
OpenShift Container Platform 4.15

Scalability and performance

Scaling your OpenShift Container Platform cluster and tuning performance in
production environments

Last Updated: 2024-06-28

OpenShift Container Platform 4.15 Scalability and performance

Scaling your OpenShift Container Platform cluster and tuning performance in production
environments

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides instructions for scaling your cluster and optimizing the performance of
your OpenShift Container Platform environment.

. .

. .

. .

. .

Table of Contents

CHAPTER 1. RECOMMENDED PERFORMANCE AND SCALABILITY PRACTICES
1.1. RECOMMENDED CONTROL PLANE PRACTICES

1.1.1. Recommended practices for scaling the cluster
1.1.2. Control plane node sizing

1.1.2.1. Selecting a larger Amazon Web Services instance type for control plane machines
1.1.2.1.1. Changing the Amazon Web Services instance type by using a control plane machine set
1.1.2.1.2. Changing the Amazon Web Services instance type by using the AWS console

1.2. RECOMMENDED INFRASTRUCTURE PRACTICES
1.2.1. Infrastructure node sizing
1.2.2. Scaling the Cluster Monitoring Operator
1.2.3. Prometheus database storage requirements
1.2.4. Configuring cluster monitoring
1.2.5. Additional resources

1.3. RECOMMENDED ETCD PRACTICES
1.3.1. Recommended etcd practices
1.3.2. Moving etcd to a different disk
1.3.3. Defragmenting etcd data

1.3.3.1. Automatic defragmentation
1.3.3.2. Manual defragmentation

1.3.4. Setting tuning parameters for etcd
1.3.4.1. Changing hardware speed tolerance

CHAPTER 2. PLANNING YOUR ENVIRONMENT ACCORDING TO OBJECT MAXIMUMS
2.1. OPENSHIFT CONTAINER PLATFORM TESTED CLUSTER MAXIMUMS FOR MAJOR RELEASES

2.1.1. Example scenario
2.2. OPENSHIFT CONTAINER PLATFORM ENVIRONMENT AND CONFIGURATION ON WHICH THE CLUSTER
MAXIMUMS ARE TESTED

2.2.1. AWS cloud platform
2.2.2. IBM Power platform
2.2.3. IBM Z platform

2.3. HOW TO PLAN YOUR ENVIRONMENT ACCORDING TO TESTED CLUSTER MAXIMUMS
2.4. HOW TO PLAN YOUR ENVIRONMENT ACCORDING TO APPLICATION REQUIREMENTS

CHAPTER 3. RECOMMENDED HOST PRACTICES FOR IBM Z & IBM LINUXONE ENVIRONMENTS
3.1. MANAGING CPU OVERCOMMITMENT
3.2. DISABLE TRANSPARENT HUGE PAGES
3.3. BOOST NETWORKING PERFORMANCE WITH RECEIVE FLOW STEERING

3.3.1. Use the Machine Config Operator (MCO) to activate RFS
3.4. CHOOSE YOUR NETWORKING SETUP
3.5. ENSURE HIGH DISK PERFORMANCE WITH HYPERPAV ON Z/VM

3.5.1. Use the Machine Config Operator (MCO) to activate HyperPAV aliases in nodes using z/VM full-pack
minidisks

3.6. RHEL KVM ON IBM Z HOST RECOMMENDATIONS
3.6.1. Use I/O threads for your virtual block devices
3.6.2. Avoid virtual SCSI devices
3.6.3. Configure guest caching for disk
3.6.4. Exclude the memory balloon device
3.6.5. Tune the CPU migration algorithm of the host scheduler
3.6.6. Disable the cpuset cgroup controller
3.6.7. Tune the polling period for idle virtual CPUs

CHAPTER 4. USING THE NODE TUNING OPERATOR

7
7
7
7

10
10
11

12
12
13
13
14
15
15
15
17
21
21
22
25
25

28
28
30

31
31
32
32
33
34

37
37
37
38
38
39
39

40
41
41

42
42
42
42
43
43

45

Table of Contents

1

. .

. .

. .

4.1. ABOUT THE NODE TUNING OPERATOR
4.2. ACCESSING AN EXAMPLE NODE TUNING OPERATOR SPECIFICATION
4.3. DEFAULT PROFILES SET ON A CLUSTER
4.4. VERIFYING THAT THE TUNED PROFILES ARE APPLIED
4.5. CUSTOM TUNING SPECIFICATION
4.6. CUSTOM TUNING EXAMPLES
4.7. SUPPORTED TUNED DAEMON PLUGINS
4.8. CONFIGURING NODE TUNING IN A HOSTED CLUSTER
4.9. ADVANCED NODE TUNING FOR HOSTED CLUSTERS BY SETTING KERNEL BOOT PARAMETERS

CHAPTER 5. USING CPU MANAGER AND TOPOLOGY MANAGER
5.1. SETTING UP CPU MANAGER
5.2. TOPOLOGY MANAGER POLICIES
5.3. SETTING UP TOPOLOGY MANAGER
5.4. POD INTERACTIONS WITH TOPOLOGY MANAGER POLICIES

CHAPTER 6. SCHEDULING NUMA-AWARE WORKLOADS
6.1. ABOUT NUMA-AWARE SCHEDULING

Introduction to NUMA
Performance considerations
NUMA-aware scheduling
Integration with Node Tuning Operator
Default scheduling logic
NUMA-aware pod scheduling diagram

6.2. INSTALLING THE NUMA RESOURCES OPERATOR
6.2.1. Installing the NUMA Resources Operator using the CLI
6.2.2. Installing the NUMA Resources Operator using the web console

6.3. SCHEDULING NUMA-AWARE WORKLOADS
6.3.1. Creating the NUMAResourcesOperator custom resource
6.3.2. Deploying the NUMA-aware secondary pod scheduler
6.3.3. Configuring a single NUMA node policy
6.3.4. Sample performance profile
6.3.5. Creating a KubeletConfig CRD
6.3.6. Scheduling workloads with the NUMA-aware scheduler

6.4. OPTIONAL: CONFIGURING POLLING OPERATIONS FOR NUMA RESOURCES UPDATES
6.5. TROUBLESHOOTING NUMA-AWARE SCHEDULING

6.5.1. Reporting more exact resource availability
6.5.2. Checking the NUMA-aware scheduler logs
6.5.3. Troubleshooting the resource topology exporter
6.5.4. Correcting a missing resource topology exporter config map
6.5.5. Collecting NUMA Resources Operator data

CHAPTER 7. SCALABILITY AND PERFORMANCE OPTIMIZATION
7.1. OPTIMIZING STORAGE

7.1.1. Available persistent storage options
7.1.2. Recommended configurable storage technology

7.1.2.1. Specific application storage recommendations
7.1.2.1.1. Registry
7.1.2.1.2. Scaled registry
7.1.2.1.3. Metrics
7.1.2.1.4. Logging
7.1.2.1.5. Applications

7.1.2.2. Other specific application storage recommendations
7.1.3. Data storage management

45
45
46
47
47
52
54
55
58

61
61

66
67
67

69
69
69
69
69
69
69
69
71
71
72
73
73
74
75
76
76
77
81

82
86
88
90
92
93

95
95
95
96
97
97
97
97
98
98
98
99

OpenShift Container Platform 4.15 Scalability and performance

2

. .

. .

7.1.4. Optimizing storage performance for Microsoft Azure
7.1.5. Additional resources

7.2. OPTIMIZING ROUTING
7.2.1. Baseline Ingress Controller (router) performance
7.2.2. Configuring Ingress Controller liveness, readiness, and startup probes
7.2.3. Configuring HAProxy reload interval

7.3. OPTIMIZING NETWORKING
7.3.1. Optimizing the MTU for your network
7.3.2. Recommended practices for installing large scale clusters
7.3.3. Impact of IPsec
7.3.4. Additional resources

7.4. OPTIMIZING CPU USAGE WITH MOUNT NAMESPACE ENCAPSULATION
7.4.1. Encapsulating mount namespaces
7.4.2. Configuring mount namespace encapsulation
7.4.3. Inspecting encapsulated namespaces
7.4.4. Running additional services in the encapsulated namespace
7.4.5. Additional resources

CHAPTER 8. MANAGING BARE METAL HOSTS
8.1. ABOUT BARE METAL HOSTS AND NODES
8.2. MAINTAINING BARE METAL HOSTS

8.2.1. Adding a bare metal host to the cluster using the web console
8.2.2. Adding a bare metal host to the cluster using YAML in the web console
8.2.3. Automatically scaling machines to the number of available bare metal hosts
8.2.4. Removing bare metal hosts from the provisioner node

CHAPTER 9. MONITORING BARE-METAL EVENTS WITH THE BARE METAL EVENT RELAY
9.1. ABOUT BARE-METAL EVENTS
9.2. HOW BARE-METAL EVENTS WORK

9.2.1. Bare Metal Event Relay data flow
9.2.1.1. Operator-managed pod
9.2.1.2. Bare Metal Event Relay
9.2.1.3. Cloud native event
9.2.1.4. CNCF CloudEvents
9.2.1.5. HTTP transport or AMQP dispatch router
9.2.1.6. Cloud event proxy sidecar

9.2.2. Redfish message parsing service
9.2.3. Installing the Bare Metal Event Relay using the CLI
9.2.4. Installing the Bare Metal Event Relay using the web console

9.3. INSTALLING THE AMQ MESSAGING BUS
9.4. SUBSCRIBING TO REDFISH BMC BARE-METAL EVENTS FOR A CLUSTER NODE

9.4.1. Subscribing to bare-metal events
9.4.2. Querying Redfish bare-metal event subscriptions with curl
9.4.3. Creating the bare-metal event and Secret CRs

9.5. SUBSCRIBING APPLICATIONS TO BARE-METAL EVENTS REST API REFERENCE
api/ocloudNotifications/v1/subscriptions

HTTP method
Description

HTTP method
Description

api/ocloudNotifications/v1/subscriptions/<subscription_id>
HTTP method

Description

100
100
100
100
102
103
103
104
104
105
105
105
105
108
110
111

112

113
113
113
113
114
115
116

118
118
118
119
119
119
119
119
119

120
120
120
121
122
123
123
126
127
129
129
129
130
130
130
130
130
130

Table of Contents

3

. .

. .

api/ocloudNotifications/v1/health/
HTTP method

Description
9.6. MIGRATING CONSUMER APPLICATIONS TO USE HTTP TRANSPORT FOR PTP OR BARE-METAL
EVENTS

CHAPTER 10. WHAT HUGE PAGES DO AND HOW THEY ARE CONSUMED BY APPLICATIONS
10.1. WHAT HUGE PAGES DO
10.2. HOW HUGE PAGES ARE CONSUMED BY APPS
10.3. CONSUMING HUGE PAGES RESOURCES USING THE DOWNWARD API
10.4. CONFIGURING HUGE PAGES AT BOOT TIME
10.5. DISABLING TRANSPARENT HUGE PAGES

CHAPTER 11. LOW LATENCY TUNING
11.1. UNDERSTANDING LOW LATENCY TUNING FOR CLUSTER NODES

11.1.1. About low latency
11.1.2. About Hyper-Threading for low latency and real-time applications

11.2. TUNING NODES FOR LOW LATENCY WITH THE PERFORMANCE PROFILE
11.2.1. Creating a performance profile

11.2.1.1. About the Performance Profile Creator
11.2.1.2. Gathering data about your cluster using the must-gather command
11.2.1.3. Running the Performance Profile Creator using Podman

11.2.1.3.1. How to run podman to create a performance profile
11.2.1.3.2. Running the Performance Profile Creator wrapper script
11.2.1.3.3. Performance Profile Creator arguments

11.2.1.4. Reference performance profiles
11.2.1.4.1. Performance profile template for clusters that use OVS-DPDK on OpenStack
11.2.1.4.2. Telco RAN DU reference design performance profile template
11.2.1.4.3. Telco core reference design performance profile template

11.2.2. Supported performance profile API versions
Upgrading the performance profile to use device interrupt processing

Upgrading Node Tuning Operator API from v1alpha1 to v1
Upgrading Node Tuning Operator API from v1alpha1 or v1 to v2

11.2.3. Configuring node power consumption and realtime processing with workload hints
11.2.4. Configuring power saving for nodes that run colocated high and low priority workloads
11.2.5. Restricting CPUs for infra and application containers
11.2.6. Configuring Hyper-Threading for a cluster

11.2.6.1. Disabling Hyper-Threading for low latency applications
11.2.7. Managing device interrupt processing for guaranteed pod isolated CPUs

11.2.7.1. Finding the effective IRQ affinity setting for a node
11.2.7.2. Configuring node interrupt affinity

11.2.8. Configuring huge pages
11.2.8.1. Allocating multiple huge page sizes

11.2.9. Reducing NIC queues using the Node Tuning Operator
11.2.9.1. Adjusting the NIC queues with the performance profile
11.2.9.2. Verifying the queue status
11.2.9.3. Logging associated with adjusting NIC queues

11.3. PROVISIONING REAL-TIME AND LOW LATENCY WORKLOADS
11.3.1. Scheduling a low latency workload onto a worker with real-time capabilities
11.3.2. Creating a pod with a guaranteed QoS class
11.3.3. Disabling CPU load balancing in a Pod
11.3.4. Disabling power saving mode for high priority pods
11.3.5. Disabling CPU CFS quota

131
131
131

131

133
133
133
134
136
138

139
139
139
140
141
141
141
141

142
145
146
150
153
153
154
155
156
156
156
156
156
158
159
161

163
164
164
165
166
167
167
167
171

174
174
175
178
179
180
181

OpenShift Container Platform 4.15 Scalability and performance

4

. .

. .

. .

11.3.6. Disabling interrupt processing for CPUs where pinned containers are running
11.4. DEBUGGING LOW LATENCY NODE TUNING STATUS

11.4.1. Debugging low latency CNF tuning status
11.4.1.1. Machine config pools

11.4.2. Collecting low latency tuning debugging data for Red Hat Support
11.4.2.1. About the must-gather tool
11.4.2.2. Gathering low latency tuning data

11.5. PERFORMING LATENCY TESTS FOR PLATFORM VERIFICATION
11.5.1. Prerequisites for running latency tests
11.5.2. Measuring latency
11.5.3. Running the latency tests

11.5.3.1. Running hwlatdetect
Example hwlatdetect test results

11.5.3.2. Running cyclictest
Example cyclictest results

11.5.3.3. Running oslat
11.5.4. Generating a latency test failure report
11.5.5. Generating a JUnit latency test report
11.5.6. Running latency tests on a single-node OpenShift cluster
11.5.7. Running latency tests in a disconnected cluster

Mirroring the images to a custom registry accessible from the cluster
Configuring the tests to consume images from a custom registry
Mirroring images to the cluster OpenShift image registry
Mirroring a different set of test images

11.5.8. Troubleshooting errors with the cnf-tests container

CHAPTER 12. IMPROVING CLUSTER STABILITY IN HIGH LATENCY ENVIRONMENTS USING WORKER
LATENCY PROFILES

12.1. UNDERSTANDING WORKER LATENCY PROFILES
12.2. IMPLEMENTING WORKER LATENCY PROFILES AT CLUSTER CREATION
12.3. USING AND CHANGING WORKER LATENCY PROFILES
12.4. EXAMPLE STEPS FOR DISPLAYING RESULTING VALUES OF WORKERLATENCYPROFILE

CHAPTER 13. WORKLOAD PARTITIONING

CHAPTER 14. USING THE NODE OBSERVABILITY OPERATOR
14.1. WORKFLOW OF THE NODE OBSERVABILITY OPERATOR
14.2. INSTALLING THE NODE OBSERVABILITY OPERATOR

14.2.1. Installing the Node Observability Operator using the CLI
14.2.2. Installing the Node Observability Operator using the web console

14.3. REQUESTING CRI-O AND KUBELET PROFILING DATA USING THE NODE OBSERVABILITY OPERATOR

14.3.1. Creating the Node Observability custom resource
14.3.2. Running the profiling query

14.4. NODE OBSERVABILITY OPERATOR SCRIPTING
14.4.1. Creating the Node Observability custom resource for scripting
14.4.2. Configuring Node Observability Operator scripting

14.5. ADDITIONAL RESOURCES

182
182
182
183
184
185
185
187
187
187
188
189
192
193
194
196
197
197
198
199
199
199

200
201
201

203
203
206
207
209

211

215
215
215
215
217

218
218
219
221
221
222
224

Table of Contents

5

OpenShift Container Platform 4.15 Scalability and performance

6

CHAPTER 1. RECOMMENDED PERFORMANCE AND
SCALABILITY PRACTICES

1.1. RECOMMENDED CONTROL PLANE PRACTICES

This topic provides recommended performance and scalability practices for control planes in OpenShift
Container Platform.

1.1.1. Recommended practices for scaling the cluster

The guidance in this section is only relevant for installations with cloud provider integration.

Apply the following best practices to scale the number of worker machines in your OpenShift Container
Platform cluster. You scale the worker machines by increasing or decreasing the number of replicas that
are defined in the worker machine set.

When scaling up the cluster to higher node counts:

Spread nodes across all of the available zones for higher availability.

Scale up by no more than 25 to 50 machines at once.

Consider creating new compute machine sets in each available zone with alternative instance
types of similar size to help mitigate any periodic provider capacity constraints. For example, on
AWS, use m5.large and m5d.large.

NOTE

Cloud providers might implement a quota for API services. Therefore, gradually scale the
cluster.

The controller might not be able to create the machines if the replicas in the compute machine sets are
set to higher numbers all at one time. The number of requests the cloud platform, which OpenShift
Container Platform is deployed on top of, is able to handle impacts the process. The controller will start
to query more while trying to create, check, and update the machines with the status. The cloud
platform on which OpenShift Container Platform is deployed has API request limits; excessive queries
might lead to machine creation failures due to cloud platform limitations.

Enable machine health checks when scaling to large node counts. In case of failures, the health checks
monitor the condition and automatically repair unhealthy machines.

NOTE

When scaling large and dense clusters to lower node counts, it might take large amounts
of time because the process involves draining or evicting the objects running on the
nodes being terminated in parallel. Also, the client might start to throttle the requests if
there are too many objects to evict. The default client queries per second (QPS) and
burst rates are currently set to 50 and 100 respectively. These values cannot be modified
in OpenShift Container Platform.

1.1.2. Control plane node sizing

The control plane node resource requirements depend on the number and type of nodes and objects in

CHAPTER 1. RECOMMENDED PERFORMANCE AND SCALABILITY PRACTICES

7

the cluster. The following control plane node size recommendations are based on the results of a control
plane density focused testing, or Cluster-density. This test creates the following objects across a given
number of namespaces:

1 image stream

1 build

5 deployments, with 2 pod replicas in a sleep state, mounting 4 secrets, 4 config maps, and 1
downward API volume each

5 services, each one pointing to the TCP/8080 and TCP/8443 ports of one of the previous
deployments

1 route pointing to the first of the previous services

10 secrets containing 2048 random string characters

10 config maps containing 2048 random string characters

Number of worker
nodes

Cluster-density
(namespaces)

CPU cores Memory (GB)

24 500 4 16

120 1000 8 32

252 4000 16, but 24 if using the
OVN-Kubernetes
network plug-in

64, but 128 if using the
OVN-Kubernetes
network plug-in

501, but untested with
the OVN-Kubernetes
network plug-in

4000 16 96

The data from the table above is based on an OpenShift Container Platform running on top of AWS,
using r5.4xlarge instances as control-plane nodes and m5.2xlarge instances as worker nodes.

On a large and dense cluster with three control plane nodes, the CPU and memory usage will spike up
when one of the nodes is stopped, rebooted, or fails. The failures can be due to unexpected issues with
power, network, underlying infrastructure, or intentional cases where the cluster is restarted after
shutting it down to save costs. The remaining two control plane nodes must handle the load in order to
be highly available, which leads to increase in the resource usage. This is also expected during upgrades
because the control plane nodes are cordoned, drained, and rebooted serially to apply the operating
system updates, as well as the control plane Operators update. To avoid cascading failures, keep the
overall CPU and memory resource usage on the control plane nodes to at most 60% of all available
capacity to handle the resource usage spikes. Increase the CPU and memory on the control plane nodes
accordingly to avoid potential downtime due to lack of resources.

IMPORTANT

OpenShift Container Platform 4.15 Scalability and performance

8

IMPORTANT

The node sizing varies depending on the number of nodes and object counts in the
cluster. It also depends on whether the objects are actively being created on the cluster.
During object creation, the control plane is more active in terms of resource usage
compared to when the objects are in the running phase.

Operator Lifecycle Manager (OLM) runs on the control plane nodes and its memory footprint depends
on the number of namespaces and user installed operators that OLM needs to manage on the cluster.
Control plane nodes need to be sized accordingly to avoid OOM kills. Following data points are based on
the results from cluster maximums testing.

Number of namespaces OLM memory at idle state (GB) OLM memory with 5 user
operators installed (GB)

500 0.823 1.7

1000 1.2 2.5

1500 1.7 3.2

2000 2 4.4

3000 2.7 5.6

4000 3.8 7.6

5000 4.2 9.02

6000 5.8 11.3

7000 6.6 12.9

8000 6.9 14.8

9000 8 17.7

10,000 9.9 21.6

IMPORTANT

CHAPTER 1. RECOMMENDED PERFORMANCE AND SCALABILITY PRACTICES

9

IMPORTANT

You can modify the control plane node size in a running OpenShift Container Platform
4.15 cluster for the following configurations only:

Clusters installed with a user-provisioned installation method.

AWS clusters installed with an installer-provisioned infrastructure installation
method.

Clusters that use a control plane machine set to manage control plane machines.

For all other configurations, you must estimate your total node count and use the
suggested control plane node size during installation.

IMPORTANT

The recommendations are based on the data points captured on OpenShift Container
Platform clusters with OpenShift SDN as the network plugin.

NOTE

In OpenShift Container Platform 4.15, half of a CPU core (500 millicore) is now reserved
by the system by default compared to OpenShift Container Platform 3.11 and previous
versions. The sizes are determined taking that into consideration.

1.1.2.1. Selecting a larger Amazon Web Services instance type for control plane machines

If the control plane machines in an Amazon Web Services (AWS) cluster require more resources, you can
select a larger AWS instance type for the control plane machines to use.

NOTE

The procedure for clusters that use a control plane machine set is different from the
procedure for clusters that do not use a control plane machine set.

If you are uncertain about the state of the ControlPlaneMachineSet CR in your cluster,
you can verify the CR status.

1.1.2.1.1. Changing the Amazon Web Services instance type by using a control plane machine set

You can change the Amazon Web Services (AWS) instance type that your control plane machines use by
updating the specification in the control plane machine set custom resource (CR).

Prerequisites

Your AWS cluster uses a control plane machine set.

Procedure

1. Edit your control plane machine set CR by running the following command:

$ oc --namespace openshift-machine-api edit controlplanemachineset.machine.openshift.io
cluster

OpenShift Container Platform 4.15 Scalability and performance

10

https://docs.redhat.com/en/documentation/openshift_container_platform/4.15/html-single/machine_management/#cpmso-checking-status_cpmso-getting-started

1

2. Edit the following line under the providerSpec field:

Specify a larger AWS instance type with the same base as the previous selection. For
example, you can change m6i.xlarge to m6i.2xlarge or m6i.4xlarge.

3. Save your changes.

For clusters that use the default RollingUpdate update strategy, the Operator
automatically propagates the changes to your control plane configuration.

For clusters that are configured to use the OnDelete update strategy, you must replace
your control plane machines manually.

Additional resources

Managing control plane machines with control plane machine sets

1.1.2.1.2. Changing the Amazon Web Services instance type by using the AWS console

You can change the Amazon Web Services (AWS) instance type that your control plane machines use by
updating the instance type in the AWS console.

Prerequisites

You have access to the AWS console with the permissions required to modify the EC2 Instance
for your cluster.

You have access to the OpenShift Container Platform cluster as a user with the cluster-admin
role.

Procedure

1. Open the AWS console and fetch the instances for the control plane machines.

2. Choose one control plane machine instance.

a. For the selected control plane machine, back up the etcd data by creating an etcd snapshot.
For more information, see "Backing up etcd".

b. In the AWS console, stop the control plane machine instance.

c. Select the stopped instance, and click Actions → Instance Settings → Change instance
type.

d. Change the instance to a larger type, ensuring that the type is the same base as the
previous selection, and apply changes. For example, you can change m6i.xlarge to
m6i.2xlarge or m6i.4xlarge.

e. Start the instance.

f. If your OpenShift Container Platform cluster has a corresponding Machine object for the

providerSpec:
 value:
 ...
 instanceType: <compatible_aws_instance_type> 1

CHAPTER 1. RECOMMENDED PERFORMANCE AND SCALABILITY PRACTICES

11

https://docs.redhat.com/en/documentation/openshift_container_platform/4.15/html-single/machine_management/#cpmso-managing-machines

f. If your OpenShift Container Platform cluster has a corresponding Machine object for the
instance, update the instance type of the object to match the instance type set in the AWS
console.

3. Repeat this process for each control plane machine.

Additional resources

Backing up etcd

AWS documentation about changing the instance type

1.2. RECOMMENDED INFRASTRUCTURE PRACTICES

This topic provides recommended performance and scalability practices for infrastructure in OpenShift
Container Platform.

1.2.1. Infrastructure node sizing

Infrastructure nodes are nodes that are labeled to run pieces of the OpenShift Container Platform
environment. The infrastructure node resource requirements depend on the cluster age, nodes, and
objects in the cluster, as these factors can lead to an increase in the number of metrics or time series in
Prometheus. The following infrastructure node size recommendations are based on the results observed
in cluster-density testing detailed in the Control plane node sizing section, where the monitoring stack
and the default ingress-controller were moved to these nodes.

Number of worker
nodes

Cluster density, or
number of namespaces

CPU cores Memory (GB)

27 500 4 24

120 1000 8 48

252 4000 16 128

501 4000 32 128

In general, three infrastructure nodes are recommended per cluster.

IMPORTANT

These sizing recommendations should be used as a guideline. Prometheus is a highly
memory intensive application; the resource usage depends on various factors including
the number of nodes, objects, the Prometheus metrics scraping interval, metrics or time
series, and the age of the cluster. In addition, the router resource usage can also be
affected by the number of routes and the amount/type of inbound requests.

These recommendations apply only to infrastructure nodes hosting Monitoring, Ingress
and Registry infrastructure components installed during cluster creation.

NOTE

OpenShift Container Platform 4.15 Scalability and performance

12

https://docs.redhat.com/en/documentation/openshift_container_platform/4.15/html-single/backup_and_restore/#backing-up-etcd
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-resize.html

NOTE

In OpenShift Container Platform 4.15, half of a CPU core (500 millicore) is now reserved
by the system by default compared to OpenShift Container Platform 3.11 and previous
versions. This influences the stated sizing recommendations.

1.2.2. Scaling the Cluster Monitoring Operator

OpenShift Container Platform exposes metrics that the Cluster Monitoring Operator collects and stores
in the Prometheus-based monitoring stack. As an administrator, you can view dashboards for system
resources, containers, and components metrics in the OpenShift Container Platform web console by
navigating to Observe → Dashboards.

1.2.3. Prometheus database storage requirements

Red Hat performed various tests for different scale sizes.

NOTE

The following Prometheus storage requirements are not prescriptive and should
be used as a reference. Higher resource consumption might be observed in your
cluster depending on workload activity and resource density, including the
number of pods, containers, routes, or other resources exposing metrics
collected by Prometheus.

You can configure the size-based data retention policy to suit your storage
requirements.

Table 1.1. Prometheus Database storage requirements based on number of nodes/pods in the
cluster

Number of nodes Number of pods
(2 containers per
pod)

Prometheus
storage growth
per day

Prometheus
storage growth
per 15 days

Network (per tsdb
chunk)

50 1800 6.3 GB 94 GB 16 MB

100 3600 13 GB 195 GB 26 MB

150 5400 19 GB 283 GB 36 MB

200 7200 25 GB 375 GB 46 MB

Approximately 20 percent of the expected size was added as overhead to ensure that the storage
requirements do not exceed the calculated value.

The above calculation is for the default OpenShift Container Platform Cluster Monitoring Operator.

NOTE

CPU utilization has minor impact. The ratio is approximately 1 core out of 40 per 50
nodes and 1800 pods.

CHAPTER 1. RECOMMENDED PERFORMANCE AND SCALABILITY PRACTICES

13

1

2 4

3

5

Recommendations for OpenShift Container Platform

Use at least two infrastructure (infra) nodes.

Use at least three openshift-container-storage nodes with non-volatile memory express (SSD
or NVMe) drives.

1.2.4. Configuring cluster monitoring

You can increase the storage capacity for the Prometheus component in the cluster monitoring stack.

Procedure

To increase the storage capacity for Prometheus:

1. Create a YAML configuration file, cluster-monitoring-config.yaml. For example:

The default value of Prometheus retention is
PROMETHEUS_RETENTION_PERIOD=15d. Units are measured in time using one of
these suffixes: s, m, h, d.

The storage class for your cluster.

A typical value is PROMETHEUS_STORAGE_SIZE=2000Gi. Storage values can be a plain
integer or a fixed-point integer using one of these suffixes: E, P, T, G, M, K. You can also
use the power-of-two equivalents: Ei, Pi, Ti, Gi, Mi, Ki.

A typical value is ALERTMANAGER_STORAGE_SIZE=20Gi. Storage values can be a plain
integer or a fixed-point integer using one of these suffixes: E, P, T, G, M, K. You can also
use the power-of-two equivalents: Ei, Pi, Ti, Gi, Mi, Ki.

apiVersion: v1
kind: ConfigMap
data:
 config.yaml: |
 prometheusK8s:
 retention: {{PROMETHEUS_RETENTION_PERIOD}} 1
 nodeSelector:
 node-role.kubernetes.io/infra: ""
 volumeClaimTemplate:
 spec:
 storageClassName: {{STORAGE_CLASS}} 2
 resources:
 requests:
 storage: {{PROMETHEUS_STORAGE_SIZE}} 3
 alertmanagerMain:
 nodeSelector:
 node-role.kubernetes.io/infra: ""
 volumeClaimTemplate:
 spec:
 storageClassName: {{STORAGE_CLASS}} 4
 resources:
 requests:
 storage: {{ALERTMANAGER_STORAGE_SIZE}} 5
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring

OpenShift Container Platform 4.15 Scalability and performance

14

use the power-of-two equivalents: Ei, Pi, Ti, Gi, Mi, Ki.

2. Add values for the retention period, storage class, and storage sizes.

3. Save the file.

4. Apply the changes by running:

1.2.5. Additional resources

Infrastructure Nodes in OpenShift 4

OpenShift Container Platform cluster maximums

Creating infrastructure machine sets

1.3. RECOMMENDED ETCD PRACTICES

This topic provides recommended performance and scalability practices for etcd in OpenShift Container
Platform.

1.3.1. Recommended etcd practices

Because etcd writes data to disk and persists proposals on disk, its performance depends on disk
performance. Although etcd is not particularly I/O intensive, it requires a low latency block device for
optimal performance and stability. Because etcd’s consensus protocol depends on persistently storing
metadata to a log (WAL), etcd is sensitive to disk-write latency. Slow disks and disk activity from other
processes can cause long fsync latencies.

Those latencies can cause etcd to miss heartbeats, not commit new proposals to the disk on time, and
ultimately experience request timeouts and temporary leader loss. High write latencies also lead to an
OpenShift API slowness, which affects cluster performance. Because of these reasons, avoid colocating
other workloads on the control-plane nodes that are I/O sensitive or intensive and share the same
underlying I/O infrastructure.

In terms of latency, run etcd on top of a block device that can write at least 50 IOPS of 8000 bytes long
sequentially. That is, with a latency of 10ms, keep in mind that uses fdatasync to synchronize each write
in the WAL. For heavy loaded clusters, sequential 500 IOPS of 8000 bytes (2 ms) are recommended.
To measure those numbers, you can use a benchmarking tool, such as fio.

To achieve such performance, run etcd on machines that are backed by SSD or NVMe disks with low
latency and high throughput. Consider single-level cell (SLC) solid-state drives (SSDs), which provide 1
bit per memory cell, are durable and reliable, and are ideal for write-intensive workloads.

NOTE

The load on etcd arises from static factors, such as the number of nodes and pods, and
dynamic factors, including changes in endpoints due to pod autoscaling, pod restarts, job
executions, and other workload-related events. To accurately size your etcd setup, you
must analyze the specific requirements of your workload. Consider the number of nodes,
pods, and other relevant factors that impact the load on etcd.

$ oc create -f cluster-monitoring-config.yaml

CHAPTER 1. RECOMMENDED PERFORMANCE AND SCALABILITY PRACTICES

15

https://access.redhat.com/solutions/5034771
https://docs.redhat.com/en/documentation/openshift_container_platform/4.15/html-single/machine_management/#creating-infrastructure-machinesets

The following hard drive practices provide optimal etcd performance:

Use dedicated etcd drives. Avoid drives that communicate over the network, such as iSCSI. Do
not place log files or other heavy workloads on etcd drives.

Prefer drives with low latency to support fast read and write operations.

Prefer high-bandwidth writes for faster compactions and defragmentation.

Prefer high-bandwidth reads for faster recovery from failures.

Use solid state drives as a minimum selection. Prefer NVMe drives for production environments.

Use server-grade hardware for increased reliability.

NOTE

Avoid NAS or SAN setups and spinning drives. Ceph Rados Block Device (RBD) and other
types of network-attached storage can result in unpredictable network latency. To
provide fast storage to etcd nodes at scale, use PCI passthrough to pass NVM devices
directly to the nodes.

Always benchmark by using utilities such as fio. You can use such utilities to continuously monitor the
cluster performance as it increases.

NOTE

Avoid using the Network File System (NFS) protocol or other network based file systems.

Some key metrics to monitor on a deployed OpenShift Container Platform cluster are p99 of etcd disk
write ahead log duration and the number of etcd leader changes. Use Prometheus to track these
metrics.

NOTE

The etcd member database sizes can vary in a cluster during normal operations. This
difference does not affect cluster upgrades, even if the leader size is different from the
other members.

To validate the hardware for etcd before or after you create the OpenShift Container Platform cluster,
you can use fio.

Prerequisites

Container runtimes such as Podman or Docker are installed on the machine that you’re testing.

Data is written to the /var/lib/etcd path.

Procedure

Run fio and analyze the results:

If you use Podman, run this command:

OpenShift Container Platform 4.15 Scalability and performance

16

If you use Docker, run this command:

The output reports whether the disk is fast enough to host etcd by comparing the 99th percentile of the
fsync metric captured from the run to see if it is less than 10 ms. A few of the most important etcd
metrics that might affected by I/O performance are as follow:

etcd_disk_wal_fsync_duration_seconds_bucket metric reports the etcd’s WAL fsync
duration

etcd_disk_backend_commit_duration_seconds_bucket metric reports the etcd backend
commit latency duration

etcd_server_leader_changes_seen_total metric reports the leader changes

Because etcd replicates the requests among all the members, its performance strongly depends on
network input/output (I/O) latency. High network latencies result in etcd heartbeats taking longer than
the election timeout, which results in leader elections that are disruptive to the cluster. A key metric to
monitor on a deployed OpenShift Container Platform cluster is the 99th percentile of etcd network peer
latency on each etcd cluster member. Use Prometheus to track the metric.

The histogram_quantile(0.99, rate(etcd_network_peer_round_trip_time_seconds_bucket[2m]))
metric reports the round trip time for etcd to finish replicating the client requests between the members.
Ensure that it is less than 50 ms.

Additional resources

How to use fio to check etcd disk performance in OpenShift Container Platform

etcd performance troubleshooting guide for OpenShift Container Platform

1.3.2. Moving etcd to a different disk

You can move etcd from a shared disk to a separate disk to prevent or resolve performance issues.

The Machine Config Operator (MCO) is responsible for mounting a secondary disk for OpenShift
Container Platform 4.15 container storage.

NOTE

This encoded script only supports device names for the following device types:

SCSI or SATA

/dev/sd*

Virtual device

/dev/vd*

NVMe

/dev/nvme*[0-9]*n*

Limitations

$ sudo podman run --volume /var/lib/etcd:/var/lib/etcd:Z quay.io/cloud-bulldozer/etcd-perf

$ sudo docker run --volume /var/lib/etcd:/var/lib/etcd:Z quay.io/cloud-bulldozer/etcd-perf

CHAPTER 1. RECOMMENDED PERFORMANCE AND SCALABILITY PRACTICES

17

https://access.redhat.com/solutions/4885641
https://access.redhat.com/articles/6271341

When the new disk is attached to the cluster, the etcd database is part of the root mount. It is
not part of the secondary disk or the intended disk when the primary node is recreated. As a
result, the primary node will not create a separate /var/lib/etcd mount.

Prerequisites

You have a backup of your cluster’s etcd data.

You have installed the OpenShift CLI (oc).

You have access to the cluster with cluster-admin privileges.

Add additional disks before uploading the machine configuration.

The MachineConfigPool must match
metadata.labels[machineconfiguration.openshift.io/role]. This applies to a controller, worker,
or a custom pool.

NOTE

This procedure does not move parts of the root file system, such as /var/, to another disk
or partition on an installed node.

IMPORTANT

This procedure is not supported when using control plane machine sets.

Procedure

1. Attach the new disk to the cluster and verify that the disk is detected in the node by running the
lsblk command in a debug shell:

Note the device name of the new disk reported by the lsblk command.

2. Decode and replace the device name in the script according to your environment.

$ oc debug node/<node_name>

lsblk

#!/bin/bash
set -uo pipefail

for device in <device_type_glob>; do 1
/usr/sbin/blkid $device &> /dev/null
 if [$? == 2]; then
 echo "secondary device found $device"
 echo "creating filesystem for etcd mount"
 mkfs.xfs -L var-lib-etcd -f $device &> /dev/null
 udevadm settle
 touch /etc/var-lib-etcd-mount
 exit
 fi

OpenShift Container Platform 4.15 Scalability and performance

18

1 Replace <device_type_glob> with a shell glob for your block device type. For SCSI or
SATA drives, use /dev/sd*; for virtual drives, use /dev/vd*; for NVMe drives, use
/dev/nvme*[0-9]*n*.

3. Create a MachineConfig YAML file named etcd-mc.yml with contents such as the following:

done
echo "Couldn't find secondary block device!" >&2
exit 77

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
 labels:
 machineconfiguration.openshift.io/role: master
 name: 98-var-lib-etcd
spec:
 config:
 ignition:
 version: 3.1.0
 storage:
 files:
 - path: /etc/find-secondary-device
 mode: 0755
 contents:
 source: data:text/plain;charset=utf-8;base64,
<encoded_etc_find_secondary_device_script> 1
 systemd:
 units:
 - name: find-secondary-device.service
 enabled: true
 contents: |
 [Unit]
 Description=Find secondary device
 DefaultDependencies=false
 After=systemd-udev-settle.service
 Before=local-fs-pre.target
 ConditionPathExists=!/etc/var-lib-etcd-mount

 [Service]
 RemainAfterExit=yes
 ExecStart=/etc/find-secondary-device

 RestartForceExitStatus=77

 [Install]
 WantedBy=multi-user.target
 - name: var-lib-etcd.mount
 enabled: true
 contents: |
 [Unit]
 Before=local-fs.target

 [Mount]
 What=/dev/disk/by-label/var-lib-etcd

CHAPTER 1. RECOMMENDED PERFORMANCE AND SCALABILITY PRACTICES

19

1 Use the encoded string that you previously created and replace it with the encoded script
that you noted.

Verification steps

Run the grep /var/lib/etcd /proc/mounts command in a debug shell for the node to ensure that
the disk is mounted:

 Where=/var/lib/etcd
 Type=xfs
 TimeoutSec=120s

 [Install]
 RequiredBy=local-fs.target
 - name: sync-var-lib-etcd-to-etcd.service
 enabled: true
 contents: |
 [Unit]
 Description=Sync etcd data if new mount is empty
 DefaultDependencies=no
 After=var-lib-etcd.mount var.mount
 Before=crio.service

 [Service]
 Type=oneshot
 RemainAfterExit=yes
 ExecCondition=/usr/bin/test ! -d /var/lib/etcd/member
 ExecStart=/usr/sbin/setsebool -P rsync_full_access 1
 ExecStart=/bin/rsync -ar /sysroot/ostree/deploy/rhcos/var/lib/etcd/ /var/lib/etcd/
 ExecStart=/usr/sbin/semanage fcontext -a -t container_var_lib_t '/var/lib/etcd(/.*)?'
 ExecStart=/usr/sbin/setsebool -P rsync_full_access 0
 TimeoutSec=0

 [Install]
 WantedBy=multi-user.target graphical.target
 - name: restorecon-var-lib-etcd.service
 enabled: true
 contents: |
 [Unit]
 Description=Restore recursive SELinux security contexts
 DefaultDependencies=no
 After=var-lib-etcd.mount
 Before=crio.service

 [Service]
 Type=oneshot
 RemainAfterExit=yes
 ExecStart=/sbin/restorecon -R /var/lib/etcd/
 TimeoutSec=0

 [Install]
 WantedBy=multi-user.target graphical.target

$ oc debug node/<node_name>

OpenShift Container Platform 4.15 Scalability and performance

20

Example output

Additional resources

Red Hat Enterprise Linux CoreOS (RHCOS)

1.3.3. Defragmenting etcd data

For large and dense clusters, etcd can suffer from poor performance if the keyspace grows too large
and exceeds the space quota. Periodically maintain and defragment etcd to free up space in the data
store. Monitor Prometheus for etcd metrics and defragment it when required; otherwise, etcd can raise
a cluster-wide alarm that puts the cluster into a maintenance mode that accepts only key reads and
deletes.

Monitor these key metrics:

etcd_server_quota_backend_bytes, which is the current quota limit

etcd_mvcc_db_total_size_in_use_in_bytes, which indicates the actual database usage after a
history compaction

etcd_mvcc_db_total_size_in_bytes, which shows the database size, including free space
waiting for defragmentation

Defragment etcd data to reclaim disk space after events that cause disk fragmentation, such as etcd
history compaction.

History compaction is performed automatically every five minutes and leaves gaps in the back-end
database. This fragmented space is available for use by etcd, but is not available to the host file system.
You must defragment etcd to make this space available to the host file system.

Defragmentation occurs automatically, but you can also trigger it manually.

NOTE

Automatic defragmentation is good for most cases, because the etcd operator uses
cluster information to determine the most efficient operation for the user.

1.3.3.1. Automatic defragmentation

The etcd Operator automatically defragments disks. No manual intervention is needed.

Verify that the defragmentation process is successful by viewing one of these logs:

etcd logs

cluster-etcd-operator pod

operator status error log

grep -w "/var/lib/etcd" /proc/mounts

/dev/sdb /var/lib/etcd xfs rw,seclabel,relatime,attr2,inode64,logbufs=8,logbsize=32k,noquota
0 0

CHAPTER 1. RECOMMENDED PERFORMANCE AND SCALABILITY PRACTICES

21

https://docs.openshift.com/container-platform/4.11/architecture/architecture-rhcos.html

WARNING

Automatic defragmentation can cause leader election failure in various OpenShift
core components, such as the Kubernetes controller manager, which triggers a
restart of the failing component. The restart is harmless and either triggers failover
to the next running instance or the component resumes work again after the
restart.

Example log output for successful defragmentation

Example log output for unsuccessful defragmentation

1.3.3.2. Manual defragmentation

A Prometheus alert indicates when you need to use manual defragmentation. The alert is displayed in
two cases:

When etcd uses more than 50% of its available space for more than 10 minutes

When etcd is actively using less than 50% of its total database size for more than 10 minutes

You can also determine whether defragmentation is needed by checking the etcd database size in MB
that will be freed by defragmentation with the PromQL expression:
(etcd_mvcc_db_total_size_in_bytes - etcd_mvcc_db_total_size_in_use_in_bytes)/1024/1024

WARNING

Defragmenting etcd is a blocking action. The etcd member will not respond until
defragmentation is complete. For this reason, wait at least one minute between
defragmentation actions on each of the pods to allow the cluster to recover.

Follow this procedure to defragment etcd data on each etcd member.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

Procedure

1. Determine which etcd member is the leader, because the leader should be defragmented last.

a. Get the list of etcd pods:

etcd member has been defragmented: <member_name>, memberID: <member_id>

failed defrag on member: <member_name>, memberID: <member_id>: <error_message>

OpenShift Container Platform 4.15 Scalability and performance

22

a. Get the list of etcd pods:

Example output

b. Choose a pod and run the following command to determine which etcd member is the
leader:

Example output

Based on the IS LEADER column of this output, the https://10.0.199.170:2379 endpoint is
the leader. Matching this endpoint with the output of the previous step, the pod name of
the leader is etcd-ip-10-0-199-170.example.redhat.com.

2. Defragment an etcd member.

a. Connect to the running etcd container, passing in the name of a pod that is not the leader:

b. Unset the ETCDCTL_ENDPOINTS environment variable:

$ oc -n openshift-etcd get pods -l k8s-app=etcd -o wide

etcd-ip-10-0-159-225.example.redhat.com 3/3 Running 0 175m
10.0.159.225 ip-10-0-159-225.example.redhat.com <none> <none>
etcd-ip-10-0-191-37.example.redhat.com 3/3 Running 0 173m
10.0.191.37 ip-10-0-191-37.example.redhat.com <none> <none>
etcd-ip-10-0-199-170.example.redhat.com 3/3 Running 0 176m
10.0.199.170 ip-10-0-199-170.example.redhat.com <none> <none>

$ oc rsh -n openshift-etcd etcd-ip-10-0-159-225.example.redhat.com etcdctl endpoint
status --cluster -w table

Defaulting container name to etcdctl.
Use 'oc describe pod/etcd-ip-10-0-159-225.example.redhat.com -n openshift-etcd' to see
all of the containers in this pod.
+---------------------------+------------------+---------+---------+-----------+------------+-----------
+------------+--------------------+--------+
| ENDPOINT | ID | VERSION | DB SIZE | IS LEADER | IS LEARNER |
RAFT TERM | RAFT INDEX | RAFT APPLIED INDEX | ERRORS |
+---------------------------+------------------+---------+---------+-----------+------------+-----------
+------------+--------------------+--------+
| https://10.0.191.37:2379 | 251cd44483d811c3 | 3.5.9 | 104 MB | false | false |
7 | 91624 | 91624 | |
| https://10.0.159.225:2379 | 264c7c58ecbdabee | 3.5.9 | 104 MB | false | false |
7 | 91624 | 91624 | |
| https://10.0.199.170:2379 | 9ac311f93915cc79 | 3.5.9 | 104 MB | true | false |
7 | 91624 | 91624 | |
+---------------------------+------------------+---------+---------+-----------+------------+-----------
+------------+--------------------+--------+

$ oc rsh -n openshift-etcd etcd-ip-10-0-159-225.example.redhat.com

sh-4.4# unset ETCDCTL_ENDPOINTS

CHAPTER 1. RECOMMENDED PERFORMANCE AND SCALABILITY PRACTICES

23

c. Defragment the etcd member:

Example output

If a timeout error occurs, increase the value for --command-timeout until the command
succeeds.

d. Verify that the database size was reduced:

Example output

This example shows that the database size for this etcd member is now 41 MB as opposed
to the starting size of 104 MB.

e. Repeat these steps to connect to each of the other etcd members and defragment them.
Always defragment the leader last.
Wait at least one minute between defragmentation actions to allow the etcd pod to recover.
Until the etcd pod recovers, the etcd member will not respond.

3. If any NOSPACE alarms were triggered due to the space quota being exceeded, clear them.

a. Check if there are any NOSPACE alarms:

Example output

b. Clear the alarms:

sh-4.4# etcdctl --command-timeout=30s --endpoints=https://localhost:2379 defrag

Finished defragmenting etcd member[https://localhost:2379]

sh-4.4# etcdctl endpoint status -w table --cluster

+---------------------------+------------------+---------+---------+-----------+------------+-----------
+------------+--------------------+--------+
| ENDPOINT | ID | VERSION | DB SIZE | IS LEADER | IS LEARNER |
RAFT TERM | RAFT INDEX | RAFT APPLIED INDEX | ERRORS |
+---------------------------+------------------+---------+---------+-----------+------------+-----------
+------------+--------------------+--------+
| https://10.0.191.37:2379 | 251cd44483d811c3 | 3.5.9 | 104 MB | false | false |
7 | 91624 | 91624 | |
| https://10.0.159.225:2379 | 264c7c58ecbdabee | 3.5.9 | 41 MB | false | false |
7 | 91624 | 91624 | | 1
| https://10.0.199.170:2379 | 9ac311f93915cc79 | 3.5.9 | 104 MB | true | false |
7 | 91624 | 91624 | |
+---------------------------+------------------+---------+---------+-----------+------------+-----------
+------------+--------------------+--------+

sh-4.4# etcdctl alarm list

memberID:12345678912345678912 alarm:NOSPACE

sh-4.4# etcdctl alarm disarm

OpenShift Container Platform 4.15 Scalability and performance

24

1.3.4. Setting tuning parameters for etcd

You can set the control plane hardware speed to "Standard", "Slower", or the default, which is "".

The default setting allows the system to decide which speed to use. This value enables upgrades from
versions where this feature does not exist, as the system can select values from previous versions.

By selecting one of the other values, you are overriding the default. If you see many leader elections due
to timeouts or missed heartbeats and your system is set to "" or "Standard", set the hardware speed to
"Slower" to make the system more tolerant to the increased latency.

IMPORTANT

Tuning etcd latency tolerances is a Technology Preview feature only. Technology Preview
features are not supported with Red Hat production service level agreements (SLAs) and
might not be functionally complete. Red Hat does not recommend using them in
production. These features provide early access to upcoming product features, enabling
customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

1.3.4.1. Changing hardware speed tolerance

To change the hardware speed tolerance for etcd, complete the following steps.

Prerequisites

You have edited the cluster instance to enable Technology Preview features. For more
information, see "Understanding feature gates".

Procedure

1. Check to see what the current value is by entering the following command:

Example output

NOTE

If the output is empty, the field has not been set and should be considered as the
default ("").

2. Change the value by entering the following command. Replace <value> with one of the valid
values: "", "Standard", or "Slower":

The following table indicates the heartbeat interval and leader election timeout for each profile.
These values are subject to change.

