
OpenShift Container Platform 4.15

Network Observability

Configuring and using the Network Observability Operator in OpenShift Container
Platform

Last Updated: 2024-06-26

OpenShift Container Platform 4.15 Network Observability

Configuring and using the Network Observability Operator in OpenShift Container Platform

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Use the Network Observability Operator to observe and analyze network traffic flows for OpenShift
Container Platform clusters.

. .

Table of Contents

CHAPTER 1. NETWORK OBSERVABILITY OPERATOR RELEASE NOTES
1.1. NETWORK OBSERVABILITY OPERATOR 1.6.0

1.1.1. New features and enhancements
1.1.1.1. Enhanced use of Network Observability Operator without Loki
1.1.1.2. Custom metrics API
1.1.1.3. eBPF performance enhancements
1.1.1.4. eBPF collection rule-based filtering

1.1.2. Technology Preview features
1.1.2.1. Network Observability CLI

1.1.3. Bug fixes
1.1.4. Known issues

1.2. NETWORK OBSERVABILITY OPERATOR 1.5.0
1.2.1. New features and enhancements

1.2.1.1. DNS tracking enhancements
1.2.1.2. Round-trip time (RTT)
1.2.1.3. Metrics, dashboards, and alerts enhancements
1.2.1.4. Improvements for Network Observability without Loki
1.2.1.5. Availability zones
1.2.1.6. Notable enhancements

Performance enhancements
Web console enhancements:
Configuration enhancements:

1.2.2. Bug fixes
1.2.3. Known issues

1.3. NETWORK OBSERVABILITY OPERATOR 1.4.2
1.3.1. CVEs

1.4. NETWORK OBSERVABILITY OPERATOR 1.4.1
1.4.1. CVEs
1.4.2. Bug fixes

1.5. NETWORK OBSERVABILITY OPERATOR 1.4.0
1.5.1. Channel removal
1.5.2. New features and enhancements

1.5.2.1. Notable enhancements
Web console enhancements:
Configuration enhancements:

1.5.2.2. Network Observability without Loki
1.5.2.3. DNS tracking
1.5.2.4. SR-IOV support
1.5.2.5. IPFIX exporter support
1.5.2.6. Packet drops
1.5.2.7. s390x architecture support

1.5.3. Bug fixes
1.5.4. Known issues

1.6. NETWORK OBSERVABILITY OPERATOR 1.3.0
1.6.1. Channel deprecation
1.6.2. New features and enhancements

1.6.2.1. Multi-tenancy in Network Observability
1.6.2.2. Flow-based metrics dashboard
1.6.2.3. Troubleshooting with the must-gather tool
1.6.2.4. Multiple architectures now supported

1.6.3. Deprecated features

8
8
8
8
8
8
9
9
9
9

10
10
10
10
10
10
11
11
11
11
11
11

12
12
13
13
13
13
13
13
14
14
14
14
14
14
14
15
15
15
15
15
15
16
16
16
16
16
17
17
17

Table of Contents

1

. .

. .

. .

. .

1.6.3.1. Deprecated configuration parameter setting
1.6.4. Bug fixes
1.6.5. Known issues

1.7. NETWORK OBSERVABILITY OPERATOR 1.2.0
1.7.1. Preparing for the next update
1.7.2. New features and enhancements

1.7.2.1. Histogram in Traffic Flows view
1.7.2.2. Conversation tracking
1.7.2.3. Network Observability health alerts

1.7.3. Bug fixes
1.7.4. Known issue
1.7.5. Notable technical changes

1.8. NETWORK OBSERVABILITY OPERATOR 1.1.0
1.8.1. Bug fix

CHAPTER 2. ABOUT NETWORK OBSERVABILITY
2.1. OPTIONAL DEPENDENCIES OF THE NETWORK OBSERVABILITY OPERATOR
2.2. NETWORK OBSERVABILITY OPERATOR
2.3. OPENSHIFT CONTAINER PLATFORM CONSOLE INTEGRATION

2.3.1. Network Observability metrics dashboards
2.3.2. Network Observability topology views
2.3.3. Traffic flow tables

2.4. NETWORK OBSERVABILITY CLI

CHAPTER 3. INSTALLING THE NETWORK OBSERVABILITY OPERATOR
3.1. NETWORK OBSERVABILITY WITHOUT LOKI
3.2. INSTALLING THE LOKI OPERATOR

3.2.1. Creating a secret for Loki storage
3.2.2. Creating a LokiStack custom resource
3.2.3. Creating a new group for the cluster-admin user role
3.2.4. Custom admin group access
3.2.5. Loki deployment sizing
3.2.6. LokiStack ingestion limits and health alerts
3.2.7. Enabling multi-tenancy in Network Observability

3.3. INSTALLING THE NETWORK OBSERVABILITY OPERATOR
3.4. IMPORTANT FLOW COLLECTOR CONFIGURATION CONSIDERATIONS
3.5. INSTALLING KAFKA (OPTIONAL)
3.6. UNINSTALLING THE NETWORK OBSERVABILITY OPERATOR

CHAPTER 4. NETWORK OBSERVABILITY OPERATOR IN OPENSHIFT CONTAINER PLATFORM
4.1. VIEWING STATUSES
4.2. NETWORK OBSERVABLITY OPERATOR ARCHITECTURE
4.3. VIEWING NETWORK OBSERVABILITY OPERATOR STATUS AND CONFIGURATION

CHAPTER 5. CONFIGURING THE NETWORK OBSERVABILITY OPERATOR
5.1. VIEW THE FLOWCOLLECTOR RESOURCE
5.2. CONFIGURING THE FLOW COLLECTOR RESOURCE WITH KAFKA
5.3. EXPORT ENRICHED NETWORK FLOW DATA
5.4. UPDATING THE FLOW COLLECTOR RESOURCE
5.5. CONFIGURING QUICK FILTERS
5.6. CONFIGURING MONITORING FOR SR-IOV INTERFACE TRAFFIC
5.7. RESOURCE MANAGEMENT AND PERFORMANCE CONSIDERATIONS

5.7.1. Resource considerations

17
17
18
18
18
18
18
18
19
19
19
19

20
20

21
21
21
21
21
21
22
22

23
23
24
25
25
26
27
28
28
29
29
30
31
31

33
33
34
35

37
37
39
40
41
41

42
43
44

OpenShift Container Platform 4.15 Network Observability

2

. .

. .

. .

. .

. .

CHAPTER 6. NETWORK POLICY
6.1. CREATING A NETWORK POLICY FOR NETWORK OBSERVABILITY
6.2. EXAMPLE NETWORK POLICY

CHAPTER 7. OBSERVING THE NETWORK TRAFFIC
7.1. OBSERVING THE NETWORK TRAFFIC FROM THE OVERVIEW VIEW

7.1.1. Working with the Overview view
7.1.2. Configuring advanced options for the Overview view

7.1.2.1. Managing panels and display
7.1.3. Packet drop tracking

7.1.3.1. Types of packet drops
7.1.4. DNS tracking
7.1.5. Round-Trip Time
7.1.6. eBPF flow rule filter

7.1.6.1. Ingress and egress traffic filtering
7.1.6.2. Dashboard and metrics integrations
7.1.6.3. Flow filter configuration parameters

7.2. OBSERVING THE NETWORK TRAFFIC FROM THE TRAFFIC FLOWS VIEW
7.2.1. Working with the Traffic flows view
7.2.2. Configuring advanced options for the Traffic flows view

7.2.2.1. Managing columns
7.2.2.2. Exporting the traffic flow data

7.2.3. Working with conversation tracking
7.2.4. Working with packet drops
7.2.5. Working with DNS tracking
7.2.6. Working with RTT tracing

7.2.6.1. Using the histogram
7.2.7. Working with availability zones
7.2.8. Filtering eBPF flow data using a global rule

7.3. OBSERVING THE NETWORK TRAFFIC FROM THE TOPOLOGY VIEW
7.3.1. Working with the Topology view
7.3.2. Configuring the advanced options for the Topology view

7.3.2.1. Exporting the topology view
7.4. FILTERING THE NETWORK TRAFFIC

CHAPTER 8. USING METRICS WITH DASHBOARDS AND ALERTS
8.1. VIEWING NETWORK OBSERVABILITY METRICS DASHBOARDS
8.2. PREDEFINED METRICS
8.3. NETWORK OBSERVABILITY METRICS
8.4. CREATING ALERTS
8.5. CUSTOM METRICS
8.6. CONFIGURING CUSTOM METRICS BY USING FLOWMETRIC API
8.7. CONFIGURING CUSTOM CHARTS USING FLOWMETRIC API

CHAPTER 9. MONITORING THE NETWORK OBSERVABILITY OPERATOR
9.1. HEALTH DASHBOARDS
9.2. HEALTH ALERTS
9.3. VIEWING HEALTH INFORMATION

9.3.1. Disabling health alerts
9.4. CREATING LOKI RATE LIMIT ALERTS FOR THE NETOBSERV DASHBOARD
9.5. USING THE EBPF AGENT ALERT

CHAPTER 10. SCHEDULING RESOURCES
10.1. NETWORK OBSERVABILITY DEPLOYMENT IN SPECIFIC NODES

46
46
46

48
48
48
48
48
49
49
50
50
51
51
51
51

53
53
53
53
53
54
55
56
57
58
58
59
61
61
61
61
61

64
64
64
64
66
67
67
69

72
72
72
72
73
73
74

76
76

Table of Contents

3

. .

. .

CHAPTER 11. NETWORK OBSERVABILITY CLI
11.1. INSTALLING THE NETWORK OBSERVABILITY CLI

11.1.1. About the Network Observability CLI
11.1.2. Installing the Network Observability CLI

11.2. USING THE NETWORK OBSERVABILITY CLI
11.2.1. Capturing flows
11.2.2. Capturing packets
11.2.3. Cleaning the Network Observability CLI

11.3. NETWORK OBSERVABILITY CLI (OC NETOBSERV) REFERENCE
11.3.1. oc netobserv CLI reference

11.3.1.1. Network Observability enrichment
11.3.1.2. Flow capture options
11.3.1.3. Packet capture options

CHAPTER 12. FLOWCOLLECTOR CONFIGURATION PARAMETERS
12.1. FLOWCOLLECTOR API SPECIFICATIONS

12.1.1. .metadata
12.1.2. .spec
12.1.3. .spec.agent
12.1.4. .spec.agent.ebpf
12.1.5. .spec.agent.ebpf.advanced
12.1.6. .spec.agent.ebpf.advanced.scheduling
12.1.7. .spec.agent.ebpf.advanced.scheduling.affinity
12.1.8. .spec.agent.ebpf.advanced.scheduling.tolerations
12.1.9. .spec.agent.ebpf.flowFilter
12.1.10. .spec.agent.ebpf.metrics
12.1.11. .spec.agent.ebpf.metrics.server
12.1.12. .spec.agent.ebpf.metrics.server.tls
12.1.13. .spec.agent.ebpf.metrics.server.tls.provided
12.1.14. .spec.agent.ebpf.metrics.server.tls.providedCaFile
12.1.15. .spec.agent.ebpf.resources
12.1.16. .spec.consolePlugin
12.1.17. .spec.consolePlugin.advanced
12.1.18. .spec.consolePlugin.advanced.scheduling
12.1.19. .spec.consolePlugin.advanced.scheduling.affinity
12.1.20. .spec.consolePlugin.advanced.scheduling.tolerations
12.1.21. .spec.consolePlugin.autoscaler
12.1.22. .spec.consolePlugin.portNaming
12.1.23. .spec.consolePlugin.quickFilters
12.1.24. .spec.consolePlugin.quickFilters[]
12.1.25. .spec.consolePlugin.resources
12.1.26. .spec.exporters
12.1.27. .spec.exporters[]
12.1.28. .spec.exporters[].ipfix
12.1.29. .spec.exporters[].kafka
12.1.30. .spec.exporters[].kafka.sasl
12.1.31. .spec.exporters[].kafka.sasl.clientIDReference
12.1.32. .spec.exporters[].kafka.sasl.clientSecretReference
12.1.33. .spec.exporters[].kafka.tls
12.1.34. .spec.exporters[].kafka.tls.caCert
12.1.35. .spec.exporters[].kafka.tls.userCert
12.1.36. .spec.kafka
12.1.37. .spec.kafka.sasl

78
78
78
78
79
79
81
81

82
82
82
83
84

86
86
87
87
89
89
92
93
94
94
94
96
96
97
97
98
99
99

100
102
102
103
103
103
103
104
104
105
105
105
106
107
107
108
108
109
110
111
111

OpenShift Container Platform 4.15 Network Observability

4

. .

12.1.38. .spec.kafka.sasl.clientIDReference
12.1.39. .spec.kafka.sasl.clientSecretReference
12.1.40. .spec.kafka.tls
12.1.41. .spec.kafka.tls.caCert
12.1.42. .spec.kafka.tls.userCert
12.1.43. .spec.loki
12.1.44. .spec.loki.advanced
12.1.45. .spec.loki.lokiStack
12.1.46. .spec.loki.manual
12.1.47. .spec.loki.manual.statusTls
12.1.48. .spec.loki.manual.statusTls.caCert
12.1.49. .spec.loki.manual.statusTls.userCert
12.1.50. .spec.loki.manual.tls
12.1.51. .spec.loki.manual.tls.caCert
12.1.52. .spec.loki.manual.tls.userCert
12.1.53. .spec.loki.microservices
12.1.54. .spec.loki.microservices.tls
12.1.55. .spec.loki.microservices.tls.caCert
12.1.56. .spec.loki.microservices.tls.userCert
12.1.57. .spec.loki.monolithic
12.1.58. .spec.loki.monolithic.tls
12.1.59. .spec.loki.monolithic.tls.caCert
12.1.60. .spec.loki.monolithic.tls.userCert
12.1.61. .spec.processor
12.1.62. .spec.processor.advanced
12.1.63. .spec.processor.advanced.scheduling
12.1.64. .spec.processor.advanced.scheduling.affinity
12.1.65. .spec.processor.advanced.scheduling.tolerations
12.1.66. .spec.processor.kafkaConsumerAutoscaler
12.1.67. .spec.processor.metrics
12.1.68. .spec.processor.metrics.server
12.1.69. .spec.processor.metrics.server.tls
12.1.70. .spec.processor.metrics.server.tls.provided
12.1.71. .spec.processor.metrics.server.tls.providedCaFile
12.1.72. .spec.processor.resources
12.1.73. .spec.processor.subnetLabels
12.1.74. .spec.processor.subnetLabels.customLabels
12.1.75. .spec.processor.subnetLabels.customLabels[]
12.1.76. .spec.prometheus
12.1.77. .spec.prometheus.querier
12.1.78. .spec.prometheus.querier.manual
12.1.79. .spec.prometheus.querier.manual.tls
12.1.80. .spec.prometheus.querier.manual.tls.caCert
12.1.81. .spec.prometheus.querier.manual.tls.userCert

CHAPTER 13. FLOWMETRIC CONFIGURATION PARAMETERS
13.1. FLOWMETRIC [FLOWS.NETOBSERV.IO/V1ALPHA1]

13.1.1. .metadata
13.1.2. .spec
13.1.3. .spec.charts
13.1.4. .spec.charts[]
13.1.5. .spec.charts[].queries
13.1.6. .spec.charts[].queries[]

112
112
113
113
114
115
117
118
118

120
121
121
122
123
123
124
125
125
126
127
127
128
129
129
132
133
134
134
135
135
136
137
137
138
139
139
140
140
141
141

142
143
143
144

146
146
147
147
150
150
151
151

Table of Contents

5

. .

. .

13.1.7. .spec.filters
13.1.8. .spec.filters[]

CHAPTER 14. NETWORK FLOWS FORMAT REFERENCE
14.1. NETWORK FLOWS FORMAT REFERENCE

CHAPTER 15. TROUBLESHOOTING NETWORK OBSERVABILITY
15.1. USING THE MUST-GATHER TOOL
15.2. CONFIGURING NETWORK TRAFFIC MENU ENTRY IN THE OPENSHIFT CONTAINER PLATFORM
CONSOLE
15.3. FLOWLOGS-PIPELINE DOES NOT CONSUME NETWORK FLOWS AFTER INSTALLING KAFKA
15.4. FAILING TO SEE NETWORK FLOWS FROM BOTH BR-INT AND BR-EX INTERFACES
15.5. NETWORK OBSERVABILITY CONTROLLER MANAGER POD RUNS OUT OF MEMORY
15.6. RUNNING CUSTOM QUERIES TO LOKI
15.7. TROUBLESHOOTING LOKI RESOURCEEXHAUSTED ERROR
15.8. LOKI EMPTY RING ERROR
15.9. RESOURCE TROUBLESHOOTING
15.10. LOKISTACK RATE LIMIT ERRORS

152
152

154
154

159
159

159
161
161

162
162
163
164
164
164

OpenShift Container Platform 4.15 Network Observability

6

Table of Contents

7

CHAPTER 1. NETWORK OBSERVABILITY OPERATOR RELEASE
NOTES

The Network Observability Operator enables administrators to observe and analyze network traffic flows
for OpenShift Container Platform clusters.

These release notes track the development of the Network Observability Operator in the OpenShift
Container Platform.

For an overview of the Network Observability Operator, see About Network Observability Operator.

1.1. NETWORK OBSERVABILITY OPERATOR 1.6.0

The following advisory is available for the Network Observability Operator 1.6.0:

Network Observability Operator 1.6.0

1.1.1. New features and enhancements

1.1.1.1. Enhanced use of Network Observability Operator without Loki

You can now use Prometheus metrics and rely less on Loki for storage when using the Network
Observability Operator. For more information, see Network Observability without Loki .

1.1.1.2. Custom metrics API

You can create custom metrics out of flowlogs data by using the FlowMetrics API. Flowlogs data can be
used with Prometheus labels to customize cluster information on your dashboards. You can add custom
labels for any subnet that you want to identify in your flows and metrics. This enhancement can also be
used to more easily identify external traffic by using the new labels SrcSubnetLabel and
DstSubnetLabel, which exists both in flow logs and in metrics. Those fields are empty when there is
external traffic, which gives a way to identify it. For more information, see Custom metrics and
FlowMetric API reference.

1.1.1.3. eBPF performance enhancements

Experience improved performances of the eBPF agent, in terms of CPU and memory, with the following
updates:

The eBPF agent now uses TCX webhooks instead of TC.

The NetObserv / Health dashboard has a new section that shows eBPF metrics.

Based on the new eBPF metrics, an alert notifies you when the eBPF agent is dropping
flows.

Loki storage demand decreases significantly now that duplicated flows are removed. Instead of
having multiple, individual duplicated flows per network interface, there is one de-duplicated
flow with a list of related network interfaces.

IMPORTANT

OpenShift Container Platform 4.15 Network Observability

8

https://access.redhat.com/errata/RHSA-2024:3868

IMPORTANT

With the duplicated flows update, the Interface and Interface Direction fields in the
Network Traffic table are renamed to Interfaces and Interface Directions, so any
bookmarked Quick filter queries using these fields need to be updated to interfaces and
ifdirections.

For more information, see Using the eBPF agent alert and Quick filters.

1.1.1.4. eBPF collection rule-based filtering

You can use rule-based filtering to reduce the volume of created flows. When this option is enabled, the
Netobserv / Health dashboard for eBPF agent statistics has the Filtered flows rate view. For more
information, see eBPF flow rule filter.

1.1.2. Technology Preview features

Some features in this release are currently in Technology Preview. These experimental features are not
intended for production use. Note the following scope of support on the Red Hat Customer Portal for
these features:

Technology Preview Features Support Scope

1.1.2.1. Network Observability CLI

You can debug and troubleshoot network traffic issues without needing to install the Network
Observability Operator by using the Network Observability CLI. Capture and visualize flow and packet
data in real-time with no persistent storage requirement during the capture. For more information, see
Network Observability CLI and Network Observability CLI 1.6.0

1.1.3. Bug fixes

Previously, a dead link to the OpenShift containter platform documentation was displayed in the
Operator Lifecycle Manager (OLM) form for the FlowMetrics API creation. Now the link has
been updated to point to a valid page. (NETOBSERV-1607)

Previously, the Network Observability Operator description in the Operator Hub displayed a
broken link to the documentation. With this fix, this link is restored. (NETOBSERV-1544)

Previously, if Loki was disabled and the Loki Mode was set to LokiStack, or if Loki manual TLS
configuration was configured, the Network Observability Operator still tried to read the Loki CA
certificates. With this fix, when Loki is disabled, the Loki certificates are not read, even if there
are settings in the Loki configuration. (NETOBSERV-1647)

Previously, the oc must-gather plugin for the Network Observability Operator was only working
on the amd64 architecture and failing on all others because the plugin was using amd64 for the
oc binary. Now, the Network Observability Operator oc must-gather plugin collects logs on any
architecture platform.

Previously, when filtering on IP addresses using not equal to, the Network Observability
Operator would return a request error. Now, the IP filtering works in both equal and not equal
to cases for IP addresses and ranges. (NETOBSERV-1630)

Previously, when a user was not an admin, the error messages were not consistent with the

CHAPTER 1. NETWORK OBSERVABILITY OPERATOR RELEASE NOTES

9

https://access.redhat.com/support/offerings/techpreview
https://access.redhat.com/errata/RHEA-2024:3869
https://issues.redhat.com/browse/NETOBSERV-1607
https://issues.redhat.com/browse/NETOBSERV-1544
https://issues.redhat.com/browse/NETOBSERV-1647
https://issues.redhat.com/browse/NETOBSERV-1630

Previously, when a user was not an admin, the error messages were not consistent with the
selected tab of the Network Traffic view in the web console. Now, the user not admin error
displays on any tab with improved display.(NETOBSERV-1621)

1.1.4. Known issues

When the eBPF agent PacketDrop feature is enabled, and sampling is configured to a value
greater than 1, reported dropped bytes and dropped packets ignore the sampling
configuration. While this is done on purpose to not miss any drops, a side effect is that the
reported proportion of drops versus non-drops becomes biased. For example, at a very high
sampling rate, such as 1:1000, it is likely that almost all the traffic appears to be dropped when
observed from the console plugin. (NETOBSERV-1676)

In the Manage panels pop-up window in the Overview tab, filtering on total, bar, donut, or line
does not show any result. (NETOBSERV-1540)

The SR-IOV secondary interface is not detected if the interface was created first and then the
eBPF agent was deployed. It is only detected if the agent was deployed first and then the SR-
IOV interface is created. (NETOBSERV-1697)

When Loki is disabled, the Topology view in the OpenShift web console always shows the
Cluster and Zone aggregation options in the slider beside the network topology diagram, even
when the related features are not enabled. There is no specific workaround, besides ignoring
these slider options. (NETOBSERV-1705)

When Loki is disabled, and the OpenShift web console first loads, it might display an error:
Request failed with status code 400 Loki is disabled. As a workaround, you can continue
switching content on the Network Traffic page, such as clicking between the Topology and the
Overview tabs. The error should disappear. (NETOBSERV-1706)

1.2. NETWORK OBSERVABILITY OPERATOR 1.5.0

The following advisory is available for the Network Observability Operator 1.5.0:

Network Observability Operator 1.5.0

1.2.1. New features and enhancements

1.2.1.1. DNS tracking enhancements

In 1.5, the TCP protocol is now supported in addition to UDP. New dashboards are also added to the
Overview view of the Network Traffic page. For more information, see Configuring DNS tracking and
Working with DNS tracking.

1.2.1.2. Round-trip time (RTT)

You can use TCP handshake Round-Trip Time (RTT) captured from the fentry/tcp_rcv_established
Extended Berkeley Packet Filter (eBPF) hookpoint to read smoothed round-trip time (SRTT) and
analyze network flows. In the Overview, Network Traffic, and Topology pages in web console, you can
monitor network traffic and troubleshoot with RTT metrics, filtering, and edge labeling. For more
information, see RTT Overview and Working with RTT.

1.2.1.3. Metrics, dashboards, and alerts enhancements

OpenShift Container Platform 4.15 Network Observability

10

https://issues.redhat.com/browse/NETOBSERV-1621
https://issues.redhat.com/browse/NETOBSERV-1676
https://issues.redhat.com/browse/NETOBSERV-1540
https://issues.redhat.com/browse/NETOBSERV-1697
https://issues.redhat.com/browse/NETOBSERV-1705
https://issues.redhat.com/browse/NETOBSERV-1706
https://access.redhat.com/errata/RHSA-2024:0853

The Network Observability metrics dashboards in Observe → Dashboards → NetObserv have new
metrics types you can use to create Prometheus alerts. You can now define available metrics in the
includeList specification. In previous releases, these metrics were defined in the ignoreTags
specification. For a complete list of these metrics, see Network Observability Metrics .

1.2.1.4. Improvements for Network Observability without Loki

You can create Prometheus alerts for the Netobserv dashboard using DNS, Packet drop, and RTT
metrics, even if you don’t use Loki. In the previous version of Network Observability, 1.4, these metrics
were only available for querying and analysis in the Network Traffic, Overview, and Topology views,
which are not available without Loki. For more information, see Network Observability Metrics .

1.2.1.5. Availability zones

You can configure the FlowCollector resource to collect information about the cluster availability
zones. This configuration enriches the network flow data with the topology.kubernetes.io/zone label
value applied to the nodes. For more information, see Working with availability zones.

1.2.1.6. Notable enhancements

The 1.5 release of the Network Observability Operator adds improvements and new capabilities to the
OpenShift Container Platform web console plugin and the Operator configuration.

Performance enhancements

The spec.agent.ebpf.kafkaBatchSize default is changed from 10MB to 1MB to enhance eBPF
performance when using Kafka.

IMPORTANT

When upgrading from an existing installation, this new value is not set
automatically in the configuration. If you monitor a performance regression with
the eBPF Agent memory consumption after upgrading, you might consider
reducing the kafkaBatchSize to the new value.

Web console enhancements:

There are new panels added to the Overview view for DNS and RTT: Min, Max, P90, P99.

There are new panel display options added:

Focus on one panel while keeping others viewable but with smaller focus.

Switch graph type.

Show Top and Overall.

A collection latency warning is shown in the Custom time range pop-up window.

There is enhanced visibility for the contents of the Manage panels and Manage columns pop-
up windows.

The Differentiated Services Code Point (DSCP) field for egress QoS is available for filtering
QoS DSCP in the web console Network Traffic page.

Configuration enhancements:

CHAPTER 1. NETWORK OBSERVABILITY OPERATOR RELEASE NOTES

11

https://kubernetes.io/docs/reference/labels-annotations-taints/#topologykubernetesiozone

The LokiStack mode in the spec.loki.mode specification simplifies installation by automatically
setting URLs, TLS, cluster roles and a cluster role binding, as well as the authToken value. The
Manual mode allows more control over configuration of these settings.

The API version changes from flows.netobserv.io/v1beta1 to flows.netobserv.io/v1beta2.

1.2.2. Bug fixes

Previously, it was not possible to register the console plugin manually in the web console
interface if the automatic registration of the console plugin was disabled. If the
spec.console.register value was set to false in the FlowCollector resource, the Operator
would override and erase the plugin registration. With this fix, setting the spec.console.register
value to false does not impact the console plugin registration or registration removal. As a
result, the plugin can be safely registered manually. (NETOBSERV-1134)

Previously, using the default metrics settings, the NetObserv/Health dashboard was showing
an empty graph named Flows Overhead. This metric was only available by removing
"namespaces-flows" and "namespaces" from the ignoreTags list. With this fix, this metric is
visible when you use the default metrics setting. (NETOBSERV-1351)

Previously, the node on which the eBPF Agent was running would not resolve with a specific
cluster configuration. This resulted in cascading consequences that culminated in a failure to
provide some of the traffic metrics. With this fix, the eBPF agent’s node IP is safely provided by
the Operator, inferred from the pod status. Now, the missing metrics are restored.
(NETOBSERV-1430)

Previously, the Loki error 'Input size too long' error for the Loki Operator did not include
additional information to troubleshoot the problem. With this fix, help is directly displayed in the
web console next to the error with a direct link for more guidance. (NETOBSERV-1464)

Previously, the console plugin read timeout was forced to 30s. With the FlowCollector v1beta2
API update, you can configure the spec.loki.readTimeout specification to update this value
according to the Loki Operator queryTimeout limit. (NETOBSERV-1443)

Previously, the Operator bundle did not display some of the supported features by CSV
annotations as expected, such as features.operators.openshift.io/… ​ With this fix, these
annotations are set in the CSV as expected. (NETOBSERV-1305)

Previously, the FlowCollector status sometimes oscillated between DeploymentInProgress
and Ready states during reconciliation. With this fix, the status only becomes Ready when all of
the underlying components are fully ready. (NETOBSERV-1293)

1.2.3. Known issues

When trying to access the web console, cache issues on OCP 4.14.10 prevent access to the
Observe view. The web console shows the error message: Failed to get a valid plugin
manifest from /api/plugins/monitoring-plugin/. The recommended workaround is to update
the cluster to the latest minor version. If this does not work, you need to apply the workarounds
described in this Red Hat Knowledgebase article .(NETOBSERV-1493)

Since the 1.3.0 release of the Network Observability Operator, installing the Operator causes a
warning kernel taint to appear. The reason for this error is that the Network Observability eBPF
agent has memory constraints that prevent preallocating the entire hashmap table. The
Operator eBPF agent sets the BPF_F_NO_PREALLOC flag so that pre-allocation is disabled
when the hashmap is too memory expansive.

OpenShift Container Platform 4.15 Network Observability

12

https://issues.redhat.com/browse/NETOBSERV-1134
https://issues.redhat.com/browse/NETOBSERV-1351
https://issues.redhat.com/browse/NETOBSERV-1430
https://issues.redhat.com/browse/NETOBSERV-1464
https://issues.redhat.com/browse/NETOBSERV-1443
https://issues.redhat.com/browse/NETOBSERV-1305
https://issues.redhat.com/browse/NETOBSERV-1293
https://access.redhat.com/solutions/7052408
https://issues.redhat.com/browse/NETOBSERV-1493

1.3. NETWORK OBSERVABILITY OPERATOR 1.4.2

The following advisory is available for the Network Observability Operator 1.4.2:

2023:6787 Network Observability Operator 1.4.2

1.3.1. CVEs

2023-39325

2023-44487

1.4. NETWORK OBSERVABILITY OPERATOR 1.4.1

The following advisory is available for the Network Observability Operator 1.4.1:

2023:5974 Network Observability Operator 1.4.1

1.4.1. CVEs

2023-44487

2023-39325

2023-29406

2023-29409

2023-39322

2023-39318

2023-39319

2023-39321

1.4.2. Bug fixes

In 1.4, there was a known issue when sending network flow data to Kafka. The Kafka message key
was ignored, causing an error with connection tracking. Now the key is used for partitioning, so
each flow from the same connection is sent to the same processor. (NETOBSERV-926)

In 1.4, the Inner flow direction was introduced to account for flows between pods running on the
same node. Flows with the Inner direction were not taken into account in the generated
Prometheus metrics derived from flows, resulting in under-evaluated bytes and packets rates.
Now, derived metrics are including flows with the Inner direction, providing correct bytes and
packets rates. (NETOBSERV-1344)

1.5. NETWORK OBSERVABILITY OPERATOR 1.4.0

The following advisory is available for the Network Observability Operator 1.4.0:

RHSA-2023:5379 Network Observability Operator 1.4.0

CHAPTER 1. NETWORK OBSERVABILITY OPERATOR RELEASE NOTES

13

https://access.redhat.com/errata/RHSA-2023:6787
https://access.redhat.com/security/cve/CVE-2023-39325
https://access.redhat.com/security/cve/CVE-2023-44487
https://access.redhat.com/errata/RHSA-2023:5974
https://access.redhat.com/security/cve/cve-2023-44487
https://access.redhat.com/security/cve/cve-2023-39325
https://access.redhat.com/security/cve/cve-2023-29406
https://access.redhat.com/security/cve/CVE-2023-29409
https://access.redhat.com/security/cve/cve-2023-39322
https://access.redhat.com/security/cve/cve-2023-39318
https://access.redhat.com/security/cve/cve-2023-39319
https://access.redhat.com/security/cve/cve-2023-39321
https://issues.redhat.com/browse/NETOBSERV-926
https://issues.redhat.com/browse/NETOBSERV-1344
https://access.redhat.com/errata/RHSA-2023:5379

1.5.1. Channel removal

You must switch your channel from v1.0.x to stable to receive the latest Operator updates. The v1.0.x
channel is now removed.

