
OpenShift Container Platform 4.3

Operators

Working with Operators in OpenShift Container Platform

Last Updated: 2020-10-22

OpenShift Container Platform 4.3 Operators

Working with Operators in OpenShift Container Platform

Legal Notice

Copyright © 2020 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides information for working with Operators in OpenShift Container Platform.
This includes instructions for cluster administrators on how to install and manage Operators, as well
as information for developers on how to create applications from installed Operators. This also
contains guidance on building your own Operator using the Operator SDK.

. .

. .

. .

. .

Table of Contents

CHAPTER 1. UNDERSTANDING OPERATORS
1.1. WHY USE OPERATORS?
1.2. OPERATOR FRAMEWORK
1.3. OPERATOR MATURITY MODEL

CHAPTER 2. UNDERSTANDING THE OPERATOR LIFECYCLE MANAGER (OLM)
2.1. OPERATOR LIFECYCLE MANAGER WORKFLOW AND ARCHITECTURE

2.1.1. Overview of the Operator Lifecycle Manager
2.1.2. ClusterServiceVersions (CSVs)
2.1.3. Operator installation and upgrade workflow in OLM

2.1.3.1. Example upgrade path
2.1.3.2. Skipping upgrades
2.1.3.3. Replacing multiple Operators
2.1.3.4. Z-stream support

2.1.4. Operator Lifecycle Manager architecture
2.1.4.1. OLM Operator
2.1.4.2. Catalog Operator
2.1.4.3. Catalog Registry

2.1.5. Exposed metrics
2.2. OPERATOR LIFECYCLE MANAGER DEPENDENCY RESOLUTION

2.2.1. About dependency resolution
2.2.2. Custom Resource Definition (CRD) upgrades

2.2.2.1. Adding a new CRD version
2.2.2.2. Deprecating or removing a CRD version

2.2.3. Example dependency resolution scenarios
Example: Deprecating dependent APIs
Example: Version deadlock

2.3. OPERATORGROUPS
2.3.1. About OperatorGroups
2.3.2. OperatorGroup membership
2.3.3. Target namespace selection
2.3.4. OperatorGroup CSV annotations
2.3.5. Provided APIs annotation
2.3.6. Role-based access control
2.3.7. Copied CSVs
2.3.8. Static OperatorGroups
2.3.9. OperatorGroup intersection

Rules for intersection
2.3.10. Troubleshooting OperatorGroups

Membership

CHAPTER 3. UNDERSTANDING THE OPERATORHUB
3.1. OVERVIEW OF THE OPERATORHUB
3.2. OPERATORHUB ARCHITECTURE

3.2.1. OperatorHub CRD
3.2.2. OperatorSource CRD

CHAPTER 4. ADDING OPERATORS TO A CLUSTER
4.1. INSTALLING OPERATORS FROM THE OPERATORHUB

4.1.1. Installing from the OperatorHub using the web console
4.1.2. Installing from the OperatorHub using the CLI

6
6
6
7

8
8
8
8
9
11
11

13
14
15
16
16
17
17
18
18
18
18
19

20
20
20
21
21
21
21
22
23
23
26
27
27
27
28
28

30
30
31
31
31

33
33
33
36

Table of Contents

1

. .

. .

. .

. .

. .

. .

. .

. .

CHAPTER 5. CONFIGURING PROXY SUPPORT IN OPERATOR LIFECYCLE MANAGER
5.1. OVERRIDING AN OPERATOR’S PROXY SETTINGS
5.2. INJECTING A CUSTOM CA CERTIFICATE

CHAPTER 6. DELETING OPERATORS FROM A CLUSTER
6.1. DELETING OPERATORS FROM A CLUSTER USING THE WEB CONSOLE
6.2. DELETING OPERATORS FROM A CLUSTER USING THE CLI

CHAPTER 7. CREATING APPLICATIONS FROM INSTALLED OPERATORS
7.1. CREATING AN ETCD CLUSTER USING AN OPERATOR

CHAPTER 8. VIEWING OPERATOR STATUS
8.1. CONDITION TYPES
8.2. VIEWING OPERATOR STATUS USING THE CLI

CHAPTER 9. CREATING POLICY FOR OPERATOR INSTALLATIONS AND UPGRADES
9.1. UNDERSTANDING OPERATOR INSTALLATION POLICY

9.1.1. Installation scenarios
9.1.2. Installation workflow

9.2. SCOPING OPERATOR INSTALLATIONS
9.2.1. Fine-grained permissions

9.3. TROUBLESHOOTING PERMISSION FAILURES

CHAPTER 10. USING OPERATOR LIFECYCLE MANAGER ON RESTRICTED NETWORKS
10.1. UNDERSTANDING OPERATOR CATALOG IMAGES
10.2. BUILDING AN OPERATOR CATALOG IMAGE
10.3. CONFIGURING OPERATORHUB FOR RESTRICTED NETWORKS
10.4. UPDATING AN OPERATOR CATALOG IMAGE
10.5. TESTING AN OPERATOR CATALOG IMAGE

CHAPTER 11. CRDS
11.1. EXTENDING THE KUBERNETES API WITH CUSTOM RESOURCE DEFINITIONS

11.1.1. Custom Resource Definitions
11.1.2. Creating a Custom Resource Definition
11.1.3. Creating cluster roles for Custom Resource Definitions
11.1.4. Creating Custom Resources from a file
11.1.5. Inspecting Custom Resources

11.2. MANAGING RESOURCES FROM CUSTOM RESOURCE DEFINITIONS
11.2.1. Custom Resource Definitions
11.2.2. Creating Custom Resources from a file
11.2.3. Inspecting Custom Resources

CHAPTER 12. OPERATOR SDK
12.1. GETTING STARTED WITH THE OPERATOR SDK

12.1.1. Architecture of the Operator SDK
12.1.1.1. Workflow
12.1.1.2. Manager file
12.1.1.3. Prometheus Operator support

12.1.2. Installing the Operator SDK CLI
12.1.2.1. Installing from GitHub release
12.1.2.2. Installing from Homebrew
12.1.2.3. Compiling and installing from source

12.1.3. Building a Go-based Memcached Operator using the Operator SDK
12.1.4. Managing a Memcached Operator using the Operator Lifecycle Manager
12.1.5. Additional resources

39
39
40

43
43
43

45
45

48
48
48

49
49
49
50
50
52
53

55
55
56
58
62
65

68
68
68
68
70
71
72
73
73
73
74

76
76
76
76
77
77
77
78
80
80
81

87
89

OpenShift Container Platform 4.3 Operators

2

12.2. CREATING ANSIBLE-BASED OPERATORS
12.2.1. Ansible support in the Operator SDK

12.2.1.1. Custom Resource files
12.2.1.2. Watches file

12.2.1.2.1. Advanced options
12.2.1.3. Extra variables sent to Ansible
12.2.1.4. Ansible Runner directory

12.2.2. Installing the Operator SDK CLI
12.2.2.1. Installing from GitHub release
12.2.2.2. Installing from Homebrew
12.2.2.3. Compiling and installing from source

12.2.3. Building an Ansible-based Operator using the Operator SDK
12.2.4. Managing application lifecycle using the k8s Ansible module

12.2.4.1. Installing the k8s Ansible module
12.2.4.2. Testing the k8s Ansible module locally
12.2.4.3. Testing the k8s Ansible module inside an Operator

12.2.4.3.1. Testing an Ansible-based Operator locally
12.2.4.3.2. Testing an Ansible-based Operator on a cluster

12.2.5. Managing Custom Resource status using the k8s_status Ansible module
12.2.5.1. Using the k8s_status Ansible module when testing locally

12.2.6. Additional resources
12.3. CREATING HELM-BASED OPERATORS

12.3.1. Helm chart support in the Operator SDK
12.3.2. Installing the Operator SDK CLI

12.3.2.1. Installing from GitHub release
12.3.2.2. Installing from Homebrew
12.3.2.3. Compiling and installing from source

12.3.3. Building a Helm-based Operator using the Operator SDK
12.3.4. Additional resources

12.4. GENERATING A CLUSTERSERVICEVERSION (CSV)
12.4.1. How CSV generation works

Workflow
12.4.2. CSV composition configuration
12.4.3. Manually-defined CSV fields
12.4.4. Generating a CSV
12.4.5. Enabling your Operator for restricted network environments
12.4.6. Enabling your Operator for multiple architectures and operating systems

12.4.6.1. Architecture and operating system support for Operators
12.4.7. Understanding your Custom Resource Definitions (CRDs)

12.4.7.1. Owned CRDs
12.4.7.2. Required CRDs
12.4.7.3. CRD templates
12.4.7.4. Hiding internal objects

12.4.8. Understanding your API services
12.4.8.1. Owned APIServices

12.4.8.1.1. APIService Resource Creation
12.4.8.1.2. APIService Serving Certs

12.4.8.2. Required APIServices
12.5. CONFIGURING BUILT-IN MONITORING WITH PROMETHEUS

12.5.1. Prometheus Operator support
12.5.2. Metrics helper

12.5.2.1. Modifying the metrics port
12.5.3. ServiceMonitor resources

89
89
89
90
91

92
93
93
94
95
96
97

102
102
102
104
104
106
106
107
108
108
108
109
109

111
112
112
117
117
117
118
118
119

120
121
122
124
124
124
127
128
128
129
129
130
130
131
131
131
131
132
132

Table of Contents

3

12.5.3.1. Creating ServiceMonitor resources
12.6. CONFIGURING LEADER ELECTION

12.6.1. Using Leader-for-life election
12.6.2. Using Leader-with-lease election

12.7. OPERATOR SDK CLI REFERENCE
12.7.1. build
12.7.2. completion
12.7.3. print-deps
12.7.4. generate
12.7.5. olm-catalog

12.7.5.1. gen-csv
12.7.6. new
12.7.7. add
12.7.8. test

12.7.8.1. local
12.7.9. up

12.7.9.1. local
12.8. APPENDICES

12.8.1. Operator project scaffolding layout
12.8.1.1. Go-based projects
12.8.1.2. Helm-based projects

133
133
134
134
135
135
136
137
137
138
138
139
140
141
141

142
142
143
143
143
144

OpenShift Container Platform 4.3 Operators

4

Table of Contents

5

CHAPTER 1. UNDERSTANDING OPERATORS
Conceptually, Operators take human operational knowledge and encode it into software that is more
easily shared with consumers.

