
OpenShift Container Platform 4.17

Logging

Configuring and using logging in OpenShift Container Platform

Last Updated: 2024-09-30

OpenShift Container Platform 4.17 Logging

Configuring and using logging in OpenShift Container Platform

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Use logging to collect, visualize, forward, and store log data to troubleshoot issues, identify
performance bottlenecks, and detect security threats in OpenShift Container Platform.

. .

Table of Contents

CHAPTER 1. LOGGING 6.0
1.1. LOGGING 6.0.0

1.1.1. Removal notice
1.1.2. New features and enhancements
1.1.3. Technology Preview features
1.1.4. Bug fixes
1.1.5. CVEs

1.2. LOGGING 6.0
1.2.1. Inputs and Outputs
1.2.2. Receiver Input Type
1.2.3. Pipelines and Filters
1.2.4. Operator Behavior
1.2.5. Validation

1.2.5.1. Quick Start
1.3. UPGRADING TO LOGGING 6.0

1.3.1. Using the oc explain command
1.3.1.1. Resource Descriptions
1.3.1.2. Hierarchical Structure
1.3.1.3. Type Information
1.3.1.4. Default Values

1.3.2. Log Storage
1.3.3. Log Visualization
1.3.4. Log Collection and Forwarding
1.3.5. Management, Resource Allocation, and Workload Scheduling
1.3.6. Input Specifications

1.3.6.1. Application Inputs
1.3.6.2. Input Receivers

1.3.7. Output Specifications
1.3.8. Secrets and TLS Configuration
1.3.9. Red Hat Managed Elasticsearch
1.3.10. Red Hat Managed LokiStack
1.3.11. Filters and Pipeline Configuration
1.3.12. Validation and Status

1.4. CONFIGURING LOG FORWARDING
1.4.1. Setting up log collection

1.4.1.1. Legacy service accounts
1.4.1.2. Creating service accounts

1.4.1.2.1. Cluster Role Binding for your Service Account
1.4.1.2.2. Writing application logs
1.4.1.2.3. Writing audit logs
1.4.1.2.4. Writing infrastructure logs
1.4.1.2.5. ClusterLogForwarder editor role

1.4.2. Modifying log level in collector
1.4.3. Managing the Operator
1.4.4. Structure of the ClusterLogForwarder

1.4.4.1. Inputs
1.4.4.2. Outputs
1.4.4.3. Pipelines
1.4.4.4. Filters
1.4.4.5. Enabling multi-line exception detection

1.4.4.5.1. Details

4
4
4
4
5
5
5
6
6
6
6
6
6
6
8
9
9
9

10
10
10
11
11
11

12
12
13
14
14
14
15
16
16
18
18
18
18
19

20
20
21
22
22
23
23
23
24
24
25
25
26

Table of Contents

1

1.4.4.6. Configuring content filters to drop unwanted log records
1.4.4.7. Overview of API audit filter
1.4.4.8. Filtering application logs at input by including the label expressions or a matching label key and values

1.4.4.9. Configuring content filters to prune log records
1.4.5. Filtering the audit and infrastructure log inputs by source
1.4.6. Filtering application logs at input by including or excluding the namespace or container name

1.5. STORING LOGS WITH LOKISTACK
1.5.1. Prerequisites

1.5.1.1. Core Setup and Configuration
1.5.2. Authorizing LokiStack rules RBAC permissions

1.5.2.1. Examples
1.5.3. Creating a log-based alerting rule with Loki
1.5.4. Configuring Loki to tolerate memberlist creation failure
1.5.5. Enabling stream-based retention with Loki
1.5.6. Loki pod placement

1.5.6.1. Enhanced Reliability and Performance
1.5.7. Enabling authentication to cloud-based log stores using short-lived tokens
1.5.8. Configuring Loki to tolerate node failure
1.5.9. LokiStack behavior during cluster restarts

1.5.9.1. Advanced Deployment and Scalability
1.5.10. Zone aware data replication
1.5.11. Recovering Loki pods from failed zones

1.5.11.1. Troubleshooting PVC in a terminating state
1.5.12. Troubleshooting Loki rate limit errors

1.6. VISUALIZATION FOR LOGGING

26
28

31
32
33
34
35
35
35
35
36
37
39
40
42
45
46
47
47
48
48
48
50
50
52

OpenShift Container Platform 4.17 Logging

2

Table of Contents

3

CHAPTER 1. LOGGING 6.0

1.1. LOGGING 6.0.0

This release includes Logging for Red Hat OpenShift Bug Fix Release 6.0.0

NOTE

Logging is provided as an installable component, with a distinct release cycle from the
core OpenShift Container Platform. The Red Hat OpenShift Container Platform Life
Cycle Policy outlines release compatibility.

Table 1.1. Upstream component versions

logging
Version

Component Version

Operator eventroute
r

logfilemetr
icexporter

loki lokistack-
gateway

opa-
openshift

vector

6.0 0.4 1.1 3.1.0 0.1 0.1 0.37.1

1.1.1. Removal notice

With this release, logging no longer supports the ClusterLogging.logging.openshift.io and
ClusterLogForwarder.logging.openshift.io custom resources. Refer to the product
documentation for details on the replacement features. (LOG-5803)

With this release, logging no longer manages or deploys log storage (such as Elasticsearch),
visualization (such as Kibana), or Fluentd-based log collectors. (LOG-5368)

NOTE

In order to continue to use Elasticsearch and Kibana managed by the elasticsearch-
operator, the administrator must modify those object’s ownerRefs before deleting the
ClusterLogging resource.

1.1.2. New features and enhancements

This feature introduces a new architecture for logging for Red Hat OpenShift by shifting
component responsibilities to their relevant Operators, such as for storage, visualization, and
collection. It introduces the ClusterLogForwarder.observability.openshift.io API for log
collection and forwarding. Support for the ClusterLogging.logging.openshift.io and
ClusterLogForwarder.logging.openshift.io APIs, along with the Red Hat managed Elastic
stack (Elasticsearch and Kibana), is removed. Users are encouraged to migrate to the Red Hat
LokiStack for log storage. Existing managed Elasticsearch deployments can be used for a
limited time. Automated migration for log collection is not provided, so administrators need to
create a new ClusterLogForwarder.observability.openshift.io specification to replace their
previous custom resources. Refer to the official product documentation for more details. (LOG-
3493)

With this release, the responsibility for deploying the logging view plugin shifts from the Red Hat

OpenShift Container Platform 4.17 Logging

4

https://access.redhat.com/errata/RHBA-2024:6693
https://access.redhat.com/support/policy/updates/openshift_operators#platform-agnostic
https://issues.redhat.com/browse/LOG-5803
https://issues.redhat.com/browse/LOG-5368
https://issues.redhat.com/browse/LOG-3493

OpenShift Logging Operator to the Cluster Observability Operator (COO). For new log storage
installations that need visualization, the Cluster Observability Operator and the associated
UIPlugin resource must be deployed. Refer to the Cluster Observability Operator Overview
product documentation for more details. (LOG-5461)

This enhancement sets default requests and limits for Vector collector deployments' memory
and CPU usage based on Vector documentation recommendations. (LOG-4745)

This enhancement updates Vector to align with the upstream version v0.37.1. (LOG-5296)

This enhancement introduces an alert that triggers when log collectors buffer logs to a node’s
file system and use over 15% of the available space, indicating potential back pressure issues.
(LOG-5381)

This enhancement updates the selectors for all components to use common Kubernetes labels.
(LOG-5906)

This enhancement changes the collector configuration to deploy as a ConfigMap instead of a
secret, allowing users to view and edit the configuration when the ClusterLogForwarder is set to
Unmanaged. (LOG-5599)

This enhancement adds the ability to configure the Vector collector log level using an
annotation on the ClusterLogForwarder, with options including trace, debug, info, warn, error, or
off. (LOG-5372)

This enhancement adds validation to reject configurations where Amazon CloudWatch outputs
use multiple AWS roles, preventing incorrect log routing. (LOG-5640)

This enhancement removes the Log Bytes Collected and Log Bytes Sent graphs from the
metrics dashboard. (LOG-5964)

This enhancement updates the must-gather functionality to only capture information for
inspecting Logging 6.0 components, including Vector deployments from
ClusterLogForwarder.observability.openshift.io resources and the Red Hat managed LokiStack.
(LOG-5949)

This enhancement improves Azure storage secret validation by providing early warnings for
specific error conditions. (LOG-4571)

1.1.3. Technology Preview features

This release introduces a Technology Preview feature for log forwarding using OpenTelemetry.
A new output type,` OTLP`, allows sending JSON-encoded log records using the
OpenTelemetry data model and resource semantic conventions. (LOG-4225)

1.1.4. Bug fixes

Before this update, the CollectorHighErrorRate and CollectorVeryHighErrorRate alerts were
still present. With this update, both alerts are removed in the logging 6.0 release but might
return in a future release. (LOG-3432)

1.1.5. CVEs

CVE-2024-34397

CHAPTER 1. LOGGING 6.0

5

https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/cluster_observability_operator/#cluster-observability-operator-overview
https://issues.redhat.com/browse/LOG-5461
https://issues.redhat.com/browse/LOG-4745
https://issues.redhat.com/browse/LOG-5296
https://issues.redhat.com/browse/LOG-5381
https://issues.redhat.com/browse/LOG-5906
https://issues.redhat.com/browse/LOG-5599
https://issues.redhat.com/browse/LOG-5372
https://issues.redhat.com/browse/LOG-5640
https://issues.redhat.com/browse/LOG-5964
https://issues.redhat.com/browse/LOG-5949
https://issues.redhat.com/browse/LOG-4571
https://issues.redhat.com/browse/LOG-4225
https://issues.redhat.com/browse/LOG-3432
https://access.redhat.com/security/cve/CVE-2024-34397

1.2. LOGGING 6.0

The ClusterLogForwarder custom resource (CR) is the central configuration point for log collection
and forwarding.

1.2.1. Inputs and Outputs

Inputs specify the sources of logs to be forwarded. Logging provides built-in input types: application,
infrastructure, and audit, which select logs from different parts of your cluster. You can also define
custom inputs based on namespaces or pod labels to fine-tune log selection.

Outputs define the destinations where logs are sent. Each output type has its own set of configuration
options, allowing you to customize the behavior and authentication settings.

1.2.2. Receiver Input Type

The receiver input type enables the Logging system to accept logs from external sources. It supports
two formats for receiving logs: http and syslog.

The ReceiverSpec defines the configuration for a receiver input.

1.2.3. Pipelines and Filters

Pipelines determine the flow of logs from inputs to outputs. A pipeline consists of one or more input
refs, output refs, and optional filter refs. Filters can be used to transform or drop log messages within a
pipeline. The order of filters matters, as they are applied sequentially, and earlier filters can prevent log
messages from reaching later stages.

