShift CLI (oc).

If you are configuring core OpenShift Container Platform monitoring components:

You have access to the cluster as a user with the cluster-admin cluster role.

You have created the cluster-monitoring-config ConfigMap object.

You have configured at least one PVC for core OpenShift Container Platform monitoring

apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 thanosRuler:
 volumeClaimTemplate:
 spec:
 storageClassName: my-storage-class
 resources:
 requests:
 storage: 10Gi



CHAPTER 2. CONFIGURING THE MONITORING STACK

35

1

2

You have configured at least one PVC for core OpenShift Container Platform monitoring
components.

If you are configuring components that monitor user-defined projects:

You have access to the cluster as a user with the cluster-admin cluster role, or as a user
with the user-workload-monitoring-config-edit role in the openshift-user-workload-
monitoring project.

A cluster administrator has enabled monitoring for user-defined projects.

You have configured at least one PVC for components that monitor user-defined projects.

Procedure

1. Manually expand a PVC with the updated storage request. For more information, see
"Expanding persistent volume claims (PVCs) with a file system" in Expanding persistent volumes .

2. Edit the ConfigMap object:

If you are configuring core OpenShift Container Platform monitoring components:

a. Edit the cluster-monitoring-config ConfigMap object in the openshift-monitoring
project:

b. Add a new storage size for the PVC configuration for the component under
data/config.yaml:

The component for which you want to change the storage size.

Specify the new size for the storage volume. It must be greater than the previous
value.

The following example sets the new PVC request to 100 gigabytes for the Prometheus
instance that monitors core OpenShift Container Platform components:

$ oc -n openshift-monitoring edit configmap cluster-monitoring-config

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 <component>: 1
 volumeClaimTemplate:
 spec:
 resources:
 requests:
 storage: <amount_of_storage> 2

apiVersion: v1
kind: ConfigMap
metadata:

OpenShift Container Platform 4.13 Monitoring

36

1

2

If you are configuring components that monitor user-defined projects:

NOTE

You can resize the volumes for the Thanos Ruler and for instances of
Alertmanager and Prometheus that monitor user-defined projects.

a. Edit the user-workload-monitoring-config ConfigMap object in the openshift-user-
workload-monitoring project:

b. Update the PVC configuration for the monitoring component under data/config.yaml:

The component for which you want to change the storage size.

Specify the new size for the storage volume. It must be greater than the previous
value.

The following example sets the new PVC request to 20 gigabytes for Thanos Ruler:

 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 prometheusK8s:
 volumeClaimTemplate:
 spec:
 resources:
 requests:
 storage: 100Gi

$ oc -n openshift-user-workload-monitoring edit configmap user-workload-
monitoring-config

apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 <component>: 1
 volumeClaimTemplate:
 spec:
 resources:
 requests:
 storage: <amount_of_storage> 2

apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:

CHAPTER 2. CONFIGURING THE MONITORING STACK

37

NOTE

Storage requirements for the thanosRuler component depend on the
number of rules that are evaluated and how many samples each rule
generates.

3. Save the file to apply the changes. The pods affected by the new configuration are
automatically redeployed.

WARNING

When you update the config map with a new storage size, the affected
StatefulSet object is recreated, resulting in a temporary service outage.

Additional resources

Prometheus database storage requirements

Expanding persistent volume claims (PVCs) with a file system

2.11.4. Modifying the retention time and size for Prometheus metrics data

By default, Prometheus retains metrics data for the following durations:

Core platform monitoring: 15 days

Monitoring for user-defined projects: 24 hours

You can modify the retention time for Prometheus to change how soon the data is deleted. You can
also set the maximum amount of disk space the retained metrics data uses. If the data reaches this size
limit, Prometheus deletes the oldest data first until the disk space used is again below the limit.

Note the following behaviors of these data retention settings:

The size-based retention policy applies to all data block directories in the /prometheus
directory, including persistent blocks, write-ahead log (WAL) data, and m-mapped chunks.

Data in the /wal and /head_chunks directories counts toward the retention size limit, but
Prometheus never purges data from these directories based on size- or time-based retention
policies. Thus, if you set a retention size limit lower than the maximum size set for the /wal and
/head_chunks directories, you have configured the system not to retain any data blocks in the
/prometheus data directories.

 config.yaml: |
 thanosRuler:
 volumeClaimTemplate:
 spec:
 resources:
 requests:
 storage: 20Gi



OpenShift Container Platform 4.13 Monitoring

38

https://docs.redhat.com/en/documentation/openshift_container_platform/4.13/html-single/scalability_and_performance/#prometheus-database-storage-requirements_recommended-infrastructure-practices
https://docs.redhat.com/en/documentation/openshift_container_platform/4.13/html-single/storage/#expanding-pvc-filesystem_expanding-persistent-volumes

The size-based retention policy is applied only when Prometheus cuts a new data block, which
occurs every two hours after the WAL contains at least three hours of data.

If you do not explicitly define values for either retention or retentionSize, retention time
defaults to 15 days for core platform monitoring and 24 hours for user-defined project
monitoring. Retention size is not set.

If you define values for both retention and retentionSize, both values apply. If any data blocks
exceed the defined retention time or the defined size limit, Prometheus purges these data
blocks.

If you define a value for retentionSize and do not define retention, only the retentionSize value
applies.

If you do not define a value for retentionSize and only define a value for retention, only the
retention value applies.

If you set the retentionSize or retention value to 0, the default settings apply. The default
settings set retention time to 15 days for core platform monitoring and 24 hours for user-
defined project monitoring. By default, retention size is not set.

NOTE

Data compaction occurs every two hours. Therefore, a persistent volume (PV) might fill
up before compaction, potentially exceeding the retentionSize limit. In such cases, the
KubePersistentVolumeFillingUp alert fires until the space on a PV is lower than the
retentionSize limit.

Prerequisites

If you are configuring core OpenShift Container Platform monitoring components:

You have access to the cluster as a user with the cluster-admin cluster role.

You have created the cluster-monitoring-config ConfigMap object.

If you are configuring components that monitor user-defined projects:

You have access to the cluster as a user with the cluster-admin cluster role, or as a user
with the user-workload-monitoring-config-edit role in the openshift-user-workload-
monitoring project.

A cluster administrator has enabled monitoring for user-defined projects.

You have installed the OpenShift CLI (oc).

Procedure

1. Edit the ConfigMap object:

To modify the retention time and size for the Prometheus instance that monitors core
OpenShift Container Platform projects:

a. Edit the cluster-monitoring-config ConfigMap object in the openshift-monitoring
project:

$ oc -n openshift-monitoring edit configmap cluster-monitoring-config

CHAPTER 2. CONFIGURING THE MONITORING STACK

39

1

2

b. Add the retention time and size configuration under data/config.yaml:

The retention time: a number directly followed by ms (milliseconds), s (seconds),
m (minutes), h (hours), d (days), w (weeks), or y (years). You can also combine
time values for specific times, such as 1h30m15s.

The retention size: a number directly followed by B (bytes), KB (kilobytes), MB
(megabytes), GB (gigabytes), TB (terabytes), PB (petabytes), and EB (exabytes).

The following example sets the retention time to 24 hours and the retention size to 10
gigabytes for the Prometheus instance that monitors core OpenShift Container
Platform components:

To modify the retention time and size for the Prometheus instance that monitors user-
defined projects:

a. Edit the user-workload-monitoring-config ConfigMap object in the openshift-user-
workload-monitoring project:

b. Add the retention time and size configuration under data/config.yaml:

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 prometheusK8s:
 retention: <time_specification> 1
 retentionSize: <size_specification> 2

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 prometheusK8s:
 retention: 24h
 retentionSize: 10GB

$ oc -n openshift-user-workload-monitoring edit configmap user-workload-
monitoring-config

apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |

OpenShift Container Platform 4.13 Monitoring

40

1

2

The retention time: a number directly followed by ms (milliseconds), s (seconds),
m (minutes), h (hours), d (days), w (weeks), or y (years). You can also combine
time values for specific times, such as 1h30m15s.

The retention size: a number directly followed by B (bytes), KB (kilobytes), MB
(megabytes), GB (gigabytes), TB (terabytes), PB (petabytes), or EB (exabytes).

The following example sets the retention time to 24 hours and the retention size to 10
gigabytes for the Prometheus instance that monitors user-defined projects:

2. Save the file to apply the changes. The pods affected by the new configuration are
automatically redeployed.

2.11.5. Modifying the retention time for Thanos Ruler metrics data

By default, for user-defined projects, Thanos Ruler automatically retains metrics data for 24 hours. You
can modify the retention time to change how long this data is retained by specifying a time value in the
user-workload-monitoring-config config map in the openshift-user-workload-monitoring
namespace.

Prerequisites

You have access to the cluster as a user with the cluster-admin cluster role or as a user with the
user-workload-monitoring-config-edit role in the openshift-user-workload-monitoring
project.

A cluster administrator has enabled monitoring for user-defined projects.

You have installed the OpenShift CLI (oc).

Procedure

1. Edit the user-workload-monitoring-config ConfigMap object in the openshift-user-
workload-monitoring project:

2. Add the retention time configuration under data/config.yaml:

 prometheus:
 retention: <time_specification> 1
 retentionSize: <size_specification> 2

apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 prometheus:
 retention: 24h
 retentionSize: 10GB

$ oc -n openshift-user-workload-monitoring edit configmap user-workload-monitoring-config

CHAPTER 2. CONFIGURING THE MONITORING STACK

41

1 Specify the retention time in the following format: a number directly followed by ms
(milliseconds), s (seconds), m (minutes), h (hours), d (days), w (weeks), or y (years). You
can also combine time values for specific times, such as 1h30m15s. The default is 24h.

The following example sets the retention time to 10 days for Thanos Ruler data:

3. Save the file to apply the changes. The pods affected by the new configuration are
automatically redeployed.

Additional resources

Creating a cluster monitoring config map

Prometheus database storage requirements

Recommended configurable storage technology

Understanding persistent storage

Optimizing storage

Enabling monitoring for user-defined projects

2.12. CONFIGURING REMOTE WRITE STORAGE

You can configure remote write storage to enable Prometheus to send ingested metrics to remote
systems for long-term storage. Doing so has no impact on how or for how long Prometheus stores
metrics.

Prerequisites

If you are configuring core OpenShift Container Platform monitoring components:

You have access to the cluster as a user with the cluster-admin cluster role.

apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 thanosRuler:
 retention: <time_specification> 1

apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 thanosRuler:
 retention: 10d

OpenShift Container Platform 4.13 Monitoring

42

https://docs.redhat.com/en/documentation/openshift_container_platform/4.13/html-single/scalability_and_performance/#prometheus-database-storage-requirements_cluster-monitoring-operator
https://docs.redhat.com/en/documentation/openshift_container_platform/4.13/html-single/scalability_and_performance/#optimizing-storage
https://docs.redhat.com/en/documentation/openshift_container_platform/4.13/html-single/storage/#understanding-persistent-storage
https://docs.redhat.com/en/documentation/openshift_container_platform/4.13/html-single/scalability_and_performance/#optimizing-storage

You have created the cluster-monitoring-config ConfigMap object.

If you are configuring components that monitor user-defined projects:

You have access to the cluster as a user with the cluster-admin cluster role or as a user
with the user-workload-monitoring-config-edit role in the openshift-user-workload-
monitoring project.

A cluster administrator has enabled monitoring for user-defined projects.

You have installed the OpenShift CLI (oc).

You have set up a remote write compatible endpoint (such as Thanos) and know the endpoint
URL. See the Prometheus remote endpoints and storage documentation for information about
endpoints that are compatible with the remote write feature.

IMPORTANT

Red Hat only provides information for configuring remote write senders and does
not offer guidance on configuring receiver endpoints. Customers are responsible
for setting up their own endpoints that are remote-write compatible. Issues with
endpoint receiver configurations are not included in Red Hat production support.

You have set up authentication credentials in a Secret object for the remote write endpoint.
You must create the secret in the same namespace as the Prometheus object for which you
configure remote write: the openshift-monitoring namespace for default platform monitoring
or the openshift-user-workload-monitoring namespace for user workload monitoring.

WARNING

To reduce security risks, use HTTPS and authentication to send metrics to
an endpoint.

Procedure

1. Edit the ConfigMap object:

To configure remote write for the Prometheus instance that monitors core OpenShift
Container Platform projects:

a. Edit the cluster-monitoring-config ConfigMap object in the openshift-monitoring
project:

b. Add a remoteWrite: section under data/config.yaml/prometheusK8s.

c. Add an endpoint URL and authentication credentials in this section:



$ oc -n openshift-monitoring edit configmap cluster-monitoring-config

apiVersion: v1
kind: ConfigMap

CHAPTER 2. CONFIGURING THE MONITORING STACK

43

https://prometheus.io/docs/operating/integrations/#remote-endpoints-and-storage

1

2

1

The URL of the remote write endpoint.

The authentication method and credentials for the endpoint. Currently supported
authentication methods are AWS Signature Version 4, authentication using HTTP
in an Authorization request header, Basic authentication, OAuth 2.0, and TLS
client. See Supported remote write authentication settings for sample
configurations of supported authentication methods.

d. Add write relabel configuration values after the authentication credentials:

The write relabel configuration settings.

For <your_write_relabel_configs> substitute a list of write relabel configurations for
metrics that you want to send to the remote endpoint.

The following sample shows how to forward a single metric called my_metric:

metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 prometheusK8s:
 remoteWrite:
 - url: "https://remote-write-endpoint.example.com" 1
 <endpoint_authentication_credentials> 2

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 prometheusK8s:
 remoteWrite:
 - url: "https://remote-write-endpoint.example.com"
 <endpoint_authentication_credentials>
 <your_write_relabel_configs> 1

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 prometheusK8s:
 remoteWrite:
 - url: "https://remote-write-endpoint.example.com"
 writeRelabelConfigs:
 - sourceLabels: [__name__]
 regex: 'my_metric'
 action: keep

OpenShift Container Platform 4.13 Monitoring

44

1

2

1

See the Prometheus relabel_config documentation for information about write relabel
configuration options.

To configure remote write for the Prometheus instance that monitors user-defined
projects:

a. Edit the user-workload-monitoring-config ConfigMap object in the openshift-user-
workload-monitoring project:

b. Add a remoteWrite: section under data/config.yaml/prometheus.

c. Add an endpoint URL and authentication credentials in this section:

The URL of the remote write endpoint.

The authentication method and credentials for the endpoint. Currently supported
authentication methods are AWS Signature Version 4, authentication using HTTP
an Authorization request header, basic authentication, OAuth 2.0, and TLS client.
See Supported remote write authentication settings below for sample
configurations of supported authentication methods.

d. Add write relabel configuration values after the authentication credentials:

The write relabel configuration settings.

$ oc -n openshift-user-workload-monitoring edit configmap user-workload-
monitoring-config

apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 prometheus:
 remoteWrite:
 - url: "https://remote-write-endpoint.example.com" 1
 <endpoint_authentication_credentials> 2

apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 prometheus:
 remoteWrite:
 - url: "https://remote-write-endpoint.example.com"
 <endpoint_authentication_credentials>
 <your_write_relabel_configs> 1

CHAPTER 2. CONFIGURING THE MONITORING STACK

45

https://prometheus.io/docs/prometheus/latest/configuration/configuration/#relabel_config

For <your_write_relabel_configs> substitute a list of write relabel configurations for
metrics that you want to send to the remote endpoint.

The following sample shows how to forward a single metric called my_metric:

See the Prometheus relabel_config documentation for information about write relabel
configuration options.

2. Save the file to apply the changes. The new configuration is applied automatically.

2.12.1. Supported remote write authentication settings

You can use different methods to authenticate with a remote write endpoint. Currently supported
authentication methods are AWS Signature Version 4, basic authentication, authorization, OAuth 2.0,
and TLS client. The following table provides details about supported authentication methods for use
with remote write.

Authentication method Config map field Description

AWS Signature Version 4 sigv4 This method uses AWS Signature
Version 4 authentication to sign
requests. You cannot use this
method simultaneously with
authorization, OAuth 2.0, or Basic
authentication.

Basic authentication basicAuth Basic authentication sets the
authorization header on every
remote write request with the
configured username and
password.

authorization authorization Authorization sets the
Authorization header on every
remote write request using the
configured token.

apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 prometheus:
 remoteWrite:
 - url: "https://remote-write-endpoint.example.com"
 writeRelabelConfigs:
 - sourceLabels: [__name__]
 regex: 'my_metric'
 action: keep

OpenShift Container Platform 4.13 Monitoring

46

https://prometheus.io/docs/prometheus/latest/configuration/configuration/#relabel_config

1

2

OAuth 2.0 oauth2 An OAuth 2.0 configuration uses
the client credentials grant type.
Prometheus fetches an access
token from tokenUrl with the
specified client ID and client
secret to access the remote write
endpoint. You cannot use this
method simultaneously with
authorization, AWS Signature
Version 4, or Basic authentication.

TLS client tlsConfig A TLS client configuration
specifies the CA certificate, the
client certificate, and the client
key file information used to
authenticate with the remote
write endpoint server using TLS.
The sample configuration
assumes that you have already
created a CA certificate file, a
client certificate file, and a client
key file.

Authentication method Config map field Description

2.12.2. Example remote write authentication settings

The following samples show different authentication settings you can use to connect to a remote write
endpoint. Each sample also shows how to configure a corresponding Secret object that contains
authentication credentials and other relevant settings. Each sample configures authentication for use
with default platform monitoring in the openshift-monitoring namespace.

Example 2.1. Sample YAML for AWS Signature Version 4 authentication

The following shows the settings for a sigv4 secret named sigv4-credentials in the openshift-
monitoring namespace.

The AWS API access key.

The AWS API secret key.

apiVersion: v1
kind: Secret
metadata:
 name: sigv4-credentials
 namespace: openshift-monitoring
stringData:
 accessKey: <AWS_access_key> 1
 secretKey: <AWS_secret_key> 2
type: Opaque

CHAPTER 2. CONFIGURING THE MONITORING STACK

47

1

2 4

3

5

6

7

1

The following shows sample AWS Signature Version 4 remote write authentication settings that use
a Secret object named sigv4-credentials in the openshift-monitoring namespace:

The AWS region.

The name of the Secret object containing the AWS API access credentials.

The key that contains the AWS API access key in the specified Secret object.

The key that contains the AWS API secret key in the specified Secret object.

The name of the AWS profile that is being used to authenticate.

The unique identifier for the Amazon Resource Name (ARN) assigned to your role.

Example 2.2. Sample YAML for basic authentication

The following shows sample basic authentication settings for a Secret object named rw-basic-auth
in the openshift-monitoring namespace:

The username.

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 prometheusK8s:
 remoteWrite:
 - url: "https://authorization.example.com/api/write"
 sigv4:
 region: <AWS_region> 1
 accessKey:
 name: sigv4-credentials 2
 key: accessKey 3
 secretKey:
 name: sigv4-credentials 4
 key: secretKey 5
 profile: <AWS_profile_name> 6
 roleArn: <AWS_role_arn> 7

apiVersion: v1
kind: Secret
metadata:
 name: rw-basic-auth
 namespace: openshift-monitoring
stringData:
 user: <basic_username> 1
 password: <basic_password> 2
type: Opaque

OpenShift Container Platform 4.13 Monitoring

48

2

1 3

2

4

1

The password.

The following sample shows a basicAuth remote write configuration that uses a Secret object
named rw-basic-auth in the openshift-monitoring namespace. It assumes that you have already set
up authentication credentials for the endpoint.

The name of the Secret object that contains the authentication credentials.

The key that contains the username in the specified Secret object.

The key that contains the password in the specified Secret object.

Example 2.3. Sample YAML for authentication with a bearer token using a Secret Object

The following shows bearer token settings for a Secret object named rw-bearer-auth in the
openshift-monitoring namespace:

The authentication token.

The following shows sample bearer token config map settings that use a Secret object named rw-
bearer-auth in the openshift-monitoring namespace:

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 prometheusK8s:
 remoteWrite:
 - url: "https://basicauth.example.com/api/write"
 basicAuth:
 username:
 name: rw-basic-auth 1
 key: user 2
 password:
 name: rw-basic-auth 3
 key: password 4

apiVersion: v1
kind: Secret
metadata:
 name: rw-bearer-auth
 namespace: openshift-monitoring
stringData:
 token: <authentication_token> 1
type: Opaque

apiVersion: v1
kind: ConfigMap

CHAPTER 2. CONFIGURING THE MONITORING STACK

49

1

2

3

1

2

The authentication type of the request. The default value is Bearer.

The name of the Secret object that contains the authentication credentials.

The key that contains the authentication token in the specified Secret object.

Example 2.4. Sample YAML for OAuth 2.0 authentication

The following shows sample OAuth 2.0 settings for a Secret object named oauth2-credentials in
the openshift-monitoring namespace:

The Oauth 2.0 ID.

The OAuth 2.0 secret.

The following shows an oauth2 remote write authentication sample configuration that uses a Secret
object named oauth2-credentials in the openshift-monitoring namespace:

metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 enableUserWorkload: true
 prometheusK8s:
 remoteWrite:
 - url: "https://authorization.example.com/api/write"
 authorization:
 type: Bearer 1
 credentials:
 name: rw-bearer-auth 2
 key: token 3

apiVersion: v1
kind: Secret
metadata:
 name: oauth2-credentials
 namespace: openshift-monitoring
stringData:
 id: <oauth2_id> 1
 secret: <oauth2_secret> 2
type: Opaque

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 prometheusK8s:
 remoteWrite:

OpenShift Container Platform 4.13 Monitoring

50

1 3

2 4

5

6

7

1

2

3

The name of the corresponding Secret object. Note that ClientId can alternatively refer to a
ConfigMap object, although clientSecret must refer to a Secret object.

The key that contains the OAuth 2.0 credentials in the specified Secret object.

The URL used to fetch a token with the specified clientId and clientSecret.

The OAuth 2.0 scopes for the authorization request. These scopes limit what data the tokens
can access.

The OAuth 2.0 authorization request parameters required for the authorization server.

Example 2.5. Sample YAML for TLS client authentication

The following shows sample TLS client settings for a tls Secret object named mtls-bundle in the
openshift-monitoring namespace.

The CA certificate in the Prometheus container with which to validate the server certificate.

The client certificate for authentication with the server.

The client key.

The following sample shows a tlsConfig remote write authentication configuration that uses a TLS

 - url: "https://test.example.com/api/write"
 oauth2:
 clientId:
 secret:
 name: oauth2-credentials 1
 key: id 2
 clientSecret:
 name: oauth2-credentials 3
 key: secret 4
 tokenUrl: https://example.com/oauth2/token 5
 scopes: 6
 - <scope_1>
 - <scope_2>
 endpointParams: 7
 param1: <parameter_1>
 param2: <parameter_2>

apiVersion: v1
kind: Secret
metadata:
 name: mtls-bundle
 namespace: openshift-monitoring
data:
 ca.crt: <ca_cert> 1
 client.crt: <client_cert> 2
 client.key: <client_key> 3
type: tls

CHAPTER 2. CONFIGURING THE MONITORING STACK

51

1 3 5

2

4

6

The following sample shows a tlsConfig remote write authentication configuration that uses a TLS
Secret object named mtls-bundle.

The name of the corresponding Secret object that contains the TLS authentication
credentials. Note that ca and cert can alternatively refer to a ConfigMap object, though

keySecret must refer to a Secret object.

The key in the specified Secret object that contains the CA certificate for the endpoint.

The key in the specified Secret object that contains the client certificate for the endpoint.

The key in the specified Secret object that contains the client key secret.

Additional resources

See Setting up remote write compatible endpoints for steps to create a remote write
compatible endpoint (such as Thanos).

See Tuning remote write settings for information about how to optimize remote write settings
for different use cases.

See Understanding secrets for steps to create and configure Secret objects in OpenShift
Container Platform.

See the Prometheus REST API reference for remote write for information about additional
optional fields.

2.13. ADDING CLUSTER ID LABELS TO METRICS

If you manage multiple OpenShift Container Platform clusters and use the remote write feature to send

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 prometheusK8s:
 remoteWrite:
 - url: "https://remote-write-endpoint.example.com"
 tlsConfig:
 ca:
 secret:
 name: mtls-bundle 1
 key: ca.crt 2
 cert:
 secret:
 name: mtls-bundle 3
 key: client.crt 4
 keySecret:
 name: mtls-bundle 5
 key: client.key 6

OpenShift Container Platform 4.13 Monitoring

52

https://prometheus.io/docs/operating/integrations/#remote-endpoints-and-storage
https://prometheus.io/docs/practices/remote_write/#remote-write-tuning
https://docs.redhat.com/en/documentation/openshift_container_platform/4.13/html-single/nodes/#nodes-pods-secrets-about_nodes-pods-secrets
https://docs.redhat.com/en/documentation/openshift_container_platform/4.13/html-single/api_reference/#spec-remotewrite-2

If you manage multiple OpenShift Container Platform clusters and use the remote write feature to send
metrics data from these clusters to an external storage location, you can add cluster ID labels to identify
the metrics data coming from different clusters. You can then query these labels to identify the source
cluster for a metric and distinguish that data from similar metrics data sent by other clusters.

This way, if you manage many clusters for multiple customers and send metrics data to a single
centralized storage system, you can use cluster ID labels to query metrics for a particular cluster or
customer.

Creating and using cluster ID labels involves three general steps:

Configuring the write relabel settings for remote write storage.

Adding cluster ID labels to the metrics.

Querying these labels to identify the source cluster or customer for a metric.

2.13.1. Creating cluster ID labels for metrics

You can create cluster ID labels for metrics for default platform monitoring and for user workload
monitoring.

For default platform monitoring, you add cluster ID labels for metrics in the write_relabel settings for
remote write storage in the cluster-monitoring-config config map in the openshift-monitoring
namespace.

For user workload monitoring, you edit the settings in the user-workload-monitoring-config config
map in the openshift-user-workload-monitoring namespace.

NOTE

When Prometheus scrapes user workload targets that expose a namespace label, the
system stores this label as exported_namespace. This behavior ensures that the final
namespace label value is equal to the namespace of the target pod. You cannot override
this default configuration by setting the value of the honorLabels field to true for
PodMonitor or ServiceMonitor objects.