Operators are pieces of software that ease the operational complexity of running another piece of
software. They act like an extension of the software vendor’s engineering team, watching over a
Kubernetes environment (such as OpenShift Container Platform) and using its current state to make
decisions in real time. Advanced Operators are designed to handle upgrades seamlessly, react to failures
automatically, and not take shortcuts, like skipping a software backup process to save time.

More technically, Operators are a method of packaging, deploying, and managing a Kubernetes
application.

A Kubernetes application is an app that is both deployed on Kubernetes and managed using the
Kubernetes APIs and kubectl or oc tooling. To be able to make the most of Kubernetes, you require a
set of cohesive APIs to extend in order to service and manage your apps that run on Kubernetes. Think
of Operators as the runtime that manages this type of app on Kubernetes.

1.1. WHY USE OPERATORS?

Operators provide:

Repeatability of installation and upgrade.

Constant health checks of every system component.

Over-the-air (OTA) updates for OpenShift components and ISV content.

A place to encapsulate knowledge from field engineers and spread it to all users, not just one or
two.

Why deploy on Kubernetes?

Kubernetes (and by extension, OpenShift Container Platform) contains all of the primitives needed
to build complex distributed systems – secret handling, load balancing, service discovery, autoscaling
– that work across on-premise and cloud providers.

Why manage your app with Kubernetes APIs and kubectl tooling?

These APIs are feature rich, have clients for all platforms and plug into the cluster’s access
control/auditing. An Operator uses the Kubernetes' extension mechanism, Custom Resource
Definitions (CRDs), so your custom object, for example MongoDB, looks and acts just like the built-
in, native Kubernetes objects.

How do Operators compare with Service Brokers?

A Service Broker is a step towards programmatic discovery and deployment of an app. However,
because it is not a long running process, it cannot execute Day 2 operations like upgrade, failover, or
scaling. Customizations and parameterization of tunables are provided at install time, versus an
Operator that is constantly watching your cluster’s current state. Off-cluster services continue to be
a good match for a Service Broker, although Operators exist for these as well.

1.2. OPERATOR FRAMEWORK

The Operator Framework is a family of tools and capabilities to deliver on the customer experience
described above. It is not just about writing code; testing, delivering, and updating Operators is just as
important. The Operator Framework components consist of open source tools to tackle these

OpenShift Container Platform 4.3 Operators

6

https://marketplace.redhat.com/en-us/products/mongodb-enterprise-advanced-from-ibm

problems:

Operator SDK

The Operator SDK assists Operator authors in bootstrapping, building, testing, and packaging their
own Operator based on their expertise without requiring knowledge of Kubernetes API complexities.

Operator Lifecycle Manager

The Operator Lifecycle Manager (OLM) controls the installation, upgrade, and role-based access
control (RBAC) of Operators in a cluster. Deployed by default in OpenShift Container Platform 4.3.

Operator Registry

The Operator Registry stores ClusterServiceVersions (CSVs) and Custom Resource Definitions
(CRDs) for creation in a cluster and stores Operator metadata about packages and channels. It runs
in a Kubernetes or OpenShift cluster to provide this Operator catalog data to the OLM.

OperatorHub

The OperatorHub is a web console for cluster administrators to discover and select Operators to
install on their cluster. It is deployed by default in OpenShift Container Platform.

Operator Metering

Operator Metering collects operational metrics about Operators on the cluster for Day 2
management and aggregating usage metrics.

These tools are designed to be composable, so you can use any that are useful to you.

1.3. OPERATOR MATURITY MODEL

The level of sophistication of the management logic encapsulated within an Operator can vary. This
logic is also in general highly dependent on the type of the service represented by the Operator.

One can however generalize the scale of the maturity of an Operator’s encapsulated operations for
certain set of capabilities that most Operators can include. To this end, the following Operator Maturity
model defines five phases of maturity for generic day two operations of an Operator:

Figure 1.1. Operator maturity model

The above model also shows how these capabilities can best be developed through the Operator SDK’s
Helm, Go, and Ansible capabilities.

CHAPTER 1. UNDERSTANDING OPERATORS

7

CHAPTER 2. UNDERSTANDING THE OPERATOR LIFECYCLE
MANAGER (OLM)

2.1. OPERATOR LIFECYCLE MANAGER WORKFLOW AND
ARCHITECTURE

This guide outlines the concepts and architecture of the Operator Lifecycle Manager (OLM) in
OpenShift Container Platform.

2.1.1. Overview of the Operator Lifecycle Manager

In OpenShift Container Platform 4.3, the Operator Lifecycle Manager (OLM) helps users install, update,
and manage the lifecycle of all Operators and their associated services running across their clusters. It is
part of the Operator Framework, an open source toolkit designed to manage Kubernetes native
applications (Operators) in an effective, automated, and scalable way.

Figure 2.1. Operator Lifecycle Manager workflow

The OLM runs by default in OpenShift Container Platform 4.3, which aids cluster administrators in
installing, upgrading, and granting access to Operators running on their cluster. The OpenShift
Container Platform web console provides management screens for cluster administrators to install
Operators, as well as grant specific projects access to use the catalog of Operators available on the
cluster.

For developers, a self-service experience allows provisioning and configuring instances of databases,
monitoring, and big data services without having to be subject matter experts, because the Operator
has that knowledge baked into it.

2.1.2. ClusterServiceVersions (CSVs)

A ClusterServiceVersion (CSV) is a YAML manifest created from Operator metadata that assists the
Operator Lifecycle Manager (OLM) in running the Operator in a cluster.

A CSV is the metadata that accompanies an Operator container image, used to populate user interfaces
with information like its logo, description, and version. It is also a source of technical information needed
to run the Operator, like the RBAC rules it requires and which Custom Resources (CRs) it manages or
depends on.

A CSV is composed of:

Metadata

OpenShift Container Platform 4.3 Operators

8

https://github.com/operator-framework

Application metadata:

Name, description, version (semver compliant), links, labels, icon, etc.

Install strategy

Type: Deployment

Set of service accounts and required permissions

Set of Deployments.

CRDs

Type

Owned: Managed by this service

Required: Must exist in the cluster for this service to run

Resources: A list of resources that the Operator interacts with

Descriptors: Annotate CRD spec and status fields to provide semantic information

2.1.3. Operator installation and upgrade workflow in OLM

In the Operator Lifecycle Manager (OLM) ecosystem, the following resources are used to resolve
Operator installations and upgrades:

ClusterServiceVersion (CSV)

CatalogSource

Subscription

Operator metadata, defined in CSVs, can be stored in a collection called a CatalogSource. OLM uses
CatalogSources, which use the Operator Registry API, to query for available Operators as well as
upgrades for installed Operators.

Figure 2.2. CatalogSource overview

Within a CatalogSource, Operators are organized into packages and streams of updates called channels,

CHAPTER 2. UNDERSTANDING THE OPERATOR LIFECYCLE MANAGER (OLM)

9

https://github.com/operator-framework/operator-registry

Within a CatalogSource, Operators are organized into packages and streams of updates called channels,
which should be a familiar update pattern from OpenShift Container Platform or other software on a
continuous release cycle like web browsers.

Figure 2.3. Packages and channels in a CatalogSource

A user indicates a particular package and channel in a particular CatalogSource in a Subscription, for
example an etcd package and its alpha channel. If a Subscription is made to a package that has not yet
been installed in the namespace, the latest Operator for that package is installed.

NOTE

OLM deliberately avoids version comparisons, so the "latest" or "newest" Operator
available from a given catalog → channel → package path does not necessarily need to be
the highest version number. It should be thought of more as the head reference of a
channel, similar to a Git repository.

Each CSV has a replaces parameter that indicates which Operator it replaces. This builds a graph of
CSVs that can be queried by OLM, and updates can be shared between channels. Channels can be
thought of as entry points into the graph of updates:

Figure 2.4. OLM’s graph of available channel updates

OpenShift Container Platform 4.3 Operators

10

Figure 2.4. OLM’s graph of available channel updates

For example:

Channels in a package

For OLM to successfully query for updates, given a CatalogSource, package, channel, and CSV, a
catalog must be able to return, unambiguously and deterministically, a single CSV that replaces the
input CSV.

2.1.3.1. Example upgrade path

For an example upgrade scenario, consider an installed Operator corresponding to CSV version 0.1.1.
OLM queries the CatalogSource and detects an upgrade in the subscribed channel with new CSV
version 0.1.3 that replaces an older but not-installed CSV version 0.1.2, which in turn replaces the older
and installed CSV version 0.1.1.

OLM walks back from the channel head to previous versions via the replaces field specified in the CSVs
to determine the upgrade path 0.1.3 → 0.1.2 → 0.1.1; the direction of the arrow indicates that the
former replaces the latter. OLM upgrades the Operator one version at the time until it reaches the
channel head.

For this given scenario, OLM installs Operator version 0.1.2 to replace the existing Operator version
0.1.1. Then, it installs Operator version 0.1.3 to replace the previously installed Operator version 0.1.2. At
this point, the installed operator version 0.1.3 matches the channel head and the upgrade is completed.

2.1.3.2. Skipping upgrades

packageName: example
channels:
- name: alpha
 currentCSV: example.v0.1.2
- name: beta
 currentCSV: example.v0.1.3
defaultChannel: alpha

CHAPTER 2. UNDERSTANDING THE OPERATOR LIFECYCLE MANAGER (OLM)

11

OLM’s basic path for upgrades is:

A CatalogSource is updated with one or more updates to an Operator.

OLM traverses every version of the Operator until reaching the latest version the
CatalogSource contains.

However, sometimes this is not a safe operation to perform. There will be cases where a published
version of an Operator should never be installed on a cluster if it has not already, for example because a
version introduces a serious vulnerability.

In those cases, OLM must consider two cluster states and provide an update graph that supports both:

The "bad" intermediate Operator has been seen by the cluster and installed.

The "bad" intermediate Operator has not yet been installed onto the cluster.

By shipping a new catalog and adding a skipped release, OLM is ensured that it can always get a single
unique update regardless of the cluster state and whether it has seen the bad update yet.

For example:

CSV with skipped release

Consider the following example Old CatalogSource and New CatalogSource:

Figure 2.5. Skipping updates

apiVersion: operators.coreos.com/v1alpha1
kind: ClusterServiceVersion
metadata:
 name: etcdoperator.v0.9.2
 namespace: placeholder
 annotations:
spec:
 displayName: etcd
 description: Etcd Operator
 replaces: etcdoperator.v0.9.0
 skips:
 - etcdoperator.v0.9.1

OpenShift Container Platform 4.3 Operators

12

Figure 2.5. Skipping updates

This graph maintains that:

Any Operator found in Old CatalogSource has a single replacement in New CatalogSource.

