
OpenShift Container Platform 4.16

Windows Container Support for OpenShift

Red Hat OpenShift for Windows Containers Guide

Last Updated: 2024-09-11

OpenShift Container Platform 4.16 Windows Container Support for
OpenShift

Red Hat OpenShift for Windows Containers Guide

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Red Hat OpenShift for Windows Containers provides built-in support for running Microsoft
Windows Server containers on OpenShift Container Platform. This guide provides all the details.

. .

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. RED HAT OPENSHIFT SUPPORT FOR WINDOWS CONTAINERS OVERVIEW

CHAPTER 2. RELEASE NOTES
2.1. RED HAT OPENSHIFT SUPPORT FOR WINDOWS CONTAINERS RELEASE NOTES

2.1.1. Windows Machine Config Operator numbering
2.1.2. Release notes for Red Hat Windows Machine Config Operator 10.16.1

2.1.2.1. Bug fixes
2.2. RELEASE NOTES FOR PAST RELEASES OF THE WINDOWS MACHINE CONFIG OPERATOR

2.2.1. Release notes for Red Hat Windows Machine Config Operator 10.16.0
2.2.1.1. New features and improvements

2.2.1.1.1. WMCO is now supported in disconnected networks
2.2.1.1.2. WMCO can pull images from mirrored registries
2.2.1.1.3. Filesystem metrics now display for Windows nodes
2.2.1.1.4. Pod network metrics now display for the pods on Windows nodes
2.2.1.1.5. Pod CPU and memory metrics now display for the pods on Windows nodes
2.2.1.1.6. Kubernetes upgrade

2.2.1.2. Bug fixes
2.2.2. Windows Machine Config Operator prerequisites

2.2.2.1. WMCO 10.16.0 supported platforms and Windows Server versions
2.2.2.2. Supported networking

2.2.3. Known limitations

CHAPTER 3. GETTING SUPPORT

CHAPTER 4. UNDERSTANDING WINDOWS CONTAINER WORKLOADS
4.1. WINDOWS WORKLOAD MANAGEMENT
4.2. WINDOWS NODE SERVICES

CHAPTER 5. ENABLING WINDOWS CONTAINER WORKLOADS
Prerequisites
5.1. INSTALLING THE WINDOWS MACHINE CONFIG OPERATOR

5.1.1. Installing the Windows Machine Config Operator using the web console
5.1.2. Installing the Windows Machine Config Operator using the CLI

5.2. CONFIGURING A SECRET FOR THE WINDOWS MACHINE CONFIG OPERATOR
5.3. USING WINDOWS CONTAINERS IN A PROXY-ENABLED CLUSTER
5.4. USING WINDOWS CONTAINERS WITH A MIRROR REGISTRY

5.4.1. Understanding image registry repository mirroring
5.4.2. Configuring image registry repository mirroring

5.5. ADDITIONAL RESOURCES

CHAPTER 6. CREATING WINDOWS MACHINE SETS
6.1. CREATING A WINDOWS MACHINE SET ON AWS

Prerequisites
6.1.1. Machine API overview
6.1.2. Sample YAML for a Windows MachineSet object on AWS
6.1.3. Creating a compute machine set
6.1.4. Additional resources

6.2. CREATING A WINDOWS MACHINE SET ON AZURE
Prerequisites
6.2.1. Machine API overview
6.2.2. Sample YAML for a Windows MachineSet object on Azure
6.2.3. Creating a compute machine set

4

5
5
5
5
5
5
5
5
5
6
6
6
6
6
6
7
7
8
9

11

12
12
14

16
16
16
16
17
19

20
20
21
22
26

27
27
27
27
29
30
32
32
32
33
34
35

Table of Contents

1

. .

. .

. .

. .

. .

6.2.4. Additional resources
6.3. CREATING A WINDOWS MACHINE SET ON GCP

Prerequisites
6.3.1. Machine API overview
6.3.2. Sample YAML for a Windows MachineSet object on GCP
6.3.3. Creating a compute machine set
6.3.4. Additional resources

6.4. CREATING A WINDOWS MACHINESET OBJECT ON NUTANIX
Prerequisites
6.4.1. Machine API overview
6.4.2. Sample YAML for a Windows MachineSet object on Nutanix
6.4.3. Creating a compute machine set
6.4.4. Additional resources

6.5. CREATING A WINDOWS MACHINE SET ON VSPHERE
Prerequisites
6.5.1. Machine API overview
6.5.2. Preparing your vSphere environment for Windows container workloads

6.5.2.1. Creating the vSphere Windows VM golden image
6.5.2.1.1. Additional resources

6.5.2.2. Enabling communication with the internal API server for the WMCO on vSphere
6.5.3. Sample YAML for a Windows MachineSet object on vSphere
6.5.4. Creating a compute machine set
6.5.5. Additional resources

CHAPTER 7. SCHEDULING WINDOWS CONTAINER WORKLOADS
Prerequisites
7.1. WINDOWS POD PLACEMENT

Additional resources
7.2. CREATING A RUNTIMECLASS OBJECT TO ENCAPSULATE SCHEDULING MECHANISMS
7.3. SAMPLE WINDOWS CONTAINER WORKLOAD DEPLOYMENT
7.4. SUPPORT FOR WINDOWS CSI DRIVERS
7.5. SCALING A COMPUTE MACHINE SET MANUALLY

CHAPTER 8. WINDOWS NODE UPGRADES
8.1. WINDOWS MACHINE CONFIG OPERATOR UPGRADES

CHAPTER 9. USING BRING-YOUR-OWN-HOST (BYOH) WINDOWS INSTANCES AS NODES
9.1. CONFIGURING A BYOH WINDOWS INSTANCE
9.2. REMOVING BYOH WINDOWS INSTANCES

CHAPTER 10. REMOVING WINDOWS NODES
10.1. DELETING A SPECIFIC MACHINE

CHAPTER 11. DISABLING WINDOWS CONTAINER WORKLOADS
11.1. UNINSTALLING THE WINDOWS MACHINE CONFIG OPERATOR
11.2. DELETING THE WINDOWS MACHINE CONFIG OPERATOR NAMESPACE

Additional resources

38
38
38
38
39
41

43
43
43
43
44
46
48
48
48
49
50
50
53
53
54
56
58

59
59
59
59
60
61

62
63

65
65

66
66
67

68
68

69
69
69
69

OpenShift Container Platform 4.16 Windows Container Support for OpenShift

2

Table of Contents

3

CHAPTER 1. RED HAT OPENSHIFT SUPPORT FOR WINDOWS
CONTAINERS OVERVIEW

You can add Windows nodes either by creating a compute machine set or by specifying existing Bring-
Your-Own-Host (BYOH) Window instances through a configuration map.

NOTE

Compute machine sets are not supported for bare metal or provider agnostic clusters.

For workloads including both Linux and Windows, OpenShift Container Platform allows you to deploy
Windows workloads running on Windows Server containers while also providing traditional Linux
workloads hosted on Red Hat Enterprise Linux CoreOS (RHCOS) or Red Hat Enterprise Linux (RHEL).
For more information, see getting started with Windows container workloads .

You need the WMCO to run Windows workloads in your cluster. The WMCO orchestrates the process of
deploying and managing Windows workloads on a cluster. For more information, see how to enable
Windows container workloads.

You can create a Windows MachineSet object to create infrastructure Windows machine sets and
related machines so that you can move supported Windows workloads to the new Windows machines.
You can create a Windows MachineSet object on multiple platforms.

You can schedule Windows workloads to Windows compute nodes.

You can perform Windows Machine Config Operator upgrades to ensure that your Windows nodes have
the latest updates.

You can remove a Windows node by deleting a specific machine.

You can use Bring-Your-Own-Host (BYOH) Windows instances to repurpose Windows Server VMs and
bring them to OpenShift Container Platform. BYOH Windows instances benefit users who are looking to
mitigate major disruptions in the event that a Windows server goes offline. You can use BYOH Windows
instances as nodes on OpenShift Container Platform 4.8 and later versions.

You can disable Windows container workloads by performing the following:

Uninstalling the Windows Machine Config Operator

Deleting the Windows Machine Config Operator namespace

OpenShift Container Platform 4.16 Windows Container Support for OpenShift

4

CHAPTER 2. RELEASE NOTES

2.1. RED HAT OPENSHIFT SUPPORT FOR WINDOWS CONTAINERS
RELEASE NOTES

The release notes for Red Hat OpenShift for Windows Containers tracks the development of the
Windows Machine Config Operator (WMCO), which provides all Windows container workload
capabilities in OpenShift Container Platform.

2.1.1. Windows Machine Config Operator numbering

Y-stream releases of the WMCO are in step with OpenShift Container Platform, with only z-stream
releases between OpenShift Container Platform releases. The WMCO numbering reflects the
associated OpenShift Container Platform version in the y-stream position. For example, the current
release of WMCO is associated with OpenShift Container Platform version 4.16. Thus, the numbering is
WMCO 10.15.z.

2.1.2. Release notes for Red Hat Windows Machine Config Operator 10.16.1

This release of the WMCO provides new features and bug fixes for running Windows compute nodes in
an OpenShift Container Platform cluster. The components of the WMCO 10.16.1 were released in RHSA-
2024:5749.

2.1.2.1. Bug fixes

Previously, if a Windows VM had its PowerShell ExecutionPolicy set to Restricted, the
Windows Instance Config Daemon (WICD) could not run the commands on that VM that are
necessary for creating Windows nodes. With this fix, the WICD now bypasses the execution
policy on the VM when running PowerShell commands. As a result, the WICD can create
Windows nodes on the VM as expected. (OCPBUGS-37609)

2.2. RELEASE NOTES FOR PAST RELEASES OF THE WINDOWS
MACHINE CONFIG OPERATOR

The following release notes are for previous versions of the Windows Machine Config Operator
(WMCO).

2.2.1. Release notes for Red Hat Windows Machine Config Operator 10.16.0

This release of the WMCO provides bug fixes for running Windows compute nodes in an OpenShift
Container Platform cluster. The components of the WMCO 10.16.0 were released in RHBA-2024:5014.

2.2.1.1. New features and improvements

2.2.1.1.1. WMCO is now supported in disconnected networks

The WMCO is now supported in environments with disconnected networks, which is a cluster that is
intentionally impeded from reaching the internet, also known as restricted or air-gapped clusters.

For more information, see Using Windows containers with a mirror registry .

CHAPTER 2. RELEASE NOTES

5

https://access.redhat.com/errata/RHSA-2024:5749
https://issues.redhat.com/browse/OCPBUGS-37609
https://access.redhat.com/errata/RHBA-2024:5014

2.2.1.1.2. WMCO can pull images from mirrored registries

The WMCO can now use both ImageDigestMirrorSet (IDMS) and ImageTagMirrorSet (ITMS) objects
to pull images from mirrored registries.

For more information, see Understanding image registry repository mirroring

2.2.1.1.3. Filesystem metrics now display for Windows nodes

The Filesystem metrics are now available for Windows nodes in the Utilization tile of the Node details
page in the OpenShift Container Platform web console. You can query the metrics by running
Prometheus Query Language (PromQL) queries. The charts previously reported No datapoints found.

2.2.1.1.4. Pod network metrics now display for the pods on Windows nodes

The Network in and Network out charts are now available for Windows pods on the Pod details page in
the OpenShift Container Platform web console. You can query the metrics by running PromQL queries.
The charts previously reported No datapoints found.

2.2.1.1.5. Pod CPU and memory metrics now display for the pods on Windows nodes

The CPU and memory usage metrics are now available for Windows pods on the Pods and Pod details
pages in the OpenShift Container Platform web console. You can query the metrics by running PromQL
queries. The chart previously reported No datapoints found.

2.2.1.1.6. Kubernetes upgrade

The WMCO now uses Kubernetes 1.29.

2.2.1.2. Bug fixes

Because the WICD service account was missing a required secret, the WMCO was unable to properly
configure Windows nodes in a Nutanix cluster. With this fix, the WMCO creates a long-lived token secret
for the WICD service account. As a result, the WMCO is able to configure a Windows node on Nutanix.
(OCPBUGS-22680)

Previously, the WMCO performed a sanitization step that incorrectly replaced commas with semicolons
in a user’s cluster-wide proxy configuration. This behavior caused Windows to ignore the values set in
the noProxy environment variable. As a consequence, the WMCO incorrectly sent traffic through the
proxy for the endpoints specified in the no-proxy parameter. With this fix, the sanitization step that
replaced commas with semicolons was removed. As a result, web requests from a Windows node to a
cluster-internal endpoint or an endpoint that exists in the no-proxy parameter do not go through the
proxy. (OCPBUGS-24264)

Previously, because of bad logic in the networking configuration script, the WMCO was incorrectly
reading carriage returns in the containderd CNI configuration file as changes, and identified the file as
modified. This bahavior caused the CNI configuration to be unnecessarily reloaded, potentially resulting
in container restarts and brief network outages. With this fix, the WMCO now reloads the CNI
configuration only when the CNI configuration is actually modified. (OCPBUGS-2887)

Previously, because of routing issues present in Windows Server 2019, under certain conditions and after
more than one hour of running time, workloads on Windows Server 2019 could have experienced packet
loss when communicating with other containers in the cluster. This fix enables Direct Server Return
(DSR) routing within kube-proxy. As a result, DSR now causes request and response traffic to use a
different network path, circumventing the bug within Windows Server 2019. (OCPBUGS-26761)

OpenShift Container Platform 4.16 Windows Container Support for OpenShift

6

https://docs.redhat.com/en/documentation/openshift_container_platform/4.16/html-single/monitoring/#about-querying-metrics_managing-metrics
https://docs.redhat.com/en/documentation/openshift_container_platform/4.16/html-single/monitoring/#about-querying-metrics_managing-metrics
https://docs.redhat.com/en/documentation/openshift_container_platform/4.16/html-single/monitoring/#about-querying-metrics_managing-metrics
https://issues.redhat.com/browse/OCPBUGS-22680
https://issues.redhat.com/browse/OCPBUGS-24264
https://issues.redhat.com/browse/OCPBUGS-2887
https://issues.redhat.com/browse/OCPBUGS-26761

Previously, the kubelet on Windows nodes was unable to authenticate with private Amazon Elastic
Container Registries (ECR). Because of this error, the kubelet was not able to pull images from these
registries. With this fix, the kubelet is able to pull images from these registries as expected. (OCPBUGS-
26602)

Previously, on Azure clusters the WMCO would check if an external Cloud Controller Manager (CCM)
was being used on the cluster. If a CCM was being used, the Operator would adjust configuration logic
accordingly. Because the status condition that the WMCO used to check for the CCM was removed, the
WMCO proceeded as if a CCM was not in use. This fix removes the check. As a result, the WMCO always
configures the required logic on Azure clusters. (OCPBUGS-31626)

Previously, the WMCO logged error messages when a command that was run through an SSH
connection to a Windows instance failed. This behavior was incorrect because some commands are
expected to fail. For example, when the WMCO reboots a node, the Operator runs PowerShell
commands on the instance until they fail, meaning the SSH connection rebooted as expected. With this
fix, only actual errors are now logged. (OCPBUGS-20255)

Previously, after rotating the kube-apiserver-to-kubelet-client-ca certificate, the contents of the
kubetl-ca.crt file on Windows nodes was not populated correctly. With this fix, after certificate rotation,
the kubetl-ca.crt file contains the correct certificates. (OCPBUGS-22237)

Previously, because of a missing DNS suffix in the kubelet host name on instances that are part of a
Windows AD domain controller, the cloud provider failed to find VMs by name. With this fix, the DNS
suffix is now included in the host name resolution. As a result, the WMCO is able to configure and join
Windows instances that are part of AD domain controller. (OCPBUGS-34758)

Previously, registry certificates provided to the cluster by a user were not loaded into the Windows trust
store on each node. As a consequence, image pulls from a mirror registry failed, because a self-signed
CA is required. With this fix, registry certificates are loaded into the Windows trust store on each node.
As a result, images can be pulled from mirror registries with self-signed CAs. (OCPBUGS-36408)

Previously, if there were multiple service account token secrets in the WMCO namespace, scaling
Windows nodes would fail. With this fix, the WMCO uses only the secret it creates, ignoring any other
service account token secrets in the WMCO namespace. As a result, Windows nodes scale properly.
(OCPBUGS-37481)

Previously, if reverse DNS lookup failed due to an error, such as the reverse DNS lookup services being
unavailable, the WMCO would not fall back to using the VM hostname to determine if a certificate
signing requests (CSR) should be approved. As a consequence, Bring-Your-Own-Host (BYOH)
Windows nodes configured with an IP address would not become available. With this fix, BYOH nodes
are properly added if reverse DNS is not available. (OCPBUGS-36643)

2.2.2. Windows Machine Config Operator prerequisites

The following information details the supported platform versions, Windows Server versions, and
networking configurations for the Windows Machine Config Operator. See the vSphere documentation
for any information that is relevant to only that platform.

2.2.2.1. WMCO 10.16.0 supported platforms and Windows Server versions

The following table lists the Windows Server versions that are supported by WMCO 10.16.0, based on
the applicable platform. Windows Server versions not listed are not supported and attempting to use
them will cause errors. To prevent these errors, use only an appropriate version for your platform.

