& RedHat

OpenShift Container Platform 4.13

Monitoring

Configuring and using the monitoring stack in OpenShift Container Platform

Last Updated: 2024-09-04






OpenShift Container Platform 4.13 Monitoring

Configuring and using the monitoring stack in OpenShift Container Platform



Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Use metrics and customized alerts provided by the monitoring stack to track the health and
performance of your applications running on OpenShift Container Platform clusters.



Table of Contents

Table of Contents

CHAPTER 1. MONITORING OVERVIEW L.ttt ittt ettt et eeeeeaaneeaneeraneennneenns 6
1.1. ABOUT OPENSHIFT CONTAINER PLATFORM MONITORING 6
1.2. UNDERSTANDING THE MONITORING STACK 6

1.2.1. Default monitoring components 7
1.2.2. Default monitoring targets 9
1.2.3. Components for monitoring user-defined projects 10
1.2.4. Monitoring targets for user-defined projects 10
1.2.5. Understanding the monitoring stack in high-availability clusters 10
1.3. GLOSSARY OF COMMON TERMS FOR OPENSHIFT CONTAINER PLATFORM MONITORING 1
1.4. ADDITIONAL RESOURCES 14

CHAPTER 2. CONFIGURING THE MONITORING STACK .. ittt ei et enieeenneanns 15
2.1. PREREQUISITES 15
2.2. MAINTENANCE AND SUPPORT FOR MONITORING 15

2.2.1. Support considerations for monitoring 15
2.2.2. Support policy for monitoring Operators 16
2.2.3. Support version matrix for monitoring components 17
2.3. PREPARING TO CONFIGURE THE MONITORING STACK 17
2.3.1. Creating a cluster monitoring config map 17
2.3.2. Creating a user-defined workload monitoring config map 18
2.4. GRANTING USERS PERMISSIONS FOR CORE PLATFORM MONITORING 19
2.5. CONFIGURING THE MONITORING STACK 20
2.6. CONFIGURABLE MONITORING COMPONENTS 23
2.7. USING NODE SELECTORS TO MOVE MONITORING COMPONENTS 24
2.7.1. How node selectors work with other constraints 24
2.7.2. Moving monitoring components to different nodes 25
2.8. ASSIGNING TOLERATIONS TO MONITORING COMPONENTS 27
2.9.SETTING THE BODY SIZE LIMIT FOR METRICS SCRAPING 30
2.10. CONFIGURING A DEDICATED SERVICE MONITOR 31
2.10.1. Enabling a dedicated service monitor 31
2.11. CONFIGURING PERSISTENT STORAGE 32
2.11.1. Persistent storage prerequisites 32
2.11.2. Configuring a persistent volume claim 32
2.11.3. Resizing a persistent volume 35
2.11.4. Modifying the retention time and size for Prometheus metrics data 38
2.11.5. Modifying the retention time for Thanos Ruler metrics data 41
2.12. CONFIGURING REMOTE WRITE STORAGE 42
2.12.1. Supported remote write authentication settings 46
2.12.2. Example remote write authentication settings 47
2.13. ADDING CLUSTER ID LABELS TO METRICS 52
2.13.1. Creating cluster ID labels for metrics 53
2.14. CONFIGURING METRICS COLLECTION PROFILES 56
2.14.1. About metrics collection profiles 57
2.14.2. Choosing a metrics collection profile 57
2.15. CONTROLLING THE IMPACT OF UNBOUND METRICS ATTRIBUTES IN USER-DEFINED PROJECTS 58
2.15.1. Setting scrape sample and label limits for user-defined projects 58
2.15.2. Creating scrape sample alerts 60

CHAPTER 3. CONFIGURING EXTERNAL ALERTMANAGERINSTANCES ...ttt iiiennnnenn, 63

CHAPTER 4. CONFIGURING SECRETS FORALERTMANAGER ... ittt ieieiaieennnnnns 66
4.1. ADDING A SECRET TO THE ALERTMANAGER CONFIGURATION 66



OpenShift Container Platform 4.13 Monitoring

4.2. ATTACHING ADDITIONAL LABELS TO YOUR TIME SERIES AND ALERTS 68
CHAPTER 5. CONFIGURING POD TOPOLOGY SPREAD CONSTRAINTS FOR MONITORING ............. 72
5.1. SETTING UP POD TOPOLOGY SPREAD CONSTRAINTS FOR PROMETHEUS 72
5.2.SETTING UP POD TOPOLOGY SPREAD CONSTRAINTS FOR ALERTMANAGER 73
5.3.SETTING UP POD TOPOLOGY SPREAD CONSTRAINTS FOR THANOS RULER 74
5.4.SETTING LOG LEVELS FOR MONITORING COMPONENTS 76
5.5. ENABLING THE QUERY LOG FILE FOR PROMETHEUS 78
5.6. ENABLING QUERY LOGGING FOR THANOS QUERIER 80
5.7.SETTING AUDIT LOG LEVELS FOR THE PROMETHEUS ADAPTER 82
5.8. DISABLING THE LOCAL ALERTMANAGER 84
CHAPTER 6. ENABLING MONITORING FOR USER-DEFINED PROJECTS  .....c.ttiiriiiieinnnennnnenn, 85
6.1. ENABLING MONITORING FOR USER-DEFINED PROJECTS 85
6.2. GRANTING USERS PERMISSION TO MONITOR USER-DEFINED PROJECTS 86
6.2.1. Granting user permissions by using the web console 88
6.2.2. Granting user permissions by using the CLI 89

6.3. GRANTING USERS PERMISSION TO CONFIGURE MONITORING FOR USER-DEFINED PROJECTS 89
6.4. ACCESSING METRICS FROM OUTSIDE THE CLUSTER FOR CUSTOM APPLICATIONS 90
6.5. EXCLUDING A USER-DEFINED PROJECT FROM MONITORING 91
6.6. DISABLING MONITORING FOR USER-DEFINED PROJECTS 92
CHAPTER 7. ENABLING ALERT ROUTING FOR USER-DEFINED PROJECTS  ......ccvtiiiiiiinennnnnn. 94
7.1. UNDERSTANDING ALERT ROUTING FOR USER-DEFINED PROJECTS 94
7.2. ENABLING THE PLATFORM ALERTMANAGER INSTANCE FOR USER-DEFINED ALERT ROUTING 94
7.3. ENABLING A SEPARATE ALERTMANAGER INSTANCE FOR USER-DEFINED ALERT ROUTING 95

7.4. GRANTING USERS PERMISSION TO CONFIGURE ALERT ROUTING FOR USER-DEFINED PROJECTS 96

CHAPTER 8. MANAGING MET RICS ..ottt ittt ettt et et eaneeeaneennneeaneeeaneennneenn 98
8.1. UNDERSTANDING METRICS 98
8.2.SETTING UP METRICS COLLECTION FOR USER-DEFINED PROJECTS 98

8.2.1. Deploying a sample service 98
8.2.2. Specifying how a service is monitored 100
8.2.3. Example service endpoint authentication settings 101
8.2.3.1. Sample YAML authentication with a bearer token 101
8.2.3.2. Sample YAML for Basic authentication 102
8.2.3.3. Sample YAML authentication with OAuth 2.0 103

8.3. VIEWING A LIST OF AVAILABLE METRICS 104
8.4. QUERYING METRICS 105
8.4.1. Querying metrics for all projects as a cluster administrator 105
8.4.2. Querying metrics for user-defined projects as a developer 107
8.5. GETTING DETAILED INFORMATION ABOUT A METRICS TARGET 108
CHAPTER O. MANAGING ALE R TS ottt ittt ettt ettt e e aeeeieeeaneennneenneenns m

9.1. ACCESSING THE ALERTING Ul IN THE ADMINISTRATOR AND DEVELOPER PERSPECTIVES m
9.2. SEARCHING AND FILTERING ALERTS, SILENCES, AND ALERTING RULES m
Understanding alert filters m

Understanding silence filters 12
Understanding alerting rule filters 12
Searching and filtering alerts, silences, and alerting rules in the Developer perspective 13
9.3. GETTING INFORMATION ABOUT ALERTS, SILENCES, AND ALERTING RULES 114
9.4. MANAGING SILENCES 116
9.4.1. Silencing alerts 16
9.4.2. Editing silences n7



Table of Contents

9.4.3. Expiring silences n8
9.5. MANAGING ALERTING RULES FOR USER-DEFINED PROJECTS n8
9.5.1. Optimizing alerting for user-defined projects 119
9.5.2. About creating alerting rules for user-defined projects 19
9.5.3. Creating alerting rules for user-defined projects 120
9.5.4. Accessing alerting rules for user-defined projects 121
9.5.5. Listing alerting rules for all projects in a single view 121
9.5.6. Removing alerting rules for user-defined projects 122
9.6. MANAGING ALERTING RULES FOR CORE PLATFORM MONITORING 122
9.6.1. Modifying core platform alerting rules 123
9.6.2. Creating new alerting rules 124
9.7. SENDING NOTIFICATIONS TO EXTERNAL SYSTEMS 126
9.7.1. Configuring alert receivers 126
9.7.2. Configuring different alert receivers for default platform alerts and user-defined alerts 128
9.7.3. Creating alert routing for user-defined projects 128
9.8. CONFIGURING ALERTMANAGER TO SEND NOTIFICATIONS 129
9.8.1. Configuring notifications for default platform alerts 129
9.8.2. Configuring notifications for user-defined alerts 132
9.9. ADDITIONAL RESOURCES 133
CHAPTER 10. REVIEWING MONITORING DASHBOARDS ... ittt ittt eienneaneannns 134
10.1. REVIEWING MONITORING DASHBOARDS AS A CLUSTER ADMINISTRATOR 135
10.2. REVIEWING MONITORING DASHBOARDS AS A DEVELOPER 136
CHAPTER 11. ACCESSING MONITORING APISBYUSING THE CLI ..ottt 137
1.1. ABOUT ACCESSING MONITORING WEB SERVICE APIS 137
11.2. ACCESSING A MONITORING WEB SERVICE API 138
11.3. QUERYING METRICS BY USING THE FEDERATION ENDPOINT FOR PROMETHEUS 138
1.4. ACCESSING METRICS FROM OUTSIDE THE CLUSTER FOR CUSTOM APPLICATIONS 140
11.5. ADDITIONAL RESOURCES 141
CHAPTER 12. TROUBLESHOOTING MONITORING ISSUES ... .. ittt iienaeeeeannns 142
12.1. INVESTIGATING WHY USER-DEFINED PROJECT METRICS ARE UNAVAILABLE 142
12.2. DETERMINING WHY PROMETHEUS IS CONSUMING A LOT OF DISK SPACE 145
12.3. RESOLVING THE KUBEPERSISTENTVOLUMEFILLINGUP ALERT FIRING FOR PROMETHEUS 146
CHAPTER 13. CONFIG MAP REFERENCE FOR THE CLUSTER MONITORING OPERATOR ............... 149
13.1. CLUSTER MONITORING OPERATOR CONFIGURATION REFERENCE 149
13.2. ADDITIONALALERTMANAGERCONFIG 149
13.2.1. Description 149
13.2.2. Required 149
13.3. ALERTMANAGERMAINCONFIG 150
13.3.1. Description 150
13.4. ALERTMANAGERUSERWORKLOADCONFIG 151
13.4.1. Description 151
13.5. CLUSTERMONITORINGCONFIGURATION 153
13.5.1. Description 153
13.6. DEDICATEDSERVICEMONITORS 154
13.6.1. Description 154
13.7. KBSPROMETHEUSADAPTER 154
13.7.1. Description 154
13.8. KUBESTATEMETRICSCONFIG 155
13.8.1. Description 155
13.9. NODEEXPORTERCOLLECTORBUDDYINFOCONFIG 155



OpenShift Container Platform 4.13 Monitoring

13.9.1. Description
13.10. NODEEXPORTERCOLLECTORCONFIG
13.10.1. Description
13.11. NODEEXPORTERCOLLECTORCPUFREQCONFIG
13.11.1. Description
13.12. NODEEXPORTERCOLLECTORNETCLASSCONFIG
13.12.1. Description
13.13. NODEEXPORTERCOLLECTORNETDEVCONFIG
13.13.1. Description
13.14. NODEEXPORTERCOLLECTORTCPSTATCONFIG
13.14.1. Description
13.15. NODEEXPORTERCONFIG
13.15.1. Description
13.16. OPENSHIFTSTATEMETRICSCONFIG
13.16.1. Description
13.177. PROMETHEUSK8SCONFIG
13.17.1. Description
13.18. PROMETHEUSOPERATORCONFIG
13.18.1. Description
13.19. PROMETHEUSRESTRICTEDCONFIG
13.19.1. Description
13.20. REMOTEWRITESPEC
13.20.1. Description
13.20.2. Required
13.21. TLSCONFIG
13.21.1. Description
13.21.2. Required
13.22. TELEMETERCLIENTCONFIG
13.22.1. Description
13.22.2. Required
13.23. THANOSQUERIERCONFIG
13.23.1. Description
13.24. THANOSRULERCONFIG
13.24.1. Description
13.25. USERWORKLOADCONFIGURATION
13.25.1. Description

155
156
156
156
156
157
157
158
158
158
158
158
158
159
159
159
159
162
162
162
162
165
165
165
167
167
167
167
168
168
168
168
168
169
169
169



Table of Contents




OpenShift Container Platform 4.13 Monitoring

CHAPTER 1. MONITORING OVERVIEW

1.1. ABOUT OPENSHIFT CONTAINER PLATFORM MONITORING

OpenShift Container Platform includes a preconfigured, preinstalled, and self-updating monitoring
stack that provides monitoring for core platform components. You also have the option to enable
monitoring for user-defined projects.

A cluster administrator can configure the monitoring stack with the supported configurations. OpenShift
Container Platform delivers monitoring best practices out of the box.

A set of alerts are included by default that immediately notify administrators about issues with a cluster.
Default dashboards in the OpenShift Container Platform web console include visual representations of
cluster metrics to help you to quickly understand the state of your cluster. With the OpenShift Container
Platform web console, you can view and manage metrics, alerts, and review monitoring dashboards.

In the Observe section of OpenShift Container Platform web console, you can access and manage
monitoring features such as metrics, alerts, monitoring dashboards, and metrics targets.

After installing OpenShift Container Platform, cluster administrators can optionally enable monitoring
for user-defined projects. By using this feature, cluster administrators, developers, and other users can
specify how services and pods are monitored in their own projects. As a cluster administrator, you can
find answers to common problems such as user metrics unavailability and high consumption of disk
space by Prometheus in Troubleshooting monitoring issues.

1.2. UNDERSTANDING THE MONITORING STACK

The OpenShift Container Platform monitoring stack is based on the Prometheus open source project
and its wider ecosystem. The monitoring stack includes the following:

e Default platform monitoring components. A set of platform monitoring components are
installed in the openshift-monitoring project by default during an OpenShift Container
Platform installation. This provides monitoring for core cluster components including
Kubernetes services. The default monitoring stack also enables remote health monitoring for
clusters.

These components are illustrated in the Installed by default section in the following diagram.

® Components for monitoring user-defined projects After optionally enabling monitoring for
user-defined projects, additional monitoring components are installed in the openshift-user-
workload-monitoring project. This provides monitoring for user-defined projects. These
components are illustrated in the User section in the following diagram.


https://prometheus.io/

CHAPTER 1. MONITORING OVERVIEW

OpenShift User-Defined
Projects Projects
Installed by default \ l
Deploy Alerts
Platform User
Deploy Deploy
Proolggerzzgrs Prometheus Alertmanager Prometheus Pg&?:’:grs
A A
KSM | i
i Alerts i
OsMm i : Deploy
| i
NE i :
1 ]
a a v
PA i . i .
:L Queries TiEmss :_ Queries Thanos
_______________ Querier D T Ruler —
TDep)‘oy
Telemeter P Cluster
Client < Monitoring
Deploy Operator
TDepon
Cluster
Version
Operator

1.2.1. Default monitoring components

By default, the OpenShift Container Platform 4.13 monitoring stack includes these components:

Table 1.1. Default monitoring stack components

Component Description

Cluster Monitoring Operator The Cluster Monitoring Operator (CMO) is a central
component of the monitoring stack. It deploys,
manages, and automatically updates Prometheus
and Alertmanager instances, Thanos Querier,
Telemeter Client, and metrics targets. The CMO is
deployed by the Cluster Version Operator (CVO).



OpenShift Container Platform 4.13 Monitoring

Component Description

Prometheus Operator The Prometheus Operator (PO) in the openshift-
monitoring project creates, configures, and
manages platform Prometheus instances and
Alertmanager instances. It also automatically
generates monitoring target configurations based on
Kubernetes label queries.

