
OpenShift Container Platform 4.17

Virtualization

OpenShift Virtualization installation, usage, and release notes

Last Updated: 2024-09-30

OpenShift Container Platform 4.17 Virtualization

OpenShift Virtualization installation, usage, and release notes

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides information about how to use OpenShift Virtualization in OpenShift
Container Platform.

. .

. .

. .

Table of Contents

CHAPTER 1. ABOUT
1.1. ABOUT OPENSHIFT VIRTUALIZATION
1.2. SECURITY POLICIES

1.2.1. About workload security
1.2.2. TLS certificates
1.2.3. Authorization

1.2.3.1. Default cluster roles for OpenShift Virtualization
1.2.3.2. RBAC roles for storage features in OpenShift Virtualization

1.2.3.2.1. Cluster-wide RBAC roles
1.2.3.2.2. Namespaced RBAC roles

1.2.3.3. Additional SCCs and permissions for the kubevirt-controller service account
1.2.4. Additional resources

1.3. OPENSHIFT VIRTUALIZATION ARCHITECTURE
1.3.1. About the HyperConverged Operator (HCO)
1.3.2. About the Containerized Data Importer (CDI) Operator
1.3.3. About the Cluster Network Addons Operator
1.3.4. About the Hostpath Provisioner (HPP) Operator
1.3.5. About the Scheduling, Scale, and Performance (SSP) Operator
1.3.6. About the OpenShift Virtualization Operator

CHAPTER 2. RELEASE NOTES
2.1. OPENSHIFT VIRTUALIZATION RELEASE NOTES

2.1.1. Providing documentation feedback
2.1.2. About Red Hat OpenShift Virtualization

2.1.2.1. OpenShift Virtualization supported cluster version
2.1.2.2. Supported guest operating systems
2.1.2.3. Microsoft Windows SVVP certification

2.1.3. Quick starts
2.1.4. New and changed features

2.1.4.1. Installation and update
2.1.4.2. Infrastructure
2.1.4.3. Virtualization
2.1.4.4. Networking
2.1.4.5. Storage
2.1.4.6. Web console
2.1.4.7. Monitoring
2.1.4.8. Notable technical changes

2.1.5. Deprecated and removed features
2.1.5.1. Deprecated features
2.1.5.2. Removed features

2.1.6. Technology Preview features
2.1.7. Bug fixes
2.1.8. Known issues

Monitoring
Networking
Nodes
Storage
Virtualization
Web console

CHAPTER 3. GETTING STARTED

17
17
17
17
17
18
18
18
18
21
22
23
23
24
25
26
26
27
27

29
29
29
29
29
29
29
30
30
30
30
30
30
30
30
30
30
30
30
30
31
31
31
31
31
31
31
31
31

33

Table of Contents

1

. .

3.1. GETTING STARTED WITH OPENSHIFT VIRTUALIZATION
3.1.1. Planning and installing OpenShift Virtualization

Planning and installation resources
3.1.2. Creating and managing virtual machines
3.1.3. Next steps

3.2. USING THE CLI TOOLS
3.2.1. Installing virtctl

3.2.1.1. Installing the virtctl binary on RHEL 9, Linux, Windows, or macOS
3.2.1.2. Installing the virtctl RPM on RHEL 8

3.2.2. virtctl commands
3.2.2.1. virtctl information commands
3.2.2.2. VM information commands
3.2.2.3. VM manifest creation commands
3.2.2.4. VM management commands
3.2.2.5. VM connection commands
3.2.2.6. VM export commands
3.2.2.7. VM memory dump commands
3.2.2.8. Hot plug and hot unplug commands
3.2.2.9. Image upload commands

3.2.3. Deploying libguestfs by using virtctl
3.2.3.1. Libguestfs and virtctl guestfs commands

3.2.4. Using Ansible

CHAPTER 4. INSTALLING
4.1. PREPARING YOUR CLUSTER FOR OPENSHIFT VIRTUALIZATION

4.1.1. Supported platforms
4.1.1.1. OpenShift Virtualization on AWS bare metal

4.1.2. Hardware and operating system requirements
4.1.2.1. CPU requirements
4.1.2.2. Operating system requirements
4.1.2.3. Storage requirements

4.1.2.3.1. About volume and access modes for virtual machine disks
4.1.3. Live migration requirements
4.1.4. Physical resource overhead requirements

Memory overhead
CPU overhead
Storage overhead

4.1.5. Single-node OpenShift differences
4.1.6. Object maximums
4.1.7. Cluster high-availability options

4.2. INSTALLING OPENSHIFT VIRTUALIZATION
4.2.1. Installing the OpenShift Virtualization Operator

4.2.1.1. Installing the OpenShift Virtualization Operator by using the web console
4.2.1.2. Installing the OpenShift Virtualization Operator by using the command line

4.2.1.2.1. Subscribing to the OpenShift Virtualization catalog by using the CLI
4.2.1.2.2. Deploying the OpenShift Virtualization Operator by using the CLI

4.2.2. Next steps
4.3. UNINSTALLING OPENSHIFT VIRTUALIZATION

4.3.1. Uninstalling OpenShift Virtualization by using the web console
4.3.1.1. Deleting the HyperConverged custom resource
4.3.1.2. Deleting Operators from a cluster using the web console
4.3.1.3. Deleting a namespace using the web console
4.3.1.4. Deleting OpenShift Virtualization custom resource definitions

33
33
33
33
34
34
34
34
35
36
36
36
37
37
38
39
40
42
42
42
43
44

45
45
45
46
47
47
48
48
48
49
49
49
50
50
51
51
51
52
52
52
54
54
55
56
56
56
56
57
57
58

OpenShift Container Platform 4.17 Virtualization

2

. .

. .

. .

4.3.2. Uninstalling OpenShift Virtualization by using the CLI

CHAPTER 5. POSTINSTALLATION CONFIGURATION
5.1. POSTINSTALLATION CONFIGURATION
5.2. SPECIFYING NODES FOR OPENSHIFT VIRTUALIZATION COMPONENTS

5.2.1. About node placement rules for OpenShift Virtualization components
5.2.2. Applying node placement rules
5.2.3. Node placement rule examples

5.2.3.1. Subscription object node placement rule examples
5.2.3.2. HyperConverged object node placement rule example
5.2.3.3. HostPathProvisioner object node placement rule example

5.2.4. Additional resources
5.3. POSTINSTALLATION NETWORK CONFIGURATION

5.3.1. Installing networking Operators
5.3.2. Configuring a Linux bridge network

5.3.2.1. Creating a Linux bridge NNCP
5.3.2.2. Creating a Linux bridge NAD by using the web console

5.3.3. Configuring a network for live migration
5.3.3.1. Configuring a dedicated secondary network for live migration
5.3.3.2. Selecting a dedicated network by using the web console

5.3.4. Configuring an SR-IOV network
5.3.4.1. Configuring SR-IOV network devices

5.3.5. Enabling load balancer service creation by using the web console
5.4. POSTINSTALLATION STORAGE CONFIGURATION

5.4.1. Configuring local storage by using the HPP
5.4.1.1. Creating a storage class for the CSI driver with the storagePools stanza

5.5. CONFIGURING HIGHER VM WORKLOAD DENSITY
5.5.1. Using wasp-agent to configure higher VM workload density

CHAPTER 6. UPDATING
6.1. UPDATING OPENSHIFT VIRTUALIZATION

6.1.1. OpenShift Virtualization on RHEL 9
6.1.1.1. RHEL 9 machine type

6.1.2. About updating OpenShift Virtualization
6.1.2.1. About workload updates

Migration attempts and timeouts
6.1.2.2. About Control Plane Only updates

6.1.2.2.1. Preparing to update
6.1.3. Preventing workload updates during a Control Plane Only update
6.1.4. Configuring workload update methods
6.1.5. Approving pending Operator updates

6.1.5.1. Manually approving a pending Operator update
6.1.6. Monitoring update status

6.1.6.1. Monitoring OpenShift Virtualization upgrade status
6.1.6.2. Viewing outdated OpenShift Virtualization workloads

6.1.7. Additional resources

CHAPTER 7. VIRTUAL MACHINES
7.1. CREATING VMS FROM RED HAT IMAGES

7.1.1. Creating virtual machines from Red Hat images overview
7.1.1.1. About golden images

7.1.1.1.1. How do golden images work?
7.1.1.1.2. Red Hat implementation of golden images

7.1.1.2. About VM boot sources

58

60
60
60
60
61
61
61

62
64
65
65
65
65
65
66
67
67
69
69
69
72
72
73
73
74
74

80
80
80
80
80
81

82
82
82
83
86
87
87
88
88
89
89

90
90
90
90
90
90
91

Table of Contents

3

7.1.2. Creating virtual machines from instance types
7.1.2.1. About instance types

7.1.2.1.1. Required attributes
7.1.2.1.2. Optional attributes

7.1.2.2. Pre-defined instance types
7.1.2.3. Creating manifests by using the virtctl tool
7.1.2.4. Creating a VM from an instance type by using the web console

7.1.3. Creating virtual machines from templates
7.1.3.1. About VM templates
7.1.3.2. Creating a VM from a template

7.1.3.2.1. Storage volume types
7.1.3.2.2. Storage fields

Advanced storage settings
7.1.3.2.3. Customizing a VM template by using the web console

7.1.4. Creating virtual machines from the command line
7.1.4.1. Creating manifests by using the virtctl tool
7.1.4.2. Creating a VM from a VirtualMachine manifest

7.2. CREATING VMS FROM CUSTOM IMAGES
7.2.1. Creating virtual machines from custom images overview
7.2.2. Creating VMs by using container disks

7.2.2.1. Building and uploading a container disk
7.2.2.2. Disabling TLS for a container registry
7.2.2.3. Creating a VM from a container disk by using the web console
7.2.2.4. Creating a VM from a container disk by using the command line

7.2.3. Creating VMs by importing images from web pages
7.2.3.1. Creating a VM from an image on a web page by using the web console
7.2.3.2. Creating a VM from an image on a web page by using the command line

7.2.4. Creating VMs by uploading images
7.2.4.1. Creating a VM from an uploaded image by using the web console
7.2.4.2. Creating a Windows VM

7.2.4.2.1. Generalizing a Windows VM image
7.2.4.2.2. Specializing a Windows VM image

7.2.4.3. Creating a VM from an uploaded image by using the command line
7.2.5. Installing the QEMU guest agent and VirtIO drivers

7.2.5.1. Installing the QEMU guest agent
7.2.5.1.1. Installing the QEMU guest agent on a Linux VM
7.2.5.1.2. Installing the QEMU guest agent on a Windows VM

7.2.5.2. Installing VirtIO drivers on Windows VMs
7.2.5.2.1. Attaching VirtIO container disk to Windows VMs during installation
7.2.5.2.2. Attaching VirtIO container disk to an existing Windows VM
7.2.5.2.3. Installing VirtIO drivers during Windows installation
7.2.5.2.4. Installing VirtIO drivers from a SATA CD drive on an existing Windows VM
7.2.5.2.5. Installing VirtIO drivers from a container disk added as a SATA CD drive

7.2.5.3. Updating VirtIO drivers
7.2.5.3.1. Updating VirtIO drivers on a Windows VM

7.2.6. Cloning VMs
7.2.6.1. Cloning a VM by using the web console
7.2.6.2. Creating a VM from an existing snapshot by using the web console
7.2.6.3. Additional resources

7.2.7. Creating VMs by cloning PVCs
7.2.7.1. About cloning

7.2.7.1.1. CSI volume cloning
7.2.7.1.2. Smart cloning

91
91
91

92
93
94
94
96
96
97
97
99
99

100
100
101
101
102
102
103
103
104
105
105
108
108
109

111
111

112
113
114
114
115
115
115
116
117
117
118
118
119
119

120
120
121
121
121
122
122
122
122
123

OpenShift Container Platform 4.17 Virtualization

4

7.2.7.1.3. Host-assisted cloning
7.2.7.2. Creating a VM from a PVC by using the web console
7.2.7.3. Creating a VM from a PVC by using the command line

7.2.7.3.1. Cloning a PVC to a data volume
7.2.7.3.2. Creating a VM from a cloned PVC by using a data volume template

7.3. CONNECTING TO VIRTUAL MACHINE CONSOLES
7.3.1. Connecting to the VNC console

7.3.1.1. Connecting to the VNC console by using the web console
7.3.1.2. Connecting to the VNC console by using virtctl
7.3.1.3. Generating a temporary token for the VNC console

7.3.1.3.1. Granting token generation permission for the VNC console by using the cluster role
7.3.2. Connecting to the serial console

7.3.2.1. Connecting to the serial console by using the web console
7.3.2.2. Connecting to the serial console by using virtctl

7.3.3. Connecting to the desktop viewer
7.3.3.1. Connecting to the desktop viewer by using the web console

7.4. SPECIFYING AN INSTANCE TYPE OR PREFERENCE
7.4.1. Using flags to specify instance types and preferences
7.4.2. Inferring an instance type or preference
7.4.3. Setting the inferFromVolume labels

7.5. CONFIGURING SSH ACCESS TO VIRTUAL MACHINES
7.5.1. Access configuration considerations
7.5.2. Using virtctl ssh

7.5.2.1. About static and dynamic SSH key management
Static SSH key management
Dynamic SSH key management

7.5.2.2. Static key management
7.5.2.2.1. Adding a key when creating a VM from a template
7.5.2.2.2. Adding a key when creating a VM from an instance type by using the web console
7.5.2.2.3. Adding a key when creating a VM by using the command line

7.5.2.3. Dynamic key management
7.5.2.3.1. Enabling dynamic key injection when creating a VM from a template
7.5.2.3.2. Enabling dynamic key injection when creating a VM from an instance type by using the web
console
7.5.2.3.3. Enabling dynamic SSH key injection by using the web console
7.5.2.3.4. Enabling dynamic key injection by using the command line

7.5.2.4. Using the virtctl ssh command
7.5.3. Using the virtctl port-forward command
7.5.4. Using a service for SSH access

7.5.4.1. About services
7.5.4.2. Creating a service

7.5.4.2.1. Enabling load balancer service creation by using the web console
7.5.4.2.2. Creating a service by using the web console
7.5.4.2.3. Creating a service by using virtctl
7.5.4.2.4. Creating a service by using the command line

7.5.4.3. Connecting to a VM exposed by a service by using SSH
7.5.5. Using a secondary network for SSH access

7.5.5.1. Configuring a VM network interface by using the web console
7.5.5.2. Connecting to a VM attached to a secondary network by using SSH

7.6. EDITING VIRTUAL MACHINES
7.6.1. Hot plugging memory on a virtual machine
7.6.2. Editing a virtual machine by using the command line
7.6.3. Adding a disk to a virtual machine

123
123
124
124
126
127
127
127
128
128
130
130
130
131
131
131
132
132
132
133
133
134
135
135
135
135
136
136
137
139
141
141

142
144
145
147
147
148
148
149
149
149
149
150
152
152
152
153
154
154
154
155

Table of Contents

5

7.6.3.1. Storage fields
Advanced storage settings

7.6.4. Mounting a Windows driver disk on a virtual machine
7.6.5. Adding a secret, config map, or service account to a virtual machine

Additional resources for config maps, secrets, and service accounts
7.7. EDITING BOOT ORDER

7.7.1. Adding items to a boot order list in the web console
7.7.2. Editing a boot order list in the web console
7.7.3. Editing a boot order list in the YAML configuration file
7.7.4. Removing items from a boot order list in the web console

7.8. DELETING VIRTUAL MACHINES
7.8.1. Deleting a virtual machine using the web console
7.8.2. Deleting a virtual machine by using the CLI

7.9. EXPORTING VIRTUAL MACHINES
7.9.1. Creating a VirtualMachineExport custom resource
7.9.2. Accessing exported virtual machine manifests

7.10. MANAGING VIRTUAL MACHINE INSTANCES
7.10.1. About virtual machine instances
7.10.2. Listing all virtual machine instances using the CLI
7.10.3. Listing standalone virtual machine instances using the web console
7.10.4. Editing a standalone virtual machine instance using the web console
7.10.5. Deleting a standalone virtual machine instance using the CLI
7.10.6. Deleting a standalone virtual machine instance using the web console

7.11. CONTROLLING VIRTUAL MACHINE STATES
7.11.1. Starting a virtual machine
7.11.2. Stopping a virtual machine
7.11.3. Restarting a virtual machine
7.11.4. Pausing a virtual machine
7.11.5. Unpausing a virtual machine

7.12. USING VIRTUAL TRUSTED PLATFORM MODULE DEVICES
7.12.1. About vTPM devices
7.12.2. Adding a vTPM device to a virtual machine

7.13. MANAGING VIRTUAL MACHINES WITH OPENSHIFT PIPELINES
7.13.1. Prerequisites
7.13.2. Virtual machine tasks supported by the SSP Operator
7.13.3. Windows EFI installer pipeline

7.13.3.1. Running the example pipelines using the web console
7.13.3.2. Running the example pipelines using the CLI

7.13.4. Additional resources
7.14. ADVANCED VIRTUAL MACHINE MANAGEMENT

7.14.1. Working with resource quotas for virtual machines
7.14.1.1. Setting resource quota limits for virtual machines
7.14.1.2. Additional resources

7.14.2. Specifying nodes for virtual machines
7.14.2.1. About node placement for virtual machines
7.14.2.2. Node placement examples

7.14.2.2.1. Example: VM node placement with nodeSelector
7.14.2.2.2. Example: VM node placement with pod affinity and pod anti-affinity
7.14.2.2.3. Example: VM node placement with node affinity
7.14.2.2.4. Example: VM node placement with tolerations

7.14.2.3. Additional resources
7.14.3. Activating kernel samepage merging (KSM)

7.14.3.1. Prerequisites

155
156
156
157
158
158
158
158
159
160
160
160
161
161
161

164
166
167
167
167
168
168
168
168
169
169
170
170
170
171
171
172
172
173
173
174
174
174
176
176
176
176
177
177
177
178
178
178
179
180
180
180
181

OpenShift Container Platform 4.17 Virtualization

6

7.14.3.2. About using OpenShift Virtualization to activate KSM
7.14.3.2.1. Configuration methods

CR configuration
7.14.3.2.2. KSM node labels

7.14.3.3. Configuring KSM activation by using the web console
7.14.3.4. Configuring KSM activation by using the CLI
7.14.3.5. Additional resources

7.14.4. Configuring certificate rotation
7.14.4.1. Configuring certificate rotation
7.14.4.2. Troubleshooting certificate rotation parameters

7.14.5. Configuring the default CPU model
7.14.5.1. Configuring the default CPU model

7.14.6. Using UEFI mode for virtual machines
7.14.6.1. About UEFI mode for virtual machines
7.14.6.2. Booting virtual machines in UEFI mode
7.14.6.3. Enabling persistent EFI
7.14.6.4. Configuring VMs with persistent EFI

7.14.7. Configuring PXE booting for virtual machines
7.14.7.1. Prerequisites
7.14.7.2. PXE booting with a specified MAC address
7.14.7.3. OpenShift Virtualization networking glossary

7.14.8. Using huge pages with virtual machines
7.14.8.1. Prerequisites
7.14.8.2. What huge pages do
7.14.8.3. Configuring huge pages for virtual machines

7.14.9. Enabling dedicated resources for virtual machines
7.14.9.1. About dedicated resources
7.14.9.2. Prerequisites
7.14.9.3. Enabling dedicated resources for a virtual machine

7.14.10. Scheduling virtual machines
7.14.10.1. Policy attributes
7.14.10.2. Setting a policy attribute and CPU feature
7.14.10.3. Scheduling virtual machines with the supported CPU model
7.14.10.4. Scheduling virtual machines with the host model
7.14.10.5. Scheduling virtual machines with a custom scheduler

7.14.11. Configuring PCI passthrough
7.14.11.1. Preparing nodes for GPU passthrough

7.14.11.1.1. Preventing NVIDIA GPU operands from deploying on nodes
7.14.11.2. Preparing host devices for PCI passthrough

7.14.11.2.1. About preparing a host device for PCI passthrough
7.14.11.2.2. Adding kernel arguments to enable the IOMMU driver
7.14.11.2.3. Binding PCI devices to the VFIO driver
7.14.11.2.4. Exposing PCI host devices in the cluster using the CLI
7.14.11.2.5. Removing PCI host devices from the cluster using the CLI

7.14.11.3. Configuring virtual machines for PCI passthrough
7.14.11.3.1. Assigning a PCI device to a virtual machine

7.14.11.4. Additional resources
7.14.12. Configuring virtual GPUs

7.14.12.1. About using virtual GPUs with OpenShift Virtualization
7.14.12.2. Preparing hosts for mediated devices

7.14.12.2.1. Adding kernel arguments to enable the IOMMU driver
7.14.12.3. Configuring the NVIDIA GPU Operator

7.14.12.3.1. About using the NVIDIA GPU Operator

181
181
181
181

182
182
183
183
183
184
185
185
186
186
186
187
187
188
188
188
190
191
191
191
191

192
193
193
193
193
193
194
194
195
195
197
197
197
198
198
198
199
201

203
204
204
205
205
205
205
206
207
207

Table of Contents

7

. .

7.14.12.3.2. Options for configuring mediated devices
7.14.12.4. How vGPUs are assigned to nodes
7.14.12.5. Managing mediated devices

7.14.12.5.1. Creating and exposing mediated devices
7.14.12.5.2. About changing and removing mediated devices
7.14.12.5.3. Removing mediated devices from the cluster

7.14.12.6. Using mediated devices
7.14.12.6.1. Assigning a vGPU to a VM by using the CLI
7.14.12.6.2. Assigning a vGPU to a VM by using the web console

7.14.12.7. Additional resources
7.14.13. Configuring USB host passthrough

7.14.13.1. Enabling USB host passthrough
7.14.13.2. Configuring a virtual machine connection to a USB device

7.14.14. Enabling descheduler evictions on virtual machines
7.14.14.1. Descheduler profiles
7.14.14.2. Installing the descheduler
7.14.14.3. Enabling descheduler evictions on a virtual machine (VM)
7.14.14.4. Additional resources

7.14.15. About high availability for virtual machines
7.14.16. Virtual machine control plane tuning

7.14.16.1. Configuring a highBurst profile
7.14.17. Assigning compute resources

7.14.17.1. Overcommitting CPU resources
7.14.17.2. Setting the CPU allocation ratio
7.14.17.3. Additional resources

7.14.18. About multi-queue functionality
7.14.18.1. Known limitations
7.14.18.2. Enabling multi-queue functionality

7.15. VM DISKS
7.15.1. Hot-plugging VM disks

7.15.1.1. Hot plugging and hot unplugging a disk by using the web console
7.15.1.2. Hot plugging and hot unplugging a disk by using the command line

7.15.2. Expanding virtual machine disks
7.15.2.1. Expanding a VM disk PVC
7.15.2.2. Expanding available virtual storage by adding blank data volumes

7.15.3. Configuring shared volumes for virtual machines
7.15.3.1. Configuring disk sharing by using virtual machine disks
7.15.3.2. Configuring disk sharing by using LUN

7.15.3.2.1. Configuring disk sharing by using LUN and the web console
7.15.3.2.2. Configuring disk sharing by using LUN and the command line

7.15.3.3. Enabling the PersistentReservation feature gate
7.15.3.3.1. Enabling the PersistentReservation feature gate by using the web console
7.15.3.3.2. Enabling the PersistentReservation feature gate by using the command line

CHAPTER 8. NETWORKING
8.1. NETWORKING OVERVIEW

8.1.1. OpenShift Virtualization networking glossary
8.1.2. Using the default pod network
8.1.3. Configuring VM secondary network interfaces

8.1.3.1. Comparing Linux bridge CNI and OVN-Kubernetes localnet topology
8.1.4. Integrating with OpenShift Service Mesh
8.1.5. Managing MAC address pools
8.1.6. Configuring SSH access

207
209
210
210
212
212
213
213
214
215
215
215
216
217
217
218
219

220
220
220
220
221
221
221
222
222
222
222
223
223
223
224
224
225
225
226
226
228
229
230
230
231
231

232
232
233
233
233
235
235
236
236

OpenShift Container Platform 4.17 Virtualization

8

8.2. CONNECTING A VIRTUAL MACHINE TO THE DEFAULT POD NETWORK
8.2.1. Configuring masquerade mode from the command line
8.2.2. Configuring masquerade mode with dual-stack (IPv4 and IPv6)
8.2.3. About jumbo frames support
8.2.4. Additional resources

8.3. EXPOSING A VIRTUAL MACHINE BY USING A SERVICE
8.3.1. About services
8.3.2. Dual-stack support
8.3.3. Creating a service by using the command line
8.3.4. Additional resources

8.4. ACCESSING A VIRTUAL MACHINE BY USING ITS INTERNAL FQDN
8.4.1. Creating a headless service in a project by using the CLI
8.4.2. Mapping a virtual machine to a headless service by using the CLI
8.4.3. Connecting to a virtual machine by using its internal FQDN
8.4.4. Additional resources

8.5. CONNECTING A VIRTUAL MACHINE TO A LINUX BRIDGE NETWORK
8.5.1. Creating a Linux bridge NNCP
8.5.2. Creating a Linux bridge NAD

8.5.2.1. Creating a Linux bridge NAD by using the web console
8.5.2.2. Creating a Linux bridge NAD by using the command line

8.5.3. Configuring a VM network interface
8.5.3.1. Configuring a VM network interface by using the web console

Networking fields
8.5.3.2. Configuring a VM network interface by using the command line

8.6. CONNECTING A VIRTUAL MACHINE TO AN SR-IOV NETWORK
8.6.1. Configuring SR-IOV network devices
8.6.2. Configuring SR-IOV additional network
8.6.3. Connecting a virtual machine to an SR-IOV network by using the command line
8.6.4. Connecting a VM to an SR-IOV network by using the web console
8.6.5. Additional resources

8.7. USING DPDK WITH SR-IOV
8.7.1. Configuring a cluster for DPDK workloads
8.7.2. Configuring a project for DPDK workloads
8.7.3. Configuring a virtual machine for DPDK workloads

8.8. CONNECTING A VIRTUAL MACHINE TO AN OVN-KUBERNETES SECONDARY NETWORK
8.8.1. Creating an OVN-Kubernetes NAD

8.8.1.1. Creating a NAD for layer 2 topology using the CLI
8.8.1.2. Creating a NAD for localnet topology using the CLI
8.8.1.3. Creating a NAD for layer 2 topology by using the web console
8.8.1.4. Creating a NAD for localnet topology using the web console

8.8.2. Attaching a virtual machine to the OVN-Kubernetes secondary network
8.8.2.1. Attaching a virtual machine to an OVN-Kubernetes secondary network using the CLI

8.8.3. Additional resources
8.9. HOT PLUGGING SECONDARY NETWORK INTERFACES

8.9.1. VirtIO limitations
8.9.2. Hot plugging a secondary network interface by using the CLI
8.9.3. Hot unplugging a secondary network interface by using the CLI
8.9.4. Additional resources

8.10. CONNECTING A VIRTUAL MACHINE TO A SERVICE MESH
8.10.1. Adding a virtual machine to a service mesh
8.10.2. Additional resources

8.11. CONFIGURING A DEDICATED NETWORK FOR LIVE MIGRATION
8.11.1. Configuring a dedicated secondary network for live migration

236
236
237
239
239
239
239
240
240
242
242
242
243
244
245
245
245
246
246
247
248
249
249
249
250
251

253
255
256
256
256
256
259
260
262
263
263
264
265
266
266
266
267
267
268
268
270
271
271
271

273
273
274

Table of Contents

9

. .

8.11.2. Selecting a dedicated network by using the web console
8.11.3. Additional resources

8.12. CONFIGURING AND VIEWING IP ADDRESSES
8.12.1. Configuring IP addresses for virtual machines

8.12.1.1. Configuring an IP address when creating a virtual machine by using the command line
8.12.2. Viewing IP addresses of virtual machines

8.12.2.1. Viewing the IP address of a virtual machine by using the web console
8.12.2.2. Viewing the IP address of a virtual machine by using the command line

8.12.3. Additional resources
8.13. ACCESSING A VIRTUAL MACHINE BY USING ITS EXTERNAL FQDN

8.13.1. Configuring a DNS server for secondary networks
8.13.2. Connecting to a VM on a secondary network by using the cluster FQDN
8.13.3. Additional resources

8.14. MANAGING MAC ADDRESS POOLS FOR NETWORK INTERFACES
8.14.1. Managing KubeMacPool by using the command line

CHAPTER 9. STORAGE
9.1. STORAGE CONFIGURATION OVERVIEW

9.1.1. Storage
9.1.2. Containerized Data Importer
9.1.3. Data volumes
9.1.4. Boot source updates

9.2. CONFIGURING STORAGE PROFILES
9.2.1. Customizing the storage profile

9.2.1.1. Setting a default cloning strategy using a storage profile
9.3. MANAGING AUTOMATIC BOOT SOURCE UPDATES

9.3.1. Managing Red Hat boot source updates
9.3.1.1. Managing automatic updates for all system-defined boot sources

9.3.2. Managing custom boot source updates
9.3.2.1. Configuring a storage class for custom boot source updates
9.3.2.2. Enabling automatic updates for custom boot sources
9.3.2.3. Enabling volume snapshot boot sources

9.3.3. Disabling automatic updates for a single boot source
9.3.4. Verifying the status of a boot source

9.4. RESERVING PVC SPACE FOR FILE SYSTEM OVERHEAD
9.4.1. Overriding the default file system overhead value

9.5. CONFIGURING LOCAL STORAGE BY USING THE HOSTPATH PROVISIONER
9.5.1. Creating a hostpath provisioner with a basic storage pool

9.5.1.1. About creating storage classes
9.5.1.2. Creating a storage class for the CSI driver with the storagePools stanza

9.5.2. About storage pools created with PVC templates
9.5.2.1. Creating a storage pool with a PVC template

9.6. ENABLING USER PERMISSIONS TO CLONE DATA VOLUMES ACROSS NAMESPACES
9.6.1. Creating RBAC resources for cloning data volumes

9.7. CONFIGURING CDI TO OVERRIDE CPU AND MEMORY QUOTAS
9.7.1. About CPU and memory quotas in a namespace
9.7.2. Overriding CPU and memory defaults
9.7.3. Additional resources

9.8. PREPARING CDI SCRATCH SPACE
9.8.1. About scratch space

Manual provisioning
9.8.2. CDI operations that require scratch space
9.8.3. Defining a storage class

275
276
276
276
276
277
277
278
278
278
279
280
281
281
282

283
283
283
283
283
284
284
284
286
287
287
288
288
289
290
291
292
293
295
295
296
296
297
297
298
299
300
300
301
301
302
302
302
302
303
303
303

OpenShift Container Platform 4.17 Virtualization

10

. .

. .

. .

9.8.4. CDI supported operations matrix
9.8.5. Additional resources

9.9. USING PREALLOCATION FOR DATA VOLUMES
9.9.1. About preallocation
9.9.2. Enabling preallocation for a data volume

9.10. MANAGING DATA VOLUME ANNOTATIONS
9.10.1. Example: Data volume annotations

CHAPTER 10. LIVE MIGRATION
10.1. ABOUT LIVE MIGRATION

10.1.1. Live migration requirements
10.1.2. Common live migration tasks
10.1.3. Additional resources

10.2. CONFIGURING LIVE MIGRATION
10.2.1. Configuring live migration limits and timeouts
10.2.2. Live migration policies

10.2.2.1. Creating a live migration policy by using the command line
10.2.3. Additional resources

10.3. INITIATING AND CANCELING LIVE MIGRATION
10.3.1. Initiating live migration

10.3.1.1. Initiating live migration by using the web console
10.3.1.2. Initiating live migration by using the command line

10.3.2. Canceling live migration
10.3.2.1. Canceling live migration by using the web console
10.3.2.2. Canceling live migration by using the command line

CHAPTER 11. NODES
11.1. NODE MAINTENANCE

11.1.1. Eviction strategies
11.1.1.1. Configuring a VM eviction strategy using the command line
11.1.1.2. Configuring a cluster eviction strategy by using the command line

11.1.2. Run strategies
11.1.2.1. Run strategies
11.1.2.2. Configuring a VM run strategy by using the command line

11.1.3. Maintaining bare metal nodes
11.1.4. Additional resources

11.2. MANAGING NODE LABELING FOR OBSOLETE CPU MODELS
11.2.1. About node labeling for obsolete CPU models
11.2.2. About node labeling for CPU features
11.2.3. Configuring obsolete CPU models

11.3. PREVENTING NODE RECONCILIATION
11.3.1. Using skip-node annotation
11.3.2. Additional resources

11.4. DELETING A FAILED NODE TO TRIGGER VIRTUAL MACHINE FAILOVER
11.4.1. Prerequisites
11.4.2. Deleting nodes from a bare metal cluster
11.4.3. Verifying virtual machine failover

11.4.3.1. Listing all virtual machine instances using the CLI

CHAPTER 12. MONITORING
12.1. MONITORING OVERVIEW
12.2. OPENSHIFT VIRTUALIZATION CLUSTER CHECKUP FRAMEWORK

12.2.1. About the OpenShift Virtualization cluster checkup framework
12.2.2. Running checkups by using the web console

304
304
305
305
305
306
306

307
307
307
307
307
308
308
309
309
310
310
311
311
311
312
312
312

313
313
313
314
315
316
316
317
317
318
318
318
318
321
321
321

322
322
322
322
322
323

324
324
324
325
325

Table of Contents

11

12.2.2.1. Running a latency checkup by using the web console
12.2.2.2. Running a storage checkup by using the web console

12.2.3. Running checkups by using the command line
12.2.3.1. Running a latency checkup by using the command line
12.2.3.2. Running a storage checkup by using the command line
12.2.3.3. Running a DPDK checkup by using the command line

12.2.3.3.1. DPDK checkup config map parameters
12.2.3.3.2. Building a container disk image for RHEL virtual machines

12.2.4. Additional resources
12.3. PROMETHEUS QUERIES FOR VIRTUAL RESOURCES

12.3.1. Prerequisites
12.3.2. Querying metrics

12.3.2.1. Querying metrics for all projects as a cluster administrator
12.3.2.2. Querying metrics for user-defined projects as a developer

12.3.3. Virtualization metrics
12.3.3.1. vCPU metrics
12.3.3.2. Network metrics
12.3.3.3. Storage metrics

12.3.3.3.1. Storage-related traffic
12.3.3.3.2. Storage snapshot data
12.3.3.3.3. I/O performance

12.3.3.4. Guest memory swapping metrics
12.3.3.5. Live migration metrics

12.3.4. Additional resources
12.4. EXPOSING CUSTOM METRICS FOR VIRTUAL MACHINES

12.4.1. Configuring the node exporter service
12.4.2. Configuring a virtual machine with the node exporter service
12.4.3. Creating a custom monitoring label for virtual machines

12.4.3.1. Querying the node-exporter service for metrics
12.4.4. Creating a ServiceMonitor resource for the node exporter service

12.4.4.1. Accessing the node exporter service outside the cluster
12.4.5. Additional resources

12.5. EXPOSING DOWNWARD METRICS FOR VIRTUAL MACHINES
12.5.1. Enabling or disabling the downwardMetrics feature gate

12.5.1.1. Enabling or disabling the downward metrics feature gate in a YAML file
12.5.1.2. Enabling or disabling the downward metrics feature gate from the command line

12.5.2. Configuring a downward metrics device
12.5.3. Viewing downward metrics

12.5.3.1. Viewing downward metrics by using the command line
12.5.3.2. Viewing downward metrics by using the vm-dump-metrics tool

12.6. VIRTUAL MACHINE HEALTH CHECKS
12.6.1. About readiness and liveness probes

12.6.1.1. Defining an HTTP readiness probe
12.6.1.2. Defining a TCP readiness probe
12.6.1.3. Defining an HTTP liveness probe

12.6.2. Defining a watchdog
12.6.2.1. Configuring a watchdog device for the virtual machine
12.6.2.2. Installing the watchdog agent on the guest

12.6.3. Defining a guest agent ping probe
12.6.4. Additional resources

12.7. OPENSHIFT VIRTUALIZATION RUNBOOKS
12.7.1. CDIDataImportCronOutdated
12.7.2. CDIDataVolumeUnusualRestartCount

325
326
326
326
331
335
339
340
343
343
343
343
344
345
346
347
347
348
348
348
348
349
349
350
350
350
351
352
353
354
355
356
356
356
357
357
358
359
359
360
360
360
361

362
363
364
365
366
366
367
368
368
368

OpenShift Container Platform 4.17 Virtualization

12

12.7.3. CDIDefaultStorageClassDegraded
12.7.4. CDIMultipleDefaultVirtStorageClasses
12.7.5. CDINoDefaultStorageClass
12.7.6. CDINotReady
12.7.7. CDIOperatorDown
12.7.8. CDIStorageProfilesIncomplete
12.7.9. CnaoDown
12.7.10. CnaoNMstateMigration
12.7.11. HCOInstallationIncomplete
12.7.12. HPPNotReady
12.7.13. HPPOperatorDown
12.7.14. HPPSharingPoolPathWithOS
12.7.15. KubemacpoolDown
12.7.16. KubeMacPoolDuplicateMacsFound
12.7.17. KubeVirtComponentExceedsRequestedCPU
12.7.18. KubeVirtComponentExceedsRequestedMemory
12.7.19. KubeVirtCRModified
12.7.20. KubeVirtDeprecatedAPIRequested
12.7.21. KubeVirtNoAvailableNodesToRunVMs
12.7.22. KubevirtVmHighMemoryUsage
12.7.23. KubeVirtVMIExcessiveMigrations
12.7.24. LowKVMNodesCount
12.7.25. LowReadyVirtControllersCount
12.7.26. LowReadyVirtOperatorsCount
12.7.27. LowVirtAPICount
12.7.28. LowVirtControllersCount
12.7.29. LowVirtOperatorCount
12.7.30. NetworkAddonsConfigNotReady
12.7.31. NoLeadingVirtOperator
12.7.32. NoReadyVirtController
12.7.33. NoReadyVirtOperator
12.7.34. OrphanedVirtualMachineInstances
12.7.35. OutdatedVirtualMachineInstanceWorkloads
12.7.36. SingleStackIPv6Unsupported
12.7.37. SSPCommonTemplatesModificationReverted
12.7.38. SSPDown
12.7.39. SSPFailingToReconcile
12.7.40. SSPHighRateRejectedVms
12.7.41. SSPTemplateValidatorDown
12.7.42. SSPOperatorDown
12.7.43. UnsupportedHCOModification
12.7.44. VirtAPIDown
12.7.45. VirtApiRESTErrorsBurst
12.7.46. VirtApiRESTErrorsHigh
12.7.47. VirtControllerDown
12.7.48. VirtControllerRESTErrorsBurst
12.7.49. VirtControllerRESTErrorsHigh
12.7.50. VirtHandlerDaemonSetRolloutFailing
12.7.51. VirtHandlerRESTErrorsBurst
12.7.52. VirtHandlerRESTErrorsHigh
12.7.53. VirtOperatorDown
12.7.54. VirtOperatorRESTErrorsBurst
12.7.55. VirtOperatorRESTErrorsHigh

368
368
368
368
368
368
368
368
368
369
369
369
369
369
369
369
369
369
369
369
369
369
370
370
370
370
370
370
370
370
370
370
370
370
370
371
371
371
371
371
371
371
371
371
371
371
371
371
372
372
372
372
372

Table of Contents

13

. .

. .

12.7.56. VirtualMachineCRCErrors
12.7.57. VMCannotBeEvicted
12.7.58. VMStorageClassWarning

CHAPTER 13. SUPPORT
13.1. SUPPORT OVERVIEW

13.1.1. Web console
13.1.2. Collecting data for Red Hat Support
13.1.3. Troubleshooting

13.2. COLLECTING DATA FOR RED HAT SUPPORT
13.2.1. Collecting data about your environment
13.2.2. Collecting data about virtual machines
13.2.3. Using the must-gather tool for OpenShift Virtualization

13.2.3.1. must-gather tool options
13.2.3.1.1. Parameters
13.2.3.1.2. Usage and examples

13.3. TROUBLESHOOTING
13.3.1. Events
13.3.2. Pod logs

13.3.2.1. Configuring OpenShift Virtualization pod log verbosity
13.3.2.2. Viewing virt-launcher pod logs with the web console
13.3.2.3. Viewing OpenShift Virtualization pod logs with the CLI

13.3.3. Guest system logs
13.3.3.1. Enabling default access to VM guest system logs with the web console
13.3.3.2. Enabling default access to VM guest system logs with the CLI
13.3.3.3. Setting guest system log access for a single VM with the web console
13.3.3.4. Setting guest system log access for a single VM with the CLI
13.3.3.5. Viewing guest system logs with the web console
13.3.3.6. Viewing guest system logs with the CLI

13.3.4. Log aggregation
13.3.4.1. Viewing aggregated OpenShift Virtualization logs with the LokiStack
13.3.4.2. OpenShift Virtualization LogQL queries

13.3.5. Common error messages
13.3.6. Troubleshooting data volumes

13.3.6.1. About data volume conditions and events
13.3.6.2. Analyzing data volume conditions and events

CHAPTER 14. BACKUP AND RESTORE
14.1. BACKUP AND RESTORE BY USING VM SNAPSHOTS

14.1.1. About snapshots
14.1.2. About application-consistent snapshots and backups
14.1.3. Creating snapshots

14.1.3.1. Creating a snapshot by using the web console
14.1.3.2. Creating a snapshot by using the command line

14.1.4. Verifying online snapshots by using snapshot indications
14.1.5. Restoring virtual machines from snapshots

14.1.5.1. Restoring a VM from a snapshot by using the web console
14.1.5.2. Restoring a VM from a snapshot by using the command line

14.1.6. Deleting snapshots
14.1.6.1. Deleting a snapshot by using the web console
14.1.6.2. Deleting a virtual machine snapshot in the CLI

14.1.7. Additional resources
14.2. BACKING UP AND RESTORING VIRTUAL MACHINES

372
372
372

373
373
373
373
374
374
374
375
375
376
376
377
378
378
379
379
379
380
381
381
381
382
382
383
383
383
383
384
386
386
386
387

389
389
389
390
390
390
391

393
394
394
394
396
396
397
397
397

OpenShift Container Platform 4.17 Virtualization

14

14.2.1. Installing and configuring OADP with OpenShift Virtualization
14.2.2. Installing the Data Protection Application 1.3

14.3. DISASTER RECOVERY
14.3.1. About disaster recovery methods

14.3.1.1. Metro-DR
14.3.1.2. Regional-DR

14.3.2. Defining applications for disaster recovery
14.3.2.1. Best practices when defining an RHACM-managed VM

Use a PVC and populator to define storage for the VM
Use the import method when choosing a population source for your VM disk
Use pullMethod: node

14.3.2.2. Best practices when defining an RHACM-discovered virtual machine
Protect the VM when using MTV, the OpenShift Virtualization web console, or a custom VM
Include more than the VirtualMachine object in the VM
Include the VM as part of a larger logical application

14.3.3. VM behavior during disaster recovery scenarios
Relocate
Failover

14.3.4. Metro-DR for Red Hat OpenShift Data Foundation

398
399
402
402
402
402
402
402
403
403
403
403
403
403
403
403
403
404
404

Table of Contents

15

OpenShift Container Platform 4.17 Virtualization

16

CHAPTER 1. ABOUT

1.1. ABOUT OPENSHIFT VIRTUALIZATION

Documentation for OpenShift Virtualization will be available for OpenShift Container Platform 4.17 in
the near future.

In the meantime, the OpenShift Virtualization 4.16 documentation is available as part of the OpenShift
Container Platform 4.16 documentation.

1.2. SECURITY POLICIES

Learn about OpenShift Virtualization security and authorization.

Key points

OpenShift Virtualization adheres to the restricted Kubernetes pod security standards profile,
which aims to enforce the current best practices for pod security.

Virtual machine (VM) workloads run as unprivileged pods.

Security context constraints (SCCs) are defined for the kubevirt-controller service account.

TLS certificates for OpenShift Virtualization components are renewed and rotated
automatically.

1.2.1. About workload security

By default, virtual machine (VM) workloads do not run with root privileges in OpenShift Virtualization,
and there are no supported OpenShift Virtualization features that require root privileges.

For each VM, a virt-launcher pod runs an instance of libvirt in session mode to manage the VM process.
In session mode, the libvirt daemon runs as a non-root user account and only permits connections from
clients that are running under the same user identifier (UID). Therefore, VMs run as unprivileged pods,
adhering to the security principle of least privilege.

1.2.2. TLS certificates

TLS certificates for OpenShift Virtualization components are renewed and rotated automatically. You
are not required to refresh them manually.

Automatic renewal schedules

TLS certificates are automatically deleted and replaced according to the following schedule:

KubeVirt certificates are renewed daily.

Containerized Data Importer controller (CDI) certificates are renewed every 15 days.

MAC pool certificates are renewed every year.

Automatic TLS certificate rotation does not disrupt any operations. For example, the following
operations continue to function without any disruption:

Migrations

CHAPTER 1. ABOUT

17

https://docs.openshift.com/container-platform/4.16/virt/about_virt/about-virt.html
https://kubernetes.io/docs/concepts/security/pod-security-standards/#restricted
https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/authentication_and_authorization/#security-context-constraints-about_configuring-internal-oauth

Image uploads

VNC and console connections

1.2.3. Authorization

OpenShift Virtualization uses role-based access control (RBAC) to define permissions for human users
and service accounts. The permissions defined for service accounts control the actions that OpenShift
Virtualization components can perform.

You can also use RBAC roles to manage user access to virtualization features. For example, an
administrator can create an RBAC role that provides the permissions required to launch a virtual
machine. The administrator can then restrict access by binding the role to specific users.

1.2.3.1. Default cluster roles for OpenShift Virtualization

By using cluster role aggregation, OpenShift Virtualization extends the default OpenShift Container
Platform cluster roles to include permissions for accessing virtualization objects.

Table 1.1. OpenShift Virtualization cluster roles

Default cluster
role

OpenShift
Virtualization
cluster role

OpenShift Virtualization cluster role description

view kubevirt.io:vi
ew

A user that can view all OpenShift Virtualization resources in the cluster
but cannot create, delete, modify, or access them. For example, the
user can see that a virtual machine (VM) is running but cannot shut it
down or gain access to its console.

edit kubevirt.io:e
dit

A user that can modify all OpenShift Virtualization resources in the
cluster. For example, the user can create VMs, access VM consoles, and
delete VMs.

admin kubevirt.io:a
dmin

A user that has full permissions to all OpenShift Virtualization
resources, including the ability to delete collections of resources. The
user can also view and modify the OpenShift Virtualization runtime
configuration, which is located in the HyperConverged custom
resource in the openshift-cnv namespace.

1.2.3.2. RBAC roles for storage features in OpenShift Virtualization

The following permissions are granted to the Containerized Data Importer (CDI), including the cdi-
operator and cdi-controller service accounts.

1.2.3.2.1. Cluster-wide RBAC roles

Table 1.2. Aggregated cluster roles for the cdi.kubevirt.io API group

CDI cluster role Resources Verbs

cdi.kubevirt.io:admin datavolumes, uploadtokenrequests * (all)

OpenShift Container Platform 4.17 Virtualization

18

https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/authentication_and_authorization/#using-rbac

datavolumes/source create

cdi.kubevirt.io:edit datavolumes, uploadtokenrequests *

datavolumes/source create

cdi.kubevirt.io:view cdiconfigs, dataimportcrons, datasources,
datavolumes, objecttransfers, storageprofiles,
volumeimportsources,
volumeuploadsources, volumeclonesources

get, list, watch

datavolumes/source create

cdi.kubevirt.io:confi
g-reader

cdiconfigs, storageprofiles get, list, watch

CDI cluster role Resources Verbs

Table 1.3. Cluster-wide roles for the cdi-operator service account

API group Resources Verbs

rbac.authorization.k8
s.io

clusterrolebindings,
clusterroles

get, list, watch, create, update, delete

security.openshift.io securitycontextcons
traints

get, list, watch, update, create

apiextensions.k8s.io customresourcedefi
nitions,
customresourcedefi
nitions/status

get, list, watch, create, update, delete

cdi.kubevirt.io * *

upload.cdi.kubevirt.i
o

* *

admissionregistratio
n.k8s.io

validatingwebhookc
onfigurations,
mutatingwebhookco
nfigurations

create, list, watch

CHAPTER 1. ABOUT

19

admissionregistratio
n.k8s.io

validatingwebhookc
onfigurations

Allow list: cdi-api-
dataimportcron-
validate, cdi-api-
populator-validate,
cdi-api-datavolume-
validate, cdi-api-
validate,
objecttransfer-api-
validate

get, update, delete

admissionregistratio
n.k8s.io

mutatingwebhookco
nfigurations

Allow list: cdi-api-
datavolume-mutate

get, update, delete

apiregistration.k8s.io apiservices get, list, watch, create, update, delete

API group Resources Verbs

Table 1.4. Cluster-wide roles for the cdi-controller service account

API group Resources Verbs

"" (core) events create, patch

"" (core) persistentvolumeclai
ms

get, list, watch, create, update, delete,
deletecollection, patch

"" (core) persistentvolumes get, list, watch, update

"" (core) persistentvolumeclai
ms/finalizers,
pods/finalizers

update

"" (core) pods, services get, list, watch, create, delete

"" (core) configmaps get, create

storage.k8s.io storageclasses,
csidrivers

get, list, watch

config.openshift.io proxies get, list, watch

cdi.kubevirt.io * *

OpenShift Container Platform 4.17 Virtualization

20

snapshot.storage.k8
s.io

volumesnapshots,
volumesnapshotclas
ses,
volumesnapshotcon
tents

get, list, watch, create, delete

snapshot.storage.k8
s.io

volumesnapshots update, deletecollection

apiextensions.k8s.io customresourcedefi
nitions

get, list, watch

scheduling.k8s.io priorityclasses get, list, watch

image.openshift.io imagestreams get, list, watch

"" (core) secrets create

kubevirt.io virtualmachines/final
izers

update

API group Resources Verbs

1.2.3.2.2. Namespaced RBAC roles

Table 1.5. Namespaced roles for the cdi-operator service account

API group Resources Verbs

rbac.authorization.k8
s.io

rolebindings, roles get, list, watch, create, update, delete

"" (core) serviceaccounts,
configmaps, events,
secrets, services

get, list, watch, create, update, patch, delete

apps deployments,
deployments/finalize
rs

get, list, watch, create, update, delete

route.openshift.io routes,
routes/custom-host

get, list, watch, create, update

config.openshift.io proxies get, list, watch

monitoring.coreos.c
om

servicemonitors,
prometheusrules

get, list, watch, create, delete, update, patch

CHAPTER 1. ABOUT

21

coordination.k8s.io leases get, create, update

API group Resources Verbs

Table 1.6. Namespaced roles for the cdi-controller service account

API group Resources Verbs

"" (core) configmaps get, list, watch, create, update, delete

"" (core) secrets get, list, watch

batch cronjobs get, list, watch, create, update, delete

batch jobs create, delete, list, watch

coordination.k8s.io leases get, create, update

networking.k8s.io ingresses get, list, watch

route.openshift.io routes get, list, watch

1.2.3.3. Additional SCCs and permissions for the kubevirt-controller service account

Security context constraints (SCCs) control permissions for pods. These permissions include actions
that a pod, a collection of containers, can perform and what resources it can access. You can use SCCs
to define a set of conditions that a pod must run with to be accepted into the system.

The virt-controller is a cluster controller that creates the virt-launcher pods for virtual machines in the
cluster. These pods are granted permissions by the kubevirt-controller service account.

The kubevirt-controller service account is granted additional SCCs and Linux capabilities so that it can
create virt-launcher pods with the appropriate permissions. These extended permissions allow virtual
machines to use OpenShift Virtualization features that are beyond the scope of typical pods.

The kubevirt-controller service account is granted the following SCCs:

scc.AllowHostDirVolumePlugin = true
This allows virtual machines to use the hostpath volume plugin.

scc.AllowPrivilegedContainer = false
This ensures the virt-launcher pod is not run as a privileged container.

scc.AllowedCapabilities = []corev1.Capability{"SYS_NICE", "NET_BIND_SERVICE"}

SYS_NICE allows setting the CPU affinity.

NET_BIND_SERVICE allows DHCP and Slirp operations.

Viewing the SCC and RBAC definitions for the kubevirt-controller

OpenShift Container Platform 4.17 Virtualization

22

You can view the SecurityContextConstraints definition for the kubevirt-controller by using the oc
tool:

You can view the RBAC definition for the kubevirt-controller clusterrole by using the oc tool:

1.2.4. Additional resources

Managing security context constraints

Using RBAC to define and apply permissions

Creating a cluster role

Cluster role binding commands

Enabling user permissions to clone data volumes across namespaces

1.3. OPENSHIFT VIRTUALIZATION ARCHITECTURE

The Operator Lifecycle Manager (OLM) deploys operator pods for each component of OpenShift
Virtualization:

Compute: virt-operator

Storage: cdi-operator

Network: cluster-network-addons-operator

Scaling: ssp-operator

OLM also deploys the hyperconverged-cluster-operator pod, which is responsible for the deployment,
configuration, and life cycle of other components, and several helper pods: hco-webhook, and
hyperconverged-cluster-cli-download.

After all operator pods are successfully deployed, you should create the HyperConverged custom
resource (CR). The configurations set in the HyperConverged CR serve as the single source of truth
and the entrypoint for OpenShift Virtualization, and guide the behavior of the CRs.

The HyperConverged CR creates corresponding CRs for the operators of all other components within
its reconciliation loop. Each operator then creates resources such as daemon sets, config maps, and
additional components for the OpenShift Virtualization control plane. For example, when the
HyperConverged Operator (HCO) creates the KubeVirt CR, the OpenShift Virtualization Operator
reconciles it and creates additional resources such as virt-controller, virt-handler, and virt-api.

The OLM deploys the Hostpath Provisioner (HPP) Operator, but it is not functional until you create a
hostpath-provisioner CR.

$ oc get scc kubevirt-controller -o yaml

$ oc get clusterrole kubevirt-controller -o yaml

CHAPTER 1. ABOUT

23

https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/authentication_and_authorization/#security-context-constraints-about_configuring-internal-oauth
https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/authentication_and_authorization/#using-rbac
https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/authentication_and_authorization/#creating-cluster-role_using-rbac
https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/authentication_and_authorization/#cluster-role-binding-commands_using-rbac

Virtctl client commands

1.3.1. About the HyperConverged Operator (HCO)

The HCO, hco-operator, provides a single entry point for deploying and managing OpenShift
Virtualization and several helper operators with opinionated defaults. It also creates custom resources
(CRs) for those operators.

Table 1.7. HyperConverged Operator components

OpenShift Container Platform 4.17 Virtualization

24

Component Description

deployment/hco-webhook Validates the HyperConverged custom resource
contents.

deployment/hyperconverged-cluster-cli-
download

Provides the virtctl tool binaries to the cluster so
that you can download them directly from the
cluster.

KubeVirt/kubevirt-kubevirt-hyperconverged Contains all operators, CRs, and objects needed by
OpenShift Virtualization.

SSP/ssp-kubevirt-hyperconverged A Scheduling, Scale, and Performance (SSP) CR.
This is automatically created by the HCO.

CDI/cdi-kubevirt-hyperconverged A Containerized Data Importer (CDI) CR. This is
automatically created by the HCO.

NetworkAddonsConfig/cluster A CR that instructs and is managed by the cluster-
network-addons-operator.

1.3.2. About the Containerized Data Importer (CDI) Operator

The CDI Operator, cdi-operator, manages CDI and its related resources, which imports a virtual machine
(VM) image into a persistent volume claim (PVC) by using a data volume.

Table 1.8. CDI Operator components

Component Description

deployment/cdi-apiserver Manages the authorization to upload VM disks into
PVCs by issuing secure upload tokens.

deployment/cdi-uploadproxy Directs external disk upload traffic to the
appropriate upload server pod so that it can be
written to the correct PVC. Requires a valid upload
token.

CHAPTER 1. ABOUT

25

pod/cdi-importer Helper pod that imports a virtual machine image into
a PVC when creating a data volume.

Component Description

1.3.3. About the Cluster Network Addons Operator

The Cluster Network Addons Operator, cluster-network-addons-operator, deploys networking
components on a cluster and manages the related resources for extended network functionality.

Table 1.9. Cluster Network Addons Operator components

Component Description

deployment/kubemacpool-cert-manager Manages TLS certificates of Kubemacpool’s
webhooks.

deployment/kubemacpool-mac-controller-
manager

Provides a MAC address pooling service for virtual
machine (VM) network interface cards (NICs).

daemonset/bridge-marker Marks network bridges available on nodes as node
resources.

daemonset/kube-cni-linux-bridge-plugin Installs Container Network Interface (CNI) plugins on
cluster nodes, enabling the attachment of VMs to
Linux bridges through network attachment
definitions.

1.3.4. About the Hostpath Provisioner (HPP) Operator

The HPP Operator, hostpath-provisioner-operator, deploys and manages the multi-node HPP and
related resources.

OpenShift Container Platform 4.17 Virtualization

26

Table 1.10. HPP Operator components

Component Description

deployment/hpp-pool-hpp-csi-pvc-block-
<worker_node_name>

Provides a worker for each node where the HPP is
designated to run. The pods mount the specified
backing storage on the node.

daemonset/hostpath-provisioner-csi Implements the Container Storage Interface (CSI)
driver interface of the HPP.

daemonset/hostpath-provisioner Implements the legacy driver interface of the HPP.

1.3.5. About the Scheduling, Scale, and Performance (SSP) Operator

The SSP Operator, ssp-operator, deploys the common templates, the related default boot sources, the
pipeline tasks, and the template validator.

1.3.6. About the OpenShift Virtualization Operator

The OpenShift Virtualization Operator, virt-operator, deploys, upgrades, and manages OpenShift
Virtualization without disrupting current virtual machine (VM) workloads. In addition, the OpenShift
Virtualization Operator deploys the common instance types and common preferences.

CHAPTER 1. ABOUT

27

Table 1.11. virt-operator components

Component Description

deployment/virt-api HTTP API server that serves as the entry point for all
virtualization-related flows.

deployment/virt-controller Observes the creation of a new VM instance object
and creates a corresponding pod. When the pod is
scheduled on a node, virt-controller updates the
VM with the node name.

daemonset/virt-handler Monitors any changes to a VM and instructs virt-
launcher to perform the required operations. This
component is node-specific.

pod/virt-launcher Contains the VM that was created by the user as
implemented by libvirt and qemu.

OpenShift Container Platform 4.17 Virtualization

28

CHAPTER 2. RELEASE NOTES

2.1. OPENSHIFT VIRTUALIZATION RELEASE NOTES

2.1.1. Providing documentation feedback

To report an error or to improve our documentation, log in to your Red Hat Jira account and submit a
Jira issue .

2.1.2. About Red Hat OpenShift Virtualization

With Red Hat OpenShift Virtualization, you can bring traditional virtual machines (VMs) into OpenShift
Container Platform and run them alongside containers. In OpenShift Virtualization, VMs are native
Kubernetes objects that you can manage by using the OpenShift Container Platform web console or the
command line.

OpenShift Virtualization is represented by the icon.

You can use OpenShift Virtualization the OVN-Kubernetes Container Network Interface (CNI) network
provider.

Learn more about what you can do with OpenShift Virtualization .

Learn more about OpenShift Virtualization architecture and deployments .

Prepare your cluster for OpenShift Virtualization.

2.1.2.1. OpenShift Virtualization supported cluster version

OpenShift Virtualization 4.17 is supported for use on OpenShift Container Platform 4.17 clusters. To use
the latest z-stream release of OpenShift Virtualization, you must first upgrade to the latest version of
OpenShift Container Platform.

2.1.2.2. Supported guest operating systems

To view the supported guest operating systems for OpenShift Virtualization, see Certified Guest
Operating Systems in Red Hat OpenStack Platform, Red Hat Virtualization, OpenShift Virtualization and
Red Hat Enterprise Linux with KVM.

2.1.2.3. Microsoft Windows SVVP certification

OpenShift Virtualization is certified in Microsoft’s Windows Server Virtualization Validation Program
(SVVP) to run Windows Server workloads.

The SVVP certification applies to:

Red Hat Enterprise Linux CoreOS workers. In the Microsoft SVVP Catalog, they are named Red
Hat OpenShift Container Platform 4 on RHEL CoreOS 9.

Intel and AMD CPUs.

CHAPTER 2. RELEASE NOTES

29

https://issues.redhat.com
https://issues.redhat.com/secure/CreateIssueDetails!init.jspa?pid=12323181&issuetype=1&components=12333768&priority=10200&summary=%5BDoc%5D&customfield_12316142
https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/networking/#about-ovn-kubernetes
https://access.redhat.com/articles/973163#ocpvirt

2.1.3. Quick starts

Quick start tours are available for several OpenShift Virtualization features. To view the tours, click the
Help icon ? in the menu bar on the header of the OpenShift Container Platform web console and then
select Quick Starts. You can filter the available tours by entering the keyword virtualization in the
Filter field.

2.1.4. New and changed features

This release adds new features and enhancements related to the following components and concepts:

2.1.4.1. Installation and update

2.1.4.2. Infrastructure

2.1.4.3. Virtualization

2.1.4.4. Networking

2.1.4.5. Storage

The VirtualMachineSnapshot API version is now v1beta1.

The VirtualMachineExport API version is now v1beta1.

2.1.4.6. Web console

2.1.4.7. Monitoring

2.1.4.8. Notable technical changes

2.1.5. Deprecated and removed features

2.1.5.1. Deprecated features

Deprecated features are included in the current release and supported. However, they will be removed
in a future release and are not recommended for new deployments.

The tekton-tasks-operator is deprecated and Tekton tasks and example pipelines are now
deployed by the ssp-operator.

The copy-template, modify-vm-template, and create-vm-from-template tasks are deprecated.

Support for Windows Server 2012 R2 templates is deprecated.

The alerts KubeVirtComponentExceedsRequestedMemory and
KubeVirtComponentExceedsRequestedCPU are deprecated. You can safely silence them.

2.1.5.2. Removed features

Removed features are not supported in the current release.

OpenShift Container Platform 4.17 Virtualization

30

https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/monitoring/#silencing-alerts_managing-alerts

2.1.6. Technology Preview features

Some features in this release are currently in Technology Preview. These experimental features are not
intended for production use. Note the following scope of support on the Red Hat Customer Portal for
these features:

Technology Preview Features Support Scope

You can now configure a VM eviction strategy for the entire cluster.

You can now enable nested virtualization on OpenShift Virtualization hosts .

Cluster admins can now use the wasp-agent tool to configure a higher VM workload density in
their clusters by overcommitting the amount of memory, in RAM, and assigning swap resources
to VM workloads.

2.1.7. Bug fixes

2.1.8. Known issues

Monitoring
Networking
Nodes

Uninstalling OpenShift Virtualization does not remove the feature.node.kubevirt.io node labels
created by OpenShift Virtualization. You must remove the labels manually. (CNV-38543)

In a heterogeneous cluster with different compute nodes, virtual machines that have HyperV
reenlightenment enabled cannot be scheduled on nodes that do not support timestamp-
counter scaling (TSC) or have the appropriate TSC frequency. (BZ#2151169)

Storage

If you clone more than 100 VMs using the csi-clone cloning strategy, then the Ceph CSI might
not purge the clones. Manually deleting the clones might also fail. (CNV-23501)

As a workaround, you can restart the ceph-mgr to purge the VM clones.

Virtualization

When adding a virtual Trusted Platform Module (vTPM) device to a Windows VM, the BitLocker
Drive Encryption system check passes even if the vTPM device is not persistent. This is because
a vTPM device that is not persistent stores and recovers encryption keys using ephemeral
storage for the lifetime of the virt-launcher pod. When the VM migrates or is shut down and
restarts, the vTPM data is lost. (CNV-36448)

OpenShift Virtualization links a service account token in use by a pod to that specific pod.
OpenShift Virtualization implements a service account volume by creating a disk image that
contains a token. If you migrate a VM, then the service account volume becomes invalid. (CNV-
33835)

As a workaround, use user accounts rather than service accounts because user account
tokens are not bound to a specific pod.

Web console

When you create a persistent volume claim (PVC) by selecting With Data upload form from the

CHAPTER 2. RELEASE NOTES

31

https://access.redhat.com/support/offerings/techpreview
https://access.redhat.com/solutions/6692341
https://issues.redhat.com/browse/CNV-38543
https://bugzilla.redhat.com/show_bug.cgi?id=2151169
https://issues.redhat.com/browse/CNV-23501
https://issues.redhat.com/browse/CNV-36448
https://issues.redhat.com/browse/CNV-33835

When you create a persistent volume claim (PVC) by selecting With Data upload form from the
Create PersistentVolumeClaim list in the web console, uploading data to the PVC by using the
Upload Data field fails. (CNV-37607)

OpenShift Container Platform 4.17 Virtualization

32

https://issues.redhat.com/browse/CNV-37607

CHAPTER 3. GETTING STARTED

3.1. GETTING STARTED WITH OPENSHIFT VIRTUALIZATION

You can explore the features and functionalities of OpenShift Virtualization by installing and configuring
a basic environment.

NOTE

Cluster configuration procedures require cluster-admin privileges.

3.1.1. Planning and installing OpenShift Virtualization

Plan and install OpenShift Virtualization on an OpenShift Container Platform cluster:

Plan your bare metal cluster for OpenShift Virtualization .

Prepare your cluster for OpenShift Virtualization .

Install the OpenShift Virtualization Operator.

Install the virtctl command line interface (CLI) tool .

Planning and installation resources

About storage volumes for virtual machine disks .

Using a CSI-enabled storage provider .

Configuring local storage for virtual machines .

Installing the Kubernetes NMState Operator .

Specifying nodes for virtual machines .

Virtctl commands.

3.1.2. Creating and managing virtual machines

Create a virtual machine (VM):

Create a VM from a Red Hat image .
You can create a VM by using a Red Hat template or an instance type.

Create a VM from a custom image .
You can create a VM by importing a custom image from a container registry or a web page, by
uploading an image from your local machine, or by cloning a persistent volume claim (PVC).

Connect a VM to a secondary network:

Linux bridge network .

Open Virtual Network (OVN)-Kubernetes secondary network .

Single Root I/O Virtualization (SR-IOV) network .

NOTE

CHAPTER 3. GETTING STARTED

33

https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/installing_on_bare_metal/#virt-planning-bare-metal-cluster-for-ocp-virt_preparing-to-install-on-bare-metal
https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/storage/#persistent-storage-csi
https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/networking/#installing-the-kubernetes-nmstate-operator-cli

NOTE

VMs are connected to the pod network by default.

Connect to a VM:

Connect to the serial console or VNC console of a VM.

Connect to a VM by using SSH .

Connect to the desktop viewer for Windows VMs .

Manage a VM:

Manage a VM by using the web console .

Manage a VM by using the virtctl CLI tool.

Export a VM .

3.1.3. Next steps

Review postinstallation configuration options .

Configure storage options and automatic boot source updates .

Learn about monitoring and health checks .

Learn about live migration .

Back up and restore VMs by using the OpenShift API for Data Protection (OADP) .

Tune and scale your cluster .

3.2. USING THE CLI TOOLS

You can manage OpenShift Virtualization resources by using the virtctl command line tool.

You can access and modify virtual machine (VM) disk images by using the libguestfs command line
tool. You deploy libguestfs by using the virtctl libguestfs command.

3.2.1. Installing virtctl

To install virtctl on Red Hat Enterprise Linux (RHEL) 9, Linux, Windows, and MacOS operating systems,
you download and install the virtctl binary file.

To install virtctl on RHEL 8, you enable the OpenShift Virtualization repository and then install the
kubevirt-virtctl package.

3.2.1.1. Installing the virtctl binary on RHEL 9, Linux, Windows, or macOS

You can download the virtctl binary for your operating system from the OpenShift Container Platform
web console and then install it.

Procedure

OpenShift Container Platform 4.17 Virtualization

34

https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/backup_and_restore/#installing-oadp-kubevirt
https://access.redhat.com/articles/6994974
https://libguestfs.org

1. Navigate to the Virtualization → Overview page in the web console.

2. Click the Download virtctl link to download the virtctl binary for your operating system.

3. Install virtctl:

For RHEL 9 and other Linux operating systems:

a. Decompress the archive file:

b. Run the following command to make the virtctl binary executable:

c. Move the virtctl binary to a directory in your PATH environment variable.
You can check your path by running the following command:

d. Set the KUBECONFIG environment variable:

For Windows:

a. Decompress the archive file.

b. Navigate the extracted folder hierarchy and double-click the virtctl executable file to
install the client.

c. Move the virtctl binary to a directory in your PATH environment variable.
You can check your path by running the following command:

For macOS:

a. Decompress the archive file.

b. Move the virtctl binary to a directory in your PATH environment variable.
You can check your path by running the following command:

3.2.1.2. Installing the virtctl RPM on RHEL 8

You can install the virtctl RPM package on Red Hat Enterprise Linux (RHEL) 8 by enabling the
OpenShift Virtualization repository and installing the kubevirt-virtctl package.

Prerequisites

Each host in your cluster must be registered with Red Hat Subscription Manager (RHSM) and

$ tar -xvf <virtctl-version-distribution.arch>.tar.gz

$ chmod +x <path/virtctl-file-name>

$ echo $PATH

$ export KUBECONFIG=/home/<user>/clusters/current/auth/kubeconfig

C:\> path

echo $PATH

CHAPTER 3. GETTING STARTED

35

Each host in your cluster must be registered with Red Hat Subscription Manager (RHSM) and
have an active OpenShift Container Platform subscription.

Procedure

1. Enable the OpenShift Virtualization repository by using the subscription-manager CLI tool to
run the following command:

2. Install the kubevirt-virtctl package by running the following command:

3.2.2. virtctl commands

The virtctl client is a command-line utility for managing OpenShift Virtualization resources.

NOTE

The virtual machine (VM) commands also apply to virtual machine instances (VMIs)
unless otherwise specified.

3.2.2.1. virtctl information commands

You use virtctl information commands to view information about the virtctl client.

Table 3.1. Information commands

Command Description

virtctl version View the virtctl client and server versions.

virtctl help View a list of virtctl commands.

virtctl <command> -h|--help View a list of options for a specific command.

virtctl options View a list of global command options for any virtctl command.

3.2.2.2. VM information commands

You can use virtctl to view information about virtual machines (VMs) and virtual machine instances
(VMIs).

Table 3.2. VM information commands

Command Description

virtctl fslist <vm_name> View the file systems available on a guest machine.

subscription-manager repos --enable cnv-4.17-for-rhel-8-x86_64-rpms

yum install kubevirt-virtctl

OpenShift Container Platform 4.17 Virtualization

36

virtctl guestosinfo
<vm_name>

View information about the operating systems on a guest machine.

virtctl userlist <vm_name> View the logged-in users on a guest machine.

Command Description

3.2.2.3. VM manifest creation commands

You can use virtctl create commands to create manifests for virtual machines, instance types, and
preferences.

Table 3.3. VM manifest creation commands

Command Description

virtctl create vm
Create a VirtualMachine (VM)
manifest.

virtctl create vm --name <vm_name> Create a VM manifest, specifying
a name for the VM.

virtctl create vm --instancetype <instancetype_name> Create a VM manifest that uses
an existing cluster-wide instance
type.

virtctl create vm --
instancetype=virtualmachineinstancetype/<instancetype_nam
e>

Create a VM manifest that uses
an existing namespaced instance
type.

virtctl create instancetype --cpu <cpu_value> --memory
<memory_value> --name <instancetype_name>

Create a manifest for a cluster-
wide instance type.

virtctl create instancetype --cpu <cpu_value> --memory
<memory_value> --name <instancetype_name> --namespace
<namespace_value>

Create a manifest for a
namespaced instance type.

virtctl create preference --name <preference_name> Create a manifest for a cluster-
wide VM preference, specifying a
name for the preference.

virtctl create preference --namespace <namespace_value> Create a manifest for a
namespaced VM preference.

3.2.2.4. VM management commands

You use virtctl virtual machine (VM) management commands to manage and migrate virtual machines

CHAPTER 3. GETTING STARTED

37

You use virtctl virtual machine (VM) management commands to manage and migrate virtual machines
(VMs) and virtual machine instances (VMIs).

Table 3.4. VM management commands

Command Description

virtctl start <vm_name> Start a VM.

virtctl start --paused
<vm_name>

Start a VM in a paused state. This option enables you to interrupt the
boot process from the VNC console.

virtctl stop <vm_name> Stop a VM.

virtctl stop <vm_name> --
grace-period 0 --force

Force stop a VM. This option might cause data inconsistency or data
loss.

virtctl pause vm <vm_name> Pause a VM. The machine state is kept in memory.

virtctl unpause vm
<vm_name>

Unpause a VM.

virtctl migrate <vm_name> Migrate a VM.

virtctl migrate-cancel
<vm_name>

Cancel a VM migration.

virtctl restart <vm_name> Restart a VM.

3.2.2.5. VM connection commands

You use virtctl connection commands to expose ports and connect to virtual machines (VMs) and
virtual machine instances (VMIs).

Table 3.5. VM connection commands

Command Description

virtctl console <vm_name> Connect to the serial console of a VM.

virtctl expose vm
<vm_name> --name
<service_name> --type
<ClusterIP|NodePort|LoadBa
lancer> --port <port>

Create a service that forwards a designated port of a VM and expose
the service on the specified port of the node.

Example: virtctl expose vm rhel9_vm --name rhel9-ssh --type
NodePort --port 22

virtctl scp -i <ssh_key>
<file_name>
<user_name>@<vm_name>

Copy a file from your machine to a VM. This command uses the private
key of an SSH key pair. The VM must be configured with the public key.

OpenShift Container Platform 4.17 Virtualization

38

virtctl scp -i <ssh_key>
<user_name@<vm_name>:
<file_name> .

Copy a file from a VM to your machine. This command uses the private
key of an SSH key pair. The VM must be configured with the public key.

virtctl ssh -i <ssh_key>
<user_name>@<vm_name>

Open an SSH connection with a VM. This command uses the private key
of an SSH key pair. The VM must be configured with the public key.

virtctl vnc <vm_name> Connect to the VNC console of a VM.

You must have virt-viewer installed.

virtctl vnc --proxy-only=true
<vm_name>

Display the port number and connect manually to a VM by using any
viewer through the VNC connection.

virtctl vnc --port=<port-
number> <vm_name>

Specify a port number to run the proxy on the specified port, if that port
is available.

If a port number is not specified, the proxy runs on a random port.

Command Description

3.2.2.6. VM export commands

Use virtctl vmexport commands to create, download, or delete a volume exported from a VM, VM
snapshot, or persistent volume claim (PVC). Certain manifests also contain a header secret, which grants
access to the endpoint to import a disk image in a format that OpenShift Virtualization can use.

Table 3.6. VM export commands

Command Description

virtctl vmexport create
<vmexport_name> --
vm|snapshot|pvc=
<object_name>

Create a VirtualMachineExport custom resource (CR) to export a
volume from a VM, VM snapshot, or PVC.

--vm: Exports the PVCs of a VM.

--snapshot: Exports the PVCs contained in a
VirtualMachineSnapshot CR.

--pvc: Exports a PVC.

Optional: --ttl=1h specifies the time to live. The default
duration is 2 hours.

virtctl vmexport delete
<vmexport_name>

Delete a VirtualMachineExport CR manually.

CHAPTER 3. GETTING STARTED

39

virtctl vmexport download
<vmexport_name> --output=
<output_file> --volume=
<volume_name>

Download the volume defined in a VirtualMachineExport CR.

--output specifies the file format. Example: disk.img.gz.

--volume specifies the volume to download. This flag is
optional if only one volume is available.

Optional:

--keep-vme retains the VirtualMachineExport CR after
download. The default behavior is to delete the
VirtualMachineExport CR after download.

--insecure enables an insecure HTTP connection.

virtctl vmexport download
<vmexport_name> --
<vm|snapshot|pvc>=
<object_name> --output=
<output_file> --volume=
<volume_name>

Create a VirtualMachineExport CR and then download the volume
defined in the CR.

virtctl vmexport download
export --manifest

Retrieve the manifest for an existing export. The manifest does not
include the header secret.

virtctl vmexport download
export --manifest --
vm=example

Create a VM export for a VM example, and retrieve the manifest. The
manifest does not include the header secret.

virtctl vmexport download
export --manifest --
snap=example

Create a VM export for a VM snapshot example, and retrieve the
manifest. The manifest does not include the header secret.

virtctl vmexport download
export --manifest --include-
secret

Retrieve the manifest for an existing export. The manifest includes the
header secret.

virtctl vmexport download
export --manifest --manifest-
output-format=json

Retrieve the manifest for an existing export in json format. The manifest
does not include the header secret.

virtctl vmexport download
export --manifest --include-
secret --
output=manifest.yaml

Retrieve the manifest for an existing export. The manifest includes the
header secret and writes it to the file specified.

Command Description

3.2.2.7. VM memory dump commands

You can use the virtctl memory-dump command to output a VM memory dump on a PVC. You can

OpenShift Container Platform 4.17 Virtualization

40

You can use the virtctl memory-dump command to output a VM memory dump on a PVC. You can
specify an existing PVC or use the --create-claim flag to create a new PVC.

Prerequisites

The PVC volume mode must be FileSystem.

The PVC must be large enough to contain the memory dump.
The formula for calculating the PVC size is (VMMemorySize + 100Mi) * FileSystemOverhead,
where 100Mi is the memory dump overhead.

You must enable the hot plug feature gate in the HyperConverged custom resource by
running the following command:

Downloading the memory dump

You must use the virtctl vmexport download command to download the memory dump:

Table 3.7. VM memory dump commands

Command Description

virtctl memory-dump get
<vm_name> --claim-name=
<pvc_name>

Save the memory dump of a VM on a PVC. The memory dump status is
displayed in the status section of the VirtualMachine resource.

Optional:

--create-claim creates a new PVC with the appropriate size.
This flag has the following options:

--storage-class=<storage_class>: Specify a storage
class for the PVC.

--access-mode=<access_mode>: Specify
ReadWriteOnce or ReadWriteMany.

virtctl memory-dump get
<vm_name>

Rerun the virtctl memory-dump command with the same PVC.

This command overwrites the previous memory dump.

virtctl memory-dump remove
<vm_name>

Remove a memory dump.

You must remove a memory dump manually if you want to change the
target PVC.

This command removes the association between the VM and the PVC,
so that the memory dump is not displayed in the status section of the
VirtualMachine resource. The PVC is not affected.

$ oc patch hyperconverged kubevirt-hyperconverged -n openshift-cnv \
 --type json -p '[{"op": "add", "path": "/spec/featureGates", \
 "value": "HotplugVolumes"}]'

$ virtctl vmexport download <vmexport_name> --vm|pvc=<object_name> \
 --volume=<volume_name> --output=<output_file>

CHAPTER 3. GETTING STARTED

41

3.2.2.8. Hot plug and hot unplug commands

You use virtctl to add or remove resources from running virtual machines (VMs) and virtual machine
instances (VMIs).

Table 3.8. Hot plug and hot unplug commands

Command Description

virtctl addvolume
<vm_name> --volume-
name=
<datavolume_or_PVC> [--
persist] [--serial=<label>]

Hot plug a data volume or persistent volume claim (PVC).

Optional:

--persist mounts the virtual disk permanently on a VM. This
flag does not apply to VMIs.

--serial=<label> adds a label to the VM. If you do not specify
a label, the default label is the data volume or PVC name.

virtctl removevolume
<vm_name> --volume-
name=<virtual_disk>

Hot unplug a virtual disk.

virtctl addinterface
<vm_name> --network-
attachment-definition-name
<net_attach_def_name> --
name <interface_name>

Hot plug a Linux bridge network interface.

virtctl removeinterface
<vm_name> --name
<interface_name>

Hot unplug a Linux bridge network interface.

3.2.2.9. Image upload commands

You use the virtctl image-upload commands to upload a VM image to a data volume.

Table 3.9. Image upload commands

Command Description

virtctl image-upload dv
<datavolume_name> --
image-path=
</path/to/image> --no-create

Upload a VM image to a data volume that already exists.

virtctl image-upload dv
<datavolume_name> --size=
<datavolume_size> --image-
path=</path/to/image>

Upload a VM image to a new data volume of a specified requested size.

3.2.3. Deploying libguestfs by using virtctl

OpenShift Container Platform 4.17 Virtualization

42

1

You can use the virtctl guestfs command to deploy an interactive container with libguestfs-tools and a
persistent volume claim (PVC) attached to it.

Procedure

To deploy a container with libguestfs-tools, mount the PVC, and attach a shell to it, run the
following command:

The PVC name is a required argument. If you do not include it, an error message appears.

3.2.3.1. Libguestfs and virtctl guestfs commands

Libguestfs tools help you access and modify virtual machine (VM) disk images. You can use libguestfs
tools to view and edit files in a guest, clone and build virtual machines, and format and resize disks.

You can also use the virtctl guestfs command and its sub-commands to modify, inspect, and debug VM
disks on a PVC. To see a complete list of possible sub-commands, enter virt- on the command line and
press the Tab key. For example:

Command Description

virt-edit -a /dev/vda /etc/motd Edit a file interactively in your terminal.

virt-customize -a /dev/vda --ssh-
inject root:string:<public key
example>

Inject an ssh key into the guest and create a login.

virt-df -a /dev/vda -h See how much disk space is used by a VM.

virt-customize -a /dev/vda --run-
command 'rpm -qa > /rpm-list'

See the full list of all RPMs installed on a guest by creating an
output file containing the full list.

virt-cat -a /dev/vda /rpm-list Display the output file list of all RPMs created using the virt-
customize -a /dev/vda --run-command 'rpm -qa >
/rpm-list' command in your terminal.

virt-sysprep -a /dev/vda Seal a virtual machine disk image to be used as a template.

By default, virtctl guestfs creates a session with everything needed to manage a VM disk. However, the
command also supports several flag options if you want to customize the behavior:

Flag Option Description

--h or --help Provides help for guestfs.

$ virtctl guestfs -n <namespace> <pvc_name> 1

CHAPTER 3. GETTING STARTED

43

-n <namespace> option with a
<pvc_name> argument

To use a PVC from a specific namespace.

If you do not use the -n <namespace> option, your current
project is used. To change projects, use oc project
<namespace>.

If you do not include a <pvc_name> argument, an error
message appears.

--image string Lists the libguestfs-tools container image.

You can configure the container to use a custom image by
using the --image option.

--kvm Indicates that kvm is used by the libguestfs-tools
container.

By default, virtctl guestfs sets up kvm for the interactive
container, which greatly speeds up the libguest-tools
execution because it uses QEMU.

If a cluster does not have any kvm supporting nodes, you
must disable kvm by setting the option --kvm=false.

If not set, the libguestfs-tools pod remains pending
because it cannot be scheduled on any node.

--pull-policy string Shows the pull policy for the libguestfs image.

You can also overwrite the image’s pull policy by setting the
pull-policy option.

Flag Option Description

The command also checks if a PVC is in use by another pod, in which case an error message appears.
However, once the libguestfs-tools process starts, the setup cannot avoid a new pod using the same
PVC. You must verify that there are no active virtctl guestfs pods before starting the VM that accesses
the same PVC.

NOTE

The virtctl guestfs command accepts only a single PVC attached to the interactive pod.

3.2.4. Using Ansible

To use the Ansible collection for OpenShift Virtualization, see Red Hat Ansible Automation Hub (Red
Hat Hybrid Cloud Console).

OpenShift Container Platform 4.17 Virtualization

44

https://console.redhat.com/ansible/automation-hub/repo/published/redhat/openshift_virtualization

CHAPTER 4. INSTALLING

4.1. PREPARING YOUR CLUSTER FOR OPENSHIFT VIRTUALIZATION

Review this section before you install OpenShift Virtualization to ensure that your cluster meets the
requirements.

IMPORTANT

Installation method considerations

You can use any installation method, including user-provisioned, installer-provisioned,
or assisted installer, to deploy OpenShift Container Platform. However, the installation
method and the cluster topology might affect OpenShift Virtualization functionality,
such as snapshots or live migration .

Red Hat OpenShift Data Foundation

If you deploy OpenShift Virtualization with Red Hat OpenShift Data Foundation, you
must create a dedicated storage class for Windows virtual machine disks. See
Optimizing ODF PersistentVolumes for Windows VMs for details.

IPv6

You cannot run OpenShift Virtualization on a single-stack IPv6 cluster.

FIPS mode

If you install your cluster in FIPS mode, no additional setup is required for OpenShift Virtualization.

4.1.1. Supported platforms

You can use the following platforms with OpenShift Virtualization:

On-premise bare metal servers. See Planning a bare metal cluster for OpenShift Virtualization .

Amazon Web Services bare metal instances. See Installing a cluster on AWS with
customizations.

IBM Cloud® Bare Metal Servers. See Deploy OpenShift Virtualization on IBM Cloud® Bare Metal
nodes.

IMPORTANT

Installing OpenShift Virtualization on IBM Cloud® Bare Metal Servers is a
Technology Preview feature only. Technology Preview features are not
supported with Red Hat production service level agreements (SLAs) and might
not be functionally complete. Red Hat does not recommend using them in
production. These features provide early access to upcoming product features,
enabling customers to test functionality and provide feedback during the
development process.

For more information about the support scope of Red Hat Technology Preview
features, see Technology Preview Features Support Scope .

Bare metal instances or servers offered by other cloud providers are not supported.

CHAPTER 4. INSTALLING

45

https://access.redhat.com/articles/6978371
https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/installation_overview/#installing-fips-mode_installing-fips
https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/installing_on_bare_metal/#virt-planning-bare-metal-cluster-for-ocp-virt_preparing-to-install-on-bare-metal
https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/installing_on_aws/#installing-aws-customizations
https://access.redhat.com/articles/6738731
https://access.redhat.com/support/offerings/techpreview/

4.1.1.1. OpenShift Virtualization on AWS bare metal

You can run OpenShift Virtualization on an Amazon Web Services (AWS) bare-metal OpenShift
Container Platform cluster.

NOTE

OpenShift Virtualization is also supported on Red Hat OpenShift Service on AWS (ROSA)
Classic clusters, which have the same configuration requirements as AWS bare-metal
clusters.

Before you set up your cluster, review the following summary of supported features and limitations:

Installing

You can install the cluster by using installer-provisioned infrastructure, ensuring that you specify
bare-metal instance types for the worker nodes. For example, you can use the c5n.metal type
value for a machine based on x86_64 architecture. You specify bare-metal instance types by
editing the install-config.yaml file.
For more information, see the OpenShift Container Platform documentation about installing on
AWS.

Accessing virtual machines (VMs)

There is no change to how you access VMs by using the virtctl CLI tool or the OpenShift
Container Platform web console.

You can expose VMs by using a NodePort or LoadBalancer service.

The load balancer approach is preferable because OpenShift Container Platform
automatically creates the load balancer in AWS and manages its lifecycle. A security group
is also created for the load balancer, and you can use annotations to attach existing security
groups. When you remove the service, OpenShift Container Platform removes the load
balancer and its associated resources.