1.5.2. New features and enhancements

1.5.2.1. Notable enhancements

The 1.4 release of the Network Observability Operator adds improvements and new capabilities to the
OpenShift Container Platform web console plugin and the Operator configuration.

Web console enhancements:

In the Query Options, the Duplicate flows checkbox is added to choose whether or not to
show duplicated flows.

You can now filter source and destination traffic with One-way, Back-and-forth, and
Swap filters.

The Network Observability metrics dashboards in Observe → Dashboards → NetObserv and
NetObserv / Health are modified as follows:

The NetObserv dashboard shows top bytes, packets sent, packets received per nodes,
namespaces, and workloads. Flow graphs are removed from this dashboard.

The NetObserv / Health dashboard shows flows overhead as well as top flow rates per
nodes, namespaces, and workloads.

Infrastructure and Application metrics are shown in a split-view for namespaces and
workloads.

For more information, see Network Observability metrics and Quick filters.

Configuration enhancements:

You now have the option to specify different namespaces for any configured ConfigMap or
Secret reference, such as in certificates configuration.

The spec.processor.clusterName parameter is added so that the name of the cluster appears
in the flows data. This is useful in a multi-cluster context. When using OpenShift Container
Platform, leave empty to make it automatically determined.

For more information, see Flow Collector sample resource and Flow Collector API Reference.

1.5.2.2. Network Observability without Loki

The Network Observability Operator is now functional and usable without Loki. If Loki is not installed, it
can only export flows to KAFKA or IPFIX format and provide metrics in the Network Observability
metrics dashboards. For more information, see Network Observability without Loki .

1.5.2.3. DNS tracking

In 1.4, the Network Observability Operator makes use of eBPF tracepoint hooks to enable DNS tracking.
You can monitor your network, conduct security analysis, and troubleshoot DNS issues in the Network
Traffic and Overview pages in the web console.

OpenShift Container Platform 4.15 Network Observability

14

For more information, see Configuring DNS tracking and Working with DNS tracking.

1.5.2.4. SR-IOV support

You can now collect traffic from a cluster with Single Root I/O Virtualization (SR-IOV) device. For more
information, see Configuring the monitoring of SR-IOV interface traffic .

1.5.2.5. IPFIX exporter support

You can now export eBPF-enriched network flows to the IPFIX collector. For more information, see
Export enriched network flow data .

1.5.2.6. Packet drops

In the 1.4 release of the Network Observability Operator, eBPF tracepoint hooks are used to enable
packet drop tracking. You can now detect and analyze the cause for packet drops and make decisions to
optimize network performance. In OpenShift Container Platform 4.14 and later, both host drops and
OVS drops are detected. In OpenShift Container Platform 4.13, only host drops are detected. For more
information, see Configuring packet drop tracking and Working with packet drops.

1.5.2.7. s390x architecture support

Network Observability Operator can now run on s390x architecture. Previously it ran on amd64,
ppc64le, or arm64.

1.5.3. Bug fixes

Previously, the Prometheus metrics exported by Network Observability were computed out of
potentially duplicated network flows. In the related dashboards, from Observe → Dashboards,
this could result in potentially doubled rates. Note that dashboards from the Network Traffic
view were not affected. Now, network flows are filtered to eliminate duplicates before metrics
calculation, which results in correct traffic rates displayed in the dashboards. (NETOBSERV-
1131)

Previously, the Network Observability Operator agents were not able to capture traffic on
network interfaces when configured with Multus or SR-IOV, non-default network namespaces.
Now, all available network namespaces are recognized and used for capturing flows, allowing
capturing traffic for SR-IOV. There are configurations needed for the FlowCollector and
SRIOVnetwork custom resource to collect traffic. (NETOBSERV-1283)

Previously, in the Network Observability Operator details from Operators → Installed
Operators, the FlowCollector Status field might have reported incorrect information about
the state of the deployment. The status field now shows the proper conditions with improved
messages. The history of events is kept, ordered by event date. (NETOBSERV-1224)

Previously, during spikes of network traffic load, certain eBPF pods were OOM-killed and went
into a CrashLoopBackOff state. Now, the eBPF agent memory footprint is improved, so pods
are not OOM-killed and entering a CrashLoopBackOff state. (NETOBSERV-975)

Previously when processor.metrics.tls was set to PROVIDED the insecureSkipVerify option
value was forced to be true. Now you can set insecureSkipVerify to true or false, and provide
a CA certificate if needed. (NETOBSERV-1087)

1.5.4. Known issues

CHAPTER 1. NETWORK OBSERVABILITY OPERATOR RELEASE NOTES

15

https://issues.redhat.com/browse/NETOBSERV-1131
https://issues.redhat.com/browse/NETOBSERV-1283
https://issues.redhat.com/browse/NETOBSERV-1224
https://issues.redhat.com/browse/NETOBSERV-975
https://issues.redhat.com/browse/NETOBSERV-1087

Since the 1.2.0 release of the Network Observability Operator, using Loki Operator 5.6, a Loki
certificate change periodically affects the flowlogs-pipeline pods and results in dropped flows
rather than flows written to Loki. The problem self-corrects after some time, but it still causes
temporary flow data loss during the Loki certificate change. This issue has only been observed in
large-scale environments of 120 nodes or greater. (NETOBSERV-980)

Currently, when spec.agent.ebpf.features includes DNSTracking, larger DNS packets require
the eBPF agent to look for DNS header outside of the 1st socket buffer (SKB) segment. A new
eBPF agent helper function needs to be implemented to support it. Currently, there is no
workaround for this issue. (NETOBSERV-1304)

Currently, when spec.agent.ebpf.features includes DNSTracking, DNS over TCP packets
requires the eBPF agent to look for DNS header outside of the 1st SKB segment. A new eBPF
agent helper function needs to be implemented to support it. Currently, there is no workaround
for this issue. (NETOBSERV-1245)

Currently, when using a KAFKA deployment model, if conversation tracking is configured,
conversation events might be duplicated across Kafka consumers, resulting in inconsistent
tracking of conversations, and incorrect volumetric data. For that reason, it is not recommended
to configure conversation tracking when deploymentModel is set to KAFKA. (NETOBSERV-
926)

Currently, when the processor.metrics.server.tls.type is configured to use a PROVIDED
certificate, the operator enters an unsteady state that might affect its performance and
resource consumption. It is recommended to not use a PROVIDED certificate until this issue is
resolved, and instead using an auto-generated certificate, setting
processor.metrics.server.tls.type to AUTO. (NETOBSERV-1293

Since the 1.3.0 release of the Network Observability Operator, installing the Operator causes a
warning kernel taint to appear. The reason for this error is that the Network Observability eBPF
agent has memory constraints that prevent preallocating the entire hashmap table. The
Operator eBPF agent sets the BPF_F_NO_PREALLOC flag so that pre-allocation is disabled
when the hashmap is too memory expansive.

1.6. NETWORK OBSERVABILITY OPERATOR 1.3.0

The following advisory is available for the Network Observability Operator 1.3.0:

RHSA-2023:3905 Network Observability Operator 1.3.0

1.6.1. Channel deprecation

You must switch your channel from v1.0.x to stable to receive future Operator updates. The v1.0.x
channel is deprecated and planned for removal in the next release.

1.6.2. New features and enhancements

1.6.2.1. Multi-tenancy in Network Observability

System administrators can allow and restrict individual user access, or group access, to the
flows stored in Loki. For more information, see Multi-tenancy in Network Observability .

1.6.2.2. Flow-based metrics dashboard

This release adds a new dashboard, which provides an overview of the network flows in your

OpenShift Container Platform 4.15 Network Observability

16

https://issues.redhat.com/browse/NETOBSERV-980
https://issues.redhat.com/browse/NETOBSERV-1304
https://issues.redhat.com/browse/NETOBSERV-1245
https://issues.redhat.com/browse/NETOBSERV-926
https://issues.redhat.com/browse/NETOBSERV-1293)
https://access.redhat.com/errata/RHSA-2023:3905

This release adds a new dashboard, which provides an overview of the network flows in your
OpenShift Container Platform cluster. For more information, see Network Observability metrics.

1.6.2.3. Troubleshooting with the must-gather tool

Information about the Network Observability Operator can now be included in the must-gather
data for troubleshooting. For more information, see Network Observability must-gather.

1.6.2.4. Multiple architectures now supported

Network Observability Operator can now run on an amd64, ppc64le, or arm64 architectures.
Previously, it only ran on amd64.

1.6.3. Deprecated features

1.6.3.1. Deprecated configuration parameter setting

The release of Network Observability Operator 1.3 deprecates the spec.Loki.authToken HOST setting.
When using the Loki Operator, you must now only use the FORWARD setting.

1.6.4. Bug fixes

Previously, when the Operator was installed from the CLI, the Role and RoleBinding that are
necessary for the Cluster Monitoring Operator to read the metrics were not installed as
expected. The issue did not occur when the operator was installed from the web console. Now,
either way of installing the Operator installs the required Role and RoleBinding.
(NETOBSERV-1003)

Since version 1.2, the Network Observability Operator can raise alerts when a problem occurs
with the flows collection. Previously, due to a bug, the related configuration to disable alerts,
spec.processor.metrics.disableAlerts was not working as expected and sometimes
ineffectual. Now, this configuration is fixed so that it is possible to disable the alerts.
(NETOBSERV-976)

Previously, when Network Observability was configured with spec.loki.authToken set to
DISABLED, only a kubeadmin cluster administrator was able to view network flows. Other
types of cluster administrators received authorization failure. Now, any cluster administrator is
able to view network flows. (NETOBSERV-972)

Previously, a bug prevented users from setting spec.consolePlugin.portNaming.enable to
false. Now, this setting can be set to false to disable port-to-service name translation.
(NETOBSERV-971)

Previously, the metrics exposed by the console plugin were not collected by the Cluster
Monitoring Operator (Prometheus), due to an incorrect configuration. Now the configuration
has been fixed so that the console plugin metrics are correctly collected and accessible from
the OpenShift Container Platform web console. (NETOBSERV-765)

Previously, when processor.metrics.tls was set to AUTO in the FlowCollector, the flowlogs-
pipeline servicemonitor did not adapt the appropriate TLS scheme, and metrics were not
visible in the web console. Now the issue is fixed for AUTO mode. (NETOBSERV-1070)

Previously, certificate configuration, such as used for Kafka and Loki, did not allow specifying a
namespace field, implying that the certificates had to be in the same namespace where Network
Observability is deployed. Moreover, when using Kafka with TLS/mTLS, the user had to

CHAPTER 1. NETWORK OBSERVABILITY OPERATOR RELEASE NOTES

17

https://issues.redhat.com/browse/NETOBSERV-1003
https://issues.redhat.com/browse/NETOBSERV-976
https://issues.redhat.com/browse/NETOBSERV-972
https://issues.redhat.com/browse/NETOBSERV-971
https://issues.redhat.com/browse/NETOBSERV-765
https://issues.redhat.com/browse/NETOBSERV-1070

manually copy the certificate(s) to the privileged namespace where the eBPF agent pods are
deployed and manually manage certificate updates, such as in the case of certificate rotation.
Now, Network Observability setup is simplified by adding a namespace field for certificates in
the FlowCollector resource. As a result, users can now install Loki or Kafka in different
namespaces without needing to manually copy their certificates in the Network Observability
namespace. The original certificates are watched so that the copies are automatically updated
when needed. (NETOBSERV-773)

Previously, the SCTP, ICMPv4 and ICMPv6 protocols were not covered by the Network
Observability agents, resulting in a less comprehensive network flows coverage. These protocols
are now recognized to improve the flows coverage. (NETOBSERV-934)

1.6.5. Known issues

When processor.metrics.tls is set to PROVIDED in the FlowCollector, the flowlogs-pipeline
servicemonitor is not adapted to the TLS scheme. (NETOBSERV-1087)

Since the 1.2.0 release of the Network Observability Operator, using Loki Operator 5.6, a Loki
certificate change periodically affects the flowlogs-pipeline pods and results in dropped flows
rather than flows written to Loki. The problem self-corrects after some time, but it still causes
temporary flow data loss during the Loki certificate change. This issue has only been observed in
large-scale environments of 120 nodes or greater.(NETOBSERV-980)

When you install the Operator, a warning kernel taint can appear. The reason for this error is that
the Network Observability eBPF agent has memory constraints that prevent preallocating the
entire hashmap table. The Operator eBPF agent sets the BPF_F_NO_PREALLOC flag so that
pre-allocation is disabled when the hashmap is too memory expansive.

1.7. NETWORK OBSERVABILITY OPERATOR 1.2.0

The following advisory is available for the Network Observability Operator 1.2.0:

RHSA-2023:1817 Network Observability Operator 1.2.0

1.7.1. Preparing for the next update

The subscription of an installed Operator specifies an update channel that tracks and receives updates
for the Operator. Until the 1.2 release of the Network Observability Operator, the only channel available
was v1.0.x. The 1.2 release of the Network Observability Operator introduces the stable update channel
for tracking and receiving updates. You must switch your channel from v1.0.x to stable to receive future
Operator updates. The v1.0.x channel is deprecated and planned for removal in a following release.

1.7.2. New features and enhancements

1.7.2.1. Histogram in Traffic Flows view

You can now choose to show a histogram bar chart of flows over time. The histogram enables
you to visualize the history of flows without hitting the Loki query limit. For more information,
see Using the histogram.

1.7.2.2. Conversation tracking

You can now query flows by Log Type, which enables grouping network flows that are part of
the same conversation. For more information, see Working with conversations.

OpenShift Container Platform 4.15 Network Observability

18

https://issues.redhat.com/browse/NETOBSERV-773
https://issues.redhat.com/browse/NETOBSERV-934
https://issues.redhat.com/browse/NETOBSERV-1087
https://issues.redhat.com/browse/NETOBSERV-980
https://access.redhat.com/errata/RHSA-2023:1817

1.7.2.3. Network Observability health alerts

The Network Observability Operator now creates automatic alerts if the flowlogs-pipeline is
dropping flows because of errors at the write stage or if the Loki ingestion rate limit has been
reached. For more information, see Health dashboards.

1.7.3. Bug fixes

Previously, after changing the namespace value in the FlowCollector spec, eBPF agent pods
running in the previous namespace were not appropriately deleted. Now, the pods running in the
previous namespace are appropriately deleted. (NETOBSERV-774)

Previously, after changing the caCert.name value in the FlowCollector spec (such as in Loki
section), FlowLogs-Pipeline pods and Console plug-in pods were not restarted, therefore they
were unaware of the configuration change. Now, the pods are restarted, so they get the
configuration change. (NETOBSERV-772)

Previously, network flows between pods running on different nodes were sometimes not
correctly identified as being duplicates because they are captured by different network
interfaces. This resulted in over-estimated metrics displayed in the console plug-in. Now, flows
are correctly identified as duplicates, and the console plug-in displays accurate metrics.
(NETOBSERV-755)

The "reporter" option in the console plug-in is used to filter flows based on the observation
point of either source node or destination node. Previously, this option mixed the flows
regardless of the node observation point. This was due to network flows being incorrectly
reported as Ingress or Egress at the node level. Now, the network flow direction reporting is
correct. The "reporter" option filters for source observation point, or destination observation
point, as expected. (NETOBSERV-696)

Previously, for agents configured to send flows directly to the processor as gRPC+protobuf
requests, the submitted payload could be too large and is rejected by the processors' GRPC
server. This occurred under very-high-load scenarios and with only some configurations of the
agent. The agent logged an error message, such as: grpc: received message larger than max . As
a consequence, there was information loss about those flows. Now, the gRPC payload is split
into several messages when the size exceeds a threshold. As a result, the server maintains
connectivity. (NETOBSERV-617)

1.7.4. Known issue

In the 1.2.0 release of the Network Observability Operator, using Loki Operator 5.6, a Loki
certificate transition periodically affects the flowlogs-pipeline pods and results in dropped
flows rather than flows written to Loki. The problem self-corrects after some time, but it still
causes temporary flow data loss during the Loki certificate transition. (NETOBSERV-980)

1.7.5. Notable technical changes

Previously, you could install the Network Observability Operator using a custom namespace.
This release introduces the conversion webhook which changes the ClusterServiceVersion.
Because of this change, all the available namespaces are no longer listed. Additionally, to enable
Operator metrics collection, namespaces that are shared with other Operators, like the
openshift-operators namespace, cannot be used. Now, the Operator must be installed in the
openshift-netobserv-operator namespace. You cannot automatically upgrade to the new
Operator version if you previously installed the Network Observability Operator using a custom
namespace. If you previously installed the Operator using a custom namespace, you must delete

CHAPTER 1. NETWORK OBSERVABILITY OPERATOR RELEASE NOTES

19

https://issues.redhat.com/browse/NETOBSERV-774
https://issues.redhat.com/browse/NETOBSERV-772
https://issues.redhat.com/browse/NETOBSERV-755
https://issues.redhat.com/browse/NETOBSERV-696
https://issues.redhat.com/browse/NETOBSERV-617
https://issues.redhat.com/browse/NETOBSERV-980

the instance of the Operator that was installed and re-install your operator in the openshift-
netobserv-operator namespace. It is important to note that custom namespaces, such as the
commonly used netobserv namespace, are still possible for the FlowCollector, Loki, Kafka, and
other plug-ins. (NETOBSERV-907)(NETOBSERV-956)

1.8. NETWORK OBSERVABILITY OPERATOR 1.1.0

The following advisory is available for the Network Observability Operator 1.1.0:

RHSA-2023:0786 Network Observability Operator Security Advisory Update

The Network Observability Operator is now stable and the release channel is upgraded to v1.1.0.

1.8.1. Bug fix

Previously, unless the Loki authToken configuration was set to FORWARD mode,
authentication was no longer enforced, allowing any user who could connect to the OpenShift
Container Platform console in an OpenShift Container Platform cluster to retrieve flows
without authentication. Now, regardless of the Loki authToken mode, only cluster
administrators can retrieve flows. (BZ#2169468)

OpenShift Container Platform 4.15 Network Observability

20

https://issues.redhat.com/browse/NETOBSERV-907
https://https//issues.redhat.com/browse/NETOBSERV-956
https://access.redhat.com/errata/RHSA-2023:0786
https://bugzilla.redhat.com/show_bug.cgi?id=2169468

CHAPTER 2. ABOUT NETWORK OBSERVABILITY
Red Hat offers cluster administrators the Network Observability Operator to observe the network traffic
for OpenShift Container Platform clusters. The Network Observability Operator uses the eBPF
technology to create network flows. The network flows are then enriched with OpenShift Container
Platform information. They are available as Prometheus metrics or as logs in Loki. You can view and
analyze the stored network flows information in the OpenShift Container Platform console for further
insight and troubleshooting.

2.1. OPTIONAL DEPENDENCIES OF THE NETWORK OBSERVABILITY
OPERATOR

Loki Operator: Loki is the backend that can be used to store all collected flows with a maximal
level of details. You can choose to use Network Observability without Loki , but there are some
considerations for doing this, as described in the linked section. If you choose to install Loki, it is
recommended to use the Loki Operator, which is supported by Red Hat.

AMQ Streams Operator: Kafka provides scalability, resiliency and high availability in the
OpenShift Container Platform cluster for large scale deployments. If you choose to use Kafka, it
is recommended to use the AMQ Streams Operator, because it is supported by Red Hat.

2.2. NETWORK OBSERVABILITY OPERATOR

The Network Observability Operator provides the Flow Collector API custom resource definition. A Flow
Collector instance is a cluster-scoped resource that enables configuration of network flow collection.
The Flow Collector instance deploys pods and services that form a monitoring pipeline where network
flows are then collected and enriched with the Kubernetes metadata before storing in Loki or
generating Prometheus metrics. The eBPF agent, which is deployed as a daemonset object, creates the
network flows.

2.3. OPENSHIFT CONTAINER PLATFORM CONSOLE INTEGRATION

OpenShift Container Platform console integration offers overview, topology view and traffic flow tables.

2.3.1. Network Observability metrics dashboards

On the Overview tab in the OpenShift Container Platform console, you can view the overall aggregated
metrics of the network traffic flow on the cluster. You can choose to display the information by zone,
node, namespace, owner, pod, and service. Filters and display options can further refine the metrics. For
more information, see Observing the network traffic from the Overview view .

In Observe → Dashboards, the Netobserv dashboards provide a quick overview of the network flows in
your OpenShift Container Platform cluster. The Netobserv/Health dashboard provides metrics about
the health of the Operator. For more information, see Network Observability Metrics and Viewing health
information.

2.3.2. Network Observability topology views

The OpenShift Container Platform console offers the Topology tab which displays a graphical
representation of the network flows and the amount of traffic. The topology view represents traffic
between the OpenShift Container Platform components as a network graph. You can refine the graph
by using the filters and display options. You can access the information for zone, node, namespace,
owner, pod, and service.

CHAPTER 2. ABOUT NETWORK OBSERVABILITY

21

2.3.3. Traffic flow tables

The traffic flow table view provides a view for raw flows, non aggregated filtering options, and
configurable columns. The OpenShift Container Platform console offers the Traffic flows tab which
displays the data of the network flows and the amount of traffic.

2.4. NETWORK OBSERVABILITY CLI

You can quickly debug and troubleshoot networking issues with Network Observability by using the
Network Observability CLI (oc netobserv). The Network Observability CLI is a flow and packet
visualization tool that relies on eBPF agents to stream collected data to an ephemeral collector pod. It
requires no persistent storage during the capture. After the run, the output is transferred to your local
machine. This enables quick, live insight into packets and flow data without installing the Network
Observability Operator.

OpenShift Container Platform 4.15 Network Observability

22

CHAPTER 3. INSTALLING THE NETWORK OBSERVABILITY
OPERATOR

Installing Loki is a recommended prerequisite for using the Network Observability Operator. You can
choose to use Network Observability without Loki , but there are some considerations for doing this,
described in the previously linked section.

The Loki Operator integrates a gateway that implements multi-tenancy and authentication with Loki for
data flow storage. The LokiStack resource manages Loki, which is a scalable, highly-available, multi-
tenant log aggregation system, and a web proxy with OpenShift Container Platform authentication. The
LokiStack proxy uses OpenShift Container Platform authentication to enforce multi-tenancy and
facilitate the saving and indexing of data in Loki log stores.

NOTE

The Loki Operator can also be used for configuring the LokiStack log store . The Network
Observability Operator requires a dedicated LokiStack separate from the logging.

3.1. NETWORK OBSERVABILITY WITHOUT LOKI

You can use Network Observability without Loki by not performing the Loki installation steps and
skipping directly to "Installing the Network Observability Operator". If you only want to export flows to a
Kafka consumer or IPFIX collector, or you only need dashboard metrics, then you do not need to install
Loki or provide storage for Loki. The following table compares available features with and without Loki.

Table 3.1. Comparison of feature availability with and without Loki

 With Loki Without Loki

Exporters

Multi-tenancy

Complete filtering and

aggregations capabilities [1]

Partial filtering and

aggregations capabilities [2]

Flow-based metrics and
dashboards

Traffic flows view overview [3]

Traffic flows view table

Topology view

CHAPTER 3. INSTALLING THE NETWORK OBSERVABILITY OPERATOR

23

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/logging/#cluster-logging-loki

OpenShift Container Platform
console Network Traffic tab
integration

 With Loki Without Loki

1. Such as per pod.

2. Such as per workload or namespace.

3. Statistics on packet drops are only available with Loki.

Additional resources

Export enriched network flow data .

3.2. INSTALLING THE LOKI OPERATOR

The Loki Operator versions 5.7+ are the supported Loki Operator versions for Network Observability;
these versions provide the ability to create a LokiStack instance using the openshift-network tenant
configuration mode and provide fully-automatic, in-cluster authentication and authorization support for
Network Observability. There are several ways you can install Loki. One way is by using the OpenShift
Container Platform web console Operator Hub.

Prerequisites

Supported Log Store (AWS S3, Google Cloud Storage, Azure, Swift, Minio, OpenShift Data
Foundation)

OpenShift Container Platform 4.10+

Linux Kernel 4.18+

Procedure

1. In the OpenShift Container Platform web console, click Operators → OperatorHub.

2. Choose Loki Operator from the list of available Operators, and click Install.

3. Under Installation Mode, select All namespaces on the cluster.

Verification

1. Verify that you installed the Loki Operator. Visit the Operators → Installed Operators page and
look for Loki Operator.

2. Verify that Loki Operator is listed with Status as Succeeded in all the projects.

IMPORTANT

OpenShift Container Platform 4.15 Network Observability

24

https://catalog.redhat.com/software/containers/openshift-logging/loki-rhel8-operator/622b46bcae289285d6fcda39

1

IMPORTANT

To uninstall Loki, refer to the uninstallation process that corresponds with the method
you used to install Loki. You might have remaining ClusterRoles and
ClusterRoleBindings, data stored in object store, and persistent volume that must be
removed.

3.2.1. Creating a secret for Loki storage

The Loki Operator supports a few log storage options, such as AWS S3, Google Cloud Storage, Azure,
Swift, Minio, OpenShift Data Foundation. The following example shows how to create a secret for AWS
S3 storage. The secret created in this example, loki-s3, is referenced in "Creating a LokiStack resource".
You can create this secret in the web console or CLI.

1. Using the web console, navigate to the Project → All Projects dropdown and select Create
Project. Name the project netobserv and click Create.

2. Navigate to the Import icon, +, in the top right corner. Paste your YAML file into the editor.
The following shows an example secret YAML file for S3 storage:

The installation examples in this documentation use the same namespace, netobserv,
across all components. You can optionally use a different namespace for the different
components

Verification

Once you create the secret, you should see it listed under Workloads → Secrets in the web
console.

Additional resources

Flow Collector API Reference

Flow Collector sample resource

Loki object storage

3.2.2. Creating a LokiStack custom resource

You can deploy a LokiStack custom resource (CR) by using the web console or OpenShift CLI (oc) to
create a namespace, or new project.

apiVersion: v1
kind: Secret
metadata:
 name: loki-s3
 namespace: netobserv 1
stringData:
 access_key_id: QUtJQUlPU0ZPRE5ON0VYQU1QTEUK
 access_key_secret:
d0phbHJYVXRuRkVNSS9LN01ERU5HL2JQeFJmaUNZRVhBTVBMRUtFWQo=
 bucketnames: s3-bucket-name
 endpoint: https://s3.eu-central-1.amazonaws.com
 region: eu-central-1

CHAPTER 3. INSTALLING THE NETWORK OBSERVABILITY OPERATOR

25

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/logging/#logging-loki-storage_installing-log-storage

1

2

3

Procedure

1. Navigate to Operators → Installed Operators, viewing All projects from the Project
dropdown.

2. Look for Loki Operator. In the details, under Provided APIs, select LokiStack.

3. Click Create LokiStack.

4. Ensure the following fields are specified in either Form View or YAML view:

The installation examples in this documentation use the same namespace, netobserv,
across all components. You can optionally use a different namespace.

Specify the deployment size. In the Loki Operator 5.8 and later versions, the supported size
options for production instances of Loki are 1x.extra-small, 1x.small, or 1x.medium.

IMPORTANT

It is not possible to change the number 1x for the deployment size.

Use a storage class name that is available on the cluster for ReadWriteOnce access mode.
You can use oc get storageclasses to see what is available on your cluster.

IMPORTANT

You must not reuse the same LokiStack CR that is used for logging.

5. Click Create.

3.2.3. Creating a new group for the cluster-admin user role

IMPORTANT

apiVersion: loki.grafana.com/v1
kind: LokiStack
metadata:
 name: loki
 namespace: netobserv 1
spec:
 size: 1x.small 2
 storage:
 schemas:
 - version: v12
 effectiveDate: '2022-06-01'
 secret:
 name: loki-s3
 type: s3
 storageClassName: gp3 3
 tenants:
 mode: openshift-network

OpenShift Container Platform 4.15 Network Observability

26

1

2

3

IMPORTANT

Querying application logs for multiple namespaces as a cluster-admin user, where the
sum total of characters of all of the namespaces in the cluster is greater than 5120, results
in the error Parse error: input size too long (XXXX > 5120). For better control over
access to logs in LokiStack, make the cluster-admin user a member of the cluster-
admin group. If the cluster-admin group does not exist, create it and add the desired
users to it.

Use the following procedure to create a new group for users with cluster-admin permissions.

Procedure

1. Enter the following command to create a new group:

2. Enter the following command to add the desired user to the cluster-admin group:

3. Enter the following command to add cluster-admin user role to the group:

3.2.4. Custom admin group access

If you have a large deployment with a number of users who require broader permissions, you can create a
custom group using the adminGroup field. Users who are members of any group specified in the
adminGroups field of the LokiStack CR are considered admins. Admin users have access to all
application logs in all namespaces, if they also get assigned the cluster-logging-application-view role.

Example LokiStack CR

Custom admin groups are only available in this mode.

Entering an empty list [] value for this field disables admin groups.

Overrides the default groups (system:cluster-admins, cluster-admin, dedicated-admin)

$ oc adm groups new cluster-admin

$ oc adm groups add-users cluster-admin <username>

$ oc adm policy add-cluster-role-to-group cluster-admin cluster-admin

apiVersion: loki.grafana.com/v1
kind: LokiStack
metadata:
 name: logging-loki
 namespace: openshift-logging
spec:
 tenants:
 mode: openshift-network 1
 openshift:
 adminGroups: 2
 - cluster-admin
 - custom-admin-group 3

CHAPTER 3. INSTALLING THE NETWORK OBSERVABILITY OPERATOR

27

3.2.5. Loki deployment sizing

Sizing for Loki follows the format of 1x.<size> where the value 1x is number of instances and <size>
specifies performance capabilities.

IMPORTANT

It is not possible to change the number 1x for the deployment size.

Table 3.2. Loki sizing

 1x.demo 1x.extra-small 1x.small 1x.medium

Data transfer Demo use only 100GB/day 500GB/day 2TB/day

Queries per
second (QPS)

Demo use only 1-25 QPS at
200ms

25-50 QPS at
200ms

25-75 QPS at
200ms

Replication factor None 2 2 2

Total CPU
requests

None 14 vCPUs 34 vCPUs 54 vCPUs

Total memory
requests

None 31Gi 67Gi 139Gi

Total disk
requests

40Gi 430Gi 430Gi 590Gi

3.2.6. LokiStack ingestion limits and health alerts

The LokiStack instance comes with default settings according to the configured size. It is possible to
override some of these settings, such as the ingestion and query limits. You might want to update them
if you get Loki errors showing up in the Console plugin, or in flowlogs-pipeline logs. An automatic alert
in the web console notifies you when these limits are reached.

Here is an example of configured limits:

For more information about these settings, see the LokiStack API reference.

spec:
 limits:
 global:
 ingestion:
 ingestionBurstSize: 40
 ingestionRate: 20
 maxGlobalStreamsPerTenant: 25000
 queries:
 maxChunksPerQuery: 2000000
 maxEntriesLimitPerQuery: 10000
 maxQuerySeries: 3000

OpenShift Container Platform 4.15 Network Observability

28

https://loki-operator.dev/docs/api.md/#loki-grafana-com-v1-IngestionLimitSpec

3.2.7. Enabling multi-tenancy in Network Observability

Multi-tenancy in the Network Observability Operator allows and restricts individual user access, or
group access, to the flows stored in Loki. Access is enabled for project admins. Project admins who have
limited access to some namespaces can access flows for only those namespaces.

Prerequisite

You have installed at least Loki Operator version 5.7

You must be logged in as a project administrator

Procedure

1. Authorize reading permission to user1 by running the following command:

Now, the data is restricted to only allowed user namespaces. For example, a user that has
access to a single namespace can see all the flows internal to this namespace, as well as flows
going from and to this namespace. Project admins have access to the Administrator perspective
in the OpenShift Container Platform console to access the Network Flows Traffic page.

3.3. INSTALLING THE NETWORK OBSERVABILITY OPERATOR

You can install the Network Observability Operator using the OpenShift Container Platform web
console Operator Hub. When you install the Operator, it provides the FlowCollector custom resource
definition (CRD). You can set specifications in the web console when you create the FlowCollector.

