
OpenShift Container Platform 4.17

Extensions

Working with extensions in OpenShift Container Platform using Operator Lifecycle
Manager (OLM) v1. OLM v1 is a Technology Preview feature only.

Last Updated: 2024-09-27

OpenShift Container Platform 4.17 Extensions

Working with extensions in OpenShift Container Platform using Operator Lifecycle Manager (OLM)
v1. OLM v1 is a Technology Preview feature only.

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides information about installing, managing, and configuring extensions and
Operators on OpenShift Container Platform. Operator Lifecycle Manager (OLM) v1 is a Technology
Preview feature only.

. .

. .

. .

. .

Table of Contents

CHAPTER 1. EXTENSIONS OVERVIEW
1.1. HIGHLIGHTS
1.2. PURPOSE

CHAPTER 2. ARCHITECTURE
2.1. OLM V1 COMPONENTS OVERVIEW
2.2. OPERATOR CONTROLLER

2.2.1. ClusterExtension API
2.2.1.1. Example custom resources (CRs) that specify a target version

2.2.2. Object ownership for cluster extensions
2.2.2.1. Single ownership
2.2.2.2. Error messages
2.2.2.3. Considerations

2.3. CATALOGD
2.3.1. About catalogs in OLM v1

CHAPTER 3. OPERATOR FRAMEWORK GLOSSARY OF COMMON TERMS
3.1. COMMON OPERATOR FRAMEWORK TERMS

3.1.1. Bundle
3.1.2. Bundle image
3.1.3. Catalog source
3.1.4. Channel
3.1.5. Channel head
3.1.6. Cluster service version
3.1.7. Dependency
3.1.8. Index image
3.1.9. Install plan
3.1.10. Multitenancy
3.1.11. Operator group
3.1.12. Package
3.1.13. Registry
3.1.14. Subscription
3.1.15. Update graph

CHAPTER 4. CATALOGS
4.1. FILE-BASED CATALOGS

4.1.1. Highlights
4.1.2. Directory structure
4.1.3. Schemas

4.1.3.1. olm.package schema
4.1.3.2. olm.channel schema
4.1.3.3. olm.bundle schema
4.1.3.4. olm.deprecations schema

4.1.4. Properties
4.1.4.1. olm.package property
4.1.4.2. olm.gvk property
4.1.4.3. olm.package.required
4.1.4.4. olm.gvk.required

4.1.5. Example catalog
4.1.6. Guidelines

4.1.6.1. Immutable bundles
4.1.6.2. Source control

4
4
5

6
6
6
6
7
9
9
9
9

10
10

12
12
12
12
12
12
12
12
13
13
13
13
13
13
13
13
14

15
15
15
16
17
18
18
19

20
21
21
22
22
22
23
24
24
24

Table of Contents

1

. .

4.1.7. CLI usage
4.1.8. Automation

4.2. RED HAT-PROVIDED CATALOGS
4.2.1. About Red Hat-provided Operator catalogs

4.3. MANAGING CATALOGS
4.3.1. About catalogs in OLM v1
4.3.2. Red Hat-provided Operator catalogs in OLM v1
4.3.3. Creating a pull secret for catalogs hosted on a private registry
4.3.4. Adding a catalog to a cluster
4.3.5. Deleting a catalog

4.4. CREATING CATALOGS
4.4.1. Creating a file-based catalog image
4.4.2. Updating or filtering a file-based catalog image

CHAPTER 5. CLUSTER EXTENSIONS
5.1. MANAGING CLUSTER EXTENSIONS

5.1.1. Supported extensions
5.1.2. Finding Operators to install from a catalog

5.1.2.1. Common catalog queries
5.1.3. Creating a service account to manage cluster extensions
5.1.4. Installing a cluster extension from a catalog
5.1.5. Updating a cluster extension
5.1.6. Deleting an Operator

5.2. UPGRADE EDGES
5.2.1. Support for version ranges
5.2.2. Version comparison strings
5.2.3. Example custom resources (CRs) that specify a target version
5.2.4. Forcing an update or rollback

5.3. CUSTOM RESOURCE DEFINITION (CRD) UPGRADE SAFETY
5.3.1. Prohibited CRD upgrade changes
5.3.2. Allowed CRD upgrade changes
5.3.3. Disabling CRD upgrade safety preflight check
5.3.4. Examples of unsafe CRD changes

5.3.4.1. Scope change
5.3.4.2. Removal of a stored version
5.3.4.3. Removal of an existing field
5.3.4.4. Addition of a required field

24
24
25
25
26
27
27
29
30
33
33
34
36

40
40
40
41

44
45
47
53
60
61

62
62
64
66
67
67
68
69
70
71
71
72
72

OpenShift Container Platform 4.17 Extensions

2

Table of Contents

3

CHAPTER 1. EXTENSIONS OVERVIEW

IMPORTANT

Operator Lifecycle Manager (OLM) v1 is a Technology Preview feature only. Technology
Preview features are not supported with Red Hat production service level agreements
(SLAs) and might not be functionally complete. Red Hat does not recommend using
them in production. These features provide early access to upcoming product features,
enabling customers to test functionality and provide feedback during the development
process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

Extensions enable cluster administrators to extend capabilities for users on their OpenShift Container
Platform cluster.

Operator Lifecycle Manager (OLM) has been included with OpenShift Container Platform 4 since its
initial release. OpenShift Container Platform 4.17 includes components for a next-generation iteration of
OLM as a Generally Available (GA) feature, known during this phase as OLM v1 . This updated framework
evolves many of the concepts that have been part of previous versions of OLM and adds new
capabilities.

1.1. HIGHLIGHTS

Administrators can explore the following highlights:

Fully declarative model that supports GitOps workflows

OLM v1 simplifies extension management through two key APIs:

A new ClusterExtension API streamlines management of installed extensions, which
includes Operators via the registry+v1 bundle format, by consolidating user-facing APIs into
a single object. This API is provided as clusterextension.olm.operatorframework.io by the
new Operator Controller component. Administrators and SREs can use the API to automate
processes and define desired states by using GitOps principles.

NOTE

Earlier Technology Preview phases of OLM v1 introduced a new Operator API;
this API is renamed ClusterExtension in OpenShift Container Platform 4.16
to address the following improvements:

More accurately reflects the simplified functionality of extending a
cluster’s capabilities

Better represents a more flexible packaging format

Cluster prefix clearly indicates that ClusterExtension objects are
cluster-scoped, a change from existing OLM where Operators could be
either namespace-scoped or cluster-scoped

The Catalog API, provided by the new catalogd component, serves as the foundation for
OLM v1, unpacking catalogs for on-cluster clients so that users can discover installable
content, such as Kubernetes extensions and Operators. This provides increased visibility into

OpenShift Container Platform 4.17 Extensions

4

https://access.redhat.com/support/offerings/techpreview/

all available Operator bundle versions, including their details, channels, and update edges.

IMPORTANT

Currently, Operator Lifecycle Manager (OLM) v1 cannot authenticate private
registries, such as the Red Hat-provided Operator catalogs. This is a known issue. As a
result, the OLM v1 procedures that rely on having the Red Hat Operators catalog
installed do not work. (OCPBUGS-36364)

For more information, see Operator Controller and Catalogd.

Improved control over extension updates

With improved insight into catalog content, administrators can specify target versions for installation
and updates. This grants administrators more control over the target version of extension updates.
For more information, see Updating an cluster extension.

Flexible extension packaging format

Administrators can use file-based catalogs to install and manage extensions, such as OLM-based
Operators, similar to the existing OLM experience.
In addition, bundle size is no longer constrained by the etcd value size limit. For more information, see
Installing extensions .

Secure catalog communication

OLM v1 uses HTTPS encryption for catalogd server responses.

1.2. PURPOSE

The mission of Operator Lifecycle Manager (OLM) has been to manage the lifecycle of cluster
extensions centrally and declaratively on Kubernetes clusters. Its purpose has always been to make
installing, running, and updating functional extensions to the cluster easy, safe, and reproducible for
cluster and platform-as-a-service (PaaS) administrators throughout the lifecycle of the underlying
cluster.

The initial version of OLM, which launched with OpenShift Container Platform 4 and is included by
default, focused on providing unique support for these specific needs for a particular type of cluster
extension, known as Operators. Operators are classified as one or more Kubernetes controllers, shipping
with one or more API extensions, as CustomResourceDefinition (CRD) objects, to provide additional
functionality to the cluster.

After running in production clusters for many releases, the next-generation of OLM aims to encompass
lifecycles for cluster extensions that are not just Operators.

CHAPTER 1. EXTENSIONS OVERVIEW

5

https://issues.redhat.com/browse/OCPBUGS-36364

CHAPTER 2. ARCHITECTURE

2.1. OLM V1 COMPONENTS OVERVIEW

IMPORTANT

Operator Lifecycle Manager (OLM) v1 is a Technology Preview feature only. Technology
Preview features are not supported with Red Hat production service level agreements
(SLAs) and might not be functionally complete. Red Hat does not recommend using
them in production. These features provide early access to upcoming product features,
enabling customers to test functionality and provide feedback during the development
process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

Operator Lifecycle Manager (OLM) v1 comprises the following component projects:

Operator Controller

Operator Controller is the central component of OLM v1 that extends Kubernetes with an API
through which users can install and manage the lifecycle of Operators and extensions. It consumes
information from catalogd.

Catalogd

Catalogd is a Kubernetes extension that unpacks file-based catalog (FBC) content packaged and
shipped in container images for consumption by on-cluster clients. As a component of the OLM v1
microservices architecture, catalogd hosts metadata for Kubernetes extensions packaged by the
authors of the extensions, and as a result helps users discover installable content.

2.2. OPERATOR CONTROLLER

IMPORTANT

Operator Lifecycle Manager (OLM) v1 is a Technology Preview feature only. Technology
Preview features are not supported with Red Hat production service level agreements
(SLAs) and might not be functionally complete. Red Hat does not recommend using
them in production. These features provide early access to upcoming product features,
enabling customers to test functionality and provide feedback during the development
process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

Operator Controller is the central component of Operator Lifecycle Manager (OLM) v1 and consumes
the other OLM v1 component, catalogd. It extends Kubernetes with an API through which users can
install Operators and extensions.

2.2.1. ClusterExtension API

Operator Controller provides a new ClusterExtension API object that is a single resource representing
an instance of an installed extension, which includes Operators via the registry+v1 bundle format. This
clusterextension.olm.operatorframework.io API streamlines management of installed extensions by

OpenShift Container Platform 4.17 Extensions

6

https://access.redhat.com/support/offerings/techpreview/
https://access.redhat.com/support/offerings/techpreview/

consolidating user-facing APIs into a single object.

IMPORTANT

In OLM v1, ClusterExtension objects are cluster-scoped. This differs from existing OLM
where Operators could be either namespace-scoped or cluster-scoped, depending on
the configuration of their related Subscription and OperatorGroup objects.

For more information about the earlier behavior, see Multitenancy and Operator
colocation.

Example ClusterExtension object

Additional resources

Operator Lifecycle Manager (OLM) → Multitenancy and Operator colocation

2.2.1.1. Example custom resources (CRs) that specify a target version

In Operator Lifecycle Manager (OLM) v1, cluster administrators can declaratively set the target version
of an Operator or extension in the custom resource (CR).

You can define a target version by specifying any of the following fields:

Channel

Version number

Version range

If you specify a channel in the CR, OLM v1 installs the latest version of the Operator or extension that
can be resolved within the specified channel. When updates are published to the specified channel, OLM
v1 automatically updates to the latest release that can be resolved from the channel.

Example CR with a specified channel

apiVersion: olm.operatorframework.io/v1alpha1
kind: ClusterExtension
metadata:
 name: <operator_name>
spec:
 packageName: <package_name>
 installNamespace: <namespace_name>
 channel: <channel_name>
 version: <version_number>

apiVersion: olm.operatorframework.io/v1alpha1
kind: ClusterExtension
metadata:
 name: pipelines-operator
spec:
 packageName: openshift-pipelines-operator-rh
 installNamespace: <namespace_name>

CHAPTER 2. ARCHITECTURE

7

https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/operators/#olm-colocation

1

1

1

Installs the latest release that can be resolved from the specified channel. Updates to the channel
are automatically installed.

If you specify the Operator or extension’s target version in the CR, OLM v1 installs the specified version.
When the target version is specified in the CR, OLM v1 does not change the target version when updates
are published to the catalog.

If you want to update the version of the Operator that is installed on the cluster, you must manually edit
the Operator’s CR. Specifying an Operator’s target version pins the Operator’s version to the specified
release.

Example CR with the target version specified

Specifies the target version. If you want to update the version of the Operator or extension that is
installed, you must manually update this field the CR to the desired target version.

If you want to define a range of acceptable versions for an Operator or extension, you can specify a
version range by using a comparison string. When you specify a version range, OLM v1 installs the latest
version of an Operator or extension that can be resolved by the Operator Controller.

Example CR with a version range specified

Specifies that the desired version range is greater than version 1.11.1. For more information, see
"Support for version ranges".

After you create or update a CR, apply the configuration file by running the following command:

 serviceAccount:
 name: <service_account>
 channel: latest 1

apiVersion: olm.operatorframework.io/v1alpha1
kind: ClusterExtension
metadata:
 name: pipelines-operator
spec:
 packageName: openshift-pipelines-operator-rh
 installNamespace: <namespace_name>
 serviceAccount:
 name: <service_account>
 version: "1.11.1" 1

apiVersion: olm.operatorframework.io/v1alpha1
kind: ClusterExtension
metadata:
 name: pipelines-operator
spec:
 packageName: openshift-pipelines-operator-rh
 installNamespace: <namespace_name>
 serviceAccount:
 name: <service_account>
 version: ">1.11.1" 1

OpenShift Container Platform 4.17 Extensions

8

Command syntax

2.2.2. Object ownership for cluster extensions

In Operator Lifecycle Manager (OLM) v1, a Kubernetes object can only be owned by a single
ClusterExtension object at a time. This ensures that objects within an OpenShift Container Platform
cluster are managed consistently and prevents conflicts between multiple cluster extensions attempting
to control the same object.

2.2.2.1. Single ownership

The core ownership principle enforced by OLM v1 is that each object can only have one cluster
extension as its owner. This prevents overlapping or conflicting management by multiple cluster
extensions, ensuring that each object is uniquely associated with only one bundle.

Implications of single ownership

Bundles that provide a CustomResourceDefinition (CRD) object can only be installed once.
Bundles provide CRDs, which are part of a ClusterExtension object. This means you can install
a bundle only once in a cluster. Attempting to install another bundle that provides the same
CRD results in failure, as each custom resource can have only one cluster extension as its owner.

Cluster extensions cannot share objects.
The single-owner policy of OLM v1 means that cluster extensions cannot share ownership of any
objects. If one cluster extension manages a specific object, such as a Deployment,
CustomResourceDefinition, or Service object, another cluster extension cannot claim
ownership of the same object. Any attempt to do so is blocked by OLM v1.