CHAPTER 2. RELEASE NOTES

7

https://issues.redhat.com/browse/OCPBUGS-26602
https://issues.redhat.com/browse/OCPBUGS-31626
https://issues.redhat.com/browse/OCPBUGS-20255
https://issues.redhat.com/browse/OCPBUGS-22237
https://issues.redhat.com/browse/OCPBUGS-34758
https://issues.redhat.com/browse/OCPBUGS-36408
https://issues.redhat.com/browse/OCPBUGS-37481
https://issues.redhat.com/browse/OCPBUGS-36643
https://docs.microsoft.com/en-us/windows/release-health/windows-server-release-info

Platform Supported Windows Server version

Amazon Web Services (AWS)
Windows Server 2022, OS Build 20348.681 or later

Windows Server 2019, version 1809

Microsoft Azure
Windows Server 2022, OS Build 20348.681 or later

Windows Server 2019, version 1809

VMware vSphere Windows Server 2022, OS Build 20348.681 or later

Google Cloud Platform (GCP) Windows Server 2022, OS Build 20348.681 or later

Nutanix Windows Server 2022, OS Build 20348.681 or later

Bare metal or provider
agnostic Windows Server 2022, OS Build 20348.681 or later

Windows Server 2019, version 1809

2.2.2.2. Supported networking

Hybrid networking with OVN-Kubernetes is the only supported networking configuration. See the
additional resources below for more information on this functionality. The following tables outline the
type of networking configuration and Windows Server versions to use based on your platform. You must
specify the network configuration when you install the cluster.

NOTE

The WMCO does not support OVN-Kubernetes without hybrid networking or
OpenShift SDN.

Dual NIC is not supported on WMCO-managed Windows instances.

Table 2.1. Platform networking support

Platform Supported networking

Amazon Web Services (AWS) Hybrid networking with OVN-Kubernetes

Microsoft Azure Hybrid networking with OVN-Kubernetes

VMware vSphere Hybrid networking with OVN-Kubernetes with a
custom VXLAN port

Google Cloud Platform (GCP) Hybrid networking with OVN-Kubernetes

OpenShift Container Platform 4.16 Windows Container Support for OpenShift

8

https://support.microsoft.com/en-us/topic/april-25-2022-kb5012637-os-build-20348-681-preview-2233d69c-d4a5-4be9-8c24-04a450861a8d
https://support.microsoft.com/en-us/topic/april-25-2022-kb5012637-os-build-20348-681-preview-2233d69c-d4a5-4be9-8c24-04a450861a8d
https://support.microsoft.com/en-us/topic/april-25-2022-kb5012637-os-build-20348-681-preview-2233d69c-d4a5-4be9-8c24-04a450861a8d
https://support.microsoft.com/en-us/topic/april-25-2022-kb5012637-os-build-20348-681-preview-2233d69c-d4a5-4be9-8c24-04a450861a8d
https://support.microsoft.com/en-us/topic/april-25-2022-kb5012637-os-build-20348-681-preview-2233d69c-d4a5-4be9-8c24-04a450861a8d
https://support.microsoft.com/en-us/topic/april-25-2022-kb5012637-os-build-20348-681-preview-2233d69c-d4a5-4be9-8c24-04a450861a8d

Nutanix Hybrid networking with OVN-Kubernetes

Bare metal or provider agnostic Hybrid networking with OVN-Kubernetes

Platform Supported networking

Table 2.2. Hybrid OVN-Kubernetes Windows Server support

Hybrid networking with OVN-Kubernetes Supported Windows Server version

Default VXLAN port
Windows Server 2022, OS Build 20348.681
or later

Windows Server 2019, version 1809

Custom VXLAN port Windows Server 2022, OS Build 20348.681 or later

2.2.3. Known limitations

Note the following limitations when working with Windows nodes managed by the WMCO (Windows
nodes):

The following OpenShift Container Platform features are not supported on Windows nodes:

Image builds

OpenShift Pipelines

OpenShift Service Mesh

OpenShift monitoring of user-defined projects

OpenShift Serverless

Horizontal Pod Autoscaling

Vertical Pod Autoscaling

The following Red Hat features are not supported on Windows nodes:

Red Hat Insights cost management

Red Hat OpenShift Local

Dual NIC is not supported on WMCO-managed Windows instances.

Windows nodes do not support workloads created by using deployment configs. You can use a
deployment or other method to deploy workloads.

Red Hat OpenShift support for Windows Containers does not support adding Windows nodes to

CHAPTER 2. RELEASE NOTES

9

https://support.microsoft.com/en-us/topic/april-25-2022-kb5012637-os-build-20348-681-preview-2233d69c-d4a5-4be9-8c24-04a450861a8d
https://support.microsoft.com/en-us/topic/april-25-2022-kb5012637-os-build-20348-681-preview-2233d69c-d4a5-4be9-8c24-04a450861a8d
https://docs.redhat.com/en/documentation/cost_management_service/1-latest
https://developers.redhat.com/products/openshift-local/overview

Red Hat OpenShift support for Windows Containers does not support adding Windows nodes to
a cluster through a trunk port. The only supported networking configuration for adding Windows
nodes is through an access port that carries traffic for the VLAN.

Red Hat OpenShift support for Windows Containers does not support any Windows operating
system language other than English (United States).

Due to a limitation within the Windows operating system, clusterNetwork CIDR addresses of
class E, such as 240.0.0.0, are not compatible with Windows nodes.

Kubernetes has identified the following node feature limitations :

Huge pages are not supported for Windows containers.

Privileged containers are not supported for Windows containers.

Kubernetes has identified several API compatibility issues .

OpenShift Container Platform 4.16 Windows Container Support for OpenShift

10

https://kubernetes.io/docs/concepts/windows/intro/#limitations
https://kubernetes.io/docs/concepts/windows/intro/#api

CHAPTER 3. GETTING SUPPORT
Windows Container Support for Red Hat OpenShift is provided and available as an optional, installable
component. Windows Container Support for Red Hat OpenShift is not part of the OpenShift Container
Platform subscription. It requires an additional Red Hat subscription and is supported according to the
Scope of coverage and Service level agreements.

You must have this separate subscription to receive support for Windows Container Support for
Red Hat OpenShift. Without this additional Red Hat subscription, deploying Windows container
workloads in production clusters is not supported. You can request support through the Red Hat
Customer Portal.

For more information, see the Red Hat OpenShift Container Platform Life Cycle Policy document for
Red Hat OpenShift support for Windows Containers .

If you do not have this additional Red Hat subscription, you can use the Community Windows Machine
Config Operator, a distribution that lacks official support.

CHAPTER 3. GETTING SUPPORT

11

https://access.redhat.com/support/offerings/production/soc/
https://access.redhat.com/support/offerings/production/sla
http://access.redhat.com/
https://access.redhat.com/support/policy/updates/openshift#windows

CHAPTER 4. UNDERSTANDING WINDOWS CONTAINER
WORKLOADS

Red Hat OpenShift support for Windows Containers provides built-in support for running Microsoft
Windows Server containers on OpenShift Container Platform. For those that administer heterogeneous
environments with a mix of Linux and Windows workloads, OpenShift Container Platform allows you to
deploy Windows workloads running on Windows Server containers while also providing traditional Linux
workloads hosted on Red Hat Enterprise Linux CoreOS (RHCOS) or Red Hat Enterprise Linux (RHEL).

NOTE

Multi-tenancy for clusters that have Windows nodes is not supported. Clusters are
considered multi-tenant when multiple workloads operate on shared infrastructure and
resources. If one or more workloads running on an infrastructure cannot be trusted, the
multi-tenant environment is considered hostile.

Hostile multi-tenant clusters introduce security concerns in all Kubernetes environments.
Additional security features like pod security policies , or more fine-grained role-based
access control (RBAC) for nodes, make exploiting your environment more difficult.
However, if you choose to run hostile multi-tenant workloads, a hypervisor is the only
security option you should use. The security domain for Kubernetes encompasses the
entire cluster, not an individual node. For these types of hostile multi-tenant workloads,
you should use physically isolated clusters.

Windows Server Containers provide resource isolation using a shared kernel but are not
intended to be used in hostile multitenancy scenarios. Scenarios that involve hostile
multitenancy should use Hyper-V Isolated Containers to strongly isolate tenants.

Additional resources

See Configuring hybrid networking with OVN-Kubernetes

4.1. WINDOWS WORKLOAD MANAGEMENT

To run Windows workloads in your cluster, you must first install the Windows Machine Config Operator
(WMCO). The WMCO is a Linux-based Operator that runs on Linux-based control plane and compute
nodes. The WMCO orchestrates the process of deploying and managing Windows workloads on a
cluster.

Figure 4.1. WMCO design

OpenShift Container Platform 4.16 Windows Container Support for OpenShift

12

https://kubernetes.io/docs/concepts/policy/pod-security-policy/
https://docs.redhat.com/en/documentation/openshift_container_platform/4.16/html-single/networking/#configuring-hybrid-ovnkubernetes_configuring-hybrid-networking

Figure 4.1. WMCO design

Before deploying Windows workloads, you must create a Windows compute node and have it join the
cluster. The Windows node hosts the Windows workloads in a cluster, and can run alongside other Linux-
based compute nodes. You can create a Windows compute node by creating a Windows compute
machine set to host Windows Server compute machines. You must apply a Windows-specific label to the
compute machine set that specifies a Windows OS image.

The WMCO watches for machines with the Windows label. After a Windows compute machine set is
detected and its respective machines are provisioned, the WMCO configures the underlying Windows
virtual machine (VM) so that it can join the cluster as a compute node.

Figure 4.2. Mixed Windows and Linux workloads

CHAPTER 4. UNDERSTANDING WINDOWS CONTAINER WORKLOADS

13

Figure 4.2. Mixed Windows and Linux workloads

The WMCO expects a predetermined secret in its namespace containing a private key that is used to
interact with the Windows instance. WMCO checks for this secret during boot up time and creates a user
data secret which you must reference in the Windows MachineSet object that you created. Then the
WMCO populates the user data secret with a public key that corresponds to the private key. With this
data in place, the cluster can connect to the Windows VM using an SSH connection.

After the cluster establishes a connection with the Windows VM, you can manage the Windows node
using similar practices as you would a Linux-based node.

NOTE

The OpenShift Container Platform web console provides most of the same monitoring
capabilities for Windows nodes that are available for Linux nodes. However, the ability to
monitor workload graphs for pods running on Windows nodes is not available at this time.

Scheduling Windows workloads to a Windows node can be done with typical pod scheduling practices
like taints, tolerations, and node selectors; alternatively, you can differentiate your Windows workloads
from Linux workloads and other Windows-versioned workloads by using a RuntimeClass object.

4.2. WINDOWS NODE SERVICES

The following Windows-specific services are installed on each Windows node:

Service Description

kubelet Registers the Windows node and manages its status.

Container Network Interface
(CNI) plugins

Exposes networking for Windows nodes.

OpenShift Container Platform 4.16 Windows Container Support for OpenShift

14

https://kubernetes.io/docs/setup/production-environment/windows/intro-windows-in-kubernetes/#networking

Windows Instance Config
Daemon (WICD)

Maintains the state of all services running on the Windows instance to
ensure the instance functions as a worker node.

Windows Exporter Exports Prometheus metrics from Windows nodes

Kubernetes Cloud Controller
Manager (CCM)

Interacts with the underlying Azure cloud platform.

hybrid-overlay Creates the OpenShift Container Platform Host Network Service (HNS).

kube-proxy Maintains network rules on nodes allowing outside communication.

containerd container runtime Manages the complete container lifecycle.

CSI Proxy Enables CSI drivers to perform storage operations on the node, which
allows containerized CSI drivers to run on Windows nodes.

Service Description

CHAPTER 4. UNDERSTANDING WINDOWS CONTAINER WORKLOADS

15

https://github.com/openshift/prometheus-community-windows_exporter
https://kubernetes.io/docs/concepts/architecture/cloud-controller/
https://docs.microsoft.com/en-us/virtualization/windowscontainers/container-networking/architecture#container-network-management-with-host-network-service

CHAPTER 5. ENABLING WINDOWS CONTAINER WORKLOADS
Before adding Windows workloads to your cluster, you must install the Windows Machine Config
Operator (WMCO), which is available in the OpenShift Container Platform OperatorHub. The WMCO
orchestrates the process of deploying and managing Windows workloads on a cluster.

NOTE

Dual NIC is not supported on WMCO-managed Windows instances.

Prerequisites

You have access to an OpenShift Container Platform cluster using an account with cluster-
admin permissions.

You have installed the OpenShift CLI (oc).

You have installed your cluster using installer-provisioned infrastructure, or using user-
provisioned infrastructure with the platform: none field set in your install-config.yaml file.

You have configured hybrid networking with OVN-Kubernetes for your cluster. For more
information, see Configuring hybrid networking .

You are running an OpenShift Container Platform cluster version 4.6.8 or later.

NOTE

Windows instances deployed by the WMCO are configured with the containerd container
runtime. Because WMCO installs and manages the runtime, it is recommended that you
do not manually install containerd on nodes.

Additional resources

For the comprehensive prerequisites for the Windows Machine Config Operator, see Windows
Machine Config Operator prerequisites.

5.1. INSTALLING THE WINDOWS MACHINE CONFIG OPERATOR

You can install the Windows Machine Config Operator using either the web console or OpenShift CLI
(oc).

NOTE

Due to a limitation within the Windows operating system, clusterNetwork CIDR addresses
of class E, such as 240.0.0.0, are not compatible with Windows nodes.

5.1.1. Installing the Windows Machine Config Operator using the web console

You can use the OpenShift Container Platform web console to install the Windows Machine Config
Operator (WMCO).

NOTE

OpenShift Container Platform 4.16 Windows Container Support for OpenShift

16

https://docs.redhat.com/en/documentation/openshift_container_platform/4.16/html-single/networking/#configuring-hybrid-ovnkubernetes

NOTE

Dual NIC is not supported on WMCO-managed Windows instances.

Procedure

1. From the Administrator perspective in the OpenShift Container Platform web console,
navigate to the Operators → OperatorHub page.

2. Use the Filter by keyword box to search for Windows Machine Config Operator in the
catalog. Click the Windows Machine Config Operator tile.

3. Review the information about the Operator and click Install.

4. On the Install Operator page:

a. Select the stable channel as the Update Channel. The stable channel enables the latest
stable release of the WMCO to be installed.

b. The Installation Mode is preconfigured because the WMCO must be available in a single
namespace only.

c. Choose the Installed Namespace for the WMCO. The default Operator recommended
namespace is openshift-windows-machine-config-operator.

d. Click the Enable Operator recommended cluster monitoring on the Namespace
checkbox to enable cluster monitoring for the WMCO.

e. Select an Approval Strategy.

The Automatic strategy allows Operator Lifecycle Manager (OLM) to automatically
update the Operator when a new version is available.

The Manual strategy requires a user with appropriate credentials to approve the
Operator update.

1. Click Install. The WMCO is now listed on the Installed Operators page.

NOTE

The WMCO is installed automatically into the namespace you defined, like
openshift-windows-machine-config-operator.

2. Verify that the Status shows Succeeded to confirm successful installation of the WMCO.

5.1.2. Installing the Windows Machine Config Operator using the CLI

You can use the OpenShift CLI (oc) to install the Windows Machine Config Operator (WMCO).

NOTE

Dual NIC is not supported on WMCO-managed Windows instances.

Procedure

CHAPTER 5. ENABLING WINDOWS CONTAINER WORKLOADS

17

1

2

1. Create a namespace for the WMCO.

a. Create a Namespace object YAML file for the WMCO. For example, wmco-
namespace.yaml:

It is recommended to deploy the WMCO in the openshift-windows-machine-config-
operator namespace.

This label is required for enabling cluster monitoring for the WMCO.

b. Create the namespace:

For example:

2. Create the Operator group for the WMCO.

a. Create an OperatorGroup object YAML file. For example, wmco-og.yaml:

b. Create the Operator group:

For example:

3. Subscribe the namespace to the WMCO.

a. Create a Subscription object YAML file. For example, wmco-sub.yaml:

apiVersion: v1
kind: Namespace
metadata:
 name: openshift-windows-machine-config-operator 1
 labels:
 openshift.io/cluster-monitoring: "true" 2

$ oc create -f <file-name>.yaml

$ oc create -f wmco-namespace.yaml

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: windows-machine-config-operator
 namespace: openshift-windows-machine-config-operator
spec:
 targetNamespaces:
 - openshift-windows-machine-config-operator

$ oc create -f <file-name>.yaml

$ oc create -f wmco-og.yaml

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:

OpenShift Container Platform 4.16 Windows Container Support for OpenShift

18

1

2

3

4

Specify stable as the channel.

Set an approval strategy. You can set Automatic or Manual.

Specify the redhat-operators catalog source, which contains the windows-machine-
config-operator package manifests. If your OpenShift Container Platform is installed
on a restricted network, also known as a disconnected cluster, specify the name of the
CatalogSource object you created when you configured the Operator LifeCycle
Manager (OLM).

Namespace of the catalog source. Use openshift-marketplace for the default
OperatorHub catalog sources.

b. Create the subscription:

For example:

The WMCO is now installed to the openshift-windows-machine-config-operator.

