
OpenShift Container Platform 4.14

Specialized hardware and driver enablement

Learn about hardware enablement on OpenShift Container Platform

Last Updated: 2024-06-28

OpenShift Container Platform 4.14 Specialized hardware and driver
enablement

Learn about hardware enablement on OpenShift Container Platform

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides an overview of hardware enablement in OpenShift Container Platform.

. .

. .

. .

Table of Contents

CHAPTER 1. ABOUT SPECIALIZED HARDWARE AND DRIVER ENABLEMENT

CHAPTER 2. DRIVER TOOLKIT
2.1. ABOUT THE DRIVER TOOLKIT

Background
Purpose

2.2. PULLING THE DRIVER TOOLKIT CONTAINER IMAGE
2.2.1. Pulling the Driver Toolkit container image from registry.redhat.io
2.2.2. Finding the Driver Toolkit image URL in the payload

2.3. USING THE DRIVER TOOLKIT
2.3.1. Build and run the simple-kmod driver container on a cluster

2.4. ADDITIONAL RESOURCES

CHAPTER 3. NODE FEATURE DISCOVERY OPERATOR
3.1. ABOUT THE NODE FEATURE DISCOVERY OPERATOR
3.2. INSTALLING THE NODE FEATURE DISCOVERY OPERATOR

3.2.1. Installing the NFD Operator using the CLI
3.2.2. Installing the NFD Operator using the web console

3.3. USING THE NODE FEATURE DISCOVERY OPERATOR
3.3.1. Create a NodeFeatureDiscovery instance using the CLI
3.3.2. Create a NodeFeatureDiscovery CR using the web console

3.4. CONFIGURING THE NODE FEATURE DISCOVERY OPERATOR
3.4.1. core

core.sleepInterval
core.sources
core.labelWhiteList
core.noPublish
core.klog

core.klog.addDirHeader
core.klog.alsologtostderr
core.klog.logBacktraceAt
core.klog.logDir
core.klog.logFile
core.klog.logFileMaxSize
core.klog.logtostderr
core.klog.skipHeaders
core.klog.skipLogHeaders
core.klog.stderrthreshold
core.klog.v
core.klog.vmodule

3.4.2. sources
sources.cpu.cpuid.attributeBlacklist
sources.cpu.cpuid.attributeWhitelist
sources.kernel.kconfigFile
sources.kernel.configOpts
sources.pci.deviceClassWhitelist
sources.pci.deviceLabelFields
sources.usb.deviceClassWhitelist
sources.usb.deviceLabelFields
sources.custom

3.5. ABOUT THE NODEFEATURERULE CUSTOM RESOURCE

5

6
6
6
7
7
7
7
8
8

12

13
13
13
13
14
15
15
18
18
18
18
18
19
19
19
19
19
19

20
20
20
20
20
20
20
20
21
21
21
21
21
22
22
22
22
22
23
23

Table of Contents

1

. .

3.6. USING THE NODEFEATURERULE CUSTOM RESOURCE
3.7. USING THE NFD TOPOLOGY UPDATER

3.7.1. NodeResourceTopology CR
3.7.2. NFD Topology Updater command line flags

-ca-file
-cert-file
-h, -help
-key-file
-kubelet-config-file
-no-publish
3.7.2.1. -oneshot

-podresources-socket
-server
-server-name-override
-sleep-interval
-version
-watch-namespace

CHAPTER 4. KERNEL MODULE MANAGEMENT OPERATOR
4.1. ABOUT THE KERNEL MODULE MANAGEMENT OPERATOR
4.2. INSTALLING THE KERNEL MODULE MANAGEMENT OPERATOR

4.2.1. Installing the Kernel Module Management Operator using the web console
4.2.2. Installing the Kernel Module Management Operator by using the CLI
4.2.3. Installing the Kernel Module Management Operator on earlier versions of OpenShift Container Platform

4.3. CONFIGURING THE KERNEL MODULE MANAGEMENT OPERATOR
4.3.1. Unloading the kernel module
4.3.2. Setting the kernel firmware search path

4.4. UNINSTALLING THE KERNEL MODULE MANAGEMENT OPERATOR
4.4.1. Uninstalling a Red Hat catalog installation
4.4.2. Uninstalling a CLI installation

4.5. KERNEL MODULE DEPLOYMENT
4.5.1. The Module custom resource definition
4.5.2. Set soft dependencies between kernel modules

4.6. SECURITY AND PERMISSIONS
4.6.1. ServiceAccounts and SecurityContextConstraints
4.6.2. Pod security standards

4.7. REPLACING IN-TREE MODULES WITH OUT-OF-TREE MODULES
4.7.1. Example Module CR

4.8. SYMBOLIC LINKS FOR IN-TREE DEPENDENCIES
4.9. CREATING A KMOD IMAGE

4.9.1. Running depmod
4.9.1.1. Example Dockerfile

4.9.2. Building in the cluster
4.9.3. Using the Driver Toolkit

4.10. USING SIGNING WITH KERNEL MODULE MANAGEMENT (KMM)
4.11. ADDING THE KEYS FOR SECUREBOOT

4.11.1. Checking the keys
4.12. SIGNING KMODS IN A PRE-BUILT IMAGE
4.13. BUILDING AND SIGNING A KMOD IMAGE
4.14. KMM HUB AND SPOKE

4.14.1. KMM-Hub
4.14.2. Installing KMM-Hub

23
24
24
25
25
26
26
26
26
26
27
27
27
27
27
28
28

29
29
29
29
30

31
33
36
36
36
37
37
37
38
38
39
39
40
40
41

43
44
44
45
45
46
47
47
48
49
50
52
52
52

OpenShift Container Platform 4.14 Specialized hardware and driver enablement

2

4.14.2.1. Installing KMM-Hub using the Operator Lifecycle Manager
4.14.2.2. Installing KMM-Hub by creating KMM resources

4.14.3. Using the ManagedClusterModule CRD
4.14.4. Running KMM on the spoke

4.15. CUSTOMIZING UPGRADES FOR KERNEL MODULES
4.16. DAY 1 KERNEL MODULE LOADING

4.16.1. Day 1 supported use cases
4.16.2. OOT kernel module loading flow
4.16.3. The kernel module image
4.16.4. In-tree module replacement
4.16.5. MCO yaml creation
4.16.6. The MachineConfigPool

4.17. DEBUGGING AND TROUBLESHOOTING
4.18. KMM FIRMWARE SUPPORT

4.18.1. Configuring the lookup path on nodes
4.18.2. Building a kmod image
4.18.3. Tuning the Module resource

4.19. DAY 0 THROUGH DAY 2 KMOD INSTALLATION
4.19.1. Layering background
4.19.2. Lifecycle management

4.19.2.1. Treat the kmod as an in-tree driver
4.19.2.2. Use ordered upgrade

4.20. TROUBLESHOOTING KMM
4.20.1. Reading Operator logs
4.20.2. Observing events

Build & sign
Module load or unload

4.20.3. Using the must-gather tool
4.20.3.1. Gathering data for KMM
4.20.3.2. Gathering data for KMM-Hub

53
53
53
54
56
57
58
58
58
58
59
59
60
60
60
61
61

62
62
62
63
63
63
63
64
64
64
64
64
66

Table of Contents

3

OpenShift Container Platform 4.14 Specialized hardware and driver enablement

4

CHAPTER 1. ABOUT SPECIALIZED HARDWARE AND DRIVER
ENABLEMENT

The Driver Toolkit (DTK) is a container image in the OpenShift Container Platform payload which is
meant to be used as a base image on which to build driver containers. The Driver Toolkit image contains
the kernel packages commonly required as dependencies to build or install kernel modules as well as a
few tools needed in driver containers. The version of these packages will match the kernel version
running on the RHCOS nodes in the corresponding OpenShift Container Platform release.

Driver containers are container images used for building and deploying out-of-tree kernel modules and
drivers on container operating systems such as Red Hat Enterprise Linux CoreOS (RHCOS). Kernel
modules and drivers are software libraries running with a high level of privilege in the operating system
kernel. They extend the kernel functionalities or provide the hardware-specific code required to control
new devices. Examples include hardware devices like field-programmable gate arrays (FPGA) or
graphics processing units (GPU), and software-defined storage solutions, which all require kernel
modules on client machines. Driver containers are the first layer of the software stack used to enable
these technologies on OpenShift Container Platform deployments.

CHAPTER 1. ABOUT SPECIALIZED HARDWARE AND DRIVER ENABLEMENT

5

CHAPTER 2. DRIVER TOOLKIT
Learn about the Driver Toolkit and how you can use it as a base image for driver containers for enabling
special software and hardware devices on OpenShift Container Platform deployments.

2.1. ABOUT THE DRIVER TOOLKIT

Background
The Driver Toolkit is a container image in the OpenShift Container Platform payload used as a base
image on which you can build driver containers. The Driver Toolkit image includes the kernel packages
commonly required as dependencies to build or install kernel modules, as well as a few tools needed in
driver containers. The version of these packages will match the kernel version running on the Red Hat
Enterprise Linux CoreOS (RHCOS) nodes in the corresponding OpenShift Container Platform release.

Driver containers are container images used for building and deploying out-of-tree kernel modules and
drivers on container operating systems like RHCOS. Kernel modules and drivers are software libraries
running with a high level of privilege in the operating system kernel. They extend the kernel
functionalities or provide the hardware-specific code required to control new devices. Examples include
hardware devices like Field Programmable Gate Arrays (FPGA) or GPUs, and software-defined storage
(SDS) solutions, such as Lustre parallel file systems, which require kernel modules on client machines.
Driver containers are the first layer of the software stack used to enable these technologies on
Kubernetes.

The list of kernel packages in the Driver Toolkit includes the following and their dependencies:

kernel-core

kernel-devel

kernel-headers

kernel-modules

kernel-modules-extra

In addition, the Driver Toolkit also includes the corresponding real-time kernel packages:

kernel-rt-core

kernel-rt-devel

kernel-rt-modules

kernel-rt-modules-extra

The Driver Toolkit also has several tools that are commonly needed to build and install kernel modules,
including:

elfutils-libelf-devel

kmod

binutilskabi-dw

kernel-abi-whitelists

OpenShift Container Platform 4.14 Specialized hardware and driver enablement

6

dependencies for the above

Purpose
Prior to the Driver Toolkit’s existence, users would install kernel packages in a pod or build config on
OpenShift Container Platform using entitled builds or by installing from the kernel RPMs in the hosts
machine-os-content. The Driver Toolkit simplifies the process by removing the entitlement step, and
avoids the privileged operation of accessing the machine-os-content in a pod. The Driver Toolkit can
also be used by partners who have access to pre-released OpenShift Container Platform versions to
prebuild driver-containers for their hardware devices for future OpenShift Container Platform releases.

The Driver Toolkit is also used by the Kernel Module Management (KMM), which is currently available as
a community Operator on OperatorHub. KMM supports out-of-tree and third-party kernel drivers and
the support software for the underlying operating system. Users can create modules for KMM to build
and deploy a driver container, as well as support software like a device plugin, or metrics. Modules can
include a build config to build a driver container-based on the Driver Toolkit, or KMM can deploy a
prebuilt driver container.

2.2. PULLING THE DRIVER TOOLKIT CONTAINER IMAGE

The driver-toolkit image is available from the Container images section of the Red Hat Ecosystem
Catalog and in the OpenShift Container Platform release payload. The image corresponding to the
most recent minor release of OpenShift Container Platform will be tagged with the version number in
the catalog. The image URL for a specific release can be found using the oc adm CLI command.

2.2.1. Pulling the Driver Toolkit container image from registry.redhat.io

Instructions for pulling the driver-toolkit image from registry.redhat.io with podman or in OpenShift
Container Platform can be found on the Red Hat Ecosystem Catalog . The driver-toolkit image for the
latest minor release are tagged with the minor release version on registry.redhat.io, for example:
registry.redhat.io/openshift4/driver-toolkit-rhel8:v4.14.

2.2.2. Finding the Driver Toolkit image URL in the payload

Prerequisites

You obtained the image pull secret from Red Hat OpenShift Cluster Manager .

You installed the OpenShift CLI (oc).

Procedure

1. Use the oc adm command to extract the image URL of the driver-toolkit corresponding to a
certain release:

For an x86 image, the command is as follows:

For an ARM image, the command is as follows:

$ oc adm release info quay.io/openshift-release-dev/ocp-release:4.14.z-x86_64 --image-
for=driver-toolkit

$ oc adm release info quay.io/openshift-release-dev/ocp-release:4.14.z-aarch64 --
image-for=driver-toolkit

CHAPTER 2. DRIVER TOOLKIT

7

https://www.openshift.com/blog/how-to-use-entitled-image-builds-to-build-drivercontainers-with-ubi-on-openshift
https://registry.redhat.io/
https://catalog.redhat.com/software/containers/openshift4/driver-toolkit-rhel8/604009d6122bd89307e00865?container-tabs=gti
https://console.redhat.com/openshift/install/pull-secret

Example output

2. Obtain this image using a valid pull secret, such as the pull secret required to install OpenShift
Container Platform:

2.3. USING THE DRIVER TOOLKIT

As an example, the Driver Toolkit can be used as the base image for building a very simple kernel module
called simple-kmod.

NOTE

The Driver Toolkit includes the necessary dependencies, openssl, mokutil, and keyutils,
needed to sign a kernel module. However, in this example, the simple-kmod kernel
module is not signed and therefore cannot be loaded on systems with Secure Boot
enabled.

2.3.1. Build and run the simple-kmod driver container on a cluster

Prerequisites

You have a running OpenShift Container Platform cluster.

You set the Image Registry Operator state to Managed for your cluster.

You installed the OpenShift CLI (oc).

You are logged into the OpenShift CLI as a user with cluster-admin privileges.

Procedure

Create a namespace. For example:

1. The YAML defines an ImageStream for storing the simple-kmod driver container image, and a
BuildConfig for building the container. Save this YAML as 0000-buildconfig.yaml.template.

quay.io/openshift-release-dev/ocp-v4.0-art-
dev@sha256:b53883ca2bac5925857148c4a1abc300ced96c222498e3bc134fe7ce3a1dd404

$ podman pull --authfile=path/to/pullsecret.json quay.io/openshift-release-dev/ocp-v4.0-art-
dev@sha256:<SHA>

$ oc new-project simple-kmod-demo

apiVersion: image.openshift.io/v1
kind: ImageStream
metadata:
 labels:
 app: simple-kmod-driver-container
 name: simple-kmod-driver-container
 namespace: simple-kmod-demo
spec: {}

OpenShift Container Platform 4.14 Specialized hardware and driver enablement

8

apiVersion: build.openshift.io/v1
kind: BuildConfig
metadata:
 labels:
 app: simple-kmod-driver-build
 name: simple-kmod-driver-build
 namespace: simple-kmod-demo
spec:
 nodeSelector:
 node-role.kubernetes.io/worker: ""
 runPolicy: "Serial"
 triggers:
 - type: "ConfigChange"
 - type: "ImageChange"
 source:
 dockerfile: |
 ARG DTK
 FROM ${DTK} as builder

 ARG KVER

 WORKDIR /build/

 RUN git clone https://github.com/openshift-psap/simple-kmod.git

 WORKDIR /build/simple-kmod

 RUN make all install KVER=${KVER}

 FROM registry.redhat.io/ubi8/ubi-minimal

 ARG KVER

 # Required for installing `modprobe`
 RUN microdnf install kmod

 COPY --from=builder /lib/modules/${KVER}/simple-kmod.ko /lib/modules/${KVER}/
 COPY --from=builder /lib/modules/${KVER}/simple-procfs-kmod.ko
/lib/modules/${KVER}/
 RUN depmod ${KVER}
 strategy:
 dockerStrategy:
 buildArgs:
 - name: KMODVER
 value: DEMO
 # $ oc adm release info quay.io/openshift-release-dev/ocp-release:<cluster version>-
x86_64 --image-for=driver-toolkit
 - name: DTK
 value: quay.io/openshift-release-dev/ocp-v4.0-art-
dev@sha256:34864ccd2f4b6e385705a730864c04a40908e57acede44457a783d739e377cae
 - name: KVER
 value: 4.18.0-372.26.1.el8_6.x86_64
 output:
 to:
 kind: ImageStreamTag
 name: simple-kmod-driver-container:demo

CHAPTER 2. DRIVER TOOLKIT

9

2. Substitute the correct driver toolkit image for the OpenShift Container Platform version you are
running in place of “DRIVER_TOOLKIT_IMAGE” with the following commands.