1.2.4. Operator Behavior

The Cluster Logging Operator manages the deployment and configuration of the collector based on the
managementState field:

When set to Managed (default), the operator actively manages the logging resources to match
the configuration defined in the spec.

When set to Unmanaged, the operator does not take any action, allowing you to manually
manage the logging components.

1.2.5. Validation

Logging includes extensive validation rules and default values to ensure a smooth and error-free
configuration experience. The ClusterLogForwarder resource enforces validation checks on required
fields, dependencies between fields, and the format of input values. Default values are provided for
certain fields, reducing the need for explicit configuration in common scenarios.

1.2.5.1. Quick Start

Prerequisites

Cluster administrator permissions

Procedure

OpenShift Container Platform 4.17 Logging

6

1. Install the OpenShift Logging and Loki Operators from OperatorHub.

2. Create a LokiStack custom resource (CR) in the openshift-logging namespace:

3. Create a service account for the collector:

4. Create a ClusterRole for the collector:

5. Bind the ClusterRole to the service account:

6. Install the Cluster Observability Operator.

7. Create a UIPlugin to enable the Log section in the Observe tab:

apiVersion: loki.grafana.com/v1
kind: LokiStack
metadata:
 name: logging-loki
 namespace: openshift-logging
spec:
 managementState: Managed
 size: 1x.extra-small
 storage:
 schemas:
 - effectiveDate: '2022-06-01'
 version: v13
 secret:
 name: logging-loki-s3
 type: s3
 storageClassName: gp3-csi
 tenants:
 mode: openshift-logging

$ oc create sa collector -n openshift-logging

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 name: logging-collector-logs-writer
rules:
- apiGroups:
 - loki.grafana.com
 resourceNames:
 - logs
 resources:
 - application
 - audit
 - infrastructure
 verbs:
 - create

$ oc adm policy add-cluster-role-to-user logging-collector-logs-writer -z collector

apiVersion: observability.openshift.io/v1alpha1

CHAPTER 1. LOGGING 6.0

7

8. Add additional roles to the collector service account:

9. Create a ClusterLogForwarder CR to configure log forwarding:

10. Verify that logs are visible in the Log section of the Observe tab in the OpenShift web console.

1.3. UPGRADING TO LOGGING 6.0

Logging v6.0 is a significant upgrade from previous releases, achieving several longstanding goals of
Cluster Logging:

kind: UIPlugin
metadata:
 name: logging
spec:
 type: Logging
 logging:
 lokiStack:
 name: logging-loki

$ oc project openshift-logging
$ oc adm policy add-cluster-role-to-user collect-application-logs -z collector
$ oc adm policy add-cluster-role-to-user collect-audit-logs -z collector
$ oc adm policy add-cluster-role-to-user collect-infrastructure-logs -z collector

apiVersion: observability.openshift.io/v1
kind: ClusterLogForwarder
metadata:
 name: collector
 namespace: openshift-logging
spec:
 serviceAccount:
 name: collector
 outputs:
 - name: default-lokistack
 type: lokiStack
 lokiStack:
 target:
 name: logging-loki
 namespace: openshift-logging
 authentication:
 token:
 from: serviceAccount
 tls:
 ca:
 key: service-ca.crt
 configMapName: openshift-service-ca.crt
 pipelines:
 - name: default-logstore
 inputRefs:
 - application
 - infrastructure
 outputRefs:
 - default-lokistack

OpenShift Container Platform 4.17 Logging

8

Introduction of distinct operators to manage logging components (e.g., collectors, storage,
visualization).

Removal of support for managed log storage and visualization based on Elastic products (i.e.,
Elasticsearch, Kibana).

Deprecation of the Fluentd log collector implementation.

Removal of support for ClusterLogging.logging.openshift.io and
ClusterLogForwarder.logging.openshift.io resources.

NOTE

The cluster-logging-operator does not provide an automated upgrade process.

Given the various configurations for log collection, forwarding, and storage, no automated upgrade is
provided by the cluster-logging-operator. This documentation assists administrators in converting
existing ClusterLogging.logging.openshift.io and ClusterLogForwarder.logging.openshift.io
specifications to the new API. Examples of migrated ClusterLogForwarder.observability.openshift.io
resources for common use cases are included.

1.3.1. Using the oc explain command

The oc explain command is an essential tool in the OpenShift CLI oc that provides detailed
descriptions of the fields within Custom Resources (CRs). This command is invaluable for administrators
and developers who are configuring or troubleshooting resources in an OpenShift cluster.

1.3.1.1. Resource Descriptions

oc explain offers in-depth explanations of all fields associated with a specific object. This includes
standard resources like pods and services, as well as more complex entities like statefulsets and custom
resources defined by Operators.

To view the documentation for the outputs field of the ClusterLogForwarder custom resource, you
can use:

NOTE

In place of clusterlogforwarder the short form obsclf can be used.

This will display detailed information about these fields, including their types, default values, and any
associated sub-fields.

1.3.1.2. Hierarchical Structure

The command displays the structure of resource fields in a hierarchical format, clarifying the
relationships between different configuration options.

For instance, here’s how you can drill down into the storage configuration for a LokiStack custom
resource:

$ oc explain clusterlogforwarders.observability.openshift.io.spec.outputs

CHAPTER 1. LOGGING 6.0

9

Each command reveals a deeper level of the resource specification, making the structure clear.

1.3.1.3. Type Information

oc explain also indicates the type of each field (such as string, integer, or boolean), allowing you to
verify that resource definitions use the correct data types.

For example:

This will show that size should be defined using an integer value.

1.3.1.4. Default Values

When applicable, the command shows the default values for fields, providing insights into what values
will be used if none are explicitly specified.

Again using lokistacks.loki.grafana.com as an example:

Example output

1.3.2. Log Storage

The only managed log storage solution available in this release is a Lokistack, managed by the loki-
operator. This solution, previously available as the preferred alternative to the managed Elasticsearch
offering, remains unchanged in its deployment process.

IMPORTANT

To continue using an existing Red Hat managed Elasticsearch or Kibana deployment
provided by the elasticsearch-operator, remove the owner references from the
Elasticsearch resource named elasticsearch, and the Kibana resource named kibana
in the openshift-logging namespace before removing the ClusterLogging resource
named instance in the same namespace.

$ oc explain lokistacks.loki.grafana.com
$ oc explain lokistacks.loki.grafana.com.spec
$ oc explain lokistacks.loki.grafana.com.spec.storage
$ oc explain lokistacks.loki.grafana.com.spec.storage.schemas

$ oc explain lokistacks.loki.grafana.com.spec.size

$ oc explain lokistacks.spec.template.distributor.replicas

GROUP: loki.grafana.com
KIND: LokiStack
VERSION: v1

FIELD: replicas <integer>

DESCRIPTION:
 Replicas defines the number of replica pods of the component.

OpenShift Container Platform 4.17 Logging

10

1. Temporarily set ClusterLogging to state Unmanaged

2. Remove ClusterLogging ownerReferences from the Elasticsearch resource
The following command ensures that ClusterLogging no longer owns the Elasticsearch
resource. Updates to the ClusterLogging resource’s logStore field will no longer affect the
Elasticsearch resource.

3. Remove ClusterLogging ownerReferences from the Kibana resource
The following command ensures that ClusterLogging no longer owns the Kibana resource.
Updates to the ClusterLogging resource’s visualization field will no longer affect the Kibana
resource.

4. Set ClusterLogging to state Managed

$ oc -n openshift-logging patch clusterlogging/instance -p '{"spec":{"managementState": "Managed"}}'
--type=merge

1.3.3. Log Visualization

The OpenShift console UI plugin for log visualization has been moved to the cluster-observability-
operator from the cluster-logging-operator.

1.3.4. Log Collection and Forwarding

Log collection and forwarding configurations are now specified under the new API, part of the
observability.openshift.io API group. The following sections highlight the differences from the old API
resources.

NOTE

Vector is the only supported collector implementation.

1.3.5. Management, Resource Allocation, and Workload Scheduling

Configuration for management state (e.g., Managed, Unmanaged), resource requests and limits,
tolerations, and node selection is now part of the new ClusterLogForwarder API.

Previous Configuration

$ oc -n openshift-logging patch clusterlogging/instance -p '{"spec":{"managementState":
"Unmanaged"}}' --type=merge

$ oc -n openshift-logging patch elasticsearch/elasticsearch -p '{"metadata":
{"ownerReferences": []}}' --type=merge

$ oc -n openshift-logging patch kibana/kibana -p '{"metadata":{"ownerReferences": []}}' --
type=merge

apiVersion: "logging.openshift.io/v1"
kind: "ClusterLogging"
spec:
 managementState: "Managed"

CHAPTER 1. LOGGING 6.0

11

https://github.com/openshift/cluster-logging-operator/blob/master/docs/reference/operator/api_observability_v1.adoc

Current Configuration

1.3.6. Input Specifications

The input specification is an optional part of the ClusterLogForwarder specification. Administrators
can continue to use the predefined values of application, infrastructure, and audit to collect these
sources.

1.3.6.1. Application Inputs

Namespace and container inclusions and exclusions have been consolidated into a single field.

5.9 Application Input with Namespace and Container Includes and Excludes

6.0 Application Input with Namespace and Container Includes and Excludes

 collection:
 resources:
 limits: {}
 requests: {}
 nodeSelector: {}
 tolerations: {}

apiVersion: "observability.openshift.io/v1"
kind: ClusterLogForwarder
spec:
 managementState: Managed
 collector:
 resources:
 limits: {}
 requests: {}
 nodeSelector: {}
 tolerations: {}

apiVersion: "logging.openshift.io/v1"
kind: ClusterLogForwarder
spec:
 inputs:
 - name: application-logs
 type: application
 application:
 namespaces:
 - foo
 - bar
 includes:
 - namespace: my-important
 container: main
 excludes:
 - container: too-verbose

apiVersion: "observability.openshift.io/v1"
kind: ClusterLogForwarder
spec:
 inputs:

OpenShift Container Platform 4.17 Logging

12

NOTE

application, infrastructure, and audit are reserved words and cannot be used as names
when defining an input.

1.3.6.2. Input Receivers

Changes to input receivers include:

Explicit configuration of the type at the receiver level.

Port settings moved to the receiver level.

5.9 Input Receivers

6.0 Input Receivers

 - name: application-logs
 type: application
 application:
 includes:
 - namespace: foo
 - namespace: bar
 - namespace: my-important
 container: main
 excludes:
 - container: too-verbose

apiVersion: "logging.openshift.io/v1"
kind: ClusterLogForwarder
spec:
 inputs:
 - name: an-http
 receiver:
 http:
 port: 8443
 format: kubeAPIAudit
 - name: a-syslog
 receiver:
 type: syslog
 syslog:
 port: 9442

apiVersion: "observability.openshift.io/v1"
kind: ClusterLogForwarder
spec:
 inputs:
 - name: an-http
 type: receiver
 receiver:
 type: http
 port: 8443
 http:
 format: kubeAPIAudit

CHAPTER 1. LOGGING 6.0

13

1.3.7. Output Specifications

High-level changes to output specifications include:

URL settings moved to each output type specification.