Networking

You cannot use Single Root I/O Virtualization (SR-IOV) or bridge Container Network Interface
(CNI) networks, including virtual LAN (VLAN). If your application requires a flat layer 2 network
or control over the IP pool, consider using OVN-Kubernetes secondary overlay networks.

Storage

You can use any storage solution that is certified by the storage vendor to work with the
underlying platform.

IMPORTANT

AWS bare-metal and ROSA clusters might have different supported storage
solutions. Ensure that you confirm support with your storage vendor.

Using Amazon Elastic File System (EFS) or Amazon Elastic Block Store (EBS) with OpenShift
Virtualization might cause performance and functionality limitations as shown in the following
table:

OpenShift Container Platform 4.17 Virtualization

46

Table 4.1. EFS and EBS performance and functionality limitations

Feature EBS volume EFS volume Shared
storage
solutions

 gp2 gp3 io2

VM live
migration

Not available Not available Available Available Available

Fast VM
creation by
using cloning

Available Not available Available

VM backup
and restore
by using
snapshots

Available Not available Available

Consider using CSI storage, which supports ReadWriteMany (RWX), cloning, and snapshots to
enable live migration, fast VM creation, and VM snapshots capabilities.

Hosted control planes (HCPs)

HCPs for OpenShift Virtualization are not currently supported on AWS infrastructure.

Additional resources

Connecting a virtual machine to an OVN-Kubernetes secondary network

Exposing a virtual machine by using a service

4.1.2. Hardware and operating system requirements

Review the following hardware and operating system requirements for OpenShift Virtualization.

4.1.2.1. CPU requirements

Supported by Red Hat Enterprise Linux (RHEL) 9.
See Red Hat Ecosystem Catalog for supported CPUs.

NOTE

If your worker nodes have different CPUs, live migration failures might occur
because different CPUs have different capabilities. You can mitigate this issue by
ensuring that your worker nodes have CPUs with the appropriate capacity and by
configuring node affinity rules for your virtual machines.

See Configuring a required node affinity rule for details.

Support for AMD and Intel 64-bit architectures (x86-64-v2).

CHAPTER 4. INSTALLING

47

https://catalog.redhat.com
https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/nodes/#nodes-scheduler-node-affinity-configuring-required_nodes-scheduler-node-affinity

Support for Intel 64 or AMD64 CPU extensions.

Intel VT or AMD-V hardware virtualization extensions enabled.

NX (no execute) flag enabled.

4.1.2.2. Operating system requirements

Red Hat Enterprise Linux CoreOS (RHCOS) installed on worker nodes.
See About RHCOS for details.

NOTE

RHEL worker nodes are not supported.

4.1.2.3. Storage requirements

Supported by OpenShift Container Platform. See Optimizing storage.

You must create a default OpenShift Virtualization or OpenShift Container Platform storage
class. The purpose of this is to address the unique storage needs of VM workloads and offer
optimized performance, reliability, and user experience. If both OpenShift Virtualization and
OpenShift Container Platform default storage classes exist, the OpenShift Virtualization class
takes precedence when creating VM disks.

NOTE

To mark a storage class as the default for virtualization workloads, set the annotation
storageclass.kubevirt.io/is-default-virt-class to "true".

If the storage provisioner supports snapshots, you must associate a VolumeSnapshotClass
object with the default storage class.

4.1.2.3.1. About volume and access modes for virtual machine disks

If you use the storage API with known storage providers, the volume and access modes are selected
automatically. However, if you use a storage class that does not have a storage profile, you must
configure the volume and access mode.

For best results, use the ReadWriteMany (RWX) access mode and the Block volume mode. This is
important for the following reasons:

ReadWriteMany (RWX) access mode is required for live migration.

The Block volume mode performs significantly better than the Filesystem volume mode. This
is because the Filesystem volume mode uses more storage layers, including a file system layer
and a disk image file. These layers are not necessary for VM disk storage.
For example, if you use Red Hat OpenShift Data Foundation, Ceph RBD volumes are preferable
to CephFS volumes.

IMPORTANT

OpenShift Container Platform 4.17 Virtualization

48

https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/architecture/#rhcos-about_architecture-rhcos
https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/scalability_and_performance/#_optimizing-storage

IMPORTANT

You cannot live migrate virtual machines with the following configurations:

Storage volume with ReadWriteOnce (RWO) access mode

Passthrough features such as GPUs

Set the evictionStrategy field to None for these virtual machines. The None strategy
powers down VMs during node reboots.

4.1.3. Live migration requirements

Shared storage with ReadWriteMany (RWX) access mode.

Sufficient RAM and network bandwidth.

NOTE

You must ensure that there is enough memory request capacity in the cluster to
support node drains that result in live migrations. You can determine the
approximate required spare memory by using the following calculation:

Product of (Maximum number of nodes that can drain in parallel) and (Highest
total VM memory request allocations across nodes)

The default number of migrations that can run in parallel in the cluster is 5.

If the virtual machine uses a host model CPU, the nodes must support the virtual machine’s host
model CPU.

A dedicated Multus network for live migration is highly recommended. A dedicated network
minimizes the effects of network saturation on tenant workloads during migration.

4.1.4. Physical resource overhead requirements

OpenShift Virtualization is an add-on to OpenShift Container Platform and imposes additional overhead
that you must account for when planning a cluster. Each cluster machine must accommodate the
following overhead requirements in addition to the OpenShift Container Platform requirements.
Oversubscribing the physical resources in a cluster can affect performance.

IMPORTANT

The numbers noted in this documentation are based on Red Hat’s test methodology and
setup. These numbers can vary based on your own individual setup and environments.

Memory overhead
Calculate the memory overhead values for OpenShift Virtualization by using the equations below.

Cluster memory overhead

Memory overhead per infrastructure node ≈ 150 MiB

CHAPTER 4. INSTALLING

49

1

2

3

4

Memory overhead per worker node ≈ 360 MiB

Additionally, OpenShift Virtualization environment resources require a total of 2179 MiB of RAM that is
spread across all infrastructure nodes.

Virtual machine memory overhead

Memory overhead per virtual machine ≈ (1.002 × requested memory) \
 + 218 MiB \ 1
 + 8 MiB × (number of vCPUs) \ 2
 + 16 MiB × (number of graphics devices) \ 3
 + (additional memory overhead) 4

Required for the processes that run in the virt-launcher pod.

Number of virtual CPUs requested by the virtual machine.

Number of virtual graphics cards requested by the virtual machine.

Additional memory overhead:

If your environment includes a Single Root I/O Virtualization (SR-IOV) network device or a
Graphics Processing Unit (GPU), allocate 1 GiB additional memory overhead for each
device.

If Secure Encrypted Virtualization (SEV) is enabled, add 256 MiB.

If Trusted Platform Module (TPM) is enabled, add 53 MiB.

CPU overhead
Calculate the cluster processor overhead requirements for OpenShift Virtualization by using the
equation below. The CPU overhead per virtual machine depends on your individual setup.

Cluster CPU overhead

CPU overhead for infrastructure nodes ≈ 4 cores

OpenShift Virtualization increases the overall utilization of cluster level services such as logging, routing,
and monitoring. To account for this workload, ensure that nodes that host infrastructure components
have capacity allocated for 4 additional cores (4000 millicores) distributed across those nodes.

CPU overhead for worker nodes ≈ 2 cores + CPU overhead per virtual machine

Each worker node that hosts virtual machines must have capacity for 2 additional cores (2000
millicores) for OpenShift Virtualization management workloads in addition to the CPUs required for
virtual machine workloads.

Virtual machine CPU overhead

If dedicated CPUs are requested, there is a 1:1 impact on the cluster CPU overhead requirement.
Otherwise, there are no specific rules about how many CPUs a virtual machine requires.

Storage overhead

Use the guidelines below to estimate storage overhead requirements for your OpenShift Virtualization

OpenShift Container Platform 4.17 Virtualization

50

Use the guidelines below to estimate storage overhead requirements for your OpenShift Virtualization
environment.

Cluster storage overhead

Aggregated storage overhead per node ≈ 10 GiB

10 GiB is the estimated on-disk storage impact for each node in the cluster when you install OpenShift
Virtualization.

Virtual machine storage overhead

Storage overhead per virtual machine depends on specific requests for resource allocation within the
virtual machine. The request could be for ephemeral storage on the node or storage resources hosted
elsewhere in the cluster. OpenShift Virtualization does not currently allocate any additional ephemeral
storage for the running container itself.

Example

As a cluster administrator, if you plan to host 10 virtual machines in the cluster, each with 1 GiB of RAM
and 2 vCPUs, the memory impact across the cluster is 11.68 GiB. The estimated on-disk storage impact
for each node in the cluster is 10 GiB and the CPU impact for worker nodes that host virtual machine
workloads is a minimum of 2 cores.

4.1.5. Single-node OpenShift differences

You can install OpenShift Virtualization on single-node OpenShift.

However, you should be aware that Single-node OpenShift does not support the following features:

High availability

Pod disruption

Live migration

Virtual machines or templates that have an eviction strategy configured

Additional resources

Glossary of common terms for OpenShift Container Platform storage

4.1.6. Object maximums

You must consider the following tested object maximums when planning your cluster:

OpenShift Container Platform object maximums.

OpenShift Virtualization object maximums.

4.1.7. Cluster high-availability options

You can configure one of the following high-availability (HA) options for your cluster:

Automatic high availability for installer-provisioned infrastructure (IPI) is available by deploying
machine health checks .

CHAPTER 4. INSTALLING

51

https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/storage/#openshift-storage-common-terms_storage-overview
https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/scalability_and_performance/#planning-your-environment-according-to-object-maximums
https://access.redhat.com/articles/6571671
https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/deploying_installer-provisioned_clusters_on_bare_metal/#ipi-install-overview
https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/machine_management/#machine-health-checks-about_deploying-machine-health-checks

NOTE

In OpenShift Container Platform clusters installed using installer-provisioned
infrastructure and with a properly configured MachineHealthCheck resource, if
a node fails the machine health check and becomes unavailable to the cluster, it is
recycled. What happens next with VMs that ran on the failed node depends on a
series of conditions. See Run strategies for more detailed information about the
potential outcomes and how run strategies affect those outcomes.

Automatic high availability for both IPI and non-IPI is available by using the Node Health Check
Operator on the OpenShift Container Platform cluster to deploy the NodeHealthCheck
controller. The controller identifies unhealthy nodes and uses a remediation provider, such as
the Self Node Remediation Operator or Fence Agents Remediation Operator, to remediate the
unhealthy nodes. For more information on remediation, fencing, and maintaining nodes, see the
Workload Availability for Red Hat OpenShift documentation.

High availability for any platform is available by using either a monitoring system or a qualified
human to monitor node availability. When a node is lost, shut it down and run oc delete node
<lost_node>.

NOTE

Without an external monitoring system or a qualified human monitoring node
health, virtual machines lose high availability.

4.2. INSTALLING OPENSHIFT VIRTUALIZATION

Install OpenShift Virtualization to add virtualization functionality to your OpenShift Container Platform
cluster.

IMPORTANT

If you install OpenShift Virtualization in a restricted environment with no internet
connectivity, you must configure Operator Lifecycle Manager (OLM) for restricted
networks.

If you have limited internet connectivity, you can configure proxy support in OLM to
access the OperatorHub.

4.2.1. Installing the OpenShift Virtualization Operator

Install the OpenShift Virtualization Operator by using the OpenShift Container Platform web console or
the command line.

4.2.1.1. Installing the OpenShift Virtualization Operator by using the web console

You can deploy the OpenShift Virtualization Operator by using the OpenShift Container Platform web
console.

Prerequisites

Install OpenShift Container Platform 4.17 on your cluster.

Log in to the OpenShift Container Platform web console as a user with cluster-admin

OpenShift Container Platform 4.17 Virtualization

52

https://access.redhat.com/documentation/en-us/workload_availability_for_red_hat_openshift
https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/operators/#olm-restricted-networks
https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/operators/#olm-configuring-proxy-support

Log in to the OpenShift Container Platform web console as a user with cluster-admin
permissions.

Procedure

1. From the Administrator perspective, click Operators → OperatorHub.

2. In the Filter by keyword field, type Virtualization.

3. Select the OpenShift Virtualization Operator tile with the Red Hat source label.

4. Read the information about the Operator and click Install.

5. On the Install Operator page:

a. Select stable from the list of available Update Channel options. This ensures that you
install the version of OpenShift Virtualization that is compatible with your OpenShift
Container Platform version.

b. For Installed Namespace, ensure that the Operator recommended namespace option is
selected. This installs the Operator in the mandatory openshift-cnv namespace, which is
automatically created if it does not exist.

WARNING

Attempting to install the OpenShift Virtualization Operator in a
namespace other than openshift-cnv causes the installation to fail.

c. For Approval Strategy, it is highly recommended that you select Automatic, which is the
default value, so that OpenShift Virtualization automatically updates when a new version is
available in the stable update channel.
While it is possible to select the Manual approval strategy, this is inadvisable because of the
high risk that it presents to the supportability and functionality of your cluster. Only select
Manual if you fully understand these risks and cannot use Automatic.

WARNING

Because OpenShift Virtualization is only supported when used with the
corresponding OpenShift Container Platform version, missing
OpenShift Virtualization updates can cause your cluster to become
unsupported.

6. Click Install to make the Operator available to the openshift-cnv namespace.

7. When the Operator installs successfully, click Create HyperConverged.

8. Optional: Configure Infra and Workloads node placement options for OpenShift Virtualization





CHAPTER 4. INSTALLING

53

8. Optional: Configure Infra and Workloads node placement options for OpenShift Virtualization
components.

9. Click Create to launch OpenShift Virtualization.

Verification

Navigate to the Workloads → Pods page and monitor the OpenShift Virtualization pods until
they are all Running. After all the pods display the Running state, you can use OpenShift
Virtualization.

4.2.1.2. Installing the OpenShift Virtualization Operator by using the command line

Subscribe to the OpenShift Virtualization catalog and install the OpenShift Virtualization Operator by
applying manifests to your cluster.

4.2.1.2.1. Subscribing to the OpenShift Virtualization catalog by using the CLI

Before you install OpenShift Virtualization, you must subscribe to the OpenShift Virtualization catalog.
Subscribing gives the openshift-cnv namespace access to the OpenShift Virtualization Operators.

To subscribe, configure Namespace, OperatorGroup, and Subscription objects by applying a single
manifest to your cluster.

Prerequisites

Install OpenShift Container Platform 4.17 on your cluster.

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

1. Create a YAML file that contains the following manifest:

apiVersion: v1
kind: Namespace
metadata:
 name: openshift-cnv

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: kubevirt-hyperconverged-group
 namespace: openshift-cnv
spec:
 targetNamespaces:
 - openshift-cnv

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: hco-operatorhub
 namespace: openshift-cnv

OpenShift Container Platform 4.17 Virtualization

54

1 Using the stable channel ensures that you install the version of OpenShift Virtualization
that is compatible with your OpenShift Container Platform version.

2. Create the required Namespace, OperatorGroup, and Subscription objects for OpenShift
Virtualization by running the following command:

NOTE

You can configure certificate rotation parameters in the YAML file.

4.2.1.2.2. Deploying the OpenShift Virtualization Operator by using the CLI

You can deploy the OpenShift Virtualization Operator by using the oc CLI.

Prerequisites

Subscribe to the OpenShift Virtualization catalog in the openshift-cnv namespace.

Log in as a user with cluster-admin privileges.

Procedure

1. Create a YAML file that contains the following manifest:

2. Deploy the OpenShift Virtualization Operator by running the following command:

Verification

Ensure that OpenShift Virtualization deployed successfully by watching the PHASE of the
cluster service version (CSV) in the openshift-cnv namespace. Run the following command:

The following output displays if deployment was successful:

spec:
 source: redhat-operators
 sourceNamespace: openshift-marketplace
 name: kubevirt-hyperconverged
 startingCSV: kubevirt-hyperconverged-operator.v4.17.0
 channel: "stable" 1

$ oc apply -f <file name>.yaml

apiVersion: hco.kubevirt.io/v1beta1
kind: HyperConverged
metadata:
 name: kubevirt-hyperconverged
 namespace: openshift-cnv
spec:

$ oc apply -f <file_name>.yaml

$ watch oc get csv -n openshift-cnv

CHAPTER 4. INSTALLING

55

Example output

4.2.2. Next steps

The hostpath provisioner is a local storage provisioner designed for OpenShift Virtualization. If
you want to configure local storage for virtual machines, you must enable the hostpath
provisioner first.

4.3. UNINSTALLING OPENSHIFT VIRTUALIZATION

You uninstall OpenShift Virtualization by using the web console or the command line interface (CLI) to
delete the OpenShift Virtualization workloads, the Operator, and its resources.

4.3.1. Uninstalling OpenShift Virtualization by using the web console

You uninstall OpenShift Virtualization by using the web console to perform the following tasks:

1. Delete the HyperConverged CR.

2. Delete the OpenShift Virtualization Operator.

3. Delete the openshift-cnv namespace.

4. Delete the OpenShift Virtualization custom resource definitions (CRDs) .

IMPORTANT

You must first delete all virtual machines, and virtual machine instances.

You cannot uninstall OpenShift Virtualization while its workloads remain on the cluster.

4.3.1.1. Deleting the HyperConverged custom resource

To uninstall OpenShift Virtualization, you first delete the HyperConverged custom resource (CR).

Prerequisites

You have access to an OpenShift Container Platform cluster using an account with cluster-
admin permissions.

Procedure

1. Navigate to the Operators → Installed Operators page.

2. Select the OpenShift Virtualization Operator.

3. Click the OpenShift Virtualization Deployment tab.

NAME DISPLAY VERSION REPLACES PHASE
kubevirt-hyperconverged-operator.v4.17.0 OpenShift Virtualization 4.17.0
Succeeded

OpenShift Container Platform 4.17 Virtualization

56

https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/web_console/#web-console-overview_web-console

4. Click the Options menu beside kubevirt-hyperconverged and select Delete
HyperConverged.

5. Click Delete in the confirmation window.

4.3.1.2. Deleting Operators from a cluster using the web console

Cluster administrators can delete installed Operators from a selected namespace by using the web
console.

Prerequisites

You have access to an OpenShift Container Platform cluster web console using an account with
cluster-admin permissions.

Procedure

1. Navigate to the Operators → Installed Operators page.

2. Scroll or enter a keyword into the Filter by name field to find the Operator that you want to
remove. Then, click on it.

3. On the right side of the Operator Details page, select Uninstall Operator from the Actions list.
An Uninstall Operator? dialog box is displayed.

4. Select Uninstall to remove the Operator, Operator deployments, and pods. Following this
action, the Operator stops running and no longer receives updates.

NOTE

This action does not remove resources managed by the Operator, including
custom resource definitions (CRDs) and custom resources (CRs). Dashboards
and navigation items enabled by the web console and off-cluster resources that
continue to run might need manual clean up. To remove these after uninstalling
the Operator, you might need to manually delete the Operator CRDs.

4.3.1.3. Deleting a namespace using the web console

You can delete a namespace by using the OpenShift Container Platform web console.

Prerequisites

You have access to an OpenShift Container Platform cluster using an account with cluster-
admin permissions.

Procedure

1. Navigate to Administration → Namespaces.

2. Locate the namespace that you want to delete in the list of namespaces.

3. On the far right side of the namespace listing, select Delete Namespace from the Options

CHAPTER 4. INSTALLING

57

3. On the far right side of the namespace listing, select Delete Namespace from the Options

menu .

4. When the Delete Namespace pane opens, enter the name of the namespace that you want to
delete in the field.

5. Click Delete.

4.3.1.4. Deleting OpenShift Virtualization custom resource definitions

You can delete the OpenShift Virtualization custom resource definitions (CRDs) by using the web
console.

Prerequisites

You have access to an OpenShift Container Platform cluster using an account with cluster-
admin permissions.

Procedure

1. Navigate to Administration → CustomResourceDefinitions.

2. Select the Label filter and enter operators.coreos.com/kubevirt-hyperconverged.openshift-
cnv in the Search field to display the OpenShift Virtualization CRDs.

3. Click the Options menu beside each CRD and select Delete CustomResourceDefinition.

4.3.2. Uninstalling OpenShift Virtualization by using the CLI

You can uninstall OpenShift Virtualization by using the OpenShift CLI (oc).

Prerequisites

You have access to an OpenShift Container Platform cluster using an account with cluster-
admin permissions.

You have installed the OpenShift CLI (oc).

You have deleted all virtual machines and virtual machine instances. You cannot uninstall
OpenShift Virtualization while its workloads remain on the cluster.

Procedure

1. Delete the HyperConverged custom resource:

2. Delete the OpenShift Virtualization Operator subscription:

$ oc delete HyperConverged kubevirt-hyperconverged -n openshift-cnv

$ oc delete subscription kubevirt-hyperconverged -n openshift-cnv

OpenShift Container Platform 4.17 Virtualization

58

3. Delete the OpenShift Virtualization ClusterServiceVersion resource:

4. Delete the OpenShift Virtualization namespace:

5. List the OpenShift Virtualization custom resource definitions (CRDs) by running the oc delete
crd command with the dry-run option:

Example output

customresourcedefinition.apiextensions.k8s.io "cdis.cdi.kubevirt.io" deleted (dry run)
customresourcedefinition.apiextensions.k8s.io
"hostpathprovisioners.hostpathprovisioner.kubevirt.io" deleted (dry run)
customresourcedefinition.apiextensions.k8s.io "hyperconvergeds.hco.kubevirt.io" deleted
(dry run)
customresourcedefinition.apiextensions.k8s.io "kubevirts.kubevirt.io" deleted (dry run)
customresourcedefinition.apiextensions.k8s.io
"networkaddonsconfigs.networkaddonsoperator.network.kubevirt.io" deleted (dry run)
customresourcedefinition.apiextensions.k8s.io "ssps.ssp.kubevirt.io" deleted (dry run)
customresourcedefinition.apiextensions.k8s.io "tektontasks.tektontasks.kubevirt.io" deleted
(dry run)

6. Delete the CRDs by running the oc delete crd command without the dry-run option:

Additional resources

Deleting virtual machines

Deleting virtual machine instances

$ oc delete csv -n openshift-cnv -l operators.coreos.com/kubevirt-hyperconverged.openshift-
cnv

$ oc delete namespace openshift-cnv

$ oc delete crd --dry-run=client -l operators.coreos.com/kubevirt-hyperconverged.openshift-
cnv

$ oc delete crd -l operators.coreos.com/kubevirt-hyperconverged.openshift-cnv

CHAPTER 4. INSTALLING

59

CHAPTER 5. POSTINSTALLATION CONFIGURATION

5.1. POSTINSTALLATION CONFIGURATION

The following procedures are typically performed after OpenShift Virtualization is installed. You can
configure the components that are relevant for your environment:

Node placement rules for OpenShift Virtualization Operators, workloads, and controllers

Network configuration:

Installing the Kubernetes NMState and SR-IOV Operators

Configuring a Linux bridge network for external access to virtual machines (VMs)

Configuring a dedicated secondary network for live migration

Configuring an SR-IOV network

Enabling the creation of load balancer services by using the OpenShift Container Platform
web console

Storage configuration :

Defining a default storage class for the Container Storage Interface (CSI)

Configuring local storage by using the Hostpath Provisioner (HPP)

5.2. SPECIFYING NODES FOR OPENSHIFT VIRTUALIZATION
COMPONENTS

The default scheduling for virtual machines (VMs) on bare metal nodes is appropriate. Optionally, you
can specify the nodes where you want to deploy OpenShift Virtualization Operators, workloads, and
controllers by configuring node placement rules.

NOTE

You can configure node placement rules for some components after installing OpenShift
Virtualization, but virtual machines cannot be present if you want to configure node
placement rules for workloads.

5.2.1. About node placement rules for OpenShift Virtualization components

You can use node placement rules for the following tasks:

Deploy virtual machines only on nodes intended for virtualization workloads.

Deploy Operators only on infrastructure nodes.

Maintain separation between workloads.

Depending on the object, you can use one or more of the following rule types:

nodeSelector

Allows pods to be scheduled on nodes that are labeled with the key-value pair or pairs that you

OpenShift Container Platform 4.17 Virtualization

60

Allows pods to be scheduled on nodes that are labeled with the key-value pair or pairs that you
specify in this field. The node must have labels that exactly match all listed pairs.

affinity

Enables you to use more expressive syntax to set rules that match nodes with pods. Affinity also
allows for more nuance in how the rules are applied. For example, you can specify that a rule is a
preference, not a requirement. If a rule is a preference, pods are still scheduled when the rule is not
satisfied.

tolerations

Allows pods to be scheduled on nodes that have matching taints. If a taint is applied to a node, that
node only accepts pods that tolerate the taint.

5.2.2. Applying node placement rules

You can apply node placement rules by editing a Subscription, HyperConverged, or
HostPathProvisioner object using the command line.

Prerequisites

The oc CLI tool is installed.

You are logged in with cluster administrator permissions.

Procedure

1. Edit the object in your default editor by running the following command:

2. Save the file to apply the changes.

5.2.3. Node placement rule examples

You can specify node placement rules for a OpenShift Virtualization component by editing a
Subscription, HyperConverged, or HostPathProvisioner object.

5.2.3.1. Subscription object node placement rule examples

To specify the nodes where OLM deploys the OpenShift Virtualization Operators, edit the
Subscription object during OpenShift Virtualization installation.

Currently, you cannot configure node placement rules for the Subscription object by using the web
console.

The Subscription object does not support the affinity node pplacement rule.

Example Subscription object with nodeSelector rule

$ oc edit <resource_type> <resource_name> -n {CNVNamespace}

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: hco-operatorhub
 namespace: openshift-cnv
spec:

CHAPTER 5. POSTINSTALLATION CONFIGURATION

61

1

1

OLM deploys the OpenShift Virtualization Operators on nodes labeled example.io/example-infra-
key = example-infra-value.

Example Subscription object with tolerations rule

OLM deploys OpenShift Virtualization Operators on nodes labeled key =
virtualization:NoSchedule taint. Only pods with the matching tolerations are scheduled on these
nodes.

5.2.3.2. HyperConverged object node placement rule example

To specify the nodes where OpenShift Virtualization deploys its components, you can edit the
nodePlacement object in the HyperConverged custom resource (CR) file that you create during
OpenShift Virtualization installation.

Example HyperConverged object with nodeSelector rule

 source: redhat-operators
 sourceNamespace: openshift-marketplace
 name: kubevirt-hyperconverged
 startingCSV: kubevirt-hyperconverged-operator.v4.17.0
 channel: "stable"
 config:
 nodeSelector:
 example.io/example-infra-key: example-infra-value 1

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: hco-operatorhub
 namespace: openshift-cnv
spec:
 source: redhat-operators
 sourceNamespace: openshift-marketplace
 name: kubevirt-hyperconverged
 startingCSV: kubevirt-hyperconverged-operator.v4.17.0
 channel: "stable"
 config:
 tolerations:
 - key: "key"
 operator: "Equal"
 value: "virtualization" 1
 effect: "NoSchedule"

apiVersion: hco.kubevirt.io/v1beta1
kind: HyperConverged
metadata:
 name: kubevirt-hyperconverged
 namespace: openshift-cnv
spec:
 infra:
 nodePlacement:

OpenShift Container Platform 4.17 Virtualization

62

1

2

1

Infrastructure resources are placed on nodes labeled example.io/example-infra-key = example-
infra-value.

workloads are placed on nodes labeled example.io/example-workloads-key = example-
workloads-value.

Example HyperConverged object with affinity rule

Infrastructure resources are placed on nodes labeled example.io/example-infra-key = example-
value.

 nodeSelector:
 example.io/example-infra-key: example-infra-value 1
 workloads:
 nodePlacement:
 nodeSelector:
 example.io/example-workloads-key: example-workloads-value 2

apiVersion: hco.kubevirt.io/v1beta1
kind: HyperConverged
metadata:
 name: kubevirt-hyperconverged
 namespace: openshift-cnv
spec:
 infra:
 nodePlacement:
 affinity:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: example.io/example-infra-key
 operator: In
 values:
 - example-infra-value 1
 workloads:
 nodePlacement:
 affinity:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: example.io/example-workloads-key 2
 operator: In
 values:
 - example-workloads-value
 preferredDuringSchedulingIgnoredDuringExecution:
 - weight: 1
 preference:
 matchExpressions:
 - key: example.io/num-cpus
 operator: Gt
 values:
 - 8 3

CHAPTER 5. POSTINSTALLATION CONFIGURATION

63

2

3

1

workloads are placed on nodes labeled example.io/example-workloads-key = example-
workloads-value.

Nodes that have more than eight CPUs are preferred for workloads, but if they are not available,
pods are still scheduled.

Example HyperConverged object with tolerations rule

Nodes reserved for OpenShift Virtualization components are labeled with the key =
virtualization:NoSchedule taint. Only pods with matching tolerations are scheduled on reserved
nodes.

5.2.3.3. HostPathProvisioner object node placement rule example

You can edit the HostPathProvisioner object directly or by using the web console.

WARNING

You must schedule the hostpath provisioner and the OpenShift Virtualization
components on the same nodes. Otherwise, virtualization pods that use the
hostpath provisioner cannot run. You cannot run virtual machines.

After you deploy a virtual machine (VM) with the hostpath provisioner (HPP) storage class, you can
remove the hostpath provisioner pod from the same node by using the node selector. However, you
must first revert that change, at least for that specific node, and wait for the pod to run before trying to
delete the VM.

You can configure node placement rules by specifying nodeSelector, affinity, or tolerations for the
spec.workload field of the HostPathProvisioner object that you create when you install the hostpath
provisioner.

Example HostPathProvisioner object with nodeSelector rule

apiVersion: hco.kubevirt.io/v1beta1
kind: HyperConverged
metadata:
 name: kubevirt-hyperconverged
 namespace: openshift-cnv
spec:
 workloads:
 nodePlacement:
 tolerations: 1
 - key: "key"
 operator: "Equal"
 value: "virtualization"
 effect: "NoSchedule"



apiVersion: hostpathprovisioner.kubevirt.io/v1beta1

OpenShift Container Platform 4.17 Virtualization

64

1 Workloads are placed on nodes labeled example.io/example-workloads-key = example-
workloads-value.

5.2.4. Additional resources

Specifying nodes for virtual machines

Placing pods on specific nodes using node selectors

Controlling pod placement on nodes using node affinity rules

Controlling pod placement using node taints

5.3. POSTINSTALLATION NETWORK CONFIGURATION

By default, OpenShift Virtualization is installed with a single, internal pod network.

After you install OpenShift Virtualization, you can install networking Operators and configure additional
networks.

5.3.1. Installing networking Operators

You must install the Kubernetes NMState Operator to configure a Linux bridge network for live
migration or external access to virtual machines (VMs). For installation instructions, see Installing the
Kubernetes NMState Operator by using the web console.

You can install the SR-IOV Operator to manage SR-IOV network devices and network attachments. For
installation instructions, see Installing the SR-IOV Network Operator .

You can add the MetalLB Operator to manage the lifecycle for an instance of MetalLB on your cluster.
For installation instructions, see Installing the MetalLB Operator from the OperatorHub using the web
console.

5.3.2. Configuring a Linux bridge network

After you install the Kubernetes NMState Operator, you can configure a Linux bridge network for live
migration or external access to virtual machines (VMs).

5.3.2.1. Creating a Linux bridge NNCP

You can create a NodeNetworkConfigurationPolicy (NNCP) manifest for a Linux bridge network.

Prerequisites

kind: HostPathProvisioner
metadata:
 name: hostpath-provisioner
spec:
 imagePullPolicy: IfNotPresent
 pathConfig:
 path: "</path/to/backing/directory>"
 useNamingPrefix: false
 workload:
 nodeSelector:
 example.io/example-workloads-key: example-workloads-value 1

CHAPTER 5. POSTINSTALLATION CONFIGURATION

65

https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/nodes/#nodes-scheduler-node-selectors
https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/nodes/#nodes-scheduler-node-affinity
https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/nodes/#nodes-scheduler-taints-tolerations
https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/networking/#k8s-nmstate-about-the-k8s-nmstate-operator
https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/networking/#installing-the-kubernetes-nmstate-operator-cli
https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/networking/#about-sriov
https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/networking/#installing-sriov-operator
https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/networking/#about-metallb
https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/networking/#metallb-operator-install

1

2

3

4

5

6

7

8

Prerequisites

You have installed the Kubernetes NMState Operator.

Procedure

Create the NodeNetworkConfigurationPolicy manifest. This example includes sample values
that you must replace with your own information.

Name of the policy.

Name of the interface.

Optional: Human-readable description of the interface.

The type of interface. This example creates a bridge.

The requested state for the interface after creation.

Disables IPv4 in this example.

Disables STP in this example.

The node NIC to which the bridge is attached.

5.3.2.2. Creating a Linux bridge NAD by using the web console

You can create a network attachment definition (NAD) to provide layer-2 networking to pods and virtual
machines by using the OpenShift Container Platform web console.

A Linux bridge network attachment definition is the most efficient method for connecting a virtual
machine to a VLAN.

apiVersion: nmstate.io/v1
kind: NodeNetworkConfigurationPolicy
metadata:
 name: br1-eth1-policy 1
spec:
 desiredState:
 interfaces:
 - name: br1 2
 description: Linux bridge with eth1 as a port 3
 type: linux-bridge 4
 state: up 5
 ipv4:
 enabled: false 6
 bridge:
 options:
 stp:
 enabled: false 7
 port:
 - name: eth1 8

OpenShift Container Platform 4.17 Virtualization

66

WARNING

Configuring IP address management (IPAM) in a network attachment definition for
virtual machines is not supported.

Procedure

1. In the web console, click Networking → NetworkAttachmentDefinitions.

2. Click Create Network Attachment Definition.

NOTE

The network attachment definition must be in the same namespace as the pod or
virtual machine.

3. Enter a unique Name and optional Description.

4. Select CNV Linux bridge from the Network Type list.

5. Enter the name of the bridge in the Bridge Name field.

6. Optional: If the resource has VLAN IDs configured, enter the ID numbers in the VLAN Tag
Number field.

7. Optional: Select MAC Spoof Check to enable MAC spoof filtering. This feature provides
security against a MAC spoofing attack by allowing only a single MAC address to exit the pod.

8. Click Create.

Next steps

Attaching a virtual machine (VM) to a Linux bridge network

5.3.3. Configuring a network for live migration

After you have configured a Linux bridge network, you can configure a dedicated network for live
migration. A dedicated network minimizes the effects of network saturation on tenant workloads during
live migration.

5.3.3.1. Configuring a dedicated secondary network for live migration

To configure a dedicated secondary network for live migration, you must first create a bridge network
attachment definition (NAD) by using the CLI. Then, you add the name of the
NetworkAttachmentDefinition object to the HyperConverged custom resource (CR).

Prerequisites

You installed the OpenShift CLI (oc).



CHAPTER 5. POSTINSTALLATION CONFIGURATION

67

1

2 3

4

5

You logged in to the cluster as a user with the cluster-admin role.

Each node has at least two Network Interface Cards (NICs).

The NICs for live migration are connected to the same VLAN.

Procedure

1. Create a NetworkAttachmentDefinition manifest according to the following example:

Example configuration file

Specify the name of the NetworkAttachmentDefinition object.

Specify the name of the NIC to be used for live migration.

Specify the name of the CNI plugin that provides the network for the NAD.

Specify an IP address range for the secondary network. This range must not overlap the IP
addresses of the main network.

2. Open the HyperConverged CR in your default editor by running the following command:

3. Add the name of the NetworkAttachmentDefinition object to the spec.liveMigrationConfig
stanza of the HyperConverged CR:

Example HyperConverged manifest

apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:
 name: my-secondary-network 1
 namespace: openshift-cnv 2
spec:
 config: '{
 "cniVersion": "0.3.1",
 "name": "migration-bridge",
 "type": "macvlan",
 "master": "eth1", 3
 "mode": "bridge",
 "ipam": {
 "type": "whereabouts", 4
 "range": "10.200.5.0/24" 5
 }
 }'

oc edit hyperconverged kubevirt-hyperconverged -n openshift-cnv

apiVersion: hco.kubevirt.io/v1beta1
kind: HyperConverged
metadata:
 name: kubevirt-hyperconverged
spec:

OpenShift Container Platform 4.17 Virtualization

68

1 Specify the name of the Multus NetworkAttachmentDefinition object to be used for live
migrations.

4. Save your changes and exit the editor. The virt-handler pods restart and connect to the
secondary network.

Verification

When the node that the virtual machine runs on is placed into maintenance mode, the VM
automatically migrates to another node in the cluster. You can verify that the migration
occurred over the secondary network and not the default pod network by checking the target IP
address in the virtual machine instance (VMI) metadata.

5.3.3.2. Selecting a dedicated network by using the web console

You can select a dedicated network for live migration by using the OpenShift Container Platform web
console.

Prerequisites

You configured a Multus network for live migration.

Procedure

1. Navigate to Virtualization > Overview in the OpenShift Container Platform web console.

2. Click the Settings tab and then click Live migration.

3. Select the network from the Live migration network list.

5.3.4. Configuring an SR-IOV network

After you install the SR-IOV Operator, you can configure an SR-IOV network.

5.3.4.1. Configuring SR-IOV network devices

The SR-IOV Network Operator adds the SriovNetworkNodePolicy.sriovnetwork.openshift.io
CustomResourceDefinition to OpenShift Container Platform. You can configure an SR-IOV network
device by creating a SriovNetworkNodePolicy custom resource (CR).

NOTE

 liveMigrationConfig:
 completionTimeoutPerGiB: 800
 network: <network> 1
 parallelMigrationsPerCluster: 5
 parallelOutboundMigrationsPerNode: 2
 progressTimeout: 150
...

$ oc get vmi <vmi_name> -o jsonpath='{.status.migrationState.targetNodeAddress}'

CHAPTER 5. POSTINSTALLATION CONFIGURATION

69

1

NOTE

When applying the configuration specified in a SriovNetworkNodePolicy object, the SR-
IOV Operator might drain the nodes, and in some cases, reboot nodes. Reboot only
happens in the following cases:

With Mellanox NICs (mlx5 driver) a node reboot happens every time the number
of virtual functions (VFs) increase on a physical function (PF).

With Intel NICs, a reboot only happens if the kernel parameters do not include
intel_iommu=on and iommu=pt.

It might take several minutes for a configuration change to apply.

Prerequisites

You installed the OpenShift CLI (oc).

You have access to the cluster as a user with the cluster-admin role.

You have installed the SR-IOV Network Operator.

You have enough available nodes in your cluster to handle the evicted workload from drained
nodes.

You have not selected any control plane nodes for SR-IOV network device configuration.

Procedure

1. Create an SriovNetworkNodePolicy object, and then save the YAML in the <name>-sriov-
node-network.yaml file. Replace <name> with the name for this configuration.

Specify a name for the CR object.

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetworkNodePolicy
metadata:
 name: <name> 1
 namespace: openshift-sriov-network-operator 2
spec:
 resourceName: <sriov_resource_name> 3
 nodeSelector:
 feature.node.kubernetes.io/network-sriov.capable: "true" 4
 priority: <priority> 5
 mtu: <mtu> 6
 numVfs: <num> 7
 nicSelector: 8
 vendor: "<vendor_code>" 9
 deviceID: "<device_id>" 10
 pfNames: ["<pf_name>", ...] 11
 rootDevices: ["<pci_bus_id>", "..."] 12
 deviceType: vfio-pci 13
 isRdma: false 14

OpenShift Container Platform 4.17 Virtualization

70

2

3

4

5

6

7

8

9

10

11

12

13

14

Specify the namespace where the SR-IOV Operator is installed.

Specify the resource name of the SR-IOV device plugin. You can create multiple
SriovNetworkNodePolicy objects for a resource name.

Specify the node selector to select which nodes are configured. Only SR-IOV network
devices on selected nodes are configured. The SR-IOV Container Network Interface (CNI)
plugin and device plugin are deployed only on selected nodes.

Optional: Specify an integer value between 0 and 99. A smaller number gets higher priority,
so a priority of 10 is higher than a priority of 99. The default value is 99.

Optional: Specify a value for the maximum transmission unit (MTU) of the virtual function.
The maximum MTU value can vary for different NIC models.

Specify the number of the virtual functions (VF) to create for the SR-IOV physical network
device. For an Intel network interface controller (NIC), the number of VFs cannot be larger
than the total VFs supported by the device. For a Mellanox NIC, the number of VFs cannot
be larger than 127.

The nicSelector mapping selects the Ethernet device for the Operator to configure. You
do not need to specify values for all the parameters. It is recommended to identify the
Ethernet adapter with enough precision to minimize the possibility of selecting an Ethernet
device unintentionally. If you specify rootDevices, you must also specify a value for
vendor, deviceID, or pfNames. If you specify both pfNames and rootDevices at the same
time, ensure that they point to an identical device.

Optional: Specify the vendor hex code of the SR-IOV network device. The only allowed
values are either 8086 or 15b3.

Optional: Specify the device hex code of SR-IOV network device. The only allowed values
are 158b, 1015, 1017.

Optional: The parameter accepts an array of one or more physical function (PF) names for
the Ethernet device.

The parameter accepts an array of one or more PCI bus addresses for the physical function
of the Ethernet device. Provide the address in the following format: 0000:02:00.1.

The vfio-pci driver type is required for virtual functions in OpenShift Virtualization.

Optional: Specify whether to enable remote direct memory access (RDMA) mode. For a
Mellanox card, set isRdma to false. The default value is false.

NOTE

If isRDMA flag is set to true, you can continue to use the RDMA enabled VF as a
normal network device. A device can be used in either mode.

2. Optional: Label the SR-IOV capable cluster nodes with
SriovNetworkNodePolicy.Spec.NodeSelector if they are not already labeled. For more
information about labeling nodes, see "Understanding how to update labels on nodes".

3. Create the SriovNetworkNodePolicy object:

CHAPTER 5. POSTINSTALLATION CONFIGURATION

71

where <name> specifies the name for this configuration.

After applying the configuration update, all the pods in sriov-network-operator namespace
transition to the Running status.

4. To verify that the SR-IOV network device is configured, enter the following command. Replace
<node_name> with the name of a node with the SR-IOV network device that you just
configured.

Next steps

Attaching a virtual machine (VM) to an SR-IOV network

5.3.5. Enabling load balancer service creation by using the web console

You can enable the creation of load balancer services for a virtual machine (VM) by using the OpenShift
Container Platform web console.

Prerequisites

You have configured a load balancer for the cluster.

You are logged in as a user with the cluster-admin role.

Procedure

1. Navigate to Virtualization → Overview.

2. On the Settings tab, click Cluster.

3. Expand General settings and SSH configuration.

4. Set SSH over LoadBalancer service to on.

5.4. POSTINSTALLATION STORAGE CONFIGURATION

The following storage configuration tasks are mandatory:

You must configure a default storage class for your cluster. Otherwise, the cluster cannot
receive automated boot source updates.

You must configure storage profiles if your storage provider is not recognized by CDI. A storage
profile provides recommended storage settings based on the associated storage class.

Optional: You can configure local storage by using the hostpath provisioner (HPP).

See the storage configuration overview for more options, including configuring the Containerized Data
Importer (CDI), data volumes, and automatic boot source updates.

$ oc create -f <name>-sriov-node-network.yaml

$ oc get sriovnetworknodestates -n openshift-sriov-network-operator <node_name> -o
jsonpath='{.status.syncStatus}'

OpenShift Container Platform 4.17 Virtualization

72

https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/storage/#defining-storage-classes_dynamic-provisioning

1

2

5.4.1. Configuring local storage by using the HPP

When you install the OpenShift Virtualization Operator, the Hostpath Provisioner (HPP) Operator is
automatically installed. The HPP Operator creates the HPP provisioner.

The HPP is a local storage provisioner designed for OpenShift Virtualization. To use the HPP, you must
create an HPP custom resource (CR).

IMPORTANT

HPP storage pools must not be in the same partition as the operating system. Otherwise,
the storage pools might fill the operating system partition. If the operating system
partition is full, performance can be effected or the node can become unstable or
unusable.

5.4.1.1. Creating a storage class for the CSI driver with the storagePools stanza

To use the hostpath provisioner (HPP) you must create an associated storage class for the Container
Storage Interface (CSI) driver.

When you create a storage class, you set parameters that affect the dynamic provisioning of persistent
volumes (PVs) that belong to that storage class. You cannot update a StorageClass object’s
parameters after you create it.

NOTE

Virtual machines use data volumes that are based on local PVs. Local PVs are bound to
specific nodes. While a disk image is prepared for consumption by the virtual machine, it is
possible that the virtual machine cannot be scheduled to the node where the local
storage PV was previously pinned.

To solve this problem, use the Kubernetes pod scheduler to bind the persistent volume
claim (PVC) to a PV on the correct node. By using the StorageClass value with
volumeBindingMode parameter set to WaitForFirstConsumer, the binding and
provisioning of the PV is delayed until a pod is created using the PVC.

Procedure

1. Create a storageclass_csi.yaml file to define the storage class:

The two possible reclaimPolicy values are Delete and Retain. If you do not specify a value,
the default value is Delete.

The volumeBindingMode parameter determines when dynamic provisioning and volume
binding occur. Specify WaitForFirstConsumer to delay the binding and provisioning of a
persistent volume (PV) until after a pod that uses the persistent volume claim (PVC) is

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 name: hostpath-csi
provisioner: kubevirt.io.hostpath-provisioner
reclaimPolicy: Delete 1
volumeBindingMode: WaitForFirstConsumer 2
parameters:
 storagePool: my-storage-pool 3

CHAPTER 5. POSTINSTALLATION CONFIGURATION

73

3

persistent volume (PV) until after a pod that uses the persistent volume claim (PVC) is
created. This ensures that the PV meets the pod’s scheduling requirements.

Specify the name of the storage pool defined in the HPP CR.

2. Save the file and exit.

3. Create the StorageClass object by running the following command:

5.5. CONFIGURING HIGHER VM WORKLOAD DENSITY

To increase the number of virtual machines (VMs), you can configure a higher VM workload density in
your cluster by overcommitting the amount of memory (RAM).

IMPORTANT

Configuring higher workload density is a Technology Preview feature only. Technology
Preview features are not supported with Red Hat production service level agreements
(SLAs) and might not be functionally complete. Red Hat does not recommend using
them in production. These features provide early access to upcoming product features,
enabling customers to test functionality and provide feedback during the development
process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

The following workloads are especially suited for higher workload density:

Many similar workloads

Underused workloads

NOTE

While overcommitted memory can lead to a higher workload density, it can also lower
workload performance of a highly utilized system.

5.5.1. Using wasp-agent to configure higher VM workload density

The wasp-agent component enables an OpenShift Container Platform cluster to assign swap resources
to virtual machine (VM) workloads. Swap usage is only supported on worker nodes.

IMPORTANT

Swap resources can be only assigned to virtual machine workloads (VM pods) of the
Burstable Quality of Service (QoS) class. VM pods of the Guaranteed QoS class and
pods of any QoS class that do not belong to VMs cannot swap resources.

For descriptions of QoS classes, see Configure Quality of Service for Pods (Kubernetes
documentation).

$ oc create -f storageclass_csi.yaml

OpenShift Container Platform 4.17 Virtualization

74

https://access.redhat.com/support/offerings/techpreview/
https://kubernetes.io/docs/tasks/configure-pod-container/quality-service-pod/

Prerequisites

The oc tool is available.

You are logged into the cluster with the cluster-admin role.

A memory over-commit ratio is defined.

The node belongs to a worker pool.

Procedure

1. Create a privileged service account by entering the following commands:

NOTE

The wasp-agent component deploys an OCI hook to enable swap usage for
containers on the node level. The low-level nature requires the DaemonSet
object to be privileged.

2. Deploy wasp-agent by creating a DaemonSet object as follows:

$ oc adm new-project wasp

$ oc create sa -n wasp wasp

$ oc create clusterrolebinding wasp --clusterrole=cluster-admin --serviceaccount=wasp:wasp

$ oc adm policy add-scc-to-user -n wasp privileged -z wasp

kind: DaemonSet
apiVersion: apps/v1
metadata:
 name: wasp-agent
 namespace: wasp
 labels:
 app: wasp
 tier: node
spec:
 selector:
 matchLabels:
 name: wasp
 template:
 metadata:
 annotations:
 description: >-
 Configures swap for workloads
 labels:
 name: wasp
 spec:
 serviceAccountName: wasp
 hostPID: true
 hostUsers: true

CHAPTER 5. POSTINSTALLATION CONFIGURATION

75

3. Configure the kubelet service to permit swap:

a. Create a KubeletConfiguration file as shown in the example:

Example of a KubeletConfiguration file

If the cluster is already using an existing KubeletConfiguration file, add the following to the
spec section:

 terminationGracePeriodSeconds: 5
 containers:
 - name: wasp-agent
 image: >-
 registry.redhat.io/container-native-virtualization/wasp-agent-rhel9:v4.17
 imagePullPolicy: Always
 env:
 - name: "FSROOT"
 value: "/host"
 resources:
 requests:
 cpu: 100m
 memory: 50M
 securityContext:
 privileged: true
 volumeMounts:
 - name: host
 mountPath: "/host"
 volumes:
 - name: host
 hostPath:
 path: "/"
 priorityClassName: system-node-critical
 updateStrategy:
 type: RollingUpdate
 rollingUpdate:
 maxUnavailable: 10%
 maxSurge: 0
status: {}

apiVersion: machineconfiguration.openshift.io/v1
kind: KubeletConfig
metadata:
 name: custom-config
spec:
 machineConfigPoolSelector:
 matchLabels:
 pools.operator.machineconfiguration.openshift.io/worker: '' # MCP
 #machine.openshift.io/cluster-api-machine-role: worker # machine
 #node-role.kubernetes.io/worker: '' # node
 kubeletConfig:
 failSwapOn: false
 evictionSoft:
 memory.available: "1Gi"
 evictionSoftGracePeriod:
 memory.available: "10s"

OpenShift Container Platform 4.17 Virtualization

76

b. Run the following command:

4. Create a MachineConfig object to provision swap as follows:

To have enough swap space for the worst-case scenario, make sure to have at least as much

apiVersion: machineconfiguration.openshift.io/v1
kind: KubeletConfig
metadata:
 name: custom-config
...
spec
...
 kubeletConfig:
 evictionSoft:
 memory.available: 1Gi
 evictionSoftGracePeriod:
 memory.available: 1m30s
 failSwapOn: false

$ oc wait mcp worker --for condition=Updated=True

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
 labels:
 machineconfiguration.openshift.io/role: worker
 name: 90-worker-swap
spec:
 config:
 ignition:
 version: 3.4.0
 systemd:
 units:
 - contents: |
 [Unit]
 Description=Provision and enable swap
 ConditionFirstBoot=no

 [Service]
 Type=oneshot
 Environment=SWAP_SIZE_MB=5000
 ExecStart=/bin/sh -c "sudo dd if=/dev/zero of=/var/tmp/swapfile
count=${SWAP_SIZE_MB} bs=1M && \
 sudo chmod 600 /var/tmp/swapfile && \
 sudo mkswap /var/tmp/swapfile && \
 sudo swapon /var/tmp/swapfile && \
 free -h && \
 sudo systemctl set-property --runtime system.slice MemorySwapMax=0
IODeviceLatencyTargetSec=\"/ 50ms\""

 [Install]
 RequiredBy=kubelet-dependencies.target
 enabled: true
 name: swap-provision.service

CHAPTER 5. POSTINSTALLATION CONFIGURATION

77

To have enough swap space for the worst-case scenario, make sure to have at least as much
swap space provisioned as overcommitted RAM. Calculate the amount of swap space to be
provisioned on a node using the following formula:

Example:

5. Deploy alerting rules as follows:

6. Configure OpenShift Virtualization to use memory overcommit either by using the OpenShift
Container Platform web console or by editing the HyperConverged custom resource (CR) file
as shown in the following example.
Example:

7. Apply all the configurations to compute nodes in your cluster by entering the following

NODE_SWAP_SPACE = NODE_RAM * (MEMORY_OVER_COMMIT_PERCENT / 100% -
1)

NODE_SWAP_SPACE = 16 GB * (150% / 100% - 1)
 = 16 GB * (1.5 - 1)
 = 16 GB * (0.5)
 = 8 GB

apiVersion: monitoring.openshift.io/v1
kind: AlertingRule
metadata:
 name: wasp-alerts
 namespace: openshift-monitoring
spec:
 groups:
 - name: wasp.rules
 rules:
 - alert: NodeSwapping
 annotations:
 description: Node {{ $labels.instance }} is swapping at a rate of {{ printf "%.2f" $value }}
MB/s
 runbook_url: https://github.com/openshift-virtualization/wasp-
agent/tree/main/runbooks/alerts/NodeSwapping.md
 summary: A node is swapping memory pages
 expr: |
 # In MB/s
 irate(node_memory_SwapFree_bytes{job="node-exporter"}[5m]) / 1024^2 > 0
 for: 1m
 labels:
 severity: critical

apiVersion: hco.kubevirt.io/v1beta1
kind: HyperConverged
metadata:
 name: kubevirt-hyperconverged
 namespace: openshift-cnv
spec:
 higherWorkloadDensity:
 memoryOvercommitPercentage: 150

OpenShift Container Platform 4.17 Virtualization

78

7. Apply all the configurations to compute nodes in your cluster by entering the following
command:

NOTE

After applying all configurations, the swap feature is fully available only after all
MachineConfigPool rollouts are complete.

Verification

1. To verify the deployment of wasp-agent, run the following command:

If the deployment is successful, the following message is displayed:

2. To verify that swap is correctly provisioned, do the following:

a. Run the following command:

b. Select a node from the provided list and run the following command:

If swap is provisioned correctly, an amount greater than zero is displayed, similar to the
following:

 total used free shared buff/cach
e

available

Mem: 31846 23155 1044 6014 14483 8690

Swap: 8191 2337 5854

3. Verify the OpenShift Virtualization memory overcommitment configuration by running the
following command:

The returned value, for example 150, must match the value you had previously configured.

$ oc patch --type=merge \
 -f <../manifests/hco-set-memory-overcommit.yaml> \
 --patch-file <../manifests/hco-set-memory-overcommit.yaml>

$ oc rollout status ds wasp-agent -n wasp

daemon set "wasp-agent" successfully rolled out

$ oc get nodes -l node-role.kubernetes.io/worker

$ oc debug node/<selected-node> -- free -m

$ oc get -n openshift-cnv HyperConverged kubevirt-hyperconverged -o jsonpath="
{.spec.higherWorkloadDensity.memoryOvercommitPercentage}"
150

CHAPTER 5. POSTINSTALLATION CONFIGURATION

79

CHAPTER 6. UPDATING

6.1. UPDATING OPENSHIFT VIRTUALIZATION

Learn how Operator Lifecycle Manager (OLM) delivers z-stream and minor version updates for
OpenShift Virtualization.

6.1.1. OpenShift Virtualization on RHEL 9

OpenShift Virtualization 4.17 is based on Red Hat Enterprise Linux (RHEL) 9. You can update to
OpenShift Virtualization 4.17 from a version that was based on RHEL 8 by following the standard
OpenShift Virtualization update procedure. No additional steps are required.

As in previous versions, you can perform the update without disrupting running workloads. OpenShift
Virtualization 4.17 supports live migration from RHEL 8 nodes to RHEL 9 nodes.

6.1.1.1. RHEL 9 machine type

All VM templates that are included with OpenShift Virtualization now use the RHEL 9 machine type by
default: machineType: pc-q35-rhel9.<y>.0, where <y> is a single digit corresponding to the latest
minor version of RHEL 9. For example, the value pc-q35-rhel9.2.0 is used for RHEL 9.2.

Updating OpenShift Virtualization does not change the machineType value of any existing VMs. These
VMs continue to function as they did before the update. You can optionally change a VM’s machine type
so that it can benefit from RHEL 9 improvements.

IMPORTANT

Before you change a VM’s machineType value, you must shut down the VM.

6.1.2. About updating OpenShift Virtualization

Operator Lifecycle Manager (OLM) manages the lifecycle of the OpenShift Virtualization
Operator. The Marketplace Operator, which is deployed during OpenShift Container Platform
installation, makes external Operators available to your cluster.

OLM provides z-stream and minor version updates for OpenShift Virtualization. Minor version
updates become available when you update OpenShift Container Platform to the next minor
version. You cannot update OpenShift Virtualization to the next minor version without first
updating OpenShift Container Platform.

OpenShift Virtualization subscriptions use a single update channel that is named stable. The
stable channel ensures that your OpenShift Virtualization and OpenShift Container Platform
versions are compatible.

If your subscription’s approval strategy is set to Automatic, the update process starts as soon as
a new version of the Operator is available in the stable channel. It is highly recommended to use
the Automatic approval strategy to maintain a supportable environment. Each minor version of
OpenShift Virtualization is only supported if you run the corresponding OpenShift Container
Platform version. For example, you must run OpenShift Virtualization 4.17 on OpenShift
Container Platform 4.17.

Though it is possible to select the Manual approval strategy, this is not recommended
because it risks the supportability and functionality of your cluster. With the Manual

OpenShift Container Platform 4.17 Virtualization

80

approval strategy, you must manually approve every pending update. If OpenShift
Container Platform and OpenShift Virtualization updates are out of sync, your cluster
becomes unsupported.

The amount of time an update takes to complete depends on your network connection. Most
automatic updates complete within fifteen minutes.

Updating OpenShift Virtualization does not interrupt network connections.

Data volumes and their associated persistent volume claims are preserved during update.

IMPORTANT

If you have virtual machines running that use hostpath provisioner storage, they cannot
be live migrated and might block an OpenShift Container Platform cluster update.

As a workaround, you can reconfigure the virtual machines so that they can be powered
off automatically during a cluster update. Set the evictionStrategy field to None and the
runStrategy field to Always.

6.1.2.1. About workload updates

When you update OpenShift Virtualization, virtual machine workloads, including libvirt, virt-launcher,
and qemu, update automatically if they support live migration.

NOTE

Each virtual machine has a virt-launcher pod that runs the virtual machine instance
(VMI). The virt-launcher pod runs an instance of libvirt, which is used to manage the
virtual machine (VM) process.

You can configure how workloads are updated by editing the spec.workloadUpdateStrategy stanza of
the HyperConverged custom resource (CR). There are two available workload update methods:
LiveMigrate and Evict.

Because the Evict method shuts down VMI pods, only the LiveMigrate update strategy is enabled by
default.

When LiveMigrate is the only update strategy enabled:

VMIs that support live migration are migrated during the update process. The VM guest moves
into a new pod with the updated components enabled.

VMIs that do not support live migration are not disrupted or updated.

If a VMI has the LiveMigrate eviction strategy but does not support live migration, it is not
updated.

If you enable both LiveMigrate and Evict:

VMIs that support live migration use the LiveMigrate update strategy.

VMIs that do not support live migration use the Evict update strategy. If a VMI is controlled by a
VirtualMachine object that has runStrategy: Always set, a new VMI is created in a new pod
with updated components.

CHAPTER 6. UPDATING

81

Migration attempts and timeouts
When updating workloads, live migration fails if a pod is in the Pending state for the following periods:

5 minutes

If the pod is pending because it is Unschedulable.

15 minutes

If the pod is stuck in the pending state for any reason.

When a VMI fails to migrate, the virt-controller tries to migrate it again. It repeats this process until all
migratable VMIs are running on new virt-launcher pods. If a VMI is improperly configured, however,
these attempts can repeat indefinitely.

NOTE

Each attempt corresponds to a migration object. Only the five most recent attempts are
held in a buffer. This prevents migration objects from accumulating on the system while
retaining information for debugging.

6.1.2.2. About Control Plane Only updates

Every even-numbered minor version of OpenShift Container Platform, including 4.10 and 4.12, is an
Extended Update Support (EUS) version. However, because Kubernetes design mandates serial minor
version updates, you cannot directly update from one EUS version to the next.

After you update from the source EUS version to the next odd-numbered minor version, you must
sequentially update OpenShift Virtualization to all z-stream releases of that minor version that are on
your update path. When you have upgraded to the latest applicable z-stream version, you can then
update OpenShift Container Platform to the target EUS minor version.

When the OpenShift Container Platform update succeeds, the corresponding update for OpenShift
Virtualization becomes available. You can now update OpenShift Virtualization to the target EUS
version.

6.1.2.2.1. Preparing to update

Before beginning a Control Plane Only update, you must:

Pause worker nodes' machine config pools before you start a Control Plane Only update so that
the workers are not rebooted twice.

Disable automatic workload updates before you begin the update process. This is to prevent
OpenShift Virtualization from migrating or evicting your virtual machines (VMs) until you update
to your target EUS version.

NOTE

By default, OpenShift Virtualization automatically updates workloads, such as the virt-
launcher pod, when you update the OpenShift Virtualization Operator. You can configure
this behavior in the spec.workloadUpdateStrategy stanza of the HyperConverged
custom resource.

Learn more about Performing a Control Plane Only update .

OpenShift Container Platform 4.17 Virtualization

82

https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/updating_clusters/#control-plane-only-update

6.1.3. Preventing workload updates during a Control Plane Only update

When you update from one Extended Update Support (EUS) version to the next, you must manually
disable automatic workload updates to prevent OpenShift Virtualization from migrating or evicting
workloads during the update process.

Prerequisites

You are running an EUS version of OpenShift Container Platform and want to update to the
next EUS version. You have not yet updated to the odd-numbered version in between.

You read "Preparing to perform a Control Plane Only update" and learned the caveats and
requirements that pertain to your OpenShift Container Platform cluster.

You paused the worker nodes' machine config pools as directed by the OpenShift Container
Platform documentation.

It is recommended that you use the default Automatic approval strategy. If you use the Manual
approval strategy, you must approve all pending updates in the web console. For more details,
refer to the "Manually approving a pending Operator update" section.

Procedure

1. Run the following command and record the workloadUpdateMethods configuration:

2. Turn off all workload update methods by running the following command:

Example output

3. Ensure that the HyperConverged Operator is Upgradeable before you continue. Enter the
following command and monitor the output:

Example 6.1. Example output

$ oc get kv kubevirt-kubevirt-hyperconverged \
 -n openshift-cnv -o jsonpath='{.spec.workloadUpdateStrategy.workloadUpdateMethods}'

$ oc patch hyperconverged kubevirt-hyperconverged -n openshift-cnv \
 --type json -p
'[{"op":"replace","path":"/spec/workloadUpdateStrategy/workloadUpdateMethods", "value":[]}]'

hyperconverged.hco.kubevirt.io/kubevirt-hyperconverged patched

$ oc get hyperconverged kubevirt-hyperconverged -n openshift-cnv -o json | jq
".status.conditions"

[
 {
 "lastTransitionTime": "2022-12-09T16:29:11Z",
 "message": "Reconcile completed successfully",
 "observedGeneration": 3,
 "reason": "ReconcileCompleted",
 "status": "True",
 "type": "ReconcileComplete"

CHAPTER 6. UPDATING

83

1 The OpenShift Virtualization Operator has the Upgradeable status.

4. Manually update your cluster from the source EUS version to the next minor version of
OpenShift Container Platform:

Verification

Check the current version by running the following command:

NOTE

 },
 {
 "lastTransitionTime": "2022-12-09T20:30:10Z",
 "message": "Reconcile completed successfully",
 "observedGeneration": 3,
 "reason": "ReconcileCompleted",
 "status": "True",
 "type": "Available"
 },
 {
 "lastTransitionTime": "2022-12-09T20:30:10Z",
 "message": "Reconcile completed successfully",
 "observedGeneration": 3,
 "reason": "ReconcileCompleted",
 "status": "False",
 "type": "Progressing"
 },
 {
 "lastTransitionTime": "2022-12-09T16:39:11Z",
 "message": "Reconcile completed successfully",
 "observedGeneration": 3,
 "reason": "ReconcileCompleted",
 "status": "False",
 "type": "Degraded"
 },
 {
 "lastTransitionTime": "2022-12-09T20:30:10Z",
 "message": "Reconcile completed successfully",
 "observedGeneration": 3,
 "reason": "ReconcileCompleted",
 "status": "True",
 "type": "Upgradeable" 1
 }
]

$ oc adm upgrade

$ oc get clusterversion

OpenShift Container Platform 4.17 Virtualization

84

NOTE

Updating OpenShift Container Platform to the next version is a prerequisite
for updating OpenShift Virtualization. For more details, refer to the
"Updating clusters" section of the OpenShift Container Platform
documentation.

5. Update OpenShift Virtualization.

With the default Automatic approval strategy, OpenShift Virtualization automatically
updates to the corresponding version after you update OpenShift Container Platform.

If you use the Manual approval strategy, approve the pending updates by using the web
console.

6. Monitor the OpenShift Virtualization update by running the following command:

7. Update OpenShift Virtualization to every z-stream version that is available for the non-EUS
minor version, monitoring each update by running the command shown in the previous step.

8. Confirm that OpenShift Virtualization successfully updated to the latest z-stream release of the
non-EUS version by running the following command:

Example output

9. Wait until the HyperConverged Operator has the Upgradeable status before you perform the
next update. Enter the following command and monitor the output:

10. Update OpenShift Container Platform to the target EUS version.

11. Confirm that the update succeeded by checking the cluster version:

12. Update OpenShift Virtualization to the target EUS version.

With the default Automatic approval strategy, OpenShift Virtualization automatically
updates to the corresponding version after you update OpenShift Container Platform.

$ oc get csv -n openshift-cnv

$ oc get hyperconverged kubevirt-hyperconverged -n openshift-cnv -o json | jq
".status.versions"

[
 {
 "name": "operator",
 "version": "4.17.0"
 }
]

$ oc get hyperconverged kubevirt-hyperconverged -n openshift-cnv -o json | jq
".status.conditions"

$ oc get clusterversion

CHAPTER 6. UPDATING

85

If you use the Manual approval strategy, approve the pending updates by using the web
console.

13. Monitor the OpenShift Virtualization update by running the following command:

The update completes when the VERSION field matches the target EUS version and the
PHASE field reads Succeeded.

14. Restore the workloadUpdateMethods configuration that you recorded from step 1 with the
following command:

Example output

Verification

Check the status of VM migration by running the following command:

Next steps

You can now unpause the worker nodes' machine config pools.

6.1.4. Configuring workload update methods

You can configure workload update methods by editing the HyperConverged custom resource (CR).

Prerequisites

To use live migration as an update method, you must first enable live migration in the cluster.

NOTE

If a VirtualMachineInstance CR contains evictionStrategy: LiveMigrate and
the virtual machine instance (VMI) does not support live migration, the VMI will
not update.

Procedure

1. To open the HyperConverged CR in your default editor, run the following command:

2. Edit the workloadUpdateStrategy stanza of the HyperConverged CR. For example:

$ oc get csv -n openshift-cnv

$ oc patch hyperconverged kubevirt-hyperconverged -n openshift-cnv --type json -p \
 "[{\"op\":\"add\",\"path\":\"/spec/workloadUpdateStrategy/workloadUpdateMethods\",
\"value\":{WorkloadUpdateMethodConfig}}]"

hyperconverged.hco.kubevirt.io/kubevirt-hyperconverged patched

$ oc get vmim -A

$ oc edit hyperconverged kubevirt-hyperconverged -n openshift-cnv

OpenShift Container Platform 4.17 Virtualization

86

1

2

3

4

5

The methods that can be used to perform automated workload updates. The available
values are LiveMigrate and Evict. If you enable both options as shown in this example,
updates use LiveMigrate for VMIs that support live migration and Evict for any VMIs that
do not support live migration. To disable automatic workload updates, you can either
remove the workloadUpdateStrategy stanza or set workloadUpdateMethods: [] to leave
the array empty.

The least disruptive update method. VMIs that support live migration are updated by
migrating the virtual machine (VM) guest into a new pod with the updated components
enabled. If LiveMigrate is the only workload update method listed, VMIs that do not
support live migration are not disrupted or updated.

A disruptive method that shuts down VMI pods during upgrade. Evict is the only update
method available if live migration is not enabled in the cluster. If a VMI is controlled by a
VirtualMachine object that has runStrategy: Always configured, a new VMI is created in a
new pod with updated components.

The number of VMIs that can be forced to be updated at a time by using the Evict method.
This does not apply to the LiveMigrate method.

The interval to wait before evicting the next batch of workloads. This does not apply to the
LiveMigrate method.

NOTE

You can configure live migration limits and timeouts by editing the
spec.liveMigrationConfig stanza of the HyperConverged CR.

3. To apply your changes, save and exit the editor.

6.1.5. Approving pending Operator updates

6.1.5.1. Manually approving a pending Operator update

If an installed Operator has the approval strategy in its subscription set to Manual, when new updates are
released in its current update channel, the update must be manually approved before installation can
begin.

Prerequisites

apiVersion: hco.kubevirt.io/v1beta1
kind: HyperConverged
metadata:
 name: kubevirt-hyperconverged
spec:
 workloadUpdateStrategy:
 workloadUpdateMethods: 1
 - LiveMigrate 2
 - Evict 3
 batchEvictionSize: 10 4
 batchEvictionInterval: "1m0s" 5
...

CHAPTER 6. UPDATING

87

An Operator previously installed using Operator Lifecycle Manager (OLM).

Procedure

1. In the Administrator perspective of the OpenShift Container Platform web console, navigate
to Operators → Installed Operators.

2. Operators that have a pending update display a status with Upgrade available. Click the name
of the Operator you want to update.

3. Click the Subscription tab. Any updates requiring approval are displayed next to Upgrade
status. For example, it might display 1 requires approval.

4. Click 1 requires approval, then click Preview Install Plan.

5. Review the resources that are listed as available for update. When satisfied, click Approve.

6. Navigate back to the Operators → Installed Operators page to monitor the progress of the
update. When complete, the status changes to Succeeded and Up to date.

6.1.6. Monitoring update status

6.1.6.1. Monitoring OpenShift Virtualization upgrade status

To monitor the status of a OpenShift Virtualization Operator upgrade, watch the cluster service version
(CSV) PHASE. You can also monitor the CSV conditions in the web console or by running the command
provided here.

NOTE

The PHASE and conditions values are approximations that are based on available
information.

Prerequisites

Log in to the cluster as a user with the cluster-admin role.

Install the OpenShift CLI (oc).

Procedure

1. Run the following command:

2. Review the output, checking the PHASE field. For example:

Example output

3. Optional: Monitor the aggregated status of all OpenShift Virtualization component conditions

$ oc get csv -n openshift-cnv

VERSION REPLACES PHASE
4.9.0 kubevirt-hyperconverged-operator.v4.8.2 Installing
4.9.0 kubevirt-hyperconverged-operator.v4.9.0 Replacing

OpenShift Container Platform 4.17 Virtualization

88

3. Optional: Monitor the aggregated status of all OpenShift Virtualization component conditions
by running the following command:

A successful upgrade results in the following output:

Example output

6.1.6.2. Viewing outdated OpenShift Virtualization workloads

You can view a list of outdated workloads by using the CLI.

NOTE

If there are outdated virtualization pods in your cluster, the
OutdatedVirtualMachineInstanceWorkloads alert fires.

Procedure

To view a list of outdated virtual machine instances (VMIs), run the following command:

NOTE

Configure workload updates to ensure that VMIs update automatically.

6.1.7. Additional resources

Performing a Control Plane Only update

What are Operators?

Operator Lifecycle Manager concepts and resources

Cluster service versions (CSVs)

About live migration

Configuring eviction strategies

Configuring live migration limits and timeouts

$ oc get hyperconverged kubevirt-hyperconverged -n openshift-cnv \
 -o=jsonpath='{range .status.conditions[*]}{.type}{"\t"}{.status}{"\t"}{.message}{"\n"}{end}'

ReconcileComplete True Reconcile completed successfully
Available True Reconcile completed successfully
Progressing False Reconcile completed successfully
Degraded False Reconcile completed successfully
Upgradeable True Reconcile completed successfully

$ oc get vmi -l kubevirt.io/outdatedLauncherImage --all-namespaces

CHAPTER 6. UPDATING

89

https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/updating_clusters/#control-plane-only-update
https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/operators/#olm-what-operators-are
https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/operators/#olm-understanding-olm
https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/operators/#olm-csv_olm-understanding-olm

CHAPTER 7. VIRTUAL MACHINES

7.1. CREATING VMS FROM RED HAT IMAGES

7.1.1. Creating virtual machines from Red Hat images overview

Red Hat images are golden images. They are published as container disks in a secure registry. The
Containerized Data Importer (CDI) polls and imports the container disks into your cluster and stores
them in the openshift-virtualization-os-images project as snapshots or persistent volume claims
(PVCs).

Red Hat images are automatically updated. You can disable and re-enable automatic updates for these
images. See Managing Red Hat boot source updates .

Cluster administrators can enable automatic subscription for Red Hat Enterprise Linux (RHEL) virtual
machines in the OpenShift Virtualization web console.

You can create virtual machines (VMs) from operating system images provided by Red Hat by using one
of the following methods:

Creating a VM from a template by using the web console

Creating a VM from an instance type by using the web console

Creating a VM from a VirtualMachine manifest by using the command line

IMPORTANT

Do not create VMs in the default openshift-* namespaces. Instead, create a new
namespace or use an existing namespace without the openshift prefix.

7.1.1.1. About golden images

A golden image is a preconfigured snapshot of a virtual machine (VM) that you can use as a resource to
deploy new VMs. For example, you can use golden images to provision the same system environment
consistently and deploy systems more quickly and efficiently.

7.1.1.1.1. How do golden images work?

Golden images are created by installing and configuring an operating system and software applications
on a reference machine or virtual machine. This includes setting up the system, installing required
drivers, applying patches and updates, and configuring specific options and preferences.

After the golden image is created, it is saved as a template or image file that can be replicated and
deployed across multiple clusters. The golden image can be updated by its maintainer periodically to
incorporate necessary software updates and patches, ensuring that the image remains up to date and
secure, and newly created VMs are based on this updated image.

7.1.1.1.2. Red Hat implementation of golden images

Red Hat publishes golden images as container disks in the registry for versions of Red Hat Enterprise
Linux (RHEL). Container disks are virtual machine images that are stored as a container image in a
container image registry. Any published image will automatically be made available in connected clusters

OpenShift Container Platform 4.17 Virtualization

90

after the installation of OpenShift Virtualization. After the images are available in a cluster, they are
ready to use to create VMs.

7.1.1.2. About VM boot sources

Virtual machines (VMs) consist of a VM definition and one or more disks that are backed by data
volumes. VM templates enable you to create VMs using predefined specifications.

Every template requires a boot source, which is a fully configured disk image including configured
drivers. Each template contains a VM definition with a pointer to the boot source. Each boot source has
a predefined name and namespace. For some operating systems, a boot source is automatically
provided. If it is not provided, then an administrator must prepare a custom boot source.

Provided boot sources are updated automatically to the latest version of the operating system. For
auto-updated boot sources, persistent volume claims (PVCs) and volume snapshots are created with
the cluster’s default storage class. If you select a different default storage class after configuration, you
must delete the existing boot sources in the cluster namespace that are configured with the previous
default storage class.

7.1.2. Creating virtual machines from instance types

You can simplify virtual machine (VM) creation by using instance types, whether you use the OpenShift
Container Platform web console or the CLI to create VMs.

7.1.2.1. About instance types

An instance type is a reusable object where you can define resources and characteristics to apply to new
VMs. You can define custom instance types or use the variety that are included when you install
OpenShift Virtualization.

To create a new instance type, you must first create a manifest, either manually or by using the virtctl
CLI tool. You then create the instance type object by applying the manifest to your cluster.

OpenShift Virtualization provides two CRDs for configuring instance types:

A namespaced object: VirtualMachineInstancetype

A cluster-wide object: VirtualMachineClusterInstancetype

These objects use the same VirtualMachineInstancetypeSpec.

7.1.2.1.1. Required attributes

When you configure an instance type, you must define the cpu and memory attributes. Other attributes
are optional.

NOTE

When you create a VM from an instance type, you cannot override any parameters
defined in the instance type.

Because instance types require defined CPU and memory attributes, OpenShift
Virtualization always rejects additional requests for these resources when creating a VM
from an instance type.

CHAPTER 7. VIRTUAL MACHINES

91

1

2

You can manually create an instance type manifest. For example:

Example YAML file with required fields

Required. Specifies the number of vCPUs to allocate to the guest.

Required. Specifies an amount of memory to allocate to the guest.

You can create an instance type manifest by using the virtctl CLI utility. For example:

Example virtctl command with required fields

where:

--cpu <value>

Specifies the number of vCPUs to allocate to the guest. Required.

--memory <value>

Specifies an amount of memory to allocate to the guest. Required.

TIP

You can immediately create the object from the new manifest by running the following command:

7.1.2.1.2. Optional attributes

In addition to the required cpu and memory attributes, you can include the following optional attributes
in the VirtualMachineInstancetypeSpec:

annotations

List annotations to apply to the VM.

gpus

List vGPUs for passthrough.

hostDevices

List host devices for passthrough.

ioThreadsPolicy

apiVersion: instancetype.kubevirt.io/v1beta1
kind: VirtualMachineInstancetype
metadata:
 name: example-instancetype
spec:
 cpu:
 guest: 1 1
 memory:
 guest: 128Mi 2

$ virtctl create instancetype --cpu 2 --memory 256Mi

$ virtctl create instancetype --cpu 2 --memory 256Mi | oc apply -f -

OpenShift Container Platform 4.17 Virtualization

92

Define an IO threads policy for managing dedicated disk access.

launchSecurity

Configure Secure Encrypted Virtualization (SEV).

nodeSelector

Specify node selectors to control the nodes where this VM is scheduled.

schedulerName

Define a custom scheduler to use for this VM instead of the default scheduler.

7.1.2.2. Pre-defined instance types

OpenShift Virtualization includes a set of pre-defined instance types called common-instancetypes.
Some are specialized for specific workloads and others are workload-agnostic.

These instance type resources are named according to their series, version, and size. The size value
follows the . delimiter and ranges from nano to 8xlarge.

Table 7.1. common-instancetypes series comparison

Use case Series Characteristics vCPU to
memory

ratio

Example resource

Universal U
Burstable CPU
performance

1:4
u1.medium

1 vCPUs

4 Gi
memory

Overcommitted O
Overcommitte
d memory

Burstable CPU
performance

1:4
o1.small

1 vCPU

2Gi
memory

Compute-exclusive CX
Hugepages

Dedicated CPU

Isolated
emulator
threads

vNUMA

1:2
cx1.2xlarge

8 vCPUs

16Gi
memory

CHAPTER 7. VIRTUAL MACHINES

93

NVIDIA GPU GN
For VMs that
use GPUs
provided by
the NVIDIA
GPU Operator

Has predefined
GPUs

Burstable CPU
performance

1:4
gn1.8xlarge

32 vCPUs

128Gi
memory

Memory-intensive M
Hugepages

Burstable CPU
performance

1:8
m1.large

2 vCPUs

16Gi
memory

Network-intensive N
Hugepages

Dedicated CPU

Isolated
emulator
threads

Requires nodes
capable of
running DPDK
workloads

1:2
n1.medium

4 vCPUs

4Gi
memory

Use case Series Characteristics vCPU to
memory

ratio

Example resource

7.1.2.3. Creating manifests by using the virtctl tool

You can use the virtctl CLI utility to simplify creating manifests for VMs, VM instance types, and VM
preferences. For more information, see VM manifest creation commands .

If you have a VirtualMachine manifest, you can create a VM from the command line.

7.1.2.4. Creating a VM from an instance type by using the web console

You can create a virtual machine (VM) from an instance type by using the OpenShift Container Platform
web console. You can also use the web console to create a VM by copying an existing snapshot or to
clone a VM.

You can create a VM from a list of available bootable volumes. You can add Linux- or Windows-based
volumes to the list.

OpenShift Container Platform 4.17 Virtualization

94

Procedure

1. In the web console, navigate to Virtualization → Catalog.
The InstanceTypes tab opens by default.

2. Select either of the following options:

Select a suitable bootable volume from the list. If the list is truncated, click the Show all
button to display the entire list.

NOTE

The bootable volume table lists only those volumes in the openshift-
virtualization-os-images namespace that have the
instancetype.kubevirt.io/default-preference label.

Optional: Click the star icon to designate a bootable volume as a favorite. Starred
bootable volumes appear first in the volume list.

Click Add volume to upload a new volume or to use an existing persistent volume claim
(PVC), a volume snapshot, or a containerDisk volume. Click Save.
Logos of operating systems that are not available in the cluster are shown at the bottom of
the list. You can add a volume for the required operating system by clicking the Add volume
link.

In addition, there is a link to the Create a Windows boot source quick start. The same link
appears in a popover if you hover the pointer over the question mark icon next to the Select
volume to boot from line.

Immediately after you install the environment or when the environment is disconnected, the
list of volumes to boot from is empty. In that case, three operating system logos are
displayed: Windows, RHEL, and Linux. You can add a new volume that meets your
requirements by clicking the Add volume button.

3. Click an instance type tile and select the resource size appropriate for your workload.

4. Optional: Choose the virtual machine details, including the VM’s name, that apply to the volume
you are booting from:

For a Linux-based volume, follow these steps to configure SSH:

a. If you have not already added a public SSH key to your project, click the edit icon beside
Authorized SSH key in the VirtualMachine details section.

b. Select one of the following options:

Use existing: Select a secret from the secrets list.

Add new: Follow these steps:

i. Browse to the public SSH key file or paste the file in the key field.

ii. Enter the secret name.

iii. Optional: Select Automatically apply this key to any new VirtualMachine you
create in this project.

CHAPTER 7. VIRTUAL MACHINES

95

c. Click Save.

For a Windows volume, follow either of these set of steps to configure sysprep options:

If you have not already added sysprep options for the Windows volume, follow these
steps:

i. Click the edit icon beside Sysprep in the VirtualMachine details section.

ii. Add the Autoattend.xml answer file.

iii. Add the Unattend.xml answer file.

iv. Click Save.

If you want to use existing sysprep options for the Windows volume, follow these steps:

i. Click Attach existing sysprep.

ii. Enter the name of the existing sysprep Unattend.xml answer file.

iii. Click Save.

5. Optional: If you are creating a Windows VM, you can mount a Windows driver disk:

a. Click the Customize VirtualMachine button.

b. On the VirtualMachine details page, click Storage.

c. Select the Mount Windows drivers disk checkbox.

6. Optional: Click View YAML & CLI to view the YAML file. Click CLI to view the CLI commands.
You can also download or copy either the YAML file contents or the CLI commands.

7. Click Create VirtualMachine.

After the VM is created, you can monitor the status on the VirtualMachine details page.

7.1.3. Creating virtual machines from templates

You can create virtual machines (VMs) from Red Hat templates by using the OpenShift Container
Platform web console.

7.1.3.1. About VM templates

Boot sources

You can expedite VM creation by using templates that have an available boot source. Templates with
a boot source are labeled Available boot source if they do not have a custom label.
Templates without a boot source are labeled Boot source required. See Creating virtual machines
from custom images.

Customization

You can customize the disk source and VM parameters before you start the VM.

See storage volume types and storage fields for details about disk source settings.

NOTE

OpenShift Container Platform 4.17 Virtualization

96

NOTE

If you copy a VM template with all its labels and annotations, your version of the template
is marked as deprecated when a new version of the Scheduling, Scale, and Performance
(SSP) Operator is deployed. You can remove this designation. See Customizing a VM
template by using the web console.

Single-node OpenShift

Due to differences in storage behavior, some templates are incompatible with single-node
OpenShift. To ensure compatibility, do not set the evictionStrategy field for templates or VMs that
use data volumes or storage profiles.

7.1.3.2. Creating a VM from a template

You can create a virtual machine (VM) from a template with an available boot source by using the
OpenShift Container Platform web console.

Optional: You can customize template or VM parameters, such as data sources, cloud-init, or SSH keys,
before you start the VM.

Procedure

1. Navigate to Virtualization → Catalog in the web console.

2. Click Boot source available to filter templates with boot sources.
The catalog displays the default templates. Click All Items to view all available templates for
your filters.

3. Click a template tile to view its details.

4. Optional: If you are using a Windows template, you can mount a Windows driver disk by selecting
the Mount Windows drivers disk checkbox.

5. If you do not need to customize the template or VM parameters, click Quick create
VirtualMachine to create a VM from the template.
If you need to customize the template or VM parameters, do the following:

a. Click Customize VirtualMachine.

b. Expand Storage or Optional parameters to edit data source settings.

c. Click Customize VirtualMachine parameters.
The Customize and create VirtualMachine pane displays the Overview, YAML,
Scheduling, Environment, Network interfaces, Disks, Scripts, and Metadata tabs.

d. Edit the parameters that must be set before the VM boots, such as cloud-init or a static
SSH key.

e. Click Create VirtualMachine.
The VirtualMachine details page displays the provisioning status.

7.1.3.2.1. Storage volume types

Table 7.2. Storage volume types

CHAPTER 7. VIRTUAL MACHINES

97

Type Description

ephemeral A local copy-on-write (COW) image that uses a network volume as a read-only
backing store. The backing volume must be a PersistentVolumeClaim. The
ephemeral image is created when the virtual machine starts and stores all writes
locally. The ephemeral image is discarded when the virtual machine is stopped,
restarted, or deleted. The backing volume (PVC) is not mutated in any way.

persistentVolumeClaim Attaches an available PV to a virtual machine. Attaching a PV allows for the virtual
machine data to persist between sessions.

Importing an existing virtual machine disk into a PVC by using CDI and attaching
the PVC to a virtual machine instance is the recommended method for importing
existing virtual machines into OpenShift Container Platform. There are some
requirements for the disk to be used within a PVC.

dataVolume Data volumes build on the persistentVolumeClaim disk type by managing the
process of preparing the virtual machine disk via an import, clone, or upload
operation. VMs that use this volume type are guaranteed not to start until the
volume is ready.

Specify type: dataVolume or type: "". If you specify any other value for type,
such as persistentVolumeClaim, a warning is displayed, and the virtual
machine does not start.

cloudInitNoCloud Attaches a disk that contains the referenced cloud-init NoCloud data source,
providing user data and metadata to the virtual machine. A cloud-init installation is
required inside the virtual machine disk.

containerDisk References an image, such as a virtual machine disk, that is stored in the container
image registry. The image is pulled from the registry and attached to the virtual
machine as a disk when the virtual machine is launched.

A containerDisk volume is not limited to a single virtual machine and is useful
for creating large numbers of virtual machine clones that do not require persistent
storage.

Only RAW and QCOW2 formats are supported disk types for the container image
registry. QCOW2 is recommended for reduced image size.

NOTE

A containerDisk volume is ephemeral. It is discarded when the
virtual machine is stopped, restarted, or deleted. A
containerDisk volume is useful for read-only file systems such
as CD-ROMs or for disposable virtual machines.

OpenShift Container Platform 4.17 Virtualization

98

emptyDisk Creates an additional sparse QCOW2 disk that is tied to the life-cycle of the
virtual machine interface. The data survives guest-initiated reboots in the virtual
machine but is discarded when the virtual machine stops or is restarted from the
web console. The empty disk is used to store application dependencies and data
that otherwise exceeds the limited temporary file system of an ephemeral disk.

The disk capacity size must also be provided.