IMPORTANT

The actual memory consumption of the Operator depends on your cluster size and the
number of resources deployed. Memory consumption might need to be adjusted
accordingly. For more information refer to "Network Observability controller manager
pod runs out of memory" in the "Important Flow Collector configuration considerations"
section.

Prerequisites

If you choose to use Loki, install the Loki Operator version 5.7+.

You must have cluster-admin privileges.

One of the following supported architectures is required: amd64, ppc64le, arm64, or s390x.

Any CPU supported by Red Hat Enterprise Linux (RHEL) 9.

Must be configured with OVN-Kubernetes or OpenShift SDN as the main network plugin, and
optionally using secondary interfaces with Multus and SR-IOV.

NOTE

Additionally, this installation example uses the netobserv namespace, which is used
across all components. You can optionally use a different namespace.

$ oc adm policy add-cluster-role-to-user netobserv-reader user1

CHAPTER 3. INSTALLING THE NETWORK OBSERVABILITY OPERATOR

29

https://catalog.redhat.com/software/containers/openshift-logging/loki-rhel8-operator/622b46bcae289285d6fcda39
https://catalog.redhat.com/software/containers/openshift-logging/loki-rhel8-operator/622b46bcae289285d6fcda39

Procedure

1. In the OpenShift Container Platform web console, click Operators → OperatorHub.

2. Choose Network Observability Operator from the list of available Operators in the
OperatorHub, and click Install.

3. Select the checkbox Enable Operator recommended cluster monitoring on this Namespace.

4. Navigate to Operators → Installed Operators. Under Provided APIs for Network Observability,
select the Flow Collector link.

5. Navigate to the Flow Collector tab, and click Create FlowCollector. Make the following
selections in the form view:

a. spec.agent.ebpf.Sampling: Specify a sampling size for flows. Lower sampling sizes will have
higher impact on resource utilization. For more information, see the "FlowCollector API
reference", spec.agent.ebpf.

b. If you are using Loki, set the following specifications:

i. spec.loki.mode: Set this to the LokiStack mode, which automatically sets URLs, TLS,
cluster roles and a cluster role binding, as well as the authToken value. Alternatively, the
Manual mode allows more control over configuration of these settings.

ii. spec.loki.lokistack.name: Set this to the name of your LokiStack resource. In this
documentation, loki is used.

c. Optional: If you are in a large-scale environment, consider configuring the FlowCollector
with Kafka for forwarding data in a more resilient, scalable way. See "Configuring the Flow
Collector resource with Kafka storage" in the "Important Flow Collector configuration
considerations" section.

d. Optional: Configure other optional settings before the next step of creating the
FlowCollector. For example, if you choose not to use Loki, then you can configure
exporting flows to Kafka or IPFIX. See "Export enriched network flow data to Kafka and
IPFIX" and more in the "Important Flow Collector configuration considerations" section.

6. Click Create.

Verification

To confirm this was successful, when you navigate to Observe you should see Network Traffic listed in
the options.

In the absence of Application Traffic within the OpenShift Container Platform cluster, default filters
might show that there are "No results", which results in no visual flow. Beside the filter selections, select
Clear all filters to see the flow.

3.4. IMPORTANT FLOW COLLECTOR CONFIGURATION
CONSIDERATIONS

Once you create the FlowCollector instance, you can reconfigure it, but the pods are terminated and
recreated again, which can be disruptive. Therefore, you can consider configuring the following options
when creating the FlowCollector for the first time:

Configuring the Flow Collector resource with Kafka

OpenShift Container Platform 4.15 Network Observability

30

Export enriched network flow data to Kafka or IPFIX

Configuring monitoring for SR-IOV interface traffic

Working with conversation tracking

Working with DNS tracking

Working with packet drops

Additional resources

For more general information about Flow Collector specifications and the Network Observability
Operator architecture and resource use, see the following resources:

Flow Collector API Reference

Flow Collector sample resource

Resource considerations

Troubleshooting Network Observability controller manager pod runs out of memory

Network Observability architecture

3.5. INSTALLING KAFKA (OPTIONAL)

The Kafka Operator is supported for large scale environments. Kafka provides high-throughput and low-
latency data feeds for forwarding network flow data in a more resilient, scalable way. You can install the
Kafka Operator as Red Hat AMQ Streams from the Operator Hub, just as the Loki Operator and
Network Observability Operator were installed. Refer to "Configuring the FlowCollector resource with
Kafka" to configure Kafka as a storage option.

NOTE

To uninstall Kafka, refer to the uninstallation process that corresponds with the method
you used to install.

Additional resources

Configuring the FlowCollector resource with Kafka .

3.6. UNINSTALLING THE NETWORK OBSERVABILITY OPERATOR

You can uninstall the Network Observability Operator using the OpenShift Container Platform web
console Operator Hub, working in the Operators → Installed Operators area.

Procedure

1. Remove the FlowCollector custom resource.

a. Click Flow Collector, which is next to the Network Observability Operator in the Provided
APIs column.

CHAPTER 3. INSTALLING THE NETWORK OBSERVABILITY OPERATOR

31

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.2

b. Click the options menu for the cluster and select Delete FlowCollector.

2. Uninstall the Network Observability Operator.

a. Navigate back to the Operators → Installed Operators area.

b. Click the options menu next to the Network Observability Operator and select
Uninstall Operator.

c. Home → Projects and select openshift-netobserv-operator

d. Navigate to Actions and select Delete Project

3. Remove the FlowCollector custom resource definition (CRD).

a. Navigate to Administration → CustomResourceDefinitions.

b. Look for FlowCollector and click the options menu .

c. Select Delete CustomResourceDefinition.

IMPORTANT

The Loki Operator and Kafka remain if they were installed and must be
removed separately. Additionally, you might have remaining data stored in an
object store, and a persistent volume that must be removed.

OpenShift Container Platform 4.15 Network Observability

32

CHAPTER 4. NETWORK OBSERVABILITY OPERATOR IN
OPENSHIFT CONTAINER PLATFORM

Network Observability is an OpenShift operator that deploys a monitoring pipeline to collect and enrich
network traffic flows that are produced by the Network Observability eBPF agent.

4.1. VIEWING STATUSES

The Network Observability Operator provides the Flow Collector API. When a Flow Collector resource is
created, it deploys pods and services to create and store network flows in the Loki log store, as well as to
display dashboards, metrics, and flows in the OpenShift Container Platform web console.

Procedure

1. Run the following command to view the state of FlowCollector:

Example output

NAME AGENT SAMPLING (EBPF) DEPLOYMENT MODEL STATUS
cluster EBPF 50 DIRECT Ready

2. Check the status of pods running in the netobserv namespace by entering the following
command:

Example output

NAME READY STATUS RESTARTS AGE
flowlogs-pipeline-56hbp 1/1 Running 0 147m
flowlogs-pipeline-9plvv 1/1 Running 0 147m
flowlogs-pipeline-h5gkb 1/1 Running 0 147m
flowlogs-pipeline-hh6kf 1/1 Running 0 147m
flowlogs-pipeline-w7vv5 1/1 Running 0 147m
netobserv-plugin-cdd7dc6c-j8ggp 1/1 Running 0 147m

flowlogs-pipeline pods collect flows, enriches the collected flows, then send flows to the Loki storage.
netobserv-plugin pods create a visualization plugin for the OpenShift Container Platform Console.

1. Check the status of pods running in the namespace netobserv-privileged by entering the
following command:

Example output

NAME READY STATUS RESTARTS AGE
netobserv-ebpf-agent-4lpp6 1/1 Running 0 151m
netobserv-ebpf-agent-6gbrk 1/1 Running 0 151m

$ oc get flowcollector/cluster

$ oc get pods -n netobserv

$ oc get pods -n netobserv-privileged

CHAPTER 4. NETWORK OBSERVABILITY OPERATOR IN OPENSHIFT CONTAINER PLATFORM

33

netobserv-ebpf-agent-klpl9 1/1 Running 0 151m
netobserv-ebpf-agent-vrcnf 1/1 Running 0 151m
netobserv-ebpf-agent-xf5jh 1/1 Running 0 151m

netobserv-ebpf-agent pods monitor network interfaces of the nodes to get flows and send them to
flowlogs-pipeline pods.

1. If you are using the Loki Operator, check the status of pods running in the openshift-operators-
redhat namespace by entering the following command:

Example output

NAME READY STATUS RESTARTS AGE
loki-operator-controller-manager-5f6cff4f9d-jq25h 2/2 Running 0 18h
lokistack-compactor-0 1/1 Running 0 18h
lokistack-distributor-654f87c5bc-qhkhv 1/1 Running 0 18h
lokistack-distributor-654f87c5bc-skxgm 1/1 Running 0 18h
lokistack-gateway-796dc6ff7-c54gz 2/2 Running 0 18h
lokistack-index-gateway-0 1/1 Running 0 18h
lokistack-index-gateway-1 1/1 Running 0 18h
lokistack-ingester-0 1/1 Running 0 18h
lokistack-ingester-1 1/1 Running 0 18h
lokistack-ingester-2 1/1 Running 0 18h
lokistack-querier-66747dc666-6vh5x 1/1 Running 0 18h
lokistack-querier-66747dc666-cjr45 1/1 Running 0 18h
lokistack-querier-66747dc666-xh8rq 1/1 Running 0 18h
lokistack-query-frontend-85c6db4fbd-b2xfb 1/1 Running 0 18h
lokistack-query-frontend-85c6db4fbd-jm94f 1/1 Running 0 18h

4.2. NETWORK OBSERVABLITY OPERATOR ARCHITECTURE

The Network Observability Operator provides the FlowCollector API, which is instantiated at
installation and configured to reconcile the eBPF agent, the flowlogs-pipeline, and the netobserv-
plugin components. Only a single FlowCollector per cluster is supported.

The eBPF agent runs on each cluster node with some privileges to collect network flows. The flowlogs-
pipeline receives the network flows data and enriches the data with Kubernetes identifiers. If you are
using Loki, the flowlogs-pipeline sends flow logs data to Loki for storing and indexing. The netobserv-
plugin, which is a dynamic OpenShift Container Platform web console plugin, queries Loki to fetch
network flows data. Cluster-admins can view the data in the web console.

$ oc get pods -n openshift-operators-redhat

OpenShift Container Platform 4.15 Network Observability

34

If you are using the Kafka option, the eBPF agent sends the network flow data to Kafka, and the
flowlogs-pipeline reads from the Kafka topic before sending to Loki, as shown in the following diagram.

4.3. VIEWING NETWORK OBSERVABILITY OPERATOR STATUS AND
CONFIGURATION

You can inspect the status and view the details of the FlowCollector using the oc describe command.

CHAPTER 4. NETWORK OBSERVABILITY OPERATOR IN OPENSHIFT CONTAINER PLATFORM

35

Procedure

1. Run the following command to view the status and configuration of the Network Observability
Operator:

$ oc describe flowcollector/cluster

OpenShift Container Platform 4.15 Network Observability

36

CHAPTER 5. CONFIGURING THE NETWORK OBSERVABILITY
OPERATOR

You can update the Flow Collector API resource to configure the Network Observability Operator and
its managed components. The Flow Collector is explicitly created during installation. Since this resource
operates cluster-wide, only a single FlowCollector is allowed, and it has to be named cluster.

5.1. VIEW THE FLOWCOLLECTOR RESOURCE

You can view and edit YAML directly in the OpenShift Container Platform web console.

Procedure

1. In the web console, navigate to Operators → Installed Operators.

2. Under the Provided APIs heading for the NetObserv Operator, select Flow Collector.

3. Select cluster then select the YAML tab. There, you can modify the FlowCollector resource to
configure the Network Observability operator.

The following example shows a sample FlowCollector resource for OpenShift Container Platform
Network Observability operator:

Sample FlowCollector resource

apiVersion: flows.netobserv.io/v1beta2
kind: FlowCollector
metadata:
 name: cluster
spec:
 namespace: netobserv
 deploymentModel: Direct
 agent:
 type: eBPF 1
 ebpf:
 sampling: 50 2
 logLevel: info
 privileged: false
 resources:
 requests:
 memory: 50Mi
 cpu: 100m
 limits:
 memory: 800Mi
 processor: 3
 logLevel: info
 resources:
 requests:
 memory: 100Mi
 cpu: 100m
 limits:
 memory: 800Mi
 logTypes: Flows
 advanced:

CHAPTER 5. CONFIGURING THE NETWORK OBSERVABILITY OPERATOR

37

1

2

3

4

5

The Agent specification, spec.agent.type, must be EBPF. eBPF is the only OpenShift Container
Platform supported option.

You can set the Sampling specification, spec.agent.ebpf.sampling, to manage resources. Lower
sampling values might consume a large amount of computational, memory and storage resources.
You can mitigate this by specifying a sampling ratio value. A value of 100 means 1 flow every 100 is
sampled. A value of 0 or 1 means all flows are captured. The lower the value, the increase in
returned flows and the accuracy of derived metrics. By default, eBPF sampling is set to a value of
50, so 1 flow every 50 is sampled. Note that more sampled flows also means more storage needed.
It is recommend to start with default values and refine empirically, to determine which setting your
cluster can manage.

The Processor specification spec.processor. can be set to enable conversation tracking. When
enabled, conversation events are queryable in the web console. The spec.processor.logTypes
value is Flows. The spec.processor.advanced values are Conversations, EndedConversations,
or ALL. Storage requirements are highest for All and lowest for EndedConversations.

The Loki specification, spec.loki, specifies the Loki client. The default values match the Loki install
paths mentioned in the Installing the Loki Operator section. If you used another installation method
for Loki, specify the appropriate client information for your install.

The LokiStack mode automatically sets a few configurations: querierUrl, ingesterUrl and
statusUrl, tenantID, and corresponding TLS configuration. Cluster roles and a cluster role binding
are created for reading and writing logs to Loki. And authToken is set to Forward. You can set
these manually using the Manual mode.

 conversationEndTimeout: 10s
 conversationHeartbeatInterval: 30s
 loki: 4
 mode: LokiStack 5
 consolePlugin:
 register: true
 logLevel: info
 portNaming:
 enable: true
 portNames:
 "3100": loki
 quickFilters: 6
 - name: Applications
 filter:
 src_namespace!: 'openshift-,netobserv'
 dst_namespace!: 'openshift-,netobserv'
 default: true
 - name: Infrastructure
 filter:
 src_namespace: 'openshift-,netobserv'
 dst_namespace: 'openshift-,netobserv'
 - name: Pods network
 filter:
 src_kind: 'Pod'
 dst_kind: 'Pod'
 default: true
 - name: Services network
 filter:
 dst_kind: 'Service'

OpenShift Container Platform 4.15 Network Observability

38

6

1

2

3

4

The spec.quickFilters specification defines filters that show up in the web console. The
Application filter keys,src_namespace and dst_namespace, are negated (!), so the Application

Additional resources

For more information about conversation tracking, see Working with conversations.

5.2. CONFIGURING THE FLOW COLLECTOR RESOURCE WITH KAFKA

You can configure the FlowCollector resource to use Kafka for high-throughput and low-latency data
feeds. A Kafka instance needs to be running, and a Kafka topic dedicated to OpenShift Container
Platform Network Observability must be created in that instance. For more information, see Kafka
documentation with AMQ Streams.

Prerequisites

Kafka is installed. Red Hat supports Kafka with AMQ Streams Operator.

Procedure

1. In the web console, navigate to Operators → Installed Operators.

2. Under the Provided APIs heading for the Network Observability Operator, select Flow
Collector.

3. Select the cluster and then click the YAML tab.

4. Modify the FlowCollector resource for OpenShift Container Platform Network Observability
Operator to use Kafka, as shown in the following sample YAML:

Sample Kafka configuration in FlowCollector resource

Set spec.deploymentModel to Kafka instead of Direct to enable the Kafka deployment model.

spec.kafka.address refers to the Kafka bootstrap server address. You can specify a port if needed,
for instance kafka-cluster-kafka-bootstrap.netobserv:9093 for using TLS on port 9093.

spec.kafka.topic should match the name of a topic created in Kafka.

spec.kafka.tls can be used to encrypt all communications to and from Kafka with TLS or mTLS.

apiVersion: flows.netobserv.io/v1beta2
kind: FlowCollector
metadata:
 name: cluster
spec:
 deploymentModel: Kafka 1
 kafka:
 address: "kafka-cluster-kafka-bootstrap.netobserv" 2
 topic: network-flows 3
 tls:
 enable: false 4

CHAPTER 5. CONFIGURING THE NETWORK OBSERVABILITY OPERATOR

39

https://access.redhat.com/documentation/en-us/red_hat_amq/7.7/html/using_amq_streams_on_openshift/using-the-topic-operator-str

2

3

1 4

spec.kafka.tls can be used to encrypt all communications to and from Kafka with TLS or mTLS.
When enabled, the Kafka CA certificate must be available as a ConfigMap or a Secret, both in the

5.3. EXPORT ENRICHED NETWORK FLOW DATA

You can send network flows to Kafka, IPFIX, or both at the same time. Any processor or storage that
supports Kafka or IPFIX input, such as Splunk, Elasticsearch, or Fluentd, can consume the enriched
network flow data.

Prerequisites

Your Kafka or IPFIX collector endpoint(s) are available from Network Observability flowlogs-
pipeline pods.

Procedure

1. In the web console, navigate to Operators → Installed Operators.

2. Under the Provided APIs heading for the NetObserv Operator, select Flow Collector.

3. Select cluster and then select the YAML tab.

4. Edit the FlowCollector to configure spec.exporters as follows:

The Network Observability Operator exports all flows to the configured Kafka topic.

You can encrypt all communications to and from Kafka with SSL/TLS or mTLS. When
enabled, the Kafka CA certificate must be available as a ConfigMap or a Secret, both in the
namespace where the flowlogs-pipeline processor component is deployed (default:
netobserv). It must be referenced with spec.exporters.tls.caCert. When using mTLS,
client secrets must be available in these namespaces as well (they can be generated for
instance using the AMQ Streams User Operator) and referenced with
spec.exporters.tls.userCert.

You can export flows to IPFIX instead of or in conjunction with exporting flows to Kafka.

You have the option to specify transport. The default value is tcp but you can also specify

apiVersion: flows.netobserv.io/v1beta2
kind: FlowCollector
metadata:
 name: cluster
spec:
 exporters:
 - type: Kafka 1
 kafka:
 address: "kafka-cluster-kafka-bootstrap.netobserv"
 topic: netobserv-flows-export 2
 tls:
 enable: false 3
 - type: IPFIX 4
 ipfix:
 targetHost: "ipfix-collector.ipfix.svc.cluster.local"
 targetPort: 4739
 transport: tcp or udp 5

OpenShift Container Platform 4.15 Network Observability

40

5 You have the option to specify transport. The default value is tcp but you can also specify
udp.

5. After configuration, network flows data can be sent to an available output in a JSON format. For
more information, see Network flows format reference .

Additional resources

For more information about specifying flow format, see Network flows format reference .

5.4. UPDATING THE FLOW COLLECTOR RESOURCE

As an alternative to editing YAML in the OpenShift Container Platform web console, you can configure
specifications, such as eBPF sampling, by patching the flowcollector custom resource (CR):

Procedure

1. Run the following command to patch the flowcollector CR and update the
spec.agent.ebpf.sampling value:

5.5. CONFIGURING QUICK FILTERS

You can modify the filters in the FlowCollector resource. Exact matches are possible using double-
quotes around values. Otherwise, partial matches are used for textual values. The bang (!) character,
placed at the end of a key, means negation. See the sample FlowCollector resource for more context
about modifying the YAML.

NOTE

The filter matching types "all of" or "any of" is a UI setting that the users can modify from
the query options. It is not part of this resource configuration.

Here is a list of all available filter keys:

Table 5.1. Filter keys

Unive
rsal*

Sourc
e

Destin
ation

Description

names
pace

src_n
ames
pace

dst_n
ames
pace

Filter traffic related to a specific namespace.

name src_n
ame

dst_n
ame

Filter traffic related to a given leaf resource name, such as a specific pod,
service, or node (for host-network traffic).

$ oc patch flowcollector cluster --type=json -p "[{"op": "replace", "path":
"/spec/agent/ebpf/sampling", "value": <new value>}] -n netobserv"

CHAPTER 5. CONFIGURING THE NETWORK OBSERVABILITY OPERATOR

41

kind src_k
ind

dst_k
ind

Filter traffic related to a given resource kind. The resource kinds include the leaf
resource (Pod, Service or Node), or the owner resource (Deployment and
StatefulSet).

owner
_name

src_o
wner
_nam
e

dst_o
wner
_nam
e

Filter traffic related to a given resource owner; that is, a workload or a set of
pods. For example, it can be a Deployment name, a StatefulSet name, etc.

resour
ce

src_r
esou
rce

dst_r
esou
rce

Filter traffic related to a specific resource that is denoted by its canonical
name, that identifies it uniquely. The canonical notation is
kind.namespace.name for namespaced kinds, or node.name for nodes.
For example, Deployment.my-namespace.my-web-server.

addre
ss

src_a
ddre
ss

dst_a
ddre
ss

Filter traffic related to an IP address. IPv4 and IPv6 are supported. CIDR
ranges are also supported.

mac src_
mac

dst_
mac

Filter traffic related to a MAC address.

port src_p
ort

dst_p
ort

Filter traffic related to a specific port.

host_a
ddres
s

src_h
ost_a
ddre
ss

dst_h
ost_a
ddre
ss

Filter traffic related to the host IP address where the pods are running.

proto
col

N/A N/A Filter traffic related to a protocol, such as TCP or UDP.

Unive
rsal*

Sourc
e

Destin
ation

Description

Universal keys filter for any of source or destination. For example, filtering name: 'my-pod'
means all traffic from my-pod and all traffic to my-pod, regardless of the matching type used,
whether Match all or Match any.

5.6. CONFIGURING MONITORING FOR SR-IOV INTERFACE TRAFFIC

In order to collect traffic from a cluster with a Single Root I/O Virtualization (SR-IOV) device, you must
set the FlowCollector spec.agent.ebpf.privileged field to true. Then, the eBPF agent monitors other
network namespaces in addition to the host network namespaces, which are monitored by default. When
a pod with a virtual functions (VF) interface is created, a new network namespace is created. With
SRIOVNetwork policy IPAM configurations specified, the VF interface is migrated from the host
network namespace to the pod network namespace.

Prerequisites

Access to an OpenShift Container Platform cluster with a SR-IOV device.

OpenShift Container Platform 4.15 Network Observability

42

1

The SRIOVNetwork custom resource (CR) spec.ipam configuration must be set with an IP
address from the range that the interface lists or from other plugins.

Procedure

1. In the web console, navigate to Operators → Installed Operators.

2. Under the Provided APIs heading for the NetObserv Operator, select Flow Collector.

3. Select cluster and then select the YAML tab.

4. Configure the FlowCollector custom resource. A sample configuration is as follows:

Configure FlowCollector for SR-IOV monitoring

The spec.agent.ebpf.privileged field value must be set to true to enable SR-IOV monitoring.

Additional resources

For more information about creating the SriovNetwork custom resource, see Creating an additional
SR-IOV network attachment with the CNI VRF plugin.

5.7. RESOURCE MANAGEMENT AND PERFORMANCE
CONSIDERATIONS

The amount of resources required by Network Observability depends on the size of your cluster and
your requirements for the cluster to ingest and store observability data. To manage resources and set
performance criteria for your cluster, consider configuring the following settings. Configuring these
settings might meet your optimal setup and observability needs.

The following settings can help you manage resources and performance from the outset:

eBPF Sampling

You can set the Sampling specification, spec.agent.ebpf.sampling, to manage resources. Smaller
sampling values might consume a large amount of computational, memory and storage resources.
You can mitigate this by specifying a sampling ratio value. A value of 100 means 1 flow every 100 is
sampled. A value of 0 or 1 means all flows are captured. Smaller values result in an increase in
returned flows and the accuracy of derived metrics. By default, eBPF sampling is set to a value of 50,
so 1 flow every 50 is sampled. Note that more sampled flows also means more storage needed.
Consider starting with the default values and refine empirically, in order to determine which setting
your cluster can manage.

apiVersion: flows.netobserv.io/v1beta2
kind: FlowCollector
metadata:
 name: cluster
spec:
 namespace: netobserv
 deploymentModel: Direct
 agent:
 type: eBPF
 ebpf:
 privileged: true 1

CHAPTER 5. CONFIGURING THE NETWORK OBSERVABILITY OPERATOR

43

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/networking/#cnf-creating-an-additional-sriov-network-with-vrf-plug-in_configuring-sriov-device

Restricting or excluding interfaces

Reduce the overall observed traffic by setting the values for spec.agent.ebpf.interfaces and
spec.agent.ebpf.excludeInterfaces. By default, the agent fetches all the interfaces in the system,
except the ones listed in excludeInterfaces and lo (local interface). Note that the interface names
might vary according to the Container Network Interface (CNI) used.

The following settings can be used to fine-tune performance after the Network Observability has been
running for a while:

Resource requirements and limits

Adapt the resource requirements and limits to the load and memory usage you expect on your
cluster by using the spec.agent.ebpf.resources and spec.processor.resources specifications. The
default limits of 800MB might be sufficient for most medium-sized clusters.

Cache max flows timeout

Control how often flows are reported by the agents by using the eBPF agent’s
spec.agent.ebpf.cacheMaxFlows and spec.agent.ebpf.cacheActiveTimeout specifications. A
larger value results in less traffic being generated by the agents, which correlates with a lower CPU
load. However, a larger value leads to a slightly higher memory consumption, and might generate
more latency in the flow collection.

5.7.1. Resource considerations

The following table outlines examples of resource considerations for clusters with certain workload
sizes.

IMPORTANT

The examples outlined in the table demonstrate scenarios that are tailored to specific
workloads. Consider each example only as a baseline from which adjustments can be
made to accommodate your workload needs.

Table 5.2. Resource recommendations

 Extra small (10
nodes)

Small (25 nodes) Medium (65
nodes) [2]

Large (120 nodes)
[2]

Worker Node
vCPU and
memory

4 vCPUs| 16GiB

mem [1]

16 vCPUs| 64GiB

mem [1]

16 vCPUs| 64GiB

mem [1]

16 vCPUs| 64GiB

Mem [1]

LokiStack size 1x.extra-small 1x.small 1x.small 1x.medium

Network
Observability
controller
memory limit

400Mi (default) 400Mi (default) 400Mi (default) 400Mi (default)

eBPF sampling
rate

50 (default) 50 (default) 50 (default) 50 (default)

OpenShift Container Platform 4.15 Network Observability

44

eBPF memory
limit

800Mi (default) 800Mi (default) 800Mi (default) 1600Mi

FLP memory limit 800Mi (default) 800Mi (default) 800Mi (default) 800Mi (default)

FLP Kafka
partitions

N/A 48 48 48

Kafka consumer
replicas

N/A 24 24 24

Kafka brokers N/A 3 (default) 3 (default) 3 (default)

 Extra small (10
nodes)

Small (25 nodes) Medium (65
nodes) [2]

Large (120 nodes)
[2]

1. Tested with AWS M6i instances.

2. In addition to this worker and its controller, 3 infra nodes (size M6i.12xlarge) and 1 workload
node (size M6i.8xlarge) were tested.

CHAPTER 5. CONFIGURING THE NETWORK OBSERVABILITY OPERATOR

45

CHAPTER 6. NETWORK POLICY
As a user with the admin role, you can create a network policy for the netobserv namespace to secure
inbound access to the Network Observability Operator.

6.1. CREATING A NETWORK POLICY FOR NETWORK OBSERVABILITY

You might need to create a network policy to secure ingress traffic to the netobserv namespace. In the
web console, you can create a network policy using the form view.

Procedure

1. Navigate to Networking → NetworkPolicies.

2. Select the netobserv project from the Project dropdown menu.

3. Name the policy. For this example, the policy name is allow-ingress.

4. Click Add ingress rule three times to create three ingress rules.

5. Specify the following in the form:

a. Make the following specifications for the first Ingress rule:

i. From the Add allowed source dropdown menu, select Allow pods from the same
namespace.

b. Make the following specifications for the second Ingress rule:

i. From the Add allowed source dropdown menu, select Allow pods from inside the
cluster.

ii. Click + Add namespace selector.

iii. Add the label, kubernetes.io/metadata.name, and the selector, openshift-console.

c. Make the following specifications for the third Ingress rule:

i. From the Add allowed source dropdown menu, select Allow pods from inside the
cluster.

ii. Click + Add namespace selector.

iii. Add the label, kubernetes.io/metadata.name, and the selector, openshift-monitoring.

Verification

1. Navigate to Observe → Network Traffic.

2. View the Traffic Flows tab, or any tab, to verify that the data is displayed.

3. Navigate to Observe → Dashboards. In the NetObserv/Health selection, verify that the flows
are being ingested and sent to Loki, which is represented in the first graph.

6.2. EXAMPLE NETWORK POLICY

OpenShift Container Platform 4.15 Network Observability

46

1

2

3

The following annotates an example NetworkPolicy object for the netobserv namespace:

Sample network policy

A selector that describes the pods to which the policy applies. The policy object can only select
pods in the project that defines the NetworkPolicy object. In this documentation, it would be the
project in which the Network Observability Operator is installed, which is the netobserv project.

A selector that matches the pods from which the policy object allows ingress traffic. The default is
that the selector matches pods in the same namespace as the NetworkPolicy.

When the namespaceSelector is specified, the selector matches pods in the specified namespace.

Additional resources

Creating a network policy using the CLI

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: allow-ingress
 namespace: netobserv
spec:
 podSelector: {} 1
 ingress:
 - from:
 - podSelector: {} 2
 namespaceSelector: 3
 matchLabels:
 kubernetes.io/metadata.name: openshift-console
 - podSelector: {}
 namespaceSelector:
 matchLabels:
 kubernetes.io/metadata.name: openshift-monitoring
 policyTypes:
 - Ingress
status: {}

CHAPTER 6. NETWORK POLICY

47

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/networking/#nw-networkpolicy-object_creating-network-policy

CHAPTER 7. OBSERVING THE NETWORK TRAFFIC
As an administrator, you can observe the network traffic in the OpenShift Container Platform console
for detailed troubleshooting and analysis. This feature helps you get insights from different graphical
representations of traffic flow. There are several available views to observe the network traffic.

7.1. OBSERVING THE NETWORK TRAFFIC FROM THE OVERVIEW VIEW

The Overview view displays the overall aggregated metrics of the network traffic flow on the cluster. As
an administrator, you can monitor the statistics with the available display options.

7.1.1. Working with the Overview view

As an administrator, you can navigate to the Overview view to see the graphical representation of the
flow rate statistics.

Procedure

1. Navigate to Observe → Network Traffic.

2. In the Network Traffic page, click the Overview tab.

You can configure the scope of each flow rate data by clicking the menu icon.

7.1.2. Configuring advanced options for the Overview view

You can customize the graphical view by using advanced options. To access the advanced options, click
Show advanced options. You can configure the details in the graph by using the Display options drop-
down menu. The options available are as follows:

Scope: Select to view the components that network traffic flows between. You can set the
scope to Node, Namespace, Owner, Zones, Cluster or Resource. Owner is an aggregation of
resources. Resource can be a pod, service, node, in case of host-network traffic, or an unknown
IP address. The default value is Namespace.

Truncate labels: Select the required width of the label from the drop-down list. The default
value is M.

7.1.2.1. Managing panels and display

You can select the required panels to be displayed, reorder them, and focus on a specific panel. To add
or remove panels, click Manage panels.

The following panels are shown by default:

Top X average bytes rates

Top X bytes rates stacked with total

Other panels can be added in Manage panels:

Top X average packets rates

Top X packets rates stacked with total

OpenShift Container Platform 4.15 Network Observability

48

Query options allows you to choose whether to show the Top 5, Top 10, or Top 15 rates.

7.1.3. Packet drop tracking

You can configure graphical representation of network flow records with packet loss in the Overview
view. By employing eBPF tracepoint hooks, you can gain valuable insights into packet drops for TCP,
UDP, SCTP, ICMPv4, and ICMPv6 protocols, which can result in the following actions:

Identification: Pinpoint the exact locations and network paths where packet drops are occurring.
Determine whether specific devices, interfaces, or routes are more prone to drops.