Tuning parameters moved to each output type specification.

Separation of TLS configuration from authentication.

Explicit configuration of keys and secret/configmap for TLS and authentication.

1.3.8. Secrets and TLS Configuration

Secrets and TLS configurations are now separated into authentication and TLS configuration for each
output. They must be explicitly defined in the specification rather than relying on administrators to
define secrets with recognized keys. Upgrading TLS and authorization configurations requires
administrators to understand previously recognized keys to continue using existing secrets. Examples in
the following sections provide details on how to configure ClusterLogForwarder secrets to forward to
existing Red Hat managed log storage solutions.

1.3.9. Red Hat Managed Elasticsearch

v5.9 Forwarding to Red Hat Managed Elasticsearch

v6.0 Forwarding to Red Hat Managed Elasticsearch

 - name: a-syslog
 type: receiver
 receiver:
 type: syslog
 port: 9442

apiVersion: logging.openshift.io/v1
kind: ClusterLogging
metadata:
 name: instance
 namespace: openshift-logging
spec:
 logStore:
 type: elasticsearch

apiVersion: observability.openshift.io/v1
kind: ClusterLogForwarder
metadata:
 name: instance
 namespace: openshift-logging
spec:
 outputs:
 - name: default-elasticsearch
 type: elasticsearch
 elasticsearch:
 url: https://elasticsearch:9200
 version: 6

OpenShift Container Platform 4.17 Logging

14

NOTE

In this example, application logs are written to the application-write alias/index instead
of app-write.

1.3.10. Red Hat Managed LokiStack

v5.9 Forwarding to Red Hat Managed LokiStack

v6.0 Forwarding to Red Hat Managed LokiStack

 index: <log_type>-write-{+yyyy.MM.dd}
 tls:
 ca:
 key: ca-bundle.crt
 secretName: collector
 certificate:
 key: tls.crt
 secretName: collector
 key:
 key: tls.key
 secretName: collector
 pipelines:
 - outputRefs:
 - default-elasticsearch
 - inputRefs:
 - application
 - infrastructure

apiVersion: logging.openshift.io/v1
kind: ClusterLogging
metadata:
 name: instance
 namespace: openshift-logging
spec:
 logStore:
 type: lokistack
 lokistack:
 name: lokistack-dev

apiVersion: observability.openshift.io/v1
kind: ClusterLogForwarder
metadata:
 name: instance
 namespace: openshift-logging
spec:
 outputs:
 - name: default-lokistack
 type: lokiStack
 lokiStack:
 target:
 name: lokistack-dev
 namespace: openshift-logging
 authentication:

CHAPTER 1. LOGGING 6.0

15

1.3.11. Filters and Pipeline Configuration

Pipeline configurations now define only the routing of input sources to their output destinations, with
any required transformations configured separately as filters. All attributes of pipelines from previous
releases have been converted to filters in this release. Individual filters are defined in the filters
specification and referenced by a pipeline.

5.9 Filters

6.0 Filter Configuration

1.3.12. Validation and Status

 token:
 from: serviceAccount
 tls:
 ca:
 key: service-ca.crt
 configMapName: openshift-service-ca.crt
 pipelines:
 - outputRefs:
 - default-lokistack
 - inputRefs:
 - application
 - infrastructure

apiVersion: logging.openshift.io/v1
kind: ClusterLogForwarder
spec:
 pipelines:
 - name: application-logs
 parse: json
 labels:
 foo: bar
 detectMultilineErrors: true

apiVersion: observability.openshift.io/v1
kind: ClusterLogForwarder
spec:
 filters:
 - name: detectexception
 type: detectMultilineException
 - name: parse-json
 type: parse
 - name: labels
 type: openShiftLabels
 openShiftLabels:
 foo: bar
 pipelines:
 - name: application-logs
 filterRefs:
 - detectexception
 - labels
 - parse-json

OpenShift Container Platform 4.17 Logging

16

Most validations are enforced when a resource is created or updated, providing immediate feedback.
This is a departure from previous releases, where validation occurred post-creation and required
inspecting the resource status. Some validation still occurs post-creation for cases where it is not
possible to validate at creation or update time.

Instances of the ClusterLogForwarder.observability.openshift.io must satisfy the following conditions
before the operator will deploy the log collector: Authorized, Valid, Ready. An example of these
conditions is:

6.0 Status Conditions

apiVersion: observability.openshift.io/v1
kind: ClusterLogForwarder
status:
 conditions:
 - lastTransitionTime: "2024-09-13T03:28:44Z"
 message: 'permitted to collect log types: [application]'
 reason: ClusterRolesExist
 status: "True"
 type: observability.openshift.io/Authorized
 - lastTransitionTime: "2024-09-13T12:16:45Z"
 message: ""
 reason: ValidationSuccess
 status: "True"
 type: observability.openshift.io/Valid
 - lastTransitionTime: "2024-09-13T12:16:45Z"
 message: ""
 reason: ReconciliationComplete
 status: "True"
 type: Ready
 filterConditions:
 - lastTransitionTime: "2024-09-13T13:02:59Z"
 message: filter "detectexception" is valid
 reason: ValidationSuccess
 status: "True"
 type: observability.openshift.io/ValidFilter-detectexception
 - lastTransitionTime: "2024-09-13T13:02:59Z"
 message: filter "parse-json" is valid
 reason: ValidationSuccess
 status: "True"
 type: observability.openshift.io/ValidFilter-parse-json
 inputConditions:
 - lastTransitionTime: "2024-09-13T12:23:03Z"
 message: input "application1" is valid
 reason: ValidationSuccess
 status: "True"
 type: observability.openshift.io/ValidInput-application1
 outputConditions:
 - lastTransitionTime: "2024-09-13T13:02:59Z"
 message: output "default-lokistack-application1" is valid
 reason: ValidationSuccess
 status: "True"
 type: observability.openshift.io/ValidOutput-default-lokistack-application1
 pipelineConditions:
 - lastTransitionTime: "2024-09-13T03:28:44Z"
 message: pipeline "default-before" is valid

CHAPTER 1. LOGGING 6.0

17

NOTE

Conditions that are satisfied and applicable have a "status" value of "True". Conditions
with a status other than "True" provide a reason and a message explaining the issue.

1.4. CONFIGURING LOG FORWARDING

The ClusterLogForwarder (CLF) allows users to configure forwarding of logs to various destinations. It
provides a flexible way to select log messages from different sources, send them through a pipeline that
can transform or filter them, and forward them to one or more outputs.

Key Functions of the ClusterLogForwarder

Selects log messages using inputs

Forwards logs to external destinations using outputs

Filters, transforms, and drops log messages using filters

Defines log forwarding pipelines connecting inputs, filters and outputs

1.4.1. Setting up log collection

This release of Cluster Logging requires administrators to explicitly grant log collection permissions to
the service account associated with ClusterLogForwarder. This was not required in previous releases
for the legacy logging scenario consisting of a ClusterLogging and, optionally, a
ClusterLogForwarder.logging.openshift.io resource.

The Red Hat OpenShift Logging Operator provides collect-audit-logs, collect-application-logs, and
collect-infrastructure-logs cluster roles, which enable the collector to collect audit logs, application
logs, and infrastructure logs respectively.

Setup log collection by binding the required cluster roles to your service account.

1.4.1.1. Legacy service accounts

To use the existing legacy service account logcollector, create the following ClusterRoleBinding:

Additionally, create the following ClusterRoleBinding if collecting audit logs:

1.4.1.2. Creating service accounts

 reason: ValidationSuccess
 status: "True"
 type: observability.openshift.io/ValidPipeline-default-before

$ oc adm policy add-cluster-role-to-user collect-application-logs system:serviceaccount:openshift-
logging:logcollector
$ oc adm policy add-cluster-role-to-user collect-infrastructure-logs system:serviceaccount:openshift-
logging:logcollector

$ oc adm policy add-cluster-role-to-user collect-audit-logs system:serviceaccount:openshift-
logging:logcollector

OpenShift Container Platform 4.17 Logging

18

1

2

3

4

5

6

7

8

Prerequisites

The Red Hat OpenShift Logging Operator is installed in the openshift-logging namespace.

You have administrator permissions.

Procedure

1. Create a service account for the collector. If you want to write logs to storage that requires a
token for authentication, you must include a token in the service account.

2. Bind the appropriate cluster roles to the service account:

Example binding command

1.4.1.2.1. Cluster Role Binding for your Service Account

The role_binding.yaml file binds the ClusterLogging operator’s ClusterRole to a specific ServiceAccount,
allowing it to manage Kubernetes resources cluster-wide.

roleRef: References the ClusterRole to which the binding applies.

apiGroup: Indicates the RBAC API group, specifying that the ClusterRole is part of Kubernetes'
RBAC system.

kind: Specifies that the referenced role is a ClusterRole, which applies cluster-wide.

name: The name of the ClusterRole being bound to the ServiceAccount, here cluster-logging-
operator.

subjects: Defines the entities (users or service accounts) that are being granted the permissions
from the ClusterRole.

kind: Specifies that the subject is a ServiceAccount.

Name: The name of the ServiceAccount being granted the permissions.

namespace: Indicates the namespace where the ServiceAccount is located.

$ oc adm policy add-cluster-role-to-user <cluster_role_name> system:serviceaccount:
<namespace_name>:<service_account_name>

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 name: manager-rolebinding
roleRef: 1
 apiGroup: rbac.authorization.k8s.io 2
 kind: ClusterRole 3
 name: cluster-logging-operator 4
subjects: 5
 - kind: ServiceAccount 6
 name: cluster-logging-operator 7
 namespace: openshift-logging 8

CHAPTER 1. LOGGING 6.0

19

1 1

2 2

1.4.1.2.2. Writing application logs

The write-application-logs-clusterrole.yaml file defines a ClusterRole that grants permissions to write
application logs to the Loki logging application.

1.4.1.2.3. Writing audit logs

The write-audit-logs-clusterrole.yaml file defines a ClusterRole that grants permissions to create audit
logs in the Loki logging system.

rules: Defines the permissions granted by this ClusterRole.

apiGroups: Specifies the API group loki.grafana.com.

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 name: cluster-logging-write-application-logs
rules: 1
 - apiGroups: 2
 - loki.grafana.com 3
 resources: 4
 - application 5
 resourceNames: 6
 - logs 7
 verbs: 8
 - create 9
Annotations
<1> rules: Specifies the permissions granted by this ClusterRole.
<2> apiGroups: Refers to the API group loki.grafana.com, which relates to the Loki logging system.
<3> loki.grafana.com: The API group for managing Loki-related resources.
<4> resources: The resource type that the ClusterRole grants permission to interact with.
<5> application: Refers to the application resources within the Loki logging system.
<6> resourceNames: Specifies the names of resources that this role can manage.
<7> logs: Refers to the log resources that can be created.
<8> verbs: The actions allowed on the resources.
<9> create: Grants permission to create new logs in the Loki system.