Type Description

7.1.3.2.2. Storage fields

Field Description

Blank (creates PVC) Create an empty disk.

Import via URL (creates
PVC)

Import content via URL (HTTP or HTTPS endpoint).

Use an existing PVC Use a PVC that is already available in the cluster.

Clone existing PVC
(creates PVC)

Select an existing PVC available in the cluster and clone it.

Import via Registry
(creates PVC)

Import content via container registry.

Container (ephemeral) Upload content from a container located in a registry accessible from the cluster.
The container disk should be used only for read-only filesystems such as CD-
ROMs or temporary virtual machines.

Name Name of the disk. The name can contain lowercase letters (a-z), numbers (0-9),
hyphens (-), and periods (.), up to a maximum of 253 characters. The first and last
characters must be alphanumeric. The name must not contain uppercase letters,
spaces, or special characters.

Size Size of the disk in GiB.

Type Type of disk. Example: Disk or CD-ROM

Interface Type of disk device. Supported interfaces are virtIO, SATA, and SCSI.

Storage Class The storage class that is used to create the disk.

Advanced storage settings
The following advanced storage settings are optional and available for Blank, Import via URL, and
Clone existing PVC disks.

If you do not specify these parameters, the system uses the default storage profile values.

CHAPTER 7. VIRTUAL MACHINES

99

Parameter Option Parameter description

Volume Mode Filesystem Stores the virtual disk on a file system-based volume.

Block Stores the virtual disk directly on the block volume. Only use
Block if the underlying storage supports it.

Access Mode ReadWriteOnce
(RWO)

Volume can be mounted as read-write by a single node.

ReadWriteMany
(RWX)

Volume can be mounted as read-write by many nodes at one
time.

NOTE

This mode is required for live migration.

7.1.3.2.3. Customizing a VM template by using the web console

You can customize an existing virtual machine (VM) template by modifying the VM or template
parameters, such as data sources, cloud-init, or SSH keys, before you start the VM. If you customize a
template by copying it and including all of its labels and annotations, the customized template is marked
as deprecated when a new version of the Scheduling, Scale, and Performance (SSP) Operator is
deployed.

You can remove the deprecated designation from the customized template.

Procedure

1. Navigate to Virtualization → Templates in the web console.

2. From the list of VM templates, click the template marked as deprecated.

3. Click Edit next to the pencil icon beside Labels.

4. Remove the following two labels:

template.kubevirt.io/type: "base"

template.kubevirt.io/version: "version"

5. Click Save.

6. Click the pencil icon beside the number of existing Annotations.

7. Remove the following annotation:

template.kubevirt.io/deprecated

8. Click Save.

7.1.4. Creating virtual machines from the command line

OpenShift Container Platform 4.17 Virtualization

100

You can create virtual machines (VMs) from the command line by editing or creating a VirtualMachine
manifest. You can simplify VM configuration by using an instance type in your VM manifest.

NOTE

You can also create VMs from instance types by using the web console .

7.1.4.1. Creating manifests by using the virtctl tool

You can use the virtctl CLI utility to simplify creating manifests for VMs, VM instance types, and VM
preferences. For more information, see VM manifest creation commands .

7.1.4.2. Creating a VM from a VirtualMachine manifest

You can create a virtual machine (VM) from a VirtualMachine manifest.

Procedure

1. Edit the VirtualMachine manifest for your VM. The following example configures a Red Hat
Enterprise Linux (RHEL) VM:

NOTE

This example manifest does not configure VM authentication.

Example manifest for a RHEL VM

 apiVersion: kubevirt.io/v1
 kind: VirtualMachine
 metadata:
 name: rhel-9-minimal
 spec:
 dataVolumeTemplates:
 - metadata:
 name: rhel-9-minimal-volume
 spec:
 sourceRef:
 kind: DataSource
 name: rhel9 1
 namespace: openshift-virtualization-os-images 2
 storage: {}
 instancetype:
 name: u1.medium 3
 preference:
 name: rhel.9 4
 running: true
 template:
 spec:
 domain:
 devices: {}
 volumes:

CHAPTER 7. VIRTUAL MACHINES

101

1

2

3

4

The rhel9 golden image is used to install RHEL 9 as the guest operating system.

Golden images are stored in the openshift-virtualization-os-images namespace.

The u1.medium instance type requests 1 vCPU and 4Gi memory for the VM. These
resource values cannot be overridden within the VM.

The rhel.9 preference specifies additional attributes that support the RHEL 9 guest
operating system.

2. Create a virtual machine by using the manifest file:

3. Optional: Start the virtual machine:

Next steps

Configuring SSH access to virtual machines

7.2. CREATING VMS FROM CUSTOM IMAGES

7.2.1. Creating virtual machines from custom images overview

You can create virtual machines (VMs) from custom operating system images by using one of the
following methods:

Importing the image as a container disk from a registry .
Optional: You can enable auto updates for your container disks. See Managing automatic boot
source updates for details.

Importing the image from a web page .

Uploading the image from a local machine .

Cloning a persistent volume claim (PVC) that contains the image .

The Containerized Data Importer (CDI) imports the image into a PVC by using a data volume. You add
the PVC to the VM by using the OpenShift Container Platform web console or command line.

IMPORTANT

 - dataVolume:
 name: rhel-9-minimal-volume
 name: rootdisk

$ oc create -f <vm_manifest_file>.yaml

$ virtctl start <vm_name> -n <namespace>

OpenShift Container Platform 4.17 Virtualization

102

IMPORTANT

You must install the QEMU guest agent on VMs created from operating system images
that are not provided by Red Hat.

You must also install VirtIO drivers on Windows VMs.

The QEMU guest agent is included with Red Hat images.

7.2.2. Creating VMs by using container disks

You can create virtual machines (VMs) by using container disks built from operating system images.

You can enable auto updates for your container disks. See Managing automatic boot source updates for
details.

IMPORTANT

If the container disks are large, the I/O traffic might increase and cause worker nodes to
be unavailable. You can perform the following tasks to resolve this issue:

Pruning DeploymentConfig objects.

Configuring garbage collection .

You create a VM from a container disk by performing the following steps:

1. Build an operating system image into a container disk and upload it to your container registry .

2. If your container registry does not have TLS, configure your environment to disable TLS for your
registry.

3. Create a VM with the container disk as the disk source by using the web console or the
command line.

IMPORTANT

You must install the QEMU guest agent on VMs created from operating system images
that are not provided by Red Hat.

7.2.2.1. Building and uploading a container disk

You can build a virtual machine (VM) image into a container disk and upload it to a registry.

The size of a container disk is limited by the maximum layer size of the registry where the container disk
is hosted.

NOTE

For Red Hat Quay, you can change the maximum layer size by editing the YAML
configuration file that is created when Red Hat Quay is first deployed.

Prerequisites

You must have podman installed.

CHAPTER 7. VIRTUAL MACHINES

103

https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/building_applications/#pruning-deployments_pruning-objects
https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/nodes/#nodes-nodes-garbage-collection-configuring_nodes-nodes-configuring
https://access.redhat.com/documentation/en-us/red_hat_quay/

1

You must have a QCOW2 or RAW image file.

Procedure

1. Create a Dockerfile to build the VM image into a container image. The VM image must be
owned by QEMU, which has a UID of 107, and placed in the /disk/ directory inside the container.
Permissions for the /disk/ directory must then be set to 0440.
The following example uses the Red Hat Universal Base Image (UBI) to handle these
configuration changes in the first stage, and uses the minimal scratch image in the second
stage to store the result:

Where <vm_image> is the image in either QCOW2 or RAW format. If you use a remote
image, replace <vm_image>.qcow2 with the complete URL.

2. Build and tag the container:

3. Push the container image to the registry:

7.2.2.2. Disabling TLS for a container registry

You can disable TLS (transport layer security) for one or more container registries by editing the
insecureRegistries field of the HyperConverged custom resource.

Prerequisites

1. Open the HyperConverged CR in your default editor by running the following command:

2. Add a list of insecure registries to the spec.storageImport.insecureRegistries field.

Example HyperConverged custom resource

$ cat > Dockerfile << EOF
FROM registry.access.redhat.com/ubi8/ubi:latest AS builder
ADD --chown=107:107 <vm_image>.qcow2 /disk/ 1
RUN chmod 0440 /disk/*

FROM scratch
COPY --from=builder /disk/* /disk/
EOF

$ podman build -t <registry>/<container_disk_name>:latest .

$ podman push <registry>/<container_disk_name>:latest

$ oc edit hyperconverged kubevirt-hyperconverged -n openshift-cnv

apiVersion: hco.kubevirt.io/v1beta1
kind: HyperConverged
metadata:
 name: kubevirt-hyperconverged
 namespace: openshift-cnv
spec:

OpenShift Container Platform 4.17 Virtualization

104

1 Replace the examples in this list with valid registry hostnames.

7.2.2.3. Creating a VM from a container disk by using the web console

You can create a virtual machine (VM) by importing a container disk from a container registry by using
the OpenShift Container Platform web console.

Procedure

1. Navigate to Virtualization → Catalog in the web console.

2. Click a template tile without an available boot source.

3. Click Customize VirtualMachine.

4. On the Customize template parameters page, expand Storage and select Registry (creates
PVC) from the Disk source list.

5. Enter the container image URL. Example:
https://mirror.arizona.edu/fedora/linux/releases/38/Cloud/x86_64/images/Fedora-Cloud-
Base-38-1.6.x86_64.qcow2

6. Set the disk size.

7. Click Next.

8. Click Create VirtualMachine.

7.2.2.4. Creating a VM from a container disk by using the command line

You can create a virtual machine (VM) from a container disk by using the command line.

When the virtual machine (VM) is created, the data volume with the container disk is imported into
persistent storage.

Prerequisites

You must have access credentials for the container registry that contains the container disk.

Procedure

1. If the container registry requires authentication, create a Secret manifest, specifying the
credentials, and save it as a data-source-secret.yaml file:

 storageImport:
 insecureRegistries: 1
 - "private-registry-example-1:5000"
 - "private-registry-example-2:5000"

apiVersion: v1
kind: Secret
metadata:
 name: data-source-secret
 labels:

CHAPTER 7. VIRTUAL MACHINES

105

1

2

1

2

Specify the Base64-encoded key ID or user name.

Specify the Base64-encoded secret key or password.

2. Apply the Secret manifest by running the following command:

3. If the VM must communicate with servers that use self-signed certificates or certificates that
are not signed by the system CA bundle, create a config map in the same namespace as the VM:

Specify the config map name.

Specify the path to the CA certificate.

4. Edit the VirtualMachine manifest and save it as a vm-fedora-datavolume.yaml file:

 app: containerized-data-importer
type: Opaque
data:
 accessKeyId: "" 1
 secretKey: "" 2

$ oc apply -f data-source-secret.yaml

$ oc create configmap tls-certs 1
 --from-file=</path/to/file/ca.pem> 2

apiVersion: kubevirt.io/v1
kind: VirtualMachine
metadata:
 creationTimestamp: null
 labels:
 kubevirt.io/vm: vm-fedora-datavolume
 name: vm-fedora-datavolume 1
spec:
 dataVolumeTemplates:
 - metadata:
 creationTimestamp: null
 name: fedora-dv 2
 spec:
 storage:
 resources:
 requests:
 storage: 10Gi 3
 storageClassName: <storage_class> 4
 source:
 registry:
 url: "docker://kubevirt/fedora-cloud-container-disk-demo:latest" 5
 secretRef: data-source-secret 6
 certConfigMap: tls-certs 7
 status: {}
 running: true
 template:

OpenShift Container Platform 4.17 Virtualization

106

1

2

3

4

5

6

7

Specify the name of the VM.

Specify the name of the data volume.

Specify the size of the storage requested for the data volume.

Optional: If you do not specify a storage class, the default storage class is used.

Specify the URL of the container registry.

Optional: Specify the secret name if you created a secret for the container registry access
credentials.

Optional: Specify a CA certificate config map.

5. Create the VM by running the following command:

The oc create command creates the data volume and the VM. The CDI controller creates an
underlying PVC with the correct annotation and the import process begins. When the import is
complete, the data volume status changes to Succeeded. You can start the VM.

Data volume provisioning happens in the background, so there is no need to monitor the
process.

Verification

1. The importer pod downloads the container disk from the specified URL and stores it on the
provisioned persistent volume. View the status of the importer pod by running the following
command:

 metadata:
 creationTimestamp: null
 labels:
 kubevirt.io/vm: vm-fedora-datavolume
 spec:
 domain:
 devices:
 disks:
 - disk:
 bus: virtio
 name: datavolumedisk1
 machine:
 type: ""
 resources:
 requests:
 memory: 1.5Gi
 terminationGracePeriodSeconds: 180
 volumes:
 - dataVolume:
 name: fedora-dv
 name: datavolumedisk1
status: {}

$ oc create -f vm-fedora-datavolume.yaml

CHAPTER 7. VIRTUAL MACHINES

107

1

2. Monitor the data volume until its status is Succeeded by running the following command:

Specify the data volume name that you defined in the VirtualMachine manifest.

3. Verify that provisioning is complete and that the VM has started by accessing its serial console:

7.2.3. Creating VMs by importing images from web pages

You can create virtual machines (VMs) by importing operating system images from web pages.

IMPORTANT

You must install the QEMU guest agent on VMs created from operating system images
that are not provided by Red Hat.

7.2.3.1. Creating a VM from an image on a web page by using the web console

You can create a virtual machine (VM) by importing an image from a web page by using the OpenShift
Container Platform web console.

Prerequisites

You must have access to the web page that contains the image.

Procedure

1. Navigate to Virtualization → Catalog in the web console.

2. Click a template tile without an available boot source.

3. Click Customize VirtualMachine.

4. On the Customize template parameters page, expand Storage and select URL (creates
PVC) from the Disk source list.

5. Enter the image URL. Example: https://access.redhat.com/downloads/content/69/ver=/rhel--
-7/7.9/x86_64/product-software

6. Enter the container image URL. Example:
https://mirror.arizona.edu/fedora/linux/releases/38/Cloud/x86_64/images/Fedora-Cloud-
Base-38-1.6.x86_64.qcow2

7. Set the disk size.

8. Click Next.

9. Click Create VirtualMachine.

$ oc get pods

$ oc describe dv fedora-dv 1

$ virtctl console vm-fedora-datavolume

OpenShift Container Platform 4.17 Virtualization

108

1

2

1

2

7.2.3.2. Creating a VM from an image on a web page by using the command line

You can create a virtual machine (VM) from an image on a web page by using the command line.

When the virtual machine (VM) is created, the data volume with the image is imported into persistent
storage.

Prerequisites

You must have access credentials for the web page that contains the image.

Procedure

1. If the web page requires authentication, create a Secret manifest, specifying the credentials,
and save it as a data-source-secret.yaml file:

Specify the Base64-encoded key ID or user name.

Specify the Base64-encoded secret key or password.

2. Apply the Secret manifest by running the following command:

3. If the VM must communicate with servers that use self-signed certificates or certificates that
are not signed by the system CA bundle, create a config map in the same namespace as the VM:

Specify the config map name.

Specify the path to the CA certificate.

4. Edit the VirtualMachine manifest and save it as a vm-fedora-datavolume.yaml file:

apiVersion: v1
kind: Secret
metadata:
 name: data-source-secret
 labels:
 app: containerized-data-importer
type: Opaque
data:
 accessKeyId: "" 1
 secretKey: "" 2

$ oc apply -f data-source-secret.yaml

$ oc create configmap tls-certs 1
 --from-file=</path/to/file/ca.pem> 2

apiVersion: kubevirt.io/v1
kind: VirtualMachine
metadata:
 creationTimestamp: null
 labels:
 kubevirt.io/vm: vm-fedora-datavolume

CHAPTER 7. VIRTUAL MACHINES

109

1

2

3

4

5 6

Specify the name of the VM.

Specify the name of the data volume.

Specify the size of the storage requested for the data volume.

Optional: If you do not specify a storage class, the default storage class is used.

Specify the URL of the web page.

 name: vm-fedora-datavolume 1
spec:
 dataVolumeTemplates:
 - metadata:
 creationTimestamp: null
 name: fedora-dv 2
 spec:
 storage:
 resources:
 requests:
 storage: 10Gi 3
 storageClassName: <storage_class> 4
 source:
 http:
 url: "https://mirror.arizona.edu/fedora/linux/releases/35/Cloud/x86_64/images/Fedora-
Cloud-Base-35-1.2.x86_64.qcow2" 5
 registry:
 url: "docker://kubevirt/fedora-cloud-container-disk-demo:latest" 6
 secretRef: data-source-secret 7
 certConfigMap: tls-certs 8
 status: {}
 running: true
 template:
 metadata:
 creationTimestamp: null
 labels:
 kubevirt.io/vm: vm-fedora-datavolume
 spec:
 domain:
 devices:
 disks:
 - disk:
 bus: virtio
 name: datavolumedisk1
 machine:
 type: ""
 resources:
 requests:
 memory: 1.5Gi
 terminationGracePeriodSeconds: 180
 volumes:
 - dataVolume:
 name: fedora-dv
 name: datavolumedisk1
status: {}

OpenShift Container Platform 4.17 Virtualization

110

7

8

1

Optional: Specify the secret name if you created a secret for the web page access
credentials.

Optional: Specify a CA certificate config map.

5. Create the VM by running the following command:

The oc create command creates the data volume and the VM. The CDI controller creates an
underlying PVC with the correct annotation and the import process begins. When the import is
complete, the data volume status changes to Succeeded. You can start the VM.

Data volume provisioning happens in the background, so there is no need to monitor the
process.

Verification

1. The importer pod downloads the image from the specified URL and stores it on the provisioned
persistent volume. View the status of the importer pod by running the following command:

2. Monitor the data volume until its status is Succeeded by running the following command:

Specify the data volume name that you defined in the VirtualMachine manifest.

3. Verify that provisioning is complete and that the VM has started by accessing its serial console:

7.2.4. Creating VMs by uploading images

You can create virtual machines (VMs) by uploading operating system images from your local machine.

You can create a Windows VM by uploading a Windows image to a PVC. Then you clone the PVC when
you create the VM.

IMPORTANT

You must install the QEMU guest agent on VMs created from operating system images
that are not provided by Red Hat.

You must also install VirtIO drivers on Windows VMs.

7.2.4.1. Creating a VM from an uploaded image by using the web console

You can create a virtual machine (VM) from an uploaded operating system image by using the
OpenShift Container Platform web console.

$ oc create -f vm-fedora-datavolume.yaml

$ oc get pods

$ oc describe dv fedora-dv 1

$ virtctl console vm-fedora-datavolume

CHAPTER 7. VIRTUAL MACHINES

111

Prerequisites

You must have an IMG, ISO, or QCOW2 image file.

Procedure

1. Navigate to Virtualization → Catalog in the web console.

2. Click a template tile without an available boot source.

3. Click Customize VirtualMachine.

4. On the Customize template parameters page, expand Storage and select Upload (Upload a
new file to a PVC) from the Disk source list.

5. Browse to the image on your local machine and set the disk size.

6. Click Customize VirtualMachine.

7. Click Create VirtualMachine.

7.2.4.2. Creating a Windows VM

You can create a Windows virtual machine (VM) by uploading a Windows image to a persistent volume
claim (PVC) and then cloning the PVC when you create a VM by using the OpenShift Container Platform
web console.

Prerequisites

You created a Windows installation DVD or USB with the Windows Media Creation Tool. See
Create Windows 10 installation media in the Microsoft documentation.

You created an autounattend.xml answer file. See Answer files (unattend.xml) in the Microsoft
documentation.

Procedure

1. Upload the Windows image as a new PVC:

a. Navigate to Storage → PersistentVolumeClaims in the web console.

b. Click Create PersistentVolumeClaim → With Data upload form.

c. Browse to the Windows image and select it.

d. Enter the PVC name, select the storage class and size and then click Upload.
The Windows image is uploaded to a PVC.

2. Configure a new VM by cloning the uploaded PVC:

a. Navigate to Virtualization → Catalog.

b. Select a Windows template tile and click Customize VirtualMachine.

c. Select Clone (clone PVC) from the Disk source list.

d. Select the PVC project, the Windows image PVC, and the disk size.

OpenShift Container Platform 4.17 Virtualization

112

https://www.microsoft.com/en-us/software-download/windows10
https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/update-windows-settings-and-scripts-create-your-own-answer-file-sxs

3. Apply the answer file to the VM:

a. Click Customize VirtualMachine parameters.

b. On the Sysprep section of the Scripts tab, click Edit.

c. Browse to the autounattend.xml answer file and click Save.

4. Set the run strategy of the VM:

a. Clear Start this VirtualMachine after creation so that the VM does not start immediately.

b. Click Create VirtualMachine.

c. On the YAML tab, replace running:false with runStrategy: RerunOnFailure and click
Save.

5. Click the options menu and select Start.
The VM boots from the sysprep disk containing the autounattend.xml answer file.

7.2.4.2.1. Generalizing a Windows VM image

You can generalize a Windows operating system image to remove all system-specific configuration data
before you use the image to create a new virtual machine (VM).

Before generalizing the VM, you must ensure the sysprep tool cannot detect an answer file after the
unattended Windows installation.

Prerequisites

A running Windows VM with the QEMU guest agent installed.

Procedure

1. In the OpenShift Container Platform console, click Virtualization → VirtualMachines.

2. Select a Windows VM to open the VirtualMachine details page.

3. Click Configuration → Disks.

4. Click the Options menu beside the sysprep disk and select Detach.

5. Click Detach.

6. Rename C:\Windows\Panther\unattend.xml to avoid detection by the sysprep tool.

7. Start the sysprep program by running the following command:

8. After the sysprep tool completes, the Windows VM shuts down. The disk image of the VM is
now available to use as an installation image for Windows VMs.

%WINDIR%\System32\Sysprep\sysprep.exe /generalize /shutdown /oobe /mode:vm

CHAPTER 7. VIRTUAL MACHINES

113

You can now specialize the VM.

7.2.4.2.2. Specializing a Windows VM image

Specializing a Windows virtual machine (VM) configures the computer-specific information from a
generalized Windows image onto the VM.

Prerequisites

You must have a generalized Windows disk image.

You must create an unattend.xml answer file. See the Microsoft documentation for details.

Procedure

1. In the OpenShift Container Platform console, click Virtualization → Catalog.

2. Select a Windows template and click Customize VirtualMachine.

3. Select PVC (clone PVC) from the Disk source list.

4. Select the PVC project and PVC name of the generalized Windows image.

5. Click Customize VirtualMachine parameters.

6. Click the Scripts tab.

7. In the Sysprep section, click Edit, browse to the unattend.xml answer file, and click Save.

8. Click Create VirtualMachine.

During the initial boot, Windows uses the unattend.xml answer file to specialize the VM. The VM is now
ready to use.

Additional resources for creating Windows VMs

Microsoft, Sysprep (Generalize) a Windows installation

Microsoft, generalize

Microsoft, specialize

7.2.4.3. Creating a VM from an uploaded image by using the command line

You can upload an operating system image by using the virtctl command line tool. You can use an
existing data volume or create a new data volume for the image.

Prerequisites

You must have an ISO, IMG, or QCOW2 operating system image file.

For best performance, compress the image file by using the virt-sparsify tool or the xz or gzip
utilities.

You must have virtctl installed.

OpenShift Container Platform 4.17 Virtualization

114

https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/update-windows-settings-and-scripts-create-your-own-answer-file-sxs?view=windows-11
https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/sysprep--generalize--a-windows-installation
https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/generalize
https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/specialize
https://libguestfs.org/virt-sparsify.1.html

1

2

3

The client machine must be configured to trust the OpenShift Container Platform router’s
certificate.

Procedure

1. Upload the image by running the virtctl image-upload command:

The name of the data volume.

The size of the data volume. For example: --size=500Mi, --size=1G

The file path of the image.

NOTE

If you do not want to create a new data volume, omit the --size parameter
and include the --no-create flag.

When uploading a disk image to a PVC, the PVC size must be larger than the
size of the uncompressed virtual disk.

To allow insecure server connections when using HTTPS, use the --insecure
parameter. When you use the --insecure flag, the authenticity of the upload
endpoint is not verified.

2. Optional. To verify that a data volume was created, view all data volumes by running the
following command:

7.2.5. Installing the QEMU guest agent and VirtIO drivers

The QEMU guest agent is a daemon that runs on the virtual machine (VM) and passes information to
the host about the VM, users, file systems, and secondary networks.

You must install the QEMU guest agent on VMs created from operating system images that are not
provided by Red Hat.

7.2.5.1. Installing the QEMU guest agent

7.2.5.1.1. Installing the QEMU guest agent on a Linux VM

The qemu-guest-agent is widely available and available by default in Red Hat Enterprise Linux (RHEL)
virtual machines (VMs). Install the agent and start the service.

NOTE

$ virtctl image-upload dv <datavolume_name> \ 1
 --size=<datavolume_size> \ 2
 --image-path=</path/to/image> \ 3

$ oc get dvs

CHAPTER 7. VIRTUAL MACHINES

115

NOTE

To create snapshots of an online (Running state) VM with the highest integrity, install the
QEMU guest agent.

The QEMU guest agent takes a consistent snapshot by attempting to quiesce the VM file
system as much as possible, depending on the system workload. This ensures that in-
flight I/O is written to the disk before the snapshot is taken. If the guest agent is not
present, quiescing is not possible and a best-effort snapshot is taken. The conditions
under which the snapshot was taken are reflected in the snapshot indications that are
displayed in the web console or CLI.

Procedure

1. Log in to the VM by using a console or SSH.

2. Install the QEMU guest agent by running the following command:

3. Ensure the service is persistent and start it:

Verification

Run the following command to verify that AgentConnected is listed in the VM spec:

7.2.5.1.2. Installing the QEMU guest agent on a Windows VM

For Windows virtual machines (VMs), the QEMU guest agent is included in the VirtIO drivers. You can
install the drivers during a Windows installation or on an existing Windows VM.

NOTE

To create snapshots of an online (Running state) VM with the highest integrity, install the
QEMU guest agent.

The QEMU guest agent takes a consistent snapshot by attempting to quiesce the VM file
system as much as possible, depending on the system workload. This ensures that in-
flight I/O is written to the disk before the snapshot is taken. If the guest agent is not
present, quiescing is not possible and a best-effort snapshot is taken. The conditions
under which the snapshot was taken are reflected in the snapshot indications that are
displayed in the web console or CLI.

Procedure

1. In the Windows guest operating system, use the File Explorer to navigate to the guest-agent
directory in the virtio-win CD drive.

2. Run the qemu-ga-x86_64.msi installer.

$ yum install -y qemu-guest-agent

$ systemctl enable --now qemu-guest-agent

$ oc get vm <vm_name>

OpenShift Container Platform 4.17 Virtualization

116

Verification

1. Obtain a list of network services by running the following command:

2. Verify that the output contains the QEMU Guest Agent.

7.2.5.2. Installing VirtIO drivers on Windows VMs

VirtIO drivers are paravirtualized device drivers required for Microsoft Windows virtual machines (VMs)
to run in OpenShift Virtualization. The drivers are shipped with the rest of the images and do not require
a separate download.

The container-native-virtualization/virtio-win container disk must be attached to the VM as a SATA
CD drive to enable driver installation. You can install VirtIO drivers during Windows installation or added
to an existing Windows installation.

After the drivers are installed, the container-native-virtualization/virtio-win container disk can be
removed from the VM.

Table 7.3. Supported drivers

Driver name Hardware ID Description

viostor VEN_1AF4&DEV_1001
VEN_1AF4&DEV_1042

The block driver. Sometimes
labeled as an SCSI Controller in
the Other devices group.

viorng VEN_1AF4&DEV_1005
VEN_1AF4&DEV_1044

The entropy source driver.
Sometimes labeled as a PCI
Device in the Other devices
group.

NetKVM VEN_1AF4&DEV_1000
VEN_1AF4&DEV_1041

The network driver. Sometimes
labeled as an Ethernet Controller
in the Other devices group.
Available only if a VirtIO NIC is
configured.

7.2.5.2.1. Attaching VirtIO container disk to Windows VMs during installation

You must attach the VirtIO container disk to the Windows VM to install the necessary Windows drivers.
This can be done during creation of the VM.

Procedure

1. When creating a Windows VM from a template, click Customize VirtualMachine.

2. Select Mount Windows drivers disk.

3. Click the Customize VirtualMachine parameters.

4. Click Create VirtualMachine.

$ net start

CHAPTER 7. VIRTUAL MACHINES

117

After the VM is created, the virtio-win SATA CD disk will be attached to the VM.

7.2.5.2.2. Attaching VirtIO container disk to an existing Windows VM

You must attach the VirtIO container disk to the Windows VM to install the necessary Windows drivers.
This can be done to an existing VM.

Procedure

1. Navigate to the existing Windows VM, and click Actions → Stop.

2. Go to VM Details → Configuration → Disks and click Add disk.

3. Add windows-driver-disk from container source, set the Type to CD-ROM, and then set the
Interface to SATA.

4. Click Save.

5. Start the VM, and connect to a graphical console.

7.2.5.2.3. Installing VirtIO drivers during Windows installation

You can install the VirtIO drivers while installing Windows on a virtual machine (VM).

NOTE

This procedure uses a generic approach to the Windows installation and the installation
method might differ between versions of Windows. See the documentation for the
version of Windows that you are installing.

Prerequisites

A storage device containing the virtio drivers must be attached to the VM.

Procedure

1. In the Windows operating system, use the File Explorer to navigate to the virtio-win CD drive.

2. Double-click the drive to run the appropriate installer for your VM.
For a 64-bit vCPU, select the virtio-win-gt-x64 installer. 32-bit vCPUs are no longer supported.

3. Optional: During the Custom Setup step of the installer, select the device drivers you want to
install. The recommended driver set is selected by default.

4. After the installation is complete, select Finish.

5. Reboot the VM.

Verification

1. Open the system disk on the PC. This is typically C:.

2. Navigate to Program Files → Virtio-Win.

If the Virtio-Win directory is present and contains a sub-directory for each driver, the installation was

OpenShift Container Platform 4.17 Virtualization

118

If the Virtio-Win directory is present and contains a sub-directory for each driver, the installation was
successful.

7.2.5.2.4. Installing VirtIO drivers from a SATA CD drive on an existing Windows VM

You can install the VirtIO drivers from a SATA CD drive on an existing Windows virtual machine (VM).

NOTE

This procedure uses a generic approach to adding drivers to Windows. See the
installation documentation for your version of Windows for specific installation steps.

Prerequisites

A storage device containing the virtio drivers must be attached to the VM as a SATA CD drive.

Procedure

1. Start the VM and connect to a graphical console.

2. Log in to a Windows user session.

3. Open Device Manager and expand Other devices to list any Unknown device.

a. Open the Device Properties to identify the unknown device.

b. Right-click the device and select Properties.

c. Click the Details tab and select Hardware Ids in the Property list.

d. Compare the Value for the Hardware Ids with the supported VirtIO drivers.

4. Right-click the device and select Update Driver Software.

5. Click Browse my computer for driver software and browse to the attached SATA CD drive,
where the VirtIO drivers are located. The drivers are arranged hierarchically according to their
driver type, operating system, and CPU architecture.

6. Click Next to install the driver.

7. Repeat this process for all the necessary VirtIO drivers.

8. After the driver installs, click Close to close the window.

9. Reboot the VM to complete the driver installation.

7.2.5.2.5. Installing VirtIO drivers from a container disk added as a SATA CD drive

You can install VirtIO drivers from a container disk that you add to a Windows virtual machine (VM) as a
SATA CD drive.

TIP

Downloading the container-native-virtualization/virtio-win container disk from the Red Hat Ecosystem
Catalog is not mandatory, because the container disk is downloaded from the Red Hat registry if it not
already present in the cluster. However, downloading reduces the installation time.

CHAPTER 7. VIRTUAL MACHINES

119

https://catalog.redhat.com/software/containers/search?q=virtio-win&p=1

1

Prerequisites

You must have access to the Red Hat registry or to the downloaded container-native-
virtualization/virtio-win container disk in a restricted environment.

Procedure

1. Add the container-native-virtualization/virtio-win container disk as a CD drive by editing the
VirtualMachine manifest:

OpenShift Virtualization boots the VM disks in the order defined in the VirtualMachine
manifest. You can either define other VM disks that boot before the container-native-
virtualization/virtio-win container disk or use the optional bootOrder parameter to
ensure the VM boots from the correct disk. If you configure the boot order for a disk, you
must configure the boot order for the other disks.

2. Apply the changes:

If the VM is not running, run the following command:

If the VM is running, reboot the VM or run the following command:

3. After the VM has started, install the VirtIO drivers from the SATA CD drive.

7.2.5.3. Updating VirtIO drivers

7.2.5.3.1. Updating VirtIO drivers on a Windows VM

Update the virtio drivers on a Windows virtual machine (VM) by using the Windows Update service.

Prerequisites

The cluster must be connected to the internet. Disconnected clusters cannot reach the
Windows Update service.

...
spec:
 domain:
 devices:
 disks:
 - name: virtiocontainerdisk
 bootOrder: 2 1
 cdrom:
 bus: sata
volumes:
 - containerDisk:
 image: container-native-virtualization/virtio-win
 name: virtiocontainerdisk

$ virtctl start <vm> -n <namespace>

$ oc apply -f <vm.yaml>

OpenShift Container Platform 4.17 Virtualization

120

Procedure

1. In the Windows Guest operating system, click the Windows key and select Settings.

2. Navigate to Windows Update → Advanced Options → Optional Updates.

3. Install all updates from Red Hat, Inc..

4. Reboot the VM.

Verification

1. On the Windows VM, navigate to the Device Manager.

2. Select a device.

3. Select the Driver tab.

4. Click Driver Details and confirm that the virtio driver details displays the correct version.

7.2.6. Cloning VMs

You can clone virtual machines (VMs) or create new VMs from snapshots.

7.2.6.1. Cloning a VM by using the web console

You can clone an existing VM by using the web console.

Procedure

1. Navigate to Virtualization → VirtualMachines in the web console.

2. Select a VM to open the VirtualMachine details page.

3. Click Actions.

4. Select Clone.

5. On the Clone VirtualMachine page, enter the name of the new VM.

6. (Optional) Select the Start cloned VM checkbox to start the cloned VM.

7. Click Clone.

7.2.6.2. Creating a VM from an existing snapshot by using the web console

You can create a new VM by copying an existing snapshot.

Procedure

1. Navigate to Virtualization → VirtualMachines in the web console.

2. Select a VM to open the VirtualMachine details page.

3. Click the Snapshots tab.

CHAPTER 7. VIRTUAL MACHINES

121

4. Click the actions menu for the snapshot you want to copy.

5. Select Create VirtualMachine.

6. Enter the name of the virtual machine.

7. (Optional) Select the Start this VirtualMachine after creation checkbox to start the new virtual
machine.

8. Click Create.

7.2.6.3. Additional resources

Creating VMs by cloning PVCs

7.2.7. Creating VMs by cloning PVCs

You can create virtual machines (VMs) by cloning existing persistent volume claims (PVCs) with custom
images.

You must install the QEMU guest agent on VMs created from operating system images that are not
provided by Red Hat.

You clone a PVC by creating a data volume that references a source PVC.

7.2.7.1. About cloning

When cloning a data volume, the Containerized Data Importer (CDI) chooses one of the following
Container Storage Interface (CSI) clone methods:

CSI volume cloning

Smart cloning

Both CSI volume cloning and smart cloning methods are efficient, but they have certain requirements
for use. If the requirements are not met, the CDI uses host-assisted cloning. Host-assisted cloning is the
slowest and least efficient method of cloning, but it has fewer requirements than either of the other two
cloning methods.

7.2.7.1.1. CSI volume cloning

Container Storage Interface (CSI) cloning uses CSI driver features to more efficiently clone a source
data volume.

CSI volume cloning has the following requirements:

The CSI driver that backs the storage class of the persistent volume claim (PVC) must support
volume cloning.

For provisioners not recognized by the CDI, the corresponding storage profile must have the
cloneStrategy set to CSI Volume Cloning.

The source and target PVCs must have the same storage class and volume mode.

If you create the data volume, you must have permission to create the datavolumes/source

OpenShift Container Platform 4.17 Virtualization

122

If you create the data volume, you must have permission to create the datavolumes/source
resource in the source namespace.

The source volume must not be in use.

7.2.7.1.2. Smart cloning

When a Container Storage Interface (CSI) plugin with snapshot capabilities is available, the
Containerized Data Importer (CDI) creates a persistent volume claim (PVC) from a snapshot, which then
allows efficient cloning of additional PVCs.

Smart cloning has the following requirements:

A snapshot class associated with the storage class must exist.

The source and target PVCs must have the same storage class and volume mode.

If you create the data volume, you must have permission to create the datavolumes/source
resource in the source namespace.

The source volume must not be in use.

7.2.7.1.3. Host-assisted cloning

When the requirements for neither Container Storage Interface (CSI) volume cloning nor smart cloning
have been met, host-assisted cloning is used as a fallback method. Host-assisted cloning is less efficient
than either of the two other cloning methods.

Host-assisted cloning uses a source pod and a target pod to copy data from the source volume to the
target volume. The target persistent volume claim (PVC) is annotated with the fallback reason that
explains why host-assisted cloning has been used, and an event is created.

Example PVC target annotation

Example event

7.2.7.2. Creating a VM from a PVC by using the web console

You can create a virtual machine (VM) by importing an image from a web page by using the OpenShift
Container Platform web console. You can create a virtual machine (VM) by cloning a persistent volume
claim (PVC) by using the OpenShift Container Platform web console.

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 annotations:
 cdi.kubevirt.io/cloneFallbackReason: The volume modes of source and target are incompatible
 cdi.kubevirt.io/clonePhase: Succeeded
 cdi.kubevirt.io/cloneType: copy

NAMESPACE LAST SEEN TYPE REASON OBJECT MESSAGE
test-ns 0s Warning IncompatibleVolumeModes persistentvolumeclaim/test-target The
volume modes of source and target are incompatible

CHAPTER 7. VIRTUAL MACHINES

123

Prerequisites

You must have access to the web page that contains the image.

You must have access to the namespace that contains the source PVC.

Procedure

1. Navigate to Virtualization → Catalog in the web console.

2. Click a template tile without an available boot source.

3. Click Customize VirtualMachine.

4. On the Customize template parameters page, expand Storage and select PVC (clone PVC)
from the Disk source list.

5. Enter the image URL. Example: https://access.redhat.com/downloads/content/69/ver=/rhel--
-7/7.9/x86_64/product-software

6. Enter the container image URL. Example:
https://mirror.arizona.edu/fedora/linux/releases/38/Cloud/x86_64/images/Fedora-Cloud-
Base-38-1.6.x86_64.qcow2

7. Select the PVC project and the PVC name.

8. Set the disk size.

9. Click Next.

10. Click Create VirtualMachine.

7.2.7.3. Creating a VM from a PVC by using the command line

You can create a virtual machine (VM) by cloning the persistent volume claim (PVC) of an existing VM
by using the command line.

You can clone a PVC by using one of the following options:

Cloning a PVC to a new data volume.
This method creates a data volume whose lifecycle is independent of the original VM. Deleting
the original VM does not affect the new data volume or its associated PVC.

Cloning a PVC by creating a VirtualMachine manifest with a dataVolumeTemplates stanza.
This method creates a data volume whose lifecycle is dependent on the original VM. Deleting
the original VM deletes the cloned data volume and its associated PVC.

7.2.7.3.1. Cloning a PVC to a data volume

You can clone the persistent volume claim (PVC) of an existing virtual machine (VM) disk to a data
volume by using the command line.

You create a data volume that references the original source PVC. The lifecycle of the new data volume
is independent of the original VM. Deleting the original VM does not affect the new data volume or its
associated PVC.

Cloning between different volume modes is supported for host-assisted cloning, such as cloning from a

OpenShift Container Platform 4.17 Virtualization

124

Cloning between different volume modes is supported for host-assisted cloning, such as cloning from a
block persistent volume (PV) to a file system PV, as long as the source and target PVs belong to the
kubevirt content type.

NOTE

Smart-cloning is faster and more efficient than host-assisted cloning because it uses
snapshots to clone PVCs. Smart-cloning is supported by storage providers that support
snapshots, such as Red Hat OpenShift Data Foundation.

Cloning between different volume modes is not supported for smart-cloning.

Prerequisites

The VM with the source PVC must be powered down.

If you clone a PVC to a different namespace, you must have permissions to create resources in
the target namespace.

Additional prerequisites for smart-cloning:

Your storage provider must support snapshots.

The source and target PVCs must have the same storage provider and volume mode.

The value of the driver key of the VolumeSnapshotClass object must match the value of
the provisioner key of the StorageClass object as shown in the following example:

Example VolumeSnapshotClass object

Example StorageClass object

Procedure

1. Create a DataVolume manifest as shown in the following example:

kind: VolumeSnapshotClass
apiVersion: snapshot.storage.k8s.io/v1
driver: openshift-storage.rbd.csi.ceph.com
...

kind: StorageClass
apiVersion: storage.k8s.io/v1
...
provisioner: openshift-storage.rbd.csi.ceph.com

apiVersion: cdi.kubevirt.io/v1beta1
kind: DataVolume
metadata:
 name: <datavolume> 1
spec:
 source:
 pvc:

CHAPTER 7. VIRTUAL MACHINES

125

1

2

3

Specify the name of the new data volume.

Specify the namespace of the source PVC.

Specify the name of the source PVC.

2. Create the data volume by running the following command:

NOTE

Data volumes prevent a VM from starting before the PVC is prepared. You can
create a VM that references the new data volume while the PVC is being cloned.

7.2.7.3.2. Creating a VM from a cloned PVC by using a data volume template

You can create a virtual machine (VM) that clones the persistent volume claim (PVC) of an existing VM
by using a data volume template.

This method creates a data volume whose lifecycle is dependent on the original VM. Deleting the original
VM deletes the cloned data volume and its associated PVC.

Prerequisites

The VM with the source PVC must be powered down.

Procedure

1. Create a VirtualMachine manifest as shown in the following example:

 namespace: "<source_namespace>" 2
 name: "<my_vm_disk>" 3
 storage: {}

$ oc create -f <datavolume>.yaml

apiVersion: kubevirt.io/v1
kind: VirtualMachine
metadata:
 labels:
 kubevirt.io/vm: vm-dv-clone
 name: vm-dv-clone 1
spec:
 running: false
 template:
 metadata:
 labels:
 kubevirt.io/vm: vm-dv-clone
 spec:
 domain:
 devices:
 disks:
 - disk:
 bus: virtio

OpenShift Container Platform 4.17 Virtualization

126

1

2

3

Specify the name of the VM.

Specify the namespace of the source PVC.

Specify the name of the source PVC.

2. Create the virtual machine with the PVC-cloned data volume:

7.3. CONNECTING TO VIRTUAL MACHINE CONSOLES

You can connect to the following consoles to access running virtual machines (VMs):

VNC console

Serial console

Desktop viewer for Windows VMs

7.3.1. Connecting to the VNC console

You can connect to the VNC console of a virtual machine by using the OpenShift Container Platform
web console or the virtctl command line tool.

7.3.1.1. Connecting to the VNC console by using the web console

You can connect to the VNC console of a virtual machine (VM) by using the OpenShift Container
Platform web console.

NOTE

 name: root-disk
 resources:
 requests:
 memory: 64M
 volumes:
 - dataVolume:
 name: favorite-clone
 name: root-disk
 dataVolumeTemplates:
 - metadata:
 name: favorite-clone
 spec:
 storage:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 2Gi
 source:
 pvc:
 namespace: <source_namespace> 2
 name: "<source_pvc>" 3

$ oc create -f <vm-clone-datavolumetemplate>.yaml

CHAPTER 7. VIRTUAL MACHINES

127

NOTE

If you connect to a Windows VM with a vGPU assigned as a mediated device, you can
switch between the default display and the vGPU display.

Procedure

1. On the Virtualization → VirtualMachines page, click a VM to open the VirtualMachine details
page.

2. Click the Console tab. The VNC console session starts automatically.

3. Optional: To switch to the vGPU display of a Windows VM, select Ctl + Alt + 2 from the Send
key list.

Select Ctl + Alt + 1 from the Send key list to restore the default display.

4. To end the console session, click outside the console pane and then click Disconnect.

7.3.1.2. Connecting to the VNC console by using virtctl

You can use the virtctl command line tool to connect to the VNC console of a running virtual machine.

NOTE

If you run the virtctl vnc command on a remote machine over an SSH connection, you
must forward the X session to your local machine by running the ssh command with the -
X or -Y flags.

Prerequisites

You must install the virt-viewer package.

Procedure

1. Run the following command to start the console session:

2. If the connection fails, run the following command to collect troubleshooting information:

7.3.1.3. Generating a temporary token for the VNC console

To access the VNC of a virtual machine (VM), generate a temporary authentication bearer token for the
Kubernetes API.

NOTE

Kubernetes also supports authentication using client certificates, instead of a bearer
token, by modifying the curl command.

$ virtctl vnc <vm_name>

$ virtctl vnc <vm_name> -v 4

OpenShift Container Platform 4.17 Virtualization

128

Prerequisites

A running VM with OpenShift Virtualization 4.14 or later and ssp-operator 4.14 or later

Procedure

1. Enable the feature gate in the HyperConverged (HCO) custom resource (CR):

2. Generate a token by entering the following command:

The <duration> parameter can be set in hours and minutes, with a minimum duration of 10
minutes. For example: 5h30m. If this parameter is not set, the token is valid for 10 minutes by
default.

Sample output:

3. Optional: Use the token provided in the output to create a variable:

You can now use the token to access the VNC console of a VM.

Verification

1. Log in to the cluster by entering the following command:

2. Test access to the VNC console of the VM by using the virtctl command:

$ oc patch hyperconverged kubevirt-hyperconverged -n openshift-cnv --type json -p '[{"op":
"replace", "path": "/spec/featureGates/deployVmConsoleProxy", "value": true}]'

$ curl --header "Authorization: Bearer ${TOKEN}" \
 "https://api.
<cluster_fqdn>/apis/token.kubevirt.io/v1alpha1/namespaces/<namespace>/virtualmachines/<vm
_name>/vnc?duration=<duration>"

{ "token": "eyJhb..." }

$ export VNC_TOKEN="<token>"

$ oc login --token ${VNC_TOKEN}

$ virtctl vnc <vm_name> -n <namespace>

CHAPTER 7. VIRTUAL MACHINES

129

WARNING

It is currently not possible to revoke a specific token.

To revoke a token, you must delete the service account that was used to create it.
However, this also revokes all other tokens that were created by using the service
account. Use the following command with caution:

7.3.1.3.1. Granting token generation permission for the VNC console by using the cluster role

As a cluster administrator, you can install a cluster role and bind it to a user or service account to allow
access to the endpoint that generates tokens for the VNC console.

Procedure

Choose to bind the cluster role to either a user or service account.

Run the following command to bind the cluster role to a user:

Run the following command to bind the cluster role to a service account:

7.3.2. Connecting to the serial console

You can connect to the serial console of a virtual machine by using the OpenShift Container Platform
web console or the virtctl command line tool.

NOTE

Running concurrent VNC connections to a single virtual machine is not currently
supported.

7.3.2.1. Connecting to the serial console by using the web console

You can connect to the serial console of a virtual machine (VM) by using the OpenShift Container
Platform web console.

Procedure

1. On the Virtualization → VirtualMachines page, click a VM to open the VirtualMachine details


$ virtctl delete serviceaccount --namespace "<namespace>" "<vm_name>-vnc-
access"

$ kubectl create rolebinding "${ROLE_BINDING_NAME}" --
clusterrole="token.kubevirt.io:generate" --user="${USER_NAME}"

$ kubectl create rolebinding "${ROLE_BINDING_NAME}" --
clusterrole="token.kubevirt.io:generate" --
serviceaccount="${SERVICE_ACCOUNT_NAME}"

OpenShift Container Platform 4.17 Virtualization

130

1. On the Virtualization → VirtualMachines page, click a VM to open the VirtualMachine details
page.

2. Click the Console tab. The VNC console session starts automatically.

3. Click Disconnect to end the VNC console session. Otherwise, the VNC console session
continues to run in the background.

4. Select Serial console from the console list.

5. To end the console session, click outside the console pane and then click Disconnect.

7.3.2.2. Connecting to the serial console by using virtctl

You can use the virtctl command line tool to connect to the serial console of a running virtual machine.

Procedure

1. Run the following command to start the console session:

2. Press Ctrl+] to end the console session.

7.3.3. Connecting to the desktop viewer

You can connect to a Windows virtual machine (VM) by using the desktop viewer and the Remote
Desktop Protocol (RDP).

7.3.3.1. Connecting to the desktop viewer by using the web console

You can connect to the desktop viewer of a Windows virtual machine (VM) by using the OpenShift
Container Platform web console.

Prerequisites

You installed the QEMU guest agent on the Windows VM.

You have an RDP client installed.

Procedure

1. On the Virtualization → VirtualMachines page, click a VM to open the VirtualMachine details
page.

2. Click the Console tab. The VNC console session starts automatically.

3. Click Disconnect to end the VNC console session. Otherwise, the VNC console session
continues to run in the background.

4. Select Desktop viewer from the console list.

5. Click Create RDP Service to open the RDP Service dialog.

6. Select Expose RDP Service and click Save to create a node port service.

$ virtctl console <vm_name>

CHAPTER 7. VIRTUAL MACHINES

131

7. Click Launch Remote Desktop to download an .rdp file and launch the desktop viewer.

7.4. SPECIFYING AN INSTANCE TYPE OR PREFERENCE

You can specify an instance type, a preference, or both to define a set of workload sizing and runtime
characteristics for reuse across multiple VMs.

7.4.1. Using flags to specify instance types and preferences

Specify instance types and preferences by using flags.

Prerequisites

You must have an instance type, preference, or both on the cluster.

Procedure

1. To specify an instance type when creating a VM, use the --instancetype flag. To specify a
preference, use the --preference flag. The following example includes both flags:

2. Optional: To specify a namespaced instance type or preference, include the kind in the value
passed to the --instancetype or --preference flag command. The namespaced instance type or
preference must be in the same namespace you are creating the VM in. The following example
includes flags for a namespaced instance type and a namespaced preference:

7.4.2. Inferring an instance type or preference

Inferring instance types, preferences, or both is enabled by default, and the inferFromVolumeFailure
policy of the inferFromVolume attribute is set to Ignore. When inferring from the boot volume, errors
are ignored, and the VM is created with the instance type and preference left unset.

However, when flags are applied, the inferFromVolumeFailure policy defaults to Reject. When inferring
from the boot volume, errors result in the rejection of the creation of that VM.

You can use the --infer-instancetype and --infer-preference flags to infer which instance type,
preference, or both to use to define the workload sizing and runtime characteristics of a VM.

Prerequisites

You have installed the virtctl tool.

Procedure

To explicitly infer instance types from the volume used to boot the virtual machine, use the --
infer-instancetype flag. To explicitly infer preferences, use the --infer-preference flag. The
following command includes both flags:

$ virtctl create vm --instancetype <my_instancetype> --preference <my_preference>

$ virtctl create vm --instancetype virtualmachineinstancetype/<my_instancetype> --
preference virtualmachinepreference/<my_preference>

OpenShift Container Platform 4.17 Virtualization

132

7.4.3. Setting the inferFromVolume labels

Use the following labels on your PVC, data source, or data volume to instruct the inference mechanism
which instance type, preference, or both to use when trying to boot from a volume.

A cluster-wide instance type: instancetype.kubevirt.io/default-instancetype label.

A namespaced instance type: instancetype.kubevirt.io/default-instancetype-kind label.
Defaults to the VirtualMachineClusterInstancetype label if left empty.

A cluster-wide preference: instancetype.kubevirt.io/default-preference label.

A namespaced preference: instancetype.kubevirt.io/default-preference-kind label. Defaults
to VirtualMachineClusterPreference label, if left empty.

Prerequisites

You must have an instance type, preference, or both on the cluster.

Procedure

To apply a label to a data source, use oc label. The following command applies a label that
points to a cluster-wide instance type:

7.5. CONFIGURING SSH ACCESS TO VIRTUAL MACHINES

You can configure SSH access to virtual machines (VMs) by using the following methods:

virtctl ssh command
You create an SSH key pair, add the public key to a VM, and connect to the VM by running the
virtctl ssh command with the private key.

You can add public SSH keys to Red Hat Enterprise Linux (RHEL) 9 VMs at runtime or at first
boot to VMs with guest operating systems that can be configured by using a cloud-init data
source.

virtctl port-forward command
You add the virtctl port-foward command to your .ssh/config file and connect to the VM by
using OpenSSH.

Service
You create a service, associate the service with the VM, and connect to the IP address and port
exposed by the service.

Secondary network
You configure a secondary network, attach a virtual machine (VM) to the secondary network
interface, and connect to the DHCP-allocated IP address.

$ virtctl create vm --volume-import type:pvc,src:my-ns/my-pvc --infer-instancetype --infer-
preference

$ oc label DataSource foo instancetype.kubevirt.io/default-instancetype=<my_instancetype>

CHAPTER 7. VIRTUAL MACHINES

133

7.5.1. Access configuration considerations

Each method for configuring access to a virtual machine (VM) has advantages and limitations,
depending on the traffic load and client requirements.

Services provide excellent performance and are recommended for applications that are accessed from
outside the cluster.

If the internal cluster network cannot handle the traffic load, you can configure a secondary network.

virtctl ssh and virtctl port-forwarding commands

Simple to configure.

Recommended for troubleshooting VMs.

virtctl port-forwarding recommended for automated configuration of VMs with Ansible.

Dynamic public SSH keys can be used to provision VMs with Ansible.

Not recommended for high-traffic applications like Rsync or Remote Desktop Protocol
because of the burden on the API server.

The API server must be able to handle the traffic load.

The clients must be able to access the API server.

The clients must have access credentials for the cluster.

Cluster IP service

The internal cluster network must be able to handle the traffic load.

The clients must be able to access an internal cluster IP address.

Node port service

The internal cluster network must be able to handle the traffic load.

The clients must be able to access at least one node.

Load balancer service

A load balancer must be configured.

Each node must be able to handle the traffic load of one or more load balancer services.

Secondary network

Excellent performance because traffic does not go through the internal cluster network.

Allows a flexible approach to network topology.

Guest operating system must be configured with appropriate security because the VM is
exposed directly to the secondary network. If a VM is compromised, an intruder could gain
access to the secondary network.

OpenShift Container Platform 4.17 Virtualization

134

7.5.2. Using virtctl ssh

You can add a public SSH key to a virtual machine (VM) and connect to the VM by running the virtctl
ssh command.

This method is simple to configure. However, it is not recommended for high traffic loads because it
places a burden on the API server.

7.5.2.1. About static and dynamic SSH key management

You can add public SSH keys to virtual machines (VMs) statically at first boot or dynamically at runtime.

NOTE

Only Red Hat Enterprise Linux (RHEL) 9 supports dynamic key injection.

Static SSH key management
You can add a statically managed SSH key to a VM with a guest operating system that supports
configuration by using a cloud-init data source. The key is added to the virtual machine (VM) at first
boot.

You can add the key by using one of the following methods:

Add a key to a single VM when you create it by using the web console or the command line.

Add a key to a project by using the web console. Afterwards, the key is automatically added to
the VMs that you create in this project.

Use cases

As a VM owner, you can provision all your newly created VMs with a single key.

Dynamic SSH key management
You can enable dynamic SSH key management for a VM with Red Hat Enterprise Linux (RHEL) 9
installed. Afterwards, you can update the key during runtime. The key is added by the QEMU guest
agent, which is installed with Red Hat boot sources.

You can disable dynamic key management for security reasons. Then, the VM inherits the key
management setting of the image from which it was created.

Use cases

Granting or revoking access to VMs: As a cluster administrator, you can grant or revoke remote
VM access by adding or removing the keys of individual users from a Secret object that is
applied to all VMs in a namespace.

User access: You can add your access credentials to all VMs that you create and manage.

Ansible provisioning:

As an operations team member, you can create a single secret that contains all the keys
used for Ansible provisioning.

As a VM owner, you can create a VM and attach the keys used for Ansible provisioning.

Key rotation:
As a cluster administrator, you can rotate the Ansible provisioner keys used by VMs in a

CHAPTER 7. VIRTUAL MACHINES

135

As a cluster administrator, you can rotate the Ansible provisioner keys used by VMs in a
namespace.

As a workload owner, you can rotate the key for the VMs that you manage.

7.5.2.2. Static key management

You can add a statically managed public SSH key when you create a virtual machine (VM) by using the
OpenShift Container Platform web console or the command line. The key is added as a cloud-init data
source when the VM boots for the first time.

You can also add a public SSH key to a project when you create a VM by using the web console. The key
is saved as a secret and is added automatically to all VMs that you create.

NOTE

If you add a secret to a project and then delete the VM, the secret is retained because it
is a namespace resource. You must delete the secret manually.

7.5.2.2.1. Adding a key when creating a VM from a template

You can add a statically managed public SSH key when you create a virtual machine (VM) by using the
OpenShift Container Platform web console. The key is added to the VM as a cloud-init data source at
first boot. This method does not affect cloud-init user data.

Optional: You can add a key to a project. Afterwards, this key is added automatically to VMs that you
create in the project.

Prerequisites

You generated an SSH key pair by running the ssh-keygen command.

Procedure

1. Navigate to Virtualization → Catalog in the web console.

2. Click a template tile.
The guest operating system must support configuration from a cloud-init data source.

3. Click Customize VirtualMachine.

4. Click Next.

5. Click the Scripts tab.

6. If you have not already added a public SSH key to your project, click the edit icon beside
Authorized SSH key and select one of the following options:

Use existing: Select a secret from the secrets list.

Add new:

a. Browse to the SSH key file or paste the file in the key field.

b. Enter the secret name.

c. Optional: Select Automatically apply this key to any new VirtualMachine you create

OpenShift Container Platform 4.17 Virtualization

136

c. Optional: Select Automatically apply this key to any new VirtualMachine you create
in this project.

7. Click Save.

8. Click Create VirtualMachine.
The VirtualMachine details page displays the progress of the VM creation.

Verification

Click the Scripts tab on the Configuration tab.
The secret name is displayed in the Authorized SSH key section.

7.5.2.2.2. Adding a key when creating a VM from an instance type by using the web console

You can create a virtual machine (VM) from an instance type by using the OpenShift Container Platform
web console. You can also use the web console to create a VM by copying an existing snapshot or to
clone a VM.

You can create a VM from a list of available bootable volumes. You can add Linux- or Windows-based
volumes to the list.

You can add a statically managed SSH key when you create a virtual machine (VM) from an instance
type by using the OpenShift Container Platform web console. The key is added to the VM as a cloud-init
data source at first boot. This method does not affect cloud-init user data.

Procedure

1. In the web console, navigate to Virtualization → Catalog.
The InstanceTypes tab opens by default.

2. Select either of the following options:

Select a suitable bootable volume from the list. If the list is truncated, click the Show all
button to display the entire list.

NOTE

The bootable volume table lists only those volumes in the openshift-
virtualization-os-images namespace that have the
instancetype.kubevirt.io/default-preference label.

Optional: Click the star icon to designate a bootable volume as a favorite. Starred
bootable volumes appear first in the volume list.

Click Add volume to upload a new volume or to use an existing persistent volume claim
(PVC), a volume snapshot, or a containerDisk volume. Click Save.
Logos of operating systems that are not available in the cluster are shown at the bottom of
the list. You can add a volume for the required operating system by clicking the Add volume
link.

In addition, there is a link to the Create a Windows boot source quick start. The same link
appears in a popover if you hover the pointer over the question mark icon next to the Select
volume to boot from line.

CHAPTER 7. VIRTUAL MACHINES

137

Immediately after you install the environment or when the environment is disconnected, the
list of volumes to boot from is empty. In that case, three operating system logos are
displayed: Windows, RHEL, and Linux. You can add a new volume that meets your
requirements by clicking the Add volume button.

3. Click an instance type tile and select the resource size appropriate for your workload.

4. Optional: Choose the virtual machine details, including the VM’s name, that apply to the volume
you are booting from:

For a Linux-based volume, follow these steps to configure SSH:

a. If you have not already added a public SSH key to your project, click the edit icon beside
Authorized SSH key in the VirtualMachine details section.

b. Select one of the following options:

Use existing: Select a secret from the secrets list.

Add new: Follow these steps:

i. Browse to the public SSH key file or paste the file in the key field.

ii. Enter the secret name.

iii. Optional: Select Automatically apply this key to any new VirtualMachine you
create in this project.

c. Click Save.

For a Windows volume, follow either of these set of steps to configure sysprep options:

If you have not already added sysprep options for the Windows volume, follow these
steps:

i. Click the edit icon beside Sysprep in the VirtualMachine details section.

ii. Add the Autoattend.xml answer file.

iii. Add the Unattend.xml answer file.

iv. Click Save.

If you want to use existing sysprep options for the Windows volume, follow these steps:

i. Click Attach existing sysprep.

ii. Enter the name of the existing sysprep Unattend.xml answer file.

iii. Click Save.

5. Optional: If you are creating a Windows VM, you can mount a Windows driver disk:

a. Click the Customize VirtualMachine button.

b. On the VirtualMachine details page, click Storage.

c. Select the Mount Windows drivers disk checkbox.

6. Optional: Click View YAML & CLI to view the YAML file. Click CLI to view the CLI commands.

OpenShift Container Platform 4.17 Virtualization

138

6. Optional: Click View YAML & CLI to view the YAML file. Click CLI to view the CLI commands.
You can also download or copy either the YAML file contents or the CLI commands.

7. Click Create VirtualMachine.

After the VM is created, you can monitor the status on the VirtualMachine details page.

7.5.2.2.3. Adding a key when creating a VM by using the command line

You can add a statically managed public SSH key when you create a virtual machine (VM) by using the
command line. The key is added to the VM at first boot.

The key is added to the VM as a cloud-init data source. This method separates the access credentials
from the application data in the cloud-init user data. This method does not affect cloud-init user data.

Prerequisites

You generated an SSH key pair by running the ssh-keygen command.

Procedure

1. Create a manifest file for a VirtualMachine object and a Secret object:

Example manifest

apiVersion: kubevirt.io/v1
kind: VirtualMachine
metadata:
 name: example-vm
 namespace: example-namespace
spec:
 dataVolumeTemplates:
 - metadata:
 name: example-vm-volume
 spec:
 sourceRef:
 kind: DataSource
 name: rhel9
 namespace: openshift-virtualization-os-images
 storage:
 resources: {}
 instancetype:
 name: u1.medium
 preference:
 name: rhel.9
 running: true
 template:
 spec:
 domain:
 devices: {}
 volumes:
 - dataVolume:
 name: example-vm-volume
 name: rootdisk
 - cloudInitNoCloud: 1

CHAPTER 7. VIRTUAL MACHINES

139

1

2

3

Specify the cloudInitNoCloud data source.

Specify the Secret object name.

Paste the public SSH key.

2. Create the VirtualMachine and Secret objects by running the following command:

3. Start the VM by running the following command:

Verification

Get the VM configuration:

Example output

 userData: |-
 #cloud-config
 user: cloud-user
 name: cloudinitdisk
 accessCredentials:
 - sshPublicKey:
 propagationMethod:
 noCloud: {}
 source:
 secret:
 secretName: authorized-keys 2

apiVersion: v1
kind: Secret
metadata:
 name: authorized-keys
data:
 key: c3NoLXJzYSB... 3

$ oc create -f <manifest_file>.yaml

$ virtctl start vm example-vm -n example-namespace

$ oc describe vm example-vm -n example-namespace

apiVersion: kubevirt.io/v1
kind: VirtualMachine
metadata:
 name: example-vm
 namespace: example-namespace
spec:
 template:
 spec:
 accessCredentials:
 - sshPublicKey:
 propagationMethod:
 noCloud: {}

OpenShift Container Platform 4.17 Virtualization

140

7.5.2.3. Dynamic key management

You can enable dynamic key injection for a virtual machine (VM) by using the OpenShift Container
Platform web console or the command line. Then, you can update the key at runtime.

NOTE

Only Red Hat Enterprise Linux (RHEL) 9 supports dynamic key injection.

If you disable dynamic key injection, the VM inherits the key management method of the image from
which it was created.

7.5.2.3.1. Enabling dynamic key injection when creating a VM from a template

You can enable dynamic public SSH key injection when you create a virtual machine (VM) from a
template by using the OpenShift Container Platform web console. Then, you can update the key at
runtime.

NOTE

Only Red Hat Enterprise Linux (RHEL) 9 supports dynamic key injection.

The key is added to the VM by the QEMU guest agent, which is installed with RHEL 9.

Prerequisites

You generated an SSH key pair by running the ssh-keygen command.

Procedure

1. Navigate to Virtualization → Catalog in the web console.

2. Click the Red Hat Enterprise Linux 9 VM tile.

3. Click Customize VirtualMachine.

4. Click Next.

5. Click the Scripts tab.

6. If you have not already added a public SSH key to your project, click the edit icon beside
Authorized SSH key and select one of the following options:

Use existing: Select a secret from the secrets list.

Add new:

a. Browse to the SSH key file or paste the file in the key field.

 source:
 secret:
 secretName: authorized-keys
...

CHAPTER 7. VIRTUAL MACHINES

141

b. Enter the secret name.

c. Optional: Select Automatically apply this key to any new VirtualMachine you create
in this project.

7. Set Dynamic SSH key injection to on.

8. Click Save.

9. Click Create VirtualMachine.
The VirtualMachine details page displays the progress of the VM creation.

Verification

Click the Scripts tab on the Configuration tab.
The secret name is displayed in the Authorized SSH key section.

7.5.2.3.2. Enabling dynamic key injection when creating a VM from an instance type by using the
web console

You can create a virtual machine (VM) from an instance type by using the OpenShift Container Platform
web console. You can also use the web console to create a VM by copying an existing snapshot or to
clone a VM.

You can create a VM from a list of available bootable volumes. You can add Linux- or Windows-based
volumes to the list.

You can enable dynamic SSH key injection when you create a virtual machine (VM) from an instance
type by using the OpenShift Container Platform web console. Then, you can add or revoke the key at
runtime.

NOTE

Only Red Hat Enterprise Linux (RHEL) 9 supports dynamic key injection.

The key is added to the VM by the QEMU guest agent, which is installed with RHEL 9.

Procedure

1. In the web console, navigate to Virtualization → Catalog.
The InstanceTypes tab opens by default.

2. Select either of the following options:

Select a suitable bootable volume from the list. If the list is truncated, click the Show all
button to display the entire list.

NOTE

The bootable volume table lists only those volumes in the openshift-
virtualization-os-images namespace that have the
instancetype.kubevirt.io/default-preference label.

Optional: Click the star icon to designate a bootable volume as a favorite. Starred

OpenShift Container Platform 4.17 Virtualization

142

Optional: Click the star icon to designate a bootable volume as a favorite. Starred
bootable volumes appear first in the volume list.

Click Add volume to upload a new volume or to use an existing persistent volume claim
(PVC), a volume snapshot, or a containerDisk volume. Click Save.
Logos of operating systems that are not available in the cluster are shown at the bottom of
the list. You can add a volume for the required operating system by clicking the Add volume
link.

In addition, there is a link to the Create a Windows boot source quick start. The same link
appears in a popover if you hover the pointer over the question mark icon next to the Select
volume to boot from line.

Immediately after you install the environment or when the environment is disconnected, the
list of volumes to boot from is empty. In that case, three operating system logos are
displayed: Windows, RHEL, and Linux. You can add a new volume that meets your
requirements by clicking the Add volume button.

3. Click an instance type tile and select the resource size appropriate for your workload.

4. Click the Red Hat Enterprise Linux 9 VM tile.

5. Optional: Choose the virtual machine details, including the VM’s name, that apply to the volume
you are booting from:

For a Linux-based volume, follow these steps to configure SSH:

a. If you have not already added a public SSH key to your project, click the edit icon beside
Authorized SSH key in the VirtualMachine details section.

b. Select one of the following options:

Use existing: Select a secret from the secrets list.

Add new: Follow these steps:

i. Browse to the public SSH key file or paste the file in the key field.

ii. Enter the secret name.

iii. Optional: Select Automatically apply this key to any new VirtualMachine you
create in this project.

c. Click Save.

For a Windows volume, follow either of these set of steps to configure sysprep options:

If you have not already added sysprep options for the Windows volume, follow these
steps:

i. Click the edit icon beside Sysprep in the VirtualMachine details section.

ii. Add the Autoattend.xml answer file.

iii. Add the Unattend.xml answer file.

iv. Click Save.

If you want to use existing sysprep options for the Windows volume, follow these steps:

CHAPTER 7. VIRTUAL MACHINES

143

i. Click Attach existing sysprep.

ii. Enter the name of the existing sysprep Unattend.xml answer file.

iii. Click Save.

6. Set Dynamic SSH key injection in the VirtualMachine details section to on.

7. Optional: If you are creating a Windows VM, you can mount a Windows driver disk:

a. Click the Customize VirtualMachine button.

b. On the VirtualMachine details page, click Storage.

c. Select the Mount Windows drivers disk checkbox.

8. Optional: Click View YAML & CLI to view the YAML file. Click CLI to view the CLI commands.
You can also download or copy either the YAML file contents or the CLI commands.

9. Click Create VirtualMachine.

After the VM is created, you can monitor the status on the VirtualMachine details page.

7.5.2.3.3. Enabling dynamic SSH key injection by using the web console

You can enable dynamic key injection for a virtual machine (VM) by using the OpenShift Container
Platform web console. Then, you can update the public SSH key at runtime.

The key is added to the VM by the QEMU guest agent, which is installed with Red Hat Enterprise Linux
(RHEL) 9.

Prerequisites

The guest operating system is RHEL 9.

Procedure

1. Navigate to Virtualization → VirtualMachines in the web console.

2. Select a VM to open the VirtualMachine details page.

3. On the Configuration tab, click Scripts.

4. If you have not already added a public SSH key to your project, click the edit icon beside
Authorized SSH key and select one of the following options:

Use existing: Select a secret from the secrets list.

Add new:

a. Browse to the SSH key file or paste the file in the key field.

b. Enter the secret name.

c. Optional: Select Automatically apply this key to any new VirtualMachine you create
in this project.

OpenShift Container Platform 4.17 Virtualization

144

5. Set Dynamic SSH key injection to on.

6. Click Save.

7.5.2.3.4. Enabling dynamic key injection by using the command line

You can enable dynamic key injection for a virtual machine (VM) by using the command line. Then, you
can update the public SSH key at runtime.

NOTE

Only Red Hat Enterprise Linux (RHEL) 9 supports dynamic key injection.

The key is added to the VM by the QEMU guest agent, which is installed automatically with RHEL 9.

Prerequisites

You generated an SSH key pair by running the ssh-keygen command.

Procedure

1. Create a manifest file for a VirtualMachine object and a Secret object:

Example manifest

apiVersion: kubevirt.io/v1
kind: VirtualMachine
metadata:
 name: example-vm
 namespace: example-namespace
spec:
 dataVolumeTemplates:
 - metadata:
 name: example-vm-volume
 spec:
 sourceRef:
 kind: DataSource
 name: rhel9
 namespace: openshift-virtualization-os-images
 storage:
 resources: {}
 instancetype:
 name: u1.medium
 preference:
 name: rhel.9
 running: true
 template:
 spec:
 domain:
 devices: {}
 volumes:
 - dataVolume:
 name: example-vm-volume
 name: rootdisk

CHAPTER 7. VIRTUAL MACHINES

145

1

2

3

Specify the cloudInitNoCloud data source.

Specify the Secret object name.

Paste the public SSH key.

2. Create the VirtualMachine and Secret objects by running the following command:

3. Start the VM by running the following command:

Verification

Get the VM configuration:

Example output

 - cloudInitNoCloud: 1
 userData: |-
 #cloud-config
 runcmd:
 - [setsebool, -P, virt_qemu_ga_manage_ssh, on]
 name: cloudinitdisk
 accessCredentials:
 - sshPublicKey:
 propagationMethod:
 qemuGuestAgent:
 users: ["cloud-user"]
 source:
 secret:
 secretName: authorized-keys 2

apiVersion: v1
kind: Secret
metadata:
 name: authorized-keys
data:
 key: c3NoLXJzYSB... 3

$ oc create -f <manifest_file>.yaml

$ virtctl start vm example-vm -n example-namespace

$ oc describe vm example-vm -n example-namespace

apiVersion: kubevirt.io/v1
kind: VirtualMachine
metadata:
 name: example-vm
 namespace: example-namespace
spec:
 template:
 spec:
 accessCredentials:

OpenShift Container Platform 4.17 Virtualization

146

1

7.5.2.4. Using the virtctl ssh command

You can access a running virtual machine (VM) by using the virtcl ssh command.

Prerequisites

You installed the virtctl command line tool.

You added a public SSH key to the VM.

You have an SSH client installed.

The environment where you installed the virtctl tool has the cluster permissions required to
access the VM. For example, you ran oc login or you set the KUBECONFIG environment
variable.

Procedure

Run the virtctl ssh command:

Specify the namespace, user name, and the SSH private key. The default SSH key location
is /home/user/.ssh. If you save the key in a different location, you must specify the path.

Example

TIP

You can copy the virtctl ssh command in the web console by selecting Copy SSH command from the

options menu beside a VM on the VirtualMachines page.

7.5.3. Using the virtctl port-forward command

You can use your local OpenSSH client and the virtctl port-forward command to connect to a running
virtual machine (VM). You can use this method with Ansible to automate the configuration of VMs.

This method is recommended for low-traffic applications because port-forwarding traffic is sent over
the control plane. This method is not recommended for high-traffic applications such as Rsync or
Remote Desktop Protocol because it places a heavy burden on the API server.

 - sshPublicKey:
 propagationMethod:
 qemuGuestAgent:
 users: ["cloud-user"]
 source:
 secret:
 secretName: authorized-keys
...

$ virtctl -n <namespace> ssh <username>@example-vm -i <ssh_key> 1

$ virtctl -n my-namespace ssh cloud-user@example-vm -i my-key

CHAPTER 7. VIRTUAL MACHINES

147

Prerequisites

You have installed the virtctl client.

The virtual machine you want to access is running.

The environment where you installed the virtctl tool has the cluster permissions required to
access the VM. For example, you ran oc login or you set the KUBECONFIG environment
variable.

Procedure

1. Add the following text to the ~/.ssh/config file on your client machine:

2. Connect to the VM by running the following command:

7.5.4. Using a service for SSH access

You can create a service for a virtual machine (VM) and connect to the IP address and port exposed by
the service.

Services provide excellent performance and are recommended for applications that are accessed from
outside the cluster or within the cluster. Ingress traffic is protected by firewalls.

If the cluster network cannot handle the traffic load, consider using a secondary network for VM access.

7.5.4.1. About services

A Kubernetes service exposes network access for clients to an application running on a set of pods.
Services offer abstraction, load balancing, and, in the case of the NodePort and LoadBalancer types,
exposure to the outside world.

ClusterIP

Exposes the service on an internal IP address and as a DNS name to other applications within the
cluster. A single service can map to multiple virtual machines. When a client tries to connect to the
service, the client’s request is load balanced among available backends. ClusterIP is the default
service type.

NodePort

Exposes the service on the same port of each selected node in the cluster. NodePort makes a port
accessible from outside the cluster, as long as the node itself is externally accessible to the client.

LoadBalancer

Creates an external load balancer in the current cloud (if supported) and assigns a fixed, external IP
address to the service.

NOTE

For on-premise clusters, you can configure a load-balancing service by deploying the
MetalLB Operator.

Host vm/*
 ProxyCommand virtctl port-forward --stdio=true %h %p

$ ssh <user>@vm/<vm_name>.<namespace>

OpenShift Container Platform 4.17 Virtualization

148

7.5.4.2. Creating a service

You can create a service to expose a virtual machine (VM) by using the OpenShift Container Platform
web console, virtctl command line tool, or a YAML file.

7.5.4.2.1. Enabling load balancer service creation by using the web console

You can enable the creation of load balancer services for a virtual machine (VM) by using the OpenShift
Container Platform web console.

Prerequisites

You have configured a load balancer for the cluster.

You are logged in as a user with the cluster-admin role.

Procedure

1. Navigate to Virtualization → Overview.

2. On the Settings tab, click Cluster.

3. Expand General settings and SSH configuration.

4. Set SSH over LoadBalancer service to on.

7.5.4.2.2. Creating a service by using the web console

You can create a node port or load balancer service for a virtual machine (VM) by using the OpenShift
Container Platform web console.

Prerequisites

You configured the cluster network to support either a load balancer or a node port.

To create a load balancer service, you enabled the creation of load balancer services.

Procedure

1. Navigate to VirtualMachines and select a virtual machine to view the VirtualMachine details
page.

2. On the Details tab, select SSH over LoadBalancer from the SSH service type list.

3. Optional: Click the copy icon to copy the SSH command to your clipboard.

Verification

Check the Services pane on the Details tab to view the new service.

7.5.4.2.3. Creating a service by using virtctl

You can create a service for a virtual machine (VM) by using the virtctl command line tool.

Prerequisites

CHAPTER 7. VIRTUAL MACHINES

149

1

You installed the virtctl command line tool.

You configured the cluster network to support the service.

The environment where you installed virtctl has the cluster permissions required to access the
VM. For example, you ran oc login or you set the KUBECONFIG environment variable.

Procedure

Create a service by running the following command:

Specify the ClusterIP, NodePort, or LoadBalancer service type.

Example

Verification

Verify the service by running the following command:

Next steps

After you create a service with virtctl, you must add special: key to the spec.template.metadata.labels
stanza of the VirtualMachine manifest. See Creating a service by using the command line .

7.5.4.2.4. Creating a service by using the command line

You can create a service and associate it with a virtual machine (VM) by using the command line.

Prerequisites

You configured the cluster network to support the service.

Procedure

1. Edit the VirtualMachine manifest to add the label for service creation:

$ virtctl expose vm <vm_name> --name <service_name> --type <service_type> --port <port>
1

$ virtctl expose vm example-vm --name example-service --type NodePort --port 22

$ oc get service

apiVersion: kubevirt.io/v1
kind: VirtualMachine
metadata:
 name: example-vm
 namespace: example-namespace
spec:
 running: false
 template:
 metadata:

OpenShift Container Platform 4.17 Virtualization

150

1

1

2

3

Add special: key to the spec.template.metadata.labels stanza.

NOTE

Labels on a virtual machine are passed through to the pod. The special: key
label must match the label in the spec.selector attribute of the Service
manifest.

2. Save the VirtualMachine manifest file to apply your changes.

3. Create a Service manifest to expose the VM:

Specify the label that you added to the spec.template.metadata.labels stanza of the
VirtualMachine manifest.

Specify ClusterIP, NodePort, or LoadBalancer.

Specifies a collection of network ports and protocols that you want to expose from the
virtual machine.

4. Save the Service manifest file.

5. Create the service by running the following command:

6. Restart the VM to apply the changes.

Verification

Query the Service object to verify that it is available:

 labels:
 special: key 1
...

apiVersion: v1
kind: Service
metadata:
 name: example-service
 namespace: example-namespace
spec:
...
 selector:
 special: key 1
 type: NodePort 2
 ports: 3
 protocol: TCP
 port: 80
 targetPort: 9376
 nodePort: 30000

$ oc create -f example-service.yaml

CHAPTER 7. VIRTUAL MACHINES

151

1

7.5.4.3. Connecting to a VM exposed by a service by using SSH

You can connect to a virtual machine (VM) that is exposed by a service by using SSH.

Prerequisites

You created a service to expose the VM.

You have an SSH client installed.

You are logged in to the cluster.

Procedure

Run the following command to access the VM:

Specify the cluster IP for a cluster IP service, the node IP for a node port service, or the
external IP address for a load balancer service.

7.5.5. Using a secondary network for SSH access

You can configure a secondary network, attach a virtual machine (VM) to the secondary network
interface, and connect to the DHCP-allocated IP address by using SSH.

IMPORTANT

Secondary networks provide excellent performance because the traffic is not handled by
the cluster network stack. However, the VMs are exposed directly to the secondary
network and are not protected by firewalls. If a VM is compromised, an intruder could gain
access to the secondary network. You must configure appropriate security within the
operating system of the VM if you use this method.

See the Multus and SR-IOV documentation in the OpenShift Virtualization Tuning & Scaling Guide for
additional information about networking options.

Prerequisites

You configured a secondary network such as Linux bridge or SR-IOV.

You created a network attachment definition for a Linux bridge network or the SR-IOV Network
Operator created a network attachment definition when you created an SriovNetwork object.

7.5.5.1. Configuring a VM network interface by using the web console

You can configure a network interface for a virtual machine (VM) by using the OpenShift Container
Platform web console.

Prerequisites

$ oc get service -n example-namespace

$ ssh <user_name>@<ip_address> -p <port> 1

OpenShift Container Platform 4.17 Virtualization

152

https://access.redhat.com/articles/6994974#networking-multus
https://access.redhat.com/articles/6994974#networking-sriov
https://access.redhat.com/articles/6994974

You created a network attachment definition for the network.

Procedure

1. Navigate to Virtualization → VirtualMachines.

2. Click a VM to view the VirtualMachine details page.

3. On the Configuration tab, click the Network interfaces tab.

4. Click Add network interface.

5. Enter the interface name and select the network attachment definition from the Network list.

6. Click Save.

7. Restart the VM to apply the changes.

7.5.5.2. Connecting to a VM attached to a secondary network by using SSH

You can connect to a virtual machine (VM) attached to a secondary network by using SSH.

Prerequisites

You attached a VM to a secondary network with a DHCP server.

You have an SSH client installed.

Procedure

1. Obtain the IP address of the VM by running the following command:

Example output

...
Interfaces:
 Interface Name: eth0
 Ip Address: 10.244.0.37/24
 Ip Addresses:
 10.244.0.37/24
 fe80::858:aff:fef4:25/64
 Mac: 0a:58:0a:f4:00:25
 Name: default
...

2. Connect to the VM by running the following command:

Example

$ oc describe vm <vm_name> -n <namespace>

$ ssh <user_name>@<ip_address> -i <ssh_key>

$ ssh cloud-user@10.244.0.37 -i ~/.ssh/id_rsa_cloud-user

CHAPTER 7. VIRTUAL MACHINES

153

NOTE

You can also access a VM attached to a secondary network interface by using the cluster
FQDN.

7.6. EDITING VIRTUAL MACHINES

You can update a virtual machine (VM) configuration by using the OpenShift Container Platform web
console. You can update the YAML file or the VirtualMachine details page.

You can also edit a VM by using the command line.

To edit a VM to configure disk sharing by using virtual disks or LUN, see Configuring shared volumes for
virtual machines.

7.6.1. Hot plugging memory on a virtual machine

You can add or remove the amount of memory allocated to a virtual machine (VM) without having to
restart the VM by using the OpenShift Container Platform web console.

Procedure

1. Navigate to Virtualization → VirtualMachines.

2. Select the required VM to open the VirtualMachine details page.

3. On the Configuration tab, click Edit CPU|Memory.

4. Enter the desired amount of memory and click Save.

The system applies these changes immediately. If the VM is migratable, a live migration is triggered. If
not, or if the changes cannot be live-updated, a RestartRequired condition is added to the VM.

NOTE

Linux guests require a kernel version of 5.16 or later and Windows guests require the
latest viomem drivers.

7.6.2. Editing a virtual machine by using the command line

You can edit a virtual machine (VM) by using the command line.

Prerequisites

You installed the oc CLI.

Procedure

1. Obtain the virtual machine configuration by running the following command:

2. Edit the YAML configuration.

$ oc edit vm <vm_name>

OpenShift Container Platform 4.17 Virtualization

154

3. If you edit a running virtual machine, you need to do one of the following:

Restart the virtual machine.

Run the following command for the new configuration to take effect:

7.6.3. Adding a disk to a virtual machine

You can add a virtual disk to a virtual machine (VM) by using the OpenShift Container Platform web
console.

Procedure

1. Navigate to Virtualization → VirtualMachines in the web console.

2. Select a VM to open the VirtualMachine details page.

3. On the Disks tab, click Add disk.

4. Specify the Source, Name, Size, Type, Interface, and Storage Class.

a. Optional: You can enable preallocation if you use a blank disk source and require maximum
write performance when creating data volumes. To do so, select the Enable preallocation
checkbox.

b. Optional: You can clear Apply optimized StorageProfile settings to change the Volume
Mode and Access Mode for the virtual disk. If you do not specify these parameters, the
system uses the default values from the kubevirt-storage-class-defaults config map.

5. Click Add.

NOTE

If the VM is running, you must restart the VM to apply the change.

7.6.3.1. Storage fields

Field Description

Blank (creates PVC) Create an empty disk.

Import via URL (creates
PVC)

Import content via URL (HTTP or HTTPS endpoint).

Use an existing PVC Use a PVC that is already available in the cluster.

Clone existing PVC
(creates PVC)

Select an existing PVC available in the cluster and clone it.

$ oc apply vm <vm_name> -n <namespace>

CHAPTER 7. VIRTUAL MACHINES

155

Import via Registry
(creates PVC)

Import content via container registry.

Container (ephemeral) Upload content from a container located in a registry accessible from the cluster.
The container disk should be used only for read-only filesystems such as CD-
ROMs or temporary virtual machines.

Name Name of the disk. The name can contain lowercase letters (a-z), numbers (0-9),
hyphens (-), and periods (.), up to a maximum of 253 characters. The first and last
characters must be alphanumeric. The name must not contain uppercase letters,
spaces, or special characters.

Size Size of the disk in GiB.

Type Type of disk. Example: Disk or CD-ROM

Interface Type of disk device. Supported interfaces are virtIO, SATA, and SCSI.

Storage Class The storage class that is used to create the disk.

Field Description

Advanced storage settings
The following advanced storage settings are optional and available for Blank, Import via URL, and
Clone existing PVC disks.

If you do not specify these parameters, the system uses the default storage profile values.

Parameter Option Parameter description

Volume Mode Filesystem Stores the virtual disk on a file system-based volume.

Block Stores the virtual disk directly on the block volume. Only use
Block if the underlying storage supports it.

Access Mode ReadWriteOnce
(RWO)

Volume can be mounted as read-write by a single node.

ReadWriteMany
(RWX)

Volume can be mounted as read-write by many nodes at one
time.

NOTE

This mode is required for live migration.

7.6.4. Mounting a Windows driver disk on a virtual machine

You can mount a Windows driver disk on a virtual machine (VM) by using the OpenShift Container

OpenShift Container Platform 4.17 Virtualization

156

You can mount a Windows driver disk on a virtual machine (VM) by using the OpenShift Container
Platform web console.

Procedure

1. Navigate to Virtualization → VirtualMachines.

2. Select the required VM to open the VirtualMachine details page.

3. On the Configuration tab, click Storage.

4. Select the Mount Windows drivers disk checkbox.
The Windows driver disk is displayed in the list of mounted disks.

7.6.5. Adding a secret, config map, or service account to a virtual machine

You add a secret, config map, or service account to a virtual machine by using the OpenShift Container
Platform web console.

These resources are added to the virtual machine as disks. You then mount the secret, config map, or
service account as you would mount any other disk.