Prerequisites

If you are configuring default platform monitoring components:

You have access to the cluster as a user with the cluster-admin cluster role.

You have created the cluster-monitoring-config ConfigMap object.

If you are configuring components that monitor user-defined projects:

You have access to the cluster as a user with the cluster-admin cluster role or as a user
with the user-workload-monitoring-config-edit role in the openshift-user-workload-
monitoring project.

A cluster administrator has enabled monitoring for user-defined projects.

You have installed the OpenShift CLI (oc).

You have configured remote write storage.

CHAPTER 2. CONFIGURING THE MONITORING STACK

53

1

2

Procedure

1. Edit the ConfigMap object:

To create cluster ID labels for core OpenShift Container Platform metrics:

a. Edit the cluster-monitoring-config ConfigMap object in the openshift-monitoring
project:

b. In the writeRelabelConfigs: section under
data/config.yaml/prometheusK8s/remoteWrite, add cluster ID relabel configuration
values:

Add a list of write relabel configurations for metrics that you want to send to the
remote endpoint.

Substitute the label configuration for the metrics sent to the remote write
endpoint.

The following sample shows how to forward a metric with the cluster ID label cluster_id
in default platform monitoring:

$ oc -n openshift-monitoring edit configmap cluster-monitoring-config

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 prometheusK8s:
 remoteWrite:
 - url: "https://remote-write-endpoint.example.com"
 <endpoint_authentication_credentials>
 writeRelabelConfigs: 1
 - <relabel_config> 2

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 prometheusK8s:
 remoteWrite:
 - url: "https://remote-write-endpoint.example.com"
 writeRelabelConfigs:
 - sourceLabels:
 - __tmp_openshift_cluster_id__ 1
 targetLabel: cluster_id 2
 action: replace 3

OpenShift Container Platform 4.13 Monitoring

54

1

2

3

1

2

The system initially applies a temporary cluster ID source label named
__tmp_openshift_cluster_id__. This temporary label gets replaced by the cluster

Specify the name of the cluster ID label for metrics sent to remote write storage. If
you use a label name that already exists for a metric, that value is overwritten with
the name of this cluster ID label. For the label name, do not use
__tmp_openshift_cluster_id__. The final relabeling step removes labels that use
this name.

The replace write relabel action replaces the temporary label with the target label
for outgoing metrics. This action is the default and is applied if no action is
specified.

To create cluster ID labels for user-defined project metrics:

a. Edit the user-workload-monitoring-config ConfigMap object in the openshift-user-
workload-monitoring project:

b. In the writeRelabelConfigs: section under
data/config.yaml/prometheus/remoteWrite, add cluster ID relabel configuration
values:

Add a list of write relabel configurations for metrics that you want to send to the
remote endpoint.

Substitute the label configuration for the metrics sent to the remote write
endpoint.

The following sample shows how to forward a metric with the cluster ID label cluster_id
in user-workload monitoring:

$ oc -n openshift-user-workload-monitoring edit configmap user-workload-
monitoring-config

apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 prometheus:
 remoteWrite:
 - url: "https://remote-write-endpoint.example.com"
 <endpoint_authentication_credentials>
 writeRelabelConfigs: 1
 - <relabel_config> 2

apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:

CHAPTER 2. CONFIGURING THE MONITORING STACK

55

1

2

3

The system initially applies a temporary cluster ID source label named
__tmp_openshift_cluster_id__. This temporary label gets replaced by the cluster
ID label name that you specify.

Specify the name of the cluster ID label for metrics sent to remote write storage. If
you use a label name that already exists for a metric, that value is overwritten with
the name of this cluster ID label. For the label name, do not use
__tmp_openshift_cluster_id__. The final relabeling step removes labels that use
this name.

The replace write relabel action replaces the temporary label with the target label
for outgoing metrics. This action is the default and is applied if no action is
specified.

2. Save the file to apply the changes. The new configuration is applied automatically.

Additional resources

For details about write relabel configuration, see Configuring remote write storage .

For information about how to get your cluster ID, see Obtaining your cluster ID .

2.14. CONFIGURING METRICS COLLECTION PROFILES

IMPORTANT

Using a metrics collection profile is a Technology Preview feature only. Technology
Preview features are not supported with Red Hat production service level agreements
(SLAs) and might not be functionally complete. Red Hat does not recommend using
them in production. These features provide early access to upcoming product features,
enabling customers to test functionality and provide feedback during the development
process.

For more information about the support scope of Red Hat Technology Preview features,
see https://access.redhat.com/support/offerings/techpreview.

By default, Prometheus collects metrics exposed by all default metrics targets in OpenShift Container
Platform components. However, you might want Prometheus to collect fewer metrics from a cluster in
certain scenarios:

If cluster administrators require only alert, telemetry, and console metrics and do not require
other metrics to be available.

If a cluster increases in size, and the increased size of the default metrics data collected now

 config.yaml: |
 prometheus:
 remoteWrite:
 - url: "https://remote-write-endpoint.example.com"
 writeRelabelConfigs:
 - sourceLabels:
 - __tmp_openshift_cluster_id__ 1
 targetLabel: cluster_id 2
 action: replace 3

OpenShift Container Platform 4.13 Monitoring

56

https://docs.redhat.com/en/documentation/openshift_container_platform/4.13/html-single/support/#support-get-cluster-id_gathering-cluster-data
https://access.redhat.com/support/offerings/techpreview

1

If a cluster increases in size, and the increased size of the default metrics data collected now
requires a significant increase in CPU and memory resources.

You can use a metrics collection profile to collect either the default amount of metrics data or a minimal
amount of metrics data. When you collect minimal metrics data, basic monitoring features such as
alerting continue to work. At the same time, the CPU and memory resources required by Prometheus
decrease.

2.14.1. About metrics collection profiles

You can enable one of two metrics collection profiles:

full: Prometheus collects metrics data exposed by all platform components. This setting is the
default.

minimal: Prometheus collects only the metrics data required for platform alerts, recording rules,
telemetry, and console dashboards.

2.14.2. Choosing a metrics collection profile

To choose a metrics collection profile for core OpenShift Container Platform monitoring components,
edit the cluster-monitoring-config ConfigMap object.

Prerequisites

You have installed the OpenShift CLI (oc).

You have enabled Technology Preview features by using the FeatureGate custom resource
(CR).

You have created the cluster-monitoring-config ConfigMap object.

You have access to the cluster as a user with the cluster-admin cluster role.

Procedure

1. Edit the cluster-monitoring-config ConfigMap object in the openshift-monitoring project:

2. Add the metrics collection profile setting under data/config.yaml/prometheusK8s:

The name of the metrics collection profile. The available values are full or minimal. If you
do not specify a value or if the collectionProfile key name does not exist in the config
map, the default setting of full is used.

$ oc -n openshift-monitoring edit configmap cluster-monitoring-config

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 prometheusK8s:
 collectionProfile: <metrics_collection_profile_name> 1

CHAPTER 2. CONFIGURING THE MONITORING STACK

57

The following example sets the metrics collection profile to minimal for the core platform
instance of Prometheus:

3. Save the file to apply the changes. The new configuration is applied automatically.

Additional resources

See Viewing a list of available metrics for steps to view a list of metrics being collected for a
cluster.

See Enabling features using feature gates for steps to enable Technology Preview features.

2.15. CONTROLLING THE IMPACT OF UNBOUND METRICS
ATTRIBUTES IN USER-DEFINED PROJECTS

Developers can create labels to define attributes for metrics in the form of key-value pairs. The number
of potential key-value pairs corresponds to the number of possible values for an attribute. An attribute
that has an unlimited number of potential values is called an unbound attribute. For example, a
customer_id attribute is unbound because it has an infinite number of possible values.

Every assigned key-value pair has a unique time series. The use of many unbound attributes in labels
can result in an exponential increase in the number of time series created. This can impact Prometheus
performance and can consume a lot of disk space.

Cluster administrators can use the following measures to control the impact of unbound metrics
attributes in user-defined projects:

Limit the number of samples that can be accepted per target scrape in user-defined projects

Limit the number of scraped labels, the length of label names, and the length of label values

Create alerts that fire when a scrape sample threshold is reached or when the target cannot be
scraped

NOTE

Limiting scrape samples can help prevent the issues caused by adding many unbound
attributes to labels. Developers can also prevent the underlying cause by limiting the
number of unbound attributes that they define for metrics. Using attributes that are
bound to a limited set of possible values reduces the number of potential key-value pair
combinations.

2.15.1. Setting scrape sample and label limits for user-defined projects

You can limit the number of samples that can be accepted per target scrape in user-defined projects.

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 prometheusK8s:
 collectionProfile: minimal

OpenShift Container Platform 4.13 Monitoring

58

https://docs.redhat.com/en/documentation/openshift_container_platform/4.13/html-single/nodes/#enabling-features-using-featuregates

1

You can limit the number of samples that can be accepted per target scrape in user-defined projects.
You can also limit the number of scraped labels, the length of label names, and the length of label
values.

WARNING

If you set sample or label limits, no further sample data is ingested for that target
scrape after the limit is reached.

Prerequisites

You have access to the cluster as a user with the cluster-admin cluster role, or as a user with
the user-workload-monitoring-config-edit role in the openshift-user-workload-monitoring
project.

A cluster administrator has enabled monitoring for user-defined projects.

You have installed the OpenShift CLI (oc).

Procedure

1. Edit the user-workload-monitoring-config ConfigMap object in the openshift-user-
workload-monitoring project:

2. Add the enforcedSampleLimit configuration to data/config.yaml to limit the number of
samples that can be accepted per target scrape in user-defined projects:

A value is required if this parameter is specified. This enforcedSampleLimit example limits
the number of samples that can be accepted per target scrape in user-defined projects to
50,000.

3. Add the enforcedLabelLimit, enforcedLabelNameLengthLimit, and
enforcedLabelValueLengthLimit configurations to data/config.yaml to limit the number of
scraped labels, the length of label names, and the length of label values in user-defined
projects:



$ oc -n openshift-user-workload-monitoring edit configmap user-workload-monitoring-config

apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 prometheus:
 enforcedSampleLimit: 50000 1

apiVersion: v1

CHAPTER 2. CONFIGURING THE MONITORING STACK

59

1

2

3

Specifies the maximum number of labels per scrape. The default value is 0, which specifies
no limit.

Specifies the maximum length in characters of a label name. The default value is 0, which
specifies no limit.

Specifies the maximum length in characters of a label value. The default value is 0, which
specifies no limit.

4. Save the file to apply the changes. The limits are applied automatically.

2.15.2. Creating scrape sample alerts

You can create alerts that notify you when:

The target cannot be scraped or is not available for the specified for duration

A scrape sample threshold is reached or is exceeded for the specified for duration

Prerequisites

You have access to the cluster as a user with the cluster-admin cluster role, or as a user with
the user-workload-monitoring-config-edit role in the openshift-user-workload-monitoring
project.

A cluster administrator has enabled monitoring for user-defined projects.

You have limited the number of samples that can be accepted per target scrape in user-defined
projects, by using enforcedSampleLimit.

You have installed the OpenShift CLI (oc).

Procedure

1. Create a YAML file with alerts that inform you when the targets are down and when the
enforced sample limit is approaching. The file in this example is called monitoring-stack-
alerts.yaml:

kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 prometheus:
 enforcedLabelLimit: 500 1
 enforcedLabelNameLengthLimit: 50 2
 enforcedLabelValueLengthLimit: 600 3

apiVersion: monitoring.coreos.com/v1
kind: PrometheusRule
metadata:
 labels:
 prometheus: k8s

OpenShift Container Platform 4.13 Monitoring

60

1

2

3

4

5

6

7

8

9

10

Defines the name of the alerting rule.

Specifies the user-defined project where the alerting rule will be deployed.

The TargetDown alert will fire if the target cannot be scraped or is not available for the for
duration.

The message that will be output when the TargetDown alert fires.

The conditions for the TargetDown alert must be true for this duration before the alert is
fired.

Defines the severity for the TargetDown alert.

The ApproachingEnforcedSamplesLimit alert will fire when the defined scrape sample
threshold is reached or exceeded for the specified for duration.

The message that will be output when the ApproachingEnforcedSamplesLimit alert
fires.

The threshold for the ApproachingEnforcedSamplesLimit alert. In this example the alert
will fire when the number of samples per target scrape has exceeded 80% of the enforced
sample limit of 50000. The for duration must also have passed before the alert will fire. The
<number> in the expression scrape_samples_scraped/<number> > <threshold> must
match the enforcedSampleLimit value defined in the user-workload-monitoring-config
ConfigMap object.

The conditions for the ApproachingEnforcedSamplesLimit alert must be true for this
duration before the alert is fired.

 role: alert-rules
 name: monitoring-stack-alerts 1
 namespace: ns1 2
spec:
 groups:
 - name: general.rules
 rules:
 - alert: TargetDown 3
 annotations:
 message: '{{ printf "%.4g" $value }}% of the {{ $labels.job }}/{{ $labels.service
 }} targets in {{ $labels.namespace }} namespace are down.' 4
 expr: 100 * (count(up == 0) BY (job, namespace, service) / count(up) BY (job,
 namespace, service)) > 10
 for: 10m 5
 labels:
 severity: warning 6
 - alert: ApproachingEnforcedSamplesLimit 7
 annotations:
 message: '{{ $labels.container }} container of the {{ $labels.pod }} pod in the {{
$labels.namespace }} namespace consumes {{ $value | humanizePercentage }} of the
samples limit budget.' 8
 expr: scrape_samples_scraped/50000 > 0.8 9
 for: 10m 10
 labels:
 severity: warning 11

CHAPTER 2. CONFIGURING THE MONITORING STACK

61

11 Defines the severity for the ApproachingEnforcedSamplesLimit alert.

2. Apply the configuration to the user-defined project:

Additional resources

Creating a user-defined workload monitoring config map

Enabling monitoring for user-defined projects

See Determining why Prometheus is consuming a lot of disk space for steps to query which
metrics have the highest number of scrape samples.

$ oc apply -f monitoring-stack-alerts.yaml

OpenShift Container Platform 4.13 Monitoring

62

CHAPTER 3. CONFIGURING EXTERNAL ALERTMANAGER
INSTANCES

The OpenShift Container Platform monitoring stack includes a local Alertmanager instance that routes
alerts from Prometheus. You can add external Alertmanager instances to route alerts for core
OpenShift Container Platform projects or user-defined projects.

If you add the same external Alertmanager configuration for multiple clusters and disable the local
instance for each cluster, you can then manage alert routing for multiple clusters by using a single
external Alertmanager instance.

Prerequisites

If you are configuring core OpenShift Container Platform monitoring components in the
openshift-monitoring project:

You have access to the cluster as a user with the cluster-admin cluster role.

You have created the cluster-monitoring-config config map.

If you are configuring components that monitor user-defined projects:

You have access to the cluster as a user with the cluster-admin cluster role, or as a user
with the user-workload-monitoring-config-edit role in the openshift-user-workload-
monitoring project.

A cluster administrator has enabled monitoring for user-defined projects.

You have installed the OpenShift CLI (oc).

Procedure

1. Edit the ConfigMap object.

To configure additional Alertmanagers for routing alerts from core OpenShift
Container Platform projects:

a. Edit the cluster-monitoring-config config map in the openshift-monitoring project:

b. Add an additionalAlertmanagerConfigs: section under
data/config.yaml/prometheusK8s.

c. Add the configuration details for additional Alertmanagers in this section:

$ oc -n openshift-monitoring edit configmap cluster-monitoring-config

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |

CHAPTER 3. CONFIGURING EXTERNAL ALERTMANAGER INSTANCES

63

For <alertmanager_specification>, substitute authentication and other configuration
details for additional Alertmanager instances. Currently supported authentication
methods are bearer token (bearerToken) and client TLS (tlsConfig). The following
sample config map configures an additional Alertmanager using a bearer token with
client TLS authentication:

To configure additional Alertmanager instances for routing alerts from user-defined
projects:

a. Edit the user-workload-monitoring-config config map in the openshift-user-
workload-monitoring project:

b. Add a <component>/additionalAlertmanagerConfigs: section under
data/config.yaml/.

c. Add the configuration details for additional Alertmanagers in this section:

 prometheusK8s:
 additionalAlertmanagerConfigs:
 - <alertmanager_specification>

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 prometheusK8s:
 additionalAlertmanagerConfigs:
 - scheme: https
 pathPrefix: /
 timeout: "30s"
 apiVersion: v1
 bearerToken:
 name: alertmanager-bearer-token
 key: token
 tlsConfig:
 key:
 name: alertmanager-tls
 key: tls.key
 cert:
 name: alertmanager-tls
 key: tls.crt
 ca:
 name: alertmanager-tls
 key: tls.ca
 staticConfigs:
 - external-alertmanager1-remote.com
 - external-alertmanager1-remote2.com

$ oc -n openshift-user-workload-monitoring edit configmap user-workload-
monitoring-config

apiVersion: v1

OpenShift Container Platform 4.13 Monitoring

64

For <component>, substitute one of two supported external Alertmanager
components: prometheus or thanosRuler.

For <alertmanager_specification>, substitute authentication and other configuration
details for additional Alertmanager instances. Currently supported authentication
methods are bearer token (bearerToken) and client TLS (tlsConfig). The following
sample config map configures an additional Alertmanager using Thanos Ruler with a
bearer token and client TLS authentication:

2. Save the file to apply the changes. The pods affected by the new configuration are
automatically redeployed.

kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 <component>:
 additionalAlertmanagerConfigs:
 - <alertmanager_specification>

apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 thanosRuler:
 additionalAlertmanagerConfigs:
 - scheme: https
 pathPrefix: /
 timeout: "30s"
 apiVersion: v1
 bearerToken:
 name: alertmanager-bearer-token
 key: token
 tlsConfig:
 key:
 name: alertmanager-tls
 key: tls.key
 cert:
 name: alertmanager-tls
 key: tls.crt
 ca:
 name: alertmanager-tls
 key: tls.ca
 staticConfigs:
 - external-alertmanager1-remote.com
 - external-alertmanager1-remote2.com

CHAPTER 3. CONFIGURING EXTERNAL ALERTMANAGER INSTANCES

65

CHAPTER 4. CONFIGURING SECRETS FOR ALERTMANAGER
The OpenShift Container Platform monitoring stack includes Alertmanager, which routes alerts from
Prometheus to endpoint receivers. If you need to authenticate with a receiver so that Alertmanager can
send alerts to it, you can configure Alertmanager to use a secret that contains authentication
credentials for the receiver.

For example, you can configure Alertmanager to use a secret to authenticate with an endpoint receiver
that requires a certificate issued by a private Certificate Authority (CA). You can also configure
Alertmanager to use a secret to authenticate with a receiver that requires a password file for Basic HTTP
authentication. In either case, authentication details are contained in the Secret object rather than in
the ConfigMap object.

4.1. ADDING A SECRET TO THE ALERTMANAGER CONFIGURATION

You can add secrets to the Alertmanager configuration for core platform monitoring components by
editing the cluster-monitoring-config config map in the openshift-monitoring project.

After you add a secret to the config map, the secret is mounted as a volume at
/etc/alertmanager/secrets/<secret_name> within the alertmanager container for the Alertmanager
pods.

Prerequisites

If you are configuring core OpenShift Container Platform monitoring components in the
openshift-monitoring project:

You have access to the cluster as a user with the cluster-admin cluster role.

You have created the cluster-monitoring-config config map.

You have created the secret to be configured in Alertmanager in the openshift-monitoring
project.

If you are configuring components that monitor user-defined projects:

You have access to the cluster as a user with the cluster-admin cluster role, or as a user
with the user-workload-monitoring-config-edit role in the openshift-user-workload-
monitoring project.

You have created the secret to be configured in Alertmanager in the openshift-user-
workload-monitoring project.

A cluster administrator has enabled monitoring for user-defined projects.

You have installed the OpenShift CLI (oc).

Procedure

1. Edit the ConfigMap object.

To add a secret configuration to Alertmanager for core platform monitoring:

a. Edit the cluster-monitoring-config config map in the openshift-monitoring project:

b. Add a secrets: section under data/config.yaml/alertmanagerMain with the following

$ oc -n openshift-monitoring edit configmap cluster-monitoring-config

OpenShift Container Platform 4.13 Monitoring

66

1

2

b. Add a secrets: section under data/config.yaml/alertmanagerMain with the following
configuration:

This section contains the secrets to be mounted into Alertmanager. The secrets
must be located within the same namespace as the Alertmanager object.

The name of the Secret object that contains authentication credentials for the
receiver. If you add multiple secrets, place each one on a new line.

The following sample config map settings configure Alertmanager to use two Secret
objects named test-secret-basic-auth and test-secret-api-token:

To add a secret configuration to Alertmanager for user-defined project monitoring:

a. Edit the user-workload-monitoring-config config map in the openshift-user-
workload-monitoring project:

b. Add a secrets: section under data/config.yaml/alertmanager/secrets with the
following configuration:

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 alertmanagerMain:
 secrets: 1
 - <secret_name_1> 2
 - <secret_name_2>

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 alertmanagerMain:
 secrets:
 - test-secret-basic-auth
 - test-secret-api-token

$ oc -n openshift-user-workload-monitoring edit configmap user-workload-
monitoring-config

apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |

CHAPTER 4. CONFIGURING SECRETS FOR ALERTMANAGER

67

1

2

This section contains the secrets to be mounted into Alertmanager. The secrets
must be located within the same namespace as the Alertmanager object.

The name of the Secret object that contains authentication credentials for the
receiver. If you add multiple secrets, place each one on a new line.

The following sample config map settings configure Alertmanager to use two Secret
objects named test-secret and test-secret-api-token:

2. Save the file to apply the changes. The new configuration is applied automatically.

4.2. ATTACHING ADDITIONAL LABELS TO YOUR TIME SERIES AND
ALERTS

You can attach custom labels to all time series and alerts leaving Prometheus by using the external
labels feature of Prometheus.

Prerequisites

If you are configuring core OpenShift Container Platform monitoring components:

You have access to the cluster as a user with the cluster-admin cluster role.

You have created the cluster-monitoring-config ConfigMap object.

If you are configuring components that monitor user-defined projects:

You have access to the cluster as a user with the cluster-admin cluster role, or as a user
with the user-workload-monitoring-config-edit role in the openshift-user-workload-
monitoring project.

A cluster administrator has enabled monitoring for user-defined projects.

You have installed the OpenShift CLI (oc).

Procedure

 alertmanager:
 secrets: 1
 - <secret_name_1> 2
 - <secret_name_2>

apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 alertmanager:
 enabled: true
 secrets:
 - test-secret
 - test-api-receiver-token

OpenShift Container Platform 4.13 Monitoring

68

1

1. Edit the ConfigMap object:

To attach custom labels to all time series and alerts leaving the Prometheus instance
that monitors core OpenShift Container Platform projects:

a. Edit the cluster-monitoring-config ConfigMap object in the openshift-monitoring
project:

b. Define a map of labels you want to add for every metric under data/config.yaml:

Substitute <key>: <value> with a map of key-value pairs where <key> is a unique
name for the new label and <value> is its value.

WARNING

Do not use prometheus or prometheus_replica as key names,
because they are reserved and will be overwritten.

Do not use cluster or managed_cluster as key names. Using
them can cause issues where you are unable to see data in the
developer dashboards.

For example, to add metadata about the region and environment to all time series and
alerts, use the following example:

$ oc -n openshift-monitoring edit configmap cluster-monitoring-config

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 prometheusK8s:
 externalLabels:
 <key>: <value> 1



apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 prometheusK8s:
 externalLabels:
 region: eu
 environment: prod

CHAPTER 4. CONFIGURING SECRETS FOR ALERTMANAGER

69

1

c. Save the file to apply the changes. The new configuration is applied automatically.

To attach custom labels to all time series and alerts leaving the Prometheus instance
that monitors user-defined projects:

a. Edit the user-workload-monitoring-config ConfigMap object in the openshift-user-
workload-monitoring project:

b. Define a map of labels you want to add for every metric under data/config.yaml:

Substitute <key>: <value> with a map of key-value pairs where <key> is a unique
name for the new label and <value> is its value.

WARNING

Do not use prometheus or prometheus_replica as key names,
because they are reserved and will be overwritten.

Do not use cluster or managed_cluster as key names. Using
them can cause issues where you are unable to see data in the
developer dashboards.

NOTE

In the openshift-user-workload-monitoring project, Prometheus
handles metrics and Thanos Ruler handles alerting and recording rules.
Setting externalLabels for prometheus in the user-workload-
monitoring-config ConfigMap object will only configure external labels
for metrics and not for any rules.

For example, to add metadata about the region and environment to all time series and
alerts related to user-defined projects, use the following example:

$ oc -n openshift-user-workload-monitoring edit configmap user-workload-
monitoring-config

apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 prometheus:
 externalLabels:
 <key>: <value> 1



apiVersion: v1
kind: ConfigMap

OpenShift Container Platform 4.13 Monitoring

70

c. Save the file to apply the changes. The pods affected by the new configuration are
automatically redeployed.

Additional resources

See Preparing to configure the monitoring stack for steps to create monitoring config maps.

Enabling monitoring for user-defined projects

metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 prometheus:
 externalLabels:
 region: eu
 environment: prod

CHAPTER 4. CONFIGURING SECRETS FOR ALERTMANAGER

71

CHAPTER 5. CONFIGURING POD TOPOLOGY SPREAD
CONSTRAINTS FOR MONITORING

You can use pod topology spread constraints to control how Prometheus, Thanos Ruler, and
Alertmanager pods are spread across a network topology when OpenShift Container Platform pods are
deployed in multiple availability zones.

Pod topology spread constraints are suitable for controlling pod scheduling within hierarchical
topologies in which nodes are spread across different infrastructure levels, such as regions and zones
within those regions. Additionally, by being able to schedule pods in different zones, you can improve
network latency in certain scenarios.