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 name: cluster-logging-write-audit-logs
rules: 1
 - apiGroups: 2
 - loki.grafana.com 3
 resources: 4
 - audit 5
 resourceNames: 6
 - logs 7
 verbs: 8
 - create 9

OpenShift Container Platform 4.17 Logging

20

3 3

4 4

5 5

6 6

7 7

8 8

9 9

1

2

3

4

5

6

7

8

9

loki.grafana.com: The API group responsible for Loki logging resources.

resources: Refers to the resource type this role manages, in this case, audit.

audit: Specifies that the role manages audit logs within Loki.

resourceNames: Defines the specific resources that the role can access.

logs: Refers to the logs that can be managed under this role.

verbs: The actions allowed on the resources.

create: Grants permission to create new audit logs.

1.4.1.2.4. Writing infrastructure logs

The write-infrastructure-logs-clusterrole.yaml file defines a ClusterRole that grants permission to
create infrastructure logs in the Loki logging system.

Sample YAML

rules: Specifies the permissions this ClusterRole grants.

apiGroups: Specifies the API group for Loki-related resources.

loki.grafana.com: The API group managing the Loki logging system.

resources: Defines the resource type that this role can interact with.

infrastructure: Refers to infrastructure-related resources that this role manages.

resourceNames: Specifies the names of resources this role can manage.

logs: Refers to the log resources related to infrastructure.

verbs: The actions permitted by this role.

create: Grants permission to create infrastructure logs in the Loki system.

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 name: cluster-logging-write-infrastructure-logs
rules: 1
 - apiGroups: 2
 - loki.grafana.com 3
 resources: 4
 - infrastructure 5
 resourceNames: 6
 - logs 7
 verbs: 8
 - create 9

CHAPTER 1. LOGGING 6.0

21

1

2

3

4

5

6

7

8

9

10

11

12

13

1.4.1.2.5. ClusterLogForwarder editor role

The clusterlogforwarder-editor-role.yaml file defines a ClusterRole that allows users to manage
ClusterLogForwarders in OpenShift.

rules: Specifies the permissions this ClusterRole grants.

apiGroups: Refers to the OpenShift-specific API group

obervability.openshift.io: The API group for managing observability resources, like logging.

resources: Specifies the resources this role can manage.

clusterlogforwarders: Refers to the log forwarding resources in OpenShift.

verbs: Specifies the actions allowed on the ClusterLogForwarders.

create: Grants permission to create new ClusterLogForwarders.

delete: Grants permission to delete existing ClusterLogForwarders.

get: Grants permission to retrieve information about specific ClusterLogForwarders.

list: Allows listing all ClusterLogForwarders.

patch: Grants permission to partially modify ClusterLogForwarders.

update: Grants permission to update existing ClusterLogForwarders.

watch: Grants permission to monitor changes to ClusterLogForwarders.

1.4.2. Modifying log level in collector

To modify the log level in the collector, you can set the observability.openshift.io/log-level annotation
to trace, debug, info, warn, error, and off.

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 name: clusterlogforwarder-editor-role
rules: 1
 - apiGroups: 2
 - observability.openshift.io 3
 resources: 4
 - clusterlogforwarders 5
 verbs: 6
 - create 7
 - delete 8
 - get 9
 - list 10
 - patch 11
 - update 12
 - watch 13

OpenShift Container Platform 4.17 Logging

22

Example log level annotation

1.4.3. Managing the Operator

The ClusterLogForwarder resource has a managementState field that controls whether the operator
actively manages its resources or leaves them Unmanaged:

Managed

(default) The operator will drive the logging resources to match the desired state in the CLF spec.

Unmanaged

The operator will not take any action related to the logging components.

This allows administrators to temporarily pause log forwarding by setting managementState to
Unmanaged.

1.4.4. Structure of the ClusterLogForwarder

The CLF has a spec section that contains the following key components:

Inputs

Select log messages to be forwarded. Built-in input types application, infrastructure and audit
forward logs from different parts of the cluster. You can also define custom inputs.

Outputs

Define destinations to forward logs to. Each output has a unique name and type-specific
configuration.

Pipelines

Define the path logs take from inputs, through filters, to outputs. Pipelines have a unique name and
consist of a list of input, output and filter names.

Filters

Transform or drop log messages in the pipeline. Users can define filters that match certain log fields
and drop or modify the messages. Filters are applied in the order specified in the pipeline.

1.4.4.1. Inputs

Inputs are configured in an array under spec.inputs. There are three built-in input types:

application

Selects logs from all application containers, excluding those in infrastructure namespaces such as
default, openshift, or any namespace with the kube- or openshift- prefix.

infrastructure

Selects logs from infrastructure components running in default and openshift namespaces and
node logs.

apiVersion: observability.openshift.io/v1
kind: ClusterLogForwarder
metadata:
 name: collector
 annotations:
 observability.openshift.io/log-level: debug
...

CHAPTER 1. LOGGING 6.0

23

audit

Selects logs from the OpenShift API server audit logs, Kubernetes API server audit logs, ovn audit
logs, and node audit logs from auditd.

Users can define custom inputs of type application that select logs from specific namespaces or using
pod labels.

1.4.4.2. Outputs

Outputs are configured in an array under spec.outputs. Each output must have a unique name and a
type. Supported types are:

azureMonitor

Forwards logs to Azure Monitor.

cloudwatch

Forwards logs to AWS CloudWatch.

elasticsearch

Forwards logs to an external Elasticsearch instance.

googleCloudLogging

Forwards logs to Google Cloud Logging.

http

Forwards logs to a generic HTTP endpoint.

kafka

Forwards logs to a Kafka broker.

loki

Forwards logs to a Loki logging backend.

lokistack

Forwards logs to the logging supported combination of Loki and web proxy with OpenShift
Container Platform authentication integration. LokiStack’s proxy uses OpenShift Container Platform
authentication to enforce multi-tenancy

otlp

Forwards logs using the OpenTelemetry Protocol.

splunk

Forwards logs to Splunk.

syslog

Forwards logs to an external syslog server.

Each output type has its own configuration fields.

1.4.4.3. Pipelines

Pipelines are configured in an array under spec.pipelines. Each pipeline must have a unique name and
consists of:

inputRefs

Names of inputs whose logs should be forwarded to this pipeline.

outputRefs

OpenShift Container Platform 4.17 Logging

24

Names of outputs to send logs to.

filterRefs

(optional) Names of filters to apply.

The order of filterRefs matters, as they are applied sequentially. Earlier filters can drop messages that
will not be processed by later filters.

1.4.4.4. Filters

Filters are configured in an array under spec.filters. They can match incoming log messages based on
the value of structured fields and modify or drop them.

Administrators can configure the following types of filters:

1.4.4.5. Enabling multi-line exception detection

Enables multi-line error detection of container logs.

WARNING

Enabling this feature could have performance implications and may require
additional computing resources or alternate logging solutions.

Log parsers often incorrectly identify separate lines of the same exception as separate exceptions. This
leads to extra log entries and an incomplete or inaccurate view of the traced information.

Example java exception

To enable logging to detect multi-line exceptions and reassemble them into a single log entry,
ensure that the ClusterLogForwarder Custom Resource (CR) contains a
detectMultilineErrors field under the .spec.filters.

Example ClusterLogForwarder CR



java.lang.NullPointerException: Cannot invoke "String.toString()" because "<param1>" is null
 at testjava.Main.handle(Main.java:47)
 at testjava.Main.printMe(Main.java:19)
 at testjava.Main.main(Main.java:10)

apiVersion: "observability.openshift.io/v1"
kind: ClusterLogForwarder
metadata:
 name: <log_forwarder_name>
 namespace: <log_forwarder_namespace>
spec:
 serviceAccount:
 name: <service_account_name>
 filters:
 - name: <name>

CHAPTER 1. LOGGING 6.0

25

1.4.4.5.1. Details

When log messages appear as a consecutive sequence forming an exception stack trace, they are
combined into a single, unified log record. The first log message’s content is replaced with the
concatenated content of all the message fields in the sequence.

The collector supports the following languages:

Java

JS

Ruby

Python

Golang

PHP

Dart

1.4.4.6. Configuring content filters to drop unwanted log records

When the drop filter is configured, the log collector evaluates log streams according to the filters
before forwarding. The collector drops unwanted log records that match the specified configuration.

Procedure

1. Add a configuration for a filter to the filters spec in the ClusterLogForwarder CR.
The following example shows how to configure the ClusterLogForwarder CR to drop log
records based on regular expressions:

Example ClusterLogForwarder CR

 type: detectMultilineException
 pipelines:
 - inputRefs:
 - <input-name>
 name: <pipeline-name>
 filterRefs:
 - <filter-name>
 outputRefs:
 - <output-name>

apiVersion: observability.openshift.io/v1
kind: ClusterLogForwarder
metadata:
...
spec:
 serviceAccount:
 name: <service_account_name>
 filters:
 - name: <filter_name>
 type: drop 1

OpenShift Container Platform 4.17 Logging

26

1

2

3

4

5

6

7

Specifies the type of filter. The drop filter drops log records that match the filter
configuration.

Specifies configuration options for applying the drop filter.

Specifies the configuration for tests that are used to evaluate whether a log record is
dropped.

If all the conditions specified for a test are true, the test passes and the log record is
dropped.

When multiple tests are specified for the drop filter configuration, if any of the tests
pass, the record is dropped.

If there is an error evaluating a condition, for example, the field is missing from the log
record being evaluated, that condition evaluates to false.

Specifies a dot-delimited field path, which is a path to a field in the log record. The path
can contain alpha-numeric characters and underscores (a-zA-Z0-9_), for example,
.kubernetes.namespace_name. If segments contain characters outside of this range, the
segment must be in quotes, for example, .kubernetes.labels."foo.bar-bar/baz". You can
include multiple field paths in a single test configuration, but they must all evaluate to true
for the test to pass and the drop filter to be applied.

Specifies a regular expression. If log records match this regular expression, they are
dropped. You can set either the matches or notMatches condition for a single field path,
but not both.

Specifies a regular expression. If log records do not match this regular expression, they are
dropped. You can set either the matches or notMatches condition for a single field path,
but not both.

Specifies the pipeline that the drop filter is applied to.

2. Apply the ClusterLogForwarder CR by running the following command:

Additional examples

The following additional example shows how you can configure the drop filter to only keep higher
priority log records:

 drop: 2
 - test: 3
 - field: .kubernetes.labels."foo-bar/baz" 4
 matches: .+ 5
 - field: .kubernetes.pod_name
 notMatches: "my-pod" 6
 pipelines:
 - name: <pipeline_name> 7
 filterRefs: ["<filter_name>"]
...