If the virtual machine is running, changes do not take effect until you restart the virtual machine. The
newly added resources are marked as pending changes at the top of the page.

Prerequisites

The secret, config map, or service account that you want to add must exist in the same
namespace as the target virtual machine.

Procedure

1. Click Virtualization → VirtualMachines from the side menu.

2. Select a virtual machine to open the VirtualMachine details page.

3. Click Configuration → Environment.

4. Click Add Config Map, Secret or Service Account.

5. Click Select a resource and select a resource from the list. A six character serial number is
automatically generated for the selected resource.

6. Optional: Click Reload to revert the environment to its last saved state.

7. Click Save.

Verification

1. On the VirtualMachine details page, click Configuration → Disks and verify that the resource
is displayed in the list of disks.

2. Restart the virtual machine by clicking Actions → Restart.

You can now mount the secret, config map, or service account as you would mount any other disk.

CHAPTER 7. VIRTUAL MACHINES

157

Additional resources for config maps, secrets, and service accounts

Understanding config maps

Providing sensitive data to pods

Understanding and creating service accounts

7.7. EDITING BOOT ORDER

You can update the values for a boot order list by using the web console or the CLI.

With Boot Order in the Virtual Machine Overview page, you can:

Select a disk or network interface controller (NIC) and add it to the boot order list.

Edit the order of the disks or NICs in the boot order list.

Remove a disk or NIC from the boot order list, and return it back to the inventory of bootable
sources.

7.7.1. Adding items to a boot order list in the web console

Add items to a boot order list by using the web console.

Procedure

1. Click Virtualization → VirtualMachines from the side menu.

2. Select a virtual machine to open the VirtualMachine details page.

3. Click the Details tab.

4. Click the pencil icon that is located on the right side of Boot Order. If a YAML configuration
does not exist, or if this is the first time that you are creating a boot order list, the following
message displays: No resource selected. VM will attempt to boot from disks by order of
appearance in YAML file.

5. Click Add Source and select a bootable disk or network interface controller (NIC) for the virtual
machine.

6. Add any additional disks or NICs to the boot order list.

7. Click Save.

NOTE

If the virtual machine is running, changes to Boot Order will not take effect until you
restart the virtual machine.

You can view pending changes by clicking View Pending Changes on the right side of the
Boot Order field. The Pending Changes banner at the top of the page displays a list of
all changes that will be applied when the virtual machine restarts.

7.7.2. Editing a boot order list in the web console

OpenShift Container Platform 4.17 Virtualization

158

https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/nodes/#nodes-pods-configmap-overview_builds-configmaps
https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/nodes/#nodes-pods-secrets-about
https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/authentication_and_authorization/#service-accounts-overview

Edit the boot order list in the web console.

Procedure

1. Click Virtualization → VirtualMachines from the side menu.

2. Select a virtual machine to open the VirtualMachine details page.

3. Click the Details tab.

4. Click the pencil icon that is located on the right side of Boot Order.

5. Choose the appropriate method to move the item in the boot order list:

If you do not use a screen reader, hover over the arrow icon next to the item that you want
to move, drag the item up or down, and drop it in a location of your choice.

If you use a screen reader, press the Up Arrow key or Down Arrow key to move the item in
the boot order list. Then, press the Tab key to drop the item in a location of your choice.

6. Click Save.

NOTE

If the virtual machine is running, changes to the boot order list will not take effect until
you restart the virtual machine.

You can view pending changes by clicking View Pending Changes on the right side of the
Boot Order field. The Pending Changes banner at the top of the page displays a list of
all changes that will be applied when the virtual machine restarts.

7.7.3. Editing a boot order list in the YAML configuration file

Edit the boot order list in a YAML configuration file by using the CLI.

Procedure

1. Open the YAML configuration file for the virtual machine by running the following command:

2. Edit the YAML file and modify the values for the boot order associated with a disk or network
interface controller (NIC). For example:

$ oc edit vm <vm_name> -n <namespace>

disks:
 - bootOrder: 1 1
 disk:
 bus: virtio
 name: containerdisk
 - disk:
 bus: virtio
 name: cloudinitdisk
 - cdrom:
 bus: virtio
 name: cd-drive-1

CHAPTER 7. VIRTUAL MACHINES

159

1

2

The boot order value specified for the disk.

The boot order value specified for the network interface controller.

3. Save the YAML file.

7.7.4. Removing items from a boot order list in the web console

Remove items from a boot order list by using the web console.

Procedure

1. Click Virtualization → VirtualMachines from the side menu.

2. Select a virtual machine to open the VirtualMachine details page.

3. Click the Details tab.

4. Click the pencil icon that is located on the right side of Boot Order.

5. Click the Remove icon next to the item. The item is removed from the boot order list and
saved in the list of available boot sources. If you remove all items from the boot order list, the
following message displays: No resource selected. VM will attempt to boot from disks by
order of appearance in YAML file.

NOTE

If the virtual machine is running, changes to Boot Order will not take effect until you
restart the virtual machine.

You can view pending changes by clicking View Pending Changes on the right side of the
Boot Order field. The Pending Changes banner at the top of the page displays a list of
all changes that will be applied when the virtual machine restarts.

7.8. DELETING VIRTUAL MACHINES

You can delete a virtual machine from the web console or by using the oc command line interface.

7.8.1. Deleting a virtual machine using the web console

Deleting a virtual machine permanently removes it from the cluster.

Procedure

1. In the OpenShift Container Platform console, click Virtualization → VirtualMachines from the
side menu.

interfaces:
 - boot Order: 2 2
 macAddress: '02:96:c4:00:00'
 masquerade: {}
 name: default

OpenShift Container Platform 4.17 Virtualization

160

2. Click the Options menu beside a virtual machine and select Delete.
Alternatively, click the virtual machine name to open the VirtualMachine details page and click
Actions → Delete.

3. Optional: Select With grace period or clear Delete disks.

4. Click Delete to permanently delete the virtual machine.

7.8.2. Deleting a virtual machine by using the CLI

You can delete a virtual machine by using the oc command line interface (CLI). The oc client enables
you to perform actions on multiple virtual machines.

Prerequisites

Identify the name of the virtual machine that you want to delete.

Procedure

Delete the virtual machine by running the following command:

NOTE

This command only deletes a VM in the current project. Specify the -n
<project_name> option if the VM you want to delete is in a different project or
namespace.

7.9. EXPORTING VIRTUAL MACHINES

You can export a virtual machine (VM) and its associated disks in order to import a VM into another
cluster or to analyze the volume for forensic purposes.

You create a VirtualMachineExport custom resource (CR) by using the command line interface.

Alternatively, you can use the virtctl vmexport command to create a VirtualMachineExport CR and to
download exported volumes.

NOTE

You can migrate virtual machines between OpenShift Virtualization clusters by using the
Migration Toolkit for Virtualization.

7.9.1. Creating a VirtualMachineExport custom resource

You can create a VirtualMachineExport custom resource (CR) to export the following objects:

Virtual machine (VM): Exports the persistent volume claims (PVCs) of a specified VM.

VM snapshot: Exports PVCs contained in a VirtualMachineSnapshot CR.

$ oc delete vm <vm_name>

CHAPTER 7. VIRTUAL MACHINES

161

https://access.redhat.com/products/migration-toolkits-virtualization

1

2

3

PVC: Exports a PVC. If the PVC is used by another pod, such as the virt-launcher pod, the
export remains in a Pending state until the PVC is no longer in use.

The VirtualMachineExport CR creates internal and external links for the exported volumes. Internal
links are valid within the cluster. External links can be accessed by using an Ingress or Route.

The export server supports the following file formats:

raw: Raw disk image file.

gzip: Compressed disk image file.

dir: PVC directory and files.

tar.gz: Compressed PVC file.

Prerequisites

The VM must be shut down for a VM export.

Procedure

1. Create a VirtualMachineExport manifest to export a volume from a VirtualMachine,
VirtualMachineSnapshot, or PersistentVolumeClaim CR according to the following example
and save it as example-export.yaml:

VirtualMachineExport example

Specify the appropriate API group:

"kubevirt.io" for VirtualMachine.

"snapshot.kubevirt.io" for VirtualMachineSnapshot.

"" for PersistentVolumeClaim.

Specify VirtualMachine, VirtualMachineSnapshot, or PersistentVolumeClaim.

Optional. The default duration is 2 hours.

2. Create the VirtualMachineExport CR:

apiVersion: export.kubevirt.io/v1beta1
kind: VirtualMachineExport
metadata:
 name: example-export
spec:
 source:
 apiGroup: "kubevirt.io" 1
 kind: VirtualMachine 2
 name: example-vm
 ttlDuration: 1h 3

$ oc create -f example-export.yaml

OpenShift Container Platform 4.17 Virtualization

162

3. Get the VirtualMachineExport CR:

The internal and external links for the exported volumes are displayed in the status stanza:

Output example

$ oc get vmexport example-export -o yaml

apiVersion: export.kubevirt.io/v1beta1
kind: VirtualMachineExport
metadata:
 name: example-export
 namespace: example
spec:
 source:
 apiGroup: ""
 kind: PersistentVolumeClaim
 name: example-pvc
 tokenSecretRef: example-token
status:
 conditions:
 - lastProbeTime: null
 lastTransitionTime: "2022-06-21T14:10:09Z"
 reason: podReady
 status: "True"
 type: Ready
 - lastProbeTime: null
 lastTransitionTime: "2022-06-21T14:09:02Z"
 reason: pvcBound
 status: "True"
 type: PVCReady
 links:
 external: 1
 cert: |-
 -----BEGIN CERTIFICATE-----
 ...
 -----END CERTIFICATE-----
 volumes:
 - formats:
 - format: raw
 url: https://vmexport-
proxy.test.net/api/export.kubevirt.io/v1beta1/namespaces/example/virtualmachineexports/examp
le-export/volumes/example-disk/disk.img
 - format: gzip
 url: https://vmexport-
proxy.test.net/api/export.kubevirt.io/v1beta1/namespaces/example/virtualmachineexports/examp
le-export/volumes/example-disk/disk.img.gz
 name: example-disk
 internal: 2
 cert: |-
 -----BEGIN CERTIFICATE-----
 ...
 -----END CERTIFICATE-----
 volumes:
 - formats:

CHAPTER 7. VIRTUAL MACHINES

163

1

2

1

1

External links are accessible from outside the cluster by using an Ingress or Route.

Internal links are only valid inside the cluster.

7.9.2. Accessing exported virtual machine manifests

After you export a virtual machine (VM) or snapshot, you can get the VirtualMachine manifest and
related information from the export server.

Prerequisites

You exported a virtual machine or VM snapshot by creating a VirtualMachineExport custom
resource (CR).

NOTE

VirtualMachineExport objects that have the spec.source.kind:
PersistentVolumeClaim parameter do not generate virtual machine manifests.

Procedure

1. To access the manifests, you must first copy the certificates from the source cluster to the
target cluster.

a. Log in to the source cluster.

b. Save the certificates to the cacert.crt file by running the following command:

Replace <export_name> with the metadata.name value from the
VirtualMachineExport object.

c. Copy the cacert.crt file to the target cluster.

2. Decode the token in the source cluster and save it to the token_decode file by running the
following command:

Replace <export_name> with the metadata.name value from the VirtualMachineExport
object.

 - format: raw
 url: https://virt-export-example-export.example.svc/volumes/example-disk/disk.img
 - format: gzip
 url: https://virt-export-example-export.example.svc/volumes/example-disk/disk.img.gz
 name: example-disk
 phase: Ready
 serviceName: virt-export-example-export

$ oc get vmexport <export_name> -o jsonpath={.status.links.external.cert} > cacert.crt
1

$ oc get secret export-token-<export_name> -o jsonpath={.data.token} | base64 --decode >
token_decode 1

OpenShift Container Platform 4.17 Virtualization

164

1

2

3

3. Copy the token_decode file to the target cluster.

4. Get the VirtualMachineExport custom resource by running the following command:

5. Review the status.links stanza, which is divided into external and internal sections. Note the
manifests.url fields within each section:

Example output

Contains the VirtualMachine manifest, DataVolume manifest, if present, and a
ConfigMap manifest that contains the public certificate for the external URL’s ingress or
route.

Contains a secret containing a header that is compatible with Containerized Data Importer
(CDI). The header contains a text version of the export token.

Contains the VirtualMachine manifest, DataVolume manifest, if present, and a
ConfigMap manifest that contains the certificate for the internal URL’s export server.

$ oc get vmexport <export_name> -o yaml

apiVersion: export.kubevirt.io/v1beta1
kind: VirtualMachineExport
metadata:
 name: example-export
spec:
 source:
 apiGroup: "kubevirt.io"
 kind: VirtualMachine
 name: example-vm
 tokenSecretRef: example-token
status:
#...
 links:
 external:
#...
 manifests:
 - type: all
 url: https://vmexport-
proxy.test.net/api/export.kubevirt.io/v1beta1/namespaces/example/virtualmachineexports/examp
le-export/external/manifests/all 1
 - type: auth-header-secret
 url: https://vmexport-
proxy.test.net/api/export.kubevirt.io/v1beta1/namespaces/example/virtualmachineexports/examp
le-export/external/manifests/secret 2
 internal:
#...
 manifests:
 - type: all
 url: https://virt-export-export-pvc.default.svc/internal/manifests/all 3
 - type: auth-header-secret
 url: https://virt-export-export-pvc.default.svc/internal/manifests/secret
 phase: Ready
 serviceName: virt-export-example-export

CHAPTER 7. VIRTUAL MACHINES

165

1

2

1

2

6. Log in to the target cluster.

7. Get the Secret manifest by running the following command:

Replace <secret_manifest_url> with an auth-header-secret URL from the
VirtualMachineExport YAML output.

Reference the token_decode file that you created earlier.

For example:

8. Get the manifests of type: all, such as the ConfigMap and VirtualMachine manifests, by
running the following command:

Replace <all_manifest_url> with a URL from the VirtualMachineExport YAML output.

Reference the token_decode file that you created earlier.

For example:

Next steps

You can now create the ConfigMap and VirtualMachine objects on the target cluster by using
the exported manifests.

7.10. MANAGING VIRTUAL MACHINE INSTANCES

If you have standalone virtual machine instances (VMIs) that were created independently outside of the
OpenShift Virtualization environment, you can manage them by using the web console or by using oc or
virtctl commands from the command-line interface (CLI).

The virtctl command provides more virtualization options than the oc command. For example, you can
use virtctl to pause a VM or expose a port.

$ curl --cacert cacert.crt <secret_manifest_url> -H \ 1
"x-kubevirt-export-token:token_decode" -H \ 2
"Accept:application/yaml"

$ curl --cacert cacert.crt https://vmexport-
proxy.test.net/api/export.kubevirt.io/v1beta1/namespaces/example/virtualmachineexports/examp
le-export/external/manifests/secret -H "x-kubevirt-export-token:token_decode" -H
"Accept:application/yaml"

$ curl --cacert cacert.crt <all_manifest_url> -H \ 1
"x-kubevirt-export-token:token_decode" -H \ 2
"Accept:application/yaml"

$ curl --cacert cacert.crt https://vmexport-
proxy.test.net/api/export.kubevirt.io/v1beta1/namespaces/example/virtualmachineexports/examp
le-export/external/manifests/all -H "x-kubevirt-export-token:token_decode" -H
"Accept:application/yaml"

OpenShift Container Platform 4.17 Virtualization

166

7.10.1. About virtual machine instances

A virtual machine instance (VMI) is a representation of a running virtual machine (VM). When a VMI is
owned by a VM or by another object, you manage it through its owner in the web console or by using the
oc command-line interface (CLI).

A standalone VMI is created and started independently with a script, through automation, or by using
other methods in the CLI. In your environment, you might have standalone VMIs that were developed
and started outside of the OpenShift Virtualization environment. You can continue to manage those
standalone VMIs by using the CLI. You can also use the web console for specific tasks associated with
standalone VMIs:

List standalone VMIs and their details.

Edit labels and annotations for a standalone VMI.

Delete a standalone VMI.

When you delete a VM, the associated VMI is automatically deleted. You delete a standalone VMI
directly because it is not owned by VMs or other objects.

NOTE

Before you uninstall OpenShift Virtualization, list and view the standalone VMIs by using
the CLI or the web console. Then, delete any outstanding VMIs.

When you edit a VM, some settings might be applied to the VMIs dynamically and without the need for a
restart. Any change made to a VM object that cannot be applied to the VMIs dynamically will trigger the
RestartRequired VM condition. Changes are effective on the next reboot, and the condition is removed.

7.10.2. Listing all virtual machine instances using the CLI

You can list all virtual machine instances (VMIs) in your cluster, including standalone VMIs and those
owned by virtual machines, by using the oc command-line interface (CLI).

Procedure

List all VMIs by running the following command:

7.10.3. Listing standalone virtual machine instances using the web console

Using the web console, you can list and view standalone virtual machine instances (VMIs) in your cluster
that are not owned by virtual machines (VMs).

NOTE

VMIs that are owned by VMs or other objects are not displayed in the web console. The
web console displays only standalone VMIs. If you want to list all VMIs in your cluster, you
must use the CLI.

Procedure

$ oc get vmis -A

CHAPTER 7. VIRTUAL MACHINES

167

Click Virtualization → VirtualMachines from the side menu.
You can identify a standalone VMI by a dark colored badge next to its name.

7.10.4. Editing a standalone virtual machine instance using the web console

You can edit the annotations and labels of a standalone virtual machine instance (VMI) using the web
console. Other fields are not editable.

Procedure

1. In the OpenShift Container Platform console, click Virtualization → VirtualMachines from the
side menu.

2. Select a standalone VMI to open the VirtualMachineInstance details page.

3. On the Details tab, click the pencil icon beside Annotations or Labels.

4. Make the relevant changes and click Save.

7.10.5. Deleting a standalone virtual machine instance using the CLI

You can delete a standalone virtual machine instance (VMI) by using the oc command-line interface
(CLI).

Prerequisites

Identify the name of the VMI that you want to delete.

Procedure

Delete the VMI by running the following command:

7.10.6. Deleting a standalone virtual machine instance using the web console

Delete a standalone virtual machine instance (VMI) from the web console.

Procedure

1. In the OpenShift Container Platform web console, click Virtualization → VirtualMachines from
the side menu.

2. Click Actions → Delete VirtualMachineInstance.

3. In the confirmation pop-up window, click Delete to permanently delete the standalone VMI.

7.11. CONTROLLING VIRTUAL MACHINE STATES

You can stop, start, restart, and unpause virtual machines from the web console.

You can use virtctl to manage virtual machine states and perform other actions from the CLI. For
example, you can use virtctl to force stop a VM or expose a port.

$ oc delete vmi <vmi_name>

OpenShift Container Platform 4.17 Virtualization

168

7.11.1. Starting a virtual machine

You can start a virtual machine from the web console.

Procedure

1. Click Virtualization → VirtualMachines from the side menu.

2. Find the row that contains the virtual machine that you want to start.

3. Navigate to the appropriate menu for your use case:

To stay on this page, where you can perform actions on multiple virtual machines:

a. Click the Options menu located at the far right end of the row and click Start
VirtualMachine.

To view comprehensive information about the selected virtual machine before you start it:

a. Access the VirtualMachine details page by clicking the name of the virtual machine.

b. Click Actions → Start.

NOTE

When you start virtual machine that is provisioned from a URL source for the first time,
the virtual machine has a status of Importing while OpenShift Virtualization imports the
container from the URL endpoint. Depending on the size of the image, this process might
take several minutes.

7.11.2. Stopping a virtual machine

You can stop a virtual machine from the web console.

Procedure

1. Click Virtualization → VirtualMachines from the side menu.

2. Find the row that contains the virtual machine that you want to stop.

3. Navigate to the appropriate menu for your use case:

To stay on this page, where you can perform actions on multiple virtual machines:

a. Click the Options menu located at the far right end of the row and click Stop
VirtualMachine.

To view comprehensive information about the selected virtual machine before you stop it:

a. Access the VirtualMachine details page by clicking the name of the virtual machine.

b. Click Actions → Stop.

CHAPTER 7. VIRTUAL MACHINES

169

7.11.3. Restarting a virtual machine

You can restart a running virtual machine from the web console.

IMPORTANT

To avoid errors, do not restart a virtual machine while it has a status of Importing.

Procedure

1. Click Virtualization → VirtualMachines from the side menu.

2. Find the row that contains the virtual machine that you want to restart.

3. Navigate to the appropriate menu for your use case:

To stay on this page, where you can perform actions on multiple virtual machines:

a. Click the Options menu located at the far right end of the row and click Restart.

To view comprehensive information about the selected virtual machine before you restart it:

a. Access the VirtualMachine details page by clicking the name of the virtual machine.

b. Click Actions → Restart.

7.11.4. Pausing a virtual machine

You can pause a virtual machine from the web console.

Procedure

1. Click Virtualization → VirtualMachines from the side menu.

2. Find the row that contains the virtual machine that you want to pause.

3. Navigate to the appropriate menu for your use case:

To stay on this page, where you can perform actions on multiple virtual machines:

a. Click the Options menu located at the far right end of the row and click Pause
VirtualMachine.

To view comprehensive information about the selected virtual machine before you pause it:

a. Access the VirtualMachine details page by clicking the name of the virtual machine.

b. Click Actions → Pause.

7.11.5. Unpausing a virtual machine

You can unpause a paused virtual machine from the web console.

Prerequisites

OpenShift Container Platform 4.17 Virtualization

170

Prerequisites

At least one of your virtual machines must have a status of Paused.

Procedure

1. Click Virtualization → VirtualMachines from the side menu.

2. Find the row that contains the virtual machine that you want to unpause.

3. Navigate to the appropriate menu for your use case:

To stay on this page, where you can perform actions on multiple virtual machines:

a. Click the Options menu located at the far right end of the row and click Unpause
VirtualMachine.

To view comprehensive information about the selected virtual machine before you unpause
it:

a. Access the VirtualMachine details page by clicking the name of the virtual machine.

b. Click Actions → Unpause.

7.12. USING VIRTUAL TRUSTED PLATFORM MODULE DEVICES

Add a virtual Trusted Platform Module (vTPM) device to a new or existing virtual machine by editing the
VirtualMachine (VM) or VirtualMachineInstance (VMI) manifest.

7.12.1. About vTPM devices

A virtual Trusted Platform Module (vTPM) device functions like a physical Trusted Platform Module
(TPM) hardware chip.

You can use a vTPM device with any operating system, but Windows 11 requires the presence of a TPM
chip to install or boot. A vTPM device allows VMs created from a Windows 11 image to function without a
physical TPM chip.

If you do not enable vTPM, then the VM does not recognize a TPM device, even if the node has one.

A vTPM device also protects virtual machines by storing secrets without physical hardware. OpenShift
Virtualization supports persisting vTPM device state by using Persistent Volume Claims (PVCs) for VMs.
You must specify the storage class to be used by the PVC by setting the vmStateStorageClass
attribute in the HyperConverged custom resource (CR):

NOTE

kind: HyperConverged
metadata:
 name: kubevirt-hyperconverged
spec:
 vmStateStorageClass: <storage_class_name>

...

CHAPTER 7. VIRTUAL MACHINES

171

1

2

NOTE

The storage class must be of type Filesystem and support the ReadWriteMany (RWX)
access mode.

7.12.2. Adding a vTPM device to a virtual machine

Adding a virtual Trusted Platform Module (vTPM) device to a virtual machine (VM) allows you to run a
VM created from a Windows 11 image without a physical TPM device. A vTPM device also stores secrets
for that VM.

Prerequisites

You have installed the OpenShift CLI (oc).

You have configured a Persistent Volume Claim (PVC) to use a storage class of type
Filesystem that supports the ReadWriteMany (RWX) access mode. This is necessary for the
vTPM device data to persist across VM reboots.

Procedure

1. Run the following command to update the VM configuration:

2. Edit the VM specification to add the vTPM device. For example:

Adds the vTPM device to the VM.

Specifies that the vTPM device state persists after the VM is shut down. The default value
is false.

3. To apply your changes, save and exit the editor.

4. Optional: If you edited a running virtual machine, you must restart it for the changes to take
effect.

7.13. MANAGING VIRTUAL MACHINES WITH OPENSHIFT PIPELINES

Red Hat OpenShift Pipelines is a Kubernetes-native CI/CD framework that allows developers to design

$ oc edit vm <vm_name> -n <namespace>

apiVersion: kubevirt.io/v1
kind: VirtualMachine
metadata:
 name: example-vm
spec:
 template:
 spec:
 domain:
 devices:
 tpm: 1
 persistent: true 2
...

OpenShift Container Platform 4.17 Virtualization

172

Red Hat OpenShift Pipelines is a Kubernetes-native CI/CD framework that allows developers to design
and run each step of the CI/CD pipeline in its own container.

The Scheduling, Scale, and Performance (SSP) Operator integrates OpenShift Virtualization with
OpenShift Pipelines. The SSP Operator includes tasks and example pipelines that allow you to:

Create and manage virtual machines (VMs), persistent volume claims (PVCs), and data volumes

Run commands in VMs

Manipulate disk images with libguestfs tools

7.13.1. Prerequisites

You have access to an OpenShift Container Platform cluster with cluster-admin permissions.

You have installed the OpenShift CLI (oc).

You have installed OpenShift Pipelines.

7.13.2. Virtual machine tasks supported by the SSP Operator

The following table shows the tasks that are included as part of the SSP Operator.

Table 7.4. Virtual machine tasks supported by the SSP Operator

Task Description

create-vm-from-manifest Create a virtual machine from a provided manifest or
with virtctl.

create-vm-from-template Create a virtual machine from a template.

copy-template Copy a virtual machine template.

modify-vm-template Modify a virtual machine template.

modify-data-object Create or delete data volumes or data sources.

cleanup-vm Run a script or a command in a virtual machine and
stop or delete the virtual machine afterward.

disk-virt-customize Use the virt-customize tool to run a customization
script on a target PVC.

disk-virt-sysprep Use the virt-sysprep tool to run a sysprep script on
a target PVC.

wait-for-vmi-status Wait for a specific status of a virtual machine
instance and fail or succeed based on the status.

NOTE

CHAPTER 7. VIRTUAL MACHINES

173

https://docs.openshift.com/pipelines/latest/about/understanding-openshift-pipelines.html
https://docs.openshift.com/pipelines/latest/install_config/installing-pipelines.html

NOTE

Virtual machine creation in pipelines now utilizes ClusterInstanceType and
ClusterPreference instead of template-based tasks, which have been deprecated. The
create-vm-from-template, copy-template, and modify-vm-template commands remain
available but are not used in default pipeline tasks.

7.13.3. Windows EFI installer pipeline

You can run the Windows EFI installer pipeline by using the web console or CLI.

The Windows EFI installer pipeline installs Windows 10, Windows 11, or Windows Server 2022 into a new
data volume from a Windows installation image (ISO file). A custom answer file is used to run the
installation process.

NOTE

The Windows EFI installer pipeline uses a config map file with sysprep predefined by
OpenShift Container Platform and suitable for Microsoft ISO files. For ISO files
pertaining to different Windows editions, it may be necessary to create a new config map
file with a system-specific sysprep definition.

7.13.3.1. Running the example pipelines using the web console

You can run the example pipelines from the Pipelines menu in the web console.

Procedure

1. Click Pipelines → Pipelines in the side menu.

2. Select a pipeline to open the Pipeline details page.

3. From the Actions list, select Start. The Start Pipeline dialog is displayed.

4. Keep the default values for the parameters and then click Start to run the pipeline. The Details
tab tracks the progress of each task and displays the pipeline status.

7.13.3.2. Running the example pipelines using the CLI

Use a PipelineRun resource to run the example pipelines. A PipelineRun object is the running instance
of a pipeline. It instantiates a pipeline for execution with specific inputs, outputs, and execution
parameters on a cluster. It also creates a TaskRun object for each task in the pipeline.

Procedure

1. To run the Windows 10 installer pipeline, create the following PipelineRun manifest:

apiVersion: tekton.dev/v1beta1
kind: PipelineRun
metadata:
 generateName: windows10-installer-run-
 labels:
 pipelinerun: windows10-installer-run
spec:
 params:

OpenShift Container Platform 4.17 Virtualization

174

https://artifacthub.io/packages/tekton-pipeline/redhat-pipelines/windows-efi-installer

1 Specify the URL for the Windows 10 64-bit ISO file. The product language must be English
(United States).

2. Apply the PipelineRun manifest:

3. To run the Windows 10 customize pipeline, create the following PipelineRun manifest:

 - name: winImageDownloadURL
 value: <link_to_windows_10_iso> 1
 pipelineRef:
 name: windows10-installer
 taskRunSpecs:
 - pipelineTaskName: copy-template
 taskServiceAccountName: copy-template-task
 - pipelineTaskName: modify-vm-template
 taskServiceAccountName: modify-vm-template-task
 - pipelineTaskName: create-vm-from-template
 taskServiceAccountName: create-vm-from-template-task
 - pipelineTaskName: wait-for-vmi-status
 taskServiceAccountName: wait-for-vmi-status-task
 - pipelineTaskName: create-base-dv
 taskServiceAccountName: modify-data-object-task
 - pipelineTaskName: cleanup-vm
 taskServiceAccountName: cleanup-vm-task
 status: {}

$ oc apply -f windows10-installer-run.yaml

apiVersion: tekton.dev/v1beta1
kind: PipelineRun
metadata:
 generateName: windows10-customize-run-
 labels:
 pipelinerun: windows10-customize-run
spec:
 params:
 - name: allowReplaceGoldenTemplate
 value: true
 - name: allowReplaceCustomizationTemplate
 value: true
 pipelineRef:
 name: windows10-customize
 taskRunSpecs:
 - pipelineTaskName: copy-template-customize
 taskServiceAccountName: copy-template-task
 - pipelineTaskName: modify-vm-template-customize
 taskServiceAccountName: modify-vm-template-task
 - pipelineTaskName: create-vm-from-template
 taskServiceAccountName: create-vm-from-template-task
 - pipelineTaskName: wait-for-vmi-status
 taskServiceAccountName: wait-for-vmi-status-task
 - pipelineTaskName: create-base-dv
 taskServiceAccountName: modify-data-object-task
 - pipelineTaskName: cleanup-vm

CHAPTER 7. VIRTUAL MACHINES

175

1

4. Apply the PipelineRun manifest:

7.13.4. Additional resources

Creating CI/CD solutions for applications using Red Hat OpenShift Pipelines

Creating a Windows VM

7.14. ADVANCED VIRTUAL MACHINE MANAGEMENT

7.14.1. Working with resource quotas for virtual machines

Create and manage resource quotas for virtual machines.

7.14.1.1. Setting resource quota limits for virtual machines

Resource quotas that only use requests automatically work with virtual machines (VMs). If your resource
quota uses limits, you must manually set resource limits on VMs. Resource limits must be at least 100
MiB larger than resource requests.

Procedure

1. Set limits for a VM by editing the VirtualMachine manifest. For example:

This configuration is supported because the limits.memory value is at least 100Mi larger
than the requests.memory value.

 taskServiceAccountName: cleanup-vm-task
 - pipelineTaskName: copy-template-golden
 taskServiceAccountName: copy-template-task
 - pipelineTaskName: modify-vm-template-golden
 taskServiceAccountName: modify-vm-template-task
status: {}

$ oc apply -f windows10-customize-run.yaml

apiVersion: kubevirt.io/v1
kind: VirtualMachine
metadata:
 name: with-limits
spec:
 running: false
 template:
 spec:
 domain:
...
 resources:
 requests:
 memory: 128Mi
 limits:
 memory: 256Mi 1

OpenShift Container Platform 4.17 Virtualization

176

https://docs.openshift.com/pipelines/latest/create/creating-applications-with-cicd-pipelines.html

2. Save the VirtualMachine manifest.

7.14.1.2. Additional resources

Resource quotas per project

Resource quotas across multiple projects

7.14.2. Specifying nodes for virtual machines

You can place virtual machines (VMs) on specific nodes by using node placement rules.

7.14.2.1. About node placement for virtual machines

To ensure that virtual machines (VMs) run on appropriate nodes, you can configure node placement
rules. You might want to do this if:

You have several VMs. To ensure fault tolerance, you want them to run on different nodes.

You have two chatty VMs. To avoid redundant inter-node routing, you want the VMs to run on
the same node.

Your VMs require specific hardware features that are not present on all available nodes.

You have a pod that adds capabilities to a node, and you want to place a VM on that node so
that it can use those capabilities.

NOTE

Virtual machine placement relies on any existing node placement rules for workloads. If
workloads are excluded from specific nodes on the component level, virtual machines
cannot be placed on those nodes.

You can use the following rule types in the spec field of a VirtualMachine manifest:

nodeSelector

Allows virtual machines to be scheduled on nodes that are labeled with the key-value pair or pairs
that you specify in this field. The node must have labels that exactly match all listed pairs.

affinity

Enables you to use more expressive syntax to set rules that match nodes with virtual machines. For
example, you can specify that a rule is a preference, rather than a hard requirement, so that virtual
machines are still scheduled if the rule is not satisfied. Pod affinity, pod anti-affinity, and node affinity
are supported for virtual machine placement. Pod affinity works for virtual machines because the
VirtualMachine workload type is based on the Pod object.

tolerations

Allows virtual machines to be scheduled on nodes that have matching taints. If a taint is applied to a
node, that node only accepts virtual machines that tolerate the taint.

NOTE

Affinity rules only apply during scheduling. OpenShift Container Platform does not
reschedule running workloads if the constraints are no longer met.

CHAPTER 7. VIRTUAL MACHINES

177

https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/building_applications/#quotas-setting-per-project
https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/building_applications/#quotas-setting-across-multiple-projects

7.14.2.2. Node placement examples

The following example YAML file snippets use nodePlacement, affinity, and tolerations fields to
customize node placement for virtual machines.

7.14.2.2.1. Example: VM node placement with nodeSelector

In this example, the virtual machine requires a node that has metadata containing both example-key-1 =
example-value-1 and example-key-2 = example-value-2 labels.

WARNING

If there are no nodes that fit this description, the virtual machine is not scheduled.

Example VM manifest

7.14.2.2.2. Example: VM node placement with pod affinity and pod anti-affinity

In this example, the VM must be scheduled on a node that has a running pod with the label example-
key-1 = example-value-1. If there is no such pod running on any node, the VM is not scheduled.

If possible, the VM is not scheduled on a node that has any pod with the label example-key-2 =
example-value-2. However, if all candidate nodes have a pod with this label, the scheduler ignores this
constraint.

Example VM manifest



metadata:
 name: example-vm-node-selector
apiVersion: kubevirt.io/v1
kind: VirtualMachine
spec:
 template:
 spec:
 nodeSelector:
 example-key-1: example-value-1
 example-key-2: example-value-2
...

metadata:
 name: example-vm-pod-affinity
apiVersion: kubevirt.io/v1
kind: VirtualMachine
spec:
 template:
 spec:
 affinity:
 podAffinity:
 requiredDuringSchedulingIgnoredDuringExecution: 1

OpenShift Container Platform 4.17 Virtualization

178

1

2

If you use the requiredDuringSchedulingIgnoredDuringExecution rule type, the VM is not
scheduled if the constraint is not met.

If you use the preferredDuringSchedulingIgnoredDuringExecution rule type, the VM is still
scheduled if the constraint is not met, as long as all required constraints are met.

7.14.2.2.3. Example: VM node placement with node affinity

In this example, the VM must be scheduled on a node that has the label example.io/example-key =
example-value-1 or the label example.io/example-key = example-value-2. The constraint is met if
only one of the labels is present on the node. If neither label is present, the VM is not scheduled.

If possible, the scheduler avoids nodes that have the label example-node-label-key = example-node-
label-value. However, if all candidate nodes have this label, the scheduler ignores this constraint.

Example VM manifest

 - labelSelector:
 matchExpressions:
 - key: example-key-1
 operator: In
 values:
 - example-value-1
 topologyKey: kubernetes.io/hostname
 podAntiAffinity:
 preferredDuringSchedulingIgnoredDuringExecution: 2
 - weight: 100
 podAffinityTerm:
 labelSelector:
 matchExpressions:
 - key: example-key-2
 operator: In
 values:
 - example-value-2
 topologyKey: kubernetes.io/hostname
...

metadata:
 name: example-vm-node-affinity
apiVersion: kubevirt.io/v1
kind: VirtualMachine
spec:
 template:
 spec:
 affinity:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution: 1
 nodeSelectorTerms:
 - matchExpressions:
 - key: example.io/example-key
 operator: In
 values:
 - example-value-1
 - example-value-2

CHAPTER 7. VIRTUAL MACHINES

179

1

2

If you use the requiredDuringSchedulingIgnoredDuringExecution rule type, the VM is not
scheduled if the constraint is not met.

If you use the preferredDuringSchedulingIgnoredDuringExecution rule type, the VM is still
scheduled if the constraint is not met, as long as all required constraints are met.

7.14.2.2.4. Example: VM node placement with tolerations

In this example, nodes that are reserved for virtual machines are already labeled with the
key=virtualization:NoSchedule taint. Because this virtual machine has matching tolerations, it can
schedule onto the tainted nodes.

NOTE

A virtual machine that tolerates a taint is not required to schedule onto a node with that
taint.

Example VM manifest

7.14.2.3. Additional resources

Specifying nodes for virtualization components

Placing pods on specific nodes using node selectors

Controlling pod placement on nodes using node affinity rules

Controlling pod placement using node taints

7.14.3. Activating kernel samepage merging (KSM)

 preferredDuringSchedulingIgnoredDuringExecution: 2
 - weight: 1
 preference:
 matchExpressions:
 - key: example-node-label-key
 operator: In
 values:
 - example-node-label-value
...

metadata:
 name: example-vm-tolerations
apiVersion: kubevirt.io/v1
kind: VirtualMachine
spec:
 tolerations:
 - key: "key"
 operator: "Equal"
 value: "virtualization"
 effect: "NoSchedule"
...

OpenShift Container Platform 4.17 Virtualization

180

https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/nodes/#nodes-scheduler-node-selectors
https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/nodes/#nodes-scheduler-node-affinity
https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/nodes/#nodes-scheduler-taints-tolerations

OpenShift Virtualization can activate kernel samepage merging (KSM) when nodes are overloaded. KSM
deduplicates identical data found in the memory pages of virtual machines (VMs). If you have very
similar VMs, KSM can make it possible to schedule more VMs on a single node.

IMPORTANT

You must only use KSM with trusted workloads.

7.14.3.1. Prerequisites

Ensure that an administrator has configured KSM support on any nodes where you want
OpenShift Virtualization to activate KSM.

7.14.3.2. About using OpenShift Virtualization to activate KSM

You can configure OpenShift Virtualization to activate kernel samepage merging (KSM) when nodes
experience memory overload.

7.14.3.2.1. Configuration methods

You can enable or disable the KSM activation feature for all nodes by using the OpenShift Container
Platform web console or by editing the HyperConverged custom resource (CR). The
HyperConverged CR supports more granular configuration.

CR configuration
You can configure the KSM activation feature by editing the spec.configuration.ksmConfiguration
stanza of the HyperConverged CR.

You enable the feature and configure settings by editing the ksmConfiguration stanza.

You disable the feature by deleting the ksmConfiguration stanza.

You can allow OpenShift Virtualization to enable KSM on only a subset of nodes by adding node
selection syntax to the ksmConfiguration.nodeLabelSelector field.

NOTE

Even if the KSM activation feature is disabled in OpenShift Virtualization, an
administrator can still enable KSM on nodes that support it.

7.14.3.2.2. KSM node labels

OpenShift Virtualization identifies nodes that are configured to support KSM and applies the following
node labels:

kubevirt.io/ksm-handler-managed: "false"

This label is set to "true" when OpenShift Virtualization activates KSM on a node that is experiencing
memory overload. This label is not set to "true" if an administrator activates KSM.

kubevirt.io/ksm-enabled: "false"

This label is set to "true" when KSM is activated on a node, even if OpenShift Virtualization did not
activate KSM.

These labels are not applied to nodes that do not support KSM.

CHAPTER 7. VIRTUAL MACHINES

181

7.14.3.3. Configuring KSM activation by using the web console

You can allow OpenShift Virtualization to activate kernel samepage merging (KSM) on all nodes in your
cluster by using the OpenShift Container Platform web console.

Procedure

1. From the side menu, click Virtualization → Overview.

2. Select the Settings tab.

3. Select the Cluster tab.

4. Expand Resource management.

5. Enable or disable the feature for all nodes:

Set Kernel Samepage Merging (KSM) to on.

Set Kernel Samepage Merging (KSM) to off.

7.14.3.4. Configuring KSM activation by using the CLI

You can enable or disable OpenShift Virtualization’s kernel samepage merging (KSM) activation feature
by editing the HyperConverged custom resource (CR). Use this method if you want OpenShift
Virtualization to activate KSM on only a subset of nodes.

Procedure

1. Open the HyperConverged CR in your default editor by running the following command:

2. Edit the ksmConfiguration stanza:

To enable the KSM activation feature for all nodes, set the nodeLabelSelector value to {}.
For example:

To enable the KSM activation feature on a subset of nodes, edit the nodeLabelSelector
field. Add syntax that matches the nodes where you want OpenShift Virtualization to enable
KSM. For example, the following configuration allows OpenShift Virtualization to enable
KSM on nodes where both <first_example_key> and <second_example_key> are set to
"true":

$ oc edit hyperconverged kubevirt-hyperconverged -n openshift-cnv

apiVersion: hco.kubevirt.io/v1beta1
kind: HyperConverged
metadata:
 name: kubevirt-hyperconverged
 namespace: openshift-cnv
spec:
 configuration:
 ksmConfiguration:
 nodeLabelSelector: {}
...

OpenShift Container Platform 4.17 Virtualization

182

To disable the KSM activation feature, delete the ksmConfiguration stanza. For example:

3. Save the file.

7.14.3.5. Additional resources

Specifying nodes for virtual machines

Placing pods on specific nodes using node selectors

Managing kernel samepage merging in the Red Hat Enterprise Linux (RHEL) documentation

7.14.4. Configuring certificate rotation

Configure certificate rotation parameters to replace existing certificates.

7.14.4.1. Configuring certificate rotation

You can do this during OpenShift Virtualization installation in the web console or after installation in the
HyperConverged custom resource (CR).

Procedure

1. Open the HyperConverged CR by running the following command:

2. Edit the spec.certConfig fields as shown in the following example. To avoid overloading the
system, ensure that all values are greater than or equal to 10 minutes. Express all values as
strings that comply with the golang ParseDuration format.

apiVersion: hco.kubevirt.io/v1beta1
kind: HyperConverged
metadata:
 name: kubevirt-hyperconverged
 namespace: openshift-cnv
spec:
 configuration:
 ksmConfiguration:
 nodeLabelSelector:
 matchLabels:
 <first_example_key>: "true"
 <second_example_key>: "true"
...

apiVersion: hco.kubevirt.io/v1beta1
kind: HyperConverged
metadata:
 name: kubevirt-hyperconverged
 namespace: openshift-cnv
spec:
 configuration:
...

$ oc edit hyperconverged kubevirt-hyperconverged -n openshift-cnv

CHAPTER 7. VIRTUAL MACHINES

183

https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/nodes/#nodes-scheduler-node-selectors
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/configuring_and_managing_virtualization/index#proc_managing-ksm_optimizing-virtual-machine-cpu-performance
https://golang.org/pkg/time/#ParseDuration

1

2

3

The value of ca.renewBefore must be less than or equal to the value of ca.duration.

The value of server.duration must be less than or equal to the value of ca.duration.

The value of server.renewBefore must be less than or equal to the value of
server.duration.

3. Apply the YAML file to your cluster.

7.14.4.2. Troubleshooting certificate rotation parameters

Deleting one or more certConfig values causes them to revert to the default values, unless the default
values conflict with one of the following conditions:

The value of ca.renewBefore must be less than or equal to the value of ca.duration.

The value of server.duration must be less than or equal to the value of ca.duration.

The value of server.renewBefore must be less than or equal to the value of server.duration.

If the default values conflict with these conditions, you will receive an error.

If you remove the server.duration value in the following example, the default value of 24h0m0s is
greater than the value of ca.duration, conflicting with the specified conditions.

Example

This results in the following error message:

apiVersion: hco.kubevirt.io/v1beta1
kind: HyperConverged
metadata:
 name: kubevirt-hyperconverged
 namespace: openshift-cnv
spec:
 certConfig:
 ca:
 duration: 48h0m0s
 renewBefore: 24h0m0s 1
 server:
 duration: 24h0m0s 2
 renewBefore: 12h0m0s 3

certConfig:
 ca:
 duration: 4h0m0s
 renewBefore: 1h0m0s
 server:
 duration: 4h0m0s
 renewBefore: 4h0m0s

error: hyperconvergeds.hco.kubevirt.io "kubevirt-hyperconverged" could not be patched: admission
webhook "validate-hco.kubevirt.io" denied the request: spec.certConfig: ca.duration is smaller than
server.duration

OpenShift Container Platform 4.17 Virtualization

184

The error message only mentions the first conflict. Review all certConfig values before you proceed.

7.14.5. Configuring the default CPU model

Use the defaultCPUModel setting in the HyperConverged custom resource (CR) to define a cluster-
wide default CPU model.

The virtual machine (VM) CPU model depends on the availability of CPU models within the VM and the
cluster.

If the VM does not have a defined CPU model:

The defaultCPUModel is automatically set using the CPU model defined at the cluster-
wide level.

If both the VM and the cluster have a defined CPU model:

The VM’s CPU model takes precedence.

If neither the VM nor the cluster have a defined CPU model:

The host-model is automatically set using the CPU model defined at the host level.

7.14.5.1. Configuring the default CPU model

Configure the defaultCPUModel by updating the HyperConverged custom resource (CR). You can
change the defaultCPUModel while OpenShift Virtualization is running.

NOTE

The defaultCPUModel is case sensitive.

Prerequisites

Install the OpenShift CLI (oc).

Procedure

1. Open the HyperConverged CR by running the following command:

2. Add the defaultCPUModel field to the CR and set the value to the name of a CPU model that
exists in the cluster:

3. Apply the YAML file to your cluster.

$ oc edit hyperconverged kubevirt-hyperconverged -n openshift-cnv

apiVersion: hco.kubevirt.io/v1beta1
kind: HyperConverged
metadata:
 name: kubevirt-hyperconverged
 namespace: openshift-cnv
spec:
 defaultCPUModel: "EPYC"

CHAPTER 7. VIRTUAL MACHINES

185

7.14.6. Using UEFI mode for virtual machines

You can boot a virtual machine (VM) in Unified Extensible Firmware Interface (UEFI) mode.

7.14.6.1. About UEFI mode for virtual machines

Unified Extensible Firmware Interface (UEFI), like legacy BIOS, initializes hardware components and
operating system image files when a computer starts. UEFI supports more modern features and
customization options than BIOS, enabling faster boot times.

It stores all the information about initialization and startup in a file with a .efi extension, which is stored
on a special partition called EFI System Partition (ESP). The ESP also contains the boot loader programs
for the operating system that is installed on the computer.

7.14.6.2. Booting virtual machines in UEFI mode

You can configure a virtual machine to boot in UEFI mode by editing the VirtualMachine manifest.

Prerequisites

Install the OpenShift CLI (oc).

Procedure

1. Edit or create a VirtualMachine manifest file. Use the spec.firmware.bootloader stanza to
configure UEFI mode:

Booting in UEFI mode with secure boot active

apiversion: kubevirt.io/v1
kind: VirtualMachine
metadata:
 labels:
 special: vm-secureboot
 name: vm-secureboot
spec:
 template:
 metadata:
 labels:
 special: vm-secureboot
 spec:
 domain:
 devices:
 disks:
 - disk:
 bus: virtio
 name: containerdisk
 features:
 acpi: {}
 smm:
 enabled: true 1
 firmware:
 bootloader:

OpenShift Container Platform 4.17 Virtualization

186

1

2

OpenShift Virtualization requires System Management Mode (SMM) to be enabled for
Secure Boot in UEFI mode to occur.

OpenShift Virtualization supports a VM with or without Secure Boot when using UEFI
mode. If Secure Boot is enabled, then UEFI mode is required. However, UEFI mode can be
enabled without using Secure Boot.

2. Apply the manifest to your cluster by running the following command:

7.14.6.3. Enabling persistent EFI

You can enable EFI persistence in a VM by configuring an RWX storage class at the cluster level and
adjusting the settings in the EFI section of the VM.

Prerequisites

You must have cluster administrator privileges.

You must have a storage class that supports RWX access mode and FS volume mode.

Procedure

Enable the VMPersistentState feature gate by running the following command:

7.14.6.4. Configuring VMs with persistent EFI

You can configure a VM to have EFI persistence enabled by editing its manifest file.

Prerequisites

VMPersistentState feature gate enabled.

Procedure

Edit the VM manifest file and save to apply settings.

 efi:
 secureBoot: true 2
...

$ oc create -f <file_name>.yaml

$ oc patch hyperconverged kubevirt-hyperconverged -n openshift-cnv \
 --type json -p '[{"op":"replace","path":"/spec/featureGates/VMPersistentState", "value":
true}]'

apiVersion: kubevirt.io/v1
kind: VirtualMachine
metadata:
 name: vm
spec:
 template:

CHAPTER 7. VIRTUAL MACHINES

187

7.14.7. Configuring PXE booting for virtual machines

PXE booting, or network booting, is available in OpenShift Virtualization. Network booting allows a
computer to boot and load an operating system or other program without requiring a locally attached
storage device. For example, you can use it to choose your desired OS image from a PXE server when
deploying a new host.

7.14.7.1. Prerequisites

A Linux bridge must be connected.

The PXE server must be connected to the same VLAN as the bridge.

7.14.7.2. PXE booting with a specified MAC address

As an administrator, you can boot a client over the network by first creating a
NetworkAttachmentDefinition object for your PXE network. Then, reference the network attachment
definition in your virtual machine instance configuration file before you start the virtual machine
instance. You can also specify a MAC address in the virtual machine instance configuration file, if
required by the PXE server.

Prerequisites

A Linux bridge must be connected.

The PXE server must be connected to the same VLAN as the bridge.

Procedure

1. Configure a PXE network on the cluster:

a. Create the network attachment definition file for PXE network pxe-net-conf:

 spec:
 domain:
 firmware:
 bootloader:
 efi:
 persistent: true
...

apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:
 name: pxe-net-conf
spec:
 config: '{
 "cniVersion": "0.3.1",
 "name": "pxe-net-conf",
 "plugins": [
 {
 "type": "cnv-bridge",
 "bridge": "br1",
 "vlan": 1 1
 },

OpenShift Container Platform 4.17 Virtualization

188

1

2

Optional: The VLAN tag.

The cnv-tuning plugin provides support for custom MAC addresses.

NOTE

The virtual machine instance will be attached to the bridge br1 through an
access port with the requested VLAN.

2. Create the network attachment definition by using the file you created in the previous step:

3. Edit the virtual machine instance configuration file to include the details of the interface and
network.

a. Specify the network and MAC address, if required by the PXE server. If the MAC address is
not specified, a value is assigned automatically.
Ensure that bootOrder is set to 1 so that the interface boots first. In this example, the
interface is connected to a network called <pxe-net>:

NOTE

Boot order is global for interfaces and disks.

b. Assign a boot device number to the disk to ensure proper booting after operating system
provisioning.
Set the disk bootOrder value to 2:

c. Specify that the network is connected to the previously created network attachment

 {
 "type": "cnv-tuning" 2
 }
]
 }'

$ oc create -f pxe-net-conf.yaml

interfaces:
- masquerade: {}
 name: default
- bridge: {}
 name: pxe-net
 macAddress: de:00:00:00:00:de
 bootOrder: 1

devices:
 disks:
 - disk:
 bus: virtio
 name: containerdisk
 bootOrder: 2

CHAPTER 7. VIRTUAL MACHINES

189

c. Specify that the network is connected to the previously created network attachment
definition. In this scenario, <pxe-net> is connected to the network attachment definition
called <pxe-net-conf>:

4. Create the virtual machine instance:

Example output

5. Wait for the virtual machine instance to run:

6. View the virtual machine instance using VNC:

7. Watch the boot screen to verify that the PXE boot is successful.

8. Log in to the virtual machine instance:

Verification

1. Verify the interfaces and MAC address on the virtual machine and that the interface connected
to the bridge has the specified MAC address. In this case, we used eth1 for the PXE boot,
without an IP address. The other interface, eth0, got an IP address from OpenShift Container
Platform.

Example output

7.14.7.3. OpenShift Virtualization networking glossary

networks:
- name: default
 pod: {}
- name: pxe-net
 multus:
 networkName: pxe-net-conf

$ oc create -f vmi-pxe-boot.yaml

 virtualmachineinstance.kubevirt.io "vmi-pxe-boot" created

$ oc get vmi vmi-pxe-boot -o yaml | grep -i phase
 phase: Running

$ virtctl vnc vmi-pxe-boot

$ virtctl console vmi-pxe-boot

$ ip addr

...
3. eth1: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN group default qlen
1000
 link/ether de:00:00:00:00:de brd ff:ff:ff:ff:ff:ff

OpenShift Container Platform 4.17 Virtualization

190

The following terms are used throughout OpenShift Virtualization documentation:

Container Network Interface (CNI)

A Cloud Native Computing Foundation project, focused on container network connectivity.
OpenShift Virtualization uses CNI plugins to build upon the basic Kubernetes networking
functionality.

Multus

A "meta" CNI plugin that allows multiple CNIs to exist so that a pod or virtual machine can use the
interfaces it needs.

Custom resource definition (CRD)

A Kubernetes API resource that allows you to define custom resources, or an object defined by using
the CRD API resource.

Network attachment definition (NAD)

A CRD introduced by the Multus project that allows you to attach pods, virtual machines, and virtual
machine instances to one or more networks.

Node network configuration policy (NNCP)

A CRD introduced by the nmstate project, describing the requested network configuration on nodes.
You update the node network configuration, including adding and removing interfaces, by applying a
NodeNetworkConfigurationPolicy manifest to the cluster.

7.14.8. Using huge pages with virtual machines

You can use huge pages as backing memory for virtual machines in your cluster.

7.14.8.1. Prerequisites

Nodes must have pre-allocated huge pages configured.

7.14.8.2. What huge pages do

Memory is managed in blocks known as pages. On most systems, a page is 4Ki. 1Mi of memory is equal to
256 pages; 1Gi of memory is 256,000 pages, and so on. CPUs have a built-in memory management unit
that manages a list of these pages in hardware. The Translation Lookaside Buffer (TLB) is a small
hardware cache of virtual-to-physical page mappings. If the virtual address passed in a hardware
instruction can be found in the TLB, the mapping can be determined quickly. If not, a TLB miss occurs,
and the system falls back to slower, software-based address translation, resulting in performance issues.
Since the size of the TLB is fixed, the only way to reduce the chance of a TLB miss is to increase the
page size.

A huge page is a memory page that is larger than 4Ki. On x86_64 architectures, there are two common
huge page sizes: 2Mi and 1Gi. Sizes vary on other architectures. To use huge pages, code must be
written so that applications are aware of them. Transparent Huge Pages (THP) attempt to automate the
management of huge pages without application knowledge, but they have limitations. In particular, they
are limited to 2Mi page sizes. THP can lead to performance degradation on nodes with high memory
utilization or fragmentation due to defragmenting efforts of THP, which can lock memory pages. For this
reason, some applications may be designed to (or recommend) usage of pre-allocated huge pages
instead of THP.

In OpenShift Virtualization, virtual machines can be configured to consume pre-allocated huge pages.

7.14.8.3. Configuring huge pages for virtual machines

You can configure virtual machines to use pre-allocated huge pages by including the

CHAPTER 7. VIRTUAL MACHINES

191

https://www.cncf.io/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/scalability_and_performance/#configuring-huge-pages_huge-pages

1

2

You can configure virtual machines to use pre-allocated huge pages by including the
memory.hugepages.pageSize and resources.requests.memory parameters in your virtual machine
configuration.

The memory request must be divisible by the page size. For example, you cannot request 500Mi
memory with a page size of 1Gi.

NOTE

The memory layouts of the host and the guest OS are unrelated. Huge pages requested
in the virtual machine manifest apply to QEMU. Huge pages inside the guest can only be
configured based on the amount of available memory of the virtual machine instance.

If you edit a running virtual machine, the virtual machine must be rebooted for the changes to take
effect.

Prerequisites

Nodes must have pre-allocated huge pages configured.

Procedure

1. In your virtual machine configuration, add the resources.requests.memory and
memory.hugepages.pageSize parameters to the spec.domain. The following configuration
snippet is for a virtual machine that requests a total of 4Gi memory with a page size of 1Gi:

The total amount of memory requested for the virtual machine. This value must be divisible
by the page size.

The size of each huge page. Valid values for x86_64 architecture are 1Gi and 2Mi. The
page size must be smaller than the requested memory.

2. Apply the virtual machine configuration:

7.14.9. Enabling dedicated resources for virtual machines

To improve performance, you can dedicate node resources, such as CPU, to a virtual machine.

kind: VirtualMachine
...
spec:
 domain:
 resources:
 requests:
 memory: "4Gi" 1
 memory:
 hugepages:
 pageSize: "1Gi" 2
...

$ oc apply -f <virtual_machine>.yaml

OpenShift Container Platform 4.17 Virtualization

192

7.14.9.1. About dedicated resources

When you enable dedicated resources for your virtual machine, your virtual machine’s workload is
scheduled on CPUs that will not be used by other processes. By using dedicated resources, you can
improve the performance of the virtual machine and the accuracy of latency predictions.

7.14.9.2. Prerequisites

The CPU Manager must be configured on the node. Verify that the node has the cpumanager
= true label before scheduling virtual machine workloads.

The virtual machine must be powered off.

7.14.9.3. Enabling dedicated resources for a virtual machine

You enable dedicated resources for a virtual machine in the Details tab. Virtual machines that were
created from a Red Hat template can be configured with dedicated resources.

Procedure

1. In the OpenShift Container Platform console, click Virtualization → VirtualMachines from the
side menu.

2. Select a virtual machine to open the VirtualMachine details page.

3. On the Configuration → Scheduling tab, click the edit icon beside Dedicated Resources.

4. Select Schedule this workload with dedicated resources (guaranteed policy).

5. Click Save.

7.14.10. Scheduling virtual machines

You can schedule a virtual machine (VM) on a node by ensuring that the VM’s CPU model and policy
attribute are matched for compatibility with the CPU models and policy attributes supported by the
node.

7.14.10.1. Policy attributes

You can schedule a virtual machine (VM) by specifying a policy attribute and a CPU feature that is
matched for compatibility when the VM is scheduled on a node. A policy attribute specified for a VM
determines how that VM is scheduled on a node.

Policy attribute Description

force The VM is forced to be scheduled on a node. This is true even if the host
CPU does not support the VM’s CPU.

CHAPTER 7. VIRTUAL MACHINES

193

https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/scalability_and_performance/#using-cpu-manager-and-topology-manager

1

2

require Default policy that applies to a VM if the VM is not configured with a
specific CPU model and feature specification. If a node is not configured to
support CPU node discovery with this default policy attribute or any one of
the other policy attributes, VMs are not scheduled on that node. Either the
host CPU must support the VM’s CPU or the hypervisor must be able to
emulate the supported CPU model.

optional The VM is added to a node if that VM is supported by the host’s physical
machine CPU.

disable The VM cannot be scheduled with CPU node discovery.

forbid The VM is not scheduled even if the feature is supported by the host CPU
and CPU node discovery is enabled.

Policy attribute Description

7.14.10.2. Setting a policy attribute and CPU feature

You can set a policy attribute and CPU feature for each virtual machine (VM) to ensure that it is
scheduled on a node according to policy and feature. The CPU feature that you set is verified to ensure
that it is supported by the host CPU or emulated by the hypervisor.

Procedure

Edit the domain spec of your VM configuration file. The following example sets the CPU
feature and the require policy for a virtual machine (VM):

Name of the CPU feature for the VM.

Policy attribute for the VM.

7.14.10.3. Scheduling virtual machines with the supported CPU model

You can configure a CPU model for a virtual machine (VM) to schedule it on a node where its CPU
model is supported.

Procedure

apiVersion: kubevirt.io/v1
kind: VirtualMachine
metadata:
 name: myvm
spec:
 template:
 spec:
 domain:
 cpu:
 features:
 - name: apic 1
 policy: require 2

OpenShift Container Platform 4.17 Virtualization

194

1

1

Edit the domain spec of your virtual machine configuration file. The following example shows a
specific CPU model defined for a VM:

CPU model for the VM.

7.14.10.4. Scheduling virtual machines with the host model

When the CPU model for a virtual machine (VM) is set to host-model, the VM inherits the CPU model of
the node where it is scheduled.

Procedure

Edit the domain spec of your VM configuration file. The following example shows host-model
being specified for the virtual machine:

The VM that inherits the CPU model of the node where it is scheduled.

7.14.10.5. Scheduling virtual machines with a custom scheduler

You can use a custom scheduler to schedule a virtual machine (VM) on a node.

Prerequisites

A secondary scheduler is configured for your cluster.

Procedure

Add the custom scheduler to the VM configuration by editing the VirtualMachine manifest. For
example:

apiVersion: kubevirt.io/v1
kind: VirtualMachine
metadata:
 name: myvm
spec:
 template:
 spec:
 domain:
 cpu:
 model: Conroe 1

apiVersion: kubevirt/v1alpha3
kind: VirtualMachine
metadata:
 name: myvm
spec:
 template:
 spec:
 domain:
 cpu:
 model: host-model 1

CHAPTER 7. VIRTUAL MACHINES

195

1 The name of the custom scheduler. If the schedulerName value does not match an
existing scheduler, the virt-launcher pod stays in a Pending state until the specified
scheduler is found.

Verification

Verify that the VM is using the custom scheduler specified in the VirtualMachine manifest by
checking the virt-launcher pod events:

a. View the list of pods in your cluster by entering the following command:

Example output

b. Run the following command to display the pod events:

The value of the From field in the output verifies that the scheduler name matches the
custom scheduler specified in the VirtualMachine manifest:

Example output

apiVersion: kubevirt.io/v1
kind: VirtualMachine
metadata:
 name: vm-fedora
spec:
 running: true
 template:
 spec:
 schedulerName: my-scheduler 1
 domain:
 devices:
 disks:
 - name: containerdisk
 disk:
 bus: virtio
...

$ oc get pods

NAME READY STATUS RESTARTS AGE
virt-launcher-vm-fedora-dpc87 2/2 Running 0 24m

$ oc describe pod virt-launcher-vm-fedora-dpc87

[...]
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal Scheduled 21m my-scheduler Successfully assigned default/virt-launcher-
vm-fedora-dpc87 to node01
[...]

OpenShift Container Platform 4.17 Virtualization

196

1

Additional resources

Deploying a secondary scheduler

7.14.11. Configuring PCI passthrough

The Peripheral Component Interconnect (PCI) passthrough feature enables you to access and manage
hardware devices from a virtual machine (VM). When PCI passthrough is configured, the PCI devices
function as if they were physically attached to the guest operating system.

Cluster administrators can expose and manage host devices that are permitted to be used in the cluster
by using the oc command-line interface (CLI).

7.14.11.1. Preparing nodes for GPU passthrough

You can prevent GPU operands from deploying on worker nodes that you designated for GPU
passthrough.

7.14.11.1.1. Preventing NVIDIA GPU operands from deploying on nodes

If you use the NVIDIA GPU Operator in your cluster, you can apply the
nvidia.com/gpu.deploy.operands=false label to nodes that you do not want to configure for GPU or
vGPU operands. This label prevents the creation of the pods that configure GPU or vGPU operands
and terminates the pods if they already exist.

Prerequisites

The OpenShift CLI (oc) is installed.

Procedure

Label the node by running the following command:

Replace <node_name> with the name of a node where you do not want to install the
NVIDIA GPU operands.

Verification

1. Verify that the label was added to the node by running the following command:

2. Optional: If GPU operands were previously deployed on the node, verify their removal.

a. Check the status of the pods in the nvidia-gpu-operator namespace by running the
following command:

Example output

$ oc label node <node_name> nvidia.com/gpu.deploy.operands=false 1

$ oc describe node <node_name>

$ oc get pods -n nvidia-gpu-operator

CHAPTER 7. VIRTUAL MACHINES

197

https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/nodes/#nodes-secondary-scheduler-configuring-console_secondary-scheduler-configuring
https://docs.nvidia.com/datacenter/cloud-native/gpu-operator/openshift/contents.html

b. Monitor the pod status until the pods with Terminating status are removed:

Example output

7.14.11.2. Preparing host devices for PCI passthrough

7.14.11.2.1. About preparing a host device for PCI passthrough

To prepare a host device for PCI passthrough by using the CLI, create a MachineConfig object and add
kernel arguments to enable the Input-Output Memory Management Unit (IOMMU). Bind the PCI device
to the Virtual Function I/O (VFIO) driver and then expose it in the cluster by editing the
permittedHostDevices field of the HyperConverged custom resource (CR). The
permittedHostDevices list is empty when you first install the OpenShift Virtualization Operator.

To remove a PCI host device from the cluster by using the CLI, delete the PCI device information from
the HyperConverged CR.

7.14.11.2.2. Adding kernel arguments to enable the IOMMU driver

To enable the IOMMU driver in the kernel, create the MachineConfig object and add the kernel
arguments.

Prerequisites

You have cluster administrator permissions.

Your CPU hardware is Intel or AMD.

You enabled Intel Virtualization Technology for Directed I/O extensions or AMD IOMMU in the
BIOS.

Procedure

1. Create a MachineConfig object that identifies the kernel argument. The following example
shows a kernel argument for an Intel CPU.

NAME READY STATUS RESTARTS AGE
gpu-operator-59469b8c5c-hw9wj 1/1 Running 0 8d
nvidia-sandbox-validator-7hx98 1/1 Running 0 8d
nvidia-sandbox-validator-hdb7p 1/1 Running 0 8d
nvidia-sandbox-validator-kxwj7 1/1 Terminating 0 9d
nvidia-vfio-manager-7w9fs 1/1 Running 0 8d
nvidia-vfio-manager-866pz 1/1 Running 0 8d
nvidia-vfio-manager-zqtck 1/1 Terminating 0 9d

$ oc get pods -n nvidia-gpu-operator

NAME READY STATUS RESTARTS AGE
gpu-operator-59469b8c5c-hw9wj 1/1 Running 0 8d
nvidia-sandbox-validator-7hx98 1/1 Running 0 8d
nvidia-sandbox-validator-hdb7p 1/1 Running 0 8d
nvidia-vfio-manager-7w9fs 1/1 Running 0 8d
nvidia-vfio-manager-866pz 1/1 Running 0 8d

OpenShift Container Platform 4.17 Virtualization

198

1

2

3

Applies the new kernel argument only to worker nodes.

The name indicates the ranking of this kernel argument (100) among the machine configs
and its purpose. If you have an AMD CPU, specify the kernel argument as amd_iommu=on.

Identifies the kernel argument as intel_iommu for an Intel CPU.

2. Create the new MachineConfig object:

Verification

Verify that the new MachineConfig object was added.

7.14.11.2.3. Binding PCI devices to the VFIO driver

To bind PCI devices to the VFIO (Virtual Function I/O) driver, obtain the values for vendor-ID and
device-ID from each device and create a list with the values. Add this list to the MachineConfig object.
The MachineConfig Operator generates the /etc/modprobe.d/vfio.conf on the nodes with the PCI
devices, and binds the PCI devices to the VFIO driver.

Prerequisites

You added kernel arguments to enable IOMMU for the CPU.

Procedure

1. Run the lspci command to obtain the vendor-ID and the device-ID for the PCI device.

Example output

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
 labels:
 machineconfiguration.openshift.io/role: worker 1
 name: 100-worker-iommu 2
spec:
 config:
 ignition:
 version: 3.2.0
 kernelArguments:
 - intel_iommu=on 3
...

$ oc create -f 100-worker-kernel-arg-iommu.yaml

$ oc get MachineConfig

$ lspci -nnv | grep -i nvidia

02:01.0 3D controller [0302]: NVIDIA Corporation GV100GL [Tesla V100 PCIe 32GB]
[10de:1eb8] (rev a1)

CHAPTER 7. VIRTUAL MACHINES

199

1

2

3

2. Create a Butane config file, 100-worker-vfiopci.bu, binding the PCI device to the VFIO driver.

NOTE

See "Creating machine configs with Butane" for information about Butane.

Example

Applies the new kernel argument only to worker nodes.

Specify the previously determined vendor-ID value (10de) and the device-ID value (1eb8)
to bind a single device to the VFIO driver. You can add a list of multiple devices with their
vendor and device information.

The file that loads the vfio-pci kernel module on the worker nodes.

3. Use Butane to generate a MachineConfig object file, 100-worker-vfiopci.yaml, containing the
configuration to be delivered to the worker nodes:

4. Apply the MachineConfig object to the worker nodes:

5. Verify that the MachineConfig object was added.

Example output

variant: openshift
version: 4.17.0
metadata:
 name: 100-worker-vfiopci
 labels:
 machineconfiguration.openshift.io/role: worker 1
storage:
 files:
 - path: /etc/modprobe.d/vfio.conf
 mode: 0644
 overwrite: true
 contents:
 inline: |
 options vfio-pci ids=10de:1eb8 2
 - path: /etc/modules-load.d/vfio-pci.conf 3
 mode: 0644
 overwrite: true
 contents:
 inline: vfio-pci

$ butane 100-worker-vfiopci.bu -o 100-worker-vfiopci.yaml

$ oc apply -f 100-worker-vfiopci.yaml

$ oc get MachineConfig

NAME GENERATEDBYCONTROLLER IGNITIONVERSION

OpenShift Container Platform 4.17 Virtualization

200

Verification

Verify that the VFIO driver is loaded.

The output confirms that the VFIO driver is being used.

Example output

04:00.0 3D controller [0302]: NVIDIA Corporation GP102GL [Tesla P40] [10de:1eb8] (rev a1)
 Subsystem: NVIDIA Corporation Device [10de:1eb8]
 Kernel driver in use: vfio-pci
 Kernel modules: nouveau

7.14.11.2.4. Exposing PCI host devices in the cluster using the CLI

To expose PCI host devices in the cluster, add details about the PCI devices to the
spec.permittedHostDevices.pciHostDevices array of the HyperConverged custom resource (CR).

Procedure

1. Edit the HyperConverged CR in your default editor by running the following command:

2. Add the PCI device information to the spec.permittedHostDevices.pciHostDevices array. For
example:

Example configuration file

AGE
00-master d3da910bfa9f4b599af4ed7f5ac270d55950a3a1 3.2.0 25h
00-worker d3da910bfa9f4b599af4ed7f5ac270d55950a3a1 3.2.0 25h
01-master-container-runtime d3da910bfa9f4b599af4ed7f5ac270d55950a3a1 3.2.0
25h
01-master-kubelet d3da910bfa9f4b599af4ed7f5ac270d55950a3a1 3.2.0
25h
01-worker-container-runtime d3da910bfa9f4b599af4ed7f5ac270d55950a3a1 3.2.0
25h
01-worker-kubelet d3da910bfa9f4b599af4ed7f5ac270d55950a3a1 3.2.0
25h
100-worker-iommu 3.2.0 30s
100-worker-vfiopci-configuration 3.2.0 30s

$ lspci -nnk -d 10de:

$ oc edit hyperconverged kubevirt-hyperconverged -n openshift-cnv

apiVersion: hco.kubevirt.io/v1
kind: HyperConverged
metadata:
 name: kubevirt-hyperconverged
 namespace: openshift-cnv
spec:
 permittedHostDevices: 1
 pciHostDevices: 2

CHAPTER 7. VIRTUAL MACHINES

201

1

2

3

4

5

The host devices that are permitted to be used in the cluster.

The list of PCI devices available on the node.

The vendor-ID and the device-ID required to identify the PCI device.

The name of a PCI host device.

Optional: Setting this field to true indicates that the resource is provided by an external
device plugin. OpenShift Virtualization allows the usage of this device in the cluster but
leaves the allocation and monitoring to an external device plugin.

NOTE

The above example snippet shows two PCI host devices that are named
nvidia.com/GV100GL_Tesla_V100 and nvidia.com/TU104GL_Tesla_T4 added
to the list of permitted host devices in the HyperConverged CR. These devices
have been tested and verified to work with OpenShift Virtualization.

3. Save your changes and exit the editor.

Verification

Verify that the PCI host devices were added to the node by running the following command.
The example output shows that there is one device each associated with the
nvidia.com/GV100GL_Tesla_V100, nvidia.com/TU104GL_Tesla_T4, and intel.com/qat
resource names.

Example output

 - pciDeviceSelector: "10DE:1DB6" 3
 resourceName: "nvidia.com/GV100GL_Tesla_V100" 4
 - pciDeviceSelector: "10DE:1EB8"
 resourceName: "nvidia.com/TU104GL_Tesla_T4"
 - pciDeviceSelector: "8086:6F54"
 resourceName: "intel.com/qat"
 externalResourceProvider: true 5
...

$ oc describe node <node_name>

Capacity:
 cpu: 64
 devices.kubevirt.io/kvm: 110
 devices.kubevirt.io/tun: 110
 devices.kubevirt.io/vhost-net: 110
 ephemeral-storage: 915128Mi
 hugepages-1Gi: 0
 hugepages-2Mi: 0
 memory: 131395264Ki
 nvidia.com/GV100GL_Tesla_V100 1
 nvidia.com/TU104GL_Tesla_T4 1
 intel.com/qat: 1

OpenShift Container Platform 4.17 Virtualization

202

7.14.11.2.5. Removing PCI host devices from the cluster using the CLI

To remove a PCI host device from the cluster, delete the information for that device from the
HyperConverged custom resource (CR).

Procedure

1. Edit the HyperConverged CR in your default editor by running the following command:

2. Remove the PCI device information from the spec.permittedHostDevices.pciHostDevices
array by deleting the pciDeviceSelector, resourceName and externalResourceProvider (if
applicable) fields for the appropriate device. In this example, the intel.com/qat resource has
been deleted.

Example configuration file

3. Save your changes and exit the editor.

Verification

Verify that the PCI host device was removed from the node by running the following command.
The example output shows that there are zero devices associated with the intel.com/qat
resource name.

 pods: 250
Allocatable:
 cpu: 63500m
 devices.kubevirt.io/kvm: 110
 devices.kubevirt.io/tun: 110
 devices.kubevirt.io/vhost-net: 110
 ephemeral-storage: 863623130526
 hugepages-1Gi: 0
 hugepages-2Mi: 0
 memory: 130244288Ki
 nvidia.com/GV100GL_Tesla_V100 1
 nvidia.com/TU104GL_Tesla_T4 1
 intel.com/qat: 1
 pods: 250

$ oc edit hyperconverged kubevirt-hyperconverged -n openshift-cnv

apiVersion: hco.kubevirt.io/v1
kind: HyperConverged
metadata:
 name: kubevirt-hyperconverged
 namespace: openshift-cnv
spec:
 permittedHostDevices:
 pciHostDevices:
 - pciDeviceSelector: "10DE:1DB6"
 resourceName: "nvidia.com/GV100GL_Tesla_V100"
 - pciDeviceSelector: "10DE:1EB8"
 resourceName: "nvidia.com/TU104GL_Tesla_T4"
...

CHAPTER 7. VIRTUAL MACHINES

203

Example output

7.14.11.3. Configuring virtual machines for PCI passthrough

After the PCI devices have been added to the cluster, you can assign them to virtual machines. The PCI
devices are now available as if they are physically connected to the virtual machines.

7.14.11.3.1. Assigning a PCI device to a virtual machine

When a PCI device is available in a cluster, you can assign it to a virtual machine and enable PCI
passthrough.

Procedure

Assign the PCI device to a virtual machine as a host device.

Example

$ oc describe node <node_name>

Capacity:
 cpu: 64
 devices.kubevirt.io/kvm: 110
 devices.kubevirt.io/tun: 110
 devices.kubevirt.io/vhost-net: 110
 ephemeral-storage: 915128Mi
 hugepages-1Gi: 0
 hugepages-2Mi: 0
 memory: 131395264Ki
 nvidia.com/GV100GL_Tesla_V100 1
 nvidia.com/TU104GL_Tesla_T4 1
 intel.com/qat: 0
 pods: 250
Allocatable:
 cpu: 63500m
 devices.kubevirt.io/kvm: 110
 devices.kubevirt.io/tun: 110
 devices.kubevirt.io/vhost-net: 110
 ephemeral-storage: 863623130526
 hugepages-1Gi: 0
 hugepages-2Mi: 0
 memory: 130244288Ki
 nvidia.com/GV100GL_Tesla_V100 1
 nvidia.com/TU104GL_Tesla_T4 1
 intel.com/qat: 0
 pods: 250

apiVersion: kubevirt.io/v1
kind: VirtualMachine
spec:
 domain:
 devices:

OpenShift Container Platform 4.17 Virtualization

204

1 The name of the PCI device that is permitted on the cluster as a host device. The virtual
machine can access this host device.

Verification

Use the following command to verify that the host device is available from the virtual machine.

Example output

7.14.11.4. Additional resources

Enabling Intel VT-X and AMD-V Virtualization Hardware Extensions in BIOS

Managing file permissions

Machine Config Overview

7.14.12. Configuring virtual GPUs

If you have graphics processing unit (GPU) cards, OpenShift Virtualization can automatically create
virtual GPUs (vGPUs) that you can assign to virtual machines (VMs).

7.14.12.1. About using virtual GPUs with OpenShift Virtualization

Some graphics processing unit (GPU) cards support the creation of virtual GPUs (vGPUs). OpenShift
Virtualization can automatically create vGPUs and other mediated devices if an administrator provides
configuration details in the HyperConverged custom resource (CR). This automation is especially
useful for large clusters.

NOTE

Refer to your hardware vendor’s documentation for functionality and support details.

Mediated device

A physical device that is divided into one or more virtual devices. A vGPU is a type of mediated
device (mdev); the performance of the physical GPU is divided among the virtual devices. You can
assign mediated devices to one or more virtual machines (VMs), but the number of guests must be
compatible with your GPU. Some GPUs do not support multiple guests.

7.14.12.2. Preparing hosts for mediated devices

You must enable the Input-Output Memory Management Unit (IOMMU) driver before you can

 hostDevices:
 - deviceName: nvidia.com/TU104GL_Tesla_T4 1
 name: hostdevices1

$ lspci -nnk | grep NVIDIA

$ 02:01.0 3D controller [0302]: NVIDIA Corporation GV100GL [Tesla V100 PCIe 32GB]
[10de:1eb8] (rev a1)

CHAPTER 7. VIRTUAL MACHINES

205

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/virtualization_deployment_and_administration_guide/sect-troubleshooting-enabling_intel_vt_x_and_amd_v_virtualization_hardware_extensions_in_bios
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_basic_system_settings/assembly_managing-file-permissions_configuring-basic-system-settings
https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/machine_configuration/#machine-config-overview

1

2

3

You must enable the Input-Output Memory Management Unit (IOMMU) driver before you can
configure mediated devices.

7.14.12.2.1. Adding kernel arguments to enable the IOMMU driver

To enable the IOMMU driver in the kernel, create the MachineConfig object and add the kernel
arguments.

Prerequisites

You have cluster administrator permissions.

Your CPU hardware is Intel or AMD.

You enabled Intel Virtualization Technology for Directed I/O extensions or AMD IOMMU in the
BIOS.

Procedure

1. Create a MachineConfig object that identifies the kernel argument. The following example
shows a kernel argument for an Intel CPU.

Applies the new kernel argument only to worker nodes.

The name indicates the ranking of this kernel argument (100) among the machine configs
and its purpose. If you have an AMD CPU, specify the kernel argument as amd_iommu=on.

Identifies the kernel argument as intel_iommu for an Intel CPU.

2. Create the new MachineConfig object:

Verification

Verify that the new MachineConfig object was added.

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
 labels:
 machineconfiguration.openshift.io/role: worker 1
 name: 100-worker-iommu 2
spec:
 config:
 ignition:
 version: 3.2.0
 kernelArguments:
 - intel_iommu=on 3
...

$ oc create -f 100-worker-kernel-arg-iommu.yaml

$ oc get MachineConfig

OpenShift Container Platform 4.17 Virtualization

206

7.14.12.3. Configuring the NVIDIA GPU Operator

You can use the NVIDIA GPU Operator to provision worker nodes for running GPU-accelerated virtual
machines (VMs) in OpenShift Virtualization.

NOTE

The NVIDIA GPU Operator is supported only by NVIDIA. For more information, see
Obtaining Support from NVIDIA in the Red Hat Knowledgebase.

7.14.12.3.1. About using the NVIDIA GPU Operator

You can use the NVIDIA GPU Operator with OpenShift Virtualization to rapidly provision worker nodes
for running GPU-enabled virtual machines (VMs). The NVIDIA GPU Operator manages NVIDIA GPU
resources in an OpenShift Container Platform cluster and automates tasks that are required when
preparing nodes for GPU workloads.

Before you can deploy application workloads to a GPU resource, you must install components such as
the NVIDIA drivers that enable the compute unified device architecture (CUDA), Kubernetes device
plugin, container runtime, and other features, such as automatic node labeling and monitoring. By
automating these tasks, you can quickly scale the GPU capacity of your infrastructure. The NVIDIA GPU
Operator can especially facilitate provisioning complex artificial intelligence and machine learning
(AI/ML) workloads.

7.14.12.3.2. Options for configuring mediated devices

There are two available methods for configuring mediated devices when using the NVIDIA GPU
Operator. The method that Red Hat tests uses OpenShift Virtualization features to schedule mediated
devices, while the NVIDIA method only uses the GPU Operator.

Using the NVIDIA GPU Operator to configure mediated devices

This method exclusively uses the NVIDIA GPU Operator to configure mediated devices. To use this
method, refer to NVIDIA GPU Operator with OpenShift Virtualization in the NVIDIA documentation.

Using OpenShift Virtualization to configure mediated devices

This method, which is tested by Red Hat, uses OpenShift Virtualization’s capabilities to configure
mediated devices. In this case, the NVIDIA GPU Operator is only used for installing drivers with the
NVIDIA vGPU Manager. The GPU Operator does not configure mediated devices.
When using the OpenShift Virtualization method, you still configure the GPU Operator by following
the NVIDIA documentation. However, this method differs from the NVIDIA documentation in the
following ways:

You must not overwrite the default disableMDEVConfiguration: false setting in the
HyperConverged custom resource (CR).

IMPORTANT

Setting this feature gate as described in the NVIDIA documentation prevents
OpenShift Virtualization from configuring mediated devices.

You must configure your ClusterPolicy manifest so that it matches the following example:

Example manifest

CHAPTER 7. VIRTUAL MACHINES

207

https://access.redhat.com/solutions/5174941
https://docs.nvidia.com/datacenter/cloud-native/openshift/latest/openshift-virtualization.html
https://docs.nvidia.com/datacenter/cloud-native/openshift/latest/openshift-virtualization.html
https://docs.nvidia.com/datacenter/cloud-native/openshift/latest/openshift-virtualization.html#prerequisites

1

2

3

4

Set this value to false. Not required for VMs.

Set this value to true. Required for using vGPUs with VMs.

Substitute <vgpu_container_registry> with your registry value.

Set this value to false to allow OpenShift Virtualization to configure mediated devices
instead of the NVIDIA GPU Operator.

kind: ClusterPolicy
apiVersion: nvidia.com/v1
metadata:
 name: gpu-cluster-policy
spec:
 operator:
 defaultRuntime: crio
 use_ocp_driver_toolkit: true
 initContainer: {}
 sandboxWorkloads:
 enabled: true
 defaultWorkload: vm-vgpu
 driver:
 enabled: false 1
 dcgmExporter: {}
 dcgm:
 enabled: true
 daemonsets: {}
 devicePlugin: {}
 gfd: {}
 migManager:
 enabled: true
 nodeStatusExporter:
 enabled: true
 mig:
 strategy: single
 toolkit:
 enabled: true
 validator:
 plugin:
 env:
 - name: WITH_WORKLOAD
 value: "true"
 vgpuManager:
 enabled: true 2
 repository: <vgpu_container_registry> 3
 image: <vgpu_image_name>
 version: nvidia-vgpu-manager
 vgpuDeviceManager:
 enabled: false 4
 config:
 name: vgpu-devices-config
 default: default
 sandboxDevicePlugin:
 enabled: false 5
 vfioManager:
 enabled: false 6

OpenShift Container Platform 4.17 Virtualization

208

5

6

instead of the NVIDIA GPU Operator.

Set this value to false to prevent discovery and advertising of the vGPU devices to the
kubelet.

Set this value to false to prevent loading the vfio-pci driver. Instead, follow the
OpenShift Virtualization documentation to configure PCI passthrough.

Additional resources

Configuring PCI passthrough

7.14.12.4. How vGPUs are assigned to nodes

For each physical device, OpenShift Virtualization configures the following values:

A single mdev type.

The maximum number of instances of the selected mdev type.

The cluster architecture affects how devices are created and assigned to nodes.

Large cluster with multiple cards per node

On nodes with multiple cards that can support similar vGPU types, the relevant device types are
created in a round-robin manner. For example:

In this scenario, each node has two cards, both of which support the following vGPU types:

On each node, OpenShift Virtualization creates the following vGPUs:

16 vGPUs of type nvidia-105 on the first card.

2 vGPUs of type nvidia-108 on the second card.

One node has a single card that supports more than one requested vGPU type

OpenShift Virtualization uses the supported type that comes first on the mediatedDeviceTypes list.

For example, the card on a node card supports nvidia-223 and nvidia-224. The following

...
mediatedDevicesConfiguration:
 mediatedDeviceTypes:
 - nvidia-222
 - nvidia-228
 - nvidia-105
 - nvidia-108
...

nvidia-105
...
nvidia-108
nvidia-217
nvidia-299
...

CHAPTER 7. VIRTUAL MACHINES

209

For example, the card on a node card supports nvidia-223 and nvidia-224. The following
mediatedDeviceTypes list is configured:

In this example, OpenShift Virtualization uses the nvidia-223 type.

7.14.12.5. Managing mediated devices

Before you can assign mediated devices to virtual machines, you must create the devices and expose
them to the cluster. You can also reconfigure and remove mediated devices.

7.14.12.5.1. Creating and exposing mediated devices

As an administrator, you can create mediated devices and expose them to the cluster by editing the
HyperConverged custom resource (CR).

Prerequisites

You enabled the Input-Output Memory Management Unit (IOMMU) driver.

If your hardware vendor provides drivers, you installed them on the nodes where you want to
create mediated devices.

If you use NVIDIA cards, you installed the NVIDIA GRID driver .

Procedure

1. Open the HyperConverged CR in your default editor by running the following command:

Example 7.1. Example configuration file with mediated devices configured

...
mediatedDevicesConfiguration:
 mediatedDeviceTypes:
 - nvidia-22
 - nvidia-223
 - nvidia-224
...