Additional resources

Controlling pod placement by using pod topology spread constraints

Kubernetes Pod Topology Spread Constraints documentation

5.1. SETTING UP POD TOPOLOGY SPREAD CONSTRAINTS FOR
PROMETHEUS

For core OpenShift Container Platform platform monitoring, you can set up pod topology spread
constraints for Prometheus to fine tune how pod replicas are scheduled to nodes across zones. Doing so
helps ensure that Prometheus pods are highly available and run more efficiently, because workloads are
spread across nodes in different data centers or hierarchical infrastructure zones.

You configure pod topology spread constraints for Prometheus in the cluster-monitoring-config
config map.

Prerequisites

You have access to the cluster as a user with the cluster-admin cluster role.

You have created the cluster-monitoring-config ConfigMap object.

You have installed the OpenShift CLI (oc).

Procedure

1. Edit the cluster-monitoring-config ConfigMap object in the openshift-monitoring
namespace:

2. Add values for the following settings under data/config.yaml/prometheusK8s to configure
pod topology spread constraints:

$ oc -n openshift-monitoring edit configmap cluster-monitoring-config

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:

OpenShift Container Platform 4.13 Monitoring

72

https://docs.redhat.com/en/documentation/openshift_container_platform/4.13/html-single/nodes/#nodes-scheduler-pod-topology-spread-constraints-about
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/

1

2

3

4

Specify a numeric value for maxSkew, which defines the degree to which pods are allowed
to be unevenly distributed. This field is required, and the value must be greater than zero.
The value specified has a different effect depending on what value you specify for
whenUnsatisfiable.

Specify a key of node labels for topologyKey. This field is required. Nodes that have a
label with this key and identical values are considered to be in the same topology. The
scheduler will try to put a balanced number of pods into each domain.

Specify a value for whenUnsatisfiable. This field is required. Available options are
DoNotSchedule and ScheduleAnyway. Specify DoNotSchedule if you want the
maxSkew value to define the maximum difference allowed between the number of
matching pods in the target topology and the global minimum. Specify ScheduleAnyway
if you want the scheduler to still schedule the pod but to give higher priority to nodes that
might reduce the skew.

Specify a value for matchLabels. This value is used to identify the set of matching pods to
which to apply the constraints.

3. Save the file to apply the changes. The pods affected by the new configuration are
automatically redeployed.

5.2. SETTING UP POD TOPOLOGY SPREAD CONSTRAINTS FOR
ALERTMANAGER

For core OpenShift Container Platform platform monitoring, you can set up pod topology spread
constraints for Alertmanager to fine tune how pod replicas are scheduled to nodes across zones. Doing
so helps ensure that Alertmanager pods are highly available and run more efficiently, because workloads
are spread across nodes in different data centers or hierarchical infrastructure zones.

You configure pod topology spread constraints for Alertmanager in the cluster-monitoring-config
config map.

Prerequisites

You have access to the cluster as a user with the cluster-admin cluster role.

You have created the cluster-monitoring-config ConfigMap object.

You have installed the OpenShift CLI (oc).

Procedure

1. Edit the cluster-monitoring-config ConfigMap object in the openshift-monitoring

 config.yaml: |
 prometheusK8s:
 topologySpreadConstraints:
 - maxSkew: 1 1
 topologyKey: monitoring 2
 whenUnsatisfiable: DoNotSchedule 3
 labelSelector:
 matchLabels: 4
 app.kubernetes.io/name: prometheus

CHAPTER 5. CONFIGURING POD TOPOLOGY SPREAD CONSTRAINTS FOR MONITORING

73

1

2

3

4

1. Edit the cluster-monitoring-config ConfigMap object in the openshift-monitoring
namespace:

2. Add values for the following settings under data/config.yaml/alertmanagermain to configure
pod topology spread constraints:

Specify a numeric value for maxSkew, which defines the degree to which pods are allowed
to be unevenly distributed. This field is required, and the value must be greater than zero.
The value specified has a different effect depending on what value you specify for
whenUnsatisfiable.

Specify a key of node labels for topologyKey. This field is required. Nodes that have a
label with this key and identical values are considered to be in the same topology. The
scheduler will try to put a balanced number of pods into each domain.

Specify a value for whenUnsatisfiable. This field is required. Available options are
DoNotSchedule and ScheduleAnyway. Specify DoNotSchedule if you want the
maxSkew value to define the maximum difference allowed between the number of
matching pods in the target topology and the global minimum. Specify ScheduleAnyway
if you want the scheduler to still schedule the pod but to give higher priority to nodes that
might reduce the skew.

Specify a value for matchLabels. This value is used to identify the set of matching pods to
which to apply the constraints.

3. Save the file to apply the changes. The pods affected by the new configuration are
automatically redeployed.

5.3. SETTING UP POD TOPOLOGY SPREAD CONSTRAINTS FOR
THANOS RULER

For user-defined monitoring, you can set up pod topology spread constraints for Thanos Ruler to fine
tune how pod replicas are scheduled to nodes across zones. Doing so helps ensure that Thanos Ruler
pods are highly available and run more efficiently, because workloads are spread across nodes in
different data centers or hierarchical infrastructure zones.

$ oc -n openshift-monitoring edit configmap cluster-monitoring-config

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 alertmanagerMain:
 topologySpreadConstraints:
 - maxSkew: 1 1
 topologyKey: monitoring 2
 whenUnsatisfiable: DoNotSchedule 3
 labelSelector:
 matchLabels: 4
 app.kubernetes.io/name: alertmanager

OpenShift Container Platform 4.13 Monitoring

74

1

2

3

You configure pod topology spread constraints for Thanos Ruler in the user-workload-monitoring-
config config map.

Prerequisites

A cluster administrator has enabled monitoring for user-defined projects.

You have access to the cluster as a user with the cluster-admin cluster role, or as a user with
the user-workload-monitoring-config-edit role in the openshift-user-workload-monitoring
project.

You have installed the OpenShift CLI (oc).

Procedure

1. Edit the user-workload-monitoring-config config map in the openshift-user-workload-
monitoring namespace:

2. Add values for the following settings under data/config.yaml/thanosRuler to configure pod
topology spread constraints:

Specify a numeric value for maxSkew, which defines the degree to which pods are allowed
to be unevenly distributed. This field is required, and the value must be greater than zero.
The value specified has a different effect depending on what value you specify for
whenUnsatisfiable.

Specify a key of node labels for topologyKey. This field is required. Nodes that have a
label with this key and identical values are considered to be in the same topology. The
scheduler will try to put a balanced number of pods into each domain.

Specify a value for whenUnsatisfiable. This field is required. Available options are
DoNotSchedule and ScheduleAnyway. Specify DoNotSchedule if you want the
maxSkew value to define the maximum difference allowed between the number of
matching pods in the target topology and the global minimum. Specify ScheduleAnyway
if you want the scheduler to still schedule the pod but to give higher priority to nodes that
might reduce the skew.

$ oc -n openshift-user-workload-monitoring edit configmap user-workload-monitoring-config

apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 thanosRuler:
 topologySpreadConstraints:
 - maxSkew: 1 1
 topologyKey: monitoring 2
 whenUnsatisfiable: ScheduleAnyway 3
 labelSelector:
 matchLabels: 4
 app.kubernetes.io/name: thanos-ruler

CHAPTER 5. CONFIGURING POD TOPOLOGY SPREAD CONSTRAINTS FOR MONITORING

75

4 Specify a value for matchLabels. This value is used to identify the set of matching pods to
which to apply the constraints.

3. Save the file to apply the changes automatically.

WARNING

When you save changes to the user-workload-monitoring-config config
map, the pods and other resources in the openshift-user-workload-
monitoring project might be redeployed. The running monitoring
processes in that project might also restart.

5.4. SETTING LOG LEVELS FOR MONITORING COMPONENTS

You can configure the log level for Alertmanager, Prometheus Operator, Prometheus, Thanos Querier,
and Thanos Ruler.

The following log levels can be applied to the relevant component in the cluster-monitoring-config
and user-workload-monitoring-config ConfigMap objects:

debug. Log debug, informational, warning, and error messages.

info. Log informational, warning, and error messages.

warn. Log warning and error messages only.

error. Log error messages only.

The default log level is info.

Prerequisites

If you are setting a log level for Alertmanager, Prometheus Operator, Prometheus, or
Thanos Querier in the openshift-monitoring project:

You have access to the cluster as a user with the cluster-admin cluster role.

You have created the cluster-monitoring-config ConfigMap object.

If you are setting a log level for Prometheus Operator, Prometheus, or Thanos Ruler in the
openshift-user-workload-monitoring project:

You have access to the cluster as a user with the cluster-admin cluster role, or as a user
with the user-workload-monitoring-config-edit role in the openshift-user-workload-
monitoring project.

A cluster administrator has enabled monitoring for user-defined projects.

You have installed the OpenShift CLI (oc).

Procedure



OpenShift Container Platform 4.13 Monitoring

76

1

2

1

2

Procedure

1. Edit the ConfigMap object:

To set a log level for a component in the openshift-monitoring project:

a. Edit the cluster-monitoring-config ConfigMap object in the openshift-monitoring
project:

b. Add logLevel: <log_level> for a component under data/config.yaml:

The monitoring stack component for which you are setting a log level. For default
platform monitoring, available component values are prometheusK8s,
alertmanagerMain, prometheusOperator, and thanosQuerier.

The log level to set for the component. The available values are error, warn, info,
and debug. The default value is info.

To set a log level for a component in the openshift-user-workload-monitoring project:

a. Edit the user-workload-monitoring-config ConfigMap object in the openshift-user-
workload-monitoring project:

b. Add logLevel: <log_level> for a component under data/config.yaml:

The monitoring stack component for which you are setting a log level. For user
workload monitoring, available component values are alertmanager, prometheus,
prometheusOperator, and thanosRuler.

The log level to apply to the component. The available values are error, warn, info,

$ oc -n openshift-monitoring edit configmap cluster-monitoring-config

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 <component>: 1
 logLevel: <log_level> 2

$ oc -n openshift-user-workload-monitoring edit configmap user-workload-
monitoring-config

apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 <component>: 1
 logLevel: <log_level> 2

CHAPTER 5. CONFIGURING POD TOPOLOGY SPREAD CONSTRAINTS FOR MONITORING

77

The log level to apply to the component. The available values are error, warn, info,
and debug. The default value is info.

2. Save the file to apply the changes. The pods affected by the new configuration are
automatically redeployed.

3. Confirm that the log-level has been applied by reviewing the deployment or pod configuration
in the related project. The following example checks the log level in the prometheus-operator
deployment in the openshift-user-workload-monitoring project:

Example output

4. Check that the pods for the component are running. The following example lists the status of
pods in the openshift-user-workload-monitoring project:

NOTE

If an unrecognized logLevel value is included in the ConfigMap object, the pods
for the component might not restart successfully.

5.5. ENABLING THE QUERY LOG FILE FOR PROMETHEUS

You can configure Prometheus to write all queries that have been run by the engine to a log file. You
can do so for default platform monitoring and for user-defined workload monitoring.

IMPORTANT

Because log rotation is not supported, only enable this feature temporarily when you
need to troubleshoot an issue. After you finish troubleshooting, disable query logging by
reverting the changes you made to the ConfigMap object to enable the feature.

Prerequisites

If you are enabling the query log file feature for Prometheus in the openshift-monitoring
project:

You have access to the cluster as a user with the cluster-admin cluster role.

You have created the cluster-monitoring-config ConfigMap object.

If you are enabling the query log file feature for Prometheus in the openshift-user-
workload-monitoring project:

You have access to the cluster as a user with the cluster-admin cluster role, or as a user
with the user-workload-monitoring-config-edit role in the openshift-user-workload-
monitoring project.

$ oc -n openshift-user-workload-monitoring get deploy prometheus-operator -o yaml | grep
"log-level"

 - --log-level=debug

$ oc -n openshift-user-workload-monitoring get pods

OpenShift Container Platform 4.13 Monitoring

78

1

A cluster administrator has enabled monitoring for user-defined projects.

You have installed the OpenShift CLI (oc).

Procedure

To set the query log file for Prometheus in the openshift-monitoring project:

1. Edit the cluster-monitoring-config ConfigMap object in the openshift-monitoring
project:

2. Add queryLogFile: <path> for prometheusK8s under data/config.yaml:

The full path to the file in which queries will be logged.

3. Save the file to apply the changes. The pods affected by the new configuration are
automatically redeployed.

4. Verify that the pods for the component are running. The following sample command lists
the status of pods in the openshift-monitoring project:

5. Read the query log:

IMPORTANT

Revert the setting in the config map after you have examined the logged
query information.

To set the query log file for Prometheus in the openshift-user-workload-monitoring
project:

1. Edit the user-workload-monitoring-config ConfigMap object in the openshift-user-
workload-monitoring project:

$ oc -n openshift-monitoring edit configmap cluster-monitoring-config

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 prometheusK8s:
 queryLogFile: <path> 1

$ oc -n openshift-monitoring get pods

$ oc -n openshift-monitoring exec prometheus-k8s-0 -- cat <path>

$ oc -n openshift-user-workload-monitoring edit configmap user-workload-monitoring-
config

CHAPTER 5. CONFIGURING POD TOPOLOGY SPREAD CONSTRAINTS FOR MONITORING

79

1

2. Add queryLogFile: <path> for prometheus under data/config.yaml:

The full path to the file in which queries will be logged.

3. Save the file to apply the changes. The pods affected by the new configuration are
automatically redeployed.

4. Verify that the pods for the component are running. The following example command lists
the status of pods in the openshift-user-workload-monitoring project:

5. Read the query log:

IMPORTANT

Revert the setting in the config map after you have examined the logged
query information.

Additional resources

See Preparing to configure the monitoring stack for steps to create monitoring config maps

See Enabling monitoring for user-defined projects for steps to enable user-defined monitoring.

5.6. ENABLING QUERY LOGGING FOR THANOS QUERIER

For default platform monitoring in the openshift-monitoring project, you can enable the Cluster
Monitoring Operator (CMO) to log all queries run by Thanos Querier.

IMPORTANT

Because log rotation is not supported, only enable this feature temporarily when you
need to troubleshoot an issue. After you finish troubleshooting, disable query logging by
reverting the changes you made to the ConfigMap object to enable the feature.

Prerequisites

You have installed the OpenShift CLI (oc).

apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 prometheus:
 queryLogFile: <path> 1

$ oc -n openshift-user-workload-monitoring get pods

$ oc -n openshift-user-workload-monitoring exec prometheus-user-workload-0 -- cat
<path>

OpenShift Container Platform 4.13 Monitoring

80

1

2

You have access to the cluster as a user with the cluster-admin cluster role.

You have created the cluster-monitoring-config ConfigMap object.

Procedure

You can enable query logging for Thanos Querier in the openshift-monitoring project:

1. Edit the cluster-monitoring-config ConfigMap object in the openshift-monitoring project:

2. Add a thanosQuerier section under data/config.yaml and add values as shown in the following
example:

Set the value to true to enable logging and false to disable logging. The default value is
false.

Set the value to debug, info, warn, or error. If no value exists for logLevel, the log level
defaults to error.

3. Save the file to apply the changes. The pods affected by the new configuration are
automatically redeployed.

Verification

1. Verify that the Thanos Querier pods are running. The following sample command lists the status
of pods in the openshift-monitoring project:

2. Run a test query using the following sample commands as a model:

3. Run the following command to read the query log:

NOTE

$ oc -n openshift-monitoring edit configmap cluster-monitoring-config

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 thanosQuerier:
 enableRequestLogging: <value> 1
 logLevel: <value> 2

$ oc -n openshift-monitoring get pods

$ token=`oc create token prometheus-k8s -n openshift-monitoring`
$ oc -n openshift-monitoring exec -c prometheus prometheus-k8s-0 -- curl -k -H
"Authorization: Bearer $token" 'https://thanos-querier.openshift-
monitoring.svc:9091/api/v1/query?query=cluster_version'

$ oc -n openshift-monitoring logs <thanos_querier_pod_name> -c thanos-query

CHAPTER 5. CONFIGURING POD TOPOLOGY SPREAD CONSTRAINTS FOR MONITORING

81

1

NOTE

Because the thanos-querier pods are highly available (HA) pods, you might be
able to see logs in only one pod.

4. After you examine the logged query information, disable query logging by changing the
enableRequestLogging value to false in the config map.

Additional resources

See Preparing to configure the monitoring stack for steps to create monitoring config maps.

5.7. SETTING AUDIT LOG LEVELS FOR THE PROMETHEUS ADAPTER

In default platform monitoring, you can configure the audit log level for the Prometheus Adapter.

Prerequisites

You have installed the OpenShift CLI (oc).

You have access to the cluster as a user with the cluster-admin cluster role.

You have created the cluster-monitoring-config ConfigMap object.

Procedure

You can set an audit log level for the Prometheus Adapter in the default openshift-monitoring project:

1. Edit the cluster-monitoring-config ConfigMap object in the openshift-monitoring project:

2. Add profile: in the k8sPrometheusAdapter/audit section under data/config.yaml:

The audit log level to apply to the Prometheus Adapter.

3. Set the audit log level by using one of the following values for the profile: parameter:

None: Do not log events.

Metadata: Log only the metadata for the request, such as user, timestamp, and so forth. Do
not log the request text and the response text. Metadata is the default audit log level.

Request: Log only the metadata and the request text but not the response text. This option

$ oc -n openshift-monitoring edit configmap cluster-monitoring-config

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 k8sPrometheusAdapter:
 audit:
 profile: <audit_log_level> 1

OpenShift Container Platform 4.13 Monitoring

82

Request: Log only the metadata and the request text but not the response text. This option
does not apply for non-resource requests.

RequestResponse: Log event metadata, request text, and response text. This option does
not apply for non-resource requests.

4. Save the file to apply the changes. The pods affected by the new configuration are
automatically redeployed.

Verification

1. In the config map, under k8sPrometheusAdapter/audit/profile, set the log level to Request
and save the file.

2. Confirm that the pods for the Prometheus Adapter are running. The following example lists the
status of pods in the openshift-monitoring project:

3. Confirm that the audit log level and audit log file path are correctly configured:

Example output

4. Confirm that the correct log level has been applied in the prometheus-adapter deployment in
the openshift-monitoring project:

Example output

NOTE

If you enter an unrecognized profile value for the Prometheus Adapter in the
ConfigMap object, no changes are made to the Prometheus Adapter, and an
error is logged by the Cluster Monitoring Operator.

5. Review the audit log for the Prometheus Adapter:

$ oc -n openshift-monitoring get pods

$ oc -n openshift-monitoring get deploy prometheus-adapter -o yaml

...
 - --audit-policy-file=/etc/audit/request-profile.yaml
 - --audit-log-path=/var/log/adapter/audit.log

$ oc -n openshift-monitoring exec deploy/prometheus-adapter -c prometheus-adapter -- cat
/etc/audit/request-profile.yaml

"apiVersion": "audit.k8s.io/v1"
"kind": "Policy"
"metadata":
 "name": "Request"
"omitStages":
- "RequestReceived"
"rules":
- "level": "Request"

CHAPTER 5. CONFIGURING POD TOPOLOGY SPREAD CONSTRAINTS FOR MONITORING

83

Additional resources

See Preparing to configure the monitoring stack for steps to create monitoring config maps.

5.8. DISABLING THE LOCAL ALERTMANAGER

A local Alertmanager that routes alerts from Prometheus instances is enabled by default in the
openshift-monitoring project of the OpenShift Container Platform monitoring stack.

If you do not need the local Alertmanager, you can disable it by configuring the cluster-monitoring-
config config map in the openshift-monitoring project.

Prerequisites

You have access to the cluster as a user with the cluster-admin cluster role.

You have created the cluster-monitoring-config config map.

You have installed the OpenShift CLI (oc).

Procedure

1. Edit the cluster-monitoring-config config map in the openshift-monitoring project:

2. Add enabled: false for the alertmanagerMain component under data/config.yaml:

3. Save the file to apply the changes. The Alertmanager instance is disabled automatically when
you apply the change.

Additional resources

Prometheus Alertmanager documentation

xref:[Managing alerts]

$ oc -n openshift-monitoring exec -c <prometheus_adapter_pod_name> -- cat
/var/log/adapter/audit.log

$ oc -n openshift-monitoring edit configmap cluster-monitoring-config

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 alertmanagerMain:
 enabled: false

OpenShift Container Platform 4.13 Monitoring

84

https://prometheus.io/docs/alerting/latest/alertmanager/

CHAPTER 6. ENABLING MONITORING FOR USER-DEFINED
PROJECTS

In OpenShift Container Platform, you can enable monitoring for user-defined projects in addition to the
default platform monitoring. You can monitor your own projects in OpenShift Container Platform
without the need for an additional monitoring solution. Using this feature centralizes monitoring for core
platform components and user-defined projects.

NOTE

Versions of Prometheus Operator installed using Operator Lifecycle Manager (OLM) are
not compatible with user-defined monitoring. Therefore, custom Prometheus instances
installed as a Prometheus custom resource (CR) managed by the OLM Prometheus
Operator are not supported in OpenShift Container Platform.

6.1. ENABLING MONITORING FOR USER-DEFINED PROJECTS

Cluster administrators can enable monitoring for user-defined projects by setting the
enableUserWorkload: true field in the cluster monitoring ConfigMap object.

IMPORTANT

You must remove any custom Prometheus instances before enabling monitoring for
user-defined projects.

NOTE

You must have access to the cluster as a user with the cluster-admin cluster role to
enable monitoring for user-defined projects in OpenShift Container Platform. Cluster
administrators can then optionally grant users permission to configure the components
that are responsible for monitoring user-defined projects.

Prerequisites

You have access to the cluster as a user with the cluster-admin cluster role.

You have installed the OpenShift CLI (oc).

You have created the cluster-monitoring-config ConfigMap object.

You have optionally created and configured the user-workload-monitoring-config
ConfigMap object in the openshift-user-workload-monitoring project. You can add
configuration options to this ConfigMap object for the components that monitor user-defined
projects.

NOTE

Every time you save configuration changes to the user-workload-monitoring-
config ConfigMap object, the pods in the openshift-user-workload-monitoring
project are redeployed. It might sometimes take a while for these components to
redeploy.

Procedure

CHAPTER 6. ENABLING MONITORING FOR USER-DEFINED PROJECTS

85

1

1. Edit the cluster-monitoring-config ConfigMap object:

2. Add enableUserWorkload: true under data/config.yaml:

When set to true, the enableUserWorkload parameter enables monitoring for user-
defined projects in a cluster.

3. Save the file to apply the changes. Monitoring for user-defined projects is then enabled
automatically.

NOTE

If you enable monitoring for user-defined projects, the user-workload-
monitoring-config ConfigMap object is created by default.

4. Verify that the prometheus-operator, prometheus-user-workload, and thanos-ruler-user-
workload pods are running in the openshift-user-workload-monitoring project. It might take a
short while for the pods to start:

Example output

Additional resources

Creating a user-defined workload monitoring config map

Configuring the monitoring stack

Granting users permission to configure monitoring for user-defined projects

6.2. GRANTING USERS PERMISSION TO MONITOR USER-DEFINED
PROJECTS

$ oc -n openshift-monitoring edit configmap cluster-monitoring-config

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 enableUserWorkload: true 1

$ oc -n openshift-user-workload-monitoring get pod

NAME READY STATUS RESTARTS AGE
prometheus-operator-6f7b748d5b-t7nbg 2/2 Running 0 3h
prometheus-user-workload-0 4/4 Running 1 3h
prometheus-user-workload-1 4/4 Running 1 3h
thanos-ruler-user-workload-0 3/3 Running 0 3h
thanos-ruler-user-workload-1 3/3 Running 0 3h

OpenShift Container Platform 4.13 Monitoring

86

As a cluster administrator, you can monitor all core OpenShift Container Platform and user-defined
projects.

You can also grant developers and other users different permissions:

Monitoring user-defined projects

Configuring the components that monitor user-defined projects

Configuring alert routing for user-defined projects

Managing alerts and silences for user-defined projects

You can grant the permissions by assigning one of the following monitoring roles or cluster roles:

Table 6.1. Monitoring roles

Role name Description Project

user-workload-monitoring-
config-edit

Users with this role can edit the
user-workload-monitoring-
config ConfigMap object to
configure Prometheus,
Prometheus Operator,
Alertmanager, and Thanos Ruler
for user-defined workload
monitoring.

openshift-user-workload-
monitoring

monitoring-alertmanager-
api-reader

Users with this role have read
access to the user-defined
Alertmanager API for all projects,
if the user-defined Alertmanager
is enabled.

openshift-user-workload-
monitoring

monitoring-alertmanager-
api-writer

Users with this role have read and
write access to the user-defined
Alertmanager API for all projects,
if the user-defined Alertmanager
is enabled.

openshift-user-workload-
monitoring

Table 6.2. Monitoring cluster roles

Cluster role name Description Project

monitoring-rules-view Users with this cluster role have
read access to
PrometheusRule custom
resources (CRs) for user-defined
projects. They can also view the
alerts and silences in the
Developer perspective of the
OpenShift Container Platform
web console.

Can be bound with RoleBinding
to any user project.

CHAPTER 6. ENABLING MONITORING FOR USER-DEFINED PROJECTS

87

monitoring-rules-edit Users with this cluster role can
create, modify, and delete
PrometheusRule CRs for user-
defined projects. They can also
manage alerts and silences in the
Developer perspective of the
OpenShift Container Platform
web console.

Can be bound with RoleBinding
to any user project.

monitoring-edit Users with this cluster role have
the same privileges as users with
the monitoring-rules-edit
cluster role. Additionally, users
can create, read, modify, and
delete ServiceMonitor and
PodMonitor resources to scrape
metrics from services and pods.

Can be bound with RoleBinding
to any user project.

alert-routing-edit Users with this cluster role can
create, update, and delete
AlertmanagerConfig CRs for
user-defined projects.

Can be bound with RoleBinding
to any user project.

Cluster role name Description Project

6.2.1. Granting user permissions by using the web console

You can grant users permissions for the openshift-monitoring project or their own projects, by using
the OpenShift Container Platform web console.

Prerequisites

You have access to the cluster as a user with the cluster-admin cluster role.

The user account that you are assigning the role to already exists.

Procedure

1. In the Administrator perspective of the OpenShift Container Platform web console, go to User
Management → RoleBindings → Create binding.