Any Operator found in New CatalogSource has a single replacement in New CatalogSource.

If the bad update has not yet been installed, it will never be.

2.1.3.3. Replacing multiple Operators

Creating the New CatalogSource as described requires publishing CSVs that replace one Operator, but
can skip several. This can be accomplished using the skipRange annotation:

olm.skipRange: <semver_range>

where <semver_range> has the version range format supported by the semver library.

When searching catalogs for updates, if the head of a channel has a skipRange annotation and the
currently installed Operator has a version field that falls in the range, OLM updates to the latest entry in
the channel.

The order of precedence is:

1. Channel head in the source specified by sourceName on the Subscription, if the other criteria
for skipping are met.

2. The next Operator that replaces the current one, in the source specified by sourceName.

CHAPTER 2. UNDERSTANDING THE OPERATOR LIFECYCLE MANAGER (OLM)

13

https://github.com/blang/semver#ranges

3. Channel head in another source that is visible to the Subscription, if the other criteria for
skipping are met.

4. The next Operator that replaces the current one in any source visible to the Subscription.

For example:

CSV with skipRange

2.1.3.4. Z-stream support

A z-stream, or patch release, must replace all previous z-stream releases for the same minor version.
OLM does not care about major, minor, or patch versions, it just needs to build the correct graph in a
catalog.

In other words, OLM must be able to take a graph as in Old CatalogSource and, similar to before,
generate a graph as in New CatalogSource:

Figure 2.6. Replacing several Operators

apiVersion: operators.coreos.com/v1alpha1
kind: ClusterServiceVersion
metadata:
 name: elasticsearch-operator.v4.1.2
 namespace: <namespace>
 annotations:
 olm.skipRange: '>=4.1.0 <4.1.2'

OpenShift Container Platform 4.3 Operators

14

This graph maintains that:

Any Operator found in Old CatalogSource has a single replacement in New CatalogSource.

Any Operator found in New CatalogSource has a single replacement in New CatalogSource.

Any z-stream release in Old CatalogSource will update to the latest z-stream release in New
CatalogSource.

Unavailable releases can be considered "virtual" graph nodes; their content does not need to
exist, the registry just needs to respond as if the graph looks like this.

2.1.4. Operator Lifecycle Manager architecture

The Operator Lifecycle Manager is composed of two Operators: the OLM Operator and the Catalog
Operator.

Each of these Operators is responsible for managing the Custom Resource Definitions (CRDs) that are
the basis for the OLM framework:

Table 2.1. CRDs managed by OLM and Catalog Operators

Resource Shor
t
nam
e

Own
er

Description

ClusterService
Version

csv OLM Application metadata: name, version, icon, required resources,
installation, etc.

InstallPlan ip Catal
og

Calculated list of resources to be created in order to automatically install
or upgrade a CSV.

CatalogSource cats
rc

Catal
og

A repository of CSVs, CRDs, and packages that define an application.

Subscription sub Catal
og

Used to keep CSVs up to date by tracking a channel in a package.

OperatorGroup og OLM Used to group multiple namespaces and prepare them for use by an
Operator.

Each of these Operators is also responsible for creating resources:

Table 2.2. Resources created by OLM and Catalog Operators

Resource Owner

Deployments OLM

ServiceAccounts

CHAPTER 2. UNDERSTANDING THE OPERATOR LIFECYCLE MANAGER (OLM)

15

(Cluster)Roles

(Cluster)RoleBindings

Custom Resource Definitions (CRDs) Catalog

ClusterServiceVersions (CSVs)

Resource Owner

2.1.4.1. OLM Operator

The OLM Operator is responsible for deploying applications defined by CSV resources after the
required resources specified in the CSV are present in the cluster.

The OLM Operator is not concerned with the creation of the required resources; users can choose to
manually create these resources using the CLI, or users can choose to create these resources using the
Catalog Operator. This separation of concern allows users incremental buy-in in terms of how much of
the OLM framework they choose to leverage for their application.

While the OLM Operator is often configured to watch all namespaces, it can also be operated alongside
other OLM Operators so long as they all manage separate namespaces.

OLM Operator workflow

Watches for ClusterServiceVersion (CSVs) in a namespace and checks that requirements are
met. If so, runs the install strategy for the CSV.

NOTE

A CSV must be an active member of an OperatorGroup in order for the install
strategy to be run.

2.1.4.2. Catalog Operator

The Catalog Operator is responsible for resolving and installing CSVs and the required resources they
specify. It is also responsible for watching CatalogSources for updates to packages in channels and
upgrading them (optionally automatically) to the latest available versions.

A user who wishes to track a package in a channel creates a Subscription resource configuring the
desired package, channel, and the CatalogSource from which to pull updates. When updates are found,
an appropriate InstallPlan is written into the namespace on behalf of the user.

Users can also create an InstallPlan resource directly, containing the names of the desired CSV and an
approval strategy, and the Catalog Operator creates an execution plan for the creation of all of the
required resources. After it is approved, the Catalog Operator creates all of the resources in an
InstallPlan; this then independently satisfies the OLM Operator, which proceeds to install the CSVs.

Catalog Operator workflow

Has a cache of CRDs and CSVs, indexed by name.

OpenShift Container Platform 4.3 Operators

16

Watches for unresolved InstallPlans created by a user:

Finds the CSV matching the name requested and adds it as a resolved resource.

For each managed or required CRD, adds it as a resolved resource.

For each required CRD, finds the CSV that manages it.

Watches for resolved InstallPlans and creates all of the discovered resources for it (if approved
by a user or automatically).

Watches for CatalogSources and Subscriptions and creates InstallPlans based on them.

2.1.4.3. Catalog Registry

The Catalog Registry stores CSVs and CRDs for creation in a cluster and stores metadata about
packages and channels.

A package manifest is an entry in the Catalog Registry that associates a package identity with sets of
CSVs. Within a package, channels point to a particular CSV. Because CSVs explicitly reference the CSV
that they replace, a package manifest provides the Catalog Operator all of the information that is
required to update a CSV to the latest version in a channel, stepping through each intermediate version.

2.1.5. Exposed metrics

The Operator Lifecycle Manager (OLM) exposes certain OLM-specific resources for use by the
Prometheus-based OpenShift Container Platform cluster monitoring stack.

Table 2.3. Metrics exposed by OLM

Name Description

catalog_source
_count

Number of CatalogSources.

csv_abnormal When reconciling a ClusterServiceVersion (CSV), present whenever a CSV version is in
any state other than Succeeded, for example when it is not installed. Includes the
name, namespace, phase, reason, and version labels. A Prometheus alert is
created when this metric is present.

csv_count Number of CSVs successfully registered.

csv_succeeded When reconciling a CSV, represents whether a CSV version is in a Succeeded state
(value 1) or not (value 0). Includes the name, namespace, and version labels.

csv_upgrade_c
ount

Monotonic count of CSV upgrades.

install_plan_co
unt

Number of InstallPlans.

subscription_co
unt

Number of Subscriptions.

CHAPTER 2. UNDERSTANDING THE OPERATOR LIFECYCLE MANAGER (OLM)

17

subscription_sy
nc_total

Monotonic count of Subscription syncs. Includes the channel, installed CSV, and
Subscription name labels.

Name Description

2.2. OPERATOR LIFECYCLE MANAGER DEPENDENCY RESOLUTION

This guide outlines dependency resolution and Custom Resource Definition (CRD) upgrade lifecycles
within the Operator Lifecycle Manager (OLM) in OpenShift Container Platform.

2.2.1. About dependency resolution

OLM manages the dependency resolution and upgrade lifecycle of running Operators. In many ways, the
problems OLM faces are similar to other operating system package managers like yum and rpm.

However, there is one constraint that similar systems do not generally have that OLM does: because
Operators are always running, OLM attempts to ensure that you are never left with a set of Operators
that do not work with each other.

This means that OLM must never:

install a set of Operators that require APIs that cannot be provided, or

update an Operator in a way that breaks another that depends upon it.

2.2.2. Custom Resource Definition (CRD) upgrades

OLM upgrades a Custom Resource Definition (CRD) immediately if it is owned by a singular Cluster
Service Version (CSV). If a CRD is owned by multiple CSVs, then the CRD is upgraded when it has
satisfied all of the following backward compatible conditions:

All existing serving versions in the current CRD are present in the new CRD.

All existing instances, or Custom Resources (CRs), that are associated with the serving versions
of the CRD are valid when validated against the new CRD’s validation schema.

2.2.2.1. Adding a new CRD version

Procedure

To add a new version of a CRD:

1. Add a new entry in the CRD resource under the versions section.
For example, if the current CRD has one version v1alpha1 and you want to add a new version
v1beta1 and mark it as the new storage version:

versions:
 - name: v1alpha1
 served: true
 storage: false
 - name: v1beta1 1
 served: true
 storage: true

OpenShift Container Platform 4.3 Operators

18

1

1

1

1 2

Add a new entry for v1beta1.

2. Ensure the referencing version of the CRD in your CSV’s owned section is updated if the CSV
intends to use the new version:

Update the version.

3. Push the updated CRD and CSV to your bundle.

2.2.2.2. Deprecating or removing a CRD version

OLM does not allow a serving version of a CRD to be removed right away. Instead, a deprecated version
of the CRD must be first disabled by setting the served field in the CRD to false. Then, the non-serving
version can be removed on the subsequent CRD upgrade.

Procedure

To deprecate and remove a specific version of a CRD:

1. Mark the deprecated version as non-serving to indicate this version is no longer in use and may
be removed in a subsequent upgrade. For example:

Set to false.

2. Switch the storage version to a serving version if the version to be deprecated is currently the
storage version. For example:

Update the storage fields accordingly.

NOTE

customresourcedefinitions:
 owned:
 - name: cluster.example.com
 version: v1beta1 1
 kind: cluster
 displayName: Cluster

versions:
 - name: v1alpha1
 served: false 1
 storage: true

versions:
 - name: v1alpha1
 served: false
 storage: false 1
 - name: v1beta1
 served: true
 storage: true 2

CHAPTER 2. UNDERSTANDING THE OPERATOR LIFECYCLE MANAGER (OLM)

19

NOTE

In order to remove a specific version that is or was the storage version from a
CRD, that version must be removed from the storedVersion in the CRD’s status.
OLM will attempt to do this for you if it detects a stored version no longer exists
in the new CRD.