$ oc edit hyperconverged kubevirt-hyperconverged -n openshift-cnv

apiVersion: hco.kubevirt.io/v1
kind: HyperConverged
metadata:
 name: kubevirt-hyperconverged
 namespace: openshift-cnv
spec:
 mediatedDevicesConfiguration:
 mediatedDeviceTypes:
 - nvidia-231
 nodeMediatedDeviceTypes:
 - mediatedDeviceTypes:
 - nvidia-233
 nodeSelector:

OpenShift Container Platform 4.17 Virtualization

210

https://docs.nvidia.com/datacenter/cloud-native/openshift/latest/openshift-virtualization.html

1

2

3

4

2. Create mediated devices by adding them to the spec.mediatedDevicesConfiguration stanza:

Example YAML snippet

Required: Configures global settings for the cluster.

Optional: Overrides the global configuration for a specific node or group of nodes. Must be
used with the global mediatedDeviceTypes configuration.

Required if you use nodeMediatedDeviceTypes. Overrides the global
mediatedDeviceTypes configuration for the specified nodes.

Required if you use nodeMediatedDeviceTypes. Must include a key:value pair.

IMPORTANT

Before OpenShift Virtualization 4.14, the mediatedDeviceTypes field was named
mediatedDevicesTypes. Ensure that you use the correct field name when
configuring mediated devices.

3. Identify the name selector and resource name values for the devices that you want to expose to
the cluster. You will add these values to the HyperConverged CR in the next step.

a. Find the resourceName value by running the following command:

b. Find the mdevNameSelector value by viewing the contents of

 kubernetes.io/hostname: node-11.redhat.com
 permittedHostDevices:
 mediatedDevices:
 - mdevNameSelector: GRID T4-2Q
 resourceName: nvidia.com/GRID_T4-2Q
 - mdevNameSelector: GRID T4-8Q
 resourceName: nvidia.com/GRID_T4-8Q
...

...
spec:
 mediatedDevicesConfiguration:
 mediatedDeviceTypes: 1
 - <device_type>
 nodeMediatedDeviceTypes: 2
 - mediatedDeviceTypes: 3
 - <device_type>
 nodeSelector: 4
 <node_selector_key>: <node_selector_value>
...

$ oc get $NODE -o json \
 | jq '.status.allocatable \
 | with_entries(select(.key | startswith("nvidia.com/"))) \
 | with_entries(select(.value != "0"))'

CHAPTER 7. VIRTUAL MACHINES

211

1

2

/sys/bus/pci/devices/<slot>:<bus>:<domain>.
<function>/mdev_supported_types/<type>/name, substituting the correct values for your
system.
For example, the name file for the nvidia-231 type contains the selector string GRID T4-2Q.
Using GRID T4-2Q as the mdevNameSelector value allows nodes to use the nvidia-231
type.

4. Expose the mediated devices to the cluster by adding the mdevNameSelector and
resourceName values to the spec.permittedHostDevices.mediatedDevices stanza of the
HyperConverged CR:

Example YAML snippet

Exposes the mediated devices that map to this value on the host.

Matches the resource name that is allocated on the node.

5. Save your changes and exit the editor.

Verification

Optional: Confirm that a device was added to a specific node by running the following
command:

7.14.12.5.2. About changing and removing mediated devices

You can reconfigure or remove mediated devices in several ways:

Edit the HyperConverged CR and change the contents of the mediatedDeviceTypes stanza.

Change the node labels that match the nodeMediatedDeviceTypes node selector.

Remove the device information from the spec.mediatedDevicesConfiguration and
spec.permittedHostDevices stanzas of the HyperConverged CR.

NOTE

If you remove the device information from the spec.permittedHostDevices
stanza without also removing it from the spec.mediatedDevicesConfiguration
stanza, you cannot create a new mediated device type on the same node. To
properly remove mediated devices, remove the device information from both
stanzas.

7.14.12.5.3. Removing mediated devices from the cluster

...
 permittedHostDevices:
 mediatedDevices:
 - mdevNameSelector: GRID T4-2Q 1
 resourceName: nvidia.com/GRID_T4-2Q 2
...

$ oc describe node <node_name>

OpenShift Container Platform 4.17 Virtualization

212

1

2

To remove a mediated device from the cluster, delete the information for that device from the
HyperConverged custom resource (CR).

Procedure

1. Edit the HyperConverged CR in your default editor by running the following command:

2. Remove the device information from the spec.mediatedDevicesConfiguration and
spec.permittedHostDevices stanzas of the HyperConverged CR. Removing both entries
ensures that you can later create a new mediated device type on the same node. For example:

Example configuration file

To remove the nvidia-231 device type, delete it from the mediatedDeviceTypes array.

To remove the GRID T4-2Q device, delete the mdevNameSelector field and its
corresponding resourceName field.

3. Save your changes and exit the editor.

7.14.12.6. Using mediated devices

You can assign mediated devices to one or more virtual machines.

7.14.12.6.1. Assigning a vGPU to a VM by using the CLI

Assign mediated devices such as virtual GPUs (vGPUs) to virtual machines (VMs).

Prerequisites

The mediated device is configured in the HyperConverged custom resource.

The VM is stopped.

Procedure

Assign the mediated device to a virtual machine (VM) by editing the

$ oc edit hyperconverged kubevirt-hyperconverged -n openshift-cnv

apiVersion: hco.kubevirt.io/v1
kind: HyperConverged
metadata:
 name: kubevirt-hyperconverged
 namespace: openshift-cnv
spec:
 mediatedDevicesConfiguration:
 mediatedDeviceTypes: 1
 - nvidia-231
 permittedHostDevices:
 mediatedDevices: 2
 - mdevNameSelector: GRID T4-2Q
 resourceName: nvidia.com/GRID_T4-2Q

CHAPTER 7. VIRTUAL MACHINES

213

1

2

Assign the mediated device to a virtual machine (VM) by editing the
spec.domain.devices.gpus stanza of the VirtualMachine manifest:

Example virtual machine manifest

The resource name associated with the mediated device.

A name to identify the device on the VM.

Verification

To verify that the device is available from the virtual machine, run the following command,
substituting <device_name> with the deviceName value from the VirtualMachine manifest:

7.14.12.6.2. Assigning a vGPU to a VM by using the web console

You can assign virtual GPUs to virtual machines by using the OpenShift Container Platform web
console.

NOTE

You can add hardware devices to virtual machines created from customized templates or
a YAML file. You cannot add devices to pre-supplied boot source templates for specific
operating systems.

Prerequisites

The vGPU is configured as a mediated device in your cluster.

To view the devices that are connected to your cluster, click Compute → Hardware
Devices from the side menu.

The VM is stopped.

Procedure

1. In the OpenShift Container Platform web console, click Virtualization → VirtualMachines from
the side menu.

2. Select the VM that you want to assign the device to.

apiVersion: kubevirt.io/v1
kind: VirtualMachine
spec:
 domain:
 devices:
 gpus:
 - deviceName: nvidia.com/TU104GL_Tesla_T4 1
 name: gpu1 2
 - deviceName: nvidia.com/GRID_T4-2Q
 name: gpu2

$ lspci -nnk | grep <device_name>

OpenShift Container Platform 4.17 Virtualization

214

3. On the Details tab, click GPU devices.

4. Click Add GPU device.

5. Enter an identifying value in the Name field.

6. From the Device name list, select the device that you want to add to the VM.

7. Click Save.

Verification

To confirm that the devices were added to the VM, click the YAML tab and review the
VirtualMachine configuration. Mediated devices are added to the spec.domain.devices
stanza.

7.14.12.7. Additional resources

Enabling Intel VT-X and AMD-V Virtualization Hardware Extensions in BIOS

7.14.13. Configuring USB host passthrough

As a cluster administrator, you can expose USB devices in a cluster, making them available for virtual
machine (VM) owners to assign to VMs. Enabling this passthrough of USB devices allows a guest to
connect to actual USB hardware that is attached to an OpenShift Container Platform node, as if the
hardware and the VM are physically connected.

You can expose a USB device by first enabling host passthrough and then configuring the VM to use the
USB device.

7.14.13.1. Enabling USB host passthrough

You can enable USB host passthrough at the cluster level.

You specify a resource name and USB device name for each device you want first to add and then
assign to a virtual machine (VM). You can allocate more than one device, each of which is known as a
selector in the HyperConverged (HCO) custom resource (CR), to a single resource name. If you have
multiple, identical USB devices on the cluster, you can choose to allocate a VM to a specific device.

Prerequisites

You have access to an OpenShift Container Platform cluster as a user who has the cluster-
admin role.

Procedure

1. Identify the USB device vendor and product by running the following command:

2. Open the HCO CR by running the following commmand:

$ lsusb

$ oc edit hyperconverged kubevirt-hyperconverged -n openshift-cnv

CHAPTER 7. VIRTUAL MACHINES

215

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/virtualization_deployment_and_administration_guide/sect-troubleshooting-enabling_intel_vt_x_and_amd_v_virtualization_hardware_extensions_in_bios

1

2

3

3. Add a USB device to the permittedHostDevices stanza, as shown in the following example:

Example YAML snippet

Lists the host devices that have permission to be used in the cluster.

Lists the available USB devices.

Uses resourceName: deviceName for each device you want to add and assign to the VM.
In this example, the resource is bound to three devices, each of which is identified by
vendor and product and is known as a selector.

7.14.13.2. Configuring a virtual machine connection to a USB device

You can configure virtual machine (VM) access to a USB device. This configuration allows a guest to
connect to actual USB hardware that is attached to an OpenShift Container Platform node, as if the
hardware and the VM are physically connected.

Procedure

1. Locate the USB device by running the following command:

2. Open the virtual machine instance custom resource (CR) by running the following commmand:

3. Edit the CR by adding a USB device, as shown in the following example:

Example configuration

apiVersion: hco.kubevirt.io/v1beta1
kind: HyperConverged
metadata:
 name: kubevirt-hyperconverged
 namespace: {CNVNamespace}
spec:
 configuration:
 permittedHostDevices: 1
 usbHostDevices: 2
 - resourceName: kubevirt.io/peripherals 3
 selectors:
 - vendor: "045e"
 product: "07a5"
 - vendor: "062a"
 product: "4102"
 - vendor: "072f"
 product: "b100"

$ oc /dev/serial/by-id/usb-VENDOR_device_name

$ oc edit vmi vmi-usb

apiVersion: kubevirt.io/v1
kind: VirtualMachineInstance
metadata:

OpenShift Container Platform 4.17 Virtualization

216

1 The name of the USB device.

7.14.14. Enabling descheduler evictions on virtual machines

You can use the descheduler to evict pods so that the pods can be rescheduled onto more appropriate
nodes. If the pod is a virtual machine, the pod eviction causes the virtual machine to be live migrated to
another node.

IMPORTANT

Descheduler eviction for virtual machines is a Technology Preview feature only.
Technology Preview features are not supported with Red Hat production service level
agreements (SLAs) and might not be functionally complete. Red Hat does not
recommend using them in production. These features provide early access to upcoming
product features, enabling customers to test functionality and provide feedback during
the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

7.14.14.1. Descheduler profiles

Use the Technology Preview DevPreviewLongLifecycle profile to enable the descheduler on a virtual
machine. This is the only descheduler profile currently available for OpenShift Virtualization. To ensure
proper scheduling, create VMs with CPU and memory requests for the expected load.

DevPreviewLongLifecycle

This profile balances resource usage between nodes and enables the following strategies:

RemovePodsHavingTooManyRestarts: removes pods whose containers have been
restarted too many times and pods where the sum of restarts over all containers (including
Init Containers) is more than 100. Restarting the VM guest operating system does not
increase this count.

LowNodeUtilization: evicts pods from overutilized nodes when there are any underutilized
nodes. The destination node for the evicted pod will be determined by the scheduler.

A node is considered underutilized if its usage is below 20% for all thresholds (CPU,
memory, and number of pods).

A node is considered overutilized if its usage is above 50% for any of the thresholds
(CPU, memory, and number of pods).

 labels:
 special: vmi-usb
 name: vmi-usb 1
spec:
 domain:
 devices:
 hostDevices:
 - deviceName: kubevirt.io/peripherals
 name: local-peripherals
...

CHAPTER 7. VIRTUAL MACHINES

217

https://access.redhat.com/support/offerings/techpreview/

7.14.14.2. Installing the descheduler

The descheduler is not available by default. To enable the descheduler, you must install the Kube
Descheduler Operator from OperatorHub and enable one or more descheduler profiles.

By default, the descheduler runs in predictive mode, which means that it only simulates pod evictions.
You must change the mode to automatic for the descheduler to perform the pod evictions.

IMPORTANT

If you have enabled hosted control planes in your cluster, set a custom priority threshold
to lower the chance that pods in the hosted control plane namespaces are evicted. Set
the priority threshold class name to hypershift-control-plane, because it has the lowest
priority value (100000000) of the hosted control plane priority classes.

Prerequisites

You are logged in to OpenShift Container Platform as a user with the cluster-admin role.

Access to the OpenShift Container Platform web console.

Procedure

1. Log in to the OpenShift Container Platform web console.

2. Create the required namespace for the Kube Descheduler Operator.

a. Navigate to Administration → Namespaces and click Create Namespace.

b. Enter openshift-kube-descheduler-operator in the Name field, enter
openshift.io/cluster-monitoring=true in the Labels field to enable descheduler metrics,
and click Create.

3. Install the Kube Descheduler Operator.

a. Navigate to Operators → OperatorHub.

b. Type Kube Descheduler Operator into the filter box.

c. Select the Kube Descheduler Operator and click Install.

d. On the Install Operator page, select A specific namespace on the cluster. Select
openshift-kube-descheduler-operator from the drop-down menu.

e. Adjust the values for the Update Channel and Approval Strategy to the desired values.

f. Click Install.

4. Create a descheduler instance.

a. From the Operators → Installed Operators page, click the Kube Descheduler Operator.

b. Select the Kube Descheduler tab and click Create KubeDescheduler.

c. Edit the settings as necessary.

i. To evict pods instead of simulating the evictions, change the Mode field to Automatic.

ii. Expand the Profiles section and select DevPreviewLongLifecycle. The

OpenShift Container Platform 4.17 Virtualization

218

1

ii. Expand the Profiles section and select DevPreviewLongLifecycle. The
AffinityAndTaints profile is enabled by default.

IMPORTANT

The only profile currently available for OpenShift Virtualization is
DevPreviewLongLifecycle.

You can also configure the profiles and settings for the descheduler later using the OpenShift CLI (oc).

7.14.14.3. Enabling descheduler evictions on a virtual machine (VM)

After the descheduler is installed, you can enable descheduler evictions on your VM by adding an
annotation to the VirtualMachine custom resource (CR).

Prerequisites

Install the descheduler in the OpenShift Container Platform web console or OpenShift CLI
(oc).

Ensure that the VM is not running.

Procedure

1. Before starting the VM, add the descheduler.alpha.kubernetes.io/evict annotation to the
VirtualMachine CR:

2. If you did not already set the DevPreviewLongLifecycle profile in the web console during
installation, specify the DevPreviewLongLifecycle in the spec.profile section of the
KubeDescheduler object:

By default, the descheduler does not evict pods. To evict pods, set mode to Automatic.

The descheduler is now enabled on the VM.

apiVersion: kubevirt.io/v1
kind: VirtualMachine
spec:
 template:
 metadata:
 annotations:
 descheduler.alpha.kubernetes.io/evict: "true"

apiVersion: operator.openshift.io/v1
kind: KubeDescheduler
metadata:
 name: cluster
 namespace: openshift-kube-descheduler-operator
spec:
 deschedulingIntervalSeconds: 3600
 profiles:
 - DevPreviewLongLifecycle
 mode: Predictive 1

CHAPTER 7. VIRTUAL MACHINES

219

7.14.14.4. Additional resources

Descheduler overview

7.14.15. About high availability for virtual machines

You can enable high availability for virtual machines (VMs) by manually deleting a failed node to trigger
VM failover or by configuring remediating nodes.

Manually deleting a failed node

If a node fails and machine health checks are not deployed on your cluster, virtual machines with
runStrategy: Always configured are not automatically relocated to healthy nodes. To trigger VM
failover, you must manually delete the Node object.

See Deleting a failed node to trigger virtual machine failover .

Configuring remediating nodes

You can configure remediating nodes by installing the Self Node Remediation Operator or the Fence
Agents Remediation Operator from the OperatorHub and enabling machine health checks or node
remediation checks.

For more information on remediation, fencing, and maintaining nodes, see the Workload Availability for
Red Hat OpenShift documentation.

7.14.16. Virtual machine control plane tuning

OpenShift Virtualization offers the following tuning options at the control-plane level:

The highBurst profile, which uses fixed QPS and burst rates, to create hundreds of virtual
machines (VMs) in one batch

Migration setting adjustment based on workload type

7.14.16.1. Configuring a highBurst profile

Use the highBurst profile to create and maintain a large number of virtual machines (VMs) in one
cluster.

Procedure

Apply the following patch to enable the highBurst tuning policy profile:

Verification

Run the following command to verify the highBurst tuning policy profile is enabled:

$ oc patch hyperconverged kubevirt-hyperconverged -n openshift-cnv \
 --type=json -p='[{"op": "add", "path": "/spec/tuningPolicy", \
 "value": "highBurst"}]'

$ oc get kubevirt.kubevirt.io/kubevirt-kubevirt-hyperconverged \
 -n openshift-cnv -o go-template --template='{{range $config, \
 $value := .spec.configuration}} {{if eq $config "apiConfiguration" \

OpenShift Container Platform 4.17 Virtualization

220

https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/nodes/#nodes-descheduler-about
https://docs.redhat.com/en/documentation/workload_availability_for_red_hat_openshift/24.3

7.14.17. Assigning compute resources

In OpenShift Virtualization, compute resources assigned to virtual machines (VMs) are backed by either
guaranteed CPUs or time-sliced CPU shares.

Guaranteed CPUs, also known as CPU reservation, dedicate CPU cores or threads to a specific
workload, which makes them unavailable to any other workload. Assigning guaranteed CPUs to a VM
ensures that the VM will have sole access to a reserved physical CPU. Enable dedicated resources for
VMs to use a guaranteed CPU.

Time-sliced CPUs dedicate a slice of time on a shared physical CPU to each workload. You can specify
the size of the slice during VM creation, or when the VM is offline. By default, each vCPU receives 100
milliseconds, or 1/10 of a second, of physical CPU time.

The type of CPU reservation depends on the instance type or VM configuration.

7.14.17.1. Overcommitting CPU resources

Time-slicing allows multiple virtual CPUs (vCPUs) to share a single physical CPU. This is known as CPU
overcommitment. Guaranteed VMs can not be overcommitted.

Configure CPU overcommitment to prioritize VM density over performance when assigning CPUs to
VMs. With a higher CPU over-commitment of vCPUs, more VMs fit onto a given node.

7.14.17.2. Setting the CPU allocation ratio

The CPU Allocation Ratio specifies the degree of overcommitment by mapping vCPUs to time slices of
physical CPUs.

For example, a mapping or ratio of 10:1 maps 10 virtual CPUs to 1 physical CPU by using time slices.

To change the default number of vCPUs mapped to each physical CPU, set the
vmiCPUAllocationRatio value in the HyperConverged CR. The pod CPU request is calculated by
multiplying the number of vCPUs by the reciprocal of the CPU allocation ratio. For example, if
vmiCPUAllocationRatio is set to 10, OpenShift Virtualization will request 10 times fewer CPUs on the
pod for that VM.

Procedure

Set the vmiCPUAllocationRatio value in the HyperConverged CR to define a node CPU allocation
ratio.

1. Open the HyperConverged CR in your default editor by running the following command:

2. Set the vmiCPUAllocationRatio:

 "webhookConfiguration" "controllerConfiguration" "handlerConfiguration"}} \
 {{"\n"}} {{$config}} = {{$value}} {{end}} {{end}} {{"\n"}}

$ oc edit hyperconverged kubevirt-hyperconverged -n openshift-cnv

...
spec:
 resourceRequirements:

CHAPTER 7. VIRTUAL MACHINES

221

1 When vmiCPUAllocationRatio is set to 1, the maximum amount of vCPUs are requested
for the pod.

7.14.17.3. Additional resources

Pod Quality of Service Classes

7.14.18. About multi-queue functionality

Use multi-queue functionality to scale network throughput and performance on virtual machines (VMs)
with multiple vCPUs.

By default, the queueCount value, which is derived from the domain XML, is determined by the number
of vCPUs allocated to a VM. Network performance does not scale as the number of vCPUs increases.
Additionally, because virtio-net has only one Tx and Rx queue, guests cannot transmit or retrieve packs
in parallel.

NOTE

Enabling virtio-net multiqueue does not offer significant improvements when the number
of vNICs in a guest instance is proportional to the number of vCPUs.

7.14.18.1. Known limitations

MSI vectors are still consumed if virtio-net multiqueue is enabled in the host but not enabled in
the guest operating system by the administrator.

Each virtio-net queue consumes 64 KiB of kernel memory for the vhost driver.

Starting a VM with more than 16 CPUs results in no connectivity if networkInterfaceMultiqueue
is set to 'true' (CNV-16107).

7.14.18.2. Enabling multi-queue functionality

Enable multi-queue functionality for interfaces configured with a VirtIO model.

Procedure

1. Set the networkInterfaceMultiqueue value to true in the VirtualMachine manifest file of your
VM to enable multi-queue functionality:

2. Save the VirtualMachine manifest file to apply your changes.

 vmiCPUAllocationRatio: 1 1
...

apiVersion: kubevirt.io/v1
kind: VM
spec:
 domain:
 devices:
 networkInterfaceMultiqueue: true

OpenShift Container Platform 4.17 Virtualization

222

https://kubernetes.io/docs/concepts/workloads/pods/pod-qos/
https://issues.redhat.com/browse/CNV-16107

7.15. VM DISKS

7.15.1. Hot-plugging VM disks

You can add or remove virtual disks without stopping your virtual machine (VM) or virtual machine
instance (VMI).

Only data volumes and persistent volume claims (PVCs) can be hot plugged and hot-unplugged. You
cannot hot plug or hot-unplug container disks.

A hot plugged disk remains attached to the VM even after reboot. You must detach the disk to remove
it from the VM.

You can make a hot plugged disk persistent so that it is permanently mounted on the VM.

NOTE

Each VM has a virtio-scsi controller so that hot plugged disks can use the scsi bus. The
virtio-scsi controller overcomes the limitations of virtio while retaining its performance
advantages. It is highly scalable and supports hot plugging over 4 million disks.

Regular virtio is not available for hot plugged disks because it is not scalable. Each virtio
disk uses one of the limited PCI Express (PCIe) slots in the VM. PCIe slots are also used
by other devices and must be reserved in advance. Therefore, slots might not be available
on demand.

7.15.1.1. Hot plugging and hot unplugging a disk by using the web console

You can hot plug a disk by attaching it to a virtual machine (VM) while the VM is running by using the
OpenShift Container Platform web console.

The hot plugged disk remains attached to the VM until you unplug it.

You can make a hot plugged disk persistent so that it is permanently mounted on the VM.

Prerequisites

You must have a data volume or persistent volume claim (PVC) available for hot plugging.

Procedure

1. Navigate to Virtualization → VirtualMachines in the web console.

2. Select a running VM to view its details.

3. On the VirtualMachine details page, click Configuration → Disks.

4. Add a hot plugged disk:

a. Click Add disk.

b. In the Add disk (hot plugged) window, select the disk from the Source list and click Save.

5. Optional: Unplug a hot plugged disk:

Click the options menu beside the disk and select Detach.

CHAPTER 7. VIRTUAL MACHINES

223

a. Click the options menu beside the disk and select Detach.

b. Click Detach.

6. Optional: Make a hot plugged disk persistent:

a. Click the options menu beside the disk and select Make persistent.

b. Reboot the VM to apply the change.

7.15.1.2. Hot plugging and hot unplugging a disk by using the command line

You can hot plug and hot unplug a disk while a virtual machine (VM) is running by using the command
line.

You can make a hot plugged disk persistent so that it is permanently mounted on the VM.

Prerequisites

You must have at least one data volume or persistent volume claim (PVC) available for hot
plugging.

Procedure

Hot plug a disk by running the following command:

Use the optional --persist flag to add the hot plugged disk to the virtual machine
specification as a permanently mounted virtual disk. Stop, restart, or reboot the virtual
machine to permanently mount the virtual disk. After specifying the --persist flag, you can
no longer hot plug or hot unplug the virtual disk. The --persist flag applies to virtual
machines, not virtual machine instances.

The optional --serial flag allows you to add an alphanumeric string label of your choice. This
helps you to identify the hot plugged disk in a guest virtual machine. If you do not specify
this option, the label defaults to the name of the hot plugged data volume or PVC.

Hot unplug a disk by running the following command:

7.15.2. Expanding virtual machine disks

You can increase the size of a virtual machine (VM) disk by expanding the persistent volume claim
(PVC) of the disk.

If your storage provider does not support volume expansion, you can expand the available virtual
storage of a VM by adding blank data volumes.

$ virtctl addvolume <virtual-machine|virtual-machine-instance> \
 --volume-name=<datavolume|PVC> \
 [--persist] [--serial=<label-name>]

$ virtctl removevolume <virtual-machine|virtual-machine-instance> \
 --volume-name=<datavolume|PVC>

OpenShift Container Platform 4.17 Virtualization

224

1

You cannot reduce the size of a VM disk.

7.15.2.1. Expanding a VM disk PVC

You can increase the size of a virtual machine (VM) disk by expanding the persistent volume claim
(PVC) of the disk.

If the PVC uses the file system volume mode, the disk image file expands to the available size while
reserving some space for file system overhead.

Procedure

1. Edit the PersistentVolumeClaim manifest of the VM disk that you want to expand:

2. Update the disk size:

Specify the new disk size.

Additional resources for volume expansion

Extending a basic volume in Windows

Extending an existing file system partition without destroying data in Red Hat Enterprise Linux

Extending a logical volume and its file system online in Red Hat Enterprise Linux

7.15.2.2. Expanding available virtual storage by adding blank data volumes

You can expand the available storage of a virtual machine (VM) by adding blank data volumes.

Prerequisites

You must have at least one persistent volume.

Procedure

1. Create a DataVolume manifest as shown in the following example:

Example DataVolume manifest

$ oc edit pvc <pvc_name>

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: vm-disk-expand
spec:
 accessModes:
 - ReadWriteMany
 resources:
 requests:
 storage: 3Gi 1
...

CHAPTER 7. VIRTUAL MACHINES

225

https://docs.microsoft.com/en-us/windows-server/storage/disk-management/extend-a-basic-volume
https://access.redhat.com/solutions/29095
https://access.redhat.com/solutions/24770

1

2

Specify the amount of available space requested for the data volume.

Optional: If you do not specify a storage class, the default storage class is used.

2. Create the data volume by running the following command:

Additional resources for data volumes

Configuring preallocation mode for data volumes

Managing data volume annotations

7.15.3. Configuring shared volumes for virtual machines

You can configure shared disks to allow multiple virtual machines (VMs) to share the same underlying
storage. A shared disk’s volume must be block mode.

You configure disk sharing by exposing the storage as either of these types:

An ordinary VM disk

A logical unit number (LUN) disk with an SCSI connection and raw device mapping, as required
for Windows Failover Clustering for shared volumes

In addition to configuring disk sharing, you can also set an error policy for each ordinary VM disk or LUN
disk. The error policy controls how the hypervisor behaves when an input/output error occurs on a disk
Read or Write.

7.15.3.1. Configuring disk sharing by using virtual machine disks

You can configure block volumes so that multiple virtual machines (VMs) can share storage.

The application running on the guest operating system determines the storage option you must
configure for the VM. A disk of type disk exposes the volume as an ordinary disk to the VM.

You can set an error policy for each disk. The error policy controls how the hypervisor behaves when an
input/output error occurs while a disk is being written to or read. The default behavior stops the VM and
generates a Kubernetes event.

apiVersion: cdi.kubevirt.io/v1beta1
kind: DataVolume
metadata:
 name: blank-image-datavolume
spec:
 source:
 blank: {}
 storage:
 resources:
 requests:
 storage: <2Gi> 1
 storageClassName: "<storage_class>" 2

$ oc create -f <blank-image-datavolume>.yaml

OpenShift Container Platform 4.17 Virtualization

226

1

2

3

You can accept the default behavior, or you can set the error policy to one of the following options:

report, which reports the error in the guest.

ignore, which ignores the error. The Read or Write failure is undetected.

enospace, which produces an error indicating that there is not enough disk space.

Prerequisites

The volume access mode must be ReadWriteMany (RWX) if the VMs that are sharing disks are
running on different nodes.
If the VMs that are sharing disks are running on the same node, ReadWriteOnce (RWO) volume
access mode is sufficient.

The storage provider must support the required Container Storage Interface (CSI) driver.

Procedure

1. Create the VirtualMachine manifest for your VM to set the required values, as shown in the
following example:

Identifies the error policy.

Identifies a device as a disk.

Identifies a shared disk.

2. Save the VirtualMachine manifest file to apply your changes.

apiVersion: kubevirt.io/v1
kind: VirtualMachine
metadata:
 name: <vm_name>
spec:
 template:
...
 spec:
 domain:
 devices:
 disks:
 - disk:
 bus: virtio
 name: rootdisk
 errorPolicy: report 1
 disk1: disk_one 2
 - disk:
 bus: virtio
 name: cloudinitdisk
 disk2: disk_two
 shareable: true 3
 interfaces:
 - masquerade: {}
 name: default

CHAPTER 7. VIRTUAL MACHINES

227

7.15.3.2. Configuring disk sharing by using LUN

To secure data on your VM from outside access, you can enable SCSI persistent reservation and
configure a LUN-backed virtual machine disk to be shared among multiple virtual machines. By enabling
the shared option, you can use advanced SCSI commands, such as those required for a Windows failover
clustering implementation, for managing the underlying storage.

When a storage volume is configured as the LUN disk type, a VM can use the volume as a logical unit
number (LUN) device. As a result, the VM can deploy and manage the disk by using SCSI commands.

You reserve a LUN through the SCSI persistent reserve options. To enable the reservation:

1. Configure the feature gate option

2. Activate the feature gate option on the LUN disk to issue SCSI device-specific input and output
controls (IOCTLs) that the VM requires.

You can set an error policy for each LUN disk. The error policy controls how the hypervisor behaves
when an input/output error occurs on a disk Read or Write. The default behavior stops the guest and
generates a Kubernetes event.

For a LUN disk with an iSCSi connection and a persistent reservation, as required for Windows Failover
Clustering for shared volumes, you set the error policy to report.

Prerequisites

You must have cluster administrator privileges to configure the feature gate option.

The volume access mode must be ReadWriteMany (RWX) if the VMs that are sharing disks are
running on different nodes.
If the VMs that are sharing disks are running on the same node, ReadWriteOnce (RWO) volume
access mode is sufficient.

The storage provider must support a Container Storage Interface (CSI) driver that uses the
SCSI protocol.

If you are a cluster administrator and intend to configure disk sharing by using LUN, you must
enable the cluster’s feature gate on the HyperConverged custom resource (CR).

Disks that you want to share must be in block mode.

Procedure

1. Edit or create the VirtualMachine manifest for your VM to set the required values, as shown in
the following example:

apiVersion: kubevirt.io/v1
kind: VirtualMachine
metadata:
 name: vm-0
spec:
 template:
 spec:
 domain:
 devices:
 disks:

OpenShift Container Platform 4.17 Virtualization

228

1

2

3

Identifies the error policy.

Identifies a LUN disk.

Identifies that the persistent reservation is enabled.

2. Save the VirtualMachine manifest file to apply your changes.

7.15.3.2.1. Configuring disk sharing by using LUN and the web console

You can use the OpenShift Container Platform web console to configure disk sharing by using LUN.

Prerequisites

The cluster administrator must enable the persistentreservation feature gate setting.

Procedure

1. Click Virtualization → VirtualMachines in the web console.

2. Select a VM to open the VirtualMachine details page.

3. Expand Storage.

4. On the Disks tab, click Add disk.

5. Specify the Name, Source, Size, Interface, and Storage Class.

6. Select LUN as the Type.

7. Select Shared access (RWX) as the Access Mode.

8. Select Block as the Volume Mode.

9. Expand Advanced Settings, and select both checkboxes.

10. Click Save.

 - disk:
 bus: sata
 name: rootdisk
 - errorPolicy: report 1
 lun: 2
 bus: scsi
 reservation: true 3
 name: na-shared
 serial: shared1234
 volumes:
 - dataVolume:
 name: vm-0
 name: rootdisk
 - name: na-shared
 persistentVolumeClaim:
 claimName: pvc-na-share

CHAPTER 7. VIRTUAL MACHINES

229

1

2

7.15.3.2.2. Configuring disk sharing by using LUN and the command line

You can use the command line to configure disk sharing by using LUN.

Procedure

1. Edit or create the VirtualMachine manifest for your VM to set the required values, as shown in
the following example:

Identifies a LUN disk.

Identifies that the persistent reservation is enabled.

2. Save the VirtualMachine manifest file to apply your changes.

7.15.3.3. Enabling the PersistentReservation feature gate

You can enable the SCSI persistentReservation feature gate and allow a LUN-backed block mode
virtual machine (VM) disk to be shared among multiple virtual machines.

The persistentReservation feature gate is disabled by default. You can enable the
persistentReservation feature gate by using the web console or the command line.

Prerequisites

Cluster administrator privileges are required.

The volume access mode ReadWriteMany (RWX) is required if the VMs that are sharing disks

apiVersion: kubevirt.io/v1
kind: VirtualMachine
metadata:
 name: vm-0
spec:
 template:
 spec:
 domain:
 devices:
 disks:
 - disk:
 bus: sata
 name: rootdisk
 - errorPolicy: report
 lun: 1
 bus: scsi
 reservation: true 2
 name: na-shared
 serial: shared1234
 volumes:
 - dataVolume:
 name: vm-0
 name: rootdisk
 - name: na-shared
 persistentVolumeClaim:
 claimName: pvc-na-share

OpenShift Container Platform 4.17 Virtualization

230

The volume access mode ReadWriteMany (RWX) is required if the VMs that are sharing disks
are running on different nodes. If the VMs that are sharing disks are running on the same node,
the ReadWriteOnce (RWO) volume access mode is sufficient.

The storage provider must support a Container Storage Interface (CSI) driver that uses the
SCSI protocol.

7.15.3.3.1. Enabling the PersistentReservation feature gate by using the web console

You must enable the PersistentReservation feature gate to allow a LUN-backed block mode virtual
machine (VM) disk to be shared among multiple virtual machines. Enabling the feature gate requires
cluster administrator privileges.

Procedure

1. Click Virtualization → Overview in the web console.

2. Click the Settings tab.

3. Select Cluster.

4. Expand SCSI persistent reservation and set Enable persistent reservation to on.

7.15.3.3.2. Enabling the PersistentReservation feature gate by using the command line

You enable the persistentReservation feature gate by using the command line. Enabling the feature
gate requires cluster administrator privileges.

Procedure

1. Enable the persistentReservation feature gate by running the following command:

Additional resources

Persistent reservation helper protocol

Failover Clustering in Windows Server and Azure Stack HCI

$ oc patch hyperconverged kubevirt-hyperconverged -n openshift-cnv --type json -p \
'[{"op":"replace","path":"/spec/featureGates/persistentReservation", "value": true}]'

CHAPTER 7. VIRTUAL MACHINES

231

https://www.qemu.org/docs/master/interop/pr-helper.html
https://learn.microsoft.com/en-us/windows-server/failover-clustering/failover-clustering-overview

CHAPTER 8. NETWORKING

8.1. NETWORKING OVERVIEW

OpenShift Virtualization provides advanced networking functionality by using custom resources and
plugins. Virtual machines (VMs) are integrated with OpenShift Container Platform networking and its
ecosystem.

NOTE

You cannot run OpenShift Virtualization on a single-stack IPv6 cluster.

The following figure illustrates the typical network setup of OpenShift Virtualization. Other
configurations are also possible.

Figure 8.1. OpenShift Virtualization networking overview

 Pods and VMs run on the same network infrastructure which allows you to easily connect your
containerized and virtualized workloads.

 You can connect VMs to the default pod network and to any number of secondary networks.

 The default pod network provides connectivity between all its members, service abstraction, IP
management, micro segmentation, and other functionality.

 Multus is a "meta" CNI plugin that enables a pod or virtual machine to connect to additional network
interfaces by using other compatible CNI plugins.

 The default pod network is overlay-based, tunneled through the underlying machine network.

 The machine network can be defined over a selected set of network interface controllers (NICs).

OpenShift Container Platform 4.17 Virtualization

232

 Secondary VM networks are typically bridged directly to a physical network, with or without VLAN
encapsulation.

 Secondary VM networks can be defined on dedicated set of NICs, as shown in Figure 1, or they can
use the machine network.

8.1.1. OpenShift Virtualization networking glossary

The following terms are used throughout OpenShift Virtualization documentation:

Container Network Interface (CNI)

A Cloud Native Computing Foundation project, focused on container network connectivity.
OpenShift Virtualization uses CNI plugins to build upon the basic Kubernetes networking
functionality.

Multus

A "meta" CNI plugin that allows multiple CNIs to exist so that a pod or virtual machine can use the
interfaces it needs.

Custom resource definition (CRD)

A Kubernetes API resource that allows you to define custom resources, or an object defined by using
the CRD API resource.

Network attachment definition (NAD)

A CRD introduced by the Multus project that allows you to attach pods, virtual machines, and virtual
machine instances to one or more networks.

Node network configuration policy (NNCP)

A CRD introduced by the nmstate project, describing the requested network configuration on nodes.
You update the node network configuration, including adding and removing interfaces, by applying a
NodeNetworkConfigurationPolicy manifest to the cluster.

8.1.2. Using the default pod network

Connecting a virtual machine to the default pod network

Each VM is connected by default to the default internal pod network. You can add or remove
network interfaces by editing the VM specification.

Exposing a virtual machine as a service

You can expose a VM within the cluster or outside the cluster by creating a Service object. For on-
premise clusters, you can configure a load balancing service by using the MetalLB Operator. You can
install the MetalLB Operator by using the OpenShift Container Platform web console or the CLI.

8.1.3. Configuring VM secondary network interfaces

You can connect a virtual machine to a secondary network by using Linux bridge, SR-IOV and OVN-
Kubernetes CNI plugins. You can list multiple secondary networks and interfaces in the VM specification.
It is not required to specify the primary pod network in the VM specification when connecting to a
secondary network interface.

Connecting a virtual machine to a Linux bridge network

Install the Kubernetes NMState Operator to configure Linux bridges, VLANs, and bondings for your
secondary networks.

You can create a Linux bridge network and attach a VM to the network by performing the following

CHAPTER 8. NETWORKING

233

https://www.cncf.io/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/networking/#metallb-operator-install
https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/networking/#k8s-nmstate-about-the-k8s-nmstate-operator

You can create a Linux bridge network and attach a VM to the network by performing the following
steps:

1. Configure a Linux bridge network device by creating a NodeNetworkConfigurationPolicy
custom resource definition (CRD).

2. Configure a Linux bridge network by creating a NetworkAttachmentDefinition CRD.

3. Connect the VM to the Linux bridge network by including the network details in the VM
configuration.

Connecting a virtual machine to an SR-IOV network

You can use Single Root I/O Virtualization (SR-IOV) network devices with additional networks on
your OpenShift Container Platform cluster installed on bare metal or Red Hat OpenStack Platform
(RHOSP) infrastructure for applications that require high bandwidth or low latency.
You must install the SR-IOV Network Operator on your cluster to manage SR-IOV network devices
and network attachments.

You can connect a VM to an SR-IOV network by performing the following steps:

1. Configure an SR-IOV network device by creating a SriovNetworkNodePolicy CRD.

2. Configure an SR-IOV network by creating an SriovNetwork object.

3. Connect the VM to the SR-IOV network by including the network details in the VM
configuration.

Connecting a virtual machine to an OVN-Kubernetes secondary network

You can connect a VM to an Open Virtual Network (OVN)-Kubernetes secondary network.
OpenShift Virtualization supports the layer 2 and localnet topologies for OVN-Kubernetes.

A layer 2 topology connects workloads by a cluster-wide logical switch. The OVN-
Kubernetes Container Network Interface (CNI) plug-in uses the Geneve (Generic Network
Virtualization Encapsulation) protocol to create an overlay network between nodes. You can
use this overlay network to connect VMs on different nodes, without having to configure any
additional physical networking infrastructure.

A localnet topology connects the secondary network to the physical underlay. This enables
both east-west cluster traffic and access to services running outside the cluster, but it
requires additional configuration of the underlying Open vSwitch (OVS) system on cluster
nodes.

To configure an OVN-Kubernetes secondary network and attach a VM to that network, perform the
following steps:

1. Configure an OVN-Kubernetes secondary network by creating a network attachment definition
(NAD).

NOTE

For localnet topology, you must configure an OVS bridge by creating a
NodeNetworkConfigurationPolicy object before creating the NAD.

2. Connect the VM to the OVN-Kubernetes secondary network by adding the network details to

OpenShift Container Platform 4.17 Virtualization

234

https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/networking/#installing-sriov-operator
https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/networking/#configuring-additional-network_ovn-kubernetes-configuration-for-a-localnet-topology

2. Connect the VM to the OVN-Kubernetes secondary network by adding the network details to
the VM specification.

8.1.3.1. Comparing Linux bridge CNI and OVN-Kubernetes localnet topology

The following table provides a comparison of features available when using the Linux bridge CNI versus
the localnet topology for an OVN-Kubernetes plugin:

Table 8.1. Linux bridge CNI compared to an OVN-Kubernetes localnet topology

Feature Available on Linux bridge CNI Available on OVN-Kubernetes
localnet

Layer 2 access to the underlay
native network

Only on secondary network
interface controllers (NICs)

Yes

Layer 2 access to underlay VLANs Yes Yes

Network policies No Yes

Managed IP pools No Yes

MAC spoof filtering Yes Yes

Hot plugging secondary network interfaces

You can add or remove secondary network interfaces without stopping your VM. OpenShift
Virtualization supports hot plugging and hot unplugging for Linux bridge interfaces that use the
VirtIO device driver.

Using DPDK with SR-IOV

The Data Plane Development Kit (DPDK) provides a set of libraries and drivers for fast packet
processing. You can configure clusters and VMs to run DPDK workloads over SR-IOV networks.

Configuring a dedicated network for live migration

You can configure a dedicated Multus network for live migration. A dedicated network minimizes the
effects of network saturation on tenant workloads during live migration.

Accessing a virtual machine by using the cluster FQDN

You can access a VM that is attached to a secondary network interface from outside the cluster by
using its fully qualified domain name (FQDN).

Configuring and viewing IP addresses

You can configure an IP address of a secondary network interface when you create a VM. The IP
address is provisioned with cloud-init. You can view the IP address of a VM by using the OpenShift
Container Platform web console or the command line. The network information is collected by the
QEMU guest agent.

8.1.4. Integrating with OpenShift Service Mesh

Connecting a virtual machine to a service mesh

OpenShift Virtualization is integrated with OpenShift Service Mesh. You can monitor, visualize, and
control traffic between pods and virtual machines.

CHAPTER 8. NETWORKING

235

8.1.5. Managing MAC address pools

Managing MAC address pools for network interfaces

The KubeMacPool component allocates MAC addresses for VM network interfaces from a shared
MAC address pool. This ensures that each network interface is assigned a unique MAC address. A
virtual machine instance created from that VM retains the assigned MAC address across reboots.

8.1.6. Configuring SSH access

Configuring SSH access to virtual machines

You can configure SSH access to VMs by using the following methods:

virtctl ssh command
You create an SSH key pair, add the public key to a VM, and connect to the VM by running
the virtctl ssh command with the private key.

You can add public SSH keys to Red Hat Enterprise Linux (RHEL) 9 VMs at runtime or at
first boot to VMs with guest operating systems that can be configured by using a cloud-init
data source.

virtctl port-forward command
You add the virtctl port-foward command to your .ssh/config file and connect to the VM by
using OpenSSH.

Service
You create a service, associate the service with the VM, and connect to the IP address and
port exposed by the service.

Secondary network
You configure a secondary network, attach a VM to the secondary network interface, and
connect to its allocated IP address.

8.2. CONNECTING A VIRTUAL MACHINE TO THE DEFAULT POD
NETWORK

You can connect a virtual machine to the default internal pod network by configuring its network
interface to use the masquerade binding mode.

NOTE

Traffic passing through network interfaces to the default pod network is interrupted
during live migration.

8.2.1. Configuring masquerade mode from the command line

You can use masquerade mode to hide a virtual machine’s outgoing traffic behind the pod IP address.
Masquerade mode uses Network Address Translation (NAT) to connect virtual machines to the pod
network backend through a Linux bridge.

Enable masquerade mode and allow traffic to enter the virtual machine by editing your virtual machine
configuration file.

OpenShift Container Platform 4.17 Virtualization

236

1

2

Prerequisites

The virtual machine must be configured to use DHCP to acquire IPv4 addresses.

Procedure

1. Edit the interfaces spec of your virtual machine configuration file:

Connect using masquerade mode.

Optional: List the ports that you want to expose from the virtual machine, each specified by
the port field. The port value must be a number between 0 and 65536. When the ports
array is not used, all ports in the valid range are open to incoming traffic. In this example,
incoming traffic is allowed on port 80.

NOTE

Ports 49152 and 49153 are reserved for use by the libvirt platform and all other
incoming traffic to these ports is dropped.

2. Create the virtual machine:

8.2.2. Configuring masquerade mode with dual-stack (IPv4 and IPv6)

You can configure a new virtual machine (VM) to use both IPv6 and IPv4 on the default pod network by
using cloud-init.

The Network.pod.vmIPv6NetworkCIDR field in the virtual machine instance configuration determines
the static IPv6 address of the VM and the gateway IP address. These are used by the virt-launcher pod
to route IPv6 traffic to the virtual machine and are not used externally. The

apiVersion: kubevirt.io/v1
kind: VirtualMachine
metadata:
 name: example-vm
spec:
 template:
 spec:
 domain:
 devices:
 interfaces:
 - name: default
 masquerade: {} 1
 ports: 2
 - port: 80
...
 networks:
 - name: default
 pod: {}

$ oc create -f <vm-name>.yaml

CHAPTER 8. NETWORKING

237

1

2

3

4

Network.pod.vmIPv6NetworkCIDR field specifies an IPv6 address block in Classless Inter-Domain
Routing (CIDR) notation. The default value is fd10:0:2::2/120. You can edit this value based on your
network requirements.

When the virtual machine is running, incoming and outgoing traffic for the virtual machine is routed to
both the IPv4 address and the unique IPv6 address of the virt-launcher pod. The virt-launcher pod then
routes the IPv4 traffic to the DHCP address of the virtual machine, and the IPv6 traffic to the statically
set IPv6 address of the virtual machine.

Prerequisites

The OpenShift Container Platform cluster must use the OVN-Kubernetes Container Network
Interface (CNI) network plugin configured for dual-stack.

Procedure

1. In a new virtual machine configuration, include an interface with masquerade and configure the
IPv6 address and default gateway by using cloud-init.

Connect using masquerade mode.

Allows incoming traffic on port 80 to the virtual machine.

The static IPv6 address as determined by the Network.pod.vmIPv6NetworkCIDR field in
the virtual machine instance configuration. The default value is fd10:0:2::2/120.

The gateway IP address as determined by the Network.pod.vmIPv6NetworkCIDR field in

apiVersion: kubevirt.io/v1
kind: VirtualMachine
metadata:
 name: example-vm-ipv6
spec:
 template:
 spec:
 domain:
 devices:
 interfaces:
 - name: default
 masquerade: {} 1
 ports:
 - port: 80 2
...
 networks:
 - name: default
 pod: {}
 volumes:
 - cloudInitNoCloud:
 networkData: |
 version: 2
 ethernets:
 eth0:
 dhcp4: true
 addresses: [fd10:0:2::2/120] 3
 gateway6: fd10:0:2::1 4

OpenShift Container Platform 4.17 Virtualization

238

The gateway IP address as determined by the Network.pod.vmIPv6NetworkCIDR field in
the virtual machine instance configuration. The default value is fd10:0:2::1.

2. Create the virtual machine in the namespace:

Verification

To verify that IPv6 has been configured, start the virtual machine and view the interface status
of the virtual machine instance to ensure it has an IPv6 address:

8.2.3. About jumbo frames support

When using the OVN-Kubernetes CNI plugin, you can send unfragmented jumbo frame packets
between two virtual machines (VMs) that are connected on the default pod network. Jumbo frames
have a maximum transmission unit (MTU) value greater than 1500 bytes.

The VM automatically gets the MTU value of the cluster network, set by the cluster administrator, in one
of the following ways:

libvirt: If the guest OS has the latest version of the VirtIO driver that can interpret incoming
data via a Peripheral Component Interconnect (PCI) config register in the emulated device.

DHCP: If the guest DHCP client can read the MTU value from the DHCP server response.

NOTE

For Windows VMs that do not have a VirtIO driver, you must set the MTU manually by
using netsh or a similar tool. This is because the Windows DHCP client does not read the
MTU value.

8.2.4. Additional resources

Changing the MTU for the cluster network

Optimizing the MTU for your network

8.3. EXPOSING A VIRTUAL MACHINE BY USING A SERVICE

You can expose a virtual machine within the cluster or outside the cluster by creating a Service object.

8.3.1. About services

A Kubernetes service exposes network access for clients to an application running on a set of pods.
Services offer abstraction, load balancing, and, in the case of the NodePort and LoadBalancer types,
exposure to the outside world.

ClusterIP

Exposes the service on an internal IP address and as a DNS name to other applications within the

$ oc create -f example-vm-ipv6.yaml

$ oc get vmi <vmi-name> -o jsonpath="{.status.interfaces[*].ipAddresses}"

CHAPTER 8. NETWORKING

239

https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/networking/#changing-cluster-network-mtu
https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/scalability_and_performance/#optimizing-mtu_optimizing-networking

cluster. A single service can map to multiple virtual machines. When a client tries to connect to the
service, the client’s request is load balanced among available backends. ClusterIP is the default
service type.

NodePort

Exposes the service on the same port of each selected node in the cluster. NodePort makes a port
accessible from outside the cluster, as long as the node itself is externally accessible to the client.

LoadBalancer

Creates an external load balancer in the current cloud (if supported) and assigns a fixed, external IP
address to the service.

NOTE

For on-premise clusters, you can configure a load-balancing service by deploying the
MetalLB Operator.

Additional resources

Installing the MetalLB Operator

Configuring services to use MetalLB

8.3.2. Dual-stack support

If IPv4 and IPv6 dual-stack networking is enabled for your cluster, you can create a service that uses
IPv4, IPv6, or both, by defining the spec.ipFamilyPolicy and the spec.ipFamilies fields in the Service
object.

The spec.ipFamilyPolicy field can be set to one of the following values:

SingleStack

The control plane assigns a cluster IP address for the service based on the first configured service
cluster IP range.

PreferDualStack

The control plane assigns both IPv4 and IPv6 cluster IP addresses for the service on clusters that
have dual-stack configured.

RequireDualStack

This option fails for clusters that do not have dual-stack networking enabled. For clusters that have
dual-stack configured, the behavior is the same as when the value is set to PreferDualStack. The
control plane allocates cluster IP addresses from both IPv4 and IPv6 address ranges.

You can define which IP family to use for single-stack or define the order of IP families for dual-stack by
setting the spec.ipFamilies field to one of the following array values:

[IPv4]

[IPv6]

[IPv4, IPv6]

[IPv6, IPv4]

8.3.3. Creating a service by using the command line

OpenShift Container Platform 4.17 Virtualization

240

https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/networking/#metallb-operator-install
https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/networking/#metallb-configure-services

1

1

You can create a service and associate it with a virtual machine (VM) by using the command line.

Prerequisites

You configured the cluster network to support the service.

Procedure

1. Edit the VirtualMachine manifest to add the label for service creation:

Add special: key to the spec.template.metadata.labels stanza.

NOTE

Labels on a virtual machine are passed through to the pod. The special: key
label must match the label in the spec.selector attribute of the Service
manifest.

2. Save the VirtualMachine manifest file to apply your changes.

3. Create a Service manifest to expose the VM:

Specify the label that you added to the spec.template.metadata.labels stanza of the
VirtualMachine manifest.

apiVersion: kubevirt.io/v1
kind: VirtualMachine
metadata:
 name: example-vm
 namespace: example-namespace
spec:
 running: false
 template:
 metadata:
 labels:
 special: key 1
...

apiVersion: v1
kind: Service
metadata:
 name: example-service
 namespace: example-namespace
spec:
...
 selector:
 special: key 1
 type: NodePort 2
 ports: 3
 protocol: TCP
 port: 80
 targetPort: 9376
 nodePort: 30000

CHAPTER 8. NETWORKING

241

2

3

Specify ClusterIP, NodePort, or LoadBalancer.

Specifies a collection of network ports and protocols that you want to expose from the
virtual machine.

4. Save the Service manifest file.

5. Create the service by running the following command:

6. Restart the VM to apply the changes.

Verification

Query the Service object to verify that it is available:

8.3.4. Additional resources

Configuring ingress cluster traffic using a NodePort

Configuring ingress cluster traffic using a load balancer

8.4. ACCESSING A VIRTUAL MACHINE BY USING ITS INTERNAL FQDN

You can access a virtual machine (VM) that is connected to the default internal pod network on a stable
fully qualified domain name (FQDN) by using headless services.

A Kubernetes headless service is a form of service that does not allocate a cluster IP address to
represent a set of pods. Instead of providing a single virtual IP address for the service, a headless service
creates a DNS record for each pod associated with the service. You can expose a VM through its FQDN
without having to expose a specific TCP or UDP port.

IMPORTANT

If you created a VM by using the OpenShift Container Platform web console, you can find
its internal FQDN listed in the Network tile on the Overview tab of the VirtualMachine
details page. For more information about connecting to the VM, see Connecting to a
virtual machine by using its internal FQDN.

8.4.1. Creating a headless service in a project by using the CLI

To create a headless service in a namespace, add the clusterIP: None parameter to the service YAML
definition.

Prerequisites

You have installed the OpenShift CLI (oc).

Procedure

$ oc create -f example-service.yaml

$ oc get service -n example-namespace

OpenShift Container Platform 4.17 Virtualization

242

https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/networking/#configuring-ingress-cluster-traffic-nodeport
https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/networking/#configuring-ingress-cluster-traffic-load-balancer

1

2

3

4

1. Create a Service manifest to expose the VM, such as the following example:

The name of the service. This must match the spec.subdomain attribute in the
VirtualMachine manifest file.

This service selector must match the expose:me label in the VirtualMachine manifest file.

Specifies a headless service.

The list of ports that are exposed by the service. You must define at least one port. This
can be any arbitrary value as it does not affect the headless service.

2. Save the Service manifest file.

3. Create the service by running the following command:

8.4.2. Mapping a virtual machine to a headless service by using the CLI

To connect to a virtual machine (VM) from within the cluster by using its internal fully qualified domain
name (FQDN), you must first map the VM to a headless service. Set the spec.hostname and
spec.subdomain parameters in the VM configuration file.

If a headless service exists with a name that matches the subdomain, a unique DNS A record is created
for the VM in the form of <vm.spec.hostname>.<vm.spec.subdomain>.
<vm.metadata.namespace>.svc.cluster.local.

Procedure

1. Edit the VirtualMachine manifest to add the service selector label and subdomain by running
the following command:

Example VirtualMachine manifest file

apiVersion: v1
kind: Service
metadata:
 name: mysubdomain 1
spec:
 selector:
 expose: me 2
 clusterIP: None 3
 ports: 4
 - protocol: TCP
 port: 1234
 targetPort: 1234

$ oc create -f headless_service.yaml

$ oc edit vm <vm_name>

apiVersion: kubevirt.io/v1
kind: VirtualMachine
metadata:

CHAPTER 8. NETWORKING

243

1

2

3

The expose:me label must match the spec.selector attribute of the Service manifest
that you previously created.

If this attribute is not specified, the resulting DNS A record takes the form of
<vm.metadata.name>.<vm.spec.subdomain>.
<vm.metadata.namespace>.svc.cluster.local.

The spec.subdomain attribute must match the metadata.name value of the Service
object.

2. Save your changes and exit the editor.

3. Restart the VM to apply the changes.

8.4.3. Connecting to a virtual machine by using its internal FQDN

You can connect to a virtual machine (VM) by using its internal fully qualified domain name (FQDN).

Prerequisites

You have installed the virtctl tool.

You have identified the internal FQDN of the VM from the web console or by mapping the VM
to a headless service. The internal FQDN has the format <vm.spec.hostname>.
<vm.spec.subdomain>.<vm.metadata.namespace>.svc.cluster.local.

Procedure

1. Connect to the VM console by entering the following command:

2. To connect to the VM by using the requested FQDN, run the following command:

Example output

In the preceding example, the DNS entry for myvm.mysubdomain.default.svc.cluster.local

 name: vm-fedora
spec:
 template:
 metadata:
 labels:
 expose: me 1
 spec:
 hostname: "myvm" 2
 subdomain: "mysubdomain" 3
...

$ virtctl console vm-fedora

$ ping myvm.mysubdomain.<namespace>.svc.cluster.local

PING myvm.mysubdomain.default.svc.cluster.local (10.244.0.57) 56(84) bytes of data.
64 bytes from myvm.mysubdomain.default.svc.cluster.local (10.244.0.57): icmp_seq=1 ttl=64
time=0.029 ms

OpenShift Container Platform 4.17 Virtualization

244

In the preceding example, the DNS entry for myvm.mysubdomain.default.svc.cluster.local
points to 10.244.0.57, which is the cluster IP address that is currently assigned to the VM.

8.4.4. Additional resources

Exposing a VM by using a service

8.5. CONNECTING A VIRTUAL MACHINE TO A LINUX BRIDGE
NETWORK

By default, OpenShift Virtualization is installed with a single, internal pod network.

You can create a Linux bridge network and attach a virtual machine (VM) to the network by performing
the following steps:

1. Create a Linux bridge node network configuration policy (NNCP) .

2. Create a Linux bridge network attachment definition (NAD) by using the web console or the
command line.

3. Configure the VM to recognize the NAD by using the web console or the command line.

8.5.1. Creating a Linux bridge NNCP

You can create a NodeNetworkConfigurationPolicy (NNCP) manifest for a Linux bridge network.

Prerequisites

You have installed the Kubernetes NMState Operator.

Procedure

Create the NodeNetworkConfigurationPolicy manifest. This example includes sample values
that you must replace with your own information.

apiVersion: nmstate.io/v1
kind: NodeNetworkConfigurationPolicy
metadata:
 name: br1-eth1-policy 1
spec:
 desiredState:
 interfaces:
 - name: br1 2
 description: Linux bridge with eth1 as a port 3
 type: linux-bridge 4
 state: up 5
 ipv4:
 enabled: false 6
 bridge:
 options:
 stp:

CHAPTER 8. NETWORKING

245

1

2

3

4

5

6

7

8

Name of the policy.

Name of the interface.

Optional: Human-readable description of the interface.

The type of interface. This example creates a bridge.

The requested state for the interface after creation.

Disables IPv4 in this example.

Disables STP in this example.

The node NIC to which the bridge is attached.

8.5.2. Creating a Linux bridge NAD

You can create a Linux bridge network attachment definition (NAD) by using the OpenShift Container
Platform web console or command line.

8.5.2.1. Creating a Linux bridge NAD by using the web console

You can create a network attachment definition (NAD) to provide layer-2 networking to pods and virtual
machines by using the OpenShift Container Platform web console.

A Linux bridge network attachment definition is the most efficient method for connecting a virtual
machine to a VLAN.

WARNING

Configuring IP address management (IPAM) in a network attachment definition for
virtual machines is not supported.

Procedure

1. In the web console, click Networking → NetworkAttachmentDefinitions.

2. Click Create Network Attachment Definition.

NOTE

The network attachment definition must be in the same namespace as the pod or
virtual machine.

 enabled: false 7
 port:
 - name: eth1 8



OpenShift Container Platform 4.17 Virtualization

246

3. Enter a unique Name and optional Description.

4. Select CNV Linux bridge from the Network Type list.

5. Enter the name of the bridge in the Bridge Name field.

6. Optional: If the resource has VLAN IDs configured, enter the ID numbers in the VLAN Tag
Number field.

7. Optional: Select MAC Spoof Check to enable MAC spoof filtering. This feature provides
security against a MAC spoofing attack by allowing only a single MAC address to exit the pod.

8. Click Create.

8.5.2.2. Creating a Linux bridge NAD by using the command line

You can create a network attachment definition (NAD) to provide layer-2 networking to pods and virtual
machines (VMs) by using the command line.

The NAD and the VM must be in the same namespace.

WARNING

Configuring IP address management (IPAM) in a network attachment definition for
virtual machines is not supported.

Prerequisites

The node must support nftables and the nft binary must be deployed to enable MAC spoof
check.

Procedure

1. Add the VM to the NetworkAttachmentDefinition configuration, as in the following example:



apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:
 name: bridge-network 1
 annotations:
 k8s.v1.cni.cncf.io/resourceName: bridge.network.kubevirt.io/bridge-interface 2
spec:
 config: '{
 "cniVersion": "0.3.1",
 "name": "bridge-network", 3
 "type": "cnv-bridge", 4
 "bridge": "bridge-interface", 5
 "macspoofchk": false, 6
 "vlan": 100, 7

CHAPTER 8. NETWORKING

247

1

2

3

4

5

6

7

8

1

The name for the NetworkAttachmentDefinition object.

Optional: Annotation key-value pair for node selection, where bridge-interface must
match the name of a bridge configured on some nodes. If you add this annotation to your
network attachment definition, your virtual machine instances will only run on the nodes
that have the bridge-interface bridge connected.

The name for the configuration. It is recommended to match the configuration name to the
name value of the network attachment definition.

The actual name of the Container Network Interface (CNI) plugin that provides the
network for this network attachment definition. Do not change this field unless you want to
use a different CNI.

The name of the Linux bridge configured on the node.

Optional: A flag to enable the MAC spoof check. When set to true, you cannot change the
MAC address of the pod or guest interface. This attribute allows only a single MAC address
to exit the pod, which provides security against a MAC spoofing attack.

Optional: The VLAN tag. No additional VLAN configuration is required on the node
network configuration policy.

Optional: Indicates whether the VM connects to the bridge through the default VLAN. The
default value is true.

NOTE

A Linux bridge network attachment definition is the most efficient method for
connecting a virtual machine to a VLAN.

2. Create the network attachment definition:

Where network-attachment-definition.yaml is the file name of the network attachment
definition manifest.

Verification

Verify that the network attachment definition was created by running the following command:

8.5.3. Configuring a VM network interface

You can configure a virtual machine (VM) network interface by using the OpenShift Container Platform
web console or command line.

 "disableContainerInterface": "true",
 "preserveDefaultVlan": false 8
 }'

$ oc create -f network-attachment-definition.yaml 1

$ oc get network-attachment-definition bridge-network

OpenShift Container Platform 4.17 Virtualization

248

8.5.3.1. Configuring a VM network interface by using the web console

You can configure a network interface for a virtual machine (VM) by using the OpenShift Container
Platform web console.

Prerequisites

You created a network attachment definition for the network.

Procedure

1. Navigate to Virtualization → VirtualMachines.

2. Click a VM to view the VirtualMachine details page.

3. On the Configuration tab, click the Network interfaces tab.

4. Click Add network interface.

5. Enter the interface name and select the network attachment definition from the Network list.

6. Click Save.

7. Restart the VM to apply the changes.

Networking fields

Name Description

Name Name for the network interface controller.

Model Indicates the model of the network interface
controller. Supported values are e1000e and virtio.

Network List of available network attachment definitions.

Type List of available binding methods. Select the binding
method suitable for the network interface:

Default pod network: masquerade

Linux bridge network: bridge

SR-IOV network: SR-IOV

MAC Address MAC address for the network interface controller. If a
MAC address is not specified, one is assigned
automatically.

8.5.3.2. Configuring a VM network interface by using the command line

You can configure a virtual machine (VM) network interface for a bridge network by using the command
line.

CHAPTER 8. NETWORKING

249

1

2

3

Prerequisites

Shut down the virtual machine before editing the configuration. If you edit a running virtual
machine, you must restart the virtual machine for the changes to take effect.

Procedure

1. Add the bridge interface and the network attachment definition to the VM configuration as in
the following example:

The name of the bridge interface.

The name of the network. This value must match the name value of the corresponding
spec.template.spec.domain.devices.interfaces entry.

The name of the network attachment definition.

2. Apply the configuration:

3. Optional: If you edited a running virtual machine, you must restart it for the changes to take
effect.

8.6. CONNECTING A VIRTUAL MACHINE TO AN SR-IOV NETWORK

You can connect a virtual machine (VM) to a Single Root I/O Virtualization (SR-IOV) network by
performing the following steps:

Configuring an SR-IOV network device

Configuring an SR-IOV network

Connecting the VM to the SR-IOV network

apiVersion: kubevirt.io/v1
kind: VirtualMachine
metadata:
 name: example-vm
spec:
 template:
 spec:
 domain:
 devices:
 interfaces:
 - bridge: {}
 name: bridge-net 1
...
 networks:
 - name: bridge-net 2
 multus:
 networkName: a-bridge-network 3

$ oc apply -f example-vm.yaml

OpenShift Container Platform 4.17 Virtualization

250

8.6.1. Configuring SR-IOV network devices

The SR-IOV Network Operator adds the SriovNetworkNodePolicy.sriovnetwork.openshift.io
CustomResourceDefinition to OpenShift Container Platform. You can configure an SR-IOV network
device by creating a SriovNetworkNodePolicy custom resource (CR).

NOTE

When applying the configuration specified in a SriovNetworkNodePolicy object, the SR-
IOV Operator might drain the nodes, and in some cases, reboot nodes. Reboot only
happens in the following cases:

With Mellanox NICs (mlx5 driver) a node reboot happens every time the number
of virtual functions (VFs) increase on a physical function (PF).

With Intel NICs, a reboot only happens if the kernel parameters do not include
intel_iommu=on and iommu=pt.

It might take several minutes for a configuration change to apply.

Prerequisites

You installed the OpenShift CLI (oc).

You have access to the cluster as a user with the cluster-admin role.

You have installed the SR-IOV Network Operator.

You have enough available nodes in your cluster to handle the evicted workload from drained
nodes.

You have not selected any control plane nodes for SR-IOV network device configuration.

Procedure

1. Create an SriovNetworkNodePolicy object, and then save the YAML in the <name>-sriov-
node-network.yaml file. Replace <name> with the name for this configuration.

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetworkNodePolicy
metadata:
 name: <name> 1
 namespace: openshift-sriov-network-operator 2
spec:
 resourceName: <sriov_resource_name> 3
 nodeSelector:
 feature.node.kubernetes.io/network-sriov.capable: "true" 4
 priority: <priority> 5
 mtu: <mtu> 6
 numVfs: <num> 7
 nicSelector: 8
 vendor: "<vendor_code>" 9
 deviceID: "<device_id>" 10
 pfNames: ["<pf_name>", ...] 11

CHAPTER 8. NETWORKING

251

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Specify a name for the CR object.

Specify the namespace where the SR-IOV Operator is installed.

Specify the resource name of the SR-IOV device plugin. You can create multiple
SriovNetworkNodePolicy objects for a resource name.

Specify the node selector to select which nodes are configured. Only SR-IOV network
devices on selected nodes are configured. The SR-IOV Container Network Interface (CNI)
plugin and device plugin are deployed only on selected nodes.

Optional: Specify an integer value between 0 and 99. A smaller number gets higher priority,
so a priority of 10 is higher than a priority of 99. The default value is 99.

Optional: Specify a value for the maximum transmission unit (MTU) of the virtual function.
The maximum MTU value can vary for different NIC models.

Specify the number of the virtual functions (VF) to create for the SR-IOV physical network
device. For an Intel network interface controller (NIC), the number of VFs cannot be larger
than the total VFs supported by the device. For a Mellanox NIC, the number of VFs cannot
be larger than 127.

The nicSelector mapping selects the Ethernet device for the Operator to configure. You
do not need to specify values for all the parameters. It is recommended to identify the
Ethernet adapter with enough precision to minimize the possibility of selecting an Ethernet
device unintentionally. If you specify rootDevices, you must also specify a value for
vendor, deviceID, or pfNames. If you specify both pfNames and rootDevices at the same
time, ensure that they point to an identical device.

Optional: Specify the vendor hex code of the SR-IOV network device. The only allowed
values are either 8086 or 15b3.

Optional: Specify the device hex code of SR-IOV network device. The only allowed values
are 158b, 1015, 1017.

Optional: The parameter accepts an array of one or more physical function (PF) names for
the Ethernet device.

The parameter accepts an array of one or more PCI bus addresses for the physical function
of the Ethernet device. Provide the address in the following format: 0000:02:00.1.

The vfio-pci driver type is required for virtual functions in OpenShift Virtualization.

Optional: Specify whether to enable remote direct memory access (RDMA) mode. For a
Mellanox card, set isRdma to false. The default value is false.

NOTE

If isRDMA flag is set to true, you can continue to use the RDMA enabled VF as a
normal network device. A device can be used in either mode.

 rootDevices: ["<pci_bus_id>", "..."] 12
 deviceType: vfio-pci 13
 isRdma: false 14

OpenShift Container Platform 4.17 Virtualization

252

2. Optional: Label the SR-IOV capable cluster nodes with
SriovNetworkNodePolicy.Spec.NodeSelector if they are not already labeled. For more
information about labeling nodes, see "Understanding how to update labels on nodes".

3. Create the SriovNetworkNodePolicy object:

where <name> specifies the name for this configuration.

After applying the configuration update, all the pods in sriov-network-operator namespace
transition to the Running status.

4. To verify that the SR-IOV network device is configured, enter the following command. Replace
<node_name> with the name of a node with the SR-IOV network device that you just
configured.

8.6.2. Configuring SR-IOV additional network

You can configure an additional network that uses SR-IOV hardware by creating an SriovNetwork
object.

When you create an SriovNetwork object, the SR-IOV Network Operator automatically creates a
NetworkAttachmentDefinition object.

NOTE

Do not modify or delete an SriovNetwork object if it is attached to pods or virtual
machines in a running state.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

1. Create the following SriovNetwork object, and then save the YAML in the <name>-sriov-
network.yaml file. Replace <name> with a name for this additional network.

$ oc create -f <name>-sriov-node-network.yaml

$ oc get sriovnetworknodestates -n openshift-sriov-network-operator <node_name> -o
jsonpath='{.status.syncStatus}'

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetwork
metadata:
 name: <name> 1
 namespace: openshift-sriov-network-operator 2
spec:
 resourceName: <sriov_resource_name> 3
 networkNamespace: <target_namespace> 4
 vlan: <vlan> 5

CHAPTER 8. NETWORKING

253

1

2

3

4

5

6

7

8

9

10

11

Replace <name> with a name for the object. The SR-IOV Network Operator creates a
NetworkAttachmentDefinition object with same name.

Specify the namespace where the SR-IOV Network Operator is installed.

Replace <sriov_resource_name> with the value for the .spec.resourceName parameter from the
SriovNetworkNodePolicy object that defines the SR-IOV hardware for this additional network.

Replace <target_namespace> with the target namespace for the SriovNetwork. Only pods or
virtual machines in the target namespace can attach to the SriovNetwork.

Optional: Replace <vlan> with a Virtual LAN (VLAN) ID for the additional network. The integer
value must be from 0 to 4095. The default value is 0.

Optional: Replace <spoof_check> with the spoof check mode of the VF. The allowed values are
the strings "on" and "off".

IMPORTANT

You must enclose the value you specify in quotes or the CR is rejected by the SR-
IOV Network Operator.

Optional: Replace <link_state> with the link state of virtual function (VF). Allowed value are
enable, disable and auto.

Optional: Replace <max_tx_rate> with a maximum transmission rate, in Mbps, for the VF.

Optional: Replace <min_tx_rate> with a minimum transmission rate, in Mbps, for the VF. This value
should always be less than or equal to Maximum transmission rate.

NOTE

Intel NICs do not support the minTxRate parameter. For more information, see
BZ#1772847.

Optional: Replace <vlan_qos> with an IEEE 802.1p priority level for the VF. The default value is 0.

Optional: Replace <trust_vf> with the trust mode of the VF. The allowed values are the strings
"on" and "off".

IMPORTANT

You must enclose the value you specify in quotes or the CR is rejected by the SR-
IOV Network Operator.

 spoofChk: "<spoof_check>" 6
 linkState: <link_state> 7
 maxTxRate: <max_tx_rate> 8
 minTxRate: <min_rx_rate> 9
 vlanQoS: <vlan_qos> 10
 trust: "<trust_vf>" 11
 capabilities: <capabilities> 12

OpenShift Container Platform 4.17 Virtualization

254

https://bugzilla.redhat.com/show_bug.cgi?id=1772847

12

1

2

3

1

Optional: Replace <capabilities> with the capabilities to configure for this network.

2. To create the object, enter the following command. Replace <name> with a name for this
additional network.

3. Optional: To confirm that the NetworkAttachmentDefinition object associated with the
SriovNetwork object that you created in the previous step exists, enter the following command.
Replace <namespace> with the namespace you specified in the SriovNetwork object.

8.6.3. Connecting a virtual machine to an SR-IOV network by using the command
line

You can connect the virtual machine (VM) to the SR-IOV network by including the network details in the
VM configuration.

Procedure

1. Add the SR-IOV network details to the spec.domain.devices.interfaces and spec.networks
stanzas of the VM configuration as in the following example:

Specify a unique name for the SR-IOV interface.

Specify the name of the SR-IOV interface. This must be the same as the interfaces.name
that you defined earlier.

Specify the name of the SR-IOV network attachment definition.

2. Apply the virtual machine configuration:

The name of the virtual machine YAML file.

$ oc create -f <name>-sriov-network.yaml

$ oc get net-attach-def -n <namespace>

apiVersion: kubevirt.io/v1
kind: VirtualMachine
metadata:
 name: example-vm
spec:
 domain:
 devices:
 interfaces:
 - name: nic1 1
 sriov: {}
 networks:
 - name: nic1 2
 multus:
 networkName: sriov-network 3
...

$ oc apply -f <vm_sriov>.yaml 1

CHAPTER 8. NETWORKING

255

8.6.4. Connecting a VM to an SR-IOV network by using the web console

You can connect a VM to the SR-IOV network by including the network details in the VM configuration.

Prerequisites

You must create a network attachment definition for the network.

Procedure

1. Navigate to Virtualization → VirtualMachines.

2. Click a VM to view the VirtualMachine details page.

3. On the Configuration tab, click the Network interfaces tab.

4. Click Add network interface.

5. Enter the interface name.

6. Select an SR-IOV network attachment definition from the Network list.

7. Select SR-IOV from the Type list.

8. Optional: Add a network Model or Mac address.

9. Click Save.

10. Restart or live-migrate the VM to apply the changes.

8.6.5. Additional resources

Configuring DPDK workloads for improved performance

8.7. USING DPDK WITH SR-IOV

The Data Plane Development Kit (DPDK) provides a set of libraries and drivers for fast packet
processing.

You can configure clusters and virtual machines (VMs) to run DPDK workloads over SR-IOV networks.

8.7.1. Configuring a cluster for DPDK workloads

You can configure an OpenShift Container Platform cluster to run Data Plane Development Kit (DPDK)
workloads for improved network performance.

Prerequisites

You have access to the cluster as a user with cluster-admin permissions.

You have installed the OpenShift CLI (oc).

You have installed the SR-IOV Network Operator.

You have installed the Node Tuning Operator.

OpenShift Container Platform 4.17 Virtualization

256

Procedure

1. Map your compute nodes topology to determine which Non-Uniform Memory Access (NUMA)
CPUs are isolated for DPDK applications and which ones are reserved for the operating system
(OS).

2. Label a subset of the compute nodes with a custom role; for example, worker-dpdk:

3. Create a new MachineConfigPool manifest that contains the worker-dpdk label in the
spec.machineConfigSelector object:

Example MachineConfigPool manifest

4. Create a PerformanceProfile manifest that applies to the labeled nodes and the machine
config pool that you created in the previous steps. The performance profile specifies the CPUs
that are isolated for DPDK applications and the CPUs that are reserved for house keeping.

Example PerformanceProfile manifest

$ oc label node <node_name> node-role.kubernetes.io/worker-dpdk=""

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfigPool
metadata:
 name: worker-dpdk
 labels:
 machineconfiguration.openshift.io/role: worker-dpdk
spec:
 machineConfigSelector:
 matchExpressions:
 - key: machineconfiguration.openshift.io/role
 operator: In
 values:
 - worker
 - worker-dpdk
 nodeSelector:
 matchLabels:
 node-role.kubernetes.io/worker-dpdk: ""

apiVersion: performance.openshift.io/v2
kind: PerformanceProfile
metadata:
 name: profile-1
spec:
 cpu:
 isolated: 4-39,44-79
 reserved: 0-3,40-43
 globallyDisableIrqLoadBalancing: true
 hugepages:
 defaultHugepagesSize: 1G
 pages:
 - count: 8
 node: 0
 size: 1G
 net:

CHAPTER 8. NETWORKING

257

NOTE

The compute nodes automatically restart after you apply the
MachineConfigPool and PerformanceProfile manifests.

5. Retrieve the name of the generated RuntimeClass resource from the status.runtimeClass
field of the PerformanceProfile object:

6. Set the previously obtained RuntimeClass name as the default container runtime class for the
virt-launcher pods by editing the HyperConverged custom resource (CR):

NOTE

Editing the HyperConverged CR changes a global setting that affects all VMs
that are created after the change is applied.

7. If your DPDK-enabled compute nodes use Simultaneous multithreading (SMT), enable the
AlignCPUs enabler by editing the HyperConverged CR:

NOTE

Enabling AlignCPUs allows OpenShift Virtualization to request up to two
additional dedicated CPUs to bring the total CPU count to an even parity when
using emulator thread isolation.

8. Create an SriovNetworkNodePolicy object with the spec.deviceType field set to vfio-pci:

Example SriovNetworkNodePolicy manifest

 userLevelNetworking: true
 nodeSelector:
 node-role.kubernetes.io/worker-dpdk: ""
 numa:
 topologyPolicy: single-numa-node

$ oc get performanceprofiles.performance.openshift.io profile-1 -
o=jsonpath='{.status.runtimeClass}{"\n"}'

$ oc patch hyperconverged kubevirt-hyperconverged -n openshift-cnv \
 --type='json' -p='[{"op": "add", "path": "/spec/defaultRuntimeClass", "value":"<runtimeclass-
name>"}]'

$ oc patch hyperconverged kubevirt-hyperconverged -n openshift-cnv \
 --type='json' -p='[{"op": "replace", "path": "/spec/featureGates/alignCPUs", "value": true}]'

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetworkNodePolicy
metadata:
 name: policy-1
 namespace: openshift-sriov-network-operator
spec:
 resourceName: intel_nics_dpdk

OpenShift Container Platform 4.17 Virtualization

258

Additional resources

Using CPU Manager and Topology Manager

Configuring huge pages

Creating a custom machine config pool

8.7.2. Configuring a project for DPDK workloads

You can configure the project to run DPDK workloads on SR-IOV hardware.

Prerequisites

Your cluster is configured to run DPDK workloads.

Procedure

1. Create a namespace for your DPDK applications:

2. Create an SriovNetwork object that references the SriovNetworkNodePolicy object. When
you create an SriovNetwork object, the SR-IOV Network Operator automatically creates a
NetworkAttachmentDefinition object.

Example SriovNetwork manifest

 deviceType: vfio-pci
 mtu: 9000
 numVfs: 4
 priority: 99
 nicSelector:
 vendor: "8086"
 deviceID: "1572"
 pfNames:
 - eno3
 rootDevices:
 - "0000:19:00.2"
 nodeSelector:
 feature.node.kubernetes.io/network-sriov.capable: "true"

$ oc create ns dpdk-checkup-ns

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetwork
metadata:
 name: dpdk-sriovnetwork
 namespace: openshift-sriov-network-operator
spec:
 ipam: |
 {
 "type": "host-local",
 "subnet": "10.56.217.0/24",
 "rangeStart": "10.56.217.171",
 "rangeEnd": "10.56.217.181",

CHAPTER 8. NETWORKING

259

https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/scalability_and_performance/#using-cpu-manager
https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/scalability_and_performance/#configuring-huge-pages_huge-pages
https://access.redhat.com/solutions/5688941

1

2

The namespace where the NetworkAttachmentDefinition object is deployed.

The value of the spec.resourceName attribute of the SriovNetworkNodePolicy object
that was created when configuring the cluster for DPDK workloads.

3. Optional: Run the virtual machine latency checkup to verify that the network is properly
configured.

4. Optional: Run the DPDK checkup to verify that the namespace is ready for DPDK workloads.

Additional resources

Working with projects

Virtual machine latency checkup

DPDK checkup

8.7.3. Configuring a virtual machine for DPDK workloads

You can run Data Packet Development Kit (DPDK) workloads on virtual machines (VMs) to achieve
lower latency and higher throughput for faster packet processing in the user space. DPDK uses the SR-
IOV network for hardware-based I/O sharing.

Prerequisites

Your cluster is configured to run DPDK workloads.

You have created and configured the project in which the VM will run.

Procedure

1. Edit the VirtualMachine manifest to include information about the SR-IOV network interface,
CPU topology, CRI-O annotations, and huge pages:

Example VirtualMachine manifest

 "routes": [{
 "dst": "0.0.0.0/0"
 }],
 "gateway": "10.56.217.1"
 }
 networkNamespace: dpdk-checkup-ns 1
 resourceName: intel_nics_dpdk 2
 spoofChk: "off"
 trust: "on"
 vlan: 1019

apiVersion: kubevirt.io/v1
kind: VirtualMachine
metadata:
 name: rhel-dpdk-vm
spec:
 running: true

OpenShift Container Platform 4.17 Virtualization

260

https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/building_applications/#working-with-projects

1

2

3

4

5

6

7

This annotation specifies that load balancing is disabled for CPUs that are used by the
container.

This annotation specifies that the CPU quota is disabled for CPUs that are used by the
container.

This annotation specifies that Interrupt Request (IRQ) load balancing is disabled for CPUs
that are used by the container.

The number of sockets inside the VM. This field must be set to 1 for the CPUs to be
scheduled from the same Non-Uniform Memory Access (NUMA) node.

The number of cores inside the VM. This must be a value greater than or equal to 1. In this
example, the VM is scheduled with 5 hyper-threads or 10 CPUs.

The size of the huge pages. The possible values for x86-64 architecture are 1Gi and 2Mi. In
this example, the request is for 8 huge pages of size 1Gi.

The name of the SR-IOV NetworkAttachmentDefinition object.

 template:
 metadata:
 annotations:
 cpu-load-balancing.crio.io: disable 1
 cpu-quota.crio.io: disable 2
 irq-load-balancing.crio.io: disable 3
 spec:
 domain:
 cpu:
 sockets: 1 4
 cores: 5 5
 threads: 2
 dedicatedCpuPlacement: true
 isolateEmulatorThread: true
 interfaces:
 - masquerade: {}
 name: default
 - model: virtio
 name: nic-east
 pciAddress: '0000:07:00.0'
 sriov: {}
 networkInterfaceMultiqueue: true
 rng: {}
 memory:
 hugepages:
 pageSize: 1Gi 6
 guest: 8Gi
 networks:
 - name: default
 pod: {}
 - multus:
 networkName: dpdk-net 7
 name: nic-east
...

CHAPTER 8. NETWORKING

261

2. Save and exit the editor.

3. Apply the VirtualMachine manifest:

4. Configure the guest operating system. The following example shows the configuration steps for
RHEL 8 OS:

a. Configure huge pages by using the GRUB bootloader command-line interface. In the
following example, 8 1G huge pages are specified.

b. To achieve low-latency tuning by using the cpu-partitioning profile in the TuneD
application, run the following commands:

The first two CPUs (0 and 1) are set aside for house keeping tasks and the rest are isolated
for the DPDK application.

c. Override the SR-IOV NIC driver by using the driverctl device driver control utility:

5. Restart the VM to apply the changes.

8.8. CONNECTING A VIRTUAL MACHINE TO AN OVN-KUBERNETES
SECONDARY NETWORK

You can connect a virtual machine (VM) to an Open Virtual Network (OVN)-Kubernetes secondary
network. OpenShift Virtualization supports the layer 2 and localnet topologies for OVN-Kubernetes.

A layer 2 topology connects workloads by a cluster-wide logical switch. The OVN-Kubernetes
Container Network Interface (CNI) plug-in uses the Geneve (Generic Network Virtualization
Encapsulation) protocol to create an overlay network between nodes. You can use this overlay
network to connect VMs on different nodes, without having to configure any additional physical
networking infrastructure.

A localnet topology connects the secondary network to the physical underlay. This enables both
east-west cluster traffic and access to services running outside the cluster, but it requires
additional configuration of the underlying Open vSwitch (OVS) system on cluster nodes.

NOTE

$ oc apply -f <file_name>.yaml

$ grubby --update-kernel=ALL --args="default_hugepagesz=1GB hugepagesz=1G
hugepages=8"

$ dnf install -y tuned-profiles-cpu-partitioning

$ echo isolated_cores=2-9 > /etc/tuned/cpu-partitioning-variables.conf

$ tuned-adm profile cpu-partitioning

$ dnf install -y driverctl

$ driverctl set-override 0000:07:00.0 vfio-pci

OpenShift Container Platform 4.17 Virtualization

262

NOTE

An OVN-Kubernetes secondary network is compatible with the multi-network policy API
which provides the MultiNetworkPolicy custom resource definition (CRD) to control
traffic flow to and from VMs. You can use the ipBlock attribute to define network policy
ingress and egress rules for specific CIDR blocks.

To configure an OVN-Kubernetes secondary network and attach a VM to that network, perform the
following steps:

1. Configure an OVN-Kubernetes secondary network by creating a network attachment definition
(NAD).

NOTE

For localnet topology, you must configure an OVS bridge by creating a
NodeNetworkConfigurationPolicy object before creating the NAD.

2. Connect the VM to the OVN-Kubernetes secondary network by adding the network details to
the VM specification.

8.8.1. Creating an OVN-Kubernetes NAD

You can create an OVN-Kubernetes layer 2 or localnet network attachment definition (NAD) by using
the OpenShift Container Platform web console or the CLI.

NOTE

Configuring IP address management (IPAM) in a network attachment definition for
virtual machines is not supported.

8.8.1.1. Creating a NAD for layer 2 topology using the CLI

You can create a network attachment definition (NAD) which describes how to attach a pod to the layer
2 overlay network.

Prerequisites

You have access to the cluster as a user with cluster-admin privileges.

You have installed the OpenShift CLI (oc).

Procedure

1. Create a NetworkAttachmentDefinition object:

apiVersion: k8s.cni.cncf.io/v1
kind: NetworkAttachmentDefinition
metadata:
 name: l2-network
 namespace: my-namespace
spec:
 config: |2
 {

CHAPTER 8. NETWORKING

263

https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/networking/#compatibility-with-multi-network-policy_configuring-additional-network
https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/networking/#configuring-additional-network_ovn-kubernetes-configuration-for-a-localnet-topology

1

2

3

4

5

6

The CNI specification version. The required value is 0.3.1.