$ oc describe etcd/cluster | grep "Control Plane Hardware Speed"

Control Plane Hardware Speed: <VALUE>

oc patch etcd/cluster --type=merge -p '{"spec": {"controlPlaneHardwareSpeed": "<value>"}}'

CHAPTER 1. RECOMMENDED PERFORMANCE AND SCALABILITY PRACTICES

25

https://access.redhat.com/support/offerings/techpreview/

Profile ETCD_HEARTBEAT_INTERVA
L

ETCD_LEADER_ELECTION_TI
MEOUT

"" Varies depending on platform Varies depending on platform

Standard 100 1000

Slower 500 2500

3. Review the output:

Example output

If you enter any value besides the valid values, error output is displayed. For example, if you
entered "Faster" as the value, the output is as follows:

Example output

4. Verify that the value was changed by entering the following command:

Example output

5. Wait for etcd pods to roll out:

The following output shows the expected entries for master-0. Before you continue, wait until
all masters show a status of 4/4 Running.

Example output

etcd.operator.openshift.io/cluster patched

The Etcd "cluster" is invalid: spec.controlPlaneHardwareSpeed: Unsupported value: "Faster":
supported values: "", "Standard", "Slower"

$ oc describe etcd/cluster | grep "Control Plane Hardware Speed"

Control Plane Hardware Speed: ""

oc get pods -n openshift-etcd -w

installer-9-ci-ln-qkgs94t-72292-9clnd-master-0 0/1 Pending 0 0s
installer-9-ci-ln-qkgs94t-72292-9clnd-master-0 0/1 Pending 0 0s
installer-9-ci-ln-qkgs94t-72292-9clnd-master-0 0/1 ContainerCreating 0 0s
installer-9-ci-ln-qkgs94t-72292-9clnd-master-0 0/1 ContainerCreating 0 1s
installer-9-ci-ln-qkgs94t-72292-9clnd-master-0 1/1 Running 0 2s
installer-9-ci-ln-qkgs94t-72292-9clnd-master-0 0/1 Completed 0 34s
installer-9-ci-ln-qkgs94t-72292-9clnd-master-0 0/1 Completed 0 36s
installer-9-ci-ln-qkgs94t-72292-9clnd-master-0 0/1 Completed 0 36s
etcd-guard-ci-ln-qkgs94t-72292-9clnd-master-0 0/1 Running 0 26m
etcd-ci-ln-qkgs94t-72292-9clnd-master-0 4/4 Terminating 0 11m
etcd-ci-ln-qkgs94t-72292-9clnd-master-0 4/4 Terminating 0 11m

OpenShift Container Platform 4.15 Scalability and performance

26

6. Enter the following command to review to the values:

NOTE

These values might not have changed from the default.

Additional resources

Understanding feature gates

etcd-ci-ln-qkgs94t-72292-9clnd-master-0 0/4 Pending 0 0s
etcd-ci-ln-qkgs94t-72292-9clnd-master-0 0/4 Init:1/3 0 1s
etcd-ci-ln-qkgs94t-72292-9clnd-master-0 0/4 Init:2/3 0 2s
etcd-ci-ln-qkgs94t-72292-9clnd-master-0 0/4 PodInitializing 0 3s
etcd-ci-ln-qkgs94t-72292-9clnd-master-0 3/4 Running 0 4s
etcd-guard-ci-ln-qkgs94t-72292-9clnd-master-0 1/1 Running 0 26m
etcd-ci-ln-qkgs94t-72292-9clnd-master-0 3/4 Running 0 20s
etcd-ci-ln-qkgs94t-72292-9clnd-master-0 4/4 Running 0 20s

$ oc describe -n openshift-etcd pod/<ETCD_PODNAME> | grep -e HEARTBEAT_INTERVAL
-e ELECTION_TIMEOUT

CHAPTER 1. RECOMMENDED PERFORMANCE AND SCALABILITY PRACTICES

27

https://docs.redhat.com/en/documentation/openshift_container_platform/4.15/html-single/nodes/#nodes-cluster-enabling-features-about_nodes-cluster-enabling

CHAPTER 2. PLANNING YOUR ENVIRONMENT ACCORDING
TO OBJECT MAXIMUMS

Consider the following tested object maximums when you plan your OpenShift Container Platform
cluster.

These guidelines are based on the largest possible cluster. For smaller clusters, the maximums are lower.
There are many factors that influence the stated thresholds, including the etcd version or storage data
format.

In most cases, exceeding these numbers results in lower overall performance. It does not necessarily
mean that the cluster will fail.

WARNING

Clusters that experience rapid change, such as those with many starting and
stopping pods, can have a lower practical maximum size than documented.

2.1. OPENSHIFT CONTAINER PLATFORM TESTED CLUSTER
MAXIMUMS FOR MAJOR RELEASES

NOTE

Red Hat does not provide direct guidance on sizing your OpenShift Container Platform
cluster. This is because determining whether your cluster is within the supported bounds
of OpenShift Container Platform requires careful consideration of all the
multidimensional factors that limit the cluster scale.

OpenShift Container Platform supports tested cluster maximums rather than absolute cluster
maximums. Not every combination of OpenShift Container Platform version, control plane workload,
and network plugin are tested, so the following table does not represent an absolute expectation of scale
for all deployments. It might not be possible to scale to a maximum on all dimensions simultaneously.
The table contains tested maximums for specific workload and deployment configurations, and serves as
a scale guide as to what can be expected with similar deployments.

Maximum type 4.x tested maximum

Number of nodes 2,000 [1]

Number of pods [2] 150,000

Number of pods per node 2,500 [3][4]

Number of pods per core There is no default value.

OpenShift Container Platform 4.15 Scalability and performance

28

Number of namespaces [5] 10,000

Number of builds 10,000 (Default pod RAM 512 Mi) - Source-to-
Image (S2I) build strategy

Number of pods per namespace [6] 25,000

Number of routes and back ends per Ingress
Controller

2,000 per router

Number of secrets 80,000

Number of config maps 90,000

Number of services [7] 10,000

Number of services per namespace 5,000

Number of back-ends per service 5,000

Number of deployments per namespace [6] 2,000

Number of build configs 12,000

Number of custom resource definitions (CRD) 1,024 [8]

Maximum type 4.x tested maximum

1. Pause pods were deployed to stress the control plane components of OpenShift Container
Platform at 2000 node scale. The ability to scale to similar numbers will vary depending upon
specific deployment and workload parameters.

2. The pod count displayed here is the number of test pods. The actual number of pods depends
on the application’s memory, CPU, and storage requirements.

3. This was tested on a cluster with 31 servers: 3 control planes, 2 infrastructure nodes, and 26
worker nodes. If you need 2,500 user pods, you need both a hostPrefix of 20, which allocates a
network large enough for each node to contain more than 2000 pods, and a custom kubelet
config with maxPods set to 2500. For more information, see Running 2500 pods per node on
OCP 4.13.

4. The maximum tested pods per node is 2,500 for clusters using the OVNKubernetes network
plugin. The maximum tested pods per node for the OpenShiftSDN network plugin is 500 pods.

5. When there are a large number of active projects, etcd might suffer from poor performance if
the keyspace grows excessively large and exceeds the space quota. Periodic maintenance of
etcd, including defragmentation, is highly recommended to free etcd storage.

6. There are several control loops in the system that must iterate over all objects in a given

CHAPTER 2. PLANNING YOUR ENVIRONMENT ACCORDING TO OBJECT MAXIMUMS

29

https://cloud.redhat.com/blog/running-2500-pods-per-node-on-ocp-4.13

6. There are several control loops in the system that must iterate over all objects in a given
namespace as a reaction to some changes in state. Having a large number of objects of a given
type in a single namespace can make those loops expensive and slow down processing given
state changes. The limit assumes that the system has enough CPU, memory, and disk to satisfy
the application requirements.

7. Each service port and each service back-end has a corresponding entry in iptables. The number
of back-ends of a given service impact the size of the Endpoints objects, which impacts the size
of data that is being sent all over the system.

8. Tested on a cluster with 29 servers: 3 control planes, 2 infrastructure nodes, and 24 worker
nodes. The cluster had 500 namespaces. OpenShift Container Platform has a limit of 1,024 total
custom resource definitions (CRD), including those installed by OpenShift Container Platform,
products integrating with OpenShift Container Platform and user-created CRDs. If there are
more than 1,024 CRDs created, then there is a possibility that oc command requests might be
throttled.

2.1.1. Example scenario

As an example, 500 worker nodes (m5.2xl) were tested, and are supported, using OpenShift Container
Platform 4.15, the OVN-Kubernetes network plugin, and the following workload objects:

200 namespaces, in addition to the defaults

60 pods per node; 30 server and 30 client pods (30k total)

57 image streams/ns (11.4k total)

15 services/ns backed by the server pods (3k total)

15 routes/ns backed by the previous services (3k total)

20 secrets/ns (4k total)

10 config maps/ns (2k total)

6 network policies/ns, including deny-all, allow-from ingress and intra-namespace rules

57 builds/ns

The following factors are known to affect cluster workload scaling, positively or negatively, and should
be factored into the scale numbers when planning a deployment. For additional information and
guidance, contact your sales representative or Red Hat support .

Number of pods per node

Number of containers per pod

Type of probes used (for example, liveness/readiness, exec/http)

Number of network policies

Number of projects, or namespaces

Number of image streams per project

Number of builds per project

OpenShift Container Platform 4.15 Scalability and performance

30

https://access.redhat.com/support/

Number of services/endpoints and type

Number of routes

Number of shards

Number of secrets

Number of config maps

Rate of API calls, or the cluster “churn”, which is an estimation of how quickly things change in
the cluster configuration.

Prometheus query for pod creation requests per second over 5 minute windows:
sum(irate(apiserver_request_count{resource="pods",verb="POST"}[5m]))

Prometheus query for all API requests per second over 5 minute windows:
sum(irate(apiserver_request_count{}[5m]))

Cluster node resource consumption of CPU

Cluster node resource consumption of memory

2.2. OPENSHIFT CONTAINER PLATFORM ENVIRONMENT AND
CONFIGURATION ON WHICH THE CLUSTER MAXIMUMS ARE TESTED

2.2.1. AWS cloud platform

Node Flavor vCPU RAM(GiB) Disk type Disk
size(GiB)
/IOS

Count Region

Control
plane/etc

d [1]

r5.4xlarge 16 128 gp3 220 3 us-west-2

Infra [2] m5.12xlarg
e

48 192 gp3 100 3 us-west-2

Workload
[3]

m5.4xlarg
e

16 64 gp3 500 [4] 1 us-west-2

Compute m5.2xlarg
e

8 32 gp3 100 3/25/250

/500 [5]

us-west-2

1. gp3 disks with a baseline performance of 3000 IOPS and 125 MiB per second are used for
control plane/etcd nodes because etcd is latency sensitive. gp3 volumes do not use burst
performance.

2. Infra nodes are used to host Monitoring, Ingress, and Registry components to ensure they have
enough resources to run at large scale.

CHAPTER 2. PLANNING YOUR ENVIRONMENT ACCORDING TO OBJECT MAXIMUMS

31

3. Workload node is dedicated to run performance and scalability workload generators.

4. Larger disk size is used so that there is enough space to store the large amounts of data that is
collected during the performance and scalability test run.

5. Cluster is scaled in iterations and performance and scalability tests are executed at the
specified node counts.

2.2.2. IBM Power platform

Node vCPU RAM(GiB) Disk type Disk
size(GiB)/IOS

Count

Control

plane/etcd [1]

16 32 io1 120 / 10 IOPS
per GiB

3

Infra [2] 16 64 gp2 120 2

Workload [3] 16 256 gp2 120 [4] 1

Compute 16 64 gp2 120 2 to 100 [5]

1. io1 disks with 120 / 10 IOPS per GiB are used for control plane/etcd nodes as etcd is I/O
intensive and latency sensitive.

2. Infra nodes are used to host Monitoring, Ingress, and Registry components to ensure they have
enough resources to run at large scale.

3. Workload node is dedicated to run performance and scalability workload generators.

4. Larger disk size is used so that there is enough space to store the large amounts of data that is
collected during the performance and scalability test run.

5. Cluster is scaled in iterations.

2.2.3. IBM Z platform

Node vCPU [4] RAM(GiB)[5] Disk type Disk
size(GiB)/IOS

Count

Control

plane/etcd [1,2]

8 32 ds8k 300 / LCU 1 3

Compute [1,3] 8 32 ds8k 150 / LCU 2 4 nodes
(scaled to
100/250/500
pods per
node)

1. Nodes are distributed between two logical control units (LCUs) to optimize disk I/O load of the

OpenShift Container Platform 4.15 Scalability and performance

32

1. Nodes are distributed between two logical control units (LCUs) to optimize disk I/O load of the
control plane/etcd nodes as etcd is I/O intensive and latency sensitive. Etcd I/O demand should
not interfere with other workloads.

2. Four compute nodes are used for the tests running several iterations with 100/250/500 pods
at the same time. First, idling pods were used to evaluate if pods can be instanced. Next, a
network and CPU demanding client/server workload were used to evaluate the stability of the
system under stress. Client and server pods were pairwise deployed and each pair was spread
over two compute nodes.

3. No separate workload node was used. The workload simulates a microservice workload between
two compute nodes.

4. Physical number of processors used is six Integrated Facilities for Linux (IFLs).

5. Total physical memory used is 512 GiB.

2.3. HOW TO PLAN YOUR ENVIRONMENT ACCORDING TO TESTED
CLUSTER MAXIMUMS

IMPORTANT

Oversubscribing the physical resources on a node affects resource guarantees the
Kubernetes scheduler makes during pod placement. Learn what measures you can take
to avoid memory swapping.

Some of the tested maximums are stretched only in a single dimension. They will vary
when many objects are running on the cluster.

The numbers noted in this documentation are based on Red Hat’s test methodology,
setup, configuration, and tunings. These numbers can vary based on your own individual
setup and environments.

While planning your environment, determine how many pods are expected to fit per node:

required pods per cluster / pods per node = total number of nodes needed

The default maximum number of pods per node is 250. However, the number of pods that fit on a node
is dependent on the application itself. Consider the application’s memory, CPU, and storage
requirements, as described in "How to plan your environment according to application requirements".

Example scenario

If you want to scope your cluster for 2200 pods per cluster, you would need at least five nodes,
assuming that there are 500 maximum pods per node:

2200 / 500 = 4.4

If you increase the number of nodes to 20, then the pod distribution changes to 110 pods per node:

2200 / 20 = 110

Where:

CHAPTER 2. PLANNING YOUR ENVIRONMENT ACCORDING TO OBJECT MAXIMUMS

33

required pods per cluster / total number of nodes = expected pods per node

OpenShift Container Platform comes with several system pods, such as SDN, DNS, Operators, and
others, which run across every worker node by default. Therefore, the result of the above formula can
vary.

2.4. HOW TO PLAN YOUR ENVIRONMENT ACCORDING TO
APPLICATION REQUIREMENTS

Consider an example application environment:

Pod type Pod quantity Max memory CPU cores Persistent
storage

apache 100 500 MB 0.5 1 GB

node.js 200 1 GB 1 1 GB

postgresql 100 1 GB 2 10 GB

JBoss EAP 100 1 GB 1 1 GB

Extrapolated requirements: 550 CPU cores, 450GB RAM, and 1.4TB storage.

Instance size for nodes can be modulated up or down, depending on your preference. Nodes are often
resource overcommitted. In this deployment scenario, you can choose to run additional smaller nodes or
fewer larger nodes to provide the same amount of resources. Factors such as operational agility and
cost-per-instance should be considered.

Node type Quantity CPUs RAM (GB)

Nodes (option 1) 100 4 16

Nodes (option 2) 50 8 32

Nodes (option 3) 25 16 64

Some applications lend themselves well to overcommitted environments, and some do not. Most Java
applications and applications that use huge pages are examples of applications that would not allow for
overcommitment. That memory can not be used for other applications. In the example above, the
environment would be roughly 30 percent overcommitted, a common ratio.

The application pods can access a service either by using environment variables or DNS. If using
environment variables, for each active service the variables are injected by the kubelet when a pod is run
on a node. A cluster-aware DNS server watches the Kubernetes API for new services and creates a set
of DNS records for each one. If DNS is enabled throughout your cluster, then all pods should
automatically be able to resolve services by their DNS name. Service discovery using DNS can be used in
case you must go beyond 5000 services. When using environment variables for service discovery, the

OpenShift Container Platform 4.15 Scalability and performance

34

argument list exceeds the allowed length after 5000 services in a namespace, then the pods and
deployments will start failing. Disable the service links in the deployment’s service specification file to
overcome this:

apiVersion: template.openshift.io/v1
kind: Template
metadata:
 name: deployment-config-template
 creationTimestamp:
 annotations:
 description: This template will create a deploymentConfig with 1 replica, 4 env vars and a service.
 tags: ''
objects:
- apiVersion: apps.openshift.io/v1
 kind: DeploymentConfig
 metadata:
 name: deploymentconfig${IDENTIFIER}
 spec:
 template:
 metadata:
 labels:
 name: replicationcontroller${IDENTIFIER}
 spec:
 enableServiceLinks: false
 containers:
 - name: pause${IDENTIFIER}
 image: "${IMAGE}"
 ports:
 - containerPort: 8080
 protocol: TCP
 env:
 - name: ENVVAR1_${IDENTIFIER}
 value: "${ENV_VALUE}"
 - name: ENVVAR2_${IDENTIFIER}
 value: "${ENV_VALUE}"
 - name: ENVVAR3_${IDENTIFIER}
 value: "${ENV_VALUE}"
 - name: ENVVAR4_${IDENTIFIER}
 value: "${ENV_VALUE}"
 resources: {}
 imagePullPolicy: IfNotPresent
 capabilities: {}
 securityContext:
 capabilities: {}
 privileged: false
 restartPolicy: Always
 serviceAccount: ''
 replicas: 1
 selector:
 name: replicationcontroller${IDENTIFIER}
 triggers:
 - type: ConfigChange
 strategy:
 type: Rolling
- apiVersion: v1

CHAPTER 2. PLANNING YOUR ENVIRONMENT ACCORDING TO OBJECT MAXIMUMS

35

The number of application pods that can run in a namespace is dependent on the number of services
and the length of the service name when the environment variables are used for service discovery.
ARG_MAX on the system defines the maximum argument length for a new process and it is set to
2097152 bytes (2 MiB) by default. The Kubelet injects environment variables in to each pod scheduled
to run in the namespace including:

<SERVICE_NAME>_SERVICE_HOST=<IP>

<SERVICE_NAME>_SERVICE_PORT=<PORT>

<SERVICE_NAME>_PORT=tcp://<IP>:<PORT>

<SERVICE_NAME>_PORT_<PORT>_TCP=tcp://<IP>:<PORT>

<SERVICE_NAME>_PORT_<PORT>_TCP_PROTO=tcp

<SERVICE_NAME>_PORT_<PORT>_TCP_PORT=<PORT>

<SERVICE_NAME>_PORT_<PORT>_TCP_ADDR=<ADDR>

The pods in the namespace will start to fail if the argument length exceeds the allowed value and the
number of characters in a service name impacts it. For example, in a namespace with 5000 services, the
limit on the service name is 33 characters, which enables you to run 5000 pods in the namespace.

 kind: Service
 metadata:
 name: service${IDENTIFIER}
 spec:
 selector:
 name: replicationcontroller${IDENTIFIER}
 ports:
 - name: serviceport${IDENTIFIER}
 protocol: TCP
 port: 80
 targetPort: 8080
 clusterIP: ''
 type: ClusterIP
 sessionAffinity: None
 status:
 loadBalancer: {}
parameters:
- name: IDENTIFIER
 description: Number to append to the name of resources
 value: '1'
 required: true
- name: IMAGE
 description: Image to use for deploymentConfig
 value: gcr.io/google-containers/pause-amd64:3.0
 required: false
- name: ENV_VALUE
 description: Value to use for environment variables
 generate: expression
 from: "[A-Za-z0-9]{255}"
 required: false
labels:
 template: deployment-config-template

OpenShift Container Platform 4.15 Scalability and performance

36

CHAPTER 3. RECOMMENDED HOST PRACTICES FOR IBM Z &
IBM LINUXONE ENVIRONMENTS

This topic provides recommended host practices for OpenShift Container Platform on IBM Z® and IBM®
LinuxONE.

NOTE

The s390x architecture is unique in many aspects. Therefore, some recommendations
made here might not apply to other platforms.

NOTE

Unless stated otherwise, these practices apply to both z/VM and Red Hat Enterprise
Linux (RHEL) KVM installations on IBM Z® and IBM® LinuxONE.

3.1. MANAGING CPU OVERCOMMITMENT

In a highly virtualized IBM Z® environment, you must carefully plan the infrastructure setup and sizing.
One of the most important features of virtualization is the capability to do resource overcommitment,
allocating more resources to the virtual machines than actually available at the hypervisor level. This is
very workload dependent and there is no golden rule that can be applied to all setups.

Depending on your setup, consider these best practices regarding CPU overcommitment:

At LPAR level (PR/SM hypervisor), avoid assigning all available physical cores (IFLs) to each
LPAR. For example, with four physical IFLs available, you should not define three LPARs with
four logical IFLs each.

Check and understand LPAR shares and weights.

An excessive number of virtual CPUs can adversely affect performance. Do not define more
virtual processors to a guest than logical processors are defined to the LPAR.

Configure the number of virtual processors per guest for peak workload, not more.

Start small and monitor the workload. Increase the vCPU number incrementally if necessary.

Not all workloads are suitable for high overcommitment ratios. If the workload is CPU intensive,
you will probably not be able to achieve high ratios without performance problems. Workloads
that are more I/O intensive can keep consistent performance even with high overcommitment
ratios.

Additional resources

z/VM Common Performance Problems and Solutions

z/VM overcommitment considerations

LPAR CPU management

3.2. DISABLE TRANSPARENT HUGE PAGES

Transparent Huge Pages (THP) attempt to automate most aspects of creating, managing, and using

CHAPTER 3. RECOMMENDED HOST PRACTICES FOR IBM Z & IBM LINUXONE ENVIRONMENTS

37

https://www.vm.ibm.com/perf/tips/prgcom.html
https://www.ibm.com/docs/en/linux-on-systems?topic=overcommitment-considerations
https://www.ibm.com/docs/en/zos/2.2.0?topic=director-lpar-cpu-management

huge pages. Since THP automatically manages the huge pages, this is not always handled optimally for
all types of workloads. THP can lead to performance regressions, since many applications handle huge
pages on their own. Therefore, consider disabling THP.

3.3. BOOST NETWORKING PERFORMANCE WITH RECEIVE FLOW
STEERING

Receive Flow Steering (RFS) extends Receive Packet Steering (RPS) by further reducing network
latency. RFS is technically based on RPS, and improves the efficiency of packet processing by increasing
the CPU cache hit rate. RFS achieves this, and in addition considers queue length, by determining the
most convenient CPU for computation so that cache hits are more likely to occur within the CPU. Thus,
the CPU cache is invalidated less and requires fewer cycles to rebuild the cache. This can help reduce
packet processing run time.

3.3.1. Use the Machine Config Operator (MCO) to activate RFS

Procedure

1. Copy the following MCO sample profile into a YAML file. For example, enable-rfs.yaml:

2. Create the MCO profile:

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
 labels:
 machineconfiguration.openshift.io/role: worker
 name: 50-enable-rfs
spec:
 config:
 ignition:
 version: 2.2.0
 storage:
 files:
 - contents:
 source: data:text/plain;charset=US-
ASCII,%23%20turn%20on%20Receive%20Flow%20Steering%20%28RFS%29%20for%20all
%20network%20interfaces%0ASUBSYSTEM%3D%3D%22net%22%2C%20ACTION%3D%
3D%22add%22%2C%20RUN%7Bprogram%7D%2B%3D%22/bin/bash%20-
c%20%27for%20x%20in%20/sys/%24DEVPATH/queues/rx-
%2A%3B%20do%20echo%208192%20%3E%20%24x/rps_flow_cnt%3B%20%20done%27
%22%0A
 filesystem: root
 mode: 0644
 path: /etc/udev/rules.d/70-persistent-net.rules
 - contents:
 source: data:text/plain;charset=US-
ASCII,%23%20define%20sock%20flow%20enbtried%20for%20%20Receive%20Flow%20Ste
ering%20%28RFS%29%0Anet.core.rps_sock_flow_entries%3D8192%0A
 filesystem: root
 mode: 0644
 path: /etc/sysctl.d/95-enable-rps.conf

$ oc create -f enable-rfs.yaml

OpenShift Container Platform 4.15 Scalability and performance

38

3. Verify that an entry named 50-enable-rfs is listed:

4. To deactivate, enter:

Additional resources

OpenShift Container Platform on IBM Z®: Tune your network performance with RFS

Configuring Receive Flow Steering (RFS)

Scaling in the Linux Networking Stack

3.4. CHOOSE YOUR NETWORKING SETUP

The networking stack is one of the most important components for a Kubernetes-based product like
OpenShift Container Platform. For IBM Z® setups, the networking setup depends on the hypervisor of
your choice. Depending on the workload and the application, the best fit usually changes with the use
case and the traffic pattern.

Depending on your setup, consider these best practices:

Consider all options regarding networking devices to optimize your traffic pattern. Explore the
advantages of OSA-Express, RoCE Express, HiperSockets, z/VM VSwitch, Linux Bridge (KVM),
and others to decide which option leads to the greatest benefit for your setup.

Always use the latest available NIC version. For example, OSA Express 7S 10 GbE shows great
improvement compared to OSA Express 6S 10 GbE with transactional workload types, although
both are 10 GbE adapters.

Each virtual switch adds an additional layer of latency.

The load balancer plays an important role for network communication outside the cluster.
Consider using a production-grade hardware load balancer if this is critical for your application.

OpenShift Container Platform SDN introduces flows and rules, which impact the networking
performance. Make sure to consider pod affinities and placements, to benefit from the locality
of services where communication is critical.

Balance the trade-off between performance and functionality.

Additional resources

OpenShift Container Platform on IBM Z® - Performance Experiences, Hints and Tips

OpenShift Container Platform on IBM Z® Networking Performance

Controlling pod placement on nodes using node affinity rules

3.5. ENSURE HIGH DISK PERFORMANCE WITH HYPERPAV ON Z/VM

DASD and ECKD devices are commonly used disk types in IBM Z® environments. In a typical OpenShift

$ oc get mc

$ oc delete mc 50-enable-rfs

CHAPTER 3. RECOMMENDED HOST PRACTICES FOR IBM Z & IBM LINUXONE ENVIRONMENTS

39

https://developer.ibm.com/tutorials/red-hat-openshift-on-ibm-z-tune-your-network-performance-with-rfs/
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/performance_tuning_guide/sect-red_hat_enterprise_linux-performance_tuning_guide-networking-configuration_tools#sect-Red_Hat_Enterprise_Linux-Performance_Tuning_Guide-Configuration_tools-Configuring_Receive_Flow_Steering_RFS
https://www.kernel.org/doc/Documentation/networking/scaling.txt
https://www.ibm.com/docs/en/linux-on-systems?topic=openshift-performance#openshift_perf__ocp_eval
https://www.ibm.com/docs/en/linux-on-systems?topic=openshift-performance#openshift_perf__ocp_net
https://docs.redhat.com/en/documentation/openshift_container_platform/4.15/html-single/nodes/#controlling-pod-placement-on-nodes-using-node-affinity-rules

DASD and ECKD devices are commonly used disk types in IBM Z® environments. In a typical OpenShift
Container Platform setup in z/VM environments, DASD disks are commonly used to support the local
storage for the nodes. You can set up HyperPAV alias devices to provide more throughput and overall
better I/O performance for the DASD disks that support the z/VM guests.

Using HyperPAV for the local storage devices leads to a significant performance benefit. However, you
must be aware that there is a trade-off between throughput and CPU costs.

3.5.1. Use the Machine Config Operator (MCO) to activate HyperPAV aliases in
nodes using z/VM full-pack minidisks

For z/VM-based OpenShift Container Platform setups that use full-pack minidisks, you can leverage the
advantage of MCO profiles by activating HyperPAV aliases in all of the nodes. You must add YAML
configurations for both control plane and compute nodes.

Procedure

1. Copy the following MCO sample profile into a YAML file for the control plane node. For
example, 05-master-kernelarg-hpav.yaml:

2. Copy the following MCO sample profile into a YAML file for the compute node. For example,
05-worker-kernelarg-hpav.yaml:

NOTE

You must modify the rd.dasd arguments to fit the device IDs.

$ cat 05-master-kernelarg-hpav.yaml
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
 labels:
 machineconfiguration.openshift.io/role: master
 name: 05-master-kernelarg-hpav
spec:
 config:
 ignition:
 version: 3.1.0
 kernelArguments:
 - rd.dasd=800-805

$ cat 05-worker-kernelarg-hpav.yaml
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
 labels:
 machineconfiguration.openshift.io/role: worker
 name: 05-worker-kernelarg-hpav
spec:
 config:
 ignition:
 version: 3.1.0
 kernelArguments:
 - rd.dasd=800-805

OpenShift Container Platform 4.15 Scalability and performance

40

3. Create the MCO profiles:

4. To deactivate, enter:

Additional resources

Using HyperPAV for ECKD DASD

Scaling HyperPAV alias devices on Linux guests on z/VM

3.6. RHEL KVM ON IBM Z HOST RECOMMENDATIONS

Optimizing a KVM virtual server environment strongly depends on the workloads of the virtual servers
and on the available resources. The same action that enhances performance in one environment can
have adverse effects in another. Finding the best balance for a particular setting can be a challenge and
often involves experimentation.

The following section introduces some best practices when using OpenShift Container Platform with
RHEL KVM on IBM Z® and IBM® LinuxONE environments.

3.6.1. Use I/O threads for your virtual block devices

To make virtual block devices use I/O threads, you must configure one or more I/O threads for the
virtual server and each virtual block device to use one of these I/O threads.

The following example specifies <iothreads>3</iothreads> to configure three I/O threads, with
consecutive decimal thread IDs 1, 2, and 3. The iothread="2" parameter specifies the driver element of
the disk device to use the I/O thread with ID 2.

Sample I/O thread specification

$ oc create -f 05-master-kernelarg-hpav.yaml

$ oc create -f 05-worker-kernelarg-hpav.yaml

$ oc delete -f 05-master-kernelarg-hpav.yaml

$ oc delete -f 05-worker-kernelarg-hpav.yaml

...
<domain>
 <iothreads>3</iothreads> 1
 ...
 <devices>
 ...
 <disk type="block" device="disk"> 2
<driver ... iothread="2"/>
 </disk>
 ...
 </devices>
 ...
</domain>

CHAPTER 3. RECOMMENDED HOST PRACTICES FOR IBM Z & IBM LINUXONE ENVIRONMENTS

41

https://www.ibm.com/docs/en/linux-on-systems?topic=io-using-hyperpav-eckd-dasd
https://public.dhe.ibm.com/software/dw/linux390/perf/zvm_hpav00.pdf

1 1

2

The number of I/O threads.

The driver element of the disk device.

Threads can increase the performance of I/O operations for disk devices, but they also use memory and
CPU resources. You can configure multiple devices to use the same thread. The best mapping of
threads to devices depends on the available resources and the workload.

Start with a small number of I/O threads. Often, a single I/O thread for all disk devices is sufficient. Do
not configure more threads than the number of virtual CPUs, and do not configure idle threads.

You can use the virsh iothreadadd command to add I/O threads with specific thread IDs to a running
virtual server.

3.6.2. Avoid virtual SCSI devices

Configure virtual SCSI devices only if you need to address the device through SCSI-specific interfaces.
Configure disk space as virtual block devices rather than virtual SCSI devices, regardless of the backing
on the host.

However, you might need SCSI-specific interfaces for:

A LUN for a SCSI-attached tape drive on the host.

A DVD ISO file on the host file system that is mounted on a virtual DVD drive.

3.6.3. Configure guest caching for disk

Configure your disk devices to do caching by the guest and not by the host.

Ensure that the driver element of the disk device includes the cache="none" and io="native"
parameters.

3.6.4. Exclude the memory balloon device

Unless you need a dynamic memory size, do not define a memory balloon device and ensure that libvirt
does not create one for you. Include the memballoon parameter as a child of the devices element in
your domain configuration XML file.

Check the list of active profiles:

3.6.5. Tune the CPU migration algorithm of the host scheduler

IMPORTANT

<disk type="block" device="disk">
 <driver name="qemu" type="raw" cache="none" io="native" iothread="1"/>
...
</disk>

<memballoon model="none"/>

OpenShift Container Platform 4.15 Scalability and performance

42

IMPORTANT

Do not change the scheduler settings unless you are an expert who understands the
implications. Do not apply changes to production systems without testing them and
confirming that they have the intended effect.

The kernel.sched_migration_cost_ns parameter specifies a time interval in nanoseconds. After the
last execution of a task, the CPU cache is considered to have useful content until this interval expires.
Increasing this interval results in fewer task migrations. The default value is 500000 ns.

If the CPU idle time is higher than expected when there are runnable processes, try reducing this
interval. If tasks bounce between CPUs or nodes too often, try increasing it.

To dynamically set the interval to 60000 ns, enter the following command:

To persistently change the value to 60000 ns, add the following entry to /etc/sysctl.conf:

3.6.6. Disable the cpuset cgroup controller

NOTE

This setting applies only to KVM hosts with cgroups version 1. To enable CPU hotplug on
the host, disable the cgroup controller.

Procedure

1. Open /etc/libvirt/qemu.conf with an editor of your choice.

2. Go to the cgroup_controllers line.

3. Duplicate the entire line and remove the leading number sign (#) from the copy.

4. Remove the cpuset entry, as follows:

5. For the new setting to take effect, you must restart the libvirtd daemon:

a. Stop all virtual machines.

b. Run the following command:

c. Restart the virtual machines.

This setting persists across host reboots.

3.6.7. Tune the polling period for idle virtual CPUs

sysctl kernel.sched_migration_cost_ns=60000

kernel.sched_migration_cost_ns=60000

cgroup_controllers = ["cpu", "devices", "memory", "blkio", "cpuacct"]

systemctl restart libvirtd

CHAPTER 3. RECOMMENDED HOST PRACTICES FOR IBM Z & IBM LINUXONE ENVIRONMENTS

43

When a virtual CPU becomes idle, KVM polls for wakeup conditions for the virtual CPU before allocating
the host resource. You can specify the time interval, during which polling takes place in sysfs at
/sys/module/kvm/parameters/halt_poll_ns. During the specified time, polling reduces the wakeup
latency for the virtual CPU at the expense of resource usage. Depending on the workload, a longer or
shorter time for polling can be beneficial. The time interval is specified in nanoseconds. The default is
50000 ns.

To optimize for low CPU consumption, enter a small value or write 0 to disable polling:

To optimize for low latency, for example for transactional workloads, enter a large value:

Additional resources

Linux on IBM Z® Performance Tuning for KVM

Getting started with virtualization on IBM Z®

echo 0 > /sys/module/kvm/parameters/halt_poll_ns

echo 80000 > /sys/module/kvm/parameters/halt_poll_ns

OpenShift Container Platform 4.15 Scalability and performance

44

https://www.ibm.com/docs/en/linux-on-systems?topic=v-kvm
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_virtualization/getting-started-with-virtualization-in-rhel-8-on-ibm-z_configuring-and-managing-virtualization

CHAPTER 4. USING THE NODE TUNING OPERATOR
Learn about the Node Tuning Operator and how you can use it to manage node-level tuning by
orchestrating the tuned daemon.

4.1. ABOUT THE NODE TUNING OPERATOR

The Node Tuning Operator helps you manage node-level tuning by orchestrating the TuneD daemon
and achieves low latency performance by using the Performance Profile controller. The majority of high-
performance applications require some level of kernel tuning. The Node Tuning Operator provides a
unified management interface to users of node-level sysctls and more flexibility to add custom tuning
specified by user needs.

The Operator manages the containerized TuneD daemon for OpenShift Container Platform as a
Kubernetes daemon set. It ensures the custom tuning specification is passed to all containerized TuneD
daemons running in the cluster in the format that the daemons understand. The daemons run on all
nodes in the cluster, one per node.

Node-level settings applied by the containerized TuneD daemon are rolled back on an event that
triggers a profile change or when the containerized TuneD daemon is terminated gracefully by receiving
and handling a termination signal.

The Node Tuning Operator uses the Performance Profile controller to implement automatic tuning to
achieve low latency performance for OpenShift Container Platform applications.

The cluster administrator configures a performance profile to define node-level settings such as the
following:

Updating the kernel to kernel-rt.

Choosing CPUs for housekeeping.

Choosing CPUs for running workloads.

NOTE

Currently, disabling CPU load balancing is not supported by cgroup v2. As a result, you
might not get the desired behavior from performance profiles if you have cgroup v2
enabled. Enabling cgroup v2 is not recommended if you are using performance profiles.

The Node Tuning Operator is part of a standard OpenShift Container Platform installation in version 4.1
and later.

NOTE

In earlier versions of OpenShift Container Platform, the Performance Addon Operator
was used to implement automatic tuning to achieve low latency performance for
OpenShift applications. In OpenShift Container Platform 4.11 and later, this functionality
is part of the Node Tuning Operator.

4.2. ACCESSING AN EXAMPLE NODE TUNING OPERATOR
SPECIFICATION

Use this process to access an example Node Tuning Operator specification.

CHAPTER 4. USING THE NODE TUNING OPERATOR

45

Procedure

Run the following command to access an example Node Tuning Operator specification:

The default CR is meant for delivering standard node-level tuning for the OpenShift Container Platform
platform and it can only be modified to set the Operator Management state. Any other custom changes
to the default CR will be overwritten by the Operator. For custom tuning, create your own Tuned CRs.
Newly created CRs will be combined with the default CR and custom tuning applied to OpenShift
Container Platform nodes based on node or pod labels and profile priorities.

WARNING

While in certain situations the support for pod labels can be a convenient way of
automatically delivering required tuning, this practice is discouraged and strongly
advised against, especially in large-scale clusters. The default Tuned CR ships
without pod label matching. If a custom profile is created with pod label matching,
then the functionality will be enabled at that time. The pod label functionality will be
deprecated in future versions of the Node Tuning Operator.

4.3. DEFAULT PROFILES SET ON A CLUSTER

The following are the default profiles set on a cluster.

Starting with OpenShift Container Platform 4.9, all OpenShift TuneD profiles are shipped with the
TuneD package. You can use the oc exec command to view the contents of these profiles:

oc get tuned.tuned.openshift.io/default -o yaml -n openshift-cluster-node-tuning-operator

apiVersion: tuned.openshift.io/v1
kind: Tuned
metadata:
 name: default
 namespace: openshift-cluster-node-tuning-operator
spec:
 profile:
 - data: |
 [main]
 summary=Optimize systems running OpenShift (provider specific parent profile)
 include=-provider-${f:exec:cat:/var/lib/tuned/provider},openshift
 name: openshift
 recommend:
 - profile: openshift-control-plane
 priority: 30
 match:
 - label: node-role.kubernetes.io/master
 - label: node-role.kubernetes.io/infra
 - profile: openshift-node
 priority: 40

OpenShift Container Platform 4.15 Scalability and performance

46

4.4. VERIFYING THAT THE TUNED PROFILES ARE APPLIED

Verify the TuneD profiles that are applied to your cluster node.

Example output

NAME: Name of the Profile object. There is one Profile object per node and their names match.

TUNED: Name of the desired TuneD profile to apply.

APPLIED: True if the TuneD daemon applied the desired profile. (True/False/Unknown).

DEGRADED: True if any errors were reported during application of the TuneD profile
(True/False/Unknown).

AGE: Time elapsed since the creation of Profile object.

The ClusterOperator/node-tuning object also contains useful information about the Operator and its
node agents' health. For example, Operator misconfiguration is reported by ClusterOperator/node-
tuning status messages.

To get status information about the ClusterOperator/node-tuning object, run the following command:

Example output

If either the ClusterOperator/node-tuning or a profile object’s status is DEGRADED, additional
information is provided in the Operator or operand logs.

4.5. CUSTOM TUNING SPECIFICATION

The custom resource (CR) for the Operator has two major sections. The first section, profile:, is a list of
TuneD profiles and their names. The second, recommend:, defines the profile selection logic.

Multiple custom tuning specifications can co-exist as multiple CRs in the Operator’s namespace. The

$ oc exec $tuned_pod -n openshift-cluster-node-tuning-operator -- find /usr/lib/tuned/openshift{,-
control-plane,-node} -name tuned.conf -exec grep -H ^ {} \;

$ oc get profile.tuned.openshift.io -n openshift-cluster-node-tuning-operator

NAME TUNED APPLIED DEGRADED AGE
master-0 openshift-control-plane True False 6h33m
master-1 openshift-control-plane True False 6h33m
master-2 openshift-control-plane True False 6h33m
worker-a openshift-node True False 6h28m
worker-b openshift-node True False 6h28m

$ oc get co/node-tuning -n openshift-cluster-node-tuning-operator

NAME VERSION AVAILABLE PROGRESSING DEGRADED SINCE MESSAGE
node-tuning 4.15.1 True False True 60m 1/5 Profiles with bootcmdline conflict

CHAPTER 4. USING THE NODE TUNING OPERATOR

47

Multiple custom tuning specifications can co-exist as multiple CRs in the Operator’s namespace. The
existence of new CRs or the deletion of old CRs is detected by the Operator. All existing custom tuning
specifications are merged and appropriate objects for the containerized TuneD daemons are updated.

Management state

The Operator Management state is set by adjusting the default Tuned CR. By default, the Operator is in
the Managed state and the spec.managementState field is not present in the default Tuned CR. Valid
values for the Operator Management state are as follows:

Managed: the Operator will update its operands as configuration resources are updated

Unmanaged: the Operator will ignore changes to the configuration resources

Removed: the Operator will remove its operands and resources the Operator provisioned

Profile data

The profile: section lists TuneD profiles and their names.

Recommended profiles

The profile: selection logic is defined by the recommend: section of the CR. The recommend: section
is a list of items to recommend the profiles based on a selection criteria.

The individual items of the list:

profile:
- name: tuned_profile_1
 data: |
 # TuneD profile specification
 [main]
 summary=Description of tuned_profile_1 profile

 [sysctl]
 net.ipv4.ip_forward=1
 # ... other sysctl's or other TuneD daemon plugins supported by the containerized TuneD

...

- name: tuned_profile_n
 data: |
 # TuneD profile specification
 [main]
 summary=Description of tuned_profile_n profile

 # tuned_profile_n profile settings

recommend:
<recommend-item-1>
...
<recommend-item-n>

- machineConfigLabels: 1
 <mcLabels> 2

OpenShift Container Platform 4.15 Scalability and performance

48

1

2

3

4

5

6

7

8

9

1

2

3

4

Optional.

A dictionary of key/value MachineConfig labels. The keys must be unique.

If omitted, profile match is assumed unless a profile with a higher priority matches first or
machineConfigLabels is set.

An optional list.

Profile ordering priority. Lower numbers mean higher priority (0 is the highest priority).

A TuneD profile to apply on a match. For example tuned_profile_1.

Optional operand configuration.

Turn debugging on or off for the TuneD daemon. Options are true for on or false for off. The
default is false.

Turn reapply_sysctl functionality on or off for the TuneD daemon. Options are true for on and
false for off.

<match> is an optional list recursively defined as follows:

Node or pod label name.

Optional node or pod label value. If omitted, the presence of <label_name> is enough to match.

Optional object type (node or pod). If omitted, node is assumed.

An optional <match> list.

If <match> is not omitted, all nested <match> sections must also evaluate to true. Otherwise, false is
assumed and the profile with the respective <match> section will not be applied or recommended.
Therefore, the nesting (child <match> sections) works as logical AND operator. Conversely, if any item
of the <match> list matches, the entire <match> list evaluates to true. Therefore, the list acts as logical
OR operator.

If machineConfigLabels is defined, machine config pool based matching is turned on for the given
recommend: list item. <mcLabels> specifies the labels for a machine config. The machine config is

 match: 3
 <match> 4
 priority: <priority> 5
 profile: <tuned_profile_name> 6
 operand: 7
 debug: <bool> 8
 tunedConfig:
 reapply_sysctl: <bool> 9

- label: <label_name> 1
 value: <label_value> 2
 type: <label_type> 3
 <match> 4

CHAPTER 4. USING THE NODE TUNING OPERATOR

49

created automatically to apply host settings, such as kernel boot parameters, for the profile
<tuned_profile_name>. This involves finding all machine config pools with machine config selector
matching <mcLabels> and setting the profile <tuned_profile_name> on all nodes that are assigned
the found machine config pools. To target nodes that have both master and worker roles, you must use
the master role.

The list items match and machineConfigLabels are connected by the logical OR operator. The match
item is evaluated first in a short-circuit manner. Therefore, if it evaluates to true, the
machineConfigLabels item is not considered.

IMPORTANT

When using machine config pool based matching, it is advised to group nodes with the
same hardware configuration into the same machine config pool. Not following this
practice might result in TuneD operands calculating conflicting kernel parameters for two
or more nodes sharing the same machine config pool.

Example: Node or pod label based matching

The CR above is translated for the containerized TuneD daemon into its recommend.conf file based on
the profile priorities. The profile with the highest priority (10) is openshift-control-plane-es and,
therefore, it is considered first. The containerized TuneD daemon running on a given node looks to see if
there is a pod running on the same node with the tuned.openshift.io/elasticsearch label set. If not, the
entire <match> section evaluates as false. If there is such a pod with the label, in order for the <match>
section to evaluate to true, the node label also needs to be node-role.kubernetes.io/master or node-
role.kubernetes.io/infra.

If the labels for the profile with priority 10 matched, openshift-control-plane-es profile is applied and
no other profile is considered. If the node/pod label combination did not match, the second highest
priority profile (openshift-control-plane) is considered. This profile is applied if the containerized
TuneD pod runs on a node with labels node-role.kubernetes.io/master or node-
role.kubernetes.io/infra.

Finally, the profile openshift-node has the lowest priority of 30. It lacks the <match> section and,
therefore, will always match. It acts as a profile catch-all to set openshift-node profile, if no other profile
with higher priority matches on a given node.

- match:
 - label: tuned.openshift.io/elasticsearch
 match:
 - label: node-role.kubernetes.io/master
 - label: node-role.kubernetes.io/infra
 type: pod
 priority: 10
 profile: openshift-control-plane-es
- match:
 - label: node-role.kubernetes.io/master
 - label: node-role.kubernetes.io/infra
 priority: 20
 profile: openshift-control-plane
- priority: 30
 profile: openshift-node

OpenShift Container Platform 4.15 Scalability and performance

50

Example: Machine config pool based matching

To minimize node reboots, label the target nodes with a label the machine config pool’s node selector
will match, then create the Tuned CR above and finally create the custom machine config pool itself.

Cloud provider-specific TuneD profiles

With this functionality, all Cloud provider-specific nodes can conveniently be assigned a TuneD profile

apiVersion: tuned.openshift.io/v1
kind: Tuned
metadata:
 name: openshift-node-custom
 namespace: openshift-cluster-node-tuning-operator
spec:
 profile:
 - data: |
 [main]
 summary=Custom OpenShift node profile with an additional kernel parameter
 include=openshift-node
 [bootloader]
 cmdline_openshift_node_custom=+skew_tick=1
 name: openshift-node-custom

 recommend:
 - machineConfigLabels:
 machineconfiguration.openshift.io/role: "worker-custom"
 priority: 20
 profile: openshift-node-custom

CHAPTER 4. USING THE NODE TUNING OPERATOR

51

With this functionality, all Cloud provider-specific nodes can conveniently be assigned a TuneD profile
specifically tailored to a given Cloud provider on a OpenShift Container Platform cluster. This can be
accomplished without adding additional node labels or grouping nodes into machine config pools.

This functionality takes advantage of spec.providerID node object values in the form of <cloud-
provider>://<cloud-provider-specific-id> and writes the file /var/lib/tuned/provider with the value
<cloud-provider> in NTO operand containers. The content of this file is then used by TuneD to load
provider-<cloud-provider> profile if such profile exists.

The openshift profile that both openshift-control-plane and openshift-node profiles inherit settings
from is now updated to use this functionality through the use of conditional profile loading. Neither NTO
nor TuneD currently include any Cloud provider-specific profiles. However, it is possible to create a
custom profile provider-<cloud-provider> that will be applied to all Cloud provider-specific cluster
nodes.

Example GCE Cloud provider profile

NOTE

Due to profile inheritance, any setting specified in the provider-<cloud-provider> profile
will be overwritten by the openshift profile and its child profiles.

4.6. CUSTOM TUNING EXAMPLES

Using TuneD profiles from the default CR

The following CR applies custom node-level tuning for OpenShift Container Platform nodes with label
tuned.openshift.io/ingress-node-label set to any value.

Example: custom tuning using the openshift-control-plane TuneD profile

apiVersion: tuned.openshift.io/v1
kind: Tuned
metadata:
 name: provider-gce
 namespace: openshift-cluster-node-tuning-operator
spec:
 profile:
 - data: |
 [main]
 summary=GCE Cloud provider-specific profile
 # Your tuning for GCE Cloud provider goes here.
 name: provider-gce

apiVersion: tuned.openshift.io/v1
kind: Tuned
metadata:
 name: ingress
 namespace: openshift-cluster-node-tuning-operator
spec:
 profile:
 - data: |
 [main]
 summary=A custom OpenShift ingress profile
 include=openshift-control-plane

OpenShift Container Platform 4.15 Scalability and performance

52

IMPORTANT

Custom profile writers are strongly encouraged to include the default TuneD daemon
profiles shipped within the default Tuned CR. The example above uses the default
openshift-control-plane profile to accomplish this.

Using built-in TuneD profiles

Given the successful rollout of the NTO-managed daemon set, the TuneD operands all manage the
same version of the TuneD daemon. To list the built-in TuneD profiles supported by the daemon, query
any TuneD pod in the following way:

You can use the profile names retrieved by this in your custom tuning specification.

Example: using built-in hpc-compute TuneD profile

In addition to the built-in hpc-compute profile, the example above includes the openshift-node TuneD
daemon profile shipped within the default Tuned CR to use OpenShift-specific tuning for compute
nodes.