3. Create the image stream and build config with

4. After the builder pod completes successfully, deploy the driver container image as a
DaemonSet.

a. The driver container must run with the privileged security context in order to load the kernel
modules on the host. The following YAML file contains the RBAC rules and the DaemonSet
for running the driver container. Save this YAML as 1000-drivercontainer.yaml.

$ OCP_VERSION=$(oc get clusterversion/version -ojsonpath={.status.desired.version})

$ DRIVER_TOOLKIT_IMAGE=$(oc adm release info $OCP_VERSION --image-for=driver-
toolkit)

$ sed "s#DRIVER_TOOLKIT_IMAGE#${DRIVER_TOOLKIT_IMAGE}#" 0000-
buildconfig.yaml.template > 0000-buildconfig.yaml

$ oc create -f 0000-buildconfig.yaml

apiVersion: v1
kind: ServiceAccount
metadata:
 name: simple-kmod-driver-container

apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
 name: simple-kmod-driver-container
rules:
- apiGroups:
 - security.openshift.io
 resources:
 - securitycontextconstraints
 verbs:
 - use
 resourceNames:
 - privileged

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
 name: simple-kmod-driver-container
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: Role
 name: simple-kmod-driver-container
subjects:
- kind: ServiceAccount
 name: simple-kmod-driver-container
userNames:
- system:serviceaccount:simple-kmod-demo:simple-kmod-driver-container

OpenShift Container Platform 4.14 Specialized hardware and driver enablement

10

b. Create the RBAC rules and daemon set:

5. After the pods are running on the worker nodes, verify that the simple_kmod kernel module is
loaded successfully on the host machines with lsmod.

a. Verify that the pods are running:

Example output

b. Execute the lsmod command in the driver container pod:

apiVersion: apps/v1
kind: DaemonSet
metadata:
 name: simple-kmod-driver-container
spec:
 selector:
 matchLabels:
 app: simple-kmod-driver-container
 template:
 metadata:
 labels:
 app: simple-kmod-driver-container
 spec:
 serviceAccount: simple-kmod-driver-container
 serviceAccountName: simple-kmod-driver-container
 containers:
 - image: image-registry.openshift-image-registry.svc:5000/simple-kmod-
demo/simple-kmod-driver-container:demo
 name: simple-kmod-driver-container
 imagePullPolicy: Always
 command: [sleep, infinity]
 lifecycle:
 postStart:
 exec:
 command: ["modprobe", "-v", "-a" , "simple-kmod", "simple-procfs-kmod"]
 preStop:
 exec:
 command: ["modprobe", "-r", "-a" , "simple-kmod", "simple-procfs-kmod"]
 securityContext:
 privileged: true
 nodeSelector:
 node-role.kubernetes.io/worker: ""

$ oc create -f 1000-drivercontainer.yaml

$ oc get pod -n simple-kmod-demo

NAME READY STATUS RESTARTS AGE
simple-kmod-driver-build-1-build 0/1 Completed 0 6m
simple-kmod-driver-container-b22fd 1/1 Running 0 40s
simple-kmod-driver-container-jz9vn 1/1 Running 0 40s
simple-kmod-driver-container-p45cc 1/1 Running 0 40s

CHAPTER 2. DRIVER TOOLKIT

11

Example output

2.4. ADDITIONAL RESOURCES

For more information about configuring registry storage for your cluster, see Image Registry
Operator in OpenShift Container Platform.

$ oc exec -it pod/simple-kmod-driver-container-p45cc -- lsmod | grep simple

simple_procfs_kmod 16384 0
simple_kmod 16384 0

OpenShift Container Platform 4.14 Specialized hardware and driver enablement

12

https://docs.redhat.com/en/documentation/openshift_container_platform/4.14/html-single/registry/#registry-removed_configuring-registry-operator

CHAPTER 3. NODE FEATURE DISCOVERY OPERATOR
Learn about the Node Feature Discovery (NFD) Operator and how you can use it to expose node-level
information by orchestrating Node Feature Discovery, a Kubernetes add-on for detecting hardware
features and system configuration.

3.1. ABOUT THE NODE FEATURE DISCOVERY OPERATOR

The Node Feature Discovery Operator (NFD) manages the detection of hardware features and
configuration in an OpenShift Container Platform cluster by labeling the nodes with hardware-specific
information. NFD labels the host with node-specific attributes, such as PCI cards, kernel, operating
system version, and so on.

The NFD Operator can be found on the Operator Hub by searching for “Node Feature Discovery”.

3.2. INSTALLING THE NODE FEATURE DISCOVERY OPERATOR

The Node Feature Discovery (NFD) Operator orchestrates all resources needed to run the NFD
daemon set. As a cluster administrator, you can install the NFD Operator by using the OpenShift
Container Platform CLI or the web console.

3.2.1. Installing the NFD Operator using the CLI

As a cluster administrator, you can install the NFD Operator using the CLI.

Prerequisites

An OpenShift Container Platform cluster

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

1. Create a namespace for the NFD Operator.

a. Create the following Namespace custom resource (CR) that defines the openshift-nfd
namespace, and then save the YAML in the nfd-namespace.yaml file:

b. Create the namespace by running the following command:

2. Install the NFD Operator in the namespace you created in the previous step by creating the
following objects:

a. Create the following OperatorGroup CR and save the YAML in the nfd-
operatorgroup.yaml file:

apiVersion: v1
kind: Namespace
metadata:
 name: openshift-nfd

$ oc create -f nfd-namespace.yaml

CHAPTER 3. NODE FEATURE DISCOVERY OPERATOR

13

b. Create the OperatorGroup CR by running the following command:

c. Create the following Subscription CR and save the YAML in the nfd-sub.yaml file:

Example Subscription

d. Create the subscription object by running the following command:

e. Change to the openshift-nfd project:

Verification

To verify that the Operator deployment is successful, run:

Example output

A successful deployment shows a Running status.

3.2.2. Installing the NFD Operator using the web console

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 generateName: openshift-nfd-
 name: openshift-nfd
 namespace: openshift-nfd
spec:
 targetNamespaces:
 - openshift-nfd

$ oc create -f nfd-operatorgroup.yaml

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: nfd
 namespace: openshift-nfd
spec:
 channel: "stable"
 installPlanApproval: Automatic
 name: nfd
 source: redhat-operators
 sourceNamespace: openshift-marketplace

$ oc create -f nfd-sub.yaml

$ oc project openshift-nfd

$ oc get pods

NAME READY STATUS RESTARTS AGE
nfd-controller-manager-7f86ccfb58-vgr4x 2/2 Running 0 10m

OpenShift Container Platform 4.14 Specialized hardware and driver enablement

14

As a cluster administrator, you can install the NFD Operator using the web console.

Procedure

1. In the OpenShift Container Platform web console, click Operators → OperatorHub.

2. Choose Node Feature Discovery from the list of available Operators, and then click Install.

3. On the Install Operator page, select A specific namespace on the cluster, and then click
Install. You do not need to create a namespace because it is created for you.

Verification

To verify that the NFD Operator installed successfully:

1. Navigate to the Operators → Installed Operators page.

2. Ensure that Node Feature Discovery is listed in the openshift-nfd project with a Status of
InstallSucceeded.

NOTE

During installation an Operator might display a Failed status. If the installation
later succeeds with an InstallSucceeded message, you can ignore the Failed
message.

Troubleshooting

If the Operator does not appear as installed, troubleshoot further:

1. Navigate to the Operators → Installed Operators page and inspect the Operator
Subscriptions and Install Plans tabs for any failure or errors under Status.

2. Navigate to the Workloads → Pods page and check the logs for pods in the openshift-nfd
project.

3.3. USING THE NODE FEATURE DISCOVERY OPERATOR

The Node Feature Discovery (NFD) Operator orchestrates all resources needed to run the Node-
Feature-Discovery daemon set by watching for a NodeFeatureDiscovery CR. Based on the
NodeFeatureDiscovery CR, the Operator will create the operand (NFD) components in the desired
namespace. You can edit the CR to choose another namespace, image, imagePullPolicy, and nfd-
worker-conf, among other options.

As a cluster administrator, you can create a NodeFeatureDiscovery instance using the OpenShift
Container Platform CLI or the web console.

3.3.1. Create a NodeFeatureDiscovery instance using the CLI

As a cluster administrator, you can create a NodeFeatureDiscovery CR instance using the CLI.

Prerequisites

An OpenShift Container Platform cluster

CHAPTER 3. NODE FEATURE DISCOVERY OPERATOR

15

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Install the NFD Operator.

Procedure

1. Create the following NodeFeatureDiscovery Custom Resource (CR), and then save the YAML
in the NodeFeatureDiscovery.yaml file:

apiVersion: nfd.openshift.io/v1
kind: NodeFeatureDiscovery
metadata:
 name: nfd-instance
 namespace: openshift-nfd
spec:
 instance: "" # instance is empty by default
 topologyupdater: false # False by default
 operand:
 image: registry.redhat.io/openshift4/ose-node-feature-discovery:v4.14
 imagePullPolicy: Always
 workerConfig:
 configData: |
 core:
 # labelWhiteList:
 # noPublish: false
 sleepInterval: 60s
 # sources: [all]
 # klog:
 # addDirHeader: false
 # alsologtostderr: false
 # logBacktraceAt:
 # logtostderr: true
 # skipHeaders: false
 # stderrthreshold: 2
 # v: 0
 # vmodule:
 ## NOTE: the following options are not dynamically run-time configurable
 ## and require a nfd-worker restart to take effect after being changed
 # logDir:
 # logFile:
 # logFileMaxSize: 1800
 # skipLogHeaders: false
 sources:
 cpu:
 cpuid:
 # NOTE: whitelist has priority over blacklist
 attributeBlacklist:
 - "BMI1"
 - "BMI2"
 - "CLMUL"
 - "CMOV"
 - "CX16"
 - "ERMS"
 - "F16C"

OpenShift Container Platform 4.14 Specialized hardware and driver enablement

16

For more details on how to customize NFD workers, refer to the Configuration file reference of nfd-
worker.

1. Create the NodeFeatureDiscovery CR instance by running the following command:

Verification

To verify that the instance is created, run:

Example output

 - "HTT"
 - "LZCNT"
 - "MMX"
 - "MMXEXT"
 - "NX"
 - "POPCNT"
 - "RDRAND"
 - "RDSEED"
 - "RDTSCP"
 - "SGX"
 - "SSE"
 - "SSE2"
 - "SSE3"
 - "SSE4.1"
 - "SSE4.2"
 - "SSSE3"
 attributeWhitelist:
 kernel:
 kconfigFile: "/path/to/kconfig"
 configOpts:
 - "NO_HZ"
 - "X86"
 - "DMI"
 pci:
 deviceClassWhitelist:
 - "0200"
 - "03"
 - "12"
 deviceLabelFields:
 - "class"
 customConfig:
 configData: |
 - name: "more.kernel.features"
 matchOn:
 - loadedKMod: ["example_kmod3"]

$ oc create -f NodeFeatureDiscovery.yaml

$ oc get pods

NAME READY STATUS RESTARTS AGE
nfd-controller-manager-7f86ccfb58-vgr4x 2/2 Running 0 11m
nfd-master-hcn64 1/1 Running 0 60s

CHAPTER 3. NODE FEATURE DISCOVERY OPERATOR

17

https://kubernetes-sigs.github.io/node-feature-discovery/v0.10/advanced/worker-configuration-reference.html

A successful deployment shows a Running status.

3.3.2. Create a NodeFeatureDiscovery CR using the web console

Procedure

1. Navigate to the Operators → Installed Operators page.

2. Find Node Feature Discovery and see a box under Provided APIs.

3. Click Create instance.

4. Edit the values of the NodeFeatureDiscovery CR.

5. Click Create.

3.4. CONFIGURING THE NODE FEATURE DISCOVERY OPERATOR

3.4.1. core

The core section contains common configuration settings that are not specific to any particular feature
source.

core.sleepInterval
core.sleepInterval specifies the interval between consecutive passes of feature detection or re-
detection, and thus also the interval between node re-labeling. A non-positive value implies infinite
sleep interval; no re-detection or re-labeling is done.

This value is overridden by the deprecated --sleep-interval command line flag, if specified.

Example usage

The default value is 60s.

core.sources
core.sources specifies the list of enabled feature sources. A special value all enables all feature
sources.

This value is overridden by the deprecated --sources command line flag, if specified.

Default: [all]

Example usage

nfd-master-lnnxx 1/1 Running 0 60s
nfd-master-mp6hr 1/1 Running 0 60s
nfd-worker-vgcz9 1/1 Running 0 60s
nfd-worker-xqbws 1/1 Running 0 60s

core:
 sleepInterval: 60s 1

core:
 sources:

OpenShift Container Platform 4.14 Specialized hardware and driver enablement

18

core.labelWhiteList
core.labelWhiteList specifies a regular expression for filtering feature labels based on the label name.
Non-matching labels are not published.

The regular expression is only matched against the basename part of the label, the part of the name
after '/'. The label prefix, or namespace, is omitted.

This value is overridden by the deprecated --label-whitelist command line flag, if specified.

Default: null

Example usage

core.noPublish
Setting core.noPublish to true disables all communication with the nfd-master. It is effectively a dry
run flag; nfd-worker runs feature detection normally, but no labeling requests are sent to nfd-master.

This value is overridden by the --no-publish command line flag, if specified.

Example:

Example usage

The default value is false.

core.klog
The following options specify the logger configuration, most of which can be dynamically adjusted at
run-time.

The logger options can also be specified using command line flags, which take precedence over any
corresponding config file options.

core.klog.addDirHeader
If set to true, core.klog.addDirHeader adds the file directory to the header of the log messages.

Default: false

Run-time configurable: yes

core.klog.alsologtostderr
Log to standard error as well as files.

Default: false

Run-time configurable: yes

core.klog.logBacktraceAt

 - system
 - custom

core:
 labelWhiteList: '^cpu-cpuid'

core:
 noPublish: true 1

CHAPTER 3. NODE FEATURE DISCOVERY OPERATOR

19

When logging hits line file:N, emit a stack trace.

Default: empty

Run-time configurable: yes

core.klog.logDir
If non-empty, write log files in this directory.

Default: empty

Run-time configurable: no

core.klog.logFile
If not empty, use this log file.

Default: empty

Run-time configurable: no

core.klog.logFileMaxSize
core.klog.logFileMaxSize defines the maximum size a log file can grow to. Unit is megabytes. If the
value is 0, the maximum file size is unlimited.

Default: 1800

Run-time configurable: no

core.klog.logtostderr
Log to standard error instead of files

Default: true

Run-time configurable: yes

core.klog.skipHeaders
If core.klog.skipHeaders is set to true, avoid header prefixes in the log messages.

Default: false

Run-time configurable: yes

core.klog.skipLogHeaders
If core.klog.skipLogHeaders is set to true, avoid headers when opening log files.

Default: false

Run-time configurable: no

core.klog.stderrthreshold
Logs at or above this threshold go to stderr.

Default: 2

Run-time configurable: yes

core.klog.v
core.klog.v is the number for the log level verbosity.

OpenShift Container Platform 4.14 Specialized hardware and driver enablement

20

Default: 0

Run-time configurable: yes

core.klog.vmodule
core.klog.vmodule is a comma-separated list of pattern=N settings for file-filtered logging.

Default: empty

Run-time configurable: yes

3.4.2. sources

The sources section contains feature source specific configuration parameters.

sources.cpu.cpuid.attributeBlacklist
Prevent publishing cpuid features listed in this option.

This value is overridden by sources.cpu.cpuid.attributeWhitelist, if specified.

Default: [BMI1, BMI2, CLMUL, CMOV, CX16, ERMS, F16C, HTT, LZCNT, MMX, MMXEXT, NX,
POPCNT, RDRAND, RDSEED, RDTSCP, SGX, SGXLC, SSE, SSE2, SSE3, SSE4.1, SSE4.2, SSSE3]

Example usage

sources.cpu.cpuid.attributeWhitelist
Only publish the cpuid features listed in this option.

sources.cpu.cpuid.attributeWhitelist takes precedence over sources.cpu.cpuid.attributeBlacklist.