The name of the network. This attribute is not namespaced. For example, you can have a
network named l2-network referenced from two different NetworkAttachmentDefinition
objects that exist in two different namespaces. This feature is useful to connect VMs in
different namespaces.

The name of the CNI plug-in to be configured. The required value is ovn-k8s-cni-overlay.

The topological configuration for the network. The required value is layer2.

Optional: The maximum transmission unit (MTU) value. The default value is automatically
set by the kernel.

The value of the namespace and name fields in the metadata stanza of the
NetworkAttachmentDefinition object.

NOTE

The above example configures a cluster-wide overlay without a subnet defined.
This means that the logical switch implementing the network only provides layer
2 communication. You must configure an IP address when you create the virtual
machine by either setting a static IP address or by deploying a DHCP server on
the network for a dynamic IP address.

2. Apply the manifest:

8.8.1.2. Creating a NAD for localnet topology using the CLI

You can create a network attachment definition (NAD) which describes how to attach a pod to the
underlying physical network.

Prerequisites

You have access to the cluster as a user with cluster-admin privileges.

You have installed the OpenShift CLI (oc).

You have installed the Kubernetes NMState Operator.

You have created a NodeNetworkConfigurationPolicy object to map the OVN-Kubernetes
secondary network to an Open vSwitch (OVS) bridge.

Procedure

 "cniVersion": "0.3.1", 1
 "name": "my-namespace-l2-network", 2
 "type": "ovn-k8s-cni-overlay", 3
 "topology":"layer2", 4
 "mtu": 1300, 5
 "netAttachDefName": "my-namespace/l2-network" 6
 }

$ oc apply -f <filename>.yaml

OpenShift Container Platform 4.17 Virtualization

264

1

2

3

4

5

Procedure

1. Create a NetworkAttachmentDefinition object:

The CNI specification version. The required value is 0.3.1.

The name of the network. This attribute must match the value of the
spec.desiredState.ovn.bridge-mappings.localnet field of the
NodeNetworkConfigurationPolicy object that defines the OVS bridge mapping.

The name of the CNI plug-in to be configured. The required value is ovn-k8s-cni-overlay.

The topological configuration for the network. The required value is localnet.

The value of the namespace and name fields in the metadata stanza of the
NetworkAttachmentDefinition object.

2. Apply the manifest:

8.8.1.3. Creating a NAD for layer 2 topology by using the web console

You can create a network attachment definition (NAD) that describes how to attach a pod to the layer 2
overlay network.

Prerequisites

You have access to the cluster as a user with cluster-admin privileges.

Procedure

1. Go to Networking → NetworkAttachmentDefinitions in the web console.

2. Click Create Network Attachment Definition. The network attachment definition must be in
the same namespace as the pod or virtual machine using it.

3. Enter a unique Name and optional Description.

apiVersion: k8s.cni.cncf.io/v1
kind: NetworkAttachmentDefinition
metadata:
 name: localnet-network
 namespace: default
spec:
 config: |2
 {
 "cniVersion": "0.3.1", 1
 "name": "localnet-network", 2
 "type": "ovn-k8s-cni-overlay", 3
 "topology": "localnet", 4
 "netAttachDefName": "default/localnet-network" 5
 }

$ oc apply -f <filename>.yaml

CHAPTER 8. NETWORKING

265

4. Select OVN Kubernetes L2 overlay network from the Network Type list.

5. Click Create.

8.8.1.4. Creating a NAD for localnet topology using the web console

You can create a network attachment definition (NAD) to connect workloads to a physical network by
using the OpenShift Container Platform web console.

Prerequisites

You have access to the cluster as a user with cluster-admin privileges.

Use nmstate to configure the localnet to OVS bridge mappings.

Procedure

1. Navigate to Networking → NetworkAttachmentDefinitions in the web console.

2. Click Create Network Attachment Definition. The network attachment definition must be in
the same namespace as the pod or virtual machine using it.

3. Enter a unique Name and optional Description.

4. Select OVN Kubernetes secondary localnet network from the Network Type list.

5. Enter the name of your pre-configured localnet identifier in the Bridge mapping field.

6. Optional: You can explicitly set MTU to the specified value. The default value is chosen by the
kernel.

7. Optional: Encapsulate the traffic in a VLAN. The default value is none.

8. Click Create.

8.8.2. Attaching a virtual machine to the OVN-Kubernetes secondary network

You can attach a virtual machine (VM) to the OVN-Kubernetes secondary network interface by using
the OpenShift Container Platform web console or the CLI.

8.8.2.1. Attaching a virtual machine to an OVN-Kubernetes secondary network using the
CLI

You can connect a virtual machine (VM) to the OVN-Kubernetes secondary network by including the
network details in the VM configuration.

Prerequisites

You have access to the cluster as a user with cluster-admin privileges.

You have installed the OpenShift CLI (oc).

Procedure

1. Edit the VirtualMachine manifest to add the OVN-Kubernetes secondary network interface

OpenShift Container Platform 4.17 Virtualization

266

1

2

3

1. Edit the VirtualMachine manifest to add the OVN-Kubernetes secondary network interface
details, as in the following example:

The name of the OVN-Kubernetes secondary interface.

The name of the network. This must match the value of the
spec.template.spec.domain.devices.interfaces.name field.

The name of the NetworkAttachmentDefinition object.

2. Apply the VirtualMachine manifest:

3. Optional: If you edited a running virtual machine, you must restart it for the changes to take
effect.

8.8.3. Additional resources

Configuration for an OVN-Kubernetes additional network

About the Kubernetes NMState Operator

Configuration for an OVN-Kubernetes additional network mapping

Configuration for an additional network attachment

8.9. HOT PLUGGING SECONDARY NETWORK INTERFACES

You can add or remove secondary network interfaces without stopping your virtual machine (VM).
OpenShift Virtualization supports hot plugging for secondary interfaces that use the VirtIO device
driver.

apiVersion: kubevirt.io/v1
kind: VirtualMachine
metadata:
 name: vm-server
spec:
 running: true
 template:
 spec:
 domain:
 devices:
 interfaces:
 - name: secondary 1
 bridge: {}
 resources:
 requests:
 memory: 1024Mi
 networks:
 - name: secondary 2
 multus:
 networkName: <nad_name> 3
...

$ oc apply -f <filename>.yaml

CHAPTER 8. NETWORKING

267

https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/networking/#configuration-ovnk-additional-networks_configuring-additional-network
https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/networking/#k8s-nmstate-about-the-k8s-nmstate-operator
https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/networking/#configuring-additional-network_configuration-additional-network-interface
https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/networking/#configuring-additional-network_configuration-additional-network-attachment

NOTE

Hot unplugging is not supported for Single Root I/O Virtualization (SR-IOV) interfaces.

8.9.1. VirtIO limitations

Each VirtIO interface uses one of the limited Peripheral Connect Interface (PCI) slots in the VM. There
are a total of 32 slots available. The PCI slots are also used by other devices and must be reserved in
advance, therefore slots might not be available on demand. OpenShift Virtualization reserves up to four
slots for hot plugging interfaces. This includes any existing plugged network interfaces. For example, if
your VM has two existing plugged interfaces, you can hot plug two more network interfaces.

NOTE

The actual number of slots available for hot plugging also depends on the machine type.
For example, the default PCI topology for the q35 machine type supports hot plugging
one additional PCIe device. For more information on PCI topology and hot plug support,
see the libvirt documentation.

If you restart the VM after hot plugging an interface, that interface becomes part of the standard
network interfaces.

8.9.2. Hot plugging a secondary network interface by using the CLI

Hot plug a secondary network interface to a virtual machine (VM) while the VM is running.

Prerequisites

A network attachment definition is configured in the same namespace as your VM.

You have installed the virtctl tool.

You have installed the OpenShift CLI (oc).

Procedure

1. If the VM to which you want to hot plug the network interface is not running, start it by using the
following command:

2. Use the following command to add the new network interface to the running VM. Editing the VM
specification adds the new network interface to the VM and virtual machine instance (VMI)
configuration but does not attach it to the running VM.

Example VM configuration

$ virtctl start <vm_name> -n <namespace>

$ oc edit vm <vm_name>

apiVersion: kubevirt.io/v1
kind: VirtualMachine
metadata:
 name: vm-fedora

OpenShift Container Platform 4.17 Virtualization

268

https://libvirt.org/pci-hotplug.html

1

2

3

Specifies the name of the new network interface.

Specifies the name of the network. This must be the same as the name of the new network
interface that you defined in the template.spec.domain.devices.interfaces list.

Specifies the name of the NetworkAttachmentDefinition object.

3. To attach the network interface to the running VM, live migrate the VM by running the following
command:

Verification

1. Verify that the VM live migration is successful by using the following command:

Example output

2. Verify that the new interface is added to the VM by checking the VMI status:

Example output

template:
 spec:
 domain:
 devices:
 interfaces:
 - name: defaultnetwork
 masquerade: {}
 # new interface
 - name: <secondary_nic> 1
 bridge: {}
 networks:
 - name: defaultnetwork
 pod: {}
 # new network
 - name: <secondary_nic> 2
 multus:
 networkName: <nad_name> 3
...

$ virtctl migrate <vm_name>

$ oc get VirtualMachineInstanceMigration -w

NAME PHASE VMI
kubevirt-migrate-vm-lj62q Scheduling vm-fedora
kubevirt-migrate-vm-lj62q Scheduled vm-fedora
kubevirt-migrate-vm-lj62q PreparingTarget vm-fedora
kubevirt-migrate-vm-lj62q TargetReady vm-fedora
kubevirt-migrate-vm-lj62q Running vm-fedora
kubevirt-migrate-vm-lj62q Succeeded vm-fedora

$ oc get vmi vm-fedora -ojsonpath="{ @.status.interfaces }"

CHAPTER 8. NETWORKING

269

1 The hot plugged interface appears in the VMI status.

8.9.3. Hot unplugging a secondary network interface by using the CLI

You can remove a secondary network interface from a running virtual machine (VM).

NOTE

Hot unplugging is not supported for Single Root I/O Virtualization (SR-IOV) interfaces.

Prerequisites

Your VM must be running.

The VM must be created on a cluster running OpenShift Virtualization 4.14 or later.

The VM must have a bridge network interface attached.

Procedure

1. Edit the VM specification to hot unplug a secondary network interface. Setting the interface
state to absent detaches the network interface from the guest, but the interface still exists in
the pod.

Example VM configuration

[
 {
 "infoSource": "domain, guest-agent",
 "interfaceName": "eth0",
 "ipAddress": "10.130.0.195",
 "ipAddresses": [
 "10.130.0.195",
 "fd02:0:0:3::43c"
],
 "mac": "52:54:00:0e:ab:25",
 "name": "default",
 "queueCount": 1
 },
 {
 "infoSource": "domain, guest-agent, multus-status",
 "interfaceName": "eth1",
 "mac": "02:d8:b8:00:00:2a",
 "name": "bridge-interface", 1
 "queueCount": 1
 }
]

$ oc edit vm <vm_name>

apiVersion: kubevirt.io/v1
kind: VirtualMachine
metadata:

OpenShift Container Platform 4.17 Virtualization

270

1 Set the interface state to absent to detach it from the running VM. Removing the
interface details from the VM specification does not hot unplug the secondary network
interface.

2. Remove the interface from the pod by migrating the VM:

8.9.4. Additional resources

Installing virtctl

Creating a Linux bridge network attachment definition

Connecting a virtual machine to a Linux bridge network

Creating an SR-IOV network attachment definition

Connecting a virtual machine to an SR-IOV network

8.10. CONNECTING A VIRTUAL MACHINE TO A SERVICE MESH

OpenShift Virtualization is now integrated with OpenShift Service Mesh. You can monitor, visualize, and
control traffic between pods that run virtual machine workloads on the default pod network with IPv4.

8.10.1. Adding a virtual machine to a service mesh

To add a virtual machine (VM) workload to a service mesh, enable automatic sidecar injection in the VM
configuration file by setting the sidecar.istio.io/inject annotation to true. Then expose your VM as a
service to view your application in the mesh.

IMPORTANT

 name: vm-fedora
template:
 spec:
 domain:
 devices:
 interfaces:
 - name: defaultnetwork
 masquerade: {}
 # set the interface state to absent
 - name: <secondary_nic>
 state: absent 1
 bridge: {}
 networks:
 - name: defaultnetwork
 pod: {}
 - name: <secondary_nic>
 multus:
 networkName: <nad_name>
...

$ virtctl migrate <vm_name>

CHAPTER 8. NETWORKING

271

IMPORTANT

To avoid port conflicts, do not use ports used by the Istio sidecar proxy. These include
ports 15000, 15001, 15006, 15008, 15020, 15021, and 15090.

Prerequisites

You installed the Service Mesh Operators.

You created the Service Mesh control plane.

You added the VM project to the Service Mesh member roll.

Procedure

1. Edit the VM configuration file to add the sidecar.istio.io/inject: "true" annotation:

Example configuration file

apiVersion: kubevirt.io/v1
kind: VirtualMachine
metadata:
 labels:
 kubevirt.io/vm: vm-istio
 name: vm-istio
spec:
 runStrategy: Always
 template:
 metadata:
 labels:
 kubevirt.io/vm: vm-istio
 app: vm-istio 1
 annotations:
 sidecar.istio.io/inject: "true" 2
 spec:
 domain:
 devices:
 interfaces:
 - name: default
 masquerade: {} 3
 disks:
 - disk:
 bus: virtio
 name: containerdisk
 - disk:
 bus: virtio
 name: cloudinitdisk
 resources:
 requests:
 memory: 1024M
 networks:
 - name: default
 pod: {}
 terminationGracePeriodSeconds: 180
 volumes:

OpenShift Container Platform 4.17 Virtualization

272

1

2

3

1

1

1

The key/value pair (label) that must be matched to the service selector attribute.

The annotation to enable automatic sidecar injection.

The binding method (masquerade mode) for use with the default pod network.

2. Apply the VM configuration:

The name of the virtual machine YAML file.

3. Create a Service object to expose your VM to the service mesh.

The service selector that determines the set of pods targeted by a service. This attribute
corresponds to the spec.metadata.labels field in the VM configuration file. In the above
example, the Service object named vm-istio targets TCP port 8080 on any pod with the
label app=vm-istio.

4. Create the service:

The name of the service YAML file.

8.10.2. Additional resources

Installing the Service Mesh Operators

Creating the Service Mesh control plane

Adding projects to the Service Mesh member roll

8.11. CONFIGURING A DEDICATED NETWORK FOR LIVE MIGRATION

 - containerDisk:
 image: registry:5000/kubevirt/fedora-cloud-container-disk-demo:devel
 name: containerdisk

$ oc apply -f <vm_name>.yaml 1

apiVersion: v1
kind: Service
metadata:
 name: vm-istio
spec:
 selector:
 app: vm-istio 1
 ports:
 - port: 8080
 name: http
 protocol: TCP

$ oc create -f <service_name>.yaml 1

CHAPTER 8. NETWORKING

273

https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/service_mesh/#installing-ossm
https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/service_mesh/#ossm-create-smcp
https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/service_mesh/#ossm-create-mesh

1

2 3

4

5

You can configure a dedicated Multus network for live migration. A dedicated network minimizes the
effects of network saturation on tenant workloads during live migration.

8.11.1. Configuring a dedicated secondary network for live migration

To configure a dedicated secondary network for live migration, you must first create a bridge network
attachment definition (NAD) by using the CLI. Then, you add the name of the
NetworkAttachmentDefinition object to the HyperConverged custom resource (CR).

Prerequisites

You installed the OpenShift CLI (oc).

You logged in to the cluster as a user with the cluster-admin role.

Each node has at least two Network Interface Cards (NICs).

The NICs for live migration are connected to the same VLAN.

Procedure

1. Create a NetworkAttachmentDefinition manifest according to the following example:

Example configuration file

Specify the name of the NetworkAttachmentDefinition object.

Specify the name of the NIC to be used for live migration.

Specify the name of the CNI plugin that provides the network for the NAD.

Specify an IP address range for the secondary network. This range must not overlap the IP
addresses of the main network.

2. Open the HyperConverged CR in your default editor by running the following command:

apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:
 name: my-secondary-network 1
 namespace: openshift-cnv 2
spec:
 config: '{
 "cniVersion": "0.3.1",
 "name": "migration-bridge",
 "type": "macvlan",
 "master": "eth1", 3
 "mode": "bridge",
 "ipam": {
 "type": "whereabouts", 4
 "range": "10.200.5.0/24" 5
 }
 }'

OpenShift Container Platform 4.17 Virtualization

274

1

3. Add the name of the NetworkAttachmentDefinition object to the spec.liveMigrationConfig
stanza of the HyperConverged CR:

Example HyperConverged manifest

Specify the name of the Multus NetworkAttachmentDefinition object to be used for live
migrations.

4. Save your changes and exit the editor. The virt-handler pods restart and connect to the
secondary network.

Verification

When the node that the virtual machine runs on is placed into maintenance mode, the VM
automatically migrates to another node in the cluster. You can verify that the migration
occurred over the secondary network and not the default pod network by checking the target IP
address in the virtual machine instance (VMI) metadata.

8.11.2. Selecting a dedicated network by using the web console

You can select a dedicated network for live migration by using the OpenShift Container Platform web
console.

Prerequisites

You configured a Multus network for live migration.

Procedure

1. Navigate to Virtualization > Overview in the OpenShift Container Platform web console.

2. Click the Settings tab and then click Live migration.

3. Select the network from the Live migration network list.

oc edit hyperconverged kubevirt-hyperconverged -n openshift-cnv

apiVersion: hco.kubevirt.io/v1beta1
kind: HyperConverged
metadata:
 name: kubevirt-hyperconverged
spec:
 liveMigrationConfig:
 completionTimeoutPerGiB: 800
 network: <network> 1
 parallelMigrationsPerCluster: 5
 parallelOutboundMigrationsPerNode: 2
 progressTimeout: 150
...

$ oc get vmi <vmi_name> -o jsonpath='{.status.migrationState.targetNodeAddress}'

CHAPTER 8. NETWORKING

275

8.11.3. Additional resources

Configuring live migration limits and timeouts

8.12. CONFIGURING AND VIEWING IP ADDRESSES

You can configure an IP address when you create a virtual machine (VM). The IP address is provisioned
with cloud-init.

You can view the IP address of a VM by using the OpenShift Container Platform web console or the
command line. The network information is collected by the QEMU guest agent.

8.12.1. Configuring IP addresses for virtual machines

You can configure a static IP address when you create a virtual machine (VM) by using the web console
or the command line.

You can configure a dynamic IP address when you create a VM by using the command line.

The IP address is provisioned with cloud-init.

8.12.1.1. Configuring an IP address when creating a virtual machine by using the command
line

You can configure a static or dynamic IP address when you create a virtual machine (VM). The IP
address is provisioned with cloud-init.

NOTE

If the VM is connected to the pod network, the pod network interface is the default route
unless you update it.

Prerequisites

The virtual machine is connected to a secondary network.

You have a DHCP server available on the secondary network to configure a dynamic IP for the
virtual machine.

Procedure

Edit the spec.template.spec.volumes.cloudInitNoCloud.networkData stanza of the virtual
machine configuration:

To configure a dynamic IP address, specify the interface name and enable DHCP:

kind: VirtualMachine
spec:
...
 template:
 # ...
 spec:
 volumes:
 - cloudInitNoCloud:

OpenShift Container Platform 4.17 Virtualization

276

1

1

2

Specify the interface name.

To configure a static IP, specify the interface name and the IP address:

Specify the interface name.

Specify the static IP address.

8.12.2. Viewing IP addresses of virtual machines

You can view the IP address of a VM by using the OpenShift Container Platform web console or the
command line.

The network information is collected by the QEMU guest agent.

8.12.2.1. Viewing the IP address of a virtual machine by using the web console

You can view the IP address of a virtual machine (VM) by using the OpenShift Container Platform web
console.

NOTE

You must install the QEMU guest agent on a VM to view the IP address of a secondary
network interface. A pod network interface does not require the QEMU guest agent.

Procedure

1. In the OpenShift Container Platform console, click Virtualization → VirtualMachines from the
side menu.

2. Select a VM to open the VirtualMachine details page.

 networkData: |
 version: 2
 ethernets:
 eth1: 1
 dhcp4: true

kind: VirtualMachine
spec:
...
 template:
 # ...
 spec:
 volumes:
 - cloudInitNoCloud:
 networkData: |
 version: 2
 ethernets:
 eth1: 1
 addresses:
 - 10.10.10.14/24 2

CHAPTER 8. NETWORKING

277

3. Click the Details tab to view the IP address.

8.12.2.2. Viewing the IP address of a virtual machine by using the command line

You can view the IP address of a virtual machine (VM) by using the command line.

NOTE

You must install the QEMU guest agent on a VM to view the IP address of a secondary
network interface. A pod network interface does not require the QEMU guest agent.

Procedure

Obtain the virtual machine instance configuration by running the following command:

Example output

8.12.3. Additional resources

Installing the QEMU guest agent

8.13. ACCESSING A VIRTUAL MACHINE BY USING ITS EXTERNAL
FQDN

You can access a virtual machine (VM) that is attached to a secondary network interface from outside

$ oc describe vmi <vmi_name>

...
Interfaces:
 Interface Name: eth0
 Ip Address: 10.244.0.37/24
 Ip Addresses:
 10.244.0.37/24
 fe80::858:aff:fef4:25/64
 Mac: 0a:58:0a:f4:00:25
 Name: default
 Interface Name: v2
 Ip Address: 1.1.1.7/24
 Ip Addresses:
 1.1.1.7/24
 fe80::f4d9:70ff:fe13:9089/64
 Mac: f6:d9:70:13:90:89
 Interface Name: v1
 Ip Address: 1.1.1.1/24
 Ip Addresses:
 1.1.1.1/24
 1.1.1.2/24
 1.1.1.4/24
 2001:de7:0:f101::1/64
 2001:db8:0:f101::1/64
 fe80::1420:84ff:fe10:17aa/64
 Mac: 16:20:84:10:17:aa

OpenShift Container Platform 4.17 Virtualization

278

You can access a virtual machine (VM) that is attached to a secondary network interface from outside
the cluster by using its fully qualified domain name (FQDN).

IMPORTANT

Accessing a VM from outside the cluster by using its FQDN is a Technology Preview
feature only. Technology Preview features are not supported with Red Hat production
service level agreements (SLAs) and might not be functionally complete. Red Hat does
not recommend using them in production. These features provide early access to
upcoming product features, enabling customers to test functionality and provide
feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

8.13.1. Configuring a DNS server for secondary networks

The Cluster Network Addons Operator (CNAO) deploys a Domain Name Server (DNS) server and
monitoring components when you enable the deployKubeSecondaryDNS feature gate in the
HyperConverged custom resource (CR).

Prerequisites

You installed the OpenShift CLI (oc).

You configured a load balancer for the cluster.

You logged in to the cluster with cluster-admin permissions.

Procedure

1. Create a load balancer service to expose the DNS server outside the cluster by running the oc
expose command according to the following example:

2. Retrieve the external IP address by running the following command:

Example output

3. Edit the HyperConverged CR in your default editor by running the following command:

4. Enable the DNS server and monitoring components according to the following example:

$ oc expose -n openshift-cnv deployment/secondary-dns --name=dns-lb \
 --type=LoadBalancer --port=53 --target-port=5353 --protocol='UDP'

$ oc get service -n openshift-cnv

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
dns-lb LoadBalancer 172.30.27.5 10.46.41.94 53:31829/TCP 5s

$ oc edit hyperconverged kubevirt-hyperconverged -n openshift-cnv

apiVersion: hco.kubevirt.io/v1beta1

CHAPTER 8. NETWORKING

279

https://access.redhat.com/support/offerings/techpreview/

1 Specify the external IP address exposed by the load balancer service.

5. Save the file and exit the editor.

6. Retrieve the cluster FQDN by running the following command:

Example output

7. Point to the DNS server by using one of the following methods:

Add the kubeSecondaryDNSNameServerIP value to the resolv.conf file on your local
machine.

NOTE

Editing the resolv.conf file overwrites existing DNS settings.

Add the kubeSecondaryDNSNameServerIP value and the cluster FQDN to the enterprise
DNS server records. For example:

8.13.2. Connecting to a VM on a secondary network by using the cluster FQDN

You can access a running virtual machine (VM) attached to a secondary network interface by using the
fully qualified domain name (FQDN) of the cluster.

Prerequisites

You installed the QEMU guest agent on the VM.

The IP address of the VM is public.

You configured the DNS server for secondary networks.

You retrieved the fully qualified domain name (FQDN) of the cluster.

kind: HyperConverged
metadata:
 name: kubevirt-hyperconverged
 namespace: openshift-cnv
spec:
 featureGates:
 deployKubeSecondaryDNS: true
 kubeSecondaryDNSNameServerIP: "10.46.41.94" 1
...

 $ oc get dnses.config.openshift.io cluster -o jsonpath='{.spec.baseDomain}'

openshift.example.com

vm.<FQDN>. IN NS ns.vm.<FQDN>.

ns.vm.<FQDN>. IN A 10.46.41.94

OpenShift Container Platform 4.17 Virtualization

280

1

Procedure

1. Retrieve the network interface name from the VM configuration by running the following
command:

Example output

Note the name of the network interface.

2. Connect to the VM by using the ssh command:

8.13.3. Additional resources

Configuring ingress cluster traffic using a load balancer

Load balancing with MetalLB

Configuring IP addresses for virtual machines

8.14. MANAGING MAC ADDRESS POOLS FOR NETWORK INTERFACES

The KubeMacPool component allocates MAC addresses for virtual machine (VM) network interfaces
from a shared MAC address pool. This ensures that each network interface is assigned a unique MAC
address.

A virtual machine instance created from that VM retains the assigned MAC address across reboots.

NOTE

$ oc get vm -n <namespace> <vm_name> -o yaml

apiVersion: kubevirt.io/v1
kind: VirtualMachine
metadata:
 name: example-vm
 namespace: example-namespace
spec:
 running: true
 template:
 spec:
 domain:
 devices:
 interfaces:
 - bridge: {}
 name: example-nic
...
 networks:
 - multus:
 networkName: bridge-conf
 name: example-nic 1

$ ssh <user_name>@<interface_name>.<vm_name>.<namespace>.vm.<cluster_fqdn>

CHAPTER 8. NETWORKING

281

https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/networking/#configuring-ingress-cluster-traffic-load-balancer
https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/networking/#about-metallb

NOTE

KubeMacPool does not handle virtual machine instances created independently from a
virtual machine.

8.14.1. Managing KubeMacPool by using the command line

You can disable and re-enable KubeMacPool by using the command line.

KubeMacPool is enabled by default.

Procedure

To disable KubeMacPool in two namespaces, run the following command:

To re-enable KubeMacPool in two namespaces, run the following command:

$ oc label namespace <namespace1> <namespace2>
mutatevirtualmachines.kubemacpool.io=ignore

$ oc label namespace <namespace1> <namespace2>
mutatevirtualmachines.kubemacpool.io-

OpenShift Container Platform 4.17 Virtualization

282

CHAPTER 9. STORAGE

9.1. STORAGE CONFIGURATION OVERVIEW

You can configure a default storage class, storage profiles, Containerized Data Importer (CDI), data
volumes, and automatic boot source updates.

9.1.1. Storage

The following storage configuration tasks are mandatory:

Configure a default storage class

You must configure a default storage class for your cluster. Otherwise, the cluster cannot receive
automated boot source updates.

Configure storage profiles

You must configure storage profiles if your storage provider is not recognized by CDI. A storage
profile provides recommended storage settings based on the associated storage class.

The following storage configuration tasks are optional:

Reserve additional PVC space for file system overhead

By default, 5.5% of a file system PVC is reserved for overhead, reducing the space available for VM
disks by that amount. You can configure a different overhead value.

Configure local storage by using the hostpath provisioner

You can configure local storage for virtual machines by using the hostpath provisioner (HPP). When
you install the OpenShift Virtualization Operator, the HPP Operator is automatically installed.

Configure user permissions to clone data volumes between namespaces

You can configure RBAC roles to enable users to clone data volumes between namespaces.

9.1.2. Containerized Data Importer

You can perform the following Containerized Data Importer (CDI) configuration tasks:

Override the resource request limits of a namespace

You can configure CDI to import, upload, and clone VM disks into namespaces that are subject to
CPU and memory resource restrictions.

Configure CDI scratch space

CDI requires scratch space (temporary storage) to complete some operations, such as importing and
uploading VM images. During this process, CDI provisions a scratch space PVC equal to the size of
the PVC backing the destination data volume (DV).

9.1.3. Data volumes

You can perform the following data volume configuration tasks:

Enable preallocation for data volumes

CDI can preallocate disk space to improve write performance when creating data volumes. You can
enable preallocation for specific data volumes.

Manage data volume annotations

Data volume annotations allow you to manage pod behavior. You can add one or more annotations

CHAPTER 9. STORAGE

283

https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/storage/#defining-storage-classes_dynamic-provisioning

Data volume annotations allow you to manage pod behavior. You can add one or more annotations
to a data volume, which then propagates to the created importer pods.

9.1.4. Boot source updates

You can perform the following boot source update configuration task:

Manage automatic boot source updates

Boot sources can make virtual machine (VM) creation more accessible and efficient for users. If
automatic boot source updates are enabled, CDI imports, polls, and updates the images so that they
are ready to be cloned for new VMs. By default, CDI automatically updates Red Hat boot sources.
You can enable automatic updates for custom boot sources.

9.2. CONFIGURING STORAGE PROFILES

A storage profile provides recommended storage settings based on the associated storage class. A
storage profile is allocated for each storage class.

The Containerized Data Importer (CDI) recognizes a storage provider if it has been configured to
identify and interact with the storage provider’s capabilities.

For recognized storage types, the CDI provides values that optimize the creation of PVCs. You can also
configure automatic settings for the storage class by customizing the storage profile. If the CDI does not
recognize your storage provider, you must configure storage profiles.

IMPORTANT

When using OpenShift Virtualization with Red Hat OpenShift Data Foundation, specify
RBD block mode persistent volume claims (PVCs) when creating virtual machine disks.
RBD block mode volumes are more efficient and provide better performance than Ceph
FS or RBD filesystem-mode PVCs.

To specify RBD block mode PVCs, use the 'ocs-storagecluster-ceph-rbd' storage class
and VolumeMode: Block.

9.2.1. Customizing the storage profile

You can specify default parameters by editing the StorageProfile object for the provisioner’s storage
class. These default parameters only apply to the persistent volume claim (PVC) if they are not
configured in the DataVolume object.

You cannot modify storage class parameters. To make changes, delete and re-create the storage class.
You must then reapply any customizations that were previously made to the storage profile.

An empty status section in a storage profile indicates that a storage provisioner is not recognized by the
Containerized Data Interface (CDI). Customizing a storage profile is necessary if you have a storage
provisioner that is not recognized by CDI. In this case, the administrator sets appropriate values in the
storage profile to ensure successful allocations.

OpenShift Container Platform 4.17 Virtualization

284

1

WARNING

If you create a data volume and omit YAML attributes and these attributes are not
defined in the storage profile, then the requested storage will not be allocated and
the underlying persistent volume claim (PVC) will not be created.

Prerequisites

Ensure that your planned configuration is supported by the storage class and its provider.
Specifying an incompatible configuration in a storage profile causes volume provisioning to fail.

Procedure

1. Edit the storage profile. In this example, the provisioner is not recognized by CDI.

Example storage profile

2. Provide the needed attribute values in the storage profile:

Example storage profile

The accessModes that you select.



$ oc edit storageprofile <storage_class>

apiVersion: cdi.kubevirt.io/v1beta1
kind: StorageProfile
metadata:
 name: <unknown_provisioner_class>
...
spec: {}
status:
 provisioner: <unknown_provisioner>
 storageClass: <unknown_provisioner_class>

apiVersion: cdi.kubevirt.io/v1beta1
kind: StorageProfile
metadata:
 name: <unknown_provisioner_class>
...
spec:
 claimPropertySets:
 - accessModes:
 - ReadWriteOnce 1
 volumeMode:
 Filesystem 2
status:
 provisioner: <unknown_provisioner>
 storageClass: <unknown_provisioner_class>

CHAPTER 9. STORAGE

285

2

1

2

The volumeMode that you select.

After you save your changes, the selected values appear in the storage profile status element.

9.2.1.1. Setting a default cloning strategy using a storage profile

You can use storage profiles to set a default cloning method for a storage class, creating a cloning
strategy. Setting cloning strategies can be helpful, for example, if your storage vendor only supports
certain cloning methods. It also allows you to select a method that limits resource usage or maximizes
performance.

Cloning strategies can be specified by setting the cloneStrategy attribute in a storage profile to one of
these values:

snapshot is used by default when snapshots are configured. The CDI will use the snapshot
method if it recognizes the storage provider and the provider supports Container Storage
Interface (CSI) snapshots. This cloning strategy uses a temporary volume snapshot to clone the
volume.

copy uses a source pod and a target pod to copy data from the source volume to the target
volume. Host-assisted cloning is the least efficient method of cloning.

csi-clone uses the CSI clone API to efficiently clone an existing volume without using an interim
volume snapshot. Unlike snapshot or copy, which are used by default if no storage profile is
defined, CSI volume cloning is only used when you specify it in the StorageProfile object for the
provisioner’s storage class.

NOTE

You can also set clone strategies using the CLI without modifying the default
claimPropertySets in your YAML spec section.

Example storage profile

Specify the access mode.

Specify the volume mode.

apiVersion: cdi.kubevirt.io/v1beta1
kind: StorageProfile
metadata:
 name: <provisioner_class>
...
spec:
 claimPropertySets:
 - accessModes:
 - ReadWriteOnce 1
 volumeMode:
 Filesystem 2
 cloneStrategy: csi-clone 3
status:
 provisioner: <provisioner>
 storageClass: <provisioner_class>

OpenShift Container Platform 4.17 Virtualization

286

3 Specify the default cloning strategy.

Table 9.1. Storage providers and default behaviors

Storage provider Default behavior

rook-ceph.rbd.csi.ceph.com Snapshot

openshift-storage.rbd.csi.ceph.com Snapshot

csi-vxflexos.dellemc.com CSI Clone

csi-isilon.dellemc.com CSI Clone

csi-powermax.dellemc.com CSI Clone

csi-powerstore.dellemc.com CSI Clone

hspc.csi.hitachi.com CSI Clone

csi.hpe.com CSI Clone

spectrumscale.csi.ibm.com CSI Clone

rook-ceph.rbd.csi.ceph.com CSI Clone

openshift-storage.rbd.csi.ceph.com CSI Clone

cephfs.csi.ceph.com CSI Clone

openshift-storage.cephfs.csi.ceph.com CSI Clone

9.3. MANAGING AUTOMATIC BOOT SOURCE UPDATES

You can manage automatic updates for the following boot sources:

All Red Hat boot sources

All custom boot sources

Individual Red Hat or custom boot sources

Boot sources can make virtual machine (VM) creation more accessible and efficient for users. If
automatic boot source updates are enabled, the Containerized Data Importer (CDI) imports, polls, and
updates the images so that they are ready to be cloned for new VMs. By default, CDI automatically
updates Red Hat boot sources.

9.3.1. Managing Red Hat boot source updates

You can opt out of automatic updates for all system-defined boot sources by disabling the

CHAPTER 9. STORAGE

287

You can opt out of automatic updates for all system-defined boot sources by disabling the
enableCommonBootImageImport feature gate. If you disable this feature gate, all DataImportCron
objects are deleted. This does not remove previously imported boot source objects that store operating
system images, though administrators can delete them manually.

When the enableCommonBootImageImport feature gate is disabled, DataSource objects are reset so
that they no longer point to the original boot source. An administrator can manually provide a boot
source by creating a new persistent volume claim (PVC) or volume snapshot for the DataSource object,
then populating it with an operating system image.

9.3.1.1. Managing automatic updates for all system-defined boot sources

Disabling automatic boot source imports and updates can lower resource usage. In disconnected
environments, disabling automatic boot source updates prevents CDIDataImportCronOutdated alerts
from filling up logs.

To disable automatic updates for all system-defined boot sources, turn off the
enableCommonBootImageImport feature gate by setting the value to false. Setting this value to true
re-enables the feature gate and turns automatic updates back on.

NOTE

Custom boot sources are not affected by this setting.

Procedure

Toggle the feature gate for automatic boot source updates by editing the HyperConverged
custom resource (CR).

To disable automatic boot source updates, set the
spec.featureGates.enableCommonBootImageImport field in the HyperConverged CR to
false. For example:

To re-enable automatic boot source updates, set the
spec.featureGates.enableCommonBootImageImport field in the HyperConverged CR to
true. For example:

9.3.2. Managing custom boot source updates

Custom boot sources that are not provided by OpenShift Virtualization are not controlled by the feature
gate. You must manage them individually by editing the HyperConverged custom resource (CR).

IMPORTANT

$ oc patch hyperconverged kubevirt-hyperconverged -n openshift-cnv \
 --type json -p '[{"op": "replace", "path": \
 "/spec/featureGates/enableCommonBootImageImport", \
 "value": false}]'

$ oc patch hyperconverged kubevirt-hyperconverged -n openshift-cnv \
 --type json -p '[{"op": "replace", "path": \
 "/spec/featureGates/enableCommonBootImageImport", \
 "value": true}]'

OpenShift Container Platform 4.17 Virtualization

288

1

2

3

IMPORTANT

You must configure a storage class. Otherwise, the cluster cannot receive automated
updates for custom boot sources. See Defining a storage class for details.

9.3.2.1. Configuring a storage class for custom boot source updates

You can override the default storage class by editing the HyperConverged custom resource (CR).

IMPORTANT

Boot sources are created from storage using the default storage class. If your cluster
does not have a default storage class, you must define one before configuring automatic
updates for custom boot sources.

Procedure

1. Open the HyperConverged CR in your default editor by running the following command:

2. Define a new storage class by entering a value in the storageClassName field:

Define the storage class.

Required: Schedule for the job specified in cron format.

Required: The data source to use.

For the custom image to be detected as an available boot source, the value of the
`spec.dataVolumeTemplates.spec.sourceRef.name` parameter in the VM template must
match this value.

3. Remove the storageclass.kubernetes.io/is-default-class annotation from the current default
storage class.

a. Retrieve the name of the current default storage class by running the following command:

$ oc edit hyperconverged kubevirt-hyperconverged -n openshift-cnv

apiVersion: hco.kubevirt.io/v1beta1
kind: HyperConverged
metadata:
 name: kubevirt-hyperconverged
spec:
 dataImportCronTemplates:
 - metadata:
 name: rhel8-image-cron
 spec:
 template:
 spec:
 storageClassName: <new_storage_class> 1
 schedule: "0 */12 * * *" 2
 managedDataSource: <data_source> 3
...

CHAPTER 9. STORAGE

289

https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/storage/#defining-storage-classes_dynamic-provisioning

1

1

1

Example output

In this example, the current default storage class is named hostpath-csi-basic.

b. Remove the annotation from the current default storage class by running the following
command:

Replace <current_default_storage_class> with the storageClassName value of the
default storage class.

4. Set the new storage class as the default by running the following command:

Replace <new_storage_class> with the storageClassName value that you added to the
HyperConverged CR.

9.3.2.2. Enabling automatic updates for custom boot sources

OpenShift Virtualization automatically updates system-defined boot sources by default, but does not
automatically update custom boot sources. You must manually enable automatic updates by editing the
HyperConverged custom resource (CR).

Prerequisites

The cluster has a default storage class.

Procedure

1. Open the HyperConverged CR in your default editor by running the following command:

2. Edit the HyperConverged CR, adding the appropriate template and boot source in the
dataImportCronTemplates section. For example:

Example custom resource

$ oc get storageclass

NAME PROVISIONER RECLAIMPOLICY
VOLUMEBINDINGMODE ALLOWVOLUMEEXPANSION AGE
csi-manila-ceph manila.csi.openstack.org Delete Immediate
false 11d
hostpath-csi-basic (default) kubevirt.io.hostpath-provisioner Delete
WaitForFirstConsumer false 11d 1

$ oc patch storageclass <current_default_storage_class> -p '{"metadata": {"annotations":
{"storageclass.kubernetes.io/is-default-class":"false"}}}' 1

$ oc patch storageclass <new_storage_class> -p '{"metadata":{"annotations":
{"storageclass.kubernetes.io/is-default-class":"true"}}}' 1

$ oc edit hyperconverged kubevirt-hyperconverged -n openshift-cnv

OpenShift Container Platform 4.17 Virtualization

290

1

2

3

4

This annotation is required for storage classes with volumeBindingMode set to
WaitForFirstConsumer.

Schedule for the job specified in cron format.

Use to create a data volume from a registry source. Use the default pod pullMethod and
not node pullMethod, which is based on the node docker cache. The node docker cache is
useful when a registry image is available via Container.Image, but the CDI importer is not
authorized to access it.

For the custom image to be detected as an available boot source, the name of the image’s
managedDataSource must match the name of the template’s DataSource, which is found
under spec.dataVolumeTemplates.spec.sourceRef.name in the VM template YAML file.

3. Save the file.

9.3.2.3. Enabling volume snapshot boot sources

Enable volume snapshot boot sources by setting the parameter in the StorageProfile associated with
the storage class that stores operating system base images. Although DataImportCron was originally
designed to maintain only PVC sources, VolumeSnapshot sources scale better than PVC sources for
certain storage types.

NOTE

Use volume snapshots on a storage profile that is proven to scale better when cloning
from a single snapshot.

apiVersion: hco.kubevirt.io/v1beta1
kind: HyperConverged
metadata:
 name: kubevirt-hyperconverged
spec:
 dataImportCronTemplates:
 - metadata:
 name: centos7-image-cron
 annotations:
 cdi.kubevirt.io/storage.bind.immediate.requested: "true" 1
 labels:
 instancetype.kubevirt.io/default-preference: centos.7
 instancetype.kubevirt.io/default-instancetype: u1.medium
 spec:
 schedule: "0 */12 * * *" 2
 template:
 spec:
 source:
 registry: 3
 url: docker://quay.io/containerdisks/centos:7-2009
 storage:
 resources:
 requests:
 storage: 30Gi
 garbageCollect: Outdated
 managedDataSource: centos7 4

CHAPTER 9. STORAGE

291

Prerequisites

You must have access to a volume snapshot with the operating system image.

The storage must support snapshotting.

Procedure

1. Open the storage profile object that corresponds to the storage class used to provision boot
sources by running the following command:

2. Review the dataImportCronSourceFormat specification of the StorageProfile to confirm
whether or not the VM is using PVC or volume snapshot by default.

3. Edit the storage profile, if needed, by updating the dataImportCronSourceFormat
specification to snapshot.

Example storage profile

Verification

1. Open the storage profile object that corresponds to the storage class used to provision boot
sources.

2. Confirm that the dataImportCronSourceFormat specification of the StorageProfile is set to
'snapshot', and that any DataSource objects that the DataImportCron points to now reference
volume snapshots.

You can now use these boot sources to create virtual machines.

9.3.3. Disabling automatic updates for a single boot source

You can disable automatic updates for an individual boot source, whether it is custom or system-
defined, by editing the HyperConverged custom resource (CR).

Procedure

1. Open the HyperConverged CR in your default editor by running the following command:

2. Disable automatic updates for an individual boot source by editing the
spec.dataImportCronTemplates field.
Custom boot source

$ oc edit storageprofile <storage_class>

apiVersion: cdi.kubevirt.io/v1beta1
kind: StorageProfile
metadata:
...
spec:
 dataImportCronSourceFormat: snapshot

$ oc get storageprofile <storage_class> -oyaml

$ oc edit hyperconverged kubevirt-hyperconverged -n openshift-cnv

OpenShift Container Platform 4.17 Virtualization

292

Custom boot source

Remove the boot source from the spec.dataImportCronTemplates field. Automatic
updates are disabled for custom boot sources by default.

System-defined boot source

a. Add the boot source to spec.dataImportCronTemplates.

NOTE

Automatic updates are enabled by default for system-defined boot
sources, but these boot sources are not listed in the CR unless you add
them.

b. Set the value of the dataimportcrontemplate.kubevirt.io/enable annotation to 'false'.
For example:

3. Save the file.

9.3.4. Verifying the status of a boot source

You can determine if a boot source is system-defined or custom by viewing the HyperConverged
custom resource (CR).

Procedure

1. View the contents of the HyperConverged CR by running the following command:

Example output

apiVersion: hco.kubevirt.io/v1beta1
kind: HyperConverged
metadata:
 name: kubevirt-hyperconverged
spec:
 dataImportCronTemplates:
 - metadata:
 annotations:
 dataimportcrontemplate.kubevirt.io/enable: 'false'
 name: rhel8-image-cron
...

$ oc get hyperconverged kubevirt-hyperconverged -n openshift-cnv -o yaml

apiVersion: hco.kubevirt.io/v1beta1
kind: HyperConverged
metadata:
 name: kubevirt-hyperconverged
spec:
...
status:
...

CHAPTER 9. STORAGE

293

1

2

Indicates a system-defined boot source.

Indicates a custom boot source.

2. Verify the status of the boot source by reviewing the status.dataImportCronTemplates.status
field.

If the field contains commonTemplate: true, it is a system-defined boot source.

If the status.dataImportCronTemplates.status field has the value {}, it is a custom boot

 dataImportCronTemplates:
 - metadata:
 annotations:
 cdi.kubevirt.io/storage.bind.immediate.requested: "true"
 name: centos-7-image-cron
 spec:
 garbageCollect: Outdated
 managedDataSource: centos7
 schedule: 55 8/12 * * *
 template:
 metadata: {}
 spec:
 source:
 registry:
 url: docker://quay.io/containerdisks/centos:7-2009
 storage:
 resources:
 requests:
 storage: 30Gi
 status: {}
 status:
 commonTemplate: true 1
...
 - metadata:
 annotations:
 cdi.kubevirt.io/storage.bind.immediate.requested: "true"
 name: user-defined-dic
 spec:
 garbageCollect: Outdated
 managedDataSource: user-defined-centos-stream8
 schedule: 55 8/12 * * *
 template:
 metadata: {}
 spec:
 source:
 registry:
 pullMethod: node
 url: docker://quay.io/containerdisks/centos-stream:8
 storage:
 resources:
 requests:
 storage: 30Gi
 status: {}
 status: {} 2
...

OpenShift Container Platform 4.17 Virtualization

294

1

2

If the status.dataImportCronTemplates.status field has the value {}, it is a custom boot
source.

9.4. RESERVING PVC SPACE FOR FILE SYSTEM OVERHEAD

When you add a virtual machine disk to a persistent volume claim (PVC) that uses the Filesystem
volume mode, you must ensure that there is enough space on the PVC for the VM disk and for file
system overhead, such as metadata.

By default, OpenShift Virtualization reserves 5.5% of the PVC space for overhead, reducing the space
available for virtual machine disks by that amount.

You can configure a different overhead value by editing the HCO object. You can change the value
globally and you can specify values for specific storage classes.

9.4.1. Overriding the default file system overhead value

Change the amount of persistent volume claim (PVC) space that the OpenShift Virtualization reserves
for file system overhead by editing the spec.filesystemOverhead attribute of the HCO object.

Prerequisites

Install the OpenShift CLI (oc).

Procedure

1. Open the HCO object for editing by running the following command:

2. Edit the spec.filesystemOverhead fields, populating them with your chosen values:

The default file system overhead percentage used for any storage classes that do not
already have a set value. For example, global: "0.07" reserves 7% of the PVC for file
system overhead.

The file system overhead percentage for the specified storage class. For example,
mystorageclass: "0.04" changes the default overhead value for PVCs in the
mystorageclass storage class to 4%.

3. Save and exit the editor to update the HCO object.

Verification

View the CDIConfig status and verify your changes by running one of the following commands:
To generally verify changes to CDIConfig:

$ oc edit hyperconverged kubevirt-hyperconverged -n openshift-cnv

...
spec:
 filesystemOverhead:
 global: "<new_global_value>" 1
 storageClass:
 <storage_class_name>: "<new_value_for_this_storage_class>" 2

CHAPTER 9. STORAGE

295

1

2

To view your specific changes to CDIConfig:

9.5. CONFIGURING LOCAL STORAGE BY USING THE HOSTPATH
PROVISIONER

You can configure local storage for virtual machines by using the hostpath provisioner (HPP).

When you install the OpenShift Virtualization Operator, the Hostpath Provisioner Operator is
automatically installed. HPP is a local storage provisioner designed for OpenShift Virtualization that is
created by the Hostpath Provisioner Operator. To use HPP, you create an HPP custom resource (CR)
with a basic storage pool.

9.5.1. Creating a hostpath provisioner with a basic storage pool

You configure a hostpath provisioner (HPP) with a basic storage pool by creating an HPP custom
resource (CR) with a storagePools stanza. The storage pool specifies the name and path used by the
CSI driver.

IMPORTANT

Do not create storage pools in the same partition as the operating system. Otherwise, the
operating system partition might become filled to capacity, which will impact
performance or cause the node to become unstable or unusable.

Prerequisites

The directories specified in spec.storagePools.path must have read/write access.

Procedure

1. Create an hpp_cr.yaml file with a storagePools stanza as in the following example:

The storagePools stanza is an array to which you can add multiple entries.

Specify the storage pool directories under this node path.

$ oc get cdiconfig -o yaml

$ oc get cdiconfig -o jsonpath='{.items..status.filesystemOverhead}'

apiVersion: hostpathprovisioner.kubevirt.io/v1beta1
kind: HostPathProvisioner
metadata:
 name: hostpath-provisioner
spec:
 imagePullPolicy: IfNotPresent
 storagePools: 1
 - name: any_name
 path: "/var/myvolumes" 2
workload:
 nodeSelector:
 kubernetes.io/os: linux

OpenShift Container Platform 4.17 Virtualization

296

2. Save the file and exit.

3. Create the HPP by running the following command:

9.5.1.1. About creating storage classes

When you create a storage class, you set parameters that affect the dynamic provisioning of persistent
volumes (PVs) that belong to that storage class. You cannot update a StorageClass object’s
parameters after you create it.

In order to use the hostpath provisioner (HPP) you must create an associated storage class for the CSI
driver with the storagePools stanza.

NOTE

Virtual machines use data volumes that are based on local PVs. Local PVs are bound to
specific nodes. While the disk image is prepared for consumption by the virtual machine,
it is possible that the virtual machine cannot be scheduled to the node where the local
storage PV was previously pinned.

To solve this problem, use the Kubernetes pod scheduler to bind the persistent volume
claim (PVC) to a PV on the correct node. By using the StorageClass value with
volumeBindingMode parameter set to WaitForFirstConsumer, the binding and
provisioning of the PV is delayed until a pod is created using the PVC.

9.5.1.2. Creating a storage class for the CSI driver with the storagePools stanza

To use the hostpath provisioner (HPP) you must create an associated storage class for the Container
Storage Interface (CSI) driver.

When you create a storage class, you set parameters that affect the dynamic provisioning of persistent
volumes (PVs) that belong to that storage class. You cannot update a StorageClass object’s
parameters after you create it.

NOTE

Virtual machines use data volumes that are based on local PVs. Local PVs are bound to
specific nodes. While a disk image is prepared for consumption by the virtual machine, it is
possible that the virtual machine cannot be scheduled to the node where the local
storage PV was previously pinned.

To solve this problem, use the Kubernetes pod scheduler to bind the persistent volume
claim (PVC) to a PV on the correct node. By using the StorageClass value with
volumeBindingMode parameter set to WaitForFirstConsumer, the binding and
provisioning of the PV is delayed until a pod is created using the PVC.

Procedure

1. Create a storageclass_csi.yaml file to define the storage class:

$ oc create -f hpp_cr.yaml

apiVersion: storage.k8s.io/v1
kind: StorageClass

CHAPTER 9. STORAGE

297

1

2

3

1

The two possible reclaimPolicy values are Delete and Retain. If you do not specify a value,
the default value is Delete.

The volumeBindingMode parameter determines when dynamic provisioning and volume
binding occur. Specify WaitForFirstConsumer to delay the binding and provisioning of a
persistent volume (PV) until after a pod that uses the persistent volume claim (PVC) is
created. This ensures that the PV meets the pod’s scheduling requirements.

Specify the name of the storage pool defined in the HPP CR.

2. Save the file and exit.

3. Create the StorageClass object by running the following command:

9.5.2. About storage pools created with PVC templates

If you have a single, large persistent volume (PV), you can create a storage pool by defining a PVC
template in the hostpath provisioner (HPP) custom resource (CR).

A storage pool created with a PVC template can contain multiple HPP volumes. Splitting a PV into
smaller volumes provides greater flexibility for data allocation.

The PVC template is based on the spec stanza of the PersistentVolumeClaim object:

Example PersistentVolumeClaim object

This value is only required for block volume mode PVs.

You define a storage pool using a pvcTemplate specification in the HPP CR. The Operator creates a
PVC from the pvcTemplate specification for each node containing the HPP CSI driver. The PVC

metadata:
 name: hostpath-csi
provisioner: kubevirt.io.hostpath-provisioner
reclaimPolicy: Delete 1
volumeBindingMode: WaitForFirstConsumer 2
parameters:
 storagePool: my-storage-pool 3

$ oc create -f storageclass_csi.yaml

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: iso-pvc
spec:
 volumeMode: Block 1
 storageClassName: my-storage-class
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 5Gi

OpenShift Container Platform 4.17 Virtualization

298

1

2

3

created from the PVC template consumes the single large PV, allowing the HPP to create smaller
dynamic volumes.

You can combine basic storage pools with storage pools created from PVC templates.

9.5.2.1. Creating a storage pool with a PVC template

You can create a storage pool for multiple hostpath provisioner (HPP) volumes by specifying a PVC
template in the HPP custom resource (CR).

IMPORTANT

Do not create storage pools in the same partition as the operating system. Otherwise, the
operating system partition might become filled to capacity, which will impact
performance or cause the node to become unstable or unusable.

Prerequisites

The directories specified in spec.storagePools.path must have read/write access.

Procedure

1. Create an hpp_pvc_template_pool.yaml file for the HPP CR that specifies a persistent volume
(PVC) template in the storagePools stanza according to the following example:

The storagePools stanza is an array that can contain both basic and PVC template
storage pools.

Specify the storage pool directories under this node path.

Optional: The volumeMode parameter can be either Block or Filesystem as long as it
matches the provisioned volume format. If no value is specified, the default is Filesystem.
If the volumeMode is Block, the mounting pod creates an XFS file system on the block

apiVersion: hostpathprovisioner.kubevirt.io/v1beta1
kind: HostPathProvisioner
metadata:
 name: hostpath-provisioner
spec:
 imagePullPolicy: IfNotPresent
 storagePools: 1
 - name: my-storage-pool
 path: "/var/myvolumes" 2
 pvcTemplate:
 volumeMode: Block 3
 storageClassName: my-storage-class 4
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 5Gi 5
 workload:
 nodeSelector:
 kubernetes.io/os: linux

CHAPTER 9. STORAGE

299

4

5

1

volume before mounting it.

If the storageClassName parameter is omitted, the default storage class is used to create
PVCs. If you omit storageClassName, ensure that the HPP storage class is not the default
storage class.

You can specify statically or dynamically provisioned storage. In either case, ensure the
requested storage size is appropriate for the volume you want to virtually divide or the PVC
cannot be bound to the large PV. If the storage class you are using uses dynamically
provisioned storage, pick an allocation size that matches the size of a typical request.

2. Save the file and exit.

3. Create the HPP with a storage pool by running the following command:

9.6. ENABLING USER PERMISSIONS TO CLONE DATA VOLUMES
ACROSS NAMESPACES

The isolating nature of namespaces means that users cannot by default clone resources between
namespaces.

To enable a user to clone a virtual machine to another namespace, a user with the cluster-admin role
must create a new cluster role. Bind this cluster role to a user to enable them to clone virtual machines to
the destination namespace.

9.6.1. Creating RBAC resources for cloning data volumes

Create a new cluster role that enables permissions for all actions for the datavolumes resource.

Prerequisites

You must have cluster admin privileges.

Procedure

1. Create a ClusterRole manifest:

Unique name for the cluster role.

2. Create the cluster role in the cluster:

$ oc create -f hpp_pvc_template_pool.yaml

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 name: <datavolume-cloner> 1
rules:
- apiGroups: ["cdi.kubevirt.io"]
 resources: ["datavolumes/source"]
 verbs: ["*"]

OpenShift Container Platform 4.17 Virtualization

300

1

1

2

3

4

1

The file name of the ClusterRole manifest created in the previous step.

3. Create a RoleBinding manifest that applies to both the source and destination namespaces
and references the cluster role created in the previous step.

Unique name for the role binding.

The namespace for the source data volume.

The namespace to which the data volume is cloned.

The name of the cluster role created in the previous step.

4. Create the role binding in the cluster:

The file name of the RoleBinding manifest created in the previous step.

9.7. CONFIGURING CDI TO OVERRIDE CPU AND MEMORY QUOTAS

You can configure the Containerized Data Importer (CDI) to import, upload, and clone virtual machine
disks into namespaces that are subject to CPU and memory resource restrictions.

9.7.1. About CPU and memory quotas in a namespace

A resource quota, defined by the ResourceQuota object, imposes restrictions on a namespace that limit
the total amount of compute resources that can be consumed by resources within that namespace.

The HyperConverged custom resource (CR) defines the user configuration for the Containerized Data
Importer (CDI). The CPU and memory request and limit values are set to a default value of 0. This
ensures that pods created by CDI that do not specify compute resource requirements are given the
default values and are allowed to run in a namespace that is restricted with a quota.

When the AutoResourceLimits feature gate is enabled, OpenShift Virtualization automatically

$ oc create -f <datavolume-cloner.yaml> 1

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
 name: <allow-clone-to-user> 1
 namespace: <Source namespace> 2
subjects:
- kind: ServiceAccount
 name: default
 namespace: <Destination namespace> 3
roleRef:
 kind: ClusterRole
 name: datavolume-cloner 4
 apiGroup: rbac.authorization.k8s.io

$ oc create -f <datavolume-cloner.yaml> 1

CHAPTER 9. STORAGE

301

When the AutoResourceLimits feature gate is enabled, OpenShift Virtualization automatically
manages CPU and memory limits. If a namespace has both CPU and memory quotas, the memory limit
is set to double the base allocation and the CPU limit is one per vCPU.

9.7.2. Overriding CPU and memory defaults

Modify the default settings for CPU and memory requests and limits for your use case by adding the
spec.resourceRequirements.storageWorkloads stanza to the HyperConverged custom resource
(CR).

Prerequisites

Install the OpenShift CLI (oc).

Procedure

1. Edit the HyperConverged CR by running the following command:

2. Add the spec.resourceRequirements.storageWorkloads stanza to the CR, setting the values
based on your use case. For example:

3. Save and exit the editor to update the HyperConverged CR.

9.7.3. Additional resources

Resource quotas per project

9.8. PREPARING CDI SCRATCH SPACE

9.8.1. About scratch space

The Containerized Data Importer (CDI) requires scratch space (temporary storage) to complete some
operations, such as importing and uploading virtual machine images. During this process, CDI provisions
a scratch space PVC equal to the size of the PVC backing the destination data volume (DV). The
scratch space PVC is deleted after the operation completes or aborts.

You can define the storage class that is used to bind the scratch space PVC in the

$ oc edit hyperconverged kubevirt-hyperconverged -n openshift-cnv

apiVersion: hco.kubevirt.io/v1beta1
kind: HyperConverged
metadata:
 name: kubevirt-hyperconverged
spec:
 resourceRequirements:
 storageWorkloads:
 limits:
 cpu: "500m"
 memory: "2Gi"
 requests:
 cpu: "250m"
 memory: "1Gi"

OpenShift Container Platform 4.17 Virtualization

302

https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/building_applications/#quotas-setting-per-project

You can define the storage class that is used to bind the scratch space PVC in the
spec.scratchSpaceStorageClass field of the HyperConverged custom resource.

If the defined storage class does not match a storage class in the cluster, then the default storage class
defined for the cluster is used. If there is no default storage class defined in the cluster, the storage class
used to provision the original DV or PVC is used.

NOTE

CDI requires requesting scratch space with a file volume mode, regardless of the PVC
backing the origin data volume. If the origin PVC is backed by block volume mode, you
must define a storage class capable of provisioning file volume mode PVCs.

Manual provisioning
If there are no storage classes, CDI uses any PVCs in the project that match the size requirements for
the image. If there are no PVCs that match these requirements, the CDI import pod remains in a
Pending state until an appropriate PVC is made available or until a timeout function kills the pod.

9.8.2. CDI operations that require scratch space

Type Reason

Registry imports CDI must download the image to a scratch space
and extract the layers to find the image file. The
image file is then passed to QEMU-IMG for
conversion to a raw disk.

Upload image QEMU-IMG does not accept input from STDIN.
Instead, the image to upload is saved in scratch
space before it can be passed to QEMU-IMG for
conversion.

HTTP imports of archived images QEMU-IMG does not know how to handle the archive
formats CDI supports. Instead, the image is
unarchived and saved into scratch space before it is
passed to QEMU-IMG.

HTTP imports of authenticated images QEMU-IMG inadequately handles authentication.
Instead, the image is saved to scratch space and
authenticated before it is passed to QEMU-IMG.

HTTP imports of custom certificates QEMU-IMG inadequately handles custom
certificates of HTTPS endpoints. Instead, CDI
downloads the image to scratch space before
passing the file to QEMU-IMG.

9.8.3. Defining a storage class

You can define the storage class that the Containerized Data Importer (CDI) uses when allocating
scratch space by adding the spec.scratchSpaceStorageClass field to the HyperConverged custom
resource (CR).

CHAPTER 9. STORAGE

303

1

Prerequisites

Install the OpenShift CLI (oc).

Procedure

1. Edit the HyperConverged CR by running the following command:

2. Add the spec.scratchSpaceStorageClass field to the CR, setting the value to the name of a
storage class that exists in the cluster:

If you do not specify a storage class, CDI uses the storage class of the persistent volume
claim that is being populated.

3. Save and exit your default editor to update the HyperConverged CR.

9.8.4. CDI supported operations matrix

This matrix shows the supported CDI operations for content types against endpoints, and which of these
operations requires scratch space.

Content types HTTP HTTPS HTTP basic
auth

Registry Upload

KubeVirt
(QCOW2)

✓ QCOW2
✓ GZ*
✓ XZ*

✓ QCOW2**
✓ GZ*
✓ XZ*

✓ QCOW2
✓ GZ*
✓ XZ*

✓ QCOW2*
□ GZ
□ XZ

✓ QCOW2*
✓ GZ*
✓ XZ*

KubeVirt
(RAW)

✓ RAW
✓ GZ
✓ XZ

✓ RAW
✓ GZ
✓ XZ

✓ RAW
✓ GZ
✓ XZ

✓ RAW*
□ GZ
□ XZ

✓ RAW*
✓ GZ*
✓ XZ*

✓ Supported operation

□ Unsupported operation

* Requires scratch space

** Requires scratch space if a custom certificate authority is required

9.8.5. Additional resources

Dynamic provisioning

$ oc edit hyperconverged kubevirt-hyperconverged -n openshift-cnv

apiVersion: hco.kubevirt.io/v1beta1
kind: HyperConverged
metadata:
 name: kubevirt-hyperconverged
spec:
 scratchSpaceStorageClass: "<storage_class>" 1

OpenShift Container Platform 4.17 Virtualization

304

https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/storage/#about_dynamic-provisioning

1

9.9. USING PREALLOCATION FOR DATA VOLUMES

The Containerized Data Importer can preallocate disk space to improve write performance when
creating data volumes.

You can enable preallocation for specific data volumes.

9.9.1. About preallocation

The Containerized Data Importer (CDI) can use the QEMU preallocate mode for data volumes to
improve write performance. You can use preallocation mode for importing and uploading operations
and when creating blank data volumes.

If preallocation is enabled, CDI uses the better preallocation method depending on the underlying file
system and device type:

fallocate

If the file system supports it, CDI uses the operating system’s fallocate call to preallocate space by
using the posix_fallocate function, which allocates blocks and marks them as uninitialized.

full

If fallocate mode cannot be used, full mode allocates space for the image by writing data to the
underlying storage. Depending on the storage location, all the empty allocated space might be
zeroed.

9.9.2. Enabling preallocation for a data volume

You can enable preallocation for specific data volumes by including the spec.preallocation field in the
data volume manifest. You can enable preallocation mode in either the web console or by using the
OpenShift CLI (oc).

Preallocation mode is supported for all CDI source types.

Procedure

Specify the spec.preallocation field in the data volume manifest:

All CDI source types support preallocation. However, preallocation is ignored for cloning
operations.

apiVersion: cdi.kubevirt.io/v1beta1
kind: DataVolume
metadata:
 name: preallocated-datavolume
spec:
 source: 1
 registry:
 url: <image_url> 2
 storage:
 resources:
 requests:
 storage: 1Gi
 preallocation: true
...

CHAPTER 9. STORAGE

305

2

1

Specify the URL of the data source in your registry.

9.10. MANAGING DATA VOLUME ANNOTATIONS

Data volume (DV) annotations allow you to manage pod behavior. You can add one or more annotations
to a data volume, which then propagates to the created importer pods.

9.10.1. Example: Data volume annotations

This example shows how you can configure data volume (DV) annotations to control which network the
importer pod uses. The v1.multus-cni.io/default-network: bridge-network annotation causes the pod
to use the multus network named bridge-network as its default network. If you want the importer pod
to use both the default network from the cluster and the secondary multus network, use the
k8s.v1.cni.cncf.io/networks: <network_name> annotation.

Multus network annotation example

Multus network annotation

apiVersion: cdi.kubevirt.io/v1beta1
kind: DataVolume
metadata:
 name: datavolume-example
 annotations:
 v1.multus-cni.io/default-network: bridge-network 1
...

OpenShift Container Platform 4.17 Virtualization

306

CHAPTER 10. LIVE MIGRATION

10.1. ABOUT LIVE MIGRATION

Live migration is the process of moving a running virtual machine (VM) to another node in the cluster
without interrupting the virtual workload. By default, live migration traffic is encrypted using Transport
Layer Security (TLS).

10.1.1. Live migration requirements

Live migration has the following requirements:

The cluster must have shared storage with ReadWriteMany (RWX) access mode.

The cluster must have sufficient RAM and network bandwidth.

NOTE

You must ensure that there is enough memory request capacity in the cluster to
support node drains that result in live migrations. You can determine the
approximate required spare memory by using the following calculation:

Product of (Maximum number of nodes that can drain in parallel) and (Highest
total VM memory request allocations across nodes)

The default number of migrations that can run in parallel in the cluster is 5.

If a VM uses a host model CPU, the nodes must support the CPU.

Configuring a dedicated Multus network for live migration is highly recommended. A dedicated
network minimizes the effects of network saturation on tenant workloads during migration.

10.1.2. Common live migration tasks

You can perform the following live migration tasks:

Configure live migration settings

Initiate and cancel live migration

Monitor the progress of all live migrations in the Migration tab of the OpenShift Virtualization
web console.

View VM migration metrics in the Metrics tab of the web console.

10.1.3. Additional resources

Prometheus queries for live migration

VM migration tuning

VM run strategies

CHAPTER 10. LIVE MIGRATION

307

https://access.redhat.com/articles/6994974#vm-migration-tuning

1

2

3

4

5

VM and cluster eviction strategies

10.2. CONFIGURING LIVE MIGRATION

You can configure live migration settings to ensure that the migration processes do not overwhelm the
cluster.

You can configure live migration policies to apply different migration configurations to groups of virtual
machines (VMs).

10.2.1. Configuring live migration limits and timeouts

Configure live migration limits and timeouts for the cluster by updating the HyperConverged custom
resource (CR), which is located in the openshift-cnv namespace.

Procedure

Edit the HyperConverged CR and add the necessary live migration parameters:

Example configuration file

Bandwidth limit of each migration, where the value is the quantity of bytes per second. For
example, a value of 2048Mi means 2048 MiB/s. Default: 0, which is unlimited.

The migration is canceled if it has not completed in this time, in seconds per GiB of
memory. For example, a VM with 6GiB memory times out if it has not completed migration
in 4800 seconds. If the Migration Method is BlockMigration, the size of the migrating
disks is included in the calculation.

Number of migrations running in parallel in the cluster. Default: 5.

Maximum number of outbound migrations per node. Default: 2.

The migration is canceled if memory copy fails to make progress in this time, in seconds.
Default: 150.

NOTE

$ oc edit hyperconverged kubevirt-hyperconverged -n openshift-cnv

apiVersion: hco.kubevirt.io/v1beta1
kind: HyperConverged
metadata:
 name: kubevirt-hyperconverged
 namespace: openshift-cnv
spec:
 liveMigrationConfig:
 bandwidthPerMigration: 64Mi 1
 completionTimeoutPerGiB: 800 2
 parallelMigrationsPerCluster: 5 3
 parallelOutboundMigrationsPerNode: 2 4
 progressTimeout: 150 5

OpenShift Container Platform 4.17 Virtualization

308

NOTE

You can restore the default value for any spec.liveMigrationConfig field by deleting
that key/value pair and saving the file. For example, delete progressTimeout: <value>
to restore the default progressTimeout: 150.

10.2.2. Live migration policies

You can create live migration policies to apply different migration configurations to groups of VMs that
are defined by VM or project labels.

TIP

You can create live migration policies by using the OpenShift Virtualization web console.

10.2.2.1. Creating a live migration policy by using the command line

You can create a live migration policy by using the command line. KubeVirt applies the live migration
policy to selected virtual machines (VMs) by using any combination of labels:

VM labels such as size, os, or gpu

Project labels such as priority, bandwidth, or hpc-workload

For the policy to apply to a specific group of VMs, all labels on the group of VMs must match the labels
of the policy.

NOTE

If multiple live migration policies apply to a VM, the policy with the greatest number of
matching labels takes precedence.

If multiple policies meet this criteria, the policies are sorted by alphabetical order of the
matching label keys, and the first one in that order takes precedence.

Procedure

1. Edit the VM object to which you want to apply a live migration policy, and add the corresponding
VM labels.

a. Open the YAML configuration of the resource:

b. Adjust the required label values in the .spec.template.metadata.labels section of the
configuration. For example, to mark the VM as a production VM for the purposes of
migration policies, add the kubevirt.io/environment: production line:

$ oc edit vm <vm_name>

apiVersion: migrations.kubevirt.io/v1alpha1
kind: VirtualMachine
metadata:
 name: <vm_name>
 namespace: default
 labels:
 app: my-app

CHAPTER 10. LIVE MIGRATION

309

1

2

c. Save and exit the configuration.

2. Configure a MigrationPolicy object with the corresponding labels. The following example
configures a policy that applies to all VMs that are labeled as production:

Specify project labels.

Specify VM labels.

3. Create the migration policy by running the following command:

10.2.3. Additional resources

Configuring a dedicated Multus network for live migration

10.3. INITIATING AND CANCELING LIVE MIGRATION

You can initiate the live migration of a virtual machine (VM) to another node by using the OpenShift
Container Platform web console or the command line.

You can cancel a live migration by using the web console or the command line. The VM remains on its
original node.

TIP

You can also initiate and cancel live migration by using the virtctl migrate <vm_name> and virtctl
migrate-cancel <vm_name> commands.

 environment: production
spec:
 template:
 metadata:
 labels:
 kubevirt.io/domain: <vm_name>
 kubevirt.io/size: large
 kubevirt.io/environment: production
...

apiVersion: migrations.kubevirt.io/v1alpha1
kind: MigrationPolicy
metadata:
 name: <migration_policy>
spec:
 selectors:
 namespaceSelector: 1
 hpc-workloads: "True"
 xyz-workloads-type: ""
 virtualMachineInstanceSelector: 2
 kubevirt.io/environment: "production"

$ oc create migrationpolicy -f <migration_policy>.yaml

OpenShift Container Platform 4.17 Virtualization

310

10.3.1. Initiating live migration

10.3.1.1. Initiating live migration by using the web console

You can live migrate a running virtual machine (VM) to a different node in the cluster by using the
OpenShift Container Platform web console.

NOTE

The Migrate action is visible to all users but only cluster administrators can initiate a live
migration.

Prerequisites

The VM must be migratable.

If the VM is configured with a host model CPU, the cluster must have an available node that
supports the CPU model.

Procedure

1. Navigate to Virtualization → VirtualMachines in the web console.

2. Select Migrate from the Options menu beside a VM.

3. Click Migrate.

10.3.1.2. Initiating live migration by using the command line

You can initiate the live migration of a running virtual machine (VM) by using the command line to create
a VirtualMachineInstanceMigration object for the VM.

Procedure

1. Create a VirtualMachineInstanceMigration manifest for the VM that you want to migrate:

2. Create the object by running the following command:

The VirtualMachineInstanceMigration object triggers a live migration of the VM. This object
exists in the cluster for as long as the virtual machine instance is running, unless manually
deleted.

Verification

apiVersion: kubevirt.io/v1
kind: VirtualMachineInstanceMigration
metadata:
 name: <migration_name>
spec:
 vmiName: <vm_name>

$ oc create -f <migration_name>.yaml

CHAPTER 10. LIVE MIGRATION

311

Obtain the VM status by running the following command:

Example output

10.3.2. Canceling live migration

10.3.2.1. Canceling live migration by using the web console

You can cancel the live migration of a virtual machine (VM) by using the OpenShift Container Platform
web console.

Procedure

1. Navigate to Virtualization → VirtualMachines in the web console.

2. Select Cancel Migration on the Options menu beside a VM.

10.3.2.2. Canceling live migration by using the command line

Cancel the live migration of a virtual machine by deleting the VirtualMachineInstanceMigration object
associated with the migration.

Procedure

Delete the VirtualMachineInstanceMigration object that triggered the live migration,
migration-job in this example:

$ oc describe vmi <vm_name> -n <namespace>

...
Status:
 Conditions:
 Last Probe Time: <nil>
 Last Transition Time: <nil>
 Status: True
 Type: LiveMigratable
 Migration Method: LiveMigration
 Migration State:
 Completed: true
 End Timestamp: 2018-12-24T06:19:42Z
 Migration UID: d78c8962-0743-11e9-a540-fa163e0c69f1
 Source Node: node2.example.com
 Start Timestamp: 2018-12-24T06:19:35Z
 Target Node: node1.example.com
 Target Node Address: 10.9.0.18:43891
 Target Node Domain Detected: true

$ oc delete vmim migration-job

OpenShift Container Platform 4.17 Virtualization

312

CHAPTER 11. NODES

11.1. NODE MAINTENANCE

Nodes can be placed into maintenance mode by using the oc adm utility or NodeMaintenance custom
resources (CRs).

NOTE

The node-maintenance-operator (NMO) is no longer shipped with OpenShift
Virtualization. It is deployed as a standalone Operator from the OperatorHub in the
OpenShift Container Platform web console or by using the OpenShift CLI (oc).

For more information on remediation, fencing, and maintaining nodes, see the Workload
Availability for Red Hat OpenShift documentation.

IMPORTANT

Virtual machines (VMs) must have a persistent volume claim (PVC) with a shared
ReadWriteMany (RWX) access mode to be live migrated.

The Node Maintenance Operator watches for new or deleted NodeMaintenance CRs. When a new
NodeMaintenance CR is detected, no new workloads are scheduled and the node is cordoned off from
the rest of the cluster. All pods that can be evicted are evicted from the node. When a
NodeMaintenance CR is deleted, the node that is referenced in the CR is made available for new
workloads.

NOTE

Using a NodeMaintenance CR for node maintenance tasks achieves the same results as
the oc adm cordon and oc adm drain commands using standard OpenShift Container
Platform custom resource processing.

11.1.1. Eviction strategies

Placing a node into maintenance marks the node as unschedulable and drains all the VMs and pods from
it.

You can configure eviction strategies for virtual machines (VMs) or for the cluster.

VM eviction strategy

The VM LiveMigrate eviction strategy ensures that a virtual machine instance (VMI) is not
interrupted if the node is placed into maintenance or drained. VMIs with this eviction strategy will be
live migrated to another node.
You can configure eviction strategies for virtual machines (VMs) by using the OpenShift
Virtualization web console or the command line.

IMPORTANT

CHAPTER 11. NODES

313

https://access.redhat.com/documentation/en-us/workload_availability_for_red_hat_openshift/23.2/html-single/remediation_fencing_and_maintenance/index#about-remediation-fencing-maintenance

IMPORTANT

The default eviction strategy is LiveMigrate. A non-migratable VM with a LiveMigrate
eviction strategy might prevent nodes from draining or block an infrastructure
upgrade because the VM is not evicted from the node. This situation causes a
migration to remain in a Pending or Scheduling state unless you shut down the VM
manually.

You must set the eviction strategy of non-migratable VMs to LiveMigrateIfPossible,
which does not block an upgrade, or to None, for VMs that should not be migrated.

Cluster eviction strategy

You can configure an eviction strategy for the cluster to prioritize workload continuity or
infrastructure upgrade.

IMPORTANT

Configuring a cluster eviction strategy is a Technology Preview feature only. Technology
Preview features are not supported with Red Hat production service level agreements
(SLAs) and might not be functionally complete. Red Hat does not recommend using
them in production. These features provide early access to upcoming product features,
enabling customers to test functionality and provide feedback during the development
process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

Table 11.1. Cluster eviction strategies

Eviction strategy Description Interrupts
workflow

Blocks upgrades

LiveMigrate 1 Prioritizes workload continuity over
upgrades.

No Yes 2

LiveMigrateIfPo
ssible

Prioritizes upgrades over workload
continuity to ensure that the environment
is updated.

Yes No

None 3 Shuts down VMs with no eviction
strategy.

Yes No

1. Default eviction strategy for multi-node clusters.

2. If a VM blocks an upgrade, you must shut down the VM manually.

3. Default eviction strategy for single-node OpenShift.

11.1.1.1. Configuring a VM eviction strategy using the command line

You can configure an eviction strategy for a virtual machine (VM) by using the command line.

IMPORTANT

OpenShift Container Platform 4.17 Virtualization

314

https://access.redhat.com/support/offerings/techpreview/

1

IMPORTANT

The default eviction strategy is LiveMigrate. A non-migratable VM with a LiveMigrate
eviction strategy might prevent nodes from draining or block an infrastructure upgrade
because the VM is not evicted from the node. This situation causes a migration to remain
in a Pending or Scheduling state unless you shut down the VM manually.

You must set the eviction strategy of non-migratable VMs to LiveMigrateIfPossible,
which does not block an upgrade, or to None, for VMs that should not be migrated.

Procedure

1. Edit the VirtualMachine resource by running the following command:

Example eviction strategy

Specify the eviction strategy. The default value is LiveMigrate.

2. Restart the VM to apply the changes:

11.1.1.2. Configuring a cluster eviction strategy by using the command line

You can configure an eviction strategy for a cluster by using the command line.

IMPORTANT

Configuring a cluster eviction strategy is a Technology Preview feature only. Technology
Preview features are not supported with Red Hat production service level agreements
(SLAs) and might not be functionally complete. Red Hat does not recommend using
them in production. These features provide early access to upcoming product features,
enabling customers to test functionality and provide feedback during the development
process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

Procedure

1. Edit the hyperconverged resource by running the following command:

$ oc edit vm <vm_name> -n <namespace>

apiVersion: kubevirt.io/v1
kind: VirtualMachine
metadata:
 name: <vm_name>
spec:
 template:
 spec:
 evictionStrategy: LiveMigrateIfPossible 1
...

$ virtctl restart <vm_name> -n <namespace>

CHAPTER 11. NODES

315

https://access.redhat.com/support/offerings/techpreview/

2. Set the cluster eviction strategy as shown in the following example:

Example cluster eviction strategy

11.1.2. Run strategies

A virtual machine (VM) configured with spec.running: true is immediately restarted. The
spec.runStrategy key provides greater flexibility for determining how a VM behaves under certain
conditions.

IMPORTANT

The spec.runStrategy and spec.running keys are mutually exclusive. Only one of them
can be used.

A VM configuration with both keys is invalid.

11.1.2.1. Run strategies

The spec.runStrategy key has four possible values:

Always

The virtual machine instance (VMI) is always present when a virtual machine (VM) is created on
another node. A new VMI is created if the original stops for any reason. This is the same behavior as
running: true.

RerunOnFailure

The VMI is re-created on another node if the previous instance fails. The instance is not re-created if
the VM stops successfully, such as when it is shut down.

Manual

You control the VMI state manually with the start, stop, and restart virtctl client commands. The VM
is not automatically restarted.

Halted

No VMI is present when a VM is created. This is the same behavior as running: false.

Different combinations of the virtctl start, stop and restart commands affect the run strategy.

The following table describes a VM’s transition between states. The first column shows the VM’s initial
run strategy. The remaining columns show a virtctl command and the new run strategy after that
command is run.

Table 11.2. Run strategy before and after virtctl commands

$ oc edit hyperconverged kubevirt-hyperconverged -n openshift-cnv

apiVersion: hco.kubevirt.io/v1beta1
kind: HyperConverged
metadata:
 name: kubevirt-hyperconverged
spec:
 evictionStrategy: LiveMigrate
...

OpenShift Container Platform 4.17 Virtualization

316

Initial run strategy Start Stop Restart

Always - Halted Always

RerunOnFailure - Halted RerunOnFailure

Manual Manual Manual Manual

Halted Always - -

NOTE

If a node in a cluster installed by using installer-provisioned infrastructure fails the
machine health check and is unavailable, VMs with runStrategy: Always or runStrategy:
RerunOnFailure are rescheduled on a new node.

11.1.2.2. Configuring a VM run strategy by using the command line

You can configure a run strategy for a virtual machine (VM) by using the command line.

IMPORTANT

The spec.runStrategy and spec.running keys are mutually exclusive. A VM
configuration that contains values for both keys is invalid.

Procedure

Edit the VirtualMachine resource by running the following command:

Example run strategy

11.1.3. Maintaining bare metal nodes

When you deploy OpenShift Container Platform on bare metal infrastructure, there are additional
considerations that must be taken into account compared to deploying on cloud infrastructure. Unlike in
cloud environments where the cluster nodes are considered ephemeral, re-provisioning a bare metal
node requires significantly more time and effort for maintenance tasks.

When a bare metal node fails, for example, if a fatal kernel error happens or a NIC card hardware failure
occurs, workloads on the failed node need to be restarted elsewhere else on the cluster while the
problem node is repaired or replaced. Node maintenance mode allows cluster administrators to
gracefully power down nodes, moving workloads to other parts of the cluster and ensuring workloads do
not get interrupted. Detailed progress and node status details are provided during maintenance.

$ oc edit vm <vm_name> -n <namespace>

apiVersion: kubevirt.io/v1
kind: VirtualMachine
spec:
 runStrategy: Always
...

CHAPTER 11. NODES

317

11.1.4. Additional resources

About live migration

11.2. MANAGING NODE LABELING FOR OBSOLETE CPU MODELS

You can schedule a virtual machine (VM) on a node as long as the VM CPU model and policy are
supported by the node.

11.2.1. About node labeling for obsolete CPU models

The OpenShift Virtualization Operator uses a predefined list of obsolete CPU models to ensure that a
node supports only valid CPU models for scheduled VMs.

By default, the following CPU models are eliminated from the list of labels generated for the node:

Example 11.1. Obsolete CPU models

"486"
Conroe
athlon
core2duo
coreduo
kvm32
kvm64
n270
pentium
pentium2
pentium3
pentiumpro
phenom
qemu32
qemu64

This predefined list is not visible in the HyperConverged CR. You cannot remove CPU models from this
list, but you can add to the list by editing the spec.obsoleteCPUs.cpuModels field of the
HyperConverged CR.

11.2.2. About node labeling for CPU features

Through the process of iteration, the base CPU features in the minimum CPU model are eliminated
from the list of labels generated for the node.

For example:

An environment might have two supported CPU models: Penryn and Haswell.

If Penryn is specified as the CPU model for minCPU, each base CPU feature for Penryn is
compared to the list of CPU features supported by Haswell.

Example 11.2. CPU features supported by Penryn

apic
clflush

OpenShift Container Platform 4.17 Virtualization

318

cmov
cx16
cx8
de
fpu
fxsr
lahf_lm
lm
mca
mce
mmx
msr
mtrr
nx
pae
pat
pge
pni
pse
pse36
sep
sse
sse2
sse4.1
ssse3
syscall
tsc

Example 11.3. CPU features supported by Haswell

aes
apic
avx
avx2
bmi1
bmi2
clflush
cmov
cx16
cx8
de
erms
fma
fpu
fsgsbase
fxsr
hle
invpcid
lahf_lm
lm
mca
mce
mmx
movbe

CHAPTER 11. NODES

319

msr
mtrr
nx
pae
pat
pcid
pclmuldq
pge
pni
popcnt
pse
pse36
rdtscp
rtm
sep
smep
sse
sse2
sse4.1
sse4.2
ssse3
syscall
tsc
tsc-deadline
x2apic
xsave

If both Penryn and Haswell support a specific CPU feature, a label is not created for that
feature. Labels are generated for CPU features that are supported only by Haswell and not by
Penryn.

Example 11.4. Node labels created for CPU features after iteration

aes
avx
avx2
bmi1
bmi2
erms
fma
fsgsbase
hle
invpcid
movbe
pcid
pclmuldq
popcnt
rdtscp
rtm
sse4.2
tsc-deadline
x2apic
xsave

OpenShift Container Platform 4.17 Virtualization

320

1

2

1

11.2.3. Configuring obsolete CPU models

You can configure a list of obsolete CPU models by editing the HyperConverged custom resource
(CR).

Procedure

Edit the HyperConverged custom resource, specifying the obsolete CPU models in the
obsoleteCPUs array. For example:

Replace the example values in the cpuModels array with obsolete CPU models. Any value
that you specify is added to a predefined list of obsolete CPU models. The predefined list
is not visible in the CR.

Replace this value with the minimum CPU model that you want to use for basic CPU
features. If you do not specify a value, Penryn is used by default.

11.3. PREVENTING NODE RECONCILIATION

Use skip-node annotation to prevent the node-labeller from reconciling a node.

11.3.1. Using skip-node annotation

If you want the node-labeller to skip a node, annotate that node by using the oc CLI.

Prerequisites

You have installed the OpenShift CLI (oc).

Procedure

Annotate the node that you want to skip by running the following command:

Replace <node_name> with the name of the relevant node to skip.

Reconciliation resumes on the next cycle after the node annotation is removed or set to false.

apiVersion: hco.kubevirt.io/v1beta1
kind: HyperConverged
metadata:
 name: kubevirt-hyperconverged
 namespace: openshift-cnv
spec:
 obsoleteCPUs:
 cpuModels: 1
 - "<obsolete_cpu_1>"
 - "<obsolete_cpu_2>"
 minCPUModel: "<minimum_cpu_model>" 2

$ oc annotate node <node_name> node-labeller.kubevirt.io/skip-node=true 1

CHAPTER 11. NODES

321

11.3.2. Additional resources

Managing node labeling for obsolete CPU models

11.4. DELETING A FAILED NODE TO TRIGGER VIRTUAL MACHINE
FAILOVER

If a node fails and node health checks are not deployed on your cluster, virtual machines (VMs) with
runStrategy: Always configured are not automatically relocated to healthy nodes.

