& RedHat

OpenShift Container Platform 4.14

Operators

Working with Operators in OpenShift Container Platform

Last Updated: 2024-06-28

OpenShift Container Platform 4.14 Operators

Working with Operators in OpenShift Container Platform

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides information for working with Operators in OpenShift Container Platform.
This includes instructions for cluster administrators on how to install and manage Operators, as well
as information for developers on how to create applications from installed Operators. This also
contains guidance on building your own Operator using the Operator SDK.

Table of Contents

CHAPTER1.OPERATORS OVERVIEW

11. FOR DEVELOPERS
1.2. FOR ADMINISTRATORS
1.3. NEXT STEPS

CHAPTER 2. UNDERSTANDING OPERATORS

2.1. WHAT ARE OPERATORS?
2.1.1. Why use Operators?
2.1.2. Operator Framework
2.1.3. Operator maturity model
2.2. OPERATOR FRAMEWORK PACKAGING FORMAT
2.2.1. Bundle format
2.2.1.1. Manifests
Additionally supported objects
2.2.1.2. Annotations
2.2.1.3. Dependencies
2.2.1.4. About the opm CLI
2.2.2. File-based catalogs
2.2.2.1. Directory structure
2.2.2.2. Schemas
2.2.2.2.1. olm.package schema
2.2.2.2.2. olm.channel schema
2.2.2.2.3. olm.bundle schema
2.2.2.3. Properties
2.2.2.3.1. olm.package property
2.2.2.3.2. olm.gvk property
2.2.2.3.3. olm.package.required
2.2.2.3.4. olm.gvk.required
2.2.2.4. Example catalog
2.2.2.5. Guidelines
2.2.2.5.1. Immutable bundles
2.2.2.5.2. Source control
2.2.2.6. ClLI usage
2.2.2.7. Automation
2.2.3. RukPak (Technology Preview)
2.2.3.1. Bundle
2.2.3.1.1. Bundle immutability
Further immutability considerations
2.2.3.1.2. Plain bundle spec
2.2.3.1.3. Registry bundle spec
2.2.3.2. BundleDeployment
2.2.3.3. About provisioners
2.3. OPERATOR FRAMEWORK GLOSSARY OF COMMON TERMS
2.3.1. Common Operator Framework terms
2.3.1.1. Bundle
2.3.1.2. Bundle image
2.3.1.3. Catalog source
2.3.1.4. Channel
2.3.1.5. Channel head
2.3.1.6. Cluster service version
2.3.1.7. Dependency

Table of Contents

OpenShift Container Platform 4.14 Operators

2.3.1.8. Index image
2.3.1.9. Install plan
2.3.1.10. Multitenancy
2.3.1.11. Operator group
2.3.1.12. Package
2.3.1.13. Registry
2.3.1.14. Subscription
2.3.1.15. Update graph
2.4. OPERATOR LIFECYCLE MANAGER (OLM)
2.4.1. Operator Lifecycle Manager concepts and resources
2.4.1.1. What is Operator Lifecycle Manager?
2.4.1.2. OLM resources
2.4.1.2.1. Cluster service version
2.4.1.2.2. Catalog source
2.4.1.2.2.1. Image template for custom catalog sources
2.4.1.2.2.2. Catalog health requirements
2.4.1.2.3. Subscription
2.4.1.2.4. Install plan
2.4.1.2.5. Operator groups
2.4.1.2.6. Operator conditions
2.4.2. Operator Lifecycle Manager architecture
2.4.2.1. Component responsibilities
2.4.2.2. OLM Operator
2.4.2.3. Catalog Operator
2.4.2.4. Catalog Registry
2.4.3. Operator Lifecycle Manager workflow
2.4.3.1. Operator installation and upgrade workflow in OLM
2.4.3.1.1. Example upgrade path
2.4.3.1.2. Skipping upgrades
2.4.3.1.3. Replacing multiple Operators
2.4.3.1.4. Z-stream support
2.4.4. Operator Lifecycle Manager dependency resolution
2.4.4.1. About dependency resolution
2.4.4.2. Operator properties
2.4.4.2.1. Arbitrary properties
2.4.4.3. Operator dependencies
2.4.4.4. Generic constraints

2.4.4.4.1. Common Expression Language (CEL) constraints

2.4.4.4.2. Compound constraints (all, any, not)
2.4.4.4.3. Nested compound constraints
2.4.4.5. Dependency preferences
2.4.45.1. Catalog priority
2.4.45.2. Channel ordering
2.4.4.5.3. Order within a channel
2.4.4.5.4. Other constraints
2.4.4.5.4.1. Subscription constraint
2.4.45.4.2. Package constraint
2.4.4.55. Additional resources
2.4.4.6. CRD upgrades
2.4.4.7. Dependency best practices
2.4.4.8. Dependency caveats
2.4.4.9. Example dependency resolution scenarios
Example: Deprecating dependent APIs

38
38
38
38
38
38
38
38
38
39
39
39
40
40
43
45
45
46
48
48
49
49
50
50

51

51

51
53
53
55
56
57
57
57
58
58
59
59
60

61
62
62
63
63
63
64
64
64
64
64
65
66
66

Table of Contents

Example: Version deadlock 66

2.4.5. Operator groups 66
2.4.5.1. About Operator groups 66
2.4.5.2. Operator group membership 67
2.4.5.3. Target namespace selection 67
2.4.5.4. Operator group CSV annotations 69
2.45.5. Provided APIs annotation 69
2.4.5.6. Role-based access control 69
2.45.7. Copied CSVs 73
2.4.5.8. Static Operator groups 74
2.4.5.9. Operator group intersection 75
Rules for intersection 75
2.4.5.10. Limitations for multitenant Operator management 76
2.4.5.11. Troubleshooting Operator groups 77
Membership 77

2.4.6. Multitenancy and Operator colocation 77
2.4.6.1. Colocation of Operators in a namespace 77
2.4.7. Operator conditions 78
2.4.7.1. About Operator conditions 78
2.4.7.2. Supported conditions 79
2.4.7.2.1. Upgradeable condition 79
2.4.7.3. Additional resources 80
2.4.8. Operator Lifecycle Manager metrics 80
2.4.8.1. Exposed metrics 80
2.4.9. Webhook management in Operator Lifecycle Manager 81
2.4.9.1. Additional resources 81

2.5. UNDERSTANDING OPERATORHUB 81
2.5.1. About OperatorHub 81
2.5.2. OperatorHub architecture 82
2.5.2.1. OperatorHub custom resource 82
2.5.3. Additional resources 83
2.6. RED HAT-PROVIDED OPERATOR CATALOGS 83
2.6.1. About Operator catalogs 83
2.6.2. About Red Hat-provided Operator catalogs 84
2.7. OPERATORS IN MULTITENANT CLUSTERS 85
2.7.1. Default Operator install modes and behavior 85
2.7.2. Recommended solution for multitenant clusters 86
2.7.3. Operator colocation and Operator groups 87
2.8. CRDS 87
2.8.1. Extending the Kubernetes APl with custom resource definitions 87
2.8.1.1. Custom resource definitions 87
2.8.1.2. Creating a custom resource definition 88
2.8.1.3. Creating cluster roles for custom resource definitions 89
2.8.1.4. Creating custom resources from a file 91
2.8.1.5. Inspecting custom resources 92
2.8.2. Managing resources from custom resource definitions 93
2.8.2.1. Custom resource definitions 93
2.8.2.2. Creating custom resources from a file 93
2.8.2.3. Inspecting custom resources 94
CHAPTER 3. USER TASK S ittt ettt ettt ettt eae e eaaeeeesennneeeseaannneeennnns 96
3.1. CREATING APPLICATIONS FROM INSTALLED OPERATORS 96
3.1.1. Creating an etcd cluster using an Operator 96

OpenShift Container Platform 4.14 Operators

3.2. INSTALLING OPERATORS IN YOUR NAMESPACE
3.2.1. Prerequisites
3.2.2. About Operator installation with OperatorHub
3.2.3. Installing from OperatorHub using the web console
3.2.4. Installing from OperatorHub using the CLI
3.2.5. Installing a specific version of an Operator

CHAPTER 4. ADMINISTRATOR TASKS ... i i

4.1. ADDING OPERATORS TO A CLUSTER
4.1.1. About Operator installation with OperatorHub
4.1.2. Installing from OperatorHub using the web console
4.1.3. Installing from OperatorHub using the CLI
4.1.4. Installing a specific version of an Operator
4.1.5. Installing a specific version of an Operator in the web console
4.1.6. Preparing for multiple instances of an Operator for multitenant clusters
4.1.7. Installing global Operators in custom namespaces
4.1.8. Pod placement of Operator workloads
4.1.9. Controlling where an Operator is installed
4.2. UPDATING INSTALLED OPERATORS
4.2.1. Preparing for an Operator update
4.2.2. Changing the update channel for an Operator
4.2.3. Manually approving a pending Operator update
4.2.4. Additional resources
4.3. DELETING OPERATORS FROM A CLUSTER
4.3.1. Deleting Operators from a cluster using the web console
4.3.2. Deleting Operators from a cluster using the CLI
4.3.3. Refreshing failing subscriptions
4.4. CONFIGURING OPERATOR LIFECYCLE MANAGER FEATURES
4.4.1. Disabling copied CSVs
4.5. CONFIGURING PROXY SUPPORT IN OPERATOR LIFECYCLE MANAGER
4.5.1. Overriding proxy settings of an Operator
4.5.2. Injecting a custom CA certificate
4.6. VIEWING OPERATOR STATUS
4.6.1. Operator subscription condition types
4.6.2. Viewing Operator subscription status by using the CLI
4.6.3. Viewing Operator catalog source status by using the CLI
4.7. MANAGING OPERATOR CONDITIONS
4.7.1. Overriding Operator conditions
4.7.2. Updating your Operator to use Operator conditions
4.7.2.1. Setting defaults
4.7.3. Additional resources
4.8. ALLOWING NON-CLUSTER ADMINISTRATORS TO INSTALL OPERATORS
4.8.1. Understanding Operator installation policy
4.8.1.1. Installation scenarios
4.8.1.2. Installation workflow
4.8.2. Scoping Operator installations
4.8.2.1. Fine-grained permissions
4.8.3. Operator catalog access control
4.8.4. Troubleshooting permission failures
4.9. MANAGING CUSTOM CATALOGS
4.9.1. Prerequisites
4.9.2. File-based catalogs
4.9.2.1. Creating a file-based catalog image

97
97
97
98
99
103

108
108
108
108
110

14

18

19
120

121
122
126
126
126
127
128
128
128
128
129

131

131
133
133
135
136
136
137
138
140
140

141

141

141

141
142
142
143
143
146
147
147
148
149
149
149

Table of Contents

4.9.2.2. Updating or filtering a file-based catalog image 152
4.9.3. SQLite-based catalogs 154
4.9.3.1. Creating a SQLite-based index image 155
4.9.3.2. Updating a SQLite-based index image 155
4.9.3.3. Filtering a SQLite-based index image 157
4.9.4. Catalog sources and pod security admission 158
4.9.4.1. Migrating SQLite database catalogs to the file-based catalog format 159
4.9.4.2. Rebuilding SQLite database catalog images 160
4.9.4.3. Configuring catalogs to run with elevated permissions 160
4.9.5. Adding a catalog source to a cluster 162
4.9.6. Accessing images for Operators from private registries 164
4.9.7. Disabling the default OperatorHub catalog sources 169
4.9.8. Removing custom catalogs 169
4.10. USING OPERATOR LIFECYCLE MANAGER ON RESTRICTED NETWORKS 169
4.10.1. Prerequisites 171
4.10.2. Disabling the default OperatorHub catalog sources 171
4.10.3. Mirroring an Operator catalog 171
4.10.4. Adding a catalog source to a cluster 172
4.10.5. Next steps 174
4.11. CATALOG SOURCE POD SCHEDULING 174
4.11.1. Disabling default CatalogSource objects at a local level 175
4.11.2. Overriding the node selector for catalog source pods 175
4.11.3. Overriding the priority class name for catalog source pods 176
4.11.4. Overriding tolerations for catalog source pods 176
4.12. MANAGING PLATFORM OPERATORS (TECHNOLOGY PREVIEW) 177
4.12.1. About platform Operators 177
4.12.1.1. Technology Preview restrictions for platform Operators 178
4.12.2. Prerequisites 179
4.12.3. Installing platform Operators during cluster creation 179
4.12.4. Installing platform Operators after cluster creation 181
4.12.5. Deleting platform Operators 183
413. TROUBLESHOOTING OPERATOR ISSUES 184
4.13.1. Operator subscription condition types 184
4.13.2. Viewing Operator subscription status by using the CLI 185
4.13.3. Viewing Operator catalog source status by using the CLI 186
4.13.4. Querying Operator pod status 188
4.13.5. Gathering Operator logs 189
4.13.6. Disabling the Machine Config Operator from automatically rebooting 190
4.13.6.1. Disabling the Machine Config Operator from automatically rebooting by using the console 191
4.13.6.2. Disabling the Machine Config Operator from automatically rebooting by using the CLI 193
4.13.7. Refreshing failing subscriptions 195
4.13.8. Reinstalling Operators after failed uninstallation 197
CHAPTER 5. DEVELOPING OPERATORS ...ttt tit et tateeaneennneeaneeraneeraneennnns 200
5.1. ABOUT THE OPERATOR SDK 200
5.1.1. What are Operators? 200
5.1.2. Development workflow 200
5.1.3. Additional resources 201
5.2. INSTALLING THE OPERATOR SDK CLI 201
5.2.1. Installing the Operator SDK CLI on Linux 201
5.2.2. Installing the Operator SDK CLI on macOS 202
5.3. GO-BASED OPERATORS 203
5.3.1. Getting started with Operator SDK for Go-based Operators 203

OpenShift Container Platform 4.14 Operators

5.3.1.1. Prerequisites
5.3.1.2. Creating and deploying Go-based Operators
5.3.1.3. Next steps
5.3.2. Operator SDK tutorial for Go-based Operators
5.3.2.1. Prerequisites
5.3.2.2. Creating a project
5.3.2.2.1. PROJECT file
5.3.2.2.2. About the Manager
5.3.2.2.3. About multi-group APIs
5.3.2.3. Creating an APl and controller
5.3.2.3.1. Defining the API
5.3.2.3.2. Generating CRD manifests
5.3.2.3.2.1. About OpenAPI validation
5.3.2.4. Implementing the controller
5.3.2.4.1. Resources watched by the controller
5.3.2.4.2. Controller configurations
5.3.2.4.3. Reconcile loop
5.3.2.4.4. Permissions and RBAC manifests
5.3.2.5. Enabling proxy support
5.3.2.6. Running the Operator
5.3.2.6.1. Running locally outside the cluster
5.3.2.6.2. Running as a deployment on the cluster
5.3.2.6.3. Bundling an Operator and deploying with Operator Lifecycle Manager
5.3.2.6.3.1. Bundling an Operator
5.3.2.6.3.2. Deploying an Operator with Operator Lifecycle Manager
5.3.2.7. Creating a custom resource
5.3.2.8. Additional resources
5.3.3. Project layout for Go-based Operators
5.3.3.1. Go-based project layout
5.3.4. Updating Go-based Operator projects for newer Operator SDK versions
5.3.4.1. Updating Go-based Operator projects for Operator SDK 1.31.0
5.3.4.2. Additional resources
5.4. ANSIBLE-BASED OPERATORS
5.4.1. Getting started with Operator SDK for Ansible-based Operators
5.4.1.1. Prerequisites
5.4.1.2. Creating and deploying Ansible-based Operators
5.4.1.3. Next steps
5.4.2. Operator SDK tutorial for Ansible-based Operators
5.4.2.1. Prerequisites
5.4.2.2. Creating a project
5.4.2.2.1. PROJECT file
5.4.2.3. Creating an API
5.4.2.4. Modifying the manager
5.4.2.5. Enabling proxy support
5.4.2.6. Running the Operator
5.4.2.6.1. Running locally outside the cluster
5.4.2.6.2. Running as a deployment on the cluster
5.4.2.6.3. Bundling an Operator and deploying with Operator Lifecycle Manager
5.4.2.6.3.1. Bundling an Operator
5.4.2.6.3.2. Deploying an Operator with Operator Lifecycle Manager
5.4.2.7. Creating a custom resource
5.4.2.8. Additional resources
5.4.3. Project layout for Ansible-based Operators

203
204
205
205
206
206
207
207
207
208
208
209
209
210
214

215

215
216
216

217

218

218

219

219

221
222
224
224
224
225
225
225
226
226
226
226
228
228
229
229
230
230
230
232
233
233
234
234
235
236
237
239
239

5.4.3.1. Ansible-based project layout
5.4.4. Updating projects for newer Operator SDK versions
5.4.4.1. Updating Ansible-based Operator projects for Operator SDK 1.31.0
5.4.4.2. Additional resources
5.4.5. Ansible support in Operator SDK
5.4.5.1. Custom resource files
5.4.5.2. watches.yaml file
5.4.5.2.1. Advanced options
5.4.5.3. Extra variables sent to Ansible
5.4.5.4. Ansible Runner directory
5.4.6. Kubernetes Collection for Ansible
5.4.6.1. Installing the Kubernetes Collection for Ansible
5.4.6.2. Testing the Kubernetes Collection locally
5.4.6.3. Next steps
5.4.7. Using Ansible inside an Operator
5.4.7.1. Custom resource files
5.4.7.2. Testing an Ansible-based Operator locally
5.4.7.3. Testing an Ansible-based Operator on the cluster
5.4.7.4. Ansible logs
5.4.7.4.1. Viewing Ansible logs
5.4.7.4.2. Enabling full Ansible results in logs
5.4.7.4.3. Enabling verbose debugging in logs
5.4.8. Custom resource status management
5.4.8.1. About custom resource status in Ansible-based Operators
5.4.8.2. Tracking custom resource status manually
5.5. HELM-BASED OPERATORS
5.5.1. Getting started with Operator SDK for Helm-based Operators
5.5.1.1. Prerequisites
5.5.1.2. Creating and deploying Helm-based Operators
5.5.1.3. Next steps
5.5.2. Operator SDK tutorial for Helm-based Operators
5.5.2.1. Prerequisites
5.5.2.2. Creating a project
5.5.2.2.1. Existing Helm charts
5.5.2.2.2. PROJECT file
5.5.2.3. Understanding the Operator logic
5.5.2.3.1. Sample Helm chart
5.5.2.3.2. Modifying the custom resource spec
5.5.2.4. Enabling proxy support
5.5.2.5. Running the Operator
5.5.2.5.1. Running locally outside the cluster
5.5.2.5.2. Running as a deployment on the cluster
5.5.2.5.3. Bundling an Operator and deploying with Operator Lifecycle Manager
5.5.2.5.3.1. Bundling an Operator
5.5.2.5.3.2. Deploying an Operator with Operator Lifecycle Manager
5.5.2.6. Creating a custom resource
5.5.2.7. Additional resources
5.5.3. Project layout for Helm-based Operators
5.5.3.1. Helm-based project layout
5.5.4. Updating Helm-based projects for newer Operator SDK versions
5.5.4.1. Updating Helm-based Operator projects for Operator SDK 1.31.0
5.5.4.2. Additional resources
5.5.5. Helm support in Operator SDK

Table of Contents

239
240
240
242
243
243
244
245
246
246
247
247
247
249
249
250
250
253
254
254
255
255
256
256
256
257
257
257
258
259
259
260
260

261
262
262
263
263
264
265
265
266
267
267
268
269

271

271
272
272
272
273
273

OpenShift Container Platform 4.14 Operators

5.5.5.1. Helm charts
5.5.6. Operator SDK tutorial for Hybrid Helm Operators
5.5.6.1. Prerequisites
5.5.6.2. Creating a project
5.5.6.3. Creating a Helm API
5.5.6.3.1. Operator logic for the Helm API
5.5.6.3.2. Custom Helm reconciler configurations using provided library APIs
5.5.6.4. Creating a Go API
5.5.6.4.1. Defining the API
5.5.6.4.2. Controller implementation
5.5.6.4.3. Differences in main.go
5.5.6.4.4. Permissions and RBAC manifests
5.5.6.5. Running locally outside the cluster
5.5.6.6. Running as a deployment on the cluster
5.5.6.7. Creating custom resources
5.5.6.8. Project layout
5.5.7. Updating Hybrid Helm-based projects for newer Operator SDK versions
5.5.7.1. Updating Hybrid Helm-based Operator projects for Operator SDK 1.31.0
5.5.7.2. Additional resources
5.6. JAVA-BASED OPERATORS
5.6.1. Getting started with Operator SDK for Java-based Operators
5.6.1.1. Prerequisites
5.6.1.2. Creating and deploying Java-based Operators
5.6.1.3. Next steps
5.6.2. Operator SDK tutorial for Java-based Operators
5.6.2.1. Prerequisites
5.6.2.2. Creating a project
5.6.2.2.1. PROJECT file
5.6.2.3. Creating an APl and controller
5.6.2.3.1. Defining the API
5.6.2.3.2. Generating CRD manifests
5.6.2.3.3. Creating a Custom Resource
5.6.2.4. Implementing the controller
5.6.2.4.1. Reconcile loop
5.6.2.4.2. Defining labelsForMemcached
5.6.2.4.3. Define the createMemcachedDeployment
5.6.2.5. Running the Operator
5.6.2.5.1. Running locally outside the cluster
5.6.2.5.2. Running as a deployment on the cluster

5.6.2.5.3. Bundling an Operator and deploying with Operator Lifecycle Manager

5.6.2.5.3.1. Bundling an Operator
5.6.2.5.3.2. Deploying an Operator with Operator Lifecycle Manager
5.6.2.6. Additional resources
5.6.3. Project layout for Java-based Operators
5.6.3.1. Java-based project layout
5.6.4. Updating projects for newer Operator SDK versions
5.6.4.1. Updating Java-based Operator projects for Operator SDK 1.31.0
5.6.4.2. Additional resources
5.7. DEFINING CLUSTER SERVICE VERSIONS (CSVS)
5.7.1. How CSV generation works
5.7.1.1. Generated files and resources
5.7.1.2. Version management
5.7.2. Manually-defined CSV fields

274
274
275
275
276
276
277
277
278
279
279
281
283
283
284
287
288
288
288
289
289
289
289
291
291
291
292
292
292
293
294
295
296
299
300
300
301
301
302
304
304
306
307
307
307
308
308
308
309
309
309
310
310

Table of Contents

5.7.3. Operator metadata annotations 312
5.7.3.1. Infrastructure features annotations 312
5.7.3.2. Deprecated infrastructure feature annotations 314
5.7.3.3. Other optional annotations 315

5.7.4. Enabling your Operator for restricted network environments 316

5.7.5. Enabling your Operator for multiple architectures and operating systems 320
5.7.5.1. Architecture and operating system support for Operators 321

5.7.6. Setting a suggested namespace 322

5.7.7. Setting a suggested namespace with default node selector 322

5.7.8. Enabling Operator conditions 323

5.7.9. Defining webhooks 325
5.7.9.1. Webhook considerations for OLM 327

Certificate authority constraints 327
Admission webhook rules constraints 327
Conversion webhook constraints 328

5.7.10. Understanding your custom resource definitions (CRDs) 328
5.7.10.1. Owned CRDs 328
5.7.10.2. Required CRDs 330
5.7.10.3. CRD upgrades 331

5.7.10.3.1. Adding a new CRD version 331
5.7.10.3.2. Deprecating or removing a CRD version 332
5.7.10.4. CRD templates 333
5.7.10.5. Hiding internal objects 333
5.7.10.6. Initializing required custom resources 334

5.7.11. Understanding your API services 335

5.7.11.1. Owned API services 335
5.7.11.1.1. APl service resource creation 336
5.7.11.1.2. APl service serving certificates 337

5.7.11.2. Required APl services 337

5.8. WORKING WITH BUNDLE IMAGES 337

5.8.1. Bundling an Operator 338

5.8.2. Deploying an Operator with Operator Lifecycle Manager 339

5.8.3. Publishing a catalog containing a bundled Operator 340

5.8.4. Testing an Operator upgrade on Operator Lifecycle Manager 343

5.8.5. Controlling Operator compatibility with OpenShift Container Platform versions 345

5.8.6. Additional resources 348

5.9. COMPLYING WITH POD SECURITY ADMISSION 348

5.9.1. About pod security admission 348
5.9.1.1. Pod security admission modes 349
5.9.1.2. Pod security admission profiles 349
5.9.1.3. Privileged namespaces 349

5.9.2. About pod security admission synchronization 350
5.9.2.1. Pod security admission synchronization namespace exclusions 350

Permanently disabled namespaces 350
Initially disabled namespaces 351

5.9.3. Ensuring Operator workloads run in namespaces set to the restricted pod security level 351

5.9.4. Managing pod security admission for Operator workloads that require escalated permissions 352

5.9.5. Additional resources 353

5.10. TOKEN AUTHENTICATION FOR OPERATORS ON CLOUD PROVIDERS 353

5.10.1. CCO-based workflow for OLM-managed Operators with AWS STS 354
5.10.1.1. Enabling Operators to support CCO-based workflows with AWS STS 355
5.10.1.2. Role specification 361
5.10.1.3. Troubleshooting 362

9

OpenShift Container Platform 4.14 Operators

5.10.1.3.1. Authentication failure
5.10.1.3.2. Secret not mounting correctly
5.10.1.4. Alternative method
5.11. VALIDATING OPERATORS USING THE SCORECARD TOOL
5.11.1. About the scorecard tool
5.11.2. Scorecard configuration
5.11.3. Built-in scorecard tests
5.11.4. Running the scorecard tool
5.11.5. Scorecard output
5.11.6. Selecting tests
5.11.7. Enabling parallel testing
5.11.8. Custom scorecard tests
5.12. VALIDATING OPERATOR BUNDLES
5.12.1. About the bundle validate command
5.12.2. Built-in bundle validate tests
5.12.3. Running the bundle validate command
5.12.4. Validating your Operator’s multi-platform readiness
5.13. HIGH-AVAILABILITY OR SINGLE-NODE CLUSTER DETECTION AND SUPPORT
5.13.1. About the cluster high-availability mode API
5.13.2. Example APl usage in Operator projects
5.14. CONFIGURING BUILT-IN MONITORING WITH PROMETHEUS
5.14.1. Prometheus Operator support
5.14.2. Exposing custom metrics for Go-based Operators
5.14.3. Exposing custom metrics for Ansible-based Operators
5.15. CONFIGURING LEADER ELECTION
5.15.1. Operator leader election examples
5.15.1.1. Leader-for-life election
5.15.1.2. Leader-with-lease election
5.16. CONFIGURING OPERATOR PROJECTS FOR MULTI-PLATFORM SUPPORT
5.16.1. Building a manifest list of the platforms your Operator supports
5.16.2. About node affinity rules for multi-architecture compute machines and Operator workloads

5.16.2.1. Using required node affinity rules to support multi-architecture compute machines for Operator
projects

362
362
362
363
363
364
365
366
366
367
368
369
372
372
373
373
375
376
376
376
377
377
377
380
383
384
384
384
385
385
387

387

5.16.2.2. Using preferred node affinity rules to configure support for multi-architecture compute machines for

Operator projects
5.16.3. Next steps
5.17. OBJECT PRUNING UTILITY FOR GO-BASED OPERATORS
5.17.1. About the operator-lib pruning utility
5.17.2. Pruning utility configuration
5.18. MIGRATING PACKAGE MANIFEST PROJECTS TO BUNDLE FORMAT
5.18.1. About packaging format migration
5.18.2. Migrating a package manifest project to bundle format
5.19. OPERATOR SDK CLI REFERENCE
5.19.1. bundle
5.19.1.1. validate
5.19.2. cleanup
5.19.3. completion
5.19.4. create
5.19.4.1. api
5.19.5. generate
5.19.5.1. bundle
5.19.5.2. kustomize
5.19.5.2.1. manifests

10

390
392
392
392
392
394
394
395
396
396
396
397
397
398
398
398
398
399
400

CHAPTER 6. CLUSTER OPERATORS REFERENCE

5.19.6. init
5.19.7. run

5.19.7.1. bundle

5.19.7.2. bundle-upgrade
5.19.8. scorecard

6.1. CLUSTER BAREMETAL OPERATOR
Purpose
Project
6.2. BARE METAL EVENT RELAY
Purpose
Configuration objects
Project
CRD
6.3. CLOUD CREDENTIAL OPERATOR
Purpose
Project
CRDs
Configuration objects
Additional resources
6.4. CLUSTER AUTHENTICATION OPERATOR
Purpose
Project
6.5. CLUSTER AUTOSCALER OPERATOR
Purpose
Project
CRDs
6.6. CLUSTER CLOUD CONTROLLER MANAGER OPERATOR
Purpose
Project
6.7. CLUSTER CAPI OPERATOR
Purpose
Project
CRDs
6.8. CLUSTER CONFIG OPERATOR
Purpose
Project
6.9. CLUSTER CSI SNAPSHOT CONTROLLER OPERATOR
Purpose
Project
6.10. CLUSTER IMAGE REGISTRY OPERATOR
Purpose
Project
6.11. CLUSTER MACHINE APPROVER OPERATOR
Purpose
Project
6.12. CLUSTER MONITORING OPERATOR
Purpose
Project
CRDs
Configuration objects
6.13. CLUSTER NETWORK OPERATOR

Table of Contents

400
401
401

402

402

404
404
404
404
404
404
405
405
405
405
405
405
405
406
406
406
406
406
406
406
406
406
406
407
407
407
407
407
408
408
408
408
408
408
408
408
409
409
409
409
409
409
409
409

410

410

1

OpenShift Container Platform 4.14 Operators

Purpose
6.14. CLUSTER SAMPLES OPERATOR
Purpose
Project
6.15. CLUSTER STORAGE OPERATOR
Purpose
Project
Configuration
Notes
6.16. CLUSTER VERSION OPERATOR
Purpose
Project
6.17. CONSOLE OPERATOR
Purpose
Project
6.18. CONTROL PLANE MACHINE SET OPERATOR
Purpose
Project
CRDs
Additional resources
6.19. DNS OPERATOR
Purpose
Project
6.20. ETCD CLUSTER OPERATOR
Purpose
Project
CRDs
Configuration objects
6.21. INGRESS OPERATOR
Purpose
Project
CRDs
Configuration objects
Notes
6.22. INSIGHTS OPERATOR
Purpose
Project
Configuration
Notes
6.23. KUBERNETES API SERVER OPERATOR
Purpose
Project
CRDs
Configuration objects
6.24. KUBERNETES CONTROLLER MANAGER OPERATOR
Purpose
Project
6.25. KUBERNETES SCHEDULER OPERATOR
Purpose
Project
Configuration
6.26. KUBERNETES STORAGE VERSION MIGRATOR OPERATOR
Purpose

12

410
410
410

4n

4n

4n

4n

4n

4n
412
412
412
412
412
412
412
412
413
413
413
413
413
413
413
413
413
413
414
414
414
414
414
414
414
415
415
415
415
415
415
415
415
415
415
416
416
416
416
416
416
416
416
417

Project
6.27. MACHINE APl OPERATOR
Purpose
Project
CRDs
6.28. MACHINE CONFIG OPERATOR
Purpose
Project
6.29. MARKETPLACE OPERATOR
Purpose
Project
6.30. NODE TUNING OPERATOR
Purpose
Project
Additional resources
6.31. OPENSHIFT API SERVER OPERATOR
Purpose
Project
CRDs
6.32. OPENSHIFT CONTROLLER MANAGER OPERATOR
Purpose
Project
6.33. OPERATOR LIFECYCLE MANAGER OPERATORS
Purpose
CRDs
OLM Operator
Catalog Operator
Catalog Registry
Additional resources
6.34. OPENSHIFT SERVICE CA OPERATOR
Purpose
Project
6.35. VSPHERE PROBLEM DETECTOR OPERATOR
Purpose
Configuration
Notes

CHAPTER7.OLM 1.0 (TECHNOLOGY PREVIEW) ... oo

7.1. ABOUT OPERATOR LIFECYCLE MANAGER 1.0 (TECHNOLOGY PREVIEW)
7.1.1. Purpose
7.2. COMPONENTS AND ARCHITECTURE
7.2.1. OLM 1.0 components overview (Technology Preview)
7.2.2. Operator Controller (Technology Preview)
7.2.2.1. Operator API
7.2.2.1.1. About target versions in OLM 1.0
7.2.3. Rukpak (Technology Preview)
7.2.3.1. About RukPak
7.2.3.2. About provisioners
7.2.3.3.Bundle
7.2.3.3.1. Bundle immutability
Further immutability considerations
7.2.3.3.2. Plain bundle spec
7.2.3.3.3. Registry bundle spec

Table of Contents

417
417
417
417
417
417
417
418
418
418
418
418
418
419
419
419
419
419
419
420
420
420
420
420
420
421
422
422
422
422
423
423
423
423
423
423

.................. 424

424
425
425
425
425
426
427
429
429
430
430
430

431
432
433

13

OpenShift Container Platform 4.14 Operators

14

7.2.3.4. BundleDeployment
7.2.4. Dependency resolution in OLM 1.0 (Technology Preview)
7.2.4.1. Concepts
7.2.4.1.1. Example: Successful resolution
7.2.4.1.2. Example: Unsuccessful resolution
7.2.5. Catalogd (Technology Preview)
7.2.5.1. About catalogs in OLM 1.0
7.2.5.1.1. Red Hat-provided Operator catalogs in OLM 1.0
7.3. INSTALLING AN OPERATOR FROM A CATALOG IN OLM 1.0 (TECHNOLOGY PREVIEW)
7.3.1. Prerequisites
7.3.2. About catalogs in OLM 1.0
7.3.2.1. Red Hat-provided Operator catalogs in OLM 1.0
7.3.3. About target versions in OLM 1.0
7.3.4. Adding a catalog to a cluster
7.3.5. Finding Operators to install from a catalog
7.3.6. Installing an Operator
7.3.7. Updating an Operator
7.3.8. Deleting an Operator
7.3.9. Deleting a catalog
7.4. MANAGING PLAIN BUNDLES IN OLM 1.0 (TECHNOLOGY PREVIEW)
7.4.1. Prerequisites
7.4.2. Building a plain bundle image from an image source
7.4.3. Creating a file-based catalog
7.4.4. Adding a plain bundle to a file-based catalog
7.4.5. Building and publishing a file-based catalog

433
433
434
434
435
435
436
436
437
437
438
438
439
442
443
447
449

451
452
452
453
454
454
455
457

Table of Contents

15

OpenShift Container Platform 4.14 Operators

CHAPTER 1. OPERATORS OVERVIEW

Operators are among the most important components of OpenShift Container Platform. Operators are
the preferred method of packaging, deploying, and managing services on the control plane. They can
also provide advantages to applications that users run.

Operators integrate with Kubernetes APIs and CLI tools such as kubectl and oc commands. They
provide the means of monitoring applications, performing health checks, managing over-the-air (OTA)

updates, and ensuring that applications remain in your specified state.

While both follow similar Operator concepts and goals, Operators in OpenShift Container Platform are
managed by two different systems, depending on their purpose:

® Cluster Operators, which are managed by the Cluster Version Operator (CVO), are installed by
default to perform cluster functions.

e Optional add-on Operators, which are managed by Operator Lifecycle Manager (OLM), can be
made accessible for users to run in their applications.

With Operators, you can create applications to monitor the running services in the cluster. Operators are
designed specifically for your applications. Operators implement and automate the common Day 1

operations such as installation and configuration as well as Day 2 operations such as autoscaling up and
down and creating backups. All these activities are in a piece of software running inside your cluster.

1.1. FOR DEVELOPERS
As a developer, you can perform the following Operator tasks:
® [nstall Operator SDK CLI.

® Create Go-based Operators, Ansible-based Operators, Java-based Operators, and Helm-
based Operators.

® Use Operator SDK to build, test, and deploy an Operator .
® |nstall and subscribe an Operator to your namespace .

® Create an application from an installed Operator through the web console .

Additional resources

® Machine deletion lifecycle hook examples for Operator developers

1.2. FOR ADMINISTRATORS
As a cluster administrator, you can perform the following Operator tasks:

® Manage custom catalogs.

Allow non-cluster administrators to install Operators.

Install an Operator from OperatorHub .

View Operator status.