2. In the Binding Type section, select the Namespace Role Binding type.

3. In the Name field, enter a name for the role binding.

4. In the Namespace field, select the project where you want to grant the access.

IMPORTANT

The monitoring role or cluster role permissions that you grant to a user by using
this procedure apply only to the project that you select in the Namespace field.

OpenShift Container Platform 4.13 Monitoring

88

1

1

5. Select a monitoring role or cluster role from the Role Name list.

6. In the Subject section, select User.

7. In the Subject Name field, enter the name of the user.

8. Select Create to apply the role binding.

6.2.2. Granting user permissions by using the CLI

You can grant users permissions for the openshift-monitoring project or their own projects, by using
the OpenShift CLI (oc).

IMPORTANT

Whichever role or cluster role you choose, you must bind it against a specific project as a
cluster administrator.

Prerequisites

You have access to the cluster as a user with the cluster-admin cluster role.

The user account that you are assigning the role to already exists.

You have installed the OpenShift CLI (oc).

Procedure

To assign a monitoring role to a user for a project, enter the following command:

Substitute <role> with the wanted monitoring role, <user> with the user to whom you want
to assign the role, and <namespace> with the project where you want to grant the access.

To assign a monitoring cluster role to a user for a project, enter the following command:

Substitute <cluster-role> with the wanted monitoring cluster role, <user> with the user to
whom you want to assign the cluster role, and <namespace> with the project where you
want to grant the access.

6.3. GRANTING USERS PERMISSION TO CONFIGURE MONITORING
FOR USER-DEFINED PROJECTS

As a cluster administrator, you can assign the user-workload-monitoring-config-edit role to a user.
This grants permission to configure and manage monitoring for user-defined projects without giving
them permission to configure and manage core OpenShift Container Platform monitoring components.

$ oc adm policy add-role-to-user <role> <user> -n <namespace> --role-namespace
<namespace> 1

$ oc adm policy add-cluster-role-to-user <cluster-role> <user> -n <namespace> 1

CHAPTER 6. ENABLING MONITORING FOR USER-DEFINED PROJECTS

89

1

Prerequisites

You have access to the cluster as a user with the cluster-admin cluster role.

The user account that you are assigning the role to already exists.

You have installed the OpenShift CLI (oc).

Procedure

1. Assign the user-workload-monitoring-config-edit role to a user in the openshift-user-
workload-monitoring project:

2. Verify that the user is correctly assigned to the user-workload-monitoring-config-edit role by
displaying the related role binding:

Example command

Example output

In this example, user1 is assigned to the user-workload-monitoring-config-edit role.

6.4. ACCESSING METRICS FROM OUTSIDE THE CLUSTER FOR
CUSTOM APPLICATIONS

You can query Prometheus metrics from outside the cluster when monitoring your own services with
user-defined projects. Access this data from outside the cluster by using the thanos-querier route.

This access only supports using a Bearer Token for authentication.

Prerequisites

You have deployed your own service, following the "Enabling monitoring for user-defined

$ oc -n openshift-user-workload-monitoring adm policy add-role-to-user \
 user-workload-monitoring-config-edit <user> \
 --role-namespace openshift-user-workload-monitoring

$ oc describe rolebinding <role_binding_name> -n openshift-user-workload-monitoring

$ oc describe rolebinding user-workload-monitoring-config-edit -n openshift-user-workload-
monitoring

Name: user-workload-monitoring-config-edit
Labels: <none>
Annotations: <none>
Role:
 Kind: Role
 Name: user-workload-monitoring-config-edit
Subjects:
 Kind Name Namespace
 ---- ---- ---------
 User user1 1

OpenShift Container Platform 4.13 Monitoring

90

You have deployed your own service, following the "Enabling monitoring for user-defined
projects" procedure.

You are logged in to an account with the cluster-monitoring-view cluster role, which provides
permission to access the Thanos Querier API.

You are logged in to an account that has permission to get the Thanos Querier API route.

NOTE

If your account does not have permission to get the Thanos Querier API route, a
cluster administrator can provide the URL for the route.

Procedure

1. Extract an authentication token to connect to Prometheus by running the following command:

2. Extract the thanos-querier API route URL by running the following command:

3. Set the namespace to the namespace in which your service is running by using the following
command:

4. Query the metrics of your own services in the command line by running the following command:

The output shows the status for each application pod that Prometheus is scraping:

Example output

Additional resources

Enabling monitoring for user-defined projects

6.5. EXCLUDING A USER-DEFINED PROJECT FROM MONITORING

Individual user-defined projects can be excluded from user workload monitoring. To do so, add the
openshift.io/user-monitoring label to the project’s namespace with a value of false.

Procedure

$ TOKEN=$(oc whoami -t)

$ HOST=$(oc -n openshift-monitoring get route thanos-querier -ojsonpath={.spec.host})

$ NAMESPACE=ns1

$ curl -H "Authorization: Bearer $TOKEN" -k "https://$HOST/api/v1/query?" --data-urlencode
"query=up{namespace='$NAMESPACE'}"

{"status":"success","data":{"resultType":"vector","result":[{"metric":
{"__name__":"up","endpoint":"web","instance":"10.129.0.46:8080","job":"prometheus-
example-app","namespace":"ns1","pod":"prometheus-example-app-68d47c4fb6-
jztp2","service":"prometheus-example-app"},"value":[1591881154.748,"1"]}]}}

CHAPTER 6. ENABLING MONITORING FOR USER-DEFINED PROJECTS

91

1. Add the label to the project namespace:

2. To re-enable monitoring, remove the label from the namespace:

NOTE

If there were any active monitoring targets for the project, it may take a few
minutes for Prometheus to stop scraping them after adding the label.

6.6. DISABLING MONITORING FOR USER-DEFINED PROJECTS

After enabling monitoring for user-defined projects, you can disable it again by setting
enableUserWorkload: false in the cluster monitoring ConfigMap object.

NOTE

Alternatively, you can remove enableUserWorkload: true to disable monitoring for user-
defined projects.

Procedure

1. Edit the cluster-monitoring-config ConfigMap object:

a. Set enableUserWorkload: to false under data/config.yaml:

2. Save the file to apply the changes. Monitoring for user-defined projects is then disabled
automatically.

3. Check that the prometheus-operator, prometheus-user-workload and thanos-ruler-user-
workload pods are terminated in the openshift-user-workload-monitoring project. This might
take a short while:

Example output

$ oc label namespace my-project 'openshift.io/user-monitoring=false'

$ oc label namespace my-project 'openshift.io/user-monitoring-'

$ oc -n openshift-monitoring edit configmap cluster-monitoring-config

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 enableUserWorkload: false

$ oc -n openshift-user-workload-monitoring get pod

No resources found in openshift-user-workload-monitoring project.

OpenShift Container Platform 4.13 Monitoring

92

NOTE

The user-workload-monitoring-config ConfigMap object in the openshift-user-
workload-monitoring project is not automatically deleted when monitoring for user-
defined projects is disabled. This is to preserve any custom configurations that you may
have created in the ConfigMap object.

CHAPTER 6. ENABLING MONITORING FOR USER-DEFINED PROJECTS

93

CHAPTER 7. ENABLING ALERT ROUTING FOR USER-DEFINED
PROJECTS

In OpenShift Container Platform 4.13, a cluster administrator can enable alert routing for user-defined
projects. This process consists of two general steps:

Enable alert routing for user-defined projects to use the default platform Alertmanager
instance or, optionally, a separate Alertmanager instance only for user-defined projects.

Grant users permission to configure alert routing for user-defined projects.

After you complete these steps, developers and other users can configure custom alerts and alert
routing for their user-defined projects.

7.1. UNDERSTANDING ALERT ROUTING FOR USER-DEFINED
PROJECTS

As a cluster administrator, you can enable alert routing for user-defined projects. With this feature, you
can allow users with the alert-routing-edit role to configure alert notification routing and receivers for
user-defined projects. These notifications are routed by the default Alertmanager instance or, if
enabled, an optional Alertmanager instance dedicated to user-defined monitoring.

Users can then create and configure user-defined alert routing by creating or editing the
AlertmanagerConfig objects for their user-defined projects without the help of an administrator.

After a user has defined alert routing for a user-defined project, user-defined alert notifications are
routed as follows:

To the alertmanager-main pods in the openshift-monitoring namespace if using the default
platform Alertmanager instance.

To the alertmanager-user-workload pods in the openshift-user-workload-monitoring
namespace if you have enabled a separate instance of Alertmanager for user-defined projects.

NOTE

The following are limitations of alert routing for user-defined projects:

For user-defined alerting rules, user-defined routing is scoped to the namespace
in which the resource is defined. For example, a routing configuration in
namespace ns1 only applies to PrometheusRules resources in the same
namespace.

When a namespace is excluded from user-defined monitoring,
AlertmanagerConfig resources in the namespace cease to be part of the
Alertmanager configuration.

7.2. ENABLING THE PLATFORM ALERTMANAGER INSTANCE FOR
USER-DEFINED ALERT ROUTING

You can allow users to create user-defined alert routing configurations that use the main platform
instance of Alertmanager.

Prerequisites

OpenShift Container Platform 4.13 Monitoring

94

1

Prerequisites

You have access to the cluster as a user with the cluster-admin cluster role.

You have installed the OpenShift CLI (oc).

Procedure

1. Edit the cluster-monitoring-config ConfigMap object:

2. Add enableUserAlertmanagerConfig: true in the alertmanagerMain section under
data/config.yaml:

Set the enableUserAlertmanagerConfig value to true to allow users to create user-
defined alert routing configurations that use the main platform instance of Alertmanager.

3. Save the file to apply the changes. The new configuration is applied automatically.

7.3. ENABLING A SEPARATE ALERTMANAGER INSTANCE FOR USER-
DEFINED ALERT ROUTING

In some clusters, you might want to deploy a dedicated Alertmanager instance for user-defined
projects, which can help reduce the load on the default platform Alertmanager instance and can better
separate user-defined alerts from default platform alerts. In these cases, you can optionally enable a
separate instance of Alertmanager to send alerts for user-defined projects only.

Prerequisites

You have access to the cluster as a user with the cluster-admin cluster role.

You have enabled monitoring for user-defined projects.

You have installed the OpenShift CLI (oc).

Procedure

1. Edit the user-workload-monitoring-config ConfigMap object:

2. Add enabled: true and enableAlertmanagerConfig: true in the alertmanager section under
data/config.yaml:

$ oc -n openshift-monitoring edit configmap cluster-monitoring-config

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 alertmanagerMain:
 enableUserAlertmanagerConfig: true 1

$ oc -n openshift-user-workload-monitoring edit configmap user-workload-monitoring-config

CHAPTER 7. ENABLING ALERT ROUTING FOR USER-DEFINED PROJECTS

95

1

2

Set the enabled value to true to enable a dedicated instance of the Alertmanager for
user-defined projects in a cluster. Set the value to false or omit the key entirely to disable
the Alertmanager for user-defined projects. If you set this value to false or if the key is
omitted, user-defined alerts are routed to the default platform Alertmanager instance.

Set the enableAlertmanagerConfig value to true to enable users to define their own alert
routing configurations with AlertmanagerConfig objects.

3. Save the file to apply the changes. The dedicated instance of Alertmanager for user-defined
projects starts automatically.

Verification

Verify that the user-workload Alertmanager instance has started:

Example output

7.4. GRANTING USERS PERMISSION TO CONFIGURE ALERT ROUTING
FOR USER-DEFINED PROJECTS

You can grant users permission to configure alert routing for user-defined projects.

Prerequisites

You have access to the cluster as a user with the cluster-admin cluster role.

You have enabled monitoring for user-defined projects.

The user account that you are assigning the role to already exists.

You have installed the OpenShift CLI (oc).

Procedure

Assign the alert-routing-edit cluster role to a user in the user-defined project:

apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 alertmanager:
 enabled: true 1
 enableAlertmanagerConfig: true 2

oc -n openshift-user-workload-monitoring get alertmanager

NAME VERSION REPLICAS AGE
user-workload 0.24.0 2 100s

OpenShift Container Platform 4.13 Monitoring

96

1 For <namespace>, substitute the namespace for the user-defined project, such as ns1.
For <user>, substitute the username for the account to which you want to assign the role.

Additional resources

Enabling monitoring for user defined projects

Creating alert routing for user-defined projects

$ oc -n <namespace> adm policy add-role-to-user alert-routing-edit <user> 1

CHAPTER 7. ENABLING ALERT ROUTING FOR USER-DEFINED PROJECTS

97

CHAPTER 8. MANAGING METRICS
You can collect metrics to monitor how cluster components and your own workloads are performing.

8.1. UNDERSTANDING METRICS

In OpenShift Container Platform 4.13, cluster components are monitored by scraping metrics exposed
through service endpoints. You can also configure metrics collection for user-defined projects. Metrics
enable you to monitor how cluster components and your own workloads are performing.

You can define the metrics that you want to provide for your own workloads by using Prometheus client
libraries at the application level.

In OpenShift Container Platform, metrics are exposed through an HTTP service endpoint under the
/metrics canonical name. You can list all available metrics for a service by running a curl query against
http://<endpoint>/metrics. For instance, you can expose a route to the prometheus-example-app
example application and then run the following to view all of its available metrics:

Example output

Additional resources

Prometheus client library documentation

8.2. SETTING UP METRICS COLLECTION FOR USER-DEFINED
PROJECTS

You can create a ServiceMonitor resource to scrape metrics from a service endpoint in a user-defined
project. This assumes that your application uses a Prometheus client library to expose metrics to the
/metrics canonical name.

This section describes how to deploy a sample service in a user-defined project and then create a
ServiceMonitor resource that defines how that service should be monitored.

8.2.1. Deploying a sample service

To test monitoring of a service in a user-defined project, you can deploy a sample service.

Procedure

1. Create a YAML file for the service configuration. In this example, it is called prometheus-
example-app.yaml.

$ curl http://<example_app_endpoint>/metrics

HELP http_requests_total Count of all HTTP requests
TYPE http_requests_total counter
http_requests_total{code="200",method="get"} 4
http_requests_total{code="404",method="get"} 2
HELP version Version information about this binary
TYPE version gauge
version{version="v0.1.0"} 1

OpenShift Container Platform 4.13 Monitoring

98

https://prometheus.io/docs/instrumenting/clientlibs/

2. Add the following deployment and service configuration details to the file:

This configuration deploys a service named prometheus-example-app in the user-defined ns1
project. This service exposes the custom version metric.

3. Apply the configuration to the cluster:

It takes some time to deploy the service.

4. You can check that the pod is running:

apiVersion: v1
kind: Namespace
metadata:
 name: ns1

apiVersion: apps/v1
kind: Deployment
metadata:
 labels:
 app: prometheus-example-app
 name: prometheus-example-app
 namespace: ns1
spec:
 replicas: 1
 selector:
 matchLabels:
 app: prometheus-example-app
 template:
 metadata:
 labels:
 app: prometheus-example-app
 spec:
 containers:
 - image: ghcr.io/rhobs/prometheus-example-app:0.4.2
 imagePullPolicy: IfNotPresent
 name: prometheus-example-app

apiVersion: v1
kind: Service
metadata:
 labels:
 app: prometheus-example-app
 name: prometheus-example-app
 namespace: ns1
spec:
 ports:
 - port: 8080
 protocol: TCP
 targetPort: 8080
 name: web
 selector:
 app: prometheus-example-app
 type: ClusterIP

$ oc apply -f prometheus-example-app.yaml

CHAPTER 8. MANAGING METRICS

99

Example output

8.2.2. Specifying how a service is monitored

To use the metrics exposed by your service, you must configure OpenShift Container Platform
monitoring to scrape metrics from the /metrics endpoint. You can do this using a ServiceMonitor
custom resource definition (CRD) that specifies how a service should be monitored, or a PodMonitor
CRD that specifies how a pod should be monitored. The former requires a Service object, while the
latter does not, allowing Prometheus to directly scrape metrics from the metrics endpoint exposed by a
pod.

This procedure shows you how to create a ServiceMonitor resource for a service in a user-defined
project.

Prerequisites

You have access to the cluster as a user with the cluster-admin cluster role or the monitoring-
edit cluster role.

You have enabled monitoring for user-defined projects.

For this example, you have deployed the prometheus-example-app sample service in the ns1
project.

NOTE

The prometheus-example-app sample service does not support TLS
authentication.

Procedure

1. Create a new YAML configuration file named example-app-service-monitor.yaml.

2. Add a ServiceMonitor resource to the YAML file. The following example creates a service
monitor named prometheus-example-monitor to scrape metrics exposed by the prometheus-
example-app service in the ns1 namespace:

$ oc -n ns1 get pod

NAME READY STATUS RESTARTS AGE
prometheus-example-app-7857545cb7-sbgwq 1/1 Running 0 81m

apiVersion: monitoring.coreos.com/v1
kind: ServiceMonitor
metadata:
 name: prometheus-example-monitor
 namespace: ns1 1
spec:
 endpoints:
 - interval: 30s
 port: web 2
 scheme: http

OpenShift Container Platform 4.13 Monitoring

100

1

2

3

Specify a user-defined namespace where your service runs.

Specify endpoint ports to be scraped by Prometheus.

Configure a selector to match your service based on its metadata labels.

NOTE

A ServiceMonitor resource in a user-defined namespace can only discover
services in the same namespace. That is, the namespaceSelector field of the
ServiceMonitor resource is always ignored.

3. Apply the configuration to the cluster:

It takes some time to deploy the ServiceMonitor resource.

4. Verify that the ServiceMonitor resource is running:

Example output

8.2.3. Example service endpoint authentication settings

You can configure authentication for service endpoints for user-defined project monitoring by using
ServiceMonitor and PodMonitor custom resource definitions (CRDs).

The following samples show different authentication settings for a ServiceMonitor resource. Each
sample shows how to configure a corresponding Secret object that contains authentication credentials
and other relevant settings.

8.2.3.1. Sample YAML authentication with a bearer token

The following sample shows bearer token settings for a Secret object named example-bearer-auth in
the ns1 namespace:

Example bearer token secret

 selector: 3
 matchLabels:
 app: prometheus-example-app

$ oc apply -f example-app-service-monitor.yaml

$ oc -n <namespace> get servicemonitor

NAME AGE
prometheus-example-monitor 81m

apiVersion: v1
kind: Secret
metadata:
 name: example-bearer-auth

CHAPTER 8. MANAGING METRICS

101

1

1

2

Specify an authentication token.

The following sample shows bearer token authentication settings for a ServiceMonitor CRD. The
example uses a Secret object named example-bearer-auth:

Example bearer token authentication settings

The key that contains the authentication token in the specified Secret object.

The name of the Secret object that contains the authentication credentials.

IMPORTANT

Do not use bearerTokenFile to configure bearer token. If you use the bearerTokenFile
configuration, the ServiceMonitor resource is rejected.

8.2.3.2. Sample YAML for Basic authentication

The following sample shows Basic authentication settings for a Secret object named example-basic-
auth in the ns1 namespace:

Example Basic authentication secret

 namespace: ns1
stringData:
 token: <authentication_token> 1

apiVersion: monitoring.coreos.com/v1
kind: ServiceMonitor
metadata:
 name: prometheus-example-monitor
 namespace: ns1
spec:
 endpoints:
 - authorization:
 credentials:
 key: token 1
 name: example-bearer-auth 2
 port: web
 selector:
 matchLabels:
 app: prometheus-example-app

apiVersion: v1
kind: Secret
metadata:
 name: example-basic-auth
 namespace: ns1
stringData:
 user: <basic_username> 1
 password: <basic_password> 2

OpenShift Container Platform 4.13 Monitoring

102

1

2

1

2 4

3

1

Specify a username for authentication.

Specify a password for authentication.

The following sample shows Basic authentication settings for a ServiceMonitor CRD. The example uses
a Secret object named example-basic-auth:

Example Basic authentication settings

The key that contains the username in the specified Secret object.

The name of the Secret object that contains the Basic authentication.

The key that contains the password in the specified Secret object.

8.2.3.3. Sample YAML authentication with OAuth 2.0

The following sample shows OAuth 2.0 settings for a Secret object named example-oauth2 in the ns1
namespace:

Example OAuth 2.0 secret

Specify an Oauth 2.0 ID.

apiVersion: monitoring.coreos.com/v1
kind: ServiceMonitor
metadata:
 name: prometheus-example-monitor
 namespace: ns1
spec:
 endpoints:
 - basicAuth:
 username:
 key: user 1
 name: example-basic-auth 2
 password:
 key: password 3
 name: example-basic-auth 4
 port: web
 selector:
 matchLabels:
 app: prometheus-example-app

apiVersion: v1
kind: Secret
metadata:
 name: example-oauth2
 namespace: ns1
stringData:
 id: <oauth2_id> 1
 secret: <oauth2_secret> 2

CHAPTER 8. MANAGING METRICS

103

2

1

2 4

3

5

Specify an Oauth 2.0 secret.

The following sample shows OAuth 2.0 authentication settings for a ServiceMonitor CRD. The example
uses a Secret object named example-oauth2:

Example OAuth 2.0 authentication settings

The key that contains the OAuth 2.0 ID in the specified Secret object.

The name of the Secret object that contains the OAuth 2.0 credentials.

The key that contains the OAuth 2.0 secret in the specified Secret object.

The URL used to fetch a token with the specified clientId and clientSecret.

Additional resources

Enabling monitoring for user-defined projects

How to scrape metrics using TLS in a ServiceMonitor configuration in a user-defined project

PodMonitor API

ServiceMonitor API

8.3. VIEWING A LIST OF AVAILABLE METRICS

As a cluster administrator or as a user with view permissions for all projects, you can view a list of metrics
available in a cluster and output the list in JSON format.

Prerequisites

You are a cluster administrator, or you have access to the cluster as a user with the cluster-

apiVersion: monitoring.coreos.com/v1
kind: ServiceMonitor
metadata:
 name: prometheus-example-monitor
 namespace: ns1
spec:
 endpoints:
 - oauth2:
 clientId:
 secret:
 key: id 1
 name: example-oauth2 2
 clientSecret:
 key: secret 3
 name: example-oauth2 4
 tokenUrl: https://example.com/oauth2/token 5
 port: web
 selector:
 matchLabels:
 app: prometheus-example-app

OpenShift Container Platform 4.13 Monitoring

104

https://access.redhat.com/articles/6675491
https://docs.redhat.com/en/documentation/openshift_container_platform/4.13/html-single/api_reference/#podmonitor-monitoring.coreos.com/v1
https://docs.redhat.com/en/documentation/openshift_container_platform/4.13/html-single/api_reference/#servicemonitor-monitoring.coreos.com/v1

1

You are a cluster administrator, or you have access to the cluster as a user with the cluster-
monitoring-view cluster role.

You have installed the OpenShift Container Platform CLI (oc).

You have obtained the OpenShift Container Platform API route for Thanos Querier.

You are able to get a bearer token by using the oc whoami -t command.

IMPORTANT

You can only use bearer token authentication to access the Thanos Querier API
route.

Procedure

1. If you have not obtained the OpenShift Container Platform API route for Thanos Querier, run
the following command:

2. Retrieve a list of metrics in JSON format from the Thanos Querier API route by running the
following command. This command uses oc to authenticate with a bearer token.

Replace <thanos_querier_route> with the OpenShift Container Platform API route for
Thanos Querier.

8.4. QUERYING METRICS

The OpenShift Container Platform monitoring dashboard enables you to run Prometheus Query
Language (PromQL) queries to examine metrics visualized on a plot. This functionality provides
information about the state of a cluster and any user-defined workloads that you are monitoring.

As a cluster administrator, you can query metrics for all core OpenShift Container Platform and user-
defined projects.

As a developer, you must specify a project name when querying metrics. You must have the required
privileges to view metrics for the selected project.

8.4.1. Querying metrics for all projects as a cluster administrator

As a cluster administrator or as a user with view permissions for all projects, you can access metrics for all
default OpenShift Container Platform and user-defined projects in the Metrics UI.

Prerequisites

You have access to the cluster as a user with the cluster-admin cluster role or with view
permissions for all projects.

You have installed the OpenShift CLI (oc).

$ oc get routes -n openshift-monitoring thanos-querier -o jsonpath='{.status.ingress[0].host}'

$ curl -k -H "Authorization: Bearer $(oc whoami -t)"
https://<thanos_querier_route>/api/v1/metadata 1

CHAPTER 8. MANAGING METRICS

105

Procedure

1. From the Administrator perspective in the OpenShift Container Platform web console, select
Observe → Metrics.

2. To add one or more queries, do any of the following:

Option Description

Create a custom query. Add your Prometheus Query Language
(PromQL) query to the Expression field.

As you type a PromQL expression,
autocomplete suggestions appear in a drop-
down list. These suggestions include functions,
metrics, labels, and time tokens. You can use the
keyboard arrows to select one of these
suggested items and then press Enter to add the
item to your expression. You can also move your
mouse pointer over a suggested item to view a
brief description of that item.

Add multiple queries. Select Add query.

Duplicate an existing query.

Select the Options menu next to the
query, then choose Duplicate query.

Disable a query from being run.

Select the Options menu next to the
query and choose Disable query.

3. To run queries that you created, select Run queries. The metrics from the queries are visualized
on the plot. If a query is invalid, the UI shows an error message.

NOTE

Queries that operate on large amounts of data might time out or overload the
browser when drawing time series graphs. To avoid this, select Hide graph and
calibrate your query using only the metrics table. Then, after finding a feasible
query, enable the plot to draw the graphs.

NOTE

By default, the query table shows an expanded view that lists every metric and its
current value. You can select ˅ to minimize the expanded view for a query.

4. Optional: The page URL now contains the queries you ran. To use this set of queries again in the
future, save this URL.

5. Explore the visualized metrics. Initially, all metrics from all enabled queries are shown on the plot.
You can select which metrics are shown by doing any of the following:

OpenShift Container Platform 4.13 Monitoring

106

Option Description

Hide all metrics from a query.

Click the Options menu for the query and
click Hide all series.

Hide a specific metric. Go to the query table and click the colored
square near the metric name.

Zoom into the plot and change the time range. Either:

Visually select the time range by clicking and
dragging on the plot horizontally.

Use the menu in the left upper corner to
select the time range.

Reset the time range. Select Reset zoom.