Overriding host-level sysctls

 [sysctl]
 net.ipv4.ip_local_port_range="1024 65535"
 net.ipv4.tcp_tw_reuse=1
 name: openshift-ingress
 recommend:
 - match:
 - label: tuned.openshift.io/ingress-node-label
 priority: 10
 profile: openshift-ingress

$ oc exec $tuned_pod -n openshift-cluster-node-tuning-operator -- find /usr/lib/tuned/ -name
tuned.conf -printf '%h\n' | sed 's|^.*/||'

apiVersion: tuned.openshift.io/v1
kind: Tuned
metadata:
 name: openshift-node-hpc-compute
 namespace: openshift-cluster-node-tuning-operator
spec:
 profile:
 - data: |
 [main]
 summary=Custom OpenShift node profile for HPC compute workloads
 include=openshift-node,hpc-compute
 name: openshift-node-hpc-compute

 recommend:
 - match:
 - label: tuned.openshift.io/openshift-node-hpc-compute
 priority: 20
 profile: openshift-node-hpc-compute

CHAPTER 4. USING THE NODE TUNING OPERATOR

53

Various kernel parameters can be changed at runtime by using /run/sysctl.d/, /etc/sysctl.d/, and
/etc/sysctl.conf host configuration files. OpenShift Container Platform adds several host configuration
files which set kernel parameters at runtime; for example, net.ipv[4-6]., fs.inotify., and
vm.max_map_count. These runtime parameters provide basic functional tuning for the system prior to
the kubelet and the Operator start.

The Operator does not override these settings unless the reapply_sysctl option is set to false. Setting
this option to false results in TuneD not applying the settings from the host configuration files after it
applies its custom profile.

Example: overriding host-level sysctls

4.7. SUPPORTED TUNED DAEMON PLUGINS

Excluding the [main] section, the following TuneD plugins are supported when using custom profiles
defined in the profile: section of the Tuned CR:

audio

cpu

disk

eeepc_she

modules

mounts

net

scheduler

apiVersion: tuned.openshift.io/v1
kind: Tuned
metadata:
 name: openshift-no-reapply-sysctl
 namespace: openshift-cluster-node-tuning-operator
spec:
 profile:
 - data: |
 [main]
 summary=Custom OpenShift profile
 include=openshift-node
 [sysctl]
 vm.max_map_count=>524288
 name: openshift-no-reapply-sysctl
 recommend:
 - match:
 - label: tuned.openshift.io/openshift-no-reapply-sysctl
 priority: 15
 profile: openshift-no-reapply-sysctl
 operand:
 tunedConfig:
 reapply_sysctl: false

OpenShift Container Platform 4.15 Scalability and performance

54

scsi_host

selinux

sysctl

sysfs

usb

video

vm

bootloader

There is some dynamic tuning functionality provided by some of these plugins that is not supported. The
following TuneD plugins are currently not supported:

script

systemd

NOTE

The TuneD bootloader plugin only supports Red Hat Enterprise Linux CoreOS (RHCOS)
worker nodes.

Additional resources

Available TuneD Plugins

Getting Started with TuneD

4.8. CONFIGURING NODE TUNING IN A HOSTED CLUSTER

To set node-level tuning on the nodes in your hosted cluster, you can use the Node Tuning Operator. In
hosted control planes, you can configure node tuning by creating config maps that contain Tuned
objects and referencing those config maps in your node pools.

Procedure

1. Create a config map that contains a valid tuned manifest, and reference the manifest in a node
pool. In the following example, a Tuned manifest defines a profile that sets vm.dirty_ratio to 55
on nodes that contain the tuned-1-node-label node label with any value. Save the following
ConfigMap manifest in a file named tuned-1.yaml:

 apiVersion: v1
 kind: ConfigMap
 metadata:
 name: tuned-1
 namespace: clusters
 data:
 tuning: |
 apiVersion: tuned.openshift.io/v1

CHAPTER 4. USING THE NODE TUNING OPERATOR

55

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/customizing-tuned-profiles_monitoring-and-managing-system-status-and-performance#available-tuned-plug-ins_customizing-tuned-profiles
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/getting-started-with-tuned_monitoring-and-managing-system-status-and-performance

NOTE

If you do not add any labels to an entry in the spec.recommend section of the
Tuned spec, node-pool-based matching is assumed, so the highest priority
profile in the spec.recommend section is applied to nodes in the pool. Although
you can achieve more fine-grained node-label-based matching by setting a label
value in the Tuned .spec.recommend.match section, node labels will not persist
during an upgrade unless you set the .spec.management.upgradeType value of
the node pool to InPlace.

2. Create the ConfigMap object in the management cluster:

3. Reference the ConfigMap object in the spec.tuningConfig field of the node pool, either by
editing a node pool or creating one. In this example, assume that you have only one NodePool,
named nodepool-1, which contains 2 nodes.

NOTE

 kind: Tuned
 metadata:
 name: tuned-1
 namespace: openshift-cluster-node-tuning-operator
 spec:
 profile:
 - data: |
 [main]
 summary=Custom OpenShift profile
 include=openshift-node
 [sysctl]
 vm.dirty_ratio="55"
 name: tuned-1-profile
 recommend:
 - priority: 20
 profile: tuned-1-profile

$ oc --kubeconfig="$MGMT_KUBECONFIG" create -f tuned-1.yaml

 apiVersion: hypershift.openshift.io/v1alpha1
 kind: NodePool
 metadata:
 ...
 name: nodepool-1
 namespace: clusters
 ...
 spec:
 ...
 tuningConfig:
 - name: tuned-1
 status:
 ...

OpenShift Container Platform 4.15 Scalability and performance

56

NOTE

You can reference the same config map in multiple node pools. In hosted control
planes, the Node Tuning Operator appends a hash of the node pool name and
namespace to the name of the Tuned CRs to distinguish them. Outside of this
case, do not create multiple TuneD profiles of the same name in different Tuned
CRs for the same hosted cluster.

Verification

Now that you have created the ConfigMap object that contains a Tuned manifest and referenced it in a
NodePool, the Node Tuning Operator syncs the Tuned objects into the hosted cluster. You can verify
which Tuned objects are defined and which TuneD profiles are applied to each node.

1. List the Tuned objects in the hosted cluster:

Example output

2. List the Profile objects in the hosted cluster:

Example output

NOTE

If no custom profiles are created, the openshift-node profile is applied by
default.

3. To confirm that the tuning was applied correctly, start a debug shell on a node and check the
sysctl values:

Example output

$ oc --kubeconfig="$HC_KUBECONFIG" get tuned.tuned.openshift.io -n openshift-cluster-
node-tuning-operator

NAME AGE
default 7m36s
rendered 7m36s
tuned-1 65s

$ oc --kubeconfig="$HC_KUBECONFIG" get profile.tuned.openshift.io -n openshift-cluster-
node-tuning-operator

NAME TUNED APPLIED DEGRADED AGE
nodepool-1-worker-1 tuned-1-profile True False 7m43s
nodepool-1-worker-2 tuned-1-profile True False 7m14s

$ oc --kubeconfig="$HC_KUBECONFIG" debug node/nodepool-1-worker-1 -- chroot /host
sysctl vm.dirty_ratio

vm.dirty_ratio = 55

CHAPTER 4. USING THE NODE TUNING OPERATOR

57

4.9. ADVANCED NODE TUNING FOR HOSTED CLUSTERS BY SETTING
KERNEL BOOT PARAMETERS

For more advanced tuning in hosted control planes, which requires setting kernel boot parameters, you
can also use the Node Tuning Operator. The following example shows how you can create a node pool
with huge pages reserved.

Procedure

1. Create a ConfigMap object that contains a Tuned object manifest for creating 10 huge pages
that are 2 MB in size. Save this ConfigMap manifest in a file named tuned-hugepages.yaml:

NOTE

The .spec.recommend.match field is intentionally left blank. In this case, this
Tuned object is applied to all nodes in the node pool where this ConfigMap
object is referenced. Group nodes with the same hardware configuration into the
same node pool. Otherwise, TuneD operands can calculate conflicting kernel
parameters for two or more nodes that share the same node pool.

2. Create the ConfigMap object in the management cluster:

3. Create a NodePool manifest YAML file, customize the upgrade type of the NodePool, and
reference the ConfigMap object that you created in the spec.tuningConfig section. Create
the NodePool manifest and save it in a file named hugepages-nodepool.yaml by using the
hcp CLI:

 apiVersion: v1
 kind: ConfigMap
 metadata:
 name: tuned-hugepages
 namespace: clusters
 data:
 tuning: |
 apiVersion: tuned.openshift.io/v1
 kind: Tuned
 metadata:
 name: hugepages
 namespace: openshift-cluster-node-tuning-operator
 spec:
 profile:
 - data: |
 [main]
 summary=Boot time configuration for hugepages
 include=openshift-node
 [bootloader]
 cmdline_openshift_node_hugepages=hugepagesz=2M hugepages=50
 name: openshift-node-hugepages
 recommend:
 - priority: 20
 profile: openshift-node-hugepages

$ oc --kubeconfig="$MGMT_KUBECONFIG" create -f tuned-hugepages.yaml

OpenShift Container Platform 4.15 Scalability and performance

58

4. In the hugepages-nodepool.yaml file, set .spec.management.upgradeType to InPlace, and
set .spec.tuningConfig to reference the tuned-hugepages ConfigMap object that you
created.

NOTE

To avoid the unnecessary re-creation of nodes when you apply the new
MachineConfig objects, set .spec.management.upgradeType to InPlace. If you
use the Replace upgrade type, nodes are fully deleted and new nodes can
replace them when you apply the new kernel boot parameters that the TuneD
operand calculated.

5. Create the NodePool in the management cluster:

Verification

After the nodes are available, the containerized TuneD daemon calculates the required kernel boot
parameters based on the applied TuneD profile. After the nodes are ready and reboot once to apply the
generated MachineConfig object, you can verify that the TuneD profile is applied and that the kernel
boot parameters are set.

1. List the Tuned objects in the hosted cluster:

Example output

 NODEPOOL_NAME=hugepages-example
 INSTANCE_TYPE=m5.2xlarge
 NODEPOOL_REPLICAS=2

 hcp create nodepool aws \
 --cluster-name $CLUSTER_NAME \
 --name $NODEPOOL_NAME \
 --node-count $NODEPOOL_REPLICAS \
 --instance-type $INSTANCE_TYPE \
 --render > hugepages-nodepool.yaml

 apiVersion: hypershift.openshift.io/v1alpha1
 kind: NodePool
 metadata:
 name: hugepages-nodepool
 namespace: clusters
 ...
 spec:
 management:
 ...
 upgradeType: InPlace
 ...
 tuningConfig:
 - name: tuned-hugepages

$ oc --kubeconfig="$MGMT_KUBECONFIG" create -f hugepages-nodepool.yaml

$ oc --kubeconfig="$HC_KUBECONFIG" get tuned.tuned.openshift.io -n openshift-cluster-
node-tuning-operator

CHAPTER 4. USING THE NODE TUNING OPERATOR

59

2. List the Profile objects in the hosted cluster:

Example output

Both of the worker nodes in the new NodePool have the openshift-node-hugepages profile
applied.

3. To confirm that the tuning was applied correctly, start a debug shell on a node and check
/proc/cmdline.

Example output

Additional resources

For more information about hosted control planes, see Hosted control planes .

NAME AGE
default 123m
hugepages-8dfb1fed 1m23s
rendered 123m

$ oc --kubeconfig="$HC_KUBECONFIG" get profile.tuned.openshift.io -n openshift-cluster-
node-tuning-operator

NAME TUNED APPLIED DEGRADED AGE
nodepool-1-worker-1 openshift-node True False 132m
nodepool-1-worker-2 openshift-node True False 131m
hugepages-nodepool-worker-1 openshift-node-hugepages True False 4m8s
hugepages-nodepool-worker-2 openshift-node-hugepages True False 3m57s

$ oc --kubeconfig="$HC_KUBECONFIG" debug node/nodepool-1-worker-1 -- chroot /host
cat /proc/cmdline

BOOT_IMAGE=(hd0,gpt3)/ostree/rhcos-... hugepagesz=2M hugepages=50

OpenShift Container Platform 4.15 Scalability and performance

60

https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.9/html/clusters/cluster_mce_overview#hosted-control-planes-intro

CHAPTER 5. USING CPU MANAGER AND TOPOLOGY
MANAGER

CPU Manager manages groups of CPUs and constrains workloads to specific CPUs.

CPU Manager is useful for workloads that have some of these attributes:

Require as much CPU time as possible.

Are sensitive to processor cache misses.

Are low-latency network applications.

Coordinate with other processes and benefit from sharing a single processor cache.

Topology Manager collects hints from the CPU Manager, Device Manager, and other Hint Providers to
align pod resources, such as CPU, SR-IOV VFs, and other device resources, for all Quality of Service
(QoS) classes on the same non-uniform memory access (NUMA) node.

Topology Manager uses topology information from the collected hints to decide if a pod can be
accepted or rejected on a node, based on the configured Topology Manager policy and pod resources
requested.

Topology Manager is useful for workloads that use hardware accelerators to support latency-critical
execution and high throughput parallel computation.

To use Topology Manager you must configure CPU Manager with the static policy.

5.1. SETTING UP CPU MANAGER

To configure CPU manager, create a KubeletConfig custom resource (CR) and apply it to the desired
set of nodes.

Procedure

1. Label a node by running the following command:

2. To enable CPU Manager for all compute nodes, edit the CR by running the following command:

3. Add the custom-kubelet: cpumanager-enabled label to metadata.labels section.

4. Create a KubeletConfig, cpumanager-kubeletconfig.yaml, custom resource (CR). Refer to
the label created in the previous step to have the correct nodes updated with the new kubelet
config. See the machineConfigPoolSelector section:

oc label node perf-node.example.com cpumanager=true

oc edit machineconfigpool worker

metadata:
 creationTimestamp: 2020-xx-xxx
 generation: 3
 labels:
 custom-kubelet: cpumanager-enabled

CHAPTER 5. USING CPU MANAGER AND TOPOLOGY MANAGER

61

1

2

Specify a policy:

none. This policy explicitly enables the existing default CPU affinity scheme, providing
no affinity beyond what the scheduler does automatically. This is the default policy.

static. This policy allows containers in guaranteed pods with integer CPU requests. It
also limits access to exclusive CPUs on the node. If static, you must use a lowercase s.

Optional. Specify the CPU Manager reconcile frequency. The default is 5s.

5. Create the dynamic kubelet config by running the following command:

This adds the CPU Manager feature to the kubelet config and, if needed, the Machine Config
Operator (MCO) reboots the node. To enable CPU Manager, a reboot is not needed.

6. Check for the merged kubelet config by running the following command:

Example output

7. Check the compute node for the updated kubelet.conf file by running the following command:

Example output

apiVersion: machineconfiguration.openshift.io/v1
kind: KubeletConfig
metadata:
 name: cpumanager-enabled
spec:
 machineConfigPoolSelector:
 matchLabels:
 custom-kubelet: cpumanager-enabled
 kubeletConfig:
 cpuManagerPolicy: static 1
 cpuManagerReconcilePeriod: 5s 2

oc create -f cpumanager-kubeletconfig.yaml

oc get machineconfig 99-worker-XXXXXX-XXXXX-XXXX-XXXXX-kubelet -o json | grep
ownerReference -A7

 "ownerReferences": [
 {
 "apiVersion": "machineconfiguration.openshift.io/v1",
 "kind": "KubeletConfig",
 "name": "cpumanager-enabled",
 "uid": "7ed5616d-6b72-11e9-aae1-021e1ce18878"
 }
]

oc debug node/perf-node.example.com
sh-4.2# cat /host/etc/kubernetes/kubelet.conf | grep cpuManager

OpenShift Container Platform 4.15 Scalability and performance

62

1

2

cpuManagerPolicy is defined when you create the KubeletConfig CR.

cpuManagerReconcilePeriod is defined when you create the KubeletConfig CR.

8. Create a project by running the following command:

9. Create a pod that requests a core or multiple cores. Both limits and requests must have their
CPU value set to a whole integer. That is the number of cores that will be dedicated to this pod:

Example output

10. Create the pod:

Verification

1. Verify that the pod is scheduled to the node that you labeled by running the following
command:

cpuManagerPolicy: static 1
cpuManagerReconcilePeriod: 5s 2

$ oc new-project <project_name>

cat cpumanager-pod.yaml

apiVersion: v1
kind: Pod
metadata:
 generateName: cpumanager-
spec:
 securityContext:
 runAsNonRoot: true
 seccompProfile:
 type: RuntimeDefault
 containers:
 - name: cpumanager
 image: gcr.io/google_containers/pause:3.2
 resources:
 requests:
 cpu: 1
 memory: "1G"
 limits:
 cpu: 1
 memory: "1G"
 securityContext:
 allowPrivilegeEscalation: false
 capabilities:
 drop: [ALL]
 nodeSelector:
 cpumanager: "true"

oc create -f cpumanager-pod.yaml

CHAPTER 5. USING CPU MANAGER AND TOPOLOGY MANAGER

63

Example output

2. Verify that a CPU has been exclusively assigned to the pod by running the following command:

Example output

3. Verify that the cgroups are set up correctly. Get the process ID (PID) of the pause process by
running the following commands:

NOTE

If the output returns multiple pause process entries, you must identify the
correct pause process.

Example output

oc describe pod cpumanager

Name: cpumanager-6cqz7
Namespace: default
Priority: 0
PriorityClassName: <none>
Node: perf-node.example.com/xxx.xx.xx.xxx
...
 Limits:
 cpu: 1
 memory: 1G
 Requests:
 cpu: 1
 memory: 1G
...
QoS Class: Guaranteed
Node-Selectors: cpumanager=true

oc describe node --selector='cpumanager=true' | grep -i cpumanager- -B2

NAMESPACE NAME CPU Requests CPU Limits Memory Requests Memory
Limits Age
cpuman cpumanager-mlrrz 1 (28%) 1 (28%) 1G (13%) 1G (13%) 27m

oc debug node/perf-node.example.com

sh-4.2# systemctl status | grep -B5 pause

├─init.scope
│ └─1 /usr/lib/systemd/systemd --switched-root --system --deserialize 17
└─kubepods.slice
 ├─kubepods-pod69c01f8e_6b74_11e9_ac0f_0a2b62178a22.slice
 │ ├─crio-b5437308f1a574c542bdf08563b865c0345c8f8c0b0a655612c.scope
 │ └─32706 /pause

OpenShift Container Platform 4.15 Scalability and performance

64

4. Verify that pods of quality of service (QoS) tier Guaranteed are placed within the
kubepods.slice subdirectory by running the following commands:

NOTE

Pods of other QoS tiers end up in child cgroups of the parent kubepods.

Example output

5. Check the allowed CPU list for the task by running the following command:

Example output

6. Verify that another pod on the system cannot run on the core allocated for the Guaranteed
pod. For example, to verify the pod in the besteffort QoS tier, run the following commands:

Example output

cd /sys/fs/cgroup/kubepods.slice/kubepods-
pod69c01f8e_6b74_11e9_ac0f_0a2b62178a22.slice/crio-
b5437308f1ad1a7db0574c542bdf08563b865c0345c86e9585f8c0b0a655612c.scope

for i in `ls cpuset.cpus cgroup.procs` ; do echo -n "$i "; cat $i ; done

cpuset.cpus 1
tasks 32706

grep ^Cpus_allowed_list /proc/32706/status

 Cpus_allowed_list: 1

cat /sys/fs/cgroup/kubepods.slice/kubepods-besteffort.slice/kubepods-besteffort-
podc494a073_6b77_11e9_98c0_06bba5c387ea.slice/crio-
c56982f57b75a2420947f0afc6cafe7534c5734efc34157525fa9abbf99e3849.scope/cpuset.cpus

oc describe node perf-node.example.com

...
Capacity:
 attachable-volumes-aws-ebs: 39
 cpu: 2
 ephemeral-storage: 124768236Ki
 hugepages-1Gi: 0
 hugepages-2Mi: 0
 memory: 8162900Ki
 pods: 250
Allocatable:
 attachable-volumes-aws-ebs: 39
 cpu: 1500m
 ephemeral-storage: 124768236Ki
 hugepages-1Gi: 0

CHAPTER 5. USING CPU MANAGER AND TOPOLOGY MANAGER

65

This VM has two CPU cores. The system-reserved setting reserves 500 millicores, meaning
that half of one core is subtracted from the total capacity of the node to arrive at the Node
Allocatable amount. You can see that Allocatable CPU is 1500 millicores. This means you can
run one of the CPU Manager pods since each will take one whole core. A whole core is
equivalent to 1000 millicores. If you try to schedule a second pod, the system will accept the
pod, but it will never be scheduled:

5.2. TOPOLOGY MANAGER POLICIES

Topology Manager aligns Pod resources of all Quality of Service (QoS) classes by collecting topology
hints from Hint Providers, such as CPU Manager and Device Manager, and using the collected hints to
align the Pod resources.

Topology Manager supports four allocation policies, which you assign in the KubeletConfig custom
resource (CR) named cpumanager-enabled:

none policy

This is the default policy and does not perform any topology alignment.

best-effort policy

For each container in a pod with the best-effort topology management policy, kubelet calls each Hint
Provider to discover their resource availability. Using this information, the Topology Manager stores
the preferred NUMA Node affinity for that container. If the affinity is not preferred, Topology
Manager stores this and admits the pod to the node.

restricted policy

For each container in a pod with the restricted topology management policy, kubelet calls each Hint
Provider to discover their resource availability. Using this information, the Topology Manager stores
the preferred NUMA Node affinity for that container. If the affinity is not preferred, Topology
Manager rejects this pod from the node, resulting in a pod in a Terminated state with a pod
admission failure.

single-numa-node policy

For each container in a pod with the single-numa-node topology management policy, kubelet calls
each Hint Provider to discover their resource availability. Using this information, the Topology
Manager determines if a single NUMA Node affinity is possible. If it is, the pod is admitted to the

 hugepages-2Mi: 0
 memory: 7548500Ki
 pods: 250
------- ---- ------------ ---------- --------------- ------------- --
-
 default cpumanager-6cqz7 1 (66%) 1 (66%) 1G (12%)
1G (12%) 29m

Allocated resources:
 (Total limits may be over 100 percent, i.e., overcommitted.)
 Resource Requests Limits
 -------- -------- ------
 cpu 1440m (96%) 1 (66%)

NAME READY STATUS RESTARTS AGE
cpumanager-6cqz7 1/1 Running 0 33m
cpumanager-7qc2t 0/1 Pending 0 11s

OpenShift Container Platform 4.15 Scalability and performance

66

1

2

node. If a single NUMA Node affinity is not possible, the Topology Manager rejects the pod from the
node. This results in a pod in a Terminated state with a pod admission failure.

5.3. SETTING UP TOPOLOGY MANAGER

To use Topology Manager, you must configure an allocation policy in the KubeletConfig custom
resource (CR) named cpumanager-enabled. This file might exist if you have set up CPU Manager. If the
file does not exist, you can create the file.

Prerequisites

Configure the CPU Manager policy to be static.

Procedure

To activate Topology Manager:

1. Configure the Topology Manager allocation policy in the custom resource.

This parameter must be static with a lowercase s.

Specify your selected Topology Manager allocation policy. Here, the policy is single-numa-
node. Acceptable values are: default, best-effort, restricted, single-numa-node.

5.4. POD INTERACTIONS WITH TOPOLOGY MANAGER POLICIES

The example Pod specs below help illustrate pod interactions with Topology Manager.

The following pod runs in the BestEffort QoS class because no resource requests or limits are specified.

The next pod runs in the Burstable QoS class because requests are less than limits.

$ oc edit KubeletConfig cpumanager-enabled

apiVersion: machineconfiguration.openshift.io/v1
kind: KubeletConfig
metadata:
 name: cpumanager-enabled
spec:
 machineConfigPoolSelector:
 matchLabels:
 custom-kubelet: cpumanager-enabled
 kubeletConfig:
 cpuManagerPolicy: static 1
 cpuManagerReconcilePeriod: 5s
 topologyManagerPolicy: single-numa-node 2

spec:
 containers:
 - name: nginx
 image: nginx

spec:

CHAPTER 5. USING CPU MANAGER AND TOPOLOGY MANAGER

67

If the selected policy is anything other than none, Topology Manager would not consider either of these
Pod specifications.

The last example pod below runs in the Guaranteed QoS class because requests are equal to limits.

Topology Manager would consider this pod. The Topology Manager would consult the hint providers,
which are CPU Manager and Device Manager, to get topology hints for the pod.

Topology Manager will use this information to store the best topology for this container. In the case of
this pod, CPU Manager and Device Manager will use this stored information at the resource allocation
stage.

 containers:
 - name: nginx
 image: nginx
 resources:
 limits:
 memory: "200Mi"
 requests:
 memory: "100Mi"

spec:
 containers:
 - name: nginx
 image: nginx
 resources:
 limits:
 memory: "200Mi"
 cpu: "2"
 example.com/device: "1"
 requests:
 memory: "200Mi"
 cpu: "2"
 example.com/device: "1"

OpenShift Container Platform 4.15 Scalability and performance

68

CHAPTER 6. SCHEDULING NUMA-AWARE WORKLOADS
Learn about NUMA-aware scheduling and how you can use it to deploy high performance workloads in
an OpenShift Container Platform cluster.

The NUMA Resources Operator allows you to schedule high-performance workloads in the same NUMA
zone. It deploys a node resources exporting agent that reports on available cluster node NUMA
resources, and a secondary scheduler that manages the workloads.

6.1. ABOUT NUMA-AWARE SCHEDULING

Introduction to NUMA
Non-Uniform Memory Access (NUMA) is a compute platform architecture that allows different CPUs to
access different regions of memory at different speeds. NUMA resource topology refers to the
locations of CPUs, memory, and PCI devices relative to each other in the compute node. Colocated
resources are said to be in the same NUMA zone. For high-performance applications, the cluster needs
to process pod workloads in a single NUMA zone.

Performance considerations
NUMA architecture allows a CPU with multiple memory controllers to use any available memory across
CPU complexes, regardless of where the memory is located. This allows for increased flexibility at the
expense of performance. A CPU processing a workload using memory that is outside its NUMA zone is
slower than a workload processed in a single NUMA zone. Also, for I/O-constrained workloads, the
network interface on a distant NUMA zone slows down how quickly information can reach the
application. High-performance workloads, such as telecommunications workloads, cannot operate to
specification under these conditions.

NUMA-aware scheduling
NUMA-aware scheduling aligns the requested cluster compute resources (CPUs, memory, devices) in
the same NUMA zone to process latency-sensitive or high-performance workloads efficiently. NUMA-
aware scheduling also improves pod density per compute node for greater resource efficiency.

Integration with Node Tuning Operator
By integrating the Node Tuning Operator’s performance profile with NUMA-aware scheduling, you can
further configure CPU affinity to optimize performance for latency-sensitive workloads.

Default scheduling logic
The default OpenShift Container Platform pod scheduler scheduling logic considers the available
resources of the entire compute node, not individual NUMA zones. If the most restrictive resource
alignment is requested in the kubelet topology manager, error conditions can occur when admitting the
pod to a node. Conversely, if the most restrictive resource alignment is not requested, the pod can be
admitted to the node without proper resource alignment, leading to worse or unpredictable
performance. For example, runaway pod creation with Topology Affinity Error statuses can occur when
the pod scheduler makes suboptimal scheduling decisions for guaranteed pod workloads without
knowing if the pod’s requested resources are available. Scheduling mismatch decisions can cause
indefinite pod startup delays. Also, depending on the cluster state and resource allocation, poor pod
scheduling decisions can cause extra load on the cluster because of failed startup attempts.

NUMA-aware pod scheduling diagram
The NUMA Resources Operator deploys a custom NUMA resources secondary scheduler and other
resources to mitigate against the shortcomings of the default OpenShift Container Platform pod
scheduler. The following diagram provides a high-level overview of NUMA-aware pod scheduling.

Figure 6.1. NUMA-aware scheduling overview

CHAPTER 6. SCHEDULING NUMA-AWARE WORKLOADS

69

Figure 6.1. NUMA-aware scheduling overview

NodeResourceTopology API

The NodeResourceTopology API describes the available NUMA zone resources in each compute
node.

NUMA-aware scheduler

The NUMA-aware secondary scheduler receives information about the available NUMA zones from
the NodeResourceTopology API and schedules high-performance workloads on a node where it
can be optimally processed.

Node topology exporter

The node topology exporter exposes the available NUMA zone resources for each compute node to
the NodeResourceTopology API. The node topology exporter daemon tracks the resource
allocation from the kubelet by using the PodResources API.

PodResources API

The PodResources API is local to each node and exposes the resource topology and available
resources to the kubelet.

NOTE

The List endpoint of the PodResources API exposes exclusive CPUs allocated to a
particular container. The API does not expose CPUs that belong to a shared pool.

The GetAllocatableResources endpoint exposes allocatable resources available on a
node.

Additional resources

For more information about running secondary pod schedulers in your cluster and how to deploy
pods with a secondary pod scheduler, see Scheduling pods using a secondary scheduler .

OpenShift Container Platform 4.15 Scalability and performance

70

https://docs.redhat.com/en/documentation/openshift_container_platform/4.15/html-single/nodes/#secondary-scheduler-configuring

6.2. INSTALLING THE NUMA RESOURCES OPERATOR

NUMA Resources Operator deploys resources that allow you to schedule NUMA-aware workloads and
deployments. You can install the NUMA Resources Operator using the OpenShift Container Platform
CLI or the web console.

6.2.1. Installing the NUMA Resources Operator using the CLI

As a cluster administrator, you can install the Operator using the CLI.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

1. Create a namespace for the NUMA Resources Operator:

a. Save the following YAML in the nro-namespace.yaml file:

b. Create the Namespace CR by running the following command:

2. Create the Operator group for the NUMA Resources Operator:

a. Save the following YAML in the nro-operatorgroup.yaml file:

b. Create the OperatorGroup CR by running the following command:

3. Create the subscription for the NUMA Resources Operator:

a. Save the following YAML in the nro-sub.yaml file:

apiVersion: v1
kind: Namespace
metadata:
 name: openshift-numaresources

$ oc create -f nro-namespace.yaml

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: numaresources-operator
 namespace: openshift-numaresources
spec:
 targetNamespaces:
 - openshift-numaresources

$ oc create -f nro-operatorgroup.yaml

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription

CHAPTER 6. SCHEDULING NUMA-AWARE WORKLOADS

71

b. Create the Subscription CR by running the following command:

Verification

1. Verify that the installation succeeded by inspecting the CSV resource in the openshift-
numaresources namespace. Run the following command:

Example output

6.2.2. Installing the NUMA Resources Operator using the web console

As a cluster administrator, you can install the NUMA Resources Operator using the web console.

Procedure

1. Create a namespace for the NUMA Resources Operator:

a. In the OpenShift Container Platform web console, click Administration → Namespaces.

b. Click Create Namespace, enter openshift-numaresources in the Name field, and then
click Create.

2. Install the NUMA Resources Operator:

a. In the OpenShift Container Platform web console, click Operators → OperatorHub.

b. Choose numaresources-operator from the list of available Operators, and then click
Install.

c. In the Installed Namespaces field, select the openshift-numaresources namespace, and
then click Install.

3. Optional: Verify that the NUMA Resources Operator installed successfully:

a. Switch to the Operators → Installed Operators page.

b. Ensure that NUMA Resources Operator is listed in the openshift-numaresources
namespace with a Status of InstallSucceeded.

NOTE

metadata:
 name: numaresources-operator
 namespace: openshift-numaresources
spec:
 channel: "4.15"
 name: numaresources-operator
 source: redhat-operators
 sourceNamespace: openshift-marketplace

$ oc create -f nro-sub.yaml

$ oc get csv -n openshift-numaresources

NAME DISPLAY VERSION REPLACES PHASE
numaresources-operator.v4.15.2 numaresources-operator 4.15.2 Succeeded

OpenShift Container Platform 4.15 Scalability and performance

72

NOTE

During installation an Operator might display a Failed status. If the
installation later succeeds with an InstallSucceeded message, you can ignore
the Failed message.

If the Operator does not appear as installed, to troubleshoot further:

Go to the Operators → Installed Operators page and inspect the Operator
Subscriptions and Install Plans tabs for any failure or errors under Status.

Go to the Workloads → Pods page and check the logs for pods in the default project.

6.3. SCHEDULING NUMA-AWARE WORKLOADS

Clusters running latency-sensitive workloads typically feature performance profiles that help to
minimize workload latency and optimize performance. The NUMA-aware scheduler deploys workloads
based on available node NUMA resources and with respect to any performance profile settings applied
to the node. The combination of NUMA-aware deployments, and the performance profile of the
workload, ensures that workloads are scheduled in a way that maximizes performance.

For the NUMA Resources Operator to be fully operational, you must deploy the
NUMAResourcesOperator custom resource and the NUMA-aware secondary pod scheduler.

6.3.1. Creating the NUMAResourcesOperator custom resource

When you have installed the NUMA Resources Operator, then create the NUMAResourcesOperator
custom resource (CR) that instructs the NUMA Resources Operator to install all the cluster
infrastructure needed to support the NUMA-aware scheduler, including daemon sets and APIs.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Install the NUMA Resources Operator.

Procedure

1. Create the NUMAResourcesOperator custom resource:

a. Save the following minimal required YAML file example as nrop.yaml:

apiVersion: nodetopology.openshift.io/v1
kind: NUMAResourcesOperator
metadata:
 name: numaresourcesoperator
spec:
 nodeGroups:
 - machineConfigPoolSelector:
 matchLabels:
 pools.operator.machineconfiguration.openshift.io/worker: "" 1

CHAPTER 6. SCHEDULING NUMA-AWARE WORKLOADS

73

1 This should match the MachineConfigPool that you want to configure the NUMA
Resources Operator on. For example, you might have created a MachineConfigPool

b. Create the NUMAResourcesOperator CR by running the following command:

NOTE

Creating the NUMAResourcesOperator triggers a reboot on the
corresponding machine config pool and therefore the affected node.

Verification

1. Verify that the NUMA Resources Operator deployed successfully by running the following
command:

Example output

2. After a few minutes, run the following command to verify that the required resources deployed
successfully:

Example output

6.3.2. Deploying the NUMA-aware secondary pod scheduler

After you install the NUMA Resources Operator, do the following to deploy the NUMA-aware secondary
pod scheduler:

Procedure

1. Create the NUMAResourcesScheduler custom resource that deploys the NUMA-aware
custom pod scheduler:

a. Save the following minimal required YAML in the nro-scheduler.yaml file:

$ oc create -f nrop.yaml

$ oc get numaresourcesoperators.nodetopology.openshift.io

NAME AGE
numaresourcesoperator 27s

$ oc get all -n openshift-numaresources

NAME READY STATUS RESTARTS AGE
pod/numaresources-controller-manager-7d9d84c58d-qk2mr 1/1 Running 0 12m
pod/numaresourcesoperator-worker-7d96r 2/2 Running 0 97s
pod/numaresourcesoperator-worker-crsht 2/2 Running 0 97s
pod/numaresourcesoperator-worker-jp9mw 2/2 Running 0 97s

apiVersion: nodetopology.openshift.io/v1
kind: NUMAResourcesScheduler

OpenShift Container Platform 4.15 Scalability and performance

74

b. Create the NUMAResourcesScheduler CR by running the following command:

2. After a few seconds, run the following command to confirm the successful deployment of the
required resources:

Example output

6.3.3. Configuring a single NUMA node policy

The NUMA Resources Operator requires a single NUMA node policy to be configured on the cluster.
This can be achieved in two ways: by creating and applying a performance profile, or by configuring a
KubeletConfig.

NOTE

The preferred way to configure a single NUMA node policy is to apply a performance
profile. You can use the Performance Profile Creator (PPC) tool to create the
performance profile. If a performance profile is created on the cluster, it automatically
creates other tuning components like KubeletConfig and the tuned profile.

For more information about creating a performance profile, see "About the Performance Profile
Creator" in the "Additional Resources" section.

Additional resources

metadata:
 name: numaresourcesscheduler
spec:
 imageSpec: "registry.redhat.io/openshift4/noderesourcetopology-scheduler-rhel9:v4.15"

$ oc create -f nro-scheduler.yaml

$ oc get all -n openshift-numaresources

NAME READY STATUS RESTARTS AGE
pod/numaresources-controller-manager-7d9d84c58d-qk2mr 1/1 Running 0 12m
pod/numaresourcesoperator-worker-7d96r 2/2 Running 0 97s
pod/numaresourcesoperator-worker-crsht 2/2 Running 0 97s
pod/numaresourcesoperator-worker-jp9mw 2/2 Running 0 97s
pod/secondary-scheduler-847cb74f84-9whlm 1/1 Running 0 10m

NAME DESIRED CURRENT READY UP-TO-DATE
AVAILABLE NODE SELECTOR AGE
daemonset.apps/numaresourcesoperator-worker 3 3 3 3 3 node-
role.kubernetes.io/worker= 98s

NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/numaresources-controller-manager 1/1 1 1 12m
deployment.apps/secondary-scheduler 1/1 1 1 10m

NAME DESIRED CURRENT READY AGE
replicaset.apps/numaresources-controller-manager-7d9d84c58d 1 1 1 12m
replicaset.apps/secondary-scheduler-847cb74f84 1 1 1 10m

CHAPTER 6. SCHEDULING NUMA-AWARE WORKLOADS

75

1

2

About the Performance Profile Creator

6.3.4. Sample performance profile

This example YAML shows a performance profile created by using the performance profile creator
(PPC) tool:

This should match the MachineConfigPool that you want to configure the NUMA Resources
Operator on. For example, you might have created a MachineConfigPool named worker-cnf that
designates a set of nodes that run telecommunications workloads.

The topologyPolicy must be set to single-numa-node. Ensure that this is the case by setting the
topology-manager-policy argument to single-numa-node when running the PPC tool.

6.3.5. Creating a KubeletConfig CRD

The recommended way to configure a single NUMA node policy is to apply a performance profile.
Another way is by creating and applying a KubeletConfig custom resource (CR), as shown in the
following procedure.

Procedure

1. Create the KubeletConfig custom resource (CR) that configures the pod admittance policy for
the machine profile:

a. Save the following YAML in the nro-kubeletconfig.yaml file:

apiVersion: performance.openshift.io/v2
kind: PerformanceProfile
metadata:
 name: performance
spec:
 cpu:
 isolated: "3"
 reserved: 0-2
 machineConfigPoolSelector:
 pools.operator.machineconfiguration.openshift.io/worker: "" 1
 nodeSelector:
 node-role.kubernetes.io/worker: ""
 numa:
 topologyPolicy: single-numa-node 2
 realTimeKernel:
 enabled: true
 workloadHints:
 highPowerConsumption: true
 perPodPowerManagement: false
 realTime: true

apiVersion: machineconfiguration.openshift.io/v1
kind: KubeletConfig
metadata:
 name: worker-tuning
spec:
 machineConfigPoolSelector:

OpenShift Container Platform 4.15 Scalability and performance

76

1

2

3

4

5

Adjust this label to match the machineConfigPoolSelector in the
NUMAResourcesOperator CR.

For cpuManagerPolicy, static must use a lowercase s.

Adjust this based on the CPU on your nodes.

For memoryManagerPolicy, Static must use an uppercase S.

topologyManagerPolicy must be set to single-numa-node.

b. Create the KubeletConfig CR by running the following command:

NOTE

Applying performance profile or KubeletConfig automatically triggers
rebooting of the nodes. If no reboot is triggered, you can troubleshoot the
issue by looking at the labels in KubeletConfig that address the node group.

6.3.6. Scheduling workloads with the NUMA-aware scheduler

Now that topo-aware-scheduler is installed, the NUMAResourcesOperator and
NUMAResourcesScheduler CRs are applied and your cluster has a matching performance profile or
kubeletconfig, you can schedule workloads with the NUMA-aware scheduler using deployment CRs that
specify the minimum required resources to process the workload.

The following example deployment uses NUMA-aware scheduling for a sample workload.

Prerequisites

Install the OpenShift CLI (oc).

 matchLabels:
 pools.operator.machineconfiguration.openshift.io/worker: "" 1
 kubeletConfig:
 cpuManagerPolicy: "static" 2
 cpuManagerReconcilePeriod: "5s"
 reservedSystemCPUs: "0,1" 3
 memoryManagerPolicy: "Static" 4
 evictionHard:
 memory.available: "100Mi"
 kubeReserved:
 memory: "512Mi"
 reservedMemory:
 - numaNode: 0
 limits:
 memory: "1124Mi"
 systemReserved:
 memory: "512Mi"
 topologyManagerPolicy: "single-numa-node" 5

$ oc create -f nro-kubeletconfig.yaml

CHAPTER 6. SCHEDULING NUMA-AWARE WORKLOADS

77

Log in as a user with cluster-admin privileges.

Procedure

1. Get the name of the NUMA-aware scheduler that is deployed in the cluster by running the
following command:

Example output

2. Create a Deployment CR that uses scheduler named topo-aware-scheduler, for example:

a. Save the following YAML in the nro-deployment.yaml file:

$ oc get numaresourcesschedulers.nodetopology.openshift.io numaresourcesscheduler -o
json | jq '.status.schedulerName'

"topo-aware-scheduler"

apiVersion: apps/v1
kind: Deployment
metadata:
 name: numa-deployment-1
 namespace: openshift-numaresources
spec:
 replicas: 1
 selector:
 matchLabels:
 app: test
 template:
 metadata:
 labels:
 app: test
 spec:
 schedulerName: topo-aware-scheduler 1
 containers:
 - name: ctnr
 image: quay.io/openshifttest/hello-openshift:openshift
 imagePullPolicy: IfNotPresent
 resources:
 limits:
 memory: "100Mi"
 cpu: "10"
 requests:
 memory: "100Mi"
 cpu: "10"
 - name: ctnr2
 image: registry.access.redhat.com/rhel:latest
 imagePullPolicy: IfNotPresent
 command: ["/bin/sh", "-c"]
 args: ["while true; do sleep 1h; done;"]
 resources:
 limits:
 memory: "100Mi"
 cpu: "8"

OpenShift Container Platform 4.15 Scalability and performance

78

1 schedulerName must match the name of the NUMA-aware scheduler that is deployed
in your cluster, for example topo-aware-scheduler.

b. Create the Deployment CR by running the following command:

Verification

1. Verify that the deployment was successful:

Example output

2. Verify that the topo-aware-scheduler is scheduling the deployed pod by running the following
command:

Example output

NOTE

Deployments that request more resources than is available for scheduling will fail
with a MinimumReplicasUnavailable error. The deployment succeeds when the
required resources become available. Pods remain in the Pending state until the
required resources are available.

3. Verify that the expected allocated resources are listed for the node.

a. Identify the node that is running the deployment pod by running the following command:

 requests:
 memory: "100Mi"
 cpu: "8"

$ oc create -f nro-deployment.yaml

$ oc get pods -n openshift-numaresources

NAME READY STATUS RESTARTS AGE
numa-deployment-1-6c4f5bdb84-wgn6g 2/2 Running 0 5m2s
numaresources-controller-manager-7d9d84c58d-4v65j 1/1 Running 0 18m
numaresourcesoperator-worker-7d96r 2/2 Running 4 43m
numaresourcesoperator-worker-crsht 2/2 Running 2 43m
numaresourcesoperator-worker-jp9mw 2/2 Running 2 43m
secondary-scheduler-847cb74f84-fpncj 1/1 Running 0 18m

$ oc describe pod numa-deployment-1-6c4f5bdb84-wgn6g -n openshift-numaresources

Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal Scheduled 4m45s topo-aware-scheduler Successfully assigned openshift-
numaresources/numa-deployment-1-6c4f5bdb84-wgn6g to worker-1

$ oc get pods -n openshift-numaresources -o wide

CHAPTER 6. SCHEDULING NUMA-AWARE WORKLOADS

79

1

Example output

b. Run the following command with the name of that node that is running the deployment pod.

Example output

The Available capacity is reduced because of the resources that have been allocated
to the guaranteed pod.

Resources consumed by guaranteed pods are subtracted from the available node resources
listed under noderesourcetopologies.topology.node.k8s.io.

4. Resource allocations for pods with a Best-effort or Burstable quality of service (qosClass) are
not reflected in the NUMA node resources under
noderesourcetopologies.topology.node.k8s.io. If a pod’s consumed resources are not

NAME READY STATUS RESTARTS AGE IP NODE
NOMINATED NODE READINESS GATES
numa-deployment-1-6c4f5bdb84-wgn6g 0/2 Running 0 82m 10.128.2.50
worker-1 <none> <none>

$ oc describe noderesourcetopologies.topology.node.k8s.io worker-1

...

Zones:
 Costs:
 Name: node-0
 Value: 10
 Name: node-1
 Value: 21
 Name: node-0
 Resources:
 Allocatable: 39
 Available: 21 1
 Capacity: 40
 Name: cpu
 Allocatable: 6442450944
 Available: 6442450944
 Capacity: 6442450944
 Name: hugepages-1Gi
 Allocatable: 134217728
 Available: 134217728
 Capacity: 134217728
 Name: hugepages-2Mi
 Allocatable: 262415904768
 Available: 262206189568
 Capacity: 270146007040
 Name: memory
 Type: Node

OpenShift Container Platform 4.15 Scalability and performance

80

reflected in the node resource calculation, verify that the pod has qosClass of Guaranteed
and the CPU request is an integer value, not a decimal value. You can verify the that the pod has
a qosClass of Guaranteed by running the following command:

Example output

6.4. OPTIONAL: CONFIGURING POLLING OPERATIONS FOR NUMA
RESOURCES UPDATES

The daemons controlled by the NUMA Resources Operator in their nodeGroup poll resources to
retrieve updates about available NUMA resources. You can fine-tune polling operations for these
daemons by configuring the spec.nodeGroups specification in the NUMAResourcesOperator custom
resource (CR). This provides advanced control of polling operations. Configure these specifications to
improve scheduling behaviour and troubleshoot suboptimal scheduling decisions.

The configuration options are the following:

infoRefreshMode: Determines the trigger condition for polling the kubelet. The NUMA
Resources Operator reports the resulting information to the API server.

infoRefreshPeriod: Determines the duration between polling updates.

podsFingerprinting: Determines if point-in-time information for the current set of pods
running on a node is exposed in polling updates.

NOTE

podsFingerprinting is enabled by default. podsFingerprinting is a requirement
for the cacheResyncPeriod specification in the NUMAResourcesScheduler
CR. The cacheResyncPeriod specification helps to report more exact resource
availability by monitoring pending resources on nodes.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Install the NUMA Resources Operator.

Procedure

Configure the spec.nodeGroups specification in your NUMAResourcesOperator CR:

$ oc get pod numa-deployment-1-6c4f5bdb84-wgn6g -n openshift-numaresources -o
jsonpath="{ .status.qosClass }"

Guaranteed

apiVersion: nodetopology.openshift.io/v1
kind: NUMAResourcesOperator
metadata:
 name: numaresourcesoperator
spec:

CHAPTER 6. SCHEDULING NUMA-AWARE WORKLOADS

81

1

2

3

Valid values are Periodic, Events, PeriodicAndEvents. Use Periodic to poll the kubelet at
intervals that you define in infoRefreshPeriod. Use Events to poll the kubelet at every
pod lifecycle event. Use PeriodicAndEvents to enable both methods.

Define the polling interval for Periodic or PeriodicAndEvents refresh modes. The field is
ignored if the refresh mode is Events.

Valid values are Enabled, Disabled, and EnabledExclusiveResources. Setting to
Enabled is a requirement for the cacheResyncPeriod specification in the
NUMAResourcesScheduler.

Verification

1. After you deploy the NUMA Resources Operator, verify that the node group configurations
were applied by running the following command:

Example output

6.5. TROUBLESHOOTING NUMA-AWARE SCHEDULING

To troubleshoot common problems with NUMA-aware pod scheduling, perform the following steps.

Prerequisites

Install the OpenShift Container Platform CLI (oc).

Log in as a user with cluster-admin privileges.

Install the NUMA Resources Operator and deploy the NUMA-aware secondary scheduler.

Procedure

1. Verify that the noderesourcetopologies CRD is deployed in the cluster by running the

 nodeGroups:
 - config:
 infoRefreshMode: Periodic 1
 infoRefreshPeriod: 10s 2
 podsFingerprinting: Enabled 3
 name: worker

$ oc get numaresop numaresourcesoperator -o json | jq '.status'

 ...

 "config": {
 "infoRefreshMode": "Periodic",
 "infoRefreshPeriod": "10s",
 "podsFingerprinting": "Enabled"
 },
 "name": "worker"

 ...

OpenShift Container Platform 4.15 Scalability and performance

82

1. Verify that the noderesourcetopologies CRD is deployed in the cluster by running the
following command:

Example output

2. Check that the NUMA-aware scheduler name matches the name specified in your NUMA-aware
workloads by running the following command:

Example output

3. Verify that NUMA-aware scheduable nodes have the noderesourcetopologies CR applied to
them. Run the following command:

Example output

NOTE

The number of nodes should equal the number of worker nodes that are
configured by the machine config pool (mcp) worker definition.