16

https://docs.redhat.com/en/documentation/openshift_container_platform/4.14/html-single/machine_management/#machine-lifecycle-hook-deletion-uses_deleting-machine

CHAPTER 1. OPERATORS OVERVIEW

® Manage Operator conditions.

® Upgrade installed Operators.

® Delete installed Operators.

® Configure proxy support.

® Use Operator Lifecycle Manager on restricted networks .

To know all about the cluster Operators that Red Hat provides, see Cluster Operators reference.

1.3. NEXT STEPS

To understand more about Operators, see What are Operators?

17

OpenShift Container Platform 4.14 Operators

CHAPTER 2. UNDERSTANDING OPERATORS

2.1. WHAT ARE OPERATORS?

Conceptually, Operators take human operational knowledge and encode it into software that is more
easily shared with consumers.

Operators are pieces of software that ease the operational complexity of running another piece of
software. They act like an extension of the software vendor’s engineering team, monitoring a Kubernetes
environment (such as OpenShift Container Platform) and using its current state to make decisions in
real time. Advanced Operators are designed to handle upgrades seamlessly, react to failures
automatically, and not take shortcuts, like skipping a software backup process to save time.

More technically, Operators are a method of packaging, deploying, and managing a Kubernetes
application.

A Kubernetes application is an app that is both deployed on Kubernetes and managed using the
Kubernetes APIs and kubectl or oc tooling. To be able to make the most of Kubernetes, you require a
set of cohesive APIs to extend in order to service and manage your apps that run on Kubernetes. Think
of Operators as the runtime that manages this type of app on Kubernetes.

2.1.1. Why use Operators?

Operators provide:
® Repeatability of installation and upgrade.
e Constant health checks of every system component.
® Qver-the-air (OTA) updates for OpenShift components and ISV content.

® A place to encapsulate knowledge from field engineers and spread it to all users, not just one or
two.

Why deploy on Kubernetes?

Kubernetes (and by extension, OpenShift Container Platform) contains all of the primitives needed
to build complex distributed systems - secret handling, load balancing, service discovery, autoscaling
- that work across on-premises and cloud providers.

Why manage your app with Kubernetes APIs andkubectl tooling?

These APIs are feature rich, have clients for all platforms and plug into the cluster’s access
control/auditing. An Operator uses the Kubernetes extension mechanism, custom resource
definitions (CRDs), so your custom object, for example MongoDB, looks and acts just like the built-
in, native Kubernetes objects.

How do Operators compare with service brokers?

A service broker is a step towards programmatic discovery and deployment of an app. However,
because it is not a long running process, it cannot execute Day 2 operations like upgrade, failover, or
scaling. Customizations and parameterization of tunables are provided at install time, versus an
Operator that is constantly watching the current state of your cluster. Off-cluster services are a good
match for a service broker, although Operators exist for these as well.

2.1.2. Operator Framework

The Operator Framework is a family of tools and capabilities to deliver on the customer experience

18

https://marketplace.redhat.com/en-us/products/mongodb-enterprise-advanced-from-ibm

CHAPTER 2. UNDERSTANDING OPERATORS

described above. It is not just about writing code; testing, delivering, and updating Operators is just as
important. The Operator Framework components consist of open source tools to tackle these
problems:

Operator SDK

The Operator SDK assists Operator authors in bootstrapping, building, testing, and packaging their
own Operator based on their expertise without requiring knowledge of Kubernetes APl complexities.

Operator Lifecycle Manager

Operator Lifecycle Manager (OLM) controls the installation, upgrade, and role-based access control
(RBAC) of Operators in a cluster. It is deployed by default in OpenShift Container Platform 4.14.

Operator Registry

The Operator Registry stores cluster service versions (CSVs) and custom resource definitions
(CRDs) for creation in a cluster and stores Operator metadata about packages and channels. It runs
in a Kubernetes or OpenShift cluster to provide this Operator catalog data to OLM.

OperatorHub

OperatorHub is a web console for cluster administrators to discover and select Operators to install
on their cluster. It is deployed by default in OpenShift Container Platform.

These tools are designed to be composable, so you can use any that are useful to you.

2.1.3. Operator maturity model

The level of sophistication of the management logic encapsulated within an Operator can vary. This
logic is also in general highly dependent on the type of the service represented by the Operator.

One can however generalize the scale of the maturity of the encapsulated operations of an Operator for
certain set of capabilities that most Operators can include. To this end, the following Operator maturity

model defines five phases of maturity for generic Day 2 operations of an Operator:

Figure 2.1. Operator maturity model

Level Il Level Il Level IV

Basic Install Seamless Upgrades Full Lifecycle Deep Insights Auto Pilot

Automated application Patch and minor version App lifecycle, storage Metrics, alerts, log Horizontal/vertical scaling,
provisioning and upgrades supported lifecycle (backup, failure processing and workload auto config tuning, abnormal
configuration management recovery) analysis detection, scheduling tuning
<—— HELM >

A
v

A

ANSIBLE

= GO

v

The above model also shows how these capabilities can best be developed through the Helm, Go, and
Ansible capabilities of the Operator SDK.

19

OpenShift Container Platform 4.14 Operators

2.2. OPERATOR FRAMEWORK PACKAGING FORMAT

This guide outlines the packaging format for Operators supported by Operator Lifecycle Manager
(OLM) in OpenShift Container Platform.

2.2.1. Bundle format

The bundle format for Operators is a packaging format introduced by the Operator Framework. To
improve scalability and to better enable upstream users hosting their own catalogs, the bundle format
specification simplifies the distribution of Operator metadata.

An Operator bundle represents a single version of an Operator. On-disk bundle manifests are
containerized and shipped as a bundle image, which is a non-runnable container image that stores the
Kubernetes manifests and Operator metadata. Storage and distribution of the bundle image is then
managed using existing container tools like podman and docker and container registries such as Quay.
Operator metadata can include:

e |nformation that identifies the Operator, for example its name and version.

® Additional information that drives the Ul, for example its icon and some example custom
resources (CRs).

® Required and provided APls.
® Related images.
When loading manifests into the Operator Registry database, the following requirements are validated:
® The bundle must have at least one channel defined in the annotations.
® FEvery bundle has exactly one cluster service version (CSV).

e |f a CSV owns a custom resource definition (CRD), that CRD must exist in the bundle.

2.2.1.1. Manifests

Bundle manifests refer to a set of Kubernetes manifests that define the deployment and RBAC model of
the Operator.

A bundle includes one CSV per directory and typically the CRDs that define the owned APIs of the CSV
in its /manifests directory.

Example bundle format layout

eted

— manifests

| — etedcluster.crd.yaml
| L— etcdoperator.clusterserviceversion.yaml

L— secret.yaml
L— configmap.yaml
L— metadata
L annotations.yaml
L— dependencies.yaml

Additionally supported objects

20

CHAPTER 2. UNDERSTANDING OPERATORS

The following object types can also be optionally included in the /manifests directory of a bundle:

Supported optional object types

® (ClusterRole

® ClusterRoleBinding
e ConfigMap

® ConsoleCLIDownload
e ConsoleLink

e ConsoleQuickStart
® ConsoleYamiSample
o PodDisruptionBudget
® PriorityClass

® PrometheusRule

® Role

® RoleBinding

e Secret

® Service

® ServiceAccount

e ServiceMonitor

e VerticalPodAutoscaler

When these optional objects are included in a bundle, Operator Lifecycle Manager (OLM) can create
them from the bundle and manage their lifecycle along with the CSV:

Lifecycle for optional objects
® When the CSV is deleted, OLM deletes the optional object.
® When the CSV is upgraded:
o If the name of the optional object is the same, OLM updates it in place.

o If the name of the optional object has changed between versions, OLM deletes and
recreates it.

2.2.1.2. Annotations

A bundle also includes an annotations.yaml file in its /metadata directory. This file defines higher level
aggregate data that helps describe the format and package information about how the bundle should
be added into an index of bundles:

21

OpenShift Container Platform 4.14 Operators

Example annotations.yaml

annotations:
operators.operatorframework.io.bundle.mediatype.v1: "registry+vi" ﬂ
operators.operatorframework.io.bundle.manifests.vi: "manifests/" g
operators.operatorframework.io.bundle.metadata.vi: "metadata/" 6
operators.operatorframework.io.bundle.package.vi: "test-operator" ﬂ
operators.operatorframework.io.bundle.channels.vi: "beta,stable" 9
operators.operatorframework.io.bundle.channel.default.vi: "stable" G

The media type or format of the Operator bundle. The registry+v1 format means it contains a
CSV and its associated Kubernetes objects.

The path in the image to the directory that contains the Operator manifests. This label is reserved
for future use and currently defaults to manifests/. The value manifests.v1 implies that the bundle
contains Operator manifests.

The path in the image to the directory that contains metadata files about the bundle. This label is
reserved for future use and currently defaults to metadata/. The value metadata.v1 implies that
this bundle has Operator metadata.

The package name of the bundle.

The list of channels the bundle is subscribing to when added into an Operator Registry.

Qv oo o 9

The default channel an Operator should be subscribed to when installed from a registry.

NOTE

In case of a mismatch, the annotations.yaml file is authoritative because the on-cluster
Operator Registry that relies on these annotations only has access to this file.

2.2.1.3. Dependencies

The dependencies of an Operator are listed in a dependencies.yaml file in the metadata/ folder of a
bundle. This file is optional and currently only used to specify explicit Operator-version dependencies.

The dependency list contains a type field for each item to specify what kind of dependency this is. The
following types of Operator dependencies are supported:

olm.package

This type indicates a dependency for a specific Operator version. The dependency information must
include the package name and the version of the package in semver format. For example, you can
specify an exact version such as 0.5.2 or a range of versions such as >0.5.1.

olm.gvk

With this type, the author can specify a dependency with group/version/kind (GVK) information,
similar to existing CRD and API-based usage in a CSV. This is a path to enable Operator authors to
consolidate all dependencies, API or explicit versions, to be in the same place.

olm.constraint

This type declares generic constraints on arbitrary Operator properties.

In the following example, dependencies are specified for a Prometheus Operator and etcd CRDs:

22

CHAPTER 2. UNDERSTANDING OPERATORS

Example dependencies.yaml file

dependencies:
- type: olm.package
value:
packageName: prometheus
version: ">0.27.0"
- type: olm.gvk
value:
group: etcd.database.coreos.com
kind: EtcdCluster
version: vibeta2

Additional resources

® Operator Lifecycle Manager dependency resolution

2.2.1.4. About the opm CLI

The opm CLI tool is provided by the Operator Framework for use with the Operator bundle format. This
tool allows you to create and maintain catalogs of Operators from a list of Operator bundles that are
similar to software repositories. The result is a container image which can be stored in a container
registry and then installed on a cluster.

A catalog contains a database of pointers to Operator manifest content that can be queried through an
included API that is served when the container image is run. On OpenShift Container Platform,
Operator Lifecycle Manager (OLM) can reference the image in a catalog source, defined by a
CatalogSource object, which polls the image at regular intervals to enable frequent updates to installed
Operators on the cluster.

® See CLltools for steps on installing the opm CLI.

2.2.2. File-based catalogs

File-based catalogs are the latest iteration of the catalog format in Operator Lifecycle Manager (OLM).
It is a plain text-based (JSON or YAML) and declarative config evolution of the earlier SQLite database
format, and it is fully backwards compatible. The goal of this format is to enable Operator catalog
editing, composability, and extensibility.
Editing
With file-based catalogs, users interacting with the contents of a catalog are able to make direct
changes to the format and verify that their changes are valid. Because this format is plain text JSON
or YAML, catalog maintainers can easily manipulate catalog metadata by hand or with widely known
and supported JSON or YAML tooling, such as the jg CLI.
This editability enables the following features and user-defined extensions:

® Promoting an existing bundle to a new channel
® Changing the default channel of a package

® Custom algorithms for adding, updating, and removing upgrade edges

Composability

File-based catalogs are stored in an arbitrary directory hierarchy, which enables catalog composition.

23

https://docs.redhat.com/en/documentation/openshift_container_platform/4.14/html-single/cli_tools/#cli-opm-install

OpenShift Container Platform 4.14 Operators

For example, consider two separate file-based catalog directories: catalogA and catalogB. A catalog
maintainer can create a new combined catalog by making a new directory catalogC and copying
catalogA and catalogB into it.

This composability enables decentralized catalogs. The format permits Operator authors to maintain
Operator-specific catalogs, and it permits maintainers to trivially build a catalog composed of
individual Operator catalogs. File-based catalogs can be composed by combining multiple other
catalogs, by extracting subsets of one catalog, or a combination of both of these.

NOTE

Duplicate packages and duplicate bundles within a package are not permitted. The
opm validate command returns an error if any duplicates are found.

Because Operator authors are most familiar with their Operator, its dependencies, and its upgrade
compatibility, they are able to maintain their own Operator-specific catalog and have direct control
over its contents. With file-based catalogs, Operator authors own the task of building and
maintaining their packages in a catalog. Composite catalog maintainers, however, only own the task
of curating the packages in their catalog and publishing the catalog to users.

Extensibility

The file-based catalog specification is a low-level representation of a catalog. While it can be
maintained directly in its low-level form, catalog maintainers can build interesting extensions on top
that can be used by their own custom tooling to make any number of mutations.

For example, a tool could translate a high-level API, such as (mode=semver), down to the low-level,
file-based catalog format for upgrade edges. Or a catalog maintainer might need to customize all of
the bundle metadata by adding a new property to bundles that meet a certain criteria.

While this extensibility allows for additional official tooling to be developed on top of the low-level
APIs for future OpenShift Container Platform releases, the major benefit is that catalog maintainers
have this capability as well.

IMPORTANT

As of OpenShift Container Platform 4.11, the default Red Hat-provided Operator catalog
releases in the file-based catalog format. The default Red Hat-provided Operator
catalogs for OpenShift Container Platform 4.6 through 4.10 released in the deprecated
SQLite database format.

The opm subcommands, flags, and functionality related to the SQLite database format
are also deprecated and will be removed in a future release. The features are still
supported and must be used for catalogs that use the deprecated SQLite database
format.

Many of the opm subcommands and flags for working with the SQL.ite database format,
such as opm index prune, do not work with the file-based catalog format. For more
information about working with file-based catalogs, see Managing custom catalogs and
Mirroring images for a disconnected installation using the oc-mirror plugin .

2.2.2.1. Directory structure

File-based catalogs can be stored and loaded from directory-based file systems. The opm CLI loads
the catalog by walking the root directory and recursing into subdirectories. The CLI attempts to load
every file it finds and fails if any errors occur.

24

https://docs.redhat.com/en/documentation/openshift_container_platform/4.14/html-single/installing/#installing-mirroring-disconnected

CHAPTER 2. UNDERSTANDING OPERATORS

Non-catalog files can be ignored using .indexignore files, which have the same rules for patterns and
precedence as .gitignore files.

Example .indexignore file

Ignore everything except non-object .json and .yaml files
**/*

I*.json

*.yaml

**/objects/*.json

**/objects/*.yaml|

Catalog maintainers have the flexibility to choose their desired layout, but it is recommended to store
each package’s file-based catalog blobs in separate subdirectories. Each individual file can be either
JSON or YAML, it is not necessary for every file in a catalog to use the same format.

Basic recommended structure

catalog

— packageA

| L—index.yaml
— packageB

| |— .indexignore
| F— index.yaml
|

|

—— objects

L— packageB.v0.1.0.clusterserviceversion.yaml
L— packageC

L— index.json

This recommended structure has the property that each subdirectory in the directory hierarchy is a self-
contained catalog, which makes catalog composition, discovery, and navigation trivial file system
operations. The catalog could also be included in a parent catalog by copying it into the parent catalog's
root directory.

2.2.2.2. Schemas

File-based catalogs use a format, based on the CUE language specification, that can be extended with
arbitrary schemas. The following _Meta CUE schema defines the format that all file-based catalog blobs
must adhere to:

_Meta schema

_Meta: {
// schema is required and must be a non-empty string
schema: string & 1=""

// package is optional, but if it's defined, it must be a non-empty string
package?: string & ="

// properties is optional, but if it's defined, it must be a list of 0 or more properties
properties?: [... #Property]

}

#Property: {

25

https://cuelang.org/docs/references/spec/

OpenShift Container Platform 4.14 Operators

// type is required
type: string & 1=""

// value is required, and it must not be null
value: !=null

NOTE

No CUE schemas listed in this specification should be considered exhaustive. The opm
validate command has additional validations that are difficult or impossible to express
concisely in CUE.

-

An Operator Lifecycle Manager (OLM) catalog currently uses three schemas (olm.package,
olm.channel, and olm.bundle), which correspond to OLM's existing package and bundle concepts.

Each Operator package in a catalog requires exactly one olm.package blob, at least one olm.channel
blob, and one or more olm.bundle blobs.

NOTE

All olm.* schemas are reserved for OLM-defined schemas. Custom schemas must use a
unique prefix, such as a domain that you own.

2.2.2.2.1. olm.package schema

The olm.package schema defines package-level metadata for an Operator. This includes its name,
description, default channel, and icon.

Example 2.1. olm.package schema

#Package: {
schema: "olm.package"

// Package name
name: string & 1=""
// A description of the package
description?: string

// The package's default channel
defaultChannel: string & ="

// An optional icon
icon?: {
base64data: string
mediatype: string
}
}

2.2.2.2.2. olm.channel schema

26

CHAPTER 2. UNDERSTANDING OPERATORS

The olm.channel schema defines a channel within a package, the bundle entries that are members of
the channel, and the upgrade edges for those bundles.

A bundle can included as an entry in multiple olm.channel blobs, but it can have only one entry per
channel.

Itis valid for an entry’s replaces value to reference another bundle name that cannot be found in this
catalog or another catalog. However, all other channel invariants must hold true, such as a channel not
having multiple heads.

Example 2.2. olm.channel schema

#Channel: {
schema: "olm.channel”
package: string & ="
name: string & 1=""
entries: [...#ChannelEntry]

}

#ChannelEntry: {
// name is required. It is the name of an "olm.bundle that
//is present in the channel.
name: string & 1=""

// replaces is optional. It is the name of bundle that is replaced
// by this entry. It does not have to be present in the entry list.
replaces?: string & 1=""

// skips is optional. It is a list of bundle names that are skipped by
// this entry. The skipped bundles do not have to be present in the
// entry list.

skips?: [...string & 1=""]

// skipRange is optional. It is the semver range of bundle versions
// that are skipped by this entry.
skipRange?: string & 1=""

' WARNING
A When using the skipRange field, the skipped Operator versions are pruned from

the update graph and are therefore no longer installable by users with the
spec.startingCSV property of Subscription objects.

If you want to have direct (one version increment) updates to an Operator version
from multiple previous versions, and also keep those previous versions available to
users for installation, always use the skipRange field along with the replaces field.
Ensure that the replaces field points to the immediate previous version of the
Operator version in question.

27

OpenShift Container Platform 4.14 Operators

2.2.2.2.3. olm.bundle schema

Example 2.3. olm.bundle schema

#Bundle: {

schema: "olm.bundle"

package: string & ="

name: string & 1=""

image: string & 1=""

properties: [...#Property]

relatedlmages?: [...#Relatedimage]
#Property: {

// type is required

type: string & 1=""

// value is required, and it must not be null
value: I=null

#Relatedimage: {
//image is the image reference
image: string & 1=""

// name is an optional descriptive name for an image that
// helps identify its purpose in the context of the bundle
name?: string & I=""

2.2.2.3. Properties

Properties are arbitrary pieces of metadata that can be attached to file-based catalog schemas. The
type field is a string that effectively specifies the semantic and syntactic meaning of the value field. The
value can be any arbitrary JSON or YAML.

OLM defines a handful of property types, again using the reserved olm.* prefix.

2.2.2.3.1. olm.package property

The olm.package property defines the package name and version. This is a required property on
bundles, and there must be exactly one of these properties. The packageName field must match the
bundle’s first-class package field, and the version field must be a valid semantic version.

packageName string & ="

Example 2.4. olm.package property
#PropertyPackage: {
type: "olm.package"
value: {
verS|on string & I=""

28

CHAPTER 2. UNDERSTANDING OPERATORS

2.2.2.3.2. olm.gvk property

The olm.gvk property defines the group/version/kind (GVK) of a Kubernetes API that is provided by
this bundle. This property is used by OLM to resolve a bundle with this property as a dependency for
other bundles that list the same GVK as a required API. The GVK must adhere to Kubernetes GVK
validations.

Example 2.5. olm.gvk property
#PropertyGVK: {
type: "olm.gvk"

value: {
group string & 1=""
version: string & 1=""
kmd string & I=""

2.2.2.3.3. olm.package.required

The olm.package.required property defines the package name and version range of another package
that this bundle requires. For every required package property a bundle lists, OLM ensures there is an
Operator installed on the cluster for the listed package and in the required version range. The
versionRange field must be a valid semantic version (semver) range.

type: "olm.package.required"
value: {
packageName string & ="

#PropertyPackageRequired: {
versionRange: string & 1=""

| Example 2.6. olm.package.required property

2.2.2.3.4. olm.gvk.required

The olm.gvk.required property defines the group/version/kind (GVK) of a Kubernetes API that this
bundle requires. For every required GVK property a bundle lists, OLM ensures there is an Operator
installed on the cluster that provides it. The GVK must adhere to Kubernetes GVK validations.

type: "olm.gvk.required”
value: {
group string & 1=""

Example 2.7. olm.gvk.required property
version: string & ="

‘ #PropertyGVKRequired: {

29

OpenShift Container Platform 4.14 Operators

kind: string & 1=""
}
}

2.2.2.4. Example catalog

With file-based catalogs, catalog maintainers can focus on Operator curation and compatibility.
Because Operator authors have already produced Operator-specific catalogs for their Operators,
catalog maintainers can build their catalog by rendering each Operator catalog into a subdirectory of
the catalog’s root directory.

There are many possible ways to build a file-based catalog; the following steps outline a simple
approach:

1. Maintain a single configuration file for the catalog, containing image references for each
Operator in the catalog:

Example catalog configuration file

name: community-operators
repo: quay.io/community-operators/catalog
tag: latest
references:
- name: etcd-operator

image: quay.io/etcd-
operator/index@sha256:5891b5b522d5df086d0ff0b110fbd9d21bb4fc7163af34d08286a2e846f
6be03
- name: prometheus-operator

image: quay.io/prometheus-
operator/index@sha256:e258d248fda94c63753607f7c4494ee0fcbe92f1a76bfdac795¢9d84101
eb317

2. Run a script that parses the configuration file and creates a new catalog from its references:

Example script

name=3$(yq eval .name' catalog.yaml)
mkdir "$name"
yq eval .name + "/" + .references[].name' catalog.yaml | xargs mkdir
for I'in $(yq e '.name as $catalog | .references|] | .image + "|" + $catalog + "/" + .name +
"/index.yaml™ catalog.yaml); do
image=$(echo $I | cut -d'|' -f1)
file=$(echo $I | cut -d'|' -f2)
opm render "$image" > "$file"
done
opm alpha generate dockerfile "$name”
indexImage=$(yq eval ".repo + ":" + .tag' catalog.yaml)
docker build -t "$indexImage" -f "$name.Dockerfile" .
docker push "$indexlmage”

2.2.2.5. Guidelines

Consider the following guidelines when maintaining file-based catalogs.

30

CHAPTER 2. UNDERSTANDING OPERATORS

2.2.2.5.1. Immutable bundles

The general advice with Operator Lifecycle Manager (OLM) is that bundle images and their metadata
should be treated as immutable.

If a broken bundle has been pushed to a catalog, you must assume that at least one of your users has
upgraded to that bundle. Based on that assumption, you must release another bundle with an upgrade
edge from the broken bundle to ensure users with the broken bundle installed receive an upgrade. OLM
will not reinstall an installed bundle if the contents of that bundle are updated in the catalog.

However, there are some cases where a change in the catalog metadata is preferred:

® Channel promotion: If you already released a bundle and later decide that you would like to add
it to another channel, you can add an entry for your bundle in another olm.channel blob.

® New upgrade edges: If you release a new 1.2.z bundle version, for example 1.2.4, but 1.3.0is
already released, you can update the catalog metadata for 1.3.0 to skip 1.2.4.

2.2.2.5.2. Source control

Catalog metadata should be stored in source control and treated as the source of truth. Updates to
catalog images should include the following steps:

1. Update the source-controlled catalog directory with a new commit.
2. Build and push the catalog image. Use a consistent tagging taxonomy, such as :latest or :

<target_cluster_versions, so that users can receive updates to a catalog as they become
available.

2.2.2.6. CLl usage

For instructions about creating file-based catalogs by using the opm CLI, see Managing custom
catalogs.

For reference documentation about the opm CLI commands related to managing file-based catalogs,
see CLI tools.

2.2.2.7. Automation
Operator authors and catalog maintainers are encouraged to automate their catalog maintenance with
Cl/CD workflows. Catalog maintainers can further improve on this by building GitOps automation to

accomplish the following tasks:

® Check that pull request (PR) authors are permitted to make the requested changes, for
example by updating their package's image reference.

® Check that the catalog updates pass the opm validate command.

® Check that the updated bundle or catalog image references exist, the catalog images run
successfully in a cluster, and Operators from that package can be successfully installed.

® Automatically merge PRs that pass the previous checks.

® Automatically rebuild and republish the catalog image.

2.2.3. RukPak (Technology Preview)

31

https://docs.redhat.com/en/documentation/openshift_container_platform/4.14/html-single/cli_tools/#cli-opm-ref

OpenShift Container Platform 4.14 Operators

IMPORTANT

RukPak is a Technology Preview feature only. Technology Preview features are not
supported with Red Hat production service level agreements (SLAs) and might not be
functionally complete. Red Hat does not recommend using them in production. These
features provide early access to upcoming product features, enabling customers to test
functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope.

OpenShift Container Platform 4.12 introduces the platform Operator type as a Technology Preview
feature. The platform Operator mechanism relies on the RukPak component, also introduced in
OpenShift Container Platform 4.12, and its resources to manage content.

OpenShift Container Platform 4.14 introduces Operator Lifecycle Manager (OLM) 1.0 as a Technology
Preview feature, which also relies on the RukPak component.

RukPak is a pluggable solution for packaging and distributing cloud-native content. It supports advanced
strategies for installation, updates, and policy.

RukPak provides a content ecosystem for installing a variety of artifacts on a Kubernetes cluster.
Artifact examples include Git repositories, Helm charts, and OLM bundles. RukPak can then manage,
scale, and upgrade these artifacts in a safe way to enable powerful cluster extensions.

At its core, RukPak is a small set of APIs and controllers. The APIs are packaged as custom resource
definitions (CRDs) that express what content to install on a cluster and how to create a running
deployment of the content. The controllers watch for the APIs.

Common terminology

Bundle
A collection of Kubernetes manifests that define content to be deployed to a cluster
Bundle image
A container image that contains a bundle within its filesystem
Bundle Git repository
A Git repository that contains a bundle within a directory
Provisioner
Controllers that install and manage content on a Kubernetes cluster
Bundle deployment

Generates deployed instances of a bundle

Additional resources

® Managing platform Operators
® Technology Preview restrictions for platform Operators

® About Operator Lifecycle Manager 1.0 (Technology Preview)

2.2.3.1. Bundle

32

https://access.redhat.com/support/offerings/techpreview/

CHAPTER 2. UNDERSTANDING OPERATORS

A RukPak Bundle object represents content to make available to other consumers in the cluster. Much
like the contents of a container image must be pulled and unpacked in order for pod to start using them,
Bundle objects are used to reference content that might need to be pulled and unpacked. In this sense,
a bundle is a generalization of the image concept and can be used to represent any type of content.

Bundles cannot do anything on their own; they require a provisioner to unpack and make their content
available in the cluster. They can be unpacked to any arbitrary storage medium, such as a tar.gz file in a
directory mounted into the provisioner pods. Each Bundle object has an associated
spec.provisionerClassName field that indicates the Provisioner object that watches and unpacks
that particular bundle type.

Example Bundle object configured to work with the plain provisioner

apiVersion: core.rukpak.io/vialphat
kind: Bundle
metadata:
name: my-bundle
spec:
source:
type: image
image:
ref: my-bundle@sha256:xyz123
provisionerClassName: core-rukpak-io-plain

NOTE

Bundles are considered immutable after they are created.

2.2.3.1.1. Bundle immutability

After a Bundle object is accepted by the API server, the bundle is considered an immutable artifact by
the rest of the RukPak system. This behavior enforces the notion that a bundle represents some unique,
static piece of content to source onto the cluster. A user can have confidence that a particular bundle is
pointing to a specific set of manifests and cannot be updated without creating a new bundle. This
property is true for both standalone bundles and dynamic bundles created by an embedded
BundleTemplate object.

Bundle immutability is enforced by the core RukPak webhook. This webhook watches Bundle object
events and, for any update to a bundle, checks whether the spec field of the existing bundle is
semantically equal to that in the proposed updated bundle. If they are not equal, the update is rejected
by the webhook. Other Bundle object fields, such as metadata or status, are updated during the
bundle’s lifecycle; it is only the spec field that is considered immutable.

Applying a Bundle object and then attempting to update its spec should fail. For example, the following
example creates a bundle:

$ oc apply -f -<<EOF
apiVersion: core.rukpak.io/vialphat
kind: Bundle
metadata:
name: combo-tag-ref
spec:
source:
type: git
git:

33

OpenShift Container Platform 4.14 Operators

ref:
tag: v0.0.2
repository: https://github.com/operator-framework/combo
provisionerClassName: core-rukpak-io-plain
EOF

Example output

I bundle.core.rukpak.io/combo-tag-ref created

Then, patching the bundle to point to a newer tag returns an error:

I $ oc patch bundle combo-tag-ref --type="merge' -p {"spec":{"source":{"git":{"ref":{"tag":"v0.0.3"}}}}'

Example output

Error from server (bundle.spec is immutable): admission webhook "vbundles.core.rukpak.io" denied
the request: bundle.spec is immutable

The core RukPak admission webhook rejected the patch because the spec of the bundle is immutable.
The recommended method to change the content of a bundle is by creating a new Bundle object
instead of updating it in-place.

Further immutability considerations

While the spec field of the Bundle object is immutable, it is still possible for a BundleDeployment
object to pivot to a newer version of bundle content without changing the underlying spec field. This
unintentional pivoting could occur in the following scenario:

1. Auser sets an image tag, a Git branch, or a Git tag in the spec.source field of the Bundle
object.

2. The image tag moves to a new digest, a user pushes changes to a Git branch, or a user deletes
and re-pushes a Git tag on a different commit.

3. Auser does something to cause the bundle unpack pod to be re-created, such as deleting the
unpack pod.

If this scenario occurs, the new content from step 2 is unpacked as a result of step 3. The bundle
deployment detects the changes and pivots to the newer version of the content.

This is similar to pod behavior, where one of the pod'’s container images uses a tag, the tag is moved to a
different digest, and then at some point in the future the existing pod is rescheduled on a different
node. At that point, the node pulls the new image at the new digest and runs something different
without the user explicitly asking for it.

To be confident that the underlying Bundle spec content does not change, use a digest-based image or
a Git commit reference when creating the bundle.

2.2.3.1.2. Plain bundle spec

A plain bundle in RukPak is a collection of static, arbitrary, Kubernetes YAML manifests in a given
directory.

34

CHAPTER 2. UNDERSTANDING OPERATORS

The currently implemented plain bundle format is the plain+v0 format. The name ot the bundle tormat,
plain+v0, combines the type of bundle (plain) with the current schema version (v0).

NOTE

The plain+v0 bundle format is at schema version v0, which means it is an experimental
format that is subject to change.

2

For example, the following shows the file tree in a plain+v0 bundle. It must have a manifests/ directory
containing the Kubernetes resources required to deploy an application.

Example plain+v0 bundle file tree

$ tree manifests

manifests

namespace.yam|
service_account.yaml
cluster_role.yaml|
cluster_role_binding.yaml
deployment.yaml

The static manifests must be located in the manifests/ directory with at least one resource in it for the
bundle to be a valid plain+v0 bundle that the provisioner can unpack. The manifests/ directory must
also be flat; all manifests must be at the top-level with no subdirectories.

IMPORTANT

Do not include any content in the manifests/ directory of a plain bundle that are not
static manifests. Otherwise, a failure will occur when creating content on-cluster from
that bundle. Any file that would not successfully apply with the oc apply command will
result in an error. Multi-object YAML or JSON files are valid, as well.

2.2.3.1.3. Registry bundle spec

A registry bundle, or registry+v1 bundle, contains a set of static Kubernetes YAML manifests organized
in the legacy Operator Lifecycle Manager (OLM) bundle format.

Additional resources

® | egacy OLM bundle format

2.2.3.2. BundleDeployment

35

OpenShift Container Platform 4.14 Operators

' WARNING
A A BundleDeployment object changes the state of a Kubernetes cluster by

installing and removing objects. It is important to verify and trust the content that is
being installed and limit access, by using RBAC, to the BundleDeployment API to
only those who require those permissions.

The RukPak BundleDeployment API points to a Bundle object and indicates that it should be active.
This includes pivoting from older versions of an active bundle. A BundleDeployment object might also
include an embedded spec for a desired bundle.

Much like pods generate instances of container images, a bundle deployment generates a deployed
version of a bundle. A bundle deployment can be seen as a generalization of the pod concept.

The specifics of how a bundle deployment makes changes to a cluster based on a referenced bundle is
defined by the provisioner that is configured to watch that bundle deployment.

Example BundleDeployment object configured to work with the plain provisioner

apiVersion: core.rukpak.io/vialphat
kind: BundleDeployment
metadata:
name: my-bundle-deployment
spec:
provisionerClassName: core-rukpak-io-plain
template:
metadata:
labels:
app: my-bundle
spec:
source:
type: image
image:
ref: my-bundle@sha256:xyz123
provisionerClassName: core-rukpak-io-plain

2.2.3.3. About provisioners

RukPak consists of a series of controllers, known as provisioners, that install and manage content on a
Kubernetes cluster. RukPak also provides two primary APIs: Bundle and BundleDeployment. These
components work together to bring content onto the cluster and install it, generating resources within
the cluster.

Two provisioners are currently implemented and bundled with RukPak: the plain provisioner that sources
and unpacks plain+v0 bundles, and the registry provisioner that sources and unpacks Operator Lifecycle
Manager (OLM) registry+v1 bundles.

Each provisioner is assigned a unique ID and is responsible for reconciling Bundle and
BundleDeployment objects with a spec.provisionerClassName field that matches that particular ID.
For example, the plain provisioner is able to unpack a given plain+v0 bundle onto a cluster and then
instantiate it, making the content of the bundle available in the cluster.

36

CHAPTER 2. UNDERSTANDING OPERATORS

A provisioner places a watch on both Bundle and BundleDeployment resources that refer to the
provisioner explicitly. For a given bundle, the provisioner unpacks the contents of the Bundle resource
onto the cluster. Then, given a BundleDeployment resource referring to that bundle, the provisioner
installs the bundle contents and is responsible for managing the lifecycle of those resources.

2.3. OPERATOR FRAMEWORK GLOSSARY OF COMMON TERMS

This topic provides a glossary of common terms related to the Operator Framework, including Operator
Lifecycle Manager (OLM) and the Operator SDK.

2.3.1. Common Operator Framework terms

2.3.1.1. Bundle

In the bundle format, a bundle is a collection of an Operator CSV, manifests, and metadata. Together,
they form a unique version of an Operator that can be installed onto the cluster.

2.3.1.2. Bundle image

In the bundle format, a bundle image is a container image that is built from Operator manifests and that
contains one bundle. Bundle images are stored and distributed by Open Container Initiative (OCl) spec
container registries, such as Quay.io or DockerHub.

2.3.1.3. Catalog source

A catalog source represents a store of metadata that OLM can query to discover and install Operators
and their dependencies.

2.3.1.4. Channel

A channel defines a stream of updates for an Operator and is used to roll out updates for subscribers.
The head points to the latest version of that channel. For example, a stable channel would have all
stable versions of an Operator arranged from the earliest to the latest.

An Operator can have several channels, and a subscription binding to a certain channel would only look
for updates in that channel.

2.3.1.5. Channel head

A channel head refers to the latest known update in a particular channel.