Default: empty

Example usage

sources.kernel.kconfigFile
sources.kernel.kconfigFile is the path of the kernel config file. If empty, NFD runs a search in the well-
known standard locations.

Default: empty

Example usage

sources:
 cpu:
 cpuid:
 attributeBlacklist: [MMX, MMXEXT]

sources:
 cpu:
 cpuid:
 attributeWhitelist: [AVX512BW, AVX512CD, AVX512DQ, AVX512F, AVX512VL]

sources:
 kernel:
 kconfigFile: "/path/to/kconfig"

CHAPTER 3. NODE FEATURE DISCOVERY OPERATOR

21

sources.kernel.configOpts
sources.kernel.configOpts represents kernel configuration options to publish as feature labels.

Default: [NO_HZ, NO_HZ_IDLE, NO_HZ_FULL, PREEMPT]

Example usage

sources.pci.deviceClassWhitelist
sources.pci.deviceClassWhitelist is a list of PCI device class IDs for which to publish a label. It can be
specified as a main class only (for example, 03) or full class-subclass combination (for example 0300).
The former implies that all subclasses are accepted. The format of the labels can be further configured
with deviceLabelFields.

Default: ["03", "0b40", "12"]

Example usage

sources.pci.deviceLabelFields
sources.pci.deviceLabelFields is the set of PCI ID fields to use when constructing the name of the
feature label. Valid fields are class, vendor, device, subsystem_vendor and subsystem_device.

Default: [class, vendor]

Example usage

With the example config above, NFD would publish labels such as feature.node.kubernetes.io/pci-
<class-id>_<vendor-id>_<device-id>.present=true

sources.usb.deviceClassWhitelist
sources.usb.deviceClassWhitelist is a list of USB device class IDs for which to publish a feature label.
The format of the labels can be further configured with deviceLabelFields.

Default: ["0e", "ef", "fe", "ff"]

Example usage

sources.usb.deviceLabelFields

sources.usb.deviceLabelFields is the set of USB ID fields from which to compose the name of the

sources:
 kernel:
 configOpts: [NO_HZ, X86, DMI]

sources:
 pci:
 deviceClassWhitelist: ["0200", "03"]

sources:
 pci:
 deviceLabelFields: [class, vendor, device]

sources:
 usb:
 deviceClassWhitelist: ["ef", "ff"]

OpenShift Container Platform 4.14 Specialized hardware and driver enablement

22

https://pci-ids.ucw.cz/read/PD
https://www.usb.org/defined-class-codes

sources.usb.deviceLabelFields is the set of USB ID fields from which to compose the name of the
feature label. Valid fields are class, vendor, and device.

Default: [class, vendor, device]

Example usage

With the example config above, NFD would publish labels like: feature.node.kubernetes.io/usb-<class-
id>_<vendor-id>.present=true.

sources.custom
sources.custom is the list of rules to process in the custom feature source to create user-specific
labels.

Default: empty

Example usage

3.5. ABOUT THE NODEFEATURERULE CUSTOM RESOURCE

NodeFeatureRule objects are a NodeFeatureDiscovery custom resource designed for rule-based
custom labeling of nodes. Some use cases include application-specific labeling or distribution by
hardware vendors to create specific labels for their devices.

NodeFeatureRule objects provide a method to create vendor- or application-specific labels and taints.
It uses a flexible rule-based mechanism for creating labels and optionally taints based on node features.

3.6. USING THE NODEFEATURERULE CUSTOM RESOURCE

Create a NodeFeatureRule object to label nodes if a set of rules match the conditions.

Procedure

1. Create a custom resource file named nodefeaturerule.yaml that contains the following text:

sources:
 pci:
 deviceLabelFields: [class, vendor]

source:
 custom:
 - name: "my.custom.feature"
 matchOn:
 - loadedKMod: ["e1000e"]
 - pciId:
 class: ["0200"]
 vendor: ["8086"]

apiVersion: nfd.openshift.io/v1
kind: NodeFeatureRule
metadata:
 name: example-rule
spec:
 rules:

CHAPTER 3. NODE FEATURE DISCOVERY OPERATOR

23

This custom resource specifies that labelling occurs when the veth module is loaded and any
PCI device with vendor code 8086 exists in the cluster.

2. Apply the nodefeaturerule.yaml file to your cluster by running the following command:

The example applies the feature label on nodes with the veth module loaded and any PCI
device with vendor code 8086 exists.

NOTE

A relabeling delay of up to 1 minute might occur.

3.7. USING THE NFD TOPOLOGY UPDATER

The Node Feature Discovery (NFD) Topology Updater is a daemon responsible for examining allocated
resources on a worker node. It accounts for resources that are available to be allocated to new pod on a
per-zone basis, where a zone can be a Non-Uniform Memory Access (NUMA) node. The NFD Topology
Updater communicates the information to nfd-master, which creates a NodeResourceTopology
custom resource (CR) corresponding to all of the worker nodes in the cluster. One instance of the NFD
Topology Updater runs on each node of the cluster.

To enable the Topology Updater workers in NFD, set the topologyupdater variable to true in the
NodeFeatureDiscovery CR, as described in the section Using the Node Feature Discovery Operator.

3.7.1. NodeResourceTopology CR

When run with NFD Topology Updater, NFD creates custom resource instances corresponding to the
node resource hardware topology, such as:

 - name: "example rule"
 labels:
 "example-custom-feature": "true"
 # Label is created if all of the rules below match
 matchFeatures:
 # Match if "veth" kernel module is loaded
 - feature: kernel.loadedmodule
 matchExpressions:
 veth: {op: Exists}
 # Match if any PCI device with vendor 8086 exists in the system
 - feature: pci.device
 matchExpressions:
 vendor: {op: In, value: ["8086"]}

$ oc apply -f https://raw.githubusercontent.com/kubernetes-sigs/node-feature-
discovery/v0.13.6/examples/nodefeaturerule.yaml

apiVersion: topology.node.k8s.io/v1alpha1
kind: NodeResourceTopology
metadata:
 name: node1
topologyPolicies: ["SingleNUMANodeContainerLevel"]
zones:
 - name: node-0
 type: Node

OpenShift Container Platform 4.14 Specialized hardware and driver enablement

24

3.7.2. NFD Topology Updater command line flags

To view available command line flags, run the nfd-topology-updater -help command. For example, in a
podman container, run the following command:

-ca-file
The -ca-file flag is one of the three flags, together with the -cert-file and `-key-file`flags, that controls
the mutual TLS authentication on the NFD Topology Updater. This flag specifies the TLS root
certificate that is used for verifying the authenticity of nfd-master.

Default: empty

IMPORTANT

The -ca-file flag must be specified together with the -cert-file and -key-file flags.

Example

 resources:
 - name: cpu
 capacity: 20
 allocatable: 16
 available: 10
 - name: vendor/nic1
 capacity: 3
 allocatable: 3
 available: 3
 - name: node-1
 type: Node
 resources:
 - name: cpu
 capacity: 30
 allocatable: 30
 available: 15
 - name: vendor/nic2
 capacity: 6
 allocatable: 6
 available: 6
 - name: node-2
 type: Node
 resources:
 - name: cpu
 capacity: 30
 allocatable: 30
 available: 15
 - name: vendor/nic1
 capacity: 3
 allocatable: 3
 available: 3

$ podman run gcr.io/k8s-staging-nfd/node-feature-discovery:master nfd-topology-updater -help

$ nfd-topology-updater -ca-file=/opt/nfd/ca.crt -cert-file=/opt/nfd/updater.crt -key-
file=/opt/nfd/updater.key

CHAPTER 3. NODE FEATURE DISCOVERY OPERATOR

25

-cert-file
The -cert-file flag is one of the three flags, together with the -ca-file and -key-file flags, that controls
mutual TLS authentication on the NFD Topology Updater. This flag specifies the TLS certificate
presented for authenticating outgoing requests.

Default: empty

IMPORTANT

The -cert-file flag must be specified together with the -ca-file and -key-file flags.

Example

-h, -help
Print usage and exit.

-key-file
The -key-file flag is one of the three flags, together with the -ca-file and -cert-file flags, that controls
the mutual TLS authentication on the NFD Topology Updater. This flag specifies the private key
corresponding the given certificate file, or -cert-file, that is used for authenticating outgoing requests.

Default: empty

IMPORTANT

The -key-file flag must be specified together with the -ca-file and -cert-file flags.

Example

-kubelet-config-file
The -kubelet-config-file specifies the path to the Kubelet’s configuration file.

Default: /host-var/lib/kubelet/config.yaml

Example

-no-publish
The -no-publish flag disables all communication with the nfd-master, making it a dry run flag for nfd-
topology-updater. NFD Topology Updater runs resource hardware topology detection normally, but no
CR requests are sent to nfd-master.

Default: false

Example

$ nfd-topology-updater -cert-file=/opt/nfd/updater.crt -key-file=/opt/nfd/updater.key -ca-
file=/opt/nfd/ca.crt

$ nfd-topology-updater -key-file=/opt/nfd/updater.key -cert-file=/opt/nfd/updater.crt -ca-
file=/opt/nfd/ca.crt

$ nfd-topology-updater -kubelet-config-file=/var/lib/kubelet/config.yaml

OpenShift Container Platform 4.14 Specialized hardware and driver enablement

26

3.7.2.1. -oneshot

The -oneshot flag causes the NFD Topology Updater to exit after one pass of resource hardware
topology detection.

Default: false

Example

-podresources-socket
The -podresources-socket flag specifies the path to the Unix socket where kubelet exports a gRPC
service to enable discovery of in-use CPUs and devices, and to provide metadata for them.

Default: /host-var/liblib/kubelet/pod-resources/kubelet.sock

Example

-server
The -server flag specifies the address of the nfd-master endpoint to connect to.

Default: localhost:8080

Example

-server-name-override
The -server-name-override flag specifies the common name (CN) which to expect from the nfd-master
TLS certificate. This flag is mostly intended for development and debugging purposes.

Default: empty

Example

-sleep-interval
The -sleep-interval flag specifies the interval between resource hardware topology re-examination and
custom resource updates. A non-positive value implies infinite sleep interval and no re-detection is
done.

Default: 60s

Example

$ nfd-topology-updater -no-publish

$ nfd-topology-updater -oneshot -no-publish

$ nfd-topology-updater -podresources-socket=/var/lib/kubelet/pod-resources/kubelet.sock

$ nfd-topology-updater -server=nfd-master.nfd.svc.cluster.local:443

$ nfd-topology-updater -server-name-override=localhost

$ nfd-topology-updater -sleep-interval=1h

CHAPTER 3. NODE FEATURE DISCOVERY OPERATOR

27

-version
Print version and exit.

-watch-namespace
The -watch-namespace flag specifies the namespace to ensure that resource hardware topology
examination only happens for the pods running in the specified namespace. Pods that are not running in
the specified namespace are not considered during resource accounting. This is particularly useful for
testing and debugging purposes. A * value means that all of the pods across all namespaces are
considered during the accounting process.

Default: *

Example

$ nfd-topology-updater -watch-namespace=rte

OpenShift Container Platform 4.14 Specialized hardware and driver enablement

28

CHAPTER 4. KERNEL MODULE MANAGEMENT OPERATOR
Learn about the Kernel Module Management (KMM) Operator and how you can use it to deploy out-of-
tree kernel modules and device plugins on OpenShift Container Platform clusters.

4.1. ABOUT THE KERNEL MODULE MANAGEMENT OPERATOR

The Kernel Module Management (KMM) Operator manages, builds, signs, and deploys out-of-tree
kernel modules and device plugins on OpenShift Container Platform clusters.

KMM adds a new Module CRD which describes an out-of-tree kernel module and its associated device
plugin. You can use Module resources to configure how to load the module, define ModuleLoader
images for kernel versions, and include instructions for building and signing modules for specific kernel
versions.

KMM is designed to accommodate multiple kernel versions at once for any kernel module, allowing for
seamless node upgrades and reduced application downtime.

4.2. INSTALLING THE KERNEL MODULE MANAGEMENT OPERATOR

As a cluster administrator, you can install the Kernel Module Management (KMM) Operator by using the
OpenShift CLI or the web console.

The KMM Operator is supported on OpenShift Container Platform 4.12 and later. Installing KMM on
version 4.11 does not require specific additional steps. For details on installing KMM on version 4.10 and
earlier, see the section "Installing the Kernel Module Management Operator on earlier versions of
OpenShift Container Platform".

4.2.1. Installing the Kernel Module Management Operator using the web console

As a cluster administrator, you can install the Kernel Module Management (KMM) Operator using the
OpenShift Container Platform web console.

Procedure

1. Log in to the OpenShift Container Platform web console.

2. Install the Kernel Module Management Operator:

a. In the OpenShift Container Platform web console, click Operators → OperatorHub.

b. Select Kernel Module Management Operator from the list of available Operators, and
then click Install.

c. From the Installed Namespace list, select the openshift-kmm namespace.

d. Click Install.

Verification

To verify that KMM Operator installed successfully:

1. Navigate to the Operators → Installed Operators page.

2. Ensure that Kernel Module Management Operator is listed in the openshift-kmm project with

CHAPTER 4. KERNEL MODULE MANAGEMENT OPERATOR

29

2. Ensure that Kernel Module Management Operator is listed in the openshift-kmm project with
a Status of InstallSucceeded.

NOTE

During installation, an Operator might display a Failed status. If the installation
later succeeds with an InstallSucceeded message, you can ignore the Failed
message.

Troubleshooting

1. To troubleshoot issues with Operator installation:

a. Navigate to the Operators → Installed Operators page and inspect the Operator
Subscriptions and Install Plans tabs for any failure or errors under Status.

b. Navigate to the Workloads → Pods page and check the logs for pods in the openshift-
kmm project.

4.2.2. Installing the Kernel Module Management Operator by using the CLI

As a cluster administrator, you can install the Kernel Module Management (KMM) Operator by using the
OpenShift CLI.

Prerequisites

You have a running OpenShift Container Platform cluster.

You installed the OpenShift CLI (oc).

You are logged into the OpenShift CLI as a user with cluster-admin privileges.

Procedure

1. Install KMM in the openshift-kmm namespace:

a. Create the following Namespace CR and save the YAML file, for example, kmm-
namespace.yaml:

b. Create the following OperatorGroup CR and save the YAML file, for example, kmm-op-
group.yaml:

c. Create the following Subscription CR and save the YAML file, for example, kmm-
sub.yaml:

apiVersion: v1
kind: Namespace
metadata:
 name: openshift-kmm

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: kernel-module-management
 namespace: openshift-kmm

OpenShift Container Platform 4.14 Specialized hardware and driver enablement

30

d. Create the subscription object by running the following command:

Verification

To verify that the Operator deployment is successful, run the following command:

Example output

The Operator is available.

4.2.3. Installing the Kernel Module Management Operator on earlier versions of
OpenShift Container Platform

The KMM Operator is supported on OpenShift Container Platform 4.12 and later. For version 4.10 and
earlier, you must create a new SecurityContextConstraint object and bind it to the Operator’s
ServiceAccount. As a cluster administrator, you can install the Kernel Module Management (KMM)
Operator by using the OpenShift CLI.

Prerequisites

You have a running OpenShift Container Platform cluster.

You installed the OpenShift CLI (oc).

You are logged into the OpenShift CLI as a user with cluster-admin privileges.