Prometheus Prometheus is the monitoring system on which the
OpenShift Container Platform monitoring stack is
based. Prometheus is a time-series database and a
rule evaluation engine for metrics. Prometheus sends
alerts to Alertmanager for processing.

Prometheus Adapter The Prometheus Adapter (PA in the preceding
diagram) translates Kubernetes node and pod
queries for use in Prometheus. The resource metrics
that are translated include CPU and memory
utilization metrics. The Prometheus Adapter exposes
the cluster resource metrics API for horizontal pod
autoscaling. The Prometheus Adapter is also used by
the oc adm top nodes and oc adm top pods
commands.

Alertmanager The Alertmanager service handles alerts received
from Prometheus. Alertmanager is also responsible
for sending the alerts to external notification
systems.

kube-state-metrics agent The kube-state-metrics exporter agent (KSM in
the preceding diagram) converts Kubernetes objects
to metrics that Prometheus can use.

openshift-state-metrics agent The openshift-state-metrics exporter (OSM in the
preceding diagram) expands upon kube-state-
metrics by adding metrics for OpenShift Container
Platform-specific resources.

node-exporter agent The node-exporter agent (NE in the preceding
diagram) collects metrics about every node in a
cluster. The node-exporter agent is deployed on
every node.

Thanos Querier Thanos Querier aggregates and optionally
deduplicates core OpenShift Container Platform
metrics and metrics for user-defined projects under a
single, multi-tenant interface.

Telemeter Client Telemeter Client sends a subsection of the data from
platform Prometheus instances to Red Hat to
facilitate Remote Health Monitoring for clusters.



CHAPTER 1. MONITORING OVERVIEW

All of the components in the monitoring stack are monitored by the stack and are automatically updated
when OpenShift Container Platform is updated.

NOTE

All components of the monitoring stack use the TLS security profile settings that are
centrally configured by a cluster administrator. If you configure a monitoring stack
component that uses TLS security settings, the component uses the TLS security profile

settings that already exist in the tlsSecurityProfile field in the global OpenShift
Container Platform apiservers.config.openshift.io/cluster resource.

1.2.2. Default monitoring targets

In addition to the components of the stack itself, the default monitoring stack monitors additional
platform components.

The following are examples of monitoring targets:
® CoreDNS
® etcd
® HAProxy
® |mage registry
® Kubelets
® Kubernetes APl server
® Kubernetes controller manager
® Kubernetes scheduler
® OpenShift APl server
® OpenShift Controller Manager

® Operator Lifecycle Manager (OLM)

NOTE

® The exact list of targets can vary depending on your cluster capabilities and
installed components.

® FEach OpenShift Container Platform component is responsible for its monitoring
configuration. For problems with the monitoring of an OpenShift Container
Platform component, open a Jira issue against that component, not against the
general monitoring component.

Other OpenShift Container Platform framework components might be exposing metrics as well. For
details, see their respective documentation.

Additional resources


https://issues.redhat.com/secure/CreateIssueDetails!init.jspa?pid=12332330&summary=Monitoring_issue&issuetype=1&priority=10200&versions=12398149

OpenShift Container Platform 4.13 Monitoring
® Getting detailed information about a metrics target

1.2.3. Components for monitoring user-defined projects

OpenShift Container Platform includes an optional enhancement to the monitoring stack that enables
you to monitor services and pods in user-defined projects. This feature includes the following
components:

Table 1.2. Components for monitoring user-defined projects

Component Description

Prometheus Operator The Prometheus Operator (PO) in the openshift-
user-workload-monitoring project creates,
configures, and manages Prometheus and Thanos
Ruler instances in the same project.

Prometheus Prometheus is the monitoring system through which
monitoring is provided for user-defined projects.
Prometheus sends alerts to Alertmanager for
processing.

Thanos Ruler The Thanos Ruler is a rule evaluation engine for
Prometheus that is deployed as a separate process.
In OpenShift Container Platform , Thanos Ruler
provides rule and alerting evaluation for the
monitoring of user-defined projects.

Alertmanager The Alertmanager service handles alerts received
from Prometheus and Thanos Ruler. Alertmanager is
also responsible for sending user-defined alerts to
external notification systems. Deploying this service
is optional.

NOTE

The components in the preceding table are deployed after monitoring is enabled for
user-defined projects.

All of these components are monitored by the stack and are automatically updated when OpenShift
Container Platform is updated.

1.2.4. Monitoring targets for user-defined projects

When monitoring is enabled for user-defined projects, you can monitor:
® Metrics provided through service endpoints in user-defined projects.

® Pods running in user-defined projects.

1.2.5. Understanding the monitoring stack in high-availability clusters

10



CHAPTER 1. MONITORING OVERVIEW

By default, in multi-node clusters, the following components run in high-availability (HA) mode to
prevent data loss and service interruption:

® Prometheus

® Alertmanager

® Thanos Ruler

® Thanos Querier

® Prometheus Adapter

The component is replicated across two pods, each running on a separate node. This means that the
monitoring stack can tolerate the loss of one pod.

Prometheus in HA mode
® Both replicas independently scrape the same targets and evaluate the same rules.

® The replicas do not communicate with each other. Therefore, data might differ between the
pods.

Alertmanager in HA mode

® The two replicas synchronize notification and silence states with each other. This ensures
that each notification is sent at least once.

® |f the replicas fail to communicate or if there is an issue on the receiving side, notifications
are still sent, but they might be duplicated.

IMPORTANT

Prometheus, Alertmanager, and Thanos Ruler are stateful components. To ensure high
availability, you must configure them with persistent storage.

Additional resources

® High-availability or single-node cluster detection and support
® Configuring persistent storage

® Configuring the monitoring stack

1.3. GLOSSARY OF COMMON TERMS FOR OPENSHIFT CONTAINER
PLATFORM MONITORING

This glossary defines common terms that are used in OpenShift Container Platform architecture.

Alertmanager

Alertmanager handles alerts received from Prometheus. Alertmanager is also responsible for sending
the alerts to external notification systems.

Alerting rules

1


https://docs.redhat.com/en/documentation/openshift_container_platform/4.13/html-single/operators/#osdk-ha-sno

OpenShift Container Platform 4.13 Monitoring

Alerting rules contain a set of conditions that outline a particular state within a cluster. Alerts are
triggered when those conditions are true. An alerting rule can be assigned a severity that defines how
the alerts are routed.

Cluster Monitoring Operator

The Cluster Monitoring Operator (CMO) is a central component of the monitoring stack. It deploys
and manages Prometheus instances such as, the Thanos Querier, the Telemeter Client, and metrics
targets to ensure that they are up to date. The CMO is deployed by the Cluster Version Operator
(CVO).

Cluster Version Operator

The Cluster Version Operator (CVO) manages the lifecycle of cluster Operators, many of which are
installed in OpenShift Container Platform by default.

config map

A config map provides a way to inject configuration data into pods. You can reference the data
stored in a config map in a volume of type ConfigMap. Applications running in a pod can use this
data.

Container

A container is a lightweight and executable image that includes software and all its dependencies.
Containers virtualize the operating system. As a result, you can run containers anywhere from a data
center to a public or private cloud as well as a developer’s laptop.

custom resource (CR)
A CRis an extension of the Kubernetes API. You can create custom resources.
etcd

etcd is the key-value store for OpenShift Container Platform, which stores the state of all resource
objects.

Fluentd

Fluentd is a log collector that resides on each OpenShift Container Platform node. It gathers
application, infrastructure, and audit logs and forwards them to different outputs.

NOTE

b Fluentd is deprecated and is planned to be removed in a future release. Red Hat
provides bug fixes and support for this feature during the current release lifecycle, but
this feature no longer receives enhancements. As an alternative to Fluentd, you can

? use Vector instead.

Kubelets

Runs on nodes and reads the container manifests. Ensures that the defined containers have started
and are running.

Kubernetes APl server
Kubernetes APl server validates and configures data for the API objects.
Kubernetes controller manager
Kubernetes controller manager governs the state of the cluster.
Kubernetes scheduler
Kubernetes scheduler allocates pods to nodes.
labels
Labels are key-value pairs that you can use to organize and select subsets of objects such as a pod.

node

12



CHAPTER 1. MONITORING OVERVIEW

A worker machine in the OpenShift Container Platform cluster. A node is either a virtual machine
(VM) or a physical machine.

Operator

The preferred method of packaging, deploying, and managing a Kubernetes application in an
OpenShift Container Platform cluster. An Operator takes human operational knowledge and
encodes it into software that is packaged and shared with customers.

Operator Lifecycle Manager (OLM)

OLM helps you install, update, and manage the lifecycle of Kubernetes native applications. OLM is an
open source toolkit designed to manage Operators in an effective, automated, and scalable way.

Persistent storage

Stores the data even after the device is shut down. Kubernetes uses persistent volumes to store the
application data.

Persistent volume claim (PVC)

You can use a PVC to mount a PersistentVolume into a Pod. You can access the storage without
knowing the details of the cloud environment.

pod

The pod is the smallest logical unit in Kubernetes. A pod is comprised of one or more containers to
run in a worker node.

Prometheus

Prometheus is the monitoring system on which the OpenShift Container Platform monitoring stack is
based. Prometheus is a time-series database and a rule evaluation engine for metrics. Prometheus
sends alerts to Alertmanager for processing.

Prometheus adapter

The Prometheus Adapter translates Kubernetes node and pod queries for use in Prometheus. The
resource metrics that are translated include CPU and memory utilization. The Prometheus Adapter
exposes the cluster resource metrics API for horizontal pod autoscaling.

Prometheus Operator

The Prometheus Operator (PO) in the openshift-monitoring project creates, configures, and
manages platform Prometheus and Alertmanager instances. It also automatically generates
monitoring target configurations based on Kubernetes label queries.

Silences

A silence can be applied to an alert to prevent notifications from being sent when the conditions for
an alert are true. You can mute an alert after the initial notification, while you work on resolving the
underlying issue.

storage

OpenShift Container Platform supports many types of storage, both for on-premise and cloud
providers. You can manage container storage for persistent and non-persistent data in an OpenShift
Container Platform cluster.

Thanos Ruler

The Thanos Ruler is a rule evaluation engine for Prometheus that is deployed as a separate process.
In OpenShift Container Platform, Thanos Ruler provides rule and alerting evaluation for the
monitoring of user-defined projects.

Vector

Vector is a log collector that deploys to each OpenShift Container Platform node. It collects log data
from each node, transforms the data, and forwards it to configured outputs.

web console

A user interface (Ul) to manage OpenShift Container Platform.

13



OpenShift Container Platform 4.13 Monitoring

1.4. ADDITIONAL RESOURCES
® About remote health monitoring
® Granting users permission to monitor user-defined projects

® Configuring TLS security profiles

14


https://docs.redhat.com/en/documentation/openshift_container_platform/4.13/html-single/support/#about-remote-health-monitoring
https://docs.redhat.com/en/documentation/openshift_container_platform/4.13/html-single/security_and_compliance/#tls-security-profiles

CHAPTER 2. CONFIGURING THE MONITORING STACK

CHAPTER 2. CONFIGURING THE MONITORING STACK

The OpenShift Container Platform installation program provides only a low number of configuration
options before installation. Configuring most OpenShift Container Platform framework components,
including the cluster monitoring stack, happens after the installation.

This section explains what configuration is supported, shows how to configure the monitoring stack, and
demonstrates several common configuration scenarios.

IMPORTANT

Not all configuration parameters for the monitoring stack are exposed. Only the
parameters and fields listed in the Config map reference for the Cluster Monitoring
Operator are supported for configuration.

2.1. PREREQUISITES

® The monitoring stack imposes additional resource requirements. Consult the computing
resources recommendations in Scaling the Cluster Monitoring Operator and verify that you
have sufficient resources.

2.2. MAINTENANCE AND SUPPORT FOR MONITORING

Not all configuration options for the monitoring stack are exposed. The only supported way of
configuring OpenShift Container Platform monitoring is by configuring the Cluster Monitoring Operator
(CMO) using the options described in the Config map reference for the Cluster Monitoring Operator.
Do not use other configurations, as they are unsupported.

Configuration paradigms might change across Prometheus releases, and such cases can only be
handled gracefully if all configuration possibilities are controlled. If you use configurations other than
those described in the Config map reference for the Cluster Monitoring Operator, your changes will
disappear because the CMO automatically reconciles any differences and resets any unsupported
changes back to the originally defined state by default and by design.

2.2.1. Support considerations for monitoring

NOTE

Backward compatibility for metrics, recording rules, or alerting rules is not guaranteed.

The following modifications are explicitly not supported:

® Creating additional ServiceMonitor, PodMonitor, and PrometheusRule objects in the
openshift-* and kube-* projects.

® Modifying any resources or objects deployed in theopenshift-monitoring or openshift-user-
workload-monitoring projects. The resources created by the OpenShift Container Platform
monitoring stack are not meant to be used by any other resources, as there are no guarantees
about their backward compatibility.

15


https://docs.redhat.com/en/documentation/openshift_container_platform/4.13/html-single/scalability_and_performance/#scaling-cluster-monitoring-operator

OpenShift Container Platform 4.13 Monitoring

NOTE

The Alertmanager configuration is deployed as the alertmanager-main secret
resource in the openshift-monitoring namespace. If you have enabled a
separate Alertmanager instance for user-defined alert routing, an Alertmanager
configuration is also deployed as the alertmanager-user-workload secret
resource in the openshift-user-workload-monitoring namespace. To configure
additional routes for any instance of Alertmanager, you need to decode, modify,
and then encode that secret. This procedure is a supported exception to the
preceding statement.

® Modifying resources of the stack.The OpenShift Container Platform monitoring stack
ensures its resources are always in the state it expects them to be. If they are modified, the stack
will reset them.

® Deploying user-defined workloads toopenshift-*, and kube-* projects. These projects are
reserved for Red Hat provided components and they should not be used for user-defined
workloads.

e Enabling symptom based monitoring by using theProbe custom resource definition (CRD)
in Prometheus Operator.

® Manually deploying monitoring resources into namespaces that have the
openshift.io/cluster-monitoring: "true" label.

® Adding the openshift.io/cluster-monitoring: "true" label to namespaces. This label is
reserved only for the namespaces with core OpenShift Container Platform components and
Red Hat certified components.

® Installing custom Prometheus instances on OpenShift Container Platform.A custom
instance is a Prometheus custom resource (CR) managed by the Prometheus Operator.

2.2.2. Support policy for monitoring Operators

Monitoring Operators ensure that OpenShift Container Platform monitoring resources function as
designed and tested. If Cluster Version Operator (CVO) control of an Operator is overridden, the
Operator does not respond to configuration changes, reconcile the intended state of cluster objects, or
receive updates.

While overriding CVO control for an Operator can be helpful during debugging, this is unsupported and
the cluster administrator assumes full control of the individual component configurations and upgrades.

Overriding the Cluster Version Operator

The spec.overrides parameter can be added to the configuration for the CVO to allow administrators
to provide a list of overrides to the behavior of the CVO for a component. Setting the
spec.overrides[].unmanaged parameter to true for a component blocks cluster upgrades and alerts
the administrator after a CVO override has been set:

Disabling ownership via cluster version overrides prevents upgrades. Please remove overrides before
continuing.

16



CHAPTER 2. CONFIGURING THE MONITORING STACK

' WARNING
A Setting a CVO override puts the entire cluster in an unsupported state and prevents

the monitoring stack from being reconciled to its intended state. This impacts the
reliability features built into Operators and prevents updates from being received.
Reported issues must be reproduced after removing any overrides for support to

proceed.

2.2.3. Support version matrix for monitoring components

The following matrix contains information about versions of monitoring components for OpenShift
Container Platform 4.11 and later releases:

Table 2.1. OpenShift Container Platform and component versions

OpenShif Promethe @ Promethe Promethe Alertman kube- node-
t us us us ager state- exporter

Container  Operator Adapter metrics agent
Platform agent

413 0.63.0 2420 0.10.0 0.25.0 281 15.0 0.30.2

412 0.60.1 2.391 0.10.0 0.24.0 26.0 1.4.0 0.28.1

4 0.57.0 2.36.2 0.9.1 0.24.0 250 131 0.26.0
NOTE

The openshift-state-metrics agent and Telemeter Client are OpenShift-specific
components. Therefore, their versions correspond with the versions of OpenShift
Container Platform.

2.3. PREPARING TO CONFIGURE THE MONITORING STACK

You can configure the monitoring stack by creating and updating monitoring config maps. These config
maps configure the Cluster Monitoring Operator (CMO), which in turn configures the components of
the monitoring stack.

2.3.1. Creating a cluster monitoring config map

You can configure the core OpenShift Container Platform monitoring components by creating the
cluster-monitoring-config ConfigMap object in the openshift-monitoring project. The Cluster
Monitoring Operator (CMO) then configures the core components of the monitoring stack.

Prerequisites

® You have access to the cluster as a user with the cluster-admin cluster role.