2.3.1.6. Cluster service version

A cluster service version (CSV) is a YAML manifest created from Operator metadata that assists OLM in
running the Operator in a cluster. It is the metadata that accompanies an Operator container image,
used to populate user interfaces with information such as its logo, description, and version.

Itis also a source of technical information that is required to run the Operator, like the RBAC rules it
requires and which custom resources (CRs) it manages or depends on.

2.3.1.7. Dependency

37

OpenShift Container Platform 4.14 Operators

An Operator may have a dependency on another Operator being present in the cluster. For example, the
Vault Operator has a dependency on the etcd Operator for its data persistence layer.

OLM resolves dependencies by ensuring that all specified versions of Operators and CRDs are installed
on the cluster during the installation phase. This dependency is resolved by finding and installing an
Operator in a catalog that satisfies the required CRD API, and is not related to packages or bundles.

2.3.1.8. Index image

In the bundle format, an index image refers to an image of a database (a database snapshot) that
contains information about Operator bundles including CSVs and CRDs of all versions. This index can
host a history of Operators on a cluster and be maintained by adding or removing Operators using the
opm CLI tool.

2.3.1.9. Install plan

An install plan is a calculated list of resources to be created to automatically install or upgrade a CSV.

2.3.1.10. Multitenancy

A tenant in OpenShift Container Platform is a user or group of users that share common access and
privileges for a set of deployed workloads, typically represented by a namespace or project. You can use
tenants to provide a level of isolation between different groups or teams.

When a cluster is shared by multiple users or groups, it is considered a multitenant cluster.

2.3.1.11. Operator group

An Operator group configures all Operators deployed in the same namespace as the OperatorGroup
object to watch for their CR in a list of namespaces or cluster-wide.

2.3.1.12. Package

In the bundle format, a package is a directory that encloses all released history of an Operator with each
version. A released version of an Operator is described in a CSV manifest alongside the CRDs.

2.3.1.13. Registry

A registry is a database that stores bundle images of Operators, each with all of its latest and historical
versions in all channels.

2.3.1.14. Subscription

A subscription keeps CSVs up to date by tracking a channel in a package.

2.3.1.15. Update graph

An update graph links versions of CSVs together, similar to the update graph of any other packaged
software. Operators can be installed sequentially, or certain versions can be skipped. The update graph
is expected to grow only at the head with newer versions being added.

2.4. OPERATOR LIFECYCLE MANAGER (OLM)

38

CHAPTER 2. UNDERSTANDING OPERATORS

2.4.1. Operator Lifecycle Manager concepts and resources

This guide provides an overview of the concepts that drive Operator Lifecycle Manager (OLM) in
OpenShift Container Platform.

2.4.1.1. What is Operator Lifecycle Manager?

Operator Lifecycle Manager (OLM) helps users install, update, and manage the lifecycle of Kubernetes
native applications (Operators) and their associated services running across their OpenShift Container
Platform clusters. It is part of the Operator Framework, an open source toolkit designed to manage
Operators in an effective, automated, and scalable way.

Figure 2.2. Operator Lifecycle Manager workflow

Operators Lifecycle Manager

Install and update across clusters
Namespace A Namespace B

Operator manifest Cluster catalog Apps Apps

OLM runs by default in OpenShift Container Platform 4.14, which aids cluster administrators in installing,
upgrading, and granting access to Operators running on their cluster. The OpenShift Container
Platform web console provides management screens for cluster administrators to install Operators, as
well as grant specific projects access to use the catalog of Operators available on the cluster.

For developers, a self-service experience allows provisioning and configuring instances of databases,

monitoring, and big data services without having to be subject matter experts, because the Operator
has that knowledge baked into it.

2.4.1.2. OLM resources

The following custom resource definitions (CRDs) are defined and managed by Operator Lifecycle
Manager (OLM):

Table 2.1. CRDs managed by OLM and Catalog Operators

Resource Short name Description

ClusterServic csv Application metadata. For example: name, version, icon, required
eVersion resources.

(CSV)

CatalogSour catsrc A repository of CSVs, CRDs, and packages that define an application.
ce

Subscription sub Keeps CSVs up to date by tracking a channel in a package.

39

https://operatorframework.io/

OpenShift Container Platform 4.14 Operators

Resource Short name Description

InstallPlan ip Calculated list of resources to be created to automatically install or
upgrade a CSV.

OperatorGro og Configures all Operators deployed in the same namespace as the

up OperatorGroup object to watch for their custom resource (CR) in a

list of namespaces or cluster-wide.

OperatorCon - Creates a communication channel between OLM and an Operator it
ditions manages. Operators can write to the Status.Conditions array to
communicate complex states to OLM.

2.4.1.2.1. Cluster service version

A cluster service version (CSV) represents a specific version of a running Operator on an OpenShift
Container Platform cluster. It is a YAML manifest created from Operator metadata that assists Operator
Lifecycle Manager (OLM) in running the Operator in the cluster.

OLM requires this metadata about an Operator to ensure that it can be kept running safely on a cluster,
and to provide information about how updates should be applied as new versions of the Operator are
published. This is similar to packaging software for a traditional operating system; think of the packaging
step for OLM as the stage at which you make your rpm, deb, or apk bundle.

A CSV includes the metadata that accompanies an Operator container image, used to populate user
interfaces with information such as its name, version, description, labels, repository link, and logo.

A CSV s also a source of technical information required to run the Operator, such as which custom
resources (CRs) it manages or depends on, RBAC rules, cluster requirements, and install strategies. This
information tells OLM how to create required resources and set up the Operator as a deployment.

2.4.1.2.2. Catalog source

A catalog source represents a store of metadata, typically by referencing an index image storedin a
container registry. Operator Lifecycle Manager (OLM) queries catalog sources to discover and install
Operators and their dependencies. OperatorHub in the OpenShift Container Platform web console also
displays the Operators provided by catalog sources.

TIP
Cluster administrators can view the full list of Operators provided by an enabled catalog source on a

cluster by using the Administration = Cluster Settings — Configuration - OperatorHub page in the
web console.

The spec of a CatalogSource object indicates how to construct a pod or how to communicate with a
service that serves the Operator Registry gRPC API.

kind: CatalogSource

Example 2.8. Example CatalogSource object
metadata:

‘ apiVersion: operators.coreos.com/vialphat

40

CHAPTER 2. UNDERSTANDING OPERATORS

generation: 1
name: example-catalog ﬂ
namespace: openshift-marketplace 9
annotations:
olm.cataloglmageTemplate: 6
"quay.io/example-org/example-catalog:v{kube_major_version}.{kube_minor_version}.

{kube_patch_version}"
spec:

displayName: Example Catalog ﬂ
image: quay.io/example-org/example-catalog:v1 6
priority: -400 @)
publisher: Example Org
sourceType: grpc
grpcPodConfig:
securityContextConfig: <security_mode> 6
nodeSelector:
custom_label: <label>
priorityClassName: system-cluster-critical @
tolerations:
- key: "key1"
operator: "Equal”
value: "valuel"
effect: "NoSchedule"
updateStrategy:
registryPoll: (B
interval: 30mO0s

status:

connectionState:
address: example-catalog.openshift-marketplace.svc:50051
lastConnect: 2021-08-26T18:14:31Z
lastObservedState: READY @
latestimageRegistryPoll: 2021-08-26T18:46:25Z @
registryService:
createdAt: 2021-08-26T16:16:37Z
port: 50051
protocol: grpc
serviceName: example-catalog
serviceNamespace: openshift-marketplace

Name for the CatalogSource object. This value is also used as part of the name for the related
pod that is created in the requested namespace.

Namespace to create the catalog in. To make the catalog available cluster-wide in all
namespaces, set this value to openshift-marketplace. The default Red Hat-provided catalog
sources also use the openshift-marketplace namespace. Otherwise, set the value to a specific
namespace to make the Operator only available in that namespace.

Optional: To avoid cluster upgrades potentially leaving Operator installations in an unsupported
state or without a continued update path, you can enable automatically changing your Operator
catalog’s index image version as part of cluster upgrades.

Set the olm.cataloglmageTemplate annotation to your index image name and use one or more

of the Kubernetes cluster version variables as shown when constructing the template for the
image tag. The annotation overwrites the spec.image field at run time. See the "Image

41

OpenShift Container Platform 4.14 Operators

42

O O 06

@ O

=

s S

® 9

template for custom catalog sources" section for more details.
Display name for the catalog in the web console and CLI.

Index image for the catalog. Optionally, can be omitted when using the
olm.cataloglmageTemplate annotation, which sets the pull spec at run time.

Weight for the catalog source. OLM uses the weight for prioritization during dependency
resolution. A higher weight indicates the catalog is preferred over lower-weighted catalogs.

Source types include the following:

® grpc with an image reference: OLM pulls the image and runs the pod, which is
expected to serve a compliant API.

e grpc with an address field: OLM attempts to contact the gRPC API at the given
address. This should not be used in most cases.

e configmap: OLM parses config map data and runs a pod that can serve the gRPC API
over it.

Specify the value of legacy or restricted. If the field is not set, the default value is legacy. In a
future OpenShift Container Platform release, it is planned that the default value will be

restricted. If your catalog cannot run with restricted permissions, it is recommended that you
manually set this field to legacy.

Optional: For grpe type catalog sources, overrides the default node selector for the pod
serving the content in spec.image, if defined.

Optional: For grpe type catalog sources, overrides the default priority class name for the pod
serving the content in spec.image, if defined. Kubernetes provides system-cluster-critical and
system-node-critical priority classes by default. Setting the field to empty (") assigns the pod
the default priority. Other priority classes can be defined manually.

Optional: For grpe type catalog sources, overrides the default tolerations for the pod serving
the content in spec.image, if defined.

Automatically check for new versions at a given interval to stay up-to-date.
Last observed state of the catalog connection. For example:
e READY: A connection is successfully established.
® CONNECTING: A connection is attempting to establish.
o TRANSIENT_FAILURE: A temporary problem has occurred while attempting to
establish a connection, such as a timeout. The state will eventually switch back to
CONNECTING and try again.

See States of Connectivity in the gRPC documentation for more details.

Latest time the container registry storing the catalog image was polled to ensure the image is
up-to-date.

Status information for the catalog’s Operator Registry service.

https://grpc.github.io/grpc/core/md_doc_connectivity-semantics-and-api.html

CHAPTER 2. UNDERSTANDING OPERATORS

Referencing the name of a CatalogSource object in a subscription instructs OLM where to search to
find a requested Operator:

kind: Subscription
metadata:
name: example-operator
namespace: example-namespace
spec:
channel: stable
name: example-operator
source: example-catalog

apiVersion: operators.coreos.com/vialphai
sourceNamespace: openshift-marketplace

| Example 2.9. Example Subscription object referencing a catalog source

Additional resources

® Understanding OperatorHub

® Red Hat-provided Operator catalogs

® Adding a catalog source to a cluster

® Catalog priority

® Viewing Operator catalog source status by using the CLI
® Understanding and managing pod security admission

® Catalog source pod scheduling

2.4.1.2.2.1. Image template for custom catalog sources

Operator compatibility with the underlying cluster can be expressed by a catalog source in various ways.
One way, which is used for the default Red Hat-provided catalog sources, is to identify image tags for
index images that are specifically created for a particular platform release, for example OpenShift
Container Platform 4.14.

During a cluster upgrade, the index image tag for the default Red Hat-provided catalog sources are
updated automatically by the Cluster Version Operator (CVO) so that Operator Lifecycle Manager
(OLM) pulls the updated version of the catalog. For example during an upgrade from OpenShift
Container Platform 4.13 to 4.14, the spec.image field in the CatalogSource object for the redhat-
operators catalog is updated from:

I registry.redhat.io/redhat/redhat-operator-index:v4.13

to:

I registry.redhat.io/redhat/redhat-operator-index:v4.14

43

https://docs.redhat.com/en/documentation/openshift_container_platform/4.14/html-single/authentication_and_authorization/#understanding-and-managing-pod-security-admission

OpenShift Container Platform 4.14 Operators

However, the CVO does not automatically update image tags for custom catalogs. To ensure users are
left with a compatible and supported Operator installation after a cluster upgrade, custom catalogs
should also be kept updated to reference an updated index image.

Starting in OpenShift Container Platform 4.9, cluster administrators can add the
olm.cataloglmageTemplate annotation in the CatalogSource object for custom catalogs to an image
reference that includes a template. The following Kubernetes version variables are supported for use in
the template:

o kube_major_version
® kube_minor_version

e kube_ patch_version

NOTE

You must specify the Kubernetes cluster version and not an OpenShift Container
Platform cluster version, as the latter is not currently available for templating.

Provided that you have created and pushed an index image with a tag specifying the updated
Kubernetes version, setting this annotation enables the index image versions in custom catalogs to be
automatically changed after a cluster upgrade. The annotation value is used to set or update the image
reference in the spec.image field of the CatalogSource object. This helps avoid cluster upgrades
leaving Operator installations in unsupported states or without a continued update path.

IMPORTANT

You must ensure that the index image with the updated tag, in whichever registry it is
stored in, is accessible by the cluster at the time of the cluster upgrade.

metadata:

generation: 1

name: example-catalog

namespace: openshift-marketplace

annotations:

olm.cataloglmageTemplate:
"quay.io/example-org/example-catalog:v{kube_major_version}.{kube_minor_version}"

spec:

displayName: Example Catalog

image: quay.io/example-org/example-catalog:v1.27

priority: -400

apiVersion: operators.coreos.com/vialphai
kind: CatalogSource
publisher: Example Org

‘ Example 2.10. Example catalog source with an image template

44

CHAPTER 2. UNDERSTANDING OPERATORS

NOTE

If the spec.image field and the olm.cataloglmageTemplate annotation are both set, the
spec.image field is overwritten by the resolved value from the annotation. If the
annotation does not resolve to a usable pull spec, the catalog source falls back to the set
spec.image value.

If the spec.image field is not set and the annotation does not resolve to a usable pull
spec, OLM stops reconciliation of the catalog source and sets it into a human-readable
error condition.

For an OpenShift Container Platform 4.14 cluster, which uses Kubernetes 1.27, the
olm.cataloglmageTemplate annotation in the preceding example resolves to the following image
reference:

I quay.io/example-org/example-catalog:v1.27

For future releases of OpenShift Container Platform, you can create updated index images for your
custom catalogs that target the later Kubernetes version that is used by the later OpenShift Container
Platform version. With the olm.catalogimageTemplate annotation set before the upgrade, upgrading
the cluster to the later OpenShift Container Platform version would then automatically update the
catalog’s index image as well.

2.4.1.2.2.2. Catalog health requirements

Operator catalogs on a cluster are interchangeable from the perspective of installation resolution; a
Subscription object might reference a specific catalog, but dependencies are resolved using all
catalogs on the cluster.

For example, if Catalog A is unhealthy, a subscription referencing Catalog A could resolve a dependency
in Catalog B, which the cluster administrator might not have been expecting, because B normally had a
lower catalog priority than A.

As a result, OLM requires that all catalogs with a given global namespace (for example, the default
openshift-marketplace namespace or a custom global namespace) are healthy. When a catalog is
unhealthy, all Operator installation or update operations within its shared global namespace will fail with
a CatalogSourcesUnhealthy condition. If these operations were permitted in an unhealthy state, OLM
might make resolution and installation decisions that were unexpected to the cluster administrator.

As a cluster administrator, if you observe an unhealthy catalog and want to consider the catalog as

invalid and resume Operator installations, see the "Removing custom catalogs" or "Disabling the default
OperatorHub catalog sources" sections for information about removing the unhealthy catalog.

Additional resources

® Removing custom catalogs

® Disabling the default OperatorHub catalog sources

2.4.1.2.3. Subscription

A subscription, defined by a Subscription object, represents an intention to install an Operator. It is the
custom resource that relates an Operator to a catalog source.

Subscriptions describe which channel of an Operator package to subscribe to, and whether to perform

45

OpenShift Container Platform 4.14 Operators

updates automatically or manually. If set to automatic, the subscription ensures Operator Lifecycle
Manager (OLM) manages and upgrades the Operator to ensure that the latest version is always running
in the cluster.

Example Subscription object

apiVersion: operators.coreos.com/vialphai
kind: Subscription
metadata:
name: example-operator
namespace: example-namespace
spec:
channel: stable
name: example-operator
source: example-catalog
sourceNamespace: openshift-marketplace

This Subscription object defines the name and namespace of the Operator, as well as the catalog from
which the Operator data can be found. The channel, such as alpha, beta, or stable, helps determine
which Operator stream should be installed from the catalog source.

The names of channels in a subscription can differ between Operators, but the naming scheme should
follow a common convention within a given Operator. For example, channel names might follow a minor
release update stream for the application provided by the Operator (1.2, 1.3) or a release frequency
(stable, fast).

In addition to being easily visible from the OpenShift Container Platform web console, it is possible to
identify when there is a newer version of an Operator available by inspecting the status of the related
subscription. The value associated with the currentCSV field is the newest version that is known to
OLM, and installedCSV is the version that is installed on the cluster.

Additional resources

® Multitenancy and Operator colocation

® Viewing Operator subscription status by using the CLI

2.4.1.2.4. Install plan

An install plan, defined by an InstallPlan object, describes a set of resources that Operator Lifecycle
Manager (OLM) creates to install or upgrade to a specific version of an Operator. The version is defined
by a cluster service version (CSV).

To install an Operator, a cluster administrator, or a user who has been granted Operator installation
permissions, must first create a Subscription object. A subscription represents the intent to subscribe
to a stream of available versions of an Operator from a catalog source. The subscription then creates an
InstallPlan object to facilitate the installation of the resources for the Operator.

The install plan must then be approved according to one of the following approval strategies:

e |f the subscription’s spec.installPlanApproval field is set to Automatic, the install planis
approved automatically.

e |f the subscription’s spec.installPlanApproval field is set to Manual, the install plan must be
manually approved by a cluster administrator or user with proper permissions.

46

CHAPTER 2. UNDERSTANDING OPERATORS

After the install plan is approved, OLM creates the specified resources and installs the Operator in the

namespace that is specified by the subscription.

- lastTransitionTime: '2021-01-01T20:17:27Z7'
lastUpdateTime: '2021-01-01T20:17:27Z'

type: Installed
phase: Complete
plan:
- resolving: my-operator.v1.0.1
resource:
group: operators.coreos.com
kind: ClusterServiceVersion
manifest: >-

name: my-operator.vi1.0.1
sourceName: redhat-operators

sourceNamespace: openshift-marketplace

version: vialphail
status: Created
- resolving: my-operator.v1.0.1
resource:
group: apiextensions.k8s.io
kind: CustomResourceDefinition
manifest: >-

name: webservers.web.servers.org
sourceName: redhat-operators

sourceNamespace: openshift-marketplace

version: vibetat
status: Created
- resolving: my-operator.v1.0.1
resource:
group: "
kind: ServiceAccount
manifest: >-

name: my-operator
sourceName: redhat-operators

Example 2.11. Example InstallPlan object
apiVersion: operators.coreos.com/vialphai
kind: InstallPlan
metadata:

name: install-abcde
namespace: operators
spec:
approval: Automatic
approved: true
clusterServiceVersionNames:
- my-operator.vi.0.1
generation: 1
status:
catalogSources: []
conditions:
status: 'True'

47

OpenShift Container Platform 4.14 Operators
sourceNamespace: openshift-marketplace
version: v1
status: Created
- resolving: my-operator.v1.0.1
resource:
group: rbac.authorization.k8s.io
kind: Role
manifest: >-
name: my-operator.v1.0.1-my-operator-6d7cbc6f57
sourceName: redhat-operators
sourceNamespace: openshift-marketplace
version: v1
status: Created
- resolving: my-operator.v1.0.1
resource:
group: rbac.authorization.k8s.io
kind: RoleBinding
manifest: >-

name: my-operator.v1.0.1-my-operator-6d7cbc6f57
sourceName: redhat-operators
sourceNamespace: openshift-marketplace
version: v1
status: Created

Additional resources

® Multitenancy and Operator colocation

® Allowing non-cluster administrators to install Operators

2.4.1.2.5. Operator groups

An Operator group, defined by the OperatorGroup resource, provides multitenant configuration to
OLM-installed Operators. An Operator group selects target namespaces in which to generate required
RBAC access for its member Operators.

The set of target namespaces is provided by a comma-delimited string stored in the
olm.targetNamespaces annotation of a cluster service version (CSV). This annotation is applied to the
CSV instances of member Operators and is projected into their deployments.

Additional resources

® Operator groups

2.4.1.2.6. Operator conditions

As part of its role in managing the lifecycle of an Operator, Operator Lifecycle Manager (OLM) infers
the state of an Operator from the state of Kubernetes resources that define the Operator. While this
approach provides some level of assurance that an Operator is in a given state, there are many instances
where an Operator might need to communicate information to OLM that could not be inferred
otherwise. This information can then be used by OLM to better manage the lifecycle of the Operator.

48

CHAPTER 2. UNDERSTANDING OPERATORS

OLM provides a custom resource definition (CRD) called OperatorCondition that allows Operators to
communicate conditions to OLM. There are a set of supported conditions that influence management
of the Operator by OLM when present in the Spec.Conditions array of an OperatorCondition
resource.

NOTE

By default, the Spec.Conditions array is not present in an OperatorCondition object
until it is either added by a user or as a result of custom Operator logic.

Additional resources

® Operator conditions

2.4.2. Operator Lifecycle Manager architecture

This guide outlines the component architecture of Operator Lifecycle Manager (OLM) in OpenShift
Container Platform.

2.4.2.1. Component responsibilities

Operator Lifecycle Manager (OLM) is composed of two Operators: the OLM Operator and the Catalog
Operator.

Each of these Operators is responsible for managing the custom resource definitions (CRDs) that are
the basis for the OLM framework:

Table 2.2. CRDs managed by OLM and Catalog Operators

Resource Description

ClusterServic csv OLM Application metadata: name, version, icon, required resources,

eVersion installation, and so on.

(CSV)

InstallPlan ip Catal Calculated list of resources to be created to automatically install or
og upgrade a CSV.

CatalogSour cats Catal Arepository of CSVs, CRDs, and packages that define an application.
ce rc og

Subscription sub Catal Used to keep CSVs up to date by tracking a channel in a package.
og

OperatorGro og OLM Configures all Operators deployed in the same namespace as the
up OperatorGroup object to watch for their custom resource (CR) in a list
of namespaces or cluster-wide.

Each of these Operators is also responsible for creating the following resources:

49

OpenShift Container Platform 4.14 Operators

Table 2.3. Resources created by OLM and Catalog Operators

Resource Owner

Deployments OLM

ServiceAccounts

(Cluster)Roles

(Cluster)RoleBindings

CustomResourceDefinitions (CRDs) Catalog

ClusterServiceVersions

2.4.2.2. OLM Operator

The OLM Operator is responsible for deploying applications defined by CSV resources after the
required resources specified in the CSV are present in the cluster.

The OLM Operator is not concerned with the creation of the required resources; you can choose to
manually create these resources using the CLI or using the Catalog Operator. This separation of concern
allows users incremental buy-in in terms of how much of the OLM framework they choose to leverage
for their application.

The OLM Operator uses the following workflow:

1. Watch for cluster service versions (CSVs) in a namespace and check that requirements are met.

2. If requirements are met, run the install strategy for the CSV.

NOTE

A CSV must be an active member of an Operator group for the install strategy to
run.

2.4.2.3. Catalog Operator

The Catalog Operator is responsible for resolving and installing cluster service versions (CSVs) and the
required resources they specify. It is also responsible for watching catalog sources for updates to
packages in channels and upgrading them, automatically if desired, to the latest available versions.

To track a package in a channel, you can create a Subscription object configuring the desired package,
channel, and the CatalogSource object you want to use for pulling updates. When updates are found,
an appropriate InstallPlan object is written into the namespace on behalf of the user.

The Catalog Operator uses the following workflow:

1. Connect to each catalog source in the cluster.

2. Watch for unresolved install plans created by a user, and if found:

- . bl - /AN Lt L o oo b all /AN

50

CHAPTER 2. UNDERSTANDING OPERATORS

d. rinaine Lov matcning tne name requestead ana adad tne LoV as d resolvea resource.
b. For each managed or required CRD, add the CRD as a resolved resource.
c. Foreachrequired CRD, find the CSV that manages it.

3. Watch for resolved install plans and create all of the discovered resources for it, if approved by a
user or automatically.

4. Watch for catalog sources and subscriptions and create install plans based on them.

2.4.2.4. Catalog Registry

The Catalog Registry stores CSVs and CRDs for creation in a cluster and stores metadata about
packages and channels.

A package manifest is an entry in the Catalog Registry that associates a package identity with sets of
CSVs. Within a package, channels point to a particular CSV. Because CSVs explicitly reference the CSV

that they replace, a package manifest provides the Catalog Operator with all of the information that is
required to update a CSV to the latest version in a channel, stepping through each intermediate version.

2.4.3. Operator Lifecycle Manager workflow

This guide outlines the workflow of Operator Lifecycle Manager (OLM) in OpenShift Container
Platform.

2.4.3.1. Operator installation and upgrade workflow in OLM

In the Operator Lifecycle Manager (OLM) ecosystem, the following resources are used to resolve
Operator installations and upgrades:

® ClusterServiceVersion (CSV)

e CatalogSource

® Subscription
Operator metadata, defined in CSVs, can be stored in a collection called a catalog source. OLM uses
catalog sources, which use the Operator Registry API, to query for available Operators as well as

upgrades for installed Operators.

Figure 2.3. Catalog source overview

[] Channel Package

Community Operators (CatalogSource)

etcd couchbase

alpha beta preview stable

51

https://github.com/operator-framework/operator-registry

OpenShift Container Platform 4.14 Operators

Within a catalog source, Operators are organized into packages and streams of updates called channels,
which should be a familiar update pattern from OpenShift Container Platform or other software on a
continuous release cycle like web browsers.

Figure 2.4. Packages and channels in a Catalog source

[] channel Package ClusterServiceVersion —» replaces previous version
eted
alpha beta
etcdoperator.v0.9.2 etcdoperator.v0.9.2

!

etcdoperator.v0.9.0

|

etcdoperator.v0.6.1 etcdoperator.v0.6.1

A user indicates a particular package and channel in a particular catalog source in a subscription, for
example an eted package and its alpha channel. If a subscription is made to a package that has not yet
been installed in the namespace, the latest Operator for that package is installed.

NOTE

OLM deliberately avoids version comparisons, so the "latest" or "newest" Operator
available from a given catalog = channel - package path does not necessarily need to be
the highest version number. It should be thought of more as the head reference of a
channel, similar to a Git repository.

Each CSV has a replaces parameter that indicates which Operator it replaces. This builds a graph of
CSVs that can be queried by OLM, and updates can be shared between channels. Channels can be
thought of as entry points into the graph of updates:

52

CHAPTER 2. UNDERSTANDING OPERATORS

Figure 2.5. OLM graph of available channel updates

[1 Channel Package ClusterServiceVersion —» replaces previous version
eted
alpha beta
etcdoperator.v0.9.2 etcdoperator.v0.9.2

|

etcdoperator.v0.9.0

vy

etcdoperator.v0.6.1

Example channels in a package

packageName: example
channels:
- name: alpha

currentCSV: example.v0.1.2
- name: beta

currentCSV: example.v0.1.3
defaultChannel: alpha

For OLM to successfully query for updates, given a catalog source, package, channel, and CSV, a catalog
must be able to return, unambiguously and deterministically, a single CSV that replaces the input CSV.

2.4.3.1.1. Example upgrade path

For an example upgrade scenario, consider an installed Operator corresponding to CSV version 0.1.1.
OLM queries the catalog source and detects an upgrade in the subscribed channel with new CSV
version 0.1.3 that replaces an older but not-installed CSV version 0.1.2, which in turn replaces the older
and installed CSV version 0.1.1.

OLM walks back from the channel head to previous versions via the replaces field specified in the CSVs
to determine the upgrade path 0.1.3 = 0.1.2 - 0.1.1; the direction of the arrow indicates that the
former replaces the latter. OLM upgrades the Operator one version at the time until it reaches the
channel head.

For this given scenario, OLM installs Operator version 0.1.2 to replace the existing Operator version

0.1.1. Then, it installs Operator version 0.1.3 to replace the previously installed Operator version 0.1.2. At
this point, the installed operator version 0.1.3 matches the channel head and the upgrade is completed.

2.4.3.1.2. Skipping upgrades

The basic path for upgrades in OLM is:

53

OpenShift Container Platform 4.14 Operators

® A catalog source is updated with one or more updates to an Operator.

e OLM traverses every version of the Operator until reaching the latest version the catalog
source contains.

However, sometimes this is not a safe operation to perform. There will be cases where a published
version of an Operator should never be installed on a cluster if it has not already, for example because a
version introduces a serious vulnerability.

In those cases, OLM must consider two cluster states and provide an update graph that supports both:
® The "bad" intermediate Operator has been seen by the cluster and installed.
® The "bad" intermediate Operator has not yet been installed onto the cluster.

By shipping a new catalog and adding a skipped release, OLM is ensured that it can always get a single
unique update regardless of the cluster state and whether it has seen the bad update yet.

Example CSV with skipped release

apiVersion: operators.coreos.com/vialphai
kind: ClusterServiceVersion
metadata:
name: etcdoperator.v0.9.2
namespace: placeholder
annotations:
spec:
displayName: etcd
description: Etcd Operator
replaces: etcdoperator.v0.9.0
skips:
- etcdoperator.v0.9.1

Consider the following example of Old CatalogSource and New CatalogSource.

54

CHAPTER 2. UNDERSTANDING OPERATORS

Figure 2.6. Skipping updates

[Channel Package ClusterServiceVersion — replaces previous version
Old CatalogSource New CatalogSource
eted eted
alpha alpha

etcdoperator.v0.9.2 etcdoperator.v0.9.2 —

:’""’""""""“""""""""_"‘. :'"_"""""""’""""""""""‘.

i etcdoperator.v0.9.1 i i etcdoperator.v0.9.1 E
etcdoperator.v0.9.0 etcdoperator.v0.9.0 <+—
etcdoperator.v0.6.1 etcdoperator.v0.6.1

This graph maintains that:
® Any Operator found in Old CatalogSource has a single replacement in New CatalogSource.
® Any Operator found in New CatalogSource has a single replacement in New CatalogSource.

® |f the bad update has not yet been installed, it will never be.

2.4.3.1.3. Replacing multiple Operators

Creating New CatalogSource as described requires publishing CSVs that replace one Operator, but
can skip several. This can be accomplished using the skipRange annotation:

I olm.skipRange: <semver_range>

where <semver_ranges has the version range format supported by the semver library.

When searching catalogs for updates, if the head of a channel has a skipRange annotation and the
currently installed Operator has a version field that falls in the range, OLM updates to the latest entry in
the channel.

The order of precedence is:

1. Channel head in the source specified by sourceName on the subscription, if the other criteria
for skipping are met.

2. The next Operator that replaces the current one, in the source specified by sourceName.

55

https://github.com/blang/semver#ranges

OpenShift Container Platform 4.14 Operators

3. Channel head in another source that is visible to the subscription, if the other criteria for
skipping are met.

4. The next Operator that replaces the current one in any source visible to the subscription.

Example CSV with skipRange

apiVersion: operators.coreos.com/vialphai
kind: ClusterServiceVersion
metadata:
name: elasticsearch-operator.v4.1.2
namespace: <namespace>
annotations:
olm.skipRange: '>=4.1.0 <4.1.2'

2.4.3.1.4. Z-stream support
A z-stream, or patch release, must replace all previous z-stream releases for the same minor version.
OLM does not consider major, minor, or patch versions, it just needs to build the correct graphin a

catalog.

In other words, OLM must be able to take a graph as in Old CatalogSource and, similar to before,
generate a graph as in New CatalogSource:

Figure 2.7. Replacing several Operators

[Channel Package ClusterServiceVersion — replaces previous version
Old CatalogSource New CatalogSource
etcd etcd
alpha alpha

etcdoperator.v0.9.3
etcdoperator.v0.9.2 4—
etcdoperator.v0.9.0 +— etcdoperator.v0.9.0 4+—
! '
etcdoperator.v0.6.1 etcdoperator.v0.6.1

This graph maintains that:

56

CHAPTER 2. UNDERSTANDING OPERATORS

® Any Operator found in Old CatalogSource has a single replacement in New CatalogSource.
® Any Operator found in New CatalogSource has a single replacement in New CatalogSource.

® Any z-stream release in Old CatalogSource will update to the latest z-stream release in New
CatalogSource.

e Unavailable releases can be considered "virtual" graph nodes; their content does not need to
exist, the registry just needs to respond as if the graph looks like this.

2.4.4. Operator Lifecycle Manager dependency resolution

This guide outlines dependency resolution and custom resource definition (CRD) upgrade lifecycles with
Operator Lifecycle Manager (OLM) in OpenShift Container Platform.

2.4.4.1. About dependency resolution

Operator Lifecycle Manager (OLM) manages the dependency resolution and upgrade lifecycle of
running Operators. In many ways, the problems OLM faces are similar to other system or language
package managers, such as yum and rpm.
However, there is one constraint that similar systems do not generally have that OLM does: because
Operators are always running, OLM attempts to ensure that you are never left with a set of Operators
that do not work with each other.
As a result, OLM must never create the following scenarios:

® |[nstall a set of Operators that require APIs that cannot be provided

® Update an Operator in a way that breaks another that depends upon it

This is made possible with two types of data:

Properties Typed metadata about the Operator that constitutes the public interface for itin the
dependency resolver. Examples include the group/version/kind (GVK) of the APIs provided
by the Operator and the semantic version (semver) of the Operator.

Constraints An Operator’s requirements that should be satisfied by other Operators that might or might

or not have already been installed on the target cluster. These act as queries or filters over all
dependencie available Operators and constrain the selection during dependency resolution and
s installation. Examples include requiring a specific APl to be available on the cluster or

expecting a particular Operator with a particular version to be installed.

OLM converts these properties and constraints into a system of Boolean formulas and passes them to a
SAT solver, a program that establishes Boolean satisfiability, which does the work of determining what
Operators should be installed.

2.4.4.2. Operator properties

All Operators in a catalog have the following properties:

olm.package

Includes the name of the package and the version of the Operator

57

OpenShift Container Platform 4.14 Operators

olm.gvk

A single property for each provided API from the cluster service version (CSV)

Additional properties can also be directly declared by an Operator author by including a properties.yaml
file in the metadata/ directory of the Operator bundle.

Example arbitrary property

properties:
- type: olm.kubeversion
value:
version: "1.16.0"

2.4.4.2.1. Arbitrary properties

Operator authors can declare arbitrary properties in a properties.yaml file in the metadata/ directory of
the Operator bundle. These properties are translated into a map data structure that is used as an input
to the Operator Lifecycle Manager (OLM) resolver at runtime.

These properties are opaque to the resolver as it does not understand the properties, but it can evaluate
the generic constraints against those properties to determine if the constraints can be satisfied given
the properties list.

Example arbitrary properties

properties:
- property:
type: color
value: red
- property:
type: shape
value: square
- property:
type: olm.gvk
value:
group: olm.coreos.io
version: vialphail
kind: myresource

This structure can be used to construct a Common Expression Language (CEL) expression for generic
constraints.

Additional resources

® Common Expression Language (CEL) constraints

2.4.4.3. Operator dependencies

The dependencies of an Operator are listed in a dependencies.yaml file in the metadata/ folder of a
bundle. This file is optional and currently only used to specify explicit Operator-version dependencies.

The dependency list contains a type field for each item to specify what kind of dependency this is. The
following types of Operator dependencies are supported:

58

CHAPTER 2. UNDERSTANDING OPERATORS

olm.package

This type indicates a dependency for a specific Operator version. The dependency information must
include the package name and the version of the package in semver format. For example, you can
specify an exact version such as 0.5.2 or a range of versions such as >0.5.1.

olm.gvk

With this type, the author can specify a dependency with group/version/kind (GVK) information,
similar to existing CRD and API-based usage in a CSV. This is a path to enable Operator authors to
consolidate all dependencies, API or explicit versions, to be in the same place.

olm.constraint

This type declares generic constraints on arbitrary Operator properties.
In the following example, dependencies are specified for a Prometheus Operator and etcd CRDs:

Example dependencies.yaml file

dependencies:
- type: olm.package
value:
packageName: prometheus
version: ">0.27.0"
- type: olm.gvk
value:
group: etcd.database.coreos.com
kind: EtcdCluster
version: vibeta2

2.4.4.4. Generic constraints

An olm.constraint property declares a dependency constraint of a particular type, differentiating non-
constraint and constraint properties. Its value field is an object containing a failureMessage field
holding a string-representation of the constraint message. This message is surfaced as an informative
comment to users if the constraint is not satisfiable at runtime.