2.2.2.2. Error messages

When a conflict occurs due to multiple cluster extensions attempting to manage the same object,
Operator Controller returns an error message indicating the ownership conflict, such as the following:

Example error message

This error message signals that the object is already being managed by another cluster extension and
cannot be reassigned or shared.

2.2.2.3. Considerations

As a cluster or extension administrator, review the following considerations:

Uniqueness of bundles

Ensure that Operator bundles providing the same CRDs are not installed more than once. This can
prevent potential installation failures due to ownership conflicts.

Avoid object sharing

If you need different cluster extensions to interact with similar resources, ensure they are managing

$ oc apply -f <extension_name>.yaml

CustomResourceDefinition 'logfilemetricexporters.logging.kubernetes.io' already exists in namespace
'kubernetes-logging' and cannot be managed by operator-controller

CHAPTER 2. ARCHITECTURE

9

If you need different cluster extensions to interact with similar resources, ensure they are managing
separate objects. Cluster extensions cannot jointly manage the same object due to the single-owner
enforcement.

2.3. CATALOGD

IMPORTANT

Operator Lifecycle Manager (OLM) v1 is a Technology Preview feature only. Technology
Preview features are not supported with Red Hat production service level agreements
(SLAs) and might not be functionally complete. Red Hat does not recommend using
them in production. These features provide early access to upcoming product features,
enabling customers to test functionality and provide feedback during the development
process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

Operator Lifecycle Manager (OLM) v1 uses the catalogd component and its resources to manage
Operator and extension catalogs.

IMPORTANT

Currently, Operator Lifecycle Manager (OLM) v1 cannot authenticate private registries,
such as the Red Hat-provided Operator catalogs. This is a known issue. As a result, the
OLM v1 procedures that rely on having the Red Hat Operators catalog installed do not
work. (OCPBUGS-36364)

2.3.1. About catalogs in OLM v1

You can discover installable content by querying a catalog for Kubernetes extensions, such as Operators
and controllers, by using the catalogd component. Catalogd is a Kubernetes extension that unpacks
catalog content for on-cluster clients and is part of the Operator Lifecycle Manager (OLM) v1 suite of
microservices. Currently, catalogd unpacks catalog content that is packaged and distributed as
container images.

IMPORTANT

If you try to install an Operator or extension that does not have unique name, the
installation might fail or lead to an unpredictable result. This occurs for the following
reasons:

If mulitple catalogs are installed on a cluster, Operator Lifecycle Manager (OLM)
v1 does not include a mechanism to specify a catalog when you install an Operator
or extension.

OLM v1 requires that all of the Operators and extensions that are available to
install on a cluster use a unique name for their bundles and packages.

Additional resources

File-based catalogs

Adding a catalog to a cluster

OpenShift Container Platform 4.17 Extensions

10

https://access.redhat.com/support/offerings/techpreview/
https://issues.redhat.com/browse/OCPBUGS-36364

Red Hat-provided catalogs

CHAPTER 2. ARCHITECTURE

11

CHAPTER 3. OPERATOR FRAMEWORK GLOSSARY OF
COMMON TERMS

IMPORTANT

Operator Lifecycle Manager (OLM) v1 is a Technology Preview feature only. Technology
Preview features are not supported with Red Hat production service level agreements
(SLAs) and might not be functionally complete. Red Hat does not recommend using
them in production. These features provide early access to upcoming product features,
enabling customers to test functionality and provide feedback during the development
process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

The following terms are related to the Operator Framework, including Operator Lifecycle Manager
(OLM) v1.

3.1. COMMON OPERATOR FRAMEWORK TERMS

3.1.1. Bundle

In the bundle format, a bundle is a collection of an Operator CSV, manifests, and metadata. Together,
they form a unique version of an Operator that can be installed onto the cluster.

3.1.2. Bundle image

In the bundle format, a bundle image is a container image that is built from Operator manifests and that
contains one bundle. Bundle images are stored and distributed by Open Container Initiative (OCI) spec
container registries, such as Quay.io or DockerHub.

3.1.3. Catalog source

A catalog source represents a store of metadata that OLM can query to discover and install Operators
and their dependencies.

3.1.4. Channel

A channel defines a stream of updates for an Operator and is used to roll out updates for subscribers.
The head points to the latest version of that channel. For example, a stable channel would have all
stable versions of an Operator arranged from the earliest to the latest.

An Operator can have several channels, and a subscription binding to a certain channel would only look
for updates in that channel.

3.1.5. Channel head

A channel head refers to the latest known update in a particular channel.

3.1.6. Cluster service version

A cluster service version (CSV) is a YAML manifest created from Operator metadata that assists OLM in

OpenShift Container Platform 4.17 Extensions

12

https://access.redhat.com/support/offerings/techpreview/

A cluster service version (CSV) is a YAML manifest created from Operator metadata that assists OLM in
running the Operator in a cluster. It is the metadata that accompanies an Operator container image,
used to populate user interfaces with information such as its logo, description, and version.

It is also a source of technical information that is required to run the Operator, like the RBAC rules it
requires and which custom resources (CRs) it manages or depends on.

3.1.7. Dependency

An Operator may have a dependency on another Operator being present in the cluster. For example, the
Vault Operator has a dependency on the etcd Operator for its data persistence layer.

OLM resolves dependencies by ensuring that all specified versions of Operators and CRDs are installed
on the cluster during the installation phase. This dependency is resolved by finding and installing an
Operator in a catalog that satisfies the required CRD API, and is not related to packages or bundles.

3.1.8. Index image

In the bundle format, an index image refers to an image of a database (a database snapshot) that
contains information about Operator bundles including CSVs and CRDs of all versions. This index can
host a history of Operators on a cluster and be maintained by adding or removing Operators using the
opm CLI tool.

3.1.9. Install plan

An install plan is a calculated list of resources to be created to automatically install or upgrade a CSV.

3.1.10. Multitenancy

A tenant in OpenShift Container Platform is a user or group of users that share common access and
privileges for a set of deployed workloads, typically represented by a namespace or project. You can use
tenants to provide a level of isolation between different groups or teams.

When a cluster is shared by multiple users or groups, it is considered a multitenant cluster.

3.1.11. Operator group

An Operator group configures all Operators deployed in the same namespace as the OperatorGroup
object to watch for their CR in a list of namespaces or cluster-wide.

3.1.12. Package

In the bundle format, a package is a directory that encloses all released history of an Operator with each
version. A released version of an Operator is described in a CSV manifest alongside the CRDs.

3.1.13. Registry

A registry is a database that stores bundle images of Operators, each with all of its latest and historical
versions in all channels.

3.1.14. Subscription

A subscription keeps CSVs up to date by tracking a channel in a package.

CHAPTER 3. OPERATOR FRAMEWORK GLOSSARY OF COMMON TERMS

13

3.1.15. Update graph

An update graph links versions of CSVs together, similar to the update graph of any other packaged
software. Operators can be installed sequentially, or certain versions can be skipped. The update graph
is expected to grow only at the head with newer versions being added.

OpenShift Container Platform 4.17 Extensions

14

CHAPTER 4. CATALOGS

4.1. FILE-BASED CATALOGS

IMPORTANT

Operator Lifecycle Manager (OLM) v1 is a Technology Preview feature only. Technology
Preview features are not supported with Red Hat production service level agreements
(SLAs) and might not be functionally complete. Red Hat does not recommend using
them in production. These features provide early access to upcoming product features,
enabling customers to test functionality and provide feedback during the development
process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

Operator Lifecycle Manager (OLM) v1 in OpenShift Container Platform supports file-based catalogs for
discovering and sourcing cluster extensions, including Operators, on a cluster.

IMPORTANT

Currently, Operator Lifecycle Manager (OLM) v1 cannot authenticate private registries,
such as the Red Hat-provided Operator catalogs. This is a known issue. As a result, the
OLM v1 procedures that rely on having the Red Hat Operators catalog installed do not
work. (OCPBUGS-36364)

4.1.1. Highlights

File-based catalogs are the latest iteration of the catalog format in Operator Lifecycle Manager (OLM).
It is a plain text-based (JSON or YAML) and declarative config evolution of the earlier SQLite database
format, and it is fully backwards compatible. The goal of this format is to enable Operator catalog
editing, composability, and extensibility.

Editing

With file-based catalogs, users interacting with the contents of a catalog are able to make direct
changes to the format and verify that their changes are valid. Because this format is plain text JSON
or YAML, catalog maintainers can easily manipulate catalog metadata by hand or with widely known
and supported JSON or YAML tooling, such as the jq CLI.
This editability enables the following features and user-defined extensions:

Promoting an existing bundle to a new channel

Changing the default channel of a package

Custom algorithms for adding, updating, and removing upgrade edges

Composability

File-based catalogs are stored in an arbitrary directory hierarchy, which enables catalog composition.
For example, consider two separate file-based catalog directories: catalogA and catalogB. A catalog
maintainer can create a new combined catalog by making a new directory catalogC and copying
catalogA and catalogB into it.
This composability enables decentralized catalogs. The format permits Operator authors to maintain

CHAPTER 4. CATALOGS

15

https://access.redhat.com/support/offerings/techpreview/
https://issues.redhat.com/browse/OCPBUGS-36364

Operator-specific catalogs, and it permits maintainers to trivially build a catalog composed of
individual Operator catalogs. File-based catalogs can be composed by combining multiple other
catalogs, by extracting subsets of one catalog, or a combination of both of these.

NOTE

Duplicate packages and duplicate bundles within a package are not permitted. The
opm validate command returns an error if any duplicates are found.

Because Operator authors are most familiar with their Operator, its dependencies, and its upgrade
compatibility, they are able to maintain their own Operator-specific catalog and have direct control
over its contents. With file-based catalogs, Operator authors own the task of building and
maintaining their packages in a catalog. Composite catalog maintainers, however, only own the task
of curating the packages in their catalog and publishing the catalog to users.

Extensibility

The file-based catalog specification is a low-level representation of a catalog. While it can be
maintained directly in its low-level form, catalog maintainers can build interesting extensions on top
that can be used by their own custom tooling to make any number of mutations.
For example, a tool could translate a high-level API, such as (mode=semver), down to the low-level,
file-based catalog format for upgrade edges. Or a catalog maintainer might need to customize all of
the bundle metadata by adding a new property to bundles that meet a certain criteria.

While this extensibility allows for additional official tooling to be developed on top of the low-level
APIs for future OpenShift Container Platform releases, the major benefit is that catalog maintainers
have this capability as well.

4.1.2. Directory structure

File-based catalogs can be stored and loaded from directory-based file systems. The opm CLI loads
the catalog by walking the root directory and recursing into subdirectories. The CLI attempts to load
every file it finds and fails if any errors occur.

Non-catalog files can be ignored using .indexignore files, which have the same rules for patterns and
precedence as .gitignore files.

Example .indexignore file

Catalog maintainers have the flexibility to choose their desired layout, but it is recommended to store
each package’s file-based catalog blobs in separate subdirectories. Each individual file can be either
JSON or YAML; it is not necessary for every file in a catalog to use the same format.

Basic recommended structure

Ignore everything except non-object .json and .yaml files
**/*
!*.json
!*.yaml
**/objects/*.json
**/objects/*.yaml

catalog
├── packageA

OpenShift Container Platform 4.17 Extensions

16

This recommended structure has the property that each subdirectory in the directory hierarchy is a self-
contained catalog, which makes catalog composition, discovery, and navigation trivial file system
operations. The catalog can also be included in a parent catalog by copying it into the parent catalog’s
root directory.

4.1.3. Schemas

File-based catalogs use a format, based on the CUE language specification, that can be extended with
arbitrary schemas. The following _Meta CUE schema defines the format that all file-based catalog blobs
must adhere to:

_Meta schema

NOTE

No CUE schemas listed in this specification should be considered exhaustive. The opm
validate command has additional validations that are difficult or impossible to express
concisely in CUE.

An Operator Lifecycle Manager (OLM) catalog currently uses three schemas (olm.package,
olm.channel, and olm.bundle), which correspond to OLM’s existing package and bundle concepts.

Each Operator package in a catalog requires exactly one olm.package blob, at least one olm.channel
blob, and one or more olm.bundle blobs.

NOTE

│ └── index.yaml
├── packageB
│ ├── .indexignore
│ ├── index.yaml
│ └── objects
│ └── packageB.v0.1.0.clusterserviceversion.yaml
└── packageC
 └── index.json
 └── deprecations.yaml

_Meta: {
 // schema is required and must be a non-empty string
 schema: string & !=""

 // package is optional, but if it's defined, it must be a non-empty string
 package?: string & !=""

 // properties is optional, but if it's defined, it must be a list of 0 or more properties
 properties?: [... #Property]
}

#Property: {
 // type is required
 type: string & !=""

 // value is required, and it must not be null
 value: !=null
}

CHAPTER 4. CATALOGS

17

https://cuelang.org/docs/references/spec/

NOTE

All olm.* schemas are reserved for OLM-defined schemas. Custom schemas must use a
unique prefix, such as a domain that you own.

4.1.3.1. olm.package schema

The olm.package schema defines package-level metadata for an Operator. This includes its name,
description, default channel, and icon.

Example 4.1. olm.package schema

4.1.3.2. olm.channel schema

The olm.channel schema defines a channel within a package, the bundle entries that are members of
the channel, and the upgrade edges for those bundles.

If a bundle entry represents an edge in multiple olm.channel blobs, it can only appear once per channel.

It is valid for an entry’s replaces value to reference another bundle name that cannot be found in this
catalog or another catalog. However, all other channel invariants must hold true, such as a channel not
having multiple heads.

Example 4.2. olm.channel schema

#Package: {
 schema: "olm.package"

 // Package name
 name: string & !=""

 // A description of the package
 description?: string

 // The package's default channel
 defaultChannel: string & !=""

 // An optional icon
 icon?: {
 base64data: string
 mediatype: string
 }
}

#Channel: {
 schema: "olm.channel"
 package: string & !=""
 name: string & !=""
 entries: [...#ChannelEntry]
}

#ChannelEntry: {
 // name is required. It is the name of an `olm.bundle` that

OpenShift Container Platform 4.17 Extensions

18

WARNING

When using the skipRange field, the skipped Operator versions are pruned from
the update graph and are longer installable by users with the spec.startingCSV
property of Subscription objects.

You can update an Operator incrementally while keeping previously installed
versions available to users for future installation by using both the skipRange and
replaces field. Ensure that the replaces field points to the immediate previous
version of the Operator version in question.