4. Verify the WMCO installation:

Example output

5.2. CONFIGURING A SECRET FOR THE WINDOWS MACHINE CONFIG
OPERATOR

To run the Windows Machine Config Operator (WMCO), you must create a secret in the WMCO
namespace containing a private key. This is required to allow the WMCO to communicate with the
Windows virtual machine (VM).

Prerequisites

You installed the Windows Machine Config Operator (WMCO) using Operator Lifecycle

 name: windows-machine-config-operator
 namespace: openshift-windows-machine-config-operator
spec:
 channel: "stable" 1
 installPlanApproval: "Automatic" 2
 name: "windows-machine-config-operator"
 source: "redhat-operators" 3
 sourceNamespace: "openshift-marketplace" 4

$ oc create -f <file-name>.yaml

$ oc create -f wmco-sub.yaml

$ oc get csv -n openshift-windows-machine-config-operator

NAME DISPLAY VERSION REPLACES PHASE
windows-machine-config-operator.2.0.0 Windows Machine Config Operator 2.0.0
Succeeded

CHAPTER 5. ENABLING WINDOWS CONTAINER WORKLOADS

19

1

You installed the Windows Machine Config Operator (WMCO) using Operator Lifecycle
Manager (OLM).

You created a PEM-encoded file containing an RSA key.

Procedure

Define the secret required to access the Windows VMs:

You must create the private key in the WMCO namespace, like openshift-windows-machine-
config-operator.

It is recommended to use a different private key than the one used when installing the cluster.

5.3. USING WINDOWS CONTAINERS IN A PROXY-ENABLED CLUSTER

The Windows Machine Config Operator (WMCO) can consume and use a cluster-wide egress proxy
configuration when making external requests outside the cluster’s internal network.

This allows you to add Windows nodes and run workloads in a proxy-enabled cluster, allowing your
Windows nodes to pull images from registries that are secured behind your proxy server or to make
requests to off-cluster services and services that use a custom public key infrastructure.

NOTE

The cluster-wide proxy affects system components only, not user workloads.

In proxy-enabled clusters, the WMCO is aware of the NO_PROXY, HTTP_PROXY, and HTTPS_PROXY
values that are set for the cluster. The WMCO periodically checks whether the proxy environment
variables have changed. If there is a discrepancy, the WMCO reconciles and updates the proxy
environment variables on the Windows instances.

Windows workloads created on Windows nodes in proxy-enabled clusters do not inherit proxy settings
from the node by default, the same as with Linux nodes. Also, by default PowerShell sessions do not
inherit proxy settings on Windows nodes in proxy-enabled clusters.

Additional resources

Configuring the cluster-wide proxy.

5.4. USING WINDOWS CONTAINERS WITH A MIRROR REGISTRY

The Windows Machine Config Operator (WMCO) can pull images from a registry mirror rather than from
a public registry by using an ImageDigestMirrorSet (IDMS) or ImageTagMirrorSet (ITMS) object to
configure your cluster to pull images from the mirror registry.

A mirror registry has the following benefits:

Avoids public registry outages

$ oc create secret generic cloud-private-key --from-file=private-
key.pem=${HOME}/.ssh/<key> \
 -n openshift-windows-machine-config-operator 1

OpenShift Container Platform 4.16 Windows Container Support for OpenShift

20

https://docs.redhat.com/en/documentation/openshift_container_platform/4.16/html-single/networking/#enable-cluster-wide-proxy

Speeds up node and pod creation

Pulls images from behind your organization’s firewall

A mirror registry can also be used with a OpenShift Container Platform cluster in a disconnected, or air-
gapped, network. A disconnected network is a restricted network without direct internet connectivity.
Because the cluster does not have access to the internet, any external container images cannot be
referenced.

Using a mirror registry requires the following general steps:

Create the mirror registry, using a tool such as Red Hat Quay.

Create a container image registry credentials file.

Copy the images from your online image repository to your mirror registry.

For information about these steps, see "About disconnected installation mirroring."

After creating the mirror registry and mirroring the images, you can use an ImageDigestMirrorSet
(IDMS) or ImageTagMirrorSet (ITMS) object to configure your cluster to pull images from the mirror
registry without needing to update each of your pod specs. The IDMS and ITMS objects redirect
requests to pull images from a repository on a source image registry and have it resolved by the mirror
repository instead.

If changes are made to the IDMS or ITMS object, the WMCO automatically updates the appropriate
hosts.toml file on your Windows nodes with the new information. Note that the WMCO sequentially
updates each Windows node when mirror settings are changed. As such, the time required for these
updates increases with the number of Windows nodes in the cluster.

Also, because Windows nodes configured by the WMCO rely on containerd container runtime, the
WMCO ensures that the containerd config files are up-to-date with the registry settings. For new
nodes, these files are copied to the instances upon creation. For existing nodes, after activating the
mirror registry, the registry controller uses SSH to access each node and copy the generated config
files, replacing any existing files.

You can use a mirror registry with machine set or Bring-Your-Own-Host (BYOH) Windows nodes.

Additional references

About disconnected installation mirroring

5.4.1. Understanding image registry repository mirroring

Setting up container registry repository mirroring enables you to perform the following tasks:

Configure your OpenShift Container Platform cluster to redirect requests to pull images from a
repository on a source image registry and have it resolved by a repository on a mirrored image
registry.

Identify multiple mirrored repositories for each target repository, to make sure that if one mirror
is down, another can be used.

Repository mirroring in OpenShift Container Platform includes the following attributes:

Image pulls are resilient to registry downtimes.

CHAPTER 5. ENABLING WINDOWS CONTAINER WORKLOADS

21

https://docs.redhat.com/en/documentation/openshift_container_platform/4.16/html-single/installing/#installing-mirroring-disconnected-about

Clusters in disconnected environments can pull images from critical locations, such as quay.io,
and have registries behind a company firewall provide the requested images.

A particular order of registries is tried when an image pull request is made, with the permanent
registry typically being the last one tried.

The mirror information you enter is added to the appropriate hosts.toml containerd
configuration file(s) on every Windows node in the OpenShift Container Platform cluster.

When a node makes a request for an image from the source repository, it tries each mirrored
repository in turn until it finds the requested content. If all mirrors fail, the cluster tries the
source repository. If successful, the image is pulled to the node.

Setting up repository mirroring can be done in the following ways:

At OpenShift Container Platform installation:
By pulling container images needed by OpenShift Container Platform and then bringing those
images behind your company’s firewall, you can install OpenShift Container Platform into a data
center that is in a disconnected environment.

After OpenShift Container Platform installation:
If you did not configure mirroring during OpenShift Container Platform installation, you can do
so postinstallation by using any of the following custom resource (CR) objects:

ImageDigestMirrorSet (IDMS). This object allows you to pull images from a mirrored
registry by using digest specifications. The IDMS CR enables you to set a fall back policy
that allows or stops continued attempts to pull from the source registry if the image pull
fails.

ImageTagMirrorSet (ITMS). This object allows you to pull images from a mirrored registry
by using image tags. The ITMS CR enables you to set a fall back policy that allows or stops
continued attempts to pull from the source registry if the image pull fails.

Each of these custom resource objects identify the following information:

The source of the container image repository you want to mirror.

A separate entry for each mirror repository you want to offer the content requested from the
source repository.

The Windows Machine Config Operator (WMCO) watches for changes to the IDMS and ITMS resources
and generates a set of hosts.toml containerd configuration files, one file for each source registry, with
those changes. The WMCO then updates any existing Windows nodes to use the new registry
configuration.

NOTE

The IDMS and ITMS objects must be created before you can add Windows nodes using a
mirrored registry.

5.4.2. Configuring image registry repository mirroring

You can create postinstallation mirror configuration custom resources (CR) to redirect image pull
requests from a source image registry to a mirrored image registry.

IMPORTANT

OpenShift Container Platform 4.16 Windows Container Support for OpenShift

22

IMPORTANT

Windows images mirrored through ImageDigestMirrorSet and ImageTagMirrorSet
objects have specific naming requirements. The final portion of the namespace and the
image name of the mirror image must match the image being mirrored. For example,
when mirroring the mcr.microsoft.com/oss/kubernetes/pause:3.9 image, the mirror
image must have the
<mirror_registry>/<optional_namespaces>/oss/kubernetes/pause:3.9 format. The
optional_namespaces can be any number of leading repository namespaces.

Prerequisites

Access to the cluster as a user with the cluster-admin role.

Procedure

1. Configure mirrored repositories, by either:

Setting up a mirrored repository with Red Hat Quay, as described in Red Hat Quay
Repository Mirroring. Using Red Hat Quay allows you to copy images from one repository to
another and also automatically sync those repositories repeatedly over time.

Using a tool such as skopeo to copy images manually from the source repository to the
mirrored repository.
For example, after installing the skopeo RPM package on a Red Hat Enterprise Linux
(RHEL) 7 or RHEL 8 system, use the skopeo command as shown in this example:

In this example, you have a container image registry that is named example.io with an
image repository named example to which you want to copy the ubi9/ubi-minimal image
from registry.access.redhat.com. After you create the mirrored registry, you can configure
your OpenShift Container Platform cluster to redirect requests made of the source
repository to the mirrored repository.

IMPORTANT

You must mirror the mcr.microsoft.com/oss/kubernetes/pause:3.9 image. For
example, you could use the following skopeo command to mirror the image:

2. Log in to your OpenShift Container Platform cluster.

3. Create an ImageDigestMirrorSet or ImageTagMirrorSet CR, as needed, replacing the source
and mirrors with your own registry and repository pairs and images:

$ skopeo copy --all \
docker://registry.access.redhat.com/ubi9/ubi-minimal:latest@sha256:5cf... \
docker://example.io/example/ubi-minimal

$ skopeo copy \
docker://mcr.microsoft.com/oss/kubernetes/pause:3.9\
docker://example.io/oss/kubernetes/pause:3.9

apiVersion: config.openshift.io/v1 1
kind: ImageDigestMirrorSet 2
metadata:

CHAPTER 5. ENABLING WINDOWS CONTAINER WORKLOADS

23

https://access.redhat.com/documentation/en-us/red_hat_quay/3/html/manage_red_hat_quay/repo-mirroring-in-red-hat-quay

1

2

3

4

5

6

7

Indicates the API to use with this CR. This must be config.openshift.io/v1.

Indicates the kind of object according to the pull type:

ImageDigestMirrorSet: Pulls a digest reference image.

ImageTagMirrorSet: Pulls a tag reference image.

Indicates the type of image pull method, either:

imageDigestMirrors: Use for an ImageDigestMirrorSet CR.

imageTagMirrors: Use for an ImageTagMirrorSet CR.

Indicates the name of the mirrored image registry and repository.

Optional: Indicates a secondary mirror repository for each target repository. If one mirror is
down, the target repository can use another mirror.

Indicates the registry and repository source, which is the repository that is referred to in
image pull specifications.

Optional: Indicates the fallback policy if the image pull fails:

AllowContactingSource: Allows continued attempts to pull the image from the
source repository. This is the default.

NeverContactSource: Prevents continued attempts to pull the image from the source
repository.

4. Create the new object:

5. To check that the mirrored configuration settings are applied, do the following on one of the
nodes.

a. List your nodes:

 name: ubi9repo
spec:
 imageDigestMirrors: 3
 - mirrors:
 - example.io/example/ubi-minimal 4
 - example.com/example2/ubi-minimal 5
 source: registry.access.redhat.com/ubi9/ubi-minimal 6
 mirrorSourcePolicy: AllowContactingSource 7
 - mirrors:
 - mirror.example.com
 source: registry.redhat.io
 mirrorSourcePolicy: NeverContactSource
 - mirrors:
 - docker.io
 source: docker-mirror.internal
 mirrorSourcePolicy: AllowContactingSource

$ oc create -f registryrepomirror.yaml

OpenShift Container Platform 4.16 Windows Container Support for OpenShift

24

Example output

b. Start the debugging process to access the node:

Example output

c. Change your root directory to /host:

d. Check that the WMCO generated a hosts.toml file for each registry on each Windows
instance. For the previous example IDMS object, there should be three files in the following
file structure:

Example output

The following output represents a hosts.toml containerd configuration file where the
previous example IDMS object was applied.

Example host.toml files

$ oc get node

NAME STATUS ROLES AGE VERSION
ip-10-0-137-44.ec2.internal Ready worker 7m v1.29.4
ip-10-0-138-148.ec2.internal Ready master 11m v1.29.4
ip-10-0-139-122.ec2.internal Ready master 11m v1.29.4
ip-10-0-147-35.ec2.internal Ready worker 7m v1.29.4
ip-10-0-153-12.ec2.internal Ready worker 7m v1.29.4
ip-10-0-154-10.ec2.internal Ready master 11m v1.29.4

$ oc debug node/ip-10-0-147-35.ec2.internal

Starting pod/ip-10-0-147-35ec2internal-debug ...
To use host binaries, run `chroot /host`

sh-4.2# chroot /host

$ tree $config_path

C:/k/containerd/registries/
|── registry.access.redhat.com
| └── hosts.toml
|── mirror.example.com
| └── hosts.toml
└── docker.io
 └── hosts.toml:

$ cat "$config_path"/registry.access.redhat.com/host.toml
server = "https://registry.access.redhat.com" # default fallback server since
"AllowContactingSource" mirrorSourcePolicy is set

[host."https://example.io/example/ubi-minimal"]
 capabilities = ["pull"]

CHAPTER 5. ENABLING WINDOWS CONTAINER WORKLOADS

25

e. Pull an image to the node from the source and check if it is resolved by the mirror.

Troubleshooting repository mirroring

If the repository mirroring procedure does not work as described, use the following information about
how repository mirroring works to help troubleshoot the problem.

The first working mirror is used to supply the pulled image.

The main registry is only used if no other mirror works.

From the system context, the Insecure flags are used as fallback.

5.5. ADDITIONAL RESOURCES

Generating a key pair for cluster node SSH access

Adding Operators to a cluster .

[host."https://example.com/example2/ubi-minimal"] # secondary mirror
 capabilities = ["pull"]

$ cat "$config_path"/registry.redhat.io/host.toml
"server" omitted since "NeverContactSource" mirrorSourcePolicy is set

[host."https://mirror.example.com"]
 capabilities = ["pull"]

$ cat "$config_path"/docker.io/host.toml
server = "https://docker.io"

[host."https://docker-mirror.internal"]
 capabilities = ["pull", "resolve"] # resolve tags

sh-4.2# podman pull --log-level=debug registry.access.redhat.com/ubi9/ubi-
minimal@sha256:5cf...

OpenShift Container Platform 4.16 Windows Container Support for OpenShift

26

https://docs.redhat.com/en/documentation/openshift_container_platform/4.16/html-single/installing/#ssh-agent-using_installing-azure-default
https://docs.redhat.com/en/documentation/openshift_container_platform/4.16/html-single/operators/#olm-adding-operators-to-a-cluster

CHAPTER 6. CREATING WINDOWS MACHINE SETS

6.1. CREATING A WINDOWS MACHINE SET ON AWS

You can create a Windows MachineSet object to serve a specific purpose in your OpenShift Container
Platform cluster on Amazon Web Services (AWS). For example, you might create infrastructure
Windows machine sets and related machines so that you can move supporting Windows workloads to
the new Windows machines.

Prerequisites

You installed the Windows Machine Config Operator (WMCO) using Operator Lifecycle
Manager (OLM).

You are using a supported Windows Server as the operating system image.
Use one of the following aws commands, as appropriate for your Windows Server release, to
query valid AMI images:

Example Windows Server 2022 command

Example Windows Server 2019 command

where:

<aws_region_name>

Specifies the name of your AWS region.

6.1.1. Machine API overview

The Machine API is a combination of primary resources that are based on the upstream Cluster API
project and custom OpenShift Container Platform resources.

For OpenShift Container Platform 4.16 clusters, the Machine API performs all node host provisioning
management actions after the cluster installation finishes. Because of this system, OpenShift Container
Platform 4.16 offers an elastic, dynamic provisioning method on top of public or private cloud
infrastructure.

The two primary resources are:

Machines

A fundamental unit that describes the host for a node. A machine has a providerSpec specification,
which describes the types of compute nodes that are offered for different cloud platforms. For
example, a machine type for a compute node might define a specific machine type and required

$ aws ec2 describe-images --region <aws_region_name> --filters
"Name=name,Values=Windows_Server-2022*English*Core*Base*" "Name=is-
public,Values=true" --query "reverse(sort_by(Images, &CreationDate))[*].{name: Name, id:
ImageId}" --output table

$ aws ec2 describe-images --region <aws_region_name> --filters
"Name=name,Values=Windows_Server-2019*English*Core*Base*" "Name=is-
public,Values=true" --query "reverse(sort_by(Images, &CreationDate))[*].{name: Name, id:
ImageId}" --output table

CHAPTER 6. CREATING WINDOWS MACHINE SETS

27

metadata.

Machine sets

MachineSet resources are groups of compute machines. Compute machine sets are to compute
machines as replica sets are to pods. If you need more compute machines or must scale them down,
you change the replicas field on the MachineSet resource to meet your compute need.

WARNING

Control plane machines cannot be managed by compute machine sets.