17



OpenShift Container Platform 4.13 Monitoring

® You have installed the OpenShift CLI (oc).

Procedure

1. Check whether the cluster-monitoring-config ConfigMap object exists:

I $ oc -n openshift-monitoring get configmap cluster-monitoring-config

2. If the ConfigMap object does not exist:

a. Create the following YAML manifest. In this example the file is called cluster-monitoring-
config.yaml:

apiVersion: vi
kind: ConfigMap
metadata:
name: cluster-monitoring-config
namespace: openshift-monitoring
data:
config.yaml: |

b. Apply the configuration to create the ConfigMap object:

I $ oc apply -f cluster-monitoring-config.yaml

2.3.2. Creating a user-defined workload monitoring config map

You can configure the user workload monitoring components with the user-workload-monitoring-
config ConfigMap object in the openshift-user-workload-monitoring project. The Cluster Monitoring
Operator (CMO) then configures the components that monitor user-defined projects.

NOTE

e |f you enable monitoring for user-defined projects, the user-workload-
monitoring-config ConfigMap object is created by default.

® When you save your changes to the user-workload-monitoring-config
ConfigMap object, some or all of the pods in the openshift-user-workload-
monitoring project might be redeployed. It can sometimes take a while for these
components to redeploy.

Prerequisites
® You have access to the cluster as a user with the cluster-admin cluster role.

® You have installed the OpenShift CLI (oc).

Procedure

1. Check whether the user-workload-monitoring-config ConfigMap object exists:

I $ oc -n openshift-user-workload-monitoring get configmap user-workload-monitoring-config

18



CHAPTER 2. CONFIGURING THE MONITORING STACK

2. If the user-workload-monitoring-config ConfigMap object does not exist:

a. Create the following YAML manifest. In this example the file is called user-workload-
monitoring-config.yaml:

apiVersion: vi
kind: ConfigMap
metadata:
name: user-workload-monitoring-config
namespace: openshift-user-workload-monitoring
data:
config.yaml: |

b. Apply the configuration to create the ConfigMap object:

I $ oc apply -f user-workload-monitoring-config.yaml

NOTE

Configurations applied to the user-workload-monitoring-config
ConfigMap object are not activated unless a cluster administrator has
enabled monitoring for user-defined projects.

Additional resources

® Enabling monitoring for user-defined projects

2.4. GRANTING USERS PERMISSIONS FOR CORE PLATFORM
MONITORING

As a cluster administrator, you can monitor all core OpenShift Container Platform and user-defined
projects.

You can also grant developers and other users different permissions for core platform monitoring. You
can grant the permissions by assigning one of the following monitoring roles or cluster roles:

Name Description Project

cluster-monitoring-metrics- Users with this role have the openshift-monitoring
api ability to access Thanos Querier

APl endpoints. Additionally, it

grants access to the core platform

Prometheus APl and user-defined

Thanos Ruler APl endpoints.

cluster-monitoring-operator- Users with this role can manage openshift-monitoring
alert-customization AlertingRule and

AlertRelabelConfig resources

for core platform monitoring.

These permissions are required

for the alert customization

feature.

19



OpenShift Container Platform 4.13 Monitoring

Name

monitoring-alertmanager-
edit

monitoring-alertmanager-
view

cluster-monitoring-view

Additional resources

Description

Users with this role can manage
the Alertmanager API for core
platform monitoring. They can
also manage alert silences in the
Administrator perspective of the
OpenShift Container Platform
web console.

Users with this role can monitor
the Alertmanager API for core
platform monitoring. They can
also view alert silences in the
Administrator perspective of the
OpenShift Container Platform
web console.

Users with this cluster role have
the same access rights as
cluster-monitoring-metrics-
api role, with additional
permissions, providing access to
the /federate endpoint for the
user-defined Prometheus.

® Granting user permissions by using the web console

® Granting user permissions by using the CLI

2.5. CONFIGURING THE MONITORING STACK

Project

openshift-monitoring

openshift-monitoring

Must be bound with
ClusterRoleBinding to gain
access to the /federate endpoint
for the user-defined Prometheus.

In OpenShift Container Platform 4.13, you can configure the monitoring stack using the cluster-
monitoring-config or user-workload-monitoring-config ConfigMap objects. Config maps configure
the Cluster Monitoring Operator (CMO), which in turn configures the components of the stack.

Prerequisites

e If you are configuring core OpenShift Container Platform monitoring components

o You have access to the cluster as a user with the cluster-admin cluster role.

o You have created the cluster-monitoring-config ConfigMap object.

® If you are configuring components that monitor user-defined projects

o You have access to the cluster as a user with the cluster-admin cluster role, or as a user
with the user-workload-monitoring-config-edit role in the openshift-user-workload-

monitoring project.

o A cluster administrator has enabled monitoring for user-defined projects.

20



CHAPTER 2. CONFIGURING THE MONITORING STACK

® You have installed the OpenShift CLI (oc).

Procedure
1. Edit the ConfigMap object.
® To configure core OpenShift Container Platform monitoring components

a. Edit the cluster-monitoring-config ConfigMap object in the openshift-monitoring
project:

I $ oc -n openshift-monitoring edit configmap cluster-monitoring-config

b. Add your configuration under data/config.yaml as a key-value pair
<component_name>: <component_configurations:

apiVersion: vi
kind: ConfigMap
metadata:
name: cluster-monitoring-config
namespace: openshift-monitoring
data:
config.yaml: |
<component>:
<configuration_for_the_component>

Substitute <components> and <configuration_for_the_component> accordingly.

The following example ConfigMap object configures a persistent volume claim (PVC)
for Prometheus. This relates to the Prometheus instance that monitors core OpenShift
Container Platform components only:

apiVersion: vi
kind: ConfigMap
metadata:
name: cluster-monitoring-config
namespace: openshift-monitoring
data:
config.yaml: |
prometheusK8s:
volumeClaimTemplate:
spec:
storageClassName: fast
volumeMode: Filesystem
resources:
requests:
storage: 40Gi

Defines the Prometheus component and the subsequent lines define its
configuration.

® To configure components that monitor user-defined projects

21



OpenShift Container Platform 4.13 Monitoring

22

a. Edit the user-workload-monitoring-config ConfigMap object in the openshift-user-

workload-monitoring project:

$ oc -n openshift-user-workload-monitoring edit configmap user-workload-
monitoring-config

. Add your configuration under data/config.yaml as a key-value pair

<component_name>: <component_configurations:

apiVersion: vi
kind: ConfigMap
metadata:
name: user-workload-monitoring-config
namespace: openshift-user-workload-monitoring
data:
config.yaml: |
<component>:
<configuration_for_the_component>

Substitute <components> and <configuration_for_the_component> accordingly.

The following example ConfigMap object configures a data retention period and
minimum container resource requests for Prometheus. This relates to the Prometheus
instance that monitors user-defined projects only:

apiVersion: vi
kind: ConfigMap
metadata:
name: user-workload-monitoring-config
namespace: openshift-user-workload-monitoring
data:
config.yaml: |
prometheus:
retention: 24h g
resources:
requests:
cpu: 200m 6
memory: 2Gi

Defines the Prometheus component and the subsequent lines define its
configuration.

Configures a twenty-four hour data retention period for the Prometheus instance
that monitors user-defined projects.

Defines a minimum resource request of 200 millicores for the Prometheus
container.

Defines a minimum pod resource request of 2 GiB of memory for the Prometheus
container.

o ©® & o



CHAPTER 2. CONFIGURING THE MONITORING STACK

NOTE

The Prometheus config map component is called prometheusK8s in the
cluster-monitoring-config ConfigMap object and prometheus in the
user-workload-monitoring-config ConfigMap object.

2. Save the file to apply the changes to the ConfigMap object.

' WARNING
A Different configuration changes to the ConfigMap object result in different

outcomes:
® The pods are not redeployed. Therefore, there is no service outage.
® The affected pods are redeployed:
o For single-node clusters, this results in temporary service outage.

o For multi-node clusters, because of high-availability, the affected
pods are gradually rolled out and the monitoring stack remains
available.

o Configuring and resizing a persistent volume always results in a
service outage, regardless of high availability.

Each procedure that requires a change in the config map includes its
expected outcome.

Additional resources

e Configuration reference for the cluster-monitoring-config config map
e Configuration reference for the user-workload-monitoring-config config map
® See Preparing to configure the monitoring stack for steps to create monitoring config maps

® Enabling monitoring for user-defined projects

2.6. CONFIGURABLE MONITORING COMPONENTS

This table shows the monitoring components you can configure and the keys used to specify the
components in the cluster-monitoring-config and user-workload-monitoring-config ConfigMap
objects.

Table 2.2. Configurable monitoring components

23



OpenShift Container Platform 4.13 Monitoring

Component cluster-monitoring-config user-workload-monitoring-
config map key config config map key

Prometheus Operator prometheusOperator prometheusOperator
Prometheus prometheusK8s prometheus
Alertmanager alertmanagerMain alertmanager
kube-state-metrics kubeStateMetrics
openshift-state-metrics openshiftStateMetrics
Telemeter Client telemeterClient
Prometheus Adapter k8sPrometheusAdapter
Thanos Querier thanosQuerier
Thanos Ruler thanosRuler

NOTE

The Prometheus key is called prometheusK8s in the cluster-monitoring-config
ConfigMap object and prometheus in the user-workload-monitoring-config
ConfigMap object.

2.7.USING NODE SELECTORS TO MOVE MONITORING
COMPONENTS

By using the nodeSelector constraint with labeled nodes, you can move any of the monitoring stack
components to specific nodes. By doing so, you can control the placement and distribution of the
monitoring components across a cluster.

By controlling placement and distribution of monitoring components, you can optimize system resource
use, improve performance, and segregate workloads based on specific requirements or policies.

2.7.1. How node selectors work with other constraints

If you move monitoring components by using node selector constraints, be aware that other constraints
to control pod scheduling might exist for a cluster:

® Topology spread constraints might be in place to control pod placement.
e Hard anti-affinity rules are in place for Prometheus, Thanos Querier, Alertmanager, and other

monitoring components to ensure that multiple pods for these components are always spread
across different nodes and are therefore always highly available.

24



CHAPTER 2. CONFIGURING THE MONITORING STACK

When scheduling pods onto nodes, the pod scheduler tries to satisfy all existing constraints when
determining pod placement. That is, all constraints compound when the pod scheduler determines which
pods will be placed on which nodes.

Therefore, if you configure a node selector constraint but existing constraints cannot all be satisfied, the
pod scheduler cannot match all constraints and will not schedule a pod for placement onto a node.

To maintain resilience and high availability for monitoring components, ensure that enough nodes are
available and match all constraints when you configure a node selector constraint to move a component.

Additional resources

® Understanding how to update labels on nodes

® Placing pods on specific nodes using node selectors

® Placing pods relative to other pods using affinity and anti-affinity rules
® Controlling pod placement by using pod topology spread constraints
® Configuring pod topology spread constraints for monitoring

® Kubernetes documentation about node selectors

2.7.2. Moving monitoring components to different nodes

To specify the nodes in your cluster on which monitoring stack components will run, configure the
nodeSelector constraint in the component’s ConfigMap object to match labels assigned to the nodes.

NOTE

You cannot add a node selector constraint directly to an existing scheduled pod.

Prerequisites
e If you are configuring core OpenShift Container Platform monitoring components
© You have access to the cluster as a user with the cluster-admin cluster role.
o You have created the cluster-monitoring-config ConfigMap object.
® If you are configuring components that monitor user-defined projects

o You have access to the cluster as a user with the cluster-admin cluster role or as a user
with the user-workload-monitoring-config-edit role in the openshift-user-workload-
monitoring project.

o A cluster administrator has enabled monitoring for user-defined projects.

® You have installed the OpenShift CLI (oc).

Procedure

1. If you have not done so yet, add a label to the nodes on which you want to run the monitoring
components:

25


https://docs.redhat.com/en/documentation/openshift_container_platform/4.13/html-single/nodes/#nodes-nodes-working-updating_nodes-nodes-working
https://docs.redhat.com/en/documentation/openshift_container_platform/4.13/html-single/nodes/#nodes-scheduler-node-selectors
https://docs.redhat.com/en/documentation/openshift_container_platform/4.13/html-single/nodes/#placing-pods-relative-to-other-pods-using-pod-affinity-and-anti-affinity-rules
https://docs.redhat.com/en/documentation/openshift_container_platform/4.13/html-single/nodes/#controlling-pod-placement-using-pod-topology-spread-constraints
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#nodeselector

OpenShift Container Platform 4.13 Monitoring

I $ oc label nodes <node-name> <node-label>

2. Edit the ConfigMap object:
® To move a component that monitors core OpenShift Container Platform projects

a. Edit the cluster-monitoring-config ConfigMap object in the openshift-monitoring
project:

I $ oc -n openshift-monitoring edit configmap cluster-monitoring-config

b. Specify the node labels for the nodeSelector constraint for the component under
data/config.yaml:

apiVersion: vi
kind: ConfigMap
metadata:
name: cluster-monitoring-config
namespace: openshift-monitoring
data:
config.yaml: |
<component>:
nodeSelector:
<node-label-1>
<node-label-2>
<...>

Substitute <components with the appropriate monitoring stack component name.
Substitute <node-label-1> with the label you added to the node.

Optional: Specify additional labels. If you specify additional labels, the pods for the
component are only scheduled on the nodes that contain all of the specified labels.

909

NOTE

If monitoring components remain in a Pending state after configuring
the nodeSelector constraint, check the pod events for errors relating to
taints and tolerations.

® To move a component that monitors user-defined projects

a. Edit the user-workload-monitoring-config ConfigMap object in the openshift-user-
workload-monitoring project:

$ oc -n openshift-user-workload-monitoring edit configmap user-workload-
monitoring-config

b. Specify the node labels for the nodeSelector constraint for the component under
data/config.yaml:

apiVersion: vi
kind: ConfigMap

26



CHAPTER 2. CONFIGURING THE MONITORING STACK

metadata:
name: user-workload-monitoring-config
namespace: openshift-user-workload-monitoring
data:
config.yaml: |
<component>:
nodeSelector:
<node-label-1>
<node-label-2>
<...>

Substitute <components with the appropriate monitoring stack component name.

Substitute <node-label-1> with the label you added to the node.

-

Optional: Specify additional labels. If you specify additional labels, the pods for the
component are only scheduled on the nodes that contain all of the specified labels.

NOTE

If monitoring components remain in a Pending state after configuring
the nodeSelector constraint, check the pod events for errors relating to
taints and tolerations.

3. Save the file to apply the changes. The components specified in the new configuration are

automatically moved to the new nodes, and the pods affected by the new configuration are
redeployed.

Additional resources

See Preparing to configure the monitoring stack for steps to create monitoring config maps
Enabling monitoring for user-defined projects

Understanding how to update labels on nodes

Placing pods on specific nodes using node selectors

See the Kubernetes documentation for details on the nodeSelector constraint

2.8. ASSIGNING TOLERATIONS TO MONITORING COMPONENTS

You can assign tolerations to any of the monitoring stack components to enable moving them to tainted

nodes.

Prerequisites

If you are configuring core OpenShift Container Platform monitoring components

o You have access to the cluster as a user with the cluster-admin cluster role.
o You have created the cluster-monitoring-config ConfigMap object.

If you are configuring components that monitor user-defined projects

27


https://docs.redhat.com/en/documentation/openshift_container_platform/4.13/html-single/nodes/#nodes-nodes-working-updating_nodes-nodes-working
https://docs.redhat.com/en/documentation/openshift_container_platform/4.13/html-single/nodes/#nodes-scheduler-node-selectors
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#nodeselector

OpenShift Container Platform 4.13 Monitoring

o You have access to the cluster as a user with the cluster-admin cluster role, or as a user
with the user-workload-monitoring-config-edit role in the openshift-user-workload-
monitoring project.

o A cluster administrator has enabled monitoring for user-defined projects.

® You have installed the OpenShift CLI (oc).

Procedure
1. Edit the ConfigMap object:

® To assign tolerations to a component that monitors core OpenShift Container Platform
projects:

a. Edit the cluster-monitoring-config ConfigMap object in the openshift-monitoring
project:

I $ oc -n openshift-monitoring edit configmap cluster-monitoring-config

b. Specify tolerations for the component:

apiVersion: vi
kind: ConfigMap
metadata:
name: cluster-monitoring-config
namespace: openshift-monitoring
data:
config.yaml: |
<component>:
tolerations:
<toleration_specification>

Substitute <component> and <toleration_specification> accordingly.