4. Verify the NUMA zone granularity for all scheduable nodes by running the following command:

Example output

$ oc get crd | grep noderesourcetopologies

NAME CREATED AT
noderesourcetopologies.topology.node.k8s.io 2022-01-18T08:28:06Z

$ oc get numaresourcesschedulers.nodetopology.openshift.io numaresourcesscheduler -o
json | jq '.status.schedulerName'

topo-aware-scheduler

$ oc get noderesourcetopologies.topology.node.k8s.io

NAME AGE
compute-0.example.com 17h
compute-1.example.com 17h

$ oc get noderesourcetopologies.topology.node.k8s.io -o yaml

apiVersion: v1
items:
- apiVersion: topology.node.k8s.io/v1
 kind: NodeResourceTopology
 metadata:
 annotations:
 k8stopoawareschedwg/rte-update: periodic
 creationTimestamp: "2022-06-16T08:55:38Z"
 generation: 63760

CHAPTER 6. SCHEDULING NUMA-AWARE WORKLOADS

83

 name: worker-0
 resourceVersion: "8450223"
 uid: 8b77be46-08c0-4074-927b-d49361471590
 topologyPolicies:
 - SingleNUMANodeContainerLevel
 zones:
 - costs:
 - name: node-0
 value: 10
 - name: node-1
 value: 21
 name: node-0
 resources:
 - allocatable: "38"
 available: "38"
 capacity: "40"
 name: cpu
 - allocatable: "134217728"
 available: "134217728"
 capacity: "134217728"
 name: hugepages-2Mi
 - allocatable: "262352048128"
 available: "262352048128"
 capacity: "270107316224"
 name: memory
 - allocatable: "6442450944"
 available: "6442450944"
 capacity: "6442450944"
 name: hugepages-1Gi
 type: Node
 - costs:
 - name: node-0
 value: 21
 - name: node-1
 value: 10
 name: node-1
 resources:
 - allocatable: "268435456"
 available: "268435456"
 capacity: "268435456"
 name: hugepages-2Mi
 - allocatable: "269231067136"
 available: "269231067136"
 capacity: "270573244416"
 name: memory
 - allocatable: "40"
 available: "40"
 capacity: "40"
 name: cpu
 - allocatable: "1073741824"
 available: "1073741824"
 capacity: "1073741824"
 name: hugepages-1Gi
 type: Node
- apiVersion: topology.node.k8s.io/v1
 kind: NodeResourceTopology

OpenShift Container Platform 4.15 Scalability and performance

84

 metadata:
 annotations:
 k8stopoawareschedwg/rte-update: periodic
 creationTimestamp: "2022-06-16T08:55:37Z"
 generation: 62061
 name: worker-1
 resourceVersion: "8450129"
 uid: e8659390-6f8d-4e67-9a51-1ea34bba1cc3
 topologyPolicies:
 - SingleNUMANodeContainerLevel
 zones: 1
 - costs:
 - name: node-0
 value: 10
 - name: node-1
 value: 21
 name: node-0
 resources: 2
 - allocatable: "38"
 available: "38"
 capacity: "40"
 name: cpu
 - allocatable: "6442450944"
 available: "6442450944"
 capacity: "6442450944"
 name: hugepages-1Gi
 - allocatable: "134217728"
 available: "134217728"
 capacity: "134217728"
 name: hugepages-2Mi
 - allocatable: "262391033856"
 available: "262391033856"
 capacity: "270146301952"
 name: memory
 type: Node
 - costs:
 - name: node-0
 value: 21
 - name: node-1
 value: 10
 name: node-1
 resources:
 - allocatable: "40"
 available: "40"
 capacity: "40"
 name: cpu
 - allocatable: "1073741824"
 available: "1073741824"
 capacity: "1073741824"
 name: hugepages-1Gi
 - allocatable: "268435456"
 available: "268435456"
 capacity: "268435456"
 name: hugepages-2Mi
 - allocatable: "269192085504"
 available: "269192085504"

CHAPTER 6. SCHEDULING NUMA-AWARE WORKLOADS

85

1

2

Each stanza under zones describes the resources for a single NUMA zone.

resources describes the current state of the NUMA zone resources. Check that resources
listed under items.zones.resources.available correspond to the exclusive NUMA zone
resources allocated to each guaranteed pod.

6.5.1. Reporting more exact resource availability

Enable the cacheResyncPeriod specification to help the NUMA Resources Operator report more exact
resource availability by monitoring pending resources on nodes and synchronizing this information in the
scheduler cache at a defined interval. This also helps to minimize Topology Affinity Error errors because
of sub-optimal scheduling decisions. The lower the interval, the greater the network load. The
cacheResyncPeriod specification is disabled by default.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

1. Delete the currently running NUMAResourcesScheduler resource:

a. Get the active NUMAResourcesScheduler by running the following command:

Example output

b. Delete the secondary scheduler resource by running the following command:

Example output

2. Save the following YAML in the file nro-scheduler-cacheresync.yaml. This example changes
the log level to Debug:

 capacity: "270534262784"
 name: memory
 type: Node
kind: List
metadata:
 resourceVersion: ""
 selfLink: ""

$ oc get NUMAResourcesScheduler

NAME AGE
numaresourcesscheduler 92m

$ oc delete NUMAResourcesScheduler numaresourcesscheduler

numaresourcesscheduler.nodetopology.openshift.io "numaresourcesscheduler" deleted

OpenShift Container Platform 4.15 Scalability and performance

86

1 Enter an interval value in seconds for synchronization of the scheduler cache. A value of 5s
is typical for most implementations.

3. Create the updated NUMAResourcesScheduler resource by running the following command:

Example output

Verification steps

1. Check that the NUMA-aware scheduler was successfully deployed:

a. Run the following command to check that the CRD is created succesfully:

Example output

b. Check that the new custom scheduler is available by running the following command:

Example output

2. Check that the logs for the scheduler show the increased log level:

a. Get the list of pods running in the openshift-numaresources namespace by running the
following command:

Example output

apiVersion: nodetopology.openshift.io/v1
kind: NUMAResourcesScheduler
metadata:
 name: numaresourcesscheduler
spec:
 imageSpec: "registry.redhat.io/openshift4/noderesourcetopology-scheduler-container-
rhel8:v4.15"
 cacheResyncPeriod: "5s" 1

$ oc create -f nro-scheduler-cacheresync.yaml

numaresourcesscheduler.nodetopology.openshift.io/numaresourcesscheduler created

$ oc get crd | grep numaresourcesschedulers

NAME CREATED AT
numaresourcesschedulers.nodetopology.openshift.io 2022-02-25T11:57:03Z

$ oc get numaresourcesschedulers.nodetopology.openshift.io

NAME AGE
numaresourcesscheduler 3h26m

$ oc get pods -n openshift-numaresources

CHAPTER 6. SCHEDULING NUMA-AWARE WORKLOADS

87

b. Get the logs for the secondary scheduler pod by running the following command:

Example output

6.5.2. Checking the NUMA-aware scheduler logs

Troubleshoot problems with the NUMA-aware scheduler by reviewing the logs. If required, you can
increase the scheduler log level by modifying the spec.logLevel field of the
NUMAResourcesScheduler resource. Acceptable values are Normal, Debug, and Trace, with Trace
being the most verbose option.

NOTE

To change the log level of the secondary scheduler, delete the running scheduler
resource and re-deploy it with the changed log level. The scheduler is unavailable for
scheduling new workloads during this downtime.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

1. Delete the currently running NUMAResourcesScheduler resource:

a. Get the active NUMAResourcesScheduler by running the following command:

NAME READY STATUS RESTARTS AGE
numaresources-controller-manager-d87d79587-76mrm 1/1 Running 0 46h
numaresourcesoperator-worker-5wm2k 2/2 Running 0 45h
numaresourcesoperator-worker-pb75c 2/2 Running 0 45h
secondary-scheduler-7976c4d466-qm4sc 1/1 Running 0 21m

$ oc logs secondary-scheduler-7976c4d466-qm4sc -n openshift-numaresources

...
I0223 11:04:55.614788 1 reflector.go:535] k8s.io/client-go/informers/factory.go:134:
Watch close - *v1.Namespace total 11 items received
I0223 11:04:56.609114 1 reflector.go:535] k8s.io/client-go/informers/factory.go:134:
Watch close - *v1.ReplicationController total 10 items received
I0223 11:05:22.626818 1 reflector.go:535] k8s.io/client-go/informers/factory.go:134:
Watch close - *v1.StorageClass total 7 items received
I0223 11:05:31.610356 1 reflector.go:535] k8s.io/client-go/informers/factory.go:134:
Watch close - *v1.PodDisruptionBudget total 7 items received
I0223 11:05:31.713032 1 eventhandlers.go:186] "Add event for scheduled pod"
pod="openshift-marketplace/certified-operators-thtvq"
I0223 11:05:53.461016 1 eventhandlers.go:244] "Delete event for scheduled pod"
pod="openshift-marketplace/certified-operators-thtvq"

$ oc get NUMAResourcesScheduler

OpenShift Container Platform 4.15 Scalability and performance

88

Example output

b. Delete the secondary scheduler resource by running the following command:

Example output

2. Save the following YAML in the file nro-scheduler-debug.yaml. This example changes the log
level to Debug:

3. Create the updated Debug logging NUMAResourcesScheduler resource by running the
following command:

Example output

Verification steps

1. Check that the NUMA-aware scheduler was successfully deployed:

a. Run the following command to check that the CRD is created succesfully:

Example output

b. Check that the new custom scheduler is available by running the following command:

NAME AGE
numaresourcesscheduler 90m

$ oc delete NUMAResourcesScheduler numaresourcesscheduler

numaresourcesscheduler.nodetopology.openshift.io "numaresourcesscheduler" deleted

apiVersion: nodetopology.openshift.io/v1
kind: NUMAResourcesScheduler
metadata:
 name: numaresourcesscheduler
spec:
 imageSpec: "registry.redhat.io/openshift4/noderesourcetopology-scheduler-container-
rhel8:v4.15"
 logLevel: Debug

$ oc create -f nro-scheduler-debug.yaml

numaresourcesscheduler.nodetopology.openshift.io/numaresourcesscheduler created

$ oc get crd | grep numaresourcesschedulers

NAME CREATED AT
numaresourcesschedulers.nodetopology.openshift.io 2022-02-25T11:57:03Z

$ oc get numaresourcesschedulers.nodetopology.openshift.io

CHAPTER 6. SCHEDULING NUMA-AWARE WORKLOADS

89

Example output

2. Check that the logs for the scheduler shows the increased log level:

a. Get the list of pods running in the openshift-numaresources namespace by running the
following command:

Example output

b. Get the logs for the secondary scheduler pod by running the following command:

Example output

6.5.3. Troubleshooting the resource topology exporter

Troubleshoot noderesourcetopologies objects where unexpected results are occurring by inspecting
the corresponding resource-topology-exporter logs.

NOTE

It is recommended that NUMA resource topology exporter instances in the cluster are
named for nodes they refer to. For example, a worker node with the name worker should
have a corresponding noderesourcetopologies object called worker.

Prerequisites

NAME AGE
numaresourcesscheduler 3h26m

$ oc get pods -n openshift-numaresources

NAME READY STATUS RESTARTS AGE
numaresources-controller-manager-d87d79587-76mrm 1/1 Running 0 46h
numaresourcesoperator-worker-5wm2k 2/2 Running 0 45h
numaresourcesoperator-worker-pb75c 2/2 Running 0 45h
secondary-scheduler-7976c4d466-qm4sc 1/1 Running 0 21m

$ oc logs secondary-scheduler-7976c4d466-qm4sc -n openshift-numaresources

...
I0223 11:04:55.614788 1 reflector.go:535] k8s.io/client-go/informers/factory.go:134:
Watch close - *v1.Namespace total 11 items received
I0223 11:04:56.609114 1 reflector.go:535] k8s.io/client-go/informers/factory.go:134:
Watch close - *v1.ReplicationController total 10 items received
I0223 11:05:22.626818 1 reflector.go:535] k8s.io/client-go/informers/factory.go:134:
Watch close - *v1.StorageClass total 7 items received
I0223 11:05:31.610356 1 reflector.go:535] k8s.io/client-go/informers/factory.go:134:
Watch close - *v1.PodDisruptionBudget total 7 items received
I0223 11:05:31.713032 1 eventhandlers.go:186] "Add event for scheduled pod"
pod="openshift-marketplace/certified-operators-thtvq"
I0223 11:05:53.461016 1 eventhandlers.go:244] "Delete event for scheduled pod"
pod="openshift-marketplace/certified-operators-thtvq"

OpenShift Container Platform 4.15 Scalability and performance

90

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

1. Get the daemonsets managed by the NUMA Resources Operator. Each daemonset has a
corresponding nodeGroup in the NUMAResourcesOperator CR. Run the following command:

Example output

2. Get the label for the daemonset of interest using the value for name from the previous step:

Example output

3. Get the pods using the resource-topology label by running the following command:

Example output

4. Examine the logs of the resource-topology-exporter container running on the worker pod that
corresponds to the node you are troubleshooting. Run the following command:

Example output

$ oc get numaresourcesoperators.nodetopology.openshift.io numaresourcesoperator -o
jsonpath="{.status.daemonsets[0]}"

{"name":"numaresourcesoperator-worker","namespace":"openshift-numaresources"}

$ oc get ds -n openshift-numaresources numaresourcesoperator-worker -o jsonpath="
{.spec.selector.matchLabels}"

{"name":"resource-topology"}

$ oc get pods -n openshift-numaresources -l name=resource-topology -o wide

NAME READY STATUS RESTARTS AGE IP NODE
numaresourcesoperator-worker-5wm2k 2/2 Running 0 2d1h 10.135.0.64
compute-0.example.com
numaresourcesoperator-worker-pb75c 2/2 Running 0 2d1h 10.132.2.33
compute-1.example.com

$ oc logs -n openshift-numaresources -c resource-topology-exporter numaresourcesoperator-
worker-pb75c

I0221 13:38:18.334140 1 main.go:206] using sysinfo:
reservedCpus: 0,1
reservedMemory:
 "0": 1178599424
I0221 13:38:18.334370 1 main.go:67] === System information ===
I0221 13:38:18.334381 1 sysinfo.go:231] cpus: reserved "0-1"
I0221 13:38:18.334493 1 sysinfo.go:237] cpus: online "0-103"

CHAPTER 6. SCHEDULING NUMA-AWARE WORKLOADS

91

6.5.4. Correcting a missing resource topology exporter config map

If you install the NUMA Resources Operator in a cluster with misconfigured cluster settings, in some
circumstances, the Operator is shown as active but the logs of the resource topology exporter (RTE)
daemon set pods show that the configuration for the RTE is missing, for example:

This log message indicates that the kubeletconfig with the required configuration was not properly
applied in the cluster, resulting in a missing RTE configmap. For example, the following cluster is missing
a numaresourcesoperator-worker configmap custom resource (CR):

Example output

In a correctly configured cluster, oc get configmap also returns a numaresourcesoperator-worker
configmap CR.

Prerequisites

Install the OpenShift Container Platform CLI (oc).

Log in as a user with cluster-admin privileges.

Install the NUMA Resources Operator and deploy the NUMA-aware secondary scheduler.

Procedure

1. Compare the values for spec.machineConfigPoolSelector.matchLabels in kubeletconfig and
metadata.labels in the MachineConfigPool (mcp) worker CR using the following commands:

a. Check the kubeletconfig labels by running the following command:

I0221 13:38:18.546750 1 main.go:72]
cpus: allocatable "2-103"
hugepages-1Gi:
 numa cell 0 -> 6
 numa cell 1 -> 1
hugepages-2Mi:
 numa cell 0 -> 64
 numa cell 1 -> 128
memory:
 numa cell 0 -> 45758Mi
 numa cell 1 -> 48372Mi

Info: couldn't find configuration in "/etc/resource-topology-exporter/config.yaml"

$ oc get configmap

NAME DATA AGE
0e2a6bd3.openshift-kni.io 0 6d21h
kube-root-ca.crt 1 6d21h
openshift-service-ca.crt 1 6d21h
topo-aware-scheduler-config 1 6d18h

$ oc get kubeletconfig -o yaml

OpenShift Container Platform 4.15 Scalability and performance

92

Example output

b. Check the mcp labels by running the following command:

Example output

The cnf-worker-tuning: enabled label is not present in the MachineConfigPool object.

2. Edit the MachineConfigPool CR to include the missing label, for example:

Example output

3. Apply the label changes and wait for the cluster to apply the updated configuration. Run the
following command:

Verification

Check that the missing numaresourcesoperator-worker configmap CR is applied:

Example output

6.5.5. Collecting NUMA Resources Operator data

You can use the oc adm must-gather CLI command to collect information about your cluster, including
features and objects associated with the NUMA Resources Operator.

machineConfigPoolSelector:
 matchLabels:
 cnf-worker-tuning: enabled

$ oc get mcp worker -o yaml

labels:
 machineconfiguration.openshift.io/mco-built-in: ""
 pools.operator.machineconfiguration.openshift.io/worker: ""

$ oc edit mcp worker -o yaml

labels:
 machineconfiguration.openshift.io/mco-built-in: ""
 pools.operator.machineconfiguration.openshift.io/worker: ""
 cnf-worker-tuning: enabled

$ oc get configmap

NAME DATA AGE
0e2a6bd3.openshift-kni.io 0 6d21h
kube-root-ca.crt 1 6d21h
numaresourcesoperator-worker 1 5m
openshift-service-ca.crt 1 6d21h
topo-aware-scheduler-config 1 6d18h

CHAPTER 6. SCHEDULING NUMA-AWARE WORKLOADS

93

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

You have installed the OpenShift CLI (oc).

Procedure

To collect NUMA Resources Operator data with must-gather, you must specify the NUMA
Resources Operator must-gather image.

$ oc adm must-gather --image=registry.redhat.io/numaresources-must-
gather/numaresources-must-gather-rhel9:v4.15

OpenShift Container Platform 4.15 Scalability and performance

94

CHAPTER 7. SCALABILITY AND PERFORMANCE
OPTIMIZATION

7.1. OPTIMIZING STORAGE

Optimizing storage helps to minimize storage use across all resources. By optimizing storage,
administrators help ensure that existing storage resources are working in an efficient manner.

7.1.1. Available persistent storage options

Understand your persistent storage options so that you can optimize your OpenShift Container
Platform environment.

Table 7.1. Available storage options

Storage
type

Description Examples

Block
Presented to the operating system (OS) as
a block device

Suitable for applications that need full
control of storage and operate at a low
level on files bypassing the file system

Also referred to as a Storage Area Network
(SAN)

Non-shareable, which means that only one
client at a time can mount an endpoint of
this type

AWS EBS and VMware vSphere
support dynamic persistent volume
(PV) provisioning natively in OpenShift
Container Platform.

File
Presented to the OS as a file system export
to be mounted

Also referred to as Network Attached
Storage (NAS)

Concurrency, latency, file locking
mechanisms, and other capabilities vary
widely between protocols,
implementations, vendors, and scales.

RHEL NFS, NetApp NFS [1], and
Vendor NFS

Object
Accessible through a REST API endpoint

Configurable for use in the OpenShift
image registry

Applications must build their drivers into
the application and/or container.

AWS S3

1. NetApp NFS supports dynamic PV provisioning when using the Trident plugin.

CHAPTER 7. SCALABILITY AND PERFORMANCE OPTIMIZATION

95

7.1.2. Recommended configurable storage technology

The following table summarizes the recommended and configurable storage technologies for the given
OpenShift Container Platform cluster application.

Table 7.2. Recommended and configurable storage technology

Storage type Block File Object

1 ReadOnlyMany

2 ReadWriteMany

3 Prometheus is the underlying technology used for metrics.

4 This does not apply to physical disk, VM physical disk, VMDK, loopback over NFS, AWS EBS, and Azure
Disk.

5 For metrics, using file storage with the ReadWriteMany (RWX) access mode is unreliable. If you use file
storage, do not configure the RWX access mode on any persistent volume claims (PVCs) that are
configured for use with metrics.

6 For logging, review the recommended storage solution in Configuring persistent storage for the log
store section. Using NFS storage as a persistent volume or through NAS, such as Gluster, can corrupt the
data. Hence, NFS is not supported for Elasticsearch storage and LokiStack log store in OpenShift
Container Platform Logging. You must use one persistent volume type per log store.

7 Object storage is not consumed through OpenShift Container Platform’s PVs or PVCs. Apps must
integrate with the object storage REST API.

ROX1 Yes4 Yes4 Yes

RWX2 No Yes Yes

Registry Configurable Configurable Recommended

Scaled registry Not configurable Configurable Recommended

Metrics3 Recommended Configurable5 Not configurable

Elasticsearch Logging Recommended Configurable6 Not supported6

Loki Logging Not configurable Not configurable Recommended

Apps Recommended Recommended Not configurable7

NOTE

OpenShift Container Platform 4.15 Scalability and performance

96

NOTE

A scaled registry is an OpenShift image registry where two or more pod replicas are
running.

7.1.2.1. Specific application storage recommendations

IMPORTANT

Testing shows issues with using the NFS server on Red Hat Enterprise Linux (RHEL) as
storage backend for core services. This includes the OpenShift Container Registry and
Quay, Prometheus for monitoring storage, and Elasticsearch for logging storage.
Therefore, using RHEL NFS to back PVs used by core services is not recommended.

Other NFS implementations on the marketplace might not have these issues. Contact
the individual NFS implementation vendor for more information on any testing that was
possibly completed against these OpenShift Container Platform core components.

7.1.2.1.1. Registry

In a non-scaled/high-availability (HA) OpenShift image registry cluster deployment:

The storage technology does not have to support RWX access mode.

The storage technology must ensure read-after-write consistency.

The preferred storage technology is object storage followed by block storage.

File storage is not recommended for OpenShift image registry cluster deployment with
production workloads.

7.1.2.1.2. Scaled registry

In a scaled/HA OpenShift image registry cluster deployment:

The storage technology must support RWX access mode.

The storage technology must ensure read-after-write consistency.

The preferred storage technology is object storage.

Red Hat OpenShift Data Foundation (ODF), Amazon Simple Storage Service (Amazon S3),
Google Cloud Storage (GCS), Microsoft Azure Blob Storage, and OpenStack Swift are
supported.

Object storage should be S3 or Swift compliant.

For non-cloud platforms, such as vSphere and bare metal installations, the only configurable
technology is file storage.

Block storage is not configurable.

7.1.2.1.3. Metrics

In an OpenShift Container Platform hosted metrics cluster deployment:

CHAPTER 7. SCALABILITY AND PERFORMANCE OPTIMIZATION

97

The preferred storage technology is block storage.

Object storage is not configurable.

IMPORTANT

It is not recommended to use file storage for a hosted metrics cluster deployment with
production workloads.

7.1.2.1.4. Logging

In an OpenShift Container Platform hosted logging cluster deployment:

Loki Operator:

The preferred storage technology is S3 compatible Object storage.

Block storage is not configurable.

OpenShift Elasticsearch Operator:

The preferred storage technology is block storage.

Object storage is not supported.

NOTE

As of logging version 5.4.3 the OpenShift Elasticsearch Operator is deprecated and is
planned to be removed in a future release. Red Hat will provide bug fixes and support for
this feature during the current release lifecycle, but this feature will no longer receive
enhancements and will be removed. As an alternative to using the OpenShift
Elasticsearch Operator to manage the default log storage, you can use the Loki
Operator.

7.1.2.1.5. Applications

Application use cases vary from application to application, as described in the following examples:

Storage technologies that support dynamic PV provisioning have low mount time latencies, and
are not tied to nodes to support a healthy cluster.

Application developers are responsible for knowing and understanding the storage
requirements for their application, and how it works with the provided storage to ensure that
issues do not occur when an application scales or interacts with the storage layer.

7.1.2.2. Other specific application storage recommendations

IMPORTANT

It is not recommended to use RAID configurations on Write intensive workloads, such as
etcd. If you are running etcd with a RAID configuration, you might be at risk of
encountering performance issues with your workloads.

Red Hat OpenStack Platform (RHOSP) Cinder: RHOSP Cinder tends to be adept in ROX
access mode use cases.

OpenShift Container Platform 4.15 Scalability and performance

98

Databases: Databases (RDBMSs, NoSQL DBs, etc.) tend to perform best with dedicated block
storage.

The etcd database must have enough storage and adequate performance capacity to enable a
large cluster. Information about monitoring and benchmarking tools to establish ample storage
and a high-performance environment is described in Recommended etcd practices .

7.1.3. Data storage management

The following table summarizes the main directories that OpenShift Container Platform components
write data to.

Table 7.3. Main directories for storing OpenShift Container Platform data

Directory Notes Sizing Expected growth

/var/log Log files for all
components.

10 to 30 GB. Log files can grow
quickly; size can be
managed by growing
disks or by using log
rotate.

/var/lib/etcd Used for etcd storage
when storing the
database.

Less than 20 GB.

Database can grow up
to 8 GB.

Will grow slowly with the
environment. Only
storing metadata.

Additional 20-25 GB for
every additional 8 GB of
memory.

/var/lib/containers This is the mount point
for the CRI-O runtime.
Storage used for active
container runtimes,
including pods, and
storage of local images.
Not used for registry
storage.

50 GB for a node with 16
GB memory. Note that
this sizing should not be
used to determine
minimum cluster
requirements.

Additional 20-25 GB for
every additional 8 GB of
memory.

Growth is limited by
capacity for running
containers.

/var/lib/kubelet Ephemeral volume
storage for pods. This
includes anything
external that is mounted
into a container at
runtime. Includes
environment variables,
kube secrets, and data
volumes not backed by
persistent volumes.

Varies Minimal if pods requiring
storage are using
persistent volumes. If
using ephemeral
storage, this can grow
quickly.

CHAPTER 7. SCALABILITY AND PERFORMANCE OPTIMIZATION

99

7.1.4. Optimizing storage performance for Microsoft Azure

OpenShift Container Platform and Kubernetes are sensitive to disk performance, and faster storage is
recommended, particularly for etcd on the control plane nodes.

For production Azure clusters and clusters with intensive workloads, the virtual machine operating
system disk for control plane machines should be able to sustain a tested and recommended minimum
throughput of 5000 IOPS / 200MBps. This throughput can be provided by having a minimum of 1 TiB
Premium SSD (P30). In Azure and Azure Stack Hub, disk performance is directly dependent on SSD disk
sizes. To achieve the throughput supported by a Standard_D8s_v3 virtual machine, or other similar
machine types, and the target of 5000 IOPS, at least a P30 disk is required.

Host caching must be set to ReadOnly for low latency and high IOPS and throughput when reading
data. Reading data from the cache, which is present either in the VM memory or in the local SSD disk, is
much faster than reading from the disk, which is in the blob storage.

7.1.5. Additional resources

Configuring the Elasticsearch log store

7.2. OPTIMIZING ROUTING

The OpenShift Container Platform HAProxy router can be scaled or configured to optimize
performance.

7.2.1. Baseline Ingress Controller (router) performance

The OpenShift Container Platform Ingress Controller, or router, is the ingress point for ingress traffic for
applications and services that are configured using routes and ingresses.

When evaluating a single HAProxy router performance in terms of HTTP requests handled per second,
the performance varies depending on many factors. In particular:

HTTP keep-alive/close mode

Route type

TLS session resumption client support

Number of concurrent connections per target route

Number of target routes

Back end server page size

Underlying infrastructure (network/SDN solution, CPU, and so on)

While performance in your specific environment will vary, Red Hat lab tests on a public cloud instance of
size 4 vCPU/16GB RAM. A single HAProxy router handling 100 routes terminated by backends serving
1kB static pages is able to handle the following number of transactions per second.

In HTTP keep-alive mode scenarios:

OpenShift Container Platform 4.15 Scalability and performance

100

https://docs.redhat.com/en/documentation/openshift_container_platform/4.15/html-single/logging/#logging-config-es-store

Encryption LoadBalancerService HostNetwork

none 21515 29622

edge 16743 22913

passthrough 36786 53295

re-encrypt 21583 25198

In HTTP close (no keep-alive) scenarios:

Encryption LoadBalancerService HostNetwork

none 5719 8273

edge 2729 4069

passthrough 4121 5344

re-encrypt 2320 2941

The default Ingress Controller configuration was used with the spec.tuningOptions.threadCount field
set to 4. Two different endpoint publishing strategies were tested: Load Balancer Service and Host
Network. TLS session resumption was used for encrypted routes. With HTTP keep-alive, a single
HAProxy router is capable of saturating a 1 Gbit NIC at page sizes as small as 8 kB.

When running on bare metal with modern processors, you can expect roughly twice the performance of
the public cloud instance above. This overhead is introduced by the virtualization layer in place on public
clouds and holds mostly true for private cloud-based virtualization as well. The following table is a guide
to how many applications to use behind the router:

Number of applications Application type

5-10 static file/web server or caching proxy

100-1000 applications generating dynamic content

In general, HAProxy can support routes for up to 1000 applications, depending on the technology in use.
Ingress Controller performance might be limited by the capabilities and performance of the applications
behind it, such as language or static versus dynamic content.

Ingress, or router, sharding should be used to serve more routes towards applications and help
horizontally scale the routing tier.

For more information on Ingress sharding, see Configuring Ingress Controller sharding by using route
labels and Configuring Ingress Controller sharding by using namespace labels .

CHAPTER 7. SCALABILITY AND PERFORMANCE OPTIMIZATION

101

https://docs.redhat.com/en/documentation/openshift_container_platform/4.15/html-single/networking/#nw-ingress-sharding-route-labels_configuring-ingress
https://docs.redhat.com/en/documentation/openshift_container_platform/4.15/html-single/networking/#nw-ingress-sharding-namespace-labels_configuring-ingress

You can modify the Ingress Controller deployment using the information provided in Setting Ingress
Controller thread count for threads and Ingress Controller configuration parameters for timeouts, and
other tuning configurations in the Ingress Controller specification.

7.2.2. Configuring Ingress Controller liveness, readiness, and startup probes

Cluster administrators can configure the timeout values for the kubelet’s liveness, readiness, and
startup probes for router deployments that are managed by the OpenShift Container Platform Ingress
Controller (router). The liveness and readiness probes of the router use the default timeout value of 1
second, which is too brief when networking or runtime performance is severely degraded. Probe
timeouts can cause unwanted router restarts that interrupt application connections. The ability to set
larger timeout values can reduce the risk of unnecessary and unwanted restarts.

You can update the timeoutSeconds value on the livenessProbe, readinessProbe, and startupProbe
parameters of the router container.

Parameter Description

livenessProbe The livenessProbe reports to the kubelet whether a pod is dead and needs
to be restarted.

readinessProbe The readinessProbe reports whether a pod is healthy or unhealthy. When the
readiness probe reports an unhealthy pod, then the kubelet marks the pod as
not ready to accept traffic. Subsequently, the endpoints for that pod are
marked as not ready, and this status propagates to the kube-proxy. On cloud
platforms with a configured load balancer, the kube-proxy communicates to
the cloud load-balancer not to send traffic to the node with that pod.

startupProbe The startupProbe gives the router pod up to 2 minutes to initialize before the
kubelet begins sending the router liveness and readiness probes. This
initialization time can prevent routers with many routes or endpoints from
prematurely restarting.

IMPORTANT

The timeout configuration option is an advanced tuning technique that can be used to
work around issues. However, these issues should eventually be diagnosed and possibly a
support case or Jira issue opened for any issues that causes probes to time out.

The following example demonstrates how you can directly patch the default router deployment to set a
5-second timeout for the liveness and readiness probes:

Verification

$ oc -n openshift-ingress patch deploy/router-default --type=strategic --patch='{"spec":{"template":
{"spec":{"containers":[{"name":"router","livenessProbe":{"timeoutSeconds":5},"readinessProbe":
{"timeoutSeconds":5}}]}}}}'

$ oc -n openshift-ingress describe deploy/router-default | grep -e Liveness: -e Readiness:
 Liveness: http-get http://:1936/healthz delay=0s timeout=5s period=10s #success=1 #failure=3
 Readiness: http-get http://:1936/healthz/ready delay=0s timeout=5s period=10s #success=1
#failure=3

OpenShift Container Platform 4.15 Scalability and performance

102

https://docs.redhat.com/en/documentation/openshift_container_platform/4.15/html-single/networking/#nw-ingress-setting-thread-count
https://docs.redhat.com/en/documentation/openshift_container_platform/4.15/html-single/networking/#nw-ingress-controller-configuration-parameters_configuring-ingress
https://issues.redhat.com/secure/CreateIssueDetails!init.jspa?pid=12332330&summary=Summary&issuetype=1&priority=10200&versions=12385624

7.2.3. Configuring HAProxy reload interval

When you update a route or an endpoint associated with a route, OpenShift Container Platform router
updates the configuration for HAProxy. Then, HAProxy reloads the updated configuration for those
changes to take effect. When HAProxy reloads, it generates a new process that handles new
connections using the updated configuration.

HAProxy keeps the old process running to handle existing connections until those connections are all
closed. When old processes have long-lived connections, these processes can accumulate and consume
resources.

The default minimum HAProxy reload interval is five seconds. You can configure an Ingress Controller
using its spec.tuningOptions.reloadInterval field to set a longer minimum reload interval.

WARNING

Setting a large value for the minimum HAProxy reload interval can cause latency in
observing updates to routes and their endpoints. To lessen the risk, avoid setting a
value larger than the tolerable latency for updates. The maximum value for HAProxy
reload interval is 120 seconds.

Procedure

Change the minimum HAProxy reload interval of the default Ingress Controller to 15 seconds by
running the following command:

7.3. OPTIMIZING NETWORKING

The OpenShift SDN uses OpenvSwitch, virtual extensible LAN (VXLAN) tunnels, OpenFlow rules, and
iptables. This network can be tuned by using jumbo frames, multi-queue, and ethtool settings.

OVN-Kubernetes uses Generic Network Virtualization Encapsulation (Geneve) instead of VXLAN as the
tunnel protocol. This network can be tuned by using network interface controller (NIC) offloads.

VXLAN provides benefits over VLANs, such as an increase in networks from 4096 to over 16 million, and
layer 2 connectivity across physical networks. This allows for all pods behind a service to communicate
with each other, even if they are running on different systems.

VXLAN encapsulates all tunneled traffic in user datagram protocol (UDP) packets. However, this leads
to increased CPU utilization. Both these outer- and inner-packets are subject to normal checksumming
rules to guarantee data is not corrupted during transit. Depending on CPU performance, this additional
processing overhead can cause a reduction in throughput and increased latency when compared to
traditional, non-overlay networks.

Cloud, VM, and bare metal CPU performance can be capable of handling much more than one Gbps
network throughput. When using higher bandwidth links such as 10 or 40 Gbps, reduced performance

$ oc -n openshift-ingress-operator patch ingresscontrollers/default --type=merge --
patch='{"spec":{"tuningOptions":{"reloadInterval":"15s"}}}'

CHAPTER 7. SCALABILITY AND PERFORMANCE OPTIMIZATION

103

https://docs.redhat.com/en/documentation/openshift_container_platform/4.15/html-single/networking/#about-openshift-sdn
https://docs.redhat.com/en/documentation/openshift_container_platform/4.15/html-single/networking/#about-ovn-kubernetes

can occur. This is a known issue in VXLAN-based environments and is not specific to containers or
OpenShift Container Platform. Any network that relies on VXLAN tunnels will perform similarly because
of the VXLAN implementation.

If you are looking to push beyond one Gbps, you can:

Evaluate network plugins that implement different routing techniques, such as border gateway
protocol (BGP).

Use VXLAN-offload capable network adapters. VXLAN-offload moves the packet checksum
calculation and associated CPU overhead off of the system CPU and onto dedicated hardware
on the network adapter. This frees up CPU cycles for use by pods and applications, and allows
users to utilize the full bandwidth of their network infrastructure.

VXLAN-offload does not reduce latency. However, CPU utilization is reduced even in latency tests.

7.3.1. Optimizing the MTU for your network

There are two important maximum transmission units (MTUs): the network interface controller (NIC)
MTU and the cluster network MTU.

The NIC MTU is only configured at the time of OpenShift Container Platform installation. The MTU
must be less than or equal to the maximum supported value of the NIC of your network. If you are
optimizing for throughput, choose the largest possible value. If you are optimizing for lowest latency,
choose a lower value.

The OpenShift SDN network plugin overlay MTU must be less than the NIC MTU by 50 bytes at a
minimum. This accounts for the SDN overlay header. So, on a normal ethernet network, this should be
set to 1450. On a jumbo frame ethernet network, this should be set to 8950. These values should be set
automatically by the Cluster Network Operator based on the NIC’s configured MTU. Therefore, cluster
administrators do not typically update these values. Amazon Web Services (AWS) and bare-metal
environments support jumbo frame ethernet networks. This setting will help throughput, especially with
transmission control protocol (TCP).

NOTE

OpenShift SDN CNI is deprecated as of OpenShift Container Platform 4.14. As of
OpenShift Container Platform 4.15, the network plugin is not an option for new
installations. In a subsequent future release, the OpenShift SDN network plugin is planned
to be removed and no longer supported. Red Hat will provide bug fixes and support for
this feature until it is removed, but this feature will no longer receive enhancements. As
an alternative to OpenShift SDN CNI, you can use OVN Kubernetes CNI instead.

For OVN and Geneve, the MTU must be less than the NIC MTU by 100 bytes at a minimum.

NOTE

This 50 byte overlay header is relevant to the OpenShift SDN network plugin. Other SDN
solutions might require the value to be more or less.

7.3.2. Recommended practices for installing large scale clusters

When installing large clusters or scaling the cluster to larger node counts, set the cluster network cidr
accordingly in your install-config.yaml file before you install the cluster:

OpenShift Container Platform 4.15 Scalability and performance

104

The default cluster network cidr 10.128.0.0/14 cannot be used if the cluster size is more than 500
nodes. It must be set to 10.128.0.0/12 or 10.128.0.0/10 to get to larger node counts beyond 500 nodes.

7.3.3. Impact of IPsec

Because encrypting and decrypting node hosts uses CPU power, performance is affected both in
throughput and CPU usage on the nodes when encryption is enabled, regardless of the IP security
system being used.

IPSec encrypts traffic at the IP payload level, before it hits the NIC, protecting fields that would
otherwise be used for NIC offloading. This means that some NIC acceleration features might not be
usable when IPSec is enabled and will lead to decreased throughput and increased CPU usage.

7.3.4. Additional resources

Modifying advanced network configuration parameters

Configuration parameters for the OVN-Kubernetes network plugin

Configuration parameters for the OpenShift SDN network plugin

Improving cluster stability in high latency environments using worker latency profiles

7.4. OPTIMIZING CPU USAGE WITH MOUNT NAMESPACE
ENCAPSULATION

You can optimize CPU usage in OpenShift Container Platform clusters by using mount namespace
encapsulation to provide a private namespace for kubelet and CRI-O processes. This reduces the
cluster CPU resources used by systemd with no difference in functionality.

IMPORTANT

Mount namespace encapsulation is a Technology Preview feature only. Technology
Preview features are not supported with Red Hat production service level agreements
(SLAs) and might not be functionally complete. Red Hat does not recommend using
them in production. These features provide early access to upcoming product features,
enabling customers to test functionality and provide feedback during the development
process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

7.4.1. Encapsulating mount namespaces

Mount namespaces are used to isolate mount points so that processes in different namespaces cannot

networking:
 clusterNetwork:
 - cidr: 10.128.0.0/14
 hostPrefix: 23
 machineNetwork:
 - cidr: 10.0.0.0/16
 networkType: OVNKubernetes
 serviceNetwork:
 - 172.30.0.0/16

CHAPTER 7. SCALABILITY AND PERFORMANCE OPTIMIZATION

105

https://docs.redhat.com/en/documentation/openshift_container_platform/4.15/html-single/installing/#modifying-nwoperator-config-startup_installing-aws-network-customizations
https://docs.redhat.com/en/documentation/openshift_container_platform/4.15/html-single/networking/#nw-operator-configuration-parameters-for-ovn-sdn_cluster-network-operator
https://docs.redhat.com/en/documentation/openshift_container_platform/4.15/html-single/networking/#nw-operator-configuration-parameters-for-openshift-sdn_cluster-network-operator
https://access.redhat.com/support/offerings/techpreview/

Mount namespaces are used to isolate mount points so that processes in different namespaces cannot
view each others' files. Encapsulation is the process of moving Kubernetes mount namespaces to an
alternative location where they will not be constantly scanned by the host operating system.

The host operating system uses systemd to constantly scan all mount namespaces: both the standard
Linux mounts and the numerous mounts that Kubernetes uses to operate. The current implementation
of kubelet and CRI-O both use the top-level namespace for all container runtime and kubelet mount
points. However, encapsulating these container-specific mount points in a private namespace reduces
systemd overhead with no difference in functionality. Using a separate mount namespace for both CRI-
O and kubelet can encapsulate container-specific mounts from any systemd or other host operating
system interaction.

This ability to potentially achieve major CPU optimization is now available to all OpenShift Container
Platform administrators. Encapsulation can also improve security by storing Kubernetes-specific mount
points in a location safe from inspection by unprivileged users.

The following diagrams illustrate a Kubernetes installation before and after encapsulation. Both
scenarios show example containers which have mount propagation settings of bidirectional, host-to-
container, and none.

Here we see systemd, host operating system processes, kubelet, and the container runtime sharing a
single mount namespace.

OpenShift Container Platform 4.15 Scalability and performance

106

systemd, host operating system processes, kubelet, and the container runtime each have
access to and visibility of all mount points.

Container 1, configured with bidirectional mount propagation, can access systemd and host
mounts, kubelet and CRI-O mounts. A mount originating in Container 1, such as /run/a is visible
to systemd, host operating system processes, kubelet, container runtime, and other containers
with host-to-container or bidirectional mount propagation configured (as in Container 2).

Container 2, configured with host-to-container mount propagation, can access systemd and
host mounts, kubelet and CRI-O mounts. A mount originating in Container 2, such as /run/b, is
not visible to any other context.

Container 3, configured with no mount propagation, has no visibility of external mount points. A
mount originating in Container 3, such as /run/c, is not visible to any other context.

The following diagram illustrates the system state after encapsulation.

The main systemd process is no longer devoted to unnecessary scanning of Kubernetes-
specific mount points. It only monitors systemd-specific and host mount points.

CHAPTER 7. SCALABILITY AND PERFORMANCE OPTIMIZATION

107

The host operating system processes can access only the systemd and host mount points.

Using a separate mount namespace for both CRI-O and kubelet completely separates all
container-specific mounts away from any systemd or other host operating system interaction
whatsoever.

The behavior of Container 1 is unchanged, except a mount it creates such as /run/a is no longer
visible to systemd or host operating system processes. It is still visible to kubelet, CRI-O, and
other containers with host-to-container or bidirectional mount propagation configured (like
Container 2).

The behavior of Container 2 and Container 3 is unchanged.

7.4.2. Configuring mount namespace encapsulation

You can configure mount namespace encapsulation so that a cluster runs with less resource overhead.

NOTE

Mount namespace encapsulation is a Technology Preview feature and it is disabled by
default. To use it, you must enable the feature manually.

Prerequisites

You have installed the OpenShift CLI (oc).

You have logged in as a user with cluster-admin privileges.

Procedure

1. Create a file called mount_namespace_config.yaml with the following YAML:

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
 labels:
 machineconfiguration.openshift.io/role: master
 name: 99-kubens-master
spec:
 config:
 ignition:
 version: 3.2.0
 systemd:
 units:
 - enabled: true
 name: kubens.service

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
 labels:
 machineconfiguration.openshift.io/role: worker
 name: 99-kubens-worker
spec:
 config:

OpenShift Container Platform 4.15 Scalability and performance

108

2. Apply the mount namespace MachineConfig CR by running the following command:

Example output

3. The MachineConfig CR can take up to 30 minutes to finish being applied in the cluster. You
can check the status of the MachineConfig CR by running the following command:

Example output

4. Wait for the MachineConfig CR to be applied successfully across all control plane and worker
nodes after running the following command:

Example output

Verification

To verify encapsulation for a cluster host, run the following commands:

1. Open a debug shell to the cluster host:

2. Open a chroot session:

 ignition:
 version: 3.2.0
 systemd:
 units:
 - enabled: true
 name: kubens.service

$ oc apply -f mount_namespace_config.yaml

machineconfig.machineconfiguration.openshift.io/99-kubens-master created
machineconfig.machineconfiguration.openshift.io/99-kubens-worker created

$ oc get mcp

NAME CONFIG UPDATED UPDATING DEGRADED
MACHINECOUNT READYMACHINECOUNT UPDATEDMACHINECOUNT
DEGRADEDMACHINECOUNT AGE
master rendered-master-03d4bc4befb0f4ed3566a2c8f7636751 False True False
3 0 0 0 45m
worker rendered-worker-10577f6ab0117ed1825f8af2ac687ddf False True False
3 1 1

$ oc wait --for=condition=Updated mcp --all --timeout=30m

machineconfigpool.machineconfiguration.openshift.io/master condition met
machineconfigpool.machineconfiguration.openshift.io/worker condition met

$ oc debug node/<node_name>

sh-4.4# chroot /host

CHAPTER 7. SCALABILITY AND PERFORMANCE OPTIMIZATION

109

3. Check the systemd mount namespace:

Example output

4. Check kubelet mount namespace:

Example output

5. Check the CRI-O mount namespace:

Example output

These commands return the mount namespaces associated with systemd, kubelet, and the container
runtime. In OpenShift Container Platform, the container runtime is CRI-O.

Encapsulation is in effect if systemd is in a different mount namespace to kubelet and CRI-O as in the
above example. Encapsulation is not in effect if all three processes are in the same mount namespace.

7.4.3. Inspecting encapsulated namespaces

You can inspect Kubernetes-specific mount points in the cluster host operating system for debugging
or auditing purposes by using the kubensenter script that is available in Red Hat Enterprise Linux
CoreOS (RHCOS).

SSH shell sessions to the cluster host are in the default namespace. To inspect Kubernetes-specific
mount points in an SSH shell prompt, you need to run the kubensenter script as root. The kubensenter
script is aware of the state of the mount encapsulation, and is safe to run even if encapsulation is not
enabled.

NOTE

oc debug remote shell sessions start inside the Kubernetes namespace by default. You
do not need to run kubensenter to inspect mount points when you use oc debug.

If the encapsulation feature is not enabled, the kubensenter findmnt and findmnt commands return
the same output, regardless of whether they are run in an oc debug session or in an SSH shell prompt.

Prerequisites

You have installed the OpenShift CLI (oc).

sh-4.4# readlink /proc/1/ns/mnt

mnt:[4026531953]

sh-4.4# readlink /proc/$(pgrep kubelet)/ns/mnt

mnt:[4026531840]

sh-4.4# readlink /proc/$(pgrep crio)/ns/mnt

mnt:[4026531840]

OpenShift Container Platform 4.15 Scalability and performance

110

You have logged in as a user with cluster-admin privileges.

You have configured SSH access to the cluster host.

Procedure

1. Open a remote SSH shell to the cluster host. For example:

2. Run commands using the provided kubensenter script as the root user. To run a single
command inside the Kubernetes namespace, provide the command and any arguments to the
kubensenter script. For example, to run the findmnt command inside the Kubernetes
namespace, run the following command:

Example output

3. To start a new interactive shell inside the Kubernetes namespace, run the kubensenter script
without any arguments:

Example output

7.4.4. Running additional services in the encapsulated namespace

Any monitoring tool that relies on the ability to run in the host operating system and have visibility of
mount points created by kubelet, CRI-O, or containers themselves, must enter the container mount
namespace to see these mount points. The kubensenter script that is provided with OpenShift
Container Platform executes another command inside the Kubernetes mount point and can be used to
adapt any existing tools.

The kubensenter script is aware of the state of the mount encapsulation feature status, and is safe to
run even if encapsulation is not enabled. In that case the script executes the provided command in the
default mount namespace.

For example, if a systemd service needs to run inside the new Kubernetes mount namespace, edit the
service file and use the ExecStart= command line with kubensenter.

$ ssh core@<node_name>

[core@control-plane-1 ~]$ sudo kubensenter findmnt

kubensenter: Autodetect: kubens.service namespace found at /run/kubens/mnt
TARGET SOURCE FSTYPE OPTIONS
/
/dev/sda4[/ostree/deploy/rhcos/deploy/32074f0e8e5ec453e56f5a8a7bc9347eaa4172349ceab9
c22b709d9d71a3f4b0.0]
| xfs
rw,relatime,seclabel,attr2,inode64,logbufs=8,logbsize=32k,prjquota
 shm tmpfs
...

[core@control-plane-1 ~]$ sudo kubensenter

kubensenter: Autodetect: kubens.service namespace found at /run/kubens/mnt

CHAPTER 7. SCALABILITY AND PERFORMANCE OPTIMIZATION

111

7.4.5. Additional resources

What are namespaces

Manage containers in namespaces by using nsenter

MachineConfig

[Unit]
Description=Example service
[Service]
ExecStart=/usr/bin/kubensenter /path/to/original/command arg1 arg2

OpenShift Container Platform 4.15 Scalability and performance

112

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/monitoring_and_managing_system_status_and_performance/setting-limits-for-applications_monitoring-and-managing-system-status-and-performance#what-namespaces-are_setting-limits-for-applications
https://www.redhat.com/sysadmin/container-namespaces-nsenter
https://docs.redhat.com/en/documentation/openshift_container_platform/4.15/html-single/api_reference/#machineconfig-machineconfiguration.openshift.io/v1

CHAPTER 8. MANAGING BARE METAL HOSTS
When you install OpenShift Container Platform on a bare metal cluster, you can provision and manage
bare metal nodes using machine and machineset custom resources (CRs) for bare metal hosts that
exist in the cluster.

8.1. ABOUT BARE METAL HOSTS AND NODES

To provision a Red Hat Enterprise Linux CoreOS (RHCOS) bare metal host as a node in your cluster, first
create a MachineSet custom resource (CR) object that corresponds to the bare metal host hardware.
Bare metal host compute machine sets describe infrastructure components specific to your
configuration. You apply specific Kubernetes labels to these compute machine sets and then update the
infrastructure components to run on only those machines.

Machine CR’s are created automatically when you scale up the relevant MachineSet containing a
metal3.io/autoscale-to-hosts annotation. OpenShift Container Platform uses Machine CR’s to
provision the bare metal node that corresponds to the host as specified in the MachineSet CR.

8.2. MAINTAINING BARE METAL HOSTS

You can maintain the details of the bare metal hosts in your cluster from the OpenShift Container
Platform web console. Navigate to Compute → Bare Metal Hosts, and select a task from the Actions
drop down menu. Here you can manage items such as BMC details, boot MAC address for the host,
enable power management, and so on. You can also review the details of the network interfaces and
drives for the host.

You can move a bare metal host into maintenance mode. When you move a host into maintenance
mode, the scheduler moves all managed workloads off the corresponding bare metal node. No new
workloads are scheduled while in maintenance mode.

You can deprovision a bare metal host in the web console. Deprovisioning a host does the following
actions:

1. Annotates the bare metal host CR with cluster.k8s.io/delete-machine: true

2. Scales down the related compute machine set

NOTE

Powering off the host without first moving the daemon set and unmanaged static pods
to another node can cause service disruption and loss of data.

Additional resources

Adding compute machines to bare metal

8.2.1. Adding a bare metal host to the cluster using the web console

You can add bare metal hosts to the cluster in the web console.

Prerequisites

Install an RHCOS cluster on bare metal.

CHAPTER 8. MANAGING BARE METAL HOSTS

113

https://docs.redhat.com/en/documentation/openshift_container_platform/4.15/html-single/machine_management/#adding-bare-metal-compute-user-infra

Log in as a user with cluster-admin privileges.

Procedure

1. In the web console, navigate to Compute → Bare Metal Hosts.

2. Select Add Host → New with Dialog.

3. Specify a unique name for the new bare metal host.

4. Set the Boot MAC address.

5. Set the Baseboard Management Console (BMC) Address.

6. Enter the user credentials for the host’s baseboard management controller (BMC).

7. Select to power on the host after creation, and select Create.

8. Scale up the number of replicas to match the number of available bare metal hosts. Navigate to
Compute → MachineSets, and increase the number of machine replicas in the cluster by
selecting Edit Machine count from the Actions drop-down menu.