3. Upgrade the CRD with the above changes.

4. In subsequent upgrade cycles, the non-serving version can be removed completely from the
CRD. For example:

5. Ensure the referencing version of the CRD in your CSV’s owned section is updated accordingly
if that version is removed from the CRD.

2.2.3. Example dependency resolution scenarios

In the following examples, a provider is an Operator which "owns" a CRD or APIService.

Example: Deprecating dependent APIs
A and B are APIs (e.g., CRDs):

A’s provider depends on B.

B’s provider has a Subscription.

B’s provider updates to provide C but deprecates B.

This results in:

B no longer has a provider.

A no longer works.

This is a case OLM prevents with its upgrade strategy.

Example: Version deadlock
A and B are APIs:

A’s provider requires B.

B’s provider requires A.

A’s provider updates to (provide A2, require B2) and deprecate A.

B’s provider updates to (provide B2, require A2) and deprecate B.

If OLM attempts to update A without simultaneously updating B, or vice-versa, it is unable to progress
to new versions of the Operators, even though a new compatible set can be found.

This is another case OLM prevents with its upgrade strategy.

versions:
 - name: v1beta1
 served: true
 storage: true

OpenShift Container Platform 4.3 Operators

20

2.3. OPERATORGROUPS

This guide outlines the use of OperatorGroups with the Operator Lifecycle Manager (OLM) in
OpenShift Container Platform.

2.3.1. About OperatorGroups

An OperatorGroup is an OLM resource that provides multitenant configuration to OLM-installed
Operators. An OperatorGroup selects target namespaces in which to generate required RBAC access
for its member Operators.

The set of target namespaces is provided by a comma-delimited string stored in the
ClusterServiceVersion’s (CSV) olm.targetNamespaces annotation. This annotation is applied to
member Operator’s CSV instances and is projected into their deployments.

2.3.2. OperatorGroup membership

An Operator is considered a member of an OperatorGroup if the following conditions are true:

The Operator’s CSV exists in the same namespace as the OperatorGroup.

The Operator’s CSV’s InstallModes support the set of namespaces targeted by the
OperatorGroup.

An InstallMode consists of an InstallModeType field and a boolean Supported field. A CSV’s spec can
contain a set of InstallModes of four distinct InstallModeTypes:

Table 2.4. InstallModes and supported OperatorGroups

InstallModeType Description

OwnNamespace The Operator can be a member of an OperatorGroup that selects its
own namespace.

SingleNamespace The Operator can be a member of an OperatorGroup that selects one
namespace.

MultiNamespace The Operator can be a member of an OperatorGroup that selects more
than one namespace.

AllNamespaces The Operator can be a member of an OperatorGroup that selects all
namespaces (target namespace set is the empty string "").

NOTE

If a CSV’s spec omits an entry of InstallModeType, then that type is considered
unsupported unless support can be inferred by an existing entry that implicitly supports it.

2.3.3. Target namespace selection

You can explicitly name the target namespace for an OperatorGroup using the
spec.targetNamespaces parameter:

CHAPTER 2. UNDERSTANDING THE OPERATOR LIFECYCLE MANAGER (OLM)

21

You can alternatively specify a namespace using a label selector with the spec.selector parameter:

IMPORTANT

Listing multiple namespaces via spec.targetNamespaces or use of a label selector via
spec.selector is not recommended, as the support for more than one target namespace
in an OperatorGroup will likely be removed in a future release.

If both spec.targetNamespaces and spec.selector are defined, spec.selector is ignored.
Alternatively, you can omit both spec.selector and spec.targetNamespaces to specify a global
OperatorGroup, which selects all namespaces:

The resolved set of selected namespaces is shown in an OperatorGroup’s status.namespaces
parameter. A global OperatorGroup’s status.namespace contains the empty string (""), which signals
to a consuming Operator that it should watch all namespaces.

2.3.4. OperatorGroup CSV annotations

Member CSVs of an OperatorGroup have the following annotations:

Annotation Description

olm.operatorGroup=<group_name> Contains the name of the OperatorGroup.

olm.operatorGroupNamespace=
<group_namespace>

Contains the namespace of the OperatorGroup.

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: my-group
 namespace: my-namespace
spec:
 targetNamespaces:
 - my-namespace

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: my-group
 namespace: my-namespace
 spec:
 selector:
 cool.io/prod: "true"

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: my-group
 namespace: my-namespace

OpenShift Container Platform 4.3 Operators

22

olm.targetNamespaces=
<target_namespaces>

Contains a comma-delimited string that lists the
OperatorGroup’s target namespace selection.

Annotation Description

NOTE

All annotations except olm.targetNamespaces are included with copied CSVs. Omitting
the olm.targetNamespaces annotation on copied CSVs prevents the duplication of
target namespaces between tenants.

2.3.5. Provided APIs annotation

Information about what GroupVersionKinds (GVKs) are provided by an OperatorGroup are shown in an
olm.providedAPIs annotation. The annotation’s value is a string consisting of <kind>.<version>.
<group> delimited with commas. The GVKs of CRDs and APIServices provided by all active member
CSVs of an OperatorGroup are included.

Review the following example of an OperatorGroup with a single active member CSV that provides the
PackageManifest resource:

2.3.6. Role-based access control

When an OperatorGroup is created, three ClusterRoles are generated. Each contains a single
AggregationRule with a ClusterRoleSelector set to match a label, as shown below:

ClusterRole Label to match

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 annotations:
 olm.providedAPIs: PackageManifest.v1alpha1.packages.apps.redhat.com
 name: olm-operators
 namespace: local
 ...
spec:
 selector: {}
 serviceAccount:
 metadata:
 creationTimestamp: null
 targetNamespaces:
 - local
status:
 lastUpdated: 2019-02-19T16:18:28Z
 namespaces:
 - local

CHAPTER 2. UNDERSTANDING THE OPERATOR LIFECYCLE MANAGER (OLM)

23

<operatorgroup_name>-admin olm.opgroup.permissions/aggregate-to-
admin: <operatorgroup_name>

<operatorgroup_name>-edit olm.opgroup.permissions/aggregate-to-edit:
<operatorgroup_name>

<operatorgroup_name>-view olm.opgroup.permissions/aggregate-to-view:
<operatorgroup_name>

ClusterRole Label to match

The following RBAC resources are generated when a CSV becomes an active member of an
OperatorGroup, as long as the CSV is watching all namespaces with the AllNamespaces InstallMode
and is not in a failed state with reason InterOperatorGroupOwnerConflict.

ClusterRoles for each API resource from a CRD

ClusterRoles for each API resource from an APIService

Additional Roles and RoleBindings

Table 2.5. ClusterRoles generated for each API resource from a CRD

ClusterRole Settings

<kind>.<group>-<version>-admin Verbs on <kind>:

*

Aggregation labels:

rbac.authorization.k8s.io/aggregate-
to-admin: true

olm.opgroup.permissions/aggregate-
to-admin: <operatorgroup_name>

<kind>.<group>-<version>-edit Verbs on <kind>:

create

update

patch

delete

Aggregation labels:

rbac.authorization.k8s.io/aggregate-
to-edit: true

olm.opgroup.permissions/aggregate-
to-edit: <operatorgroup_name>

OpenShift Container Platform 4.3 Operators

24

<kind>.<group>-<version>-view Verbs on <kind>:

get

list

watch

Aggregation labels:

rbac.authorization.k8s.io/aggregate-
to-view: true

olm.opgroup.permissions/aggregate-
to-view: <operatorgroup_name>

<kind>.<group>-<version>-view-crdview Verbs on apiextensions.k8s.io
customresourcedefinitions <crd-name>:

get

Aggregation labels:

rbac.authorization.k8s.io/aggregate-
to-view: true

olm.opgroup.permissions/aggregate-
to-view: <operatorgroup_name>

ClusterRole Settings

Table 2.6. ClusterRoles generated for each API resource from an APIService

ClusterRole Settings

<kind>.<group>-<version>-admin Verbs on <kind>:

*

Aggregation labels:

rbac.authorization.k8s.io/aggregate-
to-admin: true

olm.opgroup.permissions/aggregate-
to-admin: <operatorgroup_name>

CHAPTER 2. UNDERSTANDING THE OPERATOR LIFECYCLE MANAGER (OLM)

25

<kind>.<group>-<version>-edit Verbs on <kind>:

create

update

patch

delete

Aggregation labels:

rbac.authorization.k8s.io/aggregate-
to-edit: true

olm.opgroup.permissions/aggregate-
to-edit: <operatorgroup_name>

<kind>.<group>-<version>-view Verbs on <kind>:

get

list

watch

Aggregation labels:

rbac.authorization.k8s.io/aggregate-
to-view: true

olm.opgroup.permissions/aggregate-
to-view: <operatorgroup_name>

ClusterRole Settings

Additional Roles and RoleBindings

If the CSV defines exactly one target namespace that contains *, then a ClusterRole and
corresponding ClusterRoleBinding are generated for each permission defined in the CSV’s
permissions field. All resources generated are given the olm.owner: <csv_name> and
olm.owner.namespace: <csv_namespace> labels.

If the CSV does not define exactly one target namespace that contains *, then all Roles and
RoleBindings in the Operator namespace with the olm.owner: <csv_name> and
olm.owner.namespace: <csv_namespace> labels are copied into the target namespace.

2.3.7. Copied CSVs

OLM creates copies of all active member CSVs of an OperatorGroup in each of that OperatorGroup’s
target namespaces. The purpose of a copied CSV is to tell users of a target namespace that a specific
Operator is configured to watch resources created there. Copied CSVs have a status reason Copied
and are updated to match the status of their source CSV. The olm.targetNamespaces annotation is
stripped from copied CSVs before they are created on the cluster. Omitting the target namespace

OpenShift Container Platform 4.3 Operators

26

selection avoids the duplication of target namespaces between tenants. Copied CSVs are deleted when
their source CSV no longer exists or the OperatorGroup that their source CSV belongs to no longer
targets the copied CSV’s namespace.

2.3.8. Static OperatorGroups

An OperatorGroup is static if its spec.staticProvidedAPIs field is set to true. As a result, OLM does not
modify the OperatorGroup’s olm.providedAPIs annotation, which means that it can be set in advance.
This is useful when a user wants to use an OperatorGroup to prevent resource contention in a set of
namespaces but does not have active member CSVs that provide the APIs for those resources.