Display outputs for all queries at a specific point
in time.

Hold the mouse cursor on the plot at that point.
The query outputs will appear in a pop-up box.

Hide the plot. Select Hide graph.

Additional resources

For more information about creating PromQL queries, see the Prometheus query
documentation.

8.4.2. Querying metrics for user-defined projects as a developer

You can access metrics for a user-defined project as a developer or as a user with view permissions for
the project.

In the Developer perspective, the Metrics UI includes some predefined CPU, memory, bandwidth, and
network packet queries for the selected project. You can also run custom Prometheus Query Language
(PromQL) queries for CPU, memory, bandwidth, network packet and application metrics for the project.

NOTE

Developers can only use the Developer perspective and not the Administrator
perspective. As a developer, you can only query metrics for one project at a time.

Prerequisites

You have access to the cluster as a developer or as a user with view permissions for the project
that you are viewing metrics for.

You have enabled monitoring for user-defined projects.

You have deployed a service in a user-defined project.

CHAPTER 8. MANAGING METRICS

107

https://prometheus.io/docs/prometheus/latest/querying/basics/

You have created a ServiceMonitor custom resource definition (CRD) for the service to define
how the service is monitored.

Procedure

1. From the Developer perspective in the OpenShift Container Platform web console, select
Observe → Metrics.

2. Select the project that you want to view metrics for in the Project: list.

3. Select a query from the Select query list, or create a custom PromQL query based on the
selected query by selecting Show PromQL. The metrics from the queries are visualized on the
plot.

NOTE

In the Developer perspective, you can only run one query at a time.

4. Explore the visualized metrics by doing any of the following:

Option Description

Zoom into the plot and change the time range. Either:

Visually select the time range by clicking and
dragging on the plot horizontally.

Use the menu in the left upper corner to
select the time range.

Reset the time range. Select Reset zoom.

Display outputs for all queries at a specific point
in time.

Hold the mouse cursor on the plot at that point.
The query outputs appear in a pop-up box.

Additional resources

For more information about creating PromQL queries, see the Prometheus query
documentation.

8.5. GETTING DETAILED INFORMATION ABOUT A METRICS TARGET

In the Administrator perspective in the OpenShift Container Platform web console, you can use the
Metrics targets page to view, search, and filter the endpoints that are currently targeted for scraping,
which helps you to identify and troubleshoot problems. For example, you can view the current status of
targeted endpoints to see when OpenShift Container Platform Monitoring is not able to scrape metrics
from a targeted component.

The Metrics targets page shows targets for default OpenShift Container Platform projects and for
user-defined projects.

Prerequisites

You have access to the cluster as an administrator for the project for which you want to view

OpenShift Container Platform 4.13 Monitoring

108

https://prometheus.io/docs/prometheus/latest/querying/basics/

You have access to the cluster as an administrator for the project for which you want to view
metrics targets.

Procedure

1. In the Administrator perspective, select Observe → Targets. The Metrics targets page opens
with a list of all service endpoint targets that are being scraped for metrics.
This page shows details about targets for default OpenShift Container Platform and user-
defined projects. This page lists the following information for each target:

Service endpoint URL being scraped

ServiceMonitor component being monitored

The up or down status of the target

Namespace

Last scrape time

Duration of the last scrape

2. Optional: The list of metrics targets can be long. To find a specific target, do any of the
following:

Option Description

Filter the targets by status and source. Select filters in the Filter list.

The following filtering options are available:

Status filters:

Up. The target is currently up and being
actively scraped for metrics.

Down. The target is currently down and
not being scraped for metrics.

Source filters:

Platform. Platform-level targets relate
only to default Red Hat OpenShift
Service on AWS projects. These
projects provide core Red Hat
OpenShift Service on AWS
functionality.

User. User targets relate to user-
defined projects. These projects are
user-created and can be customized.

Search for a target by name or label. Enter a search term in the Text or Label field
next to the search box.

Sort the targets. Click one or more of the Endpoint Status,
Namespace, Last Scrape, and Scrape Duration
column headers.

CHAPTER 8. MANAGING METRICS

109

3. Click the URL in the Endpoint column for a target to navigate to its Target details page. This
page provides information about the target, including the following:

The endpoint URL being scraped for metrics

The current Up or Down status of the target

A link to the namespace

A link to the ServiceMonitor details

Labels attached to the target

The most recent time that the target was scraped for metrics

OpenShift Container Platform 4.13 Monitoring

110

CHAPTER 9. MANAGING ALERTS
In OpenShift Container Platform 4.13, the Alerting UI enables you to manage alerts, silences, and alerting
rules.

Alerting rules. Alerting rules contain a set of conditions that outline a particular state within a
cluster. Alerts are triggered when those conditions are true. An alerting rule can be assigned a
severity that defines how the alerts are routed.

Alerts. An alert is fired when the conditions defined in an alerting rule are true. Alerts provide a
notification that a set of circumstances are apparent within an OpenShift Container Platform
cluster.

Silences. A silence can be applied to an alert to prevent notifications from being sent when the
conditions for an alert are true. You can mute an alert after the initial notification, while you work
on resolving the underlying issue.

NOTE

The alerts, silences, and alerting rules that are available in the Alerting UI relate to the
projects that you have access to. For example, if you are logged in as a user with the
cluster-admin role, you can access all alerts, silences, and alerting rules.

9.1. ACCESSING THE ALERTING UI IN THE ADMINISTRATOR AND
DEVELOPER PERSPECTIVES

The Alerting UI is accessible through the Administrator perspective and the Developer perspective of
the OpenShift Container Platform web console.

In the Administrator perspective, go to Observe → Alerting. The three main pages in the
Alerting UI in this perspective are the Alerts, Silences, and Alerting rules pages.

In the Developer perspective, go to Observe → <project_name> → Alerts. In this perspective,
alerts, silences, and alerting rules are all managed from the Alerts page. The results shown in
the Alerts page are specific to the selected project.

NOTE

In the Developer perspective, you can select from core OpenShift Container Platform
and user-defined projects that you have access to in the Project: <project_name> list.
However, alerts, silences, and alerting rules relating to core OpenShift Container
Platform projects are not displayed if you are not logged in as a cluster administrator.

9.2. SEARCHING AND FILTERING ALERTS, SILENCES, AND ALERTING
RULES

You can filter the alerts, silences, and alerting rules that are displayed in the Alerting UI. This section
provides a description of each of the available filtering options.

Understanding alert filters
In the Administrator perspective, the Alerts page in the Alerting UI provides details about alerts
relating to default OpenShift Container Platform and user-defined projects. The page includes a
summary of severity, state, and source for each alert. The time at which an alert went into its current
state is also shown.

CHAPTER 9. MANAGING ALERTS

111

You can filter by alert state, severity, and source. By default, only Platform alerts that are Firing are
displayed. The following describes each alert filtering option:

State filters:

Firing. The alert is firing because the alert condition is true and the optional for duration
has passed. The alert continues to fire while the condition remains true.

Pending. The alert is active but is waiting for the duration that is specified in the alerting
rule before it fires.

Silenced. The alert is now silenced for a defined time period. Silences temporarily mute
alerts based on a set of label selectors that you define. Notifications are not sent for alerts
that match all the listed values or regular expressions.

Severity filters:

Critical. The condition that triggered the alert could have a critical impact. The alert
requires immediate attention when fired and is typically paged to an individual or to a critical
response team.

Warning. The alert provides a warning notification about something that might require
attention to prevent a problem from occurring. Warnings are typically routed to a ticketing
system for non-immediate review.

Info. The alert is provided for informational purposes only.

None. The alert has no defined severity.

You can also create custom severity definitions for alerts relating to user-defined projects.

Source filters:

Platform. Platform-level alerts relate only to default OpenShift Container Platform
projects. These projects provide core OpenShift Container Platform functionality.

User. User alerts relate to user-defined projects. These alerts are user-created and are
customizable. User-defined workload monitoring can be enabled postinstallation to provide
observability into your own workloads.

Understanding silence filters
In the Administrator perspective, the Silences page in the Alerting UI provides details about silences
applied to alerts in default OpenShift Container Platform and user-defined projects. The page includes
a summary of the state of each silence and the time at which a silence ends.

You can filter by silence state. By default, only Active and Pending silences are displayed. The following
describes each silence state filter option:

State filters:

Active. The silence is active and the alert will be muted until the silence is expired.

Pending. The silence has been scheduled and it is not yet active.

Expired. The silence has expired and notifications will be sent if the conditions for an alert
are true.

Understanding alerting rule filters

OpenShift Container Platform 4.13 Monitoring

112

In the Administrator perspective, the Alerting rules page in the Alerting UI provides details about
alerting rules relating to default OpenShift Container Platform and user-defined projects. The page
includes a summary of the state, severity, and source for each alerting rule.

You can filter alerting rules by alert state, severity, and source. By default, only Platform alerting rules
are displayed. The following describes each alerting rule filtering option:

Alert state filters:

Firing. The alert is firing because the alert condition is true and the optional for duration
has passed. The alert continues to fire while the condition remains true.

Pending. The alert is active but is waiting for the duration that is specified in the alerting
rule before it fires.

Silenced. The alert is now silenced for a defined time period. Silences temporarily mute
alerts based on a set of label selectors that you define. Notifications are not sent for alerts
that match all the listed values or regular expressions.

Not Firing. The alert is not firing.

Severity filters:

Critical. The conditions defined in the alerting rule could have a critical impact. When true,
these conditions require immediate attention. Alerts relating to the rule are typically paged
to an individual or to a critical response team.

Warning. The conditions defined in the alerting rule might require attention to prevent a
problem from occurring. Alerts relating to the rule are typically routed to a ticketing system
for non-immediate review.

Info. The alerting rule provides informational alerts only.

None. The alerting rule has no defined severity.

You can also create custom severity definitions for alerting rules relating to user-defined
projects.

Source filters:

Platform. Platform-level alerting rules relate only to default OpenShift Container Platform
projects. These projects provide core OpenShift Container Platform functionality.

User. User-defined workload alerting rules relate to user-defined projects. These alerting
rules are user-created and are customizable. User-defined workload monitoring can be
enabled postinstallation to provide observability into your own workloads.

Searching and filtering alerts, silences, and alerting rules in the Developer perspective
In the Developer perspective, the Alerts page in the Alerting UI provides a combined view of alerts and
silences relating to the selected project. A link to the governing alerting rule is provided for each
displayed alert.

In this view, you can filter by alert state and severity. By default, all alerts in the selected project are
displayed if you have permission to access the project. These filters are the same as those described for
the Administrator perspective.

9.3. GETTING INFORMATION ABOUT ALERTS, SILENCES, AND

CHAPTER 9. MANAGING ALERTS

113

9.3. GETTING INFORMATION ABOUT ALERTS, SILENCES, AND
ALERTING RULES

The Alerting UI provides detailed information about alerts and their governing alerting rules and silences.

Prerequisites

You have access to the cluster as a developer or as a user with view permissions for the project
that you are viewing alerts for.

Procedure

To obtain information about alerts in the Administrator perspective:

1. Open the OpenShift Container Platform web console and go to the Observe → Alerting →
Alerts page.

2. Optional: Search for alerts by name by using the Name field in the search list.

3. Optional: Filter alerts by state, severity, and source by selecting filters in the Filter list.

4. Optional: Sort the alerts by clicking one or more of the Name, Severity, State, and Source
column headers.

5. Click the name of an alert to view its Alert details page. The page includes a graph that
illustrates alert time series data. It also provides the following information about the alert:

A description of the alert

Messages associated with the alert

Labels attached to the alert

A link to its governing alerting rule

Silences for the alert, if any exist

To obtain information about silences in the Administrator perspective:

1. Go to the Observe → Alerting → Silences page.

2. Optional: Filter the silences by name using the Search by name field.

3. Optional: Filter silences by state by selecting filters in the Filter list. By default, Active and
Pending filters are applied.

4. Optional: Sort the silences by clicking one or more of the Name, Firing alerts, State, and
Creator column headers.

5. Select the name of a silence to view its Silence details page. The page includes the following
details:

Alert specification

Start time

End time

OpenShift Container Platform 4.13 Monitoring

114

Silence state

Number and list of firing alerts

To obtain information about alerting rules in the Administrator perspective:

1. Go to the Observe → Alerting → Alerting rules page.

2. Optional: Filter alerting rules by state, severity, and source by selecting filters in the Filter list.

3. Optional: Sort the alerting rules by clicking one or more of the Name, Severity, Alert state, and
Source column headers.

4. Select the name of an alerting rule to view its Alerting rule details page. The page provides the
following details about the alerting rule:

Alerting rule name, severity, and description.

The expression that defines the condition for firing the alert.

The time for which the condition should be true for an alert to fire.

A graph for each alert governed by the alerting rule, showing the value with which the alert is
firing.

A table of all alerts governed by the alerting rule.

To obtain information about alerts, silences, and alerting rules in the Developer perspective:

1. Go to the Observe → <project_name> → Alerts page.

2. View details for an alert, silence, or an alerting rule:

Alert details can be viewed by clicking a greater than symbol (>) next to an alert name and
then selecting the alert from the list.

Silence details can be viewed by clicking a silence in the Silenced by section of the Alert
details page. The Silence details page includes the following information:

Alert specification

Start time

End time

Silence state

Number and list of firing alerts

Alerting rule details can be viewed by clicking the menu next to an alert in the Alerts
page and then clicking View Alerting Rule.

NOTE

Only alerts, silences, and alerting rules relating to the selected project are displayed in the
Developer perspective.

CHAPTER 9. MANAGING ALERTS

115

Additional resources

See the Cluster Monitoring Operator runbooks to help diagnose and resolve issues that trigger
specific OpenShift Container Platform monitoring alerts.

9.4. MANAGING SILENCES

You can create a silence to stop receiving notifications about an alert when it is firing. It might be useful
to silence an alert after being first notified, while you resolve the underlying issue.

When creating a silence, you must specify whether it becomes active immediately or at a later time. You
must also set a duration period after which the silence expires.

You can view, edit, and expire existing silences.

NOTE

When you create silences, they are replicated across Alertmanager pods. However, if you
do not configure persistent storage for Alertmanager, silences might be lost. This can
happen, for example, if all Alertmanager pods restart at the same time.

Additional resources

Configuring persistent storage

9.4.1. Silencing alerts

You can either silence a specific alert or silence alerts that match a specification that you define.

Prerequisites

If you are a cluster administrator, you have access to the cluster as a user with the cluster-
admin role.

If you are a non-administrator user, you have access to the cluster as a user with the following
user roles:

The cluster-monitoring-view cluster role, which allows you to access Alertmanager.

The monitoring-alertmanager-edit role, which permits you to create and silence alerts in
the Administrator perspective in the web console.

The monitoring-rules-edit cluster role, which permits you to create and silence alerts in the
Developer perspective in the web console.

Procedure

To silence a specific alert:

In the Administrator perspective:

1. Navigate to the Observe → Alerting → Alerts page of the OpenShift Container Platform
web console.

OpenShift Container Platform 4.13 Monitoring

116

https://github.com/openshift/runbooks/tree/master/alerts/cluster-monitoring-operator

2. For the alert that you want to silence, select the in the right-hand column and select
Silence Alert. The Silence Alert form will appear with a pre-populated specification for the
chosen alert.

3. Optional: Modify the silence.

4. You must add a comment before creating the silence.

5. To create the silence, select Silence.

In the Developer perspective:

1. Navigate to the Observe → <project_name> → Alerts page in the OpenShift Container
Platform web console.

2. Expand the details for an alert by selecting greater than symbol (>) to the left of the alert
name. Select the name of the alert in the expanded view to open the Alert Details page for
the alert.

3. Select Silence Alert. The Silence Alert form will appear with a prepopulated specification
for the chosen alert.

4. Optional: Modify the silence.

5. You must add a comment before creating the silence.

6. To create the silence, select Silence.

To silence a set of alerts by creating an alert specification in the Administrator perspective:

1. Navigate to the Observe → Alerting → Silences page in the OpenShift Container Platform web
console.

2. Select Create Silence.

3. Set the schedule, duration, and label details for an alert in the Create Silence form. You must
also add a comment for the silence.

4. To create silences for alerts that match the label sectors that you entered in the previous step,
select Silence.

9.4.2. Editing silences

You can edit a silence, which will expire the existing silence and create a new one with the changed
configuration.

Procedure

To edit a silence in the Administrator perspective:

1. Navigate to the Observe → Alerting → Silences page.

2. For the silence you want to modify, select the in the last column and choose Edit silence.
Alternatively, you can select Actions → Edit Silence in the Silence Details page for a silence.

CHAPTER 9. MANAGING ALERTS

117

3. In the Edit Silence page, enter your changes and select Silence. This will expire the existing
silence and create one with the chosen configuration.

To edit a silence in the Developer perspective:

1. Navigate to the Observe → <project_name> → Alerts page.

2. Expand the details for an alert by selecting > to the left of the alert name. Select the name of
the alert in the expanded view to open the Alert Details page for the alert.

3. Select the name of a silence in the Silenced By section in that page to navigate to the Silence
Details page for the silence.

4. Select the name of a silence to navigate to its Silence Details page.

5. Select Actions → Edit Silence in the Silence Details page for a silence.

6. In the Edit Silence page, enter your changes and select Silence. This will expire the existing
silence and create one with the chosen configuration.

9.4.3. Expiring silences

You can expire a silence. Expiring a silence deactivates it forever.

NOTE

You cannot delete expired, silenced alerts. Expired silences older than 120 hours are
garbage collected.

Procedure

To expire a silence in the Administrator perspective:

1. Navigate to the Observe → Alerting → Silences page.

2. For the silence you want to modify, select the in the last column and choose Expire
silence.
Alternatively, you can select Actions → Expire Silence in the Silence Details page for a silence.

To expire a silence in the Developer perspective:

1. Navigate to the Observe → <project_name> → Alerts page.

2. Expand the details for an alert by selecting > to the left of the alert name. Select the name of
the alert in the expanded view to open the Alert Details page for the alert.

3. Select the name of a silence in the Silenced By section in that page to navigate to the Silence
Details page for the silence.

4. Select the name of a silence to navigate to its Silence Details page.

5. Select Actions → Expire Silence in the Silence Details page for a silence.

9.5. MANAGING ALERTING RULES FOR USER-DEFINED PROJECTS

OpenShift Container Platform 4.13 Monitoring

118

OpenShift Container Platform monitoring ships with a set of default alerting rules. As a cluster
administrator, you can view the default alerting rules.

In OpenShift Container Platform 4.13, you can create, view, edit, and remove alerting rules in user-
defined projects.

Alerting rule considerations

The default alerting rules are used specifically for the OpenShift Container Platform cluster.

Some alerting rules intentionally have identical names. They send alerts about the same event
with different thresholds, different severity, or both.

Inhibition rules prevent notifications for lower severity alerts that are firing when a higher
severity alert is also firing.

9.5.1. Optimizing alerting for user-defined projects

You can optimize alerting for your own projects by considering the following recommendations when
creating alerting rules:

Minimize the number of alerting rules that you create for your project. Create alerting rules
that notify you of conditions that impact you. It is more difficult to notice relevant alerts if you
generate many alerts for conditions that do not impact you.

Create alerting rules for symptoms instead of causes. Create alerting rules that notify you of
conditions regardless of the underlying cause. The cause can then be investigated. You will
need many more alerting rules if each relates only to a specific cause. Some causes are then
likely to be missed.

Plan before you write your alerting rules. Determine what symptoms are important to you and
what actions you want to take if they occur. Then build an alerting rule for each symptom.

Provide clear alert messaging. State the symptom and recommended actions in the alert
message.

Include severity levels in your alerting rules. The severity of an alert depends on how you need
to react if the reported symptom occurs. For example, a critical alert should be triggered if a
symptom requires immediate attention by an individual or a critical response team.

Additional resources

See the Prometheus alerting documentation for further guidelines on optimizing alerts

See Monitoring overview for details about OpenShift Container Platform 4.13 monitoring
architecture

9.5.2. About creating alerting rules for user-defined projects

If you create alerting rules for a user-defined project, consider the following key behaviors and
important limitations when you define the new rules:

A user-defined alerting rule can include metrics exposed by its own project in addition to the
default metrics from core platform monitoring. You cannot include metrics from another user-
defined project.

For example, an alerting rule for the ns1 user-defined project can use metrics exposed by the

CHAPTER 9. MANAGING ALERTS

119

https://prometheus.io/docs/practices/alerting/

For example, an alerting rule for the ns1 user-defined project can use metrics exposed by the
ns1 project in addition to core platform metrics, such as CPU and memory metrics. However,
the rule cannot include metrics from a different ns2 user-defined project.

To reduce latency and to minimize the load on core platform monitoring components, you can
add the openshift.io/prometheus-rule-evaluation-scope: leaf-prometheus label to a rule.
This label forces only the Prometheus instance deployed in the openshift-user-workload-
monitoring project to evaluate the alerting rule and prevents the Thanos Ruler instance from
doing so.

IMPORTANT

If an alerting rule has this label, your alerting rule can use only those metrics
exposed by your user-defined project. Alerting rules you create based on default
platform metrics might not trigger alerts.

9.5.3. Creating alerting rules for user-defined projects

You can create alerting rules for user-defined projects. Those alerting rules will trigger alerts based on
the values of the chosen metrics.

NOTE

When you create an alerting rule, a project label is enforced on it even if a rule
with the same name exists in another project.

To help users understand the impact and cause of the alert, ensure that your
alerting rule contains an alert message and severity value.

Prerequisites

You have enabled monitoring for user-defined projects.

You are logged in as a user that has the monitoring-rules-edit cluster role for the project where
you want to create an alerting rule.

You have installed the OpenShift CLI (oc).

Procedure

1. Create a YAML file for alerting rules. In this example, it is called example-app-alerting-
rule.yaml.

2. Add an alerting rule configuration to the YAML file. The following example creates a new
alerting rule named example-alert. The alerting rule fires an alert when the version metric
exposed by the sample service becomes 0:

apiVersion: monitoring.coreos.com/v1
kind: PrometheusRule
metadata:
 name: example-alert
 namespace: ns1
spec:
 groups:
 - name: example

OpenShift Container Platform 4.13 Monitoring

120

1

2

3

4

5

The name of the alerting rule you want to create.

The duration for which the condition should be true before an alert is fired.

The PromQL query expression that defines the new rule.

The severity that alerting rule assigns to the alert.

The message associated with the alert.

3. Apply the configuration file to the cluster:

Additional resources

See Monitoring overview for details about OpenShift Container Platform 4.13 monitoring
architecture.

9.5.4. Accessing alerting rules for user-defined projects

To list alerting rules for a user-defined project, you must have been assigned the monitoring-rules-
view cluster role for the project.

Prerequisites

You have enabled monitoring for user-defined projects.

You are logged in as a user that has the monitoring-rules-view cluster role for your project.

You have installed the OpenShift CLI (oc).

Procedure

1. To list alerting rules in <project>:

2. To list the configuration of an alerting rule, run the following:

9.5.5. Listing alerting rules for all projects in a single view

 rules:
 - alert: VersionAlert 1
 for: 1m 2
 expr: version{job="prometheus-example-app"} == 0 3
 labels:
 severity: warning 4
 annotations:
 message: This is an example alert. 5

$ oc apply -f example-app-alerting-rule.yaml

$ oc -n <project> get prometheusrule

$ oc -n <project> get prometheusrule <rule> -o yaml

CHAPTER 9. MANAGING ALERTS

121

As a cluster administrator, you can list alerting rules for core OpenShift Container Platform and user-
defined projects together in a single view.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

You have installed the OpenShift CLI (oc).

Procedure

1. In the Administrator perspective, navigate to Observe → Alerting → Alerting rules.

2. Select the Platform and User sources in the Filter drop-down menu.

NOTE

The Platform source is selected by default.

9.5.6. Removing alerting rules for user-defined projects

You can remove alerting rules for user-defined projects.

Prerequisites

You have enabled monitoring for user-defined projects.

You are logged in as a user that has the monitoring-rules-edit cluster role for the project where
you want to create an alerting rule.

You have installed the OpenShift CLI (oc).

Procedure

To remove rule <foo> in <namespace>, run the following:

Additional resources

See the Alertmanager documentation

9.6. MANAGING ALERTING RULES FOR CORE PLATFORM
MONITORING

IMPORTANT

$ oc -n <namespace> delete prometheusrule <foo>

OpenShift Container Platform 4.13 Monitoring

122

https://prometheus.io/docs/alerting/alertmanager/

IMPORTANT

Creating and modifying alerting rules for core platform monitoring is a Technology
Preview feature only. Technology Preview features are not supported with Red Hat
production service level agreements (SLAs) and might not be functionally complete. Red
Hat does not recommend using them in production. These features provide early access
to upcoming product features, enabling customers to test functionality and provide
feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

OpenShift Container Platform 4.13 monitoring ships with a large set of default alerting rules for platform
metrics. As a cluster administrator, you can customize this set of rules in two ways:

Modify the settings for existing platform alerting rules by adjusting thresholds or by adding and
modifying labels. For example, you can change the severity label for an alert from warning to
critical to help you route and triage issues flagged by an alert.

Define and add new custom alerting rules by constructing a query expression based on core
platform metrics in the openshift-monitoring namespace.

Core platform alerting rule considerations

New alerting rules must be based on the default OpenShift Container Platform monitoring
metrics.

You must create the AlertingRule and AlertRelabelConfig objects in the openshift-
monitoring namespace.

You can only add and modify alerting rules. You cannot create new recording rules or modify
existing recording rules.

If you modify existing platform alerting rules by using an AlertRelabelConfig object, your
modifications are not reflected in the Prometheus alerts API. Therefore, any dropped alerts still
appear in the OpenShift Container Platform web console even though they are no longer
forwarded to Alertmanager. Additionally, any modifications to alerts, such as a changed severity
label, do not appear in the web console.

9.6.1. Modifying core platform alerting rules

As a cluster administrator, you can modify core platform alerts before Alertmanager routes them to a
receiver. For example, you can change the severity label of an alert, add a custom label, or exclude an
alert from being sent to Alertmanager.

Prerequisites

You have access to the cluster as a user with the cluster-admin cluster role.