NOTE

You can also manage the number of bare metal nodes using the oc scale command and
the appropriate bare metal compute machine set.

8.2.2. Adding a bare metal host to the cluster using YAML in the web console

You can add bare metal hosts to the cluster in the web console using a YAML file that describes the
bare metal host.

Prerequisites

Install a RHCOS compute machine on bare metal infrastructure for use in the cluster.

Log in as a user with cluster-admin privileges.

Create a Secret CR for the bare metal host.

Procedure

1. In the web console, navigate to Compute → Bare Metal Hosts.

2. Select Add Host → New from YAML.

3. Copy and paste the below YAML, modifying the relevant fields with the details of your host:

apiVersion: metal3.io/v1alpha1
kind: BareMetalHost
metadata:
 name: <bare_metal_host_name>
spec:
 online: true
 bmc:

OpenShift Container Platform 4.15 Scalability and performance

114

1

2

credentialsName must reference a valid Secret CR. The baremetal-operator cannot
manage the bare metal host without a valid Secret referenced in the credentialsName.
For more information about secrets and how to create them, see Understanding secrets .

Setting disableCertificateVerification to true disables TLS host validation between the
cluster and the baseboard management controller (BMC).

4. Select Create to save the YAML and create the new bare metal host.

5. Scale up the number of replicas to match the number of available bare metal hosts. Navigate to
Compute → MachineSets, and increase the number of machines in the cluster by selecting Edit
Machine count from the Actions drop-down menu.

NOTE

You can also manage the number of bare metal nodes using the oc scale
command and the appropriate bare metal compute machine set.

8.2.3. Automatically scaling machines to the number of available bare metal hosts

To automatically create the number of Machine objects that matches the number of available
BareMetalHost objects, add a metal3.io/autoscale-to-hosts annotation to the MachineSet object.

Prerequisites

Install RHCOS bare metal compute machines for use in the cluster, and create corresponding
BareMetalHost objects.

Install the OpenShift Container Platform CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

1. Annotate the compute machine set that you want to configure for automatic scaling by adding
the metal3.io/autoscale-to-hosts annotation. Replace <machineset> with the name of the
compute machine set.

Wait for the new scaled machines to start.

NOTE

 address: <bmc_address>
 credentialsName: <secret_credentials_name> 1
 disableCertificateVerification: True 2
 bootMACAddress: <host_boot_mac_address>

$ oc annotate machineset <machineset> -n openshift-machine-api 'metal3.io/autoscale-to-
hosts=<any_value>'

CHAPTER 8. MANAGING BARE METAL HOSTS

115

https://docs.redhat.com/en/documentation/openshift_container_platform/4.15/html-single/nodes/#nodes-pods-secrets-about_nodes-pods-secrets

NOTE

When you use a BareMetalHost object to create a machine in the cluster and labels or
selectors are subsequently changed on the BareMetalHost, the BareMetalHost object
continues be counted against the MachineSet that the Machine object was created
from.

8.2.4. Removing bare metal hosts from the provisioner node

In certain circumstances, you might want to temporarily remove bare metal hosts from the provisioner
node. For example, during provisioning when a bare metal host reboot is triggered by using the
OpenShift Container Platform administration console or as a result of a Machine Config Pool update,
OpenShift Container Platform logs into the integrated Dell Remote Access Controller (iDrac) and issues
a delete of the job queue.

To prevent the management of the number of Machine objects that matches the number of available
BareMetalHost objects, add a baremetalhost.metal3.io/detached annotation to the MachineSet
object.

NOTE

This annotation has an effect for only BareMetalHost objects that are in either
Provisioned, ExternallyProvisioned or Ready/Available state.

Prerequisites

Install RHCOS bare metal compute machines for use in the cluster and create corresponding
BareMetalHost objects.

Install the OpenShift Container Platform CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

1. Annotate the compute machine set that you want to remove from the provisioner node by
adding the baremetalhost.metal3.io/detached annotation.

Wait for the new machines to start.

NOTE

When you use a BareMetalHost object to create a machine in the cluster and
labels or selectors are subsequently changed on the BareMetalHost, the
BareMetalHost object continues be counted against the MachineSet that the
Machine object was created from.

2. In the provisioning use case, remove the annotation after the reboot is complete by using the
following command:

$ oc annotate machineset <machineset> -n openshift-machine-api
'baremetalhost.metal3.io/detached'

OpenShift Container Platform 4.15 Scalability and performance

116

Additional resources

Expanding the cluster

MachineHealthChecks on bare metal

$ oc annotate machineset <machineset> -n openshift-machine-api
'baremetalhost.metal3.io/detached-'

CHAPTER 8. MANAGING BARE METAL HOSTS

117

https://docs.redhat.com/en/documentation/openshift_container_platform/4.15/html-single/installing/#ipi-install-expanding-the-cluster
https://docs.redhat.com/en/documentation/openshift_container_platform/4.15/html-single/machine_management/#machine-health-checks-bare-metal_deploying-machine-health-checks

CHAPTER 9. MONITORING BARE-METAL EVENTS WITH THE
BARE METAL EVENT RELAY

IMPORTANT

Bare Metal Event Relay is a Technology Preview feature only. Technology Preview
features are not supported with Red Hat production service level agreements (SLAs) and
might not be functionally complete. Red Hat does not recommend using them in
production. These features provide early access to upcoming product features, enabling
customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

9.1. ABOUT BARE-METAL EVENTS

IMPORTANT

The Bare Metal Event Relay Operator is deprecated. The ability to monitor bare-metal
hosts by using the Bare Metal Event Relay Operator will be removed in a future
OpenShift Container Platform release.

Use the Bare Metal Event Relay to subscribe applications that run in your OpenShift Container Platform
cluster to events that are generated on the underlying bare-metal host. The Redfish service publishes
events on a node and transmits them on an advanced message queue to subscribed applications.

Bare-metal events are based on the open Redfish standard that is developed under the guidance of the
Distributed Management Task Force (DMTF). Redfish provides a secure industry-standard protocol with
a REST API. The protocol is used for the management of distributed, converged or software-defined
resources and infrastructure.

Hardware-related events published through Redfish includes:

Breaches of temperature limits

Server status

Fan status

Begin using bare-metal events by deploying the Bare Metal Event Relay Operator and subscribing your
application to the service. The Bare Metal Event Relay Operator installs and manages the lifecycle of
the Redfish bare-metal event service.

NOTE

The Bare Metal Event Relay works only with Redfish-capable devices on single-node
clusters provisioned on bare-metal infrastructure.

9.2. HOW BARE-METAL EVENTS WORK

The Bare Metal Event Relay enables applications running on bare-metal clusters to respond quickly to
Redfish hardware changes and failures such as breaches of temperature thresholds, fan failure, disk loss,
power outages, and memory failure. These hardware events are delivered using an HTTP transport or

OpenShift Container Platform 4.15 Scalability and performance

118

https://access.redhat.com/support/offerings/techpreview/

AMQP mechanism. The latency of the messaging service is between 10 to 20 milliseconds.

The Bare Metal Event Relay provides a publish-subscribe service for the hardware events. Applications
can use a REST API to subscribe to the events. The Bare Metal Event Relay supports hardware that
complies with Redfish OpenAPI v1.8 or later.

9.2.1. Bare Metal Event Relay data flow

The following figure illustrates an example bare-metal events data flow:

Figure 9.1. Bare Metal Event Relay data flow

9.2.1.1. Operator-managed pod

The Operator uses custom resources to manage the pod containing the Bare Metal Event Relay and its
components using the HardwareEvent CR.

9.2.1.2. Bare Metal Event Relay

At startup, the Bare Metal Event Relay queries the Redfish API and downloads all the message registries,
including custom registries. The Bare Metal Event Relay then begins to receive subscribed events from
the Redfish hardware.

The Bare Metal Event Relay enables applications running on bare-metal clusters to respond quickly to
Redfish hardware changes and failures such as breaches of temperature thresholds, fan failure, disk loss,
power outages, and memory failure. The events are reported using the HardwareEvent CR.

9.2.1.3. Cloud native event

Cloud native events (CNE) is a REST API specification for defining the format of event data.

9.2.1.4. CNCF CloudEvents

CloudEvents is a vendor-neutral specification developed by the Cloud Native Computing Foundation
(CNCF) for defining the format of event data.

9.2.1.5. HTTP transport or AMQP dispatch router

CHAPTER 9. MONITORING BARE-METAL EVENTS WITH THE BARE METAL EVENT RELAY

119

https://cloudevents.io/

The HTTP transport or AMQP dispatch router is responsible for the message delivery service between
publisher and subscriber.

NOTE

HTTP transport is the default transport for PTP and bare-metal events. Use HTTP
transport instead of AMQP for PTP and bare-metal events where possible. AMQ
Interconnect is EOL from 30 June 2024. Extended life cycle support (ELS) for AMQ
Interconnect ends 29 November 2029. For more information see, Red Hat AMQ
Interconnect support status.

9.2.1.6. Cloud event proxy sidecar

The cloud event proxy sidecar container image is based on the O-RAN API specification and provides a
publish-subscribe event framework for hardware events.

9.2.2. Redfish message parsing service

In addition to handling Redfish events, the Bare Metal Event Relay provides message parsing for events
without a Message property. The proxy downloads all the Redfish message registries including vendor
specific registries from the hardware when it starts. If an event does not contain a Message property,
the proxy uses the Redfish message registries to construct the Message and Resolution properties and
add them to the event before passing the event to the cloud events framework. This service allows
Redfish events to have smaller message size and lower transmission latency.

9.2.3. Installing the Bare Metal Event Relay using the CLI

As a cluster administrator, you can install the Bare Metal Event Relay Operator by using the CLI.

Prerequisites

A cluster that is installed on bare-metal hardware with nodes that have a RedFish-enabled
Baseboard Management Controller (BMC).

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

1. Create a namespace for the Bare Metal Event Relay.

a. Save the following YAML in the bare-metal-events-namespace.yaml file:

b. Create the Namespace CR:

apiVersion: v1
kind: Namespace
metadata:
 name: openshift-bare-metal-events
 labels:
 name: openshift-bare-metal-events
 openshift.io/cluster-monitoring: "true"

OpenShift Container Platform 4.15 Scalability and performance

120

https://access.redhat.com/support/policy/updates/jboss_notes#p_Interconnect

2. Create an Operator group for the Bare Metal Event Relay Operator.

a. Save the following YAML in the bare-metal-events-operatorgroup.yaml file:

b. Create the OperatorGroup CR:

3. Subscribe to the Bare Metal Event Relay.

a. Save the following YAML in the bare-metal-events-sub.yaml file:

b. Create the Subscription CR:

Verification

To verify that the Bare Metal Event Relay Operator is installed, run the following command:

9.2.4. Installing the Bare Metal Event Relay using the web console

As a cluster administrator, you can install the Bare Metal Event Relay Operator using the web console.

Prerequisites

A cluster that is installed on bare-metal hardware with nodes that have a RedFish-enabled
Baseboard Management Controller (BMC).

$ oc create -f bare-metal-events-namespace.yaml

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: bare-metal-event-relay-group
 namespace: openshift-bare-metal-events
spec:
 targetNamespaces:
 - openshift-bare-metal-events

$ oc create -f bare-metal-events-operatorgroup.yaml

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: bare-metal-event-relay-subscription
 namespace: openshift-bare-metal-events
spec:
 channel: "stable"
 name: bare-metal-event-relay
 source: redhat-operators
 sourceNamespace: openshift-marketplace

$ oc create -f bare-metal-events-sub.yaml

$ oc get csv -n openshift-bare-metal-events -o custom-
columns=Name:.metadata.name,Phase:.status.phase

CHAPTER 9. MONITORING BARE-METAL EVENTS WITH THE BARE METAL EVENT RELAY

121

Log in as a user with cluster-admin privileges.

Procedure

1. Install the Bare Metal Event Relay using the OpenShift Container Platform web console:

a. In the OpenShift Container Platform web console, click Operators → OperatorHub.

b. Choose Bare Metal Event Relay from the list of available Operators, and then click Install.

c. On the Install Operator page, select or create a Namespace, select openshift-bare-
metal-events, and then click Install.

Verification

Optional: You can verify that the Operator installed successfully by performing the following check:

1. Switch to the Operators → Installed Operators page.

2. Ensure that Bare Metal Event Relay is listed in the project with a Status of InstallSucceeded.

NOTE

During installation an Operator might display a Failed status. If the installation
later succeeds with an InstallSucceeded message, you can ignore the Failed
message.

If the Operator does not appear as installed, to troubleshoot further:

Go to the Operators → Installed Operators page and inspect the Operator Subscriptions and
Install Plans tabs for any failure or errors under Status.

Go to the Workloads → Pods page and check the logs for pods in the project namespace.

9.3. INSTALLING THE AMQ MESSAGING BUS

To pass Redfish bare-metal event notifications between publisher and subscriber on a node, you can
install and configure an AMQ messaging bus to run locally on the node. You do this by installing the AMQ
Interconnect Operator for use in the cluster.

NOTE

HTTP transport is the default transport for PTP and bare-metal events. Use HTTP
transport instead of AMQP for PTP and bare-metal events where possible. AMQ
Interconnect is EOL from 30 June 2024. Extended life cycle support (ELS) for AMQ
Interconnect ends 29 November 2029. For more information see, Red Hat AMQ
Interconnect support status.

Prerequisites

Install the OpenShift Container Platform CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

OpenShift Container Platform 4.15 Scalability and performance

122

https://access.redhat.com/support/policy/updates/jboss_notes#p_Interconnect

Install the AMQ Interconnect Operator to its own amq-interconnect namespace. See Installing
the AMQ Interconnect Operator.

Verification

1. Verify that the AMQ Interconnect Operator is available and the required pods are running:

Example output

2. Verify that the required bare-metal-event-relay bare-metal event producer pod is running in
the openshift-bare-metal-events namespace:

Example output

9.4. SUBSCRIBING TO REDFISH BMC BARE-METAL EVENTS FOR A
CLUSTER NODE

You can subscribe to Redfish BMC events generated on a node in your cluster by creating a
BMCEventSubscription custom resource (CR) for the node, creating a HardwareEvent CR for the
event, and creating a Secret CR for the BMC.

9.4.1. Subscribing to bare-metal events

You can configure the baseboard management controller (BMC) to send bare-metal events to
subscribed applications running in an OpenShift Container Platform cluster. Example Redfish bare-
metal events include an increase in device temperature, or removal of a device. You subscribe
applications to bare-metal events using a REST API.

IMPORTANT

You can only create a BMCEventSubscription custom resource (CR) for physical
hardware that supports Redfish and has a vendor interface set to redfish or idrac-
redfish.

NOTE

Use the BMCEventSubscription CR to subscribe to predefined Redfish events. The
Redfish standard does not provide an option to create specific alerts and thresholds. For
example, to receive an alert event when an enclosure’s temperature exceeds 40° Celsius,
you must manually configure the event according to the vendor’s recommendations.

$ oc get pods -n amq-interconnect

NAME READY STATUS RESTARTS AGE
amq-interconnect-645db76c76-k8ghs 1/1 Running 0 23h
interconnect-operator-5cb5fc7cc-4v7qm 1/1 Running 0 23h

$ oc get pods -n openshift-bare-metal-events

NAME READY STATUS RESTARTS AGE
hw-event-proxy-operator-controller-manager-74d5649b7c-dzgtl 2/2 Running 0
25s

CHAPTER 9. MONITORING BARE-METAL EVENTS WITH THE BARE METAL EVENT RELAY

123

https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q1/html/deploying_amq_interconnect_on_openshift/adding-operator-router-ocp

Perform the following procedure to subscribe to bare-metal events for the node using a
BMCEventSubscription CR.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Get the user name and password for the BMC.

Deploy a bare-metal node with a Redfish-enabled Baseboard Management Controller (BMC) in
your cluster, and enable Redfish events on the BMC.

NOTE

Enabling Redfish events on specific hardware is outside the scope of this
information. For more information about enabling Redfish events for your
specific hardware, consult the BMC manufacturer documentation.

Procedure

1. Confirm that the node hardware has the Redfish EventService enabled by running the
following curl command:

where:

bmc_ip_address

is the IP address of the BMC where the Redfish events are generated.

Example output

$ curl https://<bmc_ip_address>/redfish/v1/EventService --insecure -H 'Content-Type:
application/json' -u "<bmc_username>:<password>"

{
 "@odata.context": "/redfish/v1/$metadata#EventService.EventService",
 "@odata.id": "/redfish/v1/EventService",
 "@odata.type": "#EventService.v1_0_2.EventService",
 "Actions": {
 "#EventService.SubmitTestEvent": {
 "EventType@Redfish.AllowableValues": ["StatusChange", "ResourceUpdated",
"ResourceAdded", "ResourceRemoved", "Alert"],
 "target": "/redfish/v1/EventService/Actions/EventService.SubmitTestEvent"
 }
 },
 "DeliveryRetryAttempts": 3,
 "DeliveryRetryIntervalSeconds": 30,
 "Description": "Event Service represents the properties for the service",
 "EventTypesForSubscription": ["StatusChange", "ResourceUpdated", "ResourceAdded",
"ResourceRemoved", "Alert"],
 "EventTypesForSubscription@odata.count": 5,
 "Id": "EventService",
 "Name": "Event Service",
 "ServiceEnabled": true,

OpenShift Container Platform 4.15 Scalability and performance

124

1

2

2. Get the Bare Metal Event Relay service route for the cluster by running the following command:

Example output

3. Create a BMCEventSubscription resource to subscribe to the Redfish events:

a. Save the following YAML in the bmc_sub.yaml file:

Specifies the name or UUID of the worker node where the Redfish events are
generated.

Specifies the bare-metal event proxy service, for example, https://hw-event-proxy-
openshift-bare-metal-events.apps.compute-1.example.com/webhook.

b. Create the BMCEventSubscription CR:

4. Optional: To delete the BMC event subscription, run the following command:

5. Optional: To manually create a Redfish event subscription without creating a
BMCEventSubscription CR, run the following curl command, specifying the BMC username
and password.

 "Status": {
 "Health": "OK",
 "HealthRollup": "OK",
 "State": "Enabled"
 },
 "Subscriptions": {
 "@odata.id": "/redfish/v1/EventService/Subscriptions"
 }
}

$ oc get route -n openshift-bare-metal-events

NAME HOST/PORT PATH SERVICES
PORT TERMINATION WILDCARD
hw-event-proxy hw-event-proxy-openshift-bare-metal-events.apps.compute-
1.example.com hw-event-proxy-service 9087 edge None

apiVersion: metal3.io/v1alpha1
kind: BMCEventSubscription
metadata:
 name: sub-01
 namespace: openshift-machine-api
spec:
 hostName: <hostname> 1
 destination: <proxy_service_url> 2
 context: ''

$ oc create -f bmc_sub.yaml

$ oc delete -f bmc_sub.yaml

CHAPTER 9. MONITORING BARE-METAL EVENTS WITH THE BARE METAL EVENT RELAY

125

https://hw-event-proxy-openshift-bare-metal-events.apps.compute-1.example.com/webhook

where:

proxy_service_url

is the bare-metal event proxy service, for example, https://hw-event-proxy-openshift-bare-
metal-events.apps.compute-1.example.com/webhook.

bmc_ip_address

is the IP address of the BMC where the Redfish events are generated.

Example output

9.4.2. Querying Redfish bare-metal event subscriptions with curl

Some hardware vendors limit the amount of Redfish hardware event subscriptions. You can query the
number of Redfish event subscriptions by using curl.

Prerequisites

Get the user name and password for the BMC.

Deploy a bare-metal node with a Redfish-enabled Baseboard Management Controller (BMC) in
your cluster, and enable Redfish hardware events on the BMC.

Procedure

1. Check the current subscriptions for the BMC by running the following curl command:

$ curl -i -k -X POST -H "Content-Type: application/json" -d '{"Destination":
"https://<proxy_service_url>", "Protocol" : "Redfish", "EventTypes": ["Alert"], "Context":
"root"}' -u <bmc_username>:<password>
'https://<bmc_ip_address>/redfish/v1/EventService/Subscriptions' –v

HTTP/1.1 201 Created
Server: AMI MegaRAC Redfish Service
Location: /redfish/v1/EventService/Subscriptions/1
Allow: GET, POST
Access-Control-Allow-Origin: *
Access-Control-Expose-Headers: X-Auth-Token
Access-Control-Allow-Headers: X-Auth-Token
Access-Control-Allow-Credentials: true
Cache-Control: no-cache, must-revalidate
Link: <http://redfish.dmtf.org/schemas/v1/EventDestination.v1_6_0.json>; rel=describedby
Link: <http://redfish.dmtf.org/schemas/v1/EventDestination.v1_6_0.json>
Link: </redfish/v1/EventService/Subscriptions>; path=
ETag: "1651135676"
Content-Type: application/json; charset=UTF-8
OData-Version: 4.0
Content-Length: 614
Date: Thu, 28 Apr 2022 08:47:57 GMT

$ curl --globoff -H "Content-Type: application/json" -k -X GET --user <bmc_username>:
<password> https://<bmc_ip_address>/redfish/v1/EventService/Subscriptions

OpenShift Container Platform 4.15 Scalability and performance

126

https://hw-event-proxy-openshift-bare-metal-events.apps.compute-1.example.com/webhook

where:

bmc_ip_address

is the IP address of the BMC where the Redfish events are generated.

Example output

In this example, a single subscription is configured: /redfish/v1/EventService/Subscriptions/1.

2. Optional: To remove the /redfish/v1/EventService/Subscriptions/1 subscription with curl, run
the following command, specifying the BMC username and password:

where:

bmc_ip_address

is the IP address of the BMC where the Redfish events are generated.

9.4.3. Creating the bare-metal event and Secret CRs

To start using bare-metal events, create the HardwareEvent custom resource (CR) for the host where
the Redfish hardware is present. Hardware events and faults are reported in the hw-event-proxy logs.

Prerequisites

You have installed the OpenShift Container Platform CLI (oc).

You have logged in as a user with cluster-admin privileges.

You have installed the Bare Metal Event Relay.

You have created a BMCEventSubscription CR for the BMC Redfish hardware.

% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed
100 435 100 435 0 0 399 0 0:00:01 0:00:01 --:--:-- 399
{
 "@odata.context":
"/redfish/v1/$metadata#EventDestinationCollection.EventDestinationCollection",
 "@odata.etag": ""
 1651137375 "",
 "@odata.id": "/redfish/v1/EventService/Subscriptions",
 "@odata.type": "#EventDestinationCollection.EventDestinationCollection",
 "Description": "Collection for Event Subscriptions",
 "Members": [
 {
 "@odata.id": "/redfish/v1/EventService/Subscriptions/1"
 }],
 "Members@odata.count": 1,
 "Name": "Event Subscriptions Collection"
}

$ curl --globoff -L -w "%{http_code} %{url_effective}\n" -k -u <bmc_username>:<password >-
H "Content-Type: application/json" -d '{}' -X DELETE
https://<bmc_ip_address>/redfish/v1/EventService/Subscriptions/1

CHAPTER 9. MONITORING BARE-METAL EVENTS WITH THE BARE METAL EVENT RELAY

127

1

2

3

Procedure

1. Create the HardwareEvent custom resource (CR):

NOTE

Multiple HardwareEvent resources are not permitted.

a. Save the following YAML in the hw-event.yaml file:

Required. Use the nodeSelector field to target nodes with the specified label, for
example, node-role.kubernetes.io/hw-event: "".

NOTE

In OpenShift Container Platform 4.13 or later, you do not need to set
the spec.transportHost field in the HardwareEvent resource when you
use HTTP transport for bare-metal events. Set transportHost only
when you use AMQP transport for bare-metal events.

Optional. The default value is debug. Sets the log level in hw-event-proxy logs. The
following log levels are available: fatal, error, warning, info, debug, trace.

Optional. Sets the timeout value in milliseconds for the Message Parser. If a message
parsing request is not responded to within the timeout duration, the original hardware
event message is passed to the cloud native event framework. The default value is 10.

b. Apply the HardwareEvent CR in the cluster:

2. Create a BMC username and password Secret CR that enables the hardware events proxy to
access the Redfish message registry for the bare-metal host.

a. Save the following YAML in the hw-event-bmc-secret.yaml file:

apiVersion: "event.redhat-cne.org/v1alpha1"
kind: "HardwareEvent"
metadata:
 name: "hardware-event"
spec:
 nodeSelector:
 node-role.kubernetes.io/hw-event: "" 1
 logLevel: "debug" 2
 msgParserTimeout: "10" 3

$ oc create -f hardware-event.yaml

apiVersion: v1
kind: Secret
metadata:
 name: redfish-basic-auth
type: Opaque
stringData: 1
 username: <bmc_username>

OpenShift Container Platform 4.15 Scalability and performance

128

1 Enter plain text values for the various items under stringData.

b. Create the Secret CR:

Additional resources

Persistent storage using local volumes

9.5. SUBSCRIBING APPLICATIONS TO BARE-METAL EVENTS REST
API REFERENCE

Use the bare-metal events REST API to subscribe an application to the bare-metal events that are
generated on the parent node.

Subscribe applications to Redfish events by using the resource address
/cluster/node/<node_name>/redfish/event, where <node_name> is the cluster node running the
application.

Deploy your cloud-event-consumer application container and cloud-event-proxy sidecar container in
a separate application pod. The cloud-event-consumer application subscribes to the cloud-event-
proxy container in the application pod.

Use the following API endpoints to subscribe the cloud-event-consumer application to Redfish events
posted by the cloud-event-proxy container at http://localhost:8089/api/ocloudNotifications/v1/ in
the application pod:

/api/ocloudNotifications/v1/subscriptions

POST: Creates a new subscription

GET: Retrieves a list of subscriptions

/api/ocloudNotifications/v1/subscriptions/<subscription_id>

PUT: Creates a new status ping request for the specified subscription ID

/api/ocloudNotifications/v1/health

GET: Returns the health status of ocloudNotifications API

NOTE

9089 is the default port for the cloud-event-consumer container deployed in the
application pod. You can configure a different port for your application as required.

api/ocloudNotifications/v1/subscriptions
HTTP method
GET api/ocloudNotifications/v1/subscriptions

 password: <bmc_password>
 # BMC host DNS or IP address
 hostaddr: <bmc_host_ip_address>

$ oc create -f hw-event-bmc-secret.yaml

CHAPTER 9. MONITORING BARE-METAL EVENTS WITH THE BARE METAL EVENT RELAY

129

https://docs.redhat.com/en/documentation/openshift_container_platform/4.15/html-single/storage/#persistent-storage-using-local-volume

Description
Returns a list of subscriptions. If subscriptions exist, a 200 OK status code is returned along with the list
of subscriptions.

Example API response

HTTP method
POST api/ocloudNotifications/v1/subscriptions

Description
Creates a new subscription. If a subscription is successfully created, or if it already exists, a 201 Created
status code is returned.

Table 9.1. Query parameters

Parameter Type

subscription data

Example payload

api/ocloudNotifications/v1/subscriptions/<subscription_id>
HTTP method
GET api/ocloudNotifications/v1/subscriptions/<subscription_id>

Description
Returns details for the subscription with ID <subscription_id>

Table 9.2. Query parameters

Parameter Type

<subscription_id> string

Example API response

[
 {
 "id": "ca11ab76-86f9-428c-8d3a-666c24e34d32",
 "endpointUri": "http://localhost:9089/api/ocloudNotifications/v1/dummy",
 "uriLocation": "http://localhost:8089/api/ocloudNotifications/v1/subscriptions/ca11ab76-86f9-428c-
8d3a-666c24e34d32",
 "resource": "/cluster/node/openshift-worker-0.openshift.example.com/redfish/event"
 }
]

{
 "uriLocation": "http://localhost:8089/api/ocloudNotifications/v1/subscriptions",
 "resource": "/cluster/node/openshift-worker-0.openshift.example.com/redfish/event"
}

{

OpenShift Container Platform 4.15 Scalability and performance

130

api/ocloudNotifications/v1/health/
HTTP method
GET api/ocloudNotifications/v1/health/

Description
Returns the health status for the ocloudNotifications REST API.

Example API response

9.6. MIGRATING CONSUMER APPLICATIONS TO USE HTTP
TRANSPORT FOR PTP OR BARE-METAL EVENTS

If you have previously deployed PTP or bare-metal events consumer applications, you need to update
the applications to use HTTP message transport.

Prerequisites

You have installed the OpenShift CLI (oc).

You have logged in as a user with cluster-admin privileges.

You have updated the PTP Operator or Bare Metal Event Relay to version 4.13+ which uses
HTTP transport by default.

Procedure

1. Update your events consumer application to use HTTP transport. Set the http-event-
publishers variable for the cloud event sidecar deployment.
For example, in a cluster with PTP events configured, the following YAML snippet illustrates a
cloud event sidecar deployment:

The PTP Operator automatically resolves NODE_NAME to the host that is generating the

 "id":"ca11ab76-86f9-428c-8d3a-666c24e34d32",
 "endpointUri":"http://localhost:9089/api/ocloudNotifications/v1/dummy",
 "uriLocation":"http://localhost:8089/api/ocloudNotifications/v1/subscriptions/ca11ab76-86f9-428c-
8d3a-666c24e34d32",
 "resource":"/cluster/node/openshift-worker-0.openshift.example.com/redfish/event"
}

OK

containers:
 - name: cloud-event-sidecar
 image: cloud-event-sidecar
 args:
 - "--metrics-addr=127.0.0.1:9091"
 - "--store-path=/store"
 - "--transport-host=consumer-events-subscription-service.cloud-
events.svc.cluster.local:9043"
 - "--http-event-publishers=ptp-event-publisher-service-NODE_NAME.openshift-
ptp.svc.cluster.local:9043" 1
 - "--api-port=8089"

CHAPTER 9. MONITORING BARE-METAL EVENTS WITH THE BARE METAL EVENT RELAY

131

1 The PTP Operator automatically resolves NODE_NAME to the host that is generating the
PTP events. For example, compute-1.example.com.

In a cluster with bare-metal events configured, set the http-event-publishers field to hw-
event-publisher-service.openshift-bare-metal-events.svc.cluster.local:9043 in the cloud
event sidecar deployment CR.

2. Deploy the consumer-events-subscription-service service alongside the events consumer
application. For example:

apiVersion: v1
kind: Service
metadata:
 annotations:
 prometheus.io/scrape: "true"
 service.alpha.openshift.io/serving-cert-secret-name: sidecar-consumer-secret
 name: consumer-events-subscription-service
 namespace: cloud-events
 labels:
 app: consumer-service
spec:
 ports:
 - name: sub-port
 port: 9043
 selector:
 app: consumer
 clusterIP: None
 sessionAffinity: None
 type: ClusterIP

OpenShift Container Platform 4.15 Scalability and performance

132

CHAPTER 10. WHAT HUGE PAGES DO AND HOW THEY ARE
CONSUMED BY APPLICATIONS

10.1. WHAT HUGE PAGES DO

Memory is managed in blocks known as pages. On most systems, a page is 4Ki. 1Mi of memory is equal to
256 pages; 1Gi of memory is 256,000 pages, and so on. CPUs have a built-in memory management unit
that manages a list of these pages in hardware. The Translation Lookaside Buffer (TLB) is a small
hardware cache of virtual-to-physical page mappings. If the virtual address passed in a hardware
instruction can be found in the TLB, the mapping can be determined quickly. If not, a TLB miss occurs,
and the system falls back to slower, software-based address translation, resulting in performance issues.
Since the size of the TLB is fixed, the only way to reduce the chance of a TLB miss is to increase the
page size.

A huge page is a memory page that is larger than 4Ki. On x86_64 architectures, there are two common
huge page sizes: 2Mi and 1Gi. Sizes vary on other architectures. To use huge pages, code must be
written so that applications are aware of them. Transparent Huge Pages (THP) attempt to automate the
management of huge pages without application knowledge, but they have limitations. In particular, they
are limited to 2Mi page sizes. THP can lead to performance degradation on nodes with high memory
utilization or fragmentation due to defragmenting efforts of THP, which can lock memory pages. For this
reason, some applications may be designed to (or recommend) usage of pre-allocated huge pages
instead of THP.

In OpenShift Container Platform, applications in a pod can allocate and consume pre-allocated huge
pages.

10.2. HOW HUGE PAGES ARE CONSUMED BY APPS

Nodes must pre-allocate huge pages in order for the node to report its huge page capacity. A node can
only pre-allocate huge pages for a single size.

Huge pages can be consumed through container-level resource requirements using the resource name
hugepages-<size>, where size is the most compact binary notation using integer values supported on a
particular node. For example, if a node supports 2048KiB page sizes, it exposes a schedulable resource
hugepages-2Mi. Unlike CPU or memory, huge pages do not support over-commitment.

apiVersion: v1
kind: Pod
metadata:
 generateName: hugepages-volume-
spec:
 containers:
 - securityContext:
 privileged: true
 image: rhel7:latest
 command:
 - sleep
 - inf
 name: example
 volumeMounts:
 - mountPath: /dev/hugepages
 name: hugepage
 resources:
 limits:

CHAPTER 10. WHAT HUGE PAGES DO AND HOW THEY ARE CONSUMED BY APPLICATIONS

133

1 Specify the amount of memory for hugepages as the exact amount to be allocated. Do not specify
this value as the amount of memory for hugepages multiplied by the size of the page. For
example, given a huge page size of 2MB, if you want to use 100MB of huge-page-backed RAM for
your application, then you would allocate 50 huge pages. OpenShift Container Platform handles
the math for you. As in the above example, you can specify 100MB directly.

Allocating huge pages of a specific size

Some platforms support multiple huge page sizes. To allocate huge pages of a specific size, precede the
huge pages boot command parameters with a huge page size selection parameter hugepagesz=<size>.
The <size> value must be specified in bytes with an optional scale suffix [kKmMgG]. The default huge
page size can be defined with the default_hugepagesz=<size> boot parameter.

Huge page requirements

Huge page requests must equal the limits. This is the default if limits are specified, but requests
are not.

Huge pages are isolated at a pod scope. Container isolation is planned in a future iteration.

EmptyDir volumes backed by huge pages must not consume more huge page memory than the
pod request.

Applications that consume huge pages via shmget() with SHM_HUGETLB must run with a
supplemental group that matches proc/sys/vm/hugetlb_shm_group.

10.3. CONSUMING HUGE PAGES RESOURCES USING THE
DOWNWARD API

You can use the Downward API to inject information about the huge pages resources that are consumed
by a container.

You can inject the resource allocation as environment variables, a volume plugin, or both. Applications
that you develop and run in the container can determine the resources that are available by reading the
environment variables or files in the specified volumes.

Procedure

1. Create a hugepages-volume-pod.yaml file that is similar to the following example:

 hugepages-2Mi: 100Mi 1
 memory: "1Gi"
 cpu: "1"
 volumes:
 - name: hugepage
 emptyDir:
 medium: HugePages

apiVersion: v1
kind: Pod
metadata:
 generateName: hugepages-volume-
 labels:
 app: hugepages-example

OpenShift Container Platform 4.15 Scalability and performance

134

<.> Specifies to read the resource use from requests.hugepages-1Gi and expose the value as
the REQUESTS_HUGEPAGES_1GI environment variable. <.> Specifies to read the resource
use from requests.hugepages-1Gi and expose the value as the file
/etc/podinfo/hugepages_1G_request.

2. Create the pod from the hugepages-volume-pod.yaml file:

Verification

1. Check the value of the REQUESTS_HUGEPAGES_1GI environment variable:

spec:
 containers:
 - securityContext:
 capabilities:
 add: ["IPC_LOCK"]
 image: rhel7:latest
 command:
 - sleep
 - inf
 name: example
 volumeMounts:
 - mountPath: /dev/hugepages
 name: hugepage
 - mountPath: /etc/podinfo
 name: podinfo
 resources:
 limits:
 hugepages-1Gi: 2Gi
 memory: "1Gi"
 cpu: "1"
 requests:
 hugepages-1Gi: 2Gi
 env:
 - name: REQUESTS_HUGEPAGES_1GI <.>
 valueFrom:
 resourceFieldRef:
 containerName: example
 resource: requests.hugepages-1Gi
 volumes:
 - name: hugepage
 emptyDir:
 medium: HugePages
 - name: podinfo
 downwardAPI:
 items:
 - path: "hugepages_1G_request" <.>
 resourceFieldRef:
 containerName: example
 resource: requests.hugepages-1Gi
 divisor: 1Gi

$ oc create -f hugepages-volume-pod.yaml

CHAPTER 10. WHAT HUGE PAGES DO AND HOW THEY ARE CONSUMED BY APPLICATIONS

135

Example output

2. Check the value of the /etc/podinfo/hugepages_1G_request file:

Example output

Additional resources

Allowing containers to consume Downward API objects

10.4. CONFIGURING HUGE PAGES AT BOOT TIME

Nodes must pre-allocate huge pages used in an OpenShift Container Platform cluster. There are two
ways of reserving huge pages: at boot time and at run time. Reserving at boot time increases the
possibility of success because the memory has not yet been significantly fragmented. The Node Tuning
Operator currently supports boot time allocation of huge pages on specific nodes.

Procedure

To minimize node reboots, the order of the steps below needs to be followed:

1. Label all nodes that need the same huge pages setting by a label.

2. Create a file with the following content and name it hugepages-tuned-boottime.yaml:

$ oc exec -it $(oc get pods -l app=hugepages-example -o
jsonpath='{.items[0].metadata.name}') \
 -- env | grep REQUESTS_HUGEPAGES_1GI

REQUESTS_HUGEPAGES_1GI=2147483648

$ oc exec -it $(oc get pods -l app=hugepages-example -o
jsonpath='{.items[0].metadata.name}') \
 -- cat /etc/podinfo/hugepages_1G_request

2

$ oc label node <node_using_hugepages> node-role.kubernetes.io/worker-hp=

apiVersion: tuned.openshift.io/v1
kind: Tuned
metadata:
 name: hugepages 1
 namespace: openshift-cluster-node-tuning-operator
spec:
 profile: 2
 - data: |
 [main]
 summary=Boot time configuration for hugepages
 include=openshift-node
 [bootloader]
 cmdline_openshift_node_hugepages=hugepagesz=2M hugepages=50 3

OpenShift Container Platform 4.15 Scalability and performance

136

https://docs.redhat.com/en/documentation/openshift_container_platform/4.15/html-single/nodes/#nodes-containers-downward-api

1

2

3

4

Set the name of the Tuned resource to hugepages.

Set the profile section to allocate huge pages.

Note the order of parameters is important as some platforms support huge pages of
various sizes.

Enable machine config pool based matching.

3. Create the Tuned hugepages object

4. Create a file with the following content and name it hugepages-mcp.yaml:

5. Create the machine config pool:

Given enough non-fragmented memory, all the nodes in the worker-hp machine config pool should now
have 50 2Mi huge pages allocated.

NOTE

The TuneD bootloader plugin only supports Red Hat Enterprise Linux CoreOS (RHCOS)
worker nodes.

 name: openshift-node-hugepages

 recommend:
 - machineConfigLabels: 4
 machineconfiguration.openshift.io/role: "worker-hp"
 priority: 30
 profile: openshift-node-hugepages

$ oc create -f hugepages-tuned-boottime.yaml

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfigPool
metadata:
 name: worker-hp
 labels:
 worker-hp: ""
spec:
 machineConfigSelector:
 matchExpressions:
 - {key: machineconfiguration.openshift.io/role, operator: In, values: [worker,worker-hp]}
 nodeSelector:
 matchLabels:
 node-role.kubernetes.io/worker-hp: ""

$ oc create -f hugepages-mcp.yaml

$ oc get node <node_using_hugepages> -o jsonpath="{.status.allocatable.hugepages-2Mi}"
100Mi

CHAPTER 10. WHAT HUGE PAGES DO AND HOW THEY ARE CONSUMED BY APPLICATIONS

137

10.5. DISABLING TRANSPARENT HUGE PAGES

Transparent Huge Pages (THP) attempt to automate most aspects of creating, managing, and using
huge pages. Since THP automatically manages the huge pages, this is not always handled optimally for
all types of workloads. THP can lead to performance regressions, since many applications handle huge
pages on their own. Therefore, consider disabling THP. The following steps describe how to disable THP
using the Node Tuning Operator (NTO).

Procedure

1. Create a file with the following content and name it thp-disable-tuned.yaml:

2. Create the Tuned object:

3. Check the list of active profiles:

Verification

Log in to one of the nodes and do a regular THP check to verify if the nodes applied the profile
successfully:

Example output

apiVersion: tuned.openshift.io/v1
kind: Tuned
metadata:
 name: thp-workers-profile
 namespace: openshift-cluster-node-tuning-operator
spec:
 profile:
 - data: |
 [main]
 summary=Custom tuned profile for OpenShift to turn off THP on worker nodes
 include=openshift-node

 [vm]
 transparent_hugepages=never
 name: openshift-thp-never-worker

 recommend:
 - match:
 - label: node-role.kubernetes.io/worker
 priority: 25
 profile: openshift-thp-never-worker

$ oc create -f thp-disable-tuned.yaml

$ oc get profile -n openshift-cluster-node-tuning-operator

$ cat /sys/kernel/mm/transparent_hugepage/enabled

always madvise [never]

OpenShift Container Platform 4.15 Scalability and performance

138

CHAPTER 11. LOW LATENCY TUNING

11.1. UNDERSTANDING LOW LATENCY TUNING FOR CLUSTER NODES

Edge computing has a key role in reducing latency and congestion problems and improving application
performance for telco and 5G network applications. Maintaining a network architecture with the lowest
possible latency is key for meeting the network performance requirements of 5G. Compared to 4G
technology, with an average latency of 50 ms, 5G is targeted to reach latency of 1 ms or less. This
reduction in latency boosts wireless throughput by a factor of 10.

11.1.1. About low latency

Many of the deployed applications in the Telco space require low latency that can only tolerate zero
packet loss. Tuning for zero packet loss helps mitigate the inherent issues that degrade network
performance. For more information, see Tuning for Zero Packet Loss in Red Hat OpenStack Platform
(RHOSP).

The Edge computing initiative also comes in to play for reducing latency rates. Think of it as being on the
edge of the cloud and closer to the user. This greatly reduces the distance between the user and distant
data centers, resulting in reduced application response times and performance latency.

Administrators must be able to manage their many Edge sites and local services in a centralized way so
that all of the deployments can run at the lowest possible management cost. They also need an easy way
to deploy and configure certain nodes of their cluster for real-time low latency and high-performance
purposes. Low latency nodes are useful for applications such as Cloud-native Network Functions (CNF)
and Data Plane Development Kit (DPDK).

OpenShift Container Platform currently provides mechanisms to tune software on an OpenShift
Container Platform cluster for real-time running and low latency (around <20 microseconds reaction
time). This includes tuning the kernel and OpenShift Container Platform set values, installing a kernel,
and reconfiguring the machine. But this method requires setting up four different Operators and
performing many configurations that, when done manually, is complex and could be prone to mistakes.

OpenShift Container Platform uses the Node Tuning Operator to implement automatic tuning to
achieve low latency performance for OpenShift Container Platform applications. The cluster
administrator uses this performance profile configuration that makes it easier to make these changes in
a more reliable way. The administrator can specify whether to update the kernel to kernel-rt, reserve
CPUs for cluster and operating system housekeeping duties, including pod infra containers, and isolate
CPUs for application containers to run the workloads.

IMPORTANT

In OpenShift Container Platform 4.14, if you apply a performance profile to your cluster,
all nodes in the cluster will reboot. This reboot includes control plane nodes and worker
nodes that were not targeted by the performance profile. This is a known issue in
OpenShift Container Platform 4.14 because this release uses Linux control group version
2 (cgroup v2) in alignment with RHEL 9. The low latency tuning features associated with
the performance profile do not support cgroup v2, therefore the nodes reboot to switch
back to the cgroup v1 configuration.

To revert all nodes in the cluster to the cgroups v2 configuration, you must edit the Node
resource. (OCPBUGS-16976)

NOTE

CHAPTER 11. LOW LATENCY TUNING

139

https://www.redhat.com/en/blog/tuning-zero-packet-loss-red-hat-openstack-platform-part-1
https://issues.redhat.com/browse/OCPBUGS-16976

NOTE

Currently, disabling CPU load balancing is not supported by cgroup v2. As a result, you
might not get the desired behavior from performance profiles if you have cgroup v2
enabled. Enabling cgroup v2 is not recommended if you are using performance profiles.

OpenShift Container Platform also supports workload hints for the Node Tuning Operator that can tune
the PerformanceProfile to meet the demands of different industry environments. Workload hints are
available for highPowerConsumption (very low latency at the cost of increased power consumption)
and realTime (priority given to optimum latency). A combination of true/false settings for these hints
can be used to deal with application-specific workload profiles and requirements.

Workload hints simplify the fine-tuning of performance to industry sector settings. Instead of a “one size
fits all” approach, workload hints can cater to usage patterns such as placing priority on:

Low latency

Real-time capability

Efficient use of power

Ideally, all of the previously listed items are prioritized. Some of these items come at the expense of
others however. The Node Tuning Operator is now aware of the workload expectations and better able
to meet the demands of the workload. The cluster admin can now specify into which use case that
workload falls. The Node Tuning Operator uses the PerformanceProfile to fine tune the performance
settings for the workload.

The environment in which an application is operating influences its behavior. For a typical data center
with no strict latency requirements, only minimal default tuning is needed that enables CPU partitioning
for some high performance workload pods. For data centers and workloads where latency is a higher
priority, measures are still taken to optimize power consumption. The most complicated cases are
clusters close to latency-sensitive equipment such as manufacturing machinery and software-defined
radios. This last class of deployment is often referred to as Far edge. For Far edge deployments, ultra-
low latency is the ultimate priority, and is achieved at the expense of power management.

11.1.2. About Hyper-Threading for low latency and real-time applications

Hyper-Threading is an Intel processor technology that allows a physical CPU processor core to function
as two logical cores, executing two independent threads simultaneously. Hyper-Threading allows for
better system throughput for certain workload types where parallel processing is beneficial. The default
OpenShift Container Platform configuration expects Hyper-Threading to be enabled.

For telecommunications applications, it is important to design your application infrastructure to
minimize latency as much as possible. Hyper-Threading can slow performance times and negatively
affect throughput for compute-intensive workloads that require low latency. Disabling Hyper-Threading
ensures predictable performance and can decrease processing times for these workloads.

NOTE

Hyper-Threading implementation and configuration differs depending on the hardware
you are running OpenShift Container Platform on. Consult the relevant host hardware
tuning information for more details of the Hyper-Threading implementation specific to
that hardware. Disabling Hyper-Threading can increase the cost per core of the cluster.

Additional resources

OpenShift Container Platform 4.15 Scalability and performance

140

Configuring Hyper-Threading for a cluster

11.2. TUNING NODES FOR LOW LATENCY WITH THE PERFORMANCE
PROFILE

Tune nodes for low latency by using the cluster performance profile. You can restrict CPUs for infra and
application containers, configure huge pages, Hyper-Threading, and configure CPU partitions for
latency-sensitive processes.

Additional resources

Provisioning real-time and low latency workloads

11.2.1. Creating a performance profile

Learn about the Performance Profile Creator (PPC) and how you can use it to create a performance
profile.

11.2.1.1. About the Performance Profile Creator

The Performance Profile Creator (PPC) is a command-line tool, delivered with the Node Tuning
Operator, used to create the performance profile. The tool consumes must-gather data from the
cluster and several user-supplied profile arguments. The PPC generates a performance profile that is
appropriate for your hardware and topology.

The tool is run by one of the following methods:

Invoking podman

Calling a wrapper script

11.2.1.2. Gathering data about your cluster using the must-gather command

The Performance Profile Creator (PPC) tool requires must-gather data. As a cluster administrator, run
the must-gather command to capture information about your cluster.

Prerequisites

Access to the cluster as a user with the cluster-admin role.

The OpenShift CLI (oc) installed.

Procedure

1. Optional: Verify that a matching machine config pool exists with a label:

Example output

2. If a matching label does not exist add a label for a machine config pool (MCP) that matches with

$ oc describe mcp/worker-rt

Name: worker-rt
Namespace:
Labels: machineconfiguration.openshift.io/role=worker-rt

CHAPTER 11. LOW LATENCY TUNING

141

2. If a matching label does not exist add a label for a machine config pool (MCP) that matches with
the MCP name:

3. Navigate to the directory where you want to store the must-gather data.

4. Collect cluster information by running the following command:

5. Optional: Create a compressed file from the must-gather directory:

NOTE

Compressed output is required if you are running the Performance Profile
Creator wrapper script.

11.2.1.3. Running the Performance Profile Creator using Podman

As a cluster administrator, you can run podman and the Performance Profile Creator to create a
performance profile.

Prerequisites

Access to the cluster as a user with the cluster-admin role.

A cluster installed on bare-metal hardware.

A node with podman and OpenShift CLI (oc) installed.

Access to the Node Tuning Operator image.

Procedure

1. Check the machine config pool:

Example output

2. Use Podman to authenticate to registry.redhat.io:

$ oc label mcp <mcp_name> machineconfiguration.openshift.io/role=<mcp_name>

$ oc adm must-gather

$ tar cvaf must-gather.tar.gz must-gather/

$ oc get mcp

NAME CONFIG UPDATED UPDATING DEGRADED
MACHINECOUNT READYMACHINECOUNT UPDATEDMACHINECOUNT
DEGRADEDMACHINECOUNT AGE
master rendered-master-acd1358917e9f98cbdb599aea622d78b True False
False 3 3 3 0 22h
worker-cnf rendered-worker-cnf-1d871ac76e1951d32b2fe92369879826 False True
False 2 1 1 0 22h

OpenShift Container Platform 4.15 Scalability and performance

142

3. Optional: Display help for the PPC tool:

Example output

4. Run the Performance Profile Creator tool in discovery mode:

NOTE

Discovery mode inspects your cluster by using the output from must-gather. The
output produced includes information on the following conditions:

The NUMA cell partitioning with the allocated CPU ids

Whether Hyper-Threading is enabled

Using this information you can set appropriate values for some of the arguments
supplied to the Performance Profile Creator tool.