Root cause analysis: Examine the data collected by the eBPF program to understand the causes
of packet drops. For example, are they a result of congestion, buffer issues, or specific network
events?

Performance optimization: With a clearer picture of packet drops, you can take steps to optimize
network performance, such as adjust buffer sizes, reconfigure routing paths, or implement
Quality of Service (QoS) measures.

When packet drop tracking is enabled, you can see the following panels in the Overview by default:

Top X packet dropped state stacked with total

Top X packet dropped cause stacked with total

Top X average dropped packets rates

Top X dropped packets rates stacked with total

Other packet drop panels are available to add in Manage panels:

Top X average dropped bytes rates

Top X dropped bytes rates stacked with total

7.1.3.1. Types of packet drops

Two kinds of packet drops are detected by Network Observability: host drops and OVS drops. Host
drops are prefixed with SKB_DROP and OVS drops are prefixed with OVS_DROP. Dropped flows are
shown in the side panel of the Traffic flows table along with a link to a description of each drop type.
Examples of host drop reasons are as follows:

SKB_DROP_REASON_NO_SOCKET: the packet dropped due to a missing socket.

SKB_DROP_REASON_TCP_CSUM: the packet dropped due to a TCP checksum error.

Examples of OVS drops reasons are as follows:

OVS_DROP_LAST_ACTION: OVS packets dropped due to an implicit drop action, for example
due to a configured network policy.

OVS_DROP_IP_TTL: OVS packets dropped due to an expired IP TTL.

See the Additional Resources of this section for more information about enabling and working with
packet drop tracking.

CHAPTER 7. OBSERVING THE NETWORK TRAFFIC

49

Additional resources

Working with packet drops

Network Observability metrics

7.1.4. DNS tracking

You can configure graphical representation of Domain Name System (DNS) tracking of network flows in
the Overview view. Using DNS tracking with extended Berkeley Packet Filter (eBPF) tracepoint hooks
can serve various purposes:

Network Monitoring: Gain insights into DNS queries and responses, helping network
administrators identify unusual patterns, potential bottlenecks, or performance issues.

Security Analysis: Detect suspicious DNS activities, such as domain name generation algorithms
(DGA) used by malware, or identify unauthorized DNS resolutions that might indicate a security
breach.

Troubleshooting: Debug DNS-related issues by tracing DNS resolution steps, tracking latency,
and identifying misconfigurations.

By default, when DNS tracking is enabled, you can see the following non-empty metrics represented in a
donut or line chart in the Overview:

Top X DNS Response Code

Top X average DNS latencies with overall

Top X 90th percentile DNS latencies

Other DNS tracking panels can be added in Manage panels:

Bottom X minimum DNS latencies

Top X maximum DNS latencies

Top X 99th percentile DNS latencies

This feature is supported for IPv4 and IPv6 UDP and TCP protocols.

See the Additional Resources in this section for more information about enabling and working with this
view.

Additional resources

Working with DNS tracking

Network Observability metrics

7.1.5. Round-Trip Time

You can use TCP smoothed Round-Trip Time (sRTT) to analyze network flow latencies. You can use
RTT captured from the fentry/tcp_rcv_established eBPF hookpoint to read sRTT from the TCP socket
to help with the following:

Network Monitoring: Gain insights into TCP latencies, helping network administrators identify

OpenShift Container Platform 4.15 Network Observability

50

Network Monitoring: Gain insights into TCP latencies, helping network administrators identify
unusual patterns, potential bottlenecks, or performance issues.

Troubleshooting: Debug TCP-related issues by tracking latency and identifying
misconfigurations.

By default, when RTT is enabled, you can see the following TCP RTT metrics represented in the
Overview:

Top X 90th percentile TCP Round Trip Time with overall

Top X average TCP Round Trip Time with overall

Bottom X minimum TCP Round Trip Time with overall

Other RTT panels can be added in Manage panels:

Top X maximum TCP Round Trip Time with overall

Top X 99th percentile TCP Round Trip Time with overall

See the Additional Resources in this section for more information about enabling and working with this
view.

Additional resources

Working with RTT tracing

7.1.6. eBPF flow rule filter

You can use rule-based filtering to control the volume of packets cached in the eBPF flow table. For
example, a filter can specify that only packets coming from port 100 should be recorded. Then only the
packets that match the filter are cached and the rest are not cached.

7.1.6.1. Ingress and egress traffic filtering

CIDR notation efficiently represents IP address ranges by combining the base IP address with a prefix
length. For both ingress and egress traffic, the source IP address is first used to match filter rules
configured with CIDR notation. If there is a match, then the filtering proceeds. If there is no match, then
the destination IP is used to match filter rules configured with CIDR notation.

After matching either the source IP or the destination IP CIDR, you can pinpoint specific endpoints using
the peerIP to differentiate the destination IP address of the packet. Based on the provisioned action,
the flow data is either cached in the eBPF flow table or not cached.

7.1.6.2. Dashboard and metrics integrations

When this option is enabled, the Netobserv/Health dashboard for eBPF agent statistics now has the
Filtered flows rate view. Additionally, in Observe → Metrics you can query
netobserv_agent_filtered_flows_total to observe metrics with the reason in
FlowFilterAcceptCounter, FlowFilterNoMatchCounter or FlowFilterRecjectCounter.

7.1.6.3. Flow filter configuration parameters

The flow filter rules consist of required and optional parameters.

CHAPTER 7. OBSERVING THE NETWORK TRAFFIC

51

Table 7.1. Required configuration parameters

Parameter Description

enable Set enable to true to enable the eBPF flow filtering feature.

cidr Provides the IP address and CIDR mask for the flow filter rule. Supports both
IPv4 and IPv6 address format. If you want to match against any IP, you can use
0.0.0.0/0 for IPv4 or ::/0 for IPv6.

action Describes the action that is taken for the flow filter rule. The possible values are
Accept or Reject.

For the Accept action matching rule, the flow data is cached in the
eBPF table and updated with the global metric,
FlowFilterAcceptCounter.

For the Reject action matching rule, the flow data is dropped and not
cached in the eBPF table. The flow data is updated with the global
metric, FlowFilterRejectCounter.

If the rule is not matched, the flow is cached in the eBPF table and
updated with the global metric, FlowFilterNoMatchCounter.

Table 7.2. Optional configuration parameters

Parameter Description

direction Defines the direction of the flow filter rule. Possible values are Ingress or
Egress.

protocol Defines the protocol of the flow filter rule. Possible values are TCP, UDP,
SCTP, ICMP, and ICMPv6.

ports Defines the ports to use for filtering flows. It can be used for either source or
destination ports. To filter a single port, set a single port as an integer value. For
example ports: 80. To filter a range of ports, use a "start-end" range in string
format. For example ports: "80-100"

sourcePorts Defines the source port to use for filtering flows. To filter a single port, set a
single port as an integer value, for example sourcePorts: 80. To filter a range
of ports, use a "start-end" range, string format, for example sourcePorts:
"80-100".

destPorts DestPorts defines the destination ports to use for filtering flows. To filter a
single port, set a single port as an integer value, for example destPorts: 80. To
filter a range of ports, use a "start-end" range in string format, for example
destPorts: "80-100".

icmpType Defines the ICMP type to use for filtering flows.

OpenShift Container Platform 4.15 Network Observability

52

icmpCode Defines the ICMP code to use for filtering flows.

peerIP Defines the IP address to use for filtering flows, for example: 10.10.10.10.

Parameter Description

Additional resources

Filtering eBPF flow data with rules

Network Observability metrics

Health dashboards

7.2. OBSERVING THE NETWORK TRAFFIC FROM THE TRAFFIC FLOWS
VIEW

The Traffic flows view displays the data of the network flows and the amount of traffic in a table. As an
administrator, you can monitor the amount of traffic across the application by using the traffic flow
table.

7.2.1. Working with the Traffic flows view

As an administrator, you can navigate to Traffic flows table to see network flow information.

Procedure

1. Navigate to Observe → Network Traffic.

2. In the Network Traffic page, click the Traffic flows tab.

You can click on each row to get the corresponding flow information.

7.2.2. Configuring advanced options for the Traffic flows view

You can customize and export the view by using Show advanced options. You can set the row size by
using the Display options drop-down menu. The default value is Normal.

7.2.2.1. Managing columns

You can select the required columns to be displayed, and reorder them. To manage columns, click
Manage columns.

7.2.2.2. Exporting the traffic flow data

You can export data from the Traffic flows view.

Procedure

1. Click Export data.

2. In the pop-up window, you can select the Export all data checkbox to export all the data, and

CHAPTER 7. OBSERVING THE NETWORK TRAFFIC

53

1

2. In the pop-up window, you can select the Export all data checkbox to export all the data, and
clear the checkbox to select the required fields to be exported.

3. Click Export.

7.2.3. Working with conversation tracking

As an administrator, you can group network flows that are part of the same conversation. A conversation
is defined as a grouping of peers that are identified by their IP addresses, ports, and protocols, resulting
in an unique Conversation Id. You can query conversation events in the web console. These events are
represented in the web console as follows:

Conversation start: This event happens when a connection is starting or TCP flag intercepted

Conversation tick: This event happens at each specified interval defined in the FlowCollector
spec.processor.conversationHeartbeatInterval parameter while the connection is active.

Conversation end: This event happens when the FlowCollector
spec.processor.conversationEndTimeout parameter is reached or the TCP flag is
intercepted.

Flow: This is the network traffic flow that occurs within the specified interval.

Procedure

1. In the web console, navigate to Operators → Installed Operators.

2. Under the Provided APIs heading for the NetObserv Operator, select Flow Collector.

3. Select cluster then select the YAML tab.

4. Configure the FlowCollector custom resource so that spec.processor.logTypes,
conversationEndTimeout, and conversationHeartbeatInterval parameters are set according
to your observation needs. A sample configuration is as follows:

Configure FlowCollector for conversation tracking

When logTypes is set to Flows, only the Flow event is exported. If you set the value to All,
both conversation and flow events are exported and visible in the Network Traffic page.
To focus only on conversation events, you can specify Conversations which exports the
Conversation start, Conversation tick and Conversation end events; or
EndedConversations exports only the Conversation end events. Storage requirements
are highest for All and lowest for EndedConversations.

The Conversation end event represents the point when the conversationEndTimeout is

apiVersion: flows.netobserv.io/v1beta2
kind: FlowCollector
metadata:
 name: cluster
spec:
 processor:
 logTypes: Flows 1
 advanced:
 conversationEndTimeout: 10s 2
 conversationHeartbeatInterval: 30s 3

OpenShift Container Platform 4.15 Network Observability

54

2

3

The Conversation end event represents the point when the conversationEndTimeout is
reached or the TCP flag is intercepted.

The Conversation tick event represents each specified interval defined in the
FlowCollector conversationHeartbeatInterval parameter while the network connection is
active.

NOTE

If you update the logType option, the flows from the previous selection do not
clear from the console plugin. For example, if you initially set logType to
Conversations for a span of time until 10 AM and then move to
EndedConversations, the console plugin shows all conversation events before
10 AM and only ended conversations after 10 AM.

5. Refresh the Network Traffic page on the Traffic flows tab. Notice there are two new columns,
Event/Type and Conversation Id. All the Event/Type fields are Flow when Flow is the
selected query option.

6. Select Query Options and choose the Log Type, Conversation. Now the Event/Type shows
all of the desired conversation events.

7. Next you can filter on a specific conversation ID or switch between the Conversation and Flow
log type options from the side panel.

7.2.4. Working with packet drops

Packet loss occurs when one or more packets of network flow data fail to reach their destination. You
can track these drops by editing the FlowCollector to the specifications in the following YAML example.

IMPORTANT

CPU and memory usage increases when this feature is enabled.

Procedure

1. In the web console, navigate to Operators → Installed Operators.

2. Under the Provided APIs heading for the NetObserv Operator, select Flow Collector.

3. Select cluster, and then select the YAML tab.

4. Configure the FlowCollector custom resource for packet drops, for example:

Example FlowCollector configuration

apiVersion: flows.netobserv.io/v1beta2
kind: FlowCollector
metadata:
 name: cluster
spec:
 namespace: netobserv
 agent:
 type: eBPF

CHAPTER 7. OBSERVING THE NETWORK TRAFFIC

55

1

2

You can start reporting the packet drops of each network flow by listing the PacketDrop
parameter in the spec.agent.ebpf.features specification list.

The spec.agent.ebpf.privileged specification value must be true for packet drop tracking.

Verification

When you refresh the Network Traffic page, the Overview, Traffic Flow, and Topology views
display new information about packet drops:

a. Select new choices in Manage panels to choose which graphical visualizations of packet
drops to display in the Overview.

b. Select new choices in Manage columns to choose which packet drop information to display
in the Traffic flows table.

i. In the Traffic Flows view, you can also expand the side panel to view more information
about packet drops. Host drops are prefixed with SKB_DROP and OVS drops are
prefixed with OVS_DROP.

c. In the Topology view, red lines are displayed where drops are present.

7.2.5. Working with DNS tracking

Using DNS tracking, you can monitor your network, conduct security analysis, and troubleshoot DNS
issues. You can track DNS by editing the FlowCollector to the specifications in the following YAML
example.

IMPORTANT

CPU and memory usage increases are observed in the eBPF agent when this feature is
enabled.

Procedure

1. In the web console, navigate to Operators → Installed Operators.

2. Under the Provided APIs heading for Network Observability, select Flow Collector.

3. Select cluster then select the YAML tab.

4. Configure the FlowCollector custom resource. A sample configuration is as follows:

Configure FlowCollector for DNS tracking

 ebpf:
 features:
 - PacketDrop 1
 privileged: true 2

apiVersion: flows.netobserv.io/v1beta2
kind: FlowCollector
metadata:
 name: cluster

OpenShift Container Platform 4.15 Network Observability

56

1

2

You can set the spec.agent.ebpf.features parameter list to enable DNS tracking of each
network flow in the web console.

You can set sampling to a value of 1 for more accurate metrics and to capture DNS
latency. For a sampling value greater than 1, you can observe flows with DNS Response
Code and DNS Id, and it is unlikely that DNS Latency can be observed.

5. When you refresh the Network Traffic page, there are new DNS representations you can
choose to view in the Overview and Traffic Flow views and new filters you can apply.

a. Select new DNS choices in Manage panels to display graphical visualizations and DNS
metrics in the Overview.

b. Select new choices in Manage columns to add DNS columns to the Traffic Flows view.

c. Filter on specific DNS metrics, such as DNS Id, DNS Error DNS Latency and DNS
Response Code, and see more information from the side panel. The DNS Latency and
DNS Response Code columns are shown by default.

NOTE

TCP handshake packets do not have DNS headers. TCP protocol flows without DNS
headers are shown in the traffic flow data with DNS Latency, ID, and Response code
values of "n/a". You can filter out flow data to view only flows that have DNS headers
using the Common filter "DNSError" equal to "0".

7.2.6. Working with RTT tracing

You can track RTT by editing the FlowCollector to the specifications in the following YAML example.

Procedure

1. In the web console, navigate to Operators → Installed Operators.

2. In the Provided APIs heading for the NetObserv Operator, select Flow Collector.

3. Select cluster, and then select the YAML tab.

4. Configure the FlowCollector custom resource for RTT tracing, for example:

Example FlowCollector configuration

spec:
 namespace: netobserv
 agent:
 type: eBPF
 ebpf:
 features:
 - DNSTracking 1
 sampling: 1 2

apiVersion: flows.netobserv.io/v1beta2
kind: FlowCollector
metadata:

CHAPTER 7. OBSERVING THE NETWORK TRAFFIC

57

1 You can start tracing RTT network flows by listing the FlowRTT parameter in the
spec.agent.ebpf.features specification list.

Verification

When you refresh the Network Traffic page, the Overview, Traffic Flow, and Topology views display
new information about RTT:

a. In the Overview, select new choices in Manage panels to choose which graphical visualizations
of RTT to display.

b. In the Traffic flows table, the Flow RTT column can be seen, and you can manage display in
Manage columns.

c. In the Traffic Flows view, you can also expand the side panel to view more information about
RTT.

Example filtering

i. Click the Common filters → Protocol.

ii. Filter the network flow data based on TCP, Ingress direction, and look for FlowRTT values
greater than 10,000,000 nanoseconds (10ms).

iii. Remove the Protocol filter.

iv. Filter for Flow RTT values greater than 0 in the Common filters.

d. In the Topology view, click the Display option dropdown. Then click RTT in the edge labels
drop-down list.

7.2.6.1. Using the histogram

You can click Show histogram to display a toolbar view for visualizing the history of flows as a bar chart.
The histogram shows the number of logs over time. You can select a part of the histogram to filter the
network flow data in the table that follows the toolbar.

7.2.7. Working with availability zones

You can configure the FlowCollector to collect information about the cluster availability zones. This
allows you to enrich network flow data with the topology.kubernetes.io/zone label value applied to the
nodes.

Procedure

1. In the web console, go to Operators → Installed Operators.

 name: cluster
spec:
 namespace: netobserv
 agent:
 type: eBPF
 ebpf:
 features:
 - FlowRTT 1

OpenShift Container Platform 4.15 Network Observability

58

https://kubernetes.io/docs/reference/labels-annotations-taints/#topologykubernetesiozone

2. Under the Provided APIs heading for the NetObserv Operator, select Flow Collector.

3. Select cluster then select the YAML tab.

4. Configure the FlowCollector custom resource so that the spec.processor.addZone
parameter is set to true. A sample configuration is as follows:

Configure FlowCollector for availability zones collection

Verification

When you refresh the Network Traffic page, the Overview, Traffic Flow, and Topology views display
new information about availability zones:

1. In the Overview tab, you can see Zones as an available Scope.

2. In Network Traffic → Traffic flows, Zones are viewable under the SrcK8S_Zone and
DstK8S_Zone fields.

3. In the Topology view, you can set Zones as Scope or Group.

7.2.8. Filtering eBPF flow data using a global rule

You can configure the FlowCollector to filter eBPF flows using a global rule to control the flow of
packets cached in the eBPF flow table.

Procedure

1. In the web console, navigate to Operators → Installed Operators.

2. Under the Provided APIs heading for Network Observability, select Flow Collector.

3. Select cluster, then select the YAML tab.

4. Configure the FlowCollector custom resource, similar to the following sample configurations:

Example 7.1. Filter Kubernetes service traffic to a specific Pod IP endpoint

apiVersion: flows.netobserv.io/v1beta2
kind: FlowCollector
metadata:
 name: cluster
spec:
...
 processor:
 addZone: true
...

apiVersion: flows.netobserv.io/v1beta2
kind: FlowCollector
metadata:
 name: cluster
spec:
 namespace: netobserv
 deploymentModel: Direct
 agent:

CHAPTER 7. OBSERVING THE NETWORK TRAFFIC

59

1

2

3

1

2

3

4

The required action parameter describes the action that is taken for the flow filter rule.
Possible values are Accept or Reject.

The required cidr parameter provides the IP address and CIDR mask for the flow filter
rule and supports IPv4 and IPv6 address formats. If you want to match against any IP
address, you can use 0.0.0.0/0 for IPv4 or ::/0 for IPv6.

You must set spec.agent.ebpf.flowFilter.enable to true to enable this feature.

Example 7.2. See flows to any addresses outside the cluster

You can Accept flows based on the criteria in the flowFilter specification.

The cidr value of 0.0.0.0/0 matches against any IP address.

See flows after peerIP is configured with 192.168.127.12.

You must set spec.agent.ebpf.flowFilter.enable to true to enable the feature.

7.3. OBSERVING THE NETWORK TRAFFIC FROM THE TOPOLOGY

 type: eBPF
 ebpf:
 flowFilter:
 action: Accept 1
 cidr: 172.210.150.1/24 2
 protocol: SCTP
 direction: Ingress
 destPortRange: 80-100
 peerIP: 10.10.10.10
 enable: true 3

apiVersion: flows.netobserv.io/v1beta2
kind: FlowCollector
metadata:
 name: cluster
spec:
 namespace: netobserv
 deploymentModel: Direct
 agent:
 type: eBPF
 ebpf:
 flowFilter:
 action: Accept 1
 cidr: 0.0.0.0/0 2
 protocol: TCP
 direction: Egress
 sourcePort: 100
 peerIP: 192.168.127.12 3
 enable: true 4

OpenShift Container Platform 4.15 Network Observability

60

7.3. OBSERVING THE NETWORK TRAFFIC FROM THE TOPOLOGY
VIEW

The Topology view provides a graphical representation of the network flows and the amount of traffic.
As an administrator, you can monitor the traffic data across the application by using the Topology view.

7.3.1. Working with the Topology view

As an administrator, you can navigate to the Topology view to see the details and metrics of the
component.

Procedure

1. Navigate to Observe → Network Traffic.

2. In the Network Traffic page, click the Topology tab.

You can click each component in the Topology to view the details and metrics of the component.

7.3.2. Configuring the advanced options for the Topology view

You can customize and export the view by using Show advanced options. The advanced options view
has the following features:

Find in view: To search the required components in the view.

Display options: To configure the following options:

Edge labels: To show the specified measurements as edge labels. The default is to show
the Average rate in Bytes.

Scope: To select the scope of components between which the network traffic flows. The
default value is Namespace.

Groups: To enhance the understanding of ownership by grouping the components. The
default value is None.

Layout: To select the layout of the graphical representation. The default value is
ColaNoForce.

Show: To select the details that need to be displayed. All the options are checked by
default. The options available are: Edges, Edges label, and Badges.

Truncate labels: To select the required width of the label from the drop-down list. The
default value is M.

Collapse groups: To expand or collapse the groups. The groups are expanded by default.
This option is disabled if Groups has the value of None.

7.3.2.1. Exporting the topology view

To export the view, click Export topology view. The view is downloaded in PNG format.

7.4. FILTERING THE NETWORK TRAFFIC

CHAPTER 7. OBSERVING THE NETWORK TRAFFIC

61

By default, the Network Traffic page displays the traffic flow data in the cluster based on the default
filters configured in the FlowCollector instance. You can use the filter options to observe the required
data by changing the preset filter.

Query Options

You can use Query Options to optimize the search results, as listed below:

Log Type: The available options Conversation and Flows provide the ability to query flows
by log type, such as flow log, new conversation, completed conversation, and a heartbeat,
which is a periodic record with updates for long conversations. A conversation is an
aggregation of flows between the same peers.

Match filters: You can determine the relation between different filter parameters selected in
the advanced filter. The available options are Match all and Match any. Match all provides
results that match all the values, and Match any provides results that match any of the
values entered. The default value is Match all.

Datasource: You can choose the datasource to use for queries: Loki, Prometheus, or Auto.
Notable performance improvements can be realized when using Prometheus as a datasource
rather than Loki, but Prometheus supports a limited set of filters and aggregations. The
default datasource is Auto, which uses Prometheus on supported queries or uses Loki if the
query does not support Prometheus.

Drops filter: You can view different levels of dropped packets with the following query
options:

Fully dropped shows flow records with fully dropped packets.

Containing drops shows flow records that contain drops but can be sent.

Without drops shows records that contain sent packets.

All shows all the aforementioned records.

Limit: The data limit for internal backend queries. Depending upon the matching and the
filter settings, the number of traffic flow data is displayed within the specified limit.

Quick filters

The default values in Quick filters drop-down menu are defined in the FlowCollector configuration.
You can modify the options from console.

Advanced filters

You can set the advanced filters, Common, Source, or Destination, by selecting the parameter to be
filtered from the dropdown list. The flow data is filtered based on the selection. To enable or disable
the applied filter, you can click on the applied filter listed below the filter options.

You can toggle between One way and Back and forth filtering. The One way filter shows
only Source and Destination traffic according to your filter selections. You can use Swap to change the
directional view of the Source and Destination traffic. The Back and forth filter includes return
traffic with the Source and Destination filters. The directional flow of network traffic is shown in the
Direction column in the Traffic flows table as Ingress`or `Egress for inter-node traffic and `Inner`for
traffic inside a single node.

You can click Reset defaults to remove the existing filters, and apply the filter defined in FlowCollector
configuration.

NOTE

OpenShift Container Platform 4.15 Network Observability

62

NOTE

To understand the rules of specifying the text value, click Learn More.

Alternatively, you can access the traffic flow data in the Network Traffic tab of the Namespaces,
Services, Routes, Nodes, and Workloads pages which provide the filtered data of the corresponding
aggregations.

Additional resources

For more information about configuring quick filters in the FlowCollector, see Configuring Quick Filters
and the Flow Collector sample resource.

CHAPTER 7. OBSERVING THE NETWORK TRAFFIC

63

CHAPTER 8. USING METRICS WITH DASHBOARDS AND
ALERTS

The Network Observability Operator uses the flowlogs-pipeline to generate metrics from flow logs.
You can utilize these metrics by setting custom alerts and viewing dashboards.

8.1. VIEWING NETWORK OBSERVABILITY METRICS DASHBOARDS

On the Overview tab in the OpenShift Container Platform console, you can view the overall aggregated
metrics of the network traffic flow on the cluster. You can choose to display the information by node,
namespace, owner, pod, and service. You can also use filters and display options to further refine the
metrics.

Procedure

1. In the web console Observe → Dashboards, select the Netobserv dashboard.

2. View network traffic metrics in the following categories, with each having the subset per node,
namespace, source, and destination:

Byte rates

Packet drops

DNS

RTT

3. Select the Netobserv/Health dashboard.

4. View metrics about the health of the Operator in the following categories, with each having the
subset per node, namespace, source, and destination.

Flows

Flows Overhead

Flow rates

Agents

Processor

Operator

Infrastructure and Application metrics are shown in a split-view for namespace and workloads.

8.2. PREDEFINED METRICS

Metrics generated by the flowlogs-pipeline are configurable in the
spec.processor.metrics.includeList of the FlowCollector custom resource to add or remove metrics.

8.3. NETWORK OBSERVABILITY METRICS

You can also create alerts by using the includeList metrics in Prometheus rules, as shown in the

OpenShift Container Platform 4.15 Network Observability

64

You can also create alerts by using the includeList metrics in Prometheus rules, as shown in the
example "Creating alerts".

When looking for these metrics in Prometheus, such as in the Console through Observe → Metrics, or
when defining alerts, all the metrics names are prefixed with netobserv_. For example,
netobserv_namespace_flows_total. Available metrics names are as follows:

includeList metrics names

Names followed by an asterisk * are enabled by default.

namespace_egress_bytes_total

namespace_egress_packets_total

namespace_ingress_bytes_total

namespace_ingress_packets_total

namespace_flows_total *

node_egress_bytes_total

node_egress_packets_total

node_ingress_bytes_total *

node_ingress_packets_total

node_flows_total

workload_egress_bytes_total

workload_egress_packets_total

workload_ingress_bytes_total *

workload_ingress_packets_total

workload_flows_total

PacketDrop metrics names

When the PacketDrop feature is enabled in spec.agent.ebpf.features (with privileged mode), the
following additional metrics are available:

namespace_drop_bytes_total

namespace_drop_packets_total *

node_drop_bytes_total

node_drop_packets_total

workload_drop_bytes_total

workload_drop_packets_total

DNS metrics names

CHAPTER 8. USING METRICS WITH DASHBOARDS AND ALERTS

65

When the DNSTracking feature is enabled in spec.agent.ebpf.features, the following additional
metrics are available:

namespace_dns_latency_seconds *

node_dns_latency_seconds

workload_dns_latency_seconds

FlowRTT metrics names

When the FlowRTT feature is enabled in spec.agent.ebpf.features, the following additional metrics
are available:

namespace_rtt_seconds *

node_rtt_seconds

workload_rtt_seconds

8.4. CREATING ALERTS

You can create custom alerting rules for the Netobserv dashboard metrics to trigger alerts when some
defined conditions are met.

Prerequisites

You have access to the cluster as a user with the cluster-admin role or with view permissions for
all projects.

You have the Network Observability Operator installed.

Procedure

1. Create a YAML file by clicking the import icon, +.

2. Add an alerting rule configuration to the YAML file. In the YAML sample that follows, an alert is
created for when the cluster ingress traffic reaches a given threshold of 10 MBps per destination
workload.

apiVersion: monitoring.openshift.io/v1
kind: AlertingRule
metadata:
 name: netobserv-alerts
 namespace: openshift-monitoring
spec:
 groups:
 - name: NetObservAlerts
 rules:
 - alert: NetObservIncomingBandwidth
 annotations:
 message: |-
 {{ $labels.job }}: incoming traffic exceeding 10 MBps for 30s on {{
$labels.DstK8S_OwnerType }} {{ $labels.DstK8S_OwnerName }} ({{
$labels.DstK8S_Namespace }}).

OpenShift Container Platform 4.15 Network Observability

66

1 The netobserv_workload_ingress_bytes_total metric is enabled by default in
spec.processor.metrics.includeList.

3. Click Create to apply the configuration file to the cluster.

8.5. CUSTOM METRICS

You can create custom metrics out of the flowlogs data using the FlowMetric API. In every flowlogs data
that is collected, there are a number of fields labeled per log, such as source name and destination name.
These fields can be leveraged as Prometheus labels to enable the customization of cluster information
on your dashboard.

8.6. CONFIGURING CUSTOM METRICS BY USING FLOWMETRIC API

You can configure the FlowMetric API to create custom metrics by using flowlogs data fields as
Prometheus labels. You can add multiple FlowMetric resources to a project to see multiple dashboard
views.

Procedure

1. In the web console, navigate to Operators → Installed Operators.

2. In the Provided APIs heading for the NetObserv Operator, select FlowMetric.

3. In the Project: dropdown list, select the project of the Network Observability Operator instance.

4. Click Create FlowMetric.

5. Configure the FlowMetric resource, similar to the following sample configurations:

Example 8.1. Generate a metric that tracks ingress bytes received from cluster external
sources

 summary: "High incoming traffic."
 expr: sum(rate(netobserv_workload_ingress_bytes_total
{SrcK8S_Namespace="openshift-ingress"}[1m])) by (job, DstK8S_Namespace,
DstK8S_OwnerName, DstK8S_OwnerType) > 10000000 1
 for: 30s
 labels:
 severity: warning

apiVersion: flows.netobserv.io/v1alpha1
kind: FlowMetric
metadata:
 name: flowmetric-cluster-external-ingress-traffic
 namespace: netobserv 1
spec:
 metricName: cluster_external_ingress_bytes_total 2
 type: Counter 3
 valueField: Bytes
 direction: Ingress 4
 labels:
[DstK8S_HostName,DstK8S_Namespace,DstK8S_OwnerName,DstK8S_OwnerType] 5

CHAPTER 8. USING METRICS WITH DASHBOARDS AND ALERTS

67

1

2

3

4

5

6

The FlowMetric resources need to be created in the namespace defined in the
FlowCollector spec.namespace, which is netobserv by default.

The name of the Prometheus metric, which in the web console appears with the prefix
netobserv-<metricName>.

The type specifies the type of metric. The Counter type is useful for counting bytes or
packets.

The direction of traffic to capture. If not specified, both ingress and egress are
captured, which can lead to duplicated counts.

Labels define what the metrics look like and the relationship between the different
entities and also define the metrics cardinality. For example, SrcK8S_Name is a high
cardinality metric.

Refines results based on the listed criteria. In this example, selecting only the cluster
external traffic is done by matching only flows where SrcSubnetLabel is absent. This
assumes the subnet labels feature is enabled (via spec.processor.subnetLabels),
which is done by default.

Verification

1. Once the pods refresh, navigate to Observe → Metrics.

2. In the Expression field, type the metric name to view the corresponding result. You can
also enter an expression, such as topk(5,
sum(rate(netobserv_cluster_external_ingress_bytes_total{DstK8S_Namespace="
my-namespace"}[2m])) by (DstK8S_HostName, DstK8S_OwnerName,
DstK8S_OwnerType))

Example 8.2. Show RTT latency for cluster external ingress traffic

 filters: 6
 - field: SrcSubnetLabel
 matchType: Absence

apiVersion: flows.netobserv.io/v1alpha1
kind: FlowMetric
metadata:
 name: flowmetric-cluster-external-ingress-rtt
 namespace: netobserv 1
spec:
 metricName: cluster_external_ingress_rtt_seconds
 type: Histogram 2
 valueField: TimeFlowRttNs
 direction: Ingress
 labels:
[DstK8S_HostName,DstK8S_Namespace,DstK8S_OwnerName,DstK8S_OwnerType]
 filters:
 - field: SrcSubnetLabel
 matchType: Absence
 - field: TimeFlowRttNs

OpenShift Container Platform 4.15 Network Observability

68

1

2

3

4

The FlowMetric resources need to be created in the namespace defined in the
FlowCollector spec.namespace, which is netobserv by default.