Procedure

1. Install KMM in the openshift-kmm namespace:

a. Create the following Namespace CR and save the YAML file, for example, kmm-
namespace.yaml file:

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: kernel-module-management
 namespace: openshift-kmm
spec:
 channel: release-1.0
 installPlanApproval: Automatic
 name: kernel-module-management
 source: redhat-operators
 sourceNamespace: openshift-marketplace
 startingCSV: kernel-module-management.v1.0.0

$ oc create -f kmm-sub.yaml

$ oc get -n openshift-kmm deployments.apps kmm-operator-controller

NAME READY UP-TO-DATE AVAILABLE AGE
kmm-operator-controller 1/1 1 1 97s

CHAPTER 4. KERNEL MODULE MANAGEMENT OPERATOR

31

b. Create the following SecurityContextConstraint object and save the YAML file, for
example, kmm-security-constraint.yaml:

c. Bind the SecurityContextConstraint object to the Operator’s ServiceAccount by running
the following commands:

apiVersion: v1
kind: Namespace
metadata:
 name: openshift-kmm

allowHostDirVolumePlugin: false
allowHostIPC: false
allowHostNetwork: false
allowHostPID: false
allowHostPorts: false
allowPrivilegeEscalation: false
allowPrivilegedContainer: false
allowedCapabilities:
 - NET_BIND_SERVICE
apiVersion: security.openshift.io/v1
defaultAddCapabilities: null
fsGroup:
 type: MustRunAs
groups: []
kind: SecurityContextConstraints
metadata:
 name: restricted-v2
priority: null
readOnlyRootFilesystem: false
requiredDropCapabilities:
 - ALL
runAsUser:
 type: MustRunAsRange
seLinuxContext:
 type: MustRunAs
seccompProfiles:
 - runtime/default
supplementalGroups:
 type: RunAsAny
users: []
volumes:
 - configMap
 - downwardAPI
 - emptyDir
 - persistentVolumeClaim
 - projected
 - secret

$ oc apply -f kmm-security-constraint.yaml

$ oc adm policy add-scc-to-user kmm-security-constraint -z kmm-operator-controller -n
openshift-kmm

OpenShift Container Platform 4.14 Specialized hardware and driver enablement

32

d. Create the following OperatorGroup CR and save the YAML file, for example, kmm-op-
group.yaml:

e. Create the following Subscription CR and save the YAML file, for example, kmm-
sub.yaml:

f. Create the subscription object by running the following command:

Verification

To verify that the Operator deployment is successful, run the following command:

Example output

The Operator is available.

4.3. CONFIGURING THE KERNEL MODULE MANAGEMENT OPERATOR

In most cases, the default configuration for the Kernel Module Management (KMM) Operator does not
need to be modified. However, you can modify the Operator settings to suit your environment using the
following procedure.

The Operator configuration is set in the kmm-operator-manager-config ConfigMap in the Operator
namespace.

Procedure

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: kernel-module-management
 namespace: openshift-kmm

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: kernel-module-management
 namespace: openshift-kmm
spec:
 channel: release-1.0
 installPlanApproval: Automatic
 name: kernel-module-management
 source: redhat-operators
 sourceNamespace: openshift-marketplace
 startingCSV: kernel-module-management.v1.0.0

$ oc create -f kmm-sub.yaml

$ oc get -n openshift-kmm deployments.apps kmm-operator-controller

NAME READY UP-TO-DATE AVAILABLE AGE
kmm-operator-controller 1/1 1 1 97s

CHAPTER 4. KERNEL MODULE MANAGEMENT OPERATOR

33

1. To modify the settings, edit the ConfigMap data by entering the following command:

Example output

Table 4.1. Operator configuration parameters

Parameter Description

healthProbeBi
ndAddress

Defines the address on which the Operator monitors for kubelet health probes.
The recommended value is :8081.

job.gcDelay Defines the duration that successful build pods should be preserved for before
they are deleted. There is no recommended value for this setting. For
information about the valid values for this setting, see ParseDuration.

leaderElection
.enabled

Determines whether leader election is used to ensure that only one replica of
the KMM Operator is running at any time. For more information, see Leases. The
recommended value is true.

leaderElection
.resourceID

Determines the name of the resource that leader election uses for holding the
leader lock. The recommended value is kmm.sigs.x-k8s.io.

webhook.disa
bleHTTP2

If true, disables HTTP/2 for the webhook server, as a mitigation for cve-2023-
44487. The recommended value is true.

webhook.port Defines the port on which the Operator monitors webhook requests. The
recommended value is 9443.

$ oc edit configmap -n "$namespace" kmm-operator-manager-config

healthProbeBindAddress: :8081
job:
 gcDelay: 1h
leaderElection:
 enabled: true
 resourceID: kmm.sigs.x-k8s.io
webhook:
 disableHTTP2: true # CVE-2023-44487
 port: 9443
metrics:
 enableAuthnAuthz: true
 disableHTTP2: true # CVE-2023-44487
 bindAddress: 0.0.0.0:8443
 secureServing: true
worker:
 runAsUser: 0
 seLinuxType: spc_t
 setFirmwareClassPath: /var/lib/firmware

OpenShift Container Platform 4.14 Specialized hardware and driver enablement

34

https://pkg.go.dev/time#ParseDuration
https://kubernetes.io/docs/concepts/architecture/leases/
https://access.redhat.com/security/cve/cve-2023-44487

metrics.enable
AuthnAuthz

Determines if metrics are authenticated using TokenReviews and authorized
using SubjectAccessReviews with the kube-apiserver.

For authentication and authorization, the controller needs a ClusterRole with
the following rules:

apiGroups: authentication.k8s.io, resources: tokenreviews,
verbs: create

apiGroups: authorization.k8s.io, resources:
subjectaccessreviews, verbs: create

To scrape metrics, for example, using Prometheus, the client needs a
ClusterRole with the following rule:

nonResourceURLs: "/metrics", verbs: get

The recommended value is true.

metrics.disabl
eHTTP2

If true, disables HTTP/2 for the metrics server as a mitigation for CVE-2023-
44487. The recommended value is true.

metrics.bindA
ddress

Determines the bind address for the metrics server. If unspecified, the default is
:8080. To disable the metrics server, set to 0. The recommended value is
0.0.0.0:8443.

metrics.secure
Serving

Determines whether the metrics are served over HTTPS instead of HTTP. The
recommended value is true.

worker.runAs
User

Determines the value of the runAsUser field of the worker container’s security
context. For more information, see SecurityContext. The recommended value is
9443.

worker.seLinu
xType

Determines the value of the seLinuxOptions.type field of the worker
container’s security context. For more information, see SecurityContext. The
recommended value is spc_t.

worker.setFir
mwareClassPa
th

Sets the kernel’s firmware search path into the
/sys/module/firmware_class/parameters/path file on the node. The
recommended value is /var/lib/firmware if you need to set that value through
the worker app. Otherwise, unset.

Parameter Description

2. After modifying the settings, restart the controller with the following command:

NOTE

The value of <namespace> depends on your original installation method.

$ oc delete pod -n "<namespace>" -l app.kubernetes.io/component=kmm

CHAPTER 4. KERNEL MODULE MANAGEMENT OPERATOR

35

https://access.redhat.com/security/cve/cve-2023-44487
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/

Additional resources

For more information, see Installing the Kernel Module Management Operator .

4.3.1. Unloading the kernel module

You must unload the kernel modules when moving to a newer version or if they introduce some
undesirable side effect on the node.

Procedure

To unload a module loaded with KMM from nodes, delete the corresponding Module resource.
KMM then creates worker pods, where required, to run modprobe -r and unload the kernel
module from the nodes.

WARNING

When unloading worker pods, KMM needs all the resources it uses when
loading the kernel module. This includes the ServiceAccount referenced in
the Module as well as any RBAC defined to allow privileged KMM worker
Pods to run. It also includes any pull secret referenced in
.spec.imageRepoSecret.

To avoid situations where KMM is unable to unload the kernel module from
nodes, make sure those resources are not deleted while the Module
resource is still present in the cluster in any state, including Terminating.
KMM includes a validating admission webhook that rejects the deletion of
namespaces that contain at least one Module resource.

4.3.2. Setting the kernel firmware search path

The Linux kernel accepts the firmware_class.path parameter as a search path for firmware, as
explained in Firmware search paths.

KMM worker pods can set this value on nodes by writing to sysfs before attempting to load kmods.

Procedure

To define a firmware search path, set worker.setFirmwareClassPath to /var/lib/firmware in
the Operator configuration.

Additional resources

For more information about the worker.setFirmwareClassPath path, see Configuring the
Kernel Module Management Operator.

4.4. UNINSTALLING THE KERNEL MODULE MANAGEMENT
OPERATOR

Use one of the following procedures to uninstall the Kernel Module Management (KMM) Operator,



OpenShift Container Platform 4.14 Specialized hardware and driver enablement

36

https://www.kernel.org/doc/html/latest/driver-api/firmware/fw_search_path.html

Use one of the following procedures to uninstall the Kernel Module Management (KMM) Operator,
depending on how the KMM Operator was installed.

4.4.1. Uninstalling a Red Hat catalog installation

Use this procedure if KMM was installed from the Red Hat catalog.

Procedure

Use the following method to uninstall the KMM Operator:

Use the OpenShift console under Operators -→ Installed Operators to locate and uninstall the
Operator.

NOTE

Alternatively, you can delete the Subscription resource in the KMM namespace.

4.4.2. Uninstalling a CLI installation

Use this command if the KMM Operator was installed using the OpenShift CLI.

Procedure

Run the following command to uninstall the KMM Operator:

NOTE

Using this command deletes the Module CRD and all Module instances in the
cluster.

4.5. KERNEL MODULE DEPLOYMENT

Kernel Module Management (KMM) monitors Node and Module resources in the cluster to determine if
a kernel module should be loaded on or unloaded from a node.

To be eligible for a module, a node must contain the following:

Labels that match the module’s .spec.selector field.

A kernel version matching one of the items in the module’s
.spec.moduleLoader.container.kernelMappings field.

If ordered upgrade (ordered_upgrade.md) is configured in the module, a label that matches its
.spec.moduleLoader.container.version field.

When KMM reconciles nodes with the desired state as configured in the Module resource, it creates
worker pods on the target nodes to run the necessary action. The KMM Operator monitors the outcome
of the pods and records the information. The Operator uses this information to label the Node objects
when the module is successfully loaded, and to run the device plugin, if configured.

$ oc delete -k https://github.com/rh-ecosystem-edge/kernel-module-
management/config/default

CHAPTER 4. KERNEL MODULE MANAGEMENT OPERATOR

37

Worker pods run the KMM worker binary that performs the following tasks:

Pulls the kmod image configured in the Module resource. Kmod images are standard OCI
images that contain .ko files.

Extracts the image in the pod’s filesystem.

Runs modprobe with the specified arguments to perform the necessary action.

4.5.1. The Module custom resource definition

The Module custom resource definition (CRD) represents a kernel module that can be loaded on all or
select nodes in the cluster, through a kmod image. A Module custom resource (CR) specifies one or
more kernel versions with which it is compatible, and a node selector.

The compatible versions for a Module resource are listed under
.spec.moduleLoader.container.kernelMappings. A kernel mapping can either match a literal version,
or use regexp to match many of them at the same time.

The reconciliation loop for the Module resource runs the following steps:

1. List all nodes matching .spec.selector.

2. Build a set of all kernel versions running on those nodes.

3. For each kernel version:

a. Go through .spec.moduleLoader.container.kernelMappings and find the appropriate
container image name. If the kernel mapping has build or sign defined and the container
image does not already exist, run the build, the signing pod, or both, as needed.

b. Create a worker pod to pull the container image determined in the previous step and run
modprobe.

c. If .spec.devicePlugin is defined, create a device plugin daemon set using the configuration
specified under .spec.devicePlugin.container.

4. Run garbage-collect on:

a. Obsolete device plugin DaemonSets that do not target any node.

b. Successful build pods.

c. Successful signing pods.

4.5.2. Set soft dependencies between kernel modules

Some configurations require that several kernel modules be loaded in a specific order to work properly,
even though the modules do not directly depend on each other through symbols. These are called soft
dependencies. depmod is usually not aware of these dependencies, and they do not appear in the files it
produces. For example, if mod_a has a soft dependency on mod_b, modprobe mod_a will not load
mod_b.

You can resolve these situations by declaring soft dependencies in the Module custom resource
definition (CRD) using the modulesLoadingOrder field.

...

OpenShift Container Platform 4.14 Specialized hardware and driver enablement

38

In the configuration above, the worker pod will first try to unload the in-tree mod_b before loading
mod_a from the kmod image. When the worker pod is terminated and mod_a is unloaded, mod_b will
not be loaded again.

NOTE

The first value in the list, to be loaded last, must be equivalent to the moduleName.

4.6. SECURITY AND PERMISSIONS

IMPORTANT

Loading kernel modules is a highly sensitive operation. After they are loaded, kernel
modules have all possible permissions to do any kind of operation on the node.

4.6.1. ServiceAccounts and SecurityContextConstraints

Kernel Module Management (KMM) creates a privileged workload to load the kernel modules on nodes.
That workload needs ServiceAccounts allowed to use the privileged SecurityContextConstraint
(SCC) resource.

The authorization model for that workload depends on the namespace of the Module resource, as well
as its spec.

If the .spec.moduleLoader.serviceAccountName or
.spec.devicePlugin.serviceAccountName fields are set, they are always used.

If those fields are not set, then:

If the Module resource is created in the Operator’s namespace (openshift-kmm by
default), then KMM uses its default, powerful ServiceAccounts to run the worker and
device plugin pods.

If the Module resource is created in any other namespace, then KMM runs the pods with
the namespace’s default ServiceAccount. The Module resource cannot run a privileged
workload unless you manually enable it to use the privileged SCC.

IMPORTANT

spec:
 moduleLoader:
 container:
 modprobe:
 moduleName: mod_a
 dirName: /opt
 firmwarePath: /firmware
 parameters:
 - param=1
 modulesLoadingOrder:
 - mod_a
 - mod_b

CHAPTER 4. KERNEL MODULE MANAGEMENT OPERATOR

39

IMPORTANT

openshift-kmm is a trusted namespace.

When setting up RBAC permissions, remember that any user or ServiceAccount
creating a Module resource in the openshift-kmm namespace results in KMM
automatically running privileged workloads on potentially all nodes in the cluster.

To allow any ServiceAccount to use the privileged SCC and run worker or device plugin pods, you can
use the oc adm policy command, as in the following example:

4.6.2. Pod security standards

OpenShift runs a synchronization mechanism that sets the namespace Pod Security level automatically
based on the security contexts in use. No action is needed.

Additional resources

Understanding and managing pod security admission

4.7. REPLACING IN-TREE MODULES WITH OUT-OF-TREE MODULES

You can use Kernel Module Management (KMM) to build kernel modules that can be loaded or unloaded
into the kernel on demand. These modules extend the functionality of the kernel without the need to
reboot the system. Modules can be configured as built-in or dynamically loaded.

Dynamically loaded modules include in-tree modules and out-of-tree (OOT) modules. In-tree modules
are internal to the Linux kernel tree, that is, they are already part of the kernel. Out-of-tree modules are
external to the Linux kernel tree. They are generally written for development and testing purposes, such
as testing the new version of a kernel module that is shipped in-tree, or to deal with incompatibilities.

Some modules that are loaded by KMM could replace in-tree modules that are already loaded on the
node. To unload in-tree modules before loading your module, set the value of the
.spec.moduleLoader.container.inTreeModulesToRemove field to the modules that you want to
unload. The following example demonstrates module replacement for all kernel mappings:

In this example, the moduleLoader pod uses inTreeModulesToRemove to unload the in-tree mod_a
and mod_b before loading mod_a from the moduleLoader image. When the moduleLoader`pod is
terminated and `mod_a is unloaded, mod_b is not loaded again.

The following is an example for module replacement for specific kernel mappings:

$ oc adm policy add-scc-to-user privileged -z "${serviceAccountName}" [-n "${namespace}"]

...
spec:
 moduleLoader:
 container:
 modprobe:
 moduleName: mod_a

 inTreeModulesToRemove: [mod_a, mod_b]

...