$ podman login registry.redhat.io

Username: <username>
Password: <password>

$ podman run --rm --entrypoint performance-profile-creator registry.redhat.io/openshift4/ose-
cluster-node-tuning-operator:v4.15 -h

A tool that automates creation of Performance Profiles

Usage:
 performance-profile-creator [flags]

Flags:
 --disable-ht Disable Hyperthreading
 -h, --help help for performance-profile-creator
 --info string Show cluster information; requires --must-gather-dir-path,
ignore the other arguments. [Valid values: log, json] (default "log")
 --mcp-name string MCP name corresponding to the target machines
(required)
 --must-gather-dir-path string Must gather directory path (default "must-gather")
 --offlined-cpu-count int Number of offlined CPUs
 --per-pod-power-management Enable Per Pod Power Management
 --power-consumption-mode string The power consumption mode. [Valid values:
default, low-latency, ultra-low-latency] (default "default")
 --profile-name string Name of the performance profile to be created (default
"performance")
 --reserved-cpu-count int Number of reserved CPUs (required)
 --rt-kernel Enable Real Time Kernel (required)
 --split-reserved-cpus-across-numa Split the Reserved CPUs across NUMA nodes
 --topology-manager-policy string Kubelet Topology Manager Policy of the performance
profile to be created. [Valid values: single-numa-node, best-effort, restricted] (default
"restricted")
 --user-level-networking Run with User level Networking(DPDK) enabled

CHAPTER 11. LOW LATENCY TUNING

143

NOTE

This command uses the performance profile creator as a new entry point to
podman. It maps the must-gather data for the host into the container image
and invokes the required user-supplied profile arguments to produce the my-
performance-profile.yaml file.

The -v option can be the path to either of the following components:

The must-gather output directory

An existing directory containing the must-gather decompressed .tar file

The info option requires a value which specifies the output format. Possible
values are log and JSON. The JSON format is reserved for debugging.

5. Run podman:

NOTE

The Performance Profile Creator arguments are shown in the Performance
Profile Creator arguments table. The following arguments are required:

reserved-cpu-count

mcp-name

rt-kernel

The mcp-name argument in this example is set to worker-cnf based on the
output of the command oc get mcp. For single-node OpenShift use --mcp-
name=master.

6. Review the created YAML file:

Example output

$ podman run --entrypoint performance-profile-creator -v <path_to_must-gather>/must-
gather:/must-gather:z registry.redhat.io/openshift4/ose-cluster-node-tuning-operator:v4.15 --
info log --must-gather-dir-path /must-gather

$ podman run --entrypoint performance-profile-creator -v /must-gather:/must-gather:z
registry.redhat.io/openshift4/ose-cluster-node-tuning-operator:v4.15 --mcp-name=worker-cnf
--reserved-cpu-count=4 --rt-kernel=true --split-reserved-cpus-across-numa=false --must-
gather-dir-path /must-gather --power-consumption-mode=ultra-low-latency --offlined-cpu-
count=6 > my-performance-profile.yaml

$ cat my-performance-profile.yaml

apiVersion: performance.openshift.io/v2
kind: PerformanceProfile
metadata:
 name: performance

OpenShift Container Platform 4.15 Scalability and performance

144

7. Apply the generated profile:

Additional resources

For more information about the must-gather tool, see Gathering data about your cluster .

11.2.1.3.1. How to run podman to create a performance profile

The following example illustrates how to run podman to create a performance profile with 20 reserved
CPUs that are to be split across the NUMA nodes.

Node hardware configuration:

80 CPUs

Hyperthreading enabled

Two NUMA nodes

Even numbered CPUs run on NUMA node 0 and odd numbered CPUs run on NUMA node 1

Run podman to create the performance profile:

The created profile is described in the following YAML:

spec:
 cpu:
 isolated: 2-39,48-79
 offlined: 42-47
 reserved: 0-1,40-41
 machineConfigPoolSelector:
 machineconfiguration.openshift.io/role: worker-cnf
 nodeSelector:
 node-role.kubernetes.io/worker-cnf: ""
 numa:
 topologyPolicy: restricted
 realTimeKernel:
 enabled: true
 workloadHints:
 highPowerConsumption: true
 realTime: true

$ oc apply -f my-performance-profile.yaml

$ podman run --entrypoint performance-profile-creator -v /must-gather:/must-gather:z
registry.redhat.io/openshift4/ose-cluster-node-tuning-operator:v4.15 --mcp-name=worker-cnf --
reserved-cpu-count=20 --rt-kernel=true --split-reserved-cpus-across-numa=true --must-gather-dir-
path /must-gather > my-performance-profile.yaml

 apiVersion: performance.openshift.io/v2
 kind: PerformanceProfile
 metadata:
 name: performance
 spec:
 cpu:

CHAPTER 11. LOW LATENCY TUNING

145

https://docs.redhat.com/en/documentation/openshift_container_platform/4.15/html-single/support/#nodes-nodes-managing

NOTE

In this case, 10 CPUs are reserved on NUMA node 0 and 10 are reserved on NUMA node 1.

11.2.1.3.2. Running the Performance Profile Creator wrapper script

The performance profile wrapper script simplifies the running of the Performance Profile Creator (PPC)
tool. It hides the complexities associated with running podman and specifying the mapping directories
and it enables the creation of the performance profile.

Prerequisites

Access to the Node Tuning Operator image.

Access to the must-gather tarball.

Procedure

1. Create a file on your local machine named, for example, run-perf-profile-creator.sh:

2. Paste the following code into the file:

 isolated: 10-39,50-79
 reserved: 0-9,40-49
 nodeSelector:
 node-role.kubernetes.io/worker-cnf: ""
 numa:
 topologyPolicy: restricted
 realTimeKernel:
 enabled: true

$ vi run-perf-profile-creator.sh

#!/bin/bash

readonly CONTAINER_RUNTIME=${CONTAINER_RUNTIME:-podman}
readonly CURRENT_SCRIPT=$(basename "$0")
readonly CMD="${CONTAINER_RUNTIME} run --entrypoint performance-profile-creator"
readonly IMG_EXISTS_CMD="${CONTAINER_RUNTIME} image exists"
readonly IMG_PULL_CMD="${CONTAINER_RUNTIME} image pull"
readonly MUST_GATHER_VOL="/must-gather"

NTO_IMG="registry.redhat.io/openshift4/ose-cluster-node-tuning-operator:v4.15"
MG_TARBALL=""
DATA_DIR=""

usage() {
 print "Wrapper usage:"
 print " ${CURRENT_SCRIPT} [-h] [-p image][-t path] -- [performance-profile-creator flags]"
 print ""
 print "Options:"
 print " -h help for ${CURRENT_SCRIPT}"
 print " -p Node Tuning Operator image"
 print " -t path to a must-gather tarball"

OpenShift Container Platform 4.15 Scalability and performance

146

 ${IMG_EXISTS_CMD} "${NTO_IMG}" && ${CMD} "${NTO_IMG}" -h
}

function cleanup {
 [-d "${DATA_DIR}"] && rm -rf "${DATA_DIR}"
}
trap cleanup EXIT

exit_error() {
 print "error: $*"
 usage
 exit 1
}

print() {
 echo "$*" >&2
}

check_requirements() {
 ${IMG_EXISTS_CMD} "${NTO_IMG}" || ${IMG_PULL_CMD} "${NTO_IMG}" || \
 exit_error "Node Tuning Operator image not found"

 [-n "${MG_TARBALL}"] || exit_error "Must-gather tarball file path is mandatory"
 [-f "${MG_TARBALL}"] || exit_error "Must-gather tarball file not found"

 DATA_DIR=$(mktemp -d -t "${CURRENT_SCRIPT}XXXX") || exit_error "Cannot create the
data directory"
 tar -zxf "${MG_TARBALL}" --directory "${DATA_DIR}" || exit_error "Cannot decompress the
must-gather tarball"
 chmod a+rx "${DATA_DIR}"

 return 0
}

main() {
 while getopts ':hp:t:' OPT; do
 case "${OPT}" in
 h)
 usage
 exit 0
 ;;
 p)
 NTO_IMG="${OPTARG}"
 ;;
 t)
 MG_TARBALL="${OPTARG}"
 ;;
 ?)
 exit_error "invalid argument: ${OPTARG}"
 ;;
 esac
 done
 shift $((OPTIND - 1))

 check_requirements || exit 1

CHAPTER 11. LOW LATENCY TUNING

147

3. Add execute permissions for everyone on this script:

4. Optional: Display the run-perf-profile-creator.sh command usage:

Expected output

NOTE

 ${CMD} -v "${DATA_DIR}:${MUST_GATHER_VOL}:z" "${NTO_IMG}" "$@" --must-gather-
dir-path "${MUST_GATHER_VOL}"
 echo "" 1>&2
}

main "$@"

$ chmod a+x run-perf-profile-creator.sh

$./run-perf-profile-creator.sh -h

Wrapper usage:
 run-perf-profile-creator.sh [-h] [-p image][-t path] -- [performance-profile-creator flags]

Options:
 -h help for run-perf-profile-creator.sh
 -p Node Tuning Operator image 1
 -t path to a must-gather tarball 2
A tool that automates creation of Performance Profiles

Usage:
 performance-profile-creator [flags]

Flags:
 --disable-ht Disable Hyperthreading
 -h, --help help for performance-profile-creator
 --info string Show cluster information; requires --must-gather-dir-path,
ignore the other arguments. [Valid values: log, json] (default "log")
 --mcp-name string MCP name corresponding to the target machines
(required)
 --must-gather-dir-path string Must gather directory path (default "must-gather")
 --offlined-cpu-count int Number of offlined CPUs
 --per-pod-power-management Enable Per Pod Power Management
 --power-consumption-mode string The power consumption mode. [Valid values:
default, low-latency, ultra-low-latency] (default "default")
 --profile-name string Name of the performance profile to be created (default
"performance")
 --reserved-cpu-count int Number of reserved CPUs (required)
 --rt-kernel Enable Real Time Kernel (required)
 --split-reserved-cpus-across-numa Split the Reserved CPUs across NUMA nodes
 --topology-manager-policy string Kubelet Topology Manager Policy of the performance
profile to be created. [Valid values: single-numa-node, best-effort, restricted] (default
"restricted")
 --user-level-networking Run with User level Networking(DPDK) enabled

OpenShift Container Platform 4.15 Scalability and performance

148

1

2

NOTE

There two types of arguments:

Wrapper arguments namely -h, -p and -t

PPC arguments

Optional: Specify the Node Tuning Operator image. If not set, the default upstream image
is used: registry.redhat.io/openshift4/ose-cluster-node-tuning-operator:v4.15.

-t is a required wrapper script argument and specifies the path to a must-gather tarball.

5. Run the performance profile creator tool in discovery mode:

NOTE

Discovery mode inspects your cluster using the output from must-gather. The
output produced includes information on:

The NUMA cell partitioning with the allocated CPU IDs

Whether hyperthreading is enabled

Using this information you can set appropriate values for some of the arguments
supplied to the Performance Profile Creator tool.

NOTE

The info option requires a value which specifies the output format. Possible
values are log and JSON. The JSON format is reserved for debugging.

6. Check the machine config pool:

Example output

7. Create a performance profile:

$./run-perf-profile-creator.sh -t /must-gather/must-gather.tar.gz -- --info=log

$ oc get mcp

NAME CONFIG UPDATED UPDATING DEGRADED
MACHINECOUNT READYMACHINECOUNT UPDATEDMACHINECOUNT
DEGRADEDMACHINECOUNT AGE
master rendered-master-acd1358917e9f98cbdb599aea622d78b True False
False 3 3 3 0 22h
worker-cnf rendered-worker-cnf-1d871ac76e1951d32b2fe92369879826 False True
False 2 1 1 0 22h

$./run-perf-profile-creator.sh -t /must-gather/must-gather.tar.gz -- --mcp-name=worker-cnf --
reserved-cpu-count=2 --rt-kernel=true > my-performance-profile.yaml

CHAPTER 11. LOW LATENCY TUNING

149

NOTE

The Performance Profile Creator arguments are shown in the Performance
Profile Creator arguments table. The following arguments are required:

reserved-cpu-count

mcp-name

rt-kernel

The mcp-name argument in this example is set to worker-cnf based on the
output of the command oc get mcp. For single-node OpenShift use --mcp-
name=master.

8. Review the created YAML file:

Example output

9. Apply the generated profile:

NOTE

Install the Node Tuning Operator before applying the profile.

11.2.1.3.3. Performance Profile Creator arguments

Table 11.1. Performance Profile Creator arguments

Argument Description

$ cat my-performance-profile.yaml

apiVersion: performance.openshift.io/v2
kind: PerformanceProfile
metadata:
 name: performance
spec:
 cpu:
 isolated: 1-39,41-79
 reserved: 0,40
 nodeSelector:
 node-role.kubernetes.io/worker-cnf: ""
 numa:
 topologyPolicy: restricted
 realTimeKernel:
 enabled: false

$ oc apply -f my-performance-profile.yaml

OpenShift Container Platform 4.15 Scalability and performance

150

disable-ht Disable hyperthreading.

Possible values: true or false.

Default: false.

WARNING

If this argument is set to true you should not disable
hyperthreading in the BIOS. Disabling hyperthreading
is accomplished with a kernel command line
argument.

info This captures cluster information and is used in discovery mode only.
Discovery mode also requires the must-gather-dir-path argument. If any
other arguments are set they are ignored.

Possible values:

log

JSON

NOTE

These options define the output format with the
JSON format being reserved for debugging.

Default: log.

mcp-name MCP name for example worker-cnf corresponding to the target machines.
This parameter is required.

must-gather-dir-path Must gather directory path. This parameter is required.

When the user runs the tool with the wrapper script must-gather is
supplied by the script itself and the user must not specify it.

Argument Description

CHAPTER 11. LOW LATENCY TUNING

151

offlined-cpu-count Number of offlined CPUs.

NOTE

This must be a natural number greater than 0. If not enough
logical processors are offlined then error messages are
logged. The messages are:

power-consumption-
mode

The power consumption mode.

Possible values:

default: CPU partitioning with enabled power management and
basic low-latency.

low-latency: Enhanced measures to improve latency figures.

ultra-low-latency: Priority given to optimal latency, at the
expense of power management.

Default: default.

per-pod-power-
management

Enable per pod power management. You cannot use this argument if you
configured ultra-low-latency as the power consumption mode.

Possible values: true or false.

Default: false.

profile-name Name of the performance profile to create. Default: performance.

reserved-cpu-count Number of reserved CPUs. This parameter is required.

NOTE

This must be a natural number. A value of 0 is not allowed.

rt-kernel Enable real-time kernel. This parameter is required.

Possible values: true or false.

Argument Description

Error: failed to compute the reserved and isolated
CPUs: please ensure that reserved-cpu-count plus
offlined-cpu-count should be in the range [0,1]

Error: failed to compute the reserved and isolated
CPUs: please specify the offlined CPU count in the
range [0,1]

OpenShift Container Platform 4.15 Scalability and performance

152

split-reserved-cpus-
across-numa

Split the reserved CPUs across NUMA nodes.

Possible values: true or false.

Default: false.

topology-manager-policy Kubelet Topology Manager policy of the performance profile to be created.

Possible values:

single-numa-node

best-effort

restricted

Default: restricted.

user-level-networking Run with user level networking (DPDK) enabled.

Possible values: true or false.

Default: false.

Argument Description

11.2.1.4. Reference performance profiles

Use the following reference performance profiles as the basis to develop your own custom profiles.

11.2.1.4.1. Performance profile template for clusters that use OVS-DPDK on OpenStack

To maximize machine performance in a cluster that uses Open vSwitch with the Data Plane
Development Kit (OVS-DPDK) on Red Hat OpenStack Platform (RHOSP), you can use a performance
profile.

You can use the following performance profile template to create a profile for your deployment.

Performance profile template for clusters that use OVS-DPDK

apiVersion: performance.openshift.io/v2
kind: PerformanceProfile
metadata:
 name: cnf-performanceprofile
spec:
 additionalKernelArgs:
 - nmi_watchdog=0
 - audit=0
 - mce=off
 - processor.max_cstate=1
 - idle=poll
 - intel_idle.max_cstate=0
 - default_hugepagesz=1GB
 - hugepagesz=1G

CHAPTER 11. LOW LATENCY TUNING

153

Insert values that are appropriate for your configuration for the CPU_ISOLATED, CPU_RESERVED,
and HUGEPAGES_COUNT keys.

11.2.1.4.2. Telco RAN DU reference design performance profile template

The following performance profile configures node-level performance settings for OpenShift Container
Platform clusters on commodity hardware to host telco RAN DU workloads.

Telco RAN DU reference design performance profile

 - intel_iommu=on
 cpu:
 isolated: <CPU_ISOLATED>
 reserved: <CPU_RESERVED>
 hugepages:
 defaultHugepagesSize: 1G
 pages:
 - count: <HUGEPAGES_COUNT>
 node: 0
 size: 1G
 nodeSelector:
 node-role.kubernetes.io/worker: ''
 realTimeKernel:
 enabled: false
 globallyDisableIrqLoadBalancing: true

apiVersion: performance.openshift.io/v2
kind: PerformanceProfile
metadata:
 # if you change this name make sure the 'include' line in TunedPerformancePatch.yaml
 # matches this name: include=openshift-node-performance-${PerformanceProfile.metadata.name}
 # Also in file 'validatorCRs/informDuValidator.yaml':
 # name: 50-performance-${PerformanceProfile.metadata.name}
 name: openshift-node-performance-profile
 annotations:
 ran.openshift.io/reference-configuration: "ran-du.redhat.com"
spec:
 additionalKernelArgs:
 - "rcupdate.rcu_normal_after_boot=0"
 - "efi=runtime"
 - "vfio_pci.enable_sriov=1"
 - "vfio_pci.disable_idle_d3=1"
 - "module_blacklist=irdma"
 cpu:
 isolated: $isolated
 reserved: $reserved
 hugepages:
 defaultHugepagesSize: $defaultHugepagesSize
 pages:
 - size: $size
 count: $count
 node: $node
 machineConfigPoolSelector:
 pools.operator.machineconfiguration.openshift.io/$mcp: ""
 nodeSelector:

OpenShift Container Platform 4.15 Scalability and performance

154

11.2.1.4.3. Telco core reference design performance profile template

The following performance profile configures node-level performance settings for OpenShift Container
Platform clusters on commodity hardware to host telco core workloads.

Telco core reference design performance profile

 node-role.kubernetes.io/$mcp: ''
 numa:
 topologyPolicy: "restricted"
 # To use the standard (non-realtime) kernel, set enabled to false
 realTimeKernel:
 enabled: true
 workloadHints:
 # WorkloadHints defines the set of upper level flags for different type of workloads.
 # See https://github.com/openshift/cluster-node-tuning-
operator/blob/master/docs/performanceprofile/performance_profile.md#workloadhints
 # for detailed descriptions of each item.
 # The configuration below is set for a low latency, performance mode.
 realTime: true
 highPowerConsumption: false
 perPodPowerManagement: false

apiVersion: performance.openshift.io/v2
kind: PerformanceProfile
metadata:
 # if you change this name make sure the 'include' line in TunedPerformancePatch.yaml
 # matches this name: include=openshift-node-performance-${PerformanceProfile.metadata.name}
 # Also in file 'validatorCRs/informDuValidator.yaml':
 # name: 50-performance-${PerformanceProfile.metadata.name}
 name: openshift-node-performance-profile
 annotations:
 ran.openshift.io/reference-configuration: "ran-du.redhat.com"
spec:
 additionalKernelArgs:
 - "rcupdate.rcu_normal_after_boot=0"
 - "efi=runtime"
 - "vfio_pci.enable_sriov=1"
 - "vfio_pci.disable_idle_d3=1"
 - "module_blacklist=irdma"
 cpu:
 isolated: $isolated
 reserved: $reserved
 hugepages:
 defaultHugepagesSize: $defaultHugepagesSize
 pages:
 - size: $size
 count: $count
 node: $node
 machineConfigPoolSelector:
 pools.operator.machineconfiguration.openshift.io/$mcp: ""
 nodeSelector:
 node-role.kubernetes.io/$mcp: ''
 numa:
 topologyPolicy: "restricted"

CHAPTER 11. LOW LATENCY TUNING

155

11.2.2. Supported performance profile API versions

The Node Tuning Operator supports v2, v1, and v1alpha1 for the performance profile apiVersion field.
The v1 and v1alpha1 APIs are identical. The v2 API includes an optional boolean field
globallyDisableIrqLoadBalancing with a default value of false.

Upgrading the performance profile to use device interrupt processing
When you upgrade the Node Tuning Operator performance profile custom resource definition (CRD)
from v1 or v1alpha1 to v2, globallyDisableIrqLoadBalancing is set to true on existing profiles.

NOTE

globallyDisableIrqLoadBalancing toggles whether IRQ load balancing will be disabled
for the Isolated CPU set. When the option is set to true it disables IRQ load balancing for
the Isolated CPU set. Setting the option to false allows the IRQs to be balanced across all
CPUs.

Upgrading Node Tuning Operator API from v1alpha1 to v1
When upgrading Node Tuning Operator API version from v1alpha1 to v1, the v1alpha1 performance
profiles are converted on-the-fly using a "None" Conversion strategy and served to the Node Tuning
Operator with API version v1.

Upgrading Node Tuning Operator API from v1alpha1 or v1 to v2
When upgrading from an older Node Tuning Operator API version, the existing v1 and v1alpha1
performance profiles are converted using a conversion webhook that injects the
globallyDisableIrqLoadBalancing field with a value of true.

11.2.3. Configuring node power consumption and realtime processing with workload
hints

Procedure

1. Create a PerformanceProfile appropriate for the environment’s hardware and topology as
described in the table in "Understanding workload hints". Adjust the profile to match the
expected workload. In this example, we tune for the lowest possible latency.

2. Add the highPowerConsumption and realTime workload hints. Both are set to true here.

 # To use the standard (non-realtime) kernel, set enabled to false
 realTimeKernel:
 enabled: true
 workloadHints:
 # WorkloadHints defines the set of upper level flags for different type of workloads.
 # See https://github.com/openshift/cluster-node-tuning-
operator/blob/master/docs/performanceprofile/performance_profile.md#workloadhints
 # for detailed descriptions of each item.
 # The configuration below is set for a low latency, performance mode.
 realTime: true
 highPowerConsumption: false
 perPodPowerManagement: false

 apiVersion: performance.openshift.io/v2
 kind: PerformanceProfile
 metadata:

OpenShift Container Platform 4.15 Scalability and performance

156

1

2

If highPowerConsumption is true, the node is tuned for very low latency at the cost of
increased power consumption.

Disables some debugging and monitoring features that can affect system latency.

NOTE

When the realTime workload hint flag is set to true in a performance profile, add the cpu-
quota.crio.io: disable annotation to every guaranteed pod with pinned CPUs. This
annotation is necessary to prevent the degradation of the process performance within
the pod. If the realTime workload hint is not explicitly set then it defaults to true.

The following table describes how combinations of power consumption and real-time settings impact
latency.

Table 11.2. Impact of combinations of power consumption and real-time settings on latency

Performance Profile
creator setting

Hint Environment Description

Default High throughput cluster
without latency
requirements

Performance achieved
through CPU
partitioning only.

Low-latency Regional data-centers Both energy savings and
low-latency are
desirable: compromise
between power
management, latency
and throughput.

Ultra-low-latency Far edge clusters,
latency critical
workloads

Optimized for absolute
minimal latency and
maximum determinism
at the cost of increased
power consumption.

 name: workload-hints
 spec:
 ...
 workloadHints:
 highPowerConsumption: true 1
 realTime: true 2

workloadHints:
highPowerConsum
ption: false
realTime: false

workloadHints:
highPowerConsum
ption: false
realTime: true

workloadHints:
highPowerConsum
ption: true
realTime: true

CHAPTER 11. LOW LATENCY TUNING

157

1

Per-pod power
management

Critical and non-critical
workloads

Allows for power
management per pod.

Performance Profile
creator setting

Hint Environment Description

11.2.4. Configuring power saving for nodes that run colocated high and low priority
workloads

You can enable power savings for a node that has low priority workloads that are colocated with high
priority workloads without impacting the latency or throughput of the high priority workloads. Power
saving is possible without modifications to the workloads themselves.

IMPORTANT

The feature is supported on Intel Ice Lake and later generations of Intel CPUs. The
capabilities of the processor might impact the latency and throughput of the high priority
workloads.

Prerequisites

You enabled C-states and operating system controlled P-states in the BIOS

Procedure

1. Generate a PerformanceProfile with the per-pod-power-management argument set to true:

The power-consumption-mode argument must be default or low-latency when the per-
pod-power-management argument is set to true.

Example PerformanceProfile with perPodPowerManagement

workloadHints:
realTime: true
highPowerConsum
ption: false
perPodPowerMana
gement: true

$ podman run --entrypoint performance-profile-creator -v \
/must-gather:/must-gather:z registry.redhat.io/openshift4/ose-cluster-node-tuning-
operator:v4.15 \
--mcp-name=worker-cnf --reserved-cpu-count=20 --rt-kernel=true \
--split-reserved-cpus-across-numa=false --topology-manager-policy=single-numa-node \
--must-gather-dir-path /must-gather --power-consumption-mode=low-latency \ 1
--per-pod-power-management=true > my-performance-profile.yaml

apiVersion: performance.openshift.io/v2
kind: PerformanceProfile
metadata:
 name: performance

OpenShift Container Platform 4.15 Scalability and performance

158

1

1

2. Set the default cpufreq governor as an additional kernel argument in the PerformanceProfile
custom resource (CR):

Using the schedutil governor is recommended, however, you can use other governors
such as the ondemand or powersave governors.

3. Set the maximum CPU frequency in the TunedPerformancePatch CR:

The max_perf_pct controls the maximum frequency that the cpufreq driver is allowed to
set as a percentage of the maximum supported cpu frequency. This value applies to all
CPUs. You can check the maximum supported frequency in
/sys/devices/system/cpu/cpu0/cpufreq/cpuinfo_max_freq. As a starting point, you can
use a percentage that caps all CPUs at the All Cores Turbo frequency. The All Cores
Turbo frequency is the frequency that all cores will run at when the cores are all fully
occupied.

Additional resources

Disabling power saving mode for high priority pods

Managing device interrupt processing for guaranteed pod isolated CPUs

11.2.5. Restricting CPUs for infra and application containers

Generic housekeeping and workload tasks use CPUs in a way that may impact latency-sensitive
processes. By default, the container runtime uses all online CPUs to run all containers together, which
can result in context switches and spikes in latency. Partitioning the CPUs prevents noisy processes
from interfering with latency-sensitive processes by separating them from each other. The following
table describes how processes run on a CPU after you have tuned the node using the Node Tuning
Operator:

spec:
 [.....]
 workloadHints:
 realTime: true
 highPowerConsumption: false
 perPodPowerManagement: true

apiVersion: performance.openshift.io/v2
kind: PerformanceProfile
metadata:
 name: performance
spec:
 ...
 additionalKernelArgs:
 - cpufreq.default_governor=schedutil 1

spec:
 profile:
 - data: |
 [sysfs]
 /sys/devices/system/cpu/intel_pstate/max_perf_pct = <x> 1

CHAPTER 11. LOW LATENCY TUNING

159

Table 11.3. Process' CPU assignments

Process type Details

Burstable and BestEffort pods Runs on any CPU except where low latency workload
is running

Infrastructure pods Runs on any CPU except where low latency workload
is running

Interrupts Redirects to reserved CPUs (optional in OpenShift
Container Platform 4.7 and later)

Kernel processes Pins to reserved CPUs

Latency-sensitive workload pods Pins to a specific set of exclusive CPUs from the
isolated pool

OS processes/systemd services Pins to reserved CPUs

The allocatable capacity of cores on a node for pods of all QoS process types, Burstable, BestEffort, or
Guaranteed, is equal to the capacity of the isolated pool. The capacity of the reserved pool is removed
from the node’s total core capacity for use by the cluster and operating system housekeeping duties.

Example 1

A node features a capacity of 100 cores. Using a performance profile, the cluster administrator allocates
50 cores to the isolated pool and 50 cores to the reserved pool. The cluster administrator assigns 25
cores to QoS Guaranteed pods and 25 cores for BestEffort or Burstable pods. This matches the
capacity of the isolated pool.

Example 2

A node features a capacity of 100 cores. Using a performance profile, the cluster administrator allocates
50 cores to the isolated pool and 50 cores to the reserved pool. The cluster administrator assigns 50
cores to QoS Guaranteed pods and one core for BestEffort or Burstable pods. This exceeds the
capacity of the isolated pool by one core. Pod scheduling fails because of insufficient CPU capacity.

The exact partitioning pattern to use depends on many factors like hardware, workload characteristics
and the expected system load. Some sample use cases are as follows:

If the latency-sensitive workload uses specific hardware, such as a network interface controller
(NIC), ensure that the CPUs in the isolated pool are as close as possible to this hardware. At a
minimum, you should place the workload in the same Non-Uniform Memory Access (NUMA)
node.

The reserved pool is used for handling all interrupts. When depending on system networking,
allocate a sufficiently-sized reserve pool to handle all the incoming packet interrupts. In 4.15 and
later versions, workloads can optionally be labeled as sensitive.

The decision regarding which specific CPUs should be used for reserved and isolated partitions requires
detailed analysis and measurements. Factors like NUMA affinity of devices and memory play a role. The
selection also depends on the workload architecture and the specific use case.

IMPORTANT

OpenShift Container Platform 4.15 Scalability and performance

160

1

2

3

IMPORTANT

The reserved and isolated CPU pools must not overlap and together must span all
available cores in the worker node.

To ensure that housekeeping tasks and workloads do not interfere with each other, specify two groups
of CPUs in the spec section of the performance profile.

isolated - Specifies the CPUs for the application container workloads. These CPUs have the
lowest latency. Processes in this group have no interruptions and can, for example, reach much
higher DPDK zero packet loss bandwidth.

reserved - Specifies the CPUs for the cluster and operating system housekeeping duties.
Threads in the reserved group are often busy. Do not run latency-sensitive applications in the
reserved group. Latency-sensitive applications run in the isolated group.

Procedure

1. Create a performance profile appropriate for the environment’s hardware and topology.

2. Add the reserved and isolated parameters with the CPUs you want reserved and isolated for
the infra and application containers:

Specify which CPUs are for infra containers to perform cluster and operating system
housekeeping duties.

Specify which CPUs are for application containers to run workloads.

Optional: Specify a node selector to apply the performance profile to specific nodes.

11.2.6. Configuring Hyper-Threading for a cluster

To configure Hyper-Threading for an OpenShift Container Platform cluster, set the CPU threads in the
performance profile to the same cores that are configured for the reserved or isolated CPU pools.

NOTE

If you configure a performance profile, and subsequently change the Hyper-Threading
configuration for the host, ensure that you update the CPU isolated and reserved fields
in the PerformanceProfile YAML to match the new configuration.

apiVersion: performance.openshift.io/v2
kind: PerformanceProfile
metadata:
 name: infra-cpus
spec:
 cpu:
 reserved: "0-4,9" 1
 isolated: "5-8" 2
 nodeSelector: 3
 node-role.kubernetes.io/worker: ""

CHAPTER 11. LOW LATENCY TUNING

161

WARNING

Disabling a previously enabled host Hyper-Threading configuration can cause the
CPU core IDs listed in the PerformanceProfile YAML to be incorrect. This incorrect
configuration can cause the node to become unavailable because the listed CPUs
can no longer be found.

Prerequisites

Access to the cluster as a user with the cluster-admin role.

Install the OpenShift CLI (oc).

Procedure

1. Ascertain which threads are running on what CPUs for the host you want to configure.
You can view which threads are running on the host CPUs by logging in to the cluster and
running the following command:

Example output

In this example, there are eight logical CPU cores running on four physical CPU cores. CPU0
and CPU4 are running on physical Core0, CPU1 and CPU5 are running on physical Core 1, and so
on.

Alternatively, to view the threads that are set for a particular physical CPU core (cpu0 in the
example below), open a shell prompt and run the following:

Example output

2. Apply the isolated and reserved CPUs in the PerformanceProfile YAML. For example, you can
set logical cores CPU0 and CPU4 as isolated, and logical cores CPU1 to CPU3 and CPU5 to
CPU7 as reserved. When you configure reserved and isolated CPUs, the infra containers in

$ lscpu --all --extended

CPU NODE SOCKET CORE L1d:L1i:L2:L3 ONLINE MAXMHZ MINMHZ
0 0 0 0 0:0:0:0 yes 4800.0000 400.0000
1 0 0 1 1:1:1:0 yes 4800.0000 400.0000
2 0 0 2 2:2:2:0 yes 4800.0000 400.0000
3 0 0 3 3:3:3:0 yes 4800.0000 400.0000
4 0 0 0 0:0:0:0 yes 4800.0000 400.0000
5 0 0 1 1:1:1:0 yes 4800.0000 400.0000
6 0 0 2 2:2:2:0 yes 4800.0000 400.0000
7 0 0 3 3:3:3:0 yes 4800.0000 400.0000

$ cat /sys/devices/system/cpu/cpu0/topology/thread_siblings_list

0-4

OpenShift Container Platform 4.15 Scalability and performance

162

pods use the reserved CPUs and the application containers use the isolated CPUs.

NOTE

The reserved and isolated CPU pools must not overlap and together must span
all available cores in the worker node.

IMPORTANT

Hyper-Threading is enabled by default on most Intel processors. If you enable Hyper-
Threading, all threads processed by a particular core must be isolated or processed on the
same core.

When Hyper-Threading is enabled, all guaranteed pods must use multiples of the
simultaneous multi-threading (SMT) level to avoid a "noisy neighbor" situation that can
cause the pod to fail. See Static policy options for more information.

11.2.6.1. Disabling Hyper-Threading for low latency applications

When configuring clusters for low latency processing, consider whether you want to disable Hyper-
Threading before you deploy the cluster. To disable Hyper-Threading, perform the following steps:

1. Create a performance profile that is appropriate for your hardware and topology.

2. Set nosmt as an additional kernel argument. The following example performance profile
illustrates this setting:

...
 cpu:
 isolated: 0,4
 reserved: 1-3,5-7
...

apiVersion: performance.openshift.io/v2
kind: PerformanceProfile
metadata:
 name: example-performanceprofile
spec:
 additionalKernelArgs:
 - nmi_watchdog=0
 - audit=0
 - mce=off
 - processor.max_cstate=1
 - idle=poll
 - intel_idle.max_cstate=0
 - nosmt
 cpu:
 isolated: 2-3
 reserved: 0-1
 hugepages:
 defaultHugepagesSize: 1G
 pages:
 - count: 2
 node: 0
 size: 1G

CHAPTER 11. LOW LATENCY TUNING

163

https://kubernetes.io/docs/tasks/administer-cluster/cpu-management-policies/#static-policy-options

NOTE

When you configure reserved and isolated CPUs, the infra containers in pods use
the reserved CPUs and the application containers use the isolated CPUs.

11.2.7. Managing device interrupt processing for guaranteed pod isolated CPUs

The Node Tuning Operator can manage host CPUs by dividing them into reserved CPUs for cluster and
operating system housekeeping duties, including pod infra containers, and isolated CPUs for application
containers to run the workloads. This allows you to set CPUs for low latency workloads as isolated.

Device interrupts are load balanced between all isolated and reserved CPUs to avoid CPUs being
overloaded, with the exception of CPUs where there is a guaranteed pod running. Guaranteed pod
CPUs are prevented from processing device interrupts when the relevant annotations are set for the
pod.

In the performance profile, globallyDisableIrqLoadBalancing is used to manage whether device
interrupts are processed or not. For certain workloads, the reserved CPUs are not always sufficient for
dealing with device interrupts, and for this reason, device interrupts are not globally disabled on the
isolated CPUs. By default, Node Tuning Operator does not disable device interrupts on isolated CPUs.

11.2.7.1. Finding the effective IRQ affinity setting for a node

Some IRQ controllers lack support for IRQ affinity setting and will always expose all online CPUs as the
IRQ mask. These IRQ controllers effectively run on CPU 0.

The following are examples of drivers and hardware that Red Hat are aware lack support for IRQ affinity
setting. The list is, by no means, exhaustive:

Some RAID controller drivers, such as megaraid_sas

Many non-volatile memory express (NVMe) drivers

Some LAN on motherboard (LOM) network controllers

The driver uses managed_irqs

NOTE

The reason they do not support IRQ affinity setting might be associated with factors such
as the type of processor, the IRQ controller, or the circuitry connections in the
motherboard.

If the effective affinity of any IRQ is set to an isolated CPU, it might be a sign of some hardware or driver
not supporting IRQ affinity setting. To find the effective affinity, log in to the host and run the following
command:

Example output

 nodeSelector:
 node-role.kubernetes.io/performance: ''
 realTimeKernel:
 enabled: true

$ find /proc/irq -name effective_affinity -printf "%p: " -exec cat {} \;

OpenShift Container Platform 4.15 Scalability and performance

164

Example output

Some drivers use managed_irqs, whose affinity is managed internally by the kernel and userspace
cannot change the affinity. In some cases, these IRQs might be assigned to isolated CPUs. For more
information about managed_irqs, see Affinity of managed interrupts cannot be changed even if they
target isolated CPU.

11.2.7.2. Configuring node interrupt affinity

Configure a cluster node for IRQ dynamic load balancing to control which cores can receive device
interrupt requests (IRQ).

Prerequisites

For core isolation, all server hardware components must support IRQ affinity. To check if the
hardware components of your server support IRQ affinity, view the server’s hardware
specifications or contact your hardware provider.

Procedure

1. Log in to the OpenShift Container Platform cluster as a user with cluster-admin privileges.

2. Set the performance profile apiVersion to use performance.openshift.io/v2.

3. Remove the globallyDisableIrqLoadBalancing field or set it to false.

4. Set the appropriate isolated and reserved CPUs. The following snippet illustrates a profile that
reserves 2 CPUs. IRQ load-balancing is enabled for pods running on the isolated CPU set:

/proc/irq/0/effective_affinity: 1
/proc/irq/1/effective_affinity: 8
/proc/irq/2/effective_affinity: 0
/proc/irq/3/effective_affinity: 1
/proc/irq/4/effective_affinity: 2
/proc/irq/5/effective_affinity: 1
/proc/irq/6/effective_affinity: 1
/proc/irq/7/effective_affinity: 1
/proc/irq/8/effective_affinity: 1
/proc/irq/9/effective_affinity: 2
/proc/irq/10/effective_affinity: 1
/proc/irq/11/effective_affinity: 1
/proc/irq/12/effective_affinity: 4
/proc/irq/13/effective_affinity: 1
/proc/irq/14/effective_affinity: 1
/proc/irq/15/effective_affinity: 1
/proc/irq/24/effective_affinity: 2
/proc/irq/25/effective_affinity: 4
/proc/irq/26/effective_affinity: 2
/proc/irq/27/effective_affinity: 1
/proc/irq/28/effective_affinity: 8
/proc/irq/29/effective_affinity: 4
/proc/irq/30/effective_affinity: 4
/proc/irq/31/effective_affinity: 8
/proc/irq/32/effective_affinity: 8
/proc/irq/33/effective_affinity: 1
/proc/irq/34/effective_affinity: 2

CHAPTER 11. LOW LATENCY TUNING

165

https://access.redhat.com/solutions/4819541

1

NOTE

When you configure reserved and isolated CPUs, operating system processes,
kernel processes, and systemd services run on reserved CPUs. Infrastructure
pods run on any CPU except where the low latency workload is running. Low
latency workload pods run on exclusive CPUs from the isolated pool. For more
information, see "Restricting CPUs for infra and application containers".

11.2.8. Configuring huge pages

Nodes must pre-allocate huge pages used in an OpenShift Container Platform cluster. Use the Node
Tuning Operator to allocate huge pages on a specific node.

OpenShift Container Platform provides a method for creating and allocating huge pages. Node Tuning
Operator provides an easier method for doing this using the performance profile.

For example, in the hugepages pages section of the performance profile, you can specify multiple
blocks of size, count, and, optionally, node:

node is the NUMA node in which the huge pages are allocated. If you omit node, the pages are
evenly spread across all NUMA nodes.

NOTE

Wait for the relevant machine config pool status that indicates the update is finished.

These are the only configuration steps you need to do to allocate huge pages.

Verification

To verify the configuration, see the /proc/meminfo file on the node:

apiVersion: performance.openshift.io/v2
kind: PerformanceProfile
metadata:
 name: dynamic-irq-profile
spec:
 cpu:
 isolated: 2-5
 reserved: 0-1
...

hugepages:
 defaultHugepagesSize: "1G"
 pages:
 - size: "1G"
 count: 4
 node: 0 1

$ oc debug node/ip-10-0-141-105.ec2.internal

grep -i huge /proc/meminfo

OpenShift Container Platform 4.15 Scalability and performance

166

Example output

Use oc describe to report the new size:

Example output

11.2.8.1. Allocating multiple huge page sizes

You can request huge pages with different sizes under the same container. This allows you to define
more complicated pods consisting of containers with different huge page size needs.

For example, you can define sizes 1G and 2M and the Node Tuning Operator will configure both sizes on
the node, as shown here:

11.2.9. Reducing NIC queues using the Node Tuning Operator

The Node Tuning Operator facilitates reducing NIC queues for enhanced performance. Adjustments are
made using the performance profile, allowing customization of queues for different network devices.

11.2.9.1. Adjusting the NIC queues with the performance profile

The performance profile lets you adjust the queue count for each network device.

Supported network devices:

Non-virtual network devices

AnonHugePages: ###### ##
ShmemHugePages: 0 kB
HugePages_Total: 2
HugePages_Free: 2
HugePages_Rsvd: 0
HugePages_Surp: 0
Hugepagesize: #### ##
Hugetlb: #### ##

$ oc describe node worker-0.ocp4poc.example.com | grep -i huge

 hugepages-1g=true
 hugepages-###: ###
 hugepages-###: ###

spec:
 hugepages:
 defaultHugepagesSize: 1G
 pages:
 - count: 1024
 node: 0
 size: 2M
 - count: 4
 node: 1
 size: 1G

CHAPTER 11. LOW LATENCY TUNING

167

Network devices that support multiple queues (channels)

Unsupported network devices:

Pure software network interfaces

Block devices

Intel DPDK virtual functions

Prerequisites

Access to the cluster as a user with the cluster-admin role.

Install the OpenShift CLI (oc).

Procedure

1. Log in to the OpenShift Container Platform cluster running the Node Tuning Operator as a user
with cluster-admin privileges.

2. Create and apply a performance profile appropriate for your hardware and topology. For
guidance on creating a profile, see the "Creating a performance profile" section.

3. Edit this created performance profile:

4. Populate the spec field with the net object. The object list can contain two fields:

userLevelNetworking is a required field specified as a boolean flag. If
userLevelNetworking is true, the queue count is set to the reserved CPU count for all
supported devices. The default is false.

devices is an optional field specifying a list of devices that will have the queues set to the
reserved CPU count. If the device list is empty, the configuration applies to all network
devices. The configuration is as follows:

interfaceName: This field specifies the interface name, and it supports shell-style
wildcards, which can be positive or negative.

Example wildcard syntax is as follows: <string> .*

Negative rules are prefixed with an exclamation mark. To apply the net queue
changes to all devices other than the excluded list, use !<device>, for example,
!eno1.

vendorID: The network device vendor ID represented as a 16-bit hexadecimal number
with a 0x prefix.

deviceID: The network device ID (model) represented as a 16-bit hexadecimal number
with a 0x prefix.

NOTE

$ oc edit -f <your_profile_name>.yaml

OpenShift Container Platform 4.15 Scalability and performance

168

NOTE

When a deviceID is specified, the vendorID must also be defined. A
device that matches all of the device identifiers specified in a device
entry interfaceName, vendorID, or a pair of vendorID plus deviceID
qualifies as a network device. This network device then has its net queues
count set to the reserved CPU count.

When two or more devices are specified, the net queues count is set to
any net device that matches one of them.

5. Set the queue count to the reserved CPU count for all devices by using this example
performance profile:

6. Set the queue count to the reserved CPU count for all devices matching any of the defined
device identifiers by using this example performance profile:

7. Set the queue count to the reserved CPU count for all devices starting with the interface name
eth by using this example performance profile:

apiVersion: performance.openshift.io/v2
kind: PerformanceProfile
metadata:
 name: manual
spec:
 cpu:
 isolated: 3-51,55-103
 reserved: 0-2,52-54
 net:
 userLevelNetworking: true
 nodeSelector:
 node-role.kubernetes.io/worker-cnf: ""

apiVersion: performance.openshift.io/v2
kind: PerformanceProfile
metadata:
 name: manual
spec:
 cpu:
 isolated: 3-51,55-103
 reserved: 0-2,52-54
 net:
 userLevelNetworking: true
 devices:
 - interfaceName: "eth0"
 - interfaceName: "eth1"
 - vendorID: "0x1af4"
 deviceID: "0x1000"
 nodeSelector:
 node-role.kubernetes.io/worker-cnf: ""

apiVersion: performance.openshift.io/v2
kind: PerformanceProfile
metadata:
 name: manual

CHAPTER 11. LOW LATENCY TUNING

169

8. Set the queue count to the reserved CPU count for all devices with an interface named
anything other than eno1 by using this example performance profile:

9. Set the queue count to the reserved CPU count for all devices that have an interface name
eth0, vendorID of 0x1af4, and deviceID of 0x1000 by using this example performance profile:

10. Apply the updated performance profile:

Additional resources

spec:
 cpu:
 isolated: 3-51,55-103
 reserved: 0-2,52-54
 net:
 userLevelNetworking: true
 devices:
 - interfaceName: "eth*"
 nodeSelector:
 node-role.kubernetes.io/worker-cnf: ""

apiVersion: performance.openshift.io/v2
kind: PerformanceProfile
metadata:
 name: manual
spec:
 cpu:
 isolated: 3-51,55-103
 reserved: 0-2,52-54
 net:
 userLevelNetworking: true
 devices:
 - interfaceName: "!eno1"
 nodeSelector:
 node-role.kubernetes.io/worker-cnf: ""

apiVersion: performance.openshift.io/v2
kind: PerformanceProfile
metadata:
 name: manual
spec:
 cpu:
 isolated: 3-51,55-103
 reserved: 0-2,52-54
 net:
 userLevelNetworking: true
 devices:
 - interfaceName: "eth0"
 - vendorID: "0x1af4"
 deviceID: "0x1000"
 nodeSelector:
 node-role.kubernetes.io/worker-cnf: ""

$ oc apply -f <your_profile_name>.yaml

OpenShift Container Platform 4.15 Scalability and performance

170

Creating a performance profile .

11.2.9.2. Verifying the queue status

In this section, a number of examples illustrate different performance profiles and how to verify the
changes are applied.

Example 1

In this example, the net queue count is set to the reserved CPU count (2) for all supported devices.

The relevant section from the performance profile is:

Display the status of the queues associated with a device using the following command:

NOTE

Run this command on the node where the performance profile was applied.

Verify the queue status before the profile is applied:

Example output

Verify the queue status after the profile is applied:

apiVersion: performance.openshift.io/v2
metadata:
 name: performance
spec:
 kind: PerformanceProfile
 spec:
 cpu:
 reserved: 0-1 #total = 2
 isolated: 2-8
 net:
 userLevelNetworking: true
...

$ ethtool -l <device>

$ ethtool -l ens4

Channel parameters for ens4:
Pre-set maximums:
RX: 0
TX: 0
Other: 0
Combined: 4
Current hardware settings:
RX: 0
TX: 0
Other: 0
Combined: 4

CHAPTER 11. LOW LATENCY TUNING

171

1

Example output

The combined channel shows that the total count of reserved CPUs for all supported devices is 2.
This matches what is configured in the performance profile.

Example 2

In this example, the net queue count is set to the reserved CPU count (2) for all supported network
devices with a specific vendorID.

The relevant section from the performance profile is:

Display the status of the queues associated with a device using the following command:

NOTE

Run this command on the node where the performance profile was applied.

Verify the queue status after the profile is applied:

$ ethtool -l ens4

Channel parameters for ens4:
Pre-set maximums:
RX: 0
TX: 0
Other: 0
Combined: 4
Current hardware settings:
RX: 0
TX: 0
Other: 0
Combined: 2 1

apiVersion: performance.openshift.io/v2
metadata:
 name: performance
spec:
 kind: PerformanceProfile
 spec:
 cpu:
 reserved: 0-1 #total = 2
 isolated: 2-8
 net:
 userLevelNetworking: true
 devices:
 - vendorID = 0x1af4
...

$ ethtool -l <device>

$ ethtool -l ens4

OpenShift Container Platform 4.15 Scalability and performance

172

1

Example output

The total count of reserved CPUs for all supported devices with vendorID=0x1af4 is 2. For
example, if there is another network device ens2 with vendorID=0x1af4 it will also have total net
queues of 2. This matches what is configured in the performance profile.

Example 3

In this example, the net queue count is set to the reserved CPU count (2) for all supported network
devices that match any of the defined device identifiers.

The command udevadm info provides a detailed report on a device. In this example the devices are:

Set the net queues to 2 for a device with interfaceName equal to eth0 and any devices that
have a vendorID=0x1af4 with the following performance profile:

Channel parameters for ens4:
Pre-set maximums:
RX: 0
TX: 0
Other: 0
Combined: 4
Current hardware settings:
RX: 0
TX: 0
Other: 0
Combined: 2 1

udevadm info -p /sys/class/net/ens4
...
E: ID_MODEL_ID=0x1000
E: ID_VENDOR_ID=0x1af4
E: INTERFACE=ens4
...

udevadm info -p /sys/class/net/eth0
...
E: ID_MODEL_ID=0x1002
E: ID_VENDOR_ID=0x1001
E: INTERFACE=eth0
...

apiVersion: performance.openshift.io/v2
metadata:
 name: performance
spec:
 kind: PerformanceProfile
 spec:
 cpu:
 reserved: 0-1 #total = 2
 isolated: 2-8
 net:
 userLevelNetworking: true
 devices:

CHAPTER 11. LOW LATENCY TUNING

173

1

Verify the queue status after the profile is applied:

Example output

The total count of reserved CPUs for all supported devices with vendorID=0x1af4 is set to
2. For example, if there is another network device ens2 with vendorID=0x1af4, it will also
have the total net queues set to 2. Similarly, a device with interfaceName equal to eth0 will
have total net queues set to 2.

11.2.9.3. Logging associated with adjusting NIC queues

Log messages detailing the assigned devices are recorded in the respective Tuned daemon logs. The
following messages might be recorded to the /var/log/tuned/tuned.log file:

An INFO message is recorded detailing the successfully assigned devices:

A WARNING message is recorded if none of the devices can be assigned:

11.3. PROVISIONING REAL-TIME AND LOW LATENCY WORKLOADS

Many organizations need high performance computing and low, predictable latency, especially in the
financial and telecommunications industries.