The type specifies the type of metric. The Histogram type is useful for a latency value
(TimeFlowRttNs).

Since the Round-trip time (RTT) is provided as nanos in flows, use a divider of 1 billion
to convert into seconds, which is standard in Prometheus guidelines.

The custom buckets specify precision on RTT, with optimal precision ranging between
5ms and 250ms.

Verification

1. Once the pods refresh, navigate to Observe → Metrics.

2. In the Expression field, you can type the metric name to view the corresponding result.

IMPORTANT

High cardinality can affect the memory usage of Prometheus. You can check whether
specific labels have high cardinality in the Network Flows format reference .

8.7. CONFIGURING CUSTOM CHARTS USING FLOWMETRIC API

You can generate charts for dashboards in the OpenShift Container Platform web console, which you
can view as an administrator in the Dashboard menu by defining the charts section of the FlowMetric
resource.

Procedure

1. In the web console, navigate to Operators → Installed Operators.

2. In the Provided APIs heading for the NetObserv Operator, select FlowMetric.

3. In the Project: dropdown list, select the project of the Network Observability Operator instance.

4. Click Create FlowMetric.

5. Configure the FlowMetric resource, similar to the following sample configurations:

Example 8.3. Chart for tracking ingress bytes received from cluster external sources

 matchType: Presence
 divider: "1000000000" 3
 buckets: [".001", ".005", ".01", ".02", ".03", ".04", ".05", ".075", ".1", ".25", "1"] 4

apiVersion: flows.netobserv.io/v1alpha1
kind: FlowMetric
metadata:
 name: flowmetric-cluster-external-ingress-traffic
 namespace: netobserv 1
...

CHAPTER 8. USING METRICS WITH DASHBOARDS AND ALERTS

69

1 The FlowMetric resources need to be created in the namespace defined in the FlowCollector
spec.namespace, which is netobserv by default.

Verification

1. Once the pods refresh, navigate to Observe → Dashboards.

2. Search for the NetObserv / Main dashboard. View two panels under the NetObserv / Main
dashboard, or optionally a dashboard name that you create:

A textual single statistic showing the global external ingress rate summed across all
dimensions

A timeseries graph showing the same metric per destination workload

For more information about the query language, refer to the Prometheus documentation.

Example 8.4. Chart for RTT latency for cluster external ingress traffic

 charts:
 - dashboardName: Main 2
 title: External ingress traffic
 unit: Bps
 type: SingleStat
 queries:
 - promQL: "sum(rate($METRIC[2m]))"
 legend: ""
 - dashboardName: Main 3
 sectionName: External
 title: Top external ingress traffic per workload
 unit: Bps
 type: StackArea
 queries:
 - promQL: "sum(rate($METRIC{DstK8S_Namespace!=\"\"}[2m])) by (DstK8S_Namespace,
DstK8S_OwnerName)"
 legend: "{{DstK8S_Namespace}} / {{DstK8S_OwnerName}}"
...

apiVersion: flows.netobserv.io/v1alpha1
kind: FlowMetric
metadata:
 name: flowmetric-cluster-external-ingress-traffic
 namespace: netobserv 1
...
 charts:
 - dashboardName: Main 2
 title: External ingress TCP latency
 unit: seconds
 type: SingleStat
 queries:
 - promQL: "histogram_quantile(0.99, sum(rate($METRIC_bucket[2m])) by (le)) > 0"
 legend: "p99"
 - dashboardName: Main 3
 sectionName: External

OpenShift Container Platform 4.15 Network Observability

70

https://prometheus.io/docs/prometheus/latest/querying/basics/

1

2 3 4

The FlowMetric resources need to be created in the namespace defined in the FlowCollector
spec.namespace, which is netobserv by default.

Using a different dashboardName creates a new dashboard that is prefixed with
Netobserv. For example, Netobserv / <dashboard_name>.

This example uses the histogram_quantile function to show p50 and p99.

You can show averages of histograms by dividing the metric, $METRIC_sum, by the metric
,$METRIC_count, which are automatically generated when you create a histogram. With the
preceding example, the Prometheus query to do this is as follows:

Verification

1. Once the pods refresh, navigate to Observe → Dashboards.

2. Search for the NetObserv / Main dashboard. View the new panel under the NetObserv /
Main dashboard, or optionally a dashboard name that you create.

For more information about the query language, refer to the Prometheus documentation.

Additional resources

Creating alerting rules for user-defined projects .

Troubleshooting high cardinality metrics- Determining why Prometheus is consuming a lot of
disk space

 title: "Top external ingress sRTT per workload, p50 (ms)"
 unit: seconds
 type: Line
 queries:
 - promQL: "histogram_quantile(0.5, sum(rate($METRIC_bucket{DstK8S_Namespace!=\"\"}
[2m])) by (le,DstK8S_Namespace,DstK8S_OwnerName))*1000 > 0"
 legend: "{{DstK8S_Namespace}} / {{DstK8S_OwnerName}}"
 - dashboardName: Main 4
 sectionName: External
 title: "Top external ingress sRTT per workload, p99 (ms)"
 unit: seconds
 type: Line
 queries:
 - promQL: "histogram_quantile(0.99, sum(rate($METRIC_bucket{DstK8S_Namespace!=\"\"}
[2m])) by (le,DstK8S_Namespace,DstK8S_OwnerName))*1000 > 0"
 legend: "{{DstK8S_Namespace}} / {{DstK8S_OwnerName}}"
...

promQL: "(sum(rate($METRIC_sum{DstK8S_Namespace!=\"\"}[2m])) by
(DstK8S_Namespace,DstK8S_OwnerName) /
sum(rate($METRIC_count{DstK8S_Namespace!=\"\"}[2m])) by
(DstK8S_Namespace,DstK8S_OwnerName))*1000"

CHAPTER 8. USING METRICS WITH DASHBOARDS AND ALERTS

71

https://prometheus.io/docs/prometheus/latest/querying/basics/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/monitoring/#creating-alerting-rules-for-user-defined-projects_managing-alerts
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/support/#determining-why-prometheus-is-consuming-disk-space_investigating-monitoring-issues

CHAPTER 9. MONITORING THE NETWORK OBSERVABILITY
OPERATOR

You can use the web console to monitor alerts related to the health of the Network Observability
Operator.

9.1. HEALTH DASHBOARDS

Metrics about health and resource usage of the Network Observability Operator are located in the
Observe → Dashboards page in the web console. You can view metrics about the health of the
Operator in the following categories:

Flows per second

Sampling

Errors last minute

Dropped flows per second

Flowlogs-pipeline statistics

Flowlogs-pipleine statistics views

eBPF agent statistics views

Operator statistics

Resource usage

9.2. HEALTH ALERTS

A health alert banner that directs you to the dashboard can appear on the Network Traffic and Home
pages if an alert is triggered. Alerts are generated in the following cases:

The NetObservLokiError alert occurs if the flowlogs-pipeline workload is dropping flows
because of Loki errors, such as if the Loki ingestion rate limit has been reached.

The NetObservNoFlows alert occurs if no flows are ingested for a certain amount of time.

The NetObservFlowsDropped alert occurs if the Network Observability eBPF agent hashmap
table is full, and the eBPF agent processes flows with degraded performance, or when the
capacity limiter is triggered.

9.3. VIEWING HEALTH INFORMATION

You can access metrics about health and resource usage of the Network Observability Operator from
the Dashboards page in the web console.

Prerequisites

You have the Network Observability Operator installed.

You have access to the cluster as a user with the cluster-admin role or with view permissions

OpenShift Container Platform 4.15 Network Observability

72

1

You have access to the cluster as a user with the cluster-admin role or with view permissions
for all projects.

Procedure

1. From the Administrator perspective in the web console, navigate to Observe → Dashboards.

2. From the Dashboards dropdown, select Netobserv/Health.

3. View the metrics about the health of the Operator that are displayed on the page.

9.3.1. Disabling health alerts

You can opt out of health alerting by editing the FlowCollector resource:

1. In the web console, navigate to Operators → Installed Operators.

2. Under the Provided APIs heading for the NetObserv Operator, select Flow Collector.

3. Select cluster then select the YAML tab.

4. Add spec.processor.metrics.disableAlerts to disable health alerts, as in the following YAML
sample:

You can specify one or a list with both types of alerts to disable.

9.4. CREATING LOKI RATE LIMIT ALERTS FOR THE NETOBSERV
DASHBOARD

You can create custom alerting rules for the Netobserv dashboard metrics to trigger alerts when Loki
rate limits have been reached.

Prerequisites

You have access to the cluster as a user with the cluster-admin role or with view permissions for
all projects.

You have the Network Observability Operator installed.

Procedure

1. Create a YAML file by clicking the import icon, +.

2. Add an alerting rule configuration to the YAML file. In the YAML sample that follows, an alert is

apiVersion: flows.netobserv.io/v1beta2
kind: FlowCollector
metadata:
 name: cluster
spec:
 processor:
 metrics:
 disableAlerts: [NetObservLokiError, NetObservNoFlows] 1

CHAPTER 9. MONITORING THE NETWORK OBSERVABILITY OPERATOR

73

2. Add an alerting rule configuration to the YAML file. In the YAML sample that follows, an alert is
created for when Loki rate limits have been reached:

3. Click Create to apply the configuration file to the cluster.

9.5. USING THE EBPF AGENT ALERT

An alert, NetObservAgentFlowsDropped, is triggered when the Network Observability eBPF agent
hashmap table is full or when the capacity limiter is triggered. If you see this alert, consider increasing the
cacheMaxFlows in the FlowCollector, as shown in the following example.

NOTE

Increasing the cacheMaxFlows might increase the memory usage of the eBPF agent.

Procedure

1. In the web console, navigate to Operators → Installed Operators.

2. Under the Provided APIs heading for the Network Observability Operator, select Flow
Collector.

3. Select cluster, and then select the YAML tab.

4. Increase the spec.agent.ebpf.cacheMaxFlows value, as shown in the following YAML sample:

apiVersion: flows.netobserv.io/v1beta2
kind: FlowCollector
metadata:
 name: cluster
spec:
 namespace: netobserv
 deploymentModel: Direct
 agent:

apiVersion: monitoring.openshift.io/v1
kind: AlertingRule
metadata:
 name: loki-alerts
 namespace: openshift-monitoring
spec:
 groups:
 - name: LokiRateLimitAlerts
 rules:
 - alert: LokiTenantRateLimit
 annotations:
 message: |-
 {{ $labels.job }} {{ $labels.route }} is experiencing 429 errors.
 summary: "At any number of requests are responded with the rate limit error code."
 expr: sum(irate(loki_request_duration_seconds_count{status_code="429"}[1m])) by (job,
namespace, route) / sum(irate(loki_request_duration_seconds_count[1m])) by (job,
namespace, route) * 100 > 0
 for: 10s
 labels:
 severity: warning

OpenShift Container Platform 4.15 Network Observability

74

1

 type: eBPF
 ebpf:
 cacheMaxFlows: 200000 1

Increase the cacheMaxFlows value from its value at the time of the
NetObservAgentFlowsDropped alert.

Additional resources

For more information about creating alerts that you can see on the dashboard, see Creating
alerting rules for user-defined projects.

CHAPTER 9. MONITORING THE NETWORK OBSERVABILITY OPERATOR

75

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/monitoring/#creating-alerting-rules-for-user-defined-projects_managing-alerts

CHAPTER 10. SCHEDULING RESOURCES
Taints and tolerations allow the node to control which pods should (or should not) be scheduled on
them.

A node selector specifies a map of key/value pairs that are defined using custom labels on nodes and
selectors specified in pods.

For the pod to be eligible to run on a node, the pod must have the same key/value node selector as the
label on the node.

10.1. NETWORK OBSERVABILITY DEPLOYMENT IN SPECIFIC NODES

You can configure the FlowCollector to control the deployment of Network Observability components
in specific nodes. The spec.agent.ebpf.advanced.scheduling,
spec.processor.advanced.scheduling, and spec.consolePlugin.advanced.scheduling
specifications have the following configurable settings:

NodeSelector

Tolerations

Affinity

PriorityClassName

Sample FlowCollector resource for spec.<component>.advanced.scheduling

apiVersion: flows.netobserv.io/v1beta2
kind: FlowCollector
metadata:
 name: cluster
spec:
...
advanced:
 scheduling:
 tolerations:
 - key: "<taint key>"
 operator: "Equal"
 value: "<taint value>"
 effect: "<taint effect>"
 nodeSelector:
 <key>: <value>
 affinity:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: name
 operator: In
 values:
 - app-worker-node
 priorityClassName: """
...

OpenShift Container Platform 4.15 Network Observability

76

Additional resources

Understanding taints and tolerations

Assign Pods to Nodes (Kubernetes documentation)

Pod Priority and Preemption (Kubernetes documentation)

CHAPTER 10. SCHEDULING RESOURCES

77

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/nodes/#nodes-scheduler-taints-tolerations-about_nodes-scheduler-taints-tolerations
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/
https://kubernetes.io/docs/concepts/scheduling-eviction/pod-priority-preemption/#priorityclass

CHAPTER 11. NETWORK OBSERVABILITY CLI

11.1. INSTALLING THE NETWORK OBSERVABILITY CLI

The Network Observability CLI (oc netobserv) is deployed separately from the Network Observability
Operator. The CLI is available as an OpenShift CLI (oc) plugin. It provides a lightweight way to quickly
debug and troubleshoot with network observability.

IMPORTANT

Network Observability CLI (oc netobserv) is a Technology Preview feature only.
Technology Preview features are not supported with Red Hat production service level
agreements (SLAs) and might not be functionally complete. Red Hat does not
recommend using them in production. These features provide early access to upcoming
product features, enabling customers to test functionality and provide feedback during
the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

11.1.1. About the Network Observability CLI

You can quickly debug and troubleshoot networking issues by using the Network Observability CLI (oc
netobserv). The Network Observability CLI is a flow and packet visualization tool that relies on eBPF
agents to stream collected data to an ephemeral collector pod. It requires no persistent storage during
the capture. After the run, the output is transferred to your local machine. This enables quick, live insight
into packets and flow data without installing the Network Observability Operator.

IMPORTANT

CLI capture is meant to run only for short durations, such as 8-10 minutes. If it runs for
too long, it can be difficult to delete the running process.

11.1.2. Installing the Network Observability CLI

Installing the Network Observability CLI (oc netobserv) is a separate procedure from the Network
Observability Operator installation. This means that, even if you have the Operator installed from
OperatorHub, you need to install the CLI separately.

NOTE

You can optionally use Krew to install the netobserv CLI plugin. For more information,
see "Installing a CLI plugin with Krew".

Prerequisites

You must install the OpenShift CLI (oc).

You must have a macOS or Linux operating system.

Procedure

1. Download the oc netobserv CLI tar file .

OpenShift Container Platform 4.15 Network Observability

78

https://access.redhat.com/support/offerings/techpreview/
https://mirror.openshift.com/pub/openshift-v4/clients/netobserv/latest/

2. Unpack the archive:

3. Make the file executable:

4. Move the extracted netobserv-cli binary to a directory that is on your PATH, such as
/usr/local/bin/:

Verification

Verify that oc netobserv is available:

Example output

Additional resources

Installing and using CLI plugins

Installing a CLI plugin with Krew

11.2. USING THE NETWORK OBSERVABILITY CLI

You can visualize and filter the flows and packets data directly in the terminal to see specific usage, such
as identifying who is using a specific port. The Network Observability CLI collects flows as JSON and
database files or packets as a PCAP file, which you can use with third-party tools.

11.2.1. Capturing flows

You can capture flows and filter on any resource or zone in the data to solve use cases, such as
displaying Round-Trip Time (RTT) between two zones. Table visualization in the CLI provides viewing
and flow search capabilities.

Prerequisites

Install the OpenShift CLI (oc).

Install the Network Observability CLI (oc netobserv) plugin.

Procedure

1. Capture flows with filters enabled by running the following command:

$ tar xvf netobserv-cli.tar.gz

$ chmod +x ./build/oc-netobserv

$ sudo mv ./build/oc-netobserv /usr/local/bin/

$ oc netobserv version

Netobserv CLI version <version>

CHAPTER 11. NETWORK OBSERVABILITY CLI

79

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/cli_tools/#cli-installing-plugins_cli-extend-plugins
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/cli_tools/#cli-krew-install-plugin_managing-cli-plugins-krew

2. Add filters to the live table filter prompt in the terminal to further refine the incoming flows.
For example:

3. To stop capturing, press Ctrl+C. The data that was captured is written to two separate files in an
./output directory located in the same path used to install the CLI.

4. View the captured data in the ./output/flow/<capture_date_time>.json JSON file, which
contains JSON arrays of the captured data.

Example JSON file

5. You can use SQLite to inspect the ./output/flow/<capture_date_time>.db database file. For
example:

a. Open the file by running the following command:

b. Query the data by running a SQLite SELECT statement, for example:

$ oc netobserv flows --enable_filter=true --action=Accept --cidr=0.0.0.0/0 --protocol=TCP --
port=49051

live table filter: [SrcK8S_Zone:us-west-1b] press enter to match multiple regular expressions
at once

{
 "AgentIP": "10.0.1.76",
 "Bytes": 561,
 "DnsErrno": 0,
 "Dscp": 20,
 "DstAddr": "f904:ece9:ba63:6ac7:8018:1e5:7130:0",
 "DstMac": "0A:58:0A:80:00:37",
 "DstPort": 9999,
 "Duplicate": false,
 "Etype": 2048,
 "Flags": 16,
 "FlowDirection": 0,
 "IfDirection": 0,
 "Interface": "ens5",
 "K8S_FlowLayer": "infra",
 "Packets": 1,
 "Proto": 6,
 "SrcAddr": "3e06:6c10:6440:2:a80:37:b756:270f",
 "SrcMac": "0A:58:0A:80:00:01",
 "SrcPort": 46934,
 "TimeFlowEndMs": 1709741962111,
 "TimeFlowRttNs": 121000,
 "TimeFlowStartMs": 1709741962111,
 "TimeReceived": 1709741964
}

$ sqlite3 ./output/flow/<capture_date_time>.db

OpenShift Container Platform 4.15 Network Observability

80

Example output

11.2.2. Capturing packets

You can capture packets using the Network Observability CLI.

Prerequisites

Install the OpenShift CLI (oc).

Install the Network Observability CLI (oc netobserv) plugin.

Procedure

1. Run the packet capture with filters enabled:

2. Add filters to the live table filter prompt in the terminal to refine the incoming packets. An
example filter is as follows:

3. To stop capturing, press Ctrl+C.

4. View the captured data, which is written to a single file in an ./output/pcap directory located in
the same path that was used to install the CLI:

a. The ./output/pcap/<capture_date_time>.pcap file can be opened with Wireshark.

11.2.3. Cleaning the Network Observability CLI

You can manually clean the CLI workload by running oc netobserv cleanup. This command removes all
the CLI components from your cluster.

When you end a capture, this command is run automatically by the client. You might be required to
manually run it if you experience connectivity issues.

sqlite> SELECT DnsLatencyMs, DnsFlagsResponseCode, DnsId, DstAddr, DstPort,
Interface, Proto, SrcAddr, SrcPort, Bytes, Packets FROM flow WHERE DnsLatencyMs
>10 LIMIT 10;

12|NoError|58747|10.128.0.63|57856||17|172.30.0.10|53|284|1
11|NoError|20486|10.128.0.52|56575||17|169.254.169.254|53|225|1
11|NoError|59544|10.128.0.103|51089||17|172.30.0.10|53|307|1
13|NoError|32519|10.128.0.52|55241||17|169.254.169.254|53|254|1
12|NoError|32519|10.0.0.3|55241||17|169.254.169.254|53|254|1
15|NoError|57673|10.128.0.19|59051||17|172.30.0.10|53|313|1
13|NoError|35652|10.0.0.3|46532||17|169.254.169.254|53|183|1
32|NoError|37326|10.0.0.3|52718||17|169.254.169.254|53|169|1
14|NoError|14530|10.0.0.3|58203||17|169.254.169.254|53|246|1
15|NoError|40548|10.0.0.3|45933||17|169.254.169.254|53|174|1

$ oc netobserv packets --filter=tcp,80

live table filter: [SrcK8S_Zone:us-west-1b] press enter to match multiple regular expressions
at once

CHAPTER 11. NETWORK OBSERVABILITY CLI

81

1

Procedure

Run the following command:

Additional resources

Network Observability CLI reference

11.3. NETWORK OBSERVABILITY CLI (OC NETOBSERV) REFERENCE

The Network Observability CLI (oc netobserv) has most features and filtering options that are available
for the Network Observability Operator. You can pass command line arguments to enable features or
filtering options.

11.3.1. oc netobserv CLI reference

The Network Observability CLI (oc netobserv) is a CLI tool for capturing flow data and packet data for
further analysis.

oc netobserv syntax

Feature options can only be used with the oc netobserv flows command. They cannot be used
with the oc netobserv packets command.

Table 11.1. Basic commands

Command Description

flows Capture flows information. For subcommands, see the "Flow capture
subcommands" table.

packets Capture packets from a specific protocol or port pair, such as netobserv
packets --filter=tcp,80. For more information about packet capture, see the
"Packet capture subcommand" table.

cleanup Remove the Network Observability CLI components.

version Print the software version.

help Show help.

11.3.1.1. Network Observability enrichment

The Network Observability enrichment to display zone, node, owner and resource names including
optional features about packet drops, DNS latencies and Round-trip time can only be enabled when
capturing flows. These do not appear in packet capture pcap output file.

$ oc netobserv cleanup

$ oc netobserv [<command>] [<feature_option>] [<command_options>] 1

OpenShift Container Platform 4.15 Network Observability

82

Network Observability enrichment syntax

Table 11.2. Network Observability enrichment options

Option Description Possible values Default

--enable_pktdrop Enable packet drop. true, false false

--enable_rtt Enable round trip time. true, false false

--enable_dns Enable DNS tracking. true, false false

--help Show help. - -

--interfaces Interfaces to match on
the flow. For example,
"eth0,eth1".

"<interface>" -

11.3.1.2. Flow capture options

Flow capture has mandatory commands as well as additional options, such as enabling extra features
about packet drops, DNS latencies, Round-trip time, and filtering.

oc netobserv flows syntax

Table 11.3. Flow capture filter options

Option Description Possible values Mandatory Default

--enable_filter Enable flow filter. true, false Yes false

--action Action to apply on
the flow.

Accept, Reject Yes Accept

--cidr CIDR to match on
the flow.

1.1.1.0/24,
1::100/64, or
0.0.0.0/0

Yes 0.0.0.0/0

--protocol Protocol to match
on the flow

TCP, UDP, SCTP,
ICMP, or ICMPv6

No -

--direction Direction to match
on the flow

Ingress, Egress No -

$ oc netobserv flows [<enrichment_options>] [<subcommands>]

$ oc netobserv flows [<feature_option>] [<command_options>]

CHAPTER 11. NETWORK OBSERVABILITY CLI

83

--dport Destination port to
match on the flow.

80, 443, or 49051 no -

--sport Source port to
match on the flow.

80, 443, or 49051 No -

--port Port to match on
the flow.

80, 443, or 49051 No -

--sport_range Source port range
to match on the
flow.

80-100 or 443-
445

No -

--dport_range Destination port
range to match on
the flow.

80-100 No -

--port_range Port range to
match on the flow.

80-100 or 443-
445

No -

--icmp_type ICMP type to
match on the flow.

8 or 13 No -

--icmp_code ICMP code to
match on the flow.

0 or 1 No -

--peer_ip Peer IP to match
on the flow.

1.1.1.1 or 1::1 No -

Option Description Possible values Mandatory Default

11.3.1.3. Packet capture options

You can filter on port and protocol for packet capture data.

oc netobserv packets syntax

Table 11.4. Packet capture filter option

Option Description Possible values Mandatory Default

$ oc netobserv packets [<option>]

OpenShift Container Platform 4.15 Network Observability

84

--filter Enable packet
capture filtering.

tcp, udp, or
<port> You can
specify filtering
options using a
comma as
delimeter. For
example, tcp,80
specifies the tcp
protocol and port
80.

Yes -

CHAPTER 11. NETWORK OBSERVABILITY CLI

85

CHAPTER 12. FLOWCOLLECTOR CONFIGURATION
PARAMETERS

FlowCollector is the Schema for the network flows collection API, which pilots and configures the
underlying deployments.

12.1. FLOWCOLLECTOR API SPECIFICATIONS

Description

FlowCollector is the schema for the network flows collection API, which pilots and configures the
underlying deployments.

Type

object

Property Type Description

apiVersion string APIVersion defines the versioned
schema of this representation of
an object. Servers should convert
recognized schemas to the latest
internal value, and might reject
unrecognized values. More info:
https://git.k8s.io/community/con
tributors/devel/sig-
architecture/api-
conventions.md#resources

kind string Kind is a string value representing
the REST resource this object
represents. Servers might infer
this from the endpoint the client
submits requests to. Cannot be
updated. In CamelCase. More
info:
https://git.k8s.io/community/con
tributors/devel/sig-
architecture/api-
conventions.md#types-kinds

metadata object Standard object’s metadata. More
info:
https://git.k8s.io/community/con
tributors/devel/sig-
architecture/api-
conventions.md#metadata

OpenShift Container Platform 4.15 Network Observability

86

https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#resources
https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#types-kinds
https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata

spec object Defines the desired state of the
FlowCollector resource.

*: the mention of "unsupported"
or "deprecated" for a feature
throughout this document means
that this feature is not officially
supported by Red Hat. It might
have been, for example,
contributed by the community
and accepted without a formal
agreement for maintenance. The
product maintainers might
provide some support for these
features as a best effort only.

Property Type Description

12.1.1. .metadata

Description

Standard object’s metadata. More info: https://git.k8s.io/community/contributors/devel/sig-
architecture/api-conventions.md#metadata

Type

object

12.1.2. .spec

Description

Defines the desired state of the FlowCollector resource.

*: the mention of "unsupported" or "deprecated" for a feature throughout this document means that
this feature is not officially supported by Red Hat. It might have been, for example, contributed by
the community and accepted without a formal agreement for maintenance. The product maintainers
might provide some support for these features as a best effort only.

Type

object

Property Type Description

agent object Agent configuration for flows
extraction.

CHAPTER 12. FLOWCOLLECTOR CONFIGURATION PARAMETERS

87

https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata

consolePlugin object consolePlugin defines the
settings related to the OpenShift
Container Platform Console
plugin, when available.

deploymentModel string deploymentModel defines the
desired type of deployment for
flow processing. Possible values
are:

- Direct (default) to make the
flow processor listen directly from
the agents.

- Kafka to make flows sent to a
Kafka pipeline before
consumption by the processor.

Kafka can provide better
scalability, resiliency, and high
availability (for more details, see
https://www.redhat.com/en/topic
s/integration/what-is-apache-
kafka).

exporters array exporters define additional
optional exporters for custom
consumption or storage.

kafka object Kafka configuration, allowing to
use Kafka as a broker as part of
the flow collection pipeline.
Available when the
spec.deploymentModel is
Kafka.

loki object loki, the flow store, client
settings.

namespace string Namespace where Network
Observability pods are deployed.

processor object processor defines the settings
of the component that receives
the flows from the agent, enriches
them, generates metrics, and
forwards them to the Loki
persistence layer and/or any
available exporter.

Property Type Description

OpenShift Container Platform 4.15 Network Observability

88

https://www.redhat.com/en/topics/integration/what-is-apache-kafka

prometheus object prometheus defines
Prometheus settings, such as
querier configuration used to
fetch metrics from the Console
plugin.

Property Type Description

12.1.3. .spec.agent

Description

Agent configuration for flows extraction.

Type

object

Property Type Description

ebpf object ebpf describes the settings
related to the eBPF-based flow
reporter when spec.agent.type
is set to eBPF.

type string type [deprecated (*)] selects the
flows tracing agent. Previously,
this field allowed to select
between eBPF or IPFIX. Only
eBPF is allowed now, so this field
is deprecated and is planned for
removal in a future version of the
API.

12.1.4. .spec.agent.ebpf

Description

ebpf describes the settings related to the eBPF-based flow reporter when spec.agent.type is set to
eBPF.

Type

object

Property Type Description

CHAPTER 12. FLOWCOLLECTOR CONFIGURATION PARAMETERS

89

advanced object advanced allows setting some
aspects of the internal
configuration of the eBPF agent.
This section is aimed mostly for
debugging and fine-grained
performance optimizations, such
as GOGC and GOMAXPROCS
env vars. Set these values at your
own risk.

cacheActiveTimeout string cacheActiveTimeout is the
max period during which the
reporter aggregates flows before
sending. Increasing
cacheMaxFlows and
cacheActiveTimeout can
decrease the network traffic
overhead and the CPU load,
however you can expect higher
memory consumption and an
increased latency in the flow
collection.

cacheMaxFlows integer cacheMaxFlows is the max
number of flows in an aggregate;
when reached, the reporter sends
the flows. Increasing
cacheMaxFlows and
cacheActiveTimeout can
decrease the network traffic
overhead and the CPU load,
however you can expect higher
memory consumption and an
increased latency in the flow
collection.

excludeInterfaces array (string) excludeInterfaces contains the
interface names that are
excluded from flow tracing. An
entry enclosed by slashes, such as
/br-/, is matched as a regular
expression. Otherwise it is
matched as a case-sensitive
string.

Property Type Description

OpenShift Container Platform 4.15 Network Observability

90

features array (string) List of additional features to
enable. They are all disabled by
default. Enabling additional
features might have performance
impacts. Possible values are:

- PacketDrop: enable the
packets drop flows logging
feature. This feature requires
mounting the kernel debug
filesystem, so the eBPF pod has
to run as privileged. If the
spec.agent.ebpf.privileged
parameter is not set, an error is
reported.

- DNSTracking: enable the DNS
tracking feature.

- FlowRTT: enable flow latency
(sRTT) extraction in the eBPF
agent from TCP traffic.

flowFilter object flowFilter defines the eBPF
agent configuration regarding
flow filtering.

imagePullPolicy string imagePullPolicy is the
Kubernetes pull policy for the
image defined above

interfaces array (string) interfaces contains the interface
names from where flows are
collected. If empty, the agent
fetches all the interfaces in the
system, excepting the ones listed
in excludeInterfaces. An entry
enclosed by slashes, such as /br-/,
is matched as a regular
expression. Otherwise it is
matched as a case-sensitive
string.

kafkaBatchSize integer kafkaBatchSize limits the
maximum size of a request in
bytes before being sent to a
partition. Ignored when not using
Kafka. Default: 1MB.

Property Type Description

CHAPTER 12. FLOWCOLLECTOR CONFIGURATION PARAMETERS

91

logLevel string logLevel defines the log level for
the Network Observability eBPF
Agent

metrics object metrics defines the eBPF agent
configuration regarding metrics.

privileged boolean Privileged mode for the eBPF
Agent container. When ignored or
set to false, the operator sets
granular capabilities (BPF,
PERFMON, NET_ADMIN,
SYS_RESOURCE) to the
container. If for some reason
these capabilities cannot be set,
such as if an old kernel version not
knowing CAP_BPF is in use, then
you can turn on this mode for
more global privileges. Some
agent features require the
privileged mode, such as packet
drops tracking (see features)
and SR-IOV support.

resources object resources are the compute
resources required by this
container. For more information,
see
https://kubernetes.io/docs/conc
epts/configuration/manage-
resources-containers/

sampling integer Sampling rate of the flow
reporter. 100 means one flow on
100 is sent. 0 or 1 means all flows
are sampled.