OpenShift Container Platform 4.14 Specialized hardware and driver enablement

40

https://docs.redhat.com/en/documentation/openshift_container_platform/4.14/html-single/authentication_and_authorization/#understanding-and-managing-pod-security-admission

Additional resources

Building a linux kernel module

4.7.1. Example Module CR

The following is an annotated Module example:

spec:
 moduleLoader:
 container:
 kernelMappings:
 - literal: 6.0.15-300.fc37.x86_64
 containerImage: "some.registry/org/my-kmod:${KERNEL_FULL_VERSION}"
 inTreeModulesToRemove: [<module_name>, <module_name>]

apiVersion: kmm.sigs.x-k8s.io/v1beta1
kind: Module
metadata:
 name: <my_kmod>
spec:
 moduleLoader:
 container:
 modprobe:
 moduleName: <my_kmod> 1
 dirName: /opt 2
 firmwarePath: /firmware 3
 parameters: 4
 - param=1
 kernelMappings: 5
 - literal: 6.0.15-300.fc37.x86_64
 containerImage: some.registry/org/my-kmod:6.0.15-300.fc37.x86_64
 - regexp: '^.+\fc37\.x86_64$' 6
 containerImage: "some.other.registry/org/<my_kmod>:${KERNEL_FULL_VERSION}"
 - regexp: '^.+$' 7
 containerImage: "some.registry/org/<my_kmod>:${KERNEL_FULL_VERSION}"
 build:
 buildArgs: 8
 - name: ARG_NAME
 value: <some_value>
 secrets:
 - name: <some_kubernetes_secret> 9
 baseImageRegistryTLS: 10
 insecure: false
 insecureSkipTLSVerify: false 11
 dockerfileConfigMap: 12
 name: <my_kmod_dockerfile>
 sign:
 certSecret:
 name: <cert_secret> 13
 keySecret:
 name: <key_secret> 14
 filesToSign:

CHAPTER 4. KERNEL MODULE MANAGEMENT OPERATOR

41

https://fastbitlab.com/building-a-linux-kernel-module/

1 1 1

2

3

4

5

6

7

8

9

10

11

Required.

Optional.

Optional: Copies /firmware/* into /var/lib/firmware/ on the node.

Optional.

At least one kernel item is required.

For each node running a kernel matching the regular expression, KMM creates a DaemonSet
resource running the image specified in containerImage with ${KERNEL_FULL_VERSION}
replaced with the kernel version.

For any other kernel, build the image using the Dockerfile in the my-kmod ConfigMap.

Optional.

Optional: A value for some-kubernetes-secret can be obtained from the build environment at
/run/secrets/some-kubernetes-secret.

This field has no effect. When building kmod images or signing kmods within a kmod image, you
might sometimes need to pull base images from a registry that serves a certificate signed by an
untrusted Certificate Authority (CA). In order for KMM to trust that CA, it must also trust the new
CA by replacing the cluster’s CA bundle.

See "Additional resources" to learn how to replace the cluster’s CA bundle.

Optional: Avoid using this parameter. If set to true, the build will skip any TLS server certificate
validation when pulling the image in the Dockerfile FROM instruction using plain HTTP.

 - /opt/lib/modules/${KERNEL_FULL_VERSION}/<my_kmod>.ko
 registryTLS: 15
 insecure: false 16
 insecureSkipTLSVerify: false
 serviceAccountName: <sa_module_loader> 17
 devicePlugin: 18
 container:
 image: some.registry/org/device-plugin:latest 19
 env:
 - name: MY_DEVICE_PLUGIN_ENV_VAR
 value: SOME_VALUE
 volumeMounts: 20
 - mountPath: /some/mountPath
 name: <device_plugin_volume>
 volumes: 21
 - name: <device_plugin_volume>
 configMap:
 name: <some_configmap>
 serviceAccountName: <sa_device_plugin> 22
 imageRepoSecret: 23
 name: <secret_name>
 selector:
 node-role.kubernetes.io/worker: ""

OpenShift Container Platform 4.14 Specialized hardware and driver enablement

42

12

13

14

15

16

17

18

19

20

21

22

23

Required.

Required: A secret holding the public secureboot key with the key 'cert'.

Required: A secret holding the private secureboot key with the key 'key'.

Optional: Avoid using this parameter. If set to true, KMM will be allowed to check if the container
image already exists using plain HTTP.

Optional: Avoid using this parameter. If set to true, KMM will skip any TLS server certificate
validation when checking if the container image already exists.

Optional.

Optional.

Required: If the device plugin section is present.

Optional.

Optional.

Optional.

Optional: Used to pull module loader and device plugin images.

Additional resources

Replacing the CA Bundle certificate

4.8. SYMBOLIC LINKS FOR IN-TREE DEPENDENCIES

Some kernel modules depend on other kernel modules that are shipped with the node’s operating
system. To avoid copying those dependencies into the kmod image, Kernel Module Management (KMM)
mounts /usr/lib/modules into both the build and the worker pod’s filesystems.

By creating a symlink from /opt/usr/lib/modules/<kernel_version>/<symlink_name> to
/usr/lib/modules/<kernel_version>, depmod can use the in-tree kmods on the building node’s
filesystem to resolve dependencies.

At runtime, the worker pod extracts the entire image, including the <symlink_name> symbolic link. That
symbolic link points to /usr/lib/modules/<kernel_version> in the worker pod, which is mounted from
the node’s filesystem. modprobe can then follow that link and load the in-tree dependencies as needed.

In the following example, host is the symbolic link name under /opt/usr/lib/modules/<kernel_version>:

ARG DTK_AUTO

FROM ${DTK_AUTO} as builder

#
Build steps
#

FROM ubi9/ubi

CHAPTER 4. KERNEL MODULE MANAGEMENT OPERATOR

43

https://docs.redhat.com/en/documentation/openshift_container_platform/4.14/html-single/security_and_compliance/#ca-bundle-replacing_updating-ca-bundle

NOTE

depmod generates dependency files based on the kernel modules present on the node
that runs the kmod image build.

On the node on which KMM loads the kernel modules, modprobe expects the files to be
present under /usr/lib/modules/<kernel_version>, and the same filesystem layout. It is
highly recommended that the build and the target nodes share the same operating
system and release.

4.9. CREATING A KMOD IMAGE

Kernel Module Management (KMM) works with purpose-built kmod images, which are standard OCI
images that contain .ko files. The location of the .ko files must match the following pattern:
<prefix>/lib/modules/[kernel-version]/.

Keep the following in mind when working with the .ko files:

In most cases, <prefix> should be equal to /opt. This is the Module CRD’s default value.

kernel-version must not be empty and must be equal to the kernel version the kernel modules
were built for.

4.9.1. Running depmod

It is recommended to run depmod at the end of the build process to generate modules.dep and .map
files. This is especially useful if your kmod image contains several kernel modules and if one of the
modules depends on another module.

NOTE

You must have a Red Hat subscription to download the kernel-devel package.

Procedure

Generate modules.dep and .map files for a specific kernel version by running the following
command:

ARG KERNEL_FULL_VERSION

RUN dnf update && dnf install -y kmod

COPY --from=builder /usr/src/kernel-module-management/ci/kmm-kmod/kmm_ci_a.ko
/opt/lib/modules/${KERNEL_FULL_VERSION}/
COPY --from=builder /usr/src/kernel-module-management/ci/kmm-kmod/kmm_ci_b.ko
/opt/lib/modules/${KERNEL_FULL_VERSION}/

Create the symbolic link
RUN ln -s /lib/modules/${KERNEL_FULL_VERSION}
/opt/lib/modules/${KERNEL_FULL_VERSION}/host

RUN depmod -b /opt ${KERNEL_FULL_VERSION}

OpenShift Container Platform 4.14 Specialized hardware and driver enablement

44

4.9.1.1. Example Dockerfile

If you are building your image on OpenShift Container Platform, consider using the Driver Tool Kit
(DTK).

For further information, see using an entitled build .

Additional resources

Driver Toolkit

4.9.2. Building in the cluster

KMM can build kmod images in the cluster. Follow these guidelines:

Provide build instructions using the build section of a kernel mapping.

Copy the Dockerfile for your container image into a ConfigMap resource, under the dockerfile
key.

Ensure that the ConfigMap is located in the same namespace as the Module.

KMM checks if the image name specified in the containerImage field exists. If it does, the build is
skipped.

Otherwise, KMM creates a Build resource to build your image. After the image is built, KMM proceeds
with the Module reconciliation. See the following example.

$ depmod -b /opt ${KERNEL_FULL_VERSION}+`.

apiVersion: v1
kind: ConfigMap
metadata:
 name: kmm-ci-dockerfile
data:
 dockerfile: |
 ARG DTK_AUTO
 FROM ${DTK_AUTO} as builder
 ARG KERNEL_FULL_VERSION
 WORKDIR /usr/src
 RUN ["git", "clone", "https://github.com/rh-ecosystem-edge/kernel-module-management.git"]
 WORKDIR /usr/src/kernel-module-management/ci/kmm-kmod
 RUN KERNEL_SRC_DIR=/lib/modules/${KERNEL_FULL_VERSION}/build make all
 FROM registry.redhat.io/ubi9/ubi-minimal
 ARG KERNEL_FULL_VERSION
 RUN microdnf install kmod
 COPY --from=builder /usr/src/kernel-module-management/ci/kmm-kmod/kmm_ci_a.ko
/opt/lib/modules/${KERNEL_FULL_VERSION}/
 COPY --from=builder /usr/src/kernel-module-management/ci/kmm-kmod/kmm_ci_b.ko
/opt/lib/modules/${KERNEL_FULL_VERSION}/
 RUN depmod -b /opt ${KERNEL_FULL_VERSION}

...
- regexp: '^.+$'

CHAPTER 4. KERNEL MODULE MANAGEMENT OPERATOR

45

https://cloud.redhat.com/blog/how-to-use-entitled-image-builds-to-build-drivercontainers-with-ubi-on-openshift

1

2

3

4

5

6

7

8

Optional.

Optional.

Will be mounted in the build pod as /run/secrets/some-kubernetes-secret.

Optional: Avoid using this parameter. If set to true, the build will be allowed to pull the image in the
Dockerfile FROM instruction using plain HTTP.

Optional: Avoid using this parameter. If set to true, the build will skip any TLS server certificate
validation when pulling the image in the Dockerfile FROM instruction using plain HTTP.

Required.

Optional: Avoid using this parameter. If set to true, KMM will be allowed to check if the container
image already exists using plain HTTP.

Optional: Avoid using this parameter. If set to true, KMM will skip any TLS server certificate
validation when checking if the container image already exists.

Successful build pods are garbage collected immediately, unless the job.gcDelay parameter is set in the
Operator configuration. Failed build pods are always preserved and must be deleted manually by the
administrator for the build to be restarted.

Additional resources

Build configuration resources

Preflight validation for Kernel Module Management (KMM) Modules

4.9.3. Using the Driver Toolkit

The Driver Toolkit (DTK) is a convenient base image for building build kmod loader images. It contains
tools and libraries for the OpenShift version currently running in the cluster.

Procedure

Use DTK as the first stage of a multi-stage Dockerfile.

 containerImage: "some.registry/org/<my_kmod>:${KERNEL_FULL_VERSION}"
 build:
 buildArgs: 1
 - name: ARG_NAME
 value: <some_value>
 secrets: 2
 - name: <some_kubernetes_secret> 3
 baseImageRegistryTLS:
 insecure: false 4
 insecureSkipTLSVerify: false 5
 dockerfileConfigMap: 6
 name: <my_kmod_dockerfile>
 registryTLS:
 insecure: false 7
 insecureSkipTLSVerify: false 8

OpenShift Container Platform 4.14 Specialized hardware and driver enablement

46

https://docs.redhat.com/en/documentation/openshift_container_platform/4.14/html-single/builds_using_buildconfig/#build-configuration
https://docs.redhat.com/en/documentation/openshift_container_platform/4.14/html-single/updating_clusters/#preflight-validation-for-kernel-module-management-kmm-modules

1. Build the kernel modules.

2. Copy the .ko files into a smaller end-user image such as ubi-minimal.

3. To leverage DTK in your in-cluster build, use the DTK_AUTO build argument. The value is
automatically set by KMM when creating the Build resource. See the following example.

Additional resources

Driver Toolkit

4.10. USING SIGNING WITH KERNEL MODULE MANAGEMENT (KMM)

On a Secure Boot enabled system, all kernel modules (kmods) must be signed with a public/private key-
pair enrolled into the Machine Owner’s Key (MOK) database. Drivers distributed as part of a distribution
should already be signed by the distribution’s private key, but for kernel modules build out-of-tree, KMM
supports signing kernel modules using the sign section of the kernel mapping.

For more details on using Secure Boot, see Generating a public and private key pair

Prerequisites

A public private key pair in the correct (DER) format.

At least one secure-boot enabled node with the public key enrolled in its MOK database.

Either a pre-built driver container image, or the source code and Dockerfile needed to build
one in-cluster.

4.11. ADDING THE KEYS FOR SECUREBOOT

To use KMM Kernel Module Management (KMM) to sign kernel modules, a certificate and private key
are required. For details on how to create these, see Generating a public and private key pair .

For details on how to extract the public and private key pair, see Signing kernel modules with the private
key. Use steps 1 through 4 to extract the keys into files.

Procedure

ARG DTK_AUTO
FROM ${DTK_AUTO} as builder
ARG KERNEL_FULL_VERSION
WORKDIR /usr/src
RUN ["git", "clone", "https://github.com/rh-ecosystem-edge/kernel-module-management.git"]
WORKDIR /usr/src/kernel-module-management/ci/kmm-kmod
RUN KERNEL_SRC_DIR=/lib/modules/${KERNEL_FULL_VERSION}/build make all
FROM ubi9/ubi-minimal
ARG KERNEL_FULL_VERSION
RUN microdnf install kmod
COPY --from=builder /usr/src/kernel-module-management/ci/kmm-kmod/kmm_ci_a.ko
/opt/lib/modules/${KERNEL_FULL_VERSION}/
COPY --from=builder /usr/src/kernel-module-management/ci/kmm-kmod/kmm_ci_b.ko
/opt/lib/modules/${KERNEL_FULL_VERSION}/
RUN depmod -b /opt ${KERNEL_FULL_VERSION}

CHAPTER 4. KERNEL MODULE MANAGEMENT OPERATOR

47

https://catalog.redhat.com/software/containers/ubi9/ubi-minimal
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_monitoring_and_updating_the_kernel/signing-a-kernel-and-modules-for-secure-boot_managing-monitoring-and-updating-the-kernel#generating-a-public-and-private-key-pair_signing-a-kernel-and-modules-for-secure-boot
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_monitoring_and_updating_the_kernel/signing-a-kernel-and-modules-for-secure-boot_managing-monitoring-and-updating-the-kernel#generating-a-public-and-private-key-pair_signing-a-kernel-and-modules-for-secure-boot
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_monitoring_and_updating_the_kernel/signing-a-kernel-and-modules-for-secure-boot_managing-monitoring-and-updating-the-kernel#signing-kernel-modules-with-the-private-key_signing-a-kernel-and-modules-for-secure-boot

1 2

1. Create the sb_cert.cer file that contains the certificate and the sb_cert.priv file that contains
the private key:

2. Add the files by using one of the following methods:

Add the files as secrets directly:

Add the files by base64 encoding them:

3. Add the encoded text to a YAML file:

namespace - Replace default with a valid namespace.

4. Apply the YAML file:

4.11.1. Checking the keys

After you have added the keys, you must check them to ensure they are set correctly.

$ openssl req -x509 -new -nodes -utf8 -sha256 -days 36500 -batch -config
configuration_file.config -outform DER -out my_signing_key_pub.der -keyout
my_signing_key.priv

$ oc create secret generic my-signing-key --from-file=key=<my_signing_key.priv>

$ oc create secret generic my-signing-key-pub --from-file=cert=
<my_signing_key_pub.der>

$ cat sb_cert.priv | base64 -w 0 > my_signing_key2.base64

$ cat sb_cert.cer | base64 -w 0 > my_signing_key_pub.base64

apiVersion: v1
kind: Secret
metadata:
 name: my-signing-key-pub
 namespace: default 1
type: Opaque
data:
 cert: <base64_encoded_secureboot_public_key>

apiVersion: v1
kind: Secret
metadata:
 name: my-signing-key
 namespace: default 2
type: Opaque
data:
 key: <base64_encoded_secureboot_private_key>

$ oc apply -f <yaml_filename>

OpenShift Container Platform 4.14 Specialized hardware and driver enablement

48

https://kubernetes.io/docs/concepts/configuration/secret/

Procedure

1. Check to ensure the public key secret is set correctly:

This should display a certificate with a Serial Number, Issuer, Subject, and more.

2. Check to ensure the private key secret is set correctly:

This should display the key enclosed in the -----BEGIN PRIVATE KEY----- and -----END
PRIVATE KEY----- lines.

4.12. SIGNING KMODS IN A PRE-BUILT IMAGE

Use this procedure if you have a pre-built image, such as an image either distributed by a hardware
vendor or built elsewhere.