OpenShift Container Platform provides the Node Tuning Operator to implement automatic tuning to
achieve low latency performance and consistent response time for OpenShift Container Platform
applications. You use the performance profile configuration to make these changes. You can update the
kernel to kernel-rt, reserve CPUs for cluster and operating system housekeeping duties, including pod
infra containers, isolate CPUs for application containers to run the workloads, and disable unused CPUs
to reduce power consumption.

NOTE

 - interfaceName = eth0
 - vendorID = 0x1af4
...

$ ethtool -l ens4

Channel parameters for ens4:
Pre-set maximums:
RX: 0
TX: 0
Other: 0
Combined: 4
Current hardware settings:
RX: 0
TX: 0
Other: 0
Combined: 2 1

INFO tuned.plugins.base: instance net_test (net): assigning devices ens1, ens2, ens3

WARNING tuned.plugins.base: instance net_test: no matching devices available

OpenShift Container Platform 4.15 Scalability and performance

174

NOTE

When writing your applications, follow the general recommendations described in RHEL
for Real Time processes and threads.

Additional resources

Tuning nodes for low latency with the performance profile

11.3.1. Scheduling a low latency workload onto a worker with real-time capabilities

You can schedule low latency workloads onto a worker node where a performance profile that
configures real-time capabilities is applied.

NOTE

To schedule the workload on specific nodes, use label selectors in the Pod custom
resource (CR). The label selectors must match the nodes that are attached to the
machine config pool that was configured for low latency by the Node Tuning Operator.

Prerequisites

You have installed the OpenShift CLI (oc).

You have logged in as a user with cluster-admin privileges.

You have applied a performance profile in the cluster that tunes worker nodes for low latency
workloads.

Procedure

1. Create a Pod CR for the low latency workload and apply it in the cluster, for example:

Example Pod spec configured to use real-time processing

apiVersion: v1
kind: Pod
metadata:
 name: dynamic-low-latency-pod
 annotations:
 cpu-quota.crio.io: "disable" 1
 cpu-load-balancing.crio.io: "disable" 2
 irq-load-balancing.crio.io: "disable" 3
spec:
 securityContext:
 runAsNonRoot: true
 seccompProfile:
 type: RuntimeDefault
 containers:
 - name: dynamic-low-latency-pod
 image: "registry.redhat.io/openshift4/cnf-tests-rhel8:v4.15"
 command: ["sleep", "10h"]
 resources:
 requests:

CHAPTER 11. LOW LATENCY TUNING

175

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_for_real_time/9/html-single/understanding_rhel_for_real_time/index#assembly_rhel-for-real-time-processes-and-threads_understanding-RHEL-for-Real-Time-core-concepts

1

2

3

4

5

Disables the CPU completely fair scheduler (CFS) quota at the pod run time.

Disables CPU load balancing.

Opts the pod out of interrupt handling on the node.

The nodeSelector label must match the label that you specify in the Node CR.

runtimeClassName must match the name of the performance profile configured in the
cluster.

2. Enter the pod runtimeClassName in the form performance-<profile_name>, where
<profile_name> is the name from the PerformanceProfile YAML. In the previous example, the
name is performance-dynamic-low-latency-profile.

3. Ensure the pod is running correctly. Status should be running, and the correct cnf-worker node
should be set:

Expected output

4. Get the CPUs that the pod configured for IRQ dynamic load balancing runs on:

Expected output

Verification

Ensure the node configuration is applied correctly.

 cpu: 2
 memory: "200M"
 limits:
 cpu: 2
 memory: "200M"
 securityContext:
 allowPrivilegeEscalation: false
 capabilities:
 drop: [ALL]
 nodeSelector:
 node-role.kubernetes.io/worker-cnf: "" 4
 runtimeClassName: performance-dynamic-low-latency-profile 5
...

$ oc get pod -o wide

NAME READY STATUS RESTARTS AGE IP NODE
dynamic-low-latency-pod 1/1 Running 0 5h33m 10.131.0.10 cnf-
worker.example.com

$ oc exec -it dynamic-low-latency-pod -- /bin/bash -c "grep Cpus_allowed_list
/proc/self/status | awk '{print $2}'"

Cpus_allowed_list: 2-3

OpenShift Container Platform 4.15 Scalability and performance

176

1. Log in to the node to verify the configuration.

2. Verify that you can use the node file system:

Expected output

3. Ensure the default system CPU affinity mask does not include the dynamic-low-latency-pod
CPUs, for example, CPUs 2 and 3.

Example output

4. Ensure the system IRQs are not configured to run on the dynamic-low-latency-pod CPUs:

Example output

$ oc debug node/<node-name>

sh-4.4# chroot /host

sh-4.4#

sh-4.4# cat /proc/irq/default_smp_affinity

33

sh-4.4# find /proc/irq/ -name smp_affinity_list -exec sh -c 'i="$1"; mask=$(cat $i); file=$(echo
$i); echo $file: $mask' _ {} \;

/proc/irq/0/smp_affinity_list: 0-5
/proc/irq/1/smp_affinity_list: 5
/proc/irq/2/smp_affinity_list: 0-5
/proc/irq/3/smp_affinity_list: 0-5
/proc/irq/4/smp_affinity_list: 0
/proc/irq/5/smp_affinity_list: 0-5
/proc/irq/6/smp_affinity_list: 0-5
/proc/irq/7/smp_affinity_list: 0-5
/proc/irq/8/smp_affinity_list: 4
/proc/irq/9/smp_affinity_list: 4
/proc/irq/10/smp_affinity_list: 0-5
/proc/irq/11/smp_affinity_list: 0
/proc/irq/12/smp_affinity_list: 1
/proc/irq/13/smp_affinity_list: 0-5
/proc/irq/14/smp_affinity_list: 1
/proc/irq/15/smp_affinity_list: 0
/proc/irq/24/smp_affinity_list: 1
/proc/irq/25/smp_affinity_list: 1
/proc/irq/26/smp_affinity_list: 1
/proc/irq/27/smp_affinity_list: 5
/proc/irq/28/smp_affinity_list: 1
/proc/irq/29/smp_affinity_list: 0
/proc/irq/30/smp_affinity_list: 0-5

CHAPTER 11. LOW LATENCY TUNING

177

WARNING

When you tune nodes for low latency, the usage of execution probes in conjunction
with applications that require guaranteed CPUs can cause latency spikes. Use other
probes, such as a properly configured set of network probes, as an alternative.

Additional resources

Placing pods on specific nodes using node selectors

Assigning pods to nodes

11.3.2. Creating a pod with a guaranteed QoS class

Keep the following in mind when you create a pod that is given a QoS class of Guaranteed:

Every container in the pod must have a memory limit and a memory request, and they must be
the same.

Every container in the pod must have a CPU limit and a CPU request, and they must be the
same.

The following example shows the configuration file for a pod that has one container. The container has a
memory limit and a memory request, both equal to 200 MiB. The container has a CPU limit and a CPU
request, both equal to 1 CPU.

apiVersion: v1
kind: Pod
metadata:
 name: qos-demo
 namespace: qos-example
spec:
 securityContext:
 runAsNonRoot: true
 seccompProfile:
 type: RuntimeDefault
 containers:
 - name: qos-demo-ctr
 image: <image-pull-spec>
 resources:
 limits:
 memory: "200Mi"
 cpu: "1"
 requests:
 memory: "200Mi"
 cpu: "1"
 securityContext:
 allowPrivilegeEscalation: false
 capabilities:
 drop: [ALL]

OpenShift Container Platform 4.15 Scalability and performance

178

https://docs.redhat.com/en/documentation/openshift_container_platform/4.15/html-single/nodes/#nodes-pods-node-selectors
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node

1. Create the pod:

2. View detailed information about the pod:

Example output

NOTE

If you specify a memory limit for a container, but do not specify a memory
request, OpenShift Container Platform automatically assigns a memory request
that matches the limit. Similarly, if you specify a CPU limit for a container, but do
not specify a CPU request, OpenShift Container Platform automatically assigns a
CPU request that matches the limit.

11.3.3. Disabling CPU load balancing in a Pod

Functionality to disable or enable CPU load balancing is implemented on the CRI-O level. The code
under the CRI-O disables or enables CPU load balancing only when the following requirements are met.

The pod must use the performance-<profile-name> runtime class. You can get the proper
name by looking at the status of the performance profile, as shown here:

NOTE

Currently, disabling CPU load balancing is not supported with cgroup v2.

The Node Tuning Operator is responsible for the creation of the high-performance runtime handler
config snippet under relevant nodes and for creation of the high-performance runtime class under the
cluster. It will have the same content as the default runtime handler except that it enables the CPU load
balancing configuration functionality.

To disable the CPU load balancing for the pod, the Pod specification must include the following fields:

$ oc apply -f qos-pod.yaml --namespace=qos-example

$ oc get pod qos-demo --namespace=qos-example --output=yaml

spec:
 containers:
 ...
status:
 qosClass: Guaranteed

apiVersion: performance.openshift.io/v2
kind: PerformanceProfile
...
status:
 ...
 runtimeClass: performance-manual

apiVersion: v1
kind: Pod

CHAPTER 11. LOW LATENCY TUNING

179

NOTE

Only disable CPU load balancing when the CPU manager static policy is enabled and for
pods with guaranteed QoS that use whole CPUs. Otherwise, disabling CPU load
balancing can affect the performance of other containers in the cluster.

11.3.4. Disabling power saving mode for high priority pods

You can configure pods to ensure that high priority workloads are unaffected when you configure power
saving for the node that the workloads run on.

When you configure a node with a power saving configuration, you must configure high priority
workloads with performance configuration at the pod level, which means that the configuration applies
to all the cores used by the pod.

By disabling P-states and C-states at the pod level, you can configure high priority workloads for best
performance and lowest latency.

Table 11.4. Configuration for high priority workloads

Annotation Possible Values Description

cpu-c-
states.crio.io
:

"enable"

"disable"

"max_latency:micro
seconds"

This annotation allows you to enable or disable C-
states for each CPU. Alternatively, you can also
specify a maximum latency in microseconds for the
C-states. For example, enable C-states with a
maximum latency of 10 microseconds with the setting
cpu-c-states.crio.io: "max_latency:10". Set the
value to "disable" to provide the best performance
for a pod.

cpu-freq-
governor.cri
o.io:

Any supported cpufreq
governor.

Sets the cpufreq governor for each CPU. The
"performance" governor is recommended for high
priority workloads.

Prerequisites

You have configured power saving in the performance profile for the node where the high
priority workload pods are scheduled.

Procedure

metadata:
 #...
 annotations:
 #...
 cpu-load-balancing.crio.io: "disable"
 #...
 #...
spec:
 #...
 runtimeClassName: performance-<profile_name>
 #...

OpenShift Container Platform 4.15 Scalability and performance

180

1. Add the required annotations to your high priority workload pods. The annotations override the
default settings.

Example high priority workload annotation

2. Restart the pods to apply the annotation.

Additional resources

Configuring power saving for nodes that run colocated high and low priority workloads

11.3.5. Disabling CPU CFS quota

To eliminate CPU throttling for pinned pods, create a pod with the cpu-quota.crio.io: "disable"
annotation. This annotation disables the CPU completely fair scheduler (CFS) quota when the pod runs.

Example pod specification with cpu-quota.crio.io disabled

NOTE

Only disable CPU CFS quota when the CPU manager static policy is enabled and for
pods with guaranteed QoS that use whole CPUs. For example, pods that contain CPU-
pinned containers. Otherwise, disabling CPU CFS quota can affect the performance of
other containers in the cluster.

Additional resources

Recommended firmware configuration for vDU cluster hosts

apiVersion: v1
kind: Pod
metadata:
 #...
 annotations:
 #...
 cpu-c-states.crio.io: "disable"
 cpu-freq-governor.crio.io: "performance"
 #...
 #...
spec:
 #...
 runtimeClassName: performance-<profile_name>
 #...

apiVersion: v1
kind: Pod
metadata:
 annotations:
 cpu-quota.crio.io: "disable"
spec:
 runtimeClassName: performance-<profile_name>
#...

CHAPTER 11. LOW LATENCY TUNING

181

https://docs.redhat.com/en/documentation/openshift_container_platform/4.15/html-single/edge_computing/#ztp-du-firmware-config-reference_vdu-config-ref

11.3.6. Disabling interrupt processing for CPUs where pinned containers are running

To achieve low latency for workloads, some containers require that the CPUs they are pinned to do not
process device interrupts. A pod annotation, irq-load-balancing.crio.io, is used to define whether
device interrupts are processed or not on the CPUs where the pinned containers are running. When
configured, CRI-O disables device interrupts where the pod containers are running.

To disable interrupt processing for CPUs where containers belonging to individual pods are pinned,
ensure that globallyDisableIrqLoadBalancing is set to false in the performance profile. Then, in the
pod specification, set the irq-load-balancing.crio.io pod annotation to disable.

The following pod specification contains this annotation:

Additional resources

Managing device interrupt processing for guaranteed pod isolated CPUs

11.4. DEBUGGING LOW LATENCY NODE TUNING STATUS

Use the PerformanceProfile custom resource (CR) status fields for reporting tuning status and
debugging latency issues in the cluster node.

11.4.1. Debugging low latency CNF tuning status

The PerformanceProfile custom resource (CR) contains status fields for reporting tuning status and
debugging latency degradation issues. These fields report on conditions that describe the state of the
operator’s reconciliation functionality.

A typical issue can arise when the status of machine config pools that are attached to the performance
profile are in a degraded state, causing the PerformanceProfile status to degrade. In this case, the
machine config pool issues a failure message.

The Node Tuning Operator contains the performanceProfile.spec.status.Conditions status field:

apiVersion: performance.openshift.io/v2
kind: Pod
metadata:
 annotations:
 irq-load-balancing.crio.io: "disable"
spec:
 runtimeClassName: performance-<profile_name>
...

Status:
 Conditions:
 Last Heartbeat Time: 2020-06-02T10:01:24Z
 Last Transition Time: 2020-06-02T10:01:24Z
 Status: True
 Type: Available
 Last Heartbeat Time: 2020-06-02T10:01:24Z
 Last Transition Time: 2020-06-02T10:01:24Z
 Status: True
 Type: Upgradeable
 Last Heartbeat Time: 2020-06-02T10:01:24Z

OpenShift Container Platform 4.15 Scalability and performance

182

The Status field contains Conditions that specify Type values that indicate the status of the
performance profile:

Available

All machine configs and Tuned profiles have been created successfully and are available for cluster
components are responsible to process them (NTO, MCO, Kubelet).

Upgradeable

Indicates whether the resources maintained by the Operator are in a state that is safe to upgrade.

Progressing

Indicates that the deployment process from the performance profile has started.

Degraded

Indicates an error if:

Validation of the performance profile has failed.

Creation of all relevant components did not complete successfully.

Each of these types contain the following fields:

Status

The state for the specific type (true or false).

Timestamp

The transaction timestamp.

Reason string

The machine readable reason.

Message string

The human readable reason describing the state and error details, if any.

11.4.1.1. Machine config pools

A performance profile and its created products are applied to a node according to an associated
machine config pool (MCP). The MCP holds valuable information about the progress of applying the
machine configurations created by performance profiles that encompass kernel args, kube config, huge
pages allocation, and deployment of rt-kernel. The Performance Profile controller monitors changes in
the MCP and updates the performance profile status accordingly.

The only conditions returned by the MCP to the performance profile status is when the MCP is
Degraded, which leads to performanceProfile.status.condition.Degraded = true.

Example

The following example is for a performance profile with an associated machine config pool (worker-cnf)
that was created for it:

 Last Transition Time: 2020-06-02T10:01:24Z
 Status: False
 Type: Progressing
 Last Heartbeat Time: 2020-06-02T10:01:24Z
 Last Transition Time: 2020-06-02T10:01:24Z
 Status: False
 Type: Degraded

CHAPTER 11. LOW LATENCY TUNING

183

1. The associated machine config pool is in a degraded state:

Example output

2. The describe section of the MCP shows the reason:

Example output

3. The degraded state should also appear under the performance profile status field marked as
degraded = true:

Example output

11.4.2. Collecting low latency tuning debugging data for Red Hat Support

When opening a support case, it is helpful to provide debugging information about your cluster to Red
Hat Support.

The must-gather tool enables you to collect diagnostic information about your OpenShift Container
Platform cluster, including node tuning, NUMA topology, and other information needed to debug issues
with low latency setup.

oc get mcp

NAME CONFIG UPDATED UPDATING DEGRADED
MACHINECOUNT READYMACHINECOUNT UPDATEDMACHINECOUNT
DEGRADEDMACHINECOUNT AGE
master rendered-master-2ee57a93fa6c9181b546ca46e1571d2d True False
False 3 3 3 0 2d21h
worker rendered-worker-d6b2bdc07d9f5a59a6b68950acf25e5f True False
False 2 2 2 0 2d21h
worker-cnf rendered-worker-cnf-6c838641b8a08fff08dbd8b02fb63f7c False True
True 2 1 1 1 2d20h

oc describe mcp worker-cnf

 Message: Node node-worker-cnf is reporting: "prepping update:
 machineconfig.machineconfiguration.openshift.io \"rendered-worker-cnf-
40b9996919c08e335f3ff230ce1d170\" not
 found"
 Reason: 1 nodes are reporting degraded status on sync

oc describe performanceprofiles performance

Message: Machine config pool worker-cnf Degraded Reason: 1 nodes are reporting
degraded status on sync.
Machine config pool worker-cnf Degraded Message: Node yquinn-q8s5v-w-b-
z5lqn.c.openshift-gce-devel.internal is
reporting: "prepping update: machineconfig.machineconfiguration.openshift.io
\"rendered-worker-cnf-40b9996919c08e335f3ff230ce1d170\" not found". Reason:
MCPDegraded
 Status: True
 Type: Degraded

OpenShift Container Platform 4.15 Scalability and performance

184

For prompt support, supply diagnostic information for both OpenShift Container Platform and low
latency tuning.

11.4.2.1. About the must-gather tool

The oc adm must-gather CLI command collects the information from your cluster that is most likely
needed for debugging issues, such as:

Resource definitions

Audit logs

Service logs

You can specify one or more images when you run the command by including the --image argument.
When you specify an image, the tool collects data related to that feature or product. When you run oc
adm must-gather, a new pod is created on the cluster. The data is collected on that pod and saved in a
new directory that starts with must-gather.local. This directory is created in your current working
directory.

11.4.2.2. Gathering low latency tuning data

Use the oc adm must-gather CLI command to collect information about your cluster, including features
and objects associated with low latency tuning, including:

The Node Tuning Operator namespaces and child objects.

MachineConfigPool and associated MachineConfig objects.

The Node Tuning Operator and associated Tuned objects.

Linux kernel command line options.

CPU and NUMA topology

Basic PCI device information and NUMA locality.

Prerequisites

Access to the cluster as a user with the cluster-admin role.

The OpenShift Container Platform CLI (oc) installed.

Procedure

1. Navigate to the directory where you want to store the must-gather data.

2. Collect debugging information by running the following command:

Example output

$ oc adm must-gather

[must-gather] OUT Using must-gather plug-in image: quay.io/openshift-release
When opening a support case, bugzilla, or issue please include the following summary data

CHAPTER 11. LOW LATENCY TUNING

185

1

3. Create a compressed file from the must-gather directory that was created in your working
directory. For example, on a computer that uses a Linux operating system, run the following
command:

Replace must-gather-local.5421342344627712289// with the directory name created by
the must-gather tool.

NOTE

Create a compressed file to attach the data to a support case or to use with the
Performance Profile Creator wrapper script when you create a performance
profile.

4. Attach the compressed file to your support case on the Red Hat Customer Portal .

Additional resources

Gathering data about your cluster with the must-gather tool

Managing nodes with MachineConfig and KubeletConfig CRs

Using the Node Tuning Operator

along with any other requested information:
ClusterID: 829er0fa-1ad8-4e59-a46e-2644921b7eb6
ClusterVersion: Stable at "<cluster_version>"
ClusterOperators:
 All healthy and stable

[must-gather] OUT namespace/openshift-must-gather-8fh4x created
[must-gather] OUT clusterrolebinding.rbac.authorization.k8s.io/must-gather-rhlgc created
[must-gather-5564g] POD 2023-07-17T10:17:37.610340849Z Gathering data for
ns/openshift-cluster-version...
[must-gather-5564g] POD 2023-07-17T10:17:38.786591298Z Gathering data for ns/default...
[must-gather-5564g] POD 2023-07-17T10:17:39.117418660Z Gathering data for
ns/openshift...
[must-gather-5564g] POD 2023-07-17T10:17:39.447592859Z Gathering data for ns/kube-
system...
[must-gather-5564g] POD 2023-07-17T10:17:39.803381143Z Gathering data for
ns/openshift-etcd...

...

Reprinting Cluster State:
When opening a support case, bugzilla, or issue please include the following summary data
along with any other requested information:
ClusterID: 829er0fa-1ad8-4e59-a46e-2644921b7eb6
ClusterVersion: Stable at "<cluster_version>"
ClusterOperators:
 All healthy and stable

$ tar cvaf must-gather.tar.gz must-gather-local.5421342344627712289 1

OpenShift Container Platform 4.15 Scalability and performance

186

https://access.redhat.com/
https://docs.redhat.com/en/documentation/openshift_container_platform/4.15/html-single/support/#gathering-cluster-data
https://docs.redhat.com/en/documentation/openshift_container_platform/4.15/html-single/nodes/#nodes-nodes-managing

Configuring huge pages at boot time

How huge pages are consumed by apps

11.5. PERFORMING LATENCY TESTS FOR PLATFORM VERIFICATION

You can use the Cloud-native Network Functions (CNF) tests image to run latency tests on a CNF-
enabled OpenShift Container Platform cluster, where all the components required for running CNF
workloads are installed. Run the latency tests to validate node tuning for your workload.

The cnf-tests container image is available at registry.redhat.io/openshift4/cnf-tests-rhel8:v4.15.

11.5.1. Prerequisites for running latency tests

Your cluster must meet the following requirements before you can run the latency tests:

1. You have configured a performance profile with the Node Tuning Operator.

2. You have applied all the required CNF configurations in the cluster.

3. You have a pre-existing MachineConfigPool CR applied in the cluster. The default worker pool
is worker-cnf.

Additional resources

Scheduling a workload onto a worker with real-time capabilities

11.5.2. Measuring latency

The cnf-tests image uses three tools to measure the latency of the system:

hwlatdetect

cyclictest

oslat

Each tool has a specific use. Use the tools in sequence to achieve reliable test results.

hwlatdetect

Measures the baseline that the bare-metal hardware can achieve. Before proceeding with the next
latency test, ensure that the latency reported by hwlatdetect meets the required threshold because
you cannot fix hardware latency spikes by operating system tuning.

cyclictest

Verifies the real-time kernel scheduler latency after hwlatdetect passes validation. The cyclictest
tool schedules a repeated timer and measures the difference between the desired and the actual
trigger times. The difference can uncover basic issues with the tuning caused by interrupts or
process priorities. The tool must run on a real-time kernel.

oslat

Behaves similarly to a CPU-intensive DPDK application and measures all the interruptions and
disruptions to the busy loop that simulates CPU heavy data processing.

The tests introduce the following environment variables:

CHAPTER 11. LOW LATENCY TUNING

187

Table 11.5. Latency test environment variables

Environment variables Description

LATENCY_TEST_DE
LAY

Specifies the amount of time in seconds after which the test starts running. You
can use the variable to allow the CPU manager reconcile loop to update the
default CPU pool. The default value is 0.

LATENCY_TEST_CP
US

Specifies the number of CPUs that the pod running the latency tests uses. If you
do not set the variable, the default configuration includes all isolated CPUs.

LATENCY_TEST_RU
NTIME

Specifies the amount of time in seconds that the latency test must run. The
default value is 300 seconds.

NOTE

To prevent the Ginkgo 2.0 test suite from timing out before the
latency tests complete, set the -ginkgo.timeout flag to a value
greater than LATENCY_TEST_RUNTIME + 2 minutes. If you
also set a LATENCY_TEST_DELAY value then you must set -
ginkgo.timeout to a value greater than
LATENCY_TEST_RUNTIME + LATENCY_TEST_DELAY +
2 minutes. The default timeout value for the Ginkgo 2.0 test suite
is 1 hour.

HWLATDETECT_MA
XIMUM_LATENCY

Specifies the maximum acceptable hardware latency in microseconds for the
workload and operating system. If you do not set the value of
HWLATDETECT_MAXIMUM_LATENCY or MAXIMUM_LATENCY, the
tool compares the default expected threshold (20μs) and the actual maximum
latency in the tool itself. Then, the test fails or succeeds accordingly.

CYCLICTEST_MAXI
MUM_LATENCY

Specifies the maximum latency in microseconds that all threads expect before
waking up during the cyclictest run. If you do not set the value of
CYCLICTEST_MAXIMUM_LATENCY or MAXIMUM_LATENCY, the tool
skips the comparison of the expected and the actual maximum latency.

OSLAT_MAXIMUM_L
ATENCY

Specifies the maximum acceptable latency in microseconds for the oslat test
results. If you do not set the value of OSLAT_MAXIMUM_LATENCY or
MAXIMUM_LATENCY, the tool skips the comparison of the expected and the
actual maximum latency.

MAXIMUM_LATENC
Y

Unified variable that specifies the maximum acceptable latency in microseconds.
Applicable for all available latency tools.

NOTE

Variables that are specific to a latency tool take precedence over unified variables. For
example, if OSLAT_MAXIMUM_LATENCY is set to 30 microseconds and
MAXIMUM_LATENCY is set to 10 microseconds, the oslat test will run with maximum
acceptable latency of 30 microseconds.

11.5.3. Running the latency tests

OpenShift Container Platform 4.15 Scalability and performance

188

Run the cluster latency tests to validate node tuning for your Cloud-native Network Functions (CNF)
workload.

NOTE

When executing podman commands as a non-root or non-privileged user, mounting
paths can fail with permission denied errors. To make the podman command work,
append :Z to the volumes creation; for example, -v $(pwd)/:/kubeconfig:Z. This allows
podman to do the proper SELinux relabeling.

Procedure

1. Open a shell prompt in the directory containing the kubeconfig file.
You provide the test image with a kubeconfig file in current directory and its related
$KUBECONFIG environment variable, mounted through a volume. This allows the running
container to use the kubeconfig file from inside the container.

2. Run the latency tests by entering the following command:

3. Optional: Append --ginkgo.dryRun flag to run the latency tests in dry-run mode. This is useful
for checking what commands the tests run.

4. Optional: Append --ginkgo.v flag to run the tests with increased verbosity.

5. Optional: Append --ginkgo.timeout="24h" flag to ensure the Ginkgo 2.0 test suite does not
timeout before the latency tests complete.

IMPORTANT

The default runtime for each test is 300 seconds. For valid latency test results,
run the tests for at least 12 hours by updating the LATENCY_TEST_RUNTIME
variable.

11.5.3.1. Running hwlatdetect

The hwlatdetect tool is available in the rt-kernel package with a regular subscription of Red Hat
Enterprise Linux (RHEL) 9.x.

NOTE

When executing podman commands as a non-root or non-privileged user, mounting
paths can fail with permission denied errors. To make the podman command work,
append :Z to the volumes creation; for example, -v $(pwd)/:/kubeconfig:Z. This allows
podman to do the proper SELinux relabeling.

Prerequisites

You have installed the real-time kernel in the cluster.

$ podman run -v $(pwd)/:/kubeconfig:Z -e KUBECONFIG=/kubeconfig/kubeconfig \
-e LATENCY_TEST_RUNTIME=<time_in_seconds>\
-e MAXIMUM_LATENCY=<time_in_microseconds> \
registry.redhat.io/openshift4/cnf-tests-rhel8:v4.15 /usr/bin/test-run.sh \
--ginkgo.v --ginkgo.timeout="24h"

CHAPTER 11. LOW LATENCY TUNING

189

You have logged in to registry.redhat.io with your Customer Portal credentials.

Procedure

To run the hwlatdetect tests, run the following command, substituting variable values as
appropriate:

The hwlatdetect test runs for 10 minutes (600 seconds). The test runs successfully when the
maximum observed latency is lower than MAXIMUM_LATENCY (20 μs).

If the results exceed the latency threshold, the test fails.

IMPORTANT

For valid results, the test should run for at least 12 hours.

Example failure output

$ podman run -v $(pwd)/:/kubeconfig:Z -e KUBECONFIG=/kubeconfig/kubeconfig \
-e LATENCY_TEST_RUNTIME=600 -e MAXIMUM_LATENCY=20 \
registry.redhat.io/openshift4/cnf-tests-rhel8:v4.15 \
/usr/bin/test-run.sh --ginkgo.focus="hwlatdetect" --ginkgo.v --ginkgo.timeout="24h"

running /usr/bin/cnftests -ginkgo.v -ginkgo.focus=hwlatdetect
I0908 15:25:20.023712 27 request.go:601] Waited for 1.046586367s due to client-side
throttling, not priority and fairness, request:
GET:https://api.hlxcl6.lab.eng.tlv2.redhat.com:6443/apis/imageregistry.operator.openshift.io/v1?
timeout=32s
Running Suite: CNF Features e2e integration tests
===
Random Seed: 1662650718
Will run 1 of 3 specs

[...]

• Failure [283.574 seconds]
[performance] Latency Test
/remote-source/app/vendor/github.com/openshift/cluster-node-tuning-
operator/test/e2e/performanceprofile/functests/4_latency/latency.go:62
 with the hwlatdetect image
 /remote-source/app/vendor/github.com/openshift/cluster-node-tuning-
operator/test/e2e/performanceprofile/functests/4_latency/latency.go:228
 should succeed [It]
 /remote-source/app/vendor/github.com/openshift/cluster-node-tuning-
operator/test/e2e/performanceprofile/functests/4_latency/latency.go:236

 Log file created at: 2022/09/08 15:25:27
 Running on machine: hwlatdetect-b6n4n
 Binary: Built with gc go1.17.12 for linux/amd64
 Log line format: [IWEF]mmdd hh:mm:ss.uuuuuu threadid file:line] msg
 I0908 15:25:27.160620 1 node.go:39] Environment information: /proc/cmdline:
BOOT_IMAGE=(hd1,gpt3)/ostree/rhcos-
c6491e1eedf6c1f12ef7b95e14ee720bf48359750ac900b7863c625769ef5fb9/vmlinuz-4.18.0-
372.19.1.el8_6.x86_64 random.trust_cpu=on console=tty0 console=ttyS0,115200n8
ignition.platform.id=metal

OpenShift Container Platform 4.15 Scalability and performance

190

1

2

You can configure the latency threshold by using the MAXIMUM_LATENCY or the
HWLATDETECT_MAXIMUM_LATENCY environment variables.

The maximum latency value measured during the test.

ostree=/ostree/boot.1/rhcos/c6491e1eedf6c1f12ef7b95e14ee720bf48359750ac900b7863c625
769ef5fb9/0 ip=dhcp root=UUID=5f80c283-f6e6-4a27-9b47-a287157483b2 rw
rootflags=prjquota boot=UUID=773bf59a-bafd-48fc-9a87-f62252d739d3 skew_tick=1
nohz=on rcu_nocbs=0-3 tuned.non_isolcpus=0000ffff,ffffffff,fffffff0
systemd.cpu_affinity=4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29
,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,
60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79 intel_iommu=on iommu=pt
isolcpus=managed_irq,0-3 nohz_full=0-3 tsc=nowatchdog nosoftlockup nmi_watchdog=0
mce=off skew_tick=1 rcutree.kthread_prio=11 + +
 I0908 15:25:27.160830 1 node.go:46] Environment information: kernel version 4.18.0-
372.19.1.el8_6.x86_64
 I0908 15:25:27.160857 1 main.go:50] running the hwlatdetect command with
arguments [/usr/bin/hwlatdetect --threshold 1 --hardlimit 1 --duration 100 --window
10000000us --width 950000us]
 F0908 15:27:10.603523 1 main.go:53] failed to run hwlatdetect command; out:
hwlatdetect: test duration 100 seconds
 detector: tracer
 parameters:
 Latency threshold: 1us 1
 Sample window: 10000000us
 Sample width: 950000us
 Non-sampling period: 9050000us
 Output File: None

 Starting test
 test finished
 Max Latency: 326us 2
 Samples recorded: 5
 Samples exceeding threshold: 5
 ts: 1662650739.017274507, inner:6, outer:6
 ts: 1662650749.257272414, inner:14, outer:326
 ts: 1662650779.977272835, inner:314, outer:12
 ts: 1662650800.457272384, inner:3, outer:9
 ts: 1662650810.697273520, inner:3, outer:2

[...]

JUnit report was created: /junit.xml/cnftests-junit.xml

Summarizing 1 Failure:

[Fail] [performance] Latency Test with the hwlatdetect image [It] should succeed
/remote-source/app/vendor/github.com/openshift/cluster-node-tuning-
operator/test/e2e/performanceprofile/functests/4_latency/latency.go:476

Ran 1 of 194 Specs in 365.797 seconds
FAIL! -- 0 Passed | 1 Failed | 0 Pending | 2 Skipped
--- FAIL: TestTest (366.08s)
FAIL

CHAPTER 11. LOW LATENCY TUNING

191

Example hwlatdetect test results
You can capture the following types of results:

Rough results that are gathered after each run to create a history of impact on any changes
made throughout the test.

The combined set of the rough tests with the best results and configuration settings.

Example of good results

The hwlatdetect tool only provides output if the sample exceeds the specified threshold.

Example of bad results

The output of hwlatdetect shows that multiple samples exceed the threshold. However, the same
output can indicate different results based on the following factors:

The duration of the test

The number of CPU cores

The host firmware settings

hwlatdetect: test duration 3600 seconds
detector: tracer
parameters:
Latency threshold: 10us
Sample window: 1000000us
Sample width: 950000us
Non-sampling period: 50000us
Output File: None

Starting test
test finished
Max Latency: Below threshold
Samples recorded: 0

hwlatdetect: test duration 3600 seconds
detector: tracer
parameters:Latency threshold: 10usSample window: 1000000us
Sample width: 950000usNon-sampling period: 50000usOutput File: None

Starting tests:1610542421.275784439, inner:78, outer:81
ts: 1610542444.330561619, inner:27, outer:28
ts: 1610542445.332549975, inner:39, outer:38
ts: 1610542541.568546097, inner:47, outer:32
ts: 1610542590.681548531, inner:13, outer:17
ts: 1610543033.818801482, inner:29, outer:30
ts: 1610543080.938801990, inner:90, outer:76
ts: 1610543129.065549639, inner:28, outer:39
ts: 1610543474.859552115, inner:28, outer:35
ts: 1610543523.973856571, inner:52, outer:49
ts: 1610543572.089799738, inner:27, outer:30
ts: 1610543573.091550771, inner:34, outer:28
ts: 1610543574.093555202, inner:116, outer:63

OpenShift Container Platform 4.15 Scalability and performance

192

WARNING

Before proceeding with the next latency test, ensure that the latency reported by
hwlatdetect meets the required threshold. Fixing latencies introduced by hardware
might require you to contact the system vendor support.

Not all latency spikes are hardware related. Ensure that you tune the host firmware
to meet your workload requirements. For more information, see Setting firmware
parameters for system tuning.

11.5.3.2. Running cyclictest

The cyclictest tool measures the real-time kernel scheduler latency on the specified CPUs.

NOTE

When executing podman commands as a non-root or non-privileged user, mounting
paths can fail with permission denied errors. To make the podman command work,
append :Z to the volumes creation; for example, -v $(pwd)/:/kubeconfig:Z. This allows
podman to do the proper SELinux relabeling.

Prerequisites

You have logged in to registry.redhat.io with your Customer Portal credentials.

You have installed the real-time kernel in the cluster.

You have applied a cluster performance profile by using Node Tuning Operator.

Procedure

To perform the cyclictest, run the following command, substituting variable values as
appropriate:

The command runs the cyclictest tool for 10 minutes (600 seconds). The test runs successfully
when the maximum observed latency is lower than MAXIMUM_LATENCY (in this example, 20
μs). Latency spikes of 20 μs and above are generally not acceptable for telco RAN workloads.

If the results exceed the latency threshold, the test fails.

IMPORTANT

For valid results, the test should run for at least 12 hours.

$ podman run -v $(pwd)/:/kubeconfig:Z -e KUBECONFIG=/kubeconfig/kubeconfig \
-e LATENCY_TEST_CPUS=10 -e LATENCY_TEST_RUNTIME=600 -e
MAXIMUM_LATENCY=20 \
registry.redhat.io/openshift4/cnf-tests-rhel8:v4.15 \
/usr/bin/test-run.sh --ginkgo.focus="cyclictest" --ginkgo.v --ginkgo.timeout="24h"

CHAPTER 11. LOW LATENCY TUNING

193

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_for_real_time/9/html-single/optimizing_rhel_9_for_real_time_for_low_latency_operation/index#setting-bios-parameters-for-system-tuning_optimizing-RHEL9-for-real-time-for-low-latency-operation

Example failure output

Example cyclictest results
The same output can indicate different results for different workloads. For example, spikes up to 18μs
are acceptable for 4G DU workloads, but not for 5G DU workloads.

Example of good results

running /usr/bin/cnftests -ginkgo.v -ginkgo.focus=cyclictest
I0908 13:01:59.193776 27 request.go:601] Waited for 1.046228824s due to client-side
throttling, not priority and fairness, request: GET:https://api.compute-
1.example.com:6443/apis/packages.operators.coreos.com/v1?timeout=32s
Running Suite: CNF Features e2e integration tests
===
Random Seed: 1662642118
Will run 1 of 3 specs

[...]

Summarizing 1 Failure:

[Fail] [performance] Latency Test with the cyclictest image [It] should succeed
/remote-source/app/vendor/github.com/openshift/cluster-node-tuning-
operator/test/e2e/performanceprofile/functests/4_latency/latency.go:220

Ran 1 of 194 Specs in 161.151 seconds
FAIL! -- 0 Passed | 1 Failed | 0 Pending | 2 Skipped
--- FAIL: TestTest (161.48s)
FAIL

running cmd: cyclictest -q -D 10m -p 1 -t 16 -a 2,4,6,8,10,12,14,16,54,56,58,60,62,64,66,68 -h 30 -i
1000 -m
Histogram
000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000
000000 000000 000000 000000 000000 000000
000001 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000
000000 000000 000000 000000 000000 000000
000002 579506 535967 418614 573648 532870 529897 489306 558076 582350 585188
583793 223781 532480 569130 472250 576043
More histogram entries ...
Total: 000600000 000600000 000600000 000599999 000599999 000599999 000599998
000599998 000599998 000599997 000599997 000599996 000599996 000599995 000599995
000599995
Min Latencies: 00002 00002 00002 00002 00002 00002 00002 00002 00002 00002 00002 00002
00002 00002 00002 00002
Avg Latencies: 00002 00002 00002 00002 00002 00002 00002 00002 00002 00002 00002 00002
00002 00002 00002 00002
Max Latencies: 00005 00005 00004 00005 00004 00004 00005 00005 00006 00005 00004 00005
00004 00004 00005 00004
Histogram Overflows: 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000
00000 00000 00000 00000 00000
Histogram Overflow at cycle number:
Thread 0:
Thread 1:
Thread 2:

OpenShift Container Platform 4.15 Scalability and performance

194

Example of bad results

Thread 3:
Thread 4:
Thread 5:
Thread 6:
Thread 7:
Thread 8:
Thread 9:
Thread 10:
Thread 11:
Thread 12:
Thread 13:
Thread 14:
Thread 15:

running cmd: cyclictest -q -D 10m -p 1 -t 16 -a 2,4,6,8,10,12,14,16,54,56,58,60,62,64,66,68 -h 30 -i
1000 -m
Histogram
000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000
000000 000000 000000 000000 000000 000000
000001 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000
000000 000000 000000 000000 000000 000000
000002 564632 579686 354911 563036 492543 521983 515884 378266 592621 463547
482764 591976 590409 588145 589556 353518
More histogram entries ...
Total: 000599999 000599999 000599999 000599997 000599997 000599998 000599998
000599997 000599997 000599996 000599995 000599996 000599995 000599995 000599995
000599993
Min Latencies: 00002 00002 00002 00002 00002 00002 00002 00002 00002 00002 00002 00002
00002 00002 00002 00002
Avg Latencies: 00002 00002 00002 00002 00002 00002 00002 00002 00002 00002 00002 00002
00002 00002 00002 00002
Max Latencies: 00493 00387 00271 00619 00541 00513 00009 00389 00252 00215 00539 00498
00363 00204 00068 00520
Histogram Overflows: 00001 00001 00001 00002 00002 00001 00000 00001 00001 00001 00002
00001 00001 00001 00001 00002
Histogram Overflow at cycle number:
Thread 0: 155922
Thread 1: 110064
Thread 2: 110064
Thread 3: 110063 155921
Thread 4: 110063 155921
Thread 5: 155920
Thread 6:
Thread 7: 110062
Thread 8: 110062
Thread 9: 155919
Thread 10: 110061 155919
Thread 11: 155918
Thread 12: 155918
Thread 13: 110060
Thread 14: 110060
Thread 15: 110059 155917

CHAPTER 11. LOW LATENCY TUNING

195

11.5.3.3. Running oslat

The oslat test simulates a CPU-intensive DPDK application and measures all the interruptions and
disruptions to test how the cluster handles CPU heavy data processing.

NOTE

When executing podman commands as a non-root or non-privileged user, mounting
paths can fail with permission denied errors. To make the podman command work,
append :Z to the volumes creation; for example, -v $(pwd)/:/kubeconfig:Z. This allows
podman to do the proper SELinux relabeling.

Prerequisites

You have logged in to registry.redhat.io with your Customer Portal credentials.

You have applied a cluster performance profile by using the Node Tuning Operator.

Procedure

To perform the oslat test, run the following command, substituting variable values as
appropriate:

LATENCY_TEST_CPUS specifies the number of CPUs to test with the oslat command.

The command runs the oslat tool for 10 minutes (600 seconds). The test runs successfully
when the maximum observed latency is lower than MAXIMUM_LATENCY (20 μs).

If the results exceed the latency threshold, the test fails.

IMPORTANT

For valid results, the test should run for at least 12 hours.

Example failure output

$ podman run -v $(pwd)/:/kubeconfig:Z -e KUBECONFIG=/kubeconfig/kubeconfig \
-e LATENCY_TEST_CPUS=10 -e LATENCY_TEST_RUNTIME=600 -e
MAXIMUM_LATENCY=20 \
registry.redhat.io/openshift4/cnf-tests-rhel8:v4.15 \
/usr/bin/test-run.sh --ginkgo.focus="oslat" --ginkgo.v --ginkgo.timeout="24h"

running /usr/bin/cnftests -ginkgo.v -ginkgo.focus=oslat
I0908 12:51:55.999393 27 request.go:601] Waited for 1.044848101s due to client-side
throttling, not priority and fairness, request: GET:https://compute-
1.example.com:6443/apis/machineconfiguration.openshift.io/v1?timeout=32s
Running Suite: CNF Features e2e integration tests
===
Random Seed: 1662641514
Will run 1 of 3 specs

[...]

• Failure [77.833 seconds]

OpenShift Container Platform 4.15 Scalability and performance

196

1 In this example, the measured latency is outside the maximum allowed value.

11.5.4. Generating a latency test failure report

Use the following procedures to generate a JUnit latency test output and test failure report.

Prerequisites

You have installed the OpenShift CLI (oc).

You have logged in as a user with cluster-admin privileges.

Procedure

Create a test failure report with information about the cluster state and resources for
troubleshooting by passing the --report parameter with the path to where the report is dumped:

where:

<report_folder_path>

Is the path to the folder where the report is generated.

11.5.5. Generating a JUnit latency test report

[performance] Latency Test
/remote-source/app/vendor/github.com/openshift/cluster-node-tuning-
operator/test/e2e/performanceprofile/functests/4_latency/latency.go:62
 with the oslat image
 /remote-source/app/vendor/github.com/openshift/cluster-node-tuning-
operator/test/e2e/performanceprofile/functests/4_latency/latency.go:128
 should succeed [It]
 /remote-source/app/vendor/github.com/openshift/cluster-node-tuning-
operator/test/e2e/performanceprofile/functests/4_latency/latency.go:153

 The current latency 304 is bigger than the expected one 1 : 1

[...]

Summarizing 1 Failure:

[Fail] [performance] Latency Test with the oslat image [It] should succeed
/remote-source/app/vendor/github.com/openshift/cluster-node-tuning-
operator/test/e2e/performanceprofile/functests/4_latency/latency.go:177

Ran 1 of 194 Specs in 161.091 seconds
FAIL! -- 0 Passed | 1 Failed | 0 Pending | 2 Skipped
--- FAIL: TestTest (161.42s)
FAIL

$ podman run -v $(pwd)/:/kubeconfig:Z -v $(pwd)/reportdest:<report_folder_path> \
-e KUBECONFIG=/kubeconfig/kubeconfig registry.redhat.io/openshift4/cnf-tests-rhel8:v4.15 \
/usr/bin/test-run.sh --report <report_folder_path> --ginkgo.v

CHAPTER 11. LOW LATENCY TUNING

197

Use the following procedures to generate a JUnit latency test output and test failure report.

Prerequisites

You have installed the OpenShift CLI (oc).

You have logged in as a user with cluster-admin privileges.

Procedure

Create a JUnit-compliant XML report by passing the --junit parameter together with the path
to where the report is dumped:

NOTE

You must create the junit folder before running this command.

where:

junit

Is the folder where the junit report is stored.

11.5.6. Running latency tests on a single-node OpenShift cluster

You can run latency tests on single-node OpenShift clusters.

NOTE

When executing podman commands as a non-root or non-privileged user, mounting
paths can fail with permission denied errors. To make the podman command work,
append :Z to the volumes creation; for example, -v $(pwd)/:/kubeconfig:Z. This allows
podman to do the proper SELinux relabeling.

Prerequisites

You have installed the OpenShift CLI (oc).

You have logged in as a user with cluster-admin privileges.

You have applied a cluster performance profile by using the Node Tuning Operator.

Procedure

To run the latency tests on a single-node OpenShift cluster, run the following command:

$ podman run -v $(pwd)/:/kubeconfig:Z -v $(pwd)/junit:/junit \
-e KUBECONFIG=/kubeconfig/kubeconfig registry.redhat.io/openshift4/cnf-tests-rhel8:v4.15 \
/usr/bin/test-run.sh --ginkgo.junit-report junit/<file-name>.xml --ginkgo.v

$ podman run -v $(pwd)/:/kubeconfig:Z -e KUBECONFIG=/kubeconfig/kubeconfig \
-e LATENCY_TEST_RUNTIME=<time_in_seconds> registry.redhat.io/openshift4/cnf-tests-
rhel8:v4.15 \
/usr/bin/test-run.sh --ginkgo.v --ginkgo.timeout="24h"

OpenShift Container Platform 4.15 Scalability and performance

198

NOTE

The default runtime for each test is 300 seconds. For valid latency test results,
run the tests for at least 12 hours by updating the LATENCY_TEST_RUNTIME
variable. To run the buckets latency validation step, you must specify a maximum
latency. For details on maximum latency variables, see the table in the
"Measuring latency" section.

After running the test suite, all the dangling resources are cleaned up.

11.5.7. Running latency tests in a disconnected cluster

The CNF tests image can run tests in a disconnected cluster that is not able to reach external registries.
This requires two steps:

1. Mirroring the cnf-tests image to the custom disconnected registry.

2. Instructing the tests to consume the images from the custom disconnected registry.

Mirroring the images to a custom registry accessible from the cluster
A mirror executable is shipped in the image to provide the input required by oc to mirror the test image
to a local registry.

1. Run this command from an intermediate machine that has access to the cluster and
registry.redhat.io:

where:

<disconnected_registry>

Is the disconnected mirror registry you have configured, for example,
my.local.registry:5000/.

2. When you have mirrored the cnf-tests image into the disconnected registry, you must override
the original registry used to fetch the images when running the tests, for example:

Configuring the tests to consume images from a custom registry
You can run the latency tests using a custom test image and image registry using CNF_TESTS_IMAGE
and IMAGE_REGISTRY variables.

To configure the latency tests to use a custom test image and image registry, run the following
command:

$ podman run -v $(pwd)/:/kubeconfig:Z -e KUBECONFIG=/kubeconfig/kubeconfig \
registry.redhat.io/openshift4/cnf-tests-rhel8:v4.15 \
/usr/bin/mirror -registry <disconnected_registry> | oc image mirror -f -

podman run -v $(pwd)/:/kubeconfig:Z -e KUBECONFIG=/kubeconfig/kubeconfig \
-e IMAGE_REGISTRY="<disconnected_registry>" \
-e CNF_TESTS_IMAGE="cnf-tests-rhel8:v4.15" \
-e LATENCY_TEST_RUNTIME=<time_in_seconds> \
<disconnected_registry>/cnf-tests-rhel8:v4.15 /usr/bin/test-run.sh --ginkgo.v --
ginkgo.timeout="24h"

$ podman run -v $(pwd)/:/kubeconfig:Z -e KUBECONFIG=/kubeconfig/kubeconfig \
-e IMAGE_REGISTRY="<custom_image_registry>" \

CHAPTER 11. LOW LATENCY TUNING

199

https://catalog.redhat.com/software/containers/explore

where:

<custom_image_registry>

is the custom image registry, for example, custom.registry:5000/.

<custom_cnf-tests_image>

is the custom cnf-tests image, for example, custom-cnf-tests-image:latest.

Mirroring images to the cluster OpenShift image registry
OpenShift Container Platform provides a built-in container image registry, which runs as a standard
workload on the cluster.