Control plane machine sets provide management capabilities for supported
control plane machines that are similar to what compute machine sets provide
for compute machines.

For more information, see “Managing control plane machines".

The following custom resources add more capabilities to your cluster:

Machine autoscaler

The MachineAutoscaler resource automatically scales compute machines in a cloud. You can set
the minimum and maximum scaling boundaries for nodes in a specified compute machine set, and
the machine autoscaler maintains that range of nodes.
The MachineAutoscaler object takes effect after a ClusterAutoscaler object exists. Both
ClusterAutoscaler and MachineAutoscaler resources are made available by the
ClusterAutoscalerOperator object.

Cluster autoscaler

This resource is based on the upstream cluster autoscaler project. In the OpenShift Container
Platform implementation, it is integrated with the Machine API by extending the compute machine
set API. You can use the cluster autoscaler to manage your cluster in the following ways:

Set cluster-wide scaling limits for resources such as cores, nodes, memory, and GPU

Set the priority so that the cluster prioritizes pods and new nodes are not brought online for
less important pods

Set the scaling policy so that you can scale up nodes but not scale them down

Machine health check

The MachineHealthCheck resource detects when a machine is unhealthy, deletes it, and, on
supported platforms, makes a new machine.

In OpenShift Container Platform version 3.11, you could not roll out a multi-zone architecture easily
because the cluster did not manage machine provisioning. Beginning with OpenShift Container Platform
version 4.1, this process is easier. Each compute machine set is scoped to a single zone, so the
installation program sends out compute machine sets across availability zones on your behalf. And then
because your compute is dynamic, and in the face of a zone failure, you always have a zone for when you

OpenShift Container Platform 4.16 Windows Container Support for OpenShift

28

must rebalance your machines. In global Azure regions that do not have multiple availability zones, you
can use availability sets to ensure high availability. The autoscaler provides best-effort balancing over
the life of a cluster.

6.1.2. Sample YAML for a Windows MachineSet object on AWS

This sample YAML defines a Windows MachineSet object running on Amazon Web Services (AWS) that
the Windows Machine Config Operator (WMCO) can react upon.

apiVersion: machine.openshift.io/v1beta1
kind: MachineSet
metadata:
 labels:
 machine.openshift.io/cluster-api-cluster: <infrastructure_id> 1
 name: <infrastructure_id>-windows-worker-<zone> 2
 namespace: openshift-machine-api
spec:
 replicas: 1
 selector:
 matchLabels:
 machine.openshift.io/cluster-api-cluster: <infrastructure_id> 3
 machine.openshift.io/cluster-api-machineset: <infrastructure_id>-windows-worker-<zone> 4
 template:
 metadata:
 labels:
 machine.openshift.io/cluster-api-cluster: <infrastructure_id> 5
 machine.openshift.io/cluster-api-machine-role: worker
 machine.openshift.io/cluster-api-machine-type: worker
 machine.openshift.io/cluster-api-machineset: <infrastructure_id>-windows-worker-<zone> 6
 machine.openshift.io/os-id: Windows 7
 spec:
 metadata:
 labels:
 node-role.kubernetes.io/worker: "" 8
 providerSpec:
 value:
 ami:
 id: <windows_container_ami> 9
 apiVersion: awsproviderconfig.openshift.io/v1beta1
 blockDevices:
 - ebs:
 iops: 0
 volumeSize: 120
 volumeType: gp2
 credentialsSecret:
 name: aws-cloud-credentials
 deviceIndex: 0
 iamInstanceProfile:
 id: <infrastructure_id>-worker-profile 10
 instanceType: m5a.large
 kind: AWSMachineProviderConfig
 placement:
 availabilityZone: <zone> 11
 region: <region> 12

CHAPTER 6. CREATING WINDOWS MACHINE SETS

29

1 3 5 10 13 14 15

2 4 6

7

8

9

11

12

16

Specify the infrastructure ID that is based on the cluster ID that you set when you
provisioned the cluster. You can obtain the infrastructure ID by running the

following command:

Specify the infrastructure ID, worker label, and zone.

Configure the compute machine set as a Windows machine.

Configure the Windows node as a compute machine.

Specify the AMI ID of a supported Windows image with a container runtime installed.

Specify the AWS zone, like us-east-1a.

Specify the AWS region, like us-east-1.

Created by the WMCO when it is configuring the first Windows machine. After that, the windows-
user-data is available for all subsequent compute machine sets to consume.

6.1.3. Creating a compute machine set

In addition to the compute machine sets created by the installation program, you can create your own to
dynamically manage the machine compute resources for specific workloads of your choice.

Prerequisites

Deploy an OpenShift Container Platform cluster.

Install the OpenShift CLI (oc).

Log in to oc as a user with cluster-admin permission.

In disconnected environments, the image specified in the MachineSet custom resource (CR)
must have the OpenSSH server v0.0.1.0 installed.

Procedure

 securityGroups:
 - filters:
 - name: tag:Name
 values:
 - <infrastructure_id>-worker-sg 13
 subnet:
 filters:
 - name: tag:Name
 values:
 - <infrastructure_id>-private-<zone> 14
 tags:
 - name: kubernetes.io/cluster/<infrastructure_id> 15
 value: owned
 userDataSecret:
 name: windows-user-data 16
 namespace: openshift-machine-api

$ oc get -o jsonpath='{.status.infrastructureName}{"\n"}' infrastructure cluster

OpenShift Container Platform 4.16 Windows Container Support for OpenShift

30

https://learn.microsoft.com/en-us/windows-server/administration/openssh/openssh_install_firstuse?tabs=powershell#install-openssh-for-windows

Procedure

1. Create a new YAML file that contains the compute machine set custom resource (CR) sample
and is named <file_name>.yaml.
Ensure that you set the <clusterID> and <role> parameter values.

2. Optional: If you are not sure which value to set for a specific field, you can check an existing
compute machine set from your cluster.

a. To list the compute machine sets in your cluster, run the following command:

Example output

b. To view values of a specific compute machine set custom resource (CR), run the following
command:

Example output

$ oc get machinesets -n openshift-machine-api

NAME DESIRED CURRENT READY AVAILABLE AGE
agl030519-vplxk-worker-us-east-1a 1 1 1 1 55m
agl030519-vplxk-worker-us-east-1b 1 1 1 1 55m
agl030519-vplxk-worker-us-east-1c 1 1 1 1 55m
agl030519-vplxk-worker-us-east-1d 0 0 55m
agl030519-vplxk-worker-us-east-1e 0 0 55m
agl030519-vplxk-worker-us-east-1f 0 0 55m

$ oc get machineset <machineset_name> \
 -n openshift-machine-api -o yaml

apiVersion: machine.openshift.io/v1beta1
kind: MachineSet
metadata:
 labels:
 machine.openshift.io/cluster-api-cluster: <infrastructure_id> 1
 name: <infrastructure_id>-<role> 2
 namespace: openshift-machine-api
spec:
 replicas: 1
 selector:
 matchLabels:
 machine.openshift.io/cluster-api-cluster: <infrastructure_id>
 machine.openshift.io/cluster-api-machineset: <infrastructure_id>-<role>
 template:
 metadata:
 labels:
 machine.openshift.io/cluster-api-cluster: <infrastructure_id>
 machine.openshift.io/cluster-api-machine-role: <role>
 machine.openshift.io/cluster-api-machine-type: <role>
 machine.openshift.io/cluster-api-machineset: <infrastructure_id>-<role>
 spec:
 providerSpec: 3
 ...

CHAPTER 6. CREATING WINDOWS MACHINE SETS

31

1

2

3

The cluster infrastructure ID.

A default node label.

NOTE

For clusters that have user-provisioned infrastructure, a compute
machine set can only create worker and infra type machines.

The values in the <providerSpec> section of the compute machine set CR are
platform-specific. For more information about <providerSpec> parameters in the CR,
see the sample compute machine set CR configuration for your provider.

3. Create a MachineSet CR by running the following command:

Verification

View the list of compute machine sets by running the following command:

Example output

When the new compute machine set is available, the DESIRED and CURRENT values match. If
the compute machine set is not available, wait a few minutes and run the command again.

6.1.4. Additional resources

Overview of machine management

6.2. CREATING A WINDOWS MACHINE SET ON AZURE

You can create a Windows MachineSet object to serve a specific purpose in your OpenShift Container
Platform cluster on Microsoft Azure. For example, you might create infrastructure Windows machine
sets and related machines so that you can move supporting Windows workloads to the new Windows
machines.

Prerequisites

You installed the Windows Machine Config Operator (WMCO) using Operator Lifecycle
Manager (OLM).

$ oc create -f <file_name>.yaml

$ oc get machineset -n openshift-machine-api

NAME DESIRED CURRENT READY AVAILABLE AGE
agl030519-vplxk-windows-worker-us-east-1a 1 1 1 1 11m
agl030519-vplxk-worker-us-east-1a 1 1 1 1 55m
agl030519-vplxk-worker-us-east-1b 1 1 1 1 55m
agl030519-vplxk-worker-us-east-1c 1 1 1 1 55m
agl030519-vplxk-worker-us-east-1d 0 0 55m
agl030519-vplxk-worker-us-east-1e 0 0 55m
agl030519-vplxk-worker-us-east-1f 0 0 55m

OpenShift Container Platform 4.16 Windows Container Support for OpenShift

32

https://docs.redhat.com/en/documentation/openshift_container_platform/4.16/html-single/machine_management/#overview-of-machine-management

You are using a supported Windows Server as the operating system image.

6.2.1. Machine API overview

The Machine API is a combination of primary resources that are based on the upstream Cluster API
project and custom OpenShift Container Platform resources.

For OpenShift Container Platform 4.16 clusters, the Machine API performs all node host provisioning
management actions after the cluster installation finishes. Because of this system, OpenShift Container
Platform 4.16 offers an elastic, dynamic provisioning method on top of public or private cloud
infrastructure.

The two primary resources are:

Machines

A fundamental unit that describes the host for a node. A machine has a providerSpec specification,
which describes the types of compute nodes that are offered for different cloud platforms. For
example, a machine type for a compute node might define a specific machine type and required
metadata.

Machine sets

MachineSet resources are groups of compute machines. Compute machine sets are to compute
machines as replica sets are to pods. If you need more compute machines or must scale them down,
you change the replicas field on the MachineSet resource to meet your compute need.

WARNING

Control plane machines cannot be managed by compute machine sets.

Control plane machine sets provide management capabilities for supported
control plane machines that are similar to what compute machine sets provide
for compute machines.

For more information, see “Managing control plane machines".

The following custom resources add more capabilities to your cluster:

Machine autoscaler

The MachineAutoscaler resource automatically scales compute machines in a cloud. You can set
the minimum and maximum scaling boundaries for nodes in a specified compute machine set, and
the machine autoscaler maintains that range of nodes.
The MachineAutoscaler object takes effect after a ClusterAutoscaler object exists. Both
ClusterAutoscaler and MachineAutoscaler resources are made available by the
ClusterAutoscalerOperator object.

Cluster autoscaler

This resource is based on the upstream cluster autoscaler project. In the OpenShift Container
Platform implementation, it is integrated with the Machine API by extending the compute machine
set API. You can use the cluster autoscaler to manage your cluster in the following ways:

CHAPTER 6. CREATING WINDOWS MACHINE SETS

33

Set cluster-wide scaling limits for resources such as cores, nodes, memory, and GPU

Set the priority so that the cluster prioritizes pods and new nodes are not brought online for
less important pods

Set the scaling policy so that you can scale up nodes but not scale them down

Machine health check

The MachineHealthCheck resource detects when a machine is unhealthy, deletes it, and, on
supported platforms, makes a new machine.

In OpenShift Container Platform version 3.11, you could not roll out a multi-zone architecture easily
because the cluster did not manage machine provisioning. Beginning with OpenShift Container Platform
version 4.1, this process is easier. Each compute machine set is scoped to a single zone, so the
installation program sends out compute machine sets across availability zones on your behalf. And then
because your compute is dynamic, and in the face of a zone failure, you always have a zone for when you
must rebalance your machines. In global Azure regions that do not have multiple availability zones, you
can use availability sets to ensure high availability. The autoscaler provides best-effort balancing over
the life of a cluster.

6.2.2. Sample YAML for a Windows MachineSet object on Azure

This sample YAML defines a Windows MachineSet object running on Microsoft Azure that the Windows
Machine Config Operator (WMCO) can react upon.

apiVersion: machine.openshift.io/v1beta1
kind: MachineSet
metadata:
 labels:
 machine.openshift.io/cluster-api-cluster: <infrastructure_id> 1
 name: <windows_machine_set_name> 2
 namespace: openshift-machine-api
spec:
 replicas: 1
 selector:
 matchLabels:
 machine.openshift.io/cluster-api-cluster: <infrastructure_id> 3
 machine.openshift.io/cluster-api-machineset: <windows_machine_set_name> 4
 template:
 metadata:
 labels:
 machine.openshift.io/cluster-api-cluster: <infrastructure_id> 5
 machine.openshift.io/cluster-api-machine-role: worker
 machine.openshift.io/cluster-api-machine-type: worker
 machine.openshift.io/cluster-api-machineset: <windows_machine_set_name> 6
 machine.openshift.io/os-id: Windows 7
 spec:
 metadata:
 labels:
 node-role.kubernetes.io/worker: "" 8
 providerSpec:
 value:
 apiVersion: azureproviderconfig.openshift.io/v1beta1
 credentialsSecret:

OpenShift Container Platform 4.16 Windows Container Support for OpenShift

34

1 3 5 11 12 13 15

2 4 6

7

8

9

10

14

16

Specify the infrastructure ID that is based on the cluster ID that you set when you
provisioned the cluster. You can obtain the infrastructure ID by running the

following command:

Specify the Windows compute machine set name. Windows machine names on Azure cannot be
more than 15 characters long. Therefore, the compute machine set name cannot be more than

9 characters long, due to the way machine names are generated from it.

Configure the compute machine set as a Windows machine.

Configure the Windows node as a compute machine.

Specify a WindowsServer image offering that defines the 2019-Datacenter-with-Containers
SKU.

Specify the Azure region, like centralus.

Created by the WMCO when it is configuring the first Windows machine. After that, the windows-
user-data is available for all subsequent compute machine sets to consume.

Specify the zone within your region to place machines on. Be sure that your region supports the
zone that you specify.

6.2.3. Creating a compute machine set

 name: azure-cloud-credentials
 namespace: openshift-machine-api
 image: 9
 offer: WindowsServer
 publisher: MicrosoftWindowsServer
 resourceID: ""
 sku: 2019-Datacenter-with-Containers
 version: latest
 kind: AzureMachineProviderSpec
 location: <location> 10
 managedIdentity: <infrastructure_id>-identity 11
 networkResourceGroup: <infrastructure_id>-rg 12
 osDisk:
 diskSizeGB: 128
 managedDisk:
 storageAccountType: Premium_LRS
 osType: Windows
 publicIP: false
 resourceGroup: <infrastructure_id>-rg 13
 subnet: <infrastructure_id>-worker-subnet
 userDataSecret:
 name: windows-user-data 14
 namespace: openshift-machine-api
 vmSize: Standard_D2s_v3
 vnet: <infrastructure_id>-vnet 15
 zone: "<zone>" 16

$ oc get -o jsonpath='{.status.infrastructureName}{"\n"}' infrastructure cluster

CHAPTER 6. CREATING WINDOWS MACHINE SETS

35

In addition to the compute machine sets created by the installation program, you can create your own to
dynamically manage the machine compute resources for specific workloads of your choice.

Prerequisites

Deploy an OpenShift Container Platform cluster.

Install the OpenShift CLI (oc).

Log in to oc as a user with cluster-admin permission.

In disconnected environments, the image specified in the MachineSet custom resource (CR)
must have the OpenSSH server v0.0.1.0 installed.

Procedure

1. Create a new YAML file that contains the compute machine set custom resource (CR) sample
and is named <file_name>.yaml.
Ensure that you set the <clusterID> and <role> parameter values.

2. Optional: If you are not sure which value to set for a specific field, you can check an existing
compute machine set from your cluster.

a. To list the compute machine sets in your cluster, run the following command:

Example output

b. To view values of a specific compute machine set custom resource (CR), run the following
command:

Example output

$ oc get machinesets -n openshift-machine-api

NAME DESIRED CURRENT READY AVAILABLE AGE
agl030519-vplxk-worker-us-east-1a 1 1 1 1 55m
agl030519-vplxk-worker-us-east-1b 1 1 1 1 55m
agl030519-vplxk-worker-us-east-1c 1 1 1 1 55m
agl030519-vplxk-worker-us-east-1d 0 0 55m
agl030519-vplxk-worker-us-east-1e 0 0 55m
agl030519-vplxk-worker-us-east-1f 0 0 55m

$ oc get machineset <machineset_name> \
 -n openshift-machine-api -o yaml

apiVersion: machine.openshift.io/v1beta1
kind: MachineSet
metadata:
 labels:
 machine.openshift.io/cluster-api-cluster: <infrastructure_id> 1
 name: <infrastructure_id>-<role> 2
 namespace: openshift-machine-api
spec:
 replicas: 1

OpenShift Container Platform 4.16 Windows Container Support for OpenShift

36

https://learn.microsoft.com/en-us/windows-server/administration/openssh/openssh_install_firstuse?tabs=powershell#install-openssh-for-windows

1

2

3

The cluster infrastructure ID.