The following keys denote the available constraint types:

gvk

Type whose value and interpretation is identical to the olm.gvk type
package

Type whose value and interpretation is identical to the olm.package type
cel

A Common Expression Language (CEL) expression evaluated at runtime by the Operator Lifecycle
Manager (OLM) resolver over arbitrary bundle properties and cluster information

all, any, not

Conjunction, disjunction, and negation constraints, respectively, containing one or more concrete
constraints, such as gvk or a nested compound constraint

2.4.4.4.1. Common Expression Language (CEL) constraints

The cel constraint type supports Common Expression Language (CEL) as the expression language. The
cel struct has a rule field which contains the CEL expression string that is evaluated against Operator
properties at runtime to determine if the Operator satisfies the constraint.

59

https://github.com/google/cel-go

OpenShift Container Platform 4.14 Operators

Example cel constraint

type: olm.constraint
value:
failureMessage: 'require to have "certified™
cel:
rule: 'properties.exists(p, p.type == "certified")'

The CEL syntax supports a wide range of logical operators, such as AND and OR. As a result, a single
CEL expression can have multiple rules for multiple conditions that are linked together by these logical
operators. These rules are evaluated against a dataset of multiple different properties from a bundle or
any given source, and the output is solved into a single bundle or Operator that satisfies all of those rules
within a single constraint.

Example cel constraint with multiple rules

type: olm.constraint
value:
failureMessage: 'require to have "certified" and "stable" properties'
cel:
rule: 'properties.exists(p, p.type == "certified") && properties.exists(p, p.type == "stable")'

2.4.4.4.2. Compound constraints (all, any, not)

Compound constraint types are evaluated following their logical definitions.

The following is an example of a conjunctive constraint (all) of two packages and one GVK. That is, they
must all be satisfied by installed bundles:

Example all constraint

schema: olm.bundle
name: red.v1.0.0
properties:
- type: olm.constraint
value:
failureMessage: All are required for Red because...
all:
constraints:
- failureMessage: Package blue is needed for...
package:
name: blue
versionRange: '>=1.0.0'
- failureMessage: GVK Green/v1 is needed for...
gvk:
group: greens.example.com
version: v1
kind: Green

The following is an example of a disjunctive constraint (any) of three versions of the same GVK. That s,
at least one must be satisfied by installed bundles:

Example any constraint

60

CHAPTER 2. UNDERSTANDING OPERATORS

schema: olm.bundle
name: red.v1.0.0
properties:
- type: olm.constraint
value:
failureMessage: Any are required for Red because...
any:
constraints:
- gvk:
group: blues.example.com
version: vibetal
kind: Blue
- gvk:
group: blues.example.com
version: vibeta2
kind: Blue
- gvk:
group: blues.example.com
version: v1
kind: Blue

The following is an example of a negation constraint (not) of one version of a GVK. That is, this GVK
cannot be provided by any bundle in the result set:

Example not constraint

schema: olm.bundle
name: red.v1.0.0
properties:
- type: olm.constraint
value:
all:
constraints:
- failureMessage: Package blue is needed for...
package:
name: blue
versionRange: '>=1.0.0'
- failureMessage: Cannot be required for Red because...
not:
constraints:
- gvk:
group: greens.example.com
version: vialphat
kind: greens

The negation semantics might appear unclear in the not constraint context. To clarify, the negation is
really instructing the resolver to remove any possible solution that includes a particular GVK, package at
a version, or satisfies some child compound constraint from the result set.

As a corollary, the not compound constraint should only be used within all or any constraints, because
negating without first selecting a possible set of dependencies does not make sense.

2.4.4.4.3. Nested compound constraints

61

OpenShift Container Platform 4.14 Operators

A nested compound constraint, one that contains at least one child compound constraint along with zero
or more simple constraints, is evaluated from the bottom up following the procedures for each
previously described constraint type.

The following is an example of a disjunction of conjunctions, where one, the other, or both can satisfy
the constraint:

Example nested compound constraint

schema: olm.bundle
name: red.v1.0.0
properties:
- type: olm.constraint
value:
failureMessage: Required for Red because...
any:
constraints:
-all:
constraints:
- package:
name: blue
versionRange: '>=1.0.0'
- gvk:
group: blues.example.com
version: vi
kind: Blue
- all:
constraints:
- package:
name: blue
versionRange: '<1.0.0'
- gvk:
group: blues.example.com
version: vibetal
kind: Blue

NOTE

The maximum raw size of an olm.constraint type is 64KB to limit resource exhaustion
attacks.

2.4.45. Dependency preferences

There can be many options that equally satisfy a dependency of an Operator. The dependency resolver
in Operator Lifecycle Manager (OLM) determines which option best fits the requirements of the
requested Operator. As an Operator author or user, it can be important to understand how these
choices are made so that dependency resolution is clear.

2.4.4.5.1. Catalog priority

On OpenShift Container Platform cluster, OLM reads catalog sources to know which Operators are
available for installation.

Example CatalogSource object

62

CHAPTER 2. UNDERSTANDING OPERATORS

apiVersion: "operators.coreos.com/vialphai"
kind: "CatalogSource"
metadata:
name: "my-operators"
namespace: "operators"
spec:
sourceType: grpc
grpcPodConfig:
securityContextConfig: <security_mode> ﬂ
image: example.com/my/operator-index:v1
displayName: "My Operators"
priority: 100

ﬂ Specify the value of legacy or restricted. If the field is not set, the default value is legacy. In a
future OpenShift Container Platform release, it is planned that the default value will be restricted.
If your catalog cannot run with restricted permissions, it is recommended that you manually set
this field to legacy.

A CatalogSource object has a priority field, which is used by the resolver to know how to prefer options
for a dependency.

There are two rules that govern catalog preference:
® Options in higher-priority catalogs are preferred to options in lower-priority catalogs.

® Options in the same catalog as the dependent are preferred to any other catalogs.

2.4.4.5.2. Channel ordering

An Operator package in a catalog is a collection of update channels that a user can subscribe to in an
OpenShift Container Platform cluster. Channels can be used to provide a particular stream of updates
for a minor release (1.2, 1.3) or a release frequency (stable, fast).

Itis likely that a dependency might be satisfied by Operators in the same package, but different
channels. For example, version 1.2 of an Operator might exist in both the stable and fast channels.

Each package has a default channel, which is always preferred to non-default channels. If no option in

the default channel can satisfy a dependency, options are considered from the remaining channels in
lexicographic order of the channel name.

2.4.4.5.3. Order within a channel

There are almost always multiple options to satisfy a dependency within a single channel. For example,
Operators in one package and channel provide the same set of APlIs.

When a user creates a subscription, they indicate which channel to receive updates from. This
immediately reduces the search to just that one channel. But within the channel, it is likely that many

Operators satisfy a dependency.

Within a channel, newer Operators that are higher up in the update graph are preferred. If the head of a
channel satisfies a dependency, it will be tried first.

2.4.4.5.4. Other constraints

63

OpenShift Container Platform 4.14 Operators

In addition to the constraints supplied by package dependencies, OLM includes additional constraints to
represent the desired user state and enforce resolution invariants.

2.4.4.5.4.1. Subscription constraint

A subscription constraint filters the set of Operators that can satisfy a subscription. Subscriptions are
user-supplied constraints for the dependency resolver. They declare the intent to either install a new
Operator if it is not already on the cluster, or to keep an existing Operator updated.

2.4.4.5.4.2. Package constraint

Within a namespace, no two Operators may come from the same package.

2.4.4.5.5. Additional resources

® Catalog health requirements

2.4.4.6. CRD upgrades

OLM upgrades a custom resource definition (CRD) immediately if it is owned by a singular cluster
service version (CSV). If a CRD is owned by multiple CSVs, then the CRD is upgraded when it has
satisfied all of the following backward compatible conditions:

® All existing serving versions in the current CRD are present in the new CRD.

® Al existing instances, or custom resources, that are associated with the serving versions of the
CRD are valid when validated against the validation schema of the new CRD.

Additional resources

® Adding a new CRD version

® Deprecating or removing a CRD version

2.4.4.7. Dependency best practices

When specifying dependencies, there are best practices you should consider.

Depend on APIs or a specific version range of Operators

Operators can add or remove APIs at any time; always specify an olm.gvk dependency on any APIs
your Operators requires. The exception to this is if you are specifying olm.package constraints
instead.

Set a minimum version

64

The Kubernetes documentation on API changes describes what changes are allowed for Kubernetes-
style Operators. These versioning conventions allow an Operator to update an APl without bumping
the APl version, as long as the APl is backwards-compatible.

For Operator dependencies, this means that knowing the API version of a dependency might not be
enough to ensure the dependent Operator works as intended.

For example:
® TestOperator v1.0.0 provides vlalphal APl version of the MyObject resource.

® TestOperator v1.0.1adds a new field spec.newfield to MyObject, but still at vialphal.

CHAPTER 2. UNDERSTANDING OPERATORS

Your Operator might require the ability to write spec.newfield into the MyObject resource. An
olm.gvk constraint alone is not enough for OLM to determine that you need TestOperator v1.0.1 and
not TestOperator v1.0.0.

Whenever possible, if a specific Operator that provides an APl is known ahead of time, specify an
additional olm.package constraint to set a minimum.

Omit a maximum version or allow a very wide range

Because Operators provide cluster-scoped resources such as APl services and CRDs, an Operator
that specifies a small window for a dependency might unnecessarily constrain updates for other
consumers of that dependency.

Whenever possible, do not set a maximum version. Alternatively, set a very wide semantic range to
prevent conflicts with other Operators. For example, >1.0.0 <2.0.0.

Unlike with conventional package managers, Operator authors explicitly encode that updates are
safe through channels in OLM. If an update is available for an existing subscription, it is assumed that
the Operator author is indicating that it can update from the previous version. Setting a maximum
version for a dependency overrides the update stream of the author by unnecessarily truncating it at
a particular upper bound.

NOTE

N

Cluster administrators cannot override dependencies set by an Operator author.

However, maximum versions can and should be set if there are known incompatibilities that must be
avoided. Specific versions can be omitted with the version range syntax, for example > 1.0.0 11.2.1.

Additional resources

® Kubernetes documentation: Changing the API

2.4.4.8. Dependency caveats

When specifying dependencies, there are caveats you should consider.

No compound constraints (AND)

There is currently no method for specifying an AND relationship between constraints. In other words,
there is no way to specify that one Operator depends on another Operator that both provides a
given APl and has version >1.1.0.

This means that when specifying a dependency such as:

dependencies:
- type: olm.package
value:
packageName: etcd
version: ">3.1.0"
- type: olm.gvk
value:
group: etcd.database.coreos.com
kind: EtcdCluster
version: vibeta2

65

https://github.com/kubernetes/community/blob/master/contributors/devel/sig-architecture/api_changes.md#readme

OpenShift Container Platform 4.14 Operators

It would be possible for OLM to satisfy this with two Operators: one that provides EtcdCluster and
one that has version >3.1.0. Whether that happens, or whether an Operator is selected that satisfies
both constraints, depends on the ordering that potential options are visited. Dependency
preferences and ordering options are well-defined and can be reasoned about, but to exercise
caution, Operators should stick to one mechanism or the other.

Cross-namespace compatibility

OLM performs dependency resolution at the namespace scope. It is possible to get into an update
deadlock if updating an Operator in one namespace would be an issue for an Operator in another
namespace, and vice-versa.

2.4.4.9. Example dependency resolution scenarios

In the following examples, a provider is an Operator which "owns" a CRD or APl service.

Example: Deprecating dependent APIs
A and B are APIs (CRDs):

® The provider of A depends on B.

® The provider of B has a subscription.

® The provider of B updates to provide C but deprecates B.
This results in:

® B no longer has a provider.

® Ano longer works.
This is a case OLM prevents with its upgrade strategy.

Example: Version deadlock
A and B are APIs:

® The provider of A requires B.
® The provider of B requires A.
® The provider of A updates to (provide A2, require B2) and deprecate A.
® The provider of B updates to (provide B2, require A2) and deprecate B.

If OLM attempts to update A without simultaneously updating B, or vice-versa, it is unable to progress
to new versions of the Operators, even though a new compatible set can be found.

This is another case OLM prevents with its upgrade strategy.

2.4.5. Operator groups

This guide outlines the use of Operator groups with Operator Lifecycle Manager (OLM) in OpenShift
Container Platform.

2.4.5.1. About Operator groups

66

CHAPTER 2. UNDERSTANDING OPERATORS

An Operator group, defined by the OperatorGroup resource, provides multitenant configuration to
OLM-installed Operators. An Operator group selects target namespaces in which to generate required
RBAC access for its member Operators.

The set of target namespaces is provided by a comma-delimited string stored in the

olm.targetNamespaces annotation of a cluster service version (CSV). This annotation is applied to the
CSV instances of member Operators and is projected into their deployments.

2.4.5.2. Operator group membership
An Operator is considered a member of an Operator group if the following conditions are true:
® The CSV of the Operator exists in the same namespace as the Operator group.

® Theinstall modes in the CSV of the Operator support the set of namespaces targeted by the
Operator group.

An install mode in a CSV consists of an InstallModeType field and a boolean Supported field. The spec
of a CSV can contain a set of install modes of four distinct InstallModeTypes:

Table 2.4. Install modes and supported Operator groups

InstallModeType Description

OwnNamespace The Operator can be a member of an Operator group that selects its
own namespace.

SingleNamespace The Operator can be a member of an Operator group that selects one
namespace.
MultiNamespace The Operator can be a member of an Operator group that selects more

than one namespace.

AlINamespaces The Operator can be a member of an Operator group that selects all
namespaces (target namespace set is the empty string """").

NOTE

If the spec of a CSV omits an entry of InstallModeType, then that type is considered
unsupported unless support can be inferred by an existing entry that implicitly supports it.

2.4.5.3. Target namespace selection

You can explicitly name the target namespace for an Operator group using the
spec.targetNamespaces parameter:

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:

name: my-group

namespace: my-namespace

67

OpenShift Container Platform 4.14 Operators

spec:
targetNamespaces:
- my-namespace

' WARNING
A Operator Lifecycle Manager (OLM) creates the following cluster roles for each

Operator group:
e <operatorgroup_name>-admin
e <operatorgroup_name>-edit
e <operatorgroup_name>-view

When you manually create an Operator group, you must specify a unique name that
does not conflict with the existing cluster roles or other Operator groups on the
cluster.

You can alternatively specify a namespace using a label selector with the spec.selector parameter:

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:

name: my-group

namespace: my-namespace
spec:

selector:

cool.io/prod: "true"

IMPORTANT

Listing multiple namespaces via spec.targetNamespaces or use of a label selector via
spec.selector is not recommended, as the support for more than one target namespace
in an Operator group will likely be removed in a future release.

If both spec.targetNamespaces and spec.selector are defined, spec.selector is ignored.
Alternatively, you can omit both spec.selector and spec.targetNamespaces to specify a global
Operator group, which selects all namespaces:

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:

name: my-group

namespace: my-namespace

The resolved set of selected namespaces is shown in the status.namespaces parameter of an Opeator
group. The status.namespace of a global Operator group contains the empty string ("), which signals
to a consuming Operator that it should watch all namespaces.

68

CHAPTER 2. UNDERSTANDING OPERATORS

2.4.5.4. Operator group CSV annotations

Member CSVs of an Operator group have the following annotations:

Annotation Description

olm.operatorGroup=<group_hame> Contains the name of the Operator group.

olm.operatorNamespace= Contains the namespace of the Operator group.
<group_namespace>

olm.targetNamespaces= Contains a comma-delimited string that lists the
<target_namespaces> target namespace selection of the Operator group.
NOTE

All annotations except olm.targetNamespaces are included with copied CSVs. Omitting
the olm.targetNamespaces annotation on copied CSVs prevents the duplication of
target namespaces between tenants.

2.4.5.5. Provided APIs annotation

A group/version/kind (GVK) is a unique identifier for a Kubernetes API. Information about what GVKs are
provided by an Operator group are shown in an olm.providedAPIs annotation. The value of the
annotation is a string consisting of <kind>.<version>.<group> delimited with commas. The GVKs of
CRDs and APl services provided by all active member CSVs of an Operator group are included.

Review the following example of an OperatorGroup object with a single active member CSV that
provides the PackageManifest resource:

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
annotations:
olm.providedAPIs: PackageManifest.vialphai.packages.apps.redhat.com
name: olm-operators
namespace: local

spec:
selector: {}
serviceAccount:
metadata:
creationTimestamp: null
targetNamespaces:
- local
status:
lastUpdated: 2019-02-19T16:18:28Z
namespaces:
- local

2.4.5.6. Role-based access control

69

OpenShift Container Platform 4.14 Operators

When an Operator group is created, three cluster roles are generated. Each contains a single
aggregation rule with a cluster role selector set to match a label, as shown below:

Cluster role Label to match

<operatorgroup_name>-admin olm.opgroup.permissions/aggregate-to-
admin: <operatorgroup_name>

<operatorgroup_name>-edit olm.opgroup.permissions/aggregate-to-edit:
<operatorgroup_name>

<operatorgroup_name>-view olm.opgroup.permissions/aggregate-to-view:
<operatorgroup_name>

' WARNING
A Operator Lifecycle Manager (OLM) creates the following cluster roles for each

Operator group:
e <operatorgroup_name>-admin
e <operatorgroup_name>-edit
e <operatorgroup_name>-view
When you manually create an Operator group, you must specify a unique name that

does not conflict with the existing cluster roles or other Operator groups on the
cluster.

The following RBAC resources are generated when a CSV becomes an active member of an Operator
group, as long as the CSV is watching all namespaces with the AlINamespaces install mode and is not in
a failed state with reason InterOperatorGroupOwnerConflict:

® Cluster roles for each APl resource from a CRD

® (Cluster roles for each APl resource from an APl service

® Additional roles and role bindings

Table 2.5. Cluster roles generated for each APl resource from a CRD

Cluster role Settings

70

CHAPTER 2. UNDERSTANDING OPERATORS

Cluster role Settings

Verbs on <kind>:

<kind>.<group>-<version>-admin

<kind>.<group>-<version>-edit

<kind>.<group>-<version>-view

*

Aggregation labels:

rbac.authorization.k8s.io/aggregate-
to-admin: true

olm.opgroup.permissions/aggregate-
to-admin: <operatorgroup_name>

Verbs on <kind>:

create
update
patch

delete

Aggregation labels:

rbac.authorization.k8s.io/aggregate-
to-edit: true

olm.opgroup.permissions/aggregate-
to-edit: <operatorgroup_name>

Verbs on <kind>:

get
list

watch

Aggregation labels:

rbac.authorization.k8s.io/aggregate-
to-view: true

olm.opgroup.permissions/aggregate-
to-view: <operatorgroup_name>

71

OpenShift Container Platform 4.14 Operators

Cluster role Settings

<kind>.<group>-<version>-view-crdview Verbs on apiextensions.k8s.io
customresourcedefinitions <crd-name>:

e get
Aggregation labels:

e rbac.authorization.k8s.io/aggregate-
to-view: true

e olm.opgroup.permissions/aggregate-
to-view: <operatorgroup_name>

Table 2.6. Cluster roles generated for each API resource from an APl service

Cluster role Settings

<kind>.<group>-<version>-admin Verbs on <Kkind>:

*
[]

Aggregation labels:

e rbac.authorization.k8s.io/aggregate-
to-admin: true

e olm.opgroup.permissions/aggregate-
to-admin: <operatorgroup_name>

<kind>.<group>-<version>-edit Verbs on <Kind>:
e create

e update
e patch

o delete

Aggregation labels:

e rbac.authorization.k8s.io/aggregate-
to-edit: true

e olm.opgroup.permissions/aggregate-
to-edit: <operatorgroup_name>

72

CHAPTER 2. UNDERSTANDING OPERATORS

Cluster role Settings

<kind>.<group>-<version>-view Verbs on <Kkind>:
e (get
o list
e watch
Aggregation labels:

e rbac.authorization.k8s.io/aggregate-
to-view: true

e olm.opgroup.permissions/aggregate-
to-view: <operatorgroup_name>

Additional roles and role bindings

e |f the CSV defines exactly one target namespace that contains *, then a cluster role and
corresponding cluster role binding are generated for each permission defined in the
permissions field of the CSV. All resources generated are given the olm.owner: <csv_name>
and olm.owner.namespace: <CsvV_namespace> labels.

e |f the CSV does not define exactly one target namespace that contains *, then all roles and role
bindings in the Operator namespace with the olm.owner: <csv_name> and
olm.owner.namespace: <csv_namespace> labels are copied into the target namespace.

2.4.5.7. Copied CSVs

OLM creates copies of all active member CSVs of an Operator group in each of the target namespaces
of that Operator group. The purpose of a copied CSV is to tell users of a target namespace that a
specific Operator is configured to watch resources created there.

Copied CSVs have a status reason Copied and are updated to match the status of their source CSV.
The olm.targetNamespaces annotation is stripped from copied CSVs before they are created on the
cluster. Omitting the target namespace selection avoids the duplication of target namespaces between
tenants.

Copied CSVs are deleted when their source CSV no longer exists or the Operator group that their
source CSV belongs to no longer targets the namespace of the copied CSV.

73

OpenShift Container Platform 4.14 Operators

NOTE

By default, the disableCopiedCSVs field is disabled. After enabling a
disableCopiedCSVs field, the OLM deletes existing copied CSVs on a cluster. When a
disableCopiedCSVs field is disabled, the OLM adds copied CSVs again.

e Disable the disableCopiedCSVs field:

$ cat << EOF | oc apply -f -
apiVersion: operators.coreos.com/v1
kind: OLMConfig
metadata:

name: cluster
spec:

features:

disableCopiedCSVs: false

EOF

® Enable the disableCopiedCSVs field:

$ cat << EOF | oc apply -f -
apiVersion: operators.coreos.com/v1
kind: OLMConfig
metadata:

name: cluster
spec:

features:

disableCopiedCSVs: true

EOF

2.4.5.8. Static Operator groups

An Operator group is static if its spec.staticProvidedAPIs field is set to true. As a result, OLM does not
modify the olm.providedAPIs annotation of an Operator group, which means that it can be set in
advance. This is useful when a user wants to use an Operator group to prevent resource contentionin a
set of namespaces but does not have active member CSVs that provide the APIs for those resources.

Below is an example of an Operator group that protects Prometheus resources in all namespaces with
the something.cool.io/cluster-monitoring: "true" annotation:

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
name: cluster-monitoring
namespace: cluster-monitoring
annotations:
olm.providedAPIs:
Alertmanager.vi.monitoring.coreos.com,Prometheus.vi.monitoring.coreos.com,PrometheusRule.vi.mo
nitoring.coreos.com,ServiceMonitor.v1.monitoring.coreos.com
spec:
staticProvidedAPIs: true
selector:
matchLabels:
something.cool.io/cluster-monitoring: "true"

74

CHAPTER 2. UNDERSTANDING OPERATORS

' WARNING
A Operator Lifecycle Manager (OLM) creates the following cluster roles for each

Operator group:
e <operatorgroup_name>-admin
e <operatorgroup_name>-edit
e <operatorgroup_name>-view

When you manually create an Operator group, you must specify a unique name that
does not conflict with the existing cluster roles or other Operator groups on the
cluster.

2.4.5.9. Operator group intersection

Two Operator groups are said to have intersecting provided APIs if the intersection of their target
namespace sets is not an empty set and the intersection of their provided API sets, defined by
olm.providedAPIs annotations, is not an empty set.

A potential issue is that Operator groups with intersecting provided APIs can compete for the same
resources in the set of intersecting namespaces.

NOTE

When checking intersection rules, an Operator group namespace is always included as
part of its selected target namespaces.

Rules for intersection

Each time an active member CSV synchronizes, OLM queries the cluster for the set of intersecting
provided APIs between the Operator group of the CSV and all others. OLM then checks if that set is an
empty set:

e |ftrue and the CSV's provided APlIs are a subset of the Operator group’s:
o Continue transitioning.
e |[ftrue and the CSV's provided APIs are not a subset of the Operator group'’s:
o If the Operator group is static:
® Clean up any deployments that belong to the CSV.

® Transition the CSV to a failed state with status reason
CannotModifyStaticOperatorGroupProvidedAPIs.

o If the Operator group is not static:

® Replace the Operator group’s olm.providedAPIls annotation with the union of itself
and the CSV's provided APlIs.

75

OpenShift Container Platform 4.14 Operators

e |ffalse and the CSV's provided APIs are not a subset of the Operator group'’s:
o Clean up any deployments that belong to the CSV.
o Transition the CSV to a failed state with status reason InterOperatorGroupOwnerConflict.
e |f false and the CSV's provided APlIs are a subset of the Operator group’s:
o If the Operator group is static:
® Clean up any deployments that belong to the CSV.

® Transition the CSV to a failed state with status reason
CannotModifyStaticOperatorGroupProvidedAPIs.

o If the Operator group is not static:

® Replace the Operator group’s olm.providedAPIs annotation with the difference
between itself and the CSV's provided APls.

NOTE

Failure states caused by Operator groups are non-terminal.

The following actions are performed each time an Operator group synchronizes:

® The set of provided APIs from active member CSVs is calculated from the cluster. Note that
copied CSVs are ignored.

® The cluster setis compared to olm.providedAPIs, and if olm.providedAPIs contains any extra
APlIs, then those APIs are pruned.

e All CSVs that provide the same APIs across all namespaces are requeued. This notifies
conflicting CSVs in intersecting groups that their conflict has possibly been resolved, either
through resizing or through deletion of the conflicting CSV.

2.4.5.10. Limitations for multitenant Operator management

OpenShift Container Platform provides limited support for simultaneously installing different versions
of an Operator on the same cluster. Operator Lifecycle Manager (OLM) installs Operators multiple
times in different namespaces. One constraint of this is that the Operator’s APl versions must be the
same.

Operators are control plane extensions due to their usage of CustomResourceDefinition objects
(CRDs), which are global resources in Kubernetes. Different major versions of an Operator often have
incompatible CRDs. This makes them incompatible to install simultaneously in different namespaces on
a cluster.

All tenants, or namespaces, share the same control plane of a cluster. Therefore, tenants in a multitenant
cluster also share global CRDs, which limits the scenarios in which different instances of the same
Operator can be used in parallel on the same cluster.

The supported scenarios include the following:

® Operators of different versions that ship the exact same CRD definition (in case of versioned
CRDs, the exact same set of versions)

76

CHAPTER 2. UNDERSTANDING OPERATORS

® Operators of different versions that do not ship a CRD, and instead have their CRD available in a
separate bundle on the OperatorHub

All other scenarios are not supported, because the integrity of the cluster data cannot be guaranteed if
there are multiple competing or overlapping CRDs from different Operator versions to be reconciled on
the same cluster.

Additional resources

® Operator Lifecycle Manager (OLM) - Multitenancy and Operator colocation
® Operators in multitenant clusters

® Allowing non-cluster administrators to install Operators

2.4.5.11. Troubleshooting Operator groups
Membership

® Aninstall plan’s namespace must contain only one Operator group. When attempting to
generate a cluster service version (CSV) in a namespace, an install plan considers an Operator
group invalid in the following scenarios:

o No Operator groups exist in the install plan’s namespace.
o Multiple Operator groups exist in the install plan’s namespace.
o Anincorrect or non-existent service account name is specified in the Operator group.

If an install plan encounters an invalid Operator group, the CSV is not generated and the
InstallPlan resource continues to install with a relevant message. For example, the following
message is provided if more than one Operator group exists in the same namespace:

attenuated service account query failed - more than one operator group(s) are managing this
namespace count=2

where count= specifies the number of Operator groups in the namespace.

e |f the install modes of a CSV do not support the target namespace selection of the Operator
group in its namespace, the CSV transitions to a failure state with the reason
UnsupportedOperatorGroup. CSVs in a failed state for this reason transition to pending after
either the target namespace selection of the Operator group changes to a supported
configuration, or the install modes of the CSV are modified to support the target namespace
selection.

2.4.6. Multitenancy and Operator colocation

This guide outlines multitenancy and Operator colocation in Operator Lifecycle Manager (OLM).

2.4.6.1. Colocation of Operators in a namespace

Operator Lifecycle Manager (OLM) handles OLM-managed Operators that are installed in the same
namespace, meaning their Subscription resources are colocated in the same namespace, as related
Operators. Even if they are not actually related, OLM considers their states, such as their version and
update policy, when any one of them is updated.

77

OpenShift Container Platform 4.14 Operators

This default behavior manifests in two ways:

e |nstallPlan resources of pending updates include ClusterServiceVersion (CSV) resources of
all other Operators that are in the same namespace.

® Al Operators in the same namespace share the same update policy. For example, if one
Operator is set to manual updates, all other Operators' update policies are also set to manual.

These scenarios can lead to the following issues:

® |t becomes hard to reason about install plans for Operator updates, because there are many
more resources defined in them than just the updated Operator.

® |t becomes impossible to have some Operators in a namespace update automatically while other
are updated manually, which is a common desire for cluster administrators.

These issues usually surface because, when installing Operators with the OpenShift Container Platform
web console, the default behavior installs Operators that support the All namespaces install mode into
the default openshift-operators global namespace.

As a cluster administrator, you can bypass this default behavior manually by using the following
workflow:

1. Create a namespace for the installation of the Operator.

2. Create a custom global Operator group, which is an Operator group that watches all
namespaces. By associating this Operator group with the namespace you just created, it makes
the installation namespace a global namespace, which makes Operators installed there available
in all namespaces.

3. Install the desired Operator in the installation namespace.

If the Operator has dependencies, the dependencies are automatically installed in the pre-created
namespace. As a result, it is then valid for the dependency Operators to have the same update policy
and shared install plans. For a detailed procedure, see "Installing global Operators in custom
namespaces”.

Additional resources

® |[nstalling global Operators in custom namespaces

® Operators in multitenant clusters

2.4.7. Operator conditions

This guide outlines how Operator Lifecycle Manager (OLM) uses Operator conditions.

2.4.7.1. About Operator conditions

As part of its role in managing the lifecycle of an Operator, Operator Lifecycle Manager (OLM) infers
the state of an Operator from the state of Kubernetes resources that define the Operator. While this
approach provides some level of assurance that an Operator is in a given state, there are many instances
where an Operator might need to communicate information to OLM that could not be inferred
otherwise. This information can then be used by OLM to better manage the lifecycle of the Operator.

OLM provides a custom resource definition (CRD) called OperatorCondition that allows Operators to

78

CHAPTER 2. UNDERSTANDING OPERATORS

communicate conditions to OLM. There are a set of supported conditions that influence management
of the Operator by OLM when present in the Spec.Conditions array of an OperatorCondition
resource.

NOTE

By default, the Spec.Conditions array is not present in an OperatorCondition object
until it is either added by a user or as a result of custom Operator logic.

2.4.7.2. Supported conditions

Operator Lifecycle Manager (OLM) supports the following Operator conditions.

2.4.7.2.1. Upgradeable condition

The Upgradeable Operator condition prevents an existing cluster service version (CSV) from being
replaced by a newer version of the CSV. This condition is useful when:

® An Operator is about to start a critical process and should not be upgraded until the process is
completed.

® An Operator is performing a migration of custom resources (CRs) that must be completed
before the Operator is ready to be upgraded.

IMPORTANT

Setting the Upgradeable Operator condition to the False value does not avoid pod
disruption. If you must ensure your pods are not disrupted, see "Using pod disruption
budgets to specify the number of pods that must be up" and "Graceful termination” in
the "Additional resources" section.

Example Upgradeable Operator condition

apiVersion: operators.coreos.com/v1
kind: OperatorCondition
metadata:
name: my-operator
namespace: operators
spec:
conditions:
- type: Upgradeable ﬂ
status: "False"
reason: "migration”
message: "The Operator is performing a migration."
lastTransitionTime: "2020-08-24T23:15:55Z"

Name of the condition.

®9

A False value indicates the Operator is not ready to be upgraded. OLM prevents a CSV that
replaces the existing CSV of the Operator from leaving the Pending phase. A False value does not
block cluster upgrades.

79

OpenShift Container Platform 4.14 Operators

2.4.7.3. Additional resources

® Managing Operator conditions

® Enabling Operator conditions

® Using pod disruption budgets to specify the number of pods that must be up

® Graceful termination

2.4.8. Operator Lifecycle Manager metrics

2.4.8.1. Exposed metrics

Operator Lifecycle Manager (OLM) exposes certain OLM-specific resources for use by the
Prometheus-based OpenShift Container Platform cluster monitoring stack.

Table 2.7. Metrics exposed by OLM

Name Description

catalog_source
_count

catalogsource_|
eady

csv_abnormal

csv_count

csv_succeeded

csv_upgrade_c
ount

install_plan_co
unt

installplan_war
nings_total

olm_resolution_

duration_secon
ds

80

Number of catalog sources.

State of a catalog source. The value 1 indicates that the catalog source is in BREADY
state. The value of 0 indicates that the catalog source is not in BREADY state.

When reconciling a cluster service version (CSV), present whenever a CSV version is in
any state other than Succeeded, for example when it is not installed. Includes the
name, nhamespace, phase, reason, and version labels. A Prometheus alert is
created when this metric is present.

Number of CSVs successfully registered.

When reconciling a CSV, represents whether a CSV version is in a Succeeded state
(value 1) or not (value 0). Includes the name, namespace, and version labels.

Monotonic count of CSV upgrades.

Number of install plans.

Monotonic count of warnings generated by resources, such as deprecated resources,

included in an install plan.

The duration of a dependency resolution attempt.

https://docs.redhat.com/en/documentation/openshift_container_platform/4.14/html-single/nodes/#nodes-pods-configuring-pod-distruption-about_nodes-pods-configuring
https://docs.redhat.com/en/documentation/openshift_container_platform/4.14/html-single/building_applications/#deployments-graceful-termination_route-based-deployment-strategies

CHAPTER 2. UNDERSTANDING OPERATORS

Name Description

subscription_co Number of subscriptions.
unt

subscription_sy Monotonic count of subscription syncs. Includes the channel, installed CSV, and
nc_total subscription name labels.

2.4.9. Webhook management in Operator Lifecycle Manager

Webhooks allow Operator authors to intercept, modify, and accept or reject resources before they are
saved to the object store and handled by the Operator controller. Operator Lifecycle Manager (OLM)
can manage the lifecycle of these webhooks when they are shipped alongside your Operator.

See Defining cluster service versions (CSVs) for details on how an Operator developer can define
webhooks for their Operator, as well as considerations when running on OLM.

2.4.9.1. Additional resources

® Types of webhook admission plugins

® Kubernetes documentation:

o Validating admission webhooks
o Mutating admission webhooks

o Conversion webhooks

2.5.UNDERSTANDING OPERATORHUB

2.5.1. About OperatorHub

OperatorHub is the web console interface in OpenShift Container Platform that cluster administrators
use to discover and install Operators. With one click, an Operator can be pulled from its off-cluster
source, installed and subscribed on the cluster, and made ready for engineering teams to self-service
manage the product across deployment environments using Operator Lifecycle Manager (OLM).

Cluster administrators can choose from catalogs grouped into the following categories:

Category Description

Red Hat Operators ~ Red Hat products packaged and shipped by Red Hat. Supported by Red Hat.

Certified Products from leading independent software vendors (ISVs). Red Hat partners with
Operators ISVs to package and ship. Supported by the ISV.
Red Hat Certified software that can be purchased from Red Hat Marketplace.

Marketplace

81

https://docs.redhat.com/en/documentation/openshift_container_platform/4.14/html-single/architecture/#admission-webhook-types_admission-plug-ins
https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/#validatingadmissionwebhook
https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/#mutatingadmissionwebhook
https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definition-versioning/#webhook-conversion
https://marketplace.redhat.com/

OpenShift Container Platform 4.14 Operators

Category Description

Community Optionally-visible software maintained by relevant representatives in the redhat-
Operators openshift-ecosystem/community-operators-prod/operators GitHub repository. No
official support.