Below is an example of an OperatorGroup that protects Prometheus resources in all namespaces with
the something.cool.io/cluster-monitoring: "true" annotation:

2.3.9. OperatorGroup intersection

Two OperatorGroups are said to have intersecting provided APIs if the intersection of their target
namespace sets is not an empty set and the intersection of their provided API sets, defined by
olm.providedAPIs annotations, is not an empty set.

A potential issue is that OperatorGroups with intersecting provided APIs can compete for the same
resources in the set of intersecting namespaces.

NOTE

When checking intersection rules, an OperatorGroup’s namespace is always included as
part of its selected target namespaces.

Rules for intersection
Each time an active member CSV synchronizes, OLM queries the cluster for the set of intersecting
provided APIs between the CSV’s OperatorGroup and all others. OLM then checks if that set is an
empty set:

If true and the CSV’s provided APIs are a subset of the OperatorGroup’s:

Continue transitioning.

If true and the CSV’s provided APIs are not a subset of the OperatorGroup’s:

If the OperatorGroup is static:
Clean up any deployments that belong to the CSV.

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: cluster-monitoring
 namespace: cluster-monitoring
 annotations:
 olm.providedAPIs:
Alertmanager.v1.monitoring.coreos.com,Prometheus.v1.monitoring.coreos.com,PrometheusRule.v1.mo
nitoring.coreos.com,ServiceMonitor.v1.monitoring.coreos.com
spec:
 staticProvidedAPIs: true
 selector:
 matchLabels:
 something.cool.io/cluster-monitoring: "true"

CHAPTER 2. UNDERSTANDING THE OPERATOR LIFECYCLE MANAGER (OLM)

27

Clean up any deployments that belong to the CSV.

Transition the CSV to a failed state with status reason
CannotModifyStaticOperatorGroupProvidedAPIs.

If the OperatorGroup is not static:

Replace the OperatorGroup’s olm.providedAPIs annotation with the union of itself
and the CSV’s provided APIs.

If false and the CSV’s provided APIs are not a subset of the OperatorGroup’s:

Clean up any deployments that belong to the CSV.

Transition the CSV to a failed state with status reason InterOperatorGroupOwnerConflict.

If false and the CSV’s provided APIs are a subset of the OperatorGroup’s:

If the OperatorGroup is static:

Clean up any deployments that belong to the CSV.

Transition the CSV to a failed state with status reason
CannotModifyStaticOperatorGroupProvidedAPIs.

If the OperatorGroup is not static:

Replace the OperatorGroup’s olm.providedAPIs annotation with the difference
between itself and the CSV’s provided APIs.

NOTE

Failure states caused by OperatorGroups are non-terminal.

The following actions are performed each time an OperatorGroup synchronizes:

The set of provided APIs from active member CSVs is calculated from the cluster. Note that
copied CSVs are ignored.

The cluster set is compared to olm.providedAPIs, and if olm.providedAPIs contains any extra
APIs, then those APIs are pruned.

All CSVs that provide the same APIs across all namespaces are requeued. This notifies
conflicting CSVs in intersecting groups that their conflict has possibly been resolved, either
through resizing or through deletion of the conflicting CSV.

2.3.10. Troubleshooting OperatorGroups

Membership

If more than one OperatorGroup exists in a single namespace, any CSV created in that
namespace will transition to a failure state with the reason TooManyOperatorGroups. CSVs in
a failed state for this reason will transition to pending once the number of OperatorGroups in
their namespaces reaches one.

If a CSV’s InstallModes do not support the target namespace selection of the OperatorGroup in
its namespace, the CSV will transition to a failure state with the reason

OpenShift Container Platform 4.3 Operators

28

UnsupportedOperatorGroup. CSVs in a failed state for this reason will transition to pending
once either the OperatorGroup’s target namespace selection changes to a supported
configuration, or the CSV’s InstallModes are modified to support the OperatorGroup’s target
namespace selection.

CHAPTER 2. UNDERSTANDING THE OPERATOR LIFECYCLE MANAGER (OLM)

29

CHAPTER 3. UNDERSTANDING THE OPERATORHUB
This guide outlines the architecture of the OperatorHub.

3.1. OVERVIEW OF THE OPERATORHUB

The OperatorHub is available via the OpenShift Container Platform web console and is the interface
that cluster administrators use to discover and install Operators. With one click, an Operator can be
pulled from their off-cluster source, installed and subscribed on the cluster, and made ready for
engineering teams to self-service manage the product across deployment environments using the
Operator Lifecycle Manager (OLM).

Cluster administrators can choose from OperatorSources grouped into the following categories:

Category Description

Red Hat Operators Red Hat products packaged and shipped by Red Hat. Supported by Red Hat.

Certified
Operators

Products from leading independent software vendors (ISVs). Red Hat partners with
ISVs to package and ship. Supported by the ISV.

Community
Operators

Optionally-visible software maintained by relevant representatives in the operator-
framework/community-operators GitHub repository. No official support.

Custom Operators Operators you add to the cluster yourself. If you have not added any Custom
Operators, the Custom category does not appear in the web console on your
OperatorHub.

NOTE

OperatorHub content automatically refreshes every 60 minutes.

Operators on the OperatorHub are packaged to run on OLM. This includes a YAML file called a
ClusterServiceVersion (CSV) containing all of the CRDs, RBAC rules, Deployments, and container
images required to install and securely run the Operator. It also contains user-visible information like a
description of its features and supported Kubernetes versions.

The Operator SDK can be used to assist developers packaging their Operators for use on OLM and the
OperatorHub. If you have a commercial application that you want to make accessible to your customers,
get it included using the certification workflow provided by Red Hat’s ISV partner portal at
connect.redhat.com.

Additional resources

Getting started with the Operator SDK

Generating a ClusterServiceVersion (CSV)

Operator installation and upgrade workflow in OLM

Red Hat Partner Connect

OpenShift Container Platform 4.3 Operators

30

https://github.com/operator-framework/community-operators
https://connect.redhat.com
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/operators/#osdk-getting-started
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/operators/#osdk-generating-csvs
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/operators/#olm-upgrades_olm-understanding-olm
https://connect.redhat.com

1

2

Red Hat Marketplace

3.2. OPERATORHUB ARCHITECTURE

The OperatorHub UI component is driven by the Marketplace Operator by default on OpenShift
Container Platform in the openshift-marketplace namespace.

The Marketplace Operator manages OperatorHub and OperatorSource Custom Resource Definitions
(CRDs).

NOTE

Although some OperatorSource information is exposed through the OperatorHub user
interface, it is only used directly by those who are creating their own Operators.

NOTE

While OperatorHub no longer uses CatalogSourceConfig resources, they are still
supported in OpenShift Container Platform.

3.2.1. OperatorHub CRD

You can use the OperatorHub CRD to change the state of the default OperatorSources provided with
OperatorHub on the cluster between enabled and disabled. This capability is useful when configuring
OpenShift Container Platform in restricted network environments.

Example OperatorHub Custom Resource

disableAllDefaultSources is an override that controls availability of all default OperatorSources
that are configured by default during an OpenShift Container Platform installation.

Disable default OperatorSources individually by changing the disabled parameter value per
source.

3.2.2. OperatorSource CRD

For each Operator, the OperatorSource CRD is used to define the external data store used to store
Operator bundles.

apiVersion: config.openshift.io/v1
kind: OperatorHub
metadata:
 name: cluster
spec:
 disableAllDefaultSources: true 1
 sources: [2
 {
 name: "community-operators",
 disabled: false
 }
]

CHAPTER 3. UNDERSTANDING THE OPERATORHUB

31

https://marketplace.redhat.com

1

2

3

4

5

Example OperatorSource Custom Resource

To identify the data store as an application registry, type is set to appregistry.

Currently, Quay is the external data store used by the OperatorHub, so the endpoint is set to
https://quay.io/cnr for the Quay.io appregistry.

For a Community Operator, registryNamespace is set to community-operator.

Optionally, set displayName to a name that appears for the Operator in the OperatorHub UI.

Optionally, set publisher to the person or organization publishing the Operator that appears in the
OperatorHub UI.

apiVersion: operators.coreos.com/v1
kind: OperatorSource
metadata:
 name: community-operators
 namespace: marketplace
spec:
 type: appregistry 1
 endpoint: https://quay.io/cnr 2
 registryNamespace: community-operators 3
 displayName: "Community Operators" 4
 publisher: "Red Hat" 5

OpenShift Container Platform 4.3 Operators

32

CHAPTER 4. ADDING OPERATORS TO A CLUSTER
This guide walks cluster administrators through installing Operators to an OpenShift Container Platform
cluster and subscribing Operators to namespaces.

4.1. INSTALLING OPERATORS FROM THE OPERATORHUB

As a cluster administrator, you can install an Operator from the OperatorHub using the OpenShift
Container Platform web console or the CLI. You can then subscribe the Operator to one or more
namespaces to make it available for developers on your cluster.

During installation, you must determine the following initial settings for the Operator:

Installation Mode

Choose All namespaces on the cluster (default) to have the Operator installed on all namespaces
or choose individual namespaces, if available, to only install the Operator on selected namespaces.
This example chooses All namespaces…​ to make the Operator available to all users and projects.

Update Channel

If an Operator is available through multiple channels, you can choose which channel you want to
subscribe to. For example, to deploy from the stable channel, if available, select it from the list.

Approval Strategy

You can choose Automatic or Manual updates. If you choose Automatic updates for an installed
Operator, when a new version of that Operator is available, the Operator Lifecycle Manager (OLM)
automatically upgrades the running instance of your Operator without human intervention. If you
select Manual updates, when a newer version of an Operator is available, the OLM creates an update
request. As a cluster administrator, you must then manually approve that update request to have the
Operator updated to the new version.

4.1.1. Installing from the OperatorHub using the web console

This procedure uses the Couchbase Operator as an example to install and subscribe to an Operator from
the OperatorHub using the OpenShift Container Platform web console.

Prerequisites

Access to an OpenShift Container Platform cluster using an account with cluster-admin
permissions.

Procedure

1. Navigate in the web console to the Operators → OperatorHub page.

2. Scroll or type a keyword into the Filter by keyword box (in this case, Couchbase) to find the
Operator you want.

Figure 4.1. Filter Operators by keyword

CHAPTER 4. ADDING OPERATORS TO A CLUSTER

33

Figure 4.1. Filter Operators by keyword

3. Select the Operator. For a Community Operator, you are warned that Red Hat does not certify
those Operators. You must acknowledge that warning before continuing. Information about the
Operator is displayed.