A default node label.

NOTE

For clusters that have user-provisioned infrastructure, a compute
machine set can only create worker and infra type machines.

The values in the <providerSpec> section of the compute machine set CR are
platform-specific. For more information about <providerSpec> parameters in the CR,
see the sample compute machine set CR configuration for your provider.

3. Create a MachineSet CR by running the following command:

Verification

View the list of compute machine sets by running the following command:

Example output

When the new compute machine set is available, the DESIRED and CURRENT values match. If
the compute machine set is not available, wait a few minutes and run the command again.

 selector:
 matchLabels:
 machine.openshift.io/cluster-api-cluster: <infrastructure_id>
 machine.openshift.io/cluster-api-machineset: <infrastructure_id>-<role>
 template:
 metadata:
 labels:
 machine.openshift.io/cluster-api-cluster: <infrastructure_id>
 machine.openshift.io/cluster-api-machine-role: <role>
 machine.openshift.io/cluster-api-machine-type: <role>
 machine.openshift.io/cluster-api-machineset: <infrastructure_id>-<role>
 spec:
 providerSpec: 3
 ...

$ oc create -f <file_name>.yaml

$ oc get machineset -n openshift-machine-api

NAME DESIRED CURRENT READY AVAILABLE AGE
agl030519-vplxk-windows-worker-us-east-1a 1 1 1 1 11m
agl030519-vplxk-worker-us-east-1a 1 1 1 1 55m
agl030519-vplxk-worker-us-east-1b 1 1 1 1 55m
agl030519-vplxk-worker-us-east-1c 1 1 1 1 55m
agl030519-vplxk-worker-us-east-1d 0 0 55m
agl030519-vplxk-worker-us-east-1e 0 0 55m
agl030519-vplxk-worker-us-east-1f 0 0 55m

CHAPTER 6. CREATING WINDOWS MACHINE SETS

37

6.2.4. Additional resources

Overview of machine management

6.3. CREATING A WINDOWS MACHINE SET ON GCP

You can create a Windows MachineSet object to serve a specific purpose in your OpenShift Container
Platform cluster on Google Cloud Platform (GCP). For example, you might create infrastructure
Windows machine sets and related machines so that you can move supporting Windows workloads to
the new Windows machines.

Prerequisites

You installed the Windows Machine Config Operator (WMCO) using Operator Lifecycle
Manager (OLM).

You are using a supported Windows Server as the operating system image.

6.3.1. Machine API overview

The Machine API is a combination of primary resources that are based on the upstream Cluster API
project and custom OpenShift Container Platform resources.

For OpenShift Container Platform 4.16 clusters, the Machine API performs all node host provisioning
management actions after the cluster installation finishes. Because of this system, OpenShift Container
Platform 4.16 offers an elastic, dynamic provisioning method on top of public or private cloud
infrastructure.

The two primary resources are:

Machines

A fundamental unit that describes the host for a node. A machine has a providerSpec specification,
which describes the types of compute nodes that are offered for different cloud platforms. For
example, a machine type for a compute node might define a specific machine type and required
metadata.

Machine sets

MachineSet resources are groups of compute machines. Compute machine sets are to compute
machines as replica sets are to pods. If you need more compute machines or must scale them down,
you change the replicas field on the MachineSet resource to meet your compute need.

WARNING

Control plane machines cannot be managed by compute machine sets.

Control plane machine sets provide management capabilities for supported
control plane machines that are similar to what compute machine sets provide
for compute machines.

For more information, see “Managing control plane machines".

OpenShift Container Platform 4.16 Windows Container Support for OpenShift

38

https://docs.redhat.com/en/documentation/openshift_container_platform/4.16/html-single/machine_management/#overview-of-machine-management

The following custom resources add more capabilities to your cluster:

Machine autoscaler

The MachineAutoscaler resource automatically scales compute machines in a cloud. You can set
the minimum and maximum scaling boundaries for nodes in a specified compute machine set, and
the machine autoscaler maintains that range of nodes.
The MachineAutoscaler object takes effect after a ClusterAutoscaler object exists. Both
ClusterAutoscaler and MachineAutoscaler resources are made available by the
ClusterAutoscalerOperator object.

Cluster autoscaler

This resource is based on the upstream cluster autoscaler project. In the OpenShift Container
Platform implementation, it is integrated with the Machine API by extending the compute machine
set API. You can use the cluster autoscaler to manage your cluster in the following ways:

Set cluster-wide scaling limits for resources such as cores, nodes, memory, and GPU

Set the priority so that the cluster prioritizes pods and new nodes are not brought online for
less important pods

Set the scaling policy so that you can scale up nodes but not scale them down

Machine health check

The MachineHealthCheck resource detects when a machine is unhealthy, deletes it, and, on
supported platforms, makes a new machine.

In OpenShift Container Platform version 3.11, you could not roll out a multi-zone architecture easily
because the cluster did not manage machine provisioning. Beginning with OpenShift Container Platform
version 4.1, this process is easier. Each compute machine set is scoped to a single zone, so the
installation program sends out compute machine sets across availability zones on your behalf. And then
because your compute is dynamic, and in the face of a zone failure, you always have a zone for when you
must rebalance your machines. In global Azure regions that do not have multiple availability zones, you
can use availability sets to ensure high availability. The autoscaler provides best-effort balancing over
the life of a cluster.

6.3.2. Sample YAML for a Windows MachineSet object on GCP

This sample YAML file defines a Windows MachineSet object running on Google Cloud Platform (GCP)
that the Windows Machine Config Operator (WMCO) can use.

apiVersion: machine.openshift.io/v1beta1
kind: MachineSet
metadata:
 labels:
 machine.openshift.io/cluster-api-cluster: <infrastructure_id> 1
 name: <infrastructure_id>-windows-worker-<zone_suffix> 2
 namespace: openshift-machine-api
spec:
 replicas: 1
 selector:
 matchLabels:
 machine.openshift.io/cluster-api-cluster: <infrastructure_id> 3
 machine.openshift.io/cluster-api-machineset: <infrastructure_id>-windows-worker-<zone_suffix>
4

CHAPTER 6. CREATING WINDOWS MACHINE SETS

39

1 3 5 10

2 4 6

7

8

Specify the infrastructure ID that is based on the cluster ID that you set when you
provisioned the cluster. You can obtain the infrastructure ID by running the following

command:

Specify the infrastructure ID, worker label, and zone suffix (such as a).

Configure the machine set as a Windows machine.

Configure the Windows node as a compute machine.

 template:
 metadata:
 labels:
 machine.openshift.io/cluster-api-cluster: <infrastructure_id> 5
 machine.openshift.io/cluster-api-machine-role: worker
 machine.openshift.io/cluster-api-machine-type: worker
 machine.openshift.io/cluster-api-machineset: <infrastructure_id>-windows-worker-<zone_suffix>
6

 machine.openshift.io/os-id: Windows 7
 spec:
 metadata:
 labels:
 node-role.kubernetes.io/worker: "" 8
 providerSpec:
 value:
 apiVersion: machine.openshift.io/v1beta1
 canIPForward: false
 credentialsSecret:
 name: gcp-cloud-credentials
 deletionProtection: false
 disks:
 - autoDelete: true
 boot: true
 image: <windows_server_image> 9
 sizeGb: 128
 type: pd-ssd
 kind: GCPMachineProviderSpec
 machineType: n1-standard-4
 networkInterfaces:
 - network: <infrastructure_id>-network 10
 subnetwork: <infrastructure_id>-worker-subnet
 projectID: <project_id> 11
 region: <region> 12
 serviceAccounts:
 - email: <infrastructure_id>-w@<project_id>.iam.gserviceaccount.com
 scopes:
 - https://www.googleapis.com/auth/cloud-platform
 tags:
 - <infrastructure_id>-worker
 userDataSecret:
 name: windows-user-data 13
 zone: <zone> 14

$ oc get -o jsonpath='{.status.infrastructureName}{"\n"}' infrastructure cluster

OpenShift Container Platform 4.16 Windows Container Support for OpenShift

40

9

11

12

13

14

Specify the full path to an image of a supported version of Windows Server.

Specify the GCP project that this cluster was created in.

Specify the GCP region, such as us-central1.

Created by the WMCO when it configures the first Windows machine. After that, the windows-
user-data is available for all subsequent machine sets to consume.

Specify the zone within the chosen region, such as us-central1-a.

6.3.3. Creating a compute machine set

In addition to the compute machine sets created by the installation program, you can create your own to
dynamically manage the machine compute resources for specific workloads of your choice.

Prerequisites

Deploy an OpenShift Container Platform cluster.

Install the OpenShift CLI (oc).

Log in to oc as a user with cluster-admin permission.

Procedure

1. Create a new YAML file that contains the compute machine set custom resource (CR) sample
and is named <file_name>.yaml.
Ensure that you set the <clusterID> and <role> parameter values.

2. Optional: If you are not sure which value to set for a specific field, you can check an existing
compute machine set from your cluster.

a. To list the compute machine sets in your cluster, run the following command:

Example output

b. To view values of a specific compute machine set custom resource (CR), run the following
command:

$ oc get machinesets -n openshift-machine-api

NAME DESIRED CURRENT READY AVAILABLE AGE
agl030519-vplxk-worker-us-east-1a 1 1 1 1 55m
agl030519-vplxk-worker-us-east-1b 1 1 1 1 55m
agl030519-vplxk-worker-us-east-1c 1 1 1 1 55m
agl030519-vplxk-worker-us-east-1d 0 0 55m
agl030519-vplxk-worker-us-east-1e 0 0 55m
agl030519-vplxk-worker-us-east-1f 0 0 55m

$ oc get machineset <machineset_name> \
 -n openshift-machine-api -o yaml

CHAPTER 6. CREATING WINDOWS MACHINE SETS

41

1

2

3

Example output

The cluster infrastructure ID.

A default node label.

NOTE

For clusters that have user-provisioned infrastructure, a compute
machine set can only create worker and infra type machines.

The values in the <providerSpec> section of the compute machine set CR are
platform-specific. For more information about <providerSpec> parameters in the CR,
see the sample compute machine set CR configuration for your provider.

3. Create a MachineSet CR by running the following command:

Verification

View the list of compute machine sets by running the following command:

Example output

apiVersion: machine.openshift.io/v1beta1
kind: MachineSet
metadata:
 labels:
 machine.openshift.io/cluster-api-cluster: <infrastructure_id> 1
 name: <infrastructure_id>-<role> 2
 namespace: openshift-machine-api
spec:
 replicas: 1
 selector:
 matchLabels:
 machine.openshift.io/cluster-api-cluster: <infrastructure_id>
 machine.openshift.io/cluster-api-machineset: <infrastructure_id>-<role>
 template:
 metadata:
 labels:
 machine.openshift.io/cluster-api-cluster: <infrastructure_id>
 machine.openshift.io/cluster-api-machine-role: <role>
 machine.openshift.io/cluster-api-machine-type: <role>
 machine.openshift.io/cluster-api-machineset: <infrastructure_id>-<role>
 spec:
 providerSpec: 3
 ...

$ oc create -f <file_name>.yaml

$ oc get machineset -n openshift-machine-api

NAME DESIRED CURRENT READY AVAILABLE AGE

OpenShift Container Platform 4.16 Windows Container Support for OpenShift

42

When the new compute machine set is available, the DESIRED and CURRENT values match. If
the compute machine set is not available, wait a few minutes and run the command again.

6.3.4. Additional resources

Overview of machine management

6.4. CREATING A WINDOWS MACHINESET OBJECT ON NUTANIX

You can create a Windows MachineSet object to serve a specific purpose in your OpenShift Container
Platform cluster on Nutanix. For example, you might create infrastructure Windows machine sets and
related machines so that you can move supporting Windows workloads to the new Windows machines.

Prerequisites

You installed the Windows Machine Config Operator (WMCO) using Operator Lifecycle
Manager (OLM).

You are using a supported Windows Server as the operating system image.

You added a new DNS entry for the internal API server URL, api-int.<cluster_name>.
<base_domain>, that points to the external API server URL, api.<cluster_name>.
<base_domain>. This can be a CNAME or an additional A record.

6.4.1. Machine API overview

The Machine API is a combination of primary resources that are based on the upstream Cluster API
project and custom OpenShift Container Platform resources.

For OpenShift Container Platform 4.16 clusters, the Machine API performs all node host provisioning
management actions after the cluster installation finishes. Because of this system, OpenShift Container
Platform 4.16 offers an elastic, dynamic provisioning method on top of public or private cloud
infrastructure.

The two primary resources are:

Machines

A fundamental unit that describes the host for a node. A machine has a providerSpec specification,
which describes the types of compute nodes that are offered for different cloud platforms. For
example, a machine type for a compute node might define a specific machine type and required
metadata.

Machine sets

MachineSet resources are groups of compute machines. Compute machine sets are to compute
machines as replica sets are to pods. If you need more compute machines or must scale them down,
you change the replicas field on the MachineSet resource to meet your compute need.

agl030519-vplxk-infra-us-east-1a 1 1 1 1 11m
agl030519-vplxk-worker-us-east-1a 1 1 1 1 55m
agl030519-vplxk-worker-us-east-1b 1 1 1 1 55m
agl030519-vplxk-worker-us-east-1c 1 1 1 1 55m
agl030519-vplxk-worker-us-east-1d 0 0 55m
agl030519-vplxk-worker-us-east-1e 0 0 55m
agl030519-vplxk-worker-us-east-1f 0 0 55m

CHAPTER 6. CREATING WINDOWS MACHINE SETS

43

https://docs.redhat.com/en/documentation/openshift_container_platform/4.16/html-single/machine_management/#overview-of-machine-management

WARNING

Control plane machines cannot be managed by compute machine sets.

Control plane machine sets provide management capabilities for supported
control plane machines that are similar to what compute machine sets provide
for compute machines.

For more information, see “Managing control plane machines".

The following custom resources add more capabilities to your cluster:

Machine autoscaler

The MachineAutoscaler resource automatically scales compute machines in a cloud. You can set
the minimum and maximum scaling boundaries for nodes in a specified compute machine set, and
the machine autoscaler maintains that range of nodes.
The MachineAutoscaler object takes effect after a ClusterAutoscaler object exists. Both
ClusterAutoscaler and MachineAutoscaler resources are made available by the
ClusterAutoscalerOperator object.

Cluster autoscaler

This resource is based on the upstream cluster autoscaler project. In the OpenShift Container
Platform implementation, it is integrated with the Machine API by extending the compute machine
set API. You can use the cluster autoscaler to manage your cluster in the following ways:

Set cluster-wide scaling limits for resources such as cores, nodes, memory, and GPU

Set the priority so that the cluster prioritizes pods and new nodes are not brought online for
less important pods

Set the scaling policy so that you can scale up nodes but not scale them down

Machine health check

The MachineHealthCheck resource detects when a machine is unhealthy, deletes it, and, on
supported platforms, makes a new machine.

In OpenShift Container Platform version 3.11, you could not roll out a multi-zone architecture easily
because the cluster did not manage machine provisioning. Beginning with OpenShift Container Platform
version 4.1, this process is easier. Each compute machine set is scoped to a single zone, so the
installation program sends out compute machine sets across availability zones on your behalf. And then
because your compute is dynamic, and in the face of a zone failure, you always have a zone for when you
must rebalance your machines. In global Azure regions that do not have multiple availability zones, you
can use availability sets to ensure high availability. The autoscaler provides best-effort balancing over
the life of a cluster.

6.4.2. Sample YAML for a Windows MachineSet object on Nutanix

This sample YAML defines a Windows MachineSet object running on Nutanix that the Windows
Machine Config Operator (WMCO) can react upon.

OpenShift Container Platform 4.16 Windows Container Support for OpenShift

44

1 3 5 Specify the infrastructure ID that is based on the cluster ID that you set when you provisioned
the cluster. You can obtain the infrastructure ID by running the following command:

apiVersion: machine.openshift.io/v1beta1
kind: MachineSet
metadata:
 labels:
 machine.openshift.io/cluster-api-cluster: <infrastructure_id> 1
 name: <infrastructure_id>-windows-worker-<zone> 2
 namespace: openshift-machine-api
spec:
 replicas: 1
 selector:
 matchLabels:
 machine.openshift.io/cluster-api-cluster: <infrastructure_id> 3
 machine.openshift.io/cluster-api-machineset: <infrastructure_id>-windows-worker-<zone> 4
 template:
 metadata:
 labels:
 machine.openshift.io/cluster-api-cluster: <infrastructure_id> 5
 machine.openshift.io/cluster-api-machine-role: worker
 machine.openshift.io/cluster-api-machine-type: worker
 machine.openshift.io/cluster-api-machineset: <infrastructure_id>-windows-worker-<zone> 6
 machine.openshift.io/os-id: Windows 7
 spec:
 metadata:
 labels:
 node-role.kubernetes.io/worker: "" 8
 providerSpec:
 value:
 apiVersion: machine.openshift.io/v1
 bootType: "" 9
 categories: null
 cluster: 10
 type: uuid
 uuid: <cluster_uuid>
 credentialsSecret:
 name: nutanix-credentials 11
 image: 12
 name: <image_id>
 type: name
 kind: NutanixMachineProviderConfig 13
 memorySize: 16Gi 14
 project:
 type: ""
 subnets: 15
 - type: uuid
 uuid: <subnet_uuid>
 systemDiskSize: 120Gi 16
 userDataSecret:
 name: windows-user-data 17
 vcpuSockets: 4 18
 vcpusPerSocket: 1 19

CHAPTER 6. CREATING WINDOWS MACHINE SETS

45

2 4 6

7

8

9

10

11

12

13

14

15

16

17

18

19

Specify the infrastructure ID, worker label, and zone.