Custom Operators Operators you add to the cluster yourself. If you have not added any custom Operators,
the Custom category does not appear in the web console on your OperatorHub.

Operators on OperatorHub are packaged to run on OLM. This includes a YAML file called a cluster
service version (CSV) containing all of the CRDs, RBAC rules, deployments, and container images
required to install and securely run the Operator. It also contains user-visible information like a
description of its features and supported Kubernetes versions.

The Operator SDK can be used to assist developers packaging their Operators for use on OLM and
OperatorHub. If you have a commercial application that you want to make accessible to your customers,
getitincluded using the certification workflow provided on the Red Hat Partner Connect portal at
connect.redhat.com.

2.5.2. OperatorHub architecture

The OperatorHub Ul component is driven by the Marketplace Operator by default on OpenShift
Container Platform in the openshift-marketplace namespace.

2.5.2.1. OperatorHub custom resource

The Marketplace Operator manages an OperatorHub custom resource (CR) named cluster that
manages the default CatalogSource objects provided with OperatorHub. You can modify this resource
to enable or disable the default catalogs, which is useful when configuring OpenShift Container Platform
in restricted network environments.

Example OperatorHub custom resource

apiVersion: config.openshift.io/v1
kind: OperatorHub
metadata:
name: cluster
spec:
disableAllDefaultSources: true)

sources: [g
{

name: "community-operators",
disabled: false

}
]

disableAllDefaultSources is an override that controls availability of all default catalogs that are
configured by default during an OpenShift Container Platform installation.

9 Disable default catalogs individually by changing the disabled parameter value per source.

82

https://github.com/redhat-openshift-ecosystem/community-operators-prod/tree/main/operators
https://connect.redhat.com

CHAPTER 2. UNDERSTANDING OPERATORS

2.5.3. Additional resources

® Catalog source

® About the Operator SDK

® Defining cluster service versions (CSVs)

® Operator installation and upgrade workflow in OLM
® Red Hat Partner Connect

® Red Hat Marketplace

2.6. RED HAT-PROVIDED OPERATOR CATALOGS

Red Hat provides several Operator catalogs that are included with OpenShift Container Platform by
default.

IMPORTANT

As of OpenShift Container Platform 4.11, the default Red Hat-provided Operator catalog
releases in the file-based catalog format. The default Red Hat-provided Operator
catalogs for OpenShift Container Platform 4.6 through 4.10 released in the deprecated
SQLite database format.

The opm subcommands, flags, and functionality related to the SQLite database format
are also deprecated and will be removed in a future release. The features are still
supported and must be used for catalogs that use the deprecated SQLite database
format.

Many of the opm subcommands and flags for working with the SQL.ite database format,
such as opm index prune, do not work with the file-based catalog format. For more
information about working with file-based catalogs, see Managing custom catalogs,
Operator Framework packaging format, and Mirroring images for a disconnected
installation using the oc-mirror plugin.

2.6.1. About Operator catalogs

An Operator catalog is a repository of metadata that Operator Lifecycle Manager (OLM) can query to
discover and install Operators and their dependencies on a cluster. OLM always installs Operators from
the latest version of a catalog.

An index image, based on the Operator bundle format, is a containerized snapshot of a catalog. It is an
immutable artifact that contains the database of pointers to a set of Operator manifest content. A
catalog can reference an index image to source its content for OLM on the cluster.

As catalogs are updated, the latest versions of Operators change, and older versions may be removed or
altered. In addition, when OLM runs on an OpenShift Container Platform cluster in a restricted network
environment, it is unable to access the catalogs directly from the internet to pull the latest content.

As a cluster administrator, you can create your own custom index image, either based on a Red Hat-
provided catalog or from scratch, which can be used to source the catalog content on the cluster.
Creating and updating your own index image provides a method for customizing the set of Operators
available on the cluster, while also avoiding the aforementioned restricted network environment issues.

83

https://connect.redhat.com
https://marketplace.redhat.com
https://docs.redhat.com/en/documentation/openshift_container_platform/4.14/html-single/installing/#installing-mirroring-disconnected

OpenShift Container Platform 4.14 Operators

IMPORTANT

Kubernetes periodically deprecates certain APIs that are removed in subsequent
releases. As a result, Operators are unable to use removed APIs starting with the version
of OpenShift Container Platform that uses the Kubernetes version that removed the API.

If your cluster is using custom catalogs, see Controlling Operator compatibility with
OpenShift Container Platform versions for more details about how Operator authors can
update their projects to help avoid workload issues and prevent incompatible upgrades.

NOTE

Support for the legacy package manifest format for Operators, including custom catalogs
that were using the legacy format, is removed in OpenShift Container Platform 4.8 and
later.

When creating custom catalog images, previous versions of OpenShift Container
Platform 4 required using the oc adm catalog build command, which was deprecated
for several releases and is now removed. With the availability of Red Hat-provided index
images starting in OpenShift Container Platform 4.6, catalog builders must use the opm
index command to manage index images.

Additional resources

® Managing custom catalogs

® Packaging format

® Using Operator Lifecycle Manager on restricted networks

2.6.2. About Red Hat-provided Operator catalogs

The Red Hat-provided catalog sources are installed by default in the openshift-marketplace
namespace, which makes the catalogs available cluster-wide in all namespaces.

The following Operator catalogs are distributed by Red Hat:

Catalog

redhat-
operators

certified-
operators

84

Index image Description
registry.redhat.io/redhat/redhat-operator- Red Hat products
index:v4.14 packaged and shipped
by Red Hat. Supported
by Red Hat.
registry.redhat.io/redhat/certified-operator- Products from leading
index:v4.14 independent software

vendors (ISVs). Red Hat
partners with ISVs to
package and ship.
Supported by the ISV.

CHAPTER 2. UNDERSTANDING OPERATORS

Catalog Index image Description
redhat- registry.redhat.io/redhat/redhat-marketplace- Certified software that
marketplace index:v4.14 can be purchased from

Red Hat Marketplace.

community- registry.redhat.io/redhat/community-operator- Software maintained by

operators index:v4.14 relevant representatives
in the redhat-openshift-
ecosystem/community-
operators-
prod/operators GitHub
repository. No official
support.

During a cluster upgrade, the index image tag for the default Red Hat-provided catalog sources are
updated automatically by the Cluster Version Operator (CVO) so that Operator Lifecycle Manager
(OLM) pulls the updated version of the catalog. For example during an upgrade from OpenShift
Container Platform 4.8 to 4.9, the spec.image field in the CatalogSource object for the redhat-
operators catalog is updated from:

I registry.redhat.io/redhat/redhat-operator-index:v4.8

to:

I registry.redhat.io/redhat/redhat-operator-index:v4.9

2.7. OPERATORS IN MULTITENANT CLUSTERS

The default behavior for Operator Lifecycle Manager (OLM) aims to provide simplicity during Operator
installation. However, this behavior can lack flexibility, especially in multitenant clusters. In order for
multiple tenants on a OpenShift Container Platform cluster to use an Operator, the default behavior of
OLM requires that administrators install the Operator in All namespaces mode, which can be considered
to violate the principle of least privilege.

Consider the following scenarios to determine which Operator installation workflow works best for your
environment and requirements.

Additional resources

® Common terms: Multitenant

® Limitations for multitenant Operator management

2.7.1. Default Operator install modes and behavior

When installing Operators with the web console as an administrator, you typically have two choices for
the install mode, depending on the Operator’s capabilities:

Single namespace

85

https://marketplace.redhat.com/
https://github.com/redhat-openshift-ecosystem/community-operators-prod/tree/main/operators

OpenShift Container Platform 4.14 Operators

Installs the Operator in the chosen single namespace, and makes all permissions that the Operator
requests available in that namespace.

All namespaces

Installs the Operator in the default openshift-operators namespace to watch and be made available
to all namespaces in the cluster. Makes all permissions that the Operator requests available in all
namespaces. In some cases, an Operator author can define metadata to give the user a second
option for that Operator’s suggested namespace.

This choice also means that users in the affected namespaces get access to the Operators APIs, which
can leverage the custom resources (CRs) they own, depending on their role in the namespace:

® The namespace-admin and namespace-edit roles can read/write to the Operator APlIs,
meaning they can use them.

® The namespace-view role can read CR objects of that Operator.
For Single namespace mode, because the Operator itself installs in the chosen namespace, its pod and

service account are also located there. For All namespaces mode, the Operator’s privileges are all
automatically elevated to cluster roles, meaning the Operator has those permissions in all namespaces.

Additional resources

® Adding Operators to a cluster
® |nstall modes types

® Setting a suggested namespace

2.7.2. Recommended solution for multitenant clusters

While a Multinamespace install mode does exist, it is supported by very few Operators. As a middle

ground solution between the standard All namespaces and Single namespace install modes, you can

install multiple instances of the same Operator, one for each tenant, by using the following workflow:
1. Create a namespace for the tenant Operator that is separate from the tenant’s namespace.
2. Create an Operator group for the tenant Operator scoped only to the tenant’s namespace.

3. Install the Operator in the tenant Operator namespace.

As a result, the Operator resides in the tenant Operator namespace and watches the tenant namespace,
but neither the Operator’s pod nor its service account are visible or usable by the tenant.

This solution provides better tenant separation, least privilege principle at the cost of resource usage,
and additional orchestration to ensure the constraints are met. For a detailed procedure, see "Preparing

for multiple instances of an Operator for multitenant clusters".

Limitations and considerations

This solution only works when the following constraints are met:
e Allinstances of the same Operator must be the same version.
® The Operator cannot have dependencies on other Operators.

® The Operator cannot ship a CRD conversion webhook.

86

CHAPTER 2. UNDERSTANDING OPERATORS

IMPORTANT

You cannot use different versions of the same Operator on the same cluster. Eventually,
the installation of another instance of the Operator would be blocked when it meets the
following conditions:

® Theinstance is not the newest version of the Operator.

® The instance ships an older revision of the CRDs that lack information or versions
that newer revisions have that are already in use on the cluster.

' WARNING
A As an administrator, use caution when allowing non-cluster administrators to install

Operators self-sufficiently, as explained in "Allowing non-cluster administrators to
install Operators". These tenants should only have access to a curated catalog of
Operators that are known to not have dependencies. These tenants must also be
forced to use the same version line of an Operator, to ensure the CRDs do not
change. This requires the use of namespace-scoped catalogs and likely disabling
the global default catalogs.

Additional resources
® Preparing for multiple instances of an Operator for multitenant clusters
® Allowing non-cluster administrators to install Operators

® Disabling the default OperatorHub catalog sources

2.7.3. Operator colocation and Operator groups

Operator Lifecycle Manager (OLM) handles OLM-managed Operators that are installed in the same
namespace, meaning their Subscription resources are colocated in the same namespace, as related
Operators. Even if they are not actually related, OLM considers their states, such as their version and
update policy, when any one of them is updated.

For more information on Operator colocation and using Operator groups effectively, see Operator
Lifecycle Manager (OLM) — Multitenancy and Operator colocation.

2.8. CRDS

2.8.1. Extending the Kubernetes API with custom resource definitions

Operators use the Kubernetes extension mechanism, custom resource definitions (CRDs), so that
custom objects managed by the Operator look and act just like the built-in, native Kubernetes objects.
This guide describes how cluster administrators can extend their OpenShift Container Platform cluster
by creating and managing CRDs.

2.8.1.1. Custom resource definitions

87

OpenShift Container Platform 4.14 Operators

In the Kubernetes API, a resource is an endpoint that stores a collection of API objects of a certain kind.
For example, the built-in Pods resource contains a collection of Pod objects.

A custom resource definition (CRD) object defines a new, unique object type, called a kind, in the cluster
and lets the Kubernetes APl server handle its entire lifecycle.

Custom resource (CR) objects are created from CRDs that have been added to the cluster by a cluster
administrator, allowing all cluster users to add the new resource type into projects.

When a cluster administrator adds a new CRD to the cluster, the Kubernetes APl server reacts by
creating a new RESTful resource path that can be accessed by the entire cluster or a single project
(namespace) and begins serving the specified CR.

Cluster administrators that want to grant access to the CRD to other users can use cluster role
aggregation to grant access to users with the admin, edit, or view default cluster roles. Cluster role
aggregation allows the insertion of custom policy rules into these cluster roles. This behavior integrates
the new resource into the RBAC policy of the cluster as if it was a built-in resource.

Operators in particular make use of CRDs by packaging them with any required RBAC policy and other
software-specific logic. Cluster administrators can also add CRDs manually to the cluster outside of the
lifecycle of an Operator, making them available to all users.

NOTE

While only cluster administrators can create CRDs, developers can create the CR from an
existing CRD if they have read and write permission to it.

2.8.1.2. Creating a custom resource definition

To create custom resource (CR) objects, cluster administrators must first create a custom resource
definition (CRD).

Prerequisites

® Access to an OpenShift Container Platform cluster with cluster-admin user privileges.

Procedure

To create a CRD:
1. Create a YAML file that contains the following field types:

Example YAML file for a CRD

apiVersion: apiextensions.k8s.io/v1 ﬂ
kind: CustomResourceDefinition
metadata:
name: crontabs.stable.example.com g
spec:
group: stable.example.com 6
versions:
name: vi ﬂ
scope: Namespaced 9
names:
plural: crontabs G

88

CHAPTER 2. UNDERSTANDING OPERATORS

singular: crontab ﬂ
kind: CronTab G
shortNames:

-t @

Use the apiextensions.k8s.io/v1 API.

Specify a name for the definition. This must be in the <plural-names.<group> format
using the values from the group and plural fields.

Specify a group name for the API. An API group is a collection of objects that are logically
related. For example, all batch objects like Job or ScheduledJob could be in the batch API
group (such as batch.api.example.com). A good practice is to use a fully-qualified-
domain name (FQDN) of your organization.

o 90 —

Specify a version name to be used in the URL. Each API group can exist in multiple
versions, for example vialpha, vibeta, v1.

Specify whether the custom objects are available to a project (Namespaced) or all
projects in the cluster (Cluster).

Specify the plural name to use in the URL. The plural field is the same as a resource in an
API URL.

Specify a singular name to use as an alias on the CLI and for display.

Specify the kind of objects that can be created. The type can be in CamelCase.

909 9 ® o

Specify a shorter string to match your resource on the CLI.

NOTE

By default, a CRD is cluster-scoped and available to all projects.

2. Create the CRD object:
I $ oc create -f <file_name>.yaml
A new RESTful APl endpoint is created at:
I /apis/<spec:group>/<spec:version>/<scope>/*/<names-plural>/...
For example, using the example file, the following endpoint is created:
I /apis/stable.example.com/v1/namespaces/*/crontabs/...

You can now use this endpoint URL to create and manage CRs. The object kind is based on the
spec.kind field of the CRD object you created.

2.8.1.3. Creating cluster roles for custom resource definitions

89

OpenShift Container Platform 4.14 Operators

Cluster administrators can grant permissions to existing cluster-scoped custom resource detinitions
(CRDs). If you use the admin, edit, and view default cluster roles, you can take advantage of cluster role
aggregation for their rules.

IMPORTANT

You must explicitly assign permissions to each of these roles. The roles with more
permissions do not inherit rules from roles with fewer permissions. If you assign a rule to a
role, you must also assign that verb to roles that have more permissions. For example, if
you grant the get crontabs permission to the view role, you must also grant it to the edit
and admin roles. The admin or edit role is usually assigned to the user that created a
project through the project template.

Prerequisites

® (Createa CRD.

Procedure

1. Create a cluster role definition file for the CRD. The cluster role definition is a YAML file that
contains the rules that apply to each cluster role. An OpenShift Container Platform controller
adds the rules that you specify to the default cluster roles.

Example YAML file for a cluster role definition

kind: ClusterRole
apiVersion: rbac.authorization.k8s.io/v1 ﬂ
metadata:
name: aggregate-cron-tabs-admin-edit 9
labels:
rbac.authorization.k8s.io/aggregate-to-admin: "true"
rbac.authorization.k8s.io/aggregate-to-edit: "true"
rules:
- apiGroups: ["stable.example.com"] 9
resources: ["crontabs"]
verbs: ["get", "list", "watch", "create", "update”, "patch", "delete", "deletecollection"] ﬂ
kind: ClusterRole
apiVersion: rbac.authorization.k8s.io/v1
metadata:
name: aggregate-cron-tabs-view 6
labels:
Add these permissions to the "view" default role.
rbac.authorization.k8s.io/aggregate-to-view: "true" Q
rbac.authorization.k8s.io/aggregate-to-cluster-reader: "true"
rules:
- apiGroups: ["stable.example.com"] m
resources: ["crontabs"]

verbs: ["get", "list", "watch"]

Q Use the rbac.authorization.k8s.io/v1 API.

wSpecify a name for the definition.

90

CHAPTER 2. UNDERSTANDING OPERATORS

9 Specify this label to grant permissions to the admin default role.

Q Specify this label to grant permissions to the edit default role.

wSpecify the group name of the CRD.
wSpecify the plural name of the CRD that these rules apply to.

pecify the verbs that represent the permissions that are granted to the role. For example,
apply read and write permissions to the admin and edit roles and only read permission to
the view role.

@ Specify this label to grant permissions to the view default role.

@ Specify this label to grant permissions to the cluster-reader default role.

2. Create the cluster role:

I $ oc create -f <file_name>.yaml

2.8.1.4. Creating custom resources from a file

After a custom resource definition (CRD) has been added to the cluster, custom resources (CRs) can be
created with the CLI from a file using the CR specification.

Prerequisites

® CRD added to the cluster by a cluster administrator.

Procedure

1. Create a YAML file for the CR. In the following example definition, the cronSpec and image
custom fields are set in a CR of Kind: CronTab. The Kind comes from the spec.kind field of
the CRD object:

Example YAML file for a CR

apiVersion: "stable.example.com/v1" 0
kind: CronTab @)
metadata:
name: my-new-cron-object 6
finalizers:
- finalizer.stable.example.com
spec: 9
cronSpec: " * * * /5"
image: my-awesome-cron-image

ﬂ Specify the group name and APl version (name/version) from the CRD.
9 Specify the type in the CRD.

9 Specify a name for the object.

o1

OpenShift Container Platform 4.14 Operators

Q Specify the finalizers for the object, if any. Finalizers allow controllers to implement
conditions that must be completed before the object can be deleted.

a Specify conditions specific to the type of object.

2. After you create the file, create the object:

I $ oc create -f <file_name>.yaml
2.8.1.5. Inspecting custom resources
You can inspect custom resource (CR) objects that exist in your cluster using the CLI.

Prerequisites

® A CR object exists in a namespace to which you have access.

Procedure

1. To getinformation on a specific kind of a CR, run:
I $ oc get <kind>

For example:
I $ oc get crontab
Example output

NAME KIND
my-new-cron-object CronTab.v1.stable.example.com

Resource names are not case-sensitive, and you can use either the singular or plural forms
defined in the CRD, as well as any short name. For example:

I $ oc get crontabs
I $ oc get crontab

I $ oc get ct
2. You can also view the raw YAML data for a CR:
I $ oc get <kind> -0 yaml

For example:
I $ oc get ct -0 yaml

Example output

92

https://kubernetes.io/docs/tasks/access-kubernetes-api/extend-api-custom-resource-definitions/#finalizers

CHAPTER 2. UNDERSTANDING OPERATORS

apiVersion: v1
items:
- apiVersion: stable.example.com/v1
kind: CronTab
metadata:
clusterName: "
creationTimestamp: 2017-05-31T12:56:35Z
deletionGracePeriodSeconds: null
deletionTimestamp: null
name: my-new-cron-object
namespace: default
resourceVersion: "285"
selfLink: /apis/stable.example.com/v1/namespaces/default/crontabs/my-new-cron-object
uid: 9423255b-4600-11e7-af6a-28d2447dc82b
spec:
cronSpec: ™ * * * /5 ﬂ
image: my-awesome-cron-image 9

wCustom data from the YAML that you used to create the object displays.

2.8.2. Managing resources from custom resource definitions

This guide describes how developers can manage custom resources (CRs) that come from custom
resource definitions (CRDs).

2.8.2.1. Custom resource definitions

In the Kubernetes API, a resource is an endpoint that stores a collection of API objects of a certain kind.
For example, the built-in Pods resource contains a collection of Pod objects.

A custom resource definition (CRD) object defines a new, unique object type, called a kind, in the cluster
and lets the Kubernetes APl server handle its entire lifecycle.

Custom resource (CR) objects are created from CRDs that have been added to the cluster by a cluster
administrator, allowing all cluster users to add the new resource type into projects.

Operators in particular make use of CRDs by packaging them with any required RBAC policy and other

software-specific logic. Cluster administrators can also add CRDs manually to the cluster outside of the
lifecycle of an Operator, making them available to all users.

NOTE

While only cluster administrators can create CRDs, developers can create the CR from an
existing CRD if they have read and write permission to it.

2.8.2.2. Creating custom resources from a file

After a custom resource definition (CRD) has been added to the cluster, custom resources (CRs) can be
created with the CLI from a file using the CR specification.

Prerequisites

® CRD added to the cluster by a cluster administrator.

93

OpenShift Container Platform 4.14 Operators

Procedure

1. Create a YAML file for the CR. In the following example definition, the cronSpec and image
custom fields are set in a CR of Kind: CronTab. The Kind comes from the spec.kind field of
the CRD object:

Example YAML file for a CR

apiVersion: "stable.example.com/v1" 0
kind: CronTab @)
metadata:
name: my-new-cron-object 6
finalizers:
- finalizer.stable.example.com
spec: 6
cronSpec: " * * * /5"
image: my-awesome-cron-image

Specify the group name and APl version (name/version) from the CRD.
Specify the type in the CRD.

Specify a name for the object.

- -

Specify the finalizers for the object, if any. Finalizers allow controllers to implement
conditions that must be completed before the object can be deleted.

®

Specify conditions specific to the type of object.

2. After you create the file, create the object:

I $ oc create -f <file_name>.yaml
2.8.2.3. Inspecting custom resources
You can inspect custom resource (CR) objects that exist in your cluster using the CLI.

Prerequisites

® A CR object exists in a namespace to which you have access.

Procedure

1. To getinformation on a specific kind of a CR, run:
I $ oc get <kind>

For example:
I $ oc get crontab

Example output

94

https://kubernetes.io/docs/tasks/access-kubernetes-api/extend-api-custom-resource-definitions/#finalizers

CHAPTER 2. UNDERSTANDING OPERATORS

NAME KIND
my-new-cron-object CronTab.v1.stable.example.com

Resource names are not case-sensitive, and you can use either the singular or plural forms
defined in the CRD, as well as any short name. For example:

I $ oc get crontabs
I $ oc get crontab

I $ oc get ct
2. You can also view the raw YAML data for a CR:
I $ oc get <kind> -0 yaml

For example:
I $ oc get ct -0 yaml
Example output

apiVersion: v1
items:
- apiVersion: stable.example.com/v1
kind: CronTab
metadata:
clusterName: "
creationTimestamp: 2017-05-31T12:56:35Z
deletionGracePeriodSeconds: null
deletionTimestamp: null
name: my-new-cron-object
namespace: default
resourceVersion: "285"
selfLink: /apis/stable.example.com/v1/namespaces/default/crontabs/my-new-cron-object
uid: 9423255b-4600-11e7-af6a-28d2447dc82b
spec:
cronSpec: ™ * * * /5 ﬂ
image: my-awesome-cron-image 9

wCustom data from the YAML that you used to create the object displays.

95

OpenShift Container Platform 4.14 Operators

CHAPTER 3. USER TASKS

3.1. CREATING APPLICATIONS FROM INSTALLED OPERATORS

This guide walks developers through an example of creating applications from an installed Operator
using the OpenShift Container Platform web console.

3.1.1. Creating an etcd cluster using an Operator

This procedure walks through creating a new etcd cluster using the etcd Operator, managed by
Operator Lifecycle Manager (OLM).

Prerequisites

® Access to an OpenShift Container Platform 4.14 cluster.

® The etcd Operator already installed cluster-wide by an administrator.

Procedure

96

1. Create a new project in the OpenShift Container Platform web console for this procedure. This

example uses a project called my-etcd.

. Navigate to the Operators = Installed Operatorspage. The Operators that have been installed

to the cluster by the cluster administrator and are available for use are shown here as a list of
cluster service versions (CSVs). CSVs are used to launch and manage the software provided by
the Operator.

TIP

You can get this list from the CLI using:

I $ oc get csv

. On the Installed Operators page, click the etcd Operator to view more details and available

actions.

As shown under Provided APls, this Operator makes available three new resource types,
including one for an etcd Cluster (the EtcdCluster resource). These objects work similar to the
built-in native Kubernetes ones, such as Deployment or ReplicaSet, but contain logic specific
to managing etcd.

. Create a new etcd cluster:

a. Inthe etcd Cluster API box, click Create instance

b. The next page allows you to make any modifications to the minimal starting template of an
EtcdCluster object, such as the size of the cluster. For now, click Create to finalize. This
triggers the Operator to start up the pods, services, and other components of the new etcd
cluster.

. Click the example etcd cluster, then click the Resources tab to see that your project now

contains a number of resources created and configured automatically by the Operator.

CHAPTER 3. USER TASKS

Verify that a Kubernetes service has been created that allows you to access the database from
other pods in your project.

6. All users with the edit role in a given project can create, manage, and delete application
instances (an etcd cluster, in this example) managed by Operators that have already been
created in the project, in a self-service manner, just like a cloud service. If you want to enable
additional users with this ability, project administrators can add the role using the following
command:

I $ oc policy add-role-to-user edit <user> -n <target_project>

You now have an etcd cluster that will react to failures and rebalance data as pods become unhealthy or
are migrated between nodes in the cluster. Most importantly, cluster administrators or developers with
proper access can now easily use the database with their applications.

3.2. INSTALLING OPERATORS IN YOUR NAMESPACE

If a cluster administrator has delegated Operator installation permissions to your account, you can install
and subscribe an Operator to your namespace in a self-service manner.

3.2.1. Prerequisites

® A cluster administrator must add certain permissions to your OpenShift Container Platform user
account to allow self-service Operator installation to a namespace. See Allowing non-cluster
administrators to install Operators for details.

3.2.2. About Operator installation with OperatorHub

OperatorHub is a user interface for discovering Operators; it works in conjunction with Operator
Lifecycle Manager (OLM), which installs and manages Operators on a cluster.

As a user with the proper permissions, you can install an Operator from OperatorHub by using the
OpenShift Container Platform web console or CLI.

During installation, you must determine the following initial settings for the Operator:

Installation Mode
Choose a specific namespace in which to install the Operator.
Update Channel

If an Operator is available through multiple channels, you can choose which channel you want to
subscribe to. For example, to deploy from the stable channel, if available, select it from the list.

Approval Strategy

You can choose automatic or manual updates.

If you choose automatic updates for an installed Operator, when a new version of that Operator is
available in the selected channel, Operator Lifecycle Manager (OLM) automatically upgrades the
running instance of your Operator without human intervention.

If you select manual updates, when a newer version of an Operator is available, OLM creates an
update request. As a cluster administrator, you must then manually approve that update request to
have the Operator updated to the new version.

® Understanding OperatorHub

97

OpenShift Container Platform 4.14 Operators

3.2.3. Installing from OperatorHub using the web console

You can install and subscribe to an Operator from OperatorHub by using the OpenShift Container

Platform web console.

Prerequisites

® Access to an OpenShift Container Platform cluster using an account with Operator installation
permissions.

Procedure

Navigate in the web console to the Operators = OperatorHub page.

Scroll or type a keyword into the Filter by keyword box to find the Operator you want. For
example, type advanced to find the Advanced Cluster Management for Kubernetes Operator.
You can also filter options by Infrastructure Features. For example, select Disconnected if you
want to see Operators that work in disconnected environments, also known as restricted
network environments.

Select the Operator to display additional information.

NOTE

Choosing a Community Operator warns that Red Hat does not certify
Community Operators; you must acknowledge the warning before continuing.

Read the information about the Operator and click Install.

On the Install Operator page:

a. Choose a specific, single namespace in which to install the Operator. The Operator will only
watch and be made available for use in this single namespace.

b. If the clusteris in AWS STS mode, enter the Amazon Resource Name (ARN) of the AWS
IAM role of your service account in the role ARN field.

OperatorHub > Operator Installation

Install Operator

Home Install your Operator by subscribing to one of the update channels to keep the Operator up to date. The strategy determines either manual or automatic updates.

2 Administrator

Cluster inSTS Mode x
OperatorHub

This cluster is using AWS Security Token Service to reach the cloud APL.In order for this operator to take the actions it requires directly with the cloud AP, yor provide a role ARN (with
in the role. Please see the operator description for more details

during installation.

ighly taken prior to up by the next version are prop

) role ARN* & e OADP Operator
W
rovided by Red Ha
armawsiam:301721915996 role/oadpbucketoc
Provided APIs

Update channel * ©

stable-12 . LD BackupRepository @ Backup

Abackup repositoryis an
connection from the resti

cluster state at a p e (AP
objects and associated volume state).

to the backupstoragelocation.

Installation mode *

All namespaces on the cluster (default

This mode is not (=D BackupStorageLocation (CEDD) DeleteBackupRequest

eontl
lable

i . D arequestto
object storage location (such as delete one or more backups.
Amazon S3 Bucket) where Velero stores,

® Aspecific namespacs
Operator willbe avai

Installed Namespace * backup objects.

® Operats Namespace: @

O Select aNamespace

To create the role’s ARN, follow the procedure described in Preparing AWS account.
c. If more than one update channel is available, select an Update channel.

d. Select Automatic or Manual approval strategy, as described earlier.

https://access.redhat.com/documentation/en-us/red_hat_openshift_service_on_aws/4/html/tutorials/cloud-experts-deploy-api-data-protection#prepare-aws-account_cloud-experts-deploy-api-data-protection

CHAPTER 3. USER TASKS

IMPORTANT

If the web console shows that the clusterisin "STS mode", you must set
Update approval to Manual.

Subscriptions with automatic update approvals are not recommended
because there might be permission changes to make prior to updating.
Subscriptions with manual update approvals ensure that administrators have
the opportunity to verify the permissions of the later version and take any
necessary steps prior to update.

6. Click Install to make the Operator available to the selected namespaces on this OpenShift
Container Platform cluster.

a. If you selected a Manual approval strategy, the upgrade status of the subscription remains
Upgrading until you review and approve the install plan.
After approving on the Install Plan page, the subscription upgrade status moves to Up to
date.

b. If you selected an Automatic approval strategy, the upgrade status should resolve to Up to
date without intervention.

7. After the upgrade status of the subscription is Up to date, select Operators - Installed
Operators to verify that the cluster service version (CSV) of the installed Operator eventually
shows up. The Status should ultimately resolve to InstallSucceeded in the relevant namespace.

NOTE

For the All namespaces... installation mode, the status resolves to
InstallSucceeded in the openshift-operators namespace, but the status is
Copied if you check in other namespaces.

If it does not:

a. Check the logsin any pods in the openshift-operators project (or other relevant
namespace if A specific namespace... installation mode was selected) on the Workloads =
Pods page that are reporting issues to troubleshoot further.

3.2.4. Installing from OperatorHub using the CLI

Instead of using the OpenShift Container Platform web console, you can install an Operator from
OperatorHub by using the CLI. Use the oc command to create or update a Subscription object.

Prerequisites

® Access to an OpenShift Container Platform cluster using an account with Operator installation
permissions.

® You have installed the OpenShift CLI (oc).

Procedure

1. View the list of Operators available to the cluster from OperatorHub:

I $ oc get packagemanifests -n openshift-marketplace

99

OpenShift Container Platform 4.14 Operators

Example output

NAME CATALOG AGE
3scale-operator Red Hat Operators 91m
advanced-cluster-management Red Hat Operators 91m
amq7-cert-manager Red Hat Operators 91m

couchbase-enterprise-certified Certified Operators 91m

crunchy-postgres-operator Certified Operators 91m
mongodb-enterprise Certified Operators 91m
etcd Community Operators 91m
jaeger Community Operators 91m
kubefed Community Operators 91m

Note the catalog for your desired Operator.

2. Inspect your desired Operator to verify its supported install modes and available channels:

I $ oc describe packagemanifests <operator_name> -n openshift-marketplace

3. An Operator group, defined by an OperatorGroup object, selects target namespaces in which to
generate required RBAC access for all Operators in the same namespace as the Operator
group.

The namespace to which you subscribe the Operator must have an Operator group that
matches the install mode of the Operator, either the AlINamespaces or SingleNamespace
mode. If the Operator you intend to install uses the AlINamespaces mode, the openshift-
operators namespace already has the appropriate global-operators Operator group in place.

However, if the Operator uses the SingleNamespace mode and you do not already have an
appropriate Operator group in place, you must create one.

NOTE

® The web console version of this procedure handles the creation of the
OperatorGroup and Subscription objects automatically behind the scenes
for you when choosing SingleNamespace mode.

® You can only have one Operator group per namespace. For more
information, see "Operator groups".

a. Create an OperatorGroup object YAML file, for example operatorgroup.yaml:

Example OperatorGroup object

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
name: <operatorgroup_name>
namespace: <namespace>

100

CHAPTER 3. USER TASKS

spec:
targetNamespaces:
- <namespace>

' WARNING
A Operator Lifecycle Manager (OLM) creates the following cluster roles

for each Operator group:
e <operatorgroup_name>-admin
e <operatorgroup_name>-edit
® <operatorgroup_name>-view

When you manually create an Operator group, you must specify a
unique name that does not conflict with the existing cluster roles or
other Operator groups on the cluster.

b. Create the OperatorGroup object:
I $ oc apply -f operatorgroup.yaml

4. Create a Subscription object YAML file to subscribe a namespace to an Operator, for example
sub.yaml:

Example Subscription object

apiVersion: operators.coreos.com/vialphai
kind: Subscription
metadata:
name: <subscription_name>
namespace: openshift-operators ﬂ
spec:
channel: <channel_name> e
name: <operator_name>
source: redhat-operators
sourceNamespace: openshift-marketplace 6
config:
env:
- name: ARGS
value: "-v=10"
envFrom: a
- secretRef:
name: license-secret
volumes: 6
- name: <volume_name>
configMap:
name: <configmap_name>

101

OpenShift Container Platform 4.14 Operators

o0 O O 9 @9 990600 O

S

volumeMounts: Q
- mountPath: <directory_name>
name: <volume_name>
tolerations: @
- operator: "Exists"
resources:
requests:
memory: "64Mi"
cpu: "250m"
limits:
memory: "128Mi"
cpu: "500m"
nodeSelector: @
foo: bar

For default AlINamespaces install mode usage, specify the openshift-operators
namespace. Alternatively, you can specify a custom global namespace, if you have created
one. Otherwise, specify the relevant single namespace for SingleNamespace install mode
usage.

Name of the channel to subscribe to.
Name of the Operator to subscribe to.
Name of the catalog source that provides the Operator.

Namespace of the catalog source. Use openshift-marketplace for the default
OperatorHub catalog sources.

The env parameter defines a list of Environment Variables that must exist in all containers
in the pod created by OLM.

The envFrom parameter defines a list of sources to populate Environment Variables in the
container.

The volumes parameter defines a list of Volumes that must exist on the pod created by
OLM.

The volumeMounts parameter defines a list of volume mounts that must exist in all
containers in the pod created by OLM. If a volumeMount references a volume that does
not exist, OLM fails to deploy the Operator.

The tolerations parameter defines a list of Tolerations for the pod created by OLM.

The resources parameter defines resource constraints for all the containers in the pod
created by OLM.

The nodeSelector parameter defines a NodeSelector for the pod created by OLM.

5. If the clusteris in STS mode, include the following fields in the Subscription object:

102

kind: Subscription
#...
spec:
installPlanApproval: Manual 0

CHAPTER 3. USER TASKS

config:
env:
- name: ROLEARN

value: "<role_arn>"

ﬂ Subscriptions with automatic update approvals are not recommended because there might
be permission changes to make prior to updating. Subscriptions with manual update
approvals ensure that administrators have the opportunity to verify the permissions of the
later version and take any necessary steps prior to update.