You have installed the OpenShift CLI (oc).

You have enabled Technology Preview features, and all nodes in the cluster are ready.

Procedure

CHAPTER 9. MANAGING ALERTS

123

https://access.redhat.com/support/offerings/techpreview/

1

2

3

4

5

6

1. Create a new YAML configuration file named example-modified-alerting-rule.yaml.

2. Add an AlertRelabelConfig resource to the YAML file. The following example modifies the
severity setting to critical for the default platform watchdog alerting rule:

Ensure that the namespace is openshift-monitoring.

The source labels for the values you want to modify.

The regular expression against which the value of sourceLabels is matched.

The target label of the value you want to modify.

The new value to replace the target label.

The relabel action that replaces the old value based on regex matching. The default action
is Replace. Other possible values are Keep, Drop, HashMod, LabelMap, LabelDrop, and
LabelKeep.

IMPORTANT

You must create the AlertRelabelConfig object in the openshift-monitoring
namespace. Otherwise, the alert label will not change.

3. Apply the configuration file to the cluster:

9.6.2. Creating new alerting rules

As a cluster administrator, you can create new alerting rules based on platform metrics. These alerting
rules trigger alerts based on the values of chosen metrics.

NOTE

If you create a customized AlertingRule resource based on an existing platform
alerting rule, silence the original alert to avoid receiving conflicting alerts.

To help users understand the impact and cause of the alert, ensure that your
alerting rule contains an alert message and severity value.

apiVersion: monitoring.openshift.io/v1alpha1
kind: AlertRelabelConfig
metadata:
 name: watchdog
 namespace: openshift-monitoring 1
spec:
 configs:
 - sourceLabels: [alertname,severity] 2
 regex: "Watchdog;none" 3
 targetLabel: severity 4
 replacement: critical 5
 action: Replace 6

$ oc apply -f example-modified-alerting-rule.yaml

OpenShift Container Platform 4.13 Monitoring

124

1

2

3

4

5

6

Prerequisites

You have access to the cluster as a user that has the cluster-admin cluster role.

You have installed the OpenShift CLI (oc).

You have enabled Technology Preview features, and all nodes in the cluster are ready.

Procedure

1. Create a new YAML configuration file named example-alerting-rule.yaml.

2. Add an AlertingRule resource to the YAML file. The following example creates a new alerting
rule named example, similar to the default Watchdog alert:

Ensure that the namespace is openshift-monitoring.

The name of the alerting rule you want to create.

The duration for which the condition should be true before an alert is fired.

The PromQL query expression that defines the new rule.

The severity that alerting rule assigns to the alert.

The message associated with the alert.

IMPORTANT

You must create the AlertingRule object in the openshift-monitoring
namespace. Otherwise, the alerting rule is not accepted.

3. Apply the configuration file to the cluster:

apiVersion: monitoring.openshift.io/v1alpha1
kind: AlertingRule
metadata:
 name: example
 namespace: openshift-monitoring 1
spec:
 groups:
 - name: example-rules
 rules:
 - alert: ExampleAlert 2
 for: 1m 3
 expr: vector(1) 4
 labels:
 severity: warning 5
 annotations:
 message: This is an example alert. 6

$ oc apply -f example-alerting-rule.yaml

CHAPTER 9. MANAGING ALERTS

125

Additional resources

See Monitoring overview for details about OpenShift Container Platform 4.13 monitoring
architecture.

See the Alertmanager documentation for information about alerting rules.

See the Prometheus relabeling documentation for information about how relabeling works.

See the Prometheus alerting documentation for further guidelines on optimizing alerts.

9.7. SENDING NOTIFICATIONS TO EXTERNAL SYSTEMS

In OpenShift Container Platform 4.13, firing alerts can be viewed in the Alerting UI. Alerts are not
configured by default to be sent to any notification systems. You can configure OpenShift Container
Platform to send alerts to the following receiver types:

PagerDuty

Webhook

Email

Slack

Routing alerts to receivers enables you to send timely notifications to the appropriate teams when
failures occur. For example, critical alerts require immediate attention and are typically paged to an
individual or a critical response team. Alerts that provide non-critical warning notifications might instead
be routed to a ticketing system for non-immediate review.

Checking that alerting is operational by using the watchdog alert

OpenShift Container Platform monitoring includes a watchdog alert that fires continuously.
Alertmanager repeatedly sends watchdog alert notifications to configured notification providers. The
provider is usually configured to notify an administrator when it stops receiving the watchdog alert. This
mechanism helps you quickly identify any communication issues between Alertmanager and the
notification provider.

9.7.1. Configuring alert receivers

You can configure alert receivers to ensure that you learn about important issues with your cluster.

Prerequisites

You have access to the cluster as a user with the cluster-admin cluster role.

Procedure

1. In the Administrator perspective, go to Administration → Cluster Settings → Configuration
→ Alertmanager.

NOTE

OpenShift Container Platform 4.13 Monitoring

126

https://prometheus.io/docs/alerting/alertmanager/
https://prometheus.io/docs/prometheus/latest/configuration/configuration/#relabel_config
https://prometheus.io/docs/practices/alerting/

NOTE

Alternatively, you can go to the same page through the notification drawer.
Select the bell icon at the top right of the OpenShift Container Platform web
console and choose Configure in the AlertmanagerReceiverNotConfigured
alert.

2. Click Create Receiver in the Receivers section of the page.

3. In the Create Receiver form, add a Receiver name and choose a Receiver type from the list.

4. Edit the receiver configuration:

For PagerDuty receivers:

a. Choose an integration type and add a PagerDuty integration key.

b. Add the URL of your PagerDuty installation.

c. Click Show advanced configuration if you want to edit the client and incident details or
the severity specification.

For webhook receivers:

a. Add the endpoint to send HTTP POST requests to.

b. Click Show advanced configuration if you want to edit the default option to send
resolved alerts to the receiver.

For email receivers:

a. Add the email address to send notifications to.

b. Add SMTP configuration details, including the address to send notifications from, the
smarthost and port number used for sending emails, the hostname of the SMTP server,
and authentication details.

c. Select whether TLS is required.

d. Click Show advanced configuration if you want to edit the default option not to send
resolved alerts to the receiver or edit the body of email notifications configuration.

For Slack receivers:

a. Add the URL of the Slack webhook.

b. Add the Slack channel or user name to send notifications to.

c. Select Show advanced configuration if you want to edit the default option not to send
resolved alerts to the receiver or edit the icon and username configuration. You can
also choose whether to find and link channel names and usernames.

5. By default, firing alerts with labels that match all of the selectors are sent to the receiver. If you
want label values for firing alerts to be matched exactly before they are sent to the receiver,
perform the following steps:

a. Add routing label names and values in the Routing labels section of the form.

CHAPTER 9. MANAGING ALERTS

127

b. Select Regular expression if want to use a regular expression.

c. Click Add label to add further routing labels.

6. Click Create to create the receiver.

9.7.2. Configuring different alert receivers for default platform alerts and user-
defined alerts

You can configure different alert receivers for default platform alerts and user-defined alerts to ensure
the following results:

All default platform alerts are sent to a receiver owned by the team in charge of these alerts.

All user-defined alerts are sent to another receiver so that the team can focus only on platform
alerts.

You can achieve this by using the openshift_io_alert_source="platform" label that is added by the
Cluster Monitoring Operator to all platform alerts:

Use the openshift_io_alert_source="platform" matcher to match default platform alerts.

Use the openshift_io_alert_source!="platform" or 'openshift_io_alert_source=""' matcher
to match user-defined alerts.

NOTE

This configuration does not apply if you have enabled a separate instance of
Alertmanager dedicated to user-defined alerts.

9.7.3. Creating alert routing for user-defined projects

If you are a non-administrator user who has been given the alert-routing-edit cluster role, you can
create or edit alert routing for user-defined projects.

Prerequisites

A cluster administrator has enabled monitoring for user-defined projects.

A cluster administrator has enabled alert routing for user-defined projects.

You are logged in as a user that has the alert-routing-edit cluster role for the project for which
you want to create alert routing.

You have installed the OpenShift CLI (oc).

Procedure

1. Create a YAML file for alert routing. The example in this procedure uses a file called example-
app-alert-routing.yaml.

2. Add an AlertmanagerConfig YAML definition to the file. For example:

apiVersion: monitoring.coreos.com/v1beta1
kind: AlertmanagerConfig

OpenShift Container Platform 4.13 Monitoring

128

NOTE

For user-defined alerting rules, user-defined routing is scoped to the namespace
in which the resource is defined. For example, a routing configuration defined in
the AlertmanagerConfig object for namespace ns1 only applies to
PrometheusRules resources in the same namespace.

3. Save the file.

4. Apply the resource to the cluster:

The configuration is automatically applied to the Alertmanager pods.

9.8. CONFIGURING ALERTMANAGER TO SEND NOTIFICATIONS

You can configure Alertmanager to send notifications by editing the alertmanager-main secret for
default platform alerts or alertmanager-user-workload secret for user-defined alerts.

NOTE

All features of a supported version of upstream Alertmanager are also supported in an
OpenShift Alertmanager configuration. To check all the configuration options of a
supported version of upstream Alertmanager, see Alertmanager configuration.

9.8.1. Configuring notifications for default platform alerts

You can configure Alertmanager to send notifications. Customize where and how Alertmanager sends
notifications about default platform alerts by editing the default configuration in the alertmanager-
main secret in the openshift-monitoring namespace.

IMPORTANT

Alertmanager does not send notifications by default. It is recommended to configure
Alertmanager to receive notifications by setting up notifications details in the
alertmanager-main secret configuration file.

Prerequisites

You have access to the cluster as a user with the cluster-admin cluster role.

metadata:
 name: example-routing
 namespace: ns1
spec:
 route:
 receiver: default
 groupBy: [job]
 receivers:
 - name: default
 webhookConfigs:
 - url: https://example.org/post

$ oc apply -f example-app-alert-routing.yaml

CHAPTER 9. MANAGING ALERTS

129

https://prometheus.io/docs/alerting/0.25/configuration/

1

2

3

Procedure

1. Open the Alertmanager YAML configuration file:

To open the Alertmanager configuration from the CLI:

a. Print the currently active Alertmanager configuration from the alertmanager-main
secret into alertmanager.yaml file:

b. Open the alertmanager.yaml file.

To open the Alertmanager configuration from the OpenShift Container Platform web
console:

a. Go to the Administration → Cluster Settings → Configuration → Alertmanager →
YAML page of the web console.

2. Edit the Alertmanager configuration by updating parameters in the YAML:

Specify how long Alertmanager waits while collecting initial alerts for a group of alerts
before sending a notification.

Specify how much time must elapse before Alertmanager sends a notification about new
alerts added to a group of alerts for which an initial notification was already sent.

Specify the minimum amount of time that must pass before an alert notification is
repeated. If you want a notification to repeat at each group interval, set the
repeat_interval value to less than the group_interval value. The repeated notification can
still be delayed, for example, when certain Alertmanager pods are restarted or rescheduled.

$ oc -n openshift-monitoring get secret alertmanager-main --template='{{ index .data
"alertmanager.yaml" }}' | base64 --decode > alertmanager.yaml

global:
 resolve_timeout: 5m
route:
 group_wait: 30s 1
 group_interval: 5m 2
 repeat_interval: 12h 3
 receiver: default
 routes:
 - matchers:
 - "alertname=Watchdog"
 repeat_interval: 2m
 receiver: watchdog
 - matchers:
 - "service=<your_service>" 4
 routes:
 - matchers:
 - <your_matching_rules> 5
 receiver: <receiver> 6
receivers:
- name: default
- name: watchdog
- name: <receiver>
 <receiver_configuration> 7

OpenShift Container Platform 4.13 Monitoring

130

4

5

6

7

Specify the name of the service that fires the alerts.

Specify labels to match your alerts.

Specify the name of the receiver to use for the alerts.

Specify the receiver configuration.

IMPORTANT

Use the matchers key name to indicate the matchers that an alert has to
fulfill to match the node. Do not use the match or match_re key names,
which are both deprecated and planned for removal in a future release.

If you define inhibition rules, use the following key names:

target_matchers: to indicate the target matchers

source_matchers: to indicate the source matchers

Do not use the target_match, target_match_re, source_match, or
source_match_re key names, which are deprecated and planned for
removal in a future release.

The following Alertmanager configuration example configures PagerDuty as an alert receiver:

With this configuration, alerts of critical severity that are fired by the example-app service are
sent through the team-frontend-page receiver. Typically, these types of alerts would be paged
to an individual or a critical response team.

global:
 resolve_timeout: 5m
route:
 group_wait: 30s
 group_interval: 5m
 repeat_interval: 12h
 receiver: default
 routes:
 - matchers:
 - "alertname=Watchdog"
 repeat_interval: 2m
 receiver: watchdog
 - matchers:
 - "service=example-app"
 routes:
 - matchers:
 - "severity=critical"
 receiver: team-frontend-page
receivers:
- name: default
- name: watchdog
- name: team-frontend-page
 pagerduty_configs:
 - service_key: "<your_key>"

CHAPTER 9. MANAGING ALERTS

131

1

2

3

3. Apply the new configuration in the file:

To apply the changes from the CLI, run the following command:

To apply the changes from the OpenShift Container Platform web console, click Save.

9.8.2. Configuring notifications for user-defined alerts

If you have enabled a separate instance of Alertmanager that is dedicated to user-defined alert routing,
you can customize where and how the instance sends notifications by editing the alertmanager-user-
workload secret in the openshift-user-workload-monitoring namespace.

Prerequisites

You have access to the cluster as a user with the cluster-admin cluster role.

You have installed the OpenShift CLI (oc).

Procedure

1. Print the currently active Alertmanager configuration into the file alertmanager.yaml:

2. Edit the configuration in alertmanager.yaml:

Specify labels to match your alerts. This example targets all alerts that have the
service="prometheus-example-monitor" label.

Specify the name of the receiver to use for the alerts group.

Specify the receiver configuration.

3. Apply the new configuration in the file:

$ oc -n openshift-monitoring create secret generic alertmanager-main --from-
file=alertmanager.yaml --dry-run=client -o=yaml | oc -n openshift-monitoring replace
secret --filename=-

$ oc -n openshift-user-workload-monitoring get secret alertmanager-user-workload --
template='{{ index .data "alertmanager.yaml" }}' | base64 --decode > alertmanager.yaml

route:
 receiver: Default
 group_by:
 - name: Default
 routes:
 - matchers:
 - "service = prometheus-example-monitor" 1
 receiver: <receiver> 2
receivers:
- name: Default
- name: <receiver>
 <receiver_configuration> 3

OpenShift Container Platform 4.13 Monitoring

132

9.9. ADDITIONAL RESOURCES

PagerDuty official site

PagerDuty Prometheus Integration Guide

Support version matrix for monitoring components

Enabling alert routing for user-defined projects

$ oc -n openshift-user-workload-monitoring create secret generic alertmanager-user-
workload --from-file=alertmanager.yaml --dry-run=client -o=yaml | oc -n openshift-user-
workload-monitoring replace secret --filename=-

CHAPTER 9. MANAGING ALERTS

133

https://www.pagerduty.com/
https://www.pagerduty.com/docs/guides/prometheus-integration-guide/

CHAPTER 10. REVIEWING MONITORING DASHBOARDS
OpenShift Container Platform 4.13 provides a comprehensive set of monitoring dashboards that help
you understand the state of cluster components and user-defined workloads.

Use the Administrator perspective to access dashboards for the core OpenShift Container Platform
components, including the following items:

API performance

etcd

Kubernetes compute resources

Kubernetes network resources

Prometheus

USE method dashboards relating to cluster and node performance

Figure 10.1. Example dashboard in the Administrator perspective

Use the Developer perspective to access Kubernetes compute resources dashboards that provide the
following application metrics for a selected project:

CPU usage

Memory usage

Bandwidth information

Packet rate information

Figure 10.2. Example dashboard in the Developer perspective

OpenShift Container Platform 4.13 Monitoring

134

Figure 10.2. Example dashboard in the Developer perspective

NOTE

In the Developer perspective, you can view dashboards for only one project at a time.

10.1. REVIEWING MONITORING DASHBOARDS AS A CLUSTER
ADMINISTRATOR

In the Administrator perspective, you can view dashboards relating to core OpenShift Container
Platform cluster components.

Prerequisites

You have access to the cluster as a user with the cluster-admin cluster role.

Procedure

1. In the Administrator perspective in the OpenShift Container Platform web console, navigate to
Observe → Dashboards.

2. Choose a dashboard in the Dashboard list. Some dashboards, such as etcd and Prometheus
dashboards, produce additional sub-menus when selected.

3. Optional: Select a time range for the graphs in the Time Range list.

Select a pre-defined time period.

Set a custom time range by selecting Custom time range in the Time Range list.

CHAPTER 10. REVIEWING MONITORING DASHBOARDS

135

a. Input or select the From and To dates and times.

b. Click Save to save the custom time range.

4. Optional: Select a Refresh Interval.

5. Hover over each of the graphs within a dashboard to display detailed information about specific
items.

10.2. REVIEWING MONITORING DASHBOARDS AS A DEVELOPER

In the Developer perspective, you can view dashboards relating to a selected project. You must have
access to monitor a project to view dashboard information for it.

Prerequisites

You have access to the cluster as a developer or as a user.

You have view permissions for the project that you are viewing the dashboard for.

Procedure

1. In the Developer perspective in the OpenShift Container Platform web console, navigate to
Observe → Dashboard.

2. Select a project from the Project: drop-down list.

3. Select a dashboard from the Dashboard drop-down list to see the filtered metrics.

NOTE

All dashboards produce additional sub-menus when selected, except
Kubernetes / Compute Resources / Namespace (Pods).

4. Optional: Select a time range for the graphs in the Time Range list.

Select a pre-defined time period.

Set a custom time range by selecting Custom time range in the Time Range list.

a. Input or select the From and To dates and times.

b. Click Save to save the custom time range.

5. Optional: Select a Refresh Interval.

6. Hover over each of the graphs within a dashboard to display detailed information about specific
items.

Additional resources

Monitoring project and application metrics using the Developer perspective

OpenShift Container Platform 4.13 Monitoring

136

https://docs.redhat.com/en/documentation/openshift_container_platform/4.13/html-single/building_applications/#monitoring-project-and-application-metrics-using-developer-perspective

CHAPTER 11. ACCESSING MONITORING APIS BY USING THE
CLI

In OpenShift Container Platform 4.13, you can access web service APIs for some monitoring
components from the command line interface (CLI).

IMPORTANT

In certain situations, accessing API endpoints can degrade the performance and
scalability of your cluster, especially if you use endpoints to retrieve, send, or query large
amounts of metrics data.

To avoid these issues, follow these recommendations:

Avoid querying endpoints frequently. Limit queries to a maximum of one every
30 seconds.

Do not try to retrieve all metrics data via the /federate endpoint for Prometheus.
Query it only when you want to retrieve a limited, aggregated data set. For
example, retrieving fewer than 1,000 samples for each request helps minimize
the risk of performance degradation.

11.1. ABOUT ACCESSING MONITORING WEB SERVICE APIS

You can directly access web service API endpoints from the command line for the following monitoring
stack components:

Prometheus

Alertmanager

Thanos Ruler

Thanos Querier

NOTE

To access Thanos Ruler and Thanos Querier service APIs, the requesting account must
have get permission on the namespaces resource, which can be granted by binding the
cluster-monitoring-view cluster role to the account.

When you access web service API endpoints for monitoring components, be aware of the following
limitations:

You can only use Bearer Token authentication to access API endpoints.

You can only access endpoints in the /api path for a route. If you try to access an API endpoint
in a web browser, an Application is not available error occurs. To access monitoring features in
a web browser, use the OpenShift Container Platform web console to review monitoring
dashboards.

Additional resources

Reviewing monitoring dashboards

CHAPTER 11. ACCESSING MONITORING APIS BY USING THE CLI

137

11.2. ACCESSING A MONITORING WEB SERVICE API

The following example shows how to query the service API receivers for the Alertmanager service used
in core platform monitoring. You can use a similar method to access the prometheus-k8s service for
core platform Prometheus and the thanos-ruler service for Thanos Ruler.

Prerequisites

You are logged in to an account that is bound against the monitoring-alertmanager-edit role in
the openshift-monitoring namespace.

You are logged in to an account that has permission to get the Alertmanager API route.

NOTE

If your account does not have permission to get the Alertmanager API route, a
cluster administrator can provide the URL for the route.

Procedure

1. Extract an authentication token by running the following command:

2. Extract the alertmanager-main API route URL by running the following command:

3. Query the service API receivers for Alertmanager by running the following command:

11.3. QUERYING METRICS BY USING THE FEDERATION ENDPOINT
FOR PROMETHEUS

You can use the federation endpoint for Prometheus to scrape platform and user-defined metrics from
a network location outside the cluster. To do so, access the Prometheus /federate endpoint for the
cluster via an OpenShift Container Platform route.

IMPORTANT

$ TOKEN=$(oc whoami -t)

$ HOST=$(oc -n openshift-monitoring get route alertmanager-main -ojsonpath={.spec.host})

$ curl -H "Authorization: Bearer $TOKEN" -k "https://$HOST/api/v2/receivers"

OpenShift Container Platform 4.13 Monitoring

138

IMPORTANT

A delay in retrieving metrics data occurs when you use federation. This delay can affect
the accuracy and timeliness of the scraped metrics.

Using the federation endpoint can also degrade the performance and scalability of your
cluster, especially if you use the federation endpoint to retrieve large amounts of metrics
data. To avoid these issues, follow these recommendations:

Do not try to retrieve all metrics data via the federation endpoint for
Prometheus. Query it only when you want to retrieve a limited, aggregated data
set. For example, retrieving fewer than 1,000 samples for each request helps
minimize the risk of performance degradation.

Avoid frequent querying of the federation endpoint for Prometheus. Limit
queries to a maximum of one every 30 seconds.

If you need to forward large amounts of data outside the cluster, use remote write
instead. For more information, see the Configuring remote write storage section.

Prerequisites

You have installed the OpenShift CLI (oc).

You have access to the cluster as a user with the cluster-monitoring-view cluster role or have
obtained a bearer token with get permission on the namespaces resource.

NOTE

You can only use bearer token authentication to access the Prometheus
federation endpoint.

You are logged in to an account that has permission to get the Prometheus federation route.

NOTE

If your account does not have permission to get the Prometheus federation
route, a cluster administrator can provide the URL for the route.

Procedure

1. Retrieve the bearer token by running the following the command:

2. Get the Prometheus federation route URL by running the following command:

3. Query metrics from the /federate route. The following example command queries up metrics:

$ TOKEN=$(oc whoami -t)

$ HOST=$(oc -n openshift-monitoring get route prometheus-k8s-federate -ojsonpath=
{.spec.host})

$ curl -G -k -H "Authorization: Bearer $TOKEN" https://$HOST/federate --data-urlencode
'match[]=up'

CHAPTER 11. ACCESSING MONITORING APIS BY USING THE CLI

139

Example output

11.4. ACCESSING METRICS FROM OUTSIDE THE CLUSTER FOR
CUSTOM APPLICATIONS

You can query Prometheus metrics from outside the cluster when monitoring your own services with
user-defined projects. Access this data from outside the cluster by using the thanos-querier route.

This access only supports using a Bearer Token for authentication.

Prerequisites

You have deployed your own service, following the "Enabling monitoring for user-defined
projects" procedure.

You are logged in to an account with the cluster-monitoring-view cluster role, which provides
permission to access the Thanos Querier API.

You are logged in to an account that has permission to get the Thanos Querier API route.

NOTE

If your account does not have permission to get the Thanos Querier API route, a
cluster administrator can provide the URL for the route.

Procedure

1. Extract an authentication token to connect to Prometheus by running the following command:

2. Extract the thanos-querier API route URL by running the following command:

3. Set the namespace to the namespace in which your service is running by using the following
command:

TYPE up untyped
up{apiserver="kube-
apiserver",endpoint="https",instance="10.0.143.148:6443",job="apiserver",namespace="default
",service="kubernetes",prometheus="openshift-
monitoring/k8s",prometheus_replica="prometheus-k8s-0"} 1 1657035322214
up{apiserver="kube-
apiserver",endpoint="https",instance="10.0.148.166:6443",job="apiserver",namespace="default
",service="kubernetes",prometheus="openshift-
monitoring/k8s",prometheus_replica="prometheus-k8s-0"} 1 1657035338597
up{apiserver="kube-
apiserver",endpoint="https",instance="10.0.173.16:6443",job="apiserver",namespace="default",
service="kubernetes",prometheus="openshift-
monitoring/k8s",prometheus_replica="prometheus-k8s-0"} 1 1657035343834
...

$ TOKEN=$(oc whoami -t)

$ HOST=$(oc -n openshift-monitoring get route thanos-querier -ojsonpath={.spec.host})

OpenShift Container Platform 4.13 Monitoring

140

4. Query the metrics of your own services in the command line by running the following command:

The output shows the status for each application pod that Prometheus is scraping:

Example output

11.5. ADDITIONAL RESOURCES

Enabling monitoring for user-defined projects

Configuring remote write storage

Managing metrics

Managing alerts

$ NAMESPACE=ns1

$ curl -H "Authorization: Bearer $TOKEN" -k "https://$HOST/api/v1/query?" --data-urlencode
"query=up{namespace='$NAMESPACE'}"

{"status":"success","data":{"resultType":"vector","result":[{"metric":
{"__name__":"up","endpoint":"web","instance":"10.129.0.46:8080","job":"prometheus-
example-app","namespace":"ns1","pod":"prometheus-example-app-68d47c4fb6-
jztp2","service":"prometheus-example-app"},"value":[1591881154.748,"1"]}]}}

CHAPTER 11. ACCESSING MONITORING APIS BY USING THE CLI

141

CHAPTER 12. TROUBLESHOOTING MONITORING ISSUES
Find troubleshooting steps for common issues with core platform and user-defined project monitoring.

12.1. INVESTIGATING WHY USER-DEFINED PROJECT METRICS ARE
UNAVAILABLE

ServiceMonitor resources enable you to determine how to use the metrics exposed by a service in user-
defined projects. Follow the steps outlined in this procedure if you have created a ServiceMonitor
resource but cannot see any corresponding metrics in the Metrics UI.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

You have installed the OpenShift CLI (oc).