11.4.1. Prerequisites

A node where a virtual machine was running has the NotReady condition.

The virtual machine that was running on the failed node has runStrategy set to Always.

You have installed the OpenShift CLI (oc).

11.4.2. Deleting nodes from a bare metal cluster

When you delete a node using the CLI, the node object is deleted in Kubernetes, but the pods that exist
on the node are not deleted. Any bare pods not backed by a replication controller become inaccessible
to OpenShift Container Platform. Pods backed by replication controllers are rescheduled to other
available nodes. You must delete local manifest pods.

Procedure

Delete a node from an OpenShift Container Platform cluster running on bare metal by completing the
following steps:

1. Mark the node as unschedulable:

2. Drain all pods on the node:

This step might fail if the node is offline or unresponsive. Even if the node does not respond, it
might still be running a workload that writes to shared storage. To avoid data corruption, power
down the physical hardware before you proceed.

3. Delete the node from the cluster:

Although the node object is now deleted from the cluster, it can still rejoin the cluster after
reboot or if the kubelet service is restarted. To permanently delete the node and all its data, you
must decommission the node.

4. If you powered down the physical hardware, turn it back on so that the node can rejoin the
cluster.

11.4.3. Verifying virtual machine failover

$ oc adm cordon <node_name>

$ oc adm drain <node_name> --force=true

$ oc delete node <node_name>

OpenShift Container Platform 4.17 Virtualization

322

https://access.redhat.com/articles/7057929
https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/nodes/#nodes-nodes-viewing-listing_nodes-nodes-viewing
https://access.redhat.com/solutions/84663

After all resources are terminated on the unhealthy node, a new virtual machine instance (VMI) is
automatically created on a healthy node for each relocated VM. To confirm that the VMI was created,
view all VMIs by using the oc CLI.

11.4.3.1. Listing all virtual machine instances using the CLI

You can list all virtual machine instances (VMIs) in your cluster, including standalone VMIs and those
owned by virtual machines, by using the oc command-line interface (CLI).

Procedure

List all VMIs by running the following command:

$ oc get vmis -A

CHAPTER 11. NODES

323

CHAPTER 12. MONITORING

12.1. MONITORING OVERVIEW

You can monitor the health of your cluster and virtual machines (VMs) with the following tools:

Monitoring OpenShift Virtualization VM health status

View the overall health of your OpenShift Virtualization environment in the web console by
navigating to the Home → Overview page in the OpenShift Container Platform web console. The
Status card displays the overall health of OpenShift Virtualization based on the alerts and conditions.

OpenShift Container Platform cluster checkup framework

Run automated tests on your cluster with the OpenShift Container Platform cluster checkup
framework to check the following conditions:

Network connectivity and latency between two VMs attached to a secondary network
interface

VM running a Data Plane Development Kit (DPDK) workload with zero packet loss

Cluster storage is optimally configured for OpenShift Virtualization

Prometheus queries for virtual resources

Query vCPU, network, storage, and guest memory swapping usage and live migration progress.

VM custom metrics

Configure the node-exporter service to expose internal VM metrics and processes.

VM health checks

Configure readiness, liveness, and guest agent ping probes and a watchdog for VMs.

Runbooks

Diagnose and resolve issues that trigger OpenShift Virtualization alerts in the OpenShift Container
Platform web console.

12.2. OPENSHIFT VIRTUALIZATION CLUSTER CHECKUP FRAMEWORK

OpenShift Virtualization includes the following predefined checkups that can be used for cluster
maintenance and troubleshooting:

Latency checkup, which verifies network connectivity and measures latency between two virtual
machines (VMs) that are attached to a secondary network interface.

IMPORTANT

Before you run a latency checkup, you must first create a bridge interface on the
cluster nodes to connect the VM’s secondary interface to any interface on the
node. If you do not create a bridge interface, the VMs do not start and the job
fails.

Storage checkup, which verifies if the cluster storage is optimally configured for OpenShift
Virtualization.

DPDK checkup, which verifies that a node can run a VM with a Data Plane Development Kit

OpenShift Container Platform 4.17 Virtualization

324

https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/monitoring/#managing-alerts

DPDK checkup, which verifies that a node can run a VM with a Data Plane Development Kit
(DPDK) workload with zero packet loss.

IMPORTANT

The OpenShift Virtualization cluster checkup framework is a Technology Preview feature
only. Technology Preview features are not supported with Red Hat production service
level agreements (SLAs) and might not be functionally complete. Red Hat does not
recommend using them in production. These features provide early access to upcoming
product features, enabling customers to test functionality and provide feedback during
the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

12.2.1. About the OpenShift Virtualization cluster checkup framework

A checkup is an automated test workload that allows you to verify if a specific cluster functionality works
as expected. The cluster checkup framework uses native Kubernetes resources to configure and
execute the checkup.

By using predefined checkups, cluster administrators and developers can improve cluster
maintainability, troubleshoot unexpected behavior, minimize errors, and save time. They can also review
the results of the checkup and share them with experts for further analysis. Vendors can write and
publish checkups for features or services that they provide and verify that their customer environments
are configured correctly.

Running a predefined checkup in an existing namespace involves setting up a service account for the
checkup, creating the Role and RoleBinding objects for the service account, enabling permissions for
the checkup, and creating the input config map and the checkup job. You can run a checkup multiple
times.

IMPORTANT

You must always:

Verify that the checkup image is from a trustworthy source before applying it.

Review the checkup permissions before creating the Role and RoleBinding
objects.

12.2.2. Running checkups by using the web console

Use the following procedures the first time you run checkups by using the web console. For additional
checkups, click Run checkup on either checkup tab, and select the appropriate checkup from the drop
down menu.

12.2.2.1. Running a latency checkup by using the web console

Run a latency checkup to verify network connectivity and measure the latency between two virtual
machines attached to a secondary network interface.

Prerequisites

You must add a NetworkAttachmentDefinition to the namespace.

CHAPTER 12. MONITORING

325

https://access.redhat.com/support/offerings/techpreview/

Procedure

1. Navigate to Virtualization → Checkups in the web console.

2. Click the Network latency tab.

3. Click Install permissions.

4. Click Run checkup.

5. Enter a name for the checkup in the Name field.

6. Select a NetworkAttachmentDefinition from the drop-down menu.

7. Optional: Set a duration for the latency sample in the Sample duration (seconds) field.

8. Optional: Define a maximum latency time interval by enabling Set maximum desired latency
(milliseconds) and defining the time interval.

9. Optional: Target specific nodes by enabling Select nodes and specifying the Source node and
Target node.

10. Click Run.

You can view the status of the latency checkup in the Checkups list on the Latency checkup tab. Click
on the name of the checkup for more details.

12.2.2.2. Running a storage checkup by using the web console

Run a storage checkup to validate that storage is working correctly for virtual machines.

Procedure

1. Navigate to Virtualization → Checkups in the web console.

2. Click the Storage tab.

3. Click Install permissions.

4. Click Run checkup.

5. Enter a name for the checkup in the Name field.

6. Enter a timeout value for the checkup in the Timeout (minutes) fields.

7. Click Run.

You can view the status of the storage checkup in the Checkups list on the Storage tab. Click on the
name of the checkup for more details.

12.2.3. Running checkups by using the command line

Use the following procedures the first time you run checkups by using the command line.

12.2.3.1. Running a latency checkup by using the command line

You use a predefined checkup to verify network connectivity and measure latency between two virtual

OpenShift Container Platform 4.17 Virtualization

326

You use a predefined checkup to verify network connectivity and measure latency between two virtual
machines (VMs) that are attached to a secondary network interface. The latency checkup uses the ping
utility.

You run a latency checkup by performing the following steps:

1. Create a service account, roles, and rolebindings to provide cluster access permissions to the
latency checkup.

2. Create a config map to provide the input to run the checkup and to store the results.

3. Create a job to run the checkup.

4. Review the results in the config map.

5. Optional: To rerun the checkup, delete the existing config map and job and then create a new
config map and job.

6. When you are finished, delete the latency checkup resources.

Prerequisites

You installed the OpenShift CLI (oc).

The cluster has at least two worker nodes.

You configured a network attachment definition for a namespace.

Procedure

1. Create a ServiceAccount, Role, and RoleBinding manifest for the latency checkup:

Example 12.1. Example role manifest file

apiVersion: v1
kind: ServiceAccount
metadata:
 name: vm-latency-checkup-sa

apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
 name: kubevirt-vm-latency-checker
rules:
- apiGroups: ["kubevirt.io"]
 resources: ["virtualmachineinstances"]
 verbs: ["get", "create", "delete"]
- apiGroups: ["subresources.kubevirt.io"]
 resources: ["virtualmachineinstances/console"]
 verbs: ["get"]
- apiGroups: ["k8s.cni.cncf.io"]
 resources: ["network-attachment-definitions"]
 verbs: ["get"]

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding

CHAPTER 12. MONITORING

327

1

2. Apply the ServiceAccount, Role, and RoleBinding manifest:

<target_namespace> is the namespace where the checkup is to be run. This must be an
existing namespace where the NetworkAttachmentDefinition object resides.

3. Create a ConfigMap manifest that contains the input parameters for the checkup:

Example input config map

metadata:
 name: kubevirt-vm-latency-checker
subjects:
- kind: ServiceAccount
 name: vm-latency-checkup-sa
roleRef:
 kind: Role
 name: kubevirt-vm-latency-checker
 apiGroup: rbac.authorization.k8s.io

apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
 name: kiagnose-configmap-access
rules:
- apiGroups: [""]
 resources: ["configmaps"]
 verbs: ["get", "update"]

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
 name: kiagnose-configmap-access
subjects:
- kind: ServiceAccount
 name: vm-latency-checkup-sa
roleRef:
 kind: Role
 name: kiagnose-configmap-access
 apiGroup: rbac.authorization.k8s.io

$ oc apply -n <target_namespace> -f <latency_sa_roles_rolebinding>.yaml 1

apiVersion: v1
kind: ConfigMap
metadata:
 name: kubevirt-vm-latency-checkup-config
 labels:
 kiagnose/checkup-type: kubevirt-vm-latency
data:
 spec.timeout: 5m
 spec.param.networkAttachmentDefinitionNamespace: <target_namespace>
 spec.param.networkAttachmentDefinitionName: "blue-network" 1
 spec.param.maxDesiredLatencyMilliseconds: "10" 2

OpenShift Container Platform 4.17 Virtualization

328

1

2

3

4

5

The name of the NetworkAttachmentDefinition object.

Optional: The maximum desired latency, in milliseconds, between the virtual machines. If
the measured latency exceeds this value, the checkup fails.

Optional: The duration of the latency check, in seconds.

Optional: When specified, latency is measured from this node to the target node. If the
source node is specified, the spec.param.targetNode field cannot be empty.

Optional: When specified, latency is measured from the source node to this node.

4. Apply the config map manifest in the target namespace:

5. Create a Job manifest to run the checkup:

Example job manifest

 spec.param.sampleDurationSeconds: "5" 3
 spec.param.sourceNode: "worker1" 4
 spec.param.targetNode: "worker2" 5

$ oc apply -n <target_namespace> -f <latency_config_map>.yaml

apiVersion: batch/v1
kind: Job
metadata:
 name: kubevirt-vm-latency-checkup
 labels:
 kiagnose/checkup-type: kubevirt-vm-latency
spec:
 backoffLimit: 0
 template:
 spec:
 serviceAccountName: vm-latency-checkup-sa
 restartPolicy: Never
 containers:
 - name: vm-latency-checkup
 image: registry.redhat.io/container-native-virtualization/vm-network-latency-checkup-
rhel9:v4.17.0
 securityContext:
 allowPrivilegeEscalation: false
 capabilities:
 drop: ["ALL"]
 runAsNonRoot: true
 seccompProfile:
 type: "RuntimeDefault"
 env:
 - name: CONFIGMAP_NAMESPACE
 value: <target_namespace>
 - name: CONFIGMAP_NAME
 value: kubevirt-vm-latency-checkup-config
 - name: POD_UID

CHAPTER 12. MONITORING

329

1

6. Apply the Job manifest:

7. Wait for the job to complete:

8. Review the results of the latency checkup by running the following command. If the maximum
measured latency is greater than the value of the
spec.param.maxDesiredLatencyMilliseconds attribute, the checkup fails and returns an error.

Example output config map (success)

The maximum measured latency in nanoseconds.

9. Optional: To view the detailed job log in case of checkup failure, use the following command:

 valueFrom:
 fieldRef:
 fieldPath: metadata.uid

$ oc apply -n <target_namespace> -f <latency_job>.yaml

$ oc wait job kubevirt-vm-latency-checkup -n <target_namespace> --for condition=complete -
-timeout 6m

$ oc get configmap kubevirt-vm-latency-checkup-config -n <target_namespace> -o yaml

apiVersion: v1
kind: ConfigMap
metadata:
 name: kubevirt-vm-latency-checkup-config
 namespace: <target_namespace>
 labels:
 kiagnose/checkup-type: kubevirt-vm-latency
data:
 spec.timeout: 5m
 spec.param.networkAttachmentDefinitionNamespace: <target_namespace>
 spec.param.networkAttachmentDefinitionName: "blue-network"
 spec.param.maxDesiredLatencyMilliseconds: "10"
 spec.param.sampleDurationSeconds: "5"
 spec.param.sourceNode: "worker1"
 spec.param.targetNode: "worker2"
 status.succeeded: "true"
 status.failureReason: ""
 status.completionTimestamp: "2022-01-01T09:00:00Z"
 status.startTimestamp: "2022-01-01T09:00:07Z"
 status.result.avgLatencyNanoSec: "177000"
 status.result.maxLatencyNanoSec: "244000" 1
 status.result.measurementDurationSec: "5"
 status.result.minLatencyNanoSec: "135000"
 status.result.sourceNode: "worker1"
 status.result.targetNode: "worker2"

$ oc logs job.batch/kubevirt-vm-latency-checkup -n <target_namespace>

OpenShift Container Platform 4.17 Virtualization

330

1

10. Delete the job and config map that you previously created by running the following commands:

11. Optional: If you do not plan to run another checkup, delete the roles manifest:

12.2.3.2. Running a storage checkup by using the command line

Use a predefined checkup to verify that the OpenShift Container Platform cluster storage is configured
optimally to run OpenShift Virtualization workloads.

Prerequisites

You have installed the OpenShift CLI (oc).

The cluster administrator has created the required cluster-reader permissions for the storage
checkup service account and namespace, such as in the following example:

The namespace where the checkup is to be run.

Procedure

1. Create a ServiceAccount, Role, and RoleBinding manifest file for the storage checkup:

Example 12.2. Example service account, role, and rolebinding manifest

$ oc delete job -n <target_namespace> kubevirt-vm-latency-checkup

$ oc delete config-map -n <target_namespace> kubevirt-vm-latency-checkup-config

$ oc delete -f <latency_sa_roles_rolebinding>.yaml

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 name: kubevirt-storage-checkup-clustereader
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: cluster-reader
subjects:
- kind: ServiceAccount
 name: storage-checkup-sa
 namespace: <target_namespace> 1

apiVersion: v1
kind: ServiceAccount
metadata:
 name: storage-checkup-sa

apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
 name: storage-checkup-role

CHAPTER 12. MONITORING

331

2. Apply the ServiceAccount, Role, and RoleBinding manifest in the target namespace:

3. Create a ConfigMap and Job manifest file. The config map contains the input parameters for
the checkup job.

Example input config map and job manifest

rules:
 - apiGroups: [""]
 resources: ["configmaps"]
 verbs: ["get", "update"]
 - apiGroups: ["kubevirt.io"]
 resources: ["virtualmachines"]
 verbs: ["create", "delete"]
 - apiGroups: ["kubevirt.io"]
 resources: ["virtualmachineinstances"]
 verbs: ["get"]
 - apiGroups: ["subresources.kubevirt.io"]
 resources: ["virtualmachineinstances/addvolume",
"virtualmachineinstances/removevolume"]
 verbs: ["update"]
 - apiGroups: ["kubevirt.io"]
 resources: ["virtualmachineinstancemigrations"]
 verbs: ["create"]
 - apiGroups: ["cdi.kubevirt.io"]
 resources: ["datavolumes"]
 verbs: ["create", "delete"]
 - apiGroups: [""]
 resources: ["persistentvolumeclaims"]
 verbs: ["delete"]

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
 name: storage-checkup-role
subjects:
 - kind: ServiceAccount
 name: storage-checkup-sa
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: Role
 name: storage-checkup-role

$ oc apply -n <target_namespace> -f <storage_sa_roles_rolebinding>.yaml

apiVersion: v1
kind: ConfigMap
metadata:
 name: storage-checkup-config
 namespace: $CHECKUP_NAMESPACE
data:
 spec.timeout: 10m
 spec.param.storageClass: ocs-storagecluster-ceph-rbd-virtualization

OpenShift Container Platform 4.17 Virtualization

332

4. Apply the ConfigMap and Job manifest file in the target namespace to run the checkup:

5. Wait for the job to complete:

6. Review the results of the checkup by running the following command:

Example output config map (success)

 spec.param.vmiTimeout: 3m

apiVersion: batch/v1
kind: Job
metadata:
 name: storage-checkup
 namespace: $CHECKUP_NAMESPACE
spec:
 backoffLimit: 0
 template:
 spec:
 serviceAccount: storage-checkup-sa
 restartPolicy: Never
 containers:
 - name: storage-checkup
 image: quay.io/kiagnose/kubevirt-storage-checkup:main
 imagePullPolicy: Always
 env:
 - name: CONFIGMAP_NAMESPACE
 value: $CHECKUP_NAMESPACE
 - name: CONFIGMAP_NAME
 value: storage-checkup-config

$ oc apply -n <target_namespace> -f <storage_configmap_job>.yaml

$ oc wait job storage-checkup -n <target_namespace> --for condition=complete --timeout
10m

$ oc get configmap storage-checkup-config -n <target_namespace> -o yaml

apiVersion: v1
kind: ConfigMap
metadata:
 name: storage-checkup-config
 labels:
 kiagnose/checkup-type: kubevirt-storage
data:
 spec.timeout: 10m
 status.succeeded: "true" 1
 status.failureReason: "" 2
 status.startTimestamp: "2023-07-31T13:14:38Z" 3
 status.completionTimestamp: "2023-07-31T13:19:41Z" 4
 status.result.cnvVersion: 4.17.2 5
 status.result.defaultStorageClass: trident-nfs 6
 status.result.goldenImagesNoDataSource: <data_import_cron_list> 7

CHAPTER 12. MONITORING

333

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Specifies if the checkup is successful (true) or not (false).

The reason for failure if the checkup fails.

The time when the checkup started, in RFC 3339 time format.

The time when the checkup has completed, in RFC 3339 time format.

The OpenShift Virtualization version.

Specifies if there is a default storage class.

The list of golden images whose data source is not ready.

The list of golden images whose data import cron is not up-to-date.

The OpenShift Container Platform version.

Specifies if a PVC of 10Mi has been created and bound by the provisioner.

The list of storage profiles using snapshot-based clone but missing VolumeSnapshotClass.

The list of storage profiles with unknown provisioners.

The list of storage profiles with smart clone support (CSI/snapshot).

The list of storage profiles spec-overriden claimPropertySets.

The list of virtual machines that use the Ceph RBD storage class when the virtualization
storage class exists.

 status.result.goldenImagesNotUpToDate: <data_import_cron_list> 8
 status.result.ocpVersion: 4.17.0 9
 status.result.pvcBound: "true" 10
 status.result.storageProfileMissingVolumeSnapshotClass: <storage_class_list> 11
 status.result.storageProfilesWithEmptyClaimPropertySets: <storage_profile_list> 12
 status.result.storageProfilesWithSmartClone: <storage_profile_list> 13
 status.result.storageProfilesWithSpecClaimPropertySets: <storage_profile_list> 14
 status.result.storageProfilesWithRWX: |-
 ocs-storagecluster-ceph-rbd
 ocs-storagecluster-ceph-rbd-virtualization
 ocs-storagecluster-cephfs
 trident-iscsi
 trident-minio
 trident-nfs
 windows-vms
 status.result.vmBootFromGoldenImage: VMI "vmi-under-test-dhkb8" successfully booted
 status.result.vmHotplugVolume: |-
 VMI "vmi-under-test-dhkb8" hotplug volume ready
 VMI "vmi-under-test-dhkb8" hotplug volume removed
 status.result.vmLiveMigration: VMI "vmi-under-test-dhkb8" migration completed
 status.result.vmVolumeClone: 'DV cloneType: "csi-clone"'
 status.result.vmsWithNonVirtRbdStorageClass: <vm_list> 15
 status.result.vmsWithUnsetEfsStorageClass: <vm_list> 16

OpenShift Container Platform 4.17 Virtualization

334

16 The list of virtual machines that use an Elastic File Store (EFS) storage class where the GID
and UID are not set in the storage class.

7. Delete the job and config map that you previously created by running the following commands:

8. Optional: If you do not plan to run another checkup, delete the ServiceAccount, Role, and
RoleBinding manifest:

12.2.3.3. Running a DPDK checkup by using the command line

Use a predefined checkup to verify that your OpenShift Container Platform cluster node can run a
virtual machine (VM) with a Data Plane Development Kit (DPDK) workload with zero packet loss. The
DPDK checkup runs traffic between a traffic generator and a VM running a test DPDK application.

You run a DPDK checkup by performing the following steps:

1. Create a service account, role, and role bindings for the DPDK checkup.

2. Create a config map to provide the input to run the checkup and to store the results.

3. Create a job to run the checkup.

4. Review the results in the config map.

5. Optional: To rerun the checkup, delete the existing config map and job and then create a new
config map and job.

6. When you are finished, delete the DPDK checkup resources.

Prerequisites

You have installed the OpenShift CLI (oc).

The cluster is configured to run DPDK applications.

The project is configured to run DPDK applications.

Procedure

1. Create a ServiceAccount, Role, and RoleBinding manifest for the DPDK checkup:

Example 12.3. Example service account, role, and rolebinding manifest file

$ oc delete job -n <target_namespace> storage-checkup

$ oc delete config-map -n <target_namespace> storage-checkup-config

$ oc delete -f <storage_sa_roles_rolebinding>.yaml

apiVersion: v1
kind: ServiceAccount
metadata:
 name: dpdk-checkup-sa

CHAPTER 12. MONITORING

335

2. Apply the ServiceAccount, Role, and RoleBinding manifest:

3. Create a ConfigMap manifest that contains the input parameters for the checkup:

Example input config map

apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
 name: kiagnose-configmap-access
rules:
 - apiGroups: [""]
 resources: ["configmaps"]
 verbs: ["get", "update"]

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
 name: kiagnose-configmap-access
subjects:
 - kind: ServiceAccount
 name: dpdk-checkup-sa
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: Role
 name: kiagnose-configmap-access

apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
 name: kubevirt-dpdk-checker
rules:
 - apiGroups: ["kubevirt.io"]
 resources: ["virtualmachineinstances"]
 verbs: ["create", "get", "delete"]
 - apiGroups: ["subresources.kubevirt.io"]
 resources: ["virtualmachineinstances/console"]
 verbs: ["get"]
 - apiGroups: [""]
 resources: ["configmaps"]
 verbs: ["create", "delete"]

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
 name: kubevirt-dpdk-checker
subjects:
 - kind: ServiceAccount
 name: dpdk-checkup-sa
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: Role
 name: kubevirt-dpdk-checker

$ oc apply -n <target_namespace> -f <dpdk_sa_roles_rolebinding>.yaml

OpenShift Container Platform 4.17 Virtualization

336

1

2

3

Example input config map

The name of the NetworkAttachmentDefinition object.

The container disk image for the traffic generator. In this example, the image is pulled from
the upstream Project Quay Container Registry.

The container disk image for the VM under test. In this example, the image is pulled from
the upstream Project Quay Container Registry.

4. Apply the ConfigMap manifest in the target namespace:

5. Create a Job manifest to run the checkup:

Example job manifest

apiVersion: v1
kind: ConfigMap
metadata:
 name: dpdk-checkup-config
 labels:
 kiagnose/checkup-type: kubevirt-dpdk
data:
 spec.timeout: 10m
 spec.param.networkAttachmentDefinitionName: <network_name> 1
 spec.param.trafficGenContainerDiskImage: "quay.io/kiagnose/kubevirt-dpdk-checkup-traffic-
gen:v0.4.0 2
 spec.param.vmUnderTestContainerDiskImage: "quay.io/kiagnose/kubevirt-dpdk-checkup-
vm:v0.4.0" 3

$ oc apply -n <target_namespace> -f <dpdk_config_map>.yaml

apiVersion: batch/v1
kind: Job
metadata:
 name: dpdk-checkup
 labels:
 kiagnose/checkup-type: kubevirt-dpdk
spec:
 backoffLimit: 0
 template:
 spec:
 serviceAccountName: dpdk-checkup-sa
 restartPolicy: Never
 containers:
 - name: dpdk-checkup
 image: registry.redhat.io/container-native-virtualization/kubevirt-dpdk-checkup-
rhel9:v4.17.0
 imagePullPolicy: Always
 securityContext:
 allowPrivilegeEscalation: false
 capabilities:
 drop: ["ALL"]
 runAsNonRoot: true

CHAPTER 12. MONITORING

337

6. Apply the Job manifest:

7. Wait for the job to complete:

8. Review the results of the checkup by running the following command:

Example output config map (success)

 seccompProfile:
 type: "RuntimeDefault"
 env:
 - name: CONFIGMAP_NAMESPACE
 value: <target-namespace>
 - name: CONFIGMAP_NAME
 value: dpdk-checkup-config
 - name: POD_UID
 valueFrom:
 fieldRef:
 fieldPath: metadata.uid

$ oc apply -n <target_namespace> -f <dpdk_job>.yaml

$ oc wait job dpdk-checkup -n <target_namespace> --for condition=complete --timeout 10m

$ oc get configmap dpdk-checkup-config -n <target_namespace> -o yaml

apiVersion: v1
kind: ConfigMap
metadata:
 name: dpdk-checkup-config
 labels:
 kiagnose/checkup-type: kubevirt-dpdk
data:
 spec.timeout: 10m
 spec.param.NetworkAttachmentDefinitionName: "dpdk-network-1"
 spec.param.trafficGenContainerDiskImage: "quay.io/kiagnose/kubevirt-dpdk-checkup-traffic-
gen:v0.4.0"
 spec.param.vmUnderTestContainerDiskImage: "quay.io/kiagnose/kubevirt-dpdk-checkup-
vm:v0.4.0"
 status.succeeded: "true" 1
 status.failureReason: "" 2
 status.startTimestamp: "2023-07-31T13:14:38Z" 3
 status.completionTimestamp: "2023-07-31T13:19:41Z" 4
 status.result.trafficGenSentPackets: "480000000" 5
 status.result.trafficGenOutputErrorPackets: "0" 6
 status.result.trafficGenInputErrorPackets: "0" 7
 status.result.trafficGenActualNodeName: worker-dpdk1 8
 status.result.vmUnderTestActualNodeName: worker-dpdk2 9
 status.result.vmUnderTestReceivedPackets: "480000000" 10
 status.result.vmUnderTestRxDroppedPackets: "0" 11
 status.result.vmUnderTestTxDroppedPackets: "0" 12

OpenShift Container Platform 4.17 Virtualization

338

1

2

3

4

5

6

7

8

9

10

11

12

Specifies if the checkup is successful (true) or not (false).

The reason for failure if the checkup fails.

The time when the checkup started, in RFC 3339 time format.

The time when the checkup has completed, in RFC 3339 time format.

The number of packets sent from the traffic generator.

The number of error packets sent from the traffic generator.

The number of error packets received by the traffic generator.

The node on which the traffic generator VM was scheduled.

The node on which the VM under test was scheduled.

The number of packets received on the VM under test.

The ingress traffic packets that were dropped by the DPDK application.

The egress traffic packets that were dropped from the DPDK application.

9. Delete the job and config map that you previously created by running the following commands:

10. Optional: If you do not plan to run another checkup, delete the ServiceAccount, Role, and
RoleBinding manifest:

12.2.3.3.1. DPDK checkup config map parameters

The following table shows the mandatory and optional parameters that you can set in the data stanza of
the input ConfigMap manifest when you run a cluster DPDK readiness checkup:

Table 12.1. DPDK checkup config map input parameters

Parameter Description Is Mandatory

spec.timeout The time, in minutes, before the
checkup fails.

True

spec.param.networkAttachm
entDefinitionName

The name of the
NetworkAttachmentDefinitio
n object of the SR-IOV NICs
connected.

True

$ oc delete job -n <target_namespace> dpdk-checkup

$ oc delete config-map -n <target_namespace> dpdk-checkup-config

$ oc delete -f <dpdk_sa_roles_rolebinding>.yaml

CHAPTER 12. MONITORING

339

spec.param.trafficGenContai
nerDiskImage

The container disk image for the
traffic generator.

True

spec.param.trafficGenTarget
NodeName

The node on which the traffic
generator VM is to be scheduled.
The node should be configured to
allow DPDK traffic.

False

spec.param.trafficGenPacket
sPerSecond

The number of packets per
second, in kilo (k) or million(m).
The default value is 8m.

False

spec.param.vmUnderTestCo
ntainerDiskImage

The container disk image for the
VM under test.

True

spec.param.vmUnderTestTar
getNodeName

The node on which the VM under
test is to be scheduled. The node
should be configured to allow
DPDK traffic.

False

spec.param.testDuration The duration, in minutes, for which
the traffic generator runs. The
default value is 5 minutes.

False

spec.param.portBandwidthG
bps

The maximum bandwidth of the
SR-IOV NIC. The default value is
10Gbps.

False

spec.param.verbose When set to true, it increases the
verbosity of the checkup log. The
default value is false.

False

Parameter Description Is Mandatory

12.2.3.3.2. Building a container disk image for RHEL virtual machines

You can build a custom Red Hat Enterprise Linux (RHEL) 9 OS image in qcow2 format and use it to
create a container disk image. You can store the container disk image in a registry that is accessible
from your cluster and specify the image location in the spec.param.vmContainerDiskImage attribute
of the DPDK checkup config map.

To build a container disk image, you must create an image builder virtual machine (VM). The image
builder VM is a RHEL 9 VM that can be used to build custom RHEL images.

Prerequisites

The image builder VM must run RHEL 9.4 and must have a minimum of 2 CPU cores, 4 GiB
RAM, and 20 GB of free space in the /var directory.

You have installed the image builder tool and its CLI (composer-cli) on the VM. For more
information, see "Additional resources".

OpenShift Container Platform 4.17 Virtualization

340

You have installed the virt-customize tool:

You have installed the Podman CLI tool (podman).

Procedure

1. Verify that you can build a RHEL 9.4 image:

NOTE

To run the composer-cli commands as non-root, add your user to the weldr or
root groups:

2. Enter the following command to create an image blueprint file in TOML format that contains
the packages to be installed, kernel customizations, and the services to be disabled during boot
time:

dnf install guestfs-tools

composer-cli distros list

usermod -a -G weldr <user>

$ newgrp weldr

$ cat << EOF > dpdk-vm.toml
name = "dpdk_image"
description = "Image to use with the DPDK checkup"
version = "0.0.1"
distro = "rhel-9.4"

[[customizations.user]]
name = "root"
password = "redhat"

[[packages]]
name = "dpdk"

[[packages]]
name = "dpdk-tools"

[[packages]]
name = "driverctl"

[[packages]]
name = "tuned-profiles-cpu-partitioning"

[customizations.kernel]
append = "default_hugepagesz=1GB hugepagesz=1G hugepages=1"

[customizations.services]
disabled = ["NetworkManager-wait-online", "sshd"]
EOF

CHAPTER 12. MONITORING

341

3. Push the blueprint file to the image builder tool by running the following command:

4. Generate the system image by specifying the blueprint name and output file format. The
Universally Unique Identifier (UUID) of the image is displayed when you start the compose
process.

5. Wait for the compose process to complete. The compose status must show FINISHED before
you can continue to the next step.

6. Enter the following command to download the qcow2 image file by specifying its UUID:

7. Create the customization scripts by running the following commands:

8. Use the virt-customize tool to customize the image generated by the image builder tool:

9. To create a Dockerfile that contains all the commands to build the container disk image, enter
the following command:

where:

<UUID>-disk.qcow2

composer-cli blueprints push dpdk-vm.toml

composer-cli compose start dpdk_image qcow2

composer-cli compose status

composer-cli compose image <UUID>

$ cat <<EOF >customize-vm
#!/bin/bash

Setup hugepages mount
mkdir -p /mnt/huge
echo "hugetlbfs /mnt/huge hugetlbfs defaults,pagesize=1GB 0 0" >> /etc/fstab

Create vfio-noiommu.conf
echo "options vfio enable_unsafe_noiommu_mode=1" > /etc/modprobe.d/vfio-noiommu.conf

Enable guest-exec,guest-exec-status on the qemu-guest-agent configuration
sed -i 's/\(--allow-rpcs=[^"]*\)/\1,guest-exec-status,guest-exec/' /etc/sysconfig/qemu-ga

Disable Bracketed-paste mode
echo "set enable-bracketed-paste off" >> /root/.inputrc
EOF

$ virt-customize -a <UUID>-disk.qcow2 --run=customize-vm --selinux-relabel

$ cat << EOF > Dockerfile
FROM scratch
COPY --chown=107:107 <UUID>-disk.qcow2 /disk/
EOF

OpenShift Container Platform 4.17 Virtualization

342

Specifies the name of the custom image in qcow2 format.

10. Build and tag the container by running the following command:

11. Push the container disk image to a registry that is accessible from your cluster by running the
following command:

12. Provide a link to the container disk image in the
spec.param.vmUnderTestContainerDiskImage attribute in the DPDK checkup config map.

12.2.4. Additional resources

Attaching a virtual machine to multiple networks

Using a virtual function in DPDK mode with an Intel NIC

Using SR-IOV and the Node Tuning Operator to achieve a DPDK line rate

Installing image builder

How to register and subscribe a RHEL system to the Red Hat Customer Portal using Red Hat
Subscription Manager

12.3. PROMETHEUS QUERIES FOR VIRTUAL RESOURCES

OpenShift Virtualization provides metrics that you can use to monitor the consumption of cluster
infrastructure resources, including vCPU, network, storage, and guest memory swapping. You can also
use metrics to query live migration status.

12.3.1. Prerequisites

To use the vCPU metric, the schedstats=enable kernel argument must be applied to the
MachineConfig object. This kernel argument enables scheduler statistics used for debugging
and performance tuning and adds a minor additional load to the scheduler. For more
information, see Adding kernel arguments to nodes .

For guest memory swapping queries to return data, memory swapping must be enabled on the
virtual guests.

12.3.2. Querying metrics

The OpenShift Container Platform monitoring dashboard enables you to run Prometheus Query
Language (PromQL) queries to examine metrics visualized on a plot. This functionality provides
information about the state of a cluster and any user-defined workloads that you are monitoring.

As a cluster administrator, you can query metrics for all core OpenShift Container Platform and user-
defined projects.

As a developer, you must specify a project name when querying metrics. You must have the required
privileges to view metrics for the selected project.

$ podman build . -t dpdk-rhel:latest

$ podman push dpdk-rhel:latest

CHAPTER 12. MONITORING

343

https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/networking/#example-vf-use-in-dpdk-mode-intel_using-dpdk-and-rdma
https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/networking/#nw-example-dpdk-line-rate_using-dpdk-and-rdma
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/composing_a_customized_rhel_system_image/installing-composer_composing-a-customized-rhel-system-image
https://access.redhat.com/solutions/253273
https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/machine_configuration/#nodes-nodes-kernel-arguments_machine-configs-configure

12.3.2.1. Querying metrics for all projects as a cluster administrator

As a cluster administrator or as a user with view permissions for all projects, you can access metrics for all
default OpenShift Container Platform and user-defined projects in the Metrics UI.

Prerequisites

You have access to the cluster as a user with the cluster-admin cluster role or with view
permissions for all projects.

You have installed the OpenShift CLI (oc).

Procedure

1. From the Administrator perspective in the OpenShift Container Platform web console, select
Observe → Metrics.

2. To add one or more queries, do any of the following:

Option Description

Create a custom query. Add your Prometheus Query Language
(PromQL) query to the Expression field.

As you type a PromQL expression,
autocomplete suggestions appear in a drop-
down list. These suggestions include functions,
metrics, labels, and time tokens. You can use the
keyboard arrows to select one of these
suggested items and then press Enter to add the
item to your expression. You can also move your
mouse pointer over a suggested item to view a
brief description of that item.

Add multiple queries. Select Add query.

Duplicate an existing query.

Select the Options menu next to the
query, then choose Duplicate query.

Disable a query from being run.

Select the Options menu next to the
query and choose Disable query.

3. To run queries that you created, select Run queries. The metrics from the queries are visualized
on the plot. If a query is invalid, the UI shows an error message.

NOTE

OpenShift Container Platform 4.17 Virtualization

344

NOTE

Queries that operate on large amounts of data might time out or overload the
browser when drawing time series graphs. To avoid this, select Hide graph and
calibrate your query using only the metrics table. Then, after finding a feasible
query, enable the plot to draw the graphs.

NOTE

By default, the query table shows an expanded view that lists every metric and its
current value. You can select ˅ to minimize the expanded view for a query.

4. Optional: The page URL now contains the queries you ran. To use this set of queries again in the
future, save this URL.

5. Explore the visualized metrics. Initially, all metrics from all enabled queries are shown on the plot.
You can select which metrics are shown by doing any of the following:

Option Description

Hide all metrics from a query.

Click the Options menu for the query and
click Hide all series.

Hide a specific metric. Go to the query table and click the colored
square near the metric name.

Zoom into the plot and change the time range. Either:

Visually select the time range by clicking and
dragging on the plot horizontally.

Use the menu in the left upper corner to
select the time range.

Reset the time range. Select Reset zoom.

Display outputs for all queries at a specific point
in time.

Hold the mouse cursor on the plot at that point.
The query outputs will appear in a pop-up box.

Hide the plot. Select Hide graph.

12.3.2.2. Querying metrics for user-defined projects as a developer

You can access metrics for a user-defined project as a developer or as a user with view permissions for
the project.

In the Developer perspective, the Metrics UI includes some predefined CPU, memory, bandwidth, and
network packet queries for the selected project. You can also run custom Prometheus Query Language
(PromQL) queries for CPU, memory, bandwidth, network packet and application metrics for the project.

NOTE

CHAPTER 12. MONITORING

345

NOTE

Developers can only use the Developer perspective and not the Administrator
perspective. As a developer, you can only query metrics for one project at a time.

Prerequisites

You have access to the cluster as a developer or as a user with view permissions for the project
that you are viewing metrics for.

You have enabled monitoring for user-defined projects.

You have deployed a service in a user-defined project.

You have created a ServiceMonitor custom resource definition (CRD) for the service to define
how the service is monitored.

Procedure

1. From the Developer perspective in the OpenShift Container Platform web console, select
Observe → Metrics.

2. Select the project that you want to view metrics for in the Project: list.

3. Select a query from the Select query list, or create a custom PromQL query based on the
selected query by selecting Show PromQL. The metrics from the queries are visualized on the
plot.

NOTE

In the Developer perspective, you can only run one query at a time.

4. Explore the visualized metrics by doing any of the following:

Option Description

Zoom into the plot and change the time range. Either:

Visually select the time range by clicking and
dragging on the plot horizontally.

Use the menu in the left upper corner to
select the time range.

Reset the time range. Select Reset zoom.

Display outputs for all queries at a specific point
in time.

Hold the mouse cursor on the plot at that point.
The query outputs appear in a pop-up box.

12.3.3. Virtualization metrics

The following metric descriptions include example Prometheus Query Language (PromQL) queries.

OpenShift Container Platform 4.17 Virtualization

346

1

1

The following metric descriptions include example Prometheus Query Language (PromQL) queries.
These metrics are not an API and might change between versions. For a complete list of virtualization
metrics, see KubeVirt components metrics.

NOTE

The following examples use topk queries that specify a time period. If virtual machines
are deleted during that time period, they can still appear in the query output.

12.3.3.1. vCPU metrics

The following query can identify virtual machines that are waiting for Input/Output (I/O):

kubevirt_vmi_vcpu_wait_seconds_total

Returns the wait time (in seconds) for a virtual machine’s vCPU. Type: Counter.

A value above '0' means that the vCPU wants to run, but the host scheduler cannot run it yet. This
inability to run indicates that there is an issue with I/O.

NOTE

To query the vCPU metric, the schedstats=enable kernel argument must first be applied
to the MachineConfig object. This kernel argument enables scheduler statistics used for
debugging and performance tuning and adds a minor additional load to the scheduler.

Example vCPU wait time query

This query returns the top 3 VMs waiting for I/O at every given moment over a six-minute time
period.

12.3.3.2. Network metrics

The following queries can identify virtual machines that are saturating the network:

kubevirt_vmi_network_receive_bytes_total

Returns the total amount of traffic received (in bytes) on the virtual machine’s network. Type:
Counter.

kubevirt_vmi_network_transmit_bytes_total

Returns the total amount of traffic transmitted (in bytes) on the virtual machine’s network. Type:
Counter.

Example network traffic query

This query returns the top 3 VMs transmitting the most network traffic at every given moment over
a six-minute time period.

topk(3, sum by (name, namespace) (rate(kubevirt_vmi_vcpu_wait_seconds_total[6m]))) > 0 1

topk(3, sum by (name, namespace) (rate(kubevirt_vmi_network_receive_bytes_total[6m])) + sum by
(name, namespace) (rate(kubevirt_vmi_network_transmit_bytes_total[6m]))) > 0 1

CHAPTER 12. MONITORING

347

https://github.com/kubevirt/monitoring/blob/main/docs/metrics.md

1

1

1

12.3.3.3. Storage metrics

12.3.3.3.1. Storage-related traffic

The following queries can identify VMs that are writing large amounts of data:

kubevirt_vmi_storage_read_traffic_bytes_total

Returns the total amount (in bytes) of the virtual machine’s storage-related traffic. Type: Counter.

kubevirt_vmi_storage_write_traffic_bytes_total

Returns the total amount of storage writes (in bytes) of the virtual machine’s storage-related traffic.
Type: Counter.

Example storage-related traffic query

This query returns the top 3 VMs performing the most storage traffic at every given moment over a
six-minute time period.

12.3.3.3.2. Storage snapshot data

kubevirt_vmsnapshot_disks_restored_from_source

Returns the total number of virtual machine disks restored from the source virtual machine. Type:
Gauge.

kubevirt_vmsnapshot_disks_restored_from_source_bytes

Returns the amount of space in bytes restored from the source virtual machine. Type: Gauge.

Examples of storage snapshot data queries

This query returns the total number of virtual machine disks restored from the source virtual
machine.

This query returns the amount of space in bytes restored from the source virtual machine.

12.3.3.3.3. I/O performance

The following queries can determine the I/O performance of storage devices:

kubevirt_vmi_storage_iops_read_total

Returns the amount of write I/O operations the virtual machine is performing per second. Type:
Counter.

topk(3, sum by (name, namespace) (rate(kubevirt_vmi_storage_read_traffic_bytes_total[6m])) + sum
by (name, namespace) (rate(kubevirt_vmi_storage_write_traffic_bytes_total[6m]))) > 0 1

kubevirt_vmsnapshot_disks_restored_from_source{vm_name="simple-vm",
vm_namespace="default"} 1

kubevirt_vmsnapshot_disks_restored_from_source_bytes{vm_name="simple-vm",
vm_namespace="default"} 1

OpenShift Container Platform 4.17 Virtualization

348

1

1

kubevirt_vmi_storage_iops_write_total

Returns the amount of read I/O operations the virtual machine is performing per second. Type:
Counter.

Example I/O performance query

This query returns the top 3 VMs performing the most I/O operations per second at every given
moment over a six-minute time period.

12.3.3.4. Guest memory swapping metrics

The following queries can identify which swap-enabled guests are performing the most memory
swapping:

kubevirt_vmi_memory_swap_in_traffic_bytes

Returns the total amount (in bytes) of memory the virtual guest is swapping in. Type: Gauge.

kubevirt_vmi_memory_swap_out_traffic_bytes

Returns the total amount (in bytes) of memory the virtual guest is swapping out. Type: Gauge.

Example memory swapping query

This query returns the top 3 VMs where the guest is performing the most memory swapping at
every given moment over a six-minute time period.

NOTE

Memory swapping indicates that the virtual machine is under memory pressure.
Increasing the memory allocation of the virtual machine can mitigate this issue.

12.3.3.5. Live migration metrics

The following metrics can be queried to show live migration status:

kubevirt_vmi_migration_data_processed_bytes

The amount of guest operating system data that has migrated to the new virtual machine (VM).
Type: Gauge.

kubevirt_vmi_migration_data_remaining_bytes

The amount of guest operating system data that remains to be migrated. Type: Gauge.

kubevirt_vmi_migration_memory_transfer_rate_bytes

The rate at which memory is becoming dirty in the guest operating system. Dirty memory is data that
has been changed but not yet written to disk. Type: Gauge.

kubevirt_vmi_migrations_in_pending_phase

topk(3, sum by (name, namespace) (rate(kubevirt_vmi_storage_iops_read_total[6m])) + sum by
(name, namespace) (rate(kubevirt_vmi_storage_iops_write_total[6m]))) > 0 1

topk(3, sum by (name, namespace) (rate(kubevirt_vmi_memory_swap_in_traffic_bytes[6m])) + sum
by (name, namespace) (rate(kubevirt_vmi_memory_swap_out_traffic_bytes[6m]))) > 0 1

CHAPTER 12. MONITORING

349

The number of pending migrations. Type: Gauge.

kubevirt_vmi_migrations_in_scheduling_phase

The number of scheduling migrations. Type: Gauge.

kubevirt_vmi_migrations_in_running_phase

The number of running migrations. Type: Gauge.

kubevirt_vmi_migration_succeeded

The number of successfully completed migrations. Type: Gauge.

kubevirt_vmi_migration_failed

The number of failed migrations. Type: Gauge.

12.3.4. Additional resources

Monitoring overview

Querying Prometheus

Prometheus query examples

12.4. EXPOSING CUSTOM METRICS FOR VIRTUAL MACHINES

OpenShift Container Platform includes a preconfigured, preinstalled, and self-updating monitoring
stack that provides monitoring for core platform components. This monitoring stack is based on the
Prometheus monitoring system. Prometheus is a time-series database and a rule evaluation engine for
metrics.

In addition to using the OpenShift Container Platform monitoring stack, you can enable monitoring for
user-defined projects by using the CLI and query custom metrics that are exposed for virtual machines
through the node-exporter service.

12.4.1. Configuring the node exporter service

The node-exporter agent is deployed on every virtual machine in the cluster from which you want to
collect metrics. Configure the node-exporter agent as a service to expose internal metrics and
processes that are associated with virtual machines.

Prerequisites

Install the OpenShift Container Platform CLI oc.

Log in to the cluster as a user with cluster-admin privileges.

Create the cluster-monitoring-config ConfigMap object in the openshift-monitoring project.

Configure the user-workload-monitoring-config ConfigMap object in the openshift-user-
workload-monitoring project by setting enableUserWorkload to true.

Procedure

1. Create the Service YAML file. In the following example, the file is called node-exporter-
service.yaml.

kind: Service

OpenShift Container Platform 4.17 Virtualization

350

https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/monitoring/#monitoring-overview
https://prometheus.io/docs/prometheus/latest/querying/basics/
https://prometheus.io/docs/prometheus/latest/querying/examples/

1

2

3

4

5

6

7

The node-exporter service that exposes the metrics from the virtual machines.

The namespace where the service is created.

The label for the service. The ServiceMonitor uses this label to match this service.

The name given to the port that exposes metrics on port 9100 for the ClusterIP service.

The target port used by node-exporter-service to listen for requests.

The TCP port number of the virtual machine that is configured with the monitor label.

The label used to match the virtual machine’s pods. In this example, any virtual machine’s
pod with the label monitor and a value of metrics will be matched.

2. Create the node-exporter service:

12.4.2. Configuring a virtual machine with the node exporter service

Download the node-exporter file on to the virtual machine. Then, create a systemd service that runs
the node-exporter service when the virtual machine boots.

Prerequisites

The pods for the component are running in the openshift-user-workload-monitoring project.

Grant the monitoring-edit role to users who need to monitor this user-defined project.

Procedure

1. Log on to the virtual machine.

2. Download the node-exporter file on to the virtual machine by using the directory path that
applies to the version of node-exporter file.

apiVersion: v1
metadata:
 name: node-exporter-service 1
 namespace: dynamation 2
 labels:
 servicetype: metrics 3
spec:
 ports:
 - name: exmet 4
 protocol: TCP
 port: 9100 5
 targetPort: 9100 6
 type: ClusterIP
 selector:
 monitor: metrics 7

$ oc create -f node-exporter-service.yaml

CHAPTER 12. MONITORING

351

3. Extract the executable and place it in the /usr/bin directory.

4. Create a node_exporter.service file in this directory path: /etc/systemd/system. This systemd
service file runs the node-exporter service when the virtual machine reboots.

5. Enable and start the systemd service.

Verification

Verify that the node-exporter agent is reporting metrics from the virtual machine.

Example output

12.4.3. Creating a custom monitoring label for virtual machines

To enable queries to multiple virtual machines from a single service, add a custom label in the virtual
machine’s YAML file.

Prerequisites

Install the OpenShift Container Platform CLI oc.

$ wget
https://github.com/prometheus/node_exporter/releases/download/v1.3.1/node_exporter-
1.3.1.linux-amd64.tar.gz

$ sudo tar xvf node_exporter-1.3.1.linux-amd64.tar.gz \
 --directory /usr/bin --strip 1 "*/node_exporter"

[Unit]
Description=Prometheus Metrics Exporter
After=network.target
StartLimitIntervalSec=0

[Service]
Type=simple
Restart=always
RestartSec=1
User=root
ExecStart=/usr/bin/node_exporter

[Install]
WantedBy=multi-user.target

$ sudo systemctl enable node_exporter.service
$ sudo systemctl start node_exporter.service

$ curl http://localhost:9100/metrics

go_gc_duration_seconds{quantile="0"} 1.5244e-05
go_gc_duration_seconds{quantile="0.25"} 3.0449e-05
go_gc_duration_seconds{quantile="0.5"} 3.7913e-05

OpenShift Container Platform 4.17 Virtualization

352

Log in as a user with cluster-admin privileges.

Access to the web console for stop and restart a virtual machine.

Procedure

1. Edit the template spec of your virtual machine configuration file. In this example, the label
monitor has the value metrics.

2. Stop and restart the virtual machine to create a new pod with the label name given to the
monitor label.

12.4.3.1. Querying the node-exporter service for metrics

Metrics are exposed for virtual machines through an HTTP service endpoint under the /metrics
canonical name. When you query for metrics, Prometheus directly scrapes the metrics from the metrics
endpoint exposed by the virtual machines and presents these metrics for viewing.

Prerequisites

You have access to the cluster as a user with cluster-admin privileges or the monitoring-edit
role.

You have enabled monitoring for the user-defined project by configuring the node-exporter
service.

Procedure

1. Obtain the HTTP service endpoint by specifying the namespace for the service:

2. To list all available metrics for the node-exporter service, query the metrics resource.

Example output

spec:
 template:
 metadata:
 labels:
 monitor: metrics

$ oc get service -n <namespace> <node-exporter-service>

$ curl http://<172.30.226.162:9100>/metrics | grep -vE "^#|^$"

node_arp_entries{device="eth0"} 1
node_boot_time_seconds 1.643153218e+09
node_context_switches_total 4.4938158e+07
node_cooling_device_cur_state{name="0",type="Processor"} 0
node_cooling_device_max_state{name="0",type="Processor"} 0
node_cpu_guest_seconds_total{cpu="0",mode="nice"} 0
node_cpu_guest_seconds_total{cpu="0",mode="user"} 0
node_cpu_seconds_total{cpu="0",mode="idle"} 1.10586485e+06
node_cpu_seconds_total{cpu="0",mode="iowait"} 37.61
node_cpu_seconds_total{cpu="0",mode="irq"} 233.91

CHAPTER 12. MONITORING

353

12.4.4. Creating a ServiceMonitor resource for the node exporter service

You can use a Prometheus client library and scrape metrics from the /metrics endpoint to access and
view the metrics exposed by the node-exporter service. Use a ServiceMonitor custom resource
definition (CRD) to monitor the node exporter service.

Prerequisites

You have access to the cluster as a user with cluster-admin privileges or the monitoring-edit
role.

You have enabled monitoring for the user-defined project by configuring the node-exporter
service.

Procedure

1. Create a YAML file for the ServiceMonitor resource configuration. In this example, the service

node_cpu_seconds_total{cpu="0",mode="nice"} 551.47
node_cpu_seconds_total{cpu="0",mode="softirq"} 87.3
node_cpu_seconds_total{cpu="0",mode="steal"} 86.12
node_cpu_seconds_total{cpu="0",mode="system"} 464.15
node_cpu_seconds_total{cpu="0",mode="user"} 1075.2
node_disk_discard_time_seconds_total{device="vda"} 0
node_disk_discard_time_seconds_total{device="vdb"} 0
node_disk_discarded_sectors_total{device="vda"} 0
node_disk_discarded_sectors_total{device="vdb"} 0
node_disk_discards_completed_total{device="vda"} 0
node_disk_discards_completed_total{device="vdb"} 0
node_disk_discards_merged_total{device="vda"} 0
node_disk_discards_merged_total{device="vdb"} 0
node_disk_info{device="vda",major="252",minor="0"} 1
node_disk_info{device="vdb",major="252",minor="16"} 1
node_disk_io_now{device="vda"} 0
node_disk_io_now{device="vdb"} 0
node_disk_io_time_seconds_total{device="vda"} 174
node_disk_io_time_seconds_total{device="vdb"} 0.054
node_disk_io_time_weighted_seconds_total{device="vda"} 259.79200000000003
node_disk_io_time_weighted_seconds_total{device="vdb"} 0.039
node_disk_read_bytes_total{device="vda"} 3.71867136e+08
node_disk_read_bytes_total{device="vdb"} 366592
node_disk_read_time_seconds_total{device="vda"} 19.128
node_disk_read_time_seconds_total{device="vdb"} 0.039
node_disk_reads_completed_total{device="vda"} 5619
node_disk_reads_completed_total{device="vdb"} 96
node_disk_reads_merged_total{device="vda"} 5
node_disk_reads_merged_total{device="vdb"} 0
node_disk_write_time_seconds_total{device="vda"} 240.66400000000002
node_disk_write_time_seconds_total{device="vdb"} 0
node_disk_writes_completed_total{device="vda"} 71584
node_disk_writes_completed_total{device="vdb"} 0
node_disk_writes_merged_total{device="vda"} 19761
node_disk_writes_merged_total{device="vdb"} 0
node_disk_written_bytes_total{device="vda"} 2.007924224e+09
node_disk_written_bytes_total{device="vdb"} 0

OpenShift Container Platform 4.17 Virtualization

354

1

2

3

4

1. Create a YAML file for the ServiceMonitor resource configuration. In this example, the service
monitor matches any service with the label metrics and queries the exmet port every 30
seconds.

The name of the ServiceMonitor.

The namespace where the ServiceMonitor is created.

The interval at which the port will be queried.

The name of the port that is queried every 30 seconds

2. Create the ServiceMonitor configuration for the node-exporter service.

12.4.4.1. Accessing the node exporter service outside the cluster

You can access the node-exporter service outside the cluster and view the exposed metrics.

Prerequisites

You have access to the cluster as a user with cluster-admin privileges or the monitoring-edit
role.

You have enabled monitoring for the user-defined project by configuring the node-exporter
service.

Procedure

1. Expose the node-exporter service.

2. Obtain the FQDN (Fully Qualified Domain Name) for the route.

apiVersion: monitoring.coreos.com/v1
kind: ServiceMonitor
metadata:
 labels:
 k8s-app: node-exporter-metrics-monitor
 name: node-exporter-metrics-monitor 1
 namespace: dynamation 2
spec:
 endpoints:
 - interval: 30s 3
 port: exmet 4
 scheme: http
 selector:
 matchLabels:
 servicetype: metrics

$ oc create -f node-exporter-metrics-monitor.yaml

$ oc expose service -n <namespace> <node_exporter_service_name>

$ oc get route -o=custom-columns=NAME:.metadata.name,DNS:.spec.host

CHAPTER 12. MONITORING

355

Example output

3. Use the curl command to display metrics for the node-exporter service.

Example output

12.4.5. Additional resources

Configuring the monitoring stack

Enabling monitoring for user-defined projects

Managing metrics

Reviewing monitoring dashboards

Monitoring application health by using health checks

Creating and using config maps

Controlling virtual machine states

12.5. EXPOSING DOWNWARD METRICS FOR VIRTUAL MACHINES

As an administrator, you can expose a limited set of host and virtual machine (VM) metrics to a guest VM
by first enabling a downwardMetrics feature gate and then configuring a downwardMetrics device.

Users can view the metrics results by using the command line or the vm-dump-metrics tool.

NOTE

On Red Hat Enterprise Linux (RHEL) 9, use the command line to view downward metrics.
See Viewing downward metrics by using the command line .

The vm-dump-metrics tool is not supported on the Red Hat Enterprise Linux (RHEL) 9
platform.

12.5.1. Enabling or disabling the downwardMetrics feature gate

You can enable or disable the downwardMetrics feature gate by performing either of the following
actions:

NAME DNS
node-exporter-service node-exporter-service-dynamation.apps.cluster.example.org

$ curl -s http://node-exporter-service-dynamation.apps.cluster.example.org/metrics

go_gc_duration_seconds{quantile="0"} 1.5382e-05
go_gc_duration_seconds{quantile="0.25"} 3.1163e-05
go_gc_duration_seconds{quantile="0.5"} 3.8546e-05
go_gc_duration_seconds{quantile="0.75"} 4.9139e-05
go_gc_duration_seconds{quantile="1"} 0.000189423

OpenShift Container Platform 4.17 Virtualization

356

https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/monitoring/#configuring-the-monitoring-stack
https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/monitoring/#enabling-monitoring-for-user-defined-projects
https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/monitoring/#managing-metrics
https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/monitoring/#reviewing-monitoring-dashboards
https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/building_applications/#application-health
https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/nodes/#nodes-pods-configmaps

Editing the HyperConverged custom resource (CR) in your default editor

Using the command line

12.5.1.1. Enabling or disabling the downward metrics feature gate in a YAML file

To expose downward metrics for a host virtual machine, you can enable the downwardMetrics feature
gate by editing a YAML file.

Prerequisites

You must have administrator privileges to enable the feature gate.

Procedure

1. Open the HyperConverged custom resource (CR) in your default editor by running the
following command:

2. Choose to enable or disable the downwardMetrics feature gate as follows:

To enable the downwardMetrics feature gate, add and then set
spec.featureGates.downwardMetrics to true. For example:

To disable the downwardMetrics feature gate, set spec.featureGates.downwardMetrics
to false. For example:

12.5.1.2. Enabling or disabling the downward metrics feature gate from the command line

To expose downward metrics for a host virtual machine, you can enable the downwardMetrics feature
gate by using the command line.

Prerequisites

$ oc edit hyperconverged kubevirt-hyperconverged -n openshift-cnv

apiVersion: hco.kubevirt.io/v1beta1
kind: HyperConverged
metadata:
 name: kubevirt-hyperconverged
 namespace: openshift-cnv
spec:
 featureGates:
 downwardMetrics: true
...

apiVersion: hco.kubevirt.io/v1beta1
kind: HyperConverged
metadata:
 name: kubevirt-hyperconverged
 namespace: openshift-cnv
spec:
 featureGates:
 downwardMetrics: false
...

CHAPTER 12. MONITORING

357

You must have administrator privileges to enable the feature gate.

Procedure

Choose to enable or disable the downwardMetrics feature gate as follows:

Enable the downwardMetrics feature gate by running the command shown in the following
example:

Disable the downwardMetrics feature gate by running the command shown in the
following example:

12.5.2. Configuring a downward metrics device

You enable the capturing of downward metrics for a host VM by creating a configuration file that
includes a downwardMetrics device. Adding this device establishes that the metrics are exposed
through a virtio-serial port.

Prerequisites

You must first enable the downwardMetrics feature gate.

Procedure

Edit or create a YAML file that includes a downwardMetrics device, as shown in the following
example:

Example downwardMetrics configuration file

$ oc patch hco kubevirt-hyperconverged -n openshift-cnv \
 --type json -p '[{"op": "replace", "path": \
 "/spec/featureGates/downwardMetrics" \
 "value": true}]'

$ oc patch hco kubevirt-hyperconverged -n openshift-cnv \
 --type json -p '[{"op": "replace", "path": \
 "/spec/featureGates/downwardMetrics" \
 "value": false}]'

apiVersion: kubevirt.io/v1
kind: VirtualMachine
metadata:
 name: fedora
 namespace: default
spec:
 dataVolumeTemplates:
 - metadata:
 name: fedora-volume
 spec:
 sourceRef:
 kind: DataSource
 name: fedora
 namespace: openshift-virtualization-os-images
 storage:

OpenShift Container Platform 4.17 Virtualization

358

1

2

The downwardMetrics device.

The password for the fedora user.

12.5.3. Viewing downward metrics

You can view downward metrics by using either of the following options:

The command line interface (CLI)

The vm-dump-metrics tool

NOTE

On Red Hat Enterprise Linux (RHEL) 9, use the command line to view downward metrics.
The vm-dump-metrics tool is not supported on the Red Hat Enterprise Linux (RHEL) 9
platform.

12.5.3.1. Viewing downward metrics by using the command line

You can view downward metrics by entering a command from inside a guest virtual machine (VM).

Procedure

Run the following commands:

 resources: {}
 storageClassName: hostpath-csi-basic
 instancetype:
 name: u1.medium
 preference:
 name: fedora
 running: true
 template:
 metadata:
 labels:
 app.kubernetes.io/name: headless
 spec:
 domain:
 devices:
 downwardMetrics: {} 1
 subdomain: headless
 volumes:
 - dataVolume:
 name: fedora-volume
 name: rootdisk
 - cloudInitNoCloud:
 userData: |
 #cloud-config
 chpasswd:
 expire: false
 password: '<password>' 2
 user: fedora
 name: cloudinitdisk

CHAPTER 12. MONITORING

359

12.5.3.2. Viewing downward metrics by using the vm-dump-metrics tool

To view downward metrics, install the vm-dump-metrics tool and then use the tool to expose the
metrics results.

NOTE

On Red Hat Enterprise Linux (RHEL) 9, use the command line to view downward metrics.
The vm-dump-metrics tool is not supported on the Red Hat Enterprise Linux (RHEL) 9
platform.

Procedure

1. Install the vm-dump-metrics tool by running the following command:

2. Retrieve the metrics results by running the following command:

Example output

12.6. VIRTUAL MACHINE HEALTH CHECKS

You can configure virtual machine (VM) health checks by defining readiness and liveness probes in the
VirtualMachine resource.

12.6.1. About readiness and liveness probes

Use readiness and liveness probes to detect and handle unhealthy virtual machines (VMs). You can
include one or more probes in the specification of the VM to ensure that traffic does not reach a VM
that is not ready for it and that a new VM is created when a VM becomes unresponsive.

$ sudo sh -c 'printf "GET /metrics/XML\n\n" > /dev/virtio-ports/org.github.vhostmd.1'

$ sudo cat /dev/virtio-ports/org.github.vhostmd.1

$ sudo dnf install -y vm-dump-metrics

$ sudo vm-dump-metrics

<metrics>
 <metric type="string" context="host">
 <name>HostName</name>
 <value>node01</value>
[...]
 <metric type="int64" context="host" unit="s">
 <name>Time</name>
 <value>1619008605</value>
 </metric>
 <metric type="string" context="host">
 <name>VirtualizationVendor</name>
 <value>kubevirt.io</value>
 </metric>
</metrics>

OpenShift Container Platform 4.17 Virtualization

360

A readiness probe determines whether a VM is ready to accept service requests. If the probe fails, the
VM is removed from the list of available endpoints until the VM is ready.

A liveness probe determines whether a VM is responsive. If the probe fails, the VM is deleted and a new
VM is created to restore responsiveness.

You can configure readiness and liveness probes by setting the spec.readinessProbe and the
spec.livenessProbe fields of the VirtualMachine object. These fields support the following tests:

HTTP GET

The probe determines the health of the VM by using a web hook. The test is successful if the HTTP
response code is between 200 and 399. You can use an HTTP GET test with applications that return
HTTP status codes when they are completely initialized.

TCP socket

The probe attempts to open a socket to the VM. The VM is only considered healthy if the probe can
establish a connection. You can use a TCP socket test with applications that do not start listening
until initialization is complete.

Guest agent ping

The probe uses the guest-ping command to determine if the QEMU guest agent is running on the
virtual machine.

12.6.1.1. Defining an HTTP readiness probe

Define an HTTP readiness probe by setting the spec.readinessProbe.httpGet field of the virtual
machine (VM) configuration.

Procedure

1. Include details of the readiness probe in the VM configuration file.

Sample readiness probe with an HTTP GET test

apiVersion: kubevirt.io/v1
kind: VirtualMachine
metadata:
 annotations:
 name: fedora-vm
 namespace: example-namespace
...
spec:
 template:
 spec:
 readinessProbe:
 httpGet: 1
 port: 1500 2
 path: /healthz 3
 httpHeaders:
 - name: Custom-Header
 value: Awesome
 initialDelaySeconds: 120 4
 periodSeconds: 20 5
 timeoutSeconds: 10 6

CHAPTER 12. MONITORING

361

1

2

3

4

5

6

7

8

The HTTP GET request to perform to connect to the VM.

The port of the VM that the probe queries. In the above example, the probe queries port
1500.

The path to access on the HTTP server. In the above example, if the handler for the
server’s /healthz path returns a success code, the VM is considered to be healthy. If the
handler returns a failure code, the VM is removed from the list of available endpoints.

The time, in seconds, after the VM starts before the readiness probe is initiated.

The delay, in seconds, between performing probes. The default delay is 10 seconds. This
value must be greater than timeoutSeconds.

The number of seconds of inactivity after which the probe times out and the VM is
assumed to have failed. The default value is 1. This value must be lower than
periodSeconds.

The number of times that the probe is allowed to fail. The default is 3. After the specified
number of attempts, the pod is marked Unready.

The number of times that the probe must report success, after a failure, to be considered
successful. The default is 1.

2. Create the VM by running the following command:

12.6.1.2. Defining a TCP readiness probe

Define a TCP readiness probe by setting the spec.readinessProbe.tcpSocket field of the virtual
machine (VM) configuration.

Procedure

1. Include details of the TCP readiness probe in the VM configuration file.

Sample readiness probe with a TCP socket test

 failureThreshold: 3 7
 successThreshold: 3 8
...

$ oc create -f <file_name>.yaml

apiVersion: kubevirt.io/v1
kind: VirtualMachine
metadata:
 annotations:
 name: fedora-vm
 namespace: example-namespace
...
spec:
 template:
 spec:
 readinessProbe:

OpenShift Container Platform 4.17 Virtualization

362

1

2

3

4

5

The time, in seconds, after the VM starts before the readiness probe is initiated.

The delay, in seconds, between performing probes. The default delay is 10 seconds. This
value must be greater than timeoutSeconds.

The TCP action to perform.

The port of the VM that the probe queries.

The number of seconds of inactivity after which the probe times out and the VM is
assumed to have failed. The default value is 1. This value must be lower than
periodSeconds.

2. Create the VM by running the following command:

12.6.1.3. Defining an HTTP liveness probe

Define an HTTP liveness probe by setting the spec.livenessProbe.httpGet field of the virtual machine
(VM) configuration. You can define both HTTP and TCP tests for liveness probes in the same way as
readiness probes. This procedure configures a sample liveness probe with an HTTP GET test.

Procedure

1. Include details of the HTTP liveness probe in the VM configuration file.

Sample liveness probe with an HTTP GET test

 initialDelaySeconds: 120 1
 periodSeconds: 20 2
 tcpSocket: 3
 port: 1500 4
 timeoutSeconds: 10 5
...

$ oc create -f <file_name>.yaml

apiVersion: kubevirt.io/v1
kind: VirtualMachine
metadata:
 annotations:
 name: fedora-vm
 namespace: example-namespace
...
spec:
 template:
 spec:
 livenessProbe:
 initialDelaySeconds: 120 1
 periodSeconds: 20 2
 httpGet: 3
 port: 1500 4
 path: /healthz 5
 httpHeaders:

CHAPTER 12. MONITORING

363

1

2

3

4

5

6

The time, in seconds, after the VM starts before the liveness probe is initiated.

The delay, in seconds, between performing probes. The default delay is 10 seconds. This
value must be greater than timeoutSeconds.

The HTTP GET request to perform to connect to the VM.

The port of the VM that the probe queries. In the above example, the probe queries port
1500. The VM installs and runs a minimal HTTP server on port 1500 via cloud-init.

The path to access on the HTTP server. In the above example, if the handler for the
server’s /healthz path returns a success code, the VM is considered to be healthy. If the
handler returns a failure code, the VM is deleted and a new VM is created.

The number of seconds of inactivity after which the probe times out and the VM is
assumed to have failed. The default value is 1. This value must be lower than
periodSeconds.

2. Create the VM by running the following command:

12.6.2. Defining a watchdog

You can define a watchdog to monitor the health of the guest operating system by performing the
following steps:

1. Configure a watchdog device for the virtual machine (VM).

2. Install the watchdog agent on the guest.

The watchdog device monitors the agent and performs one of the following actions if the guest
operating system is unresponsive:

poweroff: The VM powers down immediately. If spec.running is set to true or
spec.runStrategy is not set to manual, then the VM reboots.

reset: The VM reboots in place and the guest operating system cannot react.

NOTE

The reboot time might cause liveness probes to time out. If cluster-level
protections detect a failed liveness probe, the VM might be forcibly rescheduled,
increasing the reboot time.

shutdown: The VM gracefully powers down by stopping all services.

NOTE

 - name: Custom-Header
 value: Awesome
 timeoutSeconds: 10 6
...

$ oc create -f <file_name>.yaml

OpenShift Container Platform 4.17 Virtualization

364

1

NOTE

Watchdog is not available for Windows VMs.

12.6.2.1. Configuring a watchdog device for the virtual machine

You configure a watchdog device for the virtual machine (VM).

Prerequisites

The VM must have kernel support for an i6300esb watchdog device. Red Hat Enterprise Linux
(RHEL) images support i6300esb.

Procedure

1. Create a YAML file with the following contents:

Specify poweroff, reset, or shutdown.

The example above configures the i6300esb watchdog device on a RHEL8 VM with the
poweroff action and exposes the device as /dev/watchdog.

This device can now be used by the watchdog binary.

2. Apply the YAML file to your cluster by running the following command:

IMPORTANT

This procedure is provided for testing watchdog functionality only and must not be run on
production machines.

apiVersion: kubevirt.io/v1
kind: VirtualMachine
metadata:
 labels:
 kubevirt.io/vm: vm2-rhel84-watchdog
 name: <vm-name>
spec:
 running: false
 template:
 metadata:
 labels:
 kubevirt.io/vm: vm2-rhel84-watchdog
 spec:
 domain:
 devices:
 watchdog:
 name: <watchdog>
 i6300esb:
 action: "poweroff" 1
...

$ oc apply -f <file_name>.yaml

CHAPTER 12. MONITORING

365

1. Run the following command to verify that the VM is connected to the watchdog device:

2. Run one of the following commands to confirm the watchdog is active:

Trigger a kernel panic:

Stop the watchdog service:

12.6.2.2. Installing the watchdog agent on the guest

You install the watchdog agent on the guest and start the watchdog service.

Procedure

1. Log in to the virtual machine as root user.

2. Install the watchdog package and its dependencies:

3. Uncomment the following line in the /etc/watchdog.conf file and save the changes:

4. Enable the watchdog service to start on boot:

12.6.3. Defining a guest agent ping probe

Define a guest agent ping probe by setting the spec.readinessProbe.guestAgentPing field of the
virtual machine (VM) configuration.

IMPORTANT

The guest agent ping probe is a Technology Preview feature only. Technology Preview
features are not supported with Red Hat production service level agreements (SLAs) and
might not be functionally complete. Red Hat does not recommend using them in
production. These features provide early access to upcoming product features, enabling
customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

Prerequisites

$ lspci | grep watchdog -i

echo c > /proc/sysrq-trigger

pkill -9 watchdog

yum install watchdog

#watchdog-device = /dev/watchdog

systemctl enable --now watchdog.service

OpenShift Container Platform 4.17 Virtualization

366

https://access.redhat.com/support/offerings/techpreview/

1

2

3

4

5

6

The QEMU guest agent must be installed and enabled on the virtual machine.

Procedure

1. Include details of the guest agent ping probe in the VM configuration file. For example:

Sample guest agent ping probe

The guest agent ping probe to connect to the VM.

Optional: The time, in seconds, after the VM starts before the guest agent probe is
initiated.

Optional: The delay, in seconds, between performing probes. The default delay is 10
seconds. This value must be greater than timeoutSeconds.

Optional: The number of seconds of inactivity after which the probe times out and the VM
is assumed to have failed. The default value is 1. This value must be lower than
periodSeconds.

Optional: The number of times that the probe is allowed to fail. The default is 3. After the
specified number of attempts, the pod is marked Unready.

Optional: The number of times that the probe must report success, after a failure, to be
considered successful. The default is 1.

2. Create the VM by running the following command:

12.6.4. Additional resources

Monitoring application health by using health checks

apiVersion: kubevirt.io/v1
kind: VirtualMachine
metadata:
 annotations:
 name: fedora-vm
 namespace: example-namespace
...
spec:
 template:
 spec:
 readinessProbe:
 guestAgentPing: {} 1
 initialDelaySeconds: 120 2
 periodSeconds: 20 3
 timeoutSeconds: 10 4
 failureThreshold: 3 5
 successThreshold: 3 6
...

$ oc create -f <file_name>.yaml

CHAPTER 12. MONITORING

367

https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/building_applications/#application-health

12.7. OPENSHIFT VIRTUALIZATION RUNBOOKS

To diagnose and resolve issues that trigger OpenShift Virtualization alerts, follow the procedures in the
runbooks for the OpenShift Virtualization Operator. Triggered OpenShift Virtualization alerts can be
viewed in the main Observe → Alerts tab in the web console, and also in the Virtualization → Overview
tab.

Runbooks for the OpenShift Virtualization Operator are maintained in the openshift/runbooks Git
repository, and you can view them on GitHub.

12.7.1. CDIDataImportCronOutdated

View the runbook for the CDIDataImportCronOutdated alert.

12.7.2. CDIDataVolumeUnusualRestartCount

View the runbook for the CDIDataVolumeUnusualRestartCount alert.

12.7.3. CDIDefaultStorageClassDegraded

View the runbook for the CDIDefaultStorageClassDegraded alert.

12.7.4. CDIMultipleDefaultVirtStorageClasses

View the runbook for the CDIMultipleDefaultVirtStorageClasses alert.

12.7.5. CDINoDefaultStorageClass

View the runbook for the CDINoDefaultStorageClass alert.

12.7.6. CDINotReady

View the runbook for the CDINotReady alert.

12.7.7. CDIOperatorDown

View the runbook for the CDIOperatorDown alert.

12.7.8. CDIStorageProfilesIncomplete

View the runbook for the CDIStorageProfilesIncomplete alert.

12.7.9. CnaoDown

View the runbook for the CnaoDown alert.

12.7.10. CnaoNMstateMigration

View the runbook for the CnaoNMstateMigration alert.

12.7.11. HCOInstallationIncomplete

OpenShift Container Platform 4.17 Virtualization

368

https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/monitoring/#managing-alerts
https://github.com/openshift/runbooks/tree/master/alerts/openshift-virtualization-operator
https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/CDIDataImportCronOutdated.md
https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/CDIDataVolumeUnusualRestartCount.md
https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/CDIDefaultStorageClassDegraded.md
https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/CDIMultipleDefaultVirtStorageClasses.md
https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/CDINoDefaultStorageClass.md
https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/CDINotReady.md
https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/CDIOperatorDown.md
https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/CDIStorageProfilesIncomplete.md
https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/CnaoDown.md
https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/CnaoNmstateMigration.md

View the runbook for the HCOInstallationIncomplete alert.

12.7.12. HPPNotReady

View the runbook for the HPPNotReady alert.

12.7.13. HPPOperatorDown

View the runbook for the HPPOperatorDown alert.

12.7.14. HPPSharingPoolPathWithOS

View the runbook for the HPPSharingPoolPathWithOS alert.

12.7.15. KubemacpoolDown

View the runbook for the KubemacpoolDown alert.

12.7.16. KubeMacPoolDuplicateMacsFound

View the runbook for the KubeMacPoolDuplicateMacsFound alert.

12.7.17. KubeVirtComponentExceedsRequestedCPU

The KubeVirtComponentExceedsRequestedCPU alert is deprecated.

12.7.18. KubeVirtComponentExceedsRequestedMemory

The KubeVirtComponentExceedsRequestedMemory alert is deprecated.

12.7.19. KubeVirtCRModified

View the runbook for the KubeVirtCRModified alert.

12.7.20. KubeVirtDeprecatedAPIRequested

View the runbook for the KubeVirtDeprecatedAPIRequested alert.

12.7.21. KubeVirtNoAvailableNodesToRunVMs

View the runbook for the KubeVirtNoAvailableNodesToRunVMs alert.

12.7.22. KubevirtVmHighMemoryUsage

View the runbook for the KubevirtVmHighMemoryUsage alert.

12.7.23. KubeVirtVMIExcessiveMigrations

View the runbook for the KubeVirtVMIExcessiveMigrations alert.

12.7.24. LowKVMNodesCount

CHAPTER 12. MONITORING

369

https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/HCOInstallationIncomplete.md
https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/HPPNotReady.md
https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/HPPOperatorDown.md
https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/HPPSharingPoolPathWithOS.md
https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/KubemacpoolDown.md
https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/KubeMacPoolDuplicateMacsFound.md
https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/deprecated/KubeVirtComponentExceedsRequestedCPU.md
https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/deprecated/KubeVirtComponentExceedsRequestedMemory.md
https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/KubeVirtCRModified.md
https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/KubeVirtDeprecatedAPIRequested.md
https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/KubeVirtNoAvailableNodesToRunVMs.md
https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/KubevirtVmHighMemoryUsage.md
https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/KubeVirtVMIExcessiveMigrations.md

View the runbook for the LowKVMNodesCount alert.

12.7.25. LowReadyVirtControllersCount

View the runbook for the LowReadyVirtControllersCount alert.

12.7.26. LowReadyVirtOperatorsCount

View the runbook for the LowReadyVirtOperatorsCount alert.

12.7.27. LowVirtAPICount

View the runbook for the LowVirtAPICount alert.

12.7.28. LowVirtControllersCount

View the runbook for the LowVirtControllersCount alert.

12.7.29. LowVirtOperatorCount

View the runbook for the LowVirtOperatorCount alert.

12.7.30. NetworkAddonsConfigNotReady

View the runbook for the NetworkAddonsConfigNotReady alert.

12.7.31. NoLeadingVirtOperator

View the runbook for the NoLeadingVirtOperator alert.

12.7.32. NoReadyVirtController

View the runbook for the NoReadyVirtController alert.

12.7.33. NoReadyVirtOperator

View the runbook for the NoReadyVirtOperator alert.

12.7.34. OrphanedVirtualMachineInstances

View the runbook for the OrphanedVirtualMachineInstances alert.

12.7.35. OutdatedVirtualMachineInstanceWorkloads

View the runbook for the OutdatedVirtualMachineInstanceWorkloads alert.

12.7.36. SingleStackIPv6Unsupported

View the runbook for the SingleStackIPv6Unsupported alert.

12.7.37. SSPCommonTemplatesModificationReverted

OpenShift Container Platform 4.17 Virtualization

370

https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/LowKVMNodesCount.md
https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/LowReadyVirtControllersCount.md
https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/LowReadyVirtOperatorsCount.md
https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/LowVirtAPICount.md
https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/LowVirtControllersCount.md
https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/LowVirtOperatorCount.md
https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/NetworkAddonsConfigNotReady.md
https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/NoLeadingVirtOperator.md
https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/NoReadyVirtController.md
https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/NoReadyVirtOperator.md
https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/OrphanedVirtualMachineInstances.md
https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/OutdatedVirtualMachineInstanceWorkloads.md
https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/SingleStackIPv6Unsupported.md

View the runbook for the SSPCommonTemplatesModificationReverted alert.

12.7.38. SSPDown

View the runbook for the SSPDown alert.

12.7.39. SSPFailingToReconcile

View the runbook for the SSPFailingToReconcile alert.

12.7.40. SSPHighRateRejectedVms

View the runbook for the SSPHighRateRejectedVms alert.

12.7.41. SSPTemplateValidatorDown

View the runbook for the SSPTemplateValidatorDown alert.

12.7.42. SSPOperatorDown

View the runbook for the SSPOperatorDown alert.

12.7.43. UnsupportedHCOModification

View the runbook for the UnsupportedHCOModification alert.

12.7.44. VirtAPIDown

View the runbook for the VirtAPIDown alert.

12.7.45. VirtApiRESTErrorsBurst

View the runbook for the VirtApiRESTErrorsBurst alert.

12.7.46. VirtApiRESTErrorsHigh

View the runbook for the VirtApiRESTErrorsHigh alert.

12.7.47. VirtControllerDown

View the runbook for the VirtControllerDown alert.

12.7.48. VirtControllerRESTErrorsBurst

View the runbook for the VirtControllerRESTErrorsBurst alert.

12.7.49. VirtControllerRESTErrorsHigh

View the runbook for the VirtControllerRESTErrorsHigh alert.

12.7.50. VirtHandlerDaemonSetRolloutFailing

CHAPTER 12. MONITORING

371

https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/SSPCommonTemplatesModificationReverted.md
https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/SSPDown.md
https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/SSPFailingToReconcile.md
https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/SSPHighRateRejectedVms.md
https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/SSPTemplateValidatorDown.md
https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/SSPOperatorDown.md
https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/UnsupportedHCOModification.md
https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/VirtAPIDown.md
https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/VirtApiRESTErrorsBurst.md
https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/VirtApiRESTErrorsHigh.md
https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/VirtControllerDown.md
https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/VirtControllerRESTErrorsBurst.md
https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/VirtControllerRESTErrorsHigh.md

View the runbook for the VirtHandlerDaemonSetRolloutFailing alert.

12.7.51. VirtHandlerRESTErrorsBurst

View the runbook for the VirtHandlerRESTErrorsBurst alert.

12.7.52. VirtHandlerRESTErrorsHigh

View the runbook for the VirtHandlerRESTErrorsHigh alert.

12.7.53. VirtOperatorDown

View the runbook for the VirtOperatorDown alert.

12.7.54. VirtOperatorRESTErrorsBurst

View the runbook for the VirtOperatorRESTErrorsBurst alert.

12.7.55. VirtOperatorRESTErrorsHigh

View the runbook for the VirtOperatorRESTErrorsHigh alert.

12.7.56. VirtualMachineCRCErrors

The runbook for the VirtualMachineCRCErrors alert is deprecated because the alert was
renamed to VMStorageClassWarning.

View the runbook for the VMStorageClassWarning alert.

12.7.57. VMCannotBeEvicted

View the runbook for the VMCannotBeEvicted alert.

12.7.58. VMStorageClassWarning

View the runbook for the VMStorageClassWarning alert.

OpenShift Container Platform 4.17 Virtualization

372

https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/VirtHandlerDaemonSetRolloutFailing.md
https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/VirtHandlerRESTErrorsBurst.md
https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/VirtHandlerRESTErrorsHigh.md
https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/VirtOperatorDown.md
https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/VirtOperatorRESTErrorsBurst.md
https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/VirtOperatorRESTErrorsHigh.md
https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/VMStorageClassWarning.md
https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/VMCannotBeEvicted.md
https://github.com/openshift/runbooks/blob/master/alerts/openshift-virtualization-operator/VMStorageClassWarning.md

CHAPTER 13. SUPPORT

13.1. SUPPORT OVERVIEW

You can collect data about your environment, monitor the health of your cluster and virtual machines
(VMs), and troubleshoot OpenShift Virtualization resources with the following tools.

13.1.1. Web console

The OpenShift Container Platform web console displays resource usage, alerts, events, and trends for
your cluster and for OpenShift Virtualization components and resources.

Table 13.1. Web console pages for monitoring and troubleshooting

Page Description

Overview page Cluster details, status, alerts, inventory, and resource
usage

Virtualization → Overview tab OpenShift Virtualization resources, usage, alerts, and
status

Virtualization → Top consumers tab Top consumers of CPU, memory, and storage

Virtualization → Migrations tab Progress of live migrations

VirtualMachines → VirtualMachine →
VirtualMachine details → Metrics tab

VM resource usage, storage, network, and migration

VirtualMachines → VirtualMachine →
VirtualMachine details → Events tab

List of VM events

VirtualMachines → VirtualMachine →
VirtualMachine details → Diagnostics tab

VM status conditions and volume snapshot status

13.1.2. Collecting data for Red Hat Support

When you submit a support case to Red Hat Support, it is helpful to provide debugging information. You
can gather debugging information by performing the following steps:

Collecting data about your environment

Configure Prometheus and Alertmanager and collect must-gather data for OpenShift Container
Platform and OpenShift Virtualization.

Collecting data about VMs

Collect must-gather data and memory dumps from VMs.

must-gather tool for OpenShift Virtualization

Configure and use the must-gather tool.

CHAPTER 13. SUPPORT

373

https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/support/#support-submitting-a-case_getting-support

13.1.3. Troubleshooting

Troubleshoot OpenShift Virtualization components and VMs and resolve issues that trigger alerts in the
web console.

Events

View important life-cycle information for VMs, namespaces, and resources.

Logs

View and configure logs for OpenShift Virtualization components and VMs.

Troubleshooting data volumes

Troubleshoot data volumes by analyzing conditions and events.

13.2. COLLECTING DATA FOR RED HAT SUPPORT

When you submit a support case to Red Hat Support, it is helpful to provide debugging information for
OpenShift Container Platform and OpenShift Virtualization by using the following tools:

must-gather tool

The must-gather tool collects diagnostic information, including resource definitions and service logs.

Prometheus

Prometheus is a time-series database and a rule evaluation engine for metrics. Prometheus sends
alerts to Alertmanager for processing.

Alertmanager

The Alertmanager service handles alerts received from Prometheus. The Alertmanager is also
responsible for sending the alerts to external notification systems.

For information about the OpenShift Container Platform monitoring stack, see About OpenShift
Container Platform monitoring.

13.2.1. Collecting data about your environment

Collecting data about your environment minimizes the time required to analyze and determine the root
cause.

Prerequisites

Set the retention time for Prometheus metrics data to a minimum of seven days.

Configure the Alertmanager to capture relevant alerts and to send alert notifications to a
dedicated mailbox so that they can be viewed and persisted outside the cluster.

Record the exact number of affected nodes and virtual machines.