4.1.3.3. olm.bundle schema

Example 4.3. olm.bundle schema

 // is present in the channel.
 name: string & !=""

 // replaces is optional. It is the name of bundle that is replaced
 // by this entry. It does not have to be present in the entry list.
 replaces?: string & !=""

 // skips is optional. It is a list of bundle names that are skipped by
 // this entry. The skipped bundles do not have to be present in the
 // entry list.
 skips?: [...string & !=""]

 // skipRange is optional. It is the semver range of bundle versions
 // that are skipped by this entry.
 skipRange?: string & !=""
}



#Bundle: {
 schema: "olm.bundle"
 package: string & !=""
 name: string & !=""
 image: string & !=""
 properties: [...#Property]
 relatedImages?: [...#RelatedImage]
}

#Property: {
 // type is required
 type: string & !=""

 // value is required, and it must not be null
 value: !=null
}

CHAPTER 4. CATALOGS

19

4.1.3.4. olm.deprecations schema

The optional olm.deprecations schema defines deprecation information for packages, bundles, and
channels in a catalog. Operator authors can use this schema to provide relevant messages about their
Operators, such as support status and recommended upgrade paths, to users running those Operators
from a catalog.

An olm.deprecations schema entry contains one or more of the following reference types, which
indicates the deprecation scope. After the Operator is installed, any specified messages can be viewed
as status conditions on the related Subscription object.

Table 4.1. Deprecation reference types

Type Scope Status condition

olm.package Represents the entire package PackageDeprecated

olm.channel Represents one channel ChannelDeprecated

olm.bundle Represents one bundle version BundleDeprecated

Each reference type has their own requirements, as detailed in the following example.

Example 4.4. Example olm.deprecations schema with each reference type

#RelatedImage: {
 // image is the image reference
 image: string & !=""

 // name is an optional descriptive name for an image that
 // helps identify its purpose in the context of the bundle
 name?: string & !=""
}

schema: olm.deprecations
package: my-operator 1
entries:
 - reference:
 schema: olm.package 2
 message: | 3
 The 'my-operator' package is end of life. Please use the
 'my-operator-new' package for support.
 - reference:
 schema: olm.channel
 name: alpha 4
 message: |
 The 'alpha' channel is no longer supported. Please switch to the
 'stable' channel.
 - reference:
 schema: olm.bundle
 name: my-operator.v1.68.0 5

OpenShift Container Platform 4.17 Extensions

20

1

2

3

4

5

Each deprecation schema must have a package value, and that package reference must be
unique across the catalog. There must not be an associated name field.

The olm.package schema must not include a name field, because it is determined by the
package field defined earlier in the schema.

All message fields, for any reference type, must be a non-zero length and represented as an
opaque text blob.

The name field for the olm.channel schema is required.

The name field for the olm.bundle schema is required.

NOTE

The deprecation feature does not consider overlapping deprecation, for example
package versus channel versus bundle.

Operator authors can save olm.deprecations schema entries as a deprecations.yaml file in the same
directory as the package’s index.yaml file:

Example directory structure for a catalog with deprecations

Additional resources

Updating or filtering a file-based catalog image

4.1.4. Properties

Properties are arbitrary pieces of metadata that can be attached to file-based catalog schemas. The
type field is a string that effectively specifies the semantic and syntactic meaning of the value field. The
value can be any arbitrary JSON or YAML.

OLM defines a handful of property types, again using the reserved olm.* prefix.

4.1.4.1. olm.package property

The olm.package property defines the package name and version. This is a required property on
bundles, and there must be exactly one of these properties. The packageName field must match the
bundle’s first-class package field, and the version field must be a valid semantic version.

Example 4.5. olm.package property

 message: |
 my-operator.v1.68.0 is deprecated. Uninstall my-operator.v1.68.0 and
 install my-operator.v1.72.0 for support.

my-catalog
└── my-operator
 ├── index.yaml
 └── deprecations.yaml

CHAPTER 4. CATALOGS

21

https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/operators/#olm-filtering-fbc_olm-managing-custom-catalogs

4.1.4.2. olm.gvk property

The olm.gvk property defines the group/version/kind (GVK) of a Kubernetes API that is provided by
this bundle. This property is used by OLM to resolve a bundle with this property as a dependency for
other bundles that list the same GVK as a required API. The GVK must adhere to Kubernetes GVK
validations.

Example 4.6. olm.gvk property

4.1.4.3. olm.package.required

The olm.package.required property defines the package name and version range of another package
that this bundle requires. For every required package property a bundle lists, OLM ensures there is an
Operator installed on the cluster for the listed package and in the required version range. The
versionRange field must be a valid semantic version (semver) range.

Example 4.7. olm.package.required property

4.1.4.4. olm.gvk.required

The olm.gvk.required property defines the group/version/kind (GVK) of a Kubernetes API that this
bundle requires. For every required GVK property a bundle lists, OLM ensures there is an Operator
installed on the cluster that provides it. The GVK must adhere to Kubernetes GVK validations.

#PropertyPackage: {
 type: "olm.package"
 value: {
 packageName: string & !=""
 version: string & !=""
 }
}

#PropertyGVK: {
 type: "olm.gvk"
 value: {
 group: string & !=""
 version: string & !=""
 kind: string & !=""
 }
}

#PropertyPackageRequired: {
 type: "olm.package.required"
 value: {
 packageName: string & !=""
 versionRange: string & !=""
 }
}

OpenShift Container Platform 4.17 Extensions

22

Example 4.8. olm.gvk.required property

4.1.5. Example catalog

With file-based catalogs, catalog maintainers can focus on Operator curation and compatibility.
Because Operator authors have already produced Operator-specific catalogs for their Operators,
catalog maintainers can build their catalog by rendering each Operator catalog into a subdirectory of
the catalog’s root directory.

There are many possible ways to build a file-based catalog; the following steps outline a simple
approach:

1. Maintain a single configuration file for the catalog, containing image references for each
Operator in the catalog:

Example catalog configuration file

2. Run a script that parses the configuration file and creates a new catalog from its references:

Example script

#PropertyGVKRequired: {
 type: "olm.gvk.required"
 value: {
 group: string & !=""
 version: string & !=""
 kind: string & !=""
 }
}

name: community-operators
repo: quay.io/community-operators/catalog
tag: latest
references:
- name: etcd-operator
 image: quay.io/etcd-
operator/index@sha256:5891b5b522d5df086d0ff0b110fbd9d21bb4fc7163af34d08286a2e846f
6be03
- name: prometheus-operator
 image: quay.io/prometheus-
operator/index@sha256:e258d248fda94c63753607f7c4494ee0fcbe92f1a76bfdac795c9d84101
eb317

name=$(yq eval '.name' catalog.yaml)
mkdir "$name"
yq eval '.name + "/" + .references[].name' catalog.yaml | xargs mkdir
for l in $(yq e '.name as $catalog | .references[] | .image + "|" + $catalog + "/" + .name +
"/index.yaml"' catalog.yaml); do
 image=$(echo $l | cut -d'|' -f1)
 file=$(echo $l | cut -d'|' -f2)
 opm render "$image" > "$file"
done
opm generate dockerfile "$name"

CHAPTER 4. CATALOGS

23

4.1.6. Guidelines

Consider the following guidelines when maintaining file-based catalogs.

4.1.6.1. Immutable bundles

The general advice with Operator Lifecycle Manager (OLM) is that bundle images and their metadata
should be treated as immutable.

If a broken bundle has been pushed to a catalog, you must assume that at least one of your users has
upgraded to that bundle. Based on that assumption, you must release another bundle with an upgrade
edge from the broken bundle to ensure users with the broken bundle installed receive an upgrade. OLM
will not reinstall an installed bundle if the contents of that bundle are updated in the catalog.

However, there are some cases where a change in the catalog metadata is preferred:

Channel promotion: If you already released a bundle and later decide that you would like to add
it to another channel, you can add an entry for your bundle in another olm.channel blob.

New upgrade edges: If you release a new 1.2.z bundle version, for example 1.2.4, but 1.3.0 is
already released, you can update the catalog metadata for 1.3.0 to skip 1.2.4.

4.1.6.2. Source control

Catalog metadata should be stored in source control and treated as the source of truth. Updates to
catalog images should include the following steps:

1. Update the source-controlled catalog directory with a new commit.

2. Build and push the catalog image. Use a consistent tagging taxonomy, such as :latest or :
<target_cluster_version>, so that users can receive updates to a catalog as they become
available.

4.1.7. CLI usage

For instructions about creating file-based catalogs by using the opm CLI, see Managing custom
catalogs.

For reference documentation about the opm CLI commands related to managing file-based catalogs,
see CLI tools.

4.1.8. Automation

Operator authors and catalog maintainers are encouraged to automate their catalog maintenance with
CI/CD workflows. Catalog maintainers can further improve on this by building GitOps automation to
accomplish the following tasks:

Check that pull request (PR) authors are permitted to make the requested changes, for
example by updating their package’s image reference.

Check that the catalog updates pass the opm validate command.

indexImage=$(yq eval '.repo + ":" + .tag' catalog.yaml)
docker build -t "$indexImage" -f "$name.Dockerfile" .
docker push "$indexImage"

OpenShift Container Platform 4.17 Extensions

24

https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/operators/#olm-creating-fb-catalog-image_olm-managing-custom-catalogs
https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/cli_tools/#cli-opm-ref

Check that the updated bundle or catalog image references exist, the catalog images run
successfully in a cluster, and Operators from that package can be successfully installed.

Automatically merge PRs that pass the previous checks.

Automatically rebuild and republish the catalog image.

4.2. RED HAT-PROVIDED CATALOGS

IMPORTANT

Operator Lifecycle Manager (OLM) v1 is a Technology Preview feature only. Technology
Preview features are not supported with Red Hat production service level agreements
(SLAs) and might not be functionally complete. Red Hat does not recommend using
them in production. These features provide early access to upcoming product features,
enabling customers to test functionality and provide feedback during the development
process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

Red Hat provides several Operator catalogs that are included with OpenShift Container Platform by
default.

IMPORTANT

Currently, Operator Lifecycle Manager (OLM) v1 cannot authenticate private registries,
such as the Red Hat-provided Operator catalogs. This is a known issue. As a result, the
OLM v1 procedures that rely on having the Red Hat Operators catalog installed do not
work. (OCPBUGS-36364)

4.2.1. About Red Hat-provided Operator catalogs

The Red Hat-provided catalog sources are installed by default in the openshift-marketplace
namespace, which makes the catalogs available cluster-wide in all namespaces.

The following Operator catalogs are distributed by Red Hat:

Catalog Index image Description

redhat-
operators

registry.redhat.io/redhat/redhat-operator-
index:v4.17

Red Hat products
packaged and shipped
by Red Hat. Supported
by Red Hat.

certified-
operators

registry.redhat.io/redhat/certified-operator-
index:v4.17

Products from leading
independent software
vendors (ISVs). Red Hat
partners with ISVs to
package and ship.
Supported by the ISV.

CHAPTER 4. CATALOGS

25

https://access.redhat.com/support/offerings/techpreview/
https://issues.redhat.com/browse/OCPBUGS-36364

redhat-
marketplace

registry.redhat.io/redhat/redhat-marketplace-
index:v4.17

Certified software that
can be purchased from
Red Hat Marketplace.

community-
operators

registry.redhat.io/redhat/community-operator-
index:v4.17

Software maintained by
relevant representatives
in the redhat-openshift-
ecosystem/community-
operators-
prod/operators GitHub
repository. No official
support.

Catalog Index image Description

During a cluster upgrade, the index image tag for the default Red Hat-provided catalog sources are
updated automatically by the Cluster Version Operator (CVO) so that Operator Lifecycle Manager
(OLM) pulls the updated version of the catalog. For example during an upgrade from OpenShift
Container Platform 4.8 to 4.9, the spec.image field in the CatalogSource object for the redhat-
operators catalog is updated from:

to:

4.3. MANAGING CATALOGS

IMPORTANT

Operator Lifecycle Manager (OLM) v1 is a Technology Preview feature only. Technology
Preview features are not supported with Red Hat production service level agreements
(SLAs) and might not be functionally complete. Red Hat does not recommend using
them in production. These features provide early access to upcoming product features,
enabling customers to test functionality and provide feedback during the development
process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

Cluster administrators can add catalogs, or curated collections of Operators and Kubernetes extensions,
to their clusters. Operator authors publish their products to these catalogs. When you add a catalog to
your cluster, you have access to the versions, patches, and over-the-air updates of the Operators and
extensions that are published to the catalog.

You can manage catalogs and extensions declaratively from the CLI by using custom resources (CRs).

File-based catalogs are the latest iteration of the catalog format in Operator Lifecycle Manager (OLM).

registry.redhat.io/redhat/redhat-operator-index:v4.8

registry.redhat.io/redhat/redhat-operator-index:v4.9

OpenShift Container Platform 4.17 Extensions

26

https://marketplace.redhat.com/
https://github.com/redhat-openshift-ecosystem/community-operators-prod/tree/main/operators
https://access.redhat.com/support/offerings/techpreview/

File-based catalogs are the latest iteration of the catalog format in Operator Lifecycle Manager (OLM).
It is a plain text-based (JSON or YAML) and declarative config evolution of the earlier SQLite database
format, and it is fully backwards compatible.

IMPORTANT

Kubernetes periodically deprecates certain APIs that are removed in subsequent
releases. As a result, Operators are unable to use removed APIs starting with the version
of OpenShift Container Platform that uses the Kubernetes version that removed the API.

If your cluster is using custom catalogs, see Controlling Operator compatibility with
OpenShift Container Platform versions for more details about how Operator authors can
update their projects to help avoid workload issues and prevent incompatible upgrades.

4.3.1. About catalogs in OLM v1

You can discover installable content by querying a catalog for Kubernetes extensions, such as Operators
and controllers, by using the catalogd component. Catalogd is a Kubernetes extension that unpacks
catalog content for on-cluster clients and is part of the Operator Lifecycle Manager (OLM) v1 suite of
microservices. Currently, catalogd unpacks catalog content that is packaged and distributed as
container images.

IMPORTANT

If you try to install an Operator or extension that does not have unique name, the
installation might fail or lead to an unpredictable result. This occurs for the following
reasons:

If mulitple catalogs are installed on a cluster, Operator Lifecycle Manager (OLM)
v1 does not include a mechanism to specify a catalog when you install an Operator
or extension.

OLM v1 requires that all of the Operators and extensions that are available to
install on a cluster use a unique name for their bundles and packages.

Additional resources

File-based catalogs

4.3.2. Red Hat-provided Operator catalogs in OLM v1

Operator Lifecycle Manager (OLM) v1 does not include Red Hat-provided Operator catalogs by default.
If you want to add a Red Hat-provided catalog to your cluster, create a custom resource (CR) for the
catalog and apply it to the cluster. The following custom resource (CR) examples show how to create a
catalog resources for OLM v1.