$ oc apply -f <filename>.yaml

CHAPTER 1. LOGGING 6.0

27

In addition to including multiple field paths in a single test configuration, you can also include additional
tests that are treated as OR checks. In the following example, records are dropped if either test
configuration evaluates to true. However, for the second test configuration, both field specs must be
true for it to be evaluated to true:

1.4.4.7. Overview of API audit filter

OpenShift API servers generate audit events for each API call, detailing the request, response, and the
identity of the requester, leading to large volumes of data. The API Audit filter uses rules to enable the
exclusion of non-essential events and the reduction of event size, facilitating a more manageable audit
trail. Rules are checked in order, and checking stops at the first match. The amount of data that is
included in an event is determined by the value of the level field:

None: The event is dropped.

Metadata: Audit metadata is included, request and response bodies are removed.

apiVersion: observability.openshift.io/v1
kind: ClusterLogForwarder
metadata:
...
spec:
 serviceAccount:
 name: <service_account_name>
 filters:
 - name: important
 type: drop
 drop:
 - test:
 - field: .message
 notMatches: "(?i)critical|error"
 - field: .level
 matches: "info|warning"
...

apiVersion: observability.openshift.io/v1
kind: ClusterLogForwarder
metadata:
...
spec:
 serviceAccount:
 name: <service_account_name>
 filters:
 - name: important
 type: drop
 drop:
 - test:
 - field: .kubernetes.namespace_name
 matches: "^open"
 - test:
 - field: .log_type
 matches: "application"
 - field: .kubernetes.pod_name
 notMatches: "my-pod"
...

OpenShift Container Platform 4.17 Logging

28

Request: Audit metadata and the request body are included, the response body is removed.

RequestResponse: All data is included: metadata, request body and response body. The
response body can be very large. For example, oc get pods -A generates a response body
containing the YAML description of every pod in the cluster.

The ClusterLogForwarder custom resource (CR) uses the same format as the standard Kubernetes
audit policy, while providing the following additional functions:

Wildcards

Names of users, groups, namespaces, and resources can have a leading or trailing * asterisk
character. For example, the namespace openshift-* matches openshift-apiserver or openshift-
authentication. Resource */status matches Pod/status or Deployment/status.

Default Rules

Events that do not match any rule in the policy are filtered as follows:

Read-only system events such as get, list, and watch are dropped.

Service account write events that occur within the same namespace as the service account
are dropped.

All other events are forwarded, subject to any configured rate limits.

To disable these defaults, either end your rules list with a rule that has only a level field or add an empty
rule.

Omit Response Codes

A list of integer status codes to omit. You can drop events based on the HTTP status code in the
response by using the OmitResponseCodes field, which lists HTTP status codes for which no events
are created. The default value is [404, 409, 422, 429]. If the value is an empty list, [], then no status
codes are omitted.

The ClusterLogForwarder CR audit policy acts in addition to the OpenShift Container Platform audit
policy. The ClusterLogForwarder CR audit filter changes what the log collector forwards and provides
the ability to filter by verb, user, group, namespace, or resource. You can create multiple filters to send
different summaries of the same audit stream to different places. For example, you can send a detailed
stream to the local cluster log store and a less detailed stream to a remote site.

NOTE

You must have a cluster role collect-audit-logs to collect the audit logs. The following
example provided is intended to illustrate the range of rules possible in an audit policy
and is not a recommended configuration.

Example audit policy

apiVersion: observability.openshift.io/v1
kind: ClusterLogForwarder
metadata:
 name: <log_forwarder_name>
 namespace: <log_forwarder_namespace>
spec:
 serviceAccount:

CHAPTER 1. LOGGING 6.0

29

https://kubernetes.io/docs/tasks/debug/debug-cluster/audit/#audit-policy

 name: <service_account_name>
 pipelines:
 - name: my-pipeline
 inputRefs: audit 1
 filterRefs: my-policy 2
 filters:
 - name: my-policy
 type: kubeAPIAudit
 kubeAPIAudit:
 # Don't generate audit events for all requests in RequestReceived stage.
 omitStages:
 - "RequestReceived"

 rules:
 # Log pod changes at RequestResponse level
 - level: RequestResponse
 resources:
 - group: ""
 resources: ["pods"]

 # Log "pods/log", "pods/status" at Metadata level
 - level: Metadata
 resources:
 - group: ""
 resources: ["pods/log", "pods/status"]

 # Don't log requests to a configmap called "controller-leader"
 - level: None
 resources:
 - group: ""
 resources: ["configmaps"]
 resourceNames: ["controller-leader"]

 # Don't log watch requests by the "system:kube-proxy" on endpoints or services
 - level: None
 users: ["system:kube-proxy"]
 verbs: ["watch"]
 resources:
 - group: "" # core API group
 resources: ["endpoints", "services"]

 # Don't log authenticated requests to certain non-resource URL paths.
 - level: None
 userGroups: ["system:authenticated"]
 nonResourceURLs:
 - "/api*" # Wildcard matching.
 - "/version"

 # Log the request body of configmap changes in kube-system.
 - level: Request
 resources:
 - group: "" # core API group
 resources: ["configmaps"]
 # This rule only applies to resources in the "kube-system" namespace.
 # The empty string "" can be used to select non-namespaced resources.
 namespaces: ["kube-system"]

OpenShift Container Platform 4.17 Logging

30

1

2

The log types that are collected. The value for this field can be audit for audit logs, application for
application logs, infrastructure for infrastructure logs, or a named input that has been defined for
your application.

The name of your audit policy.

1.4.4.8. Filtering application logs at input by including the label expressions or a matching
label key and values

You can include the application logs based on the label expressions or a matching label key and its
values by using the input selector.

Procedure

1. Add a configuration for a filter to the input spec in the ClusterLogForwarder CR.
The following example shows how to configure the ClusterLogForwarder CR to include logs
based on label expressions or matched label key/values:

Example ClusterLogForwarder CR

 # Log configmap and secret changes in all other namespaces at the Metadata level.
 - level: Metadata
 resources:
 - group: "" # core API group
 resources: ["secrets", "configmaps"]

 # Log all other resources in core and extensions at the Request level.
 - level: Request
 resources:
 - group: "" # core API group
 - group: "extensions" # Version of group should NOT be included.

 # A catch-all rule to log all other requests at the Metadata level.
 - level: Metadata

apiVersion: observability.openshift.io/v1
kind: ClusterLogForwarder
...
spec:
 serviceAccount:
 name: <service_account_name>
 inputs:
 - name: mylogs
 application:
 selector:
 matchExpressions:
 - key: env 1
 operator: In 2
 values: ["prod", "qa"] 3
 - key: zone
 operator: NotIn
 values: ["east", "west"]
 matchLabels: 4

CHAPTER 1. LOGGING 6.0

31

1

2

3

4

Specifies the label key to match.

Specifies the operator. Valid values include: In, NotIn, Exists, and DoesNotExist.

Specifies an array of string values. If the operator value is either Exists or DoesNotExist,
the value array must be empty.

Specifies an exact key or value mapping.

2. Apply the ClusterLogForwarder CR by running the following command:

1.4.4.9. Configuring content filters to prune log records

When the prune filter is configured, the log collector evaluates log streams according to the filters
before forwarding. The collector prunes log records by removing low value fields such as pod
annotations.

Procedure

1. Add a configuration for a filter to the prune spec in the ClusterLogForwarder CR.
The following example shows how to configure the ClusterLogForwarder CR to prune log
records based on field paths:

IMPORTANT

If both are specified, records are pruned based on the notIn array first, which
takes precedence over the in array. After records have been pruned by using the
notIn array, they are then pruned by using the in array.

Example ClusterLogForwarder CR

 app: one
 name: app1
 type: application
...

$ oc apply -f <filename>.yaml

apiVersion: observability.openshift.io/v1
kind: ClusterLogForwarder
metadata:
...
spec:
 serviceAccount:
 name: <service_account_name>
 filters:
 - name: <filter_name>
 type: prune 1
 prune: 2
 in: [.kubernetes.annotations, .kubernetes.namespace_id] 3
 notIn: [.kubernetes,.log_type,.message,."@timestamp"] 4
 pipelines:

OpenShift Container Platform 4.17 Logging

32

1

2

3

4

5

Specify the type of filter. The prune filter prunes log records by configured fields.

Specify configuration options for applying the prune filter. The in and notIn fields are
specified as arrays of dot-delimited field paths, which are paths to fields in log records.
These paths can contain alpha-numeric characters and underscores (a-zA-Z0-9_), for
example, .kubernetes.namespace_name. If segments contain characters outside of this
range, the segment must be in quotes, for example, .kubernetes.labels."foo.bar-
bar/baz".

Optional: Any fields that are specified in this array are removed from the log record.

Optional: Any fields that are not specified in this array are removed from the log record.

Specify the pipeline that the prune filter is applied to.

NOTE

The filters exempts the log_type, .log_source, and .message fields.

2. Apply the ClusterLogForwarder CR by running the following command:

1.4.5. Filtering the audit and infrastructure log inputs by source

You can define the list of audit and infrastructure sources to collect the logs by using the input
selector.

Procedure

1. Add a configuration to define the audit and infrastructure sources in the
ClusterLogForwarder CR.
The following example shows how to configure the ClusterLogForwarder CR to define audit
and infrastructure sources:

Example ClusterLogForwarder CR

 - name: <pipeline_name> 5
 filterRefs: ["<filter_name>"]
...

$ oc apply -f <filename>.yaml

apiVersion: observability.openshift.io/v1
kind: ClusterLogForwarder
...
spec:
 serviceAccount:
 name: <service_account_name>
 inputs:
 - name: mylogs1
 type: infrastructure
 infrastructure:
 sources: 1
 - node

CHAPTER 1. LOGGING 6.0

33

1

2

Specifies the list of infrastructure sources to collect. The valid sources include:

node: Journal log from the node

container: Logs from the workloads deployed in the namespaces

Specifies the list of audit sources to collect. The valid sources include:

kubeAPI: Logs from the Kubernetes API servers

openshiftAPI: Logs from the OpenShift API servers

auditd: Logs from a node auditd service

ovn: Logs from an open virtual network service

2. Apply the ClusterLogForwarder CR by running the following command:

1.4.6. Filtering application logs at input by including or excluding the namespace or
container name

You can include or exclude the application logs based on the namespace and container name by using
the input selector.

Procedure

1. Add a configuration to include or exclude the namespace and container names in the
ClusterLogForwarder CR.
The following example shows how to configure the ClusterLogForwarder CR to include or
exclude namespaces and container names:

Example ClusterLogForwarder CR

 - name: mylogs2
 type: audit
 audit:
 sources: 2
 - kubeAPI
 - openshiftAPI
 - ovn
...