Configure the compute machine set as a Windows machine.

Configure the Windows node as a compute machine.

Specifies the boot type that the compute machines use. For more information about boot types,
see Understanding UEFI, Secure Boot, and TPM in the Virtualized Environment . Valid values are
Legacy, SecureBoot, or UEFI. The default is Legacy.

NOTE

You must use the Legacy boot type in OpenShift Container Platform 4.16.

Specifies a Nutanix Prism Element cluster configuration. In this example, the cluster type is uuid, so
there is a uuid stanza.

Specifies the secret name for the cluster. Do not change this value.

Specifies the image to use. Use an image from an existing default compute machine set for the
cluster.

Specifies the cloud provider platform type. Do not change this value.

Specifies the amount of memory for the cluster in Gi.

Specifies a subnet configuration. In this example, the subnet type is uuid, so there is a uuid stanza.

Specifies the size of the system disk in Gi.

Specifies the name of the secret in the user data YAML file that is in the openshift-machine-api
namespace. Use the value that installation program populates in the default compute machine set.

Specifies the number of vCPU sockets.

Specifies the number of vCPUs per socket.

6.4.3. Creating a compute machine set

In addition to the compute machine sets created by the installation program, you can create your own to
dynamically manage the machine compute resources for specific workloads of your choice.

Prerequisites

Deploy an OpenShift Container Platform cluster.

Install the OpenShift CLI (oc).

Log in to oc as a user with cluster-admin permission.

Procedure

1. Create a new YAML file that contains the compute machine set custom resource (CR) sample

$ oc get -o jsonpath='{.status.infrastructureName}{"\n"}' infrastructure cluster

OpenShift Container Platform 4.16 Windows Container Support for OpenShift

46

https://portal.nutanix.com/page/documents/kbs/details?targetId=kA07V000000H3K9SAK

1

1. Create a new YAML file that contains the compute machine set custom resource (CR) sample
and is named <file_name>.yaml.
Ensure that you set the <clusterID> and <role> parameter values.

2. Optional: If you are not sure which value to set for a specific field, you can check an existing
compute machine set from your cluster.

a. To list the compute machine sets in your cluster, run the following command:

Example output

b. To view values of a specific compute machine set custom resource (CR), run the following
command:

Example output

The cluster infrastructure ID.

$ oc get machinesets -n openshift-machine-api

NAME DESIRED CURRENT READY AVAILABLE AGE
agl030519-vplxk-worker-us-east-1a 1 1 1 1 55m
agl030519-vplxk-worker-us-east-1b 1 1 1 1 55m
agl030519-vplxk-worker-us-east-1c 1 1 1 1 55m
agl030519-vplxk-worker-us-east-1d 0 0 55m
agl030519-vplxk-worker-us-east-1e 0 0 55m
agl030519-vplxk-worker-us-east-1f 0 0 55m

$ oc get machineset <machineset_name> \
 -n openshift-machine-api -o yaml

apiVersion: machine.openshift.io/v1beta1
kind: MachineSet
metadata:
 labels:
 machine.openshift.io/cluster-api-cluster: <infrastructure_id> 1
 name: <infrastructure_id>-<role> 2
 namespace: openshift-machine-api
spec:
 replicas: 1
 selector:
 matchLabels:
 machine.openshift.io/cluster-api-cluster: <infrastructure_id>
 machine.openshift.io/cluster-api-machineset: <infrastructure_id>-<role>
 template:
 metadata:
 labels:
 machine.openshift.io/cluster-api-cluster: <infrastructure_id>
 machine.openshift.io/cluster-api-machine-role: <role>
 machine.openshift.io/cluster-api-machine-type: <role>
 machine.openshift.io/cluster-api-machineset: <infrastructure_id>-<role>
 spec:
 providerSpec: 3
 ...

CHAPTER 6. CREATING WINDOWS MACHINE SETS

47

2

3

A default node label.

NOTE

For clusters that have user-provisioned infrastructure, a compute
machine set can only create worker and infra type machines.

The values in the <providerSpec> section of the compute machine set CR are
platform-specific. For more information about <providerSpec> parameters in the CR,
see the sample compute machine set CR configuration for your provider.

3. Create a MachineSet CR by running the following command:

Verification

View the list of compute machine sets by running the following command:

Example output

When the new compute machine set is available, the DESIRED and CURRENT values match. If
the compute machine set is not available, wait a few minutes and run the command again.

6.4.4. Additional resources

Overview of machine management.

6.5. CREATING A WINDOWS MACHINE SET ON VSPHERE

You can create a Windows MachineSet object to serve a specific purpose in your OpenShift Container
Platform cluster on VMware vSphere. For example, you might create infrastructure Windows machine
sets and related machines so that you can move supporting Windows workloads to the new Windows
machines.

Prerequisites

You installed the Windows Machine Config Operator (WMCO) using Operator Lifecycle
Manager (OLM).

You are using a supported Windows Server as the operating system image.

$ oc create -f <file_name>.yaml

$ oc get machineset -n openshift-machine-api

NAME DESIRED CURRENT READY AVAILABLE AGE
agl030519-vplxk-infra-us-east-1a 1 1 1 1 11m
agl030519-vplxk-worker-us-east-1a 1 1 1 1 55m
agl030519-vplxk-worker-us-east-1b 1 1 1 1 55m
agl030519-vplxk-worker-us-east-1c 1 1 1 1 55m
agl030519-vplxk-worker-us-east-1d 0 0 55m
agl030519-vplxk-worker-us-east-1e 0 0 55m
agl030519-vplxk-worker-us-east-1f 0 0 55m

OpenShift Container Platform 4.16 Windows Container Support for OpenShift

48

https://docs.redhat.com/en/documentation/openshift_container_platform/4.16/html-single/machine_management/#overview-of-machine-management

6.5.1. Machine API overview

The Machine API is a combination of primary resources that are based on the upstream Cluster API
project and custom OpenShift Container Platform resources.

For OpenShift Container Platform 4.16 clusters, the Machine API performs all node host provisioning
management actions after the cluster installation finishes. Because of this system, OpenShift Container
Platform 4.16 offers an elastic, dynamic provisioning method on top of public or private cloud
infrastructure.

The two primary resources are:

Machines

A fundamental unit that describes the host for a node. A machine has a providerSpec specification,
which describes the types of compute nodes that are offered for different cloud platforms. For
example, a machine type for a compute node might define a specific machine type and required
metadata.

Machine sets

MachineSet resources are groups of compute machines. Compute machine sets are to compute
machines as replica sets are to pods. If you need more compute machines or must scale them down,
you change the replicas field on the MachineSet resource to meet your compute need.

WARNING

Control plane machines cannot be managed by compute machine sets.

Control plane machine sets provide management capabilities for supported
control plane machines that are similar to what compute machine sets provide
for compute machines.

For more information, see “Managing control plane machines".

The following custom resources add more capabilities to your cluster:

Machine autoscaler

The MachineAutoscaler resource automatically scales compute machines in a cloud. You can set
the minimum and maximum scaling boundaries for nodes in a specified compute machine set, and
the machine autoscaler maintains that range of nodes.
The MachineAutoscaler object takes effect after a ClusterAutoscaler object exists. Both
ClusterAutoscaler and MachineAutoscaler resources are made available by the
ClusterAutoscalerOperator object.

Cluster autoscaler

This resource is based on the upstream cluster autoscaler project. In the OpenShift Container
Platform implementation, it is integrated with the Machine API by extending the compute machine
set API. You can use the cluster autoscaler to manage your cluster in the following ways:

Set cluster-wide scaling limits for resources such as cores, nodes, memory, and GPU

CHAPTER 6. CREATING WINDOWS MACHINE SETS

49

Set the priority so that the cluster prioritizes pods and new nodes are not brought online for
less important pods

Set the scaling policy so that you can scale up nodes but not scale them down

Machine health check

The MachineHealthCheck resource detects when a machine is unhealthy, deletes it, and, on
supported platforms, makes a new machine.

In OpenShift Container Platform version 3.11, you could not roll out a multi-zone architecture easily
because the cluster did not manage machine provisioning. Beginning with OpenShift Container Platform
version 4.1, this process is easier. Each compute machine set is scoped to a single zone, so the
installation program sends out compute machine sets across availability zones on your behalf. And then
because your compute is dynamic, and in the face of a zone failure, you always have a zone for when you
must rebalance your machines. In global Azure regions that do not have multiple availability zones, you
can use availability sets to ensure high availability. The autoscaler provides best-effort balancing over
the life of a cluster.

6.5.2. Preparing your vSphere environment for Windows container workloads

You must prepare your vSphere environment for Windows container workloads by creating the vSphere
Windows VM golden image and enabling communication with the internal API server for the WMCO.

6.5.2.1. Creating the vSphere Windows VM golden image

Create a vSphere Windows virtual machine (VM) golden image.

Prerequisites

You have created a private/public key pair, which is used to configure key-based authentication
in the OpenSSH server. The private key must also be configured in the Windows Machine
Config Operator (WMCO) namespace. This is required to allow the WMCO to communicate
with the Windows VM. See the "Configuring a secret for the Windows Machine Config Operator"
section for more details.

NOTE

You must use Microsoft PowerShell commands in several cases when creating your
Windows VM. PowerShell commands in this guide are distinguished by the PS C:\> prefix.

Procedure

1. Select a compatible Windows Server version. Currently, the Windows Machine Config Operator
(WMCO) stable version supports Windows Server 2022 Long-Term Servicing Channel with the
OS-level container networking patch KB5012637.

2. Create a new VM in the vSphere client using the VM golden image with a compatible Windows
Server version. For more information about compatible versions, see the "Windows Machine
Config Operator prerequisites" section of the "Red Hat OpenShift support for Windows
Containers release notes."

IMPORTANT

OpenShift Container Platform 4.16 Windows Container Support for OpenShift

50

https://docs.microsoft.com/en-us/powershell/scripting/install/installing-powershell
https://support.microsoft.com/en-us/topic/april-25-2022-kb5012637-os-build-20348-681-preview-2233d69c-d4a5-4be9-8c24-04a450861a8d

IMPORTANT

The virtual hardware version for your VM must meet the infrastructure
requirements for OpenShift Container Platform. For more information, see the
"VMware vSphere infrastructure requirements" section in the OpenShift
Container Platform documentation. Also, you can refer to VMware’s
documentation on virtual machine hardware versions.

3. Install and configure VMware Tools version 11.0.6 or greater on the Windows VM. See the
VMware Tools documentation for more information.

4. After installing VMware Tools on the Windows VM, verify the following:

a. The C:\ProgramData\VMware\VMware Tools\tools.conf file exists with the following
entry:

If the tools.conf file does not exist, create it with the exclude-nics option uncommented
and set as an empty value.

This entry ensures the cloned vNIC generated on the Windows VM by the hybrid-overlay is
not ignored.

b. The Windows VM has a valid IP address in vCenter:

c. The VMTools Windows service is running:

5. Install and configure the OpenSSH Server on the Windows VM. See Microsoft’s documentation
on installing OpenSSH for more details.

6. Set up SSH access for an administrative user. See Microsoft’s documentation on the
Administrative user to do this.

IMPORTANT

The public key used in the instructions must correspond to the private key you
create later in the WMCO namespace that holds your secret. See the
"Configuring a secret for the Windows Machine Config Operator" section for
more details.

7. You must create a new firewall rule in the Windows VM that allows incoming connections for
container logs. Run the following PowerShell command to create the firewall rule on TCP port
10250:

8. Clone the Windows VM so it is a reusable image. Follow the VMware documentation on how to
clone an existing virtual machine for more details.

exclude-nics=

C:\> ipconfig

PS C:\> Get-Service -Name VMTools | Select Status, StartType

PS C:\> New-NetFirewallRule -DisplayName "ContainerLogsPort" -LocalPort 10250 -
Enabled True -Direction Inbound -Protocol TCP -Action Allow -EdgeTraversalPolicy Allow

CHAPTER 6. CREATING WINDOWS MACHINE SETS

51

https://kb.vmware.com/s/article/1003746
https://docs.vmware.com/en/VMware-Tools/index.html
https://docs.microsoft.com/en-us/windows-server/administration/openssh/openssh_install_firstuse
https://docs.microsoft.com/en-us/windows-server/administration/openssh/openssh_keymanagement#administrative-user
https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.vm_admin.doc/GUID-1E185A80-0B97-4B46-A32B-3EF8F309BEED.html

1

9. In the cloned Windows VM, run the Windows Sysprep tool:

Specify the path to your unattend.xml file.

NOTE

There is a limit on how many times you can run the sysprep command on a
Windows image. Consult Microsoft’s documentation for more information.

An example unattend.xml is provided, which maintains all the changes needed for the WMCO.
You must modify this example; it cannot be used directly.

Example 6.1. Example unattend.xml

C:\> C:\Windows\System32\Sysprep\sysprep.exe /generalize /oobe /shutdown /unattend:
<path_to_unattend.xml> 1

<?xml version="1.0" encoding="UTF-8"?>
<unattend xmlns="urn:schemas-microsoft-com:unattend">
 <settings pass="specialize">
 <component xmlns:wcm="http://schemas.microsoft.com/WMIConfig/2002/State"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" name="Microsoft-Windows-
International-Core" processorArchitecture="amd64"
publicKeyToken="31bf3856ad364e35" language="neutral" versionScope="nonSxS">
 <InputLocale>0409:00000409</InputLocale>
 <SystemLocale>en-US</SystemLocale>
 <UILanguage>en-US</UILanguage>
 <UILanguageFallback>en-US</UILanguageFallback>
 <UserLocale>en-US</UserLocale>
 </component>
 <component xmlns:wcm="http://schemas.microsoft.com/WMIConfig/2002/State"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" name="Microsoft-Windows-
Security-SPP-UX" processorArchitecture="amd64" publicKeyToken="31bf3856ad364e35"
language="neutral" versionScope="nonSxS">
 <SkipAutoActivation>true</SkipAutoActivation>
 </component>
 <component xmlns:wcm="http://schemas.microsoft.com/WMIConfig/2002/State"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" name="Microsoft-Windows-
SQMApi" processorArchitecture="amd64" publicKeyToken="31bf3856ad364e35"
language="neutral" versionScope="nonSxS">
 <CEIPEnabled>0</CEIPEnabled>
 </component>
 <component xmlns:wcm="http://schemas.microsoft.com/WMIConfig/2002/State"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" name="Microsoft-Windows-
Shell-Setup" processorArchitecture="amd64" publicKeyToken="31bf3856ad364e35"
language="neutral" versionScope="nonSxS">
 <ComputerName>winhost</ComputerName> 1
 </component>
 </settings>
 <settings pass="oobeSystem">
 <component xmlns:wcm="http://schemas.microsoft.com/WMIConfig/2002/State"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" name="Microsoft-Windows-
Shell-Setup" processorArchitecture="amd64" publicKeyToken="31bf3856ad364e35"

OpenShift Container Platform 4.16 Windows Container Support for OpenShift

52

https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/sysprep--generalize--a-windows-installation
https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/sysprep--generalize--a-windows-installation#limits-on-how-many-times-you-can-run-sysprep

1

2

3

Specify the ComputerName, which must follow the Kubernetes' names specification.
These specifications also apply to Guest OS customization performed on the resulting
template while creating new VMs.

Disable the automatic logon to avoid the security issue of leaving an open terminal with
Administrator privileges at boot. This is the default value and must not be changed.

Replace the MyPassword placeholder with the password for the Administrator
account. This prevents the built-in Administrator account from having a blank password
by default. Follow Microsoft’s best practices for choosing a password .

After the Sysprep tool has completed, the Windows VM will power off. You must not use or
power on this VM anymore.