Property Type Description

12.1.5. .spec.agent.ebpf.advanced

Description

advanced allows setting some aspects of the internal configuration of the eBPF agent. This section
is aimed mostly for debugging and fine-grained performance optimizations, such as GOGC and
GOMAXPROCS env vars. Set these values at your own risk.

Type

object

OpenShift Container Platform 4.15 Network Observability

92

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/

Property Type Description

env object (string) env allows passing custom
environment variables to
underlying components. Useful
for passing some very concrete
performance-tuning options, such
as GOGC and GOMAXPROCS,
that should not be publicly
exposed as part of the
FlowCollector descriptor, as they
are only useful in edge debug or
support scenarios.

scheduling object scheduling controls how the pods
are scheduled on nodes.

12.1.6. .spec.agent.ebpf.advanced.scheduling

Description

scheduling controls how the pods are scheduled on nodes.

Type

object

Property Type Description

affinity object If specified, the pod’s scheduling
constraints. For documentation,
refer to
https://kubernetes.io/docs/refer
ence/kubernetes-api/workload-
resources/pod-v1/#scheduling.

nodeSelector object (string) nodeSelector allows scheduling
of pods only onto nodes that have
each of the specified labels. For
documentation, refer to
https://kubernetes.io/docs/conc
epts/configuration/assign-pod-
node/.

CHAPTER 12. FLOWCOLLECTOR CONFIGURATION PARAMETERS

93

https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-v1/#scheduling
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/

priorityClassName string If specified, indicates the pod’s
priority. For documentation, refer
to
https://kubernetes.io/docs/conc
epts/scheduling-eviction/pod-
priority-preemption/#how-to-
use-priority-and-preemption. If
not specified, default priority is
used, or zero if there is no default.

tolerations array tolerations is a list of tolerations
that allow the pod to schedule
onto nodes with matching taints.
For documentation, refer to
https://kubernetes.io/docs/refer
ence/kubernetes-api/workload-
resources/pod-v1/#scheduling.

Property Type Description

12.1.7. .spec.agent.ebpf.advanced.scheduling.affinity

Description

If specified, the pod’s scheduling constraints. For documentation, refer to
https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-v1/#scheduling.

Type

object

12.1.8. .spec.agent.ebpf.advanced.scheduling.tolerations

Description

tolerations is a list of tolerations that allow the pod to schedule onto nodes with matching taints. For
documentation, refer to https://kubernetes.io/docs/reference/kubernetes-api/workload-
resources/pod-v1/#scheduling.

Type

array

12.1.9. .spec.agent.ebpf.flowFilter

Description

flowFilter defines the eBPF agent configuration regarding flow filtering.

Type

object

Property Type Description

OpenShift Container Platform 4.15 Network Observability

94

https://kubernetes.io/docs/concepts/scheduling-eviction/pod-priority-preemption/#how-to-use-priority-and-preemption
https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-v1/#scheduling
https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-v1/#scheduling
https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-v1/#scheduling

action string action defines the action to
perform on the flows that match
the filter.

cidr string cidr defines the IP CIDR to filter
flows by. Examples:
10.10.10.0/24 or
100:100:100:100::/64

destPorts integer-or-string destPorts defines the
destination ports to filter flows by.
To filter a single port, set a single
port as an integer value. For
example: destPorts: 80. To filter
a range of ports, use a "start-end"
range in string format. For
example: destPorts: "80-100".

direction string direction defines the direction to
filter flows by.

enable boolean Set enable to true to enable the
eBPF flow filtering feature.

icmpCode integer icmpCode, for Internet Control
Message Protocol (ICMP) traffic,
defines the ICMP code to filter
flows by.

icmpType integer icmpType, for ICMP traffic,
defines the ICMP type to filter
flows by.

peerIP string peerIP defines the IP address to
filter flows by. Example:
10.10.10.10.

ports integer-or-string ports defines the ports to filter
flows by. It is used both for source
and destination ports. To filter a
single port, set a single port as an
integer value. For example:
ports: 80. To filter a range of
ports, use a "start-end" range in
string format. For example:
ports: "80-100".

protocol string protocol defines the protocol to
filter flows by.

Property Type Description

CHAPTER 12. FLOWCOLLECTOR CONFIGURATION PARAMETERS

95

sourcePorts integer-or-string sourcePorts defines the source
ports to filter flows by. To filter a
single port, set a single port as an
integer value. For example:
sourcePorts: 80. To filter a
range of ports, use a "start-end"
range in string format. For
example: sourcePorts: "80-
100".

Property Type Description

12.1.10. .spec.agent.ebpf.metrics

Description

metrics defines the eBPF agent configuration regarding metrics.

Type

object

Property Type Description

disableAlerts array (string) disableAlerts is a list of alerts
that should be disabled. Possible
values are:

NetObservDroppedFlows,
which is triggered when the eBPF
agent is dropping flows, such as
when the BPF hashmap is full or
the capacity limiter is being
triggered.

enable boolean Set enable to false to disable
eBPF agent metrics collection. It
is enabled by default.

server object Metrics server endpoint
configuration for the Prometheus
scraper.

12.1.11. .spec.agent.ebpf.metrics.server

Description

Metrics server endpoint configuration for the Prometheus scraper.

Type

object

OpenShift Container Platform 4.15 Network Observability

96

Property Type Description

port integer The metrics server HTTP port.

tls object TLS configuration.

12.1.12. .spec.agent.ebpf.metrics.server.tls

Description

TLS configuration.

Type

object

Property Type Description

insecureSkipVerify boolean insecureSkipVerify allows
skipping client-side verification of
the provided certificate. If set to
true, the providedCaFile field is
ignored.

provided object TLS configuration when type is
set to Provided.

providedCaFile object Reference to the CA file when
type is set to Provided.

type string Select the type of TLS
configuration:

- Disabled (default) to not
configure TLS for the endpoint. -
Provided to manually provide
cert file and a key file.
[Unsupported (*)]. - Auto to use
OpenShift Container Platform
auto generated certificate using
annotations.

12.1.13. .spec.agent.ebpf.metrics.server.tls.provided

Description

TLS configuration when type is set to Provided.

Type

object

CHAPTER 12. FLOWCOLLECTOR CONFIGURATION PARAMETERS

97

Property Type Description

certFile string certFile defines the path to the
certificate file name within the
config map or secret.

certKey string certKey defines the path to the
certificate private key file name
within the config map or secret.
Omit when the key is not
necessary.

name string Name of the config map or secret
containing certificates.

namespace string Namespace of the config map or
secret containing certificates. If
omitted, the default is to use the
same namespace as where
Network Observability is
deployed. If the namespace is
different, the config map or the
secret is copied so that it can be
mounted as required.

type string Type for the certificate reference:
configmap or secret.

12.1.14. .spec.agent.ebpf.metrics.server.tls.providedCaFile

Description

Reference to the CA file when type is set to Provided.

Type

object

Property Type Description

file string File name within the config map
or secret.

name string Name of the config map or secret
containing the file.

OpenShift Container Platform 4.15 Network Observability

98

namespace string Namespace of the config map or
secret containing the file. If
omitted, the default is to use the
same namespace as where
Network Observability is
deployed. If the namespace is
different, the config map or the
secret is copied so that it can be
mounted as required.

type string Type for the file reference:
"configmap" or "secret".

Property Type Description

12.1.15. .spec.agent.ebpf.resources

Description

resources are the compute resources required by this container. For more information, see
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/

Type

object

Property Type Description

limits integer-or-string Limits describes the maximum
amount of compute resources
allowed. More info:
https://kubernetes.io/docs/conc
epts/configuration/manage-
resources-containers/

requests integer-or-string Requests describes the minimum
amount of compute resources
required. If Requests is omitted
for a container, it defaults to
Limits if that is explicitly specified,
otherwise to an implementation-
defined value. Requests cannot
exceed Limits. More info:
https://kubernetes.io/docs/conc
epts/configuration/manage-
resources-containers/

12.1.16. .spec.consolePlugin

Description

consolePlugin defines the settings related to the OpenShift Container Platform Console plugin,
when available.

CHAPTER 12. FLOWCOLLECTOR CONFIGURATION PARAMETERS

99

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/

Type

object

Property Type Description

advanced object advanced allows setting some
aspects of the internal
configuration of the console
plugin. This section is aimed
mostly for debugging and fine-
grained performance
optimizations, such as GOGC and
GOMAXPROCS env vars. Set
these values at your own risk.

autoscaler object autoscaler spec of a horizontal
pod autoscaler to set up for the
plugin Deployment. Refer to
HorizontalPodAutoscaler
documentation (autoscaling/v2).

enable boolean Enables the console plugin
deployment.

imagePullPolicy string imagePullPolicy is the
Kubernetes pull policy for the
image defined above

logLevel string logLevel for the console plugin
backend

portNaming object portNaming defines the
configuration of the port-to-
service name translation

quickFilters array quickFilters configures quick
filter presets for the Console
plugin

replicas integer replicas defines the number of
replicas (pods) to start.

resources object resources, in terms of compute
resources, required by this
container. For more information,
see
https://kubernetes.io/docs/conc
epts/configuration/manage-
resources-containers/

12.1.17. .spec.consolePlugin.advanced

OpenShift Container Platform 4.15 Network Observability

100

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/

Description

advanced allows setting some aspects of the internal configuration of the console plugin. This
section is aimed mostly for debugging and fine-grained performance optimizations, such as GOGC
and GOMAXPROCS env vars. Set these values at your own risk.

Type

object

Property Type Description

args array (string) args allows passing custom
arguments to underlying
components. Useful for overriding
some parameters, such as a URL
or a configuration path, that
should not be publicly exposed as
part of the FlowCollector
descriptor, as they are only useful
in edge debug or support
scenarios.

env object (string) env allows passing custom
environment variables to
underlying components. Useful
for passing some very concrete
performance-tuning options, such
as GOGC and GOMAXPROCS,
that should not be publicly
exposed as part of the
FlowCollector descriptor, as they
are only useful in edge debug or
support scenarios.

port integer port is the plugin service port. Do
not use 9002, which is reserved
for metrics.

register boolean register allows, when set to true,
to automatically register the
provided console plugin with the
OpenShift Container Platform
Console operator. When set to
false, you can still register it
manually by editing
console.operator.openshift.io/clus
ter with the following command:
oc patch
console.operator.openshift.i
o cluster --type='json' -p
'[{"op": "add", "path":
"/spec/plugins/-", "value":
"netobserv-plugin"}]'

CHAPTER 12. FLOWCOLLECTOR CONFIGURATION PARAMETERS

101

scheduling object scheduling controls how the
pods are scheduled on nodes.

Property Type Description

12.1.18. .spec.consolePlugin.advanced.scheduling

Description

scheduling controls how the pods are scheduled on nodes.

Type

object

Property Type Description

affinity object If specified, the pod’s scheduling
constraints. For documentation,
refer to
https://kubernetes.io/docs/refer
ence/kubernetes-api/workload-
resources/pod-v1/#scheduling.

nodeSelector object (string) nodeSelector allows scheduling
of pods only onto nodes that have
each of the specified labels. For
documentation, refer to
https://kubernetes.io/docs/conc
epts/configuration/assign-pod-
node/.

priorityClassName string If specified, indicates the pod’s
priority. For documentation, refer
to
https://kubernetes.io/docs/conc
epts/scheduling-eviction/pod-
priority-preemption/#how-to-
use-priority-and-preemption. If
not specified, default priority is
used, or zero if there is no default.

tolerations array tolerations is a list of tolerations
that allow the pod to schedule
onto nodes with matching taints.
For documentation, refer to
https://kubernetes.io/docs/refer
ence/kubernetes-api/workload-
resources/pod-v1/#scheduling.

12.1.19. .spec.consolePlugin.advanced.scheduling.affinity

OpenShift Container Platform 4.15 Network Observability

102

https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-v1/#scheduling
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/
https://kubernetes.io/docs/concepts/scheduling-eviction/pod-priority-preemption/#how-to-use-priority-and-preemption
https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-v1/#scheduling

Description

If specified, the pod’s scheduling constraints. For documentation, refer to
https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-v1/#scheduling.

Type

object

12.1.20. .spec.consolePlugin.advanced.scheduling.tolerations

Description

tolerations is a list of tolerations that allow the pod to schedule onto nodes with matching taints. For
documentation, refer to https://kubernetes.io/docs/reference/kubernetes-api/workload-
resources/pod-v1/#scheduling.

Type

array

12.1.21. .spec.consolePlugin.autoscaler

Description

autoscaler spec of a horizontal pod autoscaler to set up for the plugin Deployment. Refer to
HorizontalPodAutoscaler documentation (autoscaling/v2).

Type

object

12.1.22. .spec.consolePlugin.portNaming

Description

portNaming defines the configuration of the port-to-service name translation

Type

object

Property Type Description

enable boolean Enable the console plugin port-
to-service name translation

portNames object (string) portNames defines additional
port names to use in the console,
for example, portNames:
{"3100": "loki"}.

12.1.23. .spec.consolePlugin.quickFilters

Description

quickFilters configures quick filter presets for the Console plugin

Type

array

CHAPTER 12. FLOWCOLLECTOR CONFIGURATION PARAMETERS

103

https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-v1/#scheduling
https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-v1/#scheduling

12.1.24. .spec.consolePlugin.quickFilters[]

Description

QuickFilter defines preset configuration for Console’s quick filters

Type

object

Required

filter

name

Property Type Description

default boolean default defines whether this filter
should be active by default or not

filter object (string) filter is a set of keys and values to
be set when this filter is selected.
Each key can relate to a list of
values using a coma-separated
string, for example, filter:
{"src_namespace":
"namespace1,namespace2"}.

name string Name of the filter, that is
displayed in the Console

12.1.25. .spec.consolePlugin.resources

Description

resources, in terms of compute resources, required by this container. For more information, see
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/

Type

object

Property Type Description

limits integer-or-string Limits describes the maximum
amount of compute resources
allowed. More info:
https://kubernetes.io/docs/conc
epts/configuration/manage-
resources-containers/

OpenShift Container Platform 4.15 Network Observability

104

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/

requests integer-or-string Requests describes the minimum
amount of compute resources
required. If Requests is omitted
for a container, it defaults to
Limits if that is explicitly specified,
otherwise to an implementation-
defined value. Requests cannot
exceed Limits. More info:
https://kubernetes.io/docs/conc
epts/configuration/manage-
resources-containers/

Property Type Description

12.1.26. .spec.exporters

Description

exporters define additional optional exporters for custom consumption or storage.

Type

array

12.1.27. .spec.exporters[]

Description

FlowCollectorExporter defines an additional exporter to send enriched flows to.

Type

object

Required

type

Property Type Description

ipfix object IPFIX configuration, such as the IP
address and port to send enriched
IPFIX flows to.

kafka object Kafka configuration, such as the
address and topic, to send
enriched flows to.

type string type selects the type of
exporters. The available options
are Kafka and IPFIX.

12.1.28. .spec.exporters[].ipfix

CHAPTER 12. FLOWCOLLECTOR CONFIGURATION PARAMETERS

105

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/

Description

IPFIX configuration, such as the IP address and port to send enriched IPFIX flows to.

Type

object

Required

targetHost

targetPort

Property Type Description

targetHost string Address of the IPFIX external
receiver

targetPort integer Port for the IPFIX external
receiver

transport string Transport protocol (TCP or
UDP) to be used for the IPFIX
connection, defaults to TCP.

12.1.29. .spec.exporters[].kafka

Description

Kafka configuration, such as the address and topic, to send enriched flows to.

Type

object

Required

address

topic

Property Type Description

address string Address of the Kafka server

sasl object SASL authentication
configuration. [Unsupported (*)].

tls object TLS client configuration. When
using TLS, verify that the address
matches the Kafka port used for
TLS, generally 9093.

OpenShift Container Platform 4.15 Network Observability

106

topic string Kafka topic to use. It must exist.
Network Observability does not
create it.

Property Type Description

12.1.30. .spec.exporters[].kafka.sasl

Description

SASL authentication configuration. [Unsupported (*)].

Type

object

Property Type Description

clientIDReference object Reference to the secret or config
map containing the client ID

clientSecretReference object Reference to the secret or config
map containing the client secret

type string Type of SASL authentication to
use, or Disabled if SASL is not
used

12.1.31. .spec.exporters[].kafka.sasl.clientIDReference

Description

Reference to the secret or config map containing the client ID

Type

object

Property Type Description

file string File name within the config map
or secret.

name string Name of the config map or secret
containing the file.

CHAPTER 12. FLOWCOLLECTOR CONFIGURATION PARAMETERS

107

namespace string Namespace of the config map or
secret containing the file. If
omitted, the default is to use the
same namespace as where
Network Observability is
deployed. If the namespace is
different, the config map or the
secret is copied so that it can be
mounted as required.

type string Type for the file reference:
"configmap" or "secret".

Property Type Description

12.1.32. .spec.exporters[].kafka.sasl.clientSecretReference

Description

Reference to the secret or config map containing the client secret

Type

object

Property Type Description

file string File name within the config map
or secret.

name string Name of the config map or secret
containing the file.

namespace string Namespace of the config map or
secret containing the file. If
omitted, the default is to use the
same namespace as where
Network Observability is
deployed. If the namespace is
different, the config map or the
secret is copied so that it can be
mounted as required.

type string Type for the file reference:
"configmap" or "secret".

12.1.33. .spec.exporters[].kafka.tls

Description

TLS client configuration. When using TLS, verify that the address matches the Kafka port used for
TLS, generally 9093.

OpenShift Container Platform 4.15 Network Observability

108

Type

object

Property Type Description

caCert object caCert defines the reference of
the certificate for the Certificate
Authority

enable boolean Enable TLS

insecureSkipVerify boolean insecureSkipVerify allows
skipping client-side verification of
the server certificate. If set to
true, the caCert field is ignored.

userCert object userCert defines the user
certificate reference and is used
for mTLS (you can ignore it when
using one-way TLS)

12.1.34. .spec.exporters[].kafka.tls.caCert

Description

caCert defines the reference of the certificate for the Certificate Authority

Type

object

Property Type Description

certFile string certFile defines the path to the
certificate file name within the
config map or secret.

certKey string certKey defines the path to the
certificate private key file name
within the config map or secret.
Omit when the key is not
necessary.

name string Name of the config map or secret
containing certificates.

CHAPTER 12. FLOWCOLLECTOR CONFIGURATION PARAMETERS

109

namespace string Namespace of the config map or
secret containing certificates. If
omitted, the default is to use the
same namespace as where
Network Observability is
deployed. If the namespace is
different, the config map or the
secret is copied so that it can be
mounted as required.

type string Type for the certificate reference:
configmap or secret.

Property Type Description

12.1.35. .spec.exporters[].kafka.tls.userCert

Description

userCert defines the user certificate reference and is used for mTLS (you can ignore it when using
one-way TLS)

Type

object

Property Type Description

certFile string certFile defines the path to the
certificate file name within the
config map or secret.

certKey string certKey defines the path to the
certificate private key file name
within the config map or secret.
Omit when the key is not
necessary.

name string Name of the config map or secret
containing certificates.

namespace string Namespace of the config map or
secret containing certificates. If
omitted, the default is to use the
same namespace as where
Network Observability is
deployed. If the namespace is
different, the config map or the
secret is copied so that it can be
mounted as required.

OpenShift Container Platform 4.15 Network Observability

110

type string Type for the certificate reference:
configmap or secret.

Property Type Description

12.1.36. .spec.kafka

Description

Kafka configuration, allowing to use Kafka as a broker as part of the flow collection pipeline. Available
when the spec.deploymentModel is Kafka.

Type

object

Required

address

topic

Property Type Description

address string Address of the Kafka server

sasl object SASL authentication
configuration. [Unsupported (*)].

tls object TLS client configuration. When
using TLS, verify that the address
matches the Kafka port used for
TLS, generally 9093.

topic string Kafka topic to use. It must exist.
Network Observability does not
create it.

12.1.37. .spec.kafka.sasl

Description

SASL authentication configuration. [Unsupported (*)].

Type

object

Property Type Description

CHAPTER 12. FLOWCOLLECTOR CONFIGURATION PARAMETERS

111

clientIDReference object Reference to the secret or config
map containing the client ID

clientSecretReference object Reference to the secret or config
map containing the client secret

type string Type of SASL authentication to
use, or Disabled if SASL is not
used

Property Type Description

12.1.38. .spec.kafka.sasl.clientIDReference

Description

Reference to the secret or config map containing the client ID

Type

object

Property Type Description

file string File name within the config map
or secret.

name string Name of the config map or secret
containing the file.

namespace string Namespace of the config map or
secret containing the file. If
omitted, the default is to use the
same namespace as where
Network Observability is
deployed. If the namespace is
different, the config map or the
secret is copied so that it can be
mounted as required.

type string Type for the file reference:
"configmap" or "secret".

12.1.39. .spec.kafka.sasl.clientSecretReference

Description

Reference to the secret or config map containing the client secret

Type

object

OpenShift Container Platform 4.15 Network Observability

112

Property Type Description

file string File name within the config map
or secret.

name string Name of the config map or secret
containing the file.

namespace string Namespace of the config map or
secret containing the file. If
omitted, the default is to use the
same namespace as where
Network Observability is
deployed. If the namespace is
different, the config map or the
secret is copied so that it can be
mounted as required.

type string Type for the file reference:
"configmap" or "secret".

12.1.40. .spec.kafka.tls

Description

TLS client configuration. When using TLS, verify that the address matches the Kafka port used for
TLS, generally 9093.

Type

object

Property Type Description

caCert object caCert defines the reference of
the certificate for the Certificate
Authority

enable boolean Enable TLS

insecureSkipVerify boolean insecureSkipVerify allows
skipping client-side verification of
the server certificate. If set to
true, the caCert field is ignored.

userCert object userCert defines the user
certificate reference and is used
for mTLS (you can ignore it when
using one-way TLS)

12.1.41. .spec.kafka.tls.caCert

CHAPTER 12. FLOWCOLLECTOR CONFIGURATION PARAMETERS

113

Description

caCert defines the reference of the certificate for the Certificate Authority

Type

object

Property Type Description

certFile string certFile defines the path to the
certificate file name within the
config map or secret.

certKey string certKey defines the path to the
certificate private key file name
within the config map or secret.
Omit when the key is not
necessary.

name string Name of the config map or secret
containing certificates.

namespace string Namespace of the config map or
secret containing certificates. If
omitted, the default is to use the
same namespace as where
Network Observability is
deployed. If the namespace is
different, the config map or the
secret is copied so that it can be
mounted as required.

type string Type for the certificate reference:
configmap or secret.

12.1.42. .spec.kafka.tls.userCert

Description

userCert defines the user certificate reference and is used for mTLS (you can ignore it when using
one-way TLS)

Type

object

Property Type Description

certFile string certFile defines the path to the
certificate file name within the
config map or secret.

OpenShift Container Platform 4.15 Network Observability

114

certKey string certKey defines the path to the
certificate private key file name
within the config map or secret.
Omit when the key is not
necessary.

name string Name of the config map or secret
containing certificates.

namespace string Namespace of the config map or
secret containing certificates. If
omitted, the default is to use the
same namespace as where
Network Observability is
deployed. If the namespace is
different, the config map or the
secret is copied so that it can be
mounted as required.

type string Type for the certificate reference:
configmap or secret.

Property Type Description

12.1.43. .spec.loki

Description

loki, the flow store, client settings.

Type

object

Property Type Description

advanced object advanced allows setting some
aspects of the internal
configuration of the Loki clients.
This section is aimed mostly for
debugging and fine-grained
performance optimizations.

CHAPTER 12. FLOWCOLLECTOR CONFIGURATION PARAMETERS

115

enable boolean Set enable to true to store flows
in Loki. The Console plugin can
use either Loki or Prometheus as
a data source for metrics (see also
spec.prometheus.querier), or
both. Not all queries are
transposable from Loki to
Prometheus. Hence, if Loki is
disabled, some features of the
plugin are disabled as well, such as
getting per-pod information or
viewing raw flows. If both
Prometheus and Loki are enabled,
Prometheus takes precedence
and Loki is used as a fallback for
queries that Prometheus cannot
handle. If they are both disabled,
the Console plugin is not
deployed.

lokiStack object Loki configuration for LokiStack
mode. This is useful for an easy
Loki Operator configuration. It is
ignored for other modes.

manual object Loki configuration for Manual
mode. This is the most flexible
configuration. It is ignored for
other modes.

microservices object Loki configuration for
Microservices mode. Use this
option when Loki is installed using
the microservices deployment
mode
(https://grafana.com/docs/loki/la
test/fundamentals/architecture/
deployment-
modes/#microservices-mode). It
is ignored for other modes.

Property Type Description

OpenShift Container Platform 4.15 Network Observability

116

https://grafana.com/docs/loki/latest/fundamentals/architecture/deployment-modes/#microservices-mode

mode string mode must be set according to
the installation mode of Loki:

- Use LokiStack when Loki is
managed using the Loki Operator

- Use Monolithic when Loki is
installed as a monolithic workload

- Use Microservices when Loki
is installed as microservices, but
without Loki Operator

- Use Manual if none of the
options above match your setup

monolithic object Loki configuration for
Monolithic mode. Use this
option when Loki is installed using
the monolithic deployment mode
(https://grafana.com/docs/loki/la
test/fundamentals/architecture/
deployment-modes/#monolithic-
mode). It is ignored for other
modes.

readTimeout string readTimeout is the maximum
console plugin loki query total
time limit. A timeout of zero
means no timeout.

writeBatchSize integer writeBatchSize is the maximum
batch size (in bytes) of Loki logs
to accumulate before sending.

writeBatchWait string writeBatchWait is the maximum
time to wait before sending a Loki
batch.

writeTimeout string writeTimeout is the maximum
Loki time connection / request
limit. A timeout of zero means no
timeout.

Property Type Description

12.1.44. .spec.loki.advanced

Description

advanced allows setting some aspects of the internal configuration of the Loki clients. This section is
aimed mostly for debugging and fine-grained performance optimizations.

CHAPTER 12. FLOWCOLLECTOR CONFIGURATION PARAMETERS

117

https://grafana.com/docs/loki/latest/fundamentals/architecture/deployment-modes/#monolithic-mode

Type

object

Property Type Description

staticLabels object (string) staticLabels is a map of
common labels to set on each
flow in Loki storage.

writeMaxBackoff string writeMaxBackoff is the
maximum backoff time for Loki
client connection between retries.

writeMaxRetries integer writeMaxRetries is the
maximum number of retries for
Loki client connections.

writeMinBackoff string writeMinBackoff is the initial
backoff time for Loki client
connection between retries.

12.1.45. .spec.loki.lokiStack

Description

Loki configuration for LokiStack mode. This is useful for an easy Loki Operator configuration. It is
ignored for other modes.

Type

object

Property Type Description

name string Name of an existing LokiStack
resource to use.

namespace string Namespace where this
LokiStack resource is located. If
omitted, it is assumed to be the
same as spec.namespace.

12.1.46. .spec.loki.manual

Description

Loki configuration for Manual mode. This is the most flexible configuration. It is ignored for other
modes.

Type

object

OpenShift Container Platform 4.15 Network Observability

118

Property Type Description

authToken string authToken describes the way to
get a token to authenticate to
Loki.

- Disabled does not send any
token with the request.

- Forward forwards the user
token for authorization.

- Host [deprecated (*)] - uses
the local pod service account to
authenticate to Loki.

When using the Loki Operator,
this must be set to Forward.

ingesterUrl string ingesterUrl is the address of an
existing Loki ingester service to
push the flows to. When using the
Loki Operator, set it to the Loki
gateway service with the
network tenant set in path, for
example https://loki-gateway-
http.netobserv.svc:8080/api/logs
/v1/network.

querierUrl string querierUrl specifies the address
of the Loki querier service. When
using the Loki Operator, set it to
the Loki gateway service with the
network tenant set in path, for
example https://loki-gateway-
http.netobserv.svc:8080/api/logs
/v1/network.

statusTls object TLS client configuration for Loki
status URL.

CHAPTER 12. FLOWCOLLECTOR CONFIGURATION PARAMETERS

119

https://loki-gateway-http.netobserv.svc:8080/api/logs/v1/network
https://loki-gateway-http.netobserv.svc:8080/api/logs/v1/network

statusUrl string statusUrl specifies the address
of the Loki /ready, /metrics and
/config endpoints, in case it is
different from the Loki querier
URL. If empty, the querierUrl
value is used. This is useful to
show error messages and some
context in the frontend. When
using the Loki Operator, set it to
the Loki HTTP query frontend
service, for example https://loki-
query-frontend-
http.netobserv.svc:3100/.
statusTLS configuration is used
when statusUrl is set.

tenantID string tenantID is the Loki X-Scope-
OrgID that identifies the tenant
for each request. When using the
Loki Operator, set it to network,
which corresponds to a special
tenant mode.

tls object TLS client configuration for Loki
URL.

Property Type Description

12.1.47. .spec.loki.manual.statusTls

Description

TLS client configuration for Loki status URL.

Type

object

Property Type Description

caCert object caCert defines the reference of
the certificate for the Certificate
Authority

enable boolean Enable TLS

insecureSkipVerify boolean insecureSkipVerify allows
skipping client-side verification of
the server certificate. If set to
true, the caCert field is ignored.

OpenShift Container Platform 4.15 Network Observability

120

https://loki-query-frontend-http.netobserv.svc:3100/

userCert object userCert defines the user
certificate reference and is used
for mTLS (you can ignore it when
using one-way TLS)

Property Type Description

12.1.48. .spec.loki.manual.statusTls.caCert

Description

caCert defines the reference of the certificate for the Certificate Authority

Type

object

Property Type Description

certFile string certFile defines the path to the
certificate file name within the
config map or secret.

certKey string certKey defines the path to the
certificate private key file name
within the config map or secret.
Omit when the key is not
necessary.

name string Name of the config map or secret
containing certificates.

namespace string Namespace of the config map or
secret containing certificates. If
omitted, the default is to use the
same namespace as where
Network Observability is
deployed. If the namespace is
different, the config map or the
secret is copied so that it can be
mounted as required.

type string Type for the certificate reference:
configmap or secret.

12.1.49. .spec.loki.manual.statusTls.userCert

Description

userCert defines the user certificate reference and is used for mTLS (you can ignore it when using

CHAPTER 12. FLOWCOLLECTOR CONFIGURATION PARAMETERS

121

userCert defines the user certificate reference and is used for mTLS (you can ignore it when using
one-way TLS)

Type

object

Property Type Description

certFile string certFile defines the path to the
certificate file name within the
config map or secret.

certKey string certKey defines the path to the
certificate private key file name
within the config map or secret.
Omit when the key is not
necessary.

name string Name of the config map or secret
containing certificates.

namespace string Namespace of the config map or
secret containing certificates. If
omitted, the default is to use the
same namespace as where
Network Observability is
deployed. If the namespace is
different, the config map or the
secret is copied so that it can be
mounted as required.

type string Type for the certificate reference:
configmap or secret.

12.1.50. .spec.loki.manual.tls

Description

TLS client configuration for Loki URL.

Type

object

Property Type Description

caCert object caCert defines the reference of
the certificate for the Certificate
Authority

enable boolean Enable TLS

OpenShift Container Platform 4.15 Network Observability

122

insecureSkipVerify boolean insecureSkipVerify allows
skipping client-side verification of
the server certificate. If set to
true, the caCert field is ignored.

userCert object userCert defines the user
certificate reference and is used
for mTLS (you can ignore it when
using one-way TLS)

Property Type Description

12.1.51. .spec.loki.manual.tls.caCert

Description

caCert defines the reference of the certificate for the Certificate Authority

Type

object

Property Type Description

certFile string certFile defines the path to the
certificate file name within the
config map or secret.

certKey string certKey defines the path to the
certificate private key file name
within the config map or secret.
Omit when the key is not
necessary.

name string Name of the config map or secret
containing certificates.

namespace string Namespace of the config map or
secret containing certificates. If
omitted, the default is to use the
same namespace as where
Network Observability is
deployed. If the namespace is
different, the config map or the
secret is copied so that it can be
mounted as required.

type string Type for the certificate reference:
configmap or secret.