You have enabled and configured monitoring for user-defined projects.

You have created a ServiceMonitor resource.

Procedure

1. Check that the corresponding labels match in the service and ServiceMonitor resource
configurations.

a. Obtain the label defined in the service. The following example queries the prometheus-
example-app service in the ns1 project:

Example output

b. Check that the matchLabels definition in the ServiceMonitor resource configuration
matches the label output in the preceding step. The following example queries the
prometheus-example-monitor service monitor in the ns1 project:

Example output

$ oc -n ns1 get service prometheus-example-app -o yaml

 labels:
 app: prometheus-example-app

$ oc -n ns1 get servicemonitor prometheus-example-monitor -o yaml

apiVersion: v1
kind: ServiceMonitor
metadata:
 name: prometheus-example-monitor
 namespace: ns1
spec:
 endpoints:
 - interval: 30s
 port: web

OpenShift Container Platform 4.13 Monitoring

142

NOTE

You can check service and ServiceMonitor resource labels as a developer
with view permissions for the project.

2. Inspect the logs for the Prometheus Operator in the openshift-user-workload-monitoring
project.

a. List the pods in the openshift-user-workload-monitoring project:

Example output

b. Obtain the logs from the prometheus-operator container in the prometheus-operator
pod. In the following example, the pod is called prometheus-operator-776fcbbd56-2nbfm:

If there is a issue with the service monitor, the logs might include an error similar to this
example:

3. Review the target status for your endpoint on the Metrics targets page in the OpenShift
Container Platform web console UI.

a. Log in to the OpenShift Container Platform web console and navigate to Observe →
Targets in the Administrator perspective.

b. Locate the metrics endpoint in the list, and review the status of the target in the Status
column.

c. If the Status is Down, click the URL for the endpoint to view more information on the
Target Details page for that metrics target.

4. Configure debug level logging for the Prometheus Operator in the openshift-user-

 scheme: http
 selector:
 matchLabels:
 app: prometheus-example-app

$ oc -n openshift-user-workload-monitoring get pods

NAME READY STATUS RESTARTS AGE
prometheus-operator-776fcbbd56-2nbfm 2/2 Running 0 132m
prometheus-user-workload-0 5/5 Running 1 132m
prometheus-user-workload-1 5/5 Running 1 132m
thanos-ruler-user-workload-0 3/3 Running 0 132m
thanos-ruler-user-workload-1 3/3 Running 0 132m

$ oc -n openshift-user-workload-monitoring logs prometheus-operator-776fcbbd56-
2nbfm -c prometheus-operator

level=warn ts=2020-08-10T11:48:20.906739623Z caller=operator.go:1829
component=prometheusoperator msg="skipping servicemonitor" error="it accesses file
system via bearer token file which Prometheus specification prohibits"
servicemonitor=eagle/eagle namespace=openshift-user-workload-monitoring
prometheus=user-workload

CHAPTER 12. TROUBLESHOOTING MONITORING ISSUES

143

4. Configure debug level logging for the Prometheus Operator in the openshift-user-
workload-monitoring project.

a. Edit the user-workload-monitoring-config ConfigMap object in the openshift-user-
workload-monitoring project:

b. Add logLevel: debug for prometheusOperator under data/config.yaml to set the log
level to debug:

c. Save the file to apply the changes. The affected prometheus-operator pod is
automatically redeployed.

d. Confirm that the debug log-level has been applied to the prometheus-operator
deployment in the openshift-user-workload-monitoring project:

Example output

Debug level logging will show all calls made by the Prometheus Operator.

e. Check that the prometheus-operator pod is running:

NOTE

If an unrecognized Prometheus Operator loglevel value is included in the
config map, the prometheus-operator pod might not restart successfully.

f. Review the debug logs to see if the Prometheus Operator is using the ServiceMonitor
resource. Review the logs for other related errors.

Additional resources

Creating a user-defined workload monitoring config map

$ oc -n openshift-user-workload-monitoring edit configmap user-workload-monitoring-
config

apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 prometheusOperator:
 logLevel: debug
...

$ oc -n openshift-user-workload-monitoring get deploy prometheus-operator -o yaml |
grep "log-level"

 - --log-level=debug

$ oc -n openshift-user-workload-monitoring get pods

OpenShift Container Platform 4.13 Monitoring

144

See Specifying how a service is monitored for details on how to create a ServiceMonitor or
PodMonitor resource

See Getting detailed information about metrics targets

12.2. DETERMINING WHY PROMETHEUS IS CONSUMING A LOT OF
DISK SPACE

Developers can create labels to define attributes for metrics in the form of key-value pairs. The number
of potential key-value pairs corresponds to the number of possible values for an attribute. An attribute
that has an unlimited number of potential values is called an unbound attribute. For example, a
customer_id attribute is unbound because it has an infinite number of possible values.

Every assigned key-value pair has a unique time series. The use of many unbound attributes in labels
can result in an exponential increase in the number of time series created. This can impact Prometheus
performance and can consume a lot of disk space.

You can use the following measures when Prometheus consumes a lot of disk:

Check the time series database (TSDB) status using the Prometheus HTTP API for more
information about which labels are creating the most time series data. Doing so requires cluster
administrator privileges.

Check the number of scrape samples that are being collected.

Reduce the number of unique time series that are created by reducing the number of
unbound attributes that are assigned to user-defined metrics.

NOTE

Using attributes that are bound to a limited set of possible values reduces the
number of potential key-value pair combinations.

Enforce limits on the number of samples that can be scraped across user-defined projects.
This requires cluster administrator privileges.

Prerequisites

You have access to the cluster as a user with the cluster-admin cluster role.

You have installed the OpenShift CLI (oc).

Procedure

1. In the Administrator perspective, navigate to Observe → Metrics.

2. Enter a Prometheus Query Language (PromQL) query in the Expression field. The following
example queries help to identify high cardinality metrics that might result in high disk space
consumption:

By running the following query, you can identify the ten jobs that have the highest number
of scrape samples:

topk(10, max by(namespace, job) (topk by(namespace, job) (1,
scrape_samples_post_metric_relabeling)))

CHAPTER 12. TROUBLESHOOTING MONITORING ISSUES

145

By running the following query, you can pinpoint time series churn by identifying the ten
jobs that have created the most time series data in the last hour:

3. Investigate the number of unbound label values assigned to metrics with higher than expected
scrape sample counts:

If the metrics relate to a user-defined project, review the metrics key-value pairs
assigned to your workload. These are implemented through Prometheus client libraries at
the application level. Try to limit the number of unbound attributes referenced in your labels.

If the metrics relate to a core OpenShift Container Platform project, create a Red Hat
support case on the Red Hat Customer Portal .

4. Review the TSDB status using the Prometheus HTTP API by following these steps when logged
in as a cluster administrator:

a. Get the Prometheus API route URL by running the following command:

b. Extract an authentication token by running the following command:

c. Query the TSDB status for Prometheus by running the following command:

Example output

Additional resources

Accessing monitoring APIs by using the CLI

Setting a scrape sample limit for user-defined projects

Submitting a support case

12.3. RESOLVING THE KUBEPERSISTENTVOLUMEFILLINGUP ALERT
FIRING FOR PROMETHEUS

As a cluster administrator, you can resolve the KubePersistentVolumeFillingUp alert being triggered
for Prometheus.

topk(10, sum by(namespace, job) (sum_over_time(scrape_series_added[1h])))

$ HOST=$(oc -n openshift-monitoring get route prometheus-k8s -ojsonpath={.spec.host})

$ TOKEN=$(oc whoami -t)

$ curl -H "Authorization: Bearer $TOKEN" -k "https://$HOST/api/v1/status/tsdb"

"status": "success","data":{"headStats":{"numSeries":507473,
"numLabelPairs":19832,"chunkCount":946298,"minTime":1712253600010,
"maxTime":1712257935346},"seriesCountByMetricName":
[{"name":"etcd_request_duration_seconds_bucket","value":51840},
{"name":"apiserver_request_sli_duration_seconds_bucket","value":47718},
...

OpenShift Container Platform 4.13 Monitoring

146

https://access.redhat.com/
https://docs.redhat.com/en/documentation/openshift_container_platform/4.13/html-single/support/#support-submitting-a-case_getting-support

1 2

The critical alert fires when a persistent volume (PV) claimed by a prometheus-k8s-* pod in the
openshift-monitoring project has less than 3% total space remaining. This can cause Prometheus to
function abnormally.

NOTE

There are two KubePersistentVolumeFillingUp alerts:

Critical alert: The alert with the severity="critical" label is triggered when the
mounted PV has less than 3% total space remaining.

Warning alert: The alert with the severity="warning" label is triggered when the
mounted PV has less than 15% total space remaining and is expected to fill up
within four days.

To address this issue, you can remove Prometheus time-series database (TSDB) blocks to create more
space for the PV.

Prerequisites

You have access to the cluster as a user with the cluster-admin cluster role.

You have installed the OpenShift CLI (oc).

Procedure

1. List the size of all TSDB blocks, sorted from oldest to newest, by running the following
command:

Replace <prometheus_k8s_pod_name> with the pod mentioned in the
KubePersistentVolumeFillingUp alert description.

Example output

2. Identify which and how many blocks could be removed, then remove the blocks. The following

$ oc debug <prometheus_k8s_pod_name> -n openshift-monitoring \ 1
-c prometheus --image=$(oc get po -n openshift-monitoring <prometheus_k8s_pod_name> \
2

-o jsonpath='{.spec.containers[?(@.name=="prometheus")].image}') \
-- sh -c 'cd /prometheus/;du -hs $(ls -dt */ | grep -Eo "[0-9|A-Z]{26}")'

308M 01HVKMPKQWZYWS8WVDAYQHNMW6
52M 01HVK64DTDA81799TBR9QDECEZ
102M 01HVK64DS7TRZRWF2756KHST5X
140M 01HVJS59K11FBVAPVY57K88Z11
90M 01HVH2A5Z58SKT810EM6B9AT50
152M 01HV8ZDVQMX41MKCN84S32RRZ1
354M 01HV6Q2N26BK63G4RYTST71FBF
156M 01HV664H9J9Z1FTZD73RD1563E
216M 01HTHXB60A7F239HN7S2TENPNS
104M 01HTHMGRXGS0WXA3WATRXHR36B

CHAPTER 12. TROUBLESHOOTING MONITORING ISSUES

147

1 2

2. Identify which and how many blocks could be removed, then remove the blocks. The following
example command removes the three oldest Prometheus TSDB blocks from the prometheus-
k8s-0 pod:

3. Verify the usage of the mounted PV and ensure there is enough space available by running the
following command:

Replace <prometheus_k8s_pod_name> with the pod mentioned in the
KubePersistentVolumeFillingUp alert description.

The following example output shows the mounted PV claimed by the prometheus-k8s-0 pod
that has 63% of space remaining:

Example output

$ oc debug prometheus-k8s-0 -n openshift-monitoring \
-c prometheus --image=$(oc get po -n openshift-monitoring prometheus-k8s-0 \
-o jsonpath='{.spec.containers[?(@.name=="prometheus")].image}') \
-- sh -c 'ls -latr /prometheus/ | egrep -o "[0-9|A-Z]{26}" | head -3 | \
while read BLOCK; do rm -r /prometheus/$BLOCK; done'

$ oc debug <prometheus_k8s_pod_name> -n openshift-monitoring \ 1
--image=$(oc get po -n openshift-monitoring <prometheus_k8s_pod_name> \ 2
-o jsonpath='{.spec.containers[?(@.name=="prometheus")].image}') -- df -h /prometheus/

Starting pod/prometheus-k8s-0-debug-j82w4 ...
Filesystem Size Used Avail Use% Mounted on
/dev/nvme0n1p4 40G 15G 40G 37% /prometheus

Removing debug pod ...

OpenShift Container Platform 4.13 Monitoring

148

CHAPTER 13. CONFIG MAP REFERENCE FOR THE CLUSTER
MONITORING OPERATOR

13.1. CLUSTER MONITORING OPERATOR CONFIGURATION
REFERENCE

Parts of OpenShift Container Platform cluster monitoring are configurable. The API is accessible by
setting parameters defined in various config maps.

To configure monitoring components, edit the ConfigMap object named cluster-monitoring-
config in the openshift-monitoring namespace. These configurations are defined by
ClusterMonitoringConfiguration.

To configure monitoring components that monitor user-defined projects, edit the ConfigMap
object named user-workload-monitoring-config in the openshift-user-workload-monitoring
namespace. These configurations are defined by UserWorkloadConfiguration.

The configuration file is always defined under the config.yaml key in the config map data.

IMPORTANT

Not all configuration parameters for the monitoring stack are exposed. Only the
parameters and fields listed in this reference are supported for configuration. For
more information about supported configurations, see Maintenance and support
for monitoring.

Configuring cluster monitoring is optional.

If a configuration does not exist or is empty, default values are used.

If the configuration is invalid YAML data, the Cluster Monitoring Operator stops
reconciling the resources and reports Degraded=True in the status conditions of
the Operator.

13.2. ADDITIONALALERTMANAGERCONFIG

13.2.1. Description

The AdditionalAlertmanagerConfig resource defines settings for how a component communicates
with additional Alertmanager instances.

13.2.2. Required

apiVersion

Appears in: PrometheusK8sConfig, PrometheusRestrictedConfig, ThanosRulerConfig

Property Type Description

CHAPTER 13. CONFIG MAP REFERENCE FOR THE CLUSTER MONITORING OPERATOR

149

apiVersion string Defines the API version of
Alertmanager. Possible values are
v1 or v2. The default is v2.

bearerToken *v1.SecretKeySelector Defines the secret key reference
containing the bearer token to
use when authenticating to
Alertmanager.

pathPrefix string Defines the path prefix to add in
front of the push endpoint path.

scheme string Defines the URL scheme to use
when communicating with
Alertmanager instances. Possible
values are http or https. The
default value is http.

staticConfigs []string A list of statically configured
Alertmanager endpoints in the
form of <hosts>:<port>.

timeout *string Defines the timeout value used
when sending alerts.

tlsConfig TLSConfig Defines the TLS settings to use
for Alertmanager connections.

Property Type Description

13.3. ALERTMANAGERMAINCONFIG

13.3.1. Description

The AlertmanagerMainConfig resource defines settings for the Alertmanager component in the
openshift-monitoring namespace.

Appears in: ClusterMonitoringConfiguration

Property Type Description

enabled *bool A Boolean flag that enables or
disables the main Alertmanager
instance in the openshift-
monitoring namespace. The
default value is true.

OpenShift Container Platform 4.13 Monitoring

150

enableUserAlertmanagerConfig bool A Boolean flag that enables or
disables user-defined
namespaces to be selected for
AlertmanagerConfig lookups.
This setting only applies if the user
workload monitoring instance of
Alertmanager is not enabled. The
default value is false.

logLevel string Defines the log level setting for
Alertmanager. The possible values
are: error, warn, info, debug.
The default value is info.

nodeSelector map[string]string Defines the nodes on which the
Pods are scheduled.

resources *v1.ResourceRequirements Defines resource requests and
limits for the Alertmanager
container.

secrets []string Defines a list of secrets to be
mounted into Alertmanager. The
secrets must reside within the
same namespace as the
Alertmanager object. They are
added as volumes named secret-
<secret-name> and mounted at
/etc/alertmanager/secrets/<s
ecret-name> in the
alertmanager container of the
Alertmanager pods.

tolerations []v1.Toleration Defines tolerations for the pods.

topologySpreadConstraints []v1.TopologySpreadConstraint Defines a pod’s topology spread
constraints.

volumeClaimTemplate *monv1.EmbeddedPersistentVolu
meClaim

Defines persistent storage for
Alertmanager. Use this setting to
configure the persistent volume
claim, including storage class,
volume size, and name.

Property Type Description

13.4. ALERTMANAGERUSERWORKLOADCONFIG

13.4.1. Description

The AlertmanagerUserWorkloadConfig resource defines the settings for the Alertmanager instance

CHAPTER 13. CONFIG MAP REFERENCE FOR THE CLUSTER MONITORING OPERATOR

151

The AlertmanagerUserWorkloadConfig resource defines the settings for the Alertmanager instance
used for user-defined projects.

Appears in: UserWorkloadConfiguration

Property Type Description

enabled bool A Boolean flag that enables or
disables a dedicated instance of
Alertmanager for user-defined
alerts in the openshift-user-
workload-monitoring
namespace. The default value is
false.

enableAlertmanagerConfig bool A Boolean flag to enable or
disable user-defined namespaces
to be selected for
AlertmanagerConfig lookup.
The default value is false.

logLevel string Defines the log level setting for
Alertmanager for user workload
monitoring. The possible values
are error, warn, info, and
debug. The default value is info.

resources *v1.ResourceRequirements Defines resource requests and
limits for the Alertmanager
container.

secrets []string Defines a list of secrets to be
mounted into Alertmanager. The
secrets must be located within
the same namespace as the
Alertmanager object. They are
added as volumes named secret-
<secret-name> and mounted at
/etc/alertmanager/secrets/<s
ecret-name> in the
alertmanager container of the
Alertmanager pods.

nodeSelector map[string]string Defines the nodes on which the
pods are scheduled.

tolerations []v1.Toleration Defines tolerations for the pods.

OpenShift Container Platform 4.13 Monitoring

152

volumeClaimTemplate *monv1.EmbeddedPersistentVolu
meClaim

Defines persistent storage for
Alertmanager. Use this setting to
configure the persistent volume
claim, including storage class,
volume size and name.

Property Type Description

13.5. CLUSTERMONITORINGCONFIGURATION

13.5.1. Description

The ClusterMonitoringConfiguration resource defines settings that customize the default platform
monitoring stack through the cluster-monitoring-config config map in the openshift-monitoring
namespace.

Property Type Description

alertmanagerMain *AlertmanagerMainConfig AlertmanagerMainConfig
defines settings for the
Alertmanager component in the
openshift-monitoring
namespace.

enableUserWorkload *bool UserWorkloadEnabled is a
Boolean flag that enables
monitoring for user-defined
projects.

k8sPrometheusAdapter *K8sPrometheusAdapter K8sPrometheusAdapter
defines settings for the
Prometheus Adapter component.

kubeStateMetrics *KubeStateMetricsConfig KubeStateMetricsConfig
defines settings for the kube-
state-metrics agent.

prometheusK8s *PrometheusK8sConfig PrometheusK8sConfig
defines settings for the
Prometheus component.

prometheusOperator *PrometheusOperatorConfig PrometheusOperatorConfig
defines settings for the
Prometheus Operator
component.

openshiftStateMetrics *OpenShiftStateMetricsConfig OpenShiftMetricsConfig
defines settings for the
openshift-state-metrics agent.

CHAPTER 13. CONFIG MAP REFERENCE FOR THE CLUSTER MONITORING OPERATOR

153

telemeterClient *TelemeterClientConfig TelemeterClientConfig defines
settings for the Telemeter Client
component.

thanosQuerier *ThanosQuerierConfig ThanosQuerierConfig defines
settings for the Thanos Querier
component.

nodeExporter NodeExporterConfig NodeExporterConfig defines
settings for the node-exporter
agent.

Property Type Description

13.6. DEDICATEDSERVICEMONITORS

13.6.1. Description

You can use the DedicatedServiceMonitors resource to configure dedicated Service Monitors for the
Prometheus Adapter

Appears in: K8sPrometheusAdapter

Property Type Description

enabled bool When enabled is set to true, the
Cluster Monitoring Operator
(CMO) deploys a dedicated
Service Monitor that exposes the
kubelet /metrics/resource
endpoint. This Service Monitor
sets honorTimestamps: true
and only keeps metrics that are
relevant for the pod resource
queries of Prometheus Adapter.
Additionally, Prometheus Adapter
is configured to use these
dedicated metrics. Overall, this
feature improves the consistency
of Prometheus Adapter-based
CPU usage measurements used
by, for example, the oc adm top
pod command or the Horizontal
Pod Autoscaler.

13.7. K8SPROMETHEUSADAPTER

13.7.1. Description

OpenShift Container Platform 4.13 Monitoring

154

The K8sPrometheusAdapter resource defines settings for the Prometheus Adapter component.

Appears in: ClusterMonitoringConfiguration

Property Type Description

audit *Audit Defines the audit configuration
used by the Prometheus Adapter
instance. Possible profile values
are: Metadata, Request,
RequestResponse, and None.
The default value is Metadata.

nodeSelector map[string]string Defines the nodes on which the
pods are scheduled.

tolerations []v1.Toleration Defines tolerations for the pods.

dedicatedServiceMonitors *DedicatedServiceMonitors Defines dedicated service
monitors.

13.8. KUBESTATEMETRICSCONFIG

13.8.1. Description

The KubeStateMetricsConfig resource defines settings for the kube-state-metrics agent.

Appears in: ClusterMonitoringConfiguration

Property Type Description

nodeSelector map[string]string Defines the nodes on which the
pods are scheduled.

tolerations []v1.Toleration Defines tolerations for the pods.

13.9. NODEEXPORTERCOLLECTORBUDDYINFOCONFIG

13.9.1. Description

The NodeExporterCollectorBuddyInfoConfig resource works as an on/off switch for the buddyinfo
collector of the node-exporter agent. By default, the buddyinfo collector is disabled.

Appears in: NodeExporterCollectorConfig

Property Type Description

CHAPTER 13. CONFIG MAP REFERENCE FOR THE CLUSTER MONITORING OPERATOR

155

enabled bool A Boolean flag that enables or
disables the buddyinfo collector.

Property Type Description

13.10. NODEEXPORTERCOLLECTORCONFIG

13.10.1. Description

The NodeExporterCollectorConfig resource defines settings for individual collectors of the node-
exporter agent.

Appears in: NodeExporterConfig

Property Type Description

cpufreq NodeExporterCollectorCpufreqC
onfig

Defines the configuration of the
cpufreq collector, which collects
CPU frequency statistics.
Disabled by default.

tcpstat NodeExporterCollectorTcpStatC
onfig

Defines the configuration of the
tcpstat collector, which collects
TCP connection statistics.
Disabled by default.

netdev NodeExporterCollectorNetDevCo
nfig

Defines the configuration of the
netdev collector, which collects
network devices statistics.
Enabled by default.

netclass NodeExporterCollectorNetClassC
onfig

Defines the configuration of the
netclass collector, which
collects information about
network devices. Enabled by
default.

buddyinfo NodeExporterCollectorBuddyInfo
Config

Defines the configuration of the
buddyinfo collector, which
collects statistics about memory
fragmentation from the
node_buddyinfo_blocks
metric. This metric collects data
from /proc/buddyinfo. Disabled
by default.

13.11. NODEEXPORTERCOLLECTORCPUFREQCONFIG

13.11.1. Description

OpenShift Container Platform 4.13 Monitoring

156

The NodeExporterCollectorCpufreqConfig resource works as an on/off switch for the cpufreq
collector of the node-exporter agent. By default, the cpufreq collector is disabled. Under certain
circumstances, enabling the cpufreq collector increases CPU usage on machines with many cores. If you
enable this collector and have machines with many cores, monitor your systems closely for excessive
CPU usage.

Appears in: NodeExporterCollectorConfig

Property Type Description

enabled bool A Boolean flag that enables or
disables the cpufreq collector.

13.12. NODEEXPORTERCOLLECTORNETCLASSCONFIG

13.12.1. Description

The NodeExporterCollectorNetClassConfig resource works as an on/off switch for the netclass
collector of the node-exporter agent. By default, the netclass collector is enabled. If disabled, these
metrics become unavailable: node_network_info, node_network_address_assign_type,
node_network_carrier, node_network_carrier_changes_total,
node_network_carrier_up_changes_total, node_network_carrier_down_changes_total,
node_network_device_id, node_network_dormant, node_network_flags, node_network_iface_id,
node_network_iface_link, node_network_iface_link_mode, node_network_mtu_bytes,
node_network_name_assign_type, node_network_net_dev_group, node_network_speed_bytes,
node_network_transmit_queue_length, node_network_protocol_type.

Appears in: NodeExporterCollectorConfig

Property Type Description

enabled bool A Boolean flag that enables or
disables the netclass collector.

useNetlink bool A Boolean flag that activates the
netlink implementation of the
netclass collector. By default, it
is disabled. This implementation
improves the performance of the
netclass collector by omitting
these metrics:
node_network_address_assi
gn_type,
node_network_name_assign
_type,
node_network_device_id,
node_network_speed_bytes.
In addition, the
node_network_info metric
lacks the duplex label.

CHAPTER 13. CONFIG MAP REFERENCE FOR THE CLUSTER MONITORING OPERATOR

157

13.13. NODEEXPORTERCOLLECTORNETDEVCONFIG

13.13.1. Description

The NodeExporterCollectorNetDevConfig resource works as an on/off switch for the netdev collector
of the node-exporter agent. By default, the netdev collector is enabled. If disabled, these metrics
become unavailable: node_network_receive_bytes_total,
node_network_receive_compressed_total, node_network_receive_drop_total,
node_network_receive_errs_total, node_network_receive_fifo_total,
node_network_receive_frame_total, node_network_receive_multicast_total,
node_network_receive_nohandler_total, node_network_receive_packets_total,
node_network_transmit_bytes_total, node_network_transmit_carrier_total,
node_network_transmit_colls_total, node_network_transmit_compressed_total,
node_network_transmit_drop_total, node_network_transmit_errs_total,
node_network_transmit_fifo_total, node_network_transmit_packets_total.

Appears in: NodeExporterCollectorConfig

Property Type Description

enabled bool A Boolean flag that enables or
disables the netdev collector.

13.14. NODEEXPORTERCOLLECTORTCPSTATCONFIG

13.14.1. Description

The NodeExporterCollectorTcpStatConfig resource works as an on/off switch for the tcpstat
collector of the node-exporter agent. By default, the tcpstat collector is disabled.

Appears in: NodeExporterCollectorConfig

Property Type Description

enabled bool A Boolean flag that enables or
disables the tcpstat collector.

13.15. NODEEXPORTERCONFIG

13.15.1. Description

The NodeExporterConfig resource defines settings for the node-exporter agent.