10. Convert the Windows VM to a template in vCenter .

6.5.2.1.1. Additional resources

Configuring a secret for the Windows Machine Config Operator

VMware vSphere infrastructure requirements

6.5.2.2. Enabling communication with the internal API server for the WMCO on vSphere

The Windows Machine Config Operator (WMCO) downloads the Ignition config files from the internal

language="neutral" versionScope="nonSxS">
 <AutoLogon>
 <Enabled>false</Enabled> 2
 </AutoLogon>
 <OOBE>
 <HideEULAPage>true</HideEULAPage>
 <HideLocalAccountScreen>true</HideLocalAccountScreen>
 <HideOEMRegistrationScreen>true</HideOEMRegistrationScreen>
 <HideOnlineAccountScreens>true</HideOnlineAccountScreens>
 <HideWirelessSetupInOOBE>true</HideWirelessSetupInOOBE>
 <NetworkLocation>Work</NetworkLocation>
 <ProtectYourPC>1</ProtectYourPC>
 <SkipMachineOOBE>true</SkipMachineOOBE>
 <SkipUserOOBE>true</SkipUserOOBE>
 </OOBE>
 <RegisteredOrganization>Organization</RegisteredOrganization>
 <RegisteredOwner>Owner</RegisteredOwner>
 <DisableAutoDaylightTimeSet>false</DisableAutoDaylightTimeSet>
 <TimeZone>Eastern Standard Time</TimeZone>
 <UserAccounts>
 <AdministratorPassword>
 <Value>MyPassword</Value> 3
 <PlainText>true</PlainText>
 </AdministratorPassword>
 </UserAccounts>
 </component>
 </settings>
</unattend>

CHAPTER 6. CREATING WINDOWS MACHINE SETS

53

https://kubernetes.io/docs/concepts/overview/working-with-objects/names
https://docs.microsoft.com/en-us/windows/security/threat-protection/security-policy-settings/password-must-meet-complexity-requirements
https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.vm_admin.doc/GUID-5B3737CC-28DB-4334-BD18-6E12011CDC9F.html
https://docs.redhat.com/en/documentation/openshift_container_platform/4.16/html-single/installing/#installation-vsphere-infrastructure_ipi-vsphere-installation-reqs

The Windows Machine Config Operator (WMCO) downloads the Ignition config files from the internal
API server endpoint. You must enable communication with the internal API server so that your Windows
virtual machine (VM) can download the Ignition config files, and the kubelet on the configured VM can
only communicate with the internal API server.

Prerequisites

You have installed a cluster on vSphere.

Procedure

Add a new DNS entry for api-int.<cluster_name>.<base_domain> that points to the external
API server URL api.<cluster_name>.<base_domain>. This can be a CNAME or an additional A
record.

NOTE

The external API endpoint was already created as part of the initial cluster installation on
vSphere.

6.5.3. Sample YAML for a Windows MachineSet object on vSphere

This sample YAML defines a Windows MachineSet object running on VMware vSphere that the
Windows Machine Config Operator (WMCO) can react upon.

apiVersion: machine.openshift.io/v1beta1
kind: MachineSet
metadata:
 labels:
 machine.openshift.io/cluster-api-cluster: <infrastructure_id> 1
 name: <windows_machine_set_name> 2
 namespace: openshift-machine-api
spec:
 replicas: 1
 selector:
 matchLabels:
 machine.openshift.io/cluster-api-cluster: <infrastructure_id> 3
 machine.openshift.io/cluster-api-machineset: <windows_machine_set_name> 4
 template:
 metadata:
 labels:
 machine.openshift.io/cluster-api-cluster: <infrastructure_id> 5
 machine.openshift.io/cluster-api-machine-role: worker
 machine.openshift.io/cluster-api-machine-type: worker
 machine.openshift.io/cluster-api-machineset: <windows_machine_set_name> 6
 machine.openshift.io/os-id: Windows 7
 spec:
 metadata:
 labels:
 node-role.kubernetes.io/worker: "" 8
 providerSpec:
 value:
 apiVersion: vsphereprovider.openshift.io/v1beta1
 credentialsSecret:

OpenShift Container Platform 4.16 Windows Container Support for OpenShift

54

1 3 5

2 4 6

7

8

9

10

11

Specify the infrastructure ID that is based on the cluster ID that you set when you provisioned
the cluster. You can obtain the infrastructure ID by running the following command:

Specify the Windows compute machine set name. The compute machine set name cannot be
more than 9 characters long, due to the way machine names are generated in vSphere.

Configure the compute machine set as a Windows machine.

Configure the Windows node as a compute machine.

Specify the size of the vSphere Virtual Machine Disk (VMDK).

NOTE

This parameter does not set the size of the Windows partition. You can resize the
Windows partition by using the unattend.xml file or by creating the vSphere
Windows virtual machine (VM) golden image with the required disk size.

Specify the vSphere VM network to deploy the compute machine set to. This VM network must be
where other Linux compute machines reside in the cluster.

Specify the full path of the Windows vSphere VM template to use, such as golden-
images/windows-server-template. The name must be unique.

IMPORTANT

Do not specify the original VM template. The VM template must remain off and must
be cloned for new Windows machines. Starting the VM template configures the VM
template as a VM on the platform, which prevents it from being used as a template
that compute machine sets can apply configurations to.

 name: vsphere-cloud-credentials
 diskGiB: 128 9
 kind: VSphereMachineProviderSpec
 memoryMiB: 16384
 network:
 devices:
 - networkName: "<vm_network_name>" 10
 numCPUs: 4
 numCoresPerSocket: 1
 snapshot: ""
 template: <windows_vm_template_name> 11
 userDataSecret:
 name: windows-user-data 12
 workspace:
 datacenter: <vcenter_data_center_name> 13
 datastore: <vcenter_datastore_name> 14
 folder: <vcenter_vm_folder_path> 15
 resourcePool: <vsphere_resource_pool> 16
 server: <vcenter_server_ip> 17

$ oc get -o jsonpath='{.status.infrastructureName}{"\n"}' infrastructure cluster

CHAPTER 6. CREATING WINDOWS MACHINE SETS

55

12

13

14

15

16

17

The windows-user-data is created by the WMCO when the first Windows machine is configured.
After that, the windows-user-data is available for all subsequent compute machine sets to

Specify the vCenter data center to deploy the compute machine set on.

Specify the vCenter datastore to deploy the compute machine set on.

Specify the path to the vSphere VM folder in vCenter, such as /dc1/vm/user-inst-5ddjd.

Optional: Specify the vSphere resource pool for your Windows VMs.

Specify the vCenter server IP or fully qualified domain name.

6.5.4. Creating a compute machine set

In addition to the compute machine sets created by the installation program, you can create your own to
dynamically manage the machine compute resources for specific workloads of your choice.

Prerequisites

Deploy an OpenShift Container Platform cluster.

Install the OpenShift CLI (oc).

Log in to oc as a user with cluster-admin permission.

In disconnected environments, the image specified in the MachineSet custom resource (CR)
must have the OpenSSH server v0.0.1.0 installed.

Procedure

1. Create a new YAML file that contains the compute machine set custom resource (CR) sample
and is named <file_name>.yaml.
Ensure that you set the <clusterID> and <role> parameter values.

2. Optional: If you are not sure which value to set for a specific field, you can check an existing
compute machine set from your cluster.

a. To list the compute machine sets in your cluster, run the following command:

Example output

b. To view values of a specific compute machine set custom resource (CR), run the following
command:

$ oc get machinesets -n openshift-machine-api

NAME DESIRED CURRENT READY AVAILABLE AGE
agl030519-vplxk-worker-us-east-1a 1 1 1 1 55m
agl030519-vplxk-worker-us-east-1b 1 1 1 1 55m
agl030519-vplxk-worker-us-east-1c 1 1 1 1 55m
agl030519-vplxk-worker-us-east-1d 0 0 55m
agl030519-vplxk-worker-us-east-1e 0 0 55m
agl030519-vplxk-worker-us-east-1f 0 0 55m

OpenShift Container Platform 4.16 Windows Container Support for OpenShift

56

https://learn.microsoft.com/en-us/windows-server/administration/openssh/openssh_install_firstuse?tabs=powershell#install-openssh-for-windows

1

2

3

Example output

The cluster infrastructure ID.

A default node label.

NOTE

For clusters that have user-provisioned infrastructure, a compute
machine set can only create worker and infra type machines.

The values in the <providerSpec> section of the compute machine set CR are
platform-specific. For more information about <providerSpec> parameters in the CR,
see the sample compute machine set CR configuration for your provider.

3. Create a MachineSet CR by running the following command:

Verification

View the list of compute machine sets by running the following command:

$ oc get machineset <machineset_name> \
 -n openshift-machine-api -o yaml

apiVersion: machine.openshift.io/v1beta1
kind: MachineSet
metadata:
 labels:
 machine.openshift.io/cluster-api-cluster: <infrastructure_id> 1
 name: <infrastructure_id>-<role> 2
 namespace: openshift-machine-api
spec:
 replicas: 1
 selector:
 matchLabels:
 machine.openshift.io/cluster-api-cluster: <infrastructure_id>
 machine.openshift.io/cluster-api-machineset: <infrastructure_id>-<role>
 template:
 metadata:
 labels:
 machine.openshift.io/cluster-api-cluster: <infrastructure_id>
 machine.openshift.io/cluster-api-machine-role: <role>
 machine.openshift.io/cluster-api-machine-type: <role>
 machine.openshift.io/cluster-api-machineset: <infrastructure_id>-<role>
 spec:
 providerSpec: 3
 ...

$ oc create -f <file_name>.yaml

$ oc get machineset -n openshift-machine-api

CHAPTER 6. CREATING WINDOWS MACHINE SETS

57

Example output

When the new compute machine set is available, the DESIRED and CURRENT values match. If
the compute machine set is not available, wait a few minutes and run the command again.

6.5.5. Additional resources

Overview of machine management

NAME DESIRED CURRENT READY AVAILABLE AGE
agl030519-vplxk-windows-worker-us-east-1a 1 1 1 1 11m
agl030519-vplxk-worker-us-east-1a 1 1 1 1 55m
agl030519-vplxk-worker-us-east-1b 1 1 1 1 55m
agl030519-vplxk-worker-us-east-1c 1 1 1 1 55m
agl030519-vplxk-worker-us-east-1d 0 0 55m
agl030519-vplxk-worker-us-east-1e 0 0 55m
agl030519-vplxk-worker-us-east-1f 0 0 55m

OpenShift Container Platform 4.16 Windows Container Support for OpenShift

58

https://docs.redhat.com/en/documentation/openshift_container_platform/4.16/html-single/machine_management/#overview-of-machine-management

CHAPTER 7. SCHEDULING WINDOWS CONTAINER
WORKLOADS

You can schedule Windows workloads to Windows compute nodes.

Prerequisites

You installed the Windows Machine Config Operator (WMCO) using Operator Lifecycle
Manager (OLM).

You are using a Windows container as the OS image.

You have created a Windows compute machine set.

7.1. WINDOWS POD PLACEMENT

Before deploying your Windows workloads to the cluster, you must configure your Windows node
scheduling so pods are assigned correctly. Since you have a machine hosting your Windows node, it is
managed the same as a Linux-based node. Likewise, scheduling a Windows pod to the appropriate
Windows node is completed similarly, using mechanisms like taints, tolerations, and node selectors.

With multiple operating systems, and the ability to run multiple Windows OS variants in the same cluster,
you must map your Windows pods to a base Windows OS variant by using a RuntimeClass object. For
example, if you have multiple Windows nodes running on different Windows Server container versions,
the cluster could schedule your Windows pods to an incompatible Windows OS variant. You must have
RuntimeClass objects configured for each Windows OS variant on your cluster. Using a RuntimeClass
object is also recommended if you have only one Windows OS variant available in your cluster.

For more information, see Microsoft’s documentation on Host and container version compatibility.

Also, it is recommended that you set the spec.os.name.windows parameter in your workload pods. The
Windows Machine Config Operator (WMCO) uses this field to authoritatively identify the pod operating
system for validation and is used to enforce Windows-specific pod security context constraints (SCCs).
Currently, this parameter has no effect on pod scheduling. For more information about this parameter,
see the Kubernetes Pods documentation .

IMPORTANT

The container base image must be the same Windows OS version and build number that
is running on the node where the conainer is to be scheduled.

Also, if you upgrade the Windows nodes from one version to another, for example going
from 20H2 to 2022, you must upgrade your container base image to match the new
version. For more information, see Windows container version compatibility.

Additional resources

Controlling pod placement using the scheduler

Controlling pod placement using node taints

Placing pods on specific nodes using node selectors

7.2. CREATING A RUNTIMECLASS OBJECT TO ENCAPSULATE

CHAPTER 7. SCHEDULING WINDOWS CONTAINER WORKLOADS

59

https://docs.microsoft.com/en-us/virtualization/windowscontainers/deploy-containers/update-containers#host-and-container-version-compatibility
https://kubernetes.io/docs/concepts/workloads/pods/#pod-os
https://learn.microsoft.com/en-us/virtualization/windowscontainers/deploy-containers/version-compatibility?tabs=windows-server-2022%2Cwindows-11-21H2
https://docs.redhat.com/en/documentation/openshift_container_platform/4.16/html-single/nodes/#nodes-scheduler-about
https://docs.redhat.com/en/documentation/openshift_container_platform/4.16/html-single/nodes/#nodes-scheduler-taints-tolerations
https://docs.redhat.com/en/documentation/openshift_container_platform/4.16/html-single/nodes/#nodes-scheduler-node-selectors

1

2

3

7.2. CREATING A RUNTIMECLASS OBJECT TO ENCAPSULATE
SCHEDULING MECHANISMS

Using a RuntimeClass object simplifies the use of scheduling mechanisms like taints and tolerations;
you deploy a runtime class that encapsulates your taints and tolerations and then apply it to your pods
to schedule them to the appropriate node. Creating a runtime class is also necessary in clusters that
support multiple operating system variants.

Procedure

1. Create a RuntimeClass object YAML file. For example, runtime-class.yaml:

Specify the RuntimeClass object name, which is defined in the pods you want to be
managed by this runtime class.

Specify labels that must be present on nodes that support this runtime class. Pods using
this runtime class can only be scheduled to a node matched by this selector. The node
selector of the runtime class is merged with the existing node selector of the pod. Any
conflicts prevent the pod from being scheduled to the node.

For Windows 2019, specify the node.kubernetes.io/windows-build: '10.0.17763'
label.

For Windows 2022, specify the node.kubernetes.io/windows-build: '10.0.20348'
label.

Specify tolerations to append to pods, excluding duplicates, running with this runtime class
during admission. This combines the set of nodes tolerated by the pod and the runtime
class.

2. Create the RuntimeClass object:

apiVersion: node.k8s.io/v1
kind: RuntimeClass
metadata:
 name: windows2019 1
handler: 'runhcs-wcow-process'
scheduling:
 nodeSelector: 2
 kubernetes.io/os: 'windows'
 kubernetes.io/arch: 'amd64'
 node.kubernetes.io/windows-build: '10.0.17763'
 tolerations: 3
 - effect: NoSchedule
 key: os
 operator: Equal
 value: "windows"
 - effect: NoSchedule
 key: os
 operator: Equal
 value: "Windows"

$ oc create -f <file-name>.yaml

OpenShift Container Platform 4.16 Windows Container Support for OpenShift

60

1

For example:

3. Apply the RuntimeClass object to your pod to ensure it is scheduled to the appropriate
operating system variant:

Specify the runtime class to manage the scheduling of your pod.

7.3. SAMPLE WINDOWS CONTAINER WORKLOAD DEPLOYMENT

You can deploy Windows container workloads to your cluster once you have a Windows compute node
available.

NOTE

This sample deployment is provided for reference only.

Example Service object

Example Deployment object

$ oc create -f runtime-class.yaml

apiVersion: v1
kind: Pod
metadata:
 name: my-windows-pod
spec:
 runtimeClassName: windows2019 1
...

apiVersion: v1
kind: Service
metadata:
 name: win-webserver
 labels:
 app: win-webserver
spec:
 ports:
 # the port that this service should serve on
 - port: 80
 targetPort: 80
 selector:
 app: win-webserver
 type: LoadBalancer

apiVersion: apps/v1
kind: Deployment
metadata:
 labels:
 app: win-webserver
 name: win-webserver
spec:

CHAPTER 7. SCHEDULING WINDOWS CONTAINER WORKLOADS

61

1

2

3

Specify the container image to use: mcr.microsoft.com/powershell:<tag> or
mcr.microsoft.com/windows/servercore:<tag>. The container image must match the Windows
version running on the node.

For Windows 2019, use the ltsc2019 tag.

For Windows 2022, use the ltsc2022 tag.

Specify the commands to execute on the container.

For the mcr.microsoft.com/powershell:<tag> container image, you must define the
command as pwsh.exe.

For the mcr.microsoft.com/windows/servercore:<tag> container image, you must define
the command as powershell.exe.

Specify the runtime class you created for the Windows operating system variant on your cluster.

7.4. SUPPORT FOR WINDOWS CSI DRIVERS

Red Hat OpenShift support for Windows Containers installs CSI Proxy on all Windows nodes in the
cluster. CSI Proxy is a plug-in that enables CSI drivers to perform storage operations on the node.