12.1.52. .spec.loki.manual.tls.userCert

CHAPTER 12. FLOWCOLLECTOR CONFIGURATION PARAMETERS

123

Description

userCert defines the user certificate reference and is used for mTLS (you can ignore it when using
one-way TLS)

Type

object

Property Type Description

certFile string certFile defines the path to the
certificate file name within the
config map or secret.

certKey string certKey defines the path to the
certificate private key file name
within the config map or secret.
Omit when the key is not
necessary.

name string Name of the config map or secret
containing certificates.

namespace string Namespace of the config map or
secret containing certificates. If
omitted, the default is to use the
same namespace as where
Network Observability is
deployed. If the namespace is
different, the config map or the
secret is copied so that it can be
mounted as required.

type string Type for the certificate reference:
configmap or secret.

12.1.53. .spec.loki.microservices

Description

Loki configuration for Microservices mode. Use this option when Loki is installed using the
microservices deployment mode
(https://grafana.com/docs/loki/latest/fundamentals/architecture/deployment-
modes/#microservices-mode). It is ignored for other modes.

Type

object

Property Type Description

ingesterUrl string ingesterUrl is the address of an
existing Loki ingester service to
push the flows to.

OpenShift Container Platform 4.15 Network Observability

124

https://grafana.com/docs/loki/latest/fundamentals/architecture/deployment-modes/#microservices-mode

querierUrl string querierURL specifies the
address of the Loki querier
service.

tenantID string tenantID is the Loki X-Scope-
OrgID header that identifies the
tenant for each request.

tls object TLS client configuration for Loki
URL.

Property Type Description

12.1.54. .spec.loki.microservices.tls

Description

TLS client configuration for Loki URL.

Type

object

Property Type Description

caCert object caCert defines the reference of
the certificate for the Certificate
Authority

enable boolean Enable TLS

insecureSkipVerify boolean insecureSkipVerify allows
skipping client-side verification of
the server certificate. If set to
true, the caCert field is ignored.

userCert object userCert defines the user
certificate reference and is used
for mTLS (you can ignore it when
using one-way TLS)

12.1.55. .spec.loki.microservices.tls.caCert

Description

caCert defines the reference of the certificate for the Certificate Authority

Type

object

CHAPTER 12. FLOWCOLLECTOR CONFIGURATION PARAMETERS

125

Property Type Description

certFile string certFile defines the path to the
certificate file name within the
config map or secret.

certKey string certKey defines the path to the
certificate private key file name
within the config map or secret.
Omit when the key is not
necessary.

name string Name of the config map or secret
containing certificates.

namespace string Namespace of the config map or
secret containing certificates. If
omitted, the default is to use the
same namespace as where
Network Observability is
deployed. If the namespace is
different, the config map or the
secret is copied so that it can be
mounted as required.

type string Type for the certificate reference:
configmap or secret.

12.1.56. .spec.loki.microservices.tls.userCert

Description

userCert defines the user certificate reference and is used for mTLS (you can ignore it when using
one-way TLS)

Type

object

Property Type Description

certFile string certFile defines the path to the
certificate file name within the
config map or secret.

certKey string certKey defines the path to the
certificate private key file name
within the config map or secret.
Omit when the key is not
necessary.

OpenShift Container Platform 4.15 Network Observability

126

name string Name of the config map or secret
containing certificates.

namespace string Namespace of the config map or
secret containing certificates. If
omitted, the default is to use the
same namespace as where
Network Observability is
deployed. If the namespace is
different, the config map or the
secret is copied so that it can be
mounted as required.

type string Type for the certificate reference:
configmap or secret.

Property Type Description

12.1.57. .spec.loki.monolithic

Description

Loki configuration for Monolithic mode. Use this option when Loki is installed using the monolithic
deployment mode (https://grafana.com/docs/loki/latest/fundamentals/architecture/deployment-
modes/#monolithic-mode). It is ignored for other modes.

Type

object

Property Type Description

tenantID string tenantID is the Loki X-Scope-
OrgID header that identifies the
tenant for each request.

tls object TLS client configuration for Loki
URL.

url string url is the unique address of an
existing Loki service that points to
both the ingester and the querier.

12.1.58. .spec.loki.monolithic.tls

Description

TLS client configuration for Loki URL.

Type

object

CHAPTER 12. FLOWCOLLECTOR CONFIGURATION PARAMETERS

127

https://grafana.com/docs/loki/latest/fundamentals/architecture/deployment-modes/#monolithic-mode

Property Type Description

caCert object caCert defines the reference of
the certificate for the Certificate
Authority

enable boolean Enable TLS

insecureSkipVerify boolean insecureSkipVerify allows
skipping client-side verification of
the server certificate. If set to
true, the caCert field is ignored.

userCert object userCert defines the user
certificate reference and is used
for mTLS (you can ignore it when
using one-way TLS)

12.1.59. .spec.loki.monolithic.tls.caCert

Description

caCert defines the reference of the certificate for the Certificate Authority

Type

object

Property Type Description

certFile string certFile defines the path to the
certificate file name within the
config map or secret.

certKey string certKey defines the path to the
certificate private key file name
within the config map or secret.
Omit when the key is not
necessary.

name string Name of the config map or secret
containing certificates.

namespace string Namespace of the config map or
secret containing certificates. If
omitted, the default is to use the
same namespace as where
Network Observability is
deployed. If the namespace is
different, the config map or the
secret is copied so that it can be
mounted as required.

OpenShift Container Platform 4.15 Network Observability

128

type string Type for the certificate reference:
configmap or secret.

Property Type Description

12.1.60. .spec.loki.monolithic.tls.userCert

Description

userCert defines the user certificate reference and is used for mTLS (you can ignore it when using
one-way TLS)

Type

object

Property Type Description

certFile string certFile defines the path to the
certificate file name within the
config map or secret.

certKey string certKey defines the path to the
certificate private key file name
within the config map or secret.
Omit when the key is not
necessary.

name string Name of the config map or secret
containing certificates.

namespace string Namespace of the config map or
secret containing certificates. If
omitted, the default is to use the
same namespace as where
Network Observability is
deployed. If the namespace is
different, the config map or the
secret is copied so that it can be
mounted as required.

type string Type for the certificate reference:
configmap or secret.

12.1.61. .spec.processor

Description

processor defines the settings of the component that receives the flows from the agent, enriches
them, generates metrics, and forwards them to the Loki persistence layer and/or any available
exporter.

Type

CHAPTER 12. FLOWCOLLECTOR CONFIGURATION PARAMETERS

129

object

Property Type Description

addZone boolean addZone allows availability zone
awareness by labelling flows with
their source and destination
zones. This feature requires the
"topology.kubernetes.io/zone"
label to be set on nodes.

advanced object advanced allows setting some
aspects of the internal
configuration of the flow
processor. This section is aimed
mostly for debugging and fine-
grained performance
optimizations, such as GOGC and
GOMAXPROCS env vars. Set
these values at your own risk.

clusterName string clusterName is the name of the
cluster to appear in the flows
data. This is useful in a multi-
cluster context. When using
OpenShift Container Platform,
leave empty to make it
automatically determined.

imagePullPolicy string imagePullPolicy is the
Kubernetes pull policy for the
image defined above

kafkaConsumerAutoscaler object kafkaConsumerAutoscaler is
the spec of a horizontal pod
autoscaler to set up for
flowlogs-pipeline-
transformer, which consumes
Kafka messages. This setting is
ignored when Kafka is disabled.
Refer to HorizontalPodAutoscaler
documentation (autoscaling/v2).

kafkaConsumerBatchSize integer kafkaConsumerBatchSize
indicates to the broker the
maximum batch size, in bytes, that
the consumer accepts. Ignored
when not using Kafka. Default:
10MB.

OpenShift Container Platform 4.15 Network Observability

130

kafkaConsumerQueueCapaci
ty

integer kafkaConsumerQueueCapac
ity defines the capacity of the
internal message queue used in
the Kafka consumer client.
Ignored when not using Kafka.

kafkaConsumerReplicas integer kafkaConsumerReplicas
defines the number of replicas
(pods) to start for flowlogs-
pipeline-transformer, which
consumes Kafka messages. This
setting is ignored when Kafka is
disabled.

logLevel string logLevel of the processor
runtime

logTypes string logTypes defines the desired
record types to generate.
Possible values are:

- Flows (default) to export
regular network flows

- Conversations to generate
events for started conversations,
ended conversations as well as
periodic "tick" updates

- EndedConversations to
generate only ended
conversations events

- All to generate both network
flows and all conversations events

metrics object Metrics define the processor
configuration regarding metrics

multiClusterDeployment boolean Set multiClusterDeployment
to true to enable multi clusters
feature. This adds clusterName
label to flows data

Property Type Description

CHAPTER 12. FLOWCOLLECTOR CONFIGURATION PARAMETERS

131

resources object resources are the compute
resources required by this
container. For more information,
see
https://kubernetes.io/docs/conc
epts/configuration/manage-
resources-containers/

subnetLabels object subnetLabels allows to define
custom labels on subnets and IPs
or to enable automatic labelling of
recognized subnets in OpenShift
Container Platform, which is used
to identify cluster external traffic.
When a subnet matches the
source or destination IP of a flow,
a corresponding field is added:
SrcSubnetLabel or
DstSubnetLabel.

Property Type Description

12.1.62. .spec.processor.advanced

Description

advanced allows setting some aspects of the internal configuration of the flow processor. This
section is aimed mostly for debugging and fine-grained performance optimizations, such as GOGC
and GOMAXPROCS env vars. Set these values at your own risk.

Type

object

Property Type Description

conversationEndTimeout string conversationEndTimeout is
the time to wait after a network
flow is received, to consider the
conversation ended. This delay is
ignored when a FIN packet is
collected for TCP flows (see
conversationTerminatingTim
eout instead).

conversationHeartbeatInterv
al

string conversationHeartbeatInterv
al is the time to wait between
"tick" events of a conversation

OpenShift Container Platform 4.15 Network Observability

132

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/

conversationTerminatingTim
eout

string conversationTerminatingTim
eout is the time to wait from
detected FIN flag to end a
conversation. Only relevant for
TCP flows.

dropUnusedFields boolean dropUnusedFields
[deprecated (*)] this setting is not
used anymore.

enableKubeProbes boolean enableKubeProbes is a flag to
enable or disable Kubernetes
liveness and readiness probes

env object (string) env allows passing custom
environment variables to
underlying components. Useful
for passing some very concrete
performance-tuning options, such
as GOGC and GOMAXPROCS,
that should not be publicly
exposed as part of the
FlowCollector descriptor, as they
are only useful in edge debug or
support scenarios.

healthPort integer healthPort is a collector HTTP
port in the Pod that exposes the
health check API

port integer Port of the flow collector (host
port). By convention, some values
are forbidden. It must be greater
than 1024 and different from
4500, 4789 and 6081.

profilePort integer profilePort allows setting up a
Go pprof profiler listening to this
port

scheduling object scheduling controls how the pods
are scheduled on nodes.

Property Type Description

12.1.63. .spec.processor.advanced.scheduling

Description

scheduling controls how the pods are scheduled on nodes.

Type

CHAPTER 12. FLOWCOLLECTOR CONFIGURATION PARAMETERS

133

object

Property Type Description

affinity object If specified, the pod’s scheduling
constraints. For documentation,
refer to
https://kubernetes.io/docs/refer
ence/kubernetes-api/workload-
resources/pod-v1/#scheduling.

nodeSelector object (string) nodeSelector allows scheduling
of pods only onto nodes that have
each of the specified labels. For
documentation, refer to
https://kubernetes.io/docs/conc
epts/configuration/assign-pod-
node/.

priorityClassName string If specified, indicates the pod’s
priority. For documentation, refer
to
https://kubernetes.io/docs/conc
epts/scheduling-eviction/pod-
priority-preemption/#how-to-
use-priority-and-preemption. If
not specified, default priority is
used, or zero if there is no default.

tolerations array tolerations is a list of tolerations
that allow the pod to schedule
onto nodes with matching taints.
For documentation, refer to
https://kubernetes.io/docs/refer
ence/kubernetes-api/workload-
resources/pod-v1/#scheduling.

12.1.64. .spec.processor.advanced.scheduling.affinity

Description

If specified, the pod’s scheduling constraints. For documentation, refer to
https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-v1/#scheduling.

Type

object

12.1.65. .spec.processor.advanced.scheduling.tolerations

Description

tolerations is a list of tolerations that allow the pod to schedule onto nodes with matching taints. For
documentation, refer to https://kubernetes.io/docs/reference/kubernetes-api/workload-
resources/pod-v1/#scheduling.

OpenShift Container Platform 4.15 Network Observability

134

https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-v1/#scheduling
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/
https://kubernetes.io/docs/concepts/scheduling-eviction/pod-priority-preemption/#how-to-use-priority-and-preemption
https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-v1/#scheduling
https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-v1/#scheduling
https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-v1/#scheduling

Type

array

12.1.66. .spec.processor.kafkaConsumerAutoscaler

Description

kafkaConsumerAutoscaler is the spec of a horizontal pod autoscaler to set up for flowlogs-
pipeline-transformer, which consumes Kafka messages. This setting is ignored when Kafka is
disabled. Refer to HorizontalPodAutoscaler documentation (autoscaling/v2).

Type

object

12.1.67. .spec.processor.metrics

Description

Metrics define the processor configuration regarding metrics

Type

object

Property Type Description

disableAlerts array (string) disableAlerts is a list of alerts
that should be disabled. Possible
values are:

NetObservNoFlows, which is
triggered when no flows are being
observed for a certain period.

NetObservLokiError, which is
triggered when flows are being
dropped due to Loki errors.

CHAPTER 12. FLOWCOLLECTOR CONFIGURATION PARAMETERS

135

includeList array (string) includeList is a list of metric
names to specify which ones to
generate. The names correspond
to the names in Prometheus
without the prefix. For example,
namespace_egress_packets
_total shows up as
netobserv_namespace_egre
ss_packets_total in
Prometheus. Note that the more
metrics you add, the bigger is the
impact on Prometheus workload
resources. Metrics enabled by
default are:
namespace_flows_total,
node_ingress_bytes_total,
workload_ingress_bytes_tot
al,
namespace_drop_packets_t
otal (when PacketDrop feature
is enabled),
namespace_rtt_seconds
(when FlowRTT feature is
enabled),
namespace_dns_latency_se
conds (when DNSTracking
feature is enabled). More
information, with full list of
available metrics:
https://github.com/netobserv/ne
twork-observability-
operator/blob/main/docs/Metric
s.md

server object Metrics server endpoint
configuration for Prometheus
scraper

Property Type Description

12.1.68. .spec.processor.metrics.server

Description

Metrics server endpoint configuration for Prometheus scraper

Type

object

Property Type Description

port integer The metrics server HTTP port.

OpenShift Container Platform 4.15 Network Observability

136

https://github.com/netobserv/network-observability-operator/blob/main/docs/Metrics.md

tls object TLS configuration.

Property Type Description

12.1.69. .spec.processor.metrics.server.tls

Description

TLS configuration.

Type

object

Property Type Description

insecureSkipVerify boolean insecureSkipVerify allows
skipping client-side verification of
the provided certificate. If set to
true, the providedCaFile field is
ignored.

provided object TLS configuration when type is
set to Provided.

providedCaFile object Reference to the CA file when
type is set to Provided.

type string Select the type of TLS
configuration:

- Disabled (default) to not
configure TLS for the endpoint. -
Provided to manually provide
cert file and a key file.
[Unsupported (*)]. - Auto to use
OpenShift Container Platform
auto generated certificate using
annotations.

12.1.70. .spec.processor.metrics.server.tls.provided

Description

TLS configuration when type is set to Provided.

Type

object

Property Type Description

CHAPTER 12. FLOWCOLLECTOR CONFIGURATION PARAMETERS

137

certFile string certFile defines the path to the
certificate file name within the
config map or secret.

certKey string certKey defines the path to the
certificate private key file name
within the config map or secret.
Omit when the key is not
necessary.

name string Name of the config map or secret
containing certificates.

namespace string Namespace of the config map or
secret containing certificates. If
omitted, the default is to use the
same namespace as where
Network Observability is
deployed. If the namespace is
different, the config map or the
secret is copied so that it can be
mounted as required.

type string Type for the certificate reference:
configmap or secret.

Property Type Description

12.1.71. .spec.processor.metrics.server.tls.providedCaFile

Description

Reference to the CA file when type is set to Provided.

Type

object

Property Type Description

file string File name within the config map
or secret.

name string Name of the config map or secret
containing the file.

OpenShift Container Platform 4.15 Network Observability

138

namespace string Namespace of the config map or
secret containing the file. If
omitted, the default is to use the
same namespace as where
Network Observability is
deployed. If the namespace is
different, the config map or the
secret is copied so that it can be
mounted as required.

type string Type for the file reference:
"configmap" or "secret".

Property Type Description

12.1.72. .spec.processor.resources

Description

resources are the compute resources required by this container. For more information, see
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/

Type

object

Property Type Description

limits integer-or-string Limits describes the maximum
amount of compute resources
allowed. More info:
https://kubernetes.io/docs/conc
epts/configuration/manage-
resources-containers/

requests integer-or-string Requests describes the minimum
amount of compute resources
required. If Requests is omitted
for a container, it defaults to
Limits if that is explicitly specified,
otherwise to an implementation-
defined value. Requests cannot
exceed Limits. More info:
https://kubernetes.io/docs/conc
epts/configuration/manage-
resources-containers/

12.1.73. .spec.processor.subnetLabels

Description

subnetLabels allows to define custom labels on subnets and IPs or to enable automatic labelling of
recognized subnets in OpenShift Container Platform, which is used to identify cluster external traffic.
When a subnet matches the source or destination IP of a flow, a corresponding field is added:

CHAPTER 12. FLOWCOLLECTOR CONFIGURATION PARAMETERS

139

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/

SrcSubnetLabel or DstSubnetLabel.

Type

object

Property Type Description

customLabels array customLabels allows to
customize subnets and IPs
labelling, such as to identify
cluster-external workloads or web
services. If you enable
openShiftAutoDetect,
customLabels can override the
detected subnets in case they
overlap.

openShiftAutoDetect boolean openShiftAutoDetect allows,
when set to true, to detect
automatically the machines, pods
and services subnets based on
the OpenShift Container
Platform install configuration and
the Cluster Network Operator
configuration. Indirectly, this is a
way to accurately detect external
traffic: flows that are not labeled
for those subnets are external to
the cluster. Enabled by default on
OpenShift Container Platform.

12.1.74. .spec.processor.subnetLabels.customLabels

Description

customLabels allows to customize subnets and IPs labelling, such as to identify cluster-external
workloads or web services. If you enable openShiftAutoDetect, customLabels can override the
detected subnets in case they overlap.

Type

array

12.1.75. .spec.processor.subnetLabels.customLabels[]

Description

SubnetLabel allows to label subnets and IPs, such as to identify cluster-external workloads or web
services.

Type

object

OpenShift Container Platform 4.15 Network Observability

140

Property Type Description

cidrs array (string) List of CIDRs, such as
["1.2.3.4/32"].

name string Label name, used to flag
matching flows.

12.1.76. .spec.prometheus

Description

prometheus defines Prometheus settings, such as querier configuration used to fetch metrics from
the Console plugin.

Type

object

Property Type Description

querier object Prometheus querying
configuration, such as client
settings, used in the Console
plugin.

12.1.77. .spec.prometheus.querier

Description

Prometheus querying configuration, such as client settings, used in the Console plugin.

Type

object

Property Type Description

CHAPTER 12. FLOWCOLLECTOR CONFIGURATION PARAMETERS

141

enable boolean When enable is true, the
Console plugin queries flow
metrics from Prometheus instead
of Loki whenever possible. It is
enbaled by default: set it to false
to disable this feature. The
Console plugin can use either Loki
or Prometheus as a data source
for metrics (see also spec.loki),
or both. Not all queries are
transposable from Loki to
Prometheus. Hence, if Loki is
disabled, some features of the
plugin are disabled as well, such as
getting per-pod information or
viewing raw flows. If both
Prometheus and Loki are enabled,
Prometheus takes precedence
and Loki is used as a fallback for
queries that Prometheus cannot
handle. If they are both disabled,
the Console plugin is not
deployed.

manual object Prometheus configuration for
Manual mode.

mode string mode must be set according to
the type of Prometheus
installation that stores Network
Observability metrics:

- Use Auto to try configuring
automatically. In OpenShift
Container Platform, it uses the
Thanos querier from OpenShift
Container Platform Cluster
Monitoring

- Use Manual for a manual setup

timeout string timeout is the read timeout for
console plugin queries to
Prometheus. A timeout of zero
means no timeout.

Property Type Description

12.1.78. .spec.prometheus.querier.manual

Description

Prometheus configuration for Manual mode.

OpenShift Container Platform 4.15 Network Observability

142

Type

object

Property Type Description

forwardUserToken boolean Set true to forward logged in user
token in queries to Prometheus

tls object TLS client configuration for
Prometheus URL.

url string url is the address of an existing
Prometheus service to use for
querying metrics.

12.1.79. .spec.prometheus.querier.manual.tls

Description

TLS client configuration for Prometheus URL.

Type

object

Property Type Description

caCert object caCert defines the reference of
the certificate for the Certificate
Authority

enable boolean Enable TLS

insecureSkipVerify boolean insecureSkipVerify allows
skipping client-side verification of
the server certificate. If set to
true, the caCert field is ignored.

userCert object userCert defines the user
certificate reference and is used
for mTLS (you can ignore it when
using one-way TLS)

12.1.80. .spec.prometheus.querier.manual.tls.caCert

Description

caCert defines the reference of the certificate for the Certificate Authority

Type

object

CHAPTER 12. FLOWCOLLECTOR CONFIGURATION PARAMETERS

143

Property Type Description

certFile string certFile defines the path to the
certificate file name within the
config map or secret.

certKey string certKey defines the path to the
certificate private key file name
within the config map or secret.
Omit when the key is not
necessary.

name string Name of the config map or secret
containing certificates.

namespace string Namespace of the config map or
secret containing certificates. If
omitted, the default is to use the
same namespace as where
Network Observability is
deployed. If the namespace is
different, the config map or the
secret is copied so that it can be
mounted as required.

type string Type for the certificate reference:
configmap or secret.

12.1.81. .spec.prometheus.querier.manual.tls.userCert

Description

userCert defines the user certificate reference and is used for mTLS (you can ignore it when using
one-way TLS)

Type

object

Property Type Description

certFile string certFile defines the path to the
certificate file name within the
config map or secret.

certKey string certKey defines the path to the
certificate private key file name
within the config map or secret.
Omit when the key is not
necessary.

OpenShift Container Platform 4.15 Network Observability

144

name string Name of the config map or secret
containing certificates.

namespace string Namespace of the config map or
secret containing certificates. If
omitted, the default is to use the
same namespace as where
Network Observability is
deployed. If the namespace is
different, the config map or the
secret is copied so that it can be
mounted as required.

type string Type for the certificate reference:
configmap or secret.

Property Type Description

CHAPTER 12. FLOWCOLLECTOR CONFIGURATION PARAMETERS

145

CHAPTER 13. FLOWMETRIC CONFIGURATION PARAMETERS
FlowMetric is the API allowing to create custom metrics from the collected flow logs.

13.1. FLOWMETRIC [FLOWS.NETOBSERV.IO/V1ALPHA1]

Description

FlowMetric is the API allowing to create custom metrics from the collected flow logs.

Type

object

Property Type Description

apiVersion string APIVersion defines the versioned
schema of this representation of
an object. Servers should convert
recognized schemas to the latest
internal value, and might reject
unrecognized values. More info:
https://git.k8s.io/community/con
tributors/devel/sig-
architecture/api-
conventions.md#resources

kind string Kind is a string value representing
the REST resource this object
represents. Servers might infer
this from the endpoint the client
submits requests to. Cannot be
updated. In CamelCase. More
info:
https://git.k8s.io/community/con
tributors/devel/sig-
architecture/api-
conventions.md#types-kinds

metadata object Standard object’s metadata. More
info:
https://git.k8s.io/community/con
tributors/devel/sig-
architecture/api-
conventions.md#metadata

OpenShift Container Platform 4.15 Network Observability

146

https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#resources
https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#types-kinds
https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata

spec object FlowMetricSpec defines the
desired state of FlowMetric The
provided API allows you to
customize these metrics
according to your needs.

When adding new metrics or
modifying existing labels, you
must carefully monitor the
memory usage of Prometheus
workloads as this could potentially
have a high impact. Cf
https://rhobs-
handbook.netlify.app/products/o
penshiftmonitoring/telemetry.md
/#what-is-the-cardinality-of-a-
metric

To check the cardinality of all
Network Observability metrics,
run as promql:
count({name=~"netobserv.*"
}) by (name).

Property Type Description

13.1.1. .metadata

Description

Standard object’s metadata. More info: https://git.k8s.io/community/contributors/devel/sig-
architecture/api-conventions.md#metadata

Type

object

13.1.2. .spec

Description

FlowMetricSpec defines the desired state of FlowMetric The provided API allows you to customize
these metrics according to your needs.
When adding new metrics or modifying existing labels, you must carefully monitor the memory usage
of Prometheus workloads as this could potentially have a high impact. Cf https://rhobs-
handbook.netlify.app/products/openshiftmonitoring/telemetry.md/#what-is-the-cardinality-of-a-
metric

To check the cardinality of all Network Observability metrics, run as promql:
count({name=~"netobserv.*"}) by (name).

Type

object

Required

metricName

CHAPTER 13. FLOWMETRIC CONFIGURATION PARAMETERS

147

https://rhobs-handbook.netlify.app/products/openshiftmonitoring/telemetry.md/#what-is-the-cardinality-of-a-metric
https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata
https://rhobs-handbook.netlify.app/products/openshiftmonitoring/telemetry.md/#what-is-the-cardinality-of-a-metric

type

Property Type Description

buckets array (string) A list of buckets to use when type
is "Histogram". The list must be
parsable as floats. When not set,
Prometheus default buckets are
used.

charts array Charts configuration, for the
OpenShift Container Platform
Console in the administrator view,
Dashboards menu.

direction string Filter for ingress, egress or any
direction flows. When set to
Ingress, it is equivalent to adding
the regular expression filter on
FlowDirection: 0|2. When set to
Egress, it is equivalent to adding
the regular expression filter on
FlowDirection: 1|2.

divider string When nonzero, scale factor
(divider) of the value. Metric value
= Flow value / Divider.

filters array filters is a list of fields and values
used to restrict which flows are
taken into account. Oftentimes,
these filters must be used to
eliminate duplicates: Duplicate
!= "true" and FlowDirection =
"0". Refer to the documentation
for the list of available fields:
https://docs.openshift.com/conta
iner-
platform/latest/observability/net
work_observability/json-flows-
format-reference.html.

OpenShift Container Platform 4.15 Network Observability

148

https://docs.openshift.com/container-platform/latest/observability/network_observability/json-flows-format-reference.html

labels array (string) labels is a list of fields that
should be used as Prometheus
labels, also known as dimensions.
From choosing labels results the
level of granularity of this metric,
and the available aggregations at
query time. It must be done
carefully as it impacts the metric
cardinality (cf https://rhobs-
handbook.netlify.app/products/o
penshiftmonitoring/telemetry.md
/#what-is-the-cardinality-of-a-
metric). In general, avoid setting
very high cardinality labels such as
IP or MAC addresses.
"SrcK8S_OwnerName" or
"DstK8S_OwnerName" should be
preferred over "SrcK8S_Name" or
"DstK8S_Name" as much as
possible. Refer to the
documentation for the list of
available fields:
https://docs.openshift.com/conta
iner-
platform/latest/observability/net
work_observability/json-flows-
format-reference.html.

metricName string Name of the metric. In
Prometheus, it is automatically
prefixed with "netobserv_".

type string Metric type: "Counter" or
"Histogram". Use "Counter" for
any value that increases over time
and on which you can compute a
rate, such as Bytes or Packets.
Use "Histogram" for any value
that must be sampled
independently, such as latencies.

Property Type Description

CHAPTER 13. FLOWMETRIC CONFIGURATION PARAMETERS

149

https://rhobs-handbook.netlify.app/products/openshiftmonitoring/telemetry.md/#what-is-the-cardinality-of-a-metric
https://docs.openshift.com/container-platform/latest/observability/network_observability/json-flows-format-reference.html

valueField string valueField is the flow field that
must be used as a value for this
metric. This field must hold
numeric values. Leave empty to
count flows rather than a specific
value per flow. Refer to the
documentation for the list of
available fields:
https://docs.openshift.com/conta
iner-
platform/latest/observability/net
work_observability/json-flows-
format-reference.html.

Property Type Description

13.1.3. .spec.charts

Description

Charts configuration, for the OpenShift Container Platform Console in the administrator view,
Dashboards menu.

Type

array

13.1.4. .spec.charts[]

Description

Configures charts / dashboard generation associated to a metric

Type

object

Required

dashboardName

queries

title

type

Property Type Description

dashboardName string Name of the containing
dashboard. If this name does not
refer to an existing dashboard, a
new dashboard is created.

OpenShift Container Platform 4.15 Network Observability

150

https://docs.openshift.com/container-platform/latest/observability/network_observability/json-flows-format-reference.html

queries array List of queries to be displayed on
this chart. If type is SingleStat
and multiple queries are provided,
this chart is automatically
expanded in several panels (one
per query).

sectionName string Name of the containing
dashboard section. If this name
does not refer to an existing
section, a new section is created.
If sectionName is omitted or
empty, the chart is placed in the
global top section.

title string Title of the chart.

type string Type of the chart.

unit string Unit of this chart. Only a few units
are currently supported. Leave
empty to use generic number.

Property Type Description

13.1.5. .spec.charts[].queries

Description

List of queries to be displayed on this chart. If type is SingleStat and multiple queries are provided,
this chart is automatically expanded in several panels (one per query).

Type

array

13.1.6. .spec.charts[].queries[]

Description

Configures PromQL queries

Type

object

Required

legend

promQL

top

CHAPTER 13. FLOWMETRIC CONFIGURATION PARAMETERS

151

Property Type Description

legend string The query legend that applies to
each timeseries represented in
this chart. When multiple
timeseries are displayed, you
should set a legend that
distinguishes each of them. It can
be done with the following format:
{{ Label }}. For example, if the
promQL groups timeseries per
label such as:
sum(rate($METRIC[2m])) by
(Label1, Label2), you might
write as the legend: Label1={{
Label1 }}, Label2={{ Label2
}}.

promQL string The promQL query to be run
against Prometheus. If the chart
type is SingleStat, this query
should only return a single
timeseries. For other types, a top
7 is displayed. You can use
$METRIC to refer to the metric
defined in this resource. For
example:
sum(rate($METRIC[2m])). To
learn more about promQL, refer
to the Prometheus
documentation:
https://prometheus.io/docs/pro
metheus/latest/querying/basics/

top integer Top N series to display per
timestamp. Does not apply to
SingleStat chart type.

13.1.7. .spec.filters

Description

filters is a list of fields and values used to restrict which flows are taken into account. Oftentimes,
these filters must be used to eliminate duplicates: Duplicate != "true" and FlowDirection = "0".
Refer to the documentation for the list of available fields: https://docs.openshift.com/container-
platform/latest/observability/network_observability/json-flows-format-reference.html.

Type

array

13.1.8. .spec.filters[]

Description

OpenShift Container Platform 4.15 Network Observability

152

https://prometheus.io/docs/prometheus/latest/querying/basics/
https://docs.openshift.com/container-platform/latest/observability/network_observability/json-flows-format-reference.html

Type

object

Required

field

matchType

Property Type Description

field string Name of the field to filter on

matchType string Type of matching to apply

value string Value to filter on. When
matchType is Equal or
NotEqual, you can use field
injection with $(SomeField) to
refer to any other field of the flow.

CHAPTER 13. FLOWMETRIC CONFIGURATION PARAMETERS

153

CHAPTER 14. NETWORK FLOWS FORMAT REFERENCE
These are the specifications for network flows format, used both internally and when exporting flows to
Kafka.

14.1. NETWORK FLOWS FORMAT REFERENCE

This is the specification of the network flows format. That format is used when a Kafka exporter is
configured, for Prometheus metrics labels as well as internally for the Loki store.