For example, oc adm taint nodes node1 key1=value1:NoSchedule adds a taint to
node1 with the key key1 and the value value1. This prevents monitoring components
from deploying pods on node1 unless a toleration is configured for that taint. The
following example configures the alertmanagerMain component to tolerate the
example taint:

apiVersion: vi
kind: ConfigMap
metadata:
name: cluster-monitoring-config
namespace: openshift-monitoring
data:
config.yaml: |
alertmanagerMain:
tolerations:
- key: "key1"
operator: "Equal”
value: "valuel"
effect: "NoSchedule"

28



CHAPTER 2. CONFIGURING THE MONITORING STACK

® To assign tolerations to a component that monitors user-defined projects

a. Edit the user-workload-monitoring-config ConfigMap object in the openshift-user-
workload-monitoring project:

$ oc -n openshift-user-workload-monitoring edit configmap user-workload-
monitoring-config

b. Specify tolerations for the component:

apiVersion: vi
kind: ConfigMap
metadata:
name: user-workload-monitoring-config
namespace: openshift-user-workload-monitoring
data:
config.yaml: |
<component>:
tolerations:
<toleration_specification>

Substitute <component> and <toleration_specification> accordingly.

For example, oc adm taint nodes node1 key1=value1:NoSchedule adds a taint to
node1 with the key key1 and the value value1. This prevents monitoring components
from deploying pods on node1 unless a toleration is configured for that taint. The
following example configures the thanosRuler component to tolerate the example
taint:

apiVersion: vi
kind: ConfigMap
metadata:
name: user-workload-monitoring-config
namespace: openshift-user-workload-monitoring
data:
config.yaml: |
thanosRuler:
tolerations:
- key: "key1"
operator: "Equal”
value: "valuel"
effect: "NoSchedule"

2. Save the file to apply the changes. The pods affected by the new configuration are
automatically redeployed.

Additional resources

® See Preparing to configure the monitoring stack for steps to create monitoring config maps
® Enabling monitoring for user-defined projects
® Sece the OpenShift Container Platform documentation on taints and tolerations

® Sce the Kubernetes documentation on taints and tolerations

29


https://docs.redhat.com/en/documentation/openshift_container_platform/4.13/html-single/nodes/#nodes-scheduler-taints-tolerations
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/

OpenShift Container Platform 4.13 Monitoring

2.9.SETTING THE BODY SIZE LIMIT FOR METRICS SCRAPING

By default, no limit exists for the uncompressed body size for data returned from scraped metrics
targets. You can set a body size limit to help avoid situations in which Prometheus consumes excessive
amounts of memory when scraped targets return a response that contains a large amount of data. In
addition, by setting a body size limit, you can reduce the impact that a malicious target might have on
Prometheus and on the cluster as a whole.

After you set a value for enforcedBodySizeLimit, the alert PrometheusScrapeBodySizeLimitHit fires
when at least one Prometheus scrape target replies with a response body larger than the configured
value.

NOTE

If metrics data scraped from a target has an uncompressed body size exceeding the
configured size limit, the scrape fails. Prometheus then considers this target to be down
and sets its up metric value to 0, which can trigger the TargetDown alert.

Prerequisites

® You have access to the cluster as a user with the cluster-admin cluster role.

® You have installed the OpenShift CLI (oc).

Procedure

1. Edit the cluster-monitoring-config ConfigMap object in the openshift-monitoring
namespace:

I $ oc -n openshift-monitoring edit configmap cluster-monitoring-config

2. Add a value for enforcedBodySizeLimit to data/config.yaml/prometheusK8s to limit the body
size that can be accepted per target scrape:

apiVersion: vi
kind: ConfigMap
metadata:
name: cluster-monitoring-config
namespace: openshift-monitoring
data:
config.yaml: |-
prometheusK8s:
enforcedBodySizeLimit: 40MB @)

ﬂ Specify the maximum body size for scraped metrics targets. This enforcedBodySizeLimit
example limits the uncompressed size per target scrape to 40 megabytes. Valid numeric
values use the Prometheus data size format: B (bytes), KB (kilobytes), MB (megabytes),
GB (gigabytes), TB (terabytes), PB (petabytes), and EB (exabytes). The default value is 0,
which specifies no limit. You can also set the value to automatic to calculate the limit
automatically based on cluster capacity.

3. Save the file to apply the changes. The new configuration is applied automatically.

Additional resotirces

30



CHAPTER 2. CONFIGURING THE MONITORING STACK

® Prometheus scrape configuration documentation

2.10. CONFIGURING A DEDICATED SERVICE MONITOR

You can configure OpenShift Container Platform core platform monitoring to use dedicated service
monitors to collect metrics for the resource metrics pipeline.

When enabled, a dedicated service monitor exposes two additional metrics from the kubelet endpoint
and sets the value of the honorTimestamps field to true.

By enabling a dedicated service monitor, you can improve the consistency of Prometheus Adapter-
based CPU usage measurements used by, for example, the oc adm top pod command or the Horizontal
Pod Autoscaler.

2.10.1. Enabling a dedicated service monitor

You can configure core platform monitoring to use a dedicated service monitor by configuring the
dedicatedServiceMonitors key in the cluster-monitoring-config ConfigMap object in the openshift-
monitoring namespace.

Prerequisites

® You have installed the OpenShift CLI (oc).
® You have access to the cluster as a user with the cluster-admin cluster role.

® You have created the cluster-monitoring-config ConfigMap object.

Procedure

1. Edit the cluster-monitoring-config ConfigMap object in the openshift-monitoring
namespace:

I $ oc -n openshift-monitoring edit configmap cluster-monitoring-config

2. Add an enabled: true key-value pair as shown in the following sample:

apiVersion: vi
kind: ConfigMap
metadata:
name: cluster-monitoring-config
namespace: openshift-monitoring
data:
config.yaml: |
k8sPrometheusAdapter:
dedicatedServiceMonitors:
enabled: true ﬂ

ﬂ Set the value of the enabled field to true to deploy a dedicated service monitor that
exposes the kubelet /metrics/resource endpoint.

3. Save the file to apply the changes automatically.

31


https://prometheus.io/docs/prometheus/latest/configuration/configuration/#scrape_config

OpenShift Container Platform 4.13 Monitoring

' WARNING
A When you save changes to a cluster-monitoring-config config map, the

pods and other resources in the openshift-monitoring project might be
redeployed. The running monitoring processes in that project might also
restart.

2.11. CONFIGURING PERSISTENT STORAGE
Run cluster monitoring with persistent storage to gain the following benefits:

® Protect your metrics and alerting data from data loss by storing them in a persistent volume
(PV). As a result, they can survive pods being restarted or recreated.

® Avoid getting duplicate notifications and losing silences for alerts when the Alertmanager pods
are restarted.

For production environments, it is highly recommended to configure persistent storage.

IMPORTANT

In multi-node clusters, you must configure persistent storage for Prometheus,
Alertmanager, and Thanos Ruler to ensure high availability.

2.11.1. Persistent storage prerequisites

e Dedicate sufficient persistent storage to ensure that the disk does not become full.

e Use Filesystem as the storage type value for the volumeMode parameter when you configure
the persistent volume.

IMPORTANT

o Do not use a raw block volume, which is described with volumeMode: Block
in the PersistentVolume resource. Prometheus cannot use raw block
volumes.

o Prometheus does not support file systems that are not POSIX compliant. For
example, some NFS file system implementations are not POSIX compliant. If
you want to use an NFS file system for storage, verify with the vendor that
their NFS implementation is fully POSIX compliant.

2.11.2. Configuring a persistent volume claim

To use a persistent volume (PV) for monitoring components, you must configure a persistent volume
claim (PVC).

Prerequisites

e If you are configuring core OpenShift Container Platform monitoring components

32



CHAPTER 2. CONFIGURING THE MONITORING STACK

o You have access to the cluster as a user with the cluster-admin cluster role.
o You have created the cluster-monitoring-config ConfigMap object.

e If you are configuring components that monitor user-defined projects

o You have access to the cluster as a user with the cluster-admin cluster role, or as a user
with the user-workload-monitoring-config-edit role in the openshift-user-workload-
monitoring project.

o A cluster administrator has enabled monitoring for user-defined projects.

® You have installed the OpenShift CLI (oc).

Procedure
1. Edit the ConfigMap object:

® To configure a PVC for a component that monitors core OpenShift Container Platform
projects:

a. Edit the cluster-monitoring-config ConfigMap object in the openshift-monitoring
project:

I $ oc -n openshift-monitoring edit configmap cluster-monitoring-config

b. Add your PVC configuration for the component under data/config.yaml:

apiVersion: vi
kind: ConfigMap
metadata:
name: cluster-monitoring-config
namespace: openshift-monitoring
data:
config.yaml: |
<component>:
volumeClaimTemplate:
spec:
storageClassName: <storage_class> 9
resources:
requests:
storage: <amount_of_storage> 6

ﬂ Specify the core monitoring component for which you want to configure the PVC.

9 Specify an existing storage class. If a storage class is not specified, the default
storage class is used.

9 Specify the amount of required storage.

See the Kubernetes documentation on PersistentVolumeClaims for information on how
to specify volumeClaimTemplate.

The following example configures a PVC that claims persistent storage for the
Prometheus instance that monitors core OpenShift Container Platform components:

33


https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims

OpenShift Container Platform 4.13 Monitoring

apiVersion: vi
kind: ConfigMap
metadata:
name: cluster-monitoring-config
namespace: openshift-monitoring
data:
config.yaml: |
prometheusK8s:
volumeClaimTemplate:
spec:
storageClassName: my-storage-class
resources:
requests:
storage: 40Gi

® To configure a PVC for a component that monitors user-defined projects

a. Edit the user-workload-monitoring-config ConfigMap object in the openshift-user-
workload-monitoring project:

$ oc -n openshift-user-workload-monitoring edit configmap user-workload-
monitoring-config

b. Add your PVC configuration for the component under data/config.yaml:

apiVersion: vi
kind: ConfigMap
metadata:
name: user-workload-monitoring-config
namespace: openshift-user-workload-monitoring
data:
config.yaml: |
<component>:
volumeClaimTemplate:
spec:
storageClassName: <storage_class> 9
resources:
requests:
storage: <amount_of_storage> 6

ﬂ Specify the component for user-defined monitoring for which you want to
configure the PVC.

9 Specify an existing storage class. If a storage class is not specified, the default
storage class is used.

9 Specify the amount of required storage.

See the Kubernetes documentation on PersistentVolumeClaims for information on how
to specify volumeClaimTemplate.

The following example configures a PVC that claims persistent storage for Thanos
Ruler:

34


https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims

CHAPTER 2. CONFIGURING THE MONITORING STACK

apiVersion: vi
kind: ConfigMap
metadata:
name: user-workload-monitoring-config
namespace: openshift-user-workload-monitoring
data:
config.yaml: |
thanosRuler:
volumeClaimTemplate:
spec:
storageClassName: my-storage-class
resources:
requests:
storage: 10Gi

NOTE
Storage requirements for the thanosRuler component depend on the

number of rules that are evaluated and how many samples each rule
generates.

2. Save the file to apply the changes. The pods affected by the new configuration are
automatically redeployed and the new storage configuration is applied.

' WARNING
A When you update the config map with a PVC configuration, the affected

StatefulSet object is recreated, resulting in a temporary service outage.

2.11.3. Resizing a persistent volume
You can resize a persistent volume (PV) for monitoring components, such as Prometheus, Thanos Ruler,

or Alertmanager. You need to manually expand a persistent volume claim (PVC), and then update the
config map in which the component is configured.

IMPORTANT

You can only expand the size of the PVC. Shrinking the storage size is not possible.

Prerequisites

® You have installed the OpenShift CLI (oc).

e If you are configuring core OpenShift Container Platform monitoring components

o You have access to the cluster as a user with the cluster-admin cluster role.

o You have created the cluster-monitoring-config ConfigMap object.

35



OpenShift Container Platform 4.13 Monitoring

o You have configured at least one PVC for core OpenShift Container Platform monitoring
components.

® If you are configuring components that monitor user-defined projects

o You have access to the cluster as a user with the cluster-admin cluster role, or as a user
with the user-workload-monitoring-config-edit role in the openshift-user-workload-
monitoring project.

o A cluster administrator has enabled monitoring for user-defined projects.

o You have configured at least one PVC for components that monitor user-defined projects.

Procedure

1. Manually expand a PVC with the updated storage request. For more information, see
"Expanding persistent volume claims (PVCs) with a file system" in Expanding persistent volumes.

2. Edit the ConfigMap object:
e If you are configuring core OpenShift Container Platform monitoring components

a. Edit the cluster-monitoring-config ConfigMap object in the openshift-monitoring
project:

I $ oc -n openshift-monitoring edit configmap cluster-monitoring-config

b. Add a new storage size for the PVC configuration for the component under
data/config.yaml:

apiVersion: vi
kind: ConfigMap
metadata:
name: cluster-monitoring-config
namespace: openshift-monitoring
data:
config.yaml: |
<component>:
volumeClaimTemplate:
spec:
resources:
requests:
storage: <amount_of_storage> g

ﬂ The component for which you want to change the storage size.

9 Specify the new size for the storage volume. It must be greater than the previous
value.

The following example sets the new PVC request to 100 gigabytes for the Prometheus
instance that monitors core OpenShift Container Platform components:

apiVersion: vi
kind: ConfigMap
metadata:

36



CHAPTER 2. CONFIGURING THE MONITORING STACK

name: cluster-monitoring-config
namespace: openshift-monitoring
data:
config.yaml: |
prometheusK8s:
volumeClaimTemplate:
spec:
resources:
requests:
storage: 100Gi

® If you are configuring components that monitor user-defined projects

NOTE

You can resize the volumes for the Thanos Ruler and for instances of
Alertmanager and Prometheus that monitor user-defined projects.

a. Edit the user-workload-monitoring-config ConfigMap object in the openshift-user-
workload-monitoring project:

$ oc -n openshift-user-workload-monitoring edit configmap user-workload-
monitoring-config

b. Update the PVC configuration for the monitoring component under data/config.yaml:

apiVersion: vi
kind: ConfigMap
metadata:
name: user-workload-monitoring-config
namespace: openshift-user-workload-monitoring
data:
config.yaml: |
<component>:
volumeClaimTemplate:
spec:
resources:
requests:
storage: <amount_of_storage> g

ﬂ The component for which you want to change the storage size.

Specify the new size for the storage volume. It must be greater than the previous
value.

The following example sets the new PVC request to 20 gigabytes for Thanos Ruler:

apiVersion: vi
kind: ConfigMap
metadata:
name: user-workload-monitoring-config
namespace: openshift-user-workload-monitoring
data:

37



OpenShift Container Platform 4.13 Monitoring

config.yaml: |
thanosRuler:
volumeClaimTemplate:
spec:
resources:
requests:
storage: 20Gi

NOTE

Storage requirements for the thanosRuler component depend on the
number of rules that are evaluated and how many samples each rule
generates.

3. Save the file to apply the changes. The pods affected by the new configuration are
automatically redeployed.

' WARNING
A When you update the config map with a new storage size, the affected

StatefulSet object is recreated, resulting in a temporary service outage.

Additional resources

® Prometheus database storage requirements

® Expanding persistent volume claims (PVCs) with a file system

2.11.4. Modifying the retention time and size for Prometheus metrics data
By default, Prometheus retains metrics data for the following durations:

® Core platform monitoring: 15 days

® Monitoring for user-defined projects 24 hours

You can modify the retention time for Prometheus to change how soon the data is deleted. You can
also set the maximum amount of disk space the retained metrics data uses. If the data reaches this size
limit, Prometheus deletes the oldest data first until the disk space used is again below the limit.

Note the following behaviors of these data retention settings:

® The size-based retention policy applies to all data block directories in the /prometheus
directory, including persistent blocks, write-ahead log (WAL) data, and m-mapped chunks.

® Datain the /wal and /head_chunks directories counts toward the retention size limit, but
Prometheus never purges data from these directories based on size- or time-based retention
policies. Thus, if you set a retention size limit lower than the maximum size set for the /wal and
/head_chunks directories, you have configured the system not to retain any data blocks in the
/prometheus data directories.

38


https://docs.redhat.com/en/documentation/openshift_container_platform/4.13/html-single/scalability_and_performance/#prometheus-database-storage-requirements_recommended-infrastructure-practices
https://docs.redhat.com/en/documentation/openshift_container_platform/4.13/html-single/storage/#expanding-pvc-filesystem_expanding-persistent-volumes

CHAPTER 2. CONFIGURING THE MONITORING STACK

® The size-based retention policy is applied only when Prometheus cuts a new data block, which
occurs every two hours after the WAL contains at least three hours of data.

e |f you do not explicitly define values for either retention or retentionSize, retention time
defaults to 15 days for core platform monitoring and 24 hours for user-defined project
monitoring. Retention size is not set.

e |f you define values for both retention and retentionSize, both values apply. If any data blocks
exceed the defined retention time or the defined size limit, Prometheus purges these data
blocks.

e |f you define a value for retentionSize and do not define retention, only the retentionSize value
applies.

e [fyou do not define a value for retentionSize and only define a value for retention, only the
retention value applies.

e |f you set the retentionSize or retention value to 0, the default settings apply. The default
settings set retention time to 15 days for core platform monitoring and 24 hours for user-
defined project monitoring. By default, retention size is not set.