IMPORTANT

CHAPTER 4. CATALOGS

27

https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/operators/#osdk-control-compat_osdk-working-bundle-images

1

IMPORTANT

Currently, Operator Lifecycle Manager (OLM) v1 cannot authenticate private
registries, such as the Red Hat-provided Operator catalogs. This is a known issue.
As a result, the OLM v1 procedures that rely on having the Red Hat Operators
catalog installed do not work. (OCPBUGS-36364)

If you want to use a catalog that is hosted on a private registry, such as Red Hat-
provided Operator catalogs from registry.redhat.io, you must have a pull secret
scoped to the openshift-catalogd namespace.

For more information, see "Creating a pull secret for catalogs hosted on a secure
registry".

Example Red Hat Operators catalog

Specify the interval for polling the remote registry for newer image digests. The default value is
24h. Valid units include seconds (s), minutes (m), and hours (h). To disable polling, set a zero
value, such as 0s.

Example Certified Operators catalog

Example Community Operators catalog

apiVersion: catalogd.operatorframework.io/v1alpha1
kind: ClusterCatalog
metadata:
 name: redhat-operators
spec:
 source:
 type: image
 image:
 ref: registry.redhat.io/redhat/redhat-operator-index:v4.17
 pullSecret: <pull_secret_name>
 pollInterval: <poll_interval_duration> 1

apiVersion: catalogd.operatorframework.io/v1alpha1
kind: ClusterCatalog
metadata:
 name: certified-operators
spec:
 source:
 type: image
 image:
 ref: registry.redhat.io/redhat/certified-operator-index:v4.17
 pullSecret: <pull_secret_name>
 pollInterval: 24h

apiVersion: catalogd.operatorframework.io/v1alpha1
kind: ClusterCatalog
metadata:
 name: community-operators
spec:

OpenShift Container Platform 4.17 Extensions

28

https://issues.redhat.com/browse/OCPBUGS-36364

1

The following command adds a catalog to your cluster:

Command syntax

Specifies the catalog CR, such as redhat-operators.yaml.

4.3.3. Creating a pull secret for catalogs hosted on a private registry

If you want to use a catalog that is hosted on a private registry, such as Red Hat-provided Operator
catalogs from registry.redhat.io, you must have a pull secret scoped to the openshift-catalogd
namespace.

Catalogd cannot read global pull secrets from OpenShift Container Platform clusters. Catalogd can
read references to secrets only in the namespace where it is deployed.

IMPORTANT

Currently, Operator Lifecycle Manager (OLM) v1 cannot authenticate private registries,
such as the Red Hat-provided Operator catalogs. This is a known issue. As a result, the
OLM v1 procedures that rely on having the Red Hat Operators catalog installed do not
work. (OCPBUGS-36364)

Prerequisites

Login credentials for the secure registry

Docker or Podman installed on your workstation

Procedure

If you already have a .dockercfg file with login credentials for the secure registry, create a pull
secret by running the following command:

Example 4.9. Example command

 source:
 type: image
 image:
 ref: registry.redhat.io/redhat/community-operator-index:v4.17
 pullSecret: <pull_secret_name>
 pollInterval: 24h

$ oc apply -f <catalog_name>.yaml 1

$ oc create secret generic <pull_secret_name> \
 --from-file=.dockercfg=<file_path>/.dockercfg \
 --type=kubernetes.io/dockercfg \
 --namespace=openshift-catalogd

$ oc create secret generic redhat-cred \
 --from-file=.dockercfg=/home/<username>/.dockercfg \
 --type=kubernetes.io/dockercfg \

CHAPTER 4. CATALOGS

29

https://issues.redhat.com/browse/OCPBUGS-36364

If you already have a $HOME/.docker/config.json file with login credentials for the secured
registry, create a pull secret by running the following command:

Example 4.10. Example command

If you do not have a Docker configuration file with login credentials for the secure registry,
create a pull secret by running the following command:

Example 4.11. Example command

4.3.4. Adding a catalog to a cluster

To add a catalog to a cluster, create a catalog custom resource (CR) and apply it to the cluster.

IMPORTANT

Currently, Operator Lifecycle Manager (OLM) v1 cannot authenticate private registries,
such as the Red Hat-provided Operator catalogs. This is a known issue. As a result, the
OLM v1 procedures that rely on having the Red Hat Operators catalog installed do not
work. (OCPBUGS-36364)

Prerequisites

 --namespace=openshift-catalogd

$ oc create secret generic <pull_secret_name> \
 --from-file=.dockerconfigjson=<file_path>/.docker/config.json \
 --type=kubernetes.io/dockerconfigjson \
 --namespace=openshift-catalogd

$ oc create secret generic redhat-cred \
 --from-file=.dockerconfigjson=/home/<username>/.docker/config.json \
 --type=kubernetes.io/dockerconfigjson \
 --namespace=openshift-catalogd

$ oc create secret docker-registry <pull_secret_name> \
 --docker-server=<registry_server> \
 --docker-username=<username> \
 --docker-password=<password> \
 --docker-email=<email> \
 --namespace=openshift-catalogd

$ oc create secret docker-registry redhat-cred \
 --docker-server=registry.redhat.io \
 --docker-username=username \
 --docker-password=password \
 --docker-email=user@example.com \
 --namespace=openshift-catalogd

OpenShift Container Platform 4.17 Extensions

30

https://issues.redhat.com/browse/OCPBUGS-36364

1

2

3

If you want to use a catalog that is hosted on a private registry, such as Red Hat-provided
Operator catalogs from registry.redhat.io, you must have a pull secret scoped to the
openshift-catalogd namespace.

Catalogd cannot read global pull secrets from OpenShift Container Platform clusters. Catalogd
can read references to secrets only in the namespace where it is deployed.

Procedure

1. Create a catalog custom resource (CR), similar to the following example:

Example redhat-operators.yaml

Specify the catalog’s image in the spec.source.image field.

If your catalog is hosted on a secure registry, such as registry.redhat.io, you must create a
pull secret scoped to the openshift-catalog namespace.

Specify the interval for polling the remote registry for newer image digests. The default
value is 24h. Valid units include seconds (s), minutes (m), and hours (h). To disable polling,
set a zero value, such as 0s.

2. Add the catalog to your cluster by running the following command:

Example output

Verification

Run the following commands to verify the status of your catalog:

a. Check if you catalog is available by running the following command:

Example output

apiVersion: catalogd.operatorframework.io/v1alpha1
kind: ClusterCatalog
metadata:
 name: redhat-operators
spec:
 source:
 type: image
 image:
 ref: registry.redhat.io/redhat/redhat-operator-index:v4.17 1
 pullSecret: <pull_secret_name> 2
 pollInterval: <poll_interval_duration> 3

$ oc apply -f redhat-operators.yaml

catalog.catalogd.operatorframework.io/redhat-operators created

$ oc get clustercatalog

CHAPTER 4. CATALOGS

31

1

2

3

b. Check the status of your catalog by running the following command:

Example output

Describes the status of the catalog.

Displays the reason the catalog is in the current state.

Displays the phase of the installation process.

NAME AGE
redhat-operators 20s

$ oc describe clustercatalog

Name: redhat-operators
Namespace:
Labels: <none>
Annotations: <none>
API Version: catalogd.operatorframework.io/v1alpha1
Kind: ClusterCatalog
Metadata:
 Creation Timestamp: 2024-06-10T17:34:53Z
 Finalizers:
 catalogd.operatorframework.io/delete-server-cache
 Generation: 1
 Resource Version: 46075
 UID: 83c0db3c-a553-41da-b279-9b3cddaa117d
Spec:
 Source:
 Image:
 Pull Secret: redhat-cred
 Ref: registry.redhat.io/redhat/redhat-operator-index:v4.17
 Type: image
Status: 1
 Conditions:
 Last Transition Time: 2024-06-10T17:35:15Z
 Message:
 Reason: UnpackSuccessful 2
 Status: True
 Type: Unpacked
 Content URL: https://catalogd-catalogserver.openshift-
catalogd.svc/catalogs/redhat-operators/all.json
 Observed Generation: 1
 Phase: Unpacked 3
 Resolved Source:
 Image:
 Last Poll Attempt: 2024-06-10T17:35:10Z
 Ref: registry.redhat.io/redhat/redhat-operator-index:v4.17
 Resolved Ref: registry.redhat.io/redhat/redhat-operator-
index@sha256:f2ccc079b5e490a50db532d1dc38fd659322594dcf3e653d650ead0e862029
d9 4
 Type: image
Events: <none>

OpenShift Container Platform 4.17 Extensions

32

4 Displays the image reference of the catalog.

4.3.5. Deleting a catalog

You can delete a catalog by deleting its custom resource (CR).

Prerequisites

You have a catalog installed.

Procedure

Delete a catalog by running the following command:

Example output

Verification

Verify the catalog is deleted by running the following command:

4.4. CREATING CATALOGS

IMPORTANT

Operator Lifecycle Manager (OLM) v1 is a Technology Preview feature only. Technology
Preview features are not supported with Red Hat production service level agreements
(SLAs) and might not be functionally complete. Red Hat does not recommend using
them in production. These features provide early access to upcoming product features,
enabling customers to test functionality and provide feedback during the development
process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

Catalog maintainers can create new catalogs in the file-based catalog format for use with Operator
Lifecycle Manager (OLM) v1 on OpenShift Container Platform.

IMPORTANT

Currently, Operator Lifecycle Manager (OLM) v1 cannot authenticate private registries,
such as the Red Hat-provided Operator catalogs. This is a known issue. As a result, the
OLM v1 procedures that rely on having the Red Hat Operators catalog installed do not
work. (OCPBUGS-36364)

$ oc delete clustercatalog <catalog_name>

catalog.catalogd.operatorframework.io "my-catalog" deleted

$ oc get clustercatalog

CHAPTER 4. CATALOGS

33

https://access.redhat.com/support/offerings/techpreview/
https://issues.redhat.com/browse/OCPBUGS-36364

1

1

2

3

4.4.1. Creating a file-based catalog image

You can use the opm CLI to create a catalog image that uses the plain text file-based catalog format
(JSON or YAML), which replaces the deprecated SQLite database format.

Prerequisites

You have installed the opm CLI.

You have podman version 1.9.3+.

A bundle image is built and pushed to a registry that supports Docker v2-2.

Procedure

1. Initialize the catalog:

a. Create a directory for the catalog by running the following command:

b. Generate a Dockerfile that can build a catalog image by running the opm generate
dockerfile command:

Specify the official Red Hat base image by using the -i flag, otherwise the Dockerfile
uses the default upstream image.

The Dockerfile must be in the same parent directory as the catalog directory that you
created in the previous step:

Example directory structure

Parent directory

Catalog directory

Dockerfile generated by the opm generate dockerfile command

c. Populate the catalog with the package definition for your Operator by running the opm init
command:

$ mkdir <catalog_dir>

$ opm generate dockerfile <catalog_dir> \
 -i registry.redhat.io/openshift4/ose-operator-registry-rhel9:v4.17 1

. 1
├── <catalog_dir> 2
└── <catalog_dir>.Dockerfile 3

$ opm init <operator_name> \ 1
 --default-channel=preview \ 2
 --description=./README.md \ 3

OpenShift Container Platform 4.17 Extensions

34

https://docs.docker.com/registry/spec/manifest-v2-2/

1

2

3

4

5

6

1

2

1

Operator, or package, name

Channel that subscriptions default to if unspecified

Path to the Operator’s README.md or other documentation

Path to the Operator’s icon

Output format: JSON or YAML

Path for creating the catalog configuration file

This command generates an olm.package declarative config blob in the specified catalog
configuration file.

2. Add a bundle to the catalog by running the opm render command:

Pull spec for the bundle image

Path to the catalog configuration file

NOTE

Channels must contain at least one bundle.

3. Add a channel entry for the bundle. For example, modify the following example to your
specifications, and add it to your <catalog_dir>/index.yaml file:

Example channel entry

Ensure that you include the period (.) after <operator_name> but before the v in the
version. Otherwise, the entry fails to pass the opm validate command.

4. Validate the file-based catalog:

a. Run the opm validate command against the catalog directory:

 --icon=./operator-icon.svg \ 4
 --output yaml \ 5
 > <catalog_dir>/index.yaml 6

$ opm render <registry>/<namespace>/<bundle_image_name>:<tag> \ 1
 --output=yaml \
 >> <catalog_dir>/index.yaml 2

schema: olm.channel
package: <operator_name>
name: preview
entries:
 - name: <operator_name>.v0.1.0 1

CHAPTER 4. CATALOGS

35

b. Check that the error code is 0:

Example output

5. Build the catalog image by running the podman build command:

6. Push the catalog image to a registry:

a. If required, authenticate with your target registry by running the podman login command:

b. Push the catalog image by running the podman push command:

Additional resources

opm CLI reference

4.4.2. Updating or filtering a file-based catalog image

You can use the opm CLI to update or filter a catalog image that uses the file-based catalog format. By
extracting the contents of an existing catalog image, you can modify the catalog as needed, for example:

Adding packages

Removing packages

Updating existing package entries

Detailing deprecation messages per package, channel, and bundle

You can then rebuild the image as an updated version of the catalog.

NOTE

$ opm validate <catalog_dir>

$ echo $?

0

$ podman build . \
 -f <catalog_dir>.Dockerfile \
 -t <registry>/<namespace>/<catalog_image_name>:<tag>

$ podman login <registry>

$ podman push <registry>/<namespace>/<catalog_image_name>:<tag>

OpenShift Container Platform 4.17 Extensions

36

https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/cli_tools/#cli-opm-ref

NOTE

Alternatively, if you already have a catalog image on a mirror registry, you can use the oc-
mirror CLI plugin to automatically prune any removed images from an updated source
version of that catalog image while mirroring it to the target registry.

For more information about the oc-mirror plugin and this use case, see the "Keeping your
mirror registry content updated" section, and specifically the "Pruning images"
subsection, of "Mirroring images for a disconnected installation using the oc-mirror
plugin".

Prerequisites

You have the following on your workstation:

The opm CLI.

podman version 1.9.3+.

A file-based catalog image.

A catalog directory structure recently initialized on your workstation related to this catalog.
If you do not have an initialized catalog directory, create the directory and generate the
Dockerfile. For more information, see the "Initialize the catalog" step from the "Creating a
file-based catalog image" procedure.

Procedure

1. Extract the contents of the catalog image in YAML format to an index.yaml file in your catalog
directory:

NOTE

Alternatively, you can use the -o json flag to output in JSON format.

2. Modify the contents of the resulting index.yaml file to your specifications:

IMPORTANT

After a bundle has been published in a catalog, assume that one of your users has
installed it. Ensure that all previously published bundles in a catalog have an
update path to the current or newer channel head to avoid stranding users that
have that version installed.

To add an Operator, follow the steps for creating package, bundle, and channel entries in
the "Creating a file-based catalog image" procedure.