Procedure

1. Collect must-gather data for the cluster.

2. Collect must-gather data for Red Hat OpenShift Data Foundation , if necessary.

3. Collect must-gather data for OpenShift Virtualization.

4. Collect Prometheus metrics for the cluster.

OpenShift Container Platform 4.17 Virtualization

374

https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/support/#support-submitting-a-case_getting-support
https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/monitoring/#about-openshift-monitoring
https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/monitoring/#modifying-retention-time-for-prometheus-metrics-data_configuring-the-monitoring-stack
https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/monitoring/#sending-notifications-to-external-systems_managing-alerts
https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/support/#support_gathering_data_gathering-cluster-data
https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.17/html-single/troubleshooting_openshift_data_foundation/index#downloading-log-files-and-diagnostic-information_rhodf
https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/monitoring/#querying-metrics-for-all-projects-as-an-administrator_managing-metrics

13.2.2. Collecting data about virtual machines

Collecting data about malfunctioning virtual machines (VMs) minimizes the time required to analyze and
determine the root cause.

Prerequisites

Linux VMs: Install the latest QEMU guest agent .

Windows VMs:

Record the Windows patch update details.

Install the latest VirtIO drivers .

Install the latest QEMU guest agent .

If Remote Desktop Protocol (RDP) is enabled, connect by using the desktop viewer to
determine whether there is a problem with the connection software.

Procedure

1. Collect must-gather data for the VMs using the /usr/bin/gather script.

2. Collect screenshots of VMs that have crashed before you restart them.

3. Collect memory dumps from VMs before remediation attempts.

4. Record factors that the malfunctioning VMs have in common. For example, the VMs have the
same host or network.

13.2.3. Using the must-gather tool for OpenShift Virtualization

You can collect data about OpenShift Virtualization resources by running the must-gather command
with the OpenShift Virtualization image.

The default data collection includes information about the following resources:

OpenShift Virtualization Operator namespaces, including child objects

OpenShift Virtualization custom resource definitions

Namespaces that contain virtual machines

Basic virtual machine definitions

Instance types information is not currently collected by default; you can, however, run a command to
optionally collect it.

Procedure

Run the following command to collect data about OpenShift Virtualization:

$ oc adm must-gather \
 --image=registry.redhat.io/container-native-virtualization/cnv-must-gather-rhel9:v4.17.0 \
 -- /usr/bin/gather

CHAPTER 13. SUPPORT

375

https://access.redhat.com/solutions/6957701

13.2.3.1. must-gather tool options

You can run the oc adm must-gather command to collect must gather images for all the Operators
and products deployed on your cluster without the need to explicitly specify the required images.
Alternatively, you can specify a combination of scripts and environment variables for the following
options:

Collecting detailed virtual machine (VM) information from a namespace

Collecting detailed information about specified VMs

Collecting image, image-stream, and image-stream-tags information

Limiting the maximum number of parallel processes used by the must-gather tool

13.2.3.1.1. Parameters

Environment variables

You can specify environment variables for a compatible script.

NS=<namespace_name>

Collect virtual machine information, including virt-launcher pod details, from the namespace that
you specify. The VirtualMachine and VirtualMachineInstance CR data is collected for all
namespaces.

VM=<vm_name>

Collect details about a particular virtual machine. To use this option, you must also specify a
namespace by using the NS environment variable.

PROS=<number_of_processes>

Modify the maximum number of parallel processes that the must-gather tool uses. The default value
is 5.

IMPORTANT

Using too many parallel processes can cause performance issues. Increasing the
maximum number of parallel processes is not recommended.

Scripts

Each script is compatible only with certain environment variable combinations.

/usr/bin/gather

Use the default must-gather script, which collects cluster data from all namespaces and includes
only basic VM information. This script is compatible only with the PROS variable.

/usr/bin/gather --vms_details

Collect VM log files, VM definitions, control-plane logs, and namespaces that belong to OpenShift
Virtualization resources. Specifying namespaces includes their child objects. If you use this parameter
without specifying a namespace or VM, the must-gather tool collects this data for all VMs in the
cluster. This script is compatible with all environment variables, but you must specify a namespace if
you use the VM variable.

/usr/bin/gather --images

Collect image, image-stream, and image-stream-tags custom resource information. This script is

OpenShift Container Platform 4.17 Virtualization

376

1

Collect image, image-stream, and image-stream-tags custom resource information. This script is
compatible only with the PROS variable.

/usr/bin/gather --instancetypes

Collect instance types information. This information is not currently collected by default; you can,
however, optionally collect it.

13.2.3.1.2. Usage and examples

Environment variables are optional. You can run a script by itself or with one or more compatible
environment variables.

Table 13.2. Compatible parameters

Script Compatible environment variable

/usr/bin/gather * PROS=<number_of_processes>

/usr/bin/gather --vms_details * For a namespace: NS=<namespace_name>

* For a VM: VM=<vm_name> NS=
<namespace_name>

* PROS=<number_of_processes>

/usr/bin/gather --images * PROS=<number_of_processes>

Syntax

To collect must-gather logs for all Operators and products on your cluster in a single pass, run the
following command:

If you need to pass additional parameters to individual must-gather images, use the following
command:

Default data collection parallel processes

By default, five processes run in parallel.

You can modify the number of parallel processes by changing the default.

Detailed VM information

The following command collects detailed VM information for the my-vm VM in the mynamespace

$ oc adm must-gather --all-images

$ oc adm must-gather \
 --image=registry.redhat.io/container-native-virtualization/cnv-must-gather-rhel9:v4.17.0 \
 -- <environment_variable_1> <environment_variable_2> <script_name>

$ oc adm must-gather \
 --image=registry.redhat.io/container-native-virtualization/cnv-must-gather-rhel9:v4.17.0 \
 -- PROS=5 /usr/bin/gather 1

CHAPTER 13. SUPPORT

377

1

The following command collects detailed VM information for the my-vm VM in the mynamespace
namespace:

The NS environment variable is mandatory if you use the VM environment variable.

Image, image-stream, and image-stream-tags information

The following command collects image, image-stream, and image-stream-tags information from the
cluster:

Instance types information

The following command collects instance types information from the cluster:

13.3. TROUBLESHOOTING

OpenShift Virtualization provides tools and logs for troubleshooting virtual machines (VMs) and
virtualization components.

You can troubleshoot OpenShift Virtualization components by using the tools provided in the web
console or by using the oc CLI tool.

13.3.1. Events

OpenShift Container Platform events are records of important life-cycle information and are useful for
monitoring and troubleshooting virtual machine, namespace, and resource issues.

VM events: Navigate to the Events tab of the VirtualMachine details page in the web console.

Namespace events

You can view namespace events by running the following command:

See the list of events for details about specific events.

Resource events

You can view resource events by running the following command:

$ oc adm must-gather \
 --image=registry.redhat.io/container-native-virtualization/cnv-must-gather-rhel9:v4.17.0 \
 -- NS=mynamespace VM=my-vm /usr/bin/gather --vms_details 1

$ oc adm must-gather \
 --image=registry.redhat.io/container-native-virtualization/cnv-must-gather-rhel9:v4.17.0 \
 /usr/bin/gather --images

$ oc adm must-gather \
 --image=registry.redhat.io/container-native-virtualization/cnv-must-gather-rhel9:v4.17.0 \
 /usr/bin/gather --instancetypes

$ oc get events -n <namespace>

$ oc describe <resource> <resource_name>

OpenShift Container Platform 4.17 Virtualization

378

https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/nodes/#nodes-containers-events
https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/nodes/#nodes-containers-events-list_nodes-containers-events

1

13.3.2. Pod logs

You can view logs for OpenShift Virtualization pods by using the web console or the CLI. You can also
view aggregated logs by using the LokiStack in the web console.

13.3.2.1. Configuring OpenShift Virtualization pod log verbosity

You can configure the verbosity level of OpenShift Virtualization pod logs by editing the
HyperConverged custom resource (CR).

Procedure

1. To set log verbosity for specific components, open the HyperConverged CR in your default
text editor by running the following command:

2. Set the log level for one or more components by editing the spec.logVerbosityConfig stanza.
For example:

The log verbosity value must be an integer in the range 1–9, where a higher number
indicates a more detailed log. In this example, the virtAPI component logs are exposed if
their priority level is 5 or higher.

3. Apply your changes by saving and exiting the editor.

13.3.2.2. Viewing virt-launcher pod logs with the web console

You can view the virt-launcher pod logs for a virtual machine by using the OpenShift Container
Platform web console.

Procedure

1. Navigate to Virtualization → VirtualMachines.

2. Select a virtual machine to open the VirtualMachine details page.

3. On the General tile, click the pod name to open the Pod details page.

4. Click the Logs tab to view the logs.

$ oc edit hyperconverged kubevirt-hyperconverged -n openshift-cnv

apiVersion: hco.kubevirt.io/v1beta1
kind: HyperConverged
metadata:
 name: kubevirt-hyperconverged
spec:
 logVerbosityConfig:
 kubevirt:
 virtAPI: 5 1
 virtController: 4
 virtHandler: 3
 virtLauncher: 2
 virtOperator: 6

CHAPTER 13. SUPPORT

379

13.3.2.3. Viewing OpenShift Virtualization pod logs with the CLI

You can view logs for the OpenShift Virtualization pods by using the oc CLI tool.

Procedure

1. View a list of pods in the OpenShift Virtualization namespace by running the following
command:

Example 13.1. Example output

2. View the pod log by running the following command:

NOTE

If a pod fails to start, you can use the --previous option to view logs from the last
attempt.

To monitor log output in real time, use the -f option.

Example 13.2. Example output

$ oc get pods -n openshift-cnv

NAME READY STATUS RESTARTS AGE
disks-images-provider-7gqbc 1/1 Running 0 32m
disks-images-provider-vg4kx 1/1 Running 0 32m
virt-api-57fcc4497b-7qfmc 1/1 Running 0 31m
virt-api-57fcc4497b-tx9nc 1/1 Running 0 31m
virt-controller-76c784655f-7fp6m 1/1 Running 0 30m
virt-controller-76c784655f-f4pbd 1/1 Running 0 30m
virt-handler-2m86x 1/1 Running 0 30m
virt-handler-9qs6z 1/1 Running 0 30m
virt-operator-7ccfdbf65f-q5snk 1/1 Running 0 32m
virt-operator-7ccfdbf65f-vllz8 1/1 Running 0 32m

$ oc logs -n openshift-cnv <pod_name>

{"component":"virt-handler","level":"info","msg":"set verbosity to 2","pos":"virt-
handler.go:453","timestamp":"2022-04-17T08:58:37.373695Z"}
{"component":"virt-handler","level":"info","msg":"set verbosity to 2","pos":"virt-
handler.go:453","timestamp":"2022-04-17T08:58:37.373726Z"}
{"component":"virt-handler","level":"info","msg":"setting rate limiter to 5 QPS and 10
Burst","pos":"virt-handler.go:462","timestamp":"2022-04-17T08:58:37.373782Z"}
{"component":"virt-handler","level":"info","msg":"CPU features of a minimum baseline CPU
model: map[apic:true clflush:true cmov:true cx16:true cx8:true de:true fpu:true fxsr:true
lahf_lm:true lm:true mca:true mce:true mmx:true msr:true mtrr:true nx:true pae:true
pat:true pge:true pni:true pse:true pse36:true sep:true sse:true sse2:true sse4.1:true
ssse3:true syscall:true tsc:true]","pos":"cpu_plugin.go:96","timestamp":"2022-04-
17T08:58:37.390221Z"}
{"component":"virt-handler","level":"warning","msg":"host model mode is expected to
contain only one model","pos":"cpu_plugin.go:103","timestamp":"2022-04-

OpenShift Container Platform 4.17 Virtualization

380

13.3.3. Guest system logs

Viewing the boot logs of VM guests can help diagnose issues. You can configure access to guests' logs
and view them by using either the OpenShift Container Platform web console or the oc CLI.

This feature is disabled by default. If a VM does not explicitly have this setting enabled or disabled, it
inherits the cluster-wide default setting.

IMPORTANT

If sensitive information such as credentials or other personally identifiable information
(PII) is written to the serial console, it is logged with all other visible text. Red Hat
recommends using SSH to send sensitive data instead of the serial console.

13.3.3.1. Enabling default access to VM guest system logs with the web console

You can enable default access to VM guest system logs by using the web console.

Procedure

1. From the side menu, click Virtualization → Overview.

2. Click the Settings tab.

3. Click Cluster → Guest management.

4. Set Enable guest system log access to on.

13.3.3.2. Enabling default access to VM guest system logs with the CLI

You can enable default access to VM guest system logs by editing the HyperConverged custom
resource (CR).

Procedure

1. Open the HyperConverged CR in your default editor by running the following command:

2. Update the disableSerialConsoleLog value. For example:

17T08:58:37.390263Z"}
{"component":"virt-handler","level":"info","msg":"node-labeller is
running","pos":"node_labeller.go:94","timestamp":"2022-04-17T08:58:37.391011Z"}

$ oc edit hyperconverged kubevirt-hyperconverged -n openshift-cnv

kind: HyperConverged
metadata:
 name: kubevirt-hyperconverged
spec:
 virtualMachineOptions:
 disableSerialConsoleLog: true 1
#...

CHAPTER 13. SUPPORT

381

1

1

Set the value of disableSerialConsoleLog to false if you want serial console access to be
enabled on VMs by default.

13.3.3.3. Setting guest system log access for a single VM with the web console

You can configure access to VM guest system logs for a single VM by using the web console. This
setting takes precedence over the cluster-wide default configuration.

Procedure

1. Click Virtualization → VirtualMachines from the side menu.

2. Select a virtual machine to open the VirtualMachine details page.

3. Click the Configuration tab.

4. Set Guest system log access to on or off.

13.3.3.4. Setting guest system log access for a single VM with the CLI

You can configure access to VM guest system logs for a single VM by editing the VirtualMachine CR.
This setting takes precedence over the cluster-wide default configuration.

Procedure

1. Edit the virtual machine manifest by running the following command:

2. Update the value of the logSerialConsole field. For example:

To enable access to the guest’s serial console log, set the logSerialConsole value to true.

3. Apply the new configuration to the VM by running the following command:

4. Optional: If you edited a running VM, restart the VM to apply the new configuration. For
example:

$ oc edit vm <vm_name>

apiVersion: kubevirt.io/v1
kind: VirtualMachine
metadata:
 name: example-vm
spec:
 template:
 spec:
 domain:
 devices:
 logSerialConsole: true 1
#...

$ oc apply vm <vm_name>

OpenShift Container Platform 4.17 Virtualization

382

13.3.3.5. Viewing guest system logs with the web console

You can view the serial console logs of a virtual machine (VM) guest by using the web console.

Prerequisites

Guest system log access is enabled.

Procedure

1. Click Virtualization → VirtualMachines from the side menu.

2. Select a virtual machine to open the VirtualMachine details page.

3. Click the Diagnostics tab.

4. Click Guest system logs to load the serial console.

13.3.3.6. Viewing guest system logs with the CLI

You can view the serial console logs of a VM guest by running the oc logs command.

Prerequisites

Guest system log access is enabled.

Procedure

View the logs by running the following command, substituting your own values for
<namespace> and <vm_name>:

13.3.4. Log aggregation

You can facilitate troubleshooting by aggregating and filtering logs.

13.3.4.1. Viewing aggregated OpenShift Virtualization logs with the LokiStack

You can view aggregated logs for OpenShift Virtualization pods and containers by using the LokiStack
in the web console.

Prerequisites

You deployed the LokiStack.

Procedure

1. Navigate to Observe → Logs in the web console.

2. Select application, for virt-launcher pod logs, or infrastructure, for OpenShift Virtualization

$ virtctl restart <vm_name> -n <namespace>

$ oc logs -n <namespace> -l kubevirt.io/domain=<vm_name> --tail=-1 -c guest-console-log

CHAPTER 13. SUPPORT

383

2. Select application, for virt-launcher pod logs, or infrastructure, for OpenShift Virtualization
control plane pods and containers, from the log type list.

3. Click Show Query to display the query field.

4. Enter the LogQL query in the query field and click Run Query to display the filtered logs.

13.3.4.2. OpenShift Virtualization LogQL queries

You can view and filter aggregated logs for OpenShift Virtualization components by running Loki Query
Language (LogQL) queries on the Observe → Logs page in the web console.

The default log type is infrastructure. The virt-launcher log type is application.

Optional: You can include or exclude strings or regular expressions by using line filter expressions.

NOTE

If the query matches a large number of logs, the query might time out.

Table 13.3. OpenShift Virtualization LogQL example queries

Component LogQL query

All

cdi-
apiserver

cdi-
deployme
nt

cdi-
operator

hco-
operator

kubemacp
ool

{log_type=~".+"}|json
|kubernetes_labels_app_kubernetes_io_part_of="hyperconverged-cluster"

{log_type=~".+"}|json
|kubernetes_labels_app_kubernetes_io_part_of="hyperconverged-cluster"
|kubernetes_labels_app_kubernetes_io_component="storage"

{log_type=~".+"}|json
|kubernetes_labels_app_kubernetes_io_part_of="hyperconverged-cluster"
|kubernetes_labels_app_kubernetes_io_component="deployment"

{log_type=~".+"}|json
|kubernetes_labels_app_kubernetes_io_part_of="hyperconverged-cluster"
|kubernetes_labels_app_kubernetes_io_component="network"

OpenShift Container Platform 4.17 Virtualization

384

1

1

virt-api

virt-
controller

virt-
handler

virt-
operator

ssp-
operator

Container

Specify one or more containers separated by a pipe (|).

virt-
launcher

You must select application from the log type list before running this query.

|!= "custom-ga-command" excludes libvirt logs that contain the string custom-ga-
command. (BZ#2177684)

Component LogQL query

You can filter log lines to include or exclude strings or regular expressions by using line filter
expressions.

Table 13.4. Line filter expressions

Line filter expression Description

|= "<string>" Log line contains string

!= "<string>" Log line does not contain string

|~ "<regex>" Log line contains regular expression

!~ "<regex>" Log line does not contain regular expression

{log_type=~".+"}|json
|kubernetes_labels_app_kubernetes_io_part_of="hyperconverged-cluster"
|kubernetes_labels_app_kubernetes_io_component="compute"

{log_type=~".+"}|json
|kubernetes_labels_app_kubernetes_io_part_of="hyperconverged-cluster"
|kubernetes_labels_app_kubernetes_io_component="schedule"

{log_type=~".+",kubernetes_container_name=~"<container>|<container>"} 1
|json|kubernetes_labels_app_kubernetes_io_part_of="hyperconverged-cluster"

{log_type=~".+", kubernetes_container_name="compute"}|json
|!= "custom-ga-command" 1

CHAPTER 13. SUPPORT

385

https://bugzilla.redhat.com/show_bug.cgi?id=2177684

Example line filter expression

Additional resources for LokiStack and LogQL

xref :../../observability/logging/log_storage/about-log-storage.adoc#about-log-storage[About
log storage]

LogQL log queries in the Grafana documentation

13.3.5. Common error messages

The following error messages might appear in OpenShift Virtualization logs:

ErrImagePull or ImagePullBackOff

Indicates an incorrect deployment configuration or problems with the images that are referenced.

13.3.6. Troubleshooting data volumes

You can check the Conditions and Events sections of the DataVolume object to analyze and resolve
issues.

13.3.6.1. About data volume conditions and events

You can diagnose data volume issues by examining the output of the Conditions and Events sections
generated by the command:

The Conditions section displays the following Types:

Bound

Running

Ready

The Events section provides the following additional information:

Type of event

Reason for logging

Source of the event

Message containing additional diagnostic information.

The output from oc describe does not always contains Events.

An event is generated when the Status, Reason, or Message changes. Both conditions and events
react to changes in the state of the data volume.

{log_type=~".+"}|json
|kubernetes_labels_app_kubernetes_io_part_of="hyperconverged-cluster"
|= "error" != "timeout"

$ oc describe dv <DataVolume>

OpenShift Container Platform 4.17 Virtualization

386

https://grafana.com/docs/loki/latest/logql/log_queries/

For example, if you misspell the URL during an import operation, the import generates a 404 message.
That message change generates an event with a reason. The output in the Conditions section is
updated as well.

13.3.6.2. Analyzing data volume conditions and events

By inspecting the Conditions and Events sections generated by the describe command, you
determine the state of the data volume in relation to persistent volume claims (PVCs), and whether or
not an operation is actively running or completed. You might also receive messages that offer specific
details about the status of the data volume, and how it came to be in its current state.

There are many different combinations of conditions. Each must be evaluated in its unique context.

Examples of various combinations follow.

Bound - A successfully bound PVC displays in this example.
Note that the Type is Bound, so the Status is True. If the PVC is not bound, the Status is
False.

When the PVC is bound, an event is generated stating that the PVC is bound. In this case, the
Reason is Bound and Status is True. The Message indicates which PVC owns the data
volume.

Message, in the Events section, provides further details including how long the PVC has been
bound (Age) and by what resource (From), in this case datavolume-controller:

Example output

Running - In this case, note that Type is Running and Status is False, indicating that an event
has occurred that caused an attempted operation to fail, changing the Status from True to
False.
However, note that Reason is Completed and the Message field indicates Import Complete.

In the Events section, the Reason and Message contain additional troubleshooting
information about the failed operation. In this example, the Message displays an inability to
connect due to a 404, listed in the Events section’s first Warning.

From this information, you conclude that an import operation was running, creating contention
for other operations that are attempting to access the data volume:

Example output

Status:
 Conditions:
 Last Heart Beat Time: 2020-07-15T03:58:24Z
 Last Transition Time: 2020-07-15T03:58:24Z
 Message: PVC win10-rootdisk Bound
 Reason: Bound
 Status: True
 Type: Bound
...
 Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal Bound 24s datavolume-controller PVC example-dv Bound

CHAPTER 13. SUPPORT

387

Ready – If Type is Ready and Status is True, then the data volume is ready to be used, as in
the following example. If the data volume is not ready to be used, the Status is False:

Example output

Status:
 Conditions:
 Last Heart Beat Time: 2020-07-15T04:31:39Z
 Last Transition Time: 2020-07-15T04:31:39Z
 Message: Import Complete
 Reason: Completed
 Status: False
 Type: Running
...
 Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Warning Error 12s (x2 over 14s) datavolume-controller Unable to connect
 to http data source: expected status code 200, got 404. Status: 404 Not Found

Status:
 Conditions:
 Last Heart Beat Time: 2020-07-15T04:31:39Z
 Last Transition Time: 2020-07-15T04:31:39Z
 Status: True
 Type: Ready

OpenShift Container Platform 4.17 Virtualization

388

CHAPTER 14. BACKUP AND RESTORE

14.1. BACKUP AND RESTORE BY USING VM SNAPSHOTS

You can back up and restore virtual machines (VMs) by using snapshots. Snapshots are supported by
the following storage providers:

Red Hat OpenShift Data Foundation

Any other cloud storage provider with the Container Storage Interface (CSI) driver that
supports the Kubernetes Volume Snapshot API

Online snapshots have a default time deadline of five minutes (5m) that can be changed, if needed.

IMPORTANT

Online snapshots are supported for virtual machines that have hot plugged virtual disks.
However, hot plugged disks that are not in the virtual machine specification are not
included in the snapshot.

To create snapshots of an online (Running state) VM with the highest integrity, install the QEMU guest
agent if it is not included with your operating system. The QEMU guest agent is included with the
default Red Hat templates.

The QEMU guest agent takes a consistent snapshot by attempting to quiesce the VM file system as
much as possible, depending on the system workload. This ensures that in-flight I/O is written to the
disk before the snapshot is taken. If the guest agent is not present, quiescing is not possible and a best-
effort snapshot is taken. The conditions under which the snapshot was taken are reflected in the
snapshot indications that are displayed in the web console or CLI.

14.1.1. About snapshots

A snapshot represents the state and data of a virtual machine (VM) at a specific point in time. You can
use a snapshot to restore an existing VM to a previous state (represented by the snapshot) for backup
and disaster recovery or to rapidly roll back to a previous development version.

A VM snapshot is created from a VM that is powered off (Stopped state) or powered on (Running
state).

When taking a snapshot of a running VM, the controller checks that the QEMU guest agent is installed
and running. If so, it freezes the VM file system before taking the snapshot, and thaws the file system
after the snapshot is taken.

The snapshot stores a copy of each Container Storage Interface (CSI) volume attached to the VM and a
copy of the VM specification and metadata. Snapshots cannot be changed after creation.

You can perform the following snapshot actions:

Create a new snapshot

Create a copy of a virtual machine from a snapshot

List all snapshots attached to a specific VM

Restore a VM from a snapshot

CHAPTER 14. BACKUP AND RESTORE

389

Delete an existing VM snapshot

VM snapshot controller and custom resources

The VM snapshot feature introduces three new API objects defined as custom resource definitions
(CRDs) for managing snapshots:

VirtualMachineSnapshot: Represents a user request to create a snapshot. It contains
information about the current state of the VM.

VirtualMachineSnapshotContent: Represents a provisioned resource on the cluster (a
snapshot). It is created by the VM snapshot controller and contains references to all resources
required to restore the VM.

VirtualMachineRestore: Represents a user request to restore a VM from a snapshot.

The VM snapshot controller binds a VirtualMachineSnapshotContent object with the
VirtualMachineSnapshot object for which it was created, with a one-to-one mapping.

14.1.2. About application-consistent snapshots and backups

You can configure application-consistent snapshots and backups for Linux or Windows virtual machines
(VMs) through a cycle of freezing and thawing. For any application, you can either configure a script on
a Linux VM or register on a Windows VM to be notified when a snapshot or backup is due to begin.

On a Linux VM, freeze and thaw processes trigger automatically when a snapshot is taken or a backup is
started by using, for example, a plugin from Velero or another backup vendor. The freeze process,
performed by QEMU Guest Agent (QEMU GA) freeze hooks, ensures that before the snapshot or
backup of a VM occurs, all of the VM’s filesystems are frozen and each appropriately configured
application is informed that a snapshot or backup is about to start. This notification affords each
application the opportunity to quiesce its state. Depending on the application, quiescing might involve
temporarily refusing new requests, finishing in-progress operations, and flushing data to disk. The
operating system is then directed to quiesce the filesystems by flushing outstanding writes to disk and
freezing new write activity. All new connection requests are refused. When all applications have become
inactive, the QEMU GA freezes the filesystems, and a snapshot is taken or a backup initiated. After the
taking of the snapshot or start of the backup, the thawing process begins. Filesystems writing is
reactivated and applications receive notification to resume normal operations.

The same cycle of freezing and thawing is available on a Windows VM. Applications register with the
Volume Shadow Copy Service (VSS) to receive notifications that they should flush out their data
because a backup or snapshot is imminent. Thawing of the applications after the backup or snapshot is
complete returns them to an active state. For more details, see the Windows Server documentation
about the Volume Shadow Copy Service.

14.1.3. Creating snapshots

You can create snapshots of virtual machines (VMs) by using the OpenShift Container Platform web
console or the command line.

14.1.3.1. Creating a snapshot by using the web console

You can create a snapshot of a virtual machine (VM) by using the OpenShift Container Platform web
console.

The VM snapshot includes disks that meet the following requirements:

OpenShift Container Platform 4.17 Virtualization

390

Either a data volume or a persistent volume claim

Belong to a storage class that supports Container Storage Interface (CSI) volume snapshots

Procedure

1. Navigate to Virtualization → VirtualMachines in the web console.

2. Select a VM to open the VirtualMachine details page.

3. If the VM is running, click the options menu and select Stop to power it down.

4. Click the Snapshots tab and then click Take Snapshot.

5. Enter the snapshot name.

6. Expand Disks included in this Snapshot to see the storage volumes to be included in the
snapshot.

7. If your VM has disks that cannot be included in the snapshot and you wish to proceed, select I
am aware of this warning and wish to proceed.

8. Click Save.

14.1.3.2. Creating a snapshot by using the command line

You can create a virtual machine (VM) snapshot for an offline or online VM by creating a
VirtualMachineSnapshot object.

Prerequisites

Ensure that the persistent volume claims (PVCs) are in a storage class that supports Container
Storage Interface (CSI) volume snapshots.

Install the OpenShift CLI (oc).

Optional: Power down the VM for which you want to create a snapshot.

Procedure

1. Create a YAML file to define a VirtualMachineSnapshot object that specifies the name of the
new VirtualMachineSnapshot and the name of the source VM as in the following example:

2. Create the VirtualMachineSnapshot object:

apiVersion: snapshot.kubevirt.io/v1beta1
kind: VirtualMachineSnapshot
metadata:
 name: <snapshot_name>
spec:
 source:
 apiGroup: kubevirt.io
 kind: VirtualMachine
 name: <vm_name>

CHAPTER 14. BACKUP AND RESTORE

391

The snapshot controller creates a VirtualMachineSnapshotContent object, binds it to the
VirtualMachineSnapshot, and updates the status and readyToUse fields of the
VirtualMachineSnapshot object.

3. Optional: If you are taking an online snapshot, you can use the wait command and monitor the
status of the snapshot:

a. Enter the following command:

b. Verify the status of the snapshot:

InProgress - The online snapshot operation is still in progress.

Succeeded - The online snapshot operation completed successfully.

Failed - The online snapshot operaton failed.

NOTE

Online snapshots have a default time deadline of five minutes (5m). If
the snapshot does not complete successfully in five minutes, the status is
set to failed. Afterwards, the file system will be thawed and the VM
unfrozen but the status remains failed until you delete the failed
snapshot image.

To change the default time deadline, add the FailureDeadline attribute
to the VM snapshot spec with the time designated in minutes (m) or in
seconds (s) that you want to specify before the snapshot operation
times out.

To set no deadline, you can specify 0, though this is generally not
recommended, as it can result in an unresponsive VM.

If you do not specify a unit of time such as m or s, the default is seconds
(s).

Verification

1. Verify that the VirtualMachineSnapshot object is created and bound with
VirtualMachineSnapshotContent and that the readyToUse flag is set to true:

Example output

$ oc create -f <snapshot_name>.yaml

$ oc wait <vm_name> <snapshot_name> --for condition=Ready

$ oc describe vmsnapshot <snapshot_name>

apiVersion: snapshot.kubevirt.io/v1beta1
kind: VirtualMachineSnapshot
metadata:
 creationTimestamp: "2020-09-30T14:41:51Z"
 finalizers:
 - snapshot.kubevirt.io/vmsnapshot-protection

OpenShift Container Platform 4.17 Virtualization

392

1

2

3

4

The status field of the Progressing condition specifies if the snapshot is still being
created.

The status field of the Ready condition specifies if the snapshot creation process is
complete.

Specifies if the snapshot is ready to be used.

Specifies that the snapshot is bound to a VirtualMachineSnapshotContent object
created by the snapshot controller.

2. Check the spec:volumeBackups property of the VirtualMachineSnapshotContent resource
to verify that the expected PVCs are included in the snapshot.

14.1.4. Verifying online snapshots by using snapshot indications

Snapshot indications are contextual information about online virtual machine (VM) snapshot operations.
Indications are not available for offline virtual machine (VM) snapshot operations. Indications are helpful
in describing details about the online snapshot creation.

Prerequisites

You must have attempted to create an online VM snapshot.

 generation: 5
 name: mysnap
 namespace: default
 resourceVersion: "3897"
 selfLink:
/apis/snapshot.kubevirt.io/v1beta1/namespaces/default/virtualmachinesnapshots/my-
vmsnapshot
 uid: 28eedf08-5d6a-42c1-969c-2eda58e2a78d
spec:
 source:
 apiGroup: kubevirt.io
 kind: VirtualMachine
 name: my-vm
status:
 conditions:
 - lastProbeTime: null
 lastTransitionTime: "2020-09-30T14:42:03Z"
 reason: Operation complete
 status: "False" 1
 type: Progressing
 - lastProbeTime: null
 lastTransitionTime: "2020-09-30T14:42:03Z"
 reason: Operation complete
 status: "True" 2
 type: Ready
 creationTime: "2020-09-30T14:42:03Z"
 readyToUse: true 3
 sourceUID: 355897f3-73a0-4ec4-83d3-3c2df9486f4f
 virtualMachineSnapshotContentName: vmsnapshot-content-28eedf08-5d6a-42c1-969c-
2eda58e2a78d 4

CHAPTER 14. BACKUP AND RESTORE

393

Procedure

1. Display the output from the snapshot indications by performing one of the following actions:

Use the command line to view indicator output in the status stanza of the
VirtualMachineSnapshot object YAML.

In the web console, click VirtualMachineSnapshot → Status in the Snapshot details
screen.

2. Verify the status of your online VM snapshot by viewing the values of the status.indications
parameter:

Online indicates that the VM was running during online snapshot creation.

GuestAgent indicates that the QEMU guest agent was running during online snapshot
creation.

NoGuestAgent indicates that the QEMU guest agent was not running during online
snapshot creation. The QEMU guest agent could not be used to freeze and thaw the file
system, either because the QEMU guest agent was not installed or running or due to
another error.

14.1.5. Restoring virtual machines from snapshots

You can restore virtual machines (VMs) from snapshots by using the OpenShift Container Platform web
console or the command line.

14.1.5.1. Restoring a VM from a snapshot by using the web console

You can restore a virtual machine (VM) to a previous configuration represented by a snapshot in the
OpenShift Container Platform web console.

Procedure

1. Navigate to Virtualization → VirtualMachines in the web console.

2. Select a VM to open the VirtualMachine details page.

3. If the VM is running, click the options menu and select Stop to power it down.

4. Click the Snapshots tab to view a list of snapshots associated with the VM.

5. Select a snapshot to open the Snapshot Details screen.

6. Click the options menu and select Restore VirtualMachine from snapshot.

7. Click Restore.

14.1.5.2. Restoring a VM from a snapshot by using the command line

You can restore an existing virtual machine (VM) to a previous configuration by using the command line.
You can only restore from an offline VM snapshot.

OpenShift Container Platform 4.17 Virtualization

394

Prerequisites

Power down the VM you want to restore.

Procedure

1. Create a YAML file to define a VirtualMachineRestore object that specifies the name of the
VM you want to restore and the name of the snapshot to be used as the source as in the
following example:

2. Create the VirtualMachineRestore object:

The snapshot controller updates the status fields of the VirtualMachineRestore object and
replaces the existing VM configuration with the snapshot content.

Verification

Verify that the VM is restored to the previous state represented by the snapshot and that the
complete flag is set to true:

Example output

apiVersion: snapshot.kubevirt.io/v1beta1
kind: VirtualMachineRestore
metadata:
 name: <vm_restore>
spec:
 target:
 apiGroup: kubevirt.io
 kind: VirtualMachine
 name: <vm_name>
 virtualMachineSnapshotName: <snapshot_name>

$ oc create -f <vm_restore>.yaml

$ oc get vmrestore <vm_restore>

apiVersion: snapshot.kubevirt.io/v1beta1
kind: VirtualMachineRestore
metadata:
creationTimestamp: "2020-09-30T14:46:27Z"
generation: 5
name: my-vmrestore
namespace: default
ownerReferences:
- apiVersion: kubevirt.io/v1
 blockOwnerDeletion: true
 controller: true
 kind: VirtualMachine
 name: my-vm
 uid: 355897f3-73a0-4ec4-83d3-3c2df9486f4f
 resourceVersion: "5512"
 selfLink: /apis/snapshot.kubevirt.io/v1beta1/namespaces/default/virtualmachinerestores/my-
vmrestore

CHAPTER 14. BACKUP AND RESTORE

395

1

2

3

Specifies if the process of restoring the VM to the state represented by the snapshot is
complete.

The status field of the Progressing condition specifies if the VM is still being restored.

The status field of the Ready condition specifies if the VM restoration process is
complete.

14.1.6. Deleting snapshots

You can delete snapshots of virtual machines (VMs) by using the OpenShift Container Platform web
console or the command line.

14.1.6.1. Deleting a snapshot by using the web console

You can delete an existing virtual machine (VM) snapshot by using the web console.

Procedure

1. Navigate to Virtualization → VirtualMachines in the web console.

2. Select a VM to open the VirtualMachine details page.

 uid: 71c679a8-136e-46b0-b9b5-f57175a6a041
 spec:
 target:
 apiGroup: kubevirt.io
 kind: VirtualMachine
 name: my-vm
 virtualMachineSnapshotName: my-vmsnapshot
 status:
 complete: true 1
 conditions:
 - lastProbeTime: null
 lastTransitionTime: "2020-09-30T14:46:28Z"
 reason: Operation complete
 status: "False" 2
 type: Progressing
 - lastProbeTime: null
 lastTransitionTime: "2020-09-30T14:46:28Z"
 reason: Operation complete
 status: "True" 3
 type: Ready
 deletedDataVolumes:
 - test-dv1
 restoreTime: "2020-09-30T14:46:28Z"
 restores:
 - dataVolumeName: restore-71c679a8-136e-46b0-b9b5-f57175a6a041-datavolumedisk1
 persistentVolumeClaim: restore-71c679a8-136e-46b0-b9b5-f57175a6a041-
datavolumedisk1
 volumeName: datavolumedisk1
 volumeSnapshotName: vmsnapshot-28eedf08-5d6a-42c1-969c-2eda58e2a78d-volume-
datavolumedisk1

OpenShift Container Platform 4.17 Virtualization

396

3. Click the Snapshots tab to view a list of snapshots associated with the VM.

4. Click the options menu beside a snapshot and select Delete snapshot.

5. Click Delete.

14.1.6.2. Deleting a virtual machine snapshot in the CLI

You can delete an existing virtual machine (VM) snapshot by deleting the appropriate
VirtualMachineSnapshot object.

Prerequisites

Install the OpenShift CLI (oc).

Procedure

Delete the VirtualMachineSnapshot object:

The snapshot controller deletes the VirtualMachineSnapshot along with the associated
VirtualMachineSnapshotContent object.

Verification

Verify that the snapshot is deleted and no longer attached to this VM:

14.1.7. Additional resources

CSI Volume Snapshots

14.2. BACKING UP AND RESTORING VIRTUAL MACHINES

IMPORTANT

Red Hat supports using OpenShift Virtualization 4.14 or later with OADP 1.3.x or later.

OADP versions earlier than 1.3.0 are not supported for back up and restore of OpenShift
Virtualization.

Back up and restore virtual machines by using the OpenShift API for Data Protection.

You can install the OpenShift API for Data Protection (OADP) with OpenShift Virtualization by installing
the OADP Operator and configuring a backup location. You can then install the Data Protection
Application.

NOTE

$ oc delete vmsnapshot <snapshot_name>

$ oc get vmsnapshot

CHAPTER 14. BACKUP AND RESTORE

397

https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/storage/#persistent-storage-csi-snapshots
https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/backup_and_restore/#application-backup-restore-operations-overview

NOTE

OpenShift API for Data Protection with OpenShift Virtualization supports the following
backup and restore storage options:

Container Storage Interface (CSI) backups

Container Storage Interface (CSI) backups with DataMover

The following storage options are excluded:

File system backup and restore

Volume snapshot backup and restore

For more information, see Backing up applications with File System Backup: Kopia or
Restic.

To install the OADP Operator in a restricted network environment, you must first disable the default
OperatorHub sources and mirror the Operator catalog.

See Using Operator Lifecycle Manager on restricted networks for details.

14.2.1. Installing and configuring OADP with OpenShift Virtualization

As a cluster administrator, you install OADP by installing the OADP Operator.

The latest version of the OADP Operator installs Velero 1.14.

Prerequisites

Access to the cluster as a user with the cluster-admin role.

Procedure

1. Install the OADP Operator according to the instructions for your storage provider.

2. Install the Data Protection Application (DPA) with the kubevirt and openshift OADP plugins.

3. Back up virtual machines by creating a Backup custom resource (CR).

WARNING

Red Hat support is limited to only the following options:

CSI backups

CSI backups with DataMover.

You restore the Backup CR by creating a Restore CR.



OpenShift Container Platform 4.17 Virtualization

398

https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/backup_and_restore/#oadp-backing-up-applications-restic-doc
https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/operators/#olm-restricted-networks
https://velero.io/docs/v1.14

Additional resources

OADP plugins

Backup custom resource (CR)

Restore CR

Using Operator Lifecycle Manager on restricted networks

14.2.2. Installing the Data Protection Application 1.3

You install the Data Protection Application (DPA) by creating an instance of the
DataProtectionApplication API.

Prerequisites

You must install the OADP Operator.

You must configure object storage as a backup location.

If you use snapshots to back up PVs, your cloud provider must support either a native snapshot
API or Container Storage Interface (CSI) snapshots.

If the backup and snapshot locations use the same credentials, you must create a Secret with
the default name, cloud-credentials.

NOTE

If you do not want to specify backup or snapshot locations during the installation,
you can create a default Secret with an empty credentials-velero file. If there is
no default Secret, the installation will fail.

Procedure

1. Click Operators → Installed Operators and select the OADP Operator.

2. Under Provided APIs, click Create instance in the DataProtectionApplication box.

3. Click YAML View and update the parameters of the DataProtectionApplication manifest:

apiVersion: oadp.openshift.io/v1alpha1
kind: DataProtectionApplication
metadata:
 name: <dpa_sample>
 namespace: openshift-adp 1
spec:
 configuration:
 velero:
 defaultPlugins:
 - kubevirt 2
 - gcp 3
 - csi 4
 - openshift 5
 resourceTimeout: 10m 6

CHAPTER 14. BACKUP AND RESTORE

399

https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/backup_and_restore/#oadp-plugins_oadp-features-plugins
https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/backup_and_restore/#backing-up-applications
https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/backup_and_restore/#restoring-applications
https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html-single/operators/#olm-restricted-networks

1

2

3

4

5

6

7

8

9

10

11

12

13

14

The default namespace for OADP is openshift-adp. The namespace is a variable and is
configurable.

The kubevirt plugin is mandatory for OpenShift Virtualization.

Specify the plugin for the backup provider, for example, gcp, if it exists.

The csi plugin is mandatory for backing up PVs with CSI snapshots. The csi plugin uses the
Velero CSI beta snapshot APIs . You do not need to configure a snapshot location.

The openshift plugin is mandatory.

Specify how many minutes to wait for several Velero resources before timeout occurs,
such as Velero CRD availability, volumeSnapshot deletion, and backup repository
availability. The default is 10m.

The administrative agent that routes the administrative requests to servers.

Set this value to true if you want to enable nodeAgent and perform File System Backup.

Enter kopia as your uploader to use the Built-in DataMover. The nodeAgent deploys a
daemon set, which means that the nodeAgent pods run on each working node. You can
configure File System Backup by adding spec.defaultVolumesToFsBackup: true to the
Backup CR.

Specify the nodes on which Kopia are available. By default, Kopia runs on all nodes.

Specify the backup provider.

Specify the correct default name for the Secret, for example, cloud-credentials-gcp, if
you use a default plugin for the backup provider. If specifying a custom name, then the
custom name is used for the backup location. If you do not specify a Secret name, the
default name is used.

Specify a bucket as the backup storage location. If the bucket is not a dedicated bucket for
Velero backups, you must specify a prefix.

Specify a prefix for Velero backups, for example, velero, if the bucket is used for multiple
purposes.

 nodeAgent: 7
 enable: true 8
 uploaderType: kopia 9
 podConfig:
 nodeSelector: <node_selector> 10
 backupLocations:
 - velero:
 provider: gcp 11
 default: true
 credential:
 key: cloud
 name: <default_secret> 12
 objectStorage:
 bucket: <bucket_name> 13
 prefix: <prefix> 14

OpenShift Container Platform 4.17 Virtualization

400

https://velero.io/docs/main/csi/

4. Click Create.

Verification

1. Verify the installation by viewing the OpenShift API for Data Protection (OADP) resources by
running the following command:

Example output

NAME READY STATUS RESTARTS AGE
pod/oadp-operator-controller-manager-67d9494d47-6l8z8 2/2 Running 0 2m8s
pod/node-agent-9cq4q 1/1 Running 0 94s
pod/node-agent-m4lts 1/1 Running 0 94s
pod/node-agent-pv4kr 1/1 Running 0 95s
pod/velero-588db7f655-n842v 1/1 Running 0 95s

NAME TYPE CLUSTER-IP EXTERNAL-IP
PORT(S) AGE
service/oadp-operator-controller-manager-metrics-service ClusterIP 172.30.70.140
<none> 8443/TCP 2m8s
service/openshift-adp-velero-metrics-svc ClusterIP 172.30.10.0 <none>
8085/TCP 8h

NAME DESIRED CURRENT READY UP-TO-DATE AVAILABLE NODE
SELECTOR AGE
daemonset.apps/node-agent 3 3 3 3 3 <none> 96s

NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/oadp-operator-controller-manager 1/1 1 1 2m9s
deployment.apps/velero 1/1 1 1 96s

NAME DESIRED CURRENT READY AGE
replicaset.apps/oadp-operator-controller-manager-67d9494d47 1 1 1 2m9s
replicaset.apps/velero-588db7f655 1 1 1 96s

2. Verify that the DataProtectionApplication (DPA) is reconciled by running the following
command:

Example output

3. Verify the type is set to Reconciled.

4. Verify the backup storage location and confirm that the PHASE is Available by running the
following command:

$ oc get all -n openshift-adp

$ oc get dpa dpa-sample -n openshift-adp -o jsonpath='{.status}'

{"conditions":[{"lastTransitionTime":"2023-10-27T01:23:57Z","message":"Reconcile
complete","reason":"Complete","status":"True","type":"Reconciled"}]}

$ oc get backupStorageLocation -n openshift-adp

CHAPTER 14. BACKUP AND RESTORE

401

Example output

14.3. DISASTER RECOVERY

OpenShift Virtualization supports using disaster recovery (DR) solutions to ensure that your
environment can recover after a site outage. To use these methods, you must plan your OpenShift
Virtualization deployment in advance.

14.3.1. About disaster recovery methods

For an overview of disaster recovery (DR) concepts, architecture, and planning considerations, see the
Red Hat OpenShift Virtualization disaster recovery guide in the Red Hat Knowledgebase.

The two primary DR methods for OpenShift Virtualization are Metropolitan Disaster Recovery (Metro-
DR) and Regional-DR.

14.3.1.1. Metro-DR

Metro-DR uses synchronous replication. It writes to storage at both the primary and secondary sites so
that the data is always synchronized between sites. Because the storage provider is responsible for
ensuring that the synchronization succeeds, the environment must meet the throughput and latency
requirements of the storage provider.

14.3.1.2. Regional-DR

Regional-DR uses asynchronous replication. The data in the primary site is synchronized with the
secondary site at regular intervals. For this type of replication, you can have a higher latency connection
between the primary and secondary sites.

IMPORTANT

Regional-DR is a Technology Preview feature only. Technology Preview features are not
supported with Red Hat production service level agreements (SLAs) and might not be
functionally complete. Red Hat does not recommend using them in production. These
features provide early access to upcoming product features, enabling customers to test
functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

14.3.2. Defining applications for disaster recovery

Define applications for disaster recovery by using VMs that Red Hat Advanced Cluster Management
(RHACM) manages or discovers.

14.3.2.1. Best practices when defining an RHACM-managed VM

An RHACM-managed application that includes a VM must be created by using a GitOps workflow and by
creating an RHACM application or ApplicationSet.

There are several actions you can take to improve your experience and chance of success when defining

NAME PHASE LAST VALIDATED AGE DEFAULT
dpa-sample-1 Available 1s 3d16h true

OpenShift Container Platform 4.17 Virtualization

402

https://access.redhat.com/articles/7041594
https://access.redhat.com/support/offerings/techpreview/

There are several actions you can take to improve your experience and chance of success when defining
an RHACM-managed VM.

Use a PVC and populator to define storage for the VM
Because data volumes create persistent volume claims (PVCs) implicitly, data volumes and VMs with
data volume templates do not fit as neatly into the GitOps model.

Use the import method when choosing a population source for your VM disk
Use the import method to work around limitations in Regional-DR that prevent you from protecting VMs
that use cloned PVCs.

Select a RHEL image from the software catalog to use the import method. Red Hat recommends using a
specific version of the image rather than a floating tag for consistent results. The KubeVirt community
maintains container disks for other operating systems in a Quay repository.

Use pullMethod: node
Use the pod pullMethod: node when creating a data volume from a registry source to take advantage
of the OpenShift Container Platform pull secret, which is required to pull container images from the
Red Hat registry.

14.3.2.2. Best practices when defining an RHACM-discovered virtual machine

You can configure any VM in the cluster that is not an RHACM-managed application as an RHACM-
discovered application. This includes VMs imported by using the Migration Toolkit for Virtualization
(MTV), VMs created by using the OpenShift Virtualization web console, or VMs created by any other
means, such as the CLI.

There are several actions you can take to improve your experience and chance of success when defining
an RHACM-discovered VM.

Protect the VM when using MTV, the OpenShift Virtualization web console, or a custom VM
Because automatic labeling is not currently available, the application owner must manually label the
components of the VM application when using MTV, the OpenShift Virtualization web console, or a
custom VM.

After creating the VM, apply a common label to the following resources associated with the VM:
VirtualMachine, DataVolume, PersistentVolumeClaim, Service, Route, Secret, and ConfigMap. Do
not label virtual machine instances (VMIs) or pods since OpenShift Virtualization creates and manages
these automatically.

Include more than the VirtualMachine object in the VM
Working VMs typically also contain data volumes, persistent volume claims (PVCs), services, routes,
secrets, ConfigMap objects, and VirtualMachineSnapshot objects.

Include the VM as part of a larger logical application
This includes other pod-based workloads and VMs.

14.3.3. VM behavior during disaster recovery scenarios

VMs typically act similarly to pod-based workloads during both relocate and failover disaster recovery
flows.

Relocate
Use relocate to move an application from the primary environment to the secondary environment when
the primary environment is still accessible. During relocate, the VM is gracefully terminated, any
unreplicated data is synchronized to the secondary environment, and the VM starts in the secondary

CHAPTER 14. BACKUP AND RESTORE

403

environment.

Becauase the terminates gracefully, there is no data loss in this scenario. Therefore, the VM operating
system does not need to perform crash recovery.

Failover
Use failover when there is a critical failure in the primary environment that makes it impractical or
impossible to use relocation to move the workload to a secondary environment. When failover is
executed, the storage is fenced from the primary environment, the I/O to the VM disks is abruptly
halted, and the VM restarts in the secondary environment using the replicated data.

You should expect data loss due to failover. The extent of loss depends on whether you use Metro-DR,
which uses synchronous replication, or Regional-DR, which uses asynchronous replication. Because
Regional-DR uses snapshot-based replication intervals, the window of data loss is proportional to the
replication interval length. When the VM restarts, the operating system might perform crash recovery.

14.3.4. Metro-DR for Red Hat OpenShift Data Foundation

OpenShift Virtualization supports the Metro-DR solution for OpenShift Data Foundation , which
provides two-way synchronous data replication between managed OpenShift Virtualization clusters
installed on primary and secondary sites. This solution combines Red Hat Advanced Cluster
Management (RHACM), Red Hat Ceph Storage, and OpenShift Data Foundation components.

Use this solution during a site disaster to failover applications from the primary to the secondary site,
and relocate the applications back to the primary site after restoring the disaster site.

This synchronous solution is only available to metropolitan distance data centers with a 10-millisecond
latency or less.

For more information about using the Metro-DR solution for OpenShift Data Foundation with OpenShift
Virtualization, see the Red Hat Knowledgebase or IBM’s OpenShift Data Foundation Metro-DR
documentation.

Additional resources

Configuring OpenShift Data Foundation Disaster Recovery for OpenShift Workloads

Additional resources

Red Hat Advanced Cluster Management for Kubernetes 2.10

OpenShift Container Platform 4.17 Virtualization

404

https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.14/html-single/configuring_openshift_data_foundation_disaster_recovery_for_openshift_workloads/index#metro-dr-solution
https://access.redhat.com/articles/7053115
https://docs.redhat.com/en/documentation/red_hat_openshift_data_foundation/4.17/html/configuring_openshift_data_foundation_disaster_recovery_for_openshift_workloads/index
https://docs.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.10

	Table of Contents
	CHAPTER 1. ABOUT
	1.1. ABOUT OPENSHIFT VIRTUALIZATION
	1.2. SECURITY POLICIES
	1.2.1. About workload security
	1.2.2. TLS certificates
	1.2.3. Authorization
	1.2.3.1. Default cluster roles for OpenShift Virtualization
	1.2.3.2. RBAC roles for storage features in OpenShift Virtualization
	1.2.3.3. Additional SCCs and permissions for the kubevirt-controller service account

	1.2.4. Additional resources

	1.3. OPENSHIFT VIRTUALIZATION ARCHITECTURE
	1.3.1. About the HyperConverged Operator (HCO)
	1.3.2. About the Containerized Data Importer (CDI) Operator
	1.3.3. About the Cluster Network Addons Operator
	1.3.4. About the Hostpath Provisioner (HPP) Operator
	1.3.5. About the Scheduling, Scale, and Performance (SSP) Operator
	1.3.6. About the OpenShift Virtualization Operator

	CHAPTER 2. RELEASE NOTES
	2.1. OPENSHIFT VIRTUALIZATION RELEASE NOTES
	2.1.1. Providing documentation feedback
	2.1.2. About Red Hat OpenShift Virtualization
	2.1.2.1. OpenShift Virtualization supported cluster version
	2.1.2.2. Supported guest operating systems
	2.1.2.3. Microsoft Windows SVVP certification

	2.1.3. Quick starts
	2.1.4. New and changed features
	2.1.4.1. Installation and update
	2.1.4.2. Infrastructure
	2.1.4.3. Virtualization
	2.1.4.4. Networking
	2.1.4.5. Storage
	2.1.4.6. Web console
	2.1.4.7. Monitoring
	2.1.4.8. Notable technical changes

	2.1.5. Deprecated and removed features
	2.1.5.1. Deprecated features
	2.1.5.2. Removed features

	2.1.6. Technology Preview features
	2.1.7. Bug fixes
	2.1.8. Known issues
	Monitoring
	Networking
	Nodes
	Storage
	Virtualization
	Web console

	CHAPTER 3. GETTING STARTED
	3.1. GETTING STARTED WITH OPENSHIFT VIRTUALIZATION
	3.1.1. Planning and installing OpenShift Virtualization
	Planning and installation resources

	3.1.2. Creating and managing virtual machines
	3.1.3. Next steps

	3.2. USING THE CLI TOOLS
	3.2.1. Installing virtctl
	3.2.1.1. Installing the virtctl binary on RHEL 9, Linux, Windows, or macOS
	3.2.1.2. Installing the virtctl RPM on RHEL 8

	3.2.2. virtctl commands
	3.2.2.1. virtctl information commands
	3.2.2.2. VM information commands
	3.2.2.3. VM manifest creation commands
	3.2.2.4. VM management commands
	3.2.2.5. VM connection commands
	3.2.2.6. VM export commands
	3.2.2.7. VM memory dump commands
	3.2.2.8. Hot plug and hot unplug commands
	3.2.2.9. Image upload commands

	3.2.3. Deploying libguestfs by using virtctl
	3.2.3.1. Libguestfs and virtctl guestfs commands

	3.2.4. Using Ansible

	CHAPTER 4. INSTALLING
	4.1. PREPARING YOUR CLUSTER FOR OPENSHIFT VIRTUALIZATION
	4.1.1. Supported platforms
	4.1.1.1. OpenShift Virtualization on AWS bare metal

	4.1.2. Hardware and operating system requirements
	4.1.2.1. CPU requirements
	4.1.2.2. Operating system requirements
	4.1.2.3. Storage requirements

	4.1.3. Live migration requirements
	4.1.4. Physical resource overhead requirements
	Memory overhead
	CPU overhead
	Storage overhead

	4.1.5. Single-node OpenShift differences
	4.1.6. Object maximums
	4.1.7. Cluster high-availability options

	4.2. INSTALLING OPENSHIFT VIRTUALIZATION
	4.2.1. Installing the OpenShift Virtualization Operator
	4.2.1.1. Installing the OpenShift Virtualization Operator by using the web console
	4.2.1.2. Installing the OpenShift Virtualization Operator by using the command line

	4.2.2. Next steps

	4.3. UNINSTALLING OPENSHIFT VIRTUALIZATION
	4.3.1. Uninstalling OpenShift Virtualization by using the web console
	4.3.1.1. Deleting the HyperConverged custom resource
	4.3.1.2. Deleting Operators from a cluster using the web console
	4.3.1.3. Deleting a namespace using the web console
	4.3.1.4. Deleting OpenShift Virtualization custom resource definitions

	4.3.2. Uninstalling OpenShift Virtualization by using the CLI

	CHAPTER 5. POSTINSTALLATION CONFIGURATION
	5.1. POSTINSTALLATION CONFIGURATION
	5.2. SPECIFYING NODES FOR OPENSHIFT VIRTUALIZATION COMPONENTS
	5.2.1. About node placement rules for OpenShift Virtualization components
	5.2.2. Applying node placement rules
	5.2.3. Node placement rule examples
	5.2.3.1. Subscription object node placement rule examples
	5.2.3.2. HyperConverged object node placement rule example
	5.2.3.3. HostPathProvisioner object node placement rule example

	5.2.4. Additional resources

	5.3. POSTINSTALLATION NETWORK CONFIGURATION
	5.3.1. Installing networking Operators
	5.3.2. Configuring a Linux bridge network
	5.3.2.1. Creating a Linux bridge NNCP
	5.3.2.2. Creating a Linux bridge NAD by using the web console

	5.3.3. Configuring a network for live migration
	5.3.3.1. Configuring a dedicated secondary network for live migration
	5.3.3.2. Selecting a dedicated network by using the web console

	5.3.4. Configuring an SR-IOV network
	5.3.4.1. Configuring SR-IOV network devices

	5.3.5. Enabling load balancer service creation by using the web console

	5.4. POSTINSTALLATION STORAGE CONFIGURATION
	5.4.1. Configuring local storage by using the HPP
	5.4.1.1. Creating a storage class for the CSI driver with the storagePools stanza

	5.5. CONFIGURING HIGHER VM WORKLOAD DENSITY
	5.5.1. Using wasp-agent to configure higher VM workload density

	CHAPTER 6. UPDATING
	6.1. UPDATING OPENSHIFT VIRTUALIZATION
	6.1.1. OpenShift Virtualization on RHEL 9
	6.1.1.1. RHEL 9 machine type

	6.1.2. About updating OpenShift Virtualization
	6.1.2.1. About workload updates
	6.1.2.2. About Control Plane Only updates

	6.1.3. Preventing workload updates during a Control Plane Only update
	6.1.4. Configuring workload update methods
	6.1.5. Approving pending Operator updates
	6.1.5.1. Manually approving a pending Operator update

	6.1.6. Monitoring update status
	6.1.6.1. Monitoring OpenShift Virtualization upgrade status
	6.1.6.2. Viewing outdated OpenShift Virtualization workloads

	6.1.7. Additional resources

	CHAPTER 7. VIRTUAL MACHINES
	7.1. CREATING VMS FROM RED HAT IMAGES
	7.1.1. Creating virtual machines from Red Hat images overview
	7.1.1.1. About golden images
	7.1.1.2. About VM boot sources

	7.1.2. Creating virtual machines from instance types
	7.1.2.1. About instance types
	7.1.2.2. Pre-defined instance types
	7.1.2.3. Creating manifests by using the virtctl tool
	7.1.2.4. Creating a VM from an instance type by using the web console

	7.1.3. Creating virtual machines from templates
	7.1.3.1. About VM templates
	7.1.3.2. Creating a VM from a template

	7.1.4. Creating virtual machines from the command line
	7.1.4.1. Creating manifests by using the virtctl tool
	7.1.4.2. Creating a VM from a VirtualMachine manifest

	7.2. CREATING VMS FROM CUSTOM IMAGES
	7.2.1. Creating virtual machines from custom images overview
	7.2.2. Creating VMs by using container disks
	7.2.2.1. Building and uploading a container disk
	7.2.2.2. Disabling TLS for a container registry
	7.2.2.3. Creating a VM from a container disk by using the web console
	7.2.2.4. Creating a VM from a container disk by using the command line

	7.2.3. Creating VMs by importing images from web pages
	7.2.3.1. Creating a VM from an image on a web page by using the web console
	7.2.3.2. Creating a VM from an image on a web page by using the command line

	7.2.4. Creating VMs by uploading images
	7.2.4.1. Creating a VM from an uploaded image by using the web console
	7.2.4.2. Creating a Windows VM
	7.2.4.3. Creating a VM from an uploaded image by using the command line

	7.2.5. Installing the QEMU guest agent and VirtIO drivers
	7.2.5.1. Installing the QEMU guest agent
	7.2.5.2. Installing VirtIO drivers on Windows VMs
	7.2.5.3. Updating VirtIO drivers

	7.2.6. Cloning VMs
	7.2.6.1. Cloning a VM by using the web console
	7.2.6.2. Creating a VM from an existing snapshot by using the web console
	7.2.6.3. Additional resources

	7.2.7. Creating VMs by cloning PVCs
	7.2.7.1. About cloning
	7.2.7.2. Creating a VM from a PVC by using the web console
	7.2.7.3. Creating a VM from a PVC by using the command line

	7.3. CONNECTING TO VIRTUAL MACHINE CONSOLES
	7.3.1. Connecting to the VNC console
	7.3.1.1. Connecting to the VNC console by using the web console
	7.3.1.2. Connecting to the VNC console by using virtctl
	7.3.1.3. Generating a temporary token for the VNC console

	7.3.2. Connecting to the serial console
	7.3.2.1. Connecting to the serial console by using the web console
	7.3.2.2. Connecting to the serial console by using virtctl

	7.3.3. Connecting to the desktop viewer
	7.3.3.1. Connecting to the desktop viewer by using the web console

	7.4. SPECIFYING AN INSTANCE TYPE OR PREFERENCE
	7.4.1. Using flags to specify instance types and preferences
	7.4.2. Inferring an instance type or preference
	7.4.3. Setting the inferFromVolume labels

	7.5. CONFIGURING SSH ACCESS TO VIRTUAL MACHINES
	7.5.1. Access configuration considerations
	7.5.2. Using virtctl ssh
	7.5.2.1. About static and dynamic SSH key management
	7.5.2.2. Static key management
	7.5.2.3. Dynamic key management
	7.5.2.4. Using the virtctl ssh command

	7.5.3. Using the virtctl port-forward command
	7.5.4. Using a service for SSH access
	7.5.4.1. About services
	7.5.4.2. Creating a service
	7.5.4.3. Connecting to a VM exposed by a service by using SSH

	7.5.5. Using a secondary network for SSH access
	7.5.5.1. Configuring a VM network interface by using the web console
	7.5.5.2. Connecting to a VM attached to a secondary network by using SSH

	7.6. EDITING VIRTUAL MACHINES
	7.6.1. Hot plugging memory on a virtual machine
	7.6.2. Editing a virtual machine by using the command line
	7.6.3. Adding a disk to a virtual machine
	7.6.3.1. Storage fields

	7.6.4. Mounting a Windows driver disk on a virtual machine
	7.6.5. Adding a secret, config map, or service account to a virtual machine
	Additional resources for config maps, secrets, and service accounts

	7.7. EDITING BOOT ORDER
	7.7.1. Adding items to a boot order list in the web console
	7.7.2. Editing a boot order list in the web console
	7.7.3. Editing a boot order list in the YAML configuration file
	7.7.4. Removing items from a boot order list in the web console

	7.8. DELETING VIRTUAL MACHINES
	7.8.1. Deleting a virtual machine using the web console
	7.8.2. Deleting a virtual machine by using the CLI

	7.9. EXPORTING VIRTUAL MACHINES
	7.9.1. Creating a VirtualMachineExport custom resource
	7.9.2. Accessing exported virtual machine manifests

	7.10. MANAGING VIRTUAL MACHINE INSTANCES
	7.10.1. About virtual machine instances
	7.10.2. Listing all virtual machine instances using the CLI
	7.10.3. Listing standalone virtual machine instances using the web console
	7.10.4. Editing a standalone virtual machine instance using the web console
	7.10.5. Deleting a standalone virtual machine instance using the CLI
	7.10.6. Deleting a standalone virtual machine instance using the web console

	7.11. CONTROLLING VIRTUAL MACHINE STATES
	7.11.1. Starting a virtual machine
	7.11.2. Stopping a virtual machine
	7.11.3. Restarting a virtual machine
	7.11.4. Pausing a virtual machine
	7.11.5. Unpausing a virtual machine

	7.12. USING VIRTUAL TRUSTED PLATFORM MODULE DEVICES
	7.12.1. About vTPM devices
	7.12.2. Adding a vTPM device to a virtual machine

	7.13. MANAGING VIRTUAL MACHINES WITH OPENSHIFT PIPELINES
	7.13.1. Prerequisites
	7.13.2. Virtual machine tasks supported by the SSP Operator
	7.13.3. Windows EFI installer pipeline
	7.13.3.1. Running the example pipelines using the web console
	7.13.3.2. Running the example pipelines using the CLI

	7.13.4. Additional resources

	7.14. ADVANCED VIRTUAL MACHINE MANAGEMENT
	7.14.1. Working with resource quotas for virtual machines
	7.14.1.1. Setting resource quota limits for virtual machines
	7.14.1.2. Additional resources

	7.14.2. Specifying nodes for virtual machines
	7.14.2.1. About node placement for virtual machines
	7.14.2.2. Node placement examples
	7.14.2.3. Additional resources

	7.14.3. Activating kernel samepage merging (KSM)
	7.14.3.1. Prerequisites
	7.14.3.2. About using OpenShift Virtualization to activate KSM
	7.14.3.3. Configuring KSM activation by using the web console
	7.14.3.4. Configuring KSM activation by using the CLI
	7.14.3.5. Additional resources

	7.14.4. Configuring certificate rotation
	7.14.4.1. Configuring certificate rotation
	7.14.4.2. Troubleshooting certificate rotation parameters

	7.14.5. Configuring the default CPU model
	7.14.5.1. Configuring the default CPU model

	7.14.6. Using UEFI mode for virtual machines
	7.14.6.1. About UEFI mode for virtual machines
	7.14.6.2. Booting virtual machines in UEFI mode
	7.14.6.3. Enabling persistent EFI
	7.14.6.4. Configuring VMs with persistent EFI

	7.14.7. Configuring PXE booting for virtual machines
	7.14.7.1. Prerequisites
	7.14.7.2. PXE booting with a specified MAC address
	7.14.7.3. OpenShift Virtualization networking glossary

	7.14.8. Using huge pages with virtual machines
	7.14.8.1. Prerequisites
	7.14.8.2. What huge pages do
	7.14.8.3. Configuring huge pages for virtual machines

	7.14.9. Enabling dedicated resources for virtual machines
	7.14.9.1. About dedicated resources
	7.14.9.2. Prerequisites
	7.14.9.3. Enabling dedicated resources for a virtual machine

	7.14.10. Scheduling virtual machines
	7.14.10.1. Policy attributes
	7.14.10.2. Setting a policy attribute and CPU feature
	7.14.10.3. Scheduling virtual machines with the supported CPU model
	7.14.10.4. Scheduling virtual machines with the host model
	7.14.10.5. Scheduling virtual machines with a custom scheduler

	7.14.11. Configuring PCI passthrough
	7.14.11.1. Preparing nodes for GPU passthrough
	7.14.11.2. Preparing host devices for PCI passthrough
	7.14.11.3. Configuring virtual machines for PCI passthrough
	7.14.11.4. Additional resources

	7.14.12. Configuring virtual GPUs
	7.14.12.1. About using virtual GPUs with OpenShift Virtualization
	7.14.12.2. Preparing hosts for mediated devices
	7.14.12.3. Configuring the NVIDIA GPU Operator
	7.14.12.4. How vGPUs are assigned to nodes
	7.14.12.5. Managing mediated devices
	7.14.12.6. Using mediated devices
	7.14.12.7. Additional resources

	7.14.13. Configuring USB host passthrough
	7.14.13.1. Enabling USB host passthrough
	7.14.13.2. Configuring a virtual machine connection to a USB device

	7.14.14. Enabling descheduler evictions on virtual machines
	7.14.14.1. Descheduler profiles
	7.14.14.2. Installing the descheduler
	7.14.14.3. Enabling descheduler evictions on a virtual machine (VM)
	7.14.14.4. Additional resources

	7.14.15. About high availability for virtual machines
	7.14.16. Virtual machine control plane tuning
	7.14.16.1. Configuring a highBurst profile

	7.14.17. Assigning compute resources
	7.14.17.1. Overcommitting CPU resources
	7.14.17.2. Setting the CPU allocation ratio
	7.14.17.3. Additional resources

	7.14.18. About multi-queue functionality
	7.14.18.1. Known limitations
	7.14.18.2. Enabling multi-queue functionality

	7.15. VM DISKS
	7.15.1. Hot-plugging VM disks
	7.15.1.1. Hot plugging and hot unplugging a disk by using the web console
	7.15.1.2. Hot plugging and hot unplugging a disk by using the command line

	7.15.2. Expanding virtual machine disks
	7.15.2.1. Expanding a VM disk PVC
	7.15.2.2. Expanding available virtual storage by adding blank data volumes

	7.15.3. Configuring shared volumes for virtual machines
	7.15.3.1. Configuring disk sharing by using virtual machine disks
	7.15.3.2. Configuring disk sharing by using LUN
	7.15.3.3. Enabling the PersistentReservation feature gate

	CHAPTER 8. NETWORKING
	8.1. NETWORKING OVERVIEW
	8.1.1. OpenShift Virtualization networking glossary
	8.1.2. Using the default pod network
	8.1.3. Configuring VM secondary network interfaces
	8.1.3.1. Comparing Linux bridge CNI and OVN-Kubernetes localnet topology

	8.1.4. Integrating with OpenShift Service Mesh
	8.1.5. Managing MAC address pools
	8.1.6. Configuring SSH access

	8.2. CONNECTING A VIRTUAL MACHINE TO THE DEFAULT POD NETWORK
	8.2.1. Configuring masquerade mode from the command line
	8.2.2. Configuring masquerade mode with dual-stack (IPv4 and IPv6)
	8.2.3. About jumbo frames support
	8.2.4. Additional resources

	8.3. EXPOSING A VIRTUAL MACHINE BY USING A SERVICE
	8.3.1. About services
	8.3.2. Dual-stack support
	8.3.3. Creating a service by using the command line
	8.3.4. Additional resources

	8.4. ACCESSING A VIRTUAL MACHINE BY USING ITS INTERNAL FQDN
	8.4.1. Creating a headless service in a project by using the CLI
	8.4.2. Mapping a virtual machine to a headless service by using the CLI
	8.4.3. Connecting to a virtual machine by using its internal FQDN
	8.4.4. Additional resources

	8.5. CONNECTING A VIRTUAL MACHINE TO A LINUX BRIDGE NETWORK
	8.5.1. Creating a Linux bridge NNCP
	8.5.2. Creating a Linux bridge NAD
	8.5.2.1. Creating a Linux bridge NAD by using the web console
	8.5.2.2. Creating a Linux bridge NAD by using the command line

	8.5.3. Configuring a VM network interface
	8.5.3.1. Configuring a VM network interface by using the web console
	8.5.3.2. Configuring a VM network interface by using the command line

	8.6. CONNECTING A VIRTUAL MACHINE TO AN SR-IOV NETWORK
	8.6.1. Configuring SR-IOV network devices
	8.6.2. Configuring SR-IOV additional network
	8.6.3. Connecting a virtual machine to an SR-IOV network by using the command line
	8.6.4. Connecting a VM to an SR-IOV network by using the web console
	8.6.5. Additional resources

	8.7. USING DPDK WITH SR-IOV
	8.7.1. Configuring a cluster for DPDK workloads
	8.7.2. Configuring a project for DPDK workloads
	8.7.3. Configuring a virtual machine for DPDK workloads

	8.8. CONNECTING A VIRTUAL MACHINE TO AN OVN-KUBERNETES SECONDARY NETWORK
	8.8.1. Creating an OVN-Kubernetes NAD
	8.8.1.1. Creating a NAD for layer 2 topology using the CLI
	8.8.1.2. Creating a NAD for localnet topology using the CLI
	8.8.1.3. Creating a NAD for layer 2 topology by using the web console
	8.8.1.4. Creating a NAD for localnet topology using the web console

	8.8.2. Attaching a virtual machine to the OVN-Kubernetes secondary network
	8.8.2.1. Attaching a virtual machine to an OVN-Kubernetes secondary network using the CLI

	8.8.3. Additional resources

	8.9. HOT PLUGGING SECONDARY NETWORK INTERFACES
	8.9.1. VirtIO limitations
	8.9.2. Hot plugging a secondary network interface by using the CLI
	8.9.3. Hot unplugging a secondary network interface by using the CLI
	8.9.4. Additional resources

	8.10. CONNECTING A VIRTUAL MACHINE TO A SERVICE MESH
	8.10.1. Adding a virtual machine to a service mesh
	8.10.2. Additional resources

	8.11. CONFIGURING A DEDICATED NETWORK FOR LIVE MIGRATION
	8.11.1. Configuring a dedicated secondary network for live migration
	8.11.2. Selecting a dedicated network by using the web console
	8.11.3. Additional resources

	8.12. CONFIGURING AND VIEWING IP ADDRESSES
	8.12.1. Configuring IP addresses for virtual machines
	8.12.1.1. Configuring an IP address when creating a virtual machine by using the command line

	8.12.2. Viewing IP addresses of virtual machines
	8.12.2.1. Viewing the IP address of a virtual machine by using the web console
	8.12.2.2. Viewing the IP address of a virtual machine by using the command line

	8.12.3. Additional resources

	8.13. ACCESSING A VIRTUAL MACHINE BY USING ITS EXTERNAL FQDN
	8.13.1. Configuring a DNS server for secondary networks
	8.13.2. Connecting to a VM on a secondary network by using the cluster FQDN
	8.13.3. Additional resources

	8.14. MANAGING MAC ADDRESS POOLS FOR NETWORK INTERFACES
	8.14.1. Managing KubeMacPool by using the command line

	CHAPTER 9. STORAGE
	9.1. STORAGE CONFIGURATION OVERVIEW
	9.1.1. Storage
	9.1.2. Containerized Data Importer
	9.1.3. Data volumes
	9.1.4. Boot source updates

	9.2. CONFIGURING STORAGE PROFILES
	9.2.1. Customizing the storage profile
	9.2.1.1. Setting a default cloning strategy using a storage profile

	9.3. MANAGING AUTOMATIC BOOT SOURCE UPDATES
	9.3.1. Managing Red Hat boot source updates
	9.3.1.1. Managing automatic updates for all system-defined boot sources

	9.3.2. Managing custom boot source updates
	9.3.2.1. Configuring a storage class for custom boot source updates
	9.3.2.2. Enabling automatic updates for custom boot sources
	9.3.2.3. Enabling volume snapshot boot sources

	9.3.3. Disabling automatic updates for a single boot source
	9.3.4. Verifying the status of a boot source

	9.4. RESERVING PVC SPACE FOR FILE SYSTEM OVERHEAD
	9.4.1. Overriding the default file system overhead value

	9.5. CONFIGURING LOCAL STORAGE BY USING THE HOSTPATH PROVISIONER
	9.5.1. Creating a hostpath provisioner with a basic storage pool
	9.5.1.1. About creating storage classes
	9.5.1.2. Creating a storage class for the CSI driver with the storagePools stanza

	9.5.2. About storage pools created with PVC templates
	9.5.2.1. Creating a storage pool with a PVC template

	9.6. ENABLING USER PERMISSIONS TO CLONE DATA VOLUMES ACROSS NAMESPACES
	9.6.1. Creating RBAC resources for cloning data volumes

	9.7. CONFIGURING CDI TO OVERRIDE CPU AND MEMORY QUOTAS
	9.7.1. About CPU and memory quotas in a namespace
	9.7.2. Overriding CPU and memory defaults
	9.7.3. Additional resources

	9.8. PREPARING CDI SCRATCH SPACE
	9.8.1. About scratch space
	Manual provisioning

	9.8.2. CDI operations that require scratch space
	9.8.3. Defining a storage class
	9.8.4. CDI supported operations matrix
	9.8.5. Additional resources

	9.9. USING PREALLOCATION FOR DATA VOLUMES
	9.9.1. About preallocation
	9.9.2. Enabling preallocation for a data volume

	9.10. MANAGING DATA VOLUME ANNOTATIONS
	9.10.1. Example: Data volume annotations

	CHAPTER 10. LIVE MIGRATION
	10.1. ABOUT LIVE MIGRATION
	10.1.1. Live migration requirements
	10.1.2. Common live migration tasks
	10.1.3. Additional resources

	10.2. CONFIGURING LIVE MIGRATION
	10.2.1. Configuring live migration limits and timeouts
	10.2.2. Live migration policies
	10.2.2.1. Creating a live migration policy by using the command line

	10.2.3. Additional resources

	10.3. INITIATING AND CANCELING LIVE MIGRATION
	10.3.1. Initiating live migration
	10.3.1.1. Initiating live migration by using the web console
	10.3.1.2. Initiating live migration by using the command line

	10.3.2. Canceling live migration
	10.3.2.1. Canceling live migration by using the web console
	10.3.2.2. Canceling live migration by using the command line

	CHAPTER 11. NODES
	11.1. NODE MAINTENANCE
	11.1.1. Eviction strategies
	11.1.1.1. Configuring a VM eviction strategy using the command line
	11.1.1.2. Configuring a cluster eviction strategy by using the command line

	11.1.2. Run strategies
	11.1.2.1. Run strategies
	11.1.2.2. Configuring a VM run strategy by using the command line

	11.1.3. Maintaining bare metal nodes
	11.1.4. Additional resources

	11.2. MANAGING NODE LABELING FOR OBSOLETE CPU MODELS
	11.2.1. About node labeling for obsolete CPU models
	11.2.2. About node labeling for CPU features
	11.2.3. Configuring obsolete CPU models

	11.3. PREVENTING NODE RECONCILIATION
	11.3.1. Using skip-node annotation
	11.3.2. Additional resources

	11.4. DELETING A FAILED NODE TO TRIGGER VIRTUAL MACHINE FAILOVER
	11.4.1. Prerequisites
	11.4.2. Deleting nodes from a bare metal cluster
	11.4.3. Verifying virtual machine failover
	11.4.3.1. Listing all virtual machine instances using the CLI

	CHAPTER 12. MONITORING
	12.1. MONITORING OVERVIEW
	12.2. OPENSHIFT VIRTUALIZATION CLUSTER CHECKUP FRAMEWORK
	12.2.1. About the OpenShift Virtualization cluster checkup framework
	12.2.2. Running checkups by using the web console
	12.2.2.1. Running a latency checkup by using the web console
	12.2.2.2. Running a storage checkup by using the web console

	12.2.3. Running checkups by using the command line
	12.2.3.1. Running a latency checkup by using the command line
	12.2.3.2. Running a storage checkup by using the command line
	12.2.3.3. Running a DPDK checkup by using the command line

	12.2.4. Additional resources

	12.3. PROMETHEUS QUERIES FOR VIRTUAL RESOURCES
	12.3.1. Prerequisites
	12.3.2. Querying metrics
	12.3.2.1. Querying metrics for all projects as a cluster administrator
	12.3.2.2. Querying metrics for user-defined projects as a developer

	12.3.3. Virtualization metrics
	12.3.3.1. vCPU metrics
	12.3.3.2. Network metrics
	12.3.3.3. Storage metrics
	12.3.3.4. Guest memory swapping metrics
	12.3.3.5. Live migration metrics

	12.3.4. Additional resources

	12.4. EXPOSING CUSTOM METRICS FOR VIRTUAL MACHINES
	12.4.1. Configuring the node exporter service
	12.4.2. Configuring a virtual machine with the node exporter service
	12.4.3. Creating a custom monitoring label for virtual machines
	12.4.3.1. Querying the node-exporter service for metrics

	12.4.4. Creating a ServiceMonitor resource for the node exporter service
	12.4.4.1. Accessing the node exporter service outside the cluster

	12.4.5. Additional resources

	12.5. EXPOSING DOWNWARD METRICS FOR VIRTUAL MACHINES
	12.5.1. Enabling or disabling the downwardMetrics feature gate
	12.5.1.1. Enabling or disabling the downward metrics feature gate in a YAML file
	12.5.1.2. Enabling or disabling the downward metrics feature gate from the command line

	12.5.2. Configuring a downward metrics device
	12.5.3. Viewing downward metrics
	12.5.3.1. Viewing downward metrics by using the command line
	12.5.3.2. Viewing downward metrics by using the vm-dump-metrics tool

	12.6. VIRTUAL MACHINE HEALTH CHECKS
	12.6.1. About readiness and liveness probes
	12.6.1.1. Defining an HTTP readiness probe
	12.6.1.2. Defining a TCP readiness probe
	12.6.1.3. Defining an HTTP liveness probe

	12.6.2. Defining a watchdog
	12.6.2.1. Configuring a watchdog device for the virtual machine
	12.6.2.2. Installing the watchdog agent on the guest

	12.6.3. Defining a guest agent ping probe
	12.6.4. Additional resources

	12.7. OPENSHIFT VIRTUALIZATION RUNBOOKS
	12.7.1. CDIDataImportCronOutdated
	12.7.2. CDIDataVolumeUnusualRestartCount
	12.7.3. CDIDefaultStorageClassDegraded
	12.7.4. CDIMultipleDefaultVirtStorageClasses
	12.7.5. CDINoDefaultStorageClass
	12.7.6. CDINotReady
	12.7.7. CDIOperatorDown
	12.7.8. CDIStorageProfilesIncomplete
	12.7.9. CnaoDown
	12.7.10. CnaoNMstateMigration
	12.7.11. HCOInstallationIncomplete
	12.7.12. HPPNotReady
	12.7.13. HPPOperatorDown
	12.7.14. HPPSharingPoolPathWithOS
	12.7.15. KubemacpoolDown
	12.7.16. KubeMacPoolDuplicateMacsFound
	12.7.17. KubeVirtComponentExceedsRequestedCPU
	12.7.18. KubeVirtComponentExceedsRequestedMemory
	12.7.19. KubeVirtCRModified
	12.7.20. KubeVirtDeprecatedAPIRequested
	12.7.21. KubeVirtNoAvailableNodesToRunVMs
	12.7.22. KubevirtVmHighMemoryUsage
	12.7.23. KubeVirtVMIExcessiveMigrations
	12.7.24. LowKVMNodesCount
	12.7.25. LowReadyVirtControllersCount
	12.7.26. LowReadyVirtOperatorsCount
	12.7.27. LowVirtAPICount
	12.7.28. LowVirtControllersCount
	12.7.29. LowVirtOperatorCount
	12.7.30. NetworkAddonsConfigNotReady
	12.7.31. NoLeadingVirtOperator
	12.7.32. NoReadyVirtController
	12.7.33. NoReadyVirtOperator
	12.7.34. OrphanedVirtualMachineInstances
	12.7.35. OutdatedVirtualMachineInstanceWorkloads
	12.7.36. SingleStackIPv6Unsupported
	12.7.37. SSPCommonTemplatesModificationReverted
	12.7.38. SSPDown
	12.7.39. SSPFailingToReconcile
	12.7.40. SSPHighRateRejectedVms
	12.7.41. SSPTemplateValidatorDown
	12.7.42. SSPOperatorDown
	12.7.43. UnsupportedHCOModification
	12.7.44. VirtAPIDown
	12.7.45. VirtApiRESTErrorsBurst
	12.7.46. VirtApiRESTErrorsHigh
	12.7.47. VirtControllerDown
	12.7.48. VirtControllerRESTErrorsBurst
	12.7.49. VirtControllerRESTErrorsHigh
	12.7.50. VirtHandlerDaemonSetRolloutFailing
	12.7.51. VirtHandlerRESTErrorsBurst
	12.7.52. VirtHandlerRESTErrorsHigh
	12.7.53. VirtOperatorDown
	12.7.54. VirtOperatorRESTErrorsBurst
	12.7.55. VirtOperatorRESTErrorsHigh
	12.7.56. VirtualMachineCRCErrors
	12.7.57. VMCannotBeEvicted
	12.7.58. VMStorageClassWarning

	CHAPTER 13. SUPPORT
	13.1. SUPPORT OVERVIEW
	13.1.1. Web console
	13.1.2. Collecting data for Red Hat Support
	13.1.3. Troubleshooting

	13.2. COLLECTING DATA FOR RED HAT SUPPORT
	13.2.1. Collecting data about your environment
	13.2.2. Collecting data about virtual machines
	13.2.3. Using the must-gather tool for OpenShift Virtualization
	13.2.3.1. must-gather tool options

	13.3. TROUBLESHOOTING
	13.3.1. Events
	13.3.2. Pod logs
	13.3.2.1. Configuring OpenShift Virtualization pod log verbosity
	13.3.2.2. Viewing virt-launcher pod logs with the web console
	13.3.2.3. Viewing OpenShift Virtualization pod logs with the CLI

	13.3.3. Guest system logs
	13.3.3.1. Enabling default access to VM guest system logs with the web console
	13.3.3.2. Enabling default access to VM guest system logs with the CLI
	13.3.3.3. Setting guest system log access for a single VM with the web console
	13.3.3.4. Setting guest system log access for a single VM with the CLI
	13.3.3.5. Viewing guest system logs with the web console
	13.3.3.6. Viewing guest system logs with the CLI

	13.3.4. Log aggregation
	13.3.4.1. Viewing aggregated OpenShift Virtualization logs with the LokiStack
	13.3.4.2. OpenShift Virtualization LogQL queries

	13.3.5. Common error messages
	13.3.6. Troubleshooting data volumes
	13.3.6.1. About data volume conditions and events
	13.3.6.2. Analyzing data volume conditions and events

	CHAPTER 14. BACKUP AND RESTORE
	14.1. BACKUP AND RESTORE BY USING VM SNAPSHOTS
	14.1.1. About snapshots
	14.1.2. About application-consistent snapshots and backups
	14.1.3. Creating snapshots
	14.1.3.1. Creating a snapshot by using the web console
	14.1.3.2. Creating a snapshot by using the command line

	14.1.4. Verifying online snapshots by using snapshot indications
	14.1.5. Restoring virtual machines from snapshots
	14.1.5.1. Restoring a VM from a snapshot by using the web console
	14.1.5.2. Restoring a VM from a snapshot by using the command line

	14.1.6. Deleting snapshots
	14.1.6.1. Deleting a snapshot by using the web console
	14.1.6.2. Deleting a virtual machine snapshot in the CLI

	14.1.7. Additional resources

	14.2. BACKING UP AND RESTORING VIRTUAL MACHINES
	14.2.1. Installing and configuring OADP with OpenShift Virtualization
	14.2.2. Installing the Data Protection Application 1.3

	14.3. DISASTER RECOVERY
	14.3.1. About disaster recovery methods
	14.3.1.1. Metro-DR
	14.3.1.2. Regional-DR

	14.3.2. Defining applications for disaster recovery
	14.3.2.1. Best practices when defining an RHACM-managed VM
	14.3.2.2. Best practices when defining an RHACM-discovered virtual machine

	14.3.3. VM behavior during disaster recovery scenarios
	Relocate
	Failover

	14.3.4. Metro-DR for Red Hat OpenShift Data Foundation