4. Read the information about the Operator and click Install.

5. On the Create Operator Subscription page:

a. Select one of the following:

All namespaces on the cluster (default) installs the Operator in the default openshift-
operators namespace to watch and be made available to all namespaces in the cluster.
This option is not always available.

A specific namespace on the cluster allows you to choose a specific, single namespace
in which to install the Operator. The Operator will only watch and be made available for
use in this single namespace.

b. Select an Update Channel (if more than one is available).

c. Select Automatic or Manual approval strategy, as described earlier.

OpenShift Container Platform 4.3 Operators

34

6. Click Subscribe to make the Operator available to the selected namespaces on this OpenShift
Container Platform cluster.

a. If you selected a Manual approval strategy, the Subscription’s upgrade status will remain
Upgrading until you review and approve its Install Plan.

Figure 4.2. Manually approving from the Install Plan page

After approving on the Install Plan page, the Subscription upgrade status moves to Up to
date.

b. If you selected an Automatic approval strategy, the upgrade status should resolve to Up to
date without intervention.

Figure 4.3. Subscription upgrade status Up to date

CHAPTER 4. ADDING OPERATORS TO A CLUSTER

35

Figure 4.3. Subscription upgrade status Up to date

7. After the Subscription’s upgrade status is Up to date, select Operators → Installed Operators
to verify that the Couchbase ClusterServiceVersion (CSV) eventually shows up and its Status
ultimately resolves to InstallSucceeded in the relevant namespace.

NOTE

For the All namespaces…​ Installation Mode, the status resolves to
InstallSucceeded in the openshift-operators namespace, but the status is
Copied if you check in other namespaces.

If it does not:

a. Check the logs in any Pods in the openshift-operators project (or other relevant
namespace if A specific namespace…​ Installation Mode was selected) on the Workloads →
Pods page that are reporting issues to troubleshoot further.

4.1.2. Installing from the OperatorHub using the CLI

Instead of using the OpenShift Container Platform web console, you can install an Operator from the
OperatorHub using the CLI. Use the oc command to create or update a Subscription object.

Prerequisites

Access to an OpenShift Container Platform cluster using an account with cluster-admin
permissions.

Install the oc command to your local system.

Procedure

OpenShift Container Platform 4.3 Operators

36

Procedure

1. View the list of Operators available to the cluster from the OperatorHub.

$ oc get packagemanifests -n openshift-marketplace
NAME CATALOG AGE
3scale-operator Red Hat Operators 91m
amq-online Red Hat Operators 91m
amq-streams Red Hat Operators 91m
...
couchbase-enterprise-certified Certified Operators 91m
mariadb Certified Operators 91m
mongodb-enterprise Certified Operators 91m
...
etcd Community Operators 91m
jaeger Community Operators 91m
kubefed Community Operators 91m
...

Note the CatalogSource(s) for your desired Operator(s).

2. Inspect your desired Operator to verify its supported InstallModes and available Channels:

$ oc describe packagemanifests <operator_name> -n openshift-marketplace

3. An OperatorGroup is an OLM resource that selects target namespaces in which to generate
required RBAC access for all Operators in the same namespace as the OperatorGroup.
The namespace to which you subscribe the Operator must have an OperatorGroup that
matches the Operator’s InstallMode, either the AllNamespaces or SingleNamespace mode. If
the Operator you intend to install uses the AllNamespaces, then the openshift-operators
namespace already has an appropriate OperatorGroup in place.

However, if the Operator uses the SingleNamespace mode and you do not already have an
appropriate OperatorGroup in place, you must create one.

NOTE

The web console version of this procedure handles the creation of the
OperatorGroup and Subscription objects automatically behind the scenes for you
when choosing SingleNamespace mode.

a. Create an OperatorGroup object YAML file, for example operatorgroup.yaml:

Example OperatorGroup

b. Create the OperatorGroup object:

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: <operatorgroup_name>
 namespace: <namespace>
spec:
 targetNamespaces:
 - <namespace>

CHAPTER 4. ADDING OPERATORS TO A CLUSTER

37

1

2

3

4

$ oc apply -f operatorgroup.yaml

4. Create a Subscription object YAML file to subscribe a namespace to an Operator, for example
sub.yaml:

Example Subscription

For AllNamespaces InstallMode usage, specify the openshift-operators namespace.
Otherwise, specify the relevant single namespace for SingleNamespace InstallMode
usage.

Name of the Operator to subscribe to.

Name of the CatalogSource that provides the Operator.

Namespace of the CatalogSource. Use openshift-marketplace for the default
OperatorHub CatalogSources.

5. Create the Subscription object:

$ oc apply -f sub.yaml

At this point, the OLM is now aware of the selected Operator. A ClusterServiceVersion (CSV)
for the Operator should appear in the target namespace, and APIs provided by the Operator
should be available for creation.

Additional resources

About OperatorGroups

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: <operator_name>
 namespace: openshift-operators 1
spec:
 channel: alpha
 name: <operator_name> 2
 source: redhat-operators 3
 sourceNamespace: openshift-marketplace 4

OpenShift Container Platform 4.3 Operators

38

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/operators/#olm-operatorgroups-about_olm-understanding-operatorgroups

CHAPTER 5. CONFIGURING PROXY SUPPORT IN OPERATOR
LIFECYCLE MANAGER

If a global proxy is configured on the OpenShift Container Platform cluster, Operator Lifecycle Manager
automatically configures Operators that it manages with the cluster-wide proxy. However, you can also
configure installed Operators to override the global proxy or inject a custom CA certificate.

Additional resources

Configuring the cluster-wide proxy

Configuring a custom PKI (custom CA certificate)

5.1. OVERRIDING AN OPERATOR’S PROXY SETTINGS

If a cluster-wide egress proxy is configured, applications created from Operators using the Operator
Lifecycle Manager (OLM) inherit the cluster-wide proxy settings on their Deployments and Pods.
Cluster administrators can also override these proxy settings by configuring the Operator’s Subscription.

Prerequisites

Access to an OpenShift Container Platform cluster using an account with cluster-admin
permissions.

Procedure

1. Navigate in the web console to the Operators → OperatorHub page.

2. Select the Operator and click Install.

3. On the Create Operator Subscription page, modify the Subscription object’s YAML to include
one or more of the following environment variables in the spec section:

HTTP_PROXY

HTTPS_PROXY

NO_PROXY

For example:

Subscription object with proxy setting overrides

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: etcd-config-test
 namespace: openshift-operators
spec:
 config:
 env:
 - name: HTTP_PROXY
 value: test_http
 - name: HTTPS_PROXY

CHAPTER 5. CONFIGURING PROXY SUPPORT IN OPERATOR LIFECYCLE MANAGER

39

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/networking/#enable-cluster-wide-proxy
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/networking/#configuring-a-custom-pki

OLM handles these environment variables as a unit; if at least one of them is set, all three are
considered overridden and the cluster-wide defaults are not used for the subscribed Operator’s
Deployments.

4. Click Subscribe to make the Operator available to the selected namespaces.

5. After the Operator’s CSV appears in the relevant namespace, you can verify that custom proxy
environment variables are set in the Deployment. For example, using the CLI:

$ oc get deployment -n openshift-operators etcd-operator -o yaml | grep -i "PROXY" -A 2

 - name: HTTP_PROXY
 value: test_http
 - name: HTTPS_PROXY
 value: test_https
 - name: NO_PROXY
 value: test
 image: quay.io/coreos/etcd-
operator@sha256:66a37fd61a06a43969854ee6d3e21088a98b93838e284a6086b13917f96b0
d9c
...

Additional resources

See the OpenShift Container Platform 4.3 Release Notes for details on known issue
BZ#1751903 regarding unset environment variables when overriding an Operator’s proxy
settings.

5.2. INJECTING A CUSTOM CA CERTIFICATE

When a cluster administrator adds a custom CA certificate to a cluster using a ConfigMap, the Cluster
Network Operator merges the user-provided certificates and system CA certificates into a single
bundle. You can inject this merged bundle into your Operator running on Operator Lifecycle Manager
(OLM), which is useful if you have a man-in-the-middle HTTPS proxy.

Prerequisites

Access to an OpenShift Container Platform cluster using an account with cluster-admin
permissions.

Custom CA certificate added to the cluster using a ConfigMap.

Desired Operator installed and running on OLM.

 value: test_https
 - name: NO_PROXY
 value: test
 channel: clusterwide-alpha
 installPlanApproval: Automatic
 name: etcd
 source: community-operators
 sourceNamespace: openshift-marketplace
 startingCSV: etcdoperator.v0.9.4-clusterwide

OpenShift Container Platform 4.3 Operators

40

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/release_notes/#ocp-4-3-known-issues
https://bugzilla.redhat.com/show_bug.cgi?id=1751903

1

2

1

2

3

4

5

Procedure

1. Create an empty ConfigMap in the namespace where your Operator’s Subscription exists and
include the following label:

Name of the ConfigMap.

Requests the Cluster Network Operator to inject the merged bundle.

After creating this ConfigMap, the ConfigMap is immediately populated with the certificate
contents of the merged bundle.

2. Update your Operator’s Subscription object to include a spec.config section that mounts the
trusted-ca ConfigMap as a volume to each container within a Pod that requires a custom CA:

Add a config section if it does not exist.

Specify labels to match Pods that are owned by the Operator.

Create a trusted-ca volume.

ca-bundle.crt is required as the ConfigMap key.

tls-ca-bundle.pem is required as the ConfigMap path.

apiVersion: v1
kind: ConfigMap
metadata:
 name: trusted-ca 1
 labels:
 config.openshift.io/inject-trusted-cabundle: "true" 2

kind: Subscription
metadata:
 name: my-operator
spec:
 package: etcd
 channel: alpha
 config: 1
 - selector:
 matchLabels:
 <labels_for_pods> 2
 volumes: 3
 - name: trusted-ca
 configMap:
 name: trusted-ca
 items:
 - key: ca-bundle.crt 4
 path: tls-ca-bundle.pem 5
 volumeMounts: 6
 - name: trusted-ca
 mountPath: /etc/pki/ca-trust/extracted/pem
 readOnly: true

CHAPTER 5. CONFIGURING PROXY SUPPORT IN OPERATOR LIFECYCLE MANAGER

41

6 Create a trusted-ca volume mount.

OpenShift Container Platform 4.3 Operators

42

CHAPTER 6. DELETING OPERATORS FROM A CLUSTER
The following describes how to delete Operators from a cluster using either the web console or the CLI.