NOTE

Data compaction occurs every two hours. Therefore, a persistent volume (PV) might fill
up before compaction, potentially exceeding the retentionSize limit. In such cases, the
KubePersistentVolumeFillingUp alert fires until the space on a PV is lower than the
retentionSize limit.

Prerequisites
e If you are configuring core OpenShift Container Platform monitoring components
© You have access to the cluster as a user with the cluster-admin cluster role.
o You have created the cluster-monitoring-config ConfigMap object.

® If you are configuring components that monitor user-defined projects

o You have access to the cluster as a user with the cluster-admin cluster role, or as a user
with the user-workload-monitoring-config-edit role in the openshift-user-workload-
monitoring project.

o A cluster administrator has enabled monitoring for user-defined projects.

® You have installed the OpenShift CLI (oc).

Procedure
1. Edit the ConfigMap object:

® To modify the retention time and size for the Prometheus instance that monitors core
OpenShift Container Platform projects:

a. Edit the cluster-monitoring-config ConfigMap object in the openshift-monitoring
project:

I $ oc -n openshift-monitoring edit configmap cluster-monitoring-config

39



OpenShift Container Platform 4.13 Monitoring

b. Add the retention time and size configuration under data/config.yami:

apiVersion: vi
kind: ConfigMap
metadata:
name: cluster-monitoring-config
namespace: openshift-monitoring
data:
config.yaml: |
prometheusK8s:
retention: <time_specification> ﬂ
retentionSize: <size_specification> g

ﬂ The retention time: a number directly followed by ms (milliseconds), s (seconds),
m (minutes), h (hours), d (days), w (weeks), or y (years). You can also combine
time values for specific times, such as Th30m15s.

9 The retention size: a number directly followed by B (bytes), KB (kilobytes), MB
(megabytes), GB (gigabytes), TB (terabytes), PB (petabytes), and EB (exabytes).

The following example sets the retention time to 24 hours and the retention size to 10

gigabytes for the Prometheus instance that monitors core OpenShift Container
Platform components:

apiVersion: vi
kind: ConfigMap
metadata:
name: cluster-monitoring-config
namespace: openshift-monitoring
data:
config.yaml: |
prometheusK8s:
retention: 24h
retentionSize: 10GB

® To modify the retention time and size for the Prometheus instance that monitors user-
defined projects:

a. Edit the user-workload-monitoring-config ConfigMap object in the openshift-user-
workload-monitoring project:

$ oc -n openshift-user-workload-monitoring edit configmap user-workload-
monitoring-config

b. Add the retention time and size configuration under data/config.yami:

apiVersion: vi
kind: ConfigMap
metadata:
name: user-workload-monitoring-config
namespace: openshift-user-workload-monitoring
data:
config.yaml: |

40



CHAPTER 2. CONFIGURING THE MONITORING STACK

prometheus:
retention: <time_specification> ﬂ
retentionSize: <size_specification> g

ﬂ The retention time: a number directly followed by ms (milliseconds), s (seconds),
m (minutes), h (hours), d (days), w (weeks), or y (years). You can also combine
time values for specific times, such as 1Th30m15s.

9 The retention size: a number directly followed by B (bytes), KB (kilobytes), MB
(megabytes), GB (gigabytes), TB (terabytes), PB (petabytes), or EB (exabytes).

The following example sets the retention time to 24 hours and the retention size to 10
gigabytes for the Prometheus instance that monitors user-defined projects:

apiVersion: vi
kind: ConfigMap
metadata:
name: user-workload-monitoring-config
namespace: openshift-user-workload-monitoring
data:
config.yaml: |
prometheus:
retention: 24h
retentionSize: 10GB

2. Save the file to apply the changes. The pods affected by the new configuration are
automatically redeployed.

2.11.5. Modifying the retention time for Thanos Ruler metrics data

By default, for user-defined projects, Thanos Ruler automatically retains metrics data for 24 hours. You
can modify the retention time to change how long this data is retained by specifying a time value in the
user-workload-monitoring-config config map in the openshift-user-workload-monitoring
namespace.

Prerequisites
® You have access to the cluster as a user with the cluster-admin cluster role or as a user with the
user-workload-monitoring-config-edit role in the openshift-user-workload-monitoring
project.

® A cluster administrator has enabled monitoring for user-defined projects.

® You have installed the OpenShift CLI (oc).

Procedure

1. Edit the user-workload-monitoring-config ConfigMap object in the openshift-user-
workload-monitoring project:

I $ oc -n openshift-user-workload-monitoring edit configmap user-workload-monitoring-config

2. Add the retention time configuration under data/config.yaml:

41



OpenShift Container Platform 4.13 Monitoring

apiVersion: vi
kind: ConfigMap
metadata:

name: user-workload-monitoring-config

namespace: openshift-user-workload-monitoring
data:

config.yaml: |

thanosRuler:
retention: <time_specification> ﬂ

Specify the retention time in the following format: a number directly followed by ms
(milliseconds), s (seconds), m (minutes), h (hours), d (days), w (weeks), or y (years). You
can also combine time values for specific times, such as Th30m15s. The default is 24h.

The following example sets the retention time to 10 days for Thanos Ruler data:

apiVersion: vi
kind: ConfigMap
metadata:

name: user-workload-monitoring-config

namespace: openshift-user-workload-monitoring
data:

config.yaml: |

thanosRuler:
retention: 10d

3. Save the file to apply the changes. The pods affected by the new configuration are
automatically redeployed.

Additional resources

® Creating a cluster monitoring config map

® Prometheus database storage requirements

® Recommended configurable storage technology
® Understanding persistent storage

® Optimizing storage

Enabling monitoring for user-defined projects

2.12. CONFIGURING REMOTE WRITE STORAGE

You can configure remote write storage to enable Prometheus to send ingested metrics to remote
systems for long-term storage. Doing so has no impact on how or for how long Prometheus stores
metrics.

Prerequisites
e If you are configuring core OpenShift Container Platform monitoring components:

o You have access to the cluster as a user with the cluster-admin cluster role.

42


https://docs.redhat.com/en/documentation/openshift_container_platform/4.13/html-single/scalability_and_performance/#prometheus-database-storage-requirements_cluster-monitoring-operator
https://docs.redhat.com/en/documentation/openshift_container_platform/4.13/html-single/scalability_and_performance/#optimizing-storage
https://docs.redhat.com/en/documentation/openshift_container_platform/4.13/html-single/storage/#understanding-persistent-storage
https://docs.redhat.com/en/documentation/openshift_container_platform/4.13/html-single/scalability_and_performance/#optimizing-storage

CHAPTER 2. CONFIGURING THE MONITORING STACK

o You have created the cluster-monitoring-config ConfigMap object.

® If you are configuring components that monitor user-defined projects:

o You have access to the cluster as a user with the cluster-admin cluster role or as a user
with the user-workload-monitoring-config-edit role in the openshift-user-workload-
monitoring project.

o A cluster administrator has enabled monitoring for user-defined projects.
® You have installed the OpenShift CLI (oc).

® You have set up a remote write compatible endpoint (such as Thanos) and know the endpoint
URL. See the Prometheus remote endpoints and storage documentation for information about
endpoints that are compatible with the remote write feature.

IMPORTANT

Red Hat only provides information for configuring remote write senders and does
not offer guidance on configuring receiver endpoints. Customers are responsible
for setting up their own endpoints that are remote-write compatible. Issues with

endpoint receiver configurations are not included in Red Hat production support.

® You have set up authentication credentials in a Secret object for the remote write endpoint.
You must create the secret in the same namespace as the Prometheus object for which you
configure remote write: the openshift-monitoring namespace for default platform monitoring
or the openshift-user-workload-monitoring namespace for user workload monitoring.

' WARNING
A To reduce security risks, use HTTPS and authentication to send metrics to

an endpoint.

Procedure
1. Edit the ConfigMap object:

® To configure remote write for the Prometheus instance that monitors core OpenShift
Container Platform projects:

a. Edit the cluster-monitoring-config ConfigMap object in the openshift-monitoring
project:

I $ oc -n openshift-monitoring edit configmap cluster-monitoring-config

b. Add a remoteWrite: section under data/config.yaml/prometheusK8s.

c. Add an endpoint URL and authentication credentials in this section:

apiVersion: vi
kind: ConfigMap

43


https://prometheus.io/docs/operating/integrations/#remote-endpoints-and-storage

OpenShift Container Platform 4.13 Monitoring

metadata:
name: cluster-monitoring-config
namespace: openshift-monitoring
data:
config.yaml: |
prometheusK8s:
remoteWrite:
- url: "https://remote-write-endpoint.example.com” ﬂ

<endpoint_authentication_credentials> g

The URL of the remote write endpoint.

®9

The authentication method and credentials for the endpoint. Currently supported
authentication methods are AWS Signature Version 4, authentication using HTTP
in an Authorization request header, Basic authentication, OAuth 2.0, and TLS
client. See Supported remote write authentication settings for sample
configurations of supported authentication methods.

d. Add write relabel configuration values after the authentication credentials:

apiVersion: vi
kind: ConfigMap
metadata:
name: cluster-monitoring-config
namespace: openshift-monitoring
data:
config.yaml: |
prometheusK8s:
remoteWrite:
- url: "https://remote-write-endpoint.example.com”
<endpoint_authentication_credentials>
<your_write_relabel_configs> ﬂ

ﬂ The write relabel configuration settings.

For <your_write_relabel_configs> substitute a list of write relabel configurations for
metrics that you want to send to the remote endpoint.

The following sample shows how to forward a single metric called my_metric:

apiVersion: vi
kind: ConfigMap
metadata:
name: cluster-monitoring-config
namespace: openshift-monitoring
data:
config.yaml: |
prometheusK8s:
remoteWrite:
- url: "https://remote-write-endpoint.example.com”
writeRelabelConfigs:
- sourcelabels: [ _name__]
regex: 'my_metric'
action: keep

44



CHAPTER 2. CONFIGURING THE MONITORING STACK

See the Prometheus relabel_config documentation for information about write relabel
configuration options.

® To configure remote write for the Prometheus instance that monitors user-defined
projects:

a. Edit the user-workload-monitoring-config ConfigMap object in the openshift-user-
workload-monitoring project:

$ oc -n openshift-user-workload-monitoring edit configmap user-workload-
monitoring-config

b. Add a remoteWrite: section under data/config.yaml/prometheus.

c. Add an endpoint URL and authentication credentials in this section:

apiVersion: vi
kind: ConfigMap
metadata:
name: user-workload-monitoring-config
namespace: openshift-user-workload-monitoring
data:
config.yaml: |
prometheus:
remoteWrite:
- url: "https://remote-write-endpoint.example.com” ﬂ
<endpoint_authentication_credentials>

ﬂ The URL of the remote write endpoint.

9 The authentication method and credentials for the endpoint. Currently supported
authentication methods are AWS Signature Version 4, authentication using HTTP
an Authorization request header, basic authentication, OAuth 2.0, and TLS client.
See Supported remote write authentication settings below for sample
configurations of supported authentication methods.

d. Add write relabel configuration values after the authentication credentials:

apiVersion: vi
kind: ConfigMap
metadata:
name: user-workload-monitoring-config
namespace: openshift-user-workload-monitoring
data:
config.yaml: |
prometheus:
remoteWrite:
- url: "https://remote-write-endpoint.example.com”
<endpoint_authentication_credentials>
<your_write_relabel_configs> ﬂ

ﬂ The write relabel configuration settings.

45


https://prometheus.io/docs/prometheus/latest/configuration/configuration/#relabel_config

OpenShift Container Platform 4.13 Monitoring

For <your_write_relabel_configs> substitute a list of write relabel configurations for
metrics that you want to send to the remote endpoint.

The following sample shows how to forward a single metric called my_metric:

apiVersion: vi
kind: ConfigMap
metadata:
name: user-workload-monitoring-config
namespace: openshift-user-workload-monitoring
data:
config.yaml: |
prometheus:
remoteWrite:
- url: "https://remote-write-endpoint.example.com”
writeRelabelConfigs:
- sourcelabels: [ _name__]
regex: 'my_metric'
action: keep

See the Prometheus relabel_config documentation for information about write relabel
configuration options.

2. Save the file to apply the changes. The new configuration is applied automatically.

2.12.1. Supported remote write authentication settings

You can use different methods to authenticate with a remote write endpoint. Currently supported
authentication methods are AWS Signature Version 4, basic authentication, authorization, OAuth 2.0,
and TLS client. The following table provides details about supported authentication methods for use
with remote write.

Authentication method Config map field Description

AWS Signature Version 4 sigv4 This method uses AWS Signature
Version 4 authentication to sign
requests. You cannot use this
method simultaneously with
authorization, OAuth 2.0, or Basic
authentication.

Basic authentication basicAuth Basic authentication sets the
authorization header on every
remote write request with the
configured username and
password.

authorization authorization Authorization sets the
Authorization header on every
remote write request using the
configured token.

46


https://prometheus.io/docs/prometheus/latest/configuration/configuration/#relabel_config

CHAPTER 2. CONFIGURING THE MONITORING STACK

Authentication method Config map field Description

OAuth 2.0 oauth2 An OAuth 2.0 configuration uses
the client credentials grant type.
Prometheus fetches an access
token from tokenUrl with the
specified client ID and client
secret to access the remote write
endpoint. You cannot use this
method simultaneously with
authorization, AWS Signature
Version 4, or Basic authentication.

TLS client tisConfig ATLS client configuration
specifies the CA certificate, the
client certificate, and the client
key file information used to
authenticate with the remote
write endpoint server using TLS.
The sample configuration
assumes that you have already
created a CA certificate file, a
client certificate file, and a client
key file.

2.12.2. Example remote write authentication settings

The following samples show different authentication settings you can use to connect to a remote write
endpoint. Each sample also shows how to configure a corresponding Secret object that contains
authentication credentials and other relevant settings. Each sample configures authentication for use
with default platform monitoring in the openshift-monitoring namespace.

Example 2.1. Sample YAML for AWS Signature Version 4 authentication

The following shows the settings for a sigv4 secret named sigv4-credentials in the openshift-
monitoring namespace.

apiVersion: vi
kind: Secret
metadata:
name: sigv4-credentials
namespace: openshift-monitoring
stringData:
accessKey: <AWS_access_key> ﬂ
secretKey: <AWS_secret_key>
type: Opaque

ﬂ The AWS APl access key.

9 The AWS APl secret key.

47



OpenShift Container Platform 4.13 Monitoring

The following shows sample AWS Signature Version 4 remote write authentication settings that use
a Secret object named sigv4-credentials in the openshift-monitoring namespace:

apiVersion: vi
kind: ConfigMap
metadata:
name: cluster-monitoring-config
namespace: openshift-monitoring
data:
config.yaml: |
prometheusK8s:
remoteWrite:
- url: "https://authorization.example.com/api/write"
sigv4:
region: <AWS_region> ﬂ
accessKey:
name: sigv4-credentials 9
key: accessKey
secretKey:
name: sigv4-credentials ﬂ
key: secretKey
profile: <AWS_ profile_name> G
roleArn: <AWS role_arn> a

Q The AWS region.

wThe name of the Secret object containing the AWS API access credentials.
9 The key that contains the AWS APl access key in the specified Secret object.
g The key that contains the AWS APl secret key in the specified Secret object.
6 The name of the AWS profile that is being used to authenticate.

Q The unique identifier for the Amazon Resource Name (ARN) assigned to your role.

Example 2.2. Sample YAML for basic authentication

The following shows sample basic authentication settings for a Secret object named rw-basic-auth
in the openshift-monitoring namespace:

apiVersion: vi
kind: Secret
metadata:
name: rw-basic-auth
namespace: openshift-monitoring
stringData:
user: <basic_username> ﬂ
password: <basic_password> g
type: Opaque

ﬂ The username.

48



CHAPTER 2. CONFIGURING THE MONITORING STACK
9 The password.

The following sample shows a basicAuth remote write configuration that uses a Secret object
named rw-basic-auth in the openshift-monitoring namespace. It assumes that you have already set
up authentication credentials for the endpoint.

apiVersion: vi
kind: ConfigMap
metadata:
name: cluster-monitoring-config
namespace: openshift-monitoring
data:
config.yaml: |
prometheusK8s:
remoteWrite:
- url: "https://basicauth.example.com/api/write"
basicAuth:
username:
name: rw-basic-auth ﬂ
key: userg
password:
name: rw-basic-auth 6

key: password ﬂ

wThe name of the Secret object that contains the authentication credentials.
9 The key that contains the username in the specified Secret object.