To remove an Operator, delete the set of olm.package, olm.channel, and olm.bundle
blobs that relate to the package. The following example shows a set that must be deleted to
remove the example-operator package from the catalog:

Example 4.12. Example removed entries

$ opm render <registry>/<namespace>/<catalog_image_name>:<tag> \
 -o yaml > <catalog_dir>/index.yaml

CHAPTER 4. CATALOGS

37

defaultChannel: release-2.7
icon:
 base64data: <base64_string>
 mediatype: image/svg+xml
name: example-operator
schema: olm.package

entries:
- name: example-operator.v2.7.0
 skipRange: '>=2.6.0 <2.7.0'
- name: example-operator.v2.7.1
 replaces: example-operator.v2.7.0
 skipRange: '>=2.6.0 <2.7.1'
- name: example-operator.v2.7.2
 replaces: example-operator.v2.7.1
 skipRange: '>=2.6.0 <2.7.2'
- name: example-operator.v2.7.3
 replaces: example-operator.v2.7.2
 skipRange: '>=2.6.0 <2.7.3'
- name: example-operator.v2.7.4
 replaces: example-operator.v2.7.3
 skipRange: '>=2.6.0 <2.7.4'
name: release-2.7
package: example-operator
schema: olm.channel

image: example.com/example-inc/example-operator-bundle@sha256:<digest>
name: example-operator.v2.7.0
package: example-operator
properties:
- type: olm.gvk
 value:
 group: example-group.example.io
 kind: MyObject
 version: v1alpha1
- type: olm.gvk
 value:
 group: example-group.example.io
 kind: MyOtherObject
 version: v1beta1
- type: olm.package
 value:
 packageName: example-operator
 version: 2.7.0
- type: olm.bundle.object
 value:
 data: <base64_string>
- type: olm.bundle.object
 value:
 data: <base64_string>
relatedImages:
- image: example.com/example-inc/example-related-image@sha256:<digest>
 name: example-related-image
schema: olm.bundle

OpenShift Container Platform 4.17 Extensions

38

To add or update deprecation messages for an Operator, ensure there is a
deprecations.yaml file in the same directory as the package’s index.yaml file. For
information on the deprecations.yaml file format, see "olm.deprecations schema".

3. Save your changes.

4. Validate the catalog:

5. Rebuild the catalog:

6. Push the updated catalog image to a registry:

Verification

1. In the web console, navigate to the OperatorHub configuration resource in the Administration
→ Cluster Settings → Configuration page.

2. Add the catalog source or update the existing catalog source to use the pull spec for your
updated catalog image.
For more information, see "Adding a catalog source to a cluster" in the "Additional resources" of
this section.

3. After the catalog source is in a READY state, navigate to the Operators → OperatorHub page
and check that the changes you made are reflected in the list of Operators.

Additional resources

Packaging format → Schemas → olm.deprecations schema

Mirroring images for a disconnected installation using the oc-mirror plugin → Keeping your
mirror registry content updated

Adding a catalog source to a cluster

$ opm validate <catalog_dir>

$ podman build . \
 -f <catalog_dir>.Dockerfile \
 -t <registry>/<namespace>/<catalog_image_name>:<tag>

$ podman push <registry>/<namespace>/<catalog_image_name>:<tag>

CHAPTER 4. CATALOGS

39

https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/operators/#olm-deprecations-schema_olm-packaging-format
https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/disconnected_environments/#updating-mirror-registry-content
https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/operators/#olm-creating-catalog-from-index_olm-restricted-networks

CHAPTER 5. CLUSTER EXTENSIONS

5.1. MANAGING CLUSTER EXTENSIONS

IMPORTANT

Operator Lifecycle Manager (OLM) v1 is a Technology Preview feature only. Technology
Preview features are not supported with Red Hat production service level agreements
(SLAs) and might not be functionally complete. Red Hat does not recommend using
them in production. These features provide early access to upcoming product features,
enabling customers to test functionality and provide feedback during the development
process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

After a catalog has been added to your cluster, you have access to the versions, patches, and over-the-
air updates of the extensions and Operators that are published to the catalog.

You can manage extensions declaratively from the CLI using custom resources (CRs).

IMPORTANT

Currently, Operator Lifecycle Manager (OLM) v1 cannot authenticate private registries,
such as the Red Hat-provided Operator catalogs. This is a known issue. As a result, the
OLM v1 procedures that rely on having the Red Hat Operators catalog installed do not
work. (OCPBUGS-36364)

5.1.1. Supported extensions

Currently, Operator Lifecycle Manager (OLM) v1 supports installing cluster extensions that meet all of
the following criteria:

The extension must use the registry+v1 bundle format introduced in existing OLM.

The extension must support installation via the AllNamespaces install mode.

The extension must not use webhooks.

The extension must not declare dependencies by using any of the following file-based catalog
properties:

olm.gvk.required

olm.package.required

olm.constraint

OLM v1 checks that the extension you want to install meets these constraints. If the extension that you
want to install does not meet these constraints, an error message is printed in the cluster extension’s
conditions.

IMPORTANT

OpenShift Container Platform 4.17 Extensions

40

https://access.redhat.com/support/offerings/techpreview/
https://issues.redhat.com/browse/OCPBUGS-36364

IMPORTANT

Operator Lifecycle Manager (OLM) v1 does not support the OperatorConditions API
introduced in existing OLM.

If an extension relies on only the OperatorConditions API to manage updates, the
extension might not install correctly. Most extensions that rely on this API fail at start
time, but some might fail during reconciliation.

As a workaround, you can pin your extension to a specific version. When you want to
update your extension, consult the extension’s documentation to find out when it is safe
to pin the extension to a new version.

Additional resources

Operator conditions

5.1.2. Finding Operators to install from a catalog

After you add a catalog to your cluster, you can query the catalog to find Operators and extensions to
install. Before you can query catalogs, you must port forward the catalog server service.

Prerequisites

You have added a catalog to your cluster.

You have installed the jq CLI tool.

Procedure

1. Port forward the catalog server service in the openshift-catalogd namespace by running the
following command:

2. In a new terminal window or tab, download the catalog’s JSON file locally by running the
following command:

Example 5.1. Example command

3. Run one of the following commands to return a list of Operators and extensions in a catalog.

IMPORTANT

$ oc -n openshift-catalogd port-forward svc/catalogd-catalogserver 8080:443

$ curl -L -k https://localhost:8080/catalogs/<catalog_name>/all.json \
 -C - -o /<path>/<catalog_name>.json

$ curl -L -k https://localhost:8080/catalogs/redhat-operators/all.json \
 -C - -o /home/username/catalogs/rhoc.json

CHAPTER 5. CLUSTER EXTENSIONS

41

https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/operators/#olm-operatorconditions

IMPORTANT

Currently, Operator Lifecycle Manager (OLM) v1 supports installing cluster
extensions that meet all of the following criteria:

The extension must use the registry+v1 bundle format introduced in existing
OLM.

The extension must support installation via the AllNamespaces install mode.

The extension must not use webhooks.

The extension must not declare dependencies by using any of the following
file-based catalog properties:

olm.gvk.required

olm.package.required

olm.constraint

OLM v1 checks that the extension you want to install meets these constraints. If
the extension that you want to install does not meet these constraints, an error
message is printed in the cluster extension’s conditions.

Get a list of all the Operators and extensions from the local catalog file by running the
following command:

Example 5.2. Example command

Example 5.3. Example output

$ jq -s '.[] | select(.schema == "olm.package") | .name' \
 /<path>/<filename>.json

$ jq -s '.[] | select(.schema == "olm.package") | .name' \
 /home/username/catalogs/rhoc.json

NAME AGE
"3scale-operator"
"advanced-cluster-management"
"amq-broker-rhel8"
"amq-online"
"amq-streams"
"amq7-interconnect-operator"
"ansible-automation-platform-operator"
"ansible-cloud-addons-operator"
"apicast-operator"
"aws-efs-csi-driver-operator"
"aws-load-balancer-operator"
"bamoe-businessautomation-operator"
"bamoe-kogito-operator"

OpenShift Container Platform 4.17 Extensions

42

Get list of packages that support AllNamespaces install mode and do not use webhooks
from the local catalog file by running the following command:

Example 5.4. Example output

4. Inspect the contents of an Operator or extension’s metadata by running the following
command:

Example 5.5. Example command

Example 5.6. Example output

"bare-metal-event-relay"
"businessautomation-operator"
...

$ jq -c 'select(.schema == "olm.bundle") | \
 {"package":.package, "version":.properties[] | \
 select(.type == "olm.bundle.object").value.data | @base64d | fromjson | \
 select(.kind == "ClusterServiceVersion" and (.spec.installModes[] | \
 select(.type == "AllNamespaces" and .supported == true) != null) \
 and .spec.webhookdefinitions == null).spec.version}' \
 /<path>/<catalog_name>.json

{"package":"3scale-operator","version":"0.10.0-mas"}
{"package":"3scale-operator","version":"0.10.5"}
{"package":"3scale-operator","version":"0.11.0-mas"}
{"package":"3scale-operator","version":"0.11.1-mas"}
{"package":"3scale-operator","version":"0.11.2-mas"}
{"package":"3scale-operator","version":"0.11.3-mas"}
{"package":"3scale-operator","version":"0.11.5-mas"}
{"package":"3scale-operator","version":"0.11.6-mas"}
{"package":"3scale-operator","version":"0.11.7-mas"}
{"package":"3scale-operator","version":"0.11.8-mas"}
{"package":"amq-broker-rhel8","version":"7.10.0-opr-1"}
{"package":"amq-broker-rhel8","version":"7.10.0-opr-2"}
{"package":"amq-broker-rhel8","version":"7.10.0-opr-3"}
{"package":"amq-broker-rhel8","version":"7.10.0-opr-4"}
{"package":"amq-broker-rhel8","version":"7.10.1-opr-1"}
{"package":"amq-broker-rhel8","version":"7.10.1-opr-2"}
{"package":"amq-broker-rhel8","version":"7.10.2-opr-1"}
{"package":"amq-broker-rhel8","version":"7.10.2-opr-2"}
...

$ jq -s '.[] | select(.schema == "olm.package") | \
 select(.name == "<package_name>")' /<path>/<catalog_name>.json

$ jq -s '.[] | select(.schema == "olm.package") | \
 select(.name == "openshift-pipelines-operator-rh")' \
 /home/username/rhoc.json

CHAPTER 5. CLUSTER EXTENSIONS

43

5.1.2.1. Common catalog queries

You can query catalogs by using the jq CLI tool.

Table 5.1. Common package queries

Query Request

Available packages in a
catalog

Packages that support
AllNamespaces install
mode and do not use
webhooks

Package metadata

Catalog blobs in a
package

Table 5.2. Common channel queries

Query Request

Channels in a package

{
 "defaultChannel": "stable",
 "icon": {
 "base64data": "PHN2ZyB4bWxu..."
 "mediatype": "image/png"
 },
 "name": "openshift-pipelines-operator-rh",
 "schema": "olm.package"
}

$ jq -s '.[] | select(.schema == "olm.package") | \
 .name' <catalog_name>.json

$ jq -c 'select(.schema == "olm.bundle") | \
 {"package":.package, "version":.properties[] | \
 select(.type == "olm.bundle.object").value.data | \
 @base64d | fromjson | \
 select(.kind == "ClusterServiceVersion" and (.spec.installModes[] | \
 select(.type == "AllNamespaces" and .supported == true) != null) \
 and .spec.webhookdefinitions == null).spec.version}' \
 <catalog_name>.json

$ jq -s '.[] | select(.schema == "olm.package") | \
 select(.name == "<package_name>")' <catalog_name>.json

$ jq -s '.[] | select(.package == "<package_name>")' \
 <catalog_name>.json

$ jq -s '.[] | select(.schema == "olm.channel") | \
 select(.package == "<package_name>") | .name' \
 <catalog_name>.json

OpenShift Container Platform 4.17 Extensions

44

Versions in a channel

Latest version
in a channel

Upgrade path

Query Request

Table 5.3. Common bundle queries

Query Request

Bundles in a package

Bundle
dependencies

Available APIs

5.1.3. Creating a service account to manage cluster extensions

Unlike existing Operator Lifecycle Manager (OLM), OLM v1 does not have permissions to install, update,
and manage cluster extensions. Cluster administrators must create a service account and assign the
role-based access controls (RBAC) required to install, update, and manage cluster extensions.

IMPORTANT

There is a known issue in OLM v1. If you do not assign the correct role-based access
controls (RBAC) to an extension’s service account, OLM v1 gets stuck and reconciliation
stops.

Currently, OLM v1 does not have tools to help extension administrators find the correct
RBAC for a service account.

Because OLM v1 is a Technology Preview feature and must not be used on production
clusters, you can avoid this issue by using the more permissive RBAC included in the
documentation.

This RBAC is intended for testing purposes only. Do not use it on production clusters.

$ jq -s '.[] | select(.package == "<package_name>") | \
 select(.schema == "olm.channel") | \
 select(.name == "<channel_name>") | \
 .entries | .[] | .name' <catalog_name>.json

$ jq -s '.[] | select(.schema == "olm.channel") | \
 select (.name == "<channel>") | \
 select(.package == "<package_name>")' \
 <catalog_name>.json

$ jq -s '.[] | select(.schema == "olm.bundle") | \
 select(.package == "<package_name>") | .name' \
 <catalog_name>.json

$ jq -s '.[] | select(.schema == "olm.bundle") | \
 select (.name == "<bundle_name>") | \
 select(.package == "<package_name>")' \
 <catalog_name>.json

CHAPTER 5. CLUSTER EXTENSIONS

45

Prerequisites

Access to an OpenShift Container Platform cluster using an account with cluster-admin
permissions.

Procedure

1. Create a service account, similar to the following example:

Example 5.7. Example extension-service-account.yaml file

2. Apply the service account by running the following command:

3. Create a cluster role and assign RBAC, similar to the following example:

WARNING

The following cluster role does not follow the principle of least privilege.
This cluster role is intended for testing purposes only. Do not use it on
production clusters.

Example 5.8. Example pipelines-cluster-role.yaml file

apiVersion: v1
kind: ServiceAccount
metadata:
 name: <extension>-installer
 namespace: <namespace>

apiVersion: v1
kind: ServiceAccount
metadata:
 name: pipelines-installer
 namespace: pipelines

$ oc apply -f extension-service-account.yaml



apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 name: <extension>-installer-clusterrole
rules:
- apiGroups: ["*"]
 resources: ["*"]
 verbs: ["*"]

apiVersion: rbac.authorization.k8s.io/v1

OpenShift Container Platform 4.17 Extensions

46

4. Add the cluster role to the cluster by running the following command:

5. Bind the permissions granted by the cluster role to the service account by creating a cluster role
binding, similar to the following example:

Example 5.9. Example pipelines-cluster-role-binding.yaml file

6. Apply the cluster role binding by running the following command:

5.1.4. Installing a cluster extension from a catalog

You can install an extension from a catalog by creating a custom resource (CR) and applying it to the
cluster. Operator Lifecycle Manager (OLM) v1 supports installing cluster extensions, including existing

kind: ClusterRole
metadata:
 name: pipelines-installer-clusterrole
rules:
- apiGroups: ["*"]
 resources: ["*"]
 verbs: ["*"]

$ oc apply -f pipelines-role.yaml

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 name: <extension>-installer-binding
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: <extension>-installer-clusterrole
subjects:
- kind: ServiceAccount
 name: <extension>-installer
 namespace: <namespace>

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 name: pipelines-installer-binding
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: pipelines-installer-clusterrole
subjects:
- kind: ServiceAccount
 name: pipelines-installer
 namespace: pipelines

$ oc apply -f pipelines-cluster-role-binding.yaml

CHAPTER 5. CLUSTER EXTENSIONS

47

OLM Operators via the registry+v1 bundle format, that are scoped to the cluster. For more information,
see Supported extensions .