The following YAML file adds the public/private key-pair as secrets with the required key names - key
for the private key, cert for the public key. The cluster then pulls down the unsignedImage image,
opens it, signs the kernel modules listed in filesToSign, adds them back, and pushes the resulting image
as containerImage.

KMM then loads the signed kmods onto all the nodes with that match the selector. The kmods are
successfully loaded on any nodes that have the public key in their MOK database, and any nodes that
are not secure-boot enabled, which will ignore the signature.

Prerequisites

The keySecret and certSecret secrets have been created in the same namespace as the rest of
the resources.

Procedure

Apply the YAML file:

$ oc get secret -o yaml <certificate secret name> | awk '/cert/{print $2; exit}' | base64 -d |
openssl x509 -inform der -text

$ oc get secret -o yaml <private key secret name> | awk '/key/{print $2; exit}' | base64 -d

apiVersion: kmm.sigs.x-k8s.io/v1beta1
kind: Module
metadata:
 name: example-module
spec:
 moduleLoader:
 serviceAccountName: default
 container:
 modprobe: 1
 moduleName: '<module_name>'
 kernelMappings:
 # the kmods will be deployed on all nodes in the cluster with a kernel that matches the
regexp
 - regexp: '^.*\.x86_64$'
 # the container to produce containing the signed kmods

CHAPTER 4. KERNEL MODULE MANAGEMENT OPERATOR

49

1

2

3

The name of the kmod to load.

The name of the container image. For example, quay.io/myuser/my-driver:<kernelversion.

The name of the unsigned image. For example, quay.io/myuser/my-driver:<kernelversion.

4.13. BUILDING AND SIGNING A KMOD IMAGE

Use this procedure if you have source code and must build your image first.

The following YAML file builds a new container image using the source code from the repository. The
image produced is saved back in the registry with a temporary name, and this temporary image is then
signed using the parameters in the sign section.

The temporary image name is based on the final image name and is set to be <containerImage>:<tag>-
<namespace>_<module name>_kmm_unsigned.

For example, using the following YAML file, Kernel Module Management (KMM) builds an image named
example.org/repository/minimal-driver:final-default_example-module_kmm_unsigned containing
the build with unsigned kmods and pushes it to the registry. Then it creates a second image named
example.org/repository/minimal-driver:final that contains the signed kmods. It is this second image
that is pulled by the worker pods and contains the kmods to be loaded on the cluster nodes.

After it is signed, you can safely delete the temporary image from the registry. It will be rebuilt, if needed.

Prerequisites

The keySecret and certSecret secrets have been created in the same namespace as the rest of
the resources.

Procedure

Apply the YAML file:

 containerImage: <image_name> 2
 sign:
 # the image containing the unsigned kmods (we need this because we are not
building the kmods within the cluster)
 unsignedImage: <image_name> 3
 keySecret: # a secret holding the private secureboot key with the key 'key'
 name: <private_key_secret_name>
 certSecret: # a secret holding the public secureboot key with the key 'cert'
 name: <certificate_secret_name>
 filesToSign: # full path within the unsignedImage container to the kmod(s) to sign
 - /opt/lib/modules/4.18.0-348.2.1.el8_5.x86_64/kmm_ci_a.ko
 imageRepoSecret:
 # the name of a secret containing credentials to pull unsignedImage and push
containerImage to the registry
 name: repo-pull-secret
 selector:
 kubernetes.io/arch: amd64

apiVersion: v1

OpenShift Container Platform 4.14 Specialized hardware and driver enablement

50

1 2

3

Replace default with a valid namespace.

The default serviceAccountName does not have the required permissions to run a module that is

kind: ConfigMap
metadata:
 name: example-module-dockerfile
 namespace: <namespace> 1
data:
 Dockerfile: |
 ARG DTK_AUTO
 ARG KERNEL_VERSION
 FROM ${DTK_AUTO} as builder
 WORKDIR /build/
 RUN git clone -b main --single-branch https://github.com/rh-ecosystem-edge/kernel-
module-management.git
 WORKDIR kernel-module-management/ci/kmm-kmod/
 RUN make
 FROM registry.access.redhat.com/ubi9/ubi:latest
 ARG KERNEL_VERSION
 RUN yum -y install kmod && yum clean all
 RUN mkdir -p /opt/lib/modules/${KERNEL_VERSION}
 COPY --from=builder /build/kernel-module-management/ci/kmm-kmod/*.ko
/opt/lib/modules/${KERNEL_VERSION}/
 RUN /usr/sbin/depmod -b /opt

apiVersion: kmm.sigs.x-k8s.io/v1beta1
kind: Module
metadata:
 name: example-module
 namespace: <namespace> 2
spec:
 moduleLoader:
 serviceAccountName: default 3
 container:
 modprobe:
 moduleName: simple_kmod
 kernelMappings:
 - regexp: '^.*\.x86_64$'
 containerImage: <final_driver_container_name>
 build:
 dockerfileConfigMap:
 name: example-module-dockerfile
 sign:
 keySecret:
 name: <private_key_secret_name>
 certSecret:
 name: <certificate_secret_name>
 filesToSign:
 - /opt/lib/modules/4.18.0-348.2.1.el8_5.x86_64/kmm_ci_a.ko
 imageRepoSecret: 4
 name: repo-pull-secret
 selector: # top-level selector
 kubernetes.io/arch: amd64

CHAPTER 4. KERNEL MODULE MANAGEMENT OPERATOR

51

4

The default serviceAccountName does not have the required permissions to run a module that is
privileged. For information on creating a service account, see "Creating service accounts" in the

Used as imagePullSecrets in the DaemonSet object and to pull and push for the build and sign
features.

Additional resources

Creating service accounts .

4.14. KMM HUB AND SPOKE

In hub and spoke scenarios, many spoke clusters are connected to a central, powerful hub cluster. Kernel
Module Management (KMM) depends on Red Hat Advanced Cluster Management (RHACM) to operate
in hub and spoke environments.

KMM is compatible with hub and spoke environments through decoupling KMM features. A
ManagedClusterModule custom resource definition (CRD) is provided to wrap the existing Module
CRD and extend it to select Spoke clusters. Also provided is KMM-Hub, a new standalone controller that
builds images and signs modules on the hub cluster.

In hub and spoke setups, spokes are focused, resource-constrained clusters that are centrally managed
by a hub cluster. Spokes run the single-cluster edition of KMM, with those resource-intensive features
disabled. To adapt KMM to this environment, you should reduce the workload running on the spokes to
the minimum, while the hub takes care of the expensive tasks.

Building kernel module images and signing the .ko files, should run on the hub. The scheduling of the
Module Loader and Device Plugin DaemonSets can only happen on the spokes.

Additional resources

Red Hat Advanced Cluster Management (RHACM)

4.14.1. KMM-Hub

The KMM project provides KMM-Hub, an edition of KMM dedicated to hub clusters. KMM-Hub monitors
all kernel versions running on the spokes and determines the nodes on the cluster that should receive a
kernel module.

KMM-Hub runs all compute-intensive tasks such as image builds and kmod signing, and prepares the
trimmed-down Module to be transferred to the spokes through RHACM.

NOTE

KMM-Hub cannot be used to load kernel modules on the hub cluster. Install the regular
edition of KMM to load kernel modules.

Additional resources

Installing KMM

4.14.2. Installing KMM-Hub

OpenShift Container Platform 4.14 Specialized hardware and driver enablement

52

https://docs.redhat.com/en/documentation/openshift_container_platform/4.14/html-single/authentication_and_authorization/#service-accounts-managing_understanding-service-accounts
https://www.redhat.com/en/technologies/management/advanced-cluster-management
https://openshift-kmm.netlify.app/documentation/install/

You can use one of the following methods to install KMM-Hub:

With the Operator Lifecycle Manager (OLM)

Creating KMM resources

Additional resources

KMM Operator bundle

4.14.2.1. Installing KMM-Hub using the Operator Lifecycle Manager

Use the Operators section of the OpenShift console to install KMM-Hub.

4.14.2.2. Installing KMM-Hub by creating KMM resources

Procedure

If you want to install KMM-Hub programmatically, you can use the following resources to create
the Namespace, OperatorGroup and Subscription resources:

4.14.3. Using the ManagedClusterModule CRD

Use the ManagedClusterModule Custom Resource Definition (CRD) to configure the deployment of
kernel modules on spoke clusters. This CRD is cluster-scoped, wraps a Module spec and adds the
following additional fields:

apiVersion: v1
kind: Namespace
metadata:
 name: openshift-kmm-hub

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: kernel-module-management-hub
 namespace: openshift-kmm-hub

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: kernel-module-management-hub
 namespace: openshift-kmm-hub
spec:
 channel: stable
 installPlanApproval: Automatic
 name: kernel-module-management-hub
 source: redhat-operators
 sourceNamespace: openshift-marketplace

apiVersion: hub.kmm.sigs.x-k8s.io/v1beta1
kind: ManagedClusterModule
metadata:

CHAPTER 4. KERNEL MODULE MANAGEMENT OPERATOR

53

https://catalog.redhat.com/software/containers/kmm/kernel-module-management-hub-operator-bundle/63d84cc33862da54bb19b8c6?architecture=amd64&image=654273ac86f7e537ae452f6ehttps://catalog.redhat.com/software/containers/kmm/kernel-module-management-hub-operator-bundle/63d84cc33862da54bb19b8c6?architecture=amd64&image=654273ac86f7e537ae452f6e

1

2

3

4

moduleSpec: Contains moduleLoader and devicePlugin sections, similar to a Module resource.

Selects nodes within the ManagedCluster.

Specifies in which namespace the Module should be created.

Selects ManagedCluster objects.

If build or signing instructions are present in .spec.moduleSpec, those pods are run on the hub cluster in
the operator’s namespace.

When the .spec.selector matches one or more ManagedCluster resources, then KMM-Hub creates a
ManifestWork resource in the corresponding namespace(s). ManifestWork contains a trimmed-down
Module resource, with kernel mappings preserved but all build and sign subsections are removed.
containerImage fields that contain image names ending with a tag are replaced with their digest
equivalent.

4.14.4. Running KMM on the spoke

After installing Kernel Module Management (KMM) on the spoke, no further action is required. Create a
ManagedClusterModule object from the hub to deploy kernel modules on spoke clusters.

Procedure

You can install KMM on the spokes cluster through a RHACM Policy object. In addition to installing
KMM from the OperatorHub and running it in a lightweight spoke mode, the Policy configures
additional RBAC required for the RHACM agent to be able to manage Module resources.

Use the following RHACM policy to install KMM on spoke clusters:

apiVersion: policy.open-cluster-management.io/v1
kind: Policy
metadata:
 name: install-kmm
spec:
 remediationAction: enforce
 disabled: false
 policy-templates:
 - objectDefinition:
 apiVersion: policy.open-cluster-management.io/v1
 kind: ConfigurationPolicy
 metadata:

 name: <my-mcm>
 # No namespace, because this resource is cluster-scoped.
spec:
 moduleSpec: 1
 selector: 2
 node-wants-my-mcm: 'true'

 spokeNamespace: <some-namespace> 3

 selector: 4
 wants-my-mcm: 'true'

OpenShift Container Platform 4.14 Specialized hardware and driver enablement

54

 name: install-kmm
 spec:
 severity: high
 object-templates:
 - complianceType: mustonlyhave
 objectDefinition:
 apiVersion: v1
 kind: Namespace
 metadata:
 name: openshift-kmm
 - complianceType: mustonlyhave
 objectDefinition:
 apiVersion: operators.coreos.com/v1
 kind: OperatorGroup
 metadata:
 name: kmm
 namespace: openshift-kmm
 spec:
 upgradeStrategy: Default
 - complianceType: mustonlyhave
 objectDefinition:
 apiVersion: operators.coreos.com/v1alpha1
 kind: Subscription
 metadata:
 name: kernel-module-management
 namespace: openshift-kmm
 spec:
 channel: stable
 config:
 env:
 - name: KMM_MANAGED 1
 value: "1"
 installPlanApproval: Automatic
 name: kernel-module-management
 source: redhat-operators
 sourceNamespace: openshift-marketplace
 - complianceType: mustonlyhave
 objectDefinition:
 apiVersion: rbac.authorization.k8s.io/v1
 kind: ClusterRole
 metadata:
 name: kmm-module-manager
 rules:
 - apiGroups: [kmm.sigs.x-k8s.io]
 resources: [modules]
 verbs: [create, delete, get, list, patch, update, watch]
 - complianceType: mustonlyhave
 objectDefinition:
 apiVersion: rbac.authorization.k8s.io/v1
 kind: ClusterRoleBinding
 metadata:
 name: klusterlet-kmm
 subjects:
 - kind: ServiceAccount
 name: klusterlet-work-sa
 namespace: open-cluster-management-agent

CHAPTER 4. KERNEL MODULE MANAGEMENT OPERATOR

55

1

2

 roleRef:
 kind: ClusterRole
 name: kmm-module-manager
 apiGroup: rbac.authorization.k8s.io

apiVersion: apps.open-cluster-management.io/v1
kind: PlacementRule
metadata:
 name: all-managed-clusters
spec:
 clusterSelector: 2
 matchExpressions: []

apiVersion: policy.open-cluster-management.io/v1
kind: PlacementBinding
metadata:
 name: install-kmm
placementRef:
 apiGroup: apps.open-cluster-management.io
 kind: PlacementRule
 name: all-managed-clusters
subjects:
 - apiGroup: policy.open-cluster-management.io
 kind: Policy
 name: install-kmm

This environment variable is required when running KMM on a spoke cluster.

The spec.clusterSelector field can be customized to target select clusters only.

4.15. CUSTOMIZING UPGRADES FOR KERNEL MODULES

Use this procedure to upgrade the kernel module while running maintenance operations on the node,
including rebooting the node, if needed. To minimize the impact on the workloads running in the cluster,
run the kernel upgrade process sequentially, one node at a time.

NOTE

This procedure requires knowledge of the workload utilizing the kernel module and must
be managed by the cluster administrator.

Prerequisites

Before upgrading, set the kmm.node.kubernetes.io/version-module.<module_namespace>.
<module_name>=$moduleVersion label on all the nodes that are used by the kernel module.

Terminate all user application workloads on the node or move them to another node.

Unload the currently loaded kernel module.

Ensure that the user workload (the application running in the cluster that is accessing kernel
module) is not running on the node prior to kernel module unloading and that the workload is
back running on the node after the new kernel module version has been loaded.

Procedure

OpenShift Container Platform 4.14 Specialized hardware and driver enablement

56

Procedure

1. Ensure that the device plugin managed by KMM on the node is unloaded.

2. Update the following fields in the Module custom resource (CR):

containerImage (to the appropriate kernel version)

version
The update should be atomic; that is, both the containerImage and version fields must be
updated simultaneously.

3. Terminate any workload using the kernel module on the node being upgraded.

4. Remove the kmm.node.kubernetes.io/version-module.<module_namespace>.
<module_name> label on the node. Run the following command to unload the kernel module
from the node:

5. If required, as the cluster administrator, perform any additional maintenance required on the
node for the kernel module upgrade.
If no additional upgrading is needed, you can skip Steps 3 through 6 by updating the
kmm.node.kubernetes.io/version-module.<module_namespace>.<module_name> label
value to the new $moduleVersion as set in the Module.

6. Run the following command to add the kmm.node.kubernetes.io/version-module.
<module_namespace>.<module_name>=$moduleVersion label to the node. The
$moduleVersion must be equal to the new value of the version field in the Module CR.

NOTE

Because of Kubernetes limitations in label names, the combined length of
Module name and namespace must not exceed 39 characters.

7. Restore any workload that leverages the kernel module on the node.

8. Reload the device plugin managed by KMM on the node.

4.16. DAY 1 KERNEL MODULE LOADING

Kernel Module Management (KMM) is typically a Day 2 Operator. Kernel modules are loaded only after
the complete initialization of a Linux (RHCOS) server. However, in some scenarios the kernel module
must be loaded at an earlier stage. Day 1 functionality allows you to use the Machine Config Operator
(MCO) to load kernel modules during the Linux systemd initialization stage.