Q The key that contains the password in the specified Secret object.

Example 2.3. Sample YAML for authentication with a bearer token using &Secret Object

The following shows bearer token settings for a Secret object named rw-bearer-auth in the
openshift-monitoring namespace:

apiVersion: vi
kind: Secret
metadata:
name: rw-bearer-auth
namespace: openshift-monitoring
stringData:
token: <authentication_token> ﬂ
type: Opaque

ﬂ The authentication token.

The following shows sample bearer token config map settings that use a Secret object named rw-
bearer-auth in the openshift-monitoring namespace:

apiVersion: vi
kind: ConfigMap

49



OpenShift Container Platform 4.13 Monitoring

metadata:
name: cluster-monitoring-config
namespace: openshift-monitoring
data:
config.yaml: |
enableUserWorkload: true
prometheusK8s:
remoteWrite:
- url: "https://authorization.example.com/api/write"
authorization:
type: Bearer ﬂ
credentials:
name: rw-bearer-auth 9

key: token 6
ﬂ The authentication type of the request. The default value is Bearer.
9 The name of the Secret object that contains the authentication credentials.

9 The key that contains the authentication token in the specified Secret object.

Example 2.4. Sample YAML for OAuth 2.0 authentication

The following shows sample OAuth 2.0 settings for a Secret object named oauth2-credentials in
the openshift-monitoring namespace:

apiVersion: vi
kind: Secret
metadata:
name: oauth2-credentials
namespace: openshift-monitoring
stringData:
id: <oauth2_id> ﬂ
secret: <oauth2_secret> g
type: Opaque

Q The Oauth 2.0 ID.

9 The OAuth 2.0 secret.

The following shows an oauth2 remote write authentication sample configuration that uses a Secret
object named oauth2-credentials in the openshift-monitoring namespace:

apiVersion: vi
kind: ConfigMap
metadata:

name: cluster-monitoring-config

namespace: openshift-monitoring
data:

config.yaml: |

prometheusK8s:
remoteWrite:

50



CHAPTER 2. CONFIGURING THE MONITORING STACK

- url: "https://test.example.com/api/write"
oauth2:
clientld:
secret:
name: oauth2-credentials ﬂ
key: id @
clientSecret:
name: oauth2-credentials 6
key: secret ﬂ
tokenUrl: https://example.com/oauth2/token 6
scopes:
- <scope_1>
- <scope_2>
endpointParams: ﬂ
parami: <parameter_1>
param2: <parameter_2>

The name of the corresponding Secret object. Note that Clientld can alternatively refer to a
ConfigMap object, although clientSecret must refer to a Secret object.

wThe key that contains the OAuth 2.0 credentials in the specified Secret object.
a The URL used to fetch a token with the specified clientld and clientSecret.

6 The OAuth 2.0 scopes for the authorization request. These scopes limit what data the tokens
can access.

Q The OAuth 2.0 authorization request parameters required for the authorization server.

Example 2.5. Sample YAML for TLS client authentication

The following shows sample TLS client settings for a tls Secret object named mtls-bundle in the
openshift-monitoring namespace.

apiVersion: vi
kind: Secret
metadata:
name: mtls-bundle
namespace: openshift-monitoring
data:

ca.crt: <ca_cert> ﬂ

client.crt: <client_cert> 9

client.key: <client_key> e
type: tls

ﬂ The CA certificate in the Prometheus container with which to validate the server certificate.

9 The client certificate for authentication with the server.

9 The client key.

51



OpenShift Container Platform 4.13 Monitoring

The following sample shows a tlsConfig remote write authentication configuration that uses a TLS
Secret object named mtls-bundile.

apiVersion: vi
kind: ConfigMap
metadata:
name: cluster-monitoring-config
namespace: openshift-monitoring
data:
config.yaml: |
prometheusK8s:
remoteWrite:
- url: "https://remote-write-endpoint.example.com”
tIsConfig:
ca:
secret:
name: mtls-bundle ﬂ
key: ca.crt 9
cert:
secret:
name: mtls-bundle 6

key: client.crt ﬂ
keySecret:

name: mtls-bundle 9
key: client.key G

iThe name of the corresponding Secret object that contains the TLS authentication
credentials. Note that ca and cert can alternatively refer to a ConfigMap object, though
keySecret must refer to a Secret object.
9 The key in the specified Secret object that contains the CA certificate for the endpoint.
Q The key in the specified Secret object that contains the client certificate for the endpoint.

6 The key in the specified Secret object that contains the client key secret.

Additional resources

® See Setting up remote write compatible endpoints for steps to create a remote write
compatible endpoint (such as Thanos).

® See Tuning remote write settings for information about how to optimize remote write settings
for different use cases.

® See Understanding secrets for steps to create and configure Secret objects in OpenShift
Container Platform.

® Sce the Prometheus REST API reference for remote write for information about additional
optional fields.

2.13. ADDING CLUSTERID LABELS TO METRICS

52


https://prometheus.io/docs/operating/integrations/#remote-endpoints-and-storage
https://prometheus.io/docs/practices/remote_write/#remote-write-tuning
https://docs.redhat.com/en/documentation/openshift_container_platform/4.13/html-single/nodes/#nodes-pods-secrets-about_nodes-pods-secrets
https://docs.redhat.com/en/documentation/openshift_container_platform/4.13/html-single/api_reference/#spec-remotewrite-2

CHAPTER 2. CONFIGURING THE MONITORING STACK

If you manage multiple OpenShift Container Platform clusters and use the remote write feature to send
metrics data from these clusters to an external storage location, you can add cluster ID labels to identify
the metrics data coming from different clusters. You can then query these labels to identify the source
cluster for a metric and distinguish that data from similar metrics data sent by other clusters.

This way, if you manage many clusters for multiple customers and send metrics data to a single
centralized storage system, you can use cluster ID labels to query metrics for a particular cluster or
customer.

Creating and using cluster ID labels involves three general steps:
® Configuring the write relabel settings for remote write storage.
® Adding cluster ID labels to the metrics.

® Querying these labels to identify the source cluster or customer for a metric.

2.13.1. Creating cluster ID labels for metrics

You can create cluster ID labels for metrics for default platform monitoring and for user workload
monitoring.

For default platform monitoring, you add cluster ID labels for metrics in the write_relabel settings for
remote write storage in the cluster-monitoring-config config map in the openshift-monitoring
namespace.

For user workload monitoring, you edit the settings in the user-workload-monitoring-config config
map in the openshift-user-workload-monitoring namespace.

NOTE

When Prometheus scrapes user workload targets that expose a hamespace label, the
system stores this label as exported_namespace. This behavior ensures that the final
namespace label value is equal to the namespace of the target pod. You cannot override
this default configuration by setting the value of the honorLabels field to true for
PodMonitor or ServiceMonitor objects.

Prerequisites
® If you are configuring default platform monitoring components:
© You have access to the cluster as a user with the cluster-admin cluster role.
o You have created the cluster-monitoring-config ConfigMap object.
® If you are configuring components that monitor user-defined projects:

o You have access to the cluster as a user with the cluster-admin cluster role or as a user
with the user-workload-monitoring-config-edit role in the openshift-user-workload-
monitoring project.

o A cluster administrator has enabled monitoring for user-defined projects.

® You have installed the OpenShift CLI (oc).

® You have configured remote write storage.

53



OpenShift Container Platform 4.13 Monitoring

Procedure
1. Edit the ConfigMap object:
® To create cluster ID labels for core OpenShift Container Platform metrics:

a. Edit the cluster-monitoring-config ConfigMap object in the openshift-monitoring
project:

I $ oc -n openshift-monitoring edit configmap cluster-monitoring-config

b. In the writeRelabelConfigs: section under

data/config.yaml/prometheusK8s/remoteWrite, add cluster ID relabel configuration
values:

apiVersion: vi
kind: ConfigMap
metadata:
name: cluster-monitoring-config
namespace: openshift-monitoring
data:
config.yaml: |
prometheusK8s:
remoteWrite:
- url: "https://remote-write-endpoint.example.com”
<endpoint_authentication_credentials>
writeRelabelConfigs: ﬂ

- <relabel_config>

ﬂ Add a list of write relabel configurations for metrics that you want to send to the
remote endpoint.

9 Substitute the label configuration for the metrics sent to the remote write
endpoint.

The following sample shows how to forward a metric with the cluster ID label cluster_id
in default platform monitoring:

apiVersion: vi
kind: ConfigMap
metadata:
name: cluster-monitoring-config
namespace: openshift-monitoring
data:
config.yaml: |
prometheusK8s:
remoteWrite:
- url: "https://remote-write-endpoint.example.com”
writeRelabelConfigs:
- sourcelabels:
- _ tmp_openshift_cluster_id___ ﬂ
targetLabel: cluster_id 9
action: replace

54



CHAPTER 2. CONFIGURING THE MONITORING STACK

ﬂ The system initially applies a temporary cluster ID source label named
__tmp_openshift_cluster_id__. This temporary label gets replaced by the cluster

9 Specify the name of the cluster ID label for metrics sent to remote write storage. If
you use a label name that already exists for a metric, that value is overwritten with
the name of this cluster ID label. For the label name, do not use
__tmp_openshift_cluster_id__. The final relabeling step removes labels that use
this name.

9 The replace write relabel action replaces the temporary label with the target label
for outgoing metrics. This action is the default and is applied if no action is
specified.

® To create cluster ID labels for user-defined project metrics:

a. Edit the user-workload-monitoring-config ConfigMap object in the openshift-user-
workload-monitoring project:

$ oc -n openshift-user-workload-monitoring edit configmap user-workload-
monitoring-config

b. In the writeRelabelConfigs: section under
data/config.yaml/prometheus/remoteWrite, add cluster ID relabel configuration
values:

apiVersion: vi
kind: ConfigMap
metadata:
name: user-workload-monitoring-config
namespace: openshift-user-workload-monitoring
data:
config.yaml: |
prometheus:
remoteWrite:
- url: "https://remote-write-endpoint.example.com”
<endpoint_authentication_credentials>
writeRelabelConfigs: ﬂ

- <relabel_config>

ﬂ Add a list of write relabel configurations for metrics that you want to send to the
remote endpoint.

9 Substitute the label configuration for the metrics sent to the remote write
endpoint.

The following sample shows how to forward a metric with the cluster ID label cluster_id
in user-workload monitoring:

apiVersion: vi
kind: ConfigMap
metadata:
name: user-workload-monitoring-config
namespace: openshift-user-workload-monitoring
data:

55



OpenShift Container Platform 4.13 Monitoring

2]

©

config.yaml: |
prometheus:
remoteWrite:
- url: "https://remote-write-endpoint.example.com”
writeRelabelConfigs:
- sourcelabels:
- _ tmp_openshift_cluster_id__ ﬂ
targetLabel: cluster_id 9
action: replace

The system initially applies a temporary cluster ID source label named
__tmp_openshift_cluster_id__. This temporary label gets replaced by the cluster
ID label name that you specify.

Specify the name of the cluster ID label for metrics sent to remote write storage. If
you use a label name that already exists for a metric, that value is overwritten with
the name of this cluster ID label. For the label name, do not use
__tmp_openshift_cluster_id__. The final relabeling step removes labels that use
this name.

The replace write relabel action replaces the temporary label with the target label
for outgoing metrics. This action is the default and is applied if no action is
specified.

2. Save the file to apply the changes. The new configuration is applied automatically.

Additional resources

® For details about write relabel configuration, see Configuring remote write storage.

e Forinformation about how to get your cluster ID, see Obtaining your cluster ID.

2.14. CONFIGURING METRICS COLLECTION PROFILES

IMPORTANT

Using a metrics collection profile is a Technology Preview feature only. Technology
Preview features are not supported with Red Hat production service level agreements
(SLAs) and might not be functionally complete. Red Hat does not recommend using
them in production. These features provide early access to upcoming product features,
enabling customers to test functionality and provide feedback during the development
process.

For more information about the support scope of Red Hat Technology Preview features,
see https://access.redhat.com/support/offerings/techpreview.

By default, Prometheus collects metrics exposed by all default metrics targets in OpenShift Container
Platform components. However, you might want Prometheus to collect fewer metrics from a cluster in
certain scenarios:

56

If cluster administrators require only alert, telemetry, and console metrics and do not require
other metrics to be available.


https://docs.redhat.com/en/documentation/openshift_container_platform/4.13/html-single/support/#support-get-cluster-id_gathering-cluster-data
https://access.redhat.com/support/offerings/techpreview

CHAPTER 2. CONFIGURING THE MONITORING STACK

® |f aclusterincreases in size, and the increased size of the default metrics data collected now
requires a significant increase in CPU and memory resources.

You can use a metrics collection profile to collect either the default amount of metrics data or a minimal
amount of metrics data. When you collect minimal metrics data, basic monitoring features such as
alerting continue to work. At the same time, the CPU and memory resources required by Prometheus
decrease.

2.14.1. About metrics collection profiles

You can enable one of two metrics collection profiles:

e full: Prometheus collects metrics data exposed by all platform components. This setting is the
default.

® minimal: Prometheus collects only the metrics data required for platform alerts, recording rules,
telemetry, and console dashboards.
2.14.2. Choosing a metrics collection profile

To choose a metrics collection profile for core OpenShift Container Platform monitoring components,
edit the cluster-monitoring-config ConfigMap object.
Prerequisites

® You have installed the OpenShift CLI (oc).

® You have enabled Technology Preview features by using the FeatureGate custom resource
(CR).

® You have created the cluster-monitoring-config ConfigMap object.

® You have access to the cluster as a user with the cluster-admin cluster role.

Procedure

1. Edit the cluster-monitoring-config ConfigMap object in the openshift-monitoring project:

I $ oc -n openshift-monitoring edit configmap cluster-monitoring-config

2. Add the metrics collection profile setting under data/config.yaml/prometheusK8s:

apiVersion: vi
kind: ConfigMap
metadata:

name: cluster-monitoring-config

namespace: openshift-monitoring
data:

config.yaml: |

prometheusK8s:
collectionProfile: <metrics_collection_profile_name> ﬂ

The name of the metrics collection profile. The available values are full or minimal. If you
do not specify a value or if the collectionProfile key name does not exist in the config
map, the default setting of full is used.

57



OpenShift Container Platform 4.13 Monitoring

The following example sets the metrics collection profile to minimal for the core platform
instance of Prometheus:

apiVersion: vi
kind: ConfigMap
metadata:
name: cluster-monitoring-config
namespace: openshift-monitoring
data:
config.yaml: |
prometheusK8s:
collectionProfile: minimal

3. Save the file to apply the changes. The new configuration is applied automatically.

Additional resources

® See Viewing a list of available metrics for steps to view a list of metrics being collected for a
cluster.

® See Enabling features using feature gates for steps to enable Technology Preview features.

2.15. CONTROLLING THE IMPACT OF UNBOUND METRICS
ATTRIBUTES IN USER-DEFINED PROJECTS

Developers can create labels to define attributes for metrics in the form of key-value pairs. The number
of potential key-value pairs corresponds to the number of possible values for an attribute. An attribute
that has an unlimited number of potential values is called an unbound attribute. For example, a
customer_id attribute is unbound because it has an infinite number of possible values.

Every assigned key-value pair has a unique time series. The use of many unbound attributes in labels
can result in an exponential increase in the number of time series created. This can impact Prometheus
performance and can consume a lot of disk space.

Cluster administrators can use the following measures to control the impact of unbound metrics
attributes in user-defined projects:

® Limit the number of samples that can be accepted per target scrape in user-defined projects
® Limit the number of scraped labels, the length of label names, and the length of label values

® Create alerts that fire when a scrape sample threshold is reached or when the target cannot be
scraped

NOTE

Limiting scrape samples can help prevent the issues caused by adding many unbound
attributes to labels. Developers can also prevent the underlying cause by limiting the
number of unbound attributes that they define for metrics. Using attributes that are
bound to a limited set of possible values reduces the number of potential key-value pair
combinations.

2.15.1. Setting scrape sample and label limits for user-defined projects

58


https://docs.redhat.com/en/documentation/openshift_container_platform/4.13/html-single/nodes/#enabling-features-using-featuregates

CHAPTER 2. CONFIGURING THE MONITORING STACK

You can limit the number of samples that can be accepted per target scrape in user-defined projects.
You can also limit the number of scraped labels, the length of label names, and the length of label
values.

' WARNING
A If you set sample or label limits, no further sample data is ingested for that target

scrape after the limit is reached.

Prerequisites

® You have access to the cluster as a user with the cluster-admin cluster role, or as a user with
the user-workload-monitoring-config-edit role in the openshift-user-workload-monitoring
project.

® A cluster administrator has enabled monitoring for user-defined projects.

® You have installed the OpenShift CLI (oc).