$ oc apply -f <filename>.yaml

apiVersion: observability.openshift.io/v1
kind: ClusterLogForwarder
...
spec:
 serviceAccount:
 name: <service_account_name>
 inputs:
 - name: mylogs
 application:
 includes:

OpenShift Container Platform 4.17 Logging

34

1

2

3

4

Specifies that the logs are only collected from these namespaces.

Specifies that the logs are only collected from these containers.

Specifies the pattern of namespaces to ignore when collecting the logs.

Specifies the set of containers to ignore when collecting the logs.

NOTE

The excludes field takes precedence over the includes field.

2. Apply the ClusterLogForwarder CR by running the following command:

1.5. STORING LOGS WITH LOKISTACK

You can configure a LokiStack CR to store application, audit, and infrastructure-related logs.

1.5.1. Prerequisites

You have installed the Loki Operator by using the CLI or web console.

You have a serviceAccount in the same namespace in which you create the
ClusterLogForwarder.

The serviceAccount is assigned collect-audit-logs, collect-application-logs, and collect-
infrastructure-logs cluster roles.

1.5.1.1. Core Setup and Configuration

Role-based access controls, basic monitoring, and pod placement to deploy Loki.

1.5.2. Authorizing LokiStack rules RBAC permissions

Administrators can allow users to create and manage their own alerting and recording rules by binding
cluster roles to usernames. Cluster roles are defined as ClusterRole objects that contain necessary role-
based access control (RBAC) permissions for users.

The following cluster roles for alerting and recording rules are available for LokiStack:

 - namespace: "my-project" 1
 container: "my-container" 2
 excludes:
 - container: "other-container*" 3
 namespace: "other-namespace" 4
...

$ oc apply -f <filename>.yaml

CHAPTER 1. LOGGING 6.0

35

Rule name Description

alertingrules.loki.grafana.com-v1-admin Users with this role have administrative-level access
to manage alerting rules. This cluster role grants
permissions to create, read, update, delete, list, and
watch AlertingRule resources within the
loki.grafana.com/v1 API group.

alertingrules.loki.grafana.com-v1-crdview Users with this role can view the definitions of
Custom Resource Definitions (CRDs) related to
AlertingRule resources within the
loki.grafana.com/v1 API group, but do not have
permissions for modifying or managing these
resources.

alertingrules.loki.grafana.com-v1-edit Users with this role have permission to create,
update, and delete AlertingRule resources.

alertingrules.loki.grafana.com-v1-view Users with this role can read AlertingRule resources
within the loki.grafana.com/v1 API group. They
can inspect configurations, labels, and annotations
for existing alerting rules but cannot make any
modifications to them.

recordingrules.loki.grafana.com-v1-admin Users with this role have administrative-level access
to manage recording rules. This cluster role grants
permissions to create, read, update, delete, list, and
watch RecordingRule resources within the
loki.grafana.com/v1 API group.

recordingrules.loki.grafana.com-v1-crdview Users with this role can view the definitions of
Custom Resource Definitions (CRDs) related to
RecordingRule resources within the
loki.grafana.com/v1 API group, but do not have
permissions for modifying or managing these
resources.

recordingrules.loki.grafana.com-v1-edit Users with this role have permission to create,
update, and delete RecordingRule resources.

recordingrules.loki.grafana.com-v1-view Users with this role can read RecordingRule
resources within the loki.grafana.com/v1 API
group. They can inspect configurations, labels, and
annotations for existing alerting rules but cannot
make any modifications to them.

1.5.2.1. Examples

To apply cluster roles for a user, you must bind an existing cluster role to a specific username.

OpenShift Container Platform 4.17 Logging

36

Cluster roles can be cluster or namespace scoped, depending on which type of role binding you use.
When a RoleBinding object is used, as when using the oc adm policy add-role-to-user command, the
cluster role only applies to the specified namespace. When a ClusterRoleBinding object is used, as
when using the oc adm policy add-cluster-role-to-user command, the cluster role applies to all
namespaces in the cluster.

The following example command gives the specified user create, read, update and delete (CRUD)
permissions for alerting rules in a specific namespace in the cluster:

Example cluster role binding command for alerting rule CRUD permissions in a specific
namespace

The following command gives the specified user administrator permissions for alerting rules in all
namespaces:

Example cluster role binding command for administrator permissions

1.5.3. Creating a log-based alerting rule with Loki

The AlertingRule CR contains a set of specifications and webhook validation definitions to declare
groups of alerting rules for a single LokiStack instance. In addition, the webhook validation definition
provides support for rule validation conditions:

If an AlertingRule CR includes an invalid interval period, it is an invalid alerting rule

If an AlertingRule CR includes an invalid for period, it is an invalid alerting rule.

If an AlertingRule CR includes an invalid LogQL expr, it is an invalid alerting rule.

If an AlertingRule CR includes two groups with the same name, it is an invalid alerting rule.

If none of the above applies, an alerting rule is considered valid.

Table 1.2. AlertingRule definitions

Tenant type Valid namespaces for AlertingRule CRs

application <your_application_namespace>

audit openshift-logging

infrastructure openshift-/*, kube-/*, default

Procedure

1. Create an AlertingRule custom resource (CR):

Example infrastructure AlertingRule CR

$ oc adm policy add-role-to-user alertingrules.loki.grafana.com-v1-admin -n <namespace>
<username>

$ oc adm policy add-cluster-role-to-user alertingrules.loki.grafana.com-v1-admin <username>

CHAPTER 1. LOGGING 6.0

37

1

2

3

4

5

6

7

The namespace where this AlertingRule CR is created must have a label matching the
LokiStack spec.rules.namespaceSelector definition.

The labels block must match the LokiStack spec.rules.selector definition.

AlertingRule CRs for infrastructure tenants are only supported in the openshift-*, kube-
*, or default namespaces.

The value for kubernetes_namespace_name: must match the value for
metadata.namespace.

The value of this mandatory field must be critical, warning, or info.

This field is mandatory.

This field is mandatory.

Example application AlertingRule CR

 apiVersion: loki.grafana.com/v1
 kind: AlertingRule
 metadata:
 name: loki-operator-alerts
 namespace: openshift-operators-redhat 1
 labels: 2
 openshift.io/<label_name>: "true"
 spec:
 tenantID: "infrastructure" 3
 groups:
 - name: LokiOperatorHighReconciliationError
 rules:
 - alert: HighPercentageError
 expr: | 4
 sum(rate({kubernetes_namespace_name="openshift-operators-redhat",
kubernetes_pod_name=~"loki-operator-controller-manager.*"} |= "error" [1m])) by (job)
 /
 sum(rate({kubernetes_namespace_name="openshift-operators-redhat",
kubernetes_pod_name=~"loki-operator-controller-manager.*"}[1m])) by (job)
 > 0.01
 for: 10s
 labels:
 severity: critical 5
 annotations:
 summary: High Loki Operator Reconciliation Errors 6
 description: High Loki Operator Reconciliation Errors 7

 apiVersion: loki.grafana.com/v1
 kind: AlertingRule
 metadata:
 name: app-user-workload
 namespace: app-ns 1
 labels: 2
 openshift.io/<label_name>: "true"

OpenShift Container Platform 4.17 Logging

38

1

2

3

4

5

6

The namespace where this AlertingRule CR is created must have a label matching the
LokiStack spec.rules.namespaceSelector definition.

The labels block must match the LokiStack spec.rules.selector definition.

Value for kubernetes_namespace_name: must match the value for
metadata.namespace.

The value of this mandatory field must be critical, warning, or info.

The value of this mandatory field is a summary of the rule.

The value of this mandatory field is a detailed description of the rule.

2. Apply the AlertingRule CR:

1.5.4. Configuring Loki to tolerate memberlist creation failure

In an OpenShift Container Platform cluster, administrators generally use a non-private IP network range.
As a result, the LokiStack memberlist configuration fails because, by default, it only uses private IP
networks.

As an administrator, you can select the pod network for the memberlist configuration. You can modify
the LokiStack custom resource (CR) to use the podIP address in the hashRing spec. To configure the
LokiStack CR, use the following command:

Example LokiStack to include podIP

 spec:
 tenantID: "application"
 groups:
 - name: AppUserWorkloadHighError
 rules:
 - alert:
 expr: | 3
 sum(rate({kubernetes_namespace_name="app-ns",
kubernetes_pod_name=~"podName.*"} |= "error" [1m])) by (job)
 for: 10s
 labels:
 severity: critical 4
 annotations:
 summary: 5
 description: 6

$ oc apply -f <filename>.yaml

$ oc patch LokiStack logging-loki -n openshift-logging --type=merge -p '{"spec": {"hashRing":
{"memberlist":{"instanceAddrType":"podIP"},"type":"memberlist"}}}'

apiVersion: loki.grafana.com/v1
kind: LokiStack
metadata:
 name: logging-loki

CHAPTER 1. LOGGING 6.0

39

1.5.5. Enabling stream-based retention with Loki

You can configure retention policies based on log streams. Rules for these may be set globally, per-
tenant, or both. If you configure both, tenant rules apply before global rules.

IMPORTANT

If there is no retention period defined on the s3 bucket or in the LokiStack custom
resource (CR), then the logs are not pruned and they stay in the s3 bucket forever, which
might fill up the s3 storage.

NOTE

Schema v13 is recommended.

Procedure

1. Create a LokiStack CR:

Enable stream-based retention globally as shown in the following example:

Example global stream-based retention for AWS

 namespace: openshift-logging
spec:
...
 hashRing:
 type: memberlist
 memberlist:
 instanceAddrType: podIP
...

apiVersion: loki.grafana.com/v1
kind: LokiStack
metadata:
 name: logging-loki
 namespace: openshift-logging
spec:
 limits:
 global: 1
 retention: 2
 days: 20
 streams:
 - days: 4
 priority: 1
 selector: '{kubernetes_namespace_name=~"test.+"}' 3
 - days: 1
 priority: 1
 selector: '{log_type="infrastructure"}'
 managementState: Managed
 replicationFactor: 1
 size: 1x.small
 storage:
 schemas:

OpenShift Container Platform 4.17 Logging

40

1

2

3

Sets retention policy for all log streams. Note: This field does not impact the
retention period for stored logs in object storage.

Retention is enabled in the cluster when this block is added to the CR.

Contains the LogQL query used to define the log stream.spec: limits:

Enable stream-based retention per-tenant basis as shown in the following example:

Example per-tenant stream-based retention for AWS

 - effectiveDate: "2020-10-11"
 version: v13
 secret:
 name: logging-loki-s3
 type: aws
 storageClassName: gp3-csi
 tenants:
 mode: openshift-logging

apiVersion: loki.grafana.com/v1
kind: LokiStack
metadata:
 name: logging-loki
 namespace: openshift-logging
spec:
 limits:
 global:
 retention:
 days: 20
 tenants: 1
 application:
 retention:
 days: 1
 streams:
 - days: 4
 selector: '{kubernetes_namespace_name=~"test.+"}' 2
 infrastructure:
 retention:
 days: 5
 streams:
 - days: 1
 selector: '{kubernetes_namespace_name=~"openshift-cluster.+"}'
 managementState: Managed
 replicationFactor: 1
 size: 1x.small
 storage:
 schemas:
 - effectiveDate: "2020-10-11"
 version: v13
 secret:
 name: logging-loki-s3
 type: aws

CHAPTER 1. LOGGING 6.0

41

https://grafana.com/docs/loki/latest/logql/query_examples/#query-examples

1

2

Sets retention policy by tenant. Valid tenant types are application, audit, and
infrastructure.