9 Include the role ARN details.

6. Create the Subscription object:

I $ oc apply -f sub.yaml
At this point, OLM is now aware of the selected Operator. A cluster service version (CSV) for

the Operator should appear in the target namespace, and APIs provided by the Operator should
be available for creation.

Additional resources
® Operator groups

® Channel names

3.2.5. Installing a specific version of an Operator

You can install a specific version of an Operator by setting the cluster service version (CSV) in a
Subscription object.

Prerequisites

® Access to an OpenShift Container Platform cluster using an account with Operator installation
permissions.

® You have installed the OpenShift CLI (oc).

Procedure

1. Look up the available versions and channels of the Operator you want to install by running the
following command:

Command syntax
I $ oc describe packagemanifests <operator_names -n <catalog_namespace>

For example, the following command prints the available channels and versions of the Red Hat
Quay Operator from OperatorHub:

Example command

I $ oc describe packagemanifests quay-operator -n openshift-marketplace

103

OpenShift Container Platform 4.14 Operators

104

Example 3.1. Example output

Name:

Labels:

quay-operator
Namespace:
catalog=redhat-operators
catalog-namespace=openshift-marketplace
hypershift.openshift.io/managed=true
operatorframework.io/arch.amd64=supported
operatorframework.io/os.linux=supported

operator-marketplace

provider=Red Hat
provider-url=
Annotations: <none>

API Version: packages.operators.coreos.com/v1

Kind: PackageManifest

Current CSV: quay-operator.v3.7.11

Entries:
Name:

Version:

Name:

Version:

Name:

Version:

Name:

Version:

Name:

Version:

Name:

Version:

Name:

Version:

Name:

Version:

Name:

Version:

Name:

Version:

Name:

Version:

Name:

Version:

Name:

quay-operator.v3.7.11
3.7.11
quay-operator.v3.7.10
3.7.10
quay-operator.v3.7.9
3.7.9
quay-operator.v3.7.8
3.7.8
quay-operator.v3.7.7
3.7.7
quay-operator.v3.7.6
3.7.6
quay-operator.v3.7.5
3.7.5
quay-operator.v3.7.4
3.7.4
quay-operator.v3.7.3
3.7.3
quay-operator.v3.7.2
3.7.2
quay-operator.v3.7.1
3.7.1
quay-operator.v3.7.0
3.7.0

stable-3.7

Current CSV: quay-operator.v3.8.5

Entries:
Name:

Version:

Name:

Version:

Name:

Version:

Name:

Version:

Name:

quay-operator.v3.8.5
3.8.5
quay-operator.v3.8.4
3.8.4
quay-operator.v3.8.3
3.8.3
quay-operator.v3.8.2
3.8.2
quay-operator.v3.8.1

CHAPTER 3. USER TASKS

Name: stable-3.8
Default Channel: stable-3.8

Version: 3.8.1
Name: quay-operator.v3.8.0
Version: 3.8.0

Package Name: quay-operator

TIP

You can print an Operator’s version and channel information in the YAML format by running the
following command:

I $ oc get packagemanifests <operator_name> -n <catalog_namespace> -o yaml

e |f more than one catalog is installed in a namespace, run the following command to look up
the available versions and channels of an Operator from a specific catalog:

$ oc get packagemanifest \
--selector=catalog=<catalogsource_name>\
--field-selector metadata.name=<operator_name> \
-n <catalog_namespace> -0 yaml

IMPORTANT

If you do not specify the Operator’s catalog, running the oc get
packagemanifest and oc describe packagemanifest commands might
return a package from an unexpected catalog if the following conditions are
met:

o Multiple catalogs are installed in the same namespace.

o The catalogs contain the same Operators or Operators with the same
name.

2. An Operator group, defined by an OperatorGroup object, selects target namespaces in which to
generate required role-based access control (RBAC) access for all Operators in the same
namespace as the Operator group.

The namespace to which you subscribe the Operator must have an Operator group that
matches the install mode of the Operator, either the AlINamespaces or SingleNamespace
mode. If the Operator you intend to install uses the AlINamespaces mode, then the openshift-
operators namespace already has an appropriate Operator group in place.

However, if the Operator uses the SingleNamespace mode and you do not already have an
appropriate Operator group in place, you must create one:

a. Create an OperatorGroup object YAML file, for example operatorgroup.yaml:

Example OperatorGroup object

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:

105

OpenShift Container Platform 4.14 Operators

name: <operatorgroup_name>

namespace: <namespace>
spec:

targetNamespaces:

- <namespace>

' WARNING
A Operator Lifecycle Manager (OLM) creates the following cluster roles

for each Operator group:
e <operatorgroup_name>-admin
e <operatorgroup_name>-edit
® <operatorgroup_name>-view

When you manually create an Operator group, you must specify a
unique name that does not conflict with the existing cluster roles or
other Operator groups on the cluster.

b. Create the OperatorGroup object:
I $ oc apply -f operatorgroup.yaml

3. Create a Subscription object YAML file that subscribes a namespace to an Operator with a
specific version by setting the startingCSV field. Set the installPlanApproval field to Manual
to prevent the Operator from automatically upgrading if a later version exists in the catalog.
For example, the following sub.yaml file can be used to install the Red Hat Quay Operator
specifically to version 3.7.10:

Subscription with a specific starting Operator version

apiVersion: operators.coreos.com/vialphai
kind: Subscription
metadata:
name: quay-operator
namespace: quay
spec:
channel: stable-3.7
installPlanApproval: Manual 0
name: quay-operator
source: redhat-operators
sourceNamespace: openshift-marketplace
startingCSV: quay-operator.v3.7.10 9

ﬂ Set the approval strategy to Manual in case your specified version is superseded by a later
version in the catalog. This plan prevents an automatic upgrade to a later version and
requires manual approval before the starting CSV can complete the installation.

106

CHAPTER 3. USER TASKS

9 Set a specific version of an Operator CSV.

4. Create the Subscription object:
I $ oc apply -f sub.yaml

5. Manually approve the pending install plan to complete the Operator installation.

Additional resources

® Manually approving a pending Operator update

107

OpenShift Container Platform 4.14 Operators

CHAPTER 4. ADMINISTRATOR TASKS

4.1. ADDING OPERATORS TO A CLUSTER

Using Operator Lifecycle Manager (OLM), cluster administrators can install OLM-based Operators to
an OpenShift Container Platform cluster.

NOTE

For information on how OLM handles updates for installed Operators colocated in the
same namespace, as well as an alternative method for installing Operators with custom
global Operator groups, see Multitenancy and Operator colocation.

4.1.1. About Operator installation with OperatorHub

OperatorHub is a user interface for discovering Operators; it works in conjunction with Operator
Lifecycle Manager (OLM), which installs and manages Operators on a cluster.

As a user with the proper permissions, you can install an Operator from OperatorHub by using the
OpenShift Container Platform web console or CLI.

During installation, you must determine the following initial settings for the Operator:

Installation Mode
Choose a specific namespace in which to install the Operator.
Update Channel

If an Operator is available through multiple channels, you can choose which channel you want to
subscribe to. For example, to deploy from the stable channel, if available, select it from the list.

Approval Strategy

You can choose automatic or manual updates.

If you choose automatic updates for an installed Operator, when a new version of that Operator is
available in the selected channel, Operator Lifecycle Manager (OLM) automatically upgrades the
running instance of your Operator without human intervention.

If you select manual updates, when a newer version of an Operator is available, OLM creates an
update request. As a cluster administrator, you must then manually approve that update request to
have the Operator updated to the new version.

Additional resources

® Understanding OperatorHub

4.1.2. Installing from OperatorHub using the web console

You can install and subscribe to an Operator from OperatorHub by using the OpenShift Container
Platform web console.

Prerequisites

® Access to an OpenShift Container Platform cluster using an account with cluster-admin
permissions.

108

CHAPTER 4. ADMINISTRATOR TASKS

® Access to an OpenShift Container Platform cluster using an account with Operator installation
permissions.

Procedure

1. Navigate in the web console to the Operators = OperatorHub page.

2. Scroll or type a keyword into the Filter by keyword box to find the Operator you want. For
example, type advanced to find the Advanced Cluster Management for Kubernetes Operator.
You can also filter options by Infrastructure Features. For example, select Disconnected if you
want to see Operators that work in disconnected environments, also known as restricted
network environments.

3. Select the Operator to display additional information.

NOTE

Choosing a Community Operator warns that Red Hat does not certify
Community Operators; you must acknowledge the warning before continuing.

4. Read the information about the Operator and click Install.

5. On the Install Operator page:
a. Select one of the following:

e All namespaces on the cluster (default)installs the Operator in the default openshift-
operators namespace to watch and be made available to all namespaces in the cluster.
This option is not always available.

® A specific namespace on the clusterallows you to choose a specific, single namespace
in which to install the Operator. The Operator will only watch and be made available for
use in this single namespace.

b. Choose a specific, single namespace in which to install the Operator. The Operator will only
watch and be made available for use in this single namespace.

c. If the clusteris in AWS STS mode, enter the Amazon Resource Name (ARN) of the AWS
IAM role of your service account in the role ARN field.

OperatorHub > Operator Installation

Install Operator

Install your Operator by subscribing to one of the update channels to keep the Operator up to date. The strategy determines either manual or automatic updates.

Cluster inSTS Mode x
This cluster is using AWS Security Token Service to reach the cloud APL.In order for this operator to take the a
ighly taken prior to up

s directly with the cloud APY,y providea
in the role. Please see the op

during installation.
more detals

role ARN* & ‘ OADP Operator

ed by Red Ha
armawsiam:301721915996 role/oadpbucketoc

Provided APls
Update channel * ©

cble12 . (G5 BackupRepository © Backup

Abackup repository is an indicator of a Backup is a Velero resource that

connection from the restic/kopia server respresents the capture of Kubernetes

122 - to the backupstoragelocation. cluster state at a point in time (API
objects and associated volume state)

Observe
Installation mode *

All namesp:

Compute

This mode is not support Operator (=D BackupStorageLocation (G DeleteBackupRequest
® Aspecific namespace on t

User Management I

i . D arequest to
object storage location (such as delete one or more backups.
Amazon S3 Bucket) where Velero stores,

Installed Namespace * backup objects.

® Operats Namespace: @

O Select aNamespace

To create the role’s ARN, follow the procedure described in Preparing AWS account.

d. If more than one update channel is available, select an Update channel.

109

https://access.redhat.com/documentation/en-us/red_hat_openshift_service_on_aws/4/html/tutorials/cloud-experts-deploy-api-data-protection#prepare-aws-account_cloud-experts-deploy-api-data-protection

OpenShift Container Platform 4.14 Operators

e. Select Automatic or Manual approval strategy, as described earlier.

IMPORTANT

If the web console shows that the clusterisin "STS mode", you must set
Update approval to Manual.

Subscriptions with automatic update approvals are not recommended
because there might be permission changes to make prior to updating.
Subscriptions with manual update approvals ensure that administrators have
the opportunity to verify the permissions of the later version and take any
necessary steps prior to update.

6. Click Install to make the Operator available to the selected namespaces on this OpenShift
Container Platform cluster.

a. If you selected a Manual approval strategy, the upgrade status of the subscription remains
Upgrading until you review and approve the install plan.
After approving on the Install Plan page, the subscription upgrade status moves to Up to
date.

b. If you selected an Automatic approval strategy, the upgrade status should resolve to Up to
date without intervention.

7. After the upgrade status of the subscription is Up to date, select Operators - Installed
Operators to verify that the cluster service version (CSV) of the installed Operator eventually
shows up. The Status should ultimately resolve to InstallSucceeded in the relevant namespace.

NOTE

For the All namespaces... installation mode, the status resolves to
InstallSucceeded in the openshift-operators namespace, but the status is
Copied if you check in other namespaces.

If it does not:

a. Check the logsin any pods in the openshift-operators project (or other relevant
namespace if A specific namespace... installation mode was selected) on the Workloads =
Pods page that are reporting issues to troubleshoot further.

4.1.3. Installing from OperatorHub using the CLI

Instead of using the OpenShift Container Platform web console, you can install an Operator from
OperatorHub by using the CLI. Use the oc command to create or update a Subscription object.

Prerequisites

® Access to an OpenShift Container Platform cluster using an account with Operator installation
permissions.

® You have installed the OpenShift CLI (oc).

Procedure

110

CHAPTER 4. ADMINISTRATOR TASKS

1. View the list of Operators available to the cluster from OperatorHub:

I $ oc get packagemanifests -n openshift-marketplace

Example output

NAME CATALOG AGE
3scale-operator Red Hat Operators 91m
advanced-cluster-management Red Hat Operators 91m
amq7-cert-manager Red Hat Operators 91m

couchbase-enterprise-certified Certified Operators 91m

crunchy-postgres-operator Certified Operators 91m
mongodb-enterprise Certified Operators 91m
etcd Community Operators 91m
jaeger Community Operators 91m
kubefed Community Operators 91m

Note the catalog for your desired Operator.

2. Inspect your desired Operator to verify its supported install modes and available channels:

I $ oc describe packagemanifests <operator_name> -n openshift-marketplace

3. An Operator group, defined by an OperatorGroup object, selects target namespaces in which to
generate required RBAC access for all Operators in the same namespace as the Operator
group.

The namespace to which you subscribe the Operator must have an Operator group that
matches the install mode of the Operator, either the AlINamespaces or SingleNamespace
mode. If the Operator you intend to install uses the AlINamespaces mode, the openshift-
operators namespace already has the appropriate global-operators Operator group in place.

However, if the Operator uses the SingleNamespace mode and you do not already have an
appropriate Operator group in place, you must create one.

NOTE

® The web console version of this procedure handles the creation of the
OperatorGroup and Subscription objects automatically behind the scenes
for you when choosing SingleNamespace mode.

® You can only have one Operator group per namespace. For more
information, see "Operator groups".

a. Create an OperatorGroup object YAML file, for example operatorgroup.yaml:

Example OperatorGroup object

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:

name: <operatorgroup_name>

m

OpenShift Container Platform 4.14 Operators

namespace: <namespace>
spec:

targetNamespaces:

- <namespace>

' WARNING
A Operator Lifecycle Manager (OLM) creates the following cluster roles

for each Operator group:
® <operatorgroup_name>-admin
e <operatorgroup_name>-edit
® <operatorgroup_name>-view

When you manually create an Operator group, you must specify a
unique name that does not conflict with the existing cluster roles or
other Operator groups on the cluster.

b. Create the OperatorGroup object:
I $ oc apply -f operatorgroup.yaml

4. Create a Subscription object YAML file to subscribe a namespace to an Operator, for example
sub.yaml:

Example Subscription object

apiVersion: operators.coreos.com/vialphai
kind: Subscription
metadata:
name: <subscription_name>
namespace: openshift-operators ﬂ
spec:
channel: <channel_name> e
name: <operator_name>
source: redhat-operators
sourceNamespace: openshift-marketplace 6
config:
env:
- name: ARGS
value: "-v=10"
envFrom: a
- secretRef:
name: license-secret
volumes: 6
- name: <volume_name>
configMap:

12

CHAPTER 4. ADMINISTRATOR TASKS

name: <configmap_name>
volumeMounts:
- mountPath: <directory_name>
name: <volume_name>
tolerations: @
- operator: "Exists"
resources: m
requests:
memory: "64Mi"
cpu: "250m"
limits:
memory: "128Mi"
cpu: "500m"
nodeSelector:
foo: bar

For default AlINamespaces install mode usage, specify the openshift-operators
namespace. Alternatively, you can specify a custom global namespace, if you have created
one. Otherwise, specify the relevant single namespace for SingleNamespace install mode
usage.

Name of the channel to subscribe to.
Name of the Operator to subscribe to.
Name of the catalog source that provides the Operator.

Namespace of the catalog source. Use openshift-marketplace for the default
OperatorHub catalog sources.

The env parameter defines a list of Environment Variables that must exist in all containers
in the pod created by OLM.

The envFrom parameter defines a list of sources to populate Environment Variables in the
container.

The volumes parameter defines a list of Volumes that must exist on the pod created by
OLM.

The volumeMounts parameter defines a list of volume mounts that must exist in all
containers in the pod created by OLM. If a volumeMount references a volume that does

not exist, OLM fails to deploy the Operator.

The tolerations parameter defines a list of Tolerations for the pod created by OLM.

o0 O O 9 @9 9000

The resources parameter defines resource constraints for all the containers in the pod
created by OLM.

The nodeSelector parameter defines a NodeSelector for the pod created by OLM.

S

5. If the cluster is in STS mode, include the following fields in the Subscription object:

kind: Subscription
#...
spec:

13

OpenShift Container Platform 4.14 Operators

installPlanApproval: Manual 0
config:
env:
- name: ROLEARN
value: "<role_arn>"

ﬂ Subscriptions with automatic update approvals are not recommended because there might
be permission changes to make prior to updating. Subscriptions with manual update
approvals ensure that administrators have the opportunity to verify the permissions of the
later version and take any necessary steps prior to update.

9 Include the role ARN details.

6. Create the Subscription object:

I $ oc apply -f sub.yaml

At this point, OLM is now aware of the selected Operator. A cluster service version (CSV) for
the Operator should appear in the target namespace, and APIs provided by the Operator should
be available for creation.

Additional resources

® About Operator groups

4.1.4. Installing a specific version of an Operator

You can install a specific version of an Operator by setting the cluster service version (CSV) in a
Subscription object.

Prerequisites

® Access to an OpenShift Container Platform cluster using an account with Operator installation

permissions.

® You have installed the OpenShift CLI (oc).

Procedure

14

1. Look up the available versions and channels of the Operator you want to install by running the

following command:

Command syntax
I $ oc describe packagemanifests <operator_names -n <catalog_namespace>

For example, the following command prints the available channels and versions of the Red Hat
Quay Operator from OperatorHub:

Example command

I $ oc describe packagemanifests quay-operator -n openshift-marketplace

Example 4.1. Example output

Name:

Labels:

quay-operator
Namespace:
catalog=redhat-operators
catalog-namespace=openshift-marketplace
hypershift.openshift.io/managed=true
operatorframework.io/arch.amd64=supported
operatorframework.io/os.linux=supported

operator-marketplace

provider=Red Hat
provider-url=
Annotations: <none>

API Version: packages.operators.coreos.com/v1

Kind: PackageManifest

Current CSV: quay-operator.v3.7.11

Entries:
Name:

Version:

Name:

Version:

Name:

Version:

Name:

Version:

Name:

Version:

Name:

Version:

Name:

Version:

Name:

Version:

Name:

Version:

Name:

Version:

Name:

Version:

Name:

Version:

Name:

Current CSV: quay-operator.v3.8.5

Entries:
Name:

Version:

Name:

Version:

Name:

Version:

Name:

Version:

Name:

quay-operator.v3.7.11
3.7.11
quay-operator.v3.7.10
3.7.10
quay-operator.v3.7.9
3.7.9
quay-operator.v3.7.8
3.7.8
quay-operator.v3.7.7
3.7.7
quay-operator.v3.7.6
3.7.6
quay-operator.v3.7.5
3.7.5
quay-operator.v3.7.4
3.7.4
quay-operator.v3.7.3
3.7.3
quay-operator.v3.7.2
3.7.2
quay-operator.v3.7.1
3.7.1
quay-operator.v3.7.0
3.7.0

stable-3.7

quay-operator.v3.8.5
3.8.5
quay-operator.v3.8.4
3.8.4
quay-operator.v3.8.3
3.8.3
quay-operator.v3.8.2
3.8.2
quay-operator.v3.8.1

CHAPTER 4. ADMINISTRATOR TASKS

115

OpenShift Container Platform 4.14 Operators

Version: 3.8.1
Name: quay-operator.v3.8.0
Version: 3.8.0

Name: stable-3.8
Default Channel: stable-3.8
Package Name: quay-operator

TIP

You can print an Operator’s version and channel information in the YAML format by running the
following command:

I $ oc get packagemanifests <operator_name> -n <catalog_namespace> -o yaml

e |f more than one catalog is installed in a namespace, run the following command to look up
the available versions and channels of an Operator from a specific catalog:

$ oc get packagemanifest \
--selector=catalog=<catalogsource_name>\
--field-selector metadata.name=<operator_name> \
-n <catalog_namespace> -0 yaml

IMPORTANT

If you do not specify the Operator’s catalog, running the oc get
packagemanifest and oc describe packagemanifest commands might
return a package from an unexpected catalog if the following conditions are
met:

o Multiple catalogs are installed in the same namespace.

o The catalogs contain the same Operators or Operators with the same
name.

2. An Operator group, defined by an OperatorGroup object, selects target namespaces in which to
generate required role-based access control (RBAC) access for all Operators in the same
namespace as the Operator group.

The namespace to which you subscribe the Operator must have an Operator group that
matches the install mode of the Operator, either the AlINamespaces or SingleNamespace
mode. If the Operator you intend to install uses the AlINamespaces mode, then the openshift-
operators namespace already has an appropriate Operator group in place.

However, if the Operator uses the SingleNamespace mode and you do not already have an
appropriate Operator group in place, you must create one:

a. Create an OperatorGroup object YAML file, for example operatorgroup.yaml:

Example OperatorGroup object

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:

16

CHAPTER 4. ADMINISTRATOR TASKS

name: <operatorgroup_name>

namespace: <namespace>
spec:

targetNamespaces:

- <namespace>

' WARNING
A Operator Lifecycle Manager (OLM) creates the following cluster roles

for each Operator group:
e <operatorgroup_name>-admin
e <operatorgroup_name>-edit
® <operatorgroup_name>-view

When you manually create an Operator group, you must specify a
unique name that does not conflict with the existing cluster roles or
other Operator groups on the cluster.

b. Create the OperatorGroup object:
I $ oc apply -f operatorgroup.yaml

3. Create a Subscription object YAML file that subscribes a namespace to an Operator with a
specific version by setting the startingCSV field. Set the installPlanApproval field to Manual
to prevent the Operator from automatically upgrading if a later version exists in the catalog.
For example, the following sub.yaml file can be used to install the Red Hat Quay Operator
specifically to version 3.7.10:

Subscription with a specific starting Operator version

apiVersion: operators.coreos.com/vialphai
kind: Subscription
metadata:
name: quay-operator
namespace: quay
spec:
channel: stable-3.7
installPlanApproval: Manual 0
name: quay-operator
source: redhat-operators
sourceNamespace: openshift-marketplace
startingCSV: quay-operator.v3.7.10 9

ﬂ Set the approval strategy to Manual in case your specified version is superseded by a later
version in the catalog. This plan prevents an automatic upgrade to a later version and
requires manual approval before the starting CSV can complete the installation.

17

OpenShift Container Platform 4.14 Operators

e Set a specific version of an Operator CSV.

4. Create the Subscription object:
I $ oc apply -f sub.yaml

5. Manually approve the pending install plan to complete the Operator installation.

Additional resources

® Manually approving a pending Operator update

® |nstalling global Operators in custom namespaces

4.1.5. Installing a specific version of an Operator in the web console

You can install a specific version of an Operator by using the OperatorHub in the web console. You are
able to browse the various versions of an operator across any channels it might have, view the metadata
for that channel and version, and select the exact version you want to install.

Prerequisites

® You must have administrator privileges.

Procedure
1. From the web console, click Operators = OperatorHub.
2. Select an Operator you want to install.

3. From the selected Operator, you can select a Channel and Version from the lists.

NOTE

The version selection defaults to the latest version for the channel selected. If
the latest version for the channel is selected, the Automatic approval strategy is
enabled by default. Otherwise Manual approval is required when not installing the
latest version for the selected channel.

Manual approval applies to all operators installed in a namespace.

Installing an Operator with manual approval causes all Operators installed within
the namespace to function with the Manual approval strategy and all Operators
are updated together. Install Operators into separate namespaces for updating
independently.

4. Click Install

Verification

® When the operator is installed, the metadata indicates which channel and version are installed.

18

CHAPTER 4. ADMINISTRATOR TASKS

NOTE

The channel and version dropdown menus are still available for viewing other
version metadata in this catalog context.

4.1.6. Preparing for multiple instances of an Operator for multitenant clusters

As a cluster administrator, you can add multiple instances of an Operator for use in multitenant clusters.
This is an alternative solution to either using the standard All namespaces install mode, which can be
considered to violate the principle of least privilege, or the Multinamespace mode, which is not widely
adopted. For more information, see "Operators in multitenant clusters".

In the following procedure, the tenant is a user or group of users that share common access and

privileges for a set of deployed workloads. The tenant Operator is the instance of an Operator that is
intended for use by only that tenant.

Prerequisites

® Allinstances of the Operator you want to install must be the same version across a given cluster.

IMPORTANT

For more information on this and other limitations, see "Operators in multitenant
clusters".

Procedure

1. Before installing the Operator, create a namespace for the tenant Operator that is separate
from the tenant’s namespace. For example, if the tenant’s namespace is team1, you might
create a team1-operator namespace:

a. Define a Namespace resource and save the YAML file, for example, team1-operator.yami:

apiVersion: vi
kind: Namespace
metadata:

name: team1-operator

b. Create the namespace by running the following command:

I $ oc create -f team1-operator.yaml

2. Create an Operator group for the tenant Operator scoped to the tenant’s namespace, with only
that one namespace entry in the spec.targetNamespaces list:

a. Define an OperatorGroup resource and save the YAML file, for example, team1-
operatorgroup.yamil:

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
name: team1-operatorgroup
namespace: team1-operator

19

OpenShift Container Platform 4.14 Operators

spec:
targetNamespaces:
- team1

ﬂ Define only the tenant’s namespace in the spec.targetNamespaces list.

b. Create the Operator group by running the following command:

I $ oc create -f team1-operatorgroup.yami

Next steps

® |nstall the Operator in the tenant Operator namespace. This task is more easily performed by
using the OperatorHub in the web console instead of the CLI; for a detailed procedure, see
Installing from OperatorHub using the web console .

NOTE

After completing the Operator installation, the Operator resides in the tenant
Operator namespace and watches the tenant namespace, but neither the
Operator’s pod nor its service account are visible or usable by the tenant.

Additional resources

® Operators in multitenant clusters

4.1.7. Installing global Operators in custom namespaces

When installing Operators with the OpenShift Container Platform web console, the default behavior
installs Operators that support the All namespaces install mode into the default openshift-operators
global namespace. This can cause issues related to shared install plans and update policies between all
Operators in the namespace. For more details on these limitations, see "Multitenancy and Operator
colocation”.

As a cluster administrator, you can bypass this default behavior manually by creating a custom global
namespace and using that namespace to install your individual or scoped set of Operators and their
dependencies.

Prerequisites

® You have access to the cluster as a user with the cluster-admin role.

Procedure

1. Before installing the Operator, create a namespace for the installation of your desired Operator.
This installation namespace will become the custom global namespace:

a. Define a Namespace resource and save the YAML file, for example, global-
operators.yaml:

apiVersion: vi

kind: Namespace
metadata:

120

CHAPTER 4. ADMINISTRATOR TASKS

I name: global-operators
b. Create the namespace by running the following command:
I $ oc create -f global-operators.yaml

2. Create a custom global Operator group, which is an Operator group that watches all
namespaces:

a. Define an OperatorGroup resource and save the YAML file, for example, global-
operatorgroup.yaml. Omit both the spec.selector and spec.targetNamespaces fields to
make it a global Operator group, which selects all namespaces:

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
name: global-operatorgroup
namespace: global-operators

NOTE

The status.namespaces of a created global Operator group contains the
empty string ("), which signals to a consuming Operator that it should watch
all namespaces.

b. Create the Operator group by running the following command:

I $ oc create -f global-operatorgroup.yami

Next steps

® [nstall the desired Operator in your custom global namespace. Because the web console does
not populate the Installed Namespace menu during Operator installation with custom global
namespaces, this task can only be performed with the OpenShift CLI (oc¢). For a detailed
procedure, see Installing from OperatorHub using the CLI.

NOTE

When you initiate the Operator installation, if the Operator has dependencies, the
dependencies are also automatically installed in the custom global namespace. As
aresult, it is then valid for the dependency Operators to have the same update
policy and shared install plans.

Additional resources

® Multitenancy and Operator colocation

4.1.8. Pod placement of Operator workloads

By default, Operator Lifecycle Manager (OLM) places pods on arbitrary worker nodes when installing an
Operator or deploying Operand workloads. As an administrator, you can use projects with a combination
of node selectors, taints, and tolerations to control the placement of Operators and Operands to
specific nodes.

121

OpenShift Container Platform 4.14 Operators

Controlling pod placement of Operator and Operand workloads has the following prerequisites:

1. Determine a node or set of nodes to target for the pods per your requirements. If available, note
an existing label, such as node-role.kubernetes.io/app, that identifies the node or nodes.
Otherwise, add a label, such as myoperator, by using a compute machine set or editing the node
directly. You will use this label in a later step as the node selector on your project.

2. If you want to ensure that only pods with a certain label are allowed to run on the nodes, while
steering unrelated workloads to other nodes, add a taint to the node or nodes by using a
compute machine set or editing the node directly. Use an effect that ensures that new pods
that do not match the taint cannot be scheduled on the nodes. For example, a
myoperator:NoSchedule taint ensures that new pods that do not match the taint are not
scheduled onto that node, but existing pods on the node are allowed to remain.

3. Create a project that is configured with a default node selector and, if you added a taint, a
matching toleration.

At this point, the project you created can be used to steer pods towards the specified nodes in the
following scenarios:

For Operator pods

Administrators can create a Subscription object in the project as described in the following section.
As a result, the Operator pods are placed on the specified nodes.

For Operand pods

Using an installed Operator, users can create an application in the project, which places the custom
resource (CR) owned by the Operator in the project. As a result, the Operand pods are placed on the
specified nodes, unless the Operator is deploying cluster-wide objects or resources in other
namespaces, in which case this customized pod placement does not apply.

Additional resources

® Adding taints and tolerations manually to nodes or with compute machine sets
® Creating project-wide node selectors

® Creating a project with a node selector and toleration

4.1.9. Controlling where an Operator is installed

By default, when you install an Operator, OpenShift Container Platform installs the Operator pod to one
of your worker nodes randomly. However, there might be situations where you want that pod scheduled
on a specific node or set of nodes.

The following examples describe situations where you might want to schedule an Operator pod to a
specific node or set of nodes:

e |f an Operator requires a particular platform, such asamd64 or arm64
e |f an Operator requires a particular operating system, such as Linux or Windows

e |f you want Operators that work together scheduled on the same host or on hosts located on
the same rack

e |f you want Operators dispersed throughout the infrastructure to avoid downtime due to
network or hardware issues

122

https://docs.redhat.com/en/documentation/openshift_container_platform/4.14/html-single/nodes/#nodes-scheduler-taints-tolerations-adding_nodes-scheduler-taints-tolerations
https://docs.redhat.com/en/documentation/openshift_container_platform/4.14/html-single/nodes/#nodes-scheduler-taints-tolerations-adding-machineset_nodes-scheduler-taints-tolerations
https://docs.redhat.com/en/documentation/openshift_container_platform/4.14/html-single/nodes/#nodes-scheduler-node-selectors-project_nodes-scheduler-node-selectors
https://docs.redhat.com/en/documentation/openshift_container_platform/4.14/html-single/nodes/#nodes-scheduler-taints-tolerations-projects_nodes-scheduler-taints-tolerations

CHAPTER 4. ADMINISTRATOR TASKS

You can control where an Operator pod is installed by adding node affinity, pod affinity, or pod anti-
affinity constraints to the Operator’s Subscription object. Node affinity is a set of rules used by the
scheduler to determine where a pod can be placed. Pod affinity enables you to ensure that related pods
are scheduled to the same node. Pod anti-affinity allows you to prevent a pod from being scheduled on
anode.

The following examples show how to use node affinity or pod anti-affinity to install an instance of the
Custom Metrics Autoscaler Operator to a specific node in the cluster:

Node affinity example that places the Operator pod on a specific node

apiVersion: operators.coreos.com/vialphai
kind: Subscription
metadata:
name: openshift-custom-metrics-autoscaler-operator
namespace: openshift-keda
spec:
name: my-package
source: my-operators
sourceNamespace: operator-registries
config:
affinity:
nodeAffinity: @)
requiredDuringSchedulinglgnoredDuringExecution:
nodeSelectorTerms:
- matchExpressions:
- key: kubernetes.io/hostname
operator: In
values:
- ip-10-0-163-94.us-west-2.compute.internal

A node affinity that requires the Operator’s pod to be scheduled on a node named ip-10-0-163-
94.us-west-2.compute.internal.

Node affinity example that places the Operator pod on a node with a specific platform

apiVersion: operators.coreos.com/vialphai
kind: Subscription
metadata:
name: openshift-custom-metrics-autoscaler-operator
namespace: openshift-keda
spec:
name: my-package
source: my-operators
sourceNamespace: operator-registries
config:
affinity:
nodeAffinity: @)
requiredDuringSchedulinglgnoredDuringExecution:
nodeSelectorTerms:
- matchExpressions:
- key: kubernetes.io/arch
operator: In

123

OpenShift Container Platform 4.14 Operators

values:
- arm64
- key: kubernetes.io/os
operator: In
values:
- linux

A node affinity that requires the Operator’s pod to be scheduled on a node with the
kubernetes.io/arch=arm64 and kubernetes.io/os=linux labels.

Pod affinity example that places the Operator pod on one or more specific nodes

apiVersion: operators.coreos.com/vialphai
kind: Subscription
metadata:
name: openshift-custom-metrics-autoscaler-operator
namespace: openshift-keda
spec:
name: my-package
source: my-operators
sourceNamespace: operator-registries
config:
affinity:
podAffinity: @)
requiredDuringSchedulinglgnoredDuringExecution:
- labelSelector:
matchExpressions:
- key: app
operator: In
values:
- test
topologyKey: kubernetes.io/hostname
#...

ﬂ A pod affinity that places the Operator's pod on a node that has pods with the app=test label.

Pod anti-affinity example that prevents the Operator pod from one or more specific nodes

apiVersion: operators.coreos.com/vialphai
kind: Subscription
metadata:
name: openshift-custom-metrics-autoscaler-operator
namespace: openshift-keda
spec:
name: my-package
source: my-operators
sourceNamespace: operator-registries
config:
affinity:
podAntiAffinity: @)
requiredDuringSchedulinglgnoredDuringExecution:
- labelSelector:

124

CHAPTER 4. ADMINISTRATOR TASKS

matchExpressions:
- key: cpu
operator: In
values:
- high
topologyKey: kubernetes.io/hostname

A pod anti-affinity that prevents the Operator’s pod from being scheduled on a node that has pods
with the cpu=high label.

Procedure

To control the placement of an Operator pod, complete the following steps:
1. Install the Operator as usual.
2. If needed, ensure that your nodes are labeled to properly respond to the affinity.

3. Edit the Operator Subscription object to add an affinity:

apiVersion: operators.coreos.com/vialphai
kind: Subscription
metadata:
name: openshift-custom-metrics-autoscaler-operator
namespace: openshift-keda
spec:
name: my-package
source: my-operators
sourceNamespace: operator-registries
config:
affinity: @)
nodeAffinity:
requiredDuringSchedulinglgnoredDuringExecution:
nodeSelectorTerms:
- matchExpressions:
- key: kubernetes.io/hostname
operator: In
values:
- ip-10-0-185-229.ec2.internal
#...

Add a nodeAffinity, podAffinity, or podAntiAffinity. See the Additional resources section
that follows for information about creating the affinity.

Verification

® To ensure that the pod is deployed on the specific node, run the following command:
I $ oc get pods -0 wide

Example output

125

OpenShift Container Platform 4.14 Operators

NAME READY STATUS RESTARTS AGE IP
NODE NOMINATED NODE READINESS GATES
custom-metrics-autoscaler-operator-5dcc45d656-bhshg 1/1 Running 0 50s
10.131.0.20 ip-10-0-185-229.ec2.internal <none> <none>

Additional resources
® Understanding pod affinity
® Understanding node affinity

® Understanding how to update labels on nodes

4.2. UPDATING INSTALLED OPERATORS

As a cluster administrator, you can update Operators that have been previously installed using Operator
Lifecycle Manager (OLM) on your OpenShift Container Platform cluster.

NOTE

For information on how OLM handles updates for installed Operators colocated in the
same namespace, as well as an alternative method for installing Operators with custom
global Operator groups, see Multitenancy and Operator colocation.