To use persistent storage with Windows workloads, you must deploy a specific Windows CSI driver

 selector:
 matchLabels:
 app: win-webserver
 replicas: 1
 template:
 metadata:
 labels:
 app: win-webserver
 name: win-webserver
 spec:
 containers:
 - name: windowswebserver
 image: mcr.microsoft.com/windows/servercore:ltsc2019 1
 imagePullPolicy: IfNotPresent
 command:
 - powershell.exe 2
 - -command
 - $listener = New-Object System.Net.HttpListener; $listener.Prefixes.Add('http://*:80/');
$listener.Start();Write-Host('Listening at http://*:80/'); while ($listener.IsListening) { $context =
$listener.GetContext(); $response = $context.Response; $content='<html><body><H1>Red Hat
OpenShift + Windows Container Workloads</H1></body></html>'; $buffer =
[System.Text.Encoding]::UTF8.GetBytes($content); $response.ContentLength64 = $buffer.Length;
$response.OutputStream.Write($buffer, 0, $buffer.Length); $response.Close(); };
 securityContext:
 runAsNonRoot: false
 windowsOptions:
 runAsUserName: "ContainerAdministrator"
 os:
 name: "windows"
 runtimeClassName: windows2019 3

OpenShift Container Platform 4.16 Windows Container Support for OpenShift

62

https://github.com/kubernetes-csi/csi-proxy

To use persistent storage with Windows workloads, you must deploy a specific Windows CSI driver
daemon set, as described in your storage provider’s documentation. By default, the WMCO does not
automatically create the Windows CSI driver daemon set. See the list of supported production drivers in
the Kubernetes Container Storage Interface (CSI) Documentation.

7.5. SCALING A COMPUTE MACHINE SET MANUALLY

To add or remove an instance of a machine in a compute machine set, you can manually scale the
compute machine set.

This guidance is relevant to fully automated, installer-provisioned infrastructure installations.
Customized, user-provisioned infrastructure installations do not have compute machine sets.

Prerequisites

Install an OpenShift Container Platform cluster and the oc command line.

Log in to oc as a user with cluster-admin permission.

Procedure

1. View the compute machine sets that are in the cluster by running the following command:

The compute machine sets are listed in the form of <clusterid>-worker-<aws-region-az>.

2. View the compute machines that are in the cluster by running the following command:

3. Set the annotation on the compute machine that you want to delete by running the following
command:

4. Scale the compute machine set by running one of the following commands:

Or:

TIP

$ oc get machinesets.machine.openshift.io -n openshift-machine-api

$ oc get machines.machine.openshift.io -n openshift-machine-api

$ oc annotate machines.machine.openshift.io/<machine_name> -n openshift-machine-api
machine.openshift.io/delete-machine="true"

$ oc scale --replicas=2 machinesets.machine.openshift.io <machineset> -n openshift-
machine-api

$ oc edit machinesets.machine.openshift.io <machineset> -n openshift-machine-api

CHAPTER 7. SCHEDULING WINDOWS CONTAINER WORKLOADS

63

https://kubernetes-csi.github.io/docs/drivers.html#production-drivers

TIP

You can alternatively apply the following YAML to scale the compute machine set:

You can scale the compute machine set up or down. It takes several minutes for the new
machines to be available.

IMPORTANT

By default, the machine controller tries to drain the node that is backed by the
machine until it succeeds. In some situations, such as with a misconfigured pod
disruption budget, the drain operation might not be able to succeed. If the drain
operation fails, the machine controller cannot proceed removing the machine.

You can skip draining the node by annotating machine.openshift.io/exclude-
node-draining in a specific machine.

Verification

Verify the deletion of the intended machine by running the following command:

apiVersion: machine.openshift.io/v1beta1
kind: MachineSet
metadata:
 name: <machineset>
 namespace: openshift-machine-api
spec:
 replicas: 2

$ oc get machines.machine.openshift.io

OpenShift Container Platform 4.16 Windows Container Support for OpenShift

64

CHAPTER 8. WINDOWS NODE UPGRADES
You can ensure your Windows nodes have the latest updates by upgrading the Windows Machine Config
Operator (WMCO).

8.1. WINDOWS MACHINE CONFIG OPERATOR UPGRADES

When a new version of the Windows Machine Config Operator (WMCO) is released that is compatible
with the current cluster version, the Operator is upgraded based on the upgrade channel and
subscription approval strategy it was installed with when using the Operator Lifecycle Manager (OLM).
The WMCO upgrade results in the Kubernetes components in the Windows machine being upgraded.

NOTE

If you are upgrading to a new version of the WMCO and want to use cluster monitoring,
you must have the openshift.io/cluster-monitoring=true label present in the WMCO
namespace. If you add the label to a pre-existing WMCO namespace, and there are
already Windows nodes configured, restart the WMCO pod to allow monitoring graphs to
display.

For a non-disruptive upgrade, the WMCO terminates the Windows machines configured by the previous
version of the WMCO and recreates them using the current version. This is done by deleting the
Machine object, which results in the drain and deletion of the Windows node. To facilitate an upgrade,
the WMCO adds a version annotation to all the configured nodes. During an upgrade, a mismatch in
version annotation results in the deletion and recreation of a Windows machine. To have minimal service
disruptions during an upgrade, the WMCO only updates one Windows machine at a time.

After the update, it is recommended that you set the spec.os.name.windows parameter in your
workload pods. The WMCO uses this field to authoritatively identify the pod operating system for
validation and is used to enforce Windows-specific pod security context constraints (SCCs).

IMPORTANT

The WMCO is only responsible for updating Kubernetes components, not for Windows
operating system updates. You provide the Windows image when creating the VMs;
therefore, you are responsible for providing an updated image. You can provide an
updated Windows image by changing the image configuration in the MachineSet spec.

For more information on Operator upgrades using the Operator Lifecycle Manager (OLM), see
Updating installed Operators.

CHAPTER 8. WINDOWS NODE UPGRADES

65

https://docs.redhat.com/en/documentation/openshift_container_platform/4.16/html-single/operators/#olm-upgrading-operators

CHAPTER 9. USING BRING-YOUR-OWN-HOST (BYOH)
WINDOWS INSTANCES AS NODES

Bring-Your-Own-Host (BYOH) allows for users to repurpose Windows Server VMs and bring them to
OpenShift Container Platform. BYOH Windows instances benefit users looking to mitigate major
disruptions in the event that a Windows server goes offline.

9.1. CONFIGURING A BYOH WINDOWS INSTANCE

Creating a BYOH Windows instance requires creating a config map in the Windows Machine Config
Operator (WMCO) namespace.

Prerequisites

Any Windows instances that are to be attached to the cluster as a node must fulfill the following
requirements:

The instance must be on the same network as the Linux worker nodes in the cluster.

Port 22 must be open and running an SSH server.

The default shell for the SSH server must be the Windows Command shell , or cmd.exe.

Port 10250 must be open for log collection.

An administrator user is present with the private key used in the secret set as an authorized SSH
key.

If you are creating a BYOH Windows instance for an installer-provisioned infrastructure (IPI)
AWS cluster, you must add a tag to the AWS instance that matches the
spec.template.spec.value.tag value in the compute machine set for your worker nodes. For
example, kubernetes.io/cluster/<cluster_id>: owned or kubernetes.io/cluster/<cluster_id>:
shared.

If you are creating a BYOH Windows instance on vSphere, communication with the internal API
server must be enabled.

The hostname of the instance must follow the RFC 1123 DNS label requirements, which include
the following standards:

Contains only lowercase alphanumeric characters or '-'.

Starts with an alphanumeric character.

Ends with an alphanumeric character.

NOTE

Windows instances deployed by the WMCO are configured with the containerd container
runtime. Because the WMCO installs and manages the runtime, it is recommended that
you not manually install containerd on nodes.

Procedure

1. Create a ConfigMap named windows-instances in the WMCO namespace that describes the

OpenShift Container Platform 4.16 Windows Container Support for OpenShift

66

https://docs.microsoft.com/en-us/windows-server/administration/openssh/openssh_server_configuration#configuring-the-default-shell-for-openssh-in-windows
https://datatracker.ietf.org/doc/html/rfc1123

1

2

1. Create a ConfigMap named windows-instances in the WMCO namespace that describes the
Windows instances to be added.

NOTE

Format each entry in the config map’s data section by using the address as the
key while formatting the value as username=<username>.

Example config map

The address that the WMCO uses to reach the instance over SSH, either a DNS name or
an IPv4 address. A DNS PTR record must exist for this address. It is recommended that you
use a DNS name with your BYOH instance if your organization uses DHCP to assign IP
addresses. If not, you need to update the windows-instances ConfigMap whenever the
instance is assigned a new IP address.

The name of the administrator user created in the prerequisites.

9.2. REMOVING BYOH WINDOWS INSTANCES

You can remove BYOH instances attached to the cluster by deleting the instance’s entry in the config
map. Deleting an instance reverts that instance back to its state prior to adding to the cluster. Any logs
and container runtime artifacts are not added to these instances.

For an instance to be cleanly removed, it must be accessible with the current private key provided to
WMCO. For example, to remove the 10.1.42.1 instance from the previous example, the config map
would be changed to the following:

Deleting windows-instances is viewed as a request to deconstruct all Windows instances added as
nodes.

kind: ConfigMap
apiVersion: v1
metadata:
 name: windows-instances
 namespace: openshift-windows-machine-config-operator
data:
 10.1.42.1: |- 1
 username=Administrator 2
 instance.example.com: |-
 username=core

kind: ConfigMap
apiVersion: v1
metadata:
 name: windows-instances
 namespace: openshift-windows-machine-config-operator
data:
 instance.example.com: |-
 username=core

CHAPTER 9. USING BRING-YOUR-OWN-HOST (BYOH) WINDOWS INSTANCES AS NODES

67

CHAPTER 10. REMOVING WINDOWS NODES
You can remove a Windows node by deleting its host Windows machine.

10.1. DELETING A SPECIFIC MACHINE

You can delete a specific machine.

IMPORTANT

Do not delete a control plane machine unless your cluster uses a control plane machine
set.

Prerequisites

Install an OpenShift Container Platform cluster.

Install the OpenShift CLI (oc).

Log in to oc as a user with cluster-admin permission.

Procedure

1. View the machines that are in the cluster by running the following command:

The command output contains a list of machines in the <clusterid>-<role>-<cloud_region>
format.

2. Identify the machine that you want to delete.

3. Delete the machine by running the following command:

IMPORTANT

By default, the machine controller tries to drain the node that is backed by the
machine until it succeeds. In some situations, such as with a misconfigured pod
disruption budget, the drain operation might not be able to succeed. If the drain
operation fails, the machine controller cannot proceed removing the machine.

You can skip draining the node by annotating machine.openshift.io/exclude-
node-draining in a specific machine.

If the machine that you delete belongs to a machine set, a new machine is immediately created
to satisfy the specified number of replicas.

$ oc get machine -n openshift-machine-api

$ oc delete machine <machine> -n openshift-machine-api

OpenShift Container Platform 4.16 Windows Container Support for OpenShift

68

CHAPTER 11. DISABLING WINDOWS CONTAINER
WORKLOADS

You can disable the capability to run Windows container workloads by uninstalling the Windows Machine
Config Operator (WMCO) and deleting the namespace that was added by default when you installed
the WMCO.

11.1. UNINSTALLING THE WINDOWS MACHINE CONFIG OPERATOR

You can uninstall the Windows Machine Config Operator (WMCO) from your cluster.

Prerequisites

Delete the Windows Machine objects hosting your Windows workloads.

Procedure

1. From the Operators → OperatorHub page, use the Filter by keyword box to search for Red
Hat Windows Machine Config Operator.

2. Click the Red Hat Windows Machine Config Operator tile. The Operator tile indicates it is
installed.

3. In the Windows Machine Config Operator descriptor page, click Uninstall.

11.2. DELETING THE WINDOWS MACHINE CONFIG OPERATOR
NAMESPACE

You can delete the namespace that was generated for the Windows Machine Config Operator (WMCO)
by default.

Prerequisites

The WMCO is removed from your cluster.

Procedure

1. Remove all Windows workloads that were created in the openshift-windows-machine-config-
operator namespace:

2. Verify that all pods in the openshift-windows-machine-config-operator namespace are
deleted or are reporting a terminating state:

3. Delete the openshift-windows-machine-config-operator namespace:

Additional resources

$ oc delete --all pods --namespace=openshift-windows-machine-config-operator

$ oc get pods --namespace openshift-windows-machine-config-operator

$ oc delete namespace openshift-windows-machine-config-operator

CHAPTER 11. DISABLING WINDOWS CONTAINER WORKLOADS

69

Deleting Operators from a cluster

Removing Windows nodes

OpenShift Container Platform 4.16 Windows Container Support for OpenShift

70

https://docs.redhat.com/en/documentation/openshift_container_platform/4.16/html-single/operators/#olm-deleting-operators-from-a-cluster

	Table of Contents
	CHAPTER 1. RED HAT OPENSHIFT SUPPORT FOR WINDOWS CONTAINERS OVERVIEW
	CHAPTER 2. RELEASE NOTES
	2.1. RED HAT OPENSHIFT SUPPORT FOR WINDOWS CONTAINERS RELEASE NOTES
	2.1.1. Windows Machine Config Operator numbering
	2.1.2. Release notes for Red Hat Windows Machine Config Operator 10.16.1
	2.1.2.1. Bug fixes

	2.2. RELEASE NOTES FOR PAST RELEASES OF THE WINDOWS MACHINE CONFIG OPERATOR
	2.2.1. Release notes for Red Hat Windows Machine Config Operator 10.16.0
	2.2.1.1. New features and improvements
	2.2.1.2. Bug fixes

	2.2.2. Windows Machine Config Operator prerequisites
	2.2.2.1. WMCO 10.16.0 supported platforms and Windows Server versions
	2.2.2.2. Supported networking

	2.2.3. Known limitations

	CHAPTER 3. GETTING SUPPORT
	CHAPTER 4. UNDERSTANDING WINDOWS CONTAINER WORKLOADS
	4.1. WINDOWS WORKLOAD MANAGEMENT
	4.2. WINDOWS NODE SERVICES

	CHAPTER 5. ENABLING WINDOWS CONTAINER WORKLOADS
	Prerequisites
	5.1. INSTALLING THE WINDOWS MACHINE CONFIG OPERATOR
	5.1.1. Installing the Windows Machine Config Operator using the web console
	5.1.2. Installing the Windows Machine Config Operator using the CLI

	5.2. CONFIGURING A SECRET FOR THE WINDOWS MACHINE CONFIG OPERATOR
	5.3. USING WINDOWS CONTAINERS IN A PROXY-ENABLED CLUSTER
	5.4. USING WINDOWS CONTAINERS WITH A MIRROR REGISTRY
	5.4.1. Understanding image registry repository mirroring
	5.4.2. Configuring image registry repository mirroring

	5.5. ADDITIONAL RESOURCES

	CHAPTER 6. CREATING WINDOWS MACHINE SETS
	6.1. CREATING A WINDOWS MACHINE SET ON AWS
	Prerequisites
	6.1.1. Machine API overview
	6.1.2. Sample YAML for a Windows MachineSet object on AWS
	6.1.3. Creating a compute machine set
	6.1.4. Additional resources

	6.2. CREATING A WINDOWS MACHINE SET ON AZURE
	Prerequisites
	6.2.1. Machine API overview
	6.2.2. Sample YAML for a Windows MachineSet object on Azure
	6.2.3. Creating a compute machine set
	6.2.4. Additional resources

	6.3. CREATING A WINDOWS MACHINE SET ON GCP
	Prerequisites
	6.3.1. Machine API overview
	6.3.2. Sample YAML for a Windows MachineSet object on GCP
	6.3.3. Creating a compute machine set
	6.3.4. Additional resources

	6.4. CREATING A WINDOWS MACHINESET OBJECT ON NUTANIX
	Prerequisites
	6.4.1. Machine API overview
	6.4.2. Sample YAML for a Windows MachineSet object on Nutanix
	6.4.3. Creating a compute machine set
	6.4.4. Additional resources

	6.5. CREATING A WINDOWS MACHINE SET ON VSPHERE
	Prerequisites
	6.5.1. Machine API overview
	6.5.2. Preparing your vSphere environment for Windows container workloads
	6.5.2.1. Creating the vSphere Windows VM golden image
	6.5.2.2. Enabling communication with the internal API server for the WMCO on vSphere

	6.5.3. Sample YAML for a Windows MachineSet object on vSphere
	6.5.4. Creating a compute machine set
	6.5.5. Additional resources

	CHAPTER 7. SCHEDULING WINDOWS CONTAINER WORKLOADS
	Prerequisites
	7.1. WINDOWS POD PLACEMENT
	Additional resources

	7.2. CREATING A RUNTIMECLASS OBJECT TO ENCAPSULATE SCHEDULING MECHANISMS
	7.3. SAMPLE WINDOWS CONTAINER WORKLOAD DEPLOYMENT
	7.4. SUPPORT FOR WINDOWS CSI DRIVERS
	7.5. SCALING A COMPUTE MACHINE SET MANUALLY

	CHAPTER 8. WINDOWS NODE UPGRADES
	8.1. WINDOWS MACHINE CONFIG OPERATOR UPGRADES

	CHAPTER 9. USING BRING-YOUR-OWN-HOST (BYOH) WINDOWS INSTANCES AS NODES
	9.1. CONFIGURING A BYOH WINDOWS INSTANCE
	9.2. REMOVING BYOH WINDOWS INSTANCES

	CHAPTER 10. REMOVING WINDOWS NODES
	10.1. DELETING A SPECIFIC MACHINE

	CHAPTER 11. DISABLING WINDOWS CONTAINER WORKLOADS
	11.1. UNINSTALLING THE WINDOWS MACHINE CONFIG OPERATOR
	11.2. DELETING THE WINDOWS MACHINE CONFIG OPERATOR NAMESPACE
	Additional resources