6.1. DELETING OPERATORS FROM A CLUSTER USING THE WEB
CONSOLE

Cluster administrators can delete installed Operators from a selected namespace by using the web
console.

Prerequisites

Access to an OpenShift Container Platform cluster web console using an account with cluster-
admin permissions.

Procedure

1. From the Operators → Installed Operators page, scroll or type a keyword into the Filter by
name to find the Operator you want. Then, click on it.

2. On the right-hand side of the Operator Details page, select Uninstall Operator from the
Actions drop-down menu.
An Uninstall Operator? dialog box is displayed, reminding you that Removing the operator will
not remove any of its custom resource definitions or managed resources. If your operator
has deployed applications on the cluster or configured off-cluster resources, these will
continue to run and need to be cleaned up manually.

The Operator, any Operator deployments, and Pods are removed by this action. Any resources
managed by the Operator, including CRDs and CRs are not removed. The web console enables
dashboards and navigation items for some Operators. To remove these after uninstalling the
Operator, you might need to manually delete the Operator CRDs.

3. Select Uninstall. This Operator stops running and no longer receives updates.

6.2. DELETING OPERATORS FROM A CLUSTER USING THE CLI

Cluster administrators can delete installed Operators from a selected namespace by using the CLI.

Prerequisites

Access to an OpenShift Container Platform cluster using an account with cluster-admin
permissions.

oc command installed on workstation.

Procedure

1. Check the current version of the subscribed Operator (for example, jaeger) in the currentCSV
field:

$ oc get subscription jaeger -n openshift-operators -o yaml | grep currentCSV
 currentCSV: jaeger-operator.v1.8.2

CHAPTER 6. DELETING OPERATORS FROM A CLUSTER

43

2. Delete the Operator’s Subscription (for example, jaeger):

$ oc delete subscription jaeger -n openshift-operators
subscription.operators.coreos.com "jaeger" deleted

3. Delete the CSV for the Operator in the target namespace using the currentCSV value from the
previous step:

$ oc delete clusterserviceversion jaeger-operator.v1.8.2 -n openshift-operators
clusterserviceversion.operators.coreos.com "jaeger-operator.v1.8.2" deleted

OpenShift Container Platform 4.3 Operators

44

CHAPTER 7. CREATING APPLICATIONS FROM INSTALLED
OPERATORS

This guide walks developers through an example of creating applications from an installed Operator
using the OpenShift Container Platform web console.

7.1. CREATING AN ETCD CLUSTER USING AN OPERATOR

This procedure walks through creating a new etcd cluster using the etcd Operator, managed by the
Operator Lifecycle Manager (OLM).

Prerequisites

Access to an OpenShift Container Platform 4.3 cluster.

The etcd Operator already installed cluster-wide by an administrator.

Procedure

1. Create a new project in the OpenShift Container Platform web console for this procedure. This
example uses a project called my-etcd.

2. Navigate to the Operators → Installed Operators page. The Operators that have been installed
to the cluster by the cluster administrator and are available for use are shown here as a list of
ClusterServiceVersions (CSVs). CSVs are used to launch and manage the software provided by
the Operator.

TIP

You can get this list from the CLI using:

$ oc get csv

3. On the Installed Operators page, click Copied, and then click the etcd Operator to view more
details and available actions:

Figure 7.1. etcd Operator overview

CHAPTER 7. CREATING APPLICATIONS FROM INSTALLED OPERATORS

45

Figure 7.1. etcd Operator overview

As shown under Provided APIs, this Operator makes available three new resource types,
including one for an etcd Cluster (the EtcdCluster resource). These objects work similar to the
built-in native Kubernetes ones, such as Deployments or ReplicaSets, but contain logic
specific to managing etcd.

4. Create a new etcd cluster:

a. In the etcd Cluster API box, click Create New.

b. The next screen allows you to make any modifications to the minimal starting template of an
EtcdCluster object, such as the size of the cluster. For now, click Create to finalize. This
triggers the Operator to start up the Pods, Services, and other components of the new etcd
cluster.

5. Click the Resources tab to see that your project now contains a number of resources created
and configured automatically by the Operator.

Figure 7.2. etcd Operator resources

OpenShift Container Platform 4.3 Operators

46

Figure 7.2. etcd Operator resources

Verify that a Kubernetes service has been created that allows you to access the database from
other Pods in your project.

6. All users with the edit role in a given project can create, manage, and delete application
instances (an etcd cluster, in this example) managed by Operators that have already been
created in the project, in a self-service manner, just like a cloud service. If you want to enable
additional users with this ability, project administrators can add the role using the following
command:

$ oc policy add-role-to-user edit <user> -n <target_project>

You now have an etcd cluster that will react to failures and rebalance data as Pods become unhealthy or
are migrated between nodes in the cluster. Most importantly, cluster administrators or developers with
proper access can now easily use the database with their applications.

CHAPTER 7. CREATING APPLICATIONS FROM INSTALLED OPERATORS

47

CHAPTER 8. VIEWING OPERATOR STATUS
Understanding the state of the system in Operator Lifecycle Manager (OLM) is important for making
decisions about and debugging problems with installed Operators. OLM provides insight into
Subscriptions and related Catalog Source resources regarding their state and actions performed. This
helps users better understand the healthiness of their Operators.

8.1. CONDITION TYPES

Subscriptions can report the following condition types:

Table 8.1. Subscription condition types

Condition Description

CatalogSourcesUnhealthy Some or all of the Catalog Sources to be used in resolution are
unhealthy.

InstallPlanMissing A Subscription’s InstallPlan is missing.

InstallPlanPending A Subscription’s InstallPlan is pending installation.

InstallPlanFailed A Subscription’s InstallPlan has failed.

8.2. VIEWING OPERATOR STATUS USING THE CLI

You can view Operator status using the CLI.

Procedure

1. Use the oc describe command to inspect the Subscription resource:

$ oc describe sub <subscription_name>

2. In the command output, find the Conditions section:

Conditions:
 Last Transition Time: 2019-07-29T13:42:57Z
 Message: all available catalogsources are healthy
 Reason: AllCatalogSourcesHealthy
 Status: False
 Type: CatalogSourcesUnhealthy

OpenShift Container Platform 4.3 Operators

48

CHAPTER 9. CREATING POLICY FOR OPERATOR
INSTALLATIONS AND UPGRADES

Operators can require wide privileges to run, and the required privileges can change between versions.
Operator Lifecycle Manager (OLM) runs with cluster-admin privileges. By default, Operator authors
can specify any set of permissions in the ClusterServiceVersion (CSV) and OLM will consequently grant
it to the Operator.

Cluster administrators should take measures to ensure that an Operator cannot achieve cluster-scoped
privileges and that users cannot escalate privileges using OLM. One method for locking this down
requires cluster administrators auditing Operators before they are added to the cluster. Cluster
administrators are also provided tools for determining and constraining which actions are allowed during
an Operator installation or upgrade using service accounts.

By associating an OperatorGroup with a service account that has a set of privileges granted to it, cluster
administrators can set policy on Operators to ensure they operate only within predetermined boundaries
using RBAC rules. The Operator is unable to do anything that is not explicitly permitted by those rules.

This self-sufficient, limited scope installation of Operators by non-cluster administrators means that
more of the Operator Framework tools can safely be made available to more users, providing a richer
experience for building applications with Operators.

9.1. UNDERSTANDING OPERATOR INSTALLATION POLICY

Using OLM, cluster administrators can choose to specify a service account for an OperatorGroup so
that all Operators associated with the OperatorGroup are deployed and run against the privileges
granted to the service account.

APIService and CustomResourceDefinition resources are always created by OLM using the cluster-
admin role. A service account associated with an OperatorGroup should never be granted privileges to
write these resources.

If the specified service account does not have adequate permissions for an Operator that is being
installed or upgraded, useful and contextual information is added to the status of the respective
resource(s) so that it is easy for the cluster administrator to troubleshoot and resolve the issue.

Any Operator tied to this OperatorGroup is now confined to the permissions granted to the specified
service account. If the Operator asks for permissions that are outside the scope of the service account,
the install fails with appropriate errors.

9.1.1. Installation scenarios

When determining whether an Operator can be installed or upgraded on a cluster, OLM considers the
following scenarios:

A cluster administrator creates a new OperatorGroup and specifies a service account. All
Operator(s) associated with this OperatorGroup are installed and run against the privileges
granted to the service account.

A cluster administrator creates a new OperatorGroup and does not specify any service account.
OpenShift Container Platform maintains backward compatibility, so the default behavior
remains and Operator installs and upgrades are permitted.

For existing OperatorGroups that do not specify a service account, the default behavior
remains and Operator installs and upgrades are permitted.

CHAPTER 9. CREATING POLICY FOR OPERATOR INSTALLATIONS AND UPGRADES

49

A cluster administrator updates an existing OperatorGroup and specifies a service account.
OLM allows the existing Operator to continue to run with their current privileges. When such an
existing Operator is going through an upgrade, it is reinstalled and run against the privileges
granted to the service account like any new Operator.

A service account specified by an OperatorGroup changes by adding or removing permissions,
or the existing service account is swapped with a new one. When existing Operators go through
an upgrade, it is reinstalled and run against the privileges granted to the updated service
account like any new Operator.

A cluster administrator removes the service account from an OperatorGroup. The default
behavior remains and Operator installs and upgrades are permitted.

9.1.2. Installation workflow

When an OperatorGroup is tied to a service account and an Operator is installed or upgraded, OLM uses
the following workflow:

1. The given Subscription object is picked up by OLM.

2. OLM fetches the OperatorGroup tied to this Subscription.

3. OLM determines that the OperatorGroup has a service account specified.

4. OLM creates a client scoped to the service account and uses the scoped client to install the
Operator. This ensures that any permission requested by the Operator is always confined to
that of the service account in the OperatorGroup.

5. OLM creates a new service account with the set of permissions specified in the CSV and assigns
it to the Operator. The Operator runs as the assigned service account.

9.2. SCOPING OPERATOR INSTALLATIONS

To provide scoping rules to Operator installations and upgrades on OLM, associate a service account
with an OperatorGroup.

Using this example, a cluster administrator can confine a set of Operators to a designated namespace.

Procedure

1. Create a new namespace:

$ cat <<EOF | oc create -f -
apiVersion: v1
kind: Namespace
metadata:
 name: scoped
EOF

2. Allocate permissions that you want the Operator(s) to be confined to. This involves creating a
new service account, relevant Role(s), and RoleBinding(s).