4.2.1. Preparing for an Operator update

The subscription of an installed Operator specifies an update channel that tracks and receives updates
for the Operator. You can change the update channel to start tracking and receiving updates from a
newer channel.

The names of update channels in a subscription can differ between Operators, but the naming scheme
typically follows a common convention within a given Operator. For example, channel names might
follow a minor release update stream for the application provided by the Operator (1.2, 1.3) or a release
frequency (stable, fast).

NOTE

You cannot change installed Operators to a channel that is older than the current
channel.

e

Red Hat Customer Portal Labs include the following application that helps administrators prepare to
update their Operators:

® Red Hat OpenShift Container Platform Operator Update Information Checker
You can use the application to search for Operator Lifecycle Manager-based Operators and verify the

available Operator version per update channel across different versions of OpenShift Container
Platform. Cluster Version Operator-based Operators are not included.

4.2.2. Changing the update channel for an Operator

You can change the update channel for an Operator by using the OpenShift Container Platform web
console.

126

https://docs.redhat.com/en/documentation/openshift_container_platform/4.14/html-single/nodes/#nodes-scheduler-pod-affinity-about_nodes-scheduler-pod-affinity
https://docs.redhat.com/en/documentation/openshift_container_platform/4.14/html-single/nodes/#nodes-scheduler-node-affinity-about_nodes-scheduler-node-affinity
https://docs.redhat.com/en/documentation/openshift_container_platform/4.14/html-single/nodes/#nodes-nodes-working-updating_nodes-nodes-working
https://access.redhat.com/labs/ocpouic/

CHAPTER 4. ADMINISTRATOR TASKS

TIP

If the approval strategy in the subscription is set to Automatic, the update process initiates as soon as a
new Operator version is available in the selected channel. If the approval strategy is set to Manual, you
must manually approve pending updates.

Prerequisites

® An Operator previously installed using Operator Lifecycle Manager (OLM).

Procedure

1. In the Administrator perspective of the web console, navigate to Operators = Installed
Operators.

2. Click the name of the Operator you want to change the update channel for.

3. Click the Subscription tab.

4. Click the name of the update channel under Update channel.

5. Click the newer update channel that you want to change to, then click Save.

6. For subscriptions with an Automatic approval strategy, the update begins automatically.
Navigate back to the Operators = Installed Operators page to monitor the progress of the
update. When complete, the status changes to Succeeded and Up to date.

For subscriptions with a Manual approval strategy, you can manually approve the update from
the Subscription tab.

4.2.3. Manually approving a pending Operator update

If an installed Operator has the approval strategy in its subscription set to Manual, when new updates are
released in its current update channel, the update must be manually approved before installation can
begin.

Prerequisites

® An Operator previously installed using Operator Lifecycle Manager (OLM).

Procedure

1. In the Administrator perspective of the OpenShift Container Platform web console, navigate
to Operators = Installed Operators.

2. Operators that have a pending update display a status with Upgrade available. Click the name
of the Operator you want to update.

3. Click the Subscription tab. Any updates requiring approval are displayed next to Upgrade
status. For example, it might display 1requires approval

4. Click 1requires approval then click Preview Install Plan.
5. Review the resources that are listed as available for update. When satisfied, click Approve.

6. Navigate back to the Operators - Installed Operatorspage to monitor the progress of the
update. When complete, the status changes to Succeeded and Up to date.

127

OpenShift Container Platform 4.14 Operators

4.2.4. Additional resources

® Using Operator Lifecycle Manager on restricted networks

4.3. DELETING OPERATORS FROM A CLUSTER

The following describes how to delete, or uninstall, Operators that were previously installed using
Operator Lifecycle Manager (OLM) on your OpenShift Container Platform cluster.

IMPORTANT

You must successfully and completely uninstall an Operator prior to attempting to
reinstall the same Operator. Failure to fully uninstall the Operator properly can leave
resources, such as a project or namespace, stuck in a "Terminating" state and cause "error
resolving resource" messages to be observed when trying to reinstall the Operator.

For more information, see Reinstalling Operators after failed uninstallation.

4.3.1. Deleting Operators from a cluster using the web console
Cluster administrators can delete installed Operators from a selected namespace by using the web
console.
Prerequisites
® You have access to an OpenShift Container Platform cluster web console using an account with
cluster-admin permissions.
Procedure

1. Navigate to the Operators — Installed Operators page.

2. Scroll or enter a keyword into the Filter by name field to find the Operator that you want to
remove. Then, click on it.

3. Ontheright side of the Operator Details page, select Uninstall Operator from the Actions list.
An Uninstall Operator? dialog box is displayed.

4. Select Uninstall to remove the Operator, Operator deployments, and pods. Following this
action, the Operator stops running and no longer receives updates.

NOTE

This action does not remove resources managed by the Operator, including
custom resource definitions (CRDs) and custom resources (CRs). Dashboards
and navigation items enabled by the web console and off-cluster resources that
continue to run might need manual clean up. To remove these after uninstalling
the Operator, you might need to manually delete the Operator CRDs.

4.3.2. Deleting Operators from a cluster using the CLI

Cluster administrators can delete installed Operators from a selected namespace by using the CLI.

Prerequisites

128

CHAPTER 4. ADMINISTRATOR TASKS

® You have access to an OpenShift Container Platform cluster using an account with cluster-
admin permissions.

® The OpenShift CLI (oc) is installed on your workstation.

Procedure

1. Ensure the latest version of the subscribed operator (for example, serverless-operator) is
identified in the currentCSV field.

$ oc get subscription.operators.coreos.com serverless-operator -n openshift-serverless -o
yaml | grep currentCSV
Example output

I currentCSV: serverless-operator.vi.28.0
2. Delete the subscription (for example, serverless-operator):
I $ oc delete subscription.operators.coreos.com serverless-operator -n openshift-serverless
Example output
I subscription.operators.coreos.com "serverless-operator" deleted

3. Delete the CSV for the Operator in the target namespace using the currentCSV value from the
previous step:

I $ oc delete clusterserviceversion serverless-operator.v1.28.0 -n openshift-serverless
Example output

I clusterserviceversion.operators.coreos.com "serverless-operator.v1.28.0" deleted

4.3.3. Refreshing failing subscriptions

In Operator Lifecycle Manager (OLM), if you subscribe to an Operator that references images that are
not accessible on your network, you can find jobs in the openshift-marketplace namespace that are
failing with the following errors:

Example output

ImagePullBackOff for
Back-off pulling image "example.com/openshift4/ose-elasticsearch-operator-
bundle@sha256:6d2587129c846ec28d384540322b40b05833e7e00b25cca584e004af9a1d292e"

Example output

rpc error: code = Unknown desc = error pinging docker registry example.com: Get
"https://example.com/v2/": dial tcp: lookup example.com on 10.0.0.1:53: no such host

129

OpenShift Container Platform 4.14 Operators

As a result, the subscription is stuck in this failing state and the Operator is unable to install or upgrade.

You can refresh a failing subscription by deleting the subscription, cluster service version (CSV), and
other related objects. After recreating the subscription, OLM then reinstalls the correct version of the

Operator.

Prerequisites

Procedure

130

® You have a failing subscription that is unable to pull an inaccessible bundle image.

® You have confirmed that the correct bundle image is accessible.

1. Get the names of the Subscription and ClusterServiceVersion objects from the namespace
where the Operator is installed:

I $ oc get sub,csv -n <namespace>

Example output

NAME PACKAGE SOURCE CHANNEL
subscription.operators.coreos.com/elasticsearch-operator elasticsearch-operator redhat-
operators 5.0

NAME DISPLAY VERSION
REPLACES PHASE
clusterserviceversion.operators.coreos.com/elasticsearch-operator.5.0.0-65 OpenShift
Elasticsearch Operator 5.0.0-65 Succeeded

2. Delete the subscription:

I $ oc delete subscription <subscription_name> -n <namespace>
3. Delete the cluster service version:

I $ oc delete csv <csv_name> -n <namespace>

4. Getthe names of any failing jobs and related config maps in the openshift-marketplace
namespace:

I $ oc get job,configmap -n openshift-marketplace

Example output

NAME COMPLETIONS DURATION AGE
job.batch/1de9443b6324e629ddf31fed0a853a121275806170e34c926d69e53a7fcbcch 1/1
26s 9m30s

NAME DATA AGE
configmap/1de9443b6324e629ddf31fed0a853a121275806170e34c926d69e53a7fcbccb 3
9m30s

CHAPTER 4. ADMINISTRATOR TASKS

5. Delete the job:
I $ oc delete job <job_name> -n openshift-marketplace

This ensures pods that try to pull the inaccessible image are not recreated.

6. Delete the config map:

I $ oc delete configmap <configmap_name> -n openshift-marketplace

7. Reinstall the Operator using OperatorHub in the web console.

Verification

® Check that the Operator has been reinstalled successfully:

I $ oc get sub,csv,installplan -n <namespace>

4.4. CONFIGURING OPERATOR LIFECYCLE MANAGER FEATURES

The Operator Lifecycle Manager (OLM) controller is configured by an OLMConfig custom resource
(CR) named cluster. Cluster administrators can modify this resource to enable or disable certain
features.

This document outlines the features currently supported by OLM that are configured by the
OLMConfig resource.

4.4.1. Disabling copied CSVs

When an Operator is installed by Operator Lifecycle Manager (OLM), a simplified copy of its cluster
service version (CSV) is created by default in every namespace that the Operator is configured to
watch. These CSVs are known as copied CSVs and communicate to users which controllers are actively
reconciling resource events in a given namespace.

When an Operator is configured to use the AlINamespaces install mode, versus targeting a single or
specified set of namespaces, a copied CSV for the Operator is created in every namespace on the
cluster. On especially large clusters, with namespaces and installed Operators potentially in the
hundreds or thousands, copied CSVs consume an untenable amount of resources, such as OLM'’s
memory usage, cluster etcd limits, and networking.

To support these larger clusters, cluster administrators can disable copied CSVs for Operators globally
installed with the AllINamespaces mode.

131

OpenShift Container Platform 4.14 Operators

NOTE

If you disable copied CSVs, an Operator installed in AlINamespaces mode has their CSV
copied only to the openshift namespace, instead of every namespace on the cluster. In
disabled copied CSVs mode, the behavior differs between the web console and CLI:

® |nthe web console, the default behavior is modified to show copied CSVs from
the openshift namespace in every namespace, even though the CSVs are not
actually copied to every namespace. This allows regular users to still be able to
view the details of these Operators in their namespaces and create related
custom resources (CRs).

® |nthe OpenShift CLI (oc€), regular users can view Operators installed directly in
their namespaces by using the oc get csvs command, but the copied CSVs from
the openshift namespace are not visible in their namespaces. Operators affected
by this limitation are still available and continue to reconcile events in the user’s
namespace.
To view a full list of installed global Operators, similar to the web console
behavior, all authenticated users can run the following command:

I $ oc get csvs -n openshift

Procedure

e Edit the OLMConfig object named cluster and set the spec.features.disableCopiedCSVs
field to true:

$ oc apply -f - <<EOF
apiVersion: operators.coreos.com/v1
kind: OLMConfig
metadata:

name: cluster
spec:

features:

disableCopiedCSVs: true)

EOF

ﬂ Disabled copied CSVs for AlINamespaces install mode Operators

Verification

132

® When copied CSVs are disabled, OLM captures this information in an event in the Operator’s
namespace:

I $ oc get events

Example output

LAST SEEN TYPE REASON OBJECT MESSAGE
85s Warning DisabledCopiedCSVs clusterserviceversion/my-csv.vi.0.0 CSV
copying disabled for operators/my-csv.v1.0.0

CHAPTER 4. ADMINISTRATOR TASKS

When the spec.features.disableCopiedCSVs tield is missing or set to false, OLM recreates
the copied CSVs for all Operators installed with the AlINamespaces mode and deletes the
previously mentioned events.

Additional resources

® |nstall modes

4.5. CONFIGURING PROXY SUPPORT IN OPERATOR LIFECYCLE
MANAGER

If a global proxy is configured on the OpenShift Container Platform cluster, Operator Lifecycle Manager
(OLM) automatically configures Operators that it manages with the cluster-wide proxy. However, you
can also configure installed Operators to override the global proxy or inject a custom CA certificate.

Additional resources
® Configuring the cluster-wide proxy
e Configuring a custom PKI (custom CA certificate)

® Developing Operators that support proxy settings for Go, Ansible, and Helm

4.5.1. Overriding proxy settings of an Operator

If a cluster-wide egress proxy is configured, Operators running with Operator Lifecycle Manager (OLM)
inherit the cluster-wide proxy settings on their deployments. Cluster administrators can also override
these proxy settings by configuring the subscription of an Operator.

IMPORTANT

Operators must handle setting environment variables for proxy settings in the pods for
any managed Operands.

Prerequisites

® Access to an OpenShift Container Platform cluster using an account with cluster-admin
permissions.

Procedure

1. Navigate in the web console to the Operators = OperatorHub page.
2. Select the Operator and click Install.

3. On the Install Operator page, modify the Subscription object to include one or more of the
following environment variables in the spec section:

e HTTP_PROXY
e HTTPS_PROXY
e NO_PROXY

For example:

133

https://docs.redhat.com/en/documentation/openshift_container_platform/4.14/html-single/networking/#enable-cluster-wide-proxy
https://docs.redhat.com/en/documentation/openshift_container_platform/4.14/html-single/networking/#configuring-a-custom-pki

OpenShift Container Platform 4.14 Operators

Subscription object with proxy setting overrides

apiVersion: operators.coreos.com/vialphai
kind: Subscription
metadata:
name: etcd-config-test
namespace: openshift-operators
spec:
config:
env:
- name: HTTP_PROXY
value: test_http
- name: HTTPS_PROXY
value: test_https
- name: NO_PROXY
value: test
channel: clusterwide-alpha
installPlanApproval: Automatic
name: etcd
source: community-operators
sourceNamespace: openshift-marketplace
startingCSV: etcdoperator.v0.9.4-clusterwide

NOTE

These environment variables can also be unset using an empty value to remove
any previously set cluster-wide or custom proxy settings.

OLM handles these environment variables as a unit; if at least one of them is set, all three are
considered overridden and the cluster-wide defaults are not used for the deployments of the
subscribed Operator.

4. Click Install to make the Operator available to the selected namespaces.

5. After the CSV for the Operator appears in the relevant namespace, you can verify that custom
proxy environment variables are set in the deployment. For example, using the CLI:

$ oc get deployment -n openshift-operators \
etcd-operator -0 yaml \
| grep -i "PROXY" -A 2

Example output

- name: HTTP_PROXY
value: test_http
- name: HTTPS_PROXY
value: test_https
- name: NO_PROXY
value: test
image: quay.io/coreos/etcd-
operator@sha256:66a37fd61a06a43969854ee6d3e21088a98b93838e284a6086b13917f96b0
doc

134

CHAPTER 4. ADMINISTRATOR TASKS

4.5.2. Injecting a custom CA certificate

When a cluster administrator adds a custom CA certificate to a cluster using a config map, the Cluster
Network Operator merges the user-provided certificates and system CA certificates into a single
bundle. You can inject this merged bundle into your Operator running on Operator Lifecycle Manager
(OLM), which is useful if you have a man-in-the-middle HTTPS proxy.

Prerequisites

® Access to an OpenShift Container Platform cluster using an account with cluster-admin
permissions.

® Custom CA certificate added to the cluster using a config map.

® Desired Operator installed and running on OLM.

Procedure

1. Create an empty config map in the namespace where the subscription for your Operator exists
and include the following label:

apiVersion: vi
kind: ConfigMap
metadata:
name: trusted-ca ﬂ
labels:
config.openshift.io/inject-trusted-cabundle: "true"

ﬂ Name of the config map.

9 Requests the Cluster Network Operator to inject the merged bundle.

After creating this config map, it is immediately populated with the certificate contents of the
merged bundle.

2. Update the Subscription object to include a spec.config section that mounts the trusted-ca
config map as a volume to each container within a pod that requires a custom CA:

apiVersion: operators.coreos.com/vialphai
kind: Subscription
metadata:
name: my-operator
spec:
package: etcd
channel: alpha
config: ﬂ
selector:
matchLabels:
<labels_for_pods> 9
volumes:
- name: trusted-ca
configMap:
name: trusted-ca
items:

135

OpenShift Container Platform 4.14 Operators

- key: ca-bundle.crt ﬂ
path: tls-ca-bundle.pem 6
volumeMounts:
- name: trusted-ca
mountPath: /etc/pki/ca-trust/extracted/pem
readOnly: true

Add a config section if it does not exist.

Specify labels to match pods that are owned by the Operator.
Create a trusted-ca volume.

ca-bundle.crt is required as the config map key.
tls-ca-bundle.pem is required as the config map path.

Create a trusted-ca volume mount.

Q90009

NOTE

Deployments of an Operator can fail to validate the authority and display a x509
certificate signed by unknown authority error. This error can occur even after
injecting a custom CA when using the subscription of an Operator. In this case,
you can set the mountPath as /etc/ssl/certs for trusted-ca by using the
subscription of an Operator.

4.6. VIEWING OPERATOR STATUS

Understanding the state of the system in Operator Lifecycle Manager (OLM) is important for making
decisions about and debugging problems with installed Operators. OLM provides insight into
subscriptions and related catalog sources regarding their state and actions performed. This helps users
better understand the healthiness of their Operators.

4.6.1. Operator subscription condition types

Subscriptions can report the following condition types:

Table 4.1. Subscription condition types

Condition Description

CatalogSourcesUnhealthy Some or all of the catalog sources to be used in resolution are
unhealthy.

InstallPlanMissing An install plan for a subscription is missing.

InstallPlanPending An install plan for a subscription is pending installation.

InstallPlanFailed An install plan for a subscription has failed.

136

CHAPTER 4. ADMINISTRATOR TASKS

Condition Description

ResolutionFailed The dependency resolution for a subscription has failed.

NOTE

Default OpenShift Container Platform cluster Operators are managed by the Cluster
Version Operator (CVO) and they do not have a Subscription object. Application
Operators are managed by Operator Lifecycle Manager (OLM) and they have a
Subscription object.

Additional resources

® Refreshing failing subscriptions

4.6.2. Viewing Operator subscription status by using the CLI

You can view Operator subscription status by using the CLI.

Prerequisites

® You have access to the cluster as a user with the cluster-admin role.

® You have installed the OpenShift CLI (oc).

Procedure

1. List Operator subscriptions:
I $ oc get subs -n <operator_namespace>

2. Use the oc describe command to inspect a Subscription resource:

I $ oc describe sub <subscription_name> -n <operator_namespace>

3. Inthe command output, find the Conditions section for the status of Operator subscription
condition types. In the following example, the CatalogSourcesUnhealthy condition type has a
status of false because all available catalog sources are healthy:

Example output

Name: cluster-logging

Namespace: openshift-logging

Labels: operators.coreos.com/cluster-logging.openshift-logging=
Annotations: <none>

API Version: operators.coreos.com/vialphat

Kind: Subscription

#...

Conditions:
Last Transition Time: 2019-07-29T13:42:57Z
Message: all available catalogsources are healthy
Reason: AllCatalogSourcesHealthy

137

OpenShift Container Platform 4.14 Operators

Status: False
Type: CatalogSourcesUnhealthy
#..
NOTE

Default OpenShift Container Platform cluster Operators are managed by the Cluster
Version Operator (CVO) and they do not have a Subscription object. Application
Operators are managed by Operator Lifecycle Manager (OLM) and they have a
Subscription object.

4.6.3. Viewing Operator catalog source status by using the CLI

You can view the status of an Operator catalog source by using the CLI.

Prerequisites

Procedure

138

® You have access to the cluster as a user with the cluster-admin role.

® You have installed the OpenShift CLI (oc).

1. List the catalog sources in a namespace. For example, you can check the openshift-
marketplace namespace, which is used for cluster-wide catalog sources:

I $ oc get catalogsources -n openshift-marketplace

Example output

NAME

DISPLAY TYPE PUBLISHER AGE

certified-operators Certified Operators grpc Red Hat 55m
community-operators Community Operators grpc Red Hat 55m
example-catalog Example Catalog grpc Example Org 2m25s
redhat-marketplace Red Hat Marketplace grpc Red Hat 55m
redhat-operators Red Hat Operators grpc Red Hat 55m

2. Use the oc describe command to get more details and status about a catalog source:

I $ oc describe catalogsource example-catalog -n openshift-marketplace

Example output

Name:

example-catalog

Namespace: openshift-marketplace

Labels:

<none>

Annotations: operatorframework.io/managed-by: marketplace-operator

target.workload.openshift.io/management: {"effect": "PreferredDuringScheduling"}

API Version: operators.coreos.com/vialphat

Kind:
..
Status:

CatalogSource

Connection State:

CHAPTER 4. ADMINISTRATOR TASKS

Address: example-catalog.openshift-marketplace.svc:50051
Last Connect: 2021-09-09T17:07:35Z
Last Observed State: TRANSIENT_FAILURE
Registry Service:
Created At: 2021-09-09T17:05:45Z
Port: 50051
Protocol: grpc
Service Name: example-catalog
Service Namespace: openshift-marketplace

In the preceding example output, the last observed state is TRANSIENT_FAILURE. This state
indicates that there is a problem establishing a connection for the catalog source.

. List the pods in the namespace where your catalog source was created:

I $ oc get pods -n openshift-marketplace

Example output

NAME READY STATUS RESTARTS AGE
certified-operators-cvonn 1/1 Running 0 36m
community-operators-6v8Ip 1/1 Running 0 36m
marketplace-operator-86bfc75f9b-jkgbc 1/1 Running 0 42m
example-catalog-bwt8z 0/1 ImagePullBackOff 0 3m55s
redhat-marketplace-57p8c 1/1 Running 0 36m
redhat-operators-smxx8 1/1 Running 0 36m

When a catalog source is created in a namespace, a pod for the catalog source is created in that
namespace. In the preceding example output, the status for the example-catalog-bwt8z pod is
ImagePullBackOff. This status indicates that there is an issue pulling the catalog source’s index
image.

. Use the oc describe command to inspect a pod for more detailed information:

I $ oc describe pod example-catalog-bwt8z -n openshift-marketplace

Example output

Name: example-catalog-bwt8z

Namespace: openshift-marketplace

Priority: 0

Node: ci-In-jyryyg2-f76d1-ggdbg-worker-b-vsxjd/10.0.128.2

Events:

Type Reason Age From Message

Normal Scheduled 48s default-scheduler Successfully assigned openshift-
marketplace/example-catalog-bwt8z to ci-In-jyryyf2-f76d1-fgdbg-worker-b-vsxjd
Normal AddedInterface 47s multus Add eth0 [10.131.0.40/23] from
openshift-sdn

Normal BackOff 20s (x2 over 46s) kubelet Back-off pulling image
"quay.io/example-org/example-catalog:v1"

Warning Failed 20s (x2 over 46s) kubelet Error: ImagePullBackOff

139

OpenShift Container Platform 4.14 Operators

Normal Pulling 8s (x3 over 47s) kubelet Pulling image "quay.io/example-
org/example-catalog:v1"
Warning Failed 8s (x3 over 47s) kubelet Failed to pull image

"quay.io/example-org/example-catalog:v1": rpc error: code = Unknown desc = reading
manifest v1 in quay.io/example-org/example-catalog: unauthorized: access to the requested
resource is not authorized

Warning Failed 8s (x3 over 47s) kubelet Error: ErrlmagePull

In the preceding example output, the error messages indicate that the catalog source’s index
image is failing to pull successfully because of an authorization issue. For example, the index
image might be stored in a registry that requires login credentials.

Additional resources
® Operator Lifecycle Manager concepts and resources = Catalog source
® gRPC documentation: States of Connectivity

® Accessing images for Operators from private registries

4.7. MANAGING OPERATOR CONDITIONS

As a cluster administrator, you can manage Operator conditions by using Operator Lifecycle Manager
(OLM).
4.7.1. Overriding Operator conditions

As a cluster administrator, you might want to ignore a supported Operator condition reported by an
Operator. When present, Operator conditions in the Spec.Overrides array override the conditions in the
Spec.Conditions array, allowing cluster administrators to deal with situations where an Operator is
incorrectly reporting a state to Operator Lifecycle Manager (OLM).

NOTE

By default, the Spec.Overrides array is not present in an OperatorCondition object until
it is added by a cluster administrator . The Spec.Conditions array is also not present until
it is either added by a user or as a result of custom Operator logic.

For example, consider a known version of an Operator that always communicates that it is not
upgradeable. In this instance, you might want to upgrade the Operator despite the Operator
communicating that it is not upgradeable. This could be accomplished by overriding the Operator
condition by adding the condition type and status to the Spec.Overrides array in the
OperatorCondition object.

Prerequisites

® You have access to the cluster as a user with the cluster-admin role.

® An Operator with an OperatorCondition object, installed using OLM.

Procedure

1. Edit the OperatorCondition object for the Operator:

140

https://grpc.github.io/grpc/core/md_doc_connectivity-semantics-and-api.html

CHAPTER 4. ADMINISTRATOR TASKS

I $ oc edit operatorcondition <name>

2. Add a Spec.Overrides array to the object:

Example Operator condition override

apiVersion: operators.coreos.com/v1
kind: OperatorCondition
metadata:
name: my-operator
namespace: operators
spec:
overrides:
- type: Upgradeable ﬂ
status: "True"
reason: "upgradelsSafe"
message: "This is a known issue with the Operator where it always reports that it cannot
be upgraded.”
conditions:
- type: Upgradeable
status: "False"
reason: "migration”
message: "The operator is performing a migration."
lastTransitionTime: "2020-08-24T23:15:55Z"

ﬂ Allows the cluster administrator to change the upgrade readiness to True.

4.7.2. Updating your Operator to use Operator conditions

Operator Lifecycle Manager (OLM) automatically creates an OperatorCondition resource for each
ClusterServiceVersion resource that it reconciles. All service accounts in the CSV are granted the
RBAC to interact with the OperatorCondition owned by the Operator.

An Operator author can develop their Operator to use the operator-lib library such that, after the
Operator has been deployed by OLM, it can set its own conditions. For more resources about setting
Operator conditions as an Operator author, see the Enabling Operator conditions page.

4.7.2.1. Setting defaults

In an effort to remain backwards compatible, OLM treats the absence of an OperatorCondition
resource as opting out of the condition. Therefore, an Operator that opts in to using Operator conditions
should set default conditions before the ready probe for the pod is set to true. This provides the
Operator with a grace period to update the condition to the correct state.

4.7.3. Additional resources

® Operator conditions

4.8. ALLOWING NON-CLUSTER ADMINISTRATORS TO INSTALL
OPERATORS

Cluster administrators can use Operator groups to allow regular users to install Operators.

141

https://docs.openshift.com/container-platform/4.12/operators/operator_sdk/osdk-generating-csvs.html#osdk-operatorconditions_osdk-generating-csvs

OpenShift Container Platform 4.14 Operators

Additional resources

® Operator groups

4.8.1. Understanding Operator installation policy

Operators can require wide privileges to run, and the required privileges can change between versions.
Operator Lifecycle Manager (OLM) runs with cluster-admin privileges. By default, Operator authors
can specify any set of permissions in the cluster service version (CSV), and OLM consequently grants it
to the Operator.

To ensure that an Operator cannot achieve cluster-scoped privileges and that users cannot escalate
privileges using OLM, Cluster administrators can manually audit Operators before they are added to the
cluster. Cluster administrators are also provided tools for determining and constraining which actions are
allowed during an Operator installation or upgrade using service accounts.

Cluster administrators can associate an Operator group with a service account that has a set of
privileges granted to it. The service account sets policy on Operators to ensure they only run within
predetermined boundaries by using role-based access control (RBAC) rules. As a result, the Operator is
unable to do anything that is not explicitly permitted by those rules.

By employing Operator groups, users with enough privileges can install Operators with a limited scope.
As a result, more of the Operator Framework tools can safely be made available to more users, providing
a richer experience for building applications with Operators.

NOTE

Role-based access control (RBAC) for Subscription objects is automatically granted to
every user with the edit or admin role in a namespace. However, RBAC does not exist on
OperatorGroup objects; this absence is what prevents regular users from installing
Operators. Preinstalling Operator groups is effectively what gives installation privileges.

Keep the following points in mind when associating an Operator group with a service account:

® The APIService and CustomResourceDefinition resources are always created by OLM using
the cluster-admin role. A service account associated with an Operator group should never be
granted privileges to write these resources.

® Any Operator tied to this Operator group is now confined to the permissions granted to the
specified service account. If the Operator asks for permissions that are outside the scope of the
service account, the install fails with appropriate errors so the cluster administrator can
troubleshoot and resolve the issue.

4.8.1.1. Installation scenarios

When determining whether an Operator can be installed or upgraded on a cluster, Operator Lifecycle
Manager (OLM) considers the following scenarios:

® A cluster administrator creates a new Operator group and specifies a service account. All
Operator(s) associated with this Operator group are installed and run against the privileges
granted to the service account.

® A cluster administrator creates a new Operator group and does not specify any service account.

OpenShift Container Platform maintains backward compatibility, so the default behavior
remains and Operator installs and upgrades are permitted.

142

CHAPTER 4. ADMINISTRATOR TASKS
® For existing Operator groups that do not specify a service account, the default behavior
remains and Operator installs and upgrades are permitted.

® A cluster administrator updates an existing Operator group and specifies a service account.
OLM allows the existing Operator to continue to run with their current privileges. When such an
existing Operator is going through an upgrade, it is reinstalled and run against the privileges
granted to the service account like any new Operator.

® A service account specified by an Operator group changes by adding or removing permissions,
or the existing service account is swapped with a new one. When existing Operators go through
an upgrade, it is reinstalled and run against the privileges granted to the updated service
account like any new Operator.

® A cluster administrator removes the service account from an Operator group. The default
behavior remains and Operator installs and upgrades are permitted.

4.8.1.2. Installation workflow

When an Operator group is tied to a service account and an Operator is installed or upgraded, Operator
Lifecycle Manager (OLM) uses the following workflow:

1. The given Subscription object is picked up by OLM.
2. OLM fetches the Operator group tied to this subscription.
3. OLM determines that the Operator group has a service account specified.
4. OLM creates a client scoped to the service account and uses the scoped client to install the
Operator. This ensures that any permission requested by the Operator is always confined to

that of the service account in the Operator group.

5. OLM creates a new service account with the set of permissions specified in the CSV and assigns
it to the Operator. The Operator runs as the assigned service account.

4.8.2. Scoping Operator installations

To provide scoping rules to Operator installations and upgrades on Operator Lifecycle Manager (OLM),
associate a service account with an Operator group.

Using this example, a cluster administrator can confine a set of Operators to a designated namespace.

Prerequisites

® You have access to the cluster as a user with the cluster-admin role.
® You have installed the OpenShift CLI (oc).
Procedure
1. Create a new namespace:
$ cat <<EOF | oc create -f -

apiVersion: v1
kind: Namespace

143

OpenShift Container Platform 4.14 Operators

metadata:
name: scoped
EOF

2. Allocate permissions that you want the Operator(s) to be confined to. This involves creating a
new service account, relevant role(s), and role binding(s).

$ cat <<EOF | oc create -f -
apiVersion: v1
kind: ServiceAccount
metadata:
name: scoped
namespace: scoped
EOF

The following example grants the service account permissions to do anything in the designated
namespace for simplicity. In a production environment, you should create a more fine-grained
set of permissions:

$ cat <<EOF | oc create -f -
apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
name: scoped
namespace: scoped
rules:
- apiGroups: ["™"]
resources: ["*"]
verbs: ["*"]
apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
name: scoped-bindings
namespace: scoped
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: Role
name: scoped
subjects:
- kind: ServiceAccount
name: scoped
namespace: scoped
EOF

3. Create an OperatorGroup object in the designated namespace. This Operator group targets
the designated namespace to ensure that its tenancy is confined to it.
In addition, Operator groups allow a user to specify a service account. Specify the service
account created in the previous step:

$ cat <<EOF | oc create -f -
apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:

name: scoped

144

CHAPTER 4. ADMINISTRATOR TASKS

namespace: scoped
spec:
serviceAccountName: scoped
targetNamespaces:
- scoped
EOF

Any Operator installed in the designated namespace is tied to this Operator group and
therefore to the service account specified.

' WARNING
A Operator Lifecycle Manager (OLM) creates the following cluster roles for

each Operator group:
e <operatorgroup_name>-admin
e <operatorgroup_name>-edit
® <operatorgroup_name>-view

When you manually create an Operator group, you must specify a unique
name that does not conflict with the existing cluster roles or other Operator
groups on the cluster.

4. Create a Subscription object in the designated namespace to install an Operator:

$ cat <<EOF | oc create -f -
apiVersion: operators.coreos.com/vialphat
kind: Subscription
metadata:
name: etcd
namespace: scoped
spec:
channel: singlenamespace-alpha
name: etcd
source: <catalog_source_name> ﬂ
sourceNamespace: <catalog_source_namespace> g
EOF

Specify a catalog source that already exists in the designated namespace or one thatis in
the global catalog namespace.

9 Specify a namespace where the catalog source was created.

Any Operator tied to this Operator group is confined to the permissions granted to the
specified service account. If the Operator requests permissions that are outside the scope of
the service account, the installation fails with relevant errors.

145

OpenShift Container Platform 4.14 Operators

4.8.2.1. Fine-grained permissions

Operator Lifecycle Manager (OLM) uses the service account specified in an Operator group to create or
update the following resources related to the Operator being installed:

® ClusterServiceVersion

® Subscription

® Secret

® ServiceAccount

® Service

® ClusterRole and ClusterRoleBinding
® Role and RoleBinding

To confine Operators to a designated namespace, cluster administrators can start by granting the
following permissions to the service account:

NOTE
The following role is a generic example and additional rules might be required based on
- the specific Operator.
kind: Role
rules:

- apiGroups: ["operators.coreos.com”]

resources: ["subscriptions"”, "clusterserviceversions"]

verbs: ["get", "create”, "update”, "patch"]
- apiGroups: [""]

resources: ["services", "serviceaccounts"]

verbs: ["get", "create”, "update”, "patch"]
- apiGroups: ["rbac.authorization.k8s.i0"]

resources: ["roles", "rolebindings"]
verbs: ["get", "create”, "update”, "patch"]
- apiGroups: ["apps"]

resources: ["deployments"]

verbs: ["list", "watch", "get", "create", "update", "patch", "delete"]
- apiGroups: [""] g

resources: ["pods"]

verbs: ["list", "watch", "get", "create", "update", "patch", "delete"]

wAdd permissions to create other resources, such as deployments and pods shown here.

In addition, if any Operator specifies a pull secret, the following permissions must also be added:

kind: ClusterRole ﬂ

rules:

- apiGroups: [""]
resources: ["secrets"]
verbs: ["get"]

146

CHAPTER 4. ADMINISTRATOR TASKS

kind: Role
rules:
- apiGroups: [""]
resources: ["secrets"]
verbs: ["create”, "update”, "patch"]

ﬂ Required to get the secret from the OLM namespace.

4.8.3. Operator catalog access control

When an Operator catalog is created in the global catalog namespace openshift-marketplace, the
catalog’s Operators are made available cluster-wide to all namespaces. A catalog created in other
namespaces only makes its Operators available in that same namespace of the catalog.

On clusters where non-cluster administrator users have been delegated Operator installation privileges,
cluster administrators might want to further control or restrict the set of Operators those users are
allowed to install. This can be achieved with the following actions:

1. Disable all of the default global catalogs.

2. Enable custom, curated catalogs in the same namespace where the relevant Operator groups
have been preinstalled.

Additional resources

® Disabling the default OperatorHub catalog sources

® Adding a catalog source to a cluster

4.8.4. Troubleshooting permission failures

If an Operator installation fails due to lack of permissions, identify the errors using the following
procedure.