Additional resources

Machine Config Operator

$ oc label node/<node_name> kmm.node.kubernetes.io/version-module.
<module_namespace>.<module_name>-

$ oc label node/<node_name> kmm.node.kubernetes.io/version-module.
<module_namespace>.<module_name>=<desired_version>

CHAPTER 4. KERNEL MODULE MANAGEMENT OPERATOR

57

https://docs.redhat.com/en/documentation/openshift_container_platform/4.14/html-single/postinstallation_configuration/#machine-config-operator_post-install-machine-configuration-tasks

4.16.1. Day 1 supported use cases

The Day 1 functionality supports a limited number of use cases. The main use case is to allow loading
out-of-tree (OOT) kernel modules prior to NetworkManager service initialization. It does not support
loading kernel module at the initramfs stage.

The following are the conditions needed for Day 1 functionality:

The kernel module is not loaded in the kernel.

The in-tree kernel module is loaded into the kernel, but can be unloaded and replaced by the
OOT kernel module. This means that the in-tree module is not referenced by any other kernel
modules.

In order for Day 1 functionlity to work, the node must have a functional network interface, that is,
an in-tree kernel driver for that interface. The OOT kernel module can be a network driver that
will replace the functional network driver.

4.16.2. OOT kernel module loading flow

The loading of the out-of-tree (OOT) kernel module leverages the Machine Config Operator (MCO).
The flow sequence is as follows:

Procedure

1. Apply a MachineConfig resource to the existing running cluster. In order to identify the
necessary nodes that need to be updated, you must create an appropriate MachineConfigPool
resource.

2. MCO applies the reboots node by node. On any rebooted node, two new systemd services are
deployed: pull service and load service.

3. The load service is configured to run prior to the NetworkConfiguration service. The service
tries to pull a predefined kernel module image and then, using that image, to unload an in-tree
module and load an OOT kernel module.

4. The pull service is configured to run after NetworkManager service. The service checks if the
preconfigured kernel module image is located on the node’s filesystem. If it is, the service exists
normally, and the server continues with the boot process. If not, it pulls the image onto the node
and reboots the node afterwards.

4.16.3. The kernel module image

The Day 1 functionality uses the same DTK based image leveraged by Day 2 KMM builds. The out-of-
tree kernel module should be located under /opt/lib/modules/${kernelVersion}.

Additional resources

Driver Toolkit

4.16.4. In-tree module replacement

The Day 1 functionality always tries to replace the in-tree kernel module with the OOT version. If the in-
tree kernel module is not loaded, the flow is not affected; the service proceeds and loads the OOT
kernel module.

OpenShift Container Platform 4.14 Specialized hardware and driver enablement

58

1

2

4.16.5. MCO yaml creation

KMM provides an API to create an MCO YAML manifest for the Day 1 functionality:

The returned output is a string representation of the MCO YAML manifest to be applied. It is up to the
customer to apply this YAML.

The parameters are:

machineConfigName

The name of the MCO YAML manifest. This parameter is set as the name parameter of the
metadata of the MCO YAML manifest.

machineConfigPoolRef

The MachineConfigPool name used to identify the targeted nodes.

kernelModuleImage

The name of the container image that includes the OOT kernel module.

kernelModuleName

The name of the OOT kernel module. This parameter is used both to unload the in-tree kernel
module (if loaded into the kernel) and to load the OOT kernel module.

The API is located under pkg/mcproducer package of the KMM source code. The KMM operator does
not need to be running to use the Day 1 functionality. You only need to import the pkg/mcproducer
package into their operator/utility code, call the API, and apply the produced MCO YAML to the cluster.

4.16.6. The MachineConfigPool

The MachineConfigPool identifies a collection of nodes that are affected by the applied MCO.

Matches the labels in the MachineConfig.

Matches the labels on the node.

There are predefined MachineConfigPools in the OCP cluster:

worker: Targets all worker nodes in the cluster

ProduceMachineConfig(machineConfigName, machineConfigPoolRef, kernelModuleImage,
kernelModuleName string) (string, error)

kind: MachineConfigPool
metadata:
 name: sfc
spec:
 machineConfigSelector: 1
 matchExpressions:
 - {key: machineconfiguration.openshift.io/role, operator: In, values: [worker, sfc]}
 nodeSelector: 2
 matchLabels:
 node-role.kubernetes.io/sfc: ""
 paused: false
 maxUnavailable: 1

CHAPTER 4. KERNEL MODULE MANAGEMENT OPERATOR

59

master: Targets all master nodes in the cluster

Define the following MachineConfig to target the master MachineConfigPool:

Define the following MachineConfig to target the worker MachineConfigPool:

Additional resources

About MachineConfigPool

4.17. DEBUGGING AND TROUBLESHOOTING

If the kmods in your driver container are not signed or are signed with the wrong key, then the container
can enter a PostStartHookError or CrashLoopBackOff status. You can verify by running the oc
describe command on your container, which displays the following message in this scenario:

4.18. KMM FIRMWARE SUPPORT

Kernel modules sometimes need to load firmware files from the file system. KMM supports copying
firmware files from the kmod image to the node’s file system.

The contents of .spec.moduleLoader.container.modprobe.firmwarePath are copied into the
/var/lib/firmware path on the node before running the modprobe command to insert the kernel
module.

All files and empty directories are removed from that location before running the modprobe -r
command to unload the kernel module, when the pod is terminated.

4.18.1. Configuring the lookup path on nodes

On OpenShift Container Platform nodes, the set of default lookup paths for firmwares does not include
the /var/lib/firmware path.

Procedure

1. Use the Machine Config Operator to create a MachineConfig custom resource (CR) that
contains the /var/lib/firmware path:

metadata:
 labels:
 machineconfiguration.opensfhit.io/role: master

metadata:
 labels:
 machineconfiguration.opensfhit.io/role: worker

modprobe: ERROR: could not insert '<your_kmod_name>': Required key not available

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
 labels:

OpenShift Container Platform 4.14 Specialized hardware and driver enablement

60

https://www.redhat.com/en/blog/openshift-container-platform-4-how-does-machine-config-pool-work

1 You can configure the label based on your needs. In the case of single-node OpenShift,
use either control-pane or master objects.

2. By applying the MachineConfig CR, the nodes are automatically rebooted.

Additional resources

Machine Config Operator

4.18.2. Building a kmod image

Procedure

In addition to building the kernel module itself, include the binary firmware in the builder image:

4.18.3. Tuning the Module resource

Procedure

Set .spec.moduleLoader.container.modprobe.firmwarePath in the Module custom resource
(CR):

 machineconfiguration.openshift.io/role: worker 1
 name: 99-worker-kernel-args-firmware-path
spec:
 kernelArguments:
 - 'firmware_class.path=/var/lib/firmware'

FROM registry.redhat.io/ubi9/ubi-minimal as builder

Build the kmod

RUN ["mkdir", "/firmware"]
RUN ["curl", "-o", "/firmware/firmware.bin", "https://artifacts.example.com/firmware.bin"]

FROM registry.redhat.io/ubi9/ubi-minimal

Copy the kmod, install modprobe, run depmod

COPY --from=builder /firmware /firmware

apiVersion: kmm.sigs.x-k8s.io/v1beta1
kind: Module
metadata:
 name: my-kmod
spec:
 moduleLoader:
 container:
 modprobe:
 moduleName: my-kmod # Required

 firmwarePath: /firmware 1

CHAPTER 4. KERNEL MODULE MANAGEMENT OPERATOR

61

https://docs.redhat.com/en/documentation/openshift_container_platform/4.14/html-single/postinstallation_configuration/#understanding-the-machine-config-operator

1 Optional: Copies /firmware/* into /var/lib/firmware/ on the node.

4.19. DAY 0 THROUGH DAY 2 KMOD INSTALLATION

You can install some kernel modules (kmods) during Day 0 through Day 2 operations without Kernel
Module Management (KMM). This could assist in the transition of the kmods to KMM.

Use the following criteria to determine suitable kmod installations.

Day 0

The most basic kmods that are required for a node to become Ready in the cluster. Examples of
these types of kmods include:

A storage driver that is required to mount the rootFS as part of the boot process

A network driver that is required for the machine to access machine-config-server on the
bootstrap node to pull the ignition and join the cluster

Day 1

Kmods that are not required for a node to become Ready in the cluster but cannot be unloaded
when the node is Ready.
An example of this type of kmod is an out-of-tree (OOT) network driver that replaces an outdated
in-tree driver to exploit the full potential of the NIC while NetworkManager depends on it. When the
node is Ready, you cannot unload the driver because of the NetworkManager dependency.

Day 2

Kmods that can be dynamically loaded to the kernel or removed from it without interfering with the
cluster infrastructure, for example, connectivity.
Examples of these types of kmods include:

GPU operators

Secondary network adapters

field-programmable gate arrays (FPGAs)

4.19.1. Layering background

When a Day 0 kmod is installed in the cluster, layering is applied through the Machine Config Operator
(MCO) and OpenShift Container Platform upgrades do not trigger node upgrades.

You only need to recompile the driver if you add new features to it, because the node’s operating
system will remain the same.

4.19.2. Lifecycle management

You can leverage KMM to manage the Day 0 through Day 2 lifecycle of kmods without a reboot when
the driver allows it.

NOTE

OpenShift Container Platform 4.14 Specialized hardware and driver enablement

62

NOTE

This will not work if the upgrade requires a node reboot, for example, when rebuilding
initramfs files is needed.

Use one of the following options for lifecycle management.

4.19.2.1. Treat the kmod as an in-tree driver

Use this method when you want to upgrade the kmods. In this case, treat the kmod as an in-tree driver
and create a Module in the cluster with the inTreeRemoval field to unload the old version of the driver.

Note the following characteristics of treating the kmod as an in-tree driver:

Downtime might occur as KMM tries to unload and load the kmod on all the selected nodes
simultaneously.

This works if removing the driver makes the node lose connectivity because KMM uses a single
pod to unload and load the driver.

4.19.2.2. Use ordered upgrade

You can use ordered upgrade (ordered_upgrade.md) to create a versioned Module in the cluster
representing the kmods with no effect, because the kmods are already loaded.

Note the following characteristics of using ordered upgrade:

There is no cluster downtime because you control the pace of the upgrade and how many nodes
are upgraded at the same time; therefore, an upgrade with no downtime is possible.

This method will not work if unloading the driver results in losing connection to the node,
because KMM creates two different worker pods for unloading and another for loading. These
pods will not be scheduled.

4.20. TROUBLESHOOTING KMM

When troubleshooting KMM installation issues, you can monitor logs to determine at which stage issues
occur. Then, retrieve diagnostic data relevant to that stage.

4.20.1. Reading Operator logs

You can use the oc logs command to read Operator logs, as in the following examples.

Example command for KMM controller

Example command for KMM webhook server

Example command for KMM-Hub controller

$ oc logs -fn openshift-kmm deployments/kmm-operator-controller

$ oc logs -fn openshift-kmm deployments/kmm-operator-webhook-server

CHAPTER 4. KERNEL MODULE MANAGEMENT OPERATOR

63

Example command for KMM-Hub webhook server

4.20.2. Observing events

Use the following methods to view KMM events.

Build & sign
KMM publishes events whenever it starts a kmod image build or observes its outcome. These events are
attached to Module objects and are available at the end of the output of oc describe module
command, as in the following example:

Module load or unload
KMM publishes events whenever it successfully loads or unloads a kernel module on a node. These
events are attached to Node objects and are available at the end of the output of oc describe node
command, as in the following example:

4.20.3. Using the must-gather tool

The oc adm must-gather command is the preferred way to collect a support bundle and provide
debugging information to Red Hat Support. Collect specific information by running the command with
the appropriate arguments as described in the following sections.

Additional resources

About the must-gather tool

4.20.3.1. Gathering data for KMM

Procedure

$ oc logs -fn openshift-kmm-hub deployments/kmm-operator-hub-controller

$ oc logs -fn openshift-kmm deployments/kmm-operator-hub-webhook-server

$ oc describe modules.kmm.sigs.x-k8s.io kmm-ci-a
[...]
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal BuildCreated 2m29s kmm Build created for kernel 6.6.2-201.fc39.x86_64
 Normal BuildSucceeded 63s kmm Build job succeeded for kernel 6.6.2-201.fc39.x86_64
 Normal SignCreated 64s (x2 over 64s) kmm Sign created for kernel 6.6.2-201.fc39.x86_64
 Normal SignSucceeded 57s kmm Sign job succeeded for kernel 6.6.2-201.fc39.x86_64

$ oc describe node my-node
[...]
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
[...]
 Normal ModuleLoaded 4m17s kmm Module default/kmm-ci-a loaded into the kernel
 Normal ModuleUnloaded 2s kmm Module default/kmm-ci-a unloaded from the kernel

OpenShift Container Platform 4.14 Specialized hardware and driver enablement

64

https://docs.redhat.com/en/documentation/openshift_container_platform/4.14/html-single/support/#about-must-gather_gathering-cluster-data

1. Gather the data for the KMM Operator controller manager:

a. Set the MUST_GATHER_IMAGE variable:

NOTE

Use the -n <namespace> switch to specify a namespace if you installed
KMM in a custom namespace.

b. Run the must-gather tool:

2. View the Operator logs:

Example 4.1. Example output

$ export MUST_GATHER_IMAGE=$(oc get deployment -n openshift-kmm kmm-
operator-controller -ojsonpath='{.spec.template.spec.containers[?
(@.name=="manager")].env[?
(@.name=="RELATED_IMAGE_MUST_GATHER")].value}')
$ oc adm must-gather --image="${MUST_GATHER_IMAGE}" -- /usr/bin/gather

$ oc adm must-gather --image="${MUST_GATHER_IMAGE}" -- /usr/bin/gather

$ oc logs -fn openshift-kmm deployments/kmm-operator-controller

I0228 09:36:37.352405 1 request.go:682] Waited for 1.001998746s due to client-side
throttling, not priority and fairness, request:
GET:https://172.30.0.1:443/apis/machine.openshift.io/v1beta1?timeout=32s
I0228 09:36:40.767060 1 listener.go:44] kmm/controller-runtime/metrics
"msg"="Metrics server is starting to listen" "addr"="127.0.0.1:8080"
I0228 09:36:40.769483 1 main.go:234] kmm/setup "msg"="starting manager"
I0228 09:36:40.769907 1 internal.go:366] kmm "msg"="Starting server" "addr"=
{"IP":"127.0.0.1","Port":8080,"Zone":""} "kind"="metrics" "path"="/metrics"
I0228 09:36:40.770025 1 internal.go:366] kmm "msg"="Starting server" "addr"=
{"IP":"::","Port":8081,"Zone":""} "kind"="health probe"
I0228 09:36:40.770128 1 leaderelection.go:248] attempting to acquire leader lease
openshift-kmm/kmm.sigs.x-k8s.io...
I0228 09:36:40.784396 1 leaderelection.go:258] successfully acquired lease
openshift-kmm/kmm.sigs.x-k8s.io
I0228 09:36:40.784876 1 controller.go:185] kmm "msg"="Starting EventSource"
"controller"="Module" "controllerGroup"="kmm.sigs.x-k8s.io" "controllerKind"="Module"
"source"="kind source: *v1beta1.Module"
I0228 09:36:40.784925 1 controller.go:185] kmm "msg"="Starting EventSource"
"controller"="Module" "controllerGroup"="kmm.sigs.x-k8s.io" "controllerKind"="Module"
"source"="kind source: *v1.DaemonSet"
I0228 09:36:40.784968 1 controller.go:185] kmm "msg"="Starting EventSource"
"controller"="Module" "controllerGroup"="kmm.sigs.x-k8s.io" "controllerKind"="Module"
"source"="kind source: *v1.Build"
I0228 09:36:40.785001 1 controller.go:185] kmm "msg"="Starting EventSource"
"controller"="Module" "controllerGroup"="kmm.sigs.x-k8s.io" "controllerKind"="Module"
"source"="kind source: *v1.Job"
I0228 09:36:40.785025 1 controller.go:185] kmm "msg"="Starting EventSource"
"controller"="Module" "controllerGroup"="kmm.sigs.x-k8s.io" "controllerKind"="Module"
"source"="kind source: *v1.Node"

CHAPTER 4. KERNEL MODULE MANAGEMENT OPERATOR

65

4.20.3.2. Gathering data for KMM-Hub

Procedure

1. Gather the data for the KMM Operator hub controller manager:

a. Set the MUST_GATHER_IMAGE variable:

I0228 09:36:40.785039 1 controller.go:193] kmm "msg"="Starting Controller"
"controller"="Module" "controllerGroup"="kmm.sigs.x-k8s.io" "controllerKind"="Module"
I0228 09:36:40.785458 1 controller.go:185] kmm "msg"="Starting EventSource"
"controller"="PodNodeModule" "controllerGroup"="" "controllerKind"="Pod" "source"="kind
source: *v1.Pod"
I0228 09:36:40.786947 1 controller.go:185] kmm "msg"="Starting EventSource"
"controller"="PreflightValidation" "controllerGroup"="kmm.sigs.x-k8s.io"
"controllerKind"="PreflightValidation" "source"="kind source: *v1beta1.PreflightValidation"
I0228 09:36:40.787406 1 controller.go:185] kmm "msg"="Starting EventSource"
"controller"="PreflightValidation" "controllerGroup"="kmm.sigs.x-k8s.io"
"controllerKind"="PreflightValidation" "source"="kind source: *v1.Build"
I0228 09:36:40.787474 1 controller.go:185] kmm "msg"="Starting EventSource"
"controller"="PreflightValidation" "controllerGroup"="kmm.sigs.x-k8s.io"
"controllerKind"="PreflightValidation" "source"="kind source: *v1.Job"
I0228 09:36:40.787488 1 controller.go:185] kmm "msg"="Starting EventSource"
"controller"="PreflightValidation" "controllerGroup"="kmm.sigs.x-k8s.io"
"controllerKind"="PreflightValidation" "source"="kind source: *v1beta1.Module"
I0228 09:36:40.787603 1 controller.go:185] kmm "msg"="Starting EventSource"
"controller"="NodeKernel" "controllerGroup"="" "controllerKind"="Node" "source"="kind
source: *v1.Node"
I0228 09:36:40.787634 1 controller.go:193] kmm "msg"="Starting Controller"
"controller"="NodeKernel" "controllerGroup"="" "controllerKind"="Node"
I0228 09:36:40.787680 1 controller.go:193] kmm "msg"="Starting Controller"
"controller"="PreflightValidation" "controllerGroup"="kmm.sigs.x-k8s.io"
"controllerKind"="PreflightValidation"
I0228 09:36:40.785607 1 controller.go:185] kmm "msg"="Starting EventSource"
"controller"="imagestream" "controllerGroup"="image.openshift.io"
"controllerKind"="ImageStream" "source"="kind source: *v1.ImageStream"
I0228 09:36:40.787822 1 controller.go:185] kmm "msg"="Starting EventSource"
"controller"="preflightvalidationocp" "controllerGroup"="kmm.sigs.x-k8s.io"
"controllerKind"="PreflightValidationOCP" "source"="kind source:
*v1beta1.PreflightValidationOCP"
I0228 09:36:40.787853 1 controller.go:193] kmm "msg"="Starting Controller"
"controller"="imagestream" "controllerGroup"="image.openshift.io"
"controllerKind"="ImageStream"
I0228 09:36:40.787879 1 controller.go:185] kmm "msg"="Starting EventSource"
"controller"="preflightvalidationocp" "controllerGroup"="kmm.sigs.x-k8s.io"
"controllerKind"="PreflightValidationOCP" "source"="kind source:
*v1beta1.PreflightValidation"
I0228 09:36:40.787905 1 controller.go:193] kmm "msg"="Starting Controller"
"controller"="preflightvalidationocp" "controllerGroup"="kmm.sigs.x-k8s.io"
"controllerKind"="PreflightValidationOCP"
I0228 09:36:40.786489 1 controller.go:193] kmm "msg"="Starting Controller"
"controller"="PodNodeModule" "controllerGroup"="" "controllerKind"="Pod"

$ export MUST_GATHER_IMAGE=$(oc get deployment -n openshift-kmm-hub kmm-

OpenShift Container Platform 4.14 Specialized hardware and driver enablement

66

NOTE

Use the -n <namespace> switch to specify a namespace if you installed
KMM in a custom namespace.

b. Run the must-gather tool:

2. View the Operator logs:

Example 4.2. Example output

operator-hub-controller -ojsonpath='{.spec.template.spec.containers[?
(@.name=="manager")].env[?
(@.name=="RELATED_IMAGE_MUST_GATHER")].value}')
$ oc adm must-gather --image="${MUST_GATHER_IMAGE}" -- /usr/bin/gather -u

$ oc adm must-gather --image="${MUST_GATHER_IMAGE}" -- /usr/bin/gather -u

$ oc logs -fn openshift-kmm-hub deployments/kmm-operator-hub-controller

I0417 11:34:08.807472 1 request.go:682] Waited for 1.023403273s due to client-side
throttling, not priority and fairness, request:
GET:https://172.30.0.1:443/apis/tuned.openshift.io/v1?timeout=32s
I0417 11:34:12.373413 1 listener.go:44] kmm-hub/controller-runtime/metrics
"msg"="Metrics server is starting to listen" "addr"="127.0.0.1:8080"
I0417 11:34:12.376253 1 main.go:150] kmm-hub/setup "msg"="Adding controller"
"name"="ManagedClusterModule"
I0417 11:34:12.376621 1 main.go:186] kmm-hub/setup "msg"="starting manager"
I0417 11:34:12.377690 1 leaderelection.go:248] attempting to acquire leader lease
openshift-kmm-hub/kmm-hub.sigs.x-k8s.io...
I0417 11:34:12.378078 1 internal.go:366] kmm-hub "msg"="Starting server" "addr"=
{"IP":"127.0.0.1","Port":8080,"Zone":""} "kind"="metrics" "path"="/metrics"
I0417 11:34:12.378222 1 internal.go:366] kmm-hub "msg"="Starting server" "addr"=
{"IP":"::","Port":8081,"Zone":""} "kind"="health probe"
I0417 11:34:12.395703 1 leaderelection.go:258] successfully acquired lease
openshift-kmm-hub/kmm-hub.sigs.x-k8s.io
I0417 11:34:12.396334 1 controller.go:185] kmm-hub "msg"="Starting EventSource"
"controller"="ManagedClusterModule" "controllerGroup"="hub.kmm.sigs.x-k8s.io"
"controllerKind"="ManagedClusterModule" "source"="kind source:
*v1beta1.ManagedClusterModule"
I0417 11:34:12.396403 1 controller.go:185] kmm-hub "msg"="Starting EventSource"
"controller"="ManagedClusterModule" "controllerGroup"="hub.kmm.sigs.x-k8s.io"
"controllerKind"="ManagedClusterModule" "source"="kind source: *v1.ManifestWork"
I0417 11:34:12.396430 1 controller.go:185] kmm-hub "msg"="Starting EventSource"
"controller"="ManagedClusterModule" "controllerGroup"="hub.kmm.sigs.x-k8s.io"
"controllerKind"="ManagedClusterModule" "source"="kind source: *v1.Build"
I0417 11:34:12.396469 1 controller.go:185] kmm-hub "msg"="Starting EventSource"
"controller"="ManagedClusterModule" "controllerGroup"="hub.kmm.sigs.x-k8s.io"
"controllerKind"="ManagedClusterModule" "source"="kind source: *v1.Job"
I0417 11:34:12.396522 1 controller.go:185] kmm-hub "msg"="Starting EventSource"
"controller"="ManagedClusterModule" "controllerGroup"="hub.kmm.sigs.x-k8s.io"
"controllerKind"="ManagedClusterModule" "source"="kind source: *v1.ManagedCluster"
I0417 11:34:12.396543 1 controller.go:193] kmm-hub "msg"="Starting Controller"
"controller"="ManagedClusterModule" "controllerGroup"="hub.kmm.sigs.x-k8s.io"

CHAPTER 4. KERNEL MODULE MANAGEMENT OPERATOR

67

"controllerKind"="ManagedClusterModule"
I0417 11:34:12.397175 1 controller.go:185] kmm-hub "msg"="Starting EventSource"
"controller"="imagestream" "controllerGroup"="image.openshift.io"
"controllerKind"="ImageStream" "source"="kind source: *v1.ImageStream"
I0417 11:34:12.397221 1 controller.go:193] kmm-hub "msg"="Starting Controller"
"controller"="imagestream" "controllerGroup"="image.openshift.io"
"controllerKind"="ImageStream"
I0417 11:34:12.498335 1 filter.go:196] kmm-hub "msg"="Listing all
ManagedClusterModules" "managedcluster"="local-cluster"
I0417 11:34:12.498570 1 filter.go:205] kmm-hub "msg"="Listed
ManagedClusterModules" "count"=0 "managedcluster"="local-cluster"
I0417 11:34:12.498629 1 filter.go:238] kmm-hub "msg"="Adding reconciliation
requests" "count"=0 "managedcluster"="local-cluster"
I0417 11:34:12.498687 1 filter.go:196] kmm-hub "msg"="Listing all
ManagedClusterModules" "managedcluster"="sno1-0"
I0417 11:34:12.498750 1 filter.go:205] kmm-hub "msg"="Listed
ManagedClusterModules" "count"=0 "managedcluster"="sno1-0"
I0417 11:34:12.498801 1 filter.go:238] kmm-hub "msg"="Adding reconciliation
requests" "count"=0 "managedcluster"="sno1-0"
I0417 11:34:12.501947 1 controller.go:227] kmm-hub "msg"="Starting workers"
"controller"="imagestream" "controllerGroup"="image.openshift.io"
"controllerKind"="ImageStream" "worker count"=1
I0417 11:34:12.501948 1 controller.go:227] kmm-hub "msg"="Starting workers"
"controller"="ManagedClusterModule" "controllerGroup"="hub.kmm.sigs.x-k8s.io"
"controllerKind"="ManagedClusterModule" "worker count"=1
I0417 11:34:12.502285 1 imagestream_reconciler.go:50] kmm-hub "msg"="registered
imagestream info mapping" "ImageStream"={"name":"driver-
toolkit","namespace":"openshift"} "controller"="imagestream"
"controllerGroup"="image.openshift.io" "controllerKind"="ImageStream"
"dtkImage"="quay.io/openshift-release-dev/ocp-v4.0-art-
dev@sha256:df42b4785a7a662b30da53bdb0d206120cf4d24b45674227b16051ba4b7c393
4" "name"="driver-toolkit" "namespace"="openshift"
"osImageVersion"="412.86.202302211547-0" "reconcileID"="e709ff0a-5664-4007-8270-
49b5dff8bae9"

OpenShift Container Platform 4.14 Specialized hardware and driver enablement

68

	Table of Contents
	CHAPTER 1. ABOUT SPECIALIZED HARDWARE AND DRIVER ENABLEMENT
	CHAPTER 2. DRIVER TOOLKIT
	2.1. ABOUT THE DRIVER TOOLKIT
	Background
	Purpose

	2.2. PULLING THE DRIVER TOOLKIT CONTAINER IMAGE
	2.2.1. Pulling the Driver Toolkit container image from registry.redhat.io
	2.2.2. Finding the Driver Toolkit image URL in the payload

	2.3. USING THE DRIVER TOOLKIT
	2.3.1. Build and run the simple-kmod driver container on a cluster

	2.4. ADDITIONAL RESOURCES

	CHAPTER 3. NODE FEATURE DISCOVERY OPERATOR
	3.1. ABOUT THE NODE FEATURE DISCOVERY OPERATOR
	3.2. INSTALLING THE NODE FEATURE DISCOVERY OPERATOR
	3.2.1. Installing the NFD Operator using the CLI
	3.2.2. Installing the NFD Operator using the web console

	3.3. USING THE NODE FEATURE DISCOVERY OPERATOR
	3.3.1. Create a NodeFeatureDiscovery instance using the CLI
	3.3.2. Create a NodeFeatureDiscovery CR using the web console

	3.4. CONFIGURING THE NODE FEATURE DISCOVERY OPERATOR
	3.4.1. core
	core.sleepInterval
	core.sources
	core.labelWhiteList
	core.noPublish
	core.klog

	3.4.2. sources
	sources.cpu.cpuid.attributeBlacklist
	sources.cpu.cpuid.attributeWhitelist
	sources.kernel.kconfigFile
	sources.kernel.configOpts
	sources.pci.deviceClassWhitelist
	sources.pci.deviceLabelFields
	sources.usb.deviceClassWhitelist
	sources.usb.deviceLabelFields
	sources.custom

	3.5. ABOUT THE NODEFEATURERULE CUSTOM RESOURCE
	3.6. USING THE NODEFEATURERULE CUSTOM RESOURCE
	3.7. USING THE NFD TOPOLOGY UPDATER
	3.7.1. NodeResourceTopology CR
	3.7.2. NFD Topology Updater command line flags
	-ca-file
	-cert-file
	-h, -help
	-key-file
	-kubelet-config-file
	-no-publish
	3.7.2.1. -oneshot

	CHAPTER 4. KERNEL MODULE MANAGEMENT OPERATOR
	4.1. ABOUT THE KERNEL MODULE MANAGEMENT OPERATOR
	4.2. INSTALLING THE KERNEL MODULE MANAGEMENT OPERATOR
	4.2.1. Installing the Kernel Module Management Operator using the web console
	4.2.2. Installing the Kernel Module Management Operator by using the CLI
	4.2.3. Installing the Kernel Module Management Operator on earlier versions of OpenShift Container Platform

	4.3. CONFIGURING THE KERNEL MODULE MANAGEMENT OPERATOR
	4.3.1. Unloading the kernel module
	4.3.2. Setting the kernel firmware search path

	4.4. UNINSTALLING THE KERNEL MODULE MANAGEMENT OPERATOR
	4.4.1. Uninstalling a Red Hat catalog installation
	4.4.2. Uninstalling a CLI installation

	4.5. KERNEL MODULE DEPLOYMENT
	4.5.1. The Module custom resource definition
	4.5.2. Set soft dependencies between kernel modules

	4.6. SECURITY AND PERMISSIONS
	4.6.1. ServiceAccounts and SecurityContextConstraints
	4.6.2. Pod security standards

	4.7. REPLACING IN-TREE MODULES WITH OUT-OF-TREE MODULES
	4.7.1. Example Module CR

	4.8. SYMBOLIC LINKS FOR IN-TREE DEPENDENCIES
	4.9. CREATING A KMOD IMAGE
	4.9.1. Running depmod
	4.9.1.1. Example Dockerfile

	4.9.2. Building in the cluster
	4.9.3. Using the Driver Toolkit

	4.10. USING SIGNING WITH KERNEL MODULE MANAGEMENT (KMM)
	4.11. ADDING THE KEYS FOR SECUREBOOT
	4.11.1. Checking the keys

	4.12. SIGNING KMODS IN A PRE-BUILT IMAGE
	4.13. BUILDING AND SIGNING A KMOD IMAGE
	4.14. KMM HUB AND SPOKE
	4.14.1. KMM-Hub
	4.14.2. Installing KMM-Hub
	4.14.2.1. Installing KMM-Hub using the Operator Lifecycle Manager
	4.14.2.2. Installing KMM-Hub by creating KMM resources

	4.14.3. Using the ManagedClusterModule CRD
	4.14.4. Running KMM on the spoke

	4.15. CUSTOMIZING UPGRADES FOR KERNEL MODULES
	4.16. DAY 1 KERNEL MODULE LOADING
	4.16.1. Day 1 supported use cases
	4.16.2. OOT kernel module loading flow
	4.16.3. The kernel module image
	4.16.4. In-tree module replacement
	4.16.5. MCO yaml creation
	4.16.6. The MachineConfigPool

	4.17. DEBUGGING AND TROUBLESHOOTING
	4.18. KMM FIRMWARE SUPPORT
	4.18.1. Configuring the lookup path on nodes
	4.18.2. Building a kmod image
	4.18.3. Tuning the Module resource

	4.19. DAY 0 THROUGH DAY 2 KMOD INSTALLATION
	4.19.1. Layering background
	4.19.2. Lifecycle management
	4.19.2.1. Treat the kmod as an in-tree driver
	4.19.2.2. Use ordered upgrade

	4.20. TROUBLESHOOTING KMM
	4.20.1. Reading Operator logs
	4.20.2. Observing events
	Build & sign
	Module load or unload

	4.20.3. Using the must-gather tool
	4.20.3.1. Gathering data for KMM
	4.20.3.2. Gathering data for KMM-Hub