Appears in: ClusterMonitoringConfiguration

Property Type Description

OpenShift Container Platform 4.13 Monitoring

158

collectors NodeExporterCollectorConfig Defines which collectors are
enabled and their additional
configuration parameters.

Property Type Description

13.16. OPENSHIFTSTATEMETRICSCONFIG

13.16.1. Description

The OpenShiftStateMetricsConfig resource defines settings for the openshift-state-metrics agent.

Appears in: ClusterMonitoringConfiguration

Property Type Description

nodeSelector map[string]string Defines the nodes on which the
pods are scheduled.

tolerations []v1.Toleration Defines tolerations for the pods.

13.17. PROMETHEUSK8SCONFIG

13.17.1. Description

The PrometheusK8sConfig resource defines settings for the Prometheus component.

Appears in: ClusterMonitoringConfiguration

Property Type Description

additionalAlertmanagerConfigs []AdditionalAlertmanagerConfig Configures additional
Alertmanager instances that
receive alerts from the
Prometheus component. By
default, no additional
Alertmanager instances are
configured.

CHAPTER 13. CONFIG MAP REFERENCE FOR THE CLUSTER MONITORING OPERATOR

159

enforcedBodySizeLimit string Enforces a body size limit for
Prometheus scraped metrics. If a
scraped target’s body response is
larger than the limit, the scrape
will fail. The following values are
valid: an empty value to specify
no limit, a numeric value in
Prometheus size format (such as
64MB), or the string automatic,
which indicates that the limit will
be automatically calculated based
on cluster capacity. The default
value is empty, which indicates no
limit.

externalLabels map[string]string Defines labels to be added to any
time series or alerts when
communicating with external
systems such as federation,
remote storage, and
Alertmanager. By default, no
labels are added.

logLevel string Defines the log level setting for
Prometheus. The possible values
are: error, warn, info, and
debug. The default value is info.

nodeSelector map[string]string Defines the nodes on which the
pods are scheduled.

queryLogFile string Specifies the file to which
PromQL queries are logged. This
setting can be either a filename, in
which case the queries are saved
to an emptyDir volume at
/var/log/prometheus, or a full
path to a location where an
emptyDir volume will be
mounted and the queries saved.
Writing to /dev/stderr,
/dev/stdout or /dev/null is
supported, but writing to any
other /dev/ path is not supported.
Relative paths are also not
supported. By default, PromQL
queries are not logged.

Property Type Description

OpenShift Container Platform 4.13 Monitoring

160

remoteWrite []RemoteWriteSpec Defines the remote write
configuration, including URL,
authentication, and relabeling
settings.

resources *v1.ResourceRequirements Defines resource requests and
limits for the Prometheus
container.

retention string Defines the duration for which
Prometheus retains data. This
definition must be specified using
the following regular expression
pattern: [0-9]+(ms|s|m|h|d|w|y)
(ms = milliseconds, s= seconds,m
= minutes, h = hours, d = days, w =
weeks, y = years). The default
value is 15d.

retentionSize string Defines the maximum amount of
disk space used by data blocks
plus the write-ahead log (WAL).
Supported values are B, KB, KiB,
MB, MiB, GB, GiB, TB, TiB, PB,
PiB, EB, and EiB. By default, no
limit is defined.

tolerations []v1.Toleration Defines tolerations for the pods.

topologySpreadConstraints []v1.TopologySpreadConstraint Defines the pod’s topology spread
constraints.

collectionProfile CollectionProfile Defines the metrics collection
profile that Prometheus uses to
collect metrics from the platform
components. Supported values
are full or minimal. In the full
profile (default), Prometheus
collects all metrics that are
exposed by the platform
components. In the minimal
profile, Prometheus only collects
metrics necessary for the default
platform alerts, recording rules,
telemetry, and console
dashboards.

Property Type Description

CHAPTER 13. CONFIG MAP REFERENCE FOR THE CLUSTER MONITORING OPERATOR

161

volumeClaimTemplate *monv1.EmbeddedPersistentVolu
meClaim

Defines persistent storage for
Prometheus. Use this setting to
configure the persistent volume
claim, including storage class,
volume size and name.

Property Type Description

13.18. PROMETHEUSOPERATORCONFIG

13.18.1. Description

The PrometheusOperatorConfig resource defines settings for the Prometheus Operator component.

Appears in: ClusterMonitoringConfiguration, UserWorkloadConfiguration

Property Type Description

logLevel string Defines the log level settings for
Prometheus Operator. The
possible values are error, warn,
info, and debug. The default
value is info.

nodeSelector map[string]string Defines the nodes on which the
pods are scheduled.

tolerations []v1.Toleration Defines tolerations for the pods.

13.19. PROMETHEUSRESTRICTEDCONFIG

13.19.1. Description

The PrometheusRestrictedConfig resource defines the settings for the Prometheus component that
monitors user-defined projects.

Appears in: UserWorkloadConfiguration

Property Type Description

additionalAlertmanagerConfigs []AdditionalAlertmanagerConfig Configures additional
Alertmanager instances that
receive alerts from the
Prometheus component. By
default, no additional
Alertmanager instances are
configured.

OpenShift Container Platform 4.13 Monitoring

162

enforcedLabelLimit *uint64 Specifies a per-scrape limit on
the number of labels accepted for
a sample. If the number of labels
exceeds this limit after metric
relabeling, the entire scrape is
treated as failed. The default
value is 0, which means that no
limit is set.

enforcedLabelNameLengthLimit *uint64 Specifies a per-scrape limit on
the length of a label name for a
sample. If the length of a label
name exceeds this limit after
metric relabeling, the entire
scrape is treated as failed. The
default value is 0, which means
that no limit is set.

enforcedLabelValueLengthLimit *uint64 Specifies a per-scrape limit on
the length of a label value for a
sample. If the length of a label
value exceeds this limit after
metric relabeling, the entire
scrape is treated as failed. The
default value is 0, which means
that no limit is set.

enforcedSampleLimit *uint64 Specifies a global limit on the
number of scraped samples that
will be accepted. This setting
overrides the SampleLimit value
set in any user-defined
ServiceMonitor or
PodMonitor object if the value is
greater than
enforcedTargetLimit.
Administrators can use this setting
to keep the overall number of
samples under control. The
default value is 0, which means
that no limit is set.

Property Type Description

CHAPTER 13. CONFIG MAP REFERENCE FOR THE CLUSTER MONITORING OPERATOR

163

enforcedTargetLimit *uint64 Specifies a global limit on the
number of scraped targets. This
setting overrides the
TargetLimit value set in any
user-defined ServiceMonitor or
PodMonitor object if the value is
greater than
enforcedSampleLimit.
Administrators can use this setting
to keep the overall number of
targets under control. The default
value is 0.

externalLabels map[string]string Defines labels to be added to any
time series or alerts when
communicating with external
systems such as federation,
remote storage, and
Alertmanager. By default, no
labels are added.

logLevel string Defines the log level setting for
Prometheus. The possible values
are error, warn, info, and
debug. The default setting is
info.

nodeSelector map[string]string Defines the nodes on which the
pods are scheduled.

queryLogFile string Specifies the file to which
PromQL queries are logged. This
setting can be either a filename, in
which case the queries are saved
to an emptyDir volume at
/var/log/prometheus, or a full
path to a location where an
emptyDir volume will be
mounted and the queries saved.
Writing to /dev/stderr,
/dev/stdout or /dev/null is
supported, but writing to any
other /dev/ path is not supported.
Relative paths are also not
supported. By default, PromQL
queries are not logged.

Property Type Description

OpenShift Container Platform 4.13 Monitoring

164

remoteWrite []RemoteWriteSpec Defines the remote write
configuration, including URL,
authentication, and relabeling
settings.

resources *v1.ResourceRequirements Defines resource requests and
limits for the Prometheus
container.

retention string Defines the duration for which
Prometheus retains data. This
definition must be specified using
the following regular expression
pattern: [0-9]+(ms|s|m|h|d|w|y)
(ms = milliseconds, s= seconds,m
= minutes, h = hours, d = days, w =
weeks, y = years). The default
value is 15d.

retentionSize string Defines the maximum amount of
disk space used by data blocks
plus the write-ahead log (WAL).
Supported values are B, KB, KiB,
MB, MiB, GB, GiB, TB, TiB, PB,
PiB, EB, and EiB. The default
value is nil.

tolerations []v1.Toleration Defines tolerations for the pods.

volumeClaimTemplate *monv1.EmbeddedPersistentVolu
meClaim

Defines persistent storage for
Prometheus. Use this setting to
configure the storage class and
size of a volume.

Property Type Description

13.20. REMOTEWRITESPEC

13.20.1. Description

The RemoteWriteSpec resource defines the settings for remote write storage.

13.20.2. Required

url

Appears in: PrometheusK8sConfig, PrometheusRestrictedConfig

CHAPTER 13. CONFIG MAP REFERENCE FOR THE CLUSTER MONITORING OPERATOR

165

Property Type Description

authorization *monv1.SafeAuthorization Defines the authorization settings
for remote write storage.

basicAuth *monv1.BasicAuth Defines basic authentication
settings for the remote write
endpoint URL.

bearerTokenFile string Defines the file that contains the
bearer token for the remote write
endpoint. However, because you
cannot mount secrets in a pod, in
practice you can only reference
the token of the service account.

headers map[string]string Specifies the custom HTTP
headers to be sent along with
each remote write request.
Headers set by Prometheus
cannot be overwritten.

metadataConfig *monv1.MetadataConfig Defines settings for sending series
metadata to remote write
storage.

name string Defines the name of the remote
write queue. This name is used in
metrics and logging to
differentiate queues. If specified,
this name must be unique.

oauth2 *monv1.OAuth2 Defines OAuth2 authentication
settings for the remote write
endpoint.

proxyUrl string Defines an optional proxy URL.

queueConfig *monv1.QueueConfig Allows tuning configuration for
remote write queue parameters.

remoteTimeout string Defines the timeout value for
requests to the remote write
endpoint.

sigv4 *monv1.Sigv4 Defines AWS Signature Version 4
authentication settings.

OpenShift Container Platform 4.13 Monitoring

166

tlsConfig *monv1.SafeTLSConfig Defines TLS authentication
settings for the remote write
endpoint.

url string Defines the URL of the remote
write endpoint to which samples
will be sent.

writeRelabelConfigs []monv1.RelabelConfig Defines the list of remote write
relabel configurations.

Property Type Description

13.21. TLSCONFIG

13.21.1. Description

The TLSConfig resource configures the settings for TLS connections.

13.21.2. Required

insecureSkipVerify

Appears in: AdditionalAlertmanagerConfig

Property Type Description

ca *v1.SecretKeySelector Defines the secret key reference
containing the Certificate
Authority (CA) to use for the
remote host.

cert *v1.SecretKeySelector Defines the secret key reference
containing the public certificate
to use for the remote host.

key *v1.SecretKeySelector Defines the secret key reference
containing the private key to use
for the remote host.

serverName string Used to verify the hostname on
the returned certificate.

insecureSkipVerify bool When set to true, disables the
verification of the remote host’s
certificate and name.

13.22. TELEMETERCLIENTCONFIG

CHAPTER 13. CONFIG MAP REFERENCE FOR THE CLUSTER MONITORING OPERATOR

167

13.22.1. Description

TelemeterClientConfig defines settings for the Telemeter Client component.

13.22.2. Required

nodeSelector

tolerations

Appears in: ClusterMonitoringConfiguration

Property Type Description

nodeSelector map[string]string Defines the nodes on which the
pods are scheduled.

tolerations []v1.Toleration Defines tolerations for the pods.

13.23. THANOSQUERIERCONFIG

13.23.1. Description

The ThanosQuerierConfig resource defines settings for the Thanos Querier component.

Appears in: ClusterMonitoringConfiguration

Property Type Description

enableRequestLogging bool A Boolean flag that enables or
disables request logging. The
default value is false.

logLevel string Defines the log level setting for
Thanos Querier. The possible
values are error, warn, info, and
debug. The default value is info.

nodeSelector map[string]string Defines the nodes on which the
pods are scheduled.

resources *v1.ResourceRequirements Defines resource requests and
limits for the Thanos Querier
container.

tolerations []v1.Toleration Defines tolerations for the pods.

13.24. THANOSRULERCONFIG

OpenShift Container Platform 4.13 Monitoring

168

13.24.1. Description

The ThanosRulerConfig resource defines configuration for the Thanos Ruler instance for user-defined
projects.

Appears in: UserWorkloadConfiguration

Property Type Description

additionalAlertmanagerConfigs []AdditionalAlertmanagerConfig Configures how the Thanos Ruler
component communicates with
additional Alertmanager
instances. The default value is nil.

logLevel string Defines the log level setting for
Thanos Ruler. The possible values
are error, warn, info, and
debug. The default value is info.

nodeSelector map[string]string Defines the nodes on which the
Pods are scheduled.

resources *v1.ResourceRequirements Defines resource requests and
limits for the Thanos Ruler
container.

retention string Defines the duration for which
Prometheus retains data. This
definition must be specified using
the following regular expression
pattern: [0-9]+(ms|s|m|h|d|w|y)
(ms = milliseconds, s= seconds,m
= minutes, h = hours, d = days, w =
weeks, y = years). The default
value is 15d.

tolerations []v1.Toleration Defines tolerations for the pods.

topologySpreadConstraints []v1.TopologySpreadConstraint Defines topology spread
constraints for the pods.

volumeClaimTemplate *monv1.EmbeddedPersistentVolu
meClaim

Defines persistent storage for
Thanos Ruler. Use this setting to
configure the storage class and
size of a volume.

13.25. USERWORKLOADCONFIGURATION

13.25.1. Description

The UserWorkloadConfiguration resource defines the settings responsible for user-defined projects

CHAPTER 13. CONFIG MAP REFERENCE FOR THE CLUSTER MONITORING OPERATOR

169

in the user-workload-monitoring-config config map in the openshift-user-workload-monitoring
namespace. You can only enable UserWorkloadConfiguration after you have set
enableUserWorkload to true in the cluster-monitoring-config config map under the openshift-
monitoring namespace.

Property Type Description

alertmanager *AlertmanagerUserWorkloadConf
ig

Defines the settings for the
Alertmanager component in user
workload monitoring.

prometheus *PrometheusRestrictedConfig Defines the settings for the
Prometheus component in user
workload monitoring.

prometheusOperator *PrometheusOperatorConfig Defines the settings for the
Prometheus Operator
component in user workload
monitoring.

thanosRuler *ThanosRulerConfig Defines the settings for the
Thanos Ruler component in user
workload monitoring.

OpenShift Container Platform 4.13 Monitoring

170

	Table of Contents
	CHAPTER 1. MONITORING OVERVIEW
	1.1. ABOUT OPENSHIFT CONTAINER PLATFORM MONITORING
	1.2. UNDERSTANDING THE MONITORING STACK
	1.2.1. Default monitoring components
	1.2.2. Default monitoring targets
	1.2.3. Components for monitoring user-defined projects
	1.2.4. Monitoring targets for user-defined projects
	1.2.5. Understanding the monitoring stack in high-availability clusters

	1.3. GLOSSARY OF COMMON TERMS FOR OPENSHIFT CONTAINER PLATFORM MONITORING
	1.4. ADDITIONAL RESOURCES

	CHAPTER 2. CONFIGURING THE MONITORING STACK
	2.1. PREREQUISITES
	2.2. MAINTENANCE AND SUPPORT FOR MONITORING
	2.2.1. Support considerations for monitoring
	2.2.2. Support policy for monitoring Operators
	2.2.3. Support version matrix for monitoring components

	2.3. PREPARING TO CONFIGURE THE MONITORING STACK
	2.3.1. Creating a cluster monitoring config map
	2.3.2. Creating a user-defined workload monitoring config map

	2.4. GRANTING USERS PERMISSIONS FOR CORE PLATFORM MONITORING
	2.5. CONFIGURING THE MONITORING STACK
	2.6. CONFIGURABLE MONITORING COMPONENTS
	2.7. USING NODE SELECTORS TO MOVE MONITORING COMPONENTS
	2.7.1. How node selectors work with other constraints
	2.7.2. Moving monitoring components to different nodes

	2.8. ASSIGNING TOLERATIONS TO MONITORING COMPONENTS
	2.9. SETTING THE BODY SIZE LIMIT FOR METRICS SCRAPING
	2.10. CONFIGURING A DEDICATED SERVICE MONITOR
	2.10.1. Enabling a dedicated service monitor

	2.11. CONFIGURING PERSISTENT STORAGE
	2.11.1. Persistent storage prerequisites
	2.11.2. Configuring a persistent volume claim
	2.11.3. Resizing a persistent volume
	2.11.4. Modifying the retention time and size for Prometheus metrics data
	2.11.5. Modifying the retention time for Thanos Ruler metrics data

	2.12. CONFIGURING REMOTE WRITE STORAGE
	2.12.1. Supported remote write authentication settings
	2.12.2. Example remote write authentication settings

	2.13. ADDING CLUSTER ID LABELS TO METRICS
	2.13.1. Creating cluster ID labels for metrics

	2.14. CONFIGURING METRICS COLLECTION PROFILES
	2.14.1. About metrics collection profiles
	2.14.2. Choosing a metrics collection profile

	2.15. CONTROLLING THE IMPACT OF UNBOUND METRICS ATTRIBUTES IN USER-DEFINED PROJECTS
	2.15.1. Setting scrape sample and label limits for user-defined projects
	2.15.2. Creating scrape sample alerts

	CHAPTER 3. CONFIGURING EXTERNAL ALERTMANAGER INSTANCES
	CHAPTER 4. CONFIGURING SECRETS FOR ALERTMANAGER
	4.1. ADDING A SECRET TO THE ALERTMANAGER CONFIGURATION
	4.2. ATTACHING ADDITIONAL LABELS TO YOUR TIME SERIES AND ALERTS

	CHAPTER 5. CONFIGURING POD TOPOLOGY SPREAD CONSTRAINTS FOR MONITORING
	5.1. SETTING UP POD TOPOLOGY SPREAD CONSTRAINTS FOR PROMETHEUS
	5.2. SETTING UP POD TOPOLOGY SPREAD CONSTRAINTS FOR ALERTMANAGER
	5.3. SETTING UP POD TOPOLOGY SPREAD CONSTRAINTS FOR THANOS RULER
	5.4. SETTING LOG LEVELS FOR MONITORING COMPONENTS
	5.5. ENABLING THE QUERY LOG FILE FOR PROMETHEUS
	5.6. ENABLING QUERY LOGGING FOR THANOS QUERIER
	5.7. SETTING AUDIT LOG LEVELS FOR THE PROMETHEUS ADAPTER
	5.8. DISABLING THE LOCAL ALERTMANAGER

	CHAPTER 6. ENABLING MONITORING FOR USER-DEFINED PROJECTS
	6.1. ENABLING MONITORING FOR USER-DEFINED PROJECTS
	6.2. GRANTING USERS PERMISSION TO MONITOR USER-DEFINED PROJECTS
	6.2.1. Granting user permissions by using the web console
	6.2.2. Granting user permissions by using the CLI

	6.3. GRANTING USERS PERMISSION TO CONFIGURE MONITORING FOR USER-DEFINED PROJECTS
	6.4. ACCESSING METRICS FROM OUTSIDE THE CLUSTER FOR CUSTOM APPLICATIONS
	6.5. EXCLUDING A USER-DEFINED PROJECT FROM MONITORING
	6.6. DISABLING MONITORING FOR USER-DEFINED PROJECTS

	CHAPTER 7. ENABLING ALERT ROUTING FOR USER-DEFINED PROJECTS
	7.1. UNDERSTANDING ALERT ROUTING FOR USER-DEFINED PROJECTS
	7.2. ENABLING THE PLATFORM ALERTMANAGER INSTANCE FOR USER-DEFINED ALERT ROUTING
	7.3. ENABLING A SEPARATE ALERTMANAGER INSTANCE FOR USER-DEFINED ALERT ROUTING
	7.4. GRANTING USERS PERMISSION TO CONFIGURE ALERT ROUTING FOR USER-DEFINED PROJECTS

	CHAPTER 8. MANAGING METRICS
	8.1. UNDERSTANDING METRICS
	8.2. SETTING UP METRICS COLLECTION FOR USER-DEFINED PROJECTS
	8.2.1. Deploying a sample service
	8.2.2. Specifying how a service is monitored
	8.2.3. Example service endpoint authentication settings
	8.2.3.1. Sample YAML authentication with a bearer token
	8.2.3.2. Sample YAML for Basic authentication
	8.2.3.3. Sample YAML authentication with OAuth 2.0

	8.3. VIEWING A LIST OF AVAILABLE METRICS
	8.4. QUERYING METRICS
	8.4.1. Querying metrics for all projects as a cluster administrator
	8.4.2. Querying metrics for user-defined projects as a developer

	8.5. GETTING DETAILED INFORMATION ABOUT A METRICS TARGET

	CHAPTER 9. MANAGING ALERTS
	9.1. ACCESSING THE ALERTING UI IN THE ADMINISTRATOR AND DEVELOPER PERSPECTIVES
	9.2. SEARCHING AND FILTERING ALERTS, SILENCES, AND ALERTING RULES
	Understanding alert filters
	Understanding silence filters
	Understanding alerting rule filters
	Searching and filtering alerts, silences, and alerting rules in the Developer perspective

	9.3. GETTING INFORMATION ABOUT ALERTS, SILENCES, AND ALERTING RULES
	9.4. MANAGING SILENCES
	9.4.1. Silencing alerts
	9.4.2. Editing silences
	9.4.3. Expiring silences

	9.5. MANAGING ALERTING RULES FOR USER-DEFINED PROJECTS
	9.5.1. Optimizing alerting for user-defined projects
	9.5.2. About creating alerting rules for user-defined projects
	9.5.3. Creating alerting rules for user-defined projects
	9.5.4. Accessing alerting rules for user-defined projects
	9.5.5. Listing alerting rules for all projects in a single view
	9.5.6. Removing alerting rules for user-defined projects

	9.6. MANAGING ALERTING RULES FOR CORE PLATFORM MONITORING
	9.6.1. Modifying core platform alerting rules
	9.6.2. Creating new alerting rules

	9.7. SENDING NOTIFICATIONS TO EXTERNAL SYSTEMS
	9.7.1. Configuring alert receivers
	9.7.2. Configuring different alert receivers for default platform alerts and user-defined alerts
	9.7.3. Creating alert routing for user-defined projects

	9.8. CONFIGURING ALERTMANAGER TO SEND NOTIFICATIONS
	9.8.1. Configuring notifications for default platform alerts
	9.8.2. Configuring notifications for user-defined alerts

	9.9. ADDITIONAL RESOURCES

	CHAPTER 10. REVIEWING MONITORING DASHBOARDS
	10.1. REVIEWING MONITORING DASHBOARDS AS A CLUSTER ADMINISTRATOR
	10.2. REVIEWING MONITORING DASHBOARDS AS A DEVELOPER

	CHAPTER 11. ACCESSING MONITORING APIS BY USING THE CLI
	11.1. ABOUT ACCESSING MONITORING WEB SERVICE APIS
	11.2. ACCESSING A MONITORING WEB SERVICE API
	11.3. QUERYING METRICS BY USING THE FEDERATION ENDPOINT FOR PROMETHEUS
	11.4. ACCESSING METRICS FROM OUTSIDE THE CLUSTER FOR CUSTOM APPLICATIONS
	11.5. ADDITIONAL RESOURCES

	CHAPTER 12. TROUBLESHOOTING MONITORING ISSUES
	12.1. INVESTIGATING WHY USER-DEFINED PROJECT METRICS ARE UNAVAILABLE
	12.2. DETERMINING WHY PROMETHEUS IS CONSUMING A LOT OF DISK SPACE
	12.3. RESOLVING THE KUBEPERSISTENTVOLUMEFILLINGUP ALERT FIRING FOR PROMETHEUS

	CHAPTER 13. CONFIG MAP REFERENCE FOR THE CLUSTER MONITORING OPERATOR
	13.1. CLUSTER MONITORING OPERATOR CONFIGURATION REFERENCE
	13.2. ADDITIONALALERTMANAGERCONFIG
	13.2.1. Description
	13.2.2. Required

	13.3. ALERTMANAGERMAINCONFIG
	13.3.1. Description

	13.4. ALERTMANAGERUSERWORKLOADCONFIG
	13.4.1. Description

	13.5. CLUSTERMONITORINGCONFIGURATION
	13.5.1. Description

	13.6. DEDICATEDSERVICEMONITORS
	13.6.1. Description

	13.7. K8SPROMETHEUSADAPTER
	13.7.1. Description

	13.8. KUBESTATEMETRICSCONFIG
	13.8.1. Description

	13.9. NODEEXPORTERCOLLECTORBUDDYINFOCONFIG
	13.9.1. Description

	13.10. NODEEXPORTERCOLLECTORCONFIG
	13.10.1. Description

	13.11. NODEEXPORTERCOLLECTORCPUFREQCONFIG
	13.11.1. Description

	13.12. NODEEXPORTERCOLLECTORNETCLASSCONFIG
	13.12.1. Description

	13.13. NODEEXPORTERCOLLECTORNETDEVCONFIG
	13.13.1. Description

	13.14. NODEEXPORTERCOLLECTORTCPSTATCONFIG
	13.14.1. Description

	13.15. NODEEXPORTERCONFIG
	13.15.1. Description

	13.16. OPENSHIFTSTATEMETRICSCONFIG
	13.16.1. Description

	13.17. PROMETHEUSK8SCONFIG
	13.17.1. Description

	13.18. PROMETHEUSOPERATORCONFIG
	13.18.1. Description

	13.19. PROMETHEUSRESTRICTEDCONFIG
	13.19.1. Description

	13.20. REMOTEWRITESPEC
	13.20.1. Description
	13.20.2. Required

	13.21. TLSCONFIG
	13.21.1. Description
	13.21.2. Required

	13.22. TELEMETERCLIENTCONFIG
	13.22.1. Description
	13.22.2. Required

	13.23. THANOSQUERIERCONFIG
	13.23.1. Description

	13.24. THANOSRULERCONFIG
	13.24.1. Description

	13.25. USERWORKLOADCONFIGURATION
	13.25.1. Description