Procedure

1. Review the Subscription object. Its status has an object reference installPlanRef that points
to the InstallPlan object that attempted to create the necessary [Cluster]Role[Binding]
object(s) for the Operator:

apiVersion: operators.coreos.com/v1
kind: Subscription
metadata:
name: etcd
namespace: scoped
status:
installPlanRef:
apiVersion: operators.coreos.com/v1
kind: InstallPlan
name: install-4plp8
namespace: scoped
resourceVersion: "117359"
uid: 2c1df80e-afea-11e9-bce3-5254009¢c9¢c23

147

OpenShift Container Platform 4.14 Operators

2. Check the status of the InstallPlan object for any errors:

apiVersion: operators.coreos.com/v1
kind: InstallPlan
status:
conditions:
- lastTransitionTime: "2019-07-26T21:13:10Z"
lastUpdateTime: "2019-07-26T21:13:10Z"
message: 'error creating clusterrole etcdoperator.v0.9.4-clusterwide-dsfx4:
clusterroles.rbac.authorization.k8s.io
is forbidden: User "system:serviceaccount:scoped:scoped" cannot create resource
"clusterroles" in API group "rbac.authorization.k8s.io" at the cluster scope'
reason: InstallComponentFailed
status: "False"
type: Installed
phase: Failed

The error message tells you:

The type of resource it failed to create, including the API group of the resource. In this case,
it was clusterroles in the rbac.authorization.k8s.io group.

The name of the resource.

The type of error: is forbidden tells you that the user does not have enough permission to
do the operation.

The name of the user who attempted to create or update the resource. In this case, it refers
to the service account specified in the Operator group.

The scope of the operation: cluster scope or not.
The user can add the missing permission to the service account and then iterate.

NOTE

Operator Lifecycle Manager (OLM) does not currently provide the complete
list of errors on the first try.

4.9. MANAGING CUSTOM CATALOGS

Cluster administrators and Operator catalog maintainers can create and manage custom catalogs
packaged using the bundle format on Operator Lifecycle Manager (OLM) in OpenShift Container

Platform.

148

IMPORTANT

Kubernetes periodically deprecates certain APIs that are removed in subsequent
releases. As a result, Operators are unable to use removed APlIs starting with the version
of OpenShift Container Platform that uses the Kubernetes version that removed the API.

If your cluster is using custom catalogs, see Controlling Operator compatibility with
OpenShift Container Platform versions for more details about how Operator authors can
update their projects to help avoid workload issues and prevent incompatible upgrades.

CHAPTER 4. ADMINISTRATOR TASKS

Additional resources

® Red Hat-provided Operator catalogs

4.9.1. Prerequisites

® You have installed the opm CLI.

4.9.2. File-based catalogs

File-based catalogs are the latest iteration of the catalog format in Operator Lifecycle Manager (OLM).
Itis a plain text-based (JSON or YAML) and declarative config evolution of the earlier SQLite database
format, and it is fully backwards compatible.

IMPORTANT

As of OpenShift Container Platform 4.11, the default Red Hat-provided Operator catalog
releases in the file-based catalog format. The default Red Hat-provided Operator
catalogs for OpenShift Container Platform 4.6 through 4.10 released in the deprecated
SQLite database format.

The opm subcommands, flags, and functionality related to the SQLite database format
are also deprecated and will be removed in a future release. The features are still
supported and must be used for catalogs that use the deprecated SQLite database
format.

Many of the opm subcommands and flags for working with the SQL.ite database format,
such as opm index prune, do not work with the file-based catalog format. For more

information about working with file-based catalogs, see Operator Framework packaging
format and Mirroring images for a disconnected installation using the oc-mirror plugin .

4.9.2.1. Creating a file-based catalog image

You can use the opm CLI to create a catalog image that uses the plain text file-based catalog format
(JSON or YAML), which replaces the deprecated SQLite database format.

Prerequisites

® You have installed the opm CLI.
® You have podman version 1.9.3+.

® Abundle image is built and pushed to a registry that supports Docker v2-2.

Procedure
1. Initialize the catalog:

a. Create adirectory for the catalog by running the following command:
I $ mkdir <catalog_dir>

b. Generate a Dockerfile that can build a catalog image by running the opm generate
dockerfile command:

149

https://docs.redhat.com/en/documentation/openshift_container_platform/4.14/html-single/cli_tools/#cli-opm-install
https://docs.redhat.com/en/documentation/openshift_container_platform/4.14/html-single/installing/#installing-mirroring-disconnected
https://docs.docker.com/registry/spec/manifest-v2-2/

OpenShift Container Platform 4.14 Operators

$ opm generate dockerfile <catalog_dir> \
-i registry.redhat.io/openshift4/ose-operator-registry:v4.14 ﬂ

Specify the official Red Hat base image by using the -i flag, otherwise the Dockerfile
uses the default upstream image.

The Dockerfile must be in the same parent directory as the catalog directory that you
created in the previous step:

Example directory structure

@
— <catalog_dir> @)

L <catalog_dir>.Dockerfile 6

ﬂ Parent directory

9 Catalog directory

9 Dockerfile generated by the opm generate dockerfile command

c. Populate the catalog with the package definition for your Operator by running the opm init
command:

--default-channel=preview \
—-description=/README.md \ @)
--icon=./operator-icon.svg \ ﬂ
--output yaml '\

> <catalog_dir/index.yaml

$ opm init <operator_name> \3

Operator, or package, name

Channel that subscriptions default to if unspecified

Path to the Operator's README.md or other documentation
Path to the Operator'sicon

Output format: JSON or YAML

QD009

Path for creating the catalog configuration file

This command generates an olm.package declarative config blob in the specified catalog
configuration file.

2. Add a bundle to the catalog by running the opm render command:
$ opm render <registry>/<namespace>/<bundle_image_name>:<tag> \ ﬂ

--output=yaml \
>> <catalog_dir>/index.yam| 9

150

CHAPTER 4. ADMINISTRATOR TASKS

ﬂ Pull spec for the bundle image

9 Path to the catalog configuration file

NOTE

Channels must contain at least one bundle.

3. Add a channel entry for the bundle. For example, modify the following example to your
specifications, and add it to your <catalog_dir>/index.yaml file:

Example channel entry

schema: olm.channel
package: <operator_name>
name: preview

entries:

- name: <operator_name>.v0.1.0 ﬂ

Ensure that you include the period (.) after <operator_names but before the vin the
version. Otherwise, the entry fails to pass the opm validate command.

4. Validate the file-based catalog:

a. Run the opm validate command against the catalog directory:
I $ opm validate <catalog_dir>
b. Check that the error code is 0:

I $ echo $?

Example output
| o
5. Build the catalog image by running the podman build command:
$ podman build . \

-f <catalog_dir>.Dockerfile \
-t <registry>/<namespace>/<catalog_image_name>:<tag>

6. Push the catalog image to a registry:
a. If required, authenticate with your target registry by running the podman login command:

I $ podman login <registry>

b. Push the catalogimage by running the podman push command:

151

OpenShift Container Platform 4.14 Operators

I $ podman push <registry>/<namespace>/<catalog_image_name>:<tag>

Additional resources

® opm CLlI reference

4.9.2.2. Updating or filtering a file-based catalog image

You can use the opm CLI to update or filter (also known as prune) a catalog image that uses the file-
based catalog format. By extracting and modifying the contents of an existing catalog image, you can
update, add, or remove one or more Operator package entries from the catalog. You can then rebuild
the image as an updated version of the catalog.

NOTE

Alternatively, if you already have a catalog image on a mirror registry, you can use the oc-
mirror CLI plugin to automatically prune any removed images from an updated source
version of that catalog image while mirroring it to the target registry.

For more information about the oc-mirror plugin and this use case, see the "Keeping your
mirror registry content updated" section, and specifically the "Pruning images"”
subsection, of "Mirroring images for a disconnected installation using the oc-mirror

plugin”.

Prerequisites
® You have the following on your workstation:
o The opm CLI.
o podman version 1.9.3+.
o A file-based catalog image.

o A catalog directory structure recently initialized on your workstation related to this catalog.
If you do not have an initialized catalog directory, create the directory and generate the
Dockerfile. For more information, see the "Initialize the catalog" step from the "Creating a
file-based catalog image" procedure.

Procedure

1. Extract the contents of the catalog image in YAML format to an index.yaml file in your catalog
directory:

$ opm render <registry>/<namespace>/<catalog_image_name>:<tag> \
-0 yaml > <catalog_dir>/index.yaml

NOTE

Alternatively, you can use the -0 json flag to output in JSON format.

2. Modify the contents of the resulting index.yaml file to your specifications by updating, adding,
or removing one or more Operator package entries.

152

https://docs.redhat.com/en/documentation/openshift_container_platform/4.14/html-single/cli_tools/#cli-opm-ref

CHAPTER 4. ADMINISTRATOR TASKS

IMPORTANT

After a bundle has been published in a catalog, assume that one of your users has
installed it. Ensure that all previously published bundles in a catalog have an
update path to the current or newer channel head to avoid stranding users that
have that version installed.

olm.package, olm.channel, and olm.bundle blobs which must be deleted to remove the
skipRange: '>=2.6.0 <2.7.2'
- name: example-operator.v2.7.4

package from the catalog:
- name: example-operator.v2.7.3
replaces: example-operator.v2.7.3

For example, if you wanted to remove an Operator package, the following example lists a set of
Example 4.2. Example removed entries

defaultChannel: release-2.7

icon:
base64data: <base64_string>
mediatype: image/svg+xml

name: example-operator

schema: olm.package

entries:

- name: example-operator.v2.7.0
skipRange: '>=2.6.0 <2.7.0'

- name: example-operator.v2.7.1
replaces: example-operator.v2.7.0
skipRange: '>=2.6.0 <2.7.1'

- name: example-operator.v2.7.2
replaces: example-operator.v2.7.1
replaces: example-operator.v2.7.2
skipRange: '>=2.6.0 <2.7.3'
skipRange: '>=2.6.0 <2.7.4"

name: release-2.7

package: example-operator
schema: olm.channel
image: example.com/example-inc/example-operator-bundle@sha256:<digest>
name: example-operator.v2.7.0
package: example-operator
properties:
- type: olm.gvk
value:
group: example-group.example.io
kind: MyObiject
version: vialpha1l
- type: olm.gvk
value:
group: example-group.example.io
kind: MyOtherObject
version: vibetal
- type: olm.package

153

OpenShift Container Platform 4.14 Operators

value:
packageName: example-operator
version: 2.7.0
- type: olm.bundle.object
value:
data: <base64_string>

- type: olm.bundle.object
value:
data: <base64_string>
relatedlmages:
- image: example.com/example-inc/example-related-image@sha256:<digest>
name: example-related-image
schema: olm.bundle

3. Save your changes to the index.yaml file.

4. Validate the catalog:

I $ opm validate <catalog_dir>

5. Rebuild the catalog:

$ podman build . \
-f <catalog_dir>.Dockerfile \
-t <registry>/<namespace>/<catalog_image_name>:<tag>

6. Push the updated catalog image to a registry:

I $ podman push <registry>/<namespace>/<catalog_image_name>:<tag>

Verification

1. In the web console, navigate to the OperatorHub configuration resource in the Administration
- Cluster Settings = Configuration page.

2. Add the catalog source or update the existing catalog source to use the pull spec for your
updated catalog image.
For more information, see "Adding a catalog source to a cluster” in the "Additional resources" of
this section.

3. After the catalog source is in a READY state, navigate to the Operators -» OperatorHub page
and check that the changes you made are reflected in the list of Operators.

Additional resources

® Mirroring images for a disconnected installation using the oc-mirror plugin = Keeping your
mirror registry content updated

® Adding a catalog source to a cluster

4.9.3. SQLite-based catalogs

154

https://docs.redhat.com/en/documentation/openshift_container_platform/4.14/html-single/installing/#updating-mirror-registry-content

CHAPTER 4. ADMINISTRATOR TASKS

IMPORTANT

The SQLite database format for Operator catalogs is a deprecated feature. Deprecated
functionality is still included in OpenShift Container Platform and continues to be
supported; however, it will be removed in a future release of this product and is not
recommended for new deployments.

For the most recent list of major functionality that has been deprecated or removed
within OpenShift Container Platform, refer to the Deprecated and removed features
section of the OpenShift Container Platform release notes.

4.9.3.1. Creating a SQLite-based index image

You can create an index image based on the SQLite database format by using the opm CLI.

Prerequisites

® You have installed the opm CLI.
® You have podman version 1.9.3+.

® Abundle image is built and pushed to a registry that supports Docker v2-2.

Procedure

1. Start a new index:

$ opm index add \
--bundles <registry>/<namespace>/<bundle_image_name>:<tag> \0
--tag <registry>/<namespace>/<index_image_name>:<tag> \
[--binary-image <registry_base_image>]

ﬂ Comma-separated list of bundle images to add to the index.
9 The image tag that you want the index image to have.

9 Optional: An alternative registry base image to use for serving the catalog.

2. Push the index image to a registry.

a. If required, authenticate with your target registry:
I $ podman login <registry>
b. Push the index image:

I $ podman push <registry>/<namespace>/<index_image_name>:<tag>

4.9.3.2. Updating a SQLite-based index image

After configuring OperatorHub to use a catalog source that references a custom index image, cluster
administrators can keep the available Operators on their cluster up-to-date by adding bundle images to
the index image.

155

https://docs.docker.com/registry/spec/manifest-v2-2/

OpenShift Container Platform 4.14 Operators

You can update an existing index image using the opm index add command.

Prerequisites

You have installed the opm CLI.
You have podman version 1.9.3+.
An index image is built and pushed to a registry.

You have an existing catalog source referencing the index image.

Procedure

1. Update the existing index by adding bundle images:

156

O00® 9

$ opm index add \
--bundles <registry>/<namespace>/<new_bundle_image>@sha256:<digest> \ﬂ
--from-index <registry>/<namespace>/<existing_index_image>:<existing_tag> \
--tag <registry>/<namespace>/<existing_index_image>:<updated_tag> \6
--pull-tool podman

The --bundles flag specifies a comma-separated list of additional bundle images to add to
the index.

The --from-index flag specifies the previously pushed index.
The --tag flag specifies the image tag to apply to the updated index image.

The --pull-tool flag specifies the tool used to pull container images.

where:

<registry>

Specifies the hostname of the registry, such as quay.io or mirror.example.com.
<namespace>

Specifies the namespace of the registry, such as ocs-dev or abc.
<new_bundle_image>

Specifies the new bundle image to add to the registry, such as ocs-operator.
<digest>

Specifies the SHA image ID, or digest, of the bundle image, such as
c7f11097a628f092d8bad148406aa0e0951094a03445fd4bc0775431ef683a41.

<existing_index_image>

Specifies the previously pushed image, such as abe-redhat-operator-index.
<existing_tag>

Specifies a previously pushed image tag, such as 4.14.
<updated_tag>

Specifies the image tag to apply to the updated index image, such as 4.14.1.

Example command

CHAPTER 4. ADMINISTRATOR TASKS

$ opm index add \

--bundles quay.io/ocs-dev/ocs-
operator@sha256:c7f11097a628f092d8bad148406aa0e0951094a03445fd4bc0775431ef683a
41\

--from-index mirror.example.com/abc/abc-redhat-operator-index:4.14 \

--tag mirror.example.com/abc/abe-redhat-operator-index:4.14.1 \

--pull-tool podman

2. Push the updated index image:

I $ podman push <registry>/<namespace>/<existing_index_image>:<updated_tag>

3. After Operator Lifecycle Manager (OLM) automatically polls the index image referenced in the
catalog source at its regular interval, verify that the new packages are successfully added:

I $ oc get packagemanifests -n openshift-marketplace

4.9.3.3. Filtering a SQLite-based index image

An index image, based on the Operator bundle format, is a containerized snapshot of an Operator
catalog. You can filter, or prune, an index of all but a specified list of packages, which creates a copy of
the source index containing only the Operators that you want.

Prerequisites

® You have podman version 1.9.3+.
® You have grpcurl (third-party command-line tool).
® You have installed the opm CLI.

® You have access to a registry that supports Docker v2-2.

Procedure
1. Authenticate with your target registry:
I $ podman login <target_registry>

2. Determine the list of packages you want to include in your pruned index.

a. Run the source index image that you want to prune in a container. For example:

$ podman run -p50051:50051 \
-it registry.redhat.io/redhat/redhat-operator-index:v4.14

Example output

Trying to pull registry.redhat.io/redhat/redhat-operator-index:v4.14...
Getting image source signatures
Copying blob ae8a0c23f5b1 done

INFO[0000] serving registry database=/database/index.db port=50051

157

https://github.com/fullstorydev/grpcurl
https://docs.docker.com/registry/spec/manifest-v2-2/

OpenShift Container Platform 4.14 Operators

b. In a separate terminal session, use the grpcurl command to get a list of the packages
provided by the index:

I $ grpcurl -plaintext localhost:50051 api.Registry/ListPackages > packages.out

c. Inspect the packages.out file and identify which package names from this list you want to
keep in your pruned index. For example:

Example snippets of packages list

"name": "advanced-cluster-management”

}

"name": "jaeger-product”

}

{

"name": "quay-operator"

}

d. Inthe terminal session where you executed the podman run command, press Ctrl and C to
stop the container process.

3. Run the following command to prune the source index of all but the specified packages:

$ opm index prune \
-f registry.redhat.io/redhat/redhat-operator-index:v4.14 \ﬂ
-p advanced-cluster-management,jaeger-product,quay-operator \9
[-i registry.redhat.io/openshift4/ose-operator-registry:v4.9] \
-t <target_regqistry>:<port>/<namespace>/redhat-operator-index:v4.14 ﬂ

Index to prune.

Comma-separated list of packages to keep.

09

Required only for IBM Power® and IBM Z® images: Operator Registry base image with the
tag that matches the target OpenShift Container Platform cluster major and minor
version.

Q Custom tag for new index image being built.

4. Run the following command to push the new index image to your target registry:
I $ podman push <target_registry>:<port>/<namespace>/redhat-operator-index:v4.14

where <namespaces is any existing namespace on the registry.

4.9.4. Catalog sources and pod security admission

158

CHAPTER 4. ADMINISTRATOR TASKS

Pod security admission was introduced in OpenShift Container Platform 4.11 to ensure pod security
standards. Catalog sources built using the SQLite-based catalog format and a version of the opm CLI
tool released before OpenShift Container Platform 4.11 cannot run under restricted pod security
enforcement.

In OpenShift Container Platform 4.14, namespaces do not have restricted pod security enforcement by
default and the default catalog source security mode is set to legacy.

Default restricted enforcement for all namespaces is planned for inclusion in a future OpenShift
Container Platform release. When restricted enforcement occurs, the security context of the pod
specification for catalog source pods must match the restricted pod security standard. If your catalog
source image requires a different pod security standard, the pod security admissions label for the
namespace must be explicitly set.

NOTE

If you do not want to run your SQLite-based catalog source pods as restricted, you do
not need to update your catalog source in OpenShift Container Platform 4.14.

However, it is recommended that you take action now to ensure your catalog sources run
under restricted pod security enforcement. If you do not take action to ensure your
catalog sources run under restricted pod security enforcement, your catalog sources
might not run in future OpenShift Container Platform releases.

As a catalog author, you can enable compatibility with restricted pod security enforcement by
completing either of the following actions:

® Migrate your catalog to the file-based catalog format.

e Update your catalog image with a version of the opm CLI tool released with OpenShift
Container Platform 4.11 or later.

NOTE

The SQLite database catalog format is deprecated, but still supported by Red Hat. In a
future release, the SQL.ite database format will not be supported, and catalogs will need
to migrate to the file-based catalog format. As of OpenShift Container Platform 4.11, the
default Red Hat-provided Operator catalog is released in the file-based catalog format.
File-based catalogs are compatible with restricted pod security enforcement.

If you do not want to update your SQL.ite database catalog image or migrate your catalog to the file-
based catalog format, you can configure your catalog to run with elevated permissions.

Additional resources

® Understanding and managing pod security admission

4.9.4.1. Migrating SQLite database catalogs to the file-based catalog format

You can update your deprecated SQLite database format catalogs to the file-based catalog format.

Prerequisites

® You have a SQLite database catalog source.

159

https://docs.redhat.com/en/documentation/openshift_container_platform/4.14/html-single/authentication_and_authorization/#understanding-and-managing-pod-security-admission

OpenShift Container Platform 4.14 Operators

® You have access to the cluster as a user with the cluster-admin role.

® You have the latest version of the opm CLI tool released with OpenShift Container Platform
4.14 on your workstation.

Procedure

1. Migrate your SQLite database catalog to a file-based catalog by running the following
command:

I $ opm migrate <registry_image> <fbc_directory>
2. Generate a Dockerfile for your file-based catalog by running the following command:

$ opm generate dockerfile <fbc_directory> \
--binary-image \
registry.redhat.io/openshift4/ose-operator-registry:v4.14

Next steps

® The generated Dockerfile can be built, tagged, and pushed to your registry.

Additional resources

® Adding a catalog source to a cluster

4.9.4.2. Rebuilding SQLite database catalog images

You can rebuild your SQLite database catalog image with the latest version of the opm CLI tool that is
released with your version of OpenShift Container Platform.

Prerequisites
® You have a SQLite database catalog source.
® You have access to the cluster as a user with the cluster-admin role.

® You have the latest version of the opm CLI tool released with OpenShift Container Platform
4.14 on your workstation.

Procedure

® Run the following command to rebuild your catalog with a more recent version of the opm CLI
tool:

$ opm index add --binary-image \
registry.redhat.io/openshift4/ose-operator-registry:v4.14 \

--from-index <your_registry_image> \
--bundles " -t \<your_registry_image>

4.9.4.3. Configuring catalogs to run with elevated permissions

160

CHAPTER 4. ADMINISTRATOR TASKS

If you do not want to update your SQL.ite database catalog image or migrate your catalog to the file-
based catalog format, you can perform the following actions to ensure your catalog source runs when
the default pod security enforcement changes to restricted:

Manually set the catalog security mode to legacy in your catalog source definition. This action
ensures your catalog runs with legacy permissions even if the default catalog security mode
changes to restricted.

Label the catalog source namespace for baseline or privileged pod security enforcement.

NOTE

The SQLite database catalog format is deprecated, but still supported by Red Hat. In a
future release, the SQL.ite database format will not be supported, and catalogs will need
to migrate to the file-based catalog format. File-based catalogs are compatible with
restricted pod security enforcement.

Prerequisites

You have a SQLite database catalog source.
You have access to the cluster as a user with the cluster-admin role.

You have a target namespace that supports running pods with the elevated pod security
admission standard of baseline or privileged.

Procedure

1.

Edit the CatalogSource definition by setting the
spec.grpcPodConfig.securityContextConfig label to legacy, as shown in the following
example:

Example CatalogSource definition

apiVersion: operators.coreos.com/vialphai
kind: CatalogSource
metadata:

name: my-catsrc

namespace: my-ns
spec:

sourceType: grpc

grpcPodConfig:

securityContextConfig: legacy
image: my-image:latest

TIP
In OpenShift Container Platform 4.14, the spec.grpcPodConfig.securityContextConfig field is
set to legacy by default. In a future release of OpenShift Container Platform, it is planned that

the default setting will change to restricted. If your catalog cannot run under restricted
enforcement, it is recommended that you manually set this field to legacy.

Edit your <namespaces.yaml file to add elevated pod security admission standards to your
catalog source namespace, as shown in the following example:

161

OpenShift Container Platform 4.14 Operators

Example <namespace>.yaml file

apiVersion: vi
kind: Namespace
metadata:

labels:
security.openshift.io/scc.podSecurityLabelSync: "false"
openshift.io/cluster-monitoring: "true"
pod-security.kubernetes.io/enforce: baseline 9
name: "<namespace_name>"

ﬂ Turn off pod security label synchronization by adding the
security.openshift.io/scc.podSecurityLabelSync=false label to the namespace.

Q Apply the pod security admission pod-security.kubernetes.io/enforce label. Set the label
to baseline or privileged. Use the baseline pod security profile unless other workloads in
the namespace require a privileged profile.

4.9.5. Adding a catalog source to a cluster

Adding a catalog source to an OpenShift Container Platform cluster enables the discovery and
installation of Operators for users. Cluster administrators can create a CatalogSource object that
references an index image. OperatorHub uses catalog sources to populate the user interface.

TIP

Alternatively, you can use the web console to manage catalog sources. From the Administration —
Cluster Settings = Configuration = OperatorHub page, click the Sources tab, where you can create,
update, delete, disable, and enable individual sources.

Prerequisites
® You built and pushed an index image to a registry.

® You have access to the cluster as a user with the cluster-admin role.

Procedure
1. Create a CatalogSource object that references your index image.

a. Modify the following to your specifications and save it as a catalogSource.yaml file:

apiVersion: operators.coreos.com/vialphai
kind: CatalogSource
metadata:

name: my-operator-catalog

namespace: openshift-marketplace ﬂ

annotations:

olm.cataloglmageTemplate: 9
"<registry>/<namespace>/<index_image_name>:v{kube_major_version}.

{kube_minor_version}.{kube_patch_version}"
spec:

162

CHAPTER 4. ADMINISTRATOR TASKS

sourceType: grpc
grpcPodConfig:

securityContextConfig: <security_mode> 6
image: <registry>/<namespace>/<index_image_name>:<tag> ﬂ
displayName: My Operator Catalog
publisher: <publisher_name>
updateStrategy:

registryPoll:

interval: 30m

ﬂ If you want the catalog source to be available globally to users in all namespaces,
specify the openshift-marketplace namespace. Otherwise, you can specify a different
namespace for the catalog to be scoped and available only for that namespace.

9 Optional: Set the olm.cataloglmageTemplate annotation to your index image name
and use one or more of the Kubernetes cluster version variables as shown when
constructing the template for the image tag.

g Specify the value of legacy or restricted. If the field is not set, the default value is
legacy. In a future OpenShift Container Platform release, it is planned that the default
value will be restricted. If your catalog cannot run with restricted permissions, it is
recommended that you manually set this field to legacy.

Q Specify your index image. If you specify a tag after the image name, for example
:v4.14, the catalog source pod uses an image pull policy of Always, meaning the pod
always pulls the image prior to starting the container. If you specify a digest, for
example @sha256:<id>, the image pull policy is IfNotPresent, meaning the pod pulls
the image only if it does not already exist on the node.

9 Specify your name or an organization name publishing the catalog.

6 Catalog sources can automatically check for new versions to keep up to date.

b. Use the file to create the CatalogSource object:
I $ oc apply -f catalogSource.yaml

2. Verify the following resources are created successfully.

a. Check the pods:
I $ oc get pods -n openshift-marketplace
Example output

NAME READY STATUS RESTARTS AGE
my-operator-catalog-6njx6 1/1 Running 0 28s
marketplace-operator-d9f549946-96sgr 1/1 Running 0 26h

b. Check the catalog source:

I $ oc get catalogsource -n openshift-marketplace

163

OpenShift Container Platform 4.14 Operators

Example output

NAME DISPLAY TYPE PUBLISHER AGE
my-operator-catalog My Operator Catalog grpc 5s

c. Check the package manifest:

I $ oc get packagemanifest -n openshift-marketplace
Example output

NAME CATALOG AGE
jaeger-product My Operator Catalog 93s

You can now install the Operators from the OperatorHub page on your OpenShift Container Platform
web console.

Additional resources

® Operator Lifecycle Manager concepts and resources = Catalog source
® Accessing images for Operators from private registries

® Image pull policy

4.9.6. Accessing images for Operators from private registries

If certain images relevant to Operators managed by Operator Lifecycle Manager (OLM) are hosted in
an authenticated container image registry, also known as a private registry, OLM and OperatorHub are
unable to pull the images by default. To enable access, you can create a pull secret that contains the
authentication credentials for the registry. By referencing one or more pull secrets in a catalog source,
OLM can handle placing the secrets in the Operator and catalog namespace to allow installation.

Other images required by an Operator or its Operands might require access to private registries as well.
OLM does not handle placing the secrets in target tenant namespaces for this scenario, but
authentication credentials can be added to the global cluster pull secret or individual namespace service
accounts to enable the required access.

The following types of images should be considered when determining whether Operators managed by
OLM have appropriate pull access:

Index images

A CatalogSource object can reference an index image, which use the Operator bundle format and
are catalog sources packaged as container images hosted in images registries. If an index image is
hosted in a private registry, a secret can be used to enable pull access.

Bundle images

Operator bundle images are metadata and manifests packaged as container images that represent a
unique version of an Operator. If any bundle images referenced in a catalog source are hosted in one
or more private registries, a secret can be used to enable pull access.

Operator and Operand images

If an Operator installed from a catalog source uses a private image, either for the Operator image
itself or one of the Operand images it watches, the Operator will fail to install because the

164

https://docs.redhat.com/en/documentation/openshift_container_platform/4.14/html-single/images/#image-pull-policy

CHAPTER 4. ADMINISTRATOR TASKS

deployment will not have access to the required registry authentication. Referencing secretsin a
catalog source does not enable OLM to place the secrets in target tenant namespaces in which
Operands are installed.

Instead, the authentication details can be added to the global cluster pull secret in the openshift-
config namespace, which provides access to all namespaces on the cluster. Alternatively, if providing
access to the entire cluster is not permissible, the pull secret can be added to the default service
accounts of the target tenant namespaces.

Prerequisites
® You have at least one of the following hosted in a private registry:

o Anindex image or catalog image.
© An Operator bundle image.
o An Operator or Operand image.

® You have access to the cluster as a user with the cluster-admin role.

Procedure
1. Create a secret for each required private registry.

a. Login to the private registry to create or update your registry credentials file:

I $ podman login <registry>:<port>

NOTE

The file path of your registry credentials can be different depending on the
container tool used to log in to the registry. For the podman CLI, the default
location is ${XDG_RUNTIME_DIR}/containers/auth.json. For the docker
CLlI, the default location is /root/.docker/config.json.

b. Itis recommended to include credentials for only one registry per secret, and manage
credentials for multiple registries in separate secrets. Multiple secrets can be included in a
CatalogSource object in later steps, and OpenShift Container Platform will merge the
secrets into a single virtual credentials file for use during an image pull.

A registry credentials file can, by default, store details for more than one registry or for
multiple repositories in one registry. Verify the current contents of your file. For example:

File storing credentials for multiple registries

{

"auths": {
"reqgistry.redhat.io”: {
"auth": "FrNHNydQXdzcINgdg=="
}

"quay.io": {

"auth": "fegdsRib21iMQ=="
2
"https://quay.io/my-namespace/my-user/my-image": {

"auth": "eWfjwsDdfsa221=="

165

OpenShift Container Platform 4.14 Operators

b
"https://quay.io/my-namespace/my-user": {
"auth": "feFweDdscw34rR=="

b
"https://quay.io/my-namespace": {
"auth": "frekEews4fescyq=="

}
}
}

Because this file is used to create secrets in later steps, ensure that you are storing details
for only one registry per file. This can be accomplished by using either of the following
methods:

e Use the podman logout <registry> command to remove credentials for additional
registries until only the one registry you want remains.

e Edit your registry credentials file and separate the registry details to be stored in
multiple files. For example:

File storing credentials for one registry

"auths": {
"reqgistry.redhat.io": {
"auth": "FrNHNydQXdzcINgdg=="
}

File storing credentials for another registry

"auths": {
"quay.io": {
"auth": "Xd2lhdsbnRib21iMQ=="
}

c. Create a secret in the openshift-marketplace namespace that contains the authentication
credentials for a private registry:

$ oc create secret generic <secret_name> \
-n openshift-marketplace \

--from-file=.dockerconfigjson=<path/to/registry/credentials> \
--type=kubernetes.io/dockerconfigjson

Repeat this step to create additional secrets for any other required private registries,
updating the --from-file flag to specify another registry credentials file path.

2. Create or update an existing CatalogSource object to reference one or more secrets:

I apiVersion: operators.coreos.com/vialphai

166

CHAPTER 4. ADMINISTRATOR TASKS

kind: CatalogSource
metadata:
name: my-operator-catalog
namespace: openshift-marketplace
spec:
sourceType: grpc
secrets:
- "<secret_name_1>"
- "<secret_name_2>"
grpcPodConfig:
securityContextConfig: <security_mode> g
image: <registry>:<port>/<namespace>/<image>:<tag>
displayName: My Operator Catalog
publisher: <publisher_name>
updateStrategy:
registryPoll:
interval: 30m

ﬂ Add a spec.secrets section and specify any required secrets.
9 Specify the value of legacy or restricted. If the field is not set, the default value is legacy.
In a future OpenShift Container Platform release, it is planned that the default value will be

restricted. If your catalog cannot run with restricted permissions, it is recommended that
you manually set this field to legacy.

3. If any Operator or Operand images that are referenced by a subscribed Operator require access

to a private registry, you can either provide access to all namespaces in the cluster, or individual
target tenant namespaces.

® To provide access to all namespaces in the cluster, add authentication details to the global
cluster pull secret in the openshift-config namespace.

' WARNING
A Cluster resources must adjust to the new global pull secret, which can

temporarily limit the usability of the cluster.

a. Extract the .dockerconfigjson file from the global pull secret:
I $ oc extract secret/pull-secret -n openshift-config --confirm

b. Update the .dockerconfigjson file with your authentication credentials for the
required private registry or registries and save it as a new file:

$ cat .dockerconfigjson |\

ja --compact-output ".auths["<registry>:<port>/<namespace>/"] |= . + {"auth™"
<token>"}"\

> new_dockerconfigjson

167

OpenShift Container Platform 4.14 Operators

ﬂ Replace <registry>:<port>/<namespace> with the private registry details and
<token> with your authentication credentials.

c. Update the global pull secret with the new file:

$ oc set data secret/pull-secret -n openshift-config \
--from-file=.dockerconfigjson=new_dockerconfigjson

® To update an individual namespace, add a pull secret to the service account for the
Operator that requires access in the target tenant namespace.

a. Recreate the secret that you created for the openshift-marketplace in the tenant
namespace:

$ oc create secret generic <secret_name> \
-n <tenant_namespace> \
--from-file=.dockerconfigjson=<path/to/registry/credentials> \
--type=kubernetes.io/dockerconfigjson

b. Verify the name of the service account for the Operator by searching the tenant
namespace:

I $oc get sa -n <tenant_namespace> ﬂ

If the Operator was installed in an individual namespace, search that namespace. If
the Operator was installed for all namespaces, search the openshift-operators
namespace.

Example output

NAME SECRETS AGE
builder 2 6mis
default 2 6mis
deployer 2 6mis
etcd-operator 2 5m1830

ﬂ Service account for an installed etcd Operator.

c. Link the secret to the service account for the Operator:

$ oc secrets link <operator_sa> \
-n <tenant_namespace> \
<secret_name> \
--for=pull

Additional resources

® See Whatis a secret? for more information on the types of secrets, including those used for
registry credentials.

168

https://docs.redhat.com/en/documentation/openshift_container_platform/4.14/html-single/builds_using_buildconfig/#builds-secrets-overview_creating-build-inputs

CHAPTER 4. ADMINISTRATOR TASKS

® See Updating the global cluster pull secret for more details on the impact of changing this
secret.

® See Allowing pods to reference images from other secured registries for more details on linking
pull secrets to service accounts per namespace.

4.9.7. Disabling the default OperatorHub catalog sources

Operator catalogs that source content provided by Red Hat and community projects are configured for
OperatorHub by default during an OpenShift Container Platform installation. As a cluster administrator,
you can disable the set of default catalogs.

Procedure

e Disable the sources for the default catalogs by adding disableAllDefaultSources: true to the
OperatorHub object:

$ oc patch OperatorHub cluster --type json \
-p '[{"op": "add", "path": "/spec/disableAllDefaultSources", "value": true}]'

TIP
Alternatively, you can use the web console to manage catalog sources. From the Administration —

Cluster Settings = Configuration = OperatorHub page, click the Sources tab, where you can create,
update, delete, disable, and enable individual sources.

4.9.8. Removing custom catalogs

As a cluster administrator, you can remove custom Operator catalogs that have been previously added
to your cluster by deleting the related catalog source.

Prerequisites

® You have access to the cluster as a user with the cluster-admin role.

Procedure

1. In the Administrator perspective of the web console, navigate to Administration —» Cluster
Settings.

2. Click the Configuration tab, and then click OperatorHub.

3. Click the Sources tab.

4. Select the Options menu for the catalog that you want to remove, and then click Delete
CatalogSource.

4.10. USING OPERATOR LIFECYCLE MANAGER ON RESTRICTED
NETWORKS

For OpenShift Container Platform clusters that are installed on restricted networks, also known as
disconnected clusters, Operator Lifecycle Manager (OLM) by default cannot access the Red Hat-

169

https://docs.redhat.com/en