The "Filter ID" column shows which related name to use when defining Quick Filters (see
spec.consolePlugin.quickFilters in the FlowCollector specification).

The "Loki label" column is useful when querying Loki directly: label fields need to be selected using
stream selectors.

The "Cardinality" column gives information about the implied metric cardinality if this field was to be
used as a Prometheus label with the FlowMetric API. For more information, see the "FlowMetric API
reference".

Name Type Description Filter ID Loki label Cardinalit
y

Bytes number Number of bytes n/a no avoid

DnsErrn
o

number Error number returned from DNS
tracker ebpf hook function

dns_errn
o

no fine

DnsFlag
s

number DNS flags for DNS record n/a no fine

DnsFlag
sRespon
seCode

string Parsed DNS header RCODEs name dns_flag
_respon
se_code

no fine

DnsId number DNS record id dns_id no avoid

DnsLate
ncyMs

number Time between a DNS request and
response, in milliseconds

dns_late
ncy

no avoid

Dscp number Differentiated Services Code Point
(DSCP) value

dscp no fine

DstAddr string Destination IP address (ipv4 or ipv6) dst_addr
ess

no avoid

DstK8S_
HostIP

string Destination node IP dst_host
_address

no fine

OpenShift Container Platform 4.15 Network Observability

154

https://grafana.com/docs/loki/latest/logql/log_queries/#log-stream-selector

DstK8S_
HostNam
e

string Destination node name dst_host
_name

no fine

DstK8S_
Name

string Name of the destination Kubernetes
object, such as Pod name, Service
name or Node name.

dst_nam
e

no careful

DstK8S_
Namesp
ace

string Destination namespace dst_nam
espace

yes fine

DstK8S_
OwnerNa
me

string Name of the destination owner, such
as Deployment name, StatefulSet
name, etc.

dst_own
er_name

yes fine

DstK8S_
OwnerTy
pe

string Kind of the destination owner, such as
Deployment, StatefulSet, etc.

dst_kind no fine

DstK8S_
Type

string Kind of the destination Kubernetes
object, such as Pod, Service or Node.

dst_kind yes fine

DstK8S_
Zone

string Destination availability zone dst_zone yes fine

DstMac string Destination MAC address dst_mac no avoid

DstPort number Destination port dst_port no careful

DstSubn
etLabel

string Destination subnet label dst_sub
net_label

no fine

Duplicat
e

boolean Indicates if this flow was also
captured from another interface on
the same host

n/a yes fine

Flags number Logical OR combination of unique
TCP flags comprised in the flow, as
per RFC-9293, with additional
custom flags to represent the
following per-packet combinations:
- SYN+ACK (0x100)
- FIN+ACK (0x200)
- RST+ACK (0x400)

n/a no fine

Name Type Description Filter ID Loki label Cardinalit
y

CHAPTER 14. NETWORK FLOWS FORMAT REFERENCE

155

FlowDire
ction

number Flow interpreted direction from the
node observation point. Can be one
of:
- 0: Ingress (incoming traffic, from
the node observation point)
- 1: Egress (outgoing traffic, from the
node observation point)
- 2: Inner (with the same source and
destination node)

node_dir
ection

yes fine

IcmpCod
e

number ICMP code icmp_co
de

no fine

IcmpTyp
e

number ICMP type icmp_typ
e

no fine

IfDirectio
ns

number Flow directions from the network
interface observation point. Can be
one of:
- 0: Ingress (interface incoming
traffic)
- 1: Egress (interface outgoing traffic)

ifdirectio
ns

no fine

Interface
s

string Network interfaces interface
s

no careful

K8S_Clu
sterNam
e

string Cluster name or identifier cluster_
name

yes fine

K8S_Flo
wLayer

string Flow layer: 'app' or 'infra' flow_lay
er

no fine

Packets number Number of packets n/a no avoid

PktDrop
Bytes

number Number of bytes dropped by the
kernel

n/a no avoid

PktDrop
LatestDr
opCause

string Latest drop cause pkt_drop
_cause

no fine

PktDrop
LatestFla
gs

number TCP flags on last dropped packet n/a no fine

Name Type Description Filter ID Loki label Cardinalit
y

OpenShift Container Platform 4.15 Network Observability

156

PktDrop
LatestSt
ate

string TCP state on last dropped packet pkt_drop
_state

no fine

PktDrop
Packets

number Number of packets dropped by the
kernel

n/a no avoid

Proto number L4 protocol protocol no fine

SrcAddr string Source IP address (ipv4 or ipv6) src_addr
ess

no avoid

SrcK8S_
HostIP

string Source node IP src_host
_address

no fine

SrcK8S_
HostNam
e

string Source node name src_host
_name

no fine

SrcK8S_
Name

string Name of the source Kubernetes
object, such as Pod name, Service
name or Node name.

src_nam
e

no careful

SrcK8S_
Namesp
ace

string Source namespace src_nam
espace

yes fine

SrcK8S_
OwnerNa
me

string Name of the source owner, such as
Deployment name, StatefulSet name,
etc.

src_own
er_name

yes fine

SrcK8S_
OwnerTy
pe

string Kind of the source owner, such as
Deployment, StatefulSet, etc.

src_kind no fine

SrcK8S_
Type

string Kind of the source Kubernetes object,
such as Pod, Service or Node.

src_kind yes fine

SrcK8S_
Zone

string Source availability zone src_zone yes fine

SrcMac string Source MAC address src_mac no avoid

SrcPort number Source port src_port no careful

SrcSubn
etLabel

string Source subnet label src_sub
net_label

no fine

Name Type Description Filter ID Loki label Cardinalit
y

CHAPTER 14. NETWORK FLOWS FORMAT REFERENCE

157

TimeFlo
wEndMs

number End timestamp of this flow, in
milliseconds

n/a no avoid

TimeFlo
wRttNs

number TCP Smoothed Round Trip Time
(SRTT), in nanoseconds

time_flo
w_rtt

no avoid

TimeFlo
wStartM
s

number Start timestamp of this flow, in
milliseconds

n/a no avoid

TimeRec
eived

number Timestamp when this flow was
received and processed by the flow
collector, in seconds

n/a no avoid

_HashId string In conversation tracking, the
conversation identifier

id no avoid

_Record
Type

string Type of record: 'flowLog' for regular
flow logs, or 'newConnection',
'heartbeat', 'endConnection' for
conversation tracking

type yes fine

Name Type Description Filter ID Loki label Cardinalit
y

OpenShift Container Platform 4.15 Network Observability

158

CHAPTER 15. TROUBLESHOOTING NETWORK
OBSERVABILITY

To assist in troubleshooting Network Observability issues, you can perform some troubleshooting
actions.

15.1. USING THE MUST-GATHER TOOL

You can use the must-gather tool to collect information about the Network Observability Operator
resources and cluster-wide resources, such as pod logs, FlowCollector, and webhook configurations.

Procedure

1. Navigate to the directory where you want to store the must-gather data.

2. Run the following command to collect cluster-wide must-gather resources:

15.2. CONFIGURING NETWORK TRAFFIC MENU ENTRY IN THE
OPENSHIFT CONTAINER PLATFORM CONSOLE

Manually configure the network traffic menu entry in the OpenShift Container Platform console when
the network traffic menu entry is not listed in Observe menu in the OpenShift Container Platform
console.

Prerequisites

You have installed OpenShift Container Platform version 4.10 or newer.

Procedure

1. Check if the spec.consolePlugin.register field is set to true by running the following
command:

Example output

apiVersion: flows.netobserv.io/v1alpha1
kind: FlowCollector
metadata:
 name: cluster
spec:
 consolePlugin:
 register: false

2. Optional: Add the netobserv-plugin plugin by manually editing the Console Operator config:

$ oc adm must-gather
 --image-stream=openshift/must-gather \
 --image=quay.io/netobserv/must-gather

$ oc -n netobserv get flowcollector cluster -o yaml

CHAPTER 15. TROUBLESHOOTING NETWORK OBSERVABILITY

159

Example output

...
spec:
 plugins:
 - netobserv-plugin
...

3. Optional: Set the spec.consolePlugin.register field to true by running the following command:

Example output

apiVersion: flows.netobserv.io/v1alpha1
kind: FlowCollector
metadata:
 name: cluster
spec:
 consolePlugin:
 register: true

4. Ensure the status of console pods is running by running the following command:

5. Restart the console pods by running the following command:

6. Clear your browser cache and history.

7. Check the status of Network Observability plugin pods by running the following command:

Example output

NAME READY STATUS RESTARTS AGE
netobserv-plugin-68c7bbb9bb-b69q6 1/1 Running 0 21s

8. Check the logs of the Network Observability plugin pods by running the following command:

Example output

$ oc edit console.operator.openshift.io cluster

$ oc -n netobserv edit flowcollector cluster -o yaml

$ oc get pods -n openshift-console -l app=console

$ oc delete pods -n openshift-console -l app=console

$ oc get pods -n netobserv -l app=netobserv-plugin

$ oc logs -n netobserv -l app=netobserv-plugin

OpenShift Container Platform 4.15 Network Observability

160

1

15.3. FLOWLOGS-PIPELINE DOES NOT CONSUME NETWORK FLOWS
AFTER INSTALLING KAFKA

If you deployed the flow collector first with deploymentModel: KAFKA and then deployed Kafka, the
flow collector might not connect correctly to Kafka. Manually restart the flow-pipeline pods where
Flowlogs-pipeline does not consume network flows from Kafka.

Procedure

1. Delete the flow-pipeline pods to restart them by running the following command:

15.4. FAILING TO SEE NETWORK FLOWS FROM BOTH BR-INT AND BR-EX

INTERFACES

br-ex` and br-int are virtual bridge devices operated at OSI layer 2. The eBPF agent works at the IP and
TCP levels, layers 3 and 4 respectively. You can expect that the eBPF agent captures the network
traffic passing through br-ex and br-int, when the network traffic is processed by other interfaces such
as physical host or virtual pod interfaces. If you restrict the eBPF agent network interfaces to attach
only to br-ex and br-int, you do not see any network flow.

Manually remove the part in the interfaces or excludeInterfaces that restricts the network interfaces
to br-int and br-ex.

Procedure

1. Remove the interfaces: ['br-int', 'br-ex'] field. This allows the agent to fetch information from
all the interfaces. Alternatively, you can specify the Layer-3 interface for example, eth0. Run the
following command:

Example output

apiVersion: flows.netobserv.io/v1alpha1
kind: FlowCollector
metadata:
 name: cluster
spec:
 agent:
 type: EBPF
 ebpf:
 interfaces: ['br-int', 'br-ex'] 1

Specifies the network interfaces.

time="2022-12-13T12:06:49Z" level=info msg="Starting netobserv-console-plugin [build
version: , build date: 2022-10-21 15:15] at log level info" module=main
time="2022-12-13T12:06:49Z" level=info msg="listening on https://:9001" module=server

$ oc delete pods -n netobserv -l app=flowlogs-pipeline-transformer

$ oc edit -n netobserv flowcollector.yaml -o yaml

CHAPTER 15. TROUBLESHOOTING NETWORK OBSERVABILITY

161

1

2

15.5. NETWORK OBSERVABILITY CONTROLLER MANAGER POD RUNS
OUT OF MEMORY

You can increase memory limits for the Network Observability operator by editing the
spec.config.resources.limits.memory specification in the Subscription object.

Procedure

1. In the web console, navigate to Operators → Installed Operators

2. Click Network Observability and then select Subscription.

3. From the Actions menu, click Edit Subscription.

a. Alternatively, you can use the CLI to open the YAML configuration for the Subscription
object by running the following command:

4. Edit the Subscription object to add the config.resources.limits.memory specification and set
the value to account for your memory requirements. See the Additional resources for more
information about resource considerations:

For example, you can increase the memory limit to 800Mi.

This value should not be edited, but note that it changes depending on the most current
release of the Operator.

15.6. RUNNING CUSTOM QUERIES TO LOKI

For troubleshooting, can run custom queries to Loki. There are two examples of ways to do this, which
you can adapt according to your needs by replacing the <api_token> with your own.

NOTE

$ oc edit subscription netobserv-operator -n openshift-netobserv-operator

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: netobserv-operator
 namespace: openshift-netobserv-operator
spec:
 channel: stable
 config:
 resources:
 limits:
 memory: 800Mi 1
 requests:
 cpu: 100m
 memory: 100Mi
 installPlanApproval: Automatic
 name: netobserv-operator
 source: redhat-operators
 sourceNamespace: openshift-marketplace
 startingCSV: <network_observability_operator_latest_version> 2

OpenShift Container Platform 4.15 Network Observability

162

NOTE

These examples use the netobserv namespace for the Network Observability Operator
and Loki deployments. Additionally, the examples assume that the LokiStack is named
loki. You can optionally use a different namespace and naming by adapting the examples,
specifically the -n netobserv or the loki-gateway URL.

Prerequisites

Installed Loki Operator for use with Network Observability Operator

Procedure

To get all available labels, run the following:

To get all flows from the source namespace, my-namespace, run the following:

Additional resources

Resource considerations

15.7. TROUBLESHOOTING LOKI RESOURCEEXHAUSTED ERROR

Loki may return a ResourceExhausted error when network flow data sent by Network Observability
exceeds the configured maximum message size. If you are using the Red Hat Loki Operator, this
maximum message size is configured to 100 MiB.

Procedure

1. Navigate to Operators → Installed Operators, viewing All projects from the Project drop-
down menu.

2. In the Provided APIs list, select the Network Observability Operator.

3. Click the Flow Collector then the YAML view tab.

a. If you are using the Loki Operator, check that the spec.loki.batchSize value does not
exceed 98 MiB.

b. If you are using a Loki installation method that is different from the Red Hat Loki Operator,
such as Grafana Loki, verify that the grpc_server_max_recv_msg_size Grafana Loki
server setting is higher than the FlowCollector resource spec.loki.batchSize value. If it is
not, you must either increase the grpc_server_max_recv_msg_size value, or decrease the
spec.loki.batchSize value so that it is lower than the limit.

$ oc exec deployment/netobserv-plugin -n netobserv -- curl -G -s -H 'X-Scope-
OrgID:network' -H 'Authorization: Bearer <api_token>' -k https://loki-gateway-
http.netobserv.svc:8080/api/logs/v1/network/loki/api/v1/labels | jq

$ oc exec deployment/netobserv-plugin -n netobserv -- curl -G -s -H 'X-Scope-
OrgID:network' -H 'Authorization: Bearer <api_token>' -k https://loki-gateway-
http.netobserv.svc:8080/api/logs/v1/network/loki/api/v1/query --data-urlencode 'query=
{SrcK8S_Namespace="my-namespace"}' | jq

CHAPTER 15. TROUBLESHOOTING NETWORK OBSERVABILITY

163

https://grafana.com/docs/loki/latest/configure/#server

4. Click Save if you edited the FlowCollector.

15.8. LOKI EMPTY RING ERROR

The Loki "empty ring" error results in flows not being stored in Loki and not showing up in the web
console. This error might happen in various situations. A single workaround to address them all does not
exist. There are some actions you can take to investigate the logs in your Loki pods, and verify that the
LokiStack is healthy and ready.

Some of the situations where this error is observed are as follows:

After a LokiStack is uninstalled and reinstalled in the same namespace, old PVCs are not
removed, which can cause this error.

Action: You can try removing the LokiStack again, removing the PVC, then reinstalling the
LokiStack.

After a certificate rotation, this error can prevent communication with the flowlogs-pipeline
and console-plugin pods.

Action: You can restart the pods to restore the connectivity.

15.9. RESOURCE TROUBLESHOOTING

15.10. LOKISTACK RATE LIMIT ERRORS

A rate-limit placed on the Loki tenant can result in potential temporary loss of data and a 429 error: Per
stream rate limit exceeded (limit:xMB/sec) while attempting to ingest for stream. You might
consider having an alert set to notify you of this error. For more information, see "Creating Loki rate limit
alerts for the NetObserv dashboard" in the Additional resources of this section.

You can update the LokiStack CRD with the perStreamRateLimit and perStreamRateLimitBurst
specifications, as shown in the following procedure.

Procedure

1. Navigate to Operators → Installed Operators, viewing All projects from the Project
dropdown.

2. Look for Loki Operator, and select the LokiStack tab.

3. Create or edit an existing LokiStack instance using the YAML view to add the
perStreamRateLimit and perStreamRateLimitBurst specifications:

apiVersion: loki.grafana.com/v1
kind: LokiStack
metadata:
 name: loki
 namespace: netobserv
spec:
 limits:
 global:
 ingestion:
 perStreamRateLimit: 6 1

OpenShift Container Platform 4.15 Network Observability

164

1

2

The default value for perStreamRateLimit is 3.

The default value for perStreamRateLimitBurst is 15.

4. Click Save.

Verification

Once you update the perStreamRateLimit and perStreamRateLimitBurst specifications, the pods in
your cluster restart and the 429 rate-limit error no longer occurs.

 perStreamRateLimitBurst: 30 2
 tenants:
 mode: openshift-network
 managementState: Managed

CHAPTER 15. TROUBLESHOOTING NETWORK OBSERVABILITY

165

	Table of Contents
	CHAPTER 1. NETWORK OBSERVABILITY OPERATOR RELEASE NOTES
	1.1. NETWORK OBSERVABILITY OPERATOR 1.6.0
	1.1.1. New features and enhancements
	1.1.1.1. Enhanced use of Network Observability Operator without Loki
	1.1.1.2. Custom metrics API
	1.1.1.3. eBPF performance enhancements
	1.1.1.4. eBPF collection rule-based filtering

	1.1.2. Technology Preview features
	1.1.2.1. Network Observability CLI

	1.1.3. Bug fixes
	1.1.4. Known issues

	1.2. NETWORK OBSERVABILITY OPERATOR 1.5.0
	1.2.1. New features and enhancements
	1.2.1.1. DNS tracking enhancements
	1.2.1.2. Round-trip time (RTT)
	1.2.1.3. Metrics, dashboards, and alerts enhancements
	1.2.1.4. Improvements for Network Observability without Loki
	1.2.1.5. Availability zones
	1.2.1.6. Notable enhancements

	1.2.2. Bug fixes
	1.2.3. Known issues

	1.3. NETWORK OBSERVABILITY OPERATOR 1.4.2
	1.3.1. CVEs

	1.4. NETWORK OBSERVABILITY OPERATOR 1.4.1
	1.4.1. CVEs
	1.4.2. Bug fixes

	1.5. NETWORK OBSERVABILITY OPERATOR 1.4.0
	1.5.1. Channel removal
	1.5.2. New features and enhancements
	1.5.2.1. Notable enhancements
	1.5.2.2. Network Observability without Loki
	1.5.2.3. DNS tracking
	1.5.2.4. SR-IOV support
	1.5.2.5. IPFIX exporter support
	1.5.2.6. Packet drops
	1.5.2.7. s390x architecture support

	1.5.3. Bug fixes
	1.5.4. Known issues

	1.6. NETWORK OBSERVABILITY OPERATOR 1.3.0
	1.6.1. Channel deprecation
	1.6.2. New features and enhancements
	1.6.2.1. Multi-tenancy in Network Observability
	1.6.2.2. Flow-based metrics dashboard
	1.6.2.3. Troubleshooting with the must-gather tool
	1.6.2.4. Multiple architectures now supported

	1.6.3. Deprecated features
	1.6.3.1. Deprecated configuration parameter setting

	1.6.4. Bug fixes
	1.6.5. Known issues

	1.7. NETWORK OBSERVABILITY OPERATOR 1.2.0
	1.7.1. Preparing for the next update
	1.7.2. New features and enhancements
	1.7.2.1. Histogram in Traffic Flows view
	1.7.2.2. Conversation tracking
	1.7.2.3. Network Observability health alerts

	1.7.3. Bug fixes
	1.7.4. Known issue
	1.7.5. Notable technical changes

	1.8. NETWORK OBSERVABILITY OPERATOR 1.1.0
	1.8.1. Bug fix

	CHAPTER 2. ABOUT NETWORK OBSERVABILITY
	2.1. OPTIONAL DEPENDENCIES OF THE NETWORK OBSERVABILITY OPERATOR
	2.2. NETWORK OBSERVABILITY OPERATOR
	2.3. OPENSHIFT CONTAINER PLATFORM CONSOLE INTEGRATION
	2.3.1. Network Observability metrics dashboards
	2.3.2. Network Observability topology views
	2.3.3. Traffic flow tables

	2.4. NETWORK OBSERVABILITY CLI

	CHAPTER 3. INSTALLING THE NETWORK OBSERVABILITY OPERATOR
	3.1. NETWORK OBSERVABILITY WITHOUT LOKI
	3.2. INSTALLING THE LOKI OPERATOR
	3.2.1. Creating a secret for Loki storage
	3.2.2. Creating a LokiStack custom resource
	3.2.3. Creating a new group for the cluster-admin user role
	3.2.4. Custom admin group access
	3.2.5. Loki deployment sizing
	3.2.6. LokiStack ingestion limits and health alerts
	3.2.7. Enabling multi-tenancy in Network Observability

	3.3. INSTALLING THE NETWORK OBSERVABILITY OPERATOR
	3.4. IMPORTANT FLOW COLLECTOR CONFIGURATION CONSIDERATIONS
	3.5. INSTALLING KAFKA (OPTIONAL)
	3.6. UNINSTALLING THE NETWORK OBSERVABILITY OPERATOR

	CHAPTER 4. NETWORK OBSERVABILITY OPERATOR IN OPENSHIFT CONTAINER PLATFORM
	4.1. VIEWING STATUSES
	4.2. NETWORK OBSERVABLITY OPERATOR ARCHITECTURE
	4.3. VIEWING NETWORK OBSERVABILITY OPERATOR STATUS AND CONFIGURATION

	CHAPTER 5. CONFIGURING THE NETWORK OBSERVABILITY OPERATOR
	5.1. VIEW THE FLOWCOLLECTOR RESOURCE
	5.2. CONFIGURING THE FLOW COLLECTOR RESOURCE WITH KAFKA
	5.3. EXPORT ENRICHED NETWORK FLOW DATA
	5.4. UPDATING THE FLOW COLLECTOR RESOURCE
	5.5. CONFIGURING QUICK FILTERS
	5.6. CONFIGURING MONITORING FOR SR-IOV INTERFACE TRAFFIC
	5.7. RESOURCE MANAGEMENT AND PERFORMANCE CONSIDERATIONS
	5.7.1. Resource considerations

	CHAPTER 6. NETWORK POLICY
	6.1. CREATING A NETWORK POLICY FOR NETWORK OBSERVABILITY
	6.2. EXAMPLE NETWORK POLICY

	CHAPTER 7. OBSERVING THE NETWORK TRAFFIC
	7.1. OBSERVING THE NETWORK TRAFFIC FROM THE OVERVIEW VIEW
	7.1.1. Working with the Overview view
	7.1.2. Configuring advanced options for the Overview view
	7.1.2.1. Managing panels and display

	7.1.3. Packet drop tracking
	7.1.3.1. Types of packet drops

	7.1.4. DNS tracking
	7.1.5. Round-Trip Time
	7.1.6. eBPF flow rule filter
	7.1.6.1. Ingress and egress traffic filtering
	7.1.6.2. Dashboard and metrics integrations
	7.1.6.3. Flow filter configuration parameters

	7.2. OBSERVING THE NETWORK TRAFFIC FROM THE TRAFFIC FLOWS VIEW
	7.2.1. Working with the Traffic flows view
	7.2.2. Configuring advanced options for the Traffic flows view
	7.2.2.1. Managing columns
	7.2.2.2. Exporting the traffic flow data

	7.2.3. Working with conversation tracking
	7.2.4. Working with packet drops
	7.2.5. Working with DNS tracking
	7.2.6. Working with RTT tracing
	7.2.6.1. Using the histogram

	7.2.7. Working with availability zones
	7.2.8. Filtering eBPF flow data using a global rule

	7.3. OBSERVING THE NETWORK TRAFFIC FROM THE TOPOLOGY VIEW
	7.3.1. Working with the Topology view
	7.3.2. Configuring the advanced options for the Topology view
	7.3.2.1. Exporting the topology view

	7.4. FILTERING THE NETWORK TRAFFIC

	CHAPTER 8. USING METRICS WITH DASHBOARDS AND ALERTS
	8.1. VIEWING NETWORK OBSERVABILITY METRICS DASHBOARDS
	8.2. PREDEFINED METRICS
	8.3. NETWORK OBSERVABILITY METRICS
	8.4. CREATING ALERTS
	8.5. CUSTOM METRICS
	8.6. CONFIGURING CUSTOM METRICS BY USING FLOWMETRIC API
	8.7. CONFIGURING CUSTOM CHARTS USING FLOWMETRIC API

	CHAPTER 9. MONITORING THE NETWORK OBSERVABILITY OPERATOR
	9.1. HEALTH DASHBOARDS
	9.2. HEALTH ALERTS
	9.3. VIEWING HEALTH INFORMATION
	9.3.1. Disabling health alerts

	9.4. CREATING LOKI RATE LIMIT ALERTS FOR THE NETOBSERV DASHBOARD
	9.5. USING THE EBPF AGENT ALERT

	CHAPTER 10. SCHEDULING RESOURCES
	10.1. NETWORK OBSERVABILITY DEPLOYMENT IN SPECIFIC NODES

	CHAPTER 11. NETWORK OBSERVABILITY CLI
	11.1. INSTALLING THE NETWORK OBSERVABILITY CLI
	11.1.1. About the Network Observability CLI
	11.1.2. Installing the Network Observability CLI

	11.2. USING THE NETWORK OBSERVABILITY CLI
	11.2.1. Capturing flows
	11.2.2. Capturing packets
	11.2.3. Cleaning the Network Observability CLI

	11.3. NETWORK OBSERVABILITY CLI (OC NETOBSERV) REFERENCE
	11.3.1. oc netobserv CLI reference
	11.3.1.1. Network Observability enrichment
	11.3.1.2. Flow capture options
	11.3.1.3. Packet capture options

	CHAPTER 12. FLOWCOLLECTOR CONFIGURATION PARAMETERS
	12.1. FLOWCOLLECTOR API SPECIFICATIONS
	12.1.1. .metadata
	12.1.2. .spec
	12.1.3. .spec.agent
	12.1.4. .spec.agent.ebpf
	12.1.5. .spec.agent.ebpf.advanced
	12.1.6. .spec.agent.ebpf.advanced.scheduling
	12.1.7. .spec.agent.ebpf.advanced.scheduling.affinity
	12.1.8. .spec.agent.ebpf.advanced.scheduling.tolerations
	12.1.9. .spec.agent.ebpf.flowFilter
	12.1.10. .spec.agent.ebpf.metrics
	12.1.11. .spec.agent.ebpf.metrics.server
	12.1.12. .spec.agent.ebpf.metrics.server.tls
	12.1.13. .spec.agent.ebpf.metrics.server.tls.provided
	12.1.14. .spec.agent.ebpf.metrics.server.tls.providedCaFile
	12.1.15. .spec.agent.ebpf.resources
	12.1.16. .spec.consolePlugin
	12.1.17. .spec.consolePlugin.advanced
	12.1.18. .spec.consolePlugin.advanced.scheduling
	12.1.19. .spec.consolePlugin.advanced.scheduling.affinity
	12.1.20. .spec.consolePlugin.advanced.scheduling.tolerations
	12.1.21. .spec.consolePlugin.autoscaler
	12.1.22. .spec.consolePlugin.portNaming
	12.1.23. .spec.consolePlugin.quickFilters
	12.1.24. .spec.consolePlugin.quickFilters[]
	12.1.25. .spec.consolePlugin.resources
	12.1.26. .spec.exporters
	12.1.27. .spec.exporters[]
	12.1.28. .spec.exporters[].ipfix
	12.1.29. .spec.exporters[].kafka
	12.1.30. .spec.exporters[].kafka.sasl
	12.1.31. .spec.exporters[].kafka.sasl.clientIDReference
	12.1.32. .spec.exporters[].kafka.sasl.clientSecretReference
	12.1.33. .spec.exporters[].kafka.tls
	12.1.34. .spec.exporters[].kafka.tls.caCert
	12.1.35. .spec.exporters[].kafka.tls.userCert
	12.1.36. .spec.kafka
	12.1.37. .spec.kafka.sasl
	12.1.38. .spec.kafka.sasl.clientIDReference
	12.1.39. .spec.kafka.sasl.clientSecretReference
	12.1.40. .spec.kafka.tls
	12.1.41. .spec.kafka.tls.caCert
	12.1.42. .spec.kafka.tls.userCert
	12.1.43. .spec.loki
	12.1.44. .spec.loki.advanced
	12.1.45. .spec.loki.lokiStack
	12.1.46. .spec.loki.manual
	12.1.47. .spec.loki.manual.statusTls
	12.1.48. .spec.loki.manual.statusTls.caCert
	12.1.49. .spec.loki.manual.statusTls.userCert
	12.1.50. .spec.loki.manual.tls
	12.1.51. .spec.loki.manual.tls.caCert
	12.1.52. .spec.loki.manual.tls.userCert
	12.1.53. .spec.loki.microservices
	12.1.54. .spec.loki.microservices.tls
	12.1.55. .spec.loki.microservices.tls.caCert
	12.1.56. .spec.loki.microservices.tls.userCert
	12.1.57. .spec.loki.monolithic
	12.1.58. .spec.loki.monolithic.tls
	12.1.59. .spec.loki.monolithic.tls.caCert
	12.1.60. .spec.loki.monolithic.tls.userCert
	12.1.61. .spec.processor
	12.1.62. .spec.processor.advanced
	12.1.63. .spec.processor.advanced.scheduling
	12.1.64. .spec.processor.advanced.scheduling.affinity
	12.1.65. .spec.processor.advanced.scheduling.tolerations
	12.1.66. .spec.processor.kafkaConsumerAutoscaler
	12.1.67. .spec.processor.metrics
	12.1.68. .spec.processor.metrics.server
	12.1.69. .spec.processor.metrics.server.tls
	12.1.70. .spec.processor.metrics.server.tls.provided
	12.1.71. .spec.processor.metrics.server.tls.providedCaFile
	12.1.72. .spec.processor.resources
	12.1.73. .spec.processor.subnetLabels
	12.1.74. .spec.processor.subnetLabels.customLabels
	12.1.75. .spec.processor.subnetLabels.customLabels[]
	12.1.76. .spec.prometheus
	12.1.77. .spec.prometheus.querier
	12.1.78. .spec.prometheus.querier.manual
	12.1.79. .spec.prometheus.querier.manual.tls
	12.1.80. .spec.prometheus.querier.manual.tls.caCert
	12.1.81. .spec.prometheus.querier.manual.tls.userCert

	CHAPTER 13. FLOWMETRIC CONFIGURATION PARAMETERS
	13.1. FLOWMETRIC [FLOWS.NETOBSERV.IO/V1ALPHA1]
	13.1.1. .metadata
	13.1.2. .spec
	13.1.3. .spec.charts
	13.1.4. .spec.charts[]
	13.1.5. .spec.charts[].queries
	13.1.6. .spec.charts[].queries[]
	13.1.7. .spec.filters
	13.1.8. .spec.filters[]

	CHAPTER 14. NETWORK FLOWS FORMAT REFERENCE
	14.1. NETWORK FLOWS FORMAT REFERENCE

	CHAPTER 15. TROUBLESHOOTING NETWORK OBSERVABILITY
	15.1. USING THE MUST-GATHER TOOL
	15.2. CONFIGURING NETWORK TRAFFIC MENU ENTRY IN THE OPENSHIFT CONTAINER PLATFORM CONSOLE
	15.3. FLOWLOGS-PIPELINE DOES NOT CONSUME NETWORK FLOWS AFTER INSTALLING KAFKA
	15.4. FAILING TO SEE NETWORK FLOWS FROM BOTH BR-INT AND BR-EX INTERFACES
	15.5. NETWORK OBSERVABILITY CONTROLLER MANAGER POD RUNS OUT OF MEMORY
	15.6. RUNNING CUSTOM QUERIES TO LOKI
	15.7. TROUBLESHOOTING LOKI RESOURCEEXHAUSTED ERROR
	15.8. LOKI EMPTY RING ERROR
	15.9. RESOURCE TROUBLESHOOTING
	15.10. LOKISTACK RATE LIMIT ERRORS