Contains the LogQL query used to define the log stream.

2. Apply the LokiStack CR:

NOTE

This is not for managing the retention for stored logs. Global retention periods
for stored logs to a supported maximum of 30 days is configured with your object
storage.

1.5.6. Loki pod placement

You can control which nodes the Loki pods run on, and prevent other workloads from using those nodes,
by using tolerations or node selectors on the pods.

You can apply tolerations to the log store pods with the LokiStack custom resource (CR) and apply
taints to a node with the node specification. A taint on a node is a key:value pair that instructs the node
to repel all pods that do not allow the taint. Using a specific key:value pair that is not on other pods
ensures that only the log store pods can run on that node.

Example LokiStack with node selectors

 storageClassName: gp3-csi
 tenants:
 mode: openshift-logging

$ oc apply -f <filename>.yaml

apiVersion: loki.grafana.com/v1
kind: LokiStack
metadata:
 name: logging-loki
 namespace: openshift-logging
spec:
...
 template:
 compactor: 1
 nodeSelector:
 node-role.kubernetes.io/infra: "" 2
 distributor:
 nodeSelector:
 node-role.kubernetes.io/infra: ""
 gateway:
 nodeSelector:
 node-role.kubernetes.io/infra: ""
 indexGateway:
 nodeSelector:
 node-role.kubernetes.io/infra: ""
 ingester:
 nodeSelector:

OpenShift Container Platform 4.17 Logging

42

https://grafana.com/docs/loki/latest/logql/query_examples/#query-examples

1

2

Specifies the component pod type that applies to the node selector.

Specifies the pods that are moved to nodes containing the defined label.

Example LokiStack CR with node selectors and tolerations

 node-role.kubernetes.io/infra: ""
 querier:
 nodeSelector:
 node-role.kubernetes.io/infra: ""
 queryFrontend:
 nodeSelector:
 node-role.kubernetes.io/infra: ""
 ruler:
 nodeSelector:
 node-role.kubernetes.io/infra: ""
...

apiVersion: loki.grafana.com/v1
kind: LokiStack
metadata:
 name: logging-loki
 namespace: openshift-logging
spec:
...
 template:
 compactor:
 nodeSelector:
 node-role.kubernetes.io/infra: ""
 tolerations:
 - effect: NoSchedule
 key: node-role.kubernetes.io/infra
 value: reserved
 - effect: NoExecute
 key: node-role.kubernetes.io/infra
 value: reserved
 distributor:
 nodeSelector:
 node-role.kubernetes.io/infra: ""
 tolerations:
 - effect: NoSchedule
 key: node-role.kubernetes.io/infra
 value: reserved
 - effect: NoExecute
 key: node-role.kubernetes.io/infra
 value: reserved
 nodeSelector:
 node-role.kubernetes.io/infra: ""
 tolerations:
 - effect: NoSchedule
 key: node-role.kubernetes.io/infra
 value: reserved
 - effect: NoExecute
 key: node-role.kubernetes.io/infra
 value: reserved

CHAPTER 1. LOGGING 6.0

43

 indexGateway:
 nodeSelector:
 node-role.kubernetes.io/infra: ""
 tolerations:
 - effect: NoSchedule
 key: node-role.kubernetes.io/infra
 value: reserved
 - effect: NoExecute
 key: node-role.kubernetes.io/infra
 value: reserved
 ingester:
 nodeSelector:
 node-role.kubernetes.io/infra: ""
 tolerations:
 - effect: NoSchedule
 key: node-role.kubernetes.io/infra
 value: reserved
 - effect: NoExecute
 key: node-role.kubernetes.io/infra
 value: reserved
 querier:
 nodeSelector:
 node-role.kubernetes.io/infra: ""
 tolerations:
 - effect: NoSchedule
 key: node-role.kubernetes.io/infra
 value: reserved
 - effect: NoExecute
 key: node-role.kubernetes.io/infra
 value: reserved
 queryFrontend:
 nodeSelector:
 node-role.kubernetes.io/infra: ""
 tolerations:
 - effect: NoSchedule
 key: node-role.kubernetes.io/infra
 value: reserved
 - effect: NoExecute
 key: node-role.kubernetes.io/infra
 value: reserved
 ruler:
 nodeSelector:
 node-role.kubernetes.io/infra: ""
 tolerations:
 - effect: NoSchedule
 key: node-role.kubernetes.io/infra
 value: reserved
 - effect: NoExecute
 key: node-role.kubernetes.io/infra
 value: reserved
 gateway:
 nodeSelector:
 node-role.kubernetes.io/infra: ""
 tolerations:
 - effect: NoSchedule
 key: node-role.kubernetes.io/infra

OpenShift Container Platform 4.17 Logging

44

To configure the nodeSelector and tolerations fields of the LokiStack (CR), you can use the oc
explain command to view the description and fields for a particular resource:

Example output

For more detailed information, you can add a specific field:

Example output

1.5.6.1. Enhanced Reliability and Performance

Configurations to ensure Loki’s reliability and efficiency in production.

 value: reserved
 - effect: NoExecute
 key: node-role.kubernetes.io/infra
 value: reserved
...

$ oc explain lokistack.spec.template

KIND: LokiStack
VERSION: loki.grafana.com/v1

RESOURCE: template <Object>

DESCRIPTION:
 Template defines the resource/limits/tolerations/nodeselectors per
 component

FIELDS:
 compactor <Object>
 Compactor defines the compaction component spec.

 distributor <Object>
 Distributor defines the distributor component spec.
...

$ oc explain lokistack.spec.template.compactor

KIND: LokiStack
VERSION: loki.grafana.com/v1

RESOURCE: compactor <Object>

DESCRIPTION:
 Compactor defines the compaction component spec.

FIELDS:
 nodeSelector <map[string]string>
 NodeSelector defines the labels required by a node to schedule the
 component onto it.
...

CHAPTER 1. LOGGING 6.0

45

1.5.7. Enabling authentication to cloud-based log stores using short-lived tokens

Workload identity federation enables authentication to cloud-based log stores using short-lived tokens.

Procedure

Use one of the following options to enable authentication:

If you use the OpenShift Container Platform web console to install the Loki Operator,
clusters that use short-lived tokens are automatically detected. You are prompted to create
roles and supply the data required for the Loki Operator to create a CredentialsRequest
object, which populates a secret.

If you use the OpenShift CLI (oc) to install the Loki Operator, you must manually create a
Subscription object using the appropriate template for your storage provider, as shown in
the following examples. This authentication strategy is only supported for the storage
providers indicated.

Example Azure sample subscription

Example AWS sample subscription

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: loki-operator
 namespace: openshift-operators-redhat
spec:
 channel: "stable-6.0"
 installPlanApproval: Manual
 name: loki-operator
 source: redhat-operators
 sourceNamespace: openshift-marketplace
 config:
 env:
 - name: CLIENTID
 value: <your_client_id>
 - name: TENANTID
 value: <your_tenant_id>
 - name: SUBSCRIPTIONID
 value: <your_subscription_id>
 - name: REGION
 value: <your_region>

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: loki-operator
 namespace: openshift-operators-redhat
spec:
 channel: "stable-6.0"
 installPlanApproval: Manual
 name: loki-operator
 source: redhat-operators
 sourceNamespace: openshift-marketplace

OpenShift Container Platform 4.17 Logging

46

1

2

1.5.8. Configuring Loki to tolerate node failure

The Loki Operator supports setting pod anti-affinity rules to request that pods of the same component
are scheduled on different available nodes in the cluster.

Affinity is a property of pods that controls the nodes on which they prefer to be scheduled. Anti-affinity
is a property of pods that prevents a pod from being scheduled on a node.

In OpenShift Container Platform, pod affinity and pod anti-affinity allow you to constrain which nodes
your pod is eligible to be scheduled on based on the key-value labels on other pods.

The Operator sets default, preferred podAntiAffinity rules for all Loki components, which includes the
compactor, distributor, gateway, indexGateway, ingester, querier, queryFrontend, and ruler
components.

You can override the preferred podAntiAffinity settings for Loki components by configuring required
settings in the requiredDuringSchedulingIgnoredDuringExecution field:

Example user settings for the ingester component

The stanza to define a required rule.

The key-value pair (label) that must be matched to apply the rule.

1.5.9. LokiStack behavior during cluster restarts

When an OpenShift Container Platform cluster is restarted, LokiStack ingestion and the query path
continue to operate within the available CPU and memory resources available for the node. This means
that there is no downtime for the LokiStack during OpenShift Container Platform cluster updates. This

 config:
 env:
 - name: ROLEARN
 value: <role_ARN>

apiVersion: loki.grafana.com/v1
kind: LokiStack
metadata:
 name: logging-loki
 namespace: openshift-logging
spec:
...
 template:
 ingester:
 podAntiAffinity:
 # ...
 requiredDuringSchedulingIgnoredDuringExecution: 1
 - labelSelector:
 matchLabels: 2
 app.kubernetes.io/component: ingester
 topologyKey: kubernetes.io/hostname
...

CHAPTER 1. LOGGING 6.0

47

1

2

3

4

behavior is achieved by using PodDisruptionBudget resources. The Loki Operator provisions
PodDisruptionBudget resources for Loki, which determine the minimum number of pods that must be
available per component to ensure normal operations under certain conditions.

1.5.9.1. Advanced Deployment and Scalability

Specialized configurations for high availability, scalability, and error handling.

1.5.10. Zone aware data replication

The Loki Operator offers support for zone-aware data replication through pod topology spread
constraints. Enabling this feature enhances reliability and safeguards against log loss in the event of a
single zone failure. When configuring the deployment size as 1x.extra-small, 1x.small, or 1x.medium,
the replication.factor field is automatically set to 2.

To ensure proper replication, you need to have at least as many availability zones as the replication
factor specifies. While it is possible to have more availability zones than the replication factor, having
fewer zones can lead to write failures. Each zone should host an equal number of instances for optimal
operation.

Example LokiStack CR with zone replication enabled

Deprecated field, values entered are overwritten by replication.factor.

This value is automatically set when deployment size is selected at setup.

The maximum difference in number of pods between any two topology domains. The default is 1,
and you cannot specify a value of 0.

Defines zones in the form of a topology key that corresponds to a node label.