Procedure

1. Edit the user-workload-monitoring-config ConfigMap object in the openshift-user-
workload-monitoring project:

I $ oc -n openshift-user-workload-monitoring edit configmap user-workload-monitoring-config

2. Add the enforcedSampleLimit configuration to data/config.yaml to limit the number of
samples that can be accepted per target scrape in user-defined projects:

apiVersion: vi
kind: ConfigMap
metadata:

name: user-workload-monitoring-config

namespace: openshift-user-workload-monitoring
data:

config.yaml: |

prometheus:
enforcedSampleLimit: 50000 ﬂ

A value is required if this parameter is specified. This enforcedSampleLimit example limits
the number of samples that can be accepted per target scrape in user-defined projects to
50,000.

3. Add the enforcedLabelLimit, enforcedLabelNameLengthLimit, and
enforcedLabelValueLengthLimit configurations to data/config.yaml to limit the number of
scraped labels, the length of label names, and the length of label values in user-defined
projects:

I apiVersion: v1

59



OpenShift Container Platform 4.13 Monitoring

kind: ConfigMap
metadata:
name: user-workload-monitoring-config
namespace: openshift-user-workload-monitoring
data:
config.yaml: |
prometheus:
enforcedLabelLimit: 500 )
enforcedLabelNameLengthLimit: 50 g

enforcedLabelValueLengthLimit: 600 €)

ﬂ Specifies the maximum number of labels per scrape. The default value is 0, which specifies

no limit.

9 Specifies the maximum length in characters of a label name. The default value is 0, which

specifies no limit.

9 Specifies the maximum length in characters of a label value. The default value is 0, which

specifies no limit.

4. Save the file to apply the changes. The limits are applied automatically.

2.15.2. Creating scrape sample alerts

You can create alerts that notify you when:

® The target cannot be scraped or is not available for the specified for duration

® A scrape sample threshold is reached or is exceeded for the specified for duration

Prerequisites

® You have access to the cluster as a user with the cluster-admin cluster role, or as a user with
the user-workload-monitoring-config-edit role in the openshift-user-workload-monitoring

project.

® A cluster administrator has enabled monitoring for user-defined projects.

® You have limited the number of samples that can be accepted per target scrape in user-defined

projects, by using enforcedSampleLimit.

® You have installed the OpenShift CLI (oc).

Procedure

1. Create a YAML file with alerts that inform you when the targets are down and when the
enforced sample limit is approaching. The file in this example is called monitoring-stack-

alerts.yaml:

apiVersion: monitoring.coreos.com/v1
kind: PrometheusRule
metadata:
labels:
prometheus: k8s

60



O @ 990 90 6009

CHAPTER 2. CONFIGURING THE MONITORING STACK

role: alert-rules
name: monitoring-stack-alerts ﬂ
namespace: nsi
spec:
groups:
- name: general.rules
rules:
- alert: TargetDown e
annotations:
message: '{{ printf "%.4g" $value }}% of the {{ $labels.job }}/{{ $labels.service
1} targets in {{ $labels.namespace }} namespace are down.'
expr: 100 * (count(up == 0) BY (job, namespace, service) / count(up) BY (job,
namespace, service)) > 10
for: 10m
labels:
severity: warning G
- alert: ApproachingEnforcedSamplesLimit ﬂ
annotations:
message: '{{ $labels.container }} container of the {{ $labels.pod }} pod in the {{
$labels.namespace }} namespace consumes {{ $value | humanizePercentage }} of the
samples limit budget.'
expr: scrape_samples_scraped/50000 > 0.8 Q
for: 10m @
labels:

severity: warning m
Defines the name of the alerting rule.
Specifies the user-defined project where the alerting rule will be deployed.

The TargetDown alert will fire if the target cannot be scraped or is not available for the for
duration.

The message that will be output when the TargetDown alert fires.

The conditions for the TargetDown alert must be true for this duration before the alert is
fired.

Defines the severity for the TargetDown alert.

The ApproachingEnforcedSamplesLimit alert will fire when the defined scrape sample
threshold is reached or exceeded for the specified for duration.

The message that will be output when the ApproachingEnforcedSamplesLimit alert
fires.

The threshold for the ApproachingEnforcedSamplesLimit alert. In this example the alert
will fire when the number of samples per target scrape has exceeded 80% of the enforced
sample limit of 50000. The for duration must also have passed before the alert will fire. The
<numbers in the expression scrape_samples_scraped/<numbers> > <threshold> must
match the enforcedSampleLimit value defined in the user-workload-monitoring-config
ConfigMap object.

The conditions for the ApproachingEnforcedSamplesLimit alert must be true for this
duration before the alert is fired.

61



OpenShift Container Platform 4.13 Monitoring

m Defines the severity for the ApproachingEnforcedSamplesLimit alert.

2. Apply the configuration to the user-defined project:

I $ oc apply -f monitoring-stack-alerts.yaml

Additional resources

® Creating a user-defined workload monitoring config map
® Enabling monitoring for user-defined projects

® See Determining why Prometheus is consuming a lot of disk space for steps to query which
metrics have the highest number of scrape samples.

62



CHAPTER 3. CONFIGURING EXTERNAL ALERTMANAGER INSTANCES

CHAPTER 3. CONFIGURING EXTERNAL ALERTMANAGER
INSTANCES

The OpenShift Container Platform monitoring stack includes a local Alertmanager instance that routes
alerts from Prometheus. You can add external Alertmanager instances to route alerts for core
OpenShift Container Platform projects or user-defined projects.

If you add the same external Alertmanager configuration for multiple clusters and disable the local
instance for each cluster, you can then manage alert routing for multiple clusters by using a single
external Alertmanager instance.

Prerequisites

® If you are configuring core OpenShift Container Platform monitoring components in the
openshift-monitoring project:

© You have access to the cluster as a user with the cluster-admin cluster role.
o You have created the cluster-monitoring-config config map.
® If you are configuring components that monitor user-defined projects
© You have access to the cluster as a user with the cluster-admin cluster role, or as a user

with the user-workload-monitoring-config-edit role in the openshift-user-workload-
monitoring project.

o A cluster administrator has enabled monitoring for user-defined projects.

® You have installed the OpenShift CLI (oc).

Procedure
1. Edit the ConfigMap object.

® To configure additional Alertmanagers for routing alerts from core OpenShift
Container Platform projects:

a. Edit the cluster-monitoring-config config map in the openshift-monitoring project:
I $ oc -n openshift-monitoring edit configmap cluster-monitoring-config

b. Add an additionalAlertmanagerConfigs: section under
data/config.yaml/prometheusK8s.

c. Add the configuration details for additional Alertmanagers in this section:

apiVersion: vi
kind: ConfigMap
metadata:
name: cluster-monitoring-config
namespace: openshift-monitoring
data:
config.yaml: |

63



OpenShift Container Platform 4.13 Monitoring

prometheusK8s:
additionalAlertmanagerConfigs:
- <alertmanager_specification>

For <alertmanager_specification>, substitute authentication and other configuration
details for additional Alertmanager instances. Currently supported authentication
methods are bearer token (bearerToken) and client TLS (tlsConfig). The following
sample config map configures an additional Alertmanager using a bearer token with
client TLS authentication:

apiVersion: vi
kind: ConfigMap
metadata:
name: cluster-monitoring-config
namespace: openshift-monitoring
data:
config.yaml: |
prometheusK8s:
additionalAlertmanagerConfigs:
- scheme: https
pathPrefix: /
timeout: "30s"
apiVersion: v1
bearerToken:
name: alertmanager-bearer-token
key: token
tIsConfig:
key:
name: alertmanager-tls
key: tls.key
cert:
name: alertmanager-tls
key: tls.crt
ca:
name: alertmanager-tls
key: tls.ca
staticConfigs:
- external-alertmanager1-remote.com
- external-alertmanager1-remote2.com

® To configure additional Alertmanager instances for routing alerts from user-defined
projects:

a. Edit the user-workload-monitoring-config config map in the openshift-user-
workload-monitoring project:

$ oc -n openshift-user-workload-monitoring edit configmap user-workload-
monitoring-config

b. Add a <component>/additionalAlertmanagerConfigs: section under
data/config.yaml/.

c. Add the configuration details for additional Alertmanagers in this section:

I apiVersion: v1

64



CHAPTER 3. CONFIGURING EXTERNAL ALERTMANAGER INSTANCES

kind: ConfigMap
metadata:
name: user-workload-monitoring-config
namespace: openshift-user-workload-monitoring
data:
config.yaml: |
<component>:
additionalAlertmanagerConfigs:
- <alertmanager_specification>

For <components, substitute one of two supported external Alertmanager
components: prometheus or thanosRuler.

For <alertmanager_specification>, substitute authentication and other configuration
details for additional Alertmanager instances. Currently supported authentication
methods are bearer token (bearerToken) and client TLS (tlsConfig). The following
sample config map configures an additional Alertmanager using Thanos Ruler with a
bearer token and client TLS authentication:

apiVersion: vi
kind: ConfigMap
metadata:
name: user-workload-monitoring-config
namespace: openshift-user-workload-monitoring
data:
config.yaml: |
thanosRuler:
additionalAlertmanagerConfigs:
- scheme: https
pathPrefix: /
timeout: "30s"
apiVersion: v1
bearerToken:
name: alertmanager-bearer-token
key: token
tIsConfig:
key:
name: alertmanager-tls
key: tls.key
cert:
name: alertmanager-tls
key: tls.crt
ca:
name: alertmanager-tls
key: tls.ca
staticConfigs:
- external-alertmanager1-remote.com
- external-alertmanager1-remote2.com

2. Save the file to apply the changes. The pods affected by the new configuration are
automatically redeployed.

65



OpenShift Container Platform 4.13 Monitoring

CHAPTER 4. CONFIGURING SECRETS FOR ALERTMANAGER

The OpenShift Container Platform monitoring stack includes Alertmanager, which routes alerts from
Prometheus to endpoint receivers. If you need to authenticate with a receiver so that Alertmanager can
send alerts to it, you can configure Alertmanager to use a secret that contains authentication
credentials for the receiver.

For example, you can configure Alertmanager to use a secret to authenticate with an endpoint receiver
that requires a certificate issued by a private Certificate Authority (CA). You can also configure
Alertmanager to use a secret to authenticate with a receiver that requires a password file for Basic HTTP
authentication. In either case, authentication details are contained in the Secret object rather than in

the ConfigMap object.

4.1. ADDING ASECRET TO THE ALERTMANAGER CONFIGURATION

You can add secrets to the Alertmanager configuration for core platform monitoring components by
editing the cluster-monitoring-config config map in the openshift-monitoring project.

After you add a secret to the config map, the secret is mounted as a volume at
/etc/alertmanager/secrets/<secret_names within the alertmanager container for the Alertmanager
pods.

Prerequisites

® If you are configuring core OpenShift Container Platform monitoring components in the
openshift-monitoring project:

o You have access to the cluster as a user with the cluster-admin cluster role.
o You have created the cluster-monitoring-config config map.

o You have created the secret to be configured in Alertmanager in the openshift-monitoring
project.

® If you are configuring components that monitor user-defined projects

o You have access to the cluster as a user with the cluster-admin cluster role, or as a user
with the user-workload-monitoring-config-edit role in the openshift-user-workload-
monitoring project.

© You have created the secret to be configured in Alertmanager in the openshift-user-
workload-monitoring project.

o A cluster administrator has enabled monitoring for user-defined projects.

® You have installed the OpenShift CLI (oc).

Procedure
1. Edit the ConfigMap object.
® To add a secret configuration to Alertmanager for core platform monitoring

a. Edit the cluster-monitoring-config config map in the openshift-monitoring project:

I $ oc -n openshift-monitoring edit configmap cluster-monitoring-config

66



CHAPTER 4. CONFIGURING SECRETS FOR ALERTMANAGER

b. Add a secrets: section under data/config.yaml/alertmanagerMain with the following
configuration:

apiVersion: vi
kind: ConfigMap
metadata:
name: cluster-monitoring-config
namespace: openshift-monitoring
data:
config.yaml: |
alertmanagerMain:

secrets: 0

- <secret_name_1> g
- <secret_name_2>

ﬂ This section contains the secrets to be mounted into Alertmanager. The secrets
must be located within the same namespace as the Alertmanager object.

9 The name of the Secret object that contains authentication credentials for the
receiver. If you add multiple secrets, place each one on a new line.

The following sample config map settings configure Alertmanager to use two Secret
objects named test-secret-basic-auth and test-secret-api-token:

apiVersion: vi
kind: ConfigMap
metadata:
name: cluster-monitoring-config
namespace: openshift-monitoring
data:
config.yaml: |
alertmanagerMain:
secrets:
- test-secret-basic-auth
- test-secret-api-token

® To add asecret configuration to Alertmanager for user-defined project monitoring

a. Edit the user-workload-monitoring-config config map in the openshift-user-
workload-monitoring project:

$ oc -n openshift-user-workload-monitoring edit configmap user-workload-
monitoring-config

b. Add a secrets: section under data/config.yaml/alertmanager/secrets with the
following configuration:

apiVersion: vi
kind: ConfigMap
metadata:
name: user-workload-monitoring-config
namespace: openshift-user-workload-monitoring
data:
config.yaml: |

67



OpenShift Container Platform 4.13 Monitoring

alertmanager:
secrets: ﬂ
- <secret_name_1> g
- <secret_name_2>

ﬂ This section contains the secrets to be mounted into Alertmanager. The secrets
must be located within the same namespace as the Alertmanager object.

9 The name of the Secret object that contains authentication credentials for the
receiver. If you add multiple secrets, place each one on a new line.

The following sample config map settings configure Alertmanager to use two Secret
objects named test-secret and test-secret-api-token:

apiVersion: vi
kind: ConfigMap
metadata:
name: user-workload-monitoring-config
namespace: openshift-user-workload-monitoring
data:
config.yaml: |
alertmanager:
enabled: true
secrets:
- test-secret
- test-api-receiver-token

2. Save the file to apply the changes. The new configuration is applied automatically.

4.2. ATTACHING ADDITIONAL LABELS TO YOUR TIME SERIES AND
ALERTS

You can attach custom labels to all time series and alerts leaving Prometheus by using the external
labels feature of Prometheus.

Prerequisites
e If you are configuring core OpenShift Container Platform monitoring components

o You have access to the cluster as a user with the cluster-admin cluster role.
o You have created the cluster-monitoring-config ConfigMap object.

® If you are configuring components that monitor user-defined projects

o You have access to the cluster as a user with the cluster-admin cluster role, or as a user
with the user-workload-monitoring-config-edit role in the openshift-user-workload-
monitoring project.

o A cluster administrator has enabled monitoring for user-defined projects.

® You have installed the OpenShift CLI (oc).

Procedure

68



CHAPTER 4. CONFIGURING SECRETS FOR ALERTMANAGER

1. Edit the ConfigMap object:

® To attach custom labels to all time series and alerts leaving the Prometheus instance
that monitors core OpenShift Container Platform projects:

a. Edit the cluster-monitoring-config ConfigMap object in the openshift-monitoring
project:

I $ oc -n openshift-monitoring edit configmap cluster-monitoring-config

b. Define a map of labels you want to add for every metric under data/config.yaml:

apiVersion: vi
kind: ConfigMap
metadata:
name: cluster-monitoring-config
namespace: openshift-monitoring
data:
config.yaml: |
prometheusK8s:
externalLabels:
<key>: <value> 0

Substitute <key>: <value> with a map of key-value pairs where <keys is a unique
name for the new label and <values is its value.

' WARNING
A o Do not use prometheus or prometheus_replica as key names,

because they are reserved and will be overwritten.

o Do not use cluster or managed_cluster as key names. Using
them can cause issues where you are unable to see data in the
developer dashboards.

For example, to add metadata about the region and environment to all time series and
alerts, use the following example:

apiVersion: vi
kind: ConfigMap
metadata:
name: cluster-monitoring-config
namespace: openshift-monitoring
data:
config.yaml: |
prometheusK8s:
externalLabels:
region: eu
environment: prod

69



OpenShift Container Platform 4.13 Monitoring

c. Save the file to apply the changes. The new configuration is applied automatically.

® To attach custom labels to all time series and alerts leaving the Prometheus instance
that monitors user-defined projects:

a. Edit the user-workload-monitoring-config ConfigMap object in the openshift-user-
workload-monitoring project:

$ oc -n openshift-user-workload-monitoring edit configmap user-workload-
monitoring-config

b. Define a map of labels you want to add for every metric under data/config.yaml:

apiVersion: vi
kind: ConfigMap
metadata:

name: user-workload-monitoring-config

namespace: openshift-user-workload-monitoring
data:

config.yaml: |

prometheus:
externalLabels:
<key>: <value> 0

Substitute <key>: <value> with a map of key-value pairs where <keys is a unique
name for the new label and <values is its value.