IMPORTANT

Currently, Operator Lifecycle Manager (OLM) v1 cannot authenticate private registries,
such as the Red Hat-provided Operator catalogs. This is a known issue. As a result, the
OLM v1 procedures that rely on having the Red Hat Operators catalog installed do not
work. (OCPBUGS-36364)

Prerequisites

You have added a catalog to your cluster.

You have downloaded a local copy of the catalog file.

You have installed the jq CLI tool.

You have created a service account and assigned enough role-based access controls (RBAC) to
install, update, and manage the extension you want to install. For more information, see
Creating a service account .

Procedure

1. Inspect a package for channel and version information from a local copy of your catalog file by
completing the following steps:

a. Get a list of channels from a selected package by running the following command:

Example 5.10. Example command

Example 5.11. Example output

b. Get a list of the versions published in a channel by running the following command:

$ jq -s '.[] | select(.schema == "olm.channel") | \
 select(.package == "<package_name>") | \
 .name' /<path>/<catalog_name>.json

$ jq -s '.[] | select(.schema == "olm.channel") | \
 select(.package == "openshift-pipelines-operator-rh") | \
 .name' /home/username/rhoc.json

"latest"
"pipelines-1.11"
"pipelines-1.12"
"pipelines-1.13"
"pipelines-1.14"

$ jq -s '.[] | select(.package == "<package_name>") | \
 select(.schema == "olm.channel") | \

OpenShift Container Platform 4.17 Extensions

48

https://issues.redhat.com/browse/OCPBUGS-36364

Example 5.12. Example command

Example 5.13. Example output

2. If you want to install your extension into a new namespace, run the following command:

3. Create a CR, similar to the following example:

Example pipelines-operator.yaml CR

where:

<namespace>

Specifies the namespace where you want the bundle installed, such as pipelines or my-

 select(.name == "<channel_name>") | .entries | \
 .[] | .name' /<path>/<catalog_name>.json

$ jq -s '.[] | select(.package == "openshift-pipelines-operator-rh") | \
select(.schema == "olm.channel") | select(.name == "latest") | \
.entries | .[] | .name' /home/username/rhoc.json

"openshift-pipelines-operator-rh.v1.12.0"
"openshift-pipelines-operator-rh.v1.12.1"
"openshift-pipelines-operator-rh.v1.12.2"
"openshift-pipelines-operator-rh.v1.13.0"
"openshift-pipelines-operator-rh.v1.13.1"
"openshift-pipelines-operator-rh.v1.11.1"
"openshift-pipelines-operator-rh.v1.12.0"
"openshift-pipelines-operator-rh.v1.12.1"
"openshift-pipelines-operator-rh.v1.12.2"
"openshift-pipelines-operator-rh.v1.13.0"
"openshift-pipelines-operator-rh.v1.14.1"
"openshift-pipelines-operator-rh.v1.14.2"
"openshift-pipelines-operator-rh.v1.14.3"
"openshift-pipelines-operator-rh.v1.14.4"

$ oc adm new-project <new_namespace>

apiVersion: olm.operatorframework.io/v1alpha1
kind: ClusterExtension
metadata:
 name: pipelines-operator
spec:
 packageName: openshift-pipelines-operator-rh
 installNamespace: <namespace>
 serviceAccount:
 name: <service_account>
 channel: <channel>
 version: "<version>"

CHAPTER 5. CLUSTER EXTENSIONS

49

Specifies the namespace where you want the bundle installed, such as pipelines or my-
extension. Extensions are still cluster-scoped and might contain resources that are installed
in different namespaces.

<service_account>

Specifies the name of the service account you created to install, update, and manage your
extension.

<channel>

Optional: Specifies the channel, such as pipelines-1.11 or latest, for the package you want
to install or update.

<version>

Optional: Specifies the version or version range, such as 1.11.1, 1.12.x, or >=1.12.1, of the
package you want to install or update. For more information, see "Example custom resources
(CRs) that specify a target version" and "Support for version ranges".

IMPORTANT

If you try to install an Operator or extension that does not have unique name,
the installation might fail or lead to an unpredictable result. This occurs for the
following reasons:

If mulitple catalogs are installed on a cluster, Operator Lifecycle Manager
(OLM) v1 does not include a mechanism to specify a catalog when you
install an Operator or extension.

OLM v1 requires that all of the Operators and extensions that are available
to install on a cluster use a unique name for their bundles and packages.

4. Apply the CR to the cluster by running the following command:

Example output

Verification

1. View the Operator or extension’s CR in the YAML format by running the following command:

Example 5.14. Example output

$ oc apply -f pipeline-operator.yaml

clusterextension.olm.operatorframework.io/pipelines-operator created

$ oc get clusterextension pipelines-operator -o yaml

apiVersion: v1
items:
- apiVersion: olm.operatorframework.io/v1alpha1
 kind: ClusterExtension
 metadata:
 annotations:
 kubectl.kubernetes.io/last-applied-configuration: |

OpenShift Container Platform 4.17 Extensions

50

{"apiVersion":"olm.operatorframework.io/v1alpha1","kind":"ClusterExtension","metadata":
{"annotations":{},"name":"pipelines-operator"},"spec":
{"channel":"latest","installNamespace":"pipelines","packageName":"openshift-pipelines-
operator-rh","serviceAccount":{"name":"pipelines-installer"},"pollInterval":"30m"}}
 creationTimestamp: "2024-06-10T17:50:51Z"
 finalizers:
 - olm.operatorframework.io/cleanup-unpack-cache
 generation: 1
 name: pipelines-operator
 resourceVersion: "53324"
 uid: c54237be-cde4-46d4-9b31-d0ec6acc19bf
 spec:
 channel: latest
 installNamespace: pipelines
 packageName: openshift-pipelines-operator-rh
 serviceAccount:
 name: pipelines-installer
 upgradeConstraintPolicy: Enforce
 status:
 conditions:
 - lastTransitionTime: "2024-06-10T17:50:58Z"
 message: resolved to "registry.redhat.io/openshift-pipelines/pipelines-operator-
bundle@sha256:dd3d18367da2be42539e5dde8e484dac3df33ba3ce1d5bcf896838954f386
4ec"
 observedGeneration: 1
 reason: Success
 status: "True"
 type: Resolved
 - lastTransitionTime: "2024-06-10T17:51:11Z"
 message: installed from "registry.redhat.io/openshift-pipelines/pipelines-operator-
bundle@sha256:dd3d18367da2be42539e5dde8e484dac3df33ba3ce1d5bcf896838954f386
4ec"
 observedGeneration: 1
 reason: Success
 status: "True"
 type: Installed
 - lastTransitionTime: "2024-06-10T17:50:58Z"
 message: ""
 observedGeneration: 1
 reason: Deprecated
 status: "False"
 type: Deprecated
 - lastTransitionTime: "2024-06-10T17:50:58Z"
 message: ""
 observedGeneration: 1
 reason: Deprecated
 status: "False"
 type: PackageDeprecated
 - lastTransitionTime: "2024-06-10T17:50:58Z"
 message: ""
 observedGeneration: 1
 reason: Deprecated
 status: "False"
 type: ChannelDeprecated
 - lastTransitionTime: "2024-06-10T17:50:58Z"
 message: ""

CHAPTER 5. CLUSTER EXTENSIONS

51

where:

spec.channel

Displays the channel defined in the CR of the extension.

spec.version

Displays the version or version range defined in the CR of the extension.

status.conditions

Displays information about the status and health of the extension.

type: Deprecated

Displays whether one or more of following are deprecated:

type: PackageDeprecated

Displays whether the resolved package is deprecated.

type: ChannelDeprecated

Displays whether the resolved channel is deprecated.

type: BundleDeprecated

Displays whether the resolved bundle is deprecated.

The value of False in the status field indicates that the reason: Deprecated condition is
not deprecated. The value of True in the status field indicates that the reason:
Deprecated condition is deprecated.

installedBundle.name

Displays the name of the bundle installed.

installedBundle.version

Displays the version of the bundle installed.

resolvedBundle.name

Displays the name of the resolved bundle.

resolvedBundle.version

Displays the version of the resolved bundle.

 observedGeneration: 1
 reason: Deprecated
 status: "False"
 type: BundleDeprecated
 - lastTransitionTime: "2024-06-10T17:50:58Z"
 message: 'unpack successful:
 observedGeneration: 1
 reason: UnpackSuccess
 status: "True"
 type: Unpacked
 installedBundle:
 name: openshift-pipelines-operator-rh.v1.14.4
 version: 1.14.4
 resolvedBundle:
 name: openshift-pipelines-operator-rh.v1.14.4
 version: 1.14.4

OpenShift Container Platform 4.17 Extensions

52

Additional resources

Supported extensions

Creating a service account

Example custom resources (CRs) that specify a target version

Support for version ranges

5.1.5. Updating a cluster extension

You can update your cluster extension or Operator by manually editing the custom resource (CR) and
applying the changes.

Prerequisites

You have a catalog installed.

You have downloaded a local copy of the catalog file.

You have an Operator or extension installed.

You have installed the jq CLI tool.

Procedure

1. Inspect a package for channel and version information from a local copy of your catalog file by
completing the following steps:

a. Get a list of channels from a selected package by running the following command:

Example 5.15. Example command

Example 5.16. Example output

b. Get a list of the versions published in a channel by running the following command:

$ jq -s '.[] | select(.schema == "olm.channel") | \
 select(.package == "<package_name>") | \
 .name' /<path>/<catalog_name>.json

$ jq -s '.[] | select(.schema == "olm.channel") | \
 select(.package == "openshift-pipelines-operator-rh") | \
 .name' /home/username/rhoc.json

"latest"
"pipelines-1.11"
"pipelines-1.12"
"pipelines-1.13"
"pipelines-1.14"

CHAPTER 5. CLUSTER EXTENSIONS

53

Example 5.17. Example command

Example 5.18. Example output

2. Find out what version or channel is specified in your Operator or extension’s CR by running the
following command:

Example command

Example 5.19. Example output

$ jq -s '.[] | select(.package == "<package_name>") | \
 select(.schema == "olm.channel") | \
 select(.name == "<channel_name>") | .entries | \
 .[] | .name' /<path>/<catalog_name>.json

$ jq -s '.[] | select(.package == "openshift-pipelines-operator-rh") | \
select(.schema == "olm.channel") | select(.name == "latest") | \
.entries | .[] | .name' /home/username/rhoc.json

"openshift-pipelines-operator-rh.v1.11.1"
"openshift-pipelines-operator-rh.v1.12.0"
"openshift-pipelines-operator-rh.v1.12.1"
"openshift-pipelines-operator-rh.v1.12.2"
"openshift-pipelines-operator-rh.v1.13.0"
"openshift-pipelines-operator-rh.v1.14.1"
"openshift-pipelines-operator-rh.v1.14.2"
"openshift-pipelines-operator-rh.v1.14.3"
"openshift-pipelines-operator-rh.v1.14.4"

$ oc get clusterextension <operator_name> -o yaml

$ oc get clusterextension pipelines-operator -o yaml

apiVersion: olm.operatorframework.io/v1alpha1
kind: ClusterExtension
metadata:
 annotations:
 kubectl.kubernetes.io/last-applied-configuration: |

{"apiVersion":"olm.operatorframework.io/v1alpha1","kind":"ClusterExtension","metadata":
{"annotations":{},"name":"pipelines-operator"},"spec":
{"channel":"latest","installNamespace":"openshift-operators","packageName":"openshift-
pipelines-operator-rh","pollInterval":"30m","version":"\u003c1.12"}}
 creationTimestamp: "2024-06-11T15:55:37Z"
 generation: 1
 name: pipelines-operator
 resourceVersion: "69776"
 uid: 6a11dff3-bfa3-42b8-9e5f-d8babbd6486f
spec:

OpenShift Container Platform 4.17 Extensions

54

3. Edit your CR by using one of the following methods:

 channel: latest
 installNamespace: openshift-operators
 packageName: openshift-pipelines-operator-rh
 upgradeConstraintPolicy: Enforce
 version: <1.12
status:
 conditions:
 - lastTransitionTime: "2024-06-11T15:56:09Z"
 message: installed from "registry.redhat.io/openshift-pipelines/pipelines-operator-
bundle@sha256:e09d37bb1e754db42324fd18c1cb3e7ce77e7b7fcbf4932d0535391579938
280"
 observedGeneration: 1
 reason: Success
 status: "True"
 type: Installed
 - lastTransitionTime: "2024-06-11T15:55:50Z"
 message: resolved to "registry.redhat.io/openshift-pipelines/pipelines-operator-
bundle@sha256:e09d37bb1e754db42324fd18c1cb3e7ce77e7b7fcbf4932d0535391579938
280"
 observedGeneration: 1
 reason: Success
 status: "True"
 type: Resolved
 - lastTransitionTime: "2024-06-11T15:55:50Z"
 message: ""
 observedGeneration: 1
 reason: Deprecated
 status: "False"
 type: Deprecated
 - lastTransitionTime: "2024-06-11T15:55:50Z"
 message: ""
 observedGeneration: 1
 reason: Deprecated
 status: "False"
 type: PackageDeprecated
 - lastTransitionTime: "2024-06-11T15:55:50Z"
 message: ""
 observedGeneration: 1
 reason: Deprecated
 status: "False"
 type: ChannelDeprecated
 - lastTransitionTime: "2024-06-11T15:55:50Z"
 message: ""
 observedGeneration: 1
 reason: Deprecated
 status: "False"
 type: BundleDeprecated
 installedBundle:
 name: openshift-pipelines-operator-rh.v1.11.1
 version: 1.11.1
 resolvedBundle:
 name: openshift-pipelines-operator-rh.v1.11.1
 version: 1.11.1

CHAPTER 5. CLUSTER EXTENSIONS

55

1

1

1

If you want to pin your Operator or extension to specific version, such as 1.12.1, edit your CR
similar to the following example:

Example pipelines-operator.yaml CR

Update the version from 1.11.1 to 1.12.1

If you want to define a range of acceptable update versions, edit your CR similar to the
following example:

Example CR with a version range specified

Specifies that the desired version range is greater than version 1.11.1 and less than
1.13. For more information, see "Support for version ranges" and "Version comparison
strings".