Procedure

1. Gain external access to the registry by exposing it with a route:

2. Fetch the registry endpoint by running the following command:

3. Create a namespace for exposing the images:

4. Make the image stream available to all the namespaces used for tests. This is required to allow
the tests namespaces to fetch the images from the cnf-tests image stream. Run the following
commands:

5. Retrieve the docker secret name and auth token by running the following commands:

6. Create a dockerauth.json file, for example:

-e CNF_TESTS_IMAGE="<custom_cnf-tests_image>" \
-e LATENCY_TEST_RUNTIME=<time_in_seconds> \
registry.redhat.io/openshift4/cnf-tests-rhel8:v4.15 /usr/bin/test-run.sh --ginkgo.v --
ginkgo.timeout="24h"

$ oc patch configs.imageregistry.operator.openshift.io/cluster --patch '{"spec":
{"defaultRoute":true}}' --type=merge

$ REGISTRY=$(oc get route default-route -n openshift-image-registry --template='{{
.spec.host }}')

$ oc create ns cnftests

$ oc policy add-role-to-user system:image-puller system:serviceaccount:cnf-features-
testing:default --namespace=cnftests

$ oc policy add-role-to-user system:image-puller system:serviceaccount:performance-addon-
operators-testing:default --namespace=cnftests

$ SECRET=$(oc -n cnftests get secret | grep builder-docker | awk {'print $1'}

$ TOKEN=$(oc -n cnftests get secret $SECRET -o jsonpath="{.data['\.dockercfg']}" | base64
--decode | jq '.["image-registry.openshift-image-registry.svc:5000"].auth')

$ echo "{\"auths\": { \"$REGISTRY\": { \"auth\": $TOKEN } }}" > dockerauth.json

OpenShift Container Platform 4.15 Scalability and performance

200

7. Do the image mirroring:

8. Run the tests:

Mirroring a different set of test images
You can optionally change the default upstream images that are mirrored for the latency tests.

Procedure

1. The mirror command tries to mirror the upstream images by default. This can be overridden by
passing a file with the following format to the image:

2. Pass the file to the mirror command, for example saving it locally as images.json. With the
following command, the local path is mounted in /kubeconfig inside the container and that can
be passed to the mirror command.

11.5.8. Troubleshooting errors with the cnf-tests container

To run latency tests, the cluster must be accessible from within the cnf-tests container.

Prerequisites

You have installed the OpenShift CLI (oc).

You have logged in as a user with cluster-admin privileges.

Procedure

Verify that the cluster is accessible from inside the cnf-tests container by running the following
command:

$ podman run -v $(pwd)/:/kubeconfig:Z -e KUBECONFIG=/kubeconfig/kubeconfig \
registry.redhat.io/openshift4/cnf-tests-rhel8:4.15 \
/usr/bin/mirror -registry $REGISTRY/cnftests | oc image mirror --insecure=true \
-a=$(pwd)/dockerauth.json -f -

$ podman run -v $(pwd)/:/kubeconfig:Z -e KUBECONFIG=/kubeconfig/kubeconfig \
-e LATENCY_TEST_RUNTIME=<time_in_seconds> \
-e IMAGE_REGISTRY=image-registry.openshift-image-registry.svc:5000/cnftests cnf-tests-
local:latest /usr/bin/test-run.sh --ginkgo.v --ginkgo.timeout="24h"

[
 {
 "registry": "public.registry.io:5000",
 "image": "imageforcnftests:4.15"
 }
]

$ podman run -v $(pwd)/:/kubeconfig:Z -e KUBECONFIG=/kubeconfig/kubeconfig \
registry.redhat.io/openshift4/cnf-tests-rhel8:v4.15 /usr/bin/mirror \
--registry "my.local.registry:5000/" --images "/kubeconfig/images.json" \
| oc image mirror -f -

CHAPTER 11. LOW LATENCY TUNING

201

If this command does not work, an error related to spanning across DNS, MTU size, or firewall
access might be occurring.

$ podman run -v $(pwd)/:/kubeconfig:Z -e KUBECONFIG=/kubeconfig/kubeconfig \
registry.redhat.io/openshift4/cnf-tests-rhel8:v4.15 \
oc get nodes

OpenShift Container Platform 4.15 Scalability and performance

202

CHAPTER 12. IMPROVING CLUSTER STABILITY IN HIGH
LATENCY ENVIRONMENTS USING WORKER LATENCY

PROFILES
If the cluster administrator has performed latency tests for platform verification, they can discover the
need to adjust the operation of the cluster to ensure stability in cases of high latency. The cluster
administrator need change only one parameter, recorded in a file, which controls four parameters
affecting how supervisory processes read status and interpret the health of the cluster. Changing only
the one parameter provides cluster tuning in an easy, supportable manner.

The Kubelet process provides the starting point for monitoring cluster health. The Kubelet sets status
values for all nodes in the OpenShift Container Platform cluster. The Kubernetes Controller Manager
(kube controller) reads the status values every 10 seconds, by default. If the kube controller cannot
read a node status value, it loses contact with that node after a configured period. The default behavior
is:

1. The node controller on the control plane updates the node health to Unhealthy and marks the
node Ready condition`Unknown`.

2. In response, the scheduler stops scheduling pods to that node.

3. The Node Lifecycle Controller adds a node.kubernetes.io/unreachable taint with a
NoExecute effect to the node and schedules any pods on the node for eviction after five
minutes, by default.

This behavior can cause problems if your network is prone to latency issues, especially if you have nodes
at the network edge. In some cases, the Kubernetes Controller Manager might not receive an update
from a healthy node due to network latency. The Kubelet evicts pods from the node even though the
node is healthy.

To avoid this problem, you can use worker latency profiles to adjust the frequency that the Kubelet and
the Kubernetes Controller Manager wait for status updates before taking action. These adjustments
help to ensure that your cluster runs properly if network latency between the control plane and the
worker nodes is not optimal.

These worker latency profiles contain three sets of parameters that are pre-defined with carefully tuned
values to control the reaction of the cluster to increased latency. No need to experimentally find the
best values manually.

You can configure worker latency profiles when installing a cluster or at any time you notice increased
latency in your cluster network.

12.1. UNDERSTANDING WORKER LATENCY PROFILES

Worker latency profiles are four different categories of carefully-tuned parameters. The four parameters
which implement these values are node-status-update-frequency, node-monitor-grace-period,
default-not-ready-toleration-seconds and default-unreachable-toleration-seconds. These
parameters can use values which allow you control the reaction of the cluster to latency issues without
needing to determine the best values using manual methods.

IMPORTANT

Setting these parameters manually is not supported. Incorrect parameter settings
adversely affect cluster stability.

CHAPTER 12. IMPROVING CLUSTER STABILITY IN HIGH LATENCY ENVIRONMENTS USING WORKER LATENCY PROFILES

203

All worker latency profiles configure the following parameters:

node-status-update-frequency

Specifies how often the kubelet posts node status to the API server.

node-monitor-grace-period

Specifies the amount of time in seconds that the Kubernetes Controller Manager waits for an update
from a kubelet before marking the node unhealthy and adding the node.kubernetes.io/not-ready or
node.kubernetes.io/unreachable taint to the node.

default-not-ready-toleration-seconds

Specifies the amount of time in seconds after marking a node unhealthy that the Kube API Server
Operator waits before evicting pods from that node.

default-unreachable-toleration-seconds

Specifies the amount of time in seconds after marking a node unreachable that the Kube API Server
Operator waits before evicting pods from that node.

The following Operators monitor the changes to the worker latency profiles and respond accordingly:

The Machine Config Operator (MCO) updates the node-status-update-frequency parameter
on the worker nodes.

The Kubernetes Controller Manager updates the node-monitor-grace-period parameter on
the control plane nodes.

The Kubernetes API Server Operator updates the default-not-ready-toleration-seconds and
default-unreachable-toleration-seconds parameters on the control plane nodes.

Although the default configuration works in most cases, OpenShift Container Platform offers two other
worker latency profiles for situations where the network is experiencing higher latency than usual. The
three worker latency profiles are described in the following sections:

Default worker latency profile

With the Default profile, each Kubelet updates it’s status every 10 seconds (node-status-update-
frequency). The Kube Controller Manager checks the statuses of Kubelet every 5 seconds (node-
monitor-grace-period).
The Kubernetes Controller Manager waits 40 seconds for a status update from Kubelet before
considering the Kubelet unhealthy. If no status is made available to the Kubernetes Controller
Manager, it then marks the node with the node.kubernetes.io/not-ready or
node.kubernetes.io/unreachable taint and evicts the pods on that node.

If a pod on that node has the NoExecute taint, the pod is run according to tolerationSeconds. If the
pod has no taint, it will be evicted in 300 seconds (default-not-ready-toleration-seconds and
default-unreachable-toleration-seconds settings of the Kube API Server).

Profile Component Parameter Value

Default kubelet node-status-update-
frequency

10s

Kubelet
Controller
Manager

node-monitor-grace-period 40s

OpenShift Container Platform 4.15 Scalability and performance

204

Kubernetes
API Server
Operator

default-not-ready-
toleration-seconds

300s

Kubernetes
API Server
Operator

default-unreachable-
toleration-seconds

300s

Profile Component Parameter Value

Medium worker latency profile

Use the MediumUpdateAverageReaction profile if the network latency is slightly higher than usual.
The MediumUpdateAverageReaction profile reduces the frequency of kubelet updates to 20
seconds and changes the period that the Kubernetes Controller Manager waits for those updates to
2 minutes. The pod eviction period for a pod on that node is reduced to 60 seconds. If the pod has
the tolerationSeconds parameter, the eviction waits for the period specified by that parameter.

The Kubernetes Controller Manager waits for 2 minutes to consider a node unhealthy. In another
minute, the eviction process starts.

Profile Component Parameter Value

MediumUpdateAverageReaction kubelet node-status-update-
frequency

20s

Kubelet
Controller
Manager

node-monitor-grace-period 2m

Kubernetes
API Server
Operator

default-not-ready-
toleration-seconds

60s

Kubernetes
API Server
Operator

default-unreachable-
toleration-seconds

60s

Low worker latency profile

Use the LowUpdateSlowReaction profile if the network latency is extremely high.
The LowUpdateSlowReaction profile reduces the frequency of kubelet updates to 1 minute and
changes the period that the Kubernetes Controller Manager waits for those updates to 5 minutes.
The pod eviction period for a pod on that node is reduced to 60 seconds. If the pod has the
tolerationSeconds parameter, the eviction waits for the period specified by that parameter.

The Kubernetes Controller Manager waits for 5 minutes to consider a node unhealthy. In another
minute, the eviction process starts.

CHAPTER 12. IMPROVING CLUSTER STABILITY IN HIGH LATENCY ENVIRONMENTS USING WORKER LATENCY PROFILES

205

Profile Component Parameter Value

LowUpdateSlowReaction kubelet node-status-update-
frequency

1m

Kubelet
Controller
Manager

node-monitor-grace-period 5m

Kubernetes
API Server
Operator

default-not-ready-
toleration-seconds

60s

Kubernetes
API Server
Operator

default-unreachable-
toleration-seconds

60s

12.2. IMPLEMENTING WORKER LATENCY PROFILES AT CLUSTER
CREATION

IMPORTANT

To edit the configuration of the installer, you will first need to use the command
openshift-install create manifests to create the default node manifest as well as other
manifest YAML files. This file structure must exist before we can add
workerLatencyProfile. The platform on which you are installing may have varying
requirements. Refer to the Installing section of the documentation for your specific
platform.

The workerLatencyProfile must be added to the manifest in the following sequence:

1. Create the manifest needed to build the cluster, using a folder name appropriate for your
installation.

2. Create a YAML file to define config.node. The file must be in the manifests directory.

3. When defining workerLatencyProfile in the manifest for the first time, specify any of the
profiles at cluster creation time: Default, MediumUpdateAverageReaction or
LowUpdateSlowReaction.

Verification

Here is an example manifest creation showing the spec.workerLatencyProfile Default value in
the manifest file:

Edit the manifest and add the value. In this example we use vi to show an example manifest file
with the "Default" workerLatencyProfile value added:

$ openshift-install create manifests --dir=<cluster-install-dir>

OpenShift Container Platform 4.15 Scalability and performance

206

Example output

12.3. USING AND CHANGING WORKER LATENCY PROFILES

To change a worker latency profile to deal with network latency, edit the node.config object to add the
name of the profile. You can change the profile at any time as latency increases or decreases.

You must move one worker latency profile at a time. For example, you cannot move directly from the
Default profile to the LowUpdateSlowReaction worker latency profile. You must move from the
Default worker latency profile to the MediumUpdateAverageReaction profile first, then to
LowUpdateSlowReaction. Similarly, when returning to the Default profile, you must move from the low
profile to the medium profile first, then to Default.

NOTE

You can also configure worker latency profiles upon installing an OpenShift Container
Platform cluster.

Procedure

To move from the default worker latency profile:

1. Move to the medium worker latency profile:

a. Edit the node.config object:

b. Add spec.workerLatencyProfile: MediumUpdateAverageReaction:

Example node.config object

$ vi <cluster-install-dir>/manifests/config-node-default-profile.yaml

apiVersion: config.openshift.io/v1
kind: Node
metadata:
name: cluster
spec:
workerLatencyProfile: "Default"

$ oc edit nodes.config/cluster

apiVersion: config.openshift.io/v1
kind: Node
metadata:
 annotations:
 include.release.openshift.io/ibm-cloud-managed: "true"
 include.release.openshift.io/self-managed-high-availability: "true"
 include.release.openshift.io/single-node-developer: "true"
 release.openshift.io/create-only: "true"
 creationTimestamp: "2022-07-08T16:02:51Z"
 generation: 1
 name: cluster
 ownerReferences:

CHAPTER 12. IMPROVING CLUSTER STABILITY IN HIGH LATENCY ENVIRONMENTS USING WORKER LATENCY PROFILES

207

1

1

Specifies the medium worker latency policy.

Scheduling on each worker node is disabled as the change is being applied.

2. Optional: Move to the low worker latency profile:

a. Edit the node.config object:

b. Change the spec.workerLatencyProfile value to LowUpdateSlowReaction:

Example node.config object

Specifies use of the low worker latency policy.

Scheduling on each worker node is disabled as the change is being applied.

Verification

When all nodes return to the Ready condition, you can use the following command to look in the

 - apiVersion: config.openshift.io/v1
 kind: ClusterVersion
 name: version
 uid: 36282574-bf9f-409e-a6cd-3032939293eb
 resourceVersion: "1865"
 uid: 0c0f7a4c-4307-4187-b591-6155695ac85b
spec:
 workerLatencyProfile: MediumUpdateAverageReaction 1

...

$ oc edit nodes.config/cluster

apiVersion: config.openshift.io/v1
kind: Node
metadata:
 annotations:
 include.release.openshift.io/ibm-cloud-managed: "true"
 include.release.openshift.io/self-managed-high-availability: "true"
 include.release.openshift.io/single-node-developer: "true"
 release.openshift.io/create-only: "true"
 creationTimestamp: "2022-07-08T16:02:51Z"
 generation: 1
 name: cluster
 ownerReferences:
 - apiVersion: config.openshift.io/v1
 kind: ClusterVersion
 name: version
 uid: 36282574-bf9f-409e-a6cd-3032939293eb
 resourceVersion: "1865"
 uid: 0c0f7a4c-4307-4187-b591-6155695ac85b
spec:
 workerLatencyProfile: LowUpdateSlowReaction 1

...

OpenShift Container Platform 4.15 Scalability and performance

208

1

When all nodes return to the Ready condition, you can use the following command to look in the
Kubernetes Controller Manager to ensure it was applied:

Example output

Specifies that the profile is applied and active.

To change the medium profile to default or change the default to medium, edit the node.config object
and set the spec.workerLatencyProfile parameter to the appropriate value.

12.4. EXAMPLE STEPS FOR DISPLAYING RESULTING VALUES OF
WORKERLATENCYPROFILE

You can display the values in the workerLatencyProfile with the following commands.

Verification

1. Check the default-not-ready-toleration-seconds and default-unreachable-toleration-
seconds fields output by the Kube API Server:

Example output

2. Check the values of the node-monitor-grace-period field from the Kube Controller Manager:

$ oc get KubeControllerManager -o yaml | grep -i workerlatency -A 5 -B 5

...
 - lastTransitionTime: "2022-07-11T19:47:10Z"
 reason: ProfileUpdated
 status: "False"
 type: WorkerLatencyProfileProgressing
 - lastTransitionTime: "2022-07-11T19:47:10Z" 1
 message: all static pod revision(s) have updated latency profile
 reason: ProfileUpdated
 status: "True"
 type: WorkerLatencyProfileComplete
 - lastTransitionTime: "2022-07-11T19:20:11Z"
 reason: AsExpected
 status: "False"
 type: WorkerLatencyProfileDegraded
 - lastTransitionTime: "2022-07-11T19:20:36Z"
 status: "False"
...

$ oc get KubeAPIServer -o yaml | grep -A 1 default-

default-not-ready-toleration-seconds:
- "300"
default-unreachable-toleration-seconds:
- "300"

$ oc get KubeControllerManager -o yaml | grep -A 1 node-monitor

CHAPTER 12. IMPROVING CLUSTER STABILITY IN HIGH LATENCY ENVIRONMENTS USING WORKER LATENCY PROFILES

209

Example output

3. Check the nodeStatusUpdateFrequency value from the Kubelet. Set the directory /host as the
root directory within the debug shell. By changing the root directory to /host, you can run
binaries contained in the host’s executable paths:

Example output

These outputs validate the set of timing variables for the Worker Latency Profile.

node-monitor-grace-period:
- 40s

$ oc debug node/<worker-node-name>
$ chroot /host
cat /etc/kubernetes/kubelet.conf|grep nodeStatusUpdateFrequency

 “nodeStatusUpdateFrequency”: “10s”

OpenShift Container Platform 4.15 Scalability and performance

210

1

CHAPTER 13. WORKLOAD PARTITIONING
In resource-constrained environments, you can use workload partitioning to isolate OpenShift Container
Platform services, cluster management workloads, and infrastructure pods to run on a reserved set of
CPUs.

The minimum number of reserved CPUs required for the cluster management is four CPU Hyper-
Threads (HTs). With workload partitioning, you annotate the set of cluster management pods and a set
of typical add-on Operators for inclusion in the cluster management workload partition. These pods
operate normally within the minimum size CPU configuration. Additional Operators or workloads outside
of the set of minimum cluster management pods require additional CPUs to be added to the workload
partition.

Workload partitioning isolates user workloads from platform workloads using standard Kubernetes
scheduling capabilities.

The following changes are required for workload partitioning:

1. In the install-config.yaml file, add the additional field: cpuPartitioningMode.

Sets up a cluster for CPU partitioning at install time. The default value is None.

NOTE

Workload partitioning can only be enabled during cluster installation. You cannot
disable workload partitioning postinstallation.

2. In the performance profile, specify the isolated and reserved CPUs.

Recommended performance profile configuration

apiVersion: v1
baseDomain: devcluster.openshift.com
cpuPartitioningMode: AllNodes 1
compute:
 - architecture: amd64
 hyperthreading: Enabled
 name: worker
 platform: {}
 replicas: 3
controlPlane:
 architecture: amd64
 hyperthreading: Enabled
 name: master
 platform: {}
 replicas: 3

apiVersion: performance.openshift.io/v2
kind: PerformanceProfile
metadata:
 # if you change this name make sure the 'include' line in TunedPerformancePatch.yaml
 # matches this name: include=openshift-node-performance-
${PerformanceProfile.metadata.name}
 # Also in file 'validatorCRs/informDuValidator.yaml':

CHAPTER 13. WORKLOAD PARTITIONING

211

Table 13.1. PerformanceProfile CR options for single-node OpenShift clusters

PerformanceProfile CR field Description

 # name: 50-performance-${PerformanceProfile.metadata.name}
 name: openshift-node-performance-profile
 annotations:
 ran.openshift.io/reference-configuration: "ran-du.redhat.com"
spec:
 additionalKernelArgs:
 - "rcupdate.rcu_normal_after_boot=0"
 - "efi=runtime"
 - "vfio_pci.enable_sriov=1"
 - "vfio_pci.disable_idle_d3=1"
 - "module_blacklist=irdma"
 cpu:
 isolated: $isolated
 reserved: $reserved
 hugepages:
 defaultHugepagesSize: $defaultHugepagesSize
 pages:
 - size: $size
 count: $count
 node: $node
 machineConfigPoolSelector:
 pools.operator.machineconfiguration.openshift.io/$mcp: ""
 nodeSelector:
 node-role.kubernetes.io/$mcp: ''
 numa:
 topologyPolicy: "restricted"
 # To use the standard (non-realtime) kernel, set enabled to false
 realTimeKernel:
 enabled: true
 workloadHints:
 # WorkloadHints defines the set of upper level flags for different type of workloads.
 # See https://github.com/openshift/cluster-node-tuning-
operator/blob/master/docs/performanceprofile/performance_profile.md#workloadhints
 # for detailed descriptions of each item.
 # The configuration below is set for a low latency, performance mode.
 realTime: true
 highPowerConsumption: false
 perPodPowerManagement: false

OpenShift Container Platform 4.15 Scalability and performance

212

metadata.name Ensure that name matches the following fields
set in related GitOps ZTP custom resources
(CRs):

include=openshift-node-
performance-
${PerformanceProfile.metadata.name
} in TunedPerformancePatch.yaml

name: 50-performance-
${PerformanceProfile.metadata.name
} in
validatorCRs/informDuValidator.yaml

spec.additionalKernelArgs "efi=runtime" Configures UEFI secure boot for
the cluster host.

spec.cpu.isolated Set the isolated CPUs. Ensure all of the Hyper-
Threading pairs match.

IMPORTANT

The reserved and isolated CPU
pools must not overlap and
together must span all available
cores. CPU cores that are not
accounted for cause an
undefined behaviour in the
system.

spec.cpu.reserved Set the reserved CPUs. When workload
partitioning is enabled, system processes, kernel
threads, and system container threads are
restricted to these CPUs. All CPUs that are not
isolated should be reserved.

spec.hugepages.pages
Set the number of huge pages (count)

Set the huge pages size (size).

Set node to the NUMA node where the
hugepages are allocated (node)

spec.realTimeKernel Set enabled to true to use the realtime kernel.

spec.workloadHints Use workloadHints to define the set of top
level flags for different type of workloads. The
example configuration configures the cluster for
low latency and high performance.

PerformanceProfile CR field Description

CHAPTER 13. WORKLOAD PARTITIONING

213

Workload partitioning introduces an extended management.workload.openshift.io/cores resource
type for platform pods. kubelet advertises the resources and CPU requests by pods allocated to the
pool within the corresponding resource. When workload partitioning is enabled, the
management.workload.openshift.io/cores resource allows the scheduler to correctly assign pods
based on the cpushares capacity of the host, not just the default cpuset.

Additional resources

For the recommended workload partitioning configuration for single-node OpenShift clusters,
see Workload partitioning.

OpenShift Container Platform 4.15 Scalability and performance

214

https://docs.redhat.com/en/documentation/openshift_container_platform/4.15/html-single/edge_computing/#ztp-sno-du-enabling-workload-partitioning_sno-configure-for-vdu

CHAPTER 14. USING THE NODE OBSERVABILITY OPERATOR
The Node Observability Operator collects and stores CRI-O and Kubelet profiling or metrics from
scripts of compute nodes.

With the Node Observability Operator, you can query the profiling data, enabling analysis of
performance trends in CRI-O and Kubelet. It supports debugging performance-related issues and
executing embedded scripts for network metrics by using the run field in the custom resource
definition. To enable CRI-O and Kubelet profiling or scripting, you can configure the type field in the
custom resource definition.

IMPORTANT

The Node Observability Operator is a Technology Preview feature only. Technology
Preview features are not supported with Red Hat production service level agreements
(SLAs) and might not be functionally complete. Red Hat does not recommend using
them in production. These features provide early access to upcoming product features,
enabling customers to test functionality and provide feedback during the development
process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

14.1. WORKFLOW OF THE NODE OBSERVABILITY OPERATOR

The following workflow outlines on how to query the profiling data using the Node Observability
Operator:

1. Install the Node Observability Operator in the OpenShift Container Platform cluster.

2. Create a NodeObservability custom resource to enable the CRI-O profiling on the worker nodes
of your choice.

3. Run the profiling query to generate the profiling data.

14.2. INSTALLING THE NODE OBSERVABILITY OPERATOR

The Node Observability Operator is not installed in OpenShift Container Platform by default. You can
install the Node Observability Operator by using the OpenShift Container Platform CLI or the web
console.

14.2.1. Installing the Node Observability Operator using the CLI

You can install the Node Observability Operator by using the OpenShift CLI (oc).

Prerequisites

You have installed the OpenShift CLI (oc).

You have access to the cluster with cluster-admin privileges.

Procedure

1. Confirm that the Node Observability Operator is available by running the following command:

CHAPTER 14. USING THE NODE OBSERVABILITY OPERATOR

215

https://access.redhat.com/support/offerings/techpreview/

Example output

2. Create the node-observability-operator namespace by running the following command:

3. Create an OperatorGroup object YAML file:

4. Create a Subscription object YAML file to subscribe a namespace to an Operator:

Verification

1. View the install plan name by running the following command:

Example output

2. Verify the install plan status by running the following command:

$ oc get packagemanifests -n openshift-marketplace node-observability-operator

NAME CATALOG AGE
node-observability-operator Red Hat Operators 9h

$ oc new-project node-observability-operator

cat <<EOF | oc apply -f -
apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: node-observability-operator
 namespace: node-observability-operator
spec:
 targetNamespaces: []
EOF

cat <<EOF | oc apply -f -
apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: node-observability-operator
 namespace: node-observability-operator
spec:
 channel: alpha
 name: node-observability-operator
 source: redhat-operators
 sourceNamespace: openshift-marketplace
EOF

$ oc -n node-observability-operator get sub node-observability-operator -o yaml | yq
'.status.installplan.name'

install-dt54w

$ oc -n node-observability-operator get ip <install_plan_name> -o yaml | yq '.status.phase'

OpenShift Container Platform 4.15 Scalability and performance

216

<install_plan_name> is the install plan name that you obtained from the output of the previous
command.

Example output

3. Verify that the Node Observability Operator is up and running:

Example output

14.2.2. Installing the Node Observability Operator using the web console

You can install the Node Observability Operator from the OpenShift Container Platform web console.

Prerequisites

You have access to the cluster with cluster-admin privileges.

You have access to the OpenShift Container Platform web console.

Procedure

1. Log in to the OpenShift Container Platform web console.

2. In the Administrator’s navigation panel, expand Operators → OperatorHub.

3. In the All items field, enter Node Observability Operator and select the Node Observability
Operator tile.

4. Click Install.

5. On the Install Operator page, configure the following settings:

a. In the Update channel area, click alpha.

b. In the Installation mode area, click A specific namespace on the cluster.

c. From the Installed Namespace list, select node-observability-operator from the list.

d. In the Update approval area, select Automatic.

e. Click Install.

Verification

1. In the Administrator’s navigation panel, expand Operators → Installed Operators.

2. Verify that the Node Observability Operator is listed in the Operators list.

COMPLETE

$ oc get deploy -n node-observability-operator

NAME READY UP-TO-DATE AVAILABLE AGE
node-observability-operator-controller-manager 1/1 1 1 40h

CHAPTER 14. USING THE NODE OBSERVABILITY OPERATOR

217

14.3. REQUESTING CRI-O AND KUBELET PROFILING DATA USING THE
NODE OBSERVABILITY OPERATOR

Creating a Node Observability custom resource to collect CRI-O and Kubelet profiling data.

14.3.1. Creating the Node Observability custom resource

You must create and run the NodeObservability custom resource (CR) before you run the profiling
query. When you run the NodeObservability CR, it creates the necessary machine config and machine
config pool CRs to enable the CRI-O profiling on the worker nodes matching the nodeSelector.

IMPORTANT

If CRI-O profiling is not enabled on the worker nodes, the
NodeObservabilityMachineConfig resource gets created. Worker nodes matching the
nodeSelector specified in NodeObservability CR restarts. This might take 10 or more
minutes to complete.

NOTE

Kubelet profiling is enabled by default.

The CRI-O unix socket of the node is mounted on the agent pod, which allows the agent to
communicate with CRI-O to run the pprof request. Similarly, the kubelet-serving-ca certificate chain is
mounted on the agent pod, which allows secure communication between the agent and node’s kubelet
endpoint.

Prerequisites

You have installed the Node Observability Operator.

You have installed the OpenShift CLI (oc).

You have access to the cluster with cluster-admin privileges.

Procedure

1. Log in to the OpenShift Container Platform CLI by running the following command:

2. Switch back to the node-observability-operator namespace by running the following
command:

3. Create a CR file named nodeobservability.yaml that contains the following text:

$ oc login -u kubeadmin https://<HOSTNAME>:6443

$ oc project node-observability-operator

 apiVersion: nodeobservability.olm.openshift.io/v1alpha2
 kind: NodeObservability
 metadata:
 name: cluster 1
 spec:

OpenShift Container Platform 4.15 Scalability and performance

218

1

2

You must specify the name as cluster because there should be only one
NodeObservability CR per cluster.

Specify the nodes on which the Node Observability agent must be deployed.

4. Run the NodeObservability CR:

Example output

5. Review the status of the NodeObservability CR by running the following command:

Example output

NodeObservability CR run is completed when the reason is Ready and the status is True.

14.3.2. Running the profiling query

To run the profiling query, you must create a NodeObservabilityRun resource. The profiling query is a
blocking operation that fetches CRI-O and Kubelet profiling data for a duration of 30 seconds. After the
profiling query is complete, you must retrieve the profiling data inside the container file system
/run/node-observability directory. The lifetime of data is bound to the agent pod through the
emptyDir volume, so you can access the profiling data while the agent pod is in the running status.

IMPORTANT

You can request only one profiling query at any point of time.

Prerequisites

You have installed the Node Observability Operator.

You have created the NodeObservability custom resource (CR).

 nodeSelector:
 kubernetes.io/hostname: <node_hostname> 2
 type: crio-kubelet

oc apply -f nodeobservability.yaml

nodeobservability.olm.openshift.io/cluster created

$ oc get nob/cluster -o yaml | yq '.status.conditions'

conditions:
 conditions:
 - lastTransitionTime: "2022-07-05T07:33:54Z"
 message: 'DaemonSet node-observability-ds ready: true NodeObservabilityMachineConfig
 ready: true'
 reason: Ready
 status: "True"
 type: Ready

CHAPTER 14. USING THE NODE OBSERVABILITY OPERATOR

219

You have access to the cluster with cluster-admin privileges.

Procedure

1. Create a NodeObservabilityRun resource file named nodeobservabilityrun.yaml that
contains the following text:

2. Trigger the profiling query by running the NodeObservabilityRun resource:

3. Review the status of the NodeObservabilityRun by running the following command:

Example output

The profiling query is complete once the status is True and type is Finished.

4. Retrieve the profiling data from the container’s /run/node-observability path by running the
following bash script:

apiVersion: nodeobservability.olm.openshift.io/v1alpha2
kind: NodeObservabilityRun
metadata:
 name: nodeobservabilityrun
spec:
 nodeObservabilityRef:
 name: cluster

$ oc apply -f nodeobservabilityrun.yaml

$ oc get nodeobservabilityrun nodeobservabilityrun -o yaml | yq '.status.conditions'

conditions:
- lastTransitionTime: "2022-07-07T14:57:34Z"
 message: Ready to start profiling
 reason: Ready
 status: "True"
 type: Ready
- lastTransitionTime: "2022-07-07T14:58:10Z"
 message: Profiling query done
 reason: Finished
 status: "True"
 type: Finished

for a in $(oc get nodeobservabilityrun nodeobservabilityrun -o yaml | yq
.status.agents[].name); do
 echo "agent ${a}"
 mkdir -p "/tmp/${a}"
 for p in $(oc exec "${a}" -c node-observability-agent -- bash -c "ls /run/node-
observability/*.pprof"); do
 f="$(basename ${p})"
 echo "copying ${f} to /tmp/${a}/${f}"
 oc exec "${a}" -c node-observability-agent -- cat "${p}" > "/tmp/${a}/${f}"
 done
done

OpenShift Container Platform 4.15 Scalability and performance

220

1

2

3

14.4. NODE OBSERVABILITY OPERATOR SCRIPTING

Scripting allows you to run pre-configured bash scripts, using the current Node Observability Operator
and Node Observability Agent.

These scripts monitor key metrics like CPU load, memory pressure, and worker node issues. They also
collect sar reports and custom performance metrics.

14.4.1. Creating the Node Observability custom resource for scripting

You must create and run the NodeObservability custom resource (CR) before you run the scripting.
When you run the NodeObservability CR, it enables the agent in scripting mode on the compute nodes
matching the nodeSelector label.

Prerequisites

You have installed the Node Observability Operator.

You have installed the OpenShift CLI (oc).

You have access to the cluster with cluster-admin privileges.

Procedure

1. Log in to the OpenShift Container Platform cluster by running the following command:

2. Switch to the node-observability-operator namespace by running the following command:

3. Create a file named nodeobservability.yaml that contains the following content:

You must specify the name as cluster because there should be only one
NodeObservability CR per cluster.

Specify the nodes on which the Node Observability agent must be deployed.

To deploy the agent in scripting mode, you must set the type to scripting.

4. Create the NodeObservability CR by running the following command:

$ oc login -u kubeadmin https://<host_name>:6443

$ oc project node-observability-operator

 apiVersion: nodeobservability.olm.openshift.io/v1alpha2
 kind: NodeObservability
 metadata:
 name: cluster 1
 spec:
 nodeSelector:
 kubernetes.io/hostname: <node_hostname> 2
 type: scripting 3

$ oc apply -f nodeobservability.yaml

CHAPTER 14. USING THE NODE OBSERVABILITY OPERATOR

221

Example output

5. Review the status of the NodeObservability CR by running the following command:

Example output

The NodeObservability CR run is completed when the reason is Ready and status is "True".

14.4.2. Configuring Node Observability Operator scripting

Prerequisites

You have installed the Node Observability Operator.

You have created the NodeObservability custom resource (CR).

You have access to the cluster with cluster-admin privileges.

Procedure

1. Create a file named nodeobservabilityrun-script.yaml that contains the following content:

IMPORTANT

You can request only the following scripts:

metrics.sh

network-metrics.sh (uses monitor.sh)

nodeobservability.olm.openshift.io/cluster created

$ oc get nob/cluster -o yaml | yq '.status.conditions'

conditions:
 conditions:
 - lastTransitionTime: "2022-07-05T07:33:54Z"
 message: 'DaemonSet node-observability-ds ready: true NodeObservabilityScripting
 ready: true'
 reason: Ready
 status: "True"
 type: Ready

apiVersion: nodeobservability.olm.openshift.io/v1alpha2
kind: NodeObservabilityRun
metadata:
 name: nodeobservabilityrun-script
 namespace: node-observability-operator
spec:
 nodeObservabilityRef:
 name: cluster
 type: scripting

OpenShift Container Platform 4.15 Scalability and performance

222

2. Trigger the scripting by creating the NodeObservabilityRun resource with the following
command:

3. Review the status of the NodeObservabilityRun scripting by running the following command:

Example output

The scripting is complete once Status is True and Type is Finished.

4. Retrieve the scripting data from the root path of the container by running the following bash
script:

$ oc apply -f nodeobservabilityrun-script.yaml

$ oc get nodeobservabilityrun nodeobservabilityrun-script -o yaml | yq '.status.conditions'

Status:
 Agents:
 Ip: 10.128.2.252
 Name: node-observability-agent-n2fpm
 Port: 8443
 Ip: 10.131.0.186
 Name: node-observability-agent-wcc8p
 Port: 8443
 Conditions:
 Conditions:
 Last Transition Time: 2023-12-19T15:10:51Z
 Message: Ready to start profiling
 Reason: Ready
 Status: True
 Type: Ready
 Last Transition Time: 2023-12-19T15:11:01Z
 Message: Profiling query done
 Reason: Finished
 Status: True
 Type: Finished
 Finished Timestamp: 2023-12-19T15:11:01Z
 Start Timestamp: 2023-12-19T15:10:51Z

#!/bin/bash

RUN=$(oc get nodeobservabilityrun --no-headers | awk '{print $1}')

for a in $(oc get nodeobservabilityruns.nodeobservability.olm.openshift.io/${RUN} -o json | jq
.status.agents[].name); do
 echo "agent ${a}"
 agent=$(echo ${a} | tr -d "\"\'\`")
 base_dir=$(oc exec "${agent}" -c node-observability-agent -- bash -c "ls -t | grep node-
observability-agent" | head -1)
 echo "${base_dir}"
 mkdir -p "/tmp/${agent}"
 for p in $(oc exec "${agent}" -c node-observability-agent -- bash -c "ls ${base_dir}"); do
 f="/${base_dir}/${p}"
 echo "copying ${f} to /tmp/${agent}/${p}"

CHAPTER 14. USING THE NODE OBSERVABILITY OPERATOR

223

14.5. ADDITIONAL RESOURCES

For more information on how to collect worker metrics, see Red Hat Knowledgebase article .

 oc exec "${agent}" -c node-observability-agent -- cat ${f} > "/tmp/${agent}/${p}"
 done
done

OpenShift Container Platform 4.15 Scalability and performance

224

https://access.redhat.com/solutions/5343671

	Table of Contents
	CHAPTER 1. RECOMMENDED PERFORMANCE AND SCALABILITY PRACTICES
	1.1. RECOMMENDED CONTROL PLANE PRACTICES
	1.1.1. Recommended practices for scaling the cluster
	1.1.2. Control plane node sizing
	1.1.2.1. Selecting a larger Amazon Web Services instance type for control plane machines

	1.2. RECOMMENDED INFRASTRUCTURE PRACTICES
	1.2.1. Infrastructure node sizing
	1.2.2. Scaling the Cluster Monitoring Operator
	1.2.3. Prometheus database storage requirements
	1.2.4. Configuring cluster monitoring
	1.2.5. Additional resources

	1.3. RECOMMENDED ETCD PRACTICES
	1.3.1. Recommended etcd practices
	1.3.2. Moving etcd to a different disk
	1.3.3. Defragmenting etcd data
	1.3.3.1. Automatic defragmentation
	1.3.3.2. Manual defragmentation

	1.3.4. Setting tuning parameters for etcd
	1.3.4.1. Changing hardware speed tolerance

	CHAPTER 2. PLANNING YOUR ENVIRONMENT ACCORDING TO OBJECT MAXIMUMS
	2.1. OPENSHIFT CONTAINER PLATFORM TESTED CLUSTER MAXIMUMS FOR MAJOR RELEASES
	2.1.1. Example scenario

	2.2. OPENSHIFT CONTAINER PLATFORM ENVIRONMENT AND CONFIGURATION ON WHICH THE CLUSTER MAXIMUMS ARE TESTED
	2.2.1. AWS cloud platform
	2.2.2. IBM Power platform
	2.2.3. IBM Z platform

	2.3. HOW TO PLAN YOUR ENVIRONMENT ACCORDING TO TESTED CLUSTER MAXIMUMS
	2.4. HOW TO PLAN YOUR ENVIRONMENT ACCORDING TO APPLICATION REQUIREMENTS

	CHAPTER 3. RECOMMENDED HOST PRACTICES FOR IBM Z & IBM LINUXONE ENVIRONMENTS
	3.1. MANAGING CPU OVERCOMMITMENT
	3.2. DISABLE TRANSPARENT HUGE PAGES
	3.3. BOOST NETWORKING PERFORMANCE WITH RECEIVE FLOW STEERING
	3.3.1. Use the Machine Config Operator (MCO) to activate RFS

	3.4. CHOOSE YOUR NETWORKING SETUP
	3.5. ENSURE HIGH DISK PERFORMANCE WITH HYPERPAV ON Z/VM
	3.5.1. Use the Machine Config Operator (MCO) to activate HyperPAV aliases in nodes using z/VM full-pack minidisks

	3.6. RHEL KVM ON IBM Z HOST RECOMMENDATIONS
	3.6.1. Use I/O threads for your virtual block devices
	3.6.2. Avoid virtual SCSI devices
	3.6.3. Configure guest caching for disk
	3.6.4. Exclude the memory balloon device
	3.6.5. Tune the CPU migration algorithm of the host scheduler
	3.6.6. Disable the cpuset cgroup controller
	3.6.7. Tune the polling period for idle virtual CPUs

	CHAPTER 4. USING THE NODE TUNING OPERATOR
	4.1. ABOUT THE NODE TUNING OPERATOR
	4.2. ACCESSING AN EXAMPLE NODE TUNING OPERATOR SPECIFICATION
	4.3. DEFAULT PROFILES SET ON A CLUSTER
	4.4. VERIFYING THAT THE TUNED PROFILES ARE APPLIED
	4.5. CUSTOM TUNING SPECIFICATION
	4.6. CUSTOM TUNING EXAMPLES
	4.7. SUPPORTED TUNED DAEMON PLUGINS
	4.8. CONFIGURING NODE TUNING IN A HOSTED CLUSTER
	4.9. ADVANCED NODE TUNING FOR HOSTED CLUSTERS BY SETTING KERNEL BOOT PARAMETERS

	CHAPTER 5. USING CPU MANAGER AND TOPOLOGY MANAGER
	5.1. SETTING UP CPU MANAGER
	5.2. TOPOLOGY MANAGER POLICIES
	5.3. SETTING UP TOPOLOGY MANAGER
	5.4. POD INTERACTIONS WITH TOPOLOGY MANAGER POLICIES

	CHAPTER 6. SCHEDULING NUMA-AWARE WORKLOADS
	6.1. ABOUT NUMA-AWARE SCHEDULING
	Introduction to NUMA
	Performance considerations
	NUMA-aware scheduling
	Integration with Node Tuning Operator
	Default scheduling logic
	NUMA-aware pod scheduling diagram

	6.2. INSTALLING THE NUMA RESOURCES OPERATOR
	6.2.1. Installing the NUMA Resources Operator using the CLI
	6.2.2. Installing the NUMA Resources Operator using the web console

	6.3. SCHEDULING NUMA-AWARE WORKLOADS
	6.3.1. Creating the NUMAResourcesOperator custom resource
	6.3.2. Deploying the NUMA-aware secondary pod scheduler
	6.3.3. Configuring a single NUMA node policy
	6.3.4. Sample performance profile
	6.3.5. Creating a KubeletConfig CRD
	6.3.6. Scheduling workloads with the NUMA-aware scheduler

	6.4. OPTIONAL: CONFIGURING POLLING OPERATIONS FOR NUMA RESOURCES UPDATES
	6.5. TROUBLESHOOTING NUMA-AWARE SCHEDULING
	6.5.1. Reporting more exact resource availability
	6.5.2. Checking the NUMA-aware scheduler logs
	6.5.3. Troubleshooting the resource topology exporter
	6.5.4. Correcting a missing resource topology exporter config map
	6.5.5. Collecting NUMA Resources Operator data

	CHAPTER 7. SCALABILITY AND PERFORMANCE OPTIMIZATION
	7.1. OPTIMIZING STORAGE
	7.1.1. Available persistent storage options
	7.1.2. Recommended configurable storage technology
	7.1.2.1. Specific application storage recommendations
	7.1.2.2. Other specific application storage recommendations

	7.1.3. Data storage management
	7.1.4. Optimizing storage performance for Microsoft Azure
	7.1.5. Additional resources

	7.2. OPTIMIZING ROUTING
	7.2.1. Baseline Ingress Controller (router) performance
	7.2.2. Configuring Ingress Controller liveness, readiness, and startup probes
	7.2.3. Configuring HAProxy reload interval

	7.3. OPTIMIZING NETWORKING
	7.3.1. Optimizing the MTU for your network
	7.3.2. Recommended practices for installing large scale clusters
	7.3.3. Impact of IPsec
	7.3.4. Additional resources

	7.4. OPTIMIZING CPU USAGE WITH MOUNT NAMESPACE ENCAPSULATION
	7.4.1. Encapsulating mount namespaces
	7.4.2. Configuring mount namespace encapsulation
	7.4.3. Inspecting encapsulated namespaces
	7.4.4. Running additional services in the encapsulated namespace
	7.4.5. Additional resources

	CHAPTER 8. MANAGING BARE METAL HOSTS
	8.1. ABOUT BARE METAL HOSTS AND NODES
	8.2. MAINTAINING BARE METAL HOSTS
	8.2.1. Adding a bare metal host to the cluster using the web console
	8.2.2. Adding a bare metal host to the cluster using YAML in the web console
	8.2.3. Automatically scaling machines to the number of available bare metal hosts
	8.2.4. Removing bare metal hosts from the provisioner node

	CHAPTER 9. MONITORING BARE-METAL EVENTS WITH THE BARE METAL EVENT RELAY
	9.1. ABOUT BARE-METAL EVENTS
	9.2. HOW BARE-METAL EVENTS WORK
	9.2.1. Bare Metal Event Relay data flow
	9.2.1.1. Operator-managed pod
	9.2.1.2. Bare Metal Event Relay
	9.2.1.3. Cloud native event
	9.2.1.4. CNCF CloudEvents
	9.2.1.5. HTTP transport or AMQP dispatch router
	9.2.1.6. Cloud event proxy sidecar

	9.2.2. Redfish message parsing service
	9.2.3. Installing the Bare Metal Event Relay using the CLI
	9.2.4. Installing the Bare Metal Event Relay using the web console

	9.3. INSTALLING THE AMQ MESSAGING BUS
	9.4. SUBSCRIBING TO REDFISH BMC BARE-METAL EVENTS FOR A CLUSTER NODE
	9.4.1. Subscribing to bare-metal events
	9.4.2. Querying Redfish bare-metal event subscriptions with curl
	9.4.3. Creating the bare-metal event and Secret CRs

	9.5. SUBSCRIBING APPLICATIONS TO BARE-METAL EVENTS REST API REFERENCE
	api/ocloudNotifications/v1/subscriptions
	HTTP method
	HTTP method

	api/ocloudNotifications/v1/subscriptions/<subscription_id>
	HTTP method

	api/ocloudNotifications/v1/health/
	HTTP method

	9.6. MIGRATING CONSUMER APPLICATIONS TO USE HTTP TRANSPORT FOR PTP OR BARE-METAL EVENTS

	CHAPTER 10. WHAT HUGE PAGES DO AND HOW THEY ARE CONSUMED BY APPLICATIONS
	10.1. WHAT HUGE PAGES DO
	10.2. HOW HUGE PAGES ARE CONSUMED BY APPS
	10.3. CONSUMING HUGE PAGES RESOURCES USING THE DOWNWARD API
	10.4. CONFIGURING HUGE PAGES AT BOOT TIME
	10.5. DISABLING TRANSPARENT HUGE PAGES

	CHAPTER 11. LOW LATENCY TUNING
	11.1. UNDERSTANDING LOW LATENCY TUNING FOR CLUSTER NODES
	11.1.1. About low latency
	11.1.2. About Hyper-Threading for low latency and real-time applications

	11.2. TUNING NODES FOR LOW LATENCY WITH THE PERFORMANCE PROFILE
	11.2.1. Creating a performance profile
	11.2.1.1. About the Performance Profile Creator
	11.2.1.2. Gathering data about your cluster using the must-gather command
	11.2.1.3. Running the Performance Profile Creator using Podman
	11.2.1.4. Reference performance profiles

	11.2.2. Supported performance profile API versions
	Upgrading the performance profile to use device interrupt processing

	11.2.3. Configuring node power consumption and realtime processing with workload hints
	11.2.4. Configuring power saving for nodes that run colocated high and low priority workloads
	11.2.5. Restricting CPUs for infra and application containers
	11.2.6. Configuring Hyper-Threading for a cluster
	11.2.6.1. Disabling Hyper-Threading for low latency applications

	11.2.7. Managing device interrupt processing for guaranteed pod isolated CPUs
	11.2.7.1. Finding the effective IRQ affinity setting for a node
	11.2.7.2. Configuring node interrupt affinity

	11.2.8. Configuring huge pages
	11.2.8.1. Allocating multiple huge page sizes

	11.2.9. Reducing NIC queues using the Node Tuning Operator
	11.2.9.1. Adjusting the NIC queues with the performance profile
	11.2.9.2. Verifying the queue status
	11.2.9.3. Logging associated with adjusting NIC queues

	11.3. PROVISIONING REAL-TIME AND LOW LATENCY WORKLOADS
	11.3.1. Scheduling a low latency workload onto a worker with real-time capabilities
	11.3.2. Creating a pod with a guaranteed QoS class
	11.3.3. Disabling CPU load balancing in a Pod
	11.3.4. Disabling power saving mode for high priority pods
	11.3.5. Disabling CPU CFS quota
	11.3.6. Disabling interrupt processing for CPUs where pinned containers are running

	11.4. DEBUGGING LOW LATENCY NODE TUNING STATUS
	11.4.1. Debugging low latency CNF tuning status
	11.4.1.1. Machine config pools

	11.4.2. Collecting low latency tuning debugging data for Red Hat Support
	11.4.2.1. About the must-gather tool
	11.4.2.2. Gathering low latency tuning data

	11.5. PERFORMING LATENCY TESTS FOR PLATFORM VERIFICATION
	11.5.1. Prerequisites for running latency tests
	11.5.2. Measuring latency
	11.5.3. Running the latency tests
	11.5.3.1. Running hwlatdetect
	11.5.3.2. Running cyclictest
	11.5.3.3. Running oslat

	11.5.4. Generating a latency test failure report
	11.5.5. Generating a JUnit latency test report
	11.5.6. Running latency tests on a single-node OpenShift cluster
	11.5.7. Running latency tests in a disconnected cluster
	Mirroring the images to a custom registry accessible from the cluster
	Configuring the tests to consume images from a custom registry
	Mirroring images to the cluster OpenShift image registry
	Mirroring a different set of test images

	11.5.8. Troubleshooting errors with the cnf-tests container

	CHAPTER 12. IMPROVING CLUSTER STABILITY IN HIGH LATENCY ENVIRONMENTS USING WORKER LATENCY PROFILES
	12.1. UNDERSTANDING WORKER LATENCY PROFILES
	12.2. IMPLEMENTING WORKER LATENCY PROFILES AT CLUSTER CREATION
	12.3. USING AND CHANGING WORKER LATENCY PROFILES
	12.4. EXAMPLE STEPS FOR DISPLAYING RESULTING VALUES OF WORKERLATENCYPROFILE

	CHAPTER 13. WORKLOAD PARTITIONING
	CHAPTER 14. USING THE NODE OBSERVABILITY OPERATOR
	14.1. WORKFLOW OF THE NODE OBSERVABILITY OPERATOR
	14.2. INSTALLING THE NODE OBSERVABILITY OPERATOR
	14.2.1. Installing the Node Observability Operator using the CLI
	14.2.2. Installing the Node Observability Operator using the web console

	14.3. REQUESTING CRI-O AND KUBELET PROFILING DATA USING THE NODE OBSERVABILITY OPERATOR
	14.3.1. Creating the Node Observability custom resource
	14.3.2. Running the profiling query

	14.4. NODE OBSERVABILITY OPERATOR SCRIPTING
	14.4.1. Creating the Node Observability custom resource for scripting
	14.4.2. Configuring Node Observability Operator scripting

	14.5. ADDITIONAL RESOURCES