1.5.11. Recovering Loki pods from failed zones

In OpenShift Container Platform a zone failure happens when specific availability zone resources
become inaccessible. Availability zones are isolated areas within a cloud provider’s data center, aimed at
enhancing redundancy and fault tolerance. If your OpenShift Container Platform cluster is not
configured to handle this, a zone failure can lead to service or data loss.

Loki pods are part of a StatefulSet, and they come with Persistent Volume Claims (PVCs) provisioned
by a StorageClass object. Each Loki pod and its PVCs reside in the same zone. When a zone failure

apiVersion: loki.grafana.com/v1
kind: LokiStack
metadata:
 name: logging-loki
 namespace: openshift-logging
spec:
 replicationFactor: 2 1
 replication:
 factor: 2 2
 zones:
 - maxSkew: 1 3
 topologyKey: topology.kubernetes.io/zone 4

OpenShift Container Platform 4.17 Logging

48

https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/

1

occurs in a cluster, the StatefulSet controller automatically attempts to recover the affected pods in the
failed zone.

WARNING

The following procedure will delete the PVCs in the failed zone, and all data
contained therein. To avoid complete data loss the replication factor field of the
LokiStack CR should always be set to a value greater than 1 to ensure that Loki is
replicating.

Prerequisites

Verify your LokiStack CR has a replication factor greater than 1.

Zone failure detected by the control plane, and nodes in the failed zone are marked by cloud
provider integration.

The StatefulSet controller automatically attempts to reschedule pods in a failed zone. Because the
associated PVCs are also in the failed zone, automatic rescheduling to a different zone does not work.
You must manually delete the PVCs in the failed zone to allow successful re-creation of the stateful Loki
Pod and its provisioned PVC in the new zone.

Procedure

1. List the pods in Pending status by running the following command:

Example oc get pods output

These pods are in Pending status because their corresponding PVCs are in the failed
zone.

2. List the PVCs in Pending status by running the following command:

Example oc get pvc output



$ oc get pods --field-selector status.phase==Pending -n openshift-logging

NAME READY STATUS RESTARTS AGE 1
logging-loki-index-gateway-1 0/1 Pending 0 17m
logging-loki-ingester-1 0/1 Pending 0 16m
logging-loki-ruler-1 0/1 Pending 0 16m

$ oc get pvc -o=json -n openshift-logging | jq '.items[] | select(.status.phase == "Pending") |
.metadata.name' -r

storage-logging-loki-index-gateway-1
storage-logging-loki-ingester-1
wal-logging-loki-ingester-1

CHAPTER 1. LOGGING 6.0

49

3. Delete the PVC(s) for a pod by running the following command:

4. Delete the pod(s) by running the following command:

Once these objects have been successfully deleted, they should automatically be rescheduled in
an available zone.

1.5.11.1. Troubleshooting PVC in a terminating state

The PVCs might hang in the terminating state without being deleted, if PVC metadata finalizers are set
to kubernetes.io/pv-protection. Removing the finalizers should allow the PVCs to delete successfully.

Remove the finalizer for each PVC by running the command below, then retry deletion.

1.5.12. Troubleshooting Loki rate limit errors

If the Log Forwarder API forwards a large block of messages that exceeds the rate limit to Loki, Loki
generates rate limit (429) errors.

These errors can occur during normal operation. For example, when adding the logging to a cluster that
already has some logs, rate limit errors might occur while the logging tries to ingest all of the existing log
entries. In this case, if the rate of addition of new logs is less than the total rate limit, the historical data is
eventually ingested, and the rate limit errors are resolved without requiring user intervention.

In cases where the rate limit errors continue to occur, you can fix the issue by modifying the LokiStack
custom resource (CR).

IMPORTANT

The LokiStack CR is not available on Grafana-hosted Loki. This topic does not apply to
Grafana-hosted Loki servers.

Conditions

The Log Forwarder API is configured to forward logs to Loki.

Your system sends a block of messages that is larger than 2 MB to Loki. For example:

storage-logging-loki-ruler-1
wal-logging-loki-ruler-1

$ oc delete pvc <pvc_name> -n openshift-logging

$ oc delete pod <pod_name> -n openshift-logging

$ oc patch pvc <pvc_name> -p '{"metadata":{"finalizers":null}}' -n openshift-logging

"values":[["1630410392689800468","{\"kind\":\"Event\",\"apiVersion\":\
.......
......
......
......
\"received_at\":\"2021-08-31T11:46:32.800278+00:00\",\"version\":\"1.7.4
1.6.0\"}},\"@timestamp\":\"2021-08-

OpenShift Container Platform 4.17 Logging

50

1

After you enter oc logs -n openshift-logging -l component=collector, the collector logs in
your cluster show a line containing one of the following error messages:

Example Vector error message

Example Fluentd error message

The error is also visible on the receiving end. For example, in the LokiStack ingester pod:

Example Loki ingester error message

Procedure

Update the ingestionBurstSize and ingestionRate fields in the LokiStack CR:

The ingestionBurstSize field defines the maximum local rate-limited sample size per
distributor replica in MB. This value is a hard limit. Set this value to at least the maximum

31T11:46:32.799692+00:00\",\"viaq_index_name\":\"audit-
write\",\"viaq_msg_id\":\"MzFjYjJkZjItNjY0MC00YWU4LWIwMTEtNGNmM2E5ZmViMGU4\",\"lo
g_type\":\"audit\"}"]]}]}

429 Too Many Requests Ingestion rate limit exceeded

2023-08-25T16:08:49.301780Z WARN sink{component_kind="sink"
component_id=default_loki_infra component_type=loki component_name=default_loki_infra}:
vector::sinks::util::retries: Retrying after error. error=Server responded with an error: 429 Too
Many Requests internal_log_rate_limit=true

2023-08-30 14:52:15 +0000 [warn]: [default_loki_infra] failed to flush the buffer. retry_times=2
next_retry_time=2023-08-30 14:52:19 +0000
chunk="604251225bf5378ed1567231a1c03b8b"
error_class=Fluent::Plugin::LokiOutput::LogPostError error="429 Too Many Requests
Ingestion rate limit exceeded for user infrastructure (limit: 4194304 bytes/sec) while
attempting to ingest '4082' lines totaling '7820025' bytes, reduce log volume or contact your
Loki administrator to see if the limit can be increased\n"

level=warn ts=2023-08-30T14:57:34.155592243Z caller=grpc_logging.go:43
duration=1.434942ms method=/logproto.Pusher/Push err="rpc error: code = Code(429) desc
= entry with timestamp 2023-08-30 14:57:32.012778399 +0000 UTC ignored, reason: 'Per
stream rate limit exceeded (limit: 3MB/sec) while attempting to ingest for stream

apiVersion: loki.grafana.com/v1
kind: LokiStack
metadata:
 name: logging-loki
 namespace: openshift-logging
spec:
 limits:
 global:
 ingestion:
 ingestionBurstSize: 16 1
 ingestionRate: 8 2
...

CHAPTER 1. LOGGING 6.0

51

2

distributor replica in MB. This value is a hard limit. Set this value to at least the maximum
logs size expected in a single push request. Single requests that are larger than the
ingestionBurstSize value are not permitted.

The ingestionRate field is a soft limit on the maximum amount of ingested samples per
second in MB. Rate limit errors occur if the rate of logs exceeds the limit, but the collector
retries sending the logs. As long as the total average is lower than the limit, the system
recovers and errors are resolved without user intervention.

1.6. VISUALIZATION FOR LOGGING

Visualization for logging is provided by installing the Cluster Observability Operator.

OpenShift Container Platform 4.17 Logging

52

https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/cluster_observability_operator/#cluster-observability-operator-overview

	Table of Contents
	CHAPTER 1. LOGGING 6.0
	1.1. LOGGING 6.0.0
	1.1.1. Removal notice
	1.1.2. New features and enhancements
	1.1.3. Technology Preview features
	1.1.4. Bug fixes
	1.1.5. CVEs

	1.2. LOGGING 6.0
	1.2.1. Inputs and Outputs
	1.2.2. Receiver Input Type
	1.2.3. Pipelines and Filters
	1.2.4. Operator Behavior
	1.2.5. Validation
	1.2.5.1. Quick Start

	1.3. UPGRADING TO LOGGING 6.0
	1.3.1. Using the oc explain command
	1.3.1.1. Resource Descriptions
	1.3.1.2. Hierarchical Structure
	1.3.1.3. Type Information
	1.3.1.4. Default Values

	1.3.2. Log Storage
	1.3.3. Log Visualization
	1.3.4. Log Collection and Forwarding
	1.3.5. Management, Resource Allocation, and Workload Scheduling
	1.3.6. Input Specifications
	1.3.6.1. Application Inputs
	1.3.6.2. Input Receivers

	1.3.7. Output Specifications
	1.3.8. Secrets and TLS Configuration
	1.3.9. Red Hat Managed Elasticsearch
	1.3.10. Red Hat Managed LokiStack
	1.3.11. Filters and Pipeline Configuration
	1.3.12. Validation and Status

	1.4. CONFIGURING LOG FORWARDING
	1.4.1. Setting up log collection
	1.4.1.1. Legacy service accounts
	1.4.1.2. Creating service accounts

	1.4.2. Modifying log level in collector
	1.4.3. Managing the Operator
	1.4.4. Structure of the ClusterLogForwarder
	1.4.4.1. Inputs
	1.4.4.2. Outputs
	1.4.4.3. Pipelines
	1.4.4.4. Filters
	1.4.4.5. Enabling multi-line exception detection
	1.4.4.6. Configuring content filters to drop unwanted log records
	1.4.4.7. Overview of API audit filter
	1.4.4.8. Filtering application logs at input by including the label expressions or a matching label key and values
	1.4.4.9. Configuring content filters to prune log records

	1.4.5. Filtering the audit and infrastructure log inputs by source
	1.4.6. Filtering application logs at input by including or excluding the namespace or container name

	1.5. STORING LOGS WITH LOKISTACK
	1.5.1. Prerequisites
	1.5.1.1. Core Setup and Configuration

	1.5.2. Authorizing LokiStack rules RBAC permissions
	1.5.2.1. Examples

	1.5.3. Creating a log-based alerting rule with Loki
	1.5.4. Configuring Loki to tolerate memberlist creation failure
	1.5.5. Enabling stream-based retention with Loki
	1.5.6. Loki pod placement
	1.5.6.1. Enhanced Reliability and Performance

	1.5.7. Enabling authentication to cloud-based log stores using short-lived tokens
	1.5.8. Configuring Loki to tolerate node failure
	1.5.9. LokiStack behavior during cluster restarts
	1.5.9.1. Advanced Deployment and Scalability

	1.5.10. Zone aware data replication
	1.5.11. Recovering Loki pods from failed zones
	1.5.11.1. Troubleshooting PVC in a terminating state

	1.5.12. Troubleshooting Loki rate limit errors

	1.6. VISUALIZATION FOR LOGGING