If you want to update to the latest version that can be resolved from a channel, edit your CR
similar to the following example:

Example CR with a specified channel

Installs the latest release that can be resolved from the specified channel. Updates to
the channel are automatically installed.

If you want to specify a channel and version or version range, edit your CR similar to the

apiVersion: olm.operatorframework.io/v1alpha1
kind: ClusterExtension
metadata:
 name: pipelines-operator
spec:
 packageName: openshift-pipelines-operator-rh
 installNamespace: <namespace>
 version: "1.12.1" 1

apiVersion: olm.operatorframework.io/v1alpha1
kind: ClusterExtension
metadata:
 name: pipelines-operator
spec:
 packageName: openshift-pipelines-operator-rh
 installNamespace: <namespace>
 version: ">1.11.1, <1.13" 1

apiVersion: olm.operatorframework.io/v1alpha1
kind: ClusterExtension
metadata:
 name: pipelines-operator
spec:
 packageName: openshift-pipelines-operator-rh
 installNamespace: <namespace>
 channel: pipelines-1.13 1

OpenShift Container Platform 4.17 Extensions

56

If you want to specify a channel and version or version range, edit your CR similar to the
following example:

Example CR with a specified channel and version range

For more information, see "Example custom resources (CRs) that specify a target version".

4. Apply the update to the cluster by running the following command:

Example output

TIP

You can patch and apply the changes to your CR from the CLI by running the following
command:

Example output

Verification

Verify that the channel and version updates have been applied by running the following
command:

Example 5.20. Example output

apiVersion: olm.operatorframework.io/v1alpha1
kind: ClusterExtension
metadata:
 name: pipelines-operator
spec:
 packageName: openshift-pipelines-operator-rh
 installNamespace: <namespace>
 channel: latest
 version: "<1.13"

$ oc apply -f pipelines-operator.yaml

clusterextension.olm.operatorframework.io/pipelines-operator configured

$ oc patch clusterextension/pipelines-operator -p \
 '{"spec":{"version":"<1.13"}}' \
 --type=merge

clusterextension.olm.operatorframework.io/pipelines-operator patched

$ oc get clusterextension pipelines-operator -o yaml

apiVersion: olm.operatorframework.io/v1alpha1
kind: ClusterExtension
metadata:
 annotations:
 kubectl.kubernetes.io/last-applied-configuration: |

CHAPTER 5. CLUSTER EXTENSIONS

57

{"apiVersion":"olm.operatorframework.io/v1alpha1","kind":"ClusterExtension","metadata":
{"annotations":{},"name":"pipelines-operator"},"spec":
{"channel":"latest","installNamespace":"openshift-operators","packageName":"openshift-
pipelines-operator-rh","pollInterval":"30m","version":"\u003c1.13"}}
 creationTimestamp: "2024-06-11T18:23:26Z"
 generation: 2
 name: pipelines-operator
 resourceVersion: "66310"
 uid: ce0416ba-13ea-4069-a6c8-e5efcbc47537
spec:
 channel: latest
 installNamespace: openshift-operators
 packageName: openshift-pipelines-operator-rh
 upgradeConstraintPolicy: Enforce
 version: <1.13
status:
 conditions:
 - lastTransitionTime: "2024-06-11T18:23:33Z"
 message: resolved to "registry.redhat.io/openshift-pipelines/pipelines-operator-
bundle@sha256:814742c8a7cc7e2662598e114c35c13993a7b423cfe92548124e43ea5d46
9f82"
 observedGeneration: 2
 reason: Success
 status: "True"
 type: Resolved
 - lastTransitionTime: "2024-06-11T18:23:52Z"
 message: installed from "registry.redhat.io/openshift-pipelines/pipelines-operator-
bundle@sha256:814742c8a7cc7e2662598e114c35c13993a7b423cfe92548124e43ea5d46
9f82"
 observedGeneration: 2
 reason: Success
 status: "True"
 type: Installed
 - lastTransitionTime: "2024-06-11T18:23:33Z"
 message: ""
 observedGeneration: 2
 reason: Deprecated
 status: "False"
 type: Deprecated
 - lastTransitionTime: "2024-06-11T18:23:33Z"
 message: ""
 observedGeneration: 2
 reason: Deprecated
 status: "False"
 type: PackageDeprecated
 - lastTransitionTime: "2024-06-11T18:23:33Z"
 message: ""
 observedGeneration: 2
 reason: Deprecated
 status: "False"
 type: ChannelDeprecated
 - lastTransitionTime: "2024-06-11T18:23:33Z"
 message: ""
 observedGeneration: 2
 reason: Deprecated

OpenShift Container Platform 4.17 Extensions

58

Troubleshooting

If you specify a target version or channel that is deprecated or does not exist, you can run the
following command to check the status of your extension:

Example 5.21. Example output for a version that does not exist

 status: "False"
 type: BundleDeprecated
 installedBundle:
 name: openshift-pipelines-operator-rh.v1.12.2
 version: 1.12.2
 resolvedBundle:
 name: openshift-pipelines-operator-rh.v1.12.2
 version: 1.12.2

$ oc get clusterextension <operator_name> -o yaml

apiVersion: olm.operatorframework.io/v1alpha1
kind: ClusterExtension
metadata:
 annotations:
 kubectl.kubernetes.io/last-applied-configuration: |

{"apiVersion":"olm.operatorframework.io/v1alpha1","kind":"ClusterExtension","metadata":
{"annotations":{},"name":"pipelines-operator"},"spec":
{"channel":"latest","installNamespace":"openshift-operators","packageName":"openshift-
pipelines-operator-rh","pollInterval":"30m","version":"3.0"}}
 creationTimestamp: "2024-06-11T18:23:26Z"
 generation: 3
 name: pipelines-operator
 resourceVersion: "71852"
 uid: ce0416ba-13ea-4069-a6c8-e5efcbc47537
spec:
 channel: latest
 installNamespace: openshift-operators
 packageName: openshift-pipelines-operator-rh
 upgradeConstraintPolicy: Enforce
 version: "3.0"
status:
 conditions:
 - lastTransitionTime: "2024-06-11T18:29:02Z"
 message: 'error upgrading from currently installed version "1.12.2": no package
 "openshift-pipelines-operator-rh" matching version "3.0" found in channel "latest"'
 observedGeneration: 3
 reason: ResolutionFailed
 status: "False"
 type: Resolved
 - lastTransitionTime: "2024-06-11T18:29:02Z"
 message: installation has not been attempted as resolution failed
 observedGeneration: 3
 reason: InstallationStatusUnknown
 status: Unknown
 type: Installed

CHAPTER 5. CLUSTER EXTENSIONS

59

Additional resources

Upgrade edges

5.1.6. Deleting an Operator

You can delete an Operator and its custom resource definitions (CRDs) by deleting the
ClusterExtension custom resource (CR).

Prerequisites

You have a catalog installed.

You have an Operator installed.

Procedure

Delete an Operator and its CRDs by running the following command:

Example output

Verification

 - lastTransitionTime: "2024-06-11T18:29:02Z"
 message: deprecation checks have not been attempted as resolution failed
 observedGeneration: 3
 reason: Deprecated
 status: Unknown
 type: Deprecated
 - lastTransitionTime: "2024-06-11T18:29:02Z"
 message: deprecation checks have not been attempted as resolution failed
 observedGeneration: 3
 reason: Deprecated
 status: Unknown
 type: PackageDeprecated
 - lastTransitionTime: "2024-06-11T18:29:02Z"
 message: deprecation checks have not been attempted as resolution failed
 observedGeneration: 3
 reason: Deprecated
 status: Unknown
 type: ChannelDeprecated
 - lastTransitionTime: "2024-06-11T18:29:02Z"
 message: deprecation checks have not been attempted as resolution failed
 observedGeneration: 3
 reason: Deprecated
 status: Unknown
 type: BundleDeprecated

$ oc delete clusterextension <operator_name>

clusterextension.olm.operatorframework.io "<operator_name>" deleted

OpenShift Container Platform 4.17 Extensions

60

Run the following commands to verify that your Operator and its resources were deleted:

Verify the Operator is deleted by running the following command:

Example output

Verify that the Operator’s system namespace is deleted by running the following command:

Example output

5.2. UPGRADE EDGES

IMPORTANT

Operator Lifecycle Manager (OLM) v1 is a Technology Preview feature only. Technology
Preview features are not supported with Red Hat production service level agreements
(SLAs) and might not be functionally complete. Red Hat does not recommend using
them in production. These features provide early access to upcoming product features,
enabling customers to test functionality and provide feedback during the development
process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

When determining upgrade edges, also known as upgrade paths or upgrade constraints, for an installed
cluster extension, Operator Lifecycle Manager (OLM) v1 supports existing OLM semantics starting in
OpenShift Container Platform 4.16. This support follows the behavior from existing OLM, including
replaces, skips, and skipRange directives, with a few noted differences.

By supporting existing OLM semantics, OLM v1 now honors the upgrade graph from catalogs accurately.

IMPORTANT

Currently, Operator Lifecycle Manager (OLM) v1 cannot authenticate private registries,
such as the Red Hat-provided Operator catalogs. This is a known issue. As a result, the
OLM v1 procedures that rely on having the Red Hat Operators catalog installed do not
work. (OCPBUGS-36364)

Differences from original existing OLM implementation

If there are multiple possible successors, OLM v1 behavior differs in the following ways:

In existing OLM, the successor closest to the channel head is chosen.

$ oc get clusterextensions

No resources found

$ oc get ns <operator_name>-system

Error from server (NotFound): namespaces "<operator_name>-system" not found

CHAPTER 5. CLUSTER EXTENSIONS

61

https://access.redhat.com/support/offerings/techpreview/
https://issues.redhat.com/browse/OCPBUGS-36364

In OLM v1, the successor with the highest semantic version (semver) is chosen.

Consider the following set of file-based catalog (FBC) channel entries:

If 1.0.0 is installed, OLM v1 behavior differs in the following ways:

Existing OLM will not detect an upgrade edge to v2.0.0 because v2.0.0 is skipped and not
on the replaces chain.

OLM v1 will detect the upgrade edge because OLM v1 does not have a concept of a
replaces chain. OLM v1 finds all entries that have a replace, skip, or skipRange value that
covers the currently installed version.

Additional resources

Existing OLM upgrade semantics

5.2.1. Support for version ranges

In Operator Lifecycle Manager (OLM) v1, you can specify a version range by using a comparison string in
an Operator or extension’s custom resource (CR). If you specify a version range in the CR, OLM v1
installs or updates to the latest version of the Operator that can be resolved within the version range.

Resolved version workflow

The resolved version is the latest version of the Operator that satisfies the constraints of the
Operator and the environment.

An Operator update within the specified range is automatically installed if it is resolved
successfully.

An update is not installed if it is outside of the specified range or if it cannot be resolved
successfully.

5.2.2. Version comparison strings

You can define a version range by adding a comparison string to the spec.version field in an Operator
or extension’s custom resource (CR). A comparison string is a list of space- or comma-separated values
and one or more comparison operators enclosed in double quotation marks ("). You can add another
comparison string by including an OR, or double vertical bar (||), comparison operator between the
strings.

Table 5.4. Basic comparisons

Comparison operator Definition

= Equal to

...
- name: example.v3.0.0
 skips: ["example.v2.0.0"]
- name: example.v2.0.0
 skipRange: >=1.0.0 <2.0.0

OpenShift Container Platform 4.17 Extensions

62

https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/operators/#olm-upgrades_olm-workflow

!= Not equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

Comparison operator Definition

You can specify a version range in an Operator or extension’s CR by using a range comparison similar to
the following example:

Example version range comparison

You can use wildcard characters in all types of comparison strings. OLM v1 accepts x, X, and asterisks (*)
as wildcard characters. When you use a wildcard character with the equal sign (=) comparison operator,
you define a comparison at the patch or minor version level.

Table 5.5. Example wildcard characters in comparison strings

Wildcard comparison Matching string

1.11.x >=1.11.0, <1.12.0

>=1.12.X >=1.12.0

<=2.x <3

* >=0.0.0

You can make patch release comparisons by using the tilde (~) comparison operator. Patch release
comparisons specify a minor version up to the next major version.

Table 5.6. Example patch release comparisons

apiVersion: olm.operatorframework.io/v1alpha1
kind: ClusterExtension
metadata:
 name: pipelines-operator
spec:
 packageName: openshift-pipelines-operator-rh
 installNamespace: <namespace_name>
 version: ">=1.11, <1.13"

CHAPTER 5. CLUSTER EXTENSIONS

63

Patch release comparison Matching string

~1.11.0 >=1.11.0, <1.12.0

~1 >=1, <2

~1.12 >=1.12, <1.13

~1.12.x >=1.12.0, <1.13.0

~1.x >=1, <2

You can use the caret (^) comparison operator to make a comparison for a major release. If you make a
major release comparison before the first stable release is published, the minor versions define the API’s
level of stability. In the semantic versioning (semver) specification, the first stable release is published as
the 1.0.0 version.

Table 5.7. Example major release comparisons

Major release comparison Matching string

^0 >=0.0.0, <1.0.0

^0.0 >=0.0.0, <0.1.0

^0.0.3 >=0.0.3, <0.0.4

^0.2 >=0.2.0, <0.3.0

^0.2.3 >=0.2.3, <0.3.0

^1.2.x >= 1.2.0, < 2.0.0

^1.2.3 >= 1.2.3, < 2.0.0

^2.x >= 2.0.0, < 3

^2.3 >= 2.3, < 3

5.2.3. Example custom resources (CRs) that specify a target version

In Operator Lifecycle Manager (OLM) v1, cluster administrators can declaratively set the target version
of an Operator or extension in the custom resource (CR).

You can define a target version by specifying any of the following fields:

Channel

Version number

OpenShift Container Platform 4.17 Extensions

64

1

1

Version range

If you specify a channel in the CR, OLM v1 installs the latest version of the Operator or extension that
can be resolved within the specified channel. When updates are published to the specified channel, OLM
v1 automatically updates to the latest release that can be resolved from the channel.

Example CR with a specified channel

Installs the latest release that can be resolved from the specified channel. Updates to the channel
are automatically installed.

If you specify the Operator or extension’s target version in the CR, OLM v1 installs the specified version.
When the target version is specified in the CR, OLM v1 does not change the target version when updates
are published to the catalog.

If you want to update the version of the Operator that is installed on the cluster, you must manually edit
the Operator’s CR. Specifying an Operator’s target version pins the Operator’s version to the specified
release.

Example CR with the target version specified

Specifies the target version. If you want to update the version of the Operator or extension that is
installed, you must manually update this field the CR to the desired target version.