' WARNING
A o Do not use prometheus or prometheus_replica as key names,

because they are reserved and will be overwritten.

o Do not use cluster or managed_cluster as key names. Using
them can cause issues where you are unable to see data in the
developer dashboards.

NOTE

In the openshift-user-workload-monitoring project, Prometheus
handles metrics and Thanos Ruler handles alerting and recording rules.
Setting externalLabels for prometheus in the user-workload-
monitoring-config ConfigMap object will only configure external labels
for metrics and not for any rules.

For example, to add metadata about the region and environment to all time series and
alerts related to user-defined projects, use the following example:

apiVersion: v1i
kind: ConfigMap

70



CHAPTER 4. CONFIGURING SECRETS FOR ALERTMANAGER

metadata:
name: user-workload-monitoring-config
namespace: openshift-user-workload-monitoring
data:
config.yaml: |
prometheus:
externalLabels:
region: eu
environment: prod

c. Save the file to apply the changes. The pods affected by the new configuration are
automatically redeployed.

Additional resources

® See Preparing to configure the monitoring stack for steps to create monitoring config maps.

® Enabling monitoring for user-defined projects

71



OpenShift Container Platform 4.13 Monitoring

CHAPTER 5. CONFIGURING POD TOPOLOGY SPREAD
CONSTRAINTS FOR MONITORING

You can use pod topology spread constraints to control how Prometheus, Thanos Ruler, and
Alertmanager pods are spread across a network topology when OpenShift Container Platform pods are
deployed in multiple availability zones.

Pod topology spread constraints are suitable for controlling pod scheduling within hierarchical
topologies in which nodes are spread across different infrastructure levels, such as regions and zones
within those regions. Additionally, by being able to schedule pods in different zones, you can improve
network latency in certain scenarios.

Additional resources
® Controlling pod placement by using pod topology spread constraints

® Kubernetes Pod Topology Spread Constraints documentation

S.1.SETTING UP POD TOPOLOGY SPREAD CONSTRAINTS FOR
PROMETHEUS

For core OpenShift Container Platform platform monitoring, you can set up pod topology spread
constraints for Prometheus to fine tune how pod replicas are scheduled to nodes across zones. Doing so
helps ensure that Prometheus pods are highly available and run more efficiently, because workloads are
spread across nodes in different data centers or hierarchical infrastructure zones.

You configure pod topology spread constraints for Prometheus in the cluster-monitoring-config
config map.

Prerequisites
® You have access to the cluster as a user with the cluster-admin cluster role.
® You have created the cluster-monitoring-config ConfigMap object.

® You have installed the OpenShift CLI (oc).

Procedure

1. Edit the cluster-monitoring-config ConfigMap object in the openshift-monitoring
namespace:

I $ oc -n openshift-monitoring edit configmap cluster-monitoring-config

2. Add values for the following settings under data/config.yaml/prometheusK8s to configure
pod topology spread constraints:

apiVersion: vi
kind: ConfigMap
metadata:
name: cluster-monitoring-config
namespace: openshift-monitoring
data:

72


https://docs.redhat.com/en/documentation/openshift_container_platform/4.13/html-single/nodes/#nodes-scheduler-pod-topology-spread-constraints-about
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/

CHAPTER 5. CONFIGURING POD TOPOLOGY SPREAD CONSTRAINTS FOR MONITORINGC

config.yaml: |
prometheusK8s:
topologySpreadConstraints:
- maxSkew: 1
topologyKey: monitoring 9
whenUnsatisfiable: DoNotSchedule €)
labelSelector:
matchLabels: ﬂ
app.kubernetes.io/name: prometheus

ﬂ Specify a numeric value for maxSkew, which defines the degree to which pods are allowed
to be unevenly distributed. This field is required, and the value must be greater than zero.
The value specified has a different effect depending on what value you specify for
whenUnsatisfiable.

9 Specify a key of node labels for topologyKey. This field is required. Nodes that have a
label with this key and identical values are considered to be in the same topology. The
scheduler will try to put a balanced number of pods into each domain.

9 Specify a value for whenUnsatisfiable. This field is required. Available options are
DoNotSchedule and ScheduleAnyway. Specify DoNotSchedule if you want the
maxSkew value to define the maximum difference allowed between the number of
matching pods in the target topology and the global minimum. Specify ScheduleAnyway
if you want the scheduler to still schedule the pod but to give higher priority to nodes that
might reduce the skew.

Q Specify a value for matchLabels. This value is used to identify the set of matching pods to

which to apply the constraints.

3. Save the file to apply the changes. The pods affected by the new configuration are
automatically redeployed.

5.2.SETTING UP POD TOPOLOGY SPREAD CONSTRAINTS FOR
ALERTMANAGER

For core OpenShift Container Platform platform monitoring, you can set up pod topology spread
constraints for Alertmanager to fine tune how pod replicas are scheduled to nodes across zones. Doing
so helps ensure that Alertmanager pods are highly available and run more efficiently, because workloads
are spread across nodes in different data centers or hierarchical infrastructure zones.

You configure pod topology spread constraints for Alertmanager in the cluster-monitoring-config
config map.

Prerequisites

® You have access to the cluster as a user with the cluster-admin cluster role.
® You have created the cluster-monitoring-config ConfigMap object.

® You have installed the OpenShift CLI (oc).

Procedure

73



OpenShift Container Platform 4.13 Monitoring

1. Edit the cluster-monitoring-config ConfigMap object in the openshift-monitoring
namespace:

I $ oc -n openshift-monitoring edit configmap cluster-monitoring-config

2. Add values for the following settings under data/config.yaml/alertmanagermain to configure
pod topology spread constraints:

apiVersion: vi
kind: ConfigMap
metadata:
name: cluster-monitoring-config
namespace: openshift-monitoring
data:
config.yaml: |

alertmanagerMain:

topologySpreadConstraints:

- maxSkew: 1
topologyKey: monitoring g
whenUnsatisfiable: DoNotSchedule €)
labelSelector:

matchLabels: ﬂ
app.kubernetes.io/name: alertmanager

ﬂ Specify a numeric value for maxSkew, which defines the degree to which pods are allowed

o

to be unevenly distributed. This field is required, and the value must be greater than zero.
The value specified has a different effect depending on what value you specify for
whenUnsatisfiable.

Specify a key of node labels for topologyKey. This field is required. Nodes that have a
label with this key and identical values are considered to be in the same topology. The
scheduler will try to put a balanced number of pods into each domain.

Specify a value for whenUnsatisfiable. This field is required. Available options are
DoNotSchedule and ScheduleAnyway. Specify DoNotSchedule if you want the
maxSkew value to define the maximum difference allowed between the number of
matching pods in the target topology and the global minimum. Specify ScheduleAnyway
if you want the scheduler to still schedule the pod but to give higher priority to nodes that
might reduce the skew.

Specify a value for matchLabels. This value is used to identify the set of matching pods to
which to apply the constraints.

3. Save the file to apply the changes. The pods affected by the new configuration are
automatically redeployed.

5.3.SETTING UP POD TOPOLOGY SPREAD CONSTRAINTS FOR
THANOS RULER

For user-defined monitoring, you can set up pod topology spread constraints for Thanos Ruler to fine
tune how pod replicas are scheduled to nodes across zones. Doing so helps ensure that Thanos Ruler
pods are highly available and run more efficiently, because workloads are spread across nodes in
different data centers or hierarchical infrastructure zones.

74



CHAPTER 5. CONFIGURING POD TOPOLOGY SPREAD CONSTRAINTS FOR MONITORINGC

You configure pod topology spread constraints for Thanos Ruler in the user-workload-monitoring-
config config map.

Prerequisites
® A cluster administrator has enabled monitoring for user-defined projects.

® You have access to the cluster as a user with the cluster-admin cluster role, or as a user with
the user-workload-monitoring-config-edit role in the openshift-user-workload-monitoring
project.

® You have installed the OpenShift CLI (oc).

Procedure

1. Edit the user-workload-monitoring-config config map in the openshift-user-workload-
monitoring namespace:

I $ oc -n openshift-user-workload-monitoring edit configmap user-workload-monitoring-config

2. Add values for the following settings under data/config.yaml/thanosRuler to configure pod
topology spread constraints:

apiVersion: vi
kind: ConfigMap
metadata:
name: user-workload-monitoring-config
namespace: openshift-user-workload-monitoring
data:
config.yaml: |
thanosRuler:
topologySpreadConstraints:
- maxSkew: 1
topologyKey: monitoring g
whenUnsatisfiable: ScheduleAnyway 6
labelSelector:
matchLabels: ﬂ
app.kubernetes.io/name: thanos-ruler

ﬂ Specify a numeric value for maxSkew, which defines the degree to which pods are allowed
to be unevenly distributed. This field is required, and the value must be greater than zero.
The value specified has a different effect depending on what value you specify for
whenUnsatisfiable.

9 Specify a key of node labels for topologyKey. This field is required. Nodes that have a
label with this key and identical values are considered to be in the same topology. The
scheduler will try to put a balanced number of pods into each domain.

9 Specify a value for whenUnsatisfiable. This field is required. Available options are
DoNotSchedule and ScheduleAnyway. Specify DoNotSchedule if you want the
maxSkew value to define the maximum difference allowed between the number of
matching pods in the target topology and the global minimum. Specify ScheduleAnyway
if you want the scheduler to still schedule the pod but to give higher priority to nodes that
might reduce the skew.

75



OpenShift Container Platform 4.13 Monitoring

Q Specify a value for matchLabels. This value is used to identify the set of matching pods to
which to apply the constraints.

3. Save the file to apply the changes automatically.

' WARNING
A When you save changes to the user-workload-monitoring-config config

map, the pods and other resources in the openshift-user-workload-
monitoring project might be redeployed. The running monitoring
processes in that project might also restart.

5.4.SETTING LOG LEVELS FOR MONITORING COMPONENTS

You can configure the log level for Alertmanager, Prometheus Operator, Prometheus, Thanos Querier,
and Thanos Ruler.

The following log levels can be applied to the relevant component in the cluster-monitoring-config
and user-workload-monitoring-config ConfigMap objects:

e debug. Log debug, informational, warning, and error messages.
e info. Loginformational, warning, and error messages.

® warn. Log warning and error messages only.

® error. Log error messages only.

The default log level is info.

Prerequisites

e If you are setting a log level for Alertmanager, Prometheus Operator, Prometheus, or
Thanos Querier in the openshift-monitoring project:

o You have access to the cluster as a user with the cluster-admin cluster role.
o You have created the cluster-monitoring-config ConfigMap object.

e If you are setting a log level for Prometheus Operator, Prometheus, or Thanos Ruler in the
openshift-user-workload-monitoring project:

o You have access to the cluster as a user with the cluster-admin cluster role, or as a user
with the user-workload-monitoring-config-edit role in the openshift-user-workload-
monitoring project.

o A cluster administrator has enabled monitoring for user-defined projects.

® You have installed the OpenShift CLI (oc).

Procedure

76



CHAPTER 5. CONFIGURING POD TOPOLOGY SPREAD CONSTRAINTS FOR MONITORINGC

1. Edit the ConfigMap object:
® Tosetaloglevel for acomponent in theopenshift-monitoring project:

a. Edit the cluster-monitoring-config ConfigMap object in the openshift-monitoring
project:

I $ oc -n openshift-monitoring edit configmap cluster-monitoring-config

b. Add logLevel: <log_level> for a component under data/config.yaml:

apiVersion: vi
kind: ConfigMap
metadata:

name: cluster-monitoring-config

namespace: openshift-monitoring
data:

config.yaml: |

<component>:
logLevel: <log_level> 9

ﬂ The monitoring stack component for which you are setting a log level. For default
platform monitoring, available component values are prometheusKs8s,
alertmanagerMain, prometheusOperator, and thanosQuerier.

Q The log level to set for the component. The available values are error, warn, info,
and debug. The default value is info.

® Tosetaloglevel for acomponent in theopenshift-user-workload-monitoring project:

a. Edit the user-workload-monitoring-config ConfigMap object in the openshift-user-
workload-monitoring project:

$ oc -n openshift-user-workload-monitoring edit configmap user-workload-
monitoring-config

b. Add logLevel: <log_level> for a component under data/config.yaml:

apiVersion: vi
kind: ConfigMap
metadata:

name: user-workload-monitoring-config

namespace: openshift-user-workload-monitoring
data:

config.yaml: |

<component>:
logLevel: <log_level> 9

The monitoring stack component for which you are setting a log level. For user
workload monitoring, available component values are alertmanager, prometheus,
prometheusOperator, and thanosRuler.

2]

77



OpenShift Container Platform 4.13 Monitoring

The log level to apply to the component. The available values are error, warn, info,
and debug. The default value is info.

2. Save the file to apply the changes. The pods affected by the new configuration are
automatically redeployed.

3. Confirm that the log-level has been applied by reviewing the deployment or pod configuration
in the related project. The following example checks the log level in the prometheus-operator
deployment in the openshift-user-workload-monitoring project:

I $ oc -n openshift-user-workload-monitoring get deploy prometheus-operator -o yaml | grep
"log-level"

Example output

I - --log-level=debug

4. Check that the pods for the component are running. The following example lists the status of
pods in the openshift-user-workload-monitoring project:

I $ oc -n openshift-user-workload-monitoring get pods

NOTE

If an unrecognized logLevel value is included in the ConfigMap object, the pods
for the component might not restart successfully.

5.5. ENABLING THE QUERY LOG FILE FOR PROMETHEUS

You can configure Prometheus to write all queries that have been run by the engine to a log file. You
can do so for default platform monitoring and for user-defined workload monitoring.

IMPORTANT

Because log rotation is not supported, only enable this feature temporarily when you
need to troubleshoot an issue. After you finish troubleshooting, disable query logging by
reverting the changes you made to the ConfigMap object to enable the feature.

Prerequisites

e If you are enabling the query log file feature for Prometheus in th®@penshift-monitoring
project:

o You have access to the cluster as a user with the cluster-admin cluster role.
o You have created the cluster-monitoring-config ConfigMap object.

e If you are enabling the query log file feature for Prometheus in th®@penshift-user-
workload-monitoring project:

o You have access to the cluster as a user with the cluster-admin cluster role, or as a user
with the user-workload-monitoring-config-edit role in the openshift-user-workload-
monitoring project.

78



CHAPTER 5. CONFIGURING POD TOPOLOGY SPREAD CONSTRAINTS FOR MONITORINGC

o A cluster administrator has enabled monitoring for user-defined projects.

® You have installed the OpenShift CLI (oc).

Procedure
® To set the query log file for Prometheus in theopenshift-monitoring project:

1. Edit the cluster-monitoring-config ConfigMap object in the openshift-monitoring
project:

I $ oc -n openshift-monitoring edit configmap cluster-monitoring-config

2. Add queryLogFile: <path> for prometheusK8s under data/config.yaml:

apiVersion: vi
kind: ConfigMap
metadata:

name: cluster-monitoring-config

namespace: openshift-monitoring
data:

config.yaml: |

prometheusK8s:
queryLogFile: <path> ﬂ

ﬂ The full path to the file in which queries will be logged.

3. Save the file to apply the changes. The pods affected by the new configuration are
automatically redeployed.

4. Verify that the pods for the component are running. The following sample command lists
the status of pods in the openshift-monitoring project:

I $ oc -n openshift-monitoring get pods
5. Read the query log:

I $ oc -n openshift-monitoring exec prometheus-k8s-0 -- cat <path>

IMPORTANT

Revert the setting in the config map after you have examined the logged
query information.

® To set the query log file for Prometheus in theopenshift-user-workload-monitoring
project:

1. Edit the user-workload-monitoring-config ConfigMap object in the openshift-user-
workload-monitoring project:

I $ oc -n openshift-user-workload-monitoring edit configmap user-workload-monitoring-
config

79



OpenShift Container Platform 4.13 Monitoring

2. Add queryLogFile: <path> for prometheus under data/config.yaml:

apiVersion: vi
kind: ConfigMap
metadata:

name: user-workload-monitoring-config

namespace: openshift-user-workload-monitoring
data:

config.yaml: |

prometheus:
queryLogFile: <path> ﬂ

ﬂ The full path to the file in which queries will be logged.

3. Save the file to apply the changes. The pods affected by the new configuration are
automatically redeployed.

4. Verify that the pods for the component are running. The following example command lists
the status of pods in the openshift-user-workload-monitoring project:

I $ oc -n openshift-user-workload-monitoring get pods
5. Read the query log:

I $ oc -n openshift-user-workload-monitoring exec prometheus-user-workload-0 -- cat
<path>

IMPORTANT

Revert the setting in the config map after you have examined the logged
query information.

Additional resources

® See Preparing to configure the monitoring stack for steps to create monitoring config maps

® See Enabling monitoring for user-defined projects for steps to enable user-de