If you want to define a range of acceptable versions for an Operator or extension, you can specify a
version range by using a comparison string. When you specify a version range, OLM v1 installs the latest
version of an Operator or extension that can be resolved by the Operator Controller.

Example CR with a version range specified

apiVersion: olm.operatorframework.io/v1alpha1
kind: ClusterExtension
metadata:
 name: pipelines-operator
spec:
 packageName: openshift-pipelines-operator-rh
 installNamespace: <namespace_name>
 serviceAccount:
 name: <service_account>
 channel: latest 1

apiVersion: olm.operatorframework.io/v1alpha1
kind: ClusterExtension
metadata:
 name: pipelines-operator
spec:
 packageName: openshift-pipelines-operator-rh
 installNamespace: <namespace_name>
 serviceAccount:
 name: <service_account>
 version: "1.11.1" 1

apiVersion: olm.operatorframework.io/v1alpha1

CHAPTER 5. CLUSTER EXTENSIONS

65

1 Specifies that the desired version range is greater than version 1.11.1. For more information, see
"Support for version ranges".

After you create or update a CR, apply the configuration file by running the following command:

Command syntax

5.2.4. Forcing an update or rollback

OLM v1 does not support automatic updates to the next major version or rollbacks to an earlier version. If
you want to perform a major version update or rollback, you must verify and force the update manually.

WARNING

You must verify the consequences of forcing a manual update or rollback. Failure to
verify a forced update or rollback might have catastrophic consequences such as
data loss.

Prerequisites

You have a catalog installed.

You have an Operator or extension installed.

You have created a service account and assigned enough role-based access controls (RBAC) to
install, update, and manage the extension you want to install. For more information, see
Creating a service account .

Procedure

1. Edit the custom resource (CR) of your Operator or extension as shown in the following example:

Example CR

kind: ClusterExtension
metadata:
 name: pipelines-operator
spec:
 packageName: openshift-pipelines-operator-rh
 installNamespace: <namespace_name>
 serviceAccount:
 name: <service_account>
 version: ">1.11.1" 1

$ oc apply -f <extension_name>.yaml



apiVersion: olm.operatorframework.io/v1alpha1
kind: Operator
metadata:

OpenShift Container Platform 4.17 Extensions

66

1

2

3

4

Specifies the name of the Operator or extension, such as pipelines-operator

Specifies the package name, such as openshift-pipelines-operator-rh.

Specifies the blocked update or rollback version.

Optional: Specifies the upgrade constraint policy. To force an update or rollback, set the
field to Ignore. If unspecified, the default setting is Enforce.

2. Apply the changes to your Operator or extensions CR by running the following command:

Additional resources

Support for version ranges

5.3. CUSTOM RESOURCE DEFINITION (CRD) UPGRADE SAFETY

IMPORTANT

Operator Lifecycle Manager (OLM) v1 is a Technology Preview feature only. Technology
Preview features are not supported with Red Hat production service level agreements
(SLAs) and might not be functionally complete. Red Hat does not recommend using
them in production. These features provide early access to upcoming product features,
enabling customers to test functionality and provide feedback during the development
process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

When you update a custom resource definition (CRD) that is provided by a cluster extension, Operator
Lifecycle Manager (OLM) v1 runs a CRD upgrade safety preflight check to ensure backwards
compatibility with previous versions of that CRD. The CRD update must pass the validation checks
before the change is allowed to progress on a cluster.

Additional resources

Updating a cluster extension

5.3.1. Prohibited CRD upgrade changes

The following changes to an existing custom resource definition (CRD) are caught by the CRD upgrade

 name: <operator_name> 1
spec:
 packageName: <package_name> 2
 installNamespace: <namespace_name>
 serviceAccount:
 name: <service_account>
 version: <version> 3
 upgradeConstraintPolicy: Ignore 4

$ oc apply -f <extension_name>.yaml

CHAPTER 5. CLUSTER EXTENSIONS

67

https://access.redhat.com/support/offerings/techpreview/

The following changes to an existing custom resource definition (CRD) are caught by the CRD upgrade
safety preflight check and prevent the upgrade:

A new required field is added to an existing version of the CRD

An existing field is removed from an existing version of the CRD

An existing field type is changed in an existing version of the CRD

A new default value is added to a field that did not previously have a default value

The default value of a field is changed

An existing default value of a field is removed

New enum restrictions are added to an existing field which did not previously have enum
restrictions

Existing enum values from an existing field are removed

The minimum value of an existing field is increased in an existing version

The maximum value of an existing field is decreased in an existing version

Minimum or maximum field constraints are added to a field that did not previously have
constraints

NOTE

The rules for changes to minimum and maximum values apply to minimum, minLength,
minProperties, minItems, maximum, maxLength, maxProperties, and maxItems
constraints.

The following changes to an existing CRD are reported by the CRD upgrade safety preflight check and
prevent the upgrade, though the operations are technically handled by the Kubernetes API server:

The scope changes from Cluster to Namespace or from Namespace to Cluster

An existing stored version of the CRD is removed

If the CRD upgrade safety preflight check encounters one of the prohibited upgrade changes, it logs an
error for each prohibited change detected in the CRD upgrade.

TIP

In cases where a change to the CRD does not fall into one of the prohibited change categories, but is
also unable to be properly detected as allowed, the CRD upgrade safety preflight check will prevent the
upgrade and log an error for an "unknown change".

5.3.2. Allowed CRD upgrade changes

The following changes to an existing custom resource definition (CRD) are safe for backwards
compatibility and will not cause the CRD upgrade safety preflight check to halt the upgrade:

Adding new enum values to the list of allowed enum values in a field

OpenShift Container Platform 4.17 Extensions

68

An existing required field is changed to optional in an existing version

The minimum value of an existing field is decreased in an existing version

The maximum value of an existing field is increased in an existing version

A new version of the CRD is added with no modifications to existing versions

5.3.3. Disabling CRD upgrade safety preflight check

The custom resource definition (CRD) upgrade safety preflight check can be disabled by adding the
preflight.crdUpgradeSafety.disabled field with a value of true to the ClusterExtension object that
provides the CRD.

WARNING

Disabling the CRD upgrade safety preflight check could break backwards
compatibility with stored versions of the CRD and cause other unintended
consequences on the cluster.

You cannot disable individual field validators. If you disable the CRD upgrade safety preflight check, all
field validators are disabled.

NOTE

The following checks are handled by the Kubernetes API server:

The scope changes from Cluster to Namespace or from Namespace to Cluster

An existing stored version of the CRD is removed

After disabling the CRD upgrade safety preflight check via Operator Lifecycle Manager
(OLM) v1, these two operations are still prevented by Kubernetes.

Prerequisites

You have a cluster extension installed.

Procedure

1. Edit the ClusterExtension object of the CRD:

2. Set the preflight.crdUpgradeSafety.disabled field to true:

Example 5.22. Example ClusterExtension object



$ oc edit clusterextension <clusterextension_name>

apiVersion: olm.operatorframework.io/v1alpha1
kind: ClusterExtension

CHAPTER 5. CLUSTER EXTENSIONS

69

1 Set to true.

5.3.4. Examples of unsafe CRD changes

The following examples demonstrate specific changes to sections of an example custom resource
definition (CRD) that would be caught by the CRD upgrade safety preflight check.

For the following examples, consider a CRD object in the following starting state:

Example 5.23. Example CRD object

metadata:
 name: clusterextension-sample
spec:
 installNamespace: default
 packageName: argocd-operator
 version: 0.6.0
 preflight:
 crdUpgradeSafety:
 disabled: true 1

apiVersion: apiextensions.k8s.io/v1
kind: CustomResourceDefinition
metadata:
 annotations:
 controller-gen.kubebuilder.io/version: v0.13.0
 name: example.test.example.com
spec:
 group: test.example.com
 names:
 kind: Sample
 listKind: SampleList
 plural: samples
 singular: sample
 scope: Namespaced
 versions:
 - name: v1alpha1
 schema:
 openAPIV3Schema:
 properties:
 apiVersion:
 type: string
 kind:
 type: string
 metadata:
 type: object
 spec:
 type: object
 status:
 type: object
 pollInterval:
 type: string
 type: object

OpenShift Container Platform 4.17 Extensions

70

5.3.4.1. Scope change

In the following custom resource definition (CRD) example, the scope field is changed from
Namespaced to Cluster:

Example 5.24. Example scope change in a CRD

Example 5.25. Example error output

5.3.4.2. Removal of a stored version

In the following custom resource definition (CRD) example, the existing stored version, v1alpha1, is
removed:

Example 5.26. Example removal of a stored version in a CRD

 served: true
 storage: true
 subresources:
 status: {}

 spec:
 group: test.example.com
 names:
 kind: Sample
 listKind: SampleList
 plural: samples
 singular: sample
 scope: Cluster
 versions:
 - name: v1alpha1

validating upgrade for CRD "test.example.com" failed: CustomResourceDefinition
test.example.com failed upgrade safety validation. "NoScopeChange" validation failed: scope
changed from "Namespaced" to "Cluster"

 versions:
 - name: v1alpha2
 schema:
 openAPIV3Schema:
 properties:
 apiVersion:
 type: string
 kind:
 type: string
 metadata:
 type: object
 spec:
 type: object

CHAPTER 5. CLUSTER EXTENSIONS

71

Example 5.27. Example error output

5.3.4.3. Removal of an existing field

In the following custom resource definition (CRD) example, the pollInterval property field is removed
from the v1alpha1 schema:

Example 5.28. Example removal of an existing field in a CRD

Example 5.29. Example error output

5.3.4.4. Addition of a required field

In the following custom resource definition (CRD) example, the pollInterval property has been changed
to a required field:

 status:
 type: object
 pollInterval:
 type: string
 type: object

validating upgrade for CRD "test.example.com" failed: CustomResourceDefinition
test.example.com failed upgrade safety validation. "NoStoredVersionRemoved" validation failed:
stored version "v1alpha1" removed

 versions:
 - name: v1alpha1
 schema:
 openAPIV3Schema:
 properties:
 apiVersion:
 type: string
 kind:
 type: string
 metadata:
 type: object
 spec:
 type: object
 status:
 type: object
 type: object

validating upgrade for CRD "test.example.com" failed: CustomResourceDefinition
test.example.com failed upgrade safety validation. "NoExistingFieldRemoved" validation failed:
crd/test.example.com version/v1alpha1 field/^.spec.pollInterval may not be removed

OpenShift Container Platform 4.17 Extensions

72

Example 5.30. Example addition of a required field in a CRD

Example 5.31. Example error output

 versions:
 - name: v1alpha2
 schema:
 openAPIV3Schema:
 properties:
 apiVersion:
 type: string
 kind:
 type: string
 metadata:
 type: object
 spec:
 type: object
 status:
 type: object
 pollInterval:
 type: string
 type: object
 required:
 - pollInterval

validating upgrade for CRD "test.example.com" failed: CustomResourceDefinition
test.example.com failed upgrade safety validation. "ChangeValidator" validation failed: version
"v1alpha1", field "^": new required fields added: [pollInterval]

CHAPTER 5. CLUSTER EXTENSIONS

73

	Table of Contents
	CHAPTER 1. EXTENSIONS OVERVIEW
	1.1. HIGHLIGHTS
	1.2. PURPOSE

	CHAPTER 2. ARCHITECTURE
	2.1. OLM V1 COMPONENTS OVERVIEW
	2.2. OPERATOR CONTROLLER
	2.2.1. ClusterExtension API
	2.2.1.1. Example custom resources (CRs) that specify a target version

	2.2.2. Object ownership for cluster extensions
	2.2.2.1. Single ownership
	2.2.2.2. Error messages
	2.2.2.3. Considerations

	2.3. CATALOGD
	2.3.1. About catalogs in OLM v1

	CHAPTER 3. OPERATOR FRAMEWORK GLOSSARY OF COMMON TERMS
	3.1. COMMON OPERATOR FRAMEWORK TERMS
	3.1.1. Bundle
	3.1.2. Bundle image
	3.1.3. Catalog source
	3.1.4. Channel
	3.1.5. Channel head
	3.1.6. Cluster service version
	3.1.7. Dependency
	3.1.8. Index image
	3.1.9. Install plan
	3.1.10. Multitenancy
	3.1.11. Operator group
	3.1.12. Package
	3.1.13. Registry
	3.1.14. Subscription
	3.1.15. Update graph

	CHAPTER 4. CATALOGS
	4.1. FILE-BASED CATALOGS
	4.1.1. Highlights
	4.1.2. Directory structure
	4.1.3. Schemas
	4.1.3.1. olm.package schema
	4.1.3.2. olm.channel schema
	4.1.3.3. olm.bundle schema
	4.1.3.4. olm.deprecations schema

	4.1.4. Properties
	4.1.4.1. olm.package property
	4.1.4.2. olm.gvk property
	4.1.4.3. olm.package.required
	4.1.4.4. olm.gvk.required

	4.1.5. Example catalog
	4.1.6. Guidelines
	4.1.6.1. Immutable bundles
	4.1.6.2. Source control

	4.1.7. CLI usage
	4.1.8. Automation

	4.2. RED HAT-PROVIDED CATALOGS
	4.2.1. About Red Hat-provided Operator catalogs

	4.3. MANAGING CATALOGS
	4.3.1. About catalogs in OLM v1
	4.3.2. Red Hat-provided Operator catalogs in OLM v1
	4.3.3. Creating a pull secret for catalogs hosted on a private registry
	4.3.4. Adding a catalog to a cluster
	4.3.5. Deleting a catalog

	4.4. CREATING CATALOGS
	4.4.1. Creating a file-based catalog image
	4.4.2. Updating or filtering a file-based catalog image

	CHAPTER 5. CLUSTER EXTENSIONS
	5.1. MANAGING CLUSTER EXTENSIONS
	5.1.1. Supported extensions
	5.1.2. Finding Operators to install from a catalog
	5.1.2.1. Common catalog queries

	5.1.3. Creating a service account to manage cluster extensions
	5.1.4. Installing a cluster extension from a catalog
	5.1.5. Updating a cluster extension
	5.1.6. Deleting an Operator

	5.2. UPGRADE EDGES
	5.2.1. Support for version ranges
	5.2.2. Version comparison strings
	5.2.3. Example custom resources (CRs) that specify a target version
	5.2.4. Forcing an update or rollback

	5.3. CUSTOM RESOURCE DEFINITION (CRD) UPGRADE SAFETY
	5.3.1. Prohibited CRD upgrade changes
	5.3.2. Allowed CRD upgrade changes
	5.3.3. Disabling CRD upgrade safety preflight check
	5.3.4. Examples of unsafe CRD changes
	5.3.4.1. Scope change
	5.3.4.2. Removal of a stored version
	5.3.4.3. Removal of an existing field
	5.3.4.4. Addition of a required field