$ cat <<EOF | oc create -f -
apiVersion: v1
kind: ServiceAccount

OpenShift Container Platform 4.3 Operators

50

metadata:
 name: scoped
 namespace: scoped
EOF

The following example grants the service account permissions to do anything in the designated
namespace for simplicity. In a production environment, you should create a more fine-grained
set of permissions:

$ cat <<EOF | oc create -f -
apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
 name: scoped
 namespace: scoped
rules:
- apiGroups: ["*"]
 resources: ["*"]
 verbs: ["*"]

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
 name: scoped-bindings
 namespace: scoped
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: Role
 name: scoped
subjects:
- kind: ServiceAccount
 name: scoped
 namespace: scoped
EOF

3. Create an OperatorGroup in the designated namespace. This OperatorGroup targets the
designated namespace to ensure that its tenancy is confined to it. In addition, OperatorGroups
allow a user to specify a service account. Specify the ServiceAccount created in the previous
step:

$ cat <<EOF | oc create -f -
apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: scoped
 namespace: scoped
spec:
 serviceAccountName: scoped
 targetNamespaces:
 - scoped
EOF

Any Operator installed in the designated namespace is tied to this OperatorGroup and
therefore to the service account specified.

CHAPTER 9. CREATING POLICY FOR OPERATOR INSTALLATIONS AND UPGRADES

51

1

2

4. Create a Subscription in the designated namespace to install an Operator:

$ cat <<EOF | oc create -f -
apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: etcd
 namespace: scoped
spec:
 channel: singlenamespace-alpha
 name: etcd
 source: <catalog_source_name> 1
 sourceNamespace: <catalog_source_namespace> 2
EOF

Specify a CatalogSource that already exists in the designated namespace or one that is in
the global catalog namespace.

Specify a CatalogSourceNamespace where the CatalogSource was created.

Any Operator tied to this OperatorGroup is confined to the permissions granted to the
specified service account. If the Operator requests permissions that are outside the scope of
the service account, the installation fails with appropriate errors.

9.2.1. Fine-grained permissions

OLM uses the service account specified in OperatorGroup to create or update the following resources
related to the Operator being installed:

ClusterServiceVersion

Subscription

Secret

ServiceAccount

Service

ClusterRole and ClusterRoleBinding

Role and RoleBinding

In order to confine Operators to a designated namespace, cluster administrators can start by granting
the following permissions to the service account:

NOTE

The following role is a generic example and additional rules might be required based on
the specific Operator.

kind: Role
rules:
- apiGroups: ["operators.coreos.com"]

OpenShift Container Platform 4.3 Operators

52

1 2

1

Add permissions to create other resources, such as Deployments and Pods shown here.

In addition, if any Operator specifies a pull secret, the following permissions must also be added:

Required to get the secret from the OLM namespace.

9.3. TROUBLESHOOTING PERMISSION FAILURES

If an Operator installation fails due to lack of permissions, identify the errors using the following
procedure.

Procedure

1. Review the Subscription object. Its status has an object reference installPlanRef that points to
the InstallPlan object that attempted to create the necessary [Cluster]Role[Binding](s) for the
Operator:

 resources: ["subscriptions", "clusterserviceversions"]
 verbs: ["get", "create", "update", "patch"]
- apiGroups: [""]
 resources: ["services", "serviceaccounts"]
 verbs: ["get", "create", "update", "patch"]
- apiGroups: ["rbac.authorization.k8s.io"]
 resources: ["roles", "rolebindings"]
 verbs: ["get", "create", "update", "patch"]
- apiGroups: ["apps"] 1
 resources: ["deployments"]
 verbs: ["list", "watch", "get", "create", "update", "patch", "delete"]
- apiGroups: [""] 2
 resources: ["pods"]
 verbs: ["list", "watch", "get", "create", "update", "patch", "delete"]

kind: ClusterRole 1
rules:
- apiGroups: [""]
 resources: ["secrets"]
 verbs: ["get"]

kind: Role
rules:
- apiGroups: [""]
 resources: ["secrets"]
 verbs: ["create", "update", "patch"]

apiVersion: operators.coreos.com/v1
kind: Subscription
metadata:
 name: etcd
 namespace: scoped
status:
 installPlanRef:
 apiVersion: operators.coreos.com/v1
 kind: InstallPlan

CHAPTER 9. CREATING POLICY FOR OPERATOR INSTALLATIONS AND UPGRADES

53

2. Check the status of the InstallPlan object for any errors:

The error message tells you:

The type of resource it failed to create, including the API group of the resource. In this case,
it was clusterroles in the rbac.authorization.k8s.io group.

The name of the resource.

The type of error: is forbidden tells you that the user does not have enough permission to
do the operation.

The name of the user who attempted to create or update the resource. In this case, it refers
to the service account specified in the OperatorGroup.

The scope of the operation: cluster scope or not.
The user can add the missing permission to the service account and then iterate.

NOTE

OLM does not currently provide the complete list of errors on the first try,
but may be added in a future release.

 name: install-4plp8
 namespace: scoped
 resourceVersion: "117359"
 uid: 2c1df80e-afea-11e9-bce3-5254009c9c23

apiVersion: operators.coreos.com/v1
kind: InstallPlan
status:
 conditions:
 - lastTransitionTime: "2019-07-26T21:13:10Z"
 lastUpdateTime: "2019-07-26T21:13:10Z"
 message: 'error creating clusterrole etcdoperator.v0.9.4-clusterwide-dsfx4:
clusterroles.rbac.authorization.k8s.io
 is forbidden: User "system:serviceaccount:scoped:scoped" cannot create resource
 "clusterroles" in API group "rbac.authorization.k8s.io" at the cluster scope'
 reason: InstallComponentFailed
 status: "False"
 type: Installed
 phase: Failed

OpenShift Container Platform 4.3 Operators

54

CHAPTER 10. USING OPERATOR LIFECYCLE MANAGER ON
RESTRICTED NETWORKS

When OpenShift Container Platform is installed on restricted networks, also known as a disconnected
cluster, Operator Lifecycle Manager (OLM) can no longer use the default OperatorHub sources
because they require full Internet connectivity. Cluster administrators can disable those default sources
and create local mirrors so that OLM can install and manage Operators from the local sources instead.

IMPORTANT

While OLM can manage Operators from local sources, the ability for a given Operator to
run successfully in a restricted network still depends on the Operator itself. The Operator
must:

List any related images, or other container images that the Operator might
require to perform their functions, in the relatedImages parameter of its
ClusterServiceVersion (CSV) object.

Reference all specified images by a digest (SHA) and not by a tag.

See the following Red Hat Knowledgebase Article for a list of Red Hat Operators that
support running in disconnected mode:

https://access.redhat.com/articles/4740011

Additional resources

Enabling your Operator for restricted network environments

10.1. UNDERSTANDING OPERATOR CATALOG IMAGES

Operator Lifecycle Manager (OLM) always installs Operators from the latest version of an Operator
catalog. As of OpenShift Container Platform 4.3, Red Hat-provided Operators are distributed via Quay
App Registry catalogs from quay.io.

Table 10.1. Red Hat-provided App Registry catalogs

Catalog Description

redhat-operators Public catalog for Red Hat products packaged and shipped by Red Hat.
Supported by Red Hat.

certified-operators Public catalog for products from leading independent software vendors
(ISVs). Red Hat partners with ISVs to package and ship. Supported by the
ISV.

community-operators Public catalog for software maintained by relevant representatives in the
operator-framework/community-operators GitHub repository. No official
support.

As catalogs are updated, the latest versions of Operators change, and older versions may be removed or
altered. This behavior can cause problems maintaining reproducible installs over time. In addition, when

CHAPTER 10. USING OPERATOR LIFECYCLE MANAGER ON RESTRICTED NETWORKS

55

https://access.redhat.com/articles/4740011
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/operators/#olm-enabling-operator-for-restricted-network_osdk-generating-csvs
https://quay.io/
https://github.com/operator-framework/community-operators

OLM runs on an OpenShift Container Platform cluster in a restricted network environment, it is unable
to access the catalogs from quay.io directly.

Using the oc adm catalog build command, cluster administrators can create an Operator catalog
image. An Operator catalog image is:

a point-in-time export of an App Registry type catalog’s content.

the result of converting an App Registry catalog to a container image type catalog.

an immutable artifact.

Creating an Operator catalog image provides a simple way to use this content without incurring the
aforementioned issues.

10.2. BUILDING AN OPERATOR CATALOG IMAGE

Cluster administrators can build a custom Operator catalog image to be used by Operator Lifecycle
Manager (OLM) and push the image to a container image registry that supports Docker v2-2. For a
cluster on a restricted network, this registry can be a registry that the cluster has network access to,
such as the mirror registry created during the restricted network installation.

IMPORTANT

The OpenShift Container Platform cluster’s internal registry cannot be used as the target
registry because it does not support pushing without a tag, which is required during the
mirroring process.

For this example, the procedure assumes use of the mirror registry that has access to both your network
and the internet.

Prerequisites

A Linux workstation with unrestricted network access [1]

oc version 4.3.5+

podman version 1.4.4+

Access to mirror registry that supports Docker v2-2

If you are working with private registries, set the REG_CREDS environment variable to the file
path of your registry credentials for use in later steps. For example, for the podman CLI:

$ REG_CREDS=${XDG_RUNTIME_DIR}/containers/auth.json

If you are working with private namespaces that your quay.io account has access to, you must
set a Quay authentication token. Set the AUTH_TOKEN environment variable for use with the -
-auth-token flag by making a request against the login API using your quay.io credentials:

$ AUTH_TOKEN=$(curl -sH "Content-Type: application/json" \
 -XPOST https://quay.io/cnr/api/v1/users/login -d '
 {
 "user": {

OpenShift Container Platform 4.3 Operators

56

https://quay.io/
https://docs.docker.com/registry/spec/manifest-v2-2/
https://docs.docker.com/registry/spec/manifest-v2-2/
https://quay.io
https://quay.io

1

2

3

4

5

6

7

Procedure

1. On the workstation with unrestricted network access, authenticate with the target mirror
registry:

$ podman login <registry_host_name>

Also authenticate with registry.redhat.io so that the base image can be pulled during the build:

$ podman login registry.redhat.io

2. Build a catalog image based on the redhat-operators catalog from quay.io, tagging and pushing
it to your mirror registry:

$ oc adm catalog build \
 --appregistry-org redhat-operators \ 1
 --from=registry.redhat.io/openshift4/ose-operator-registry:v4.3 \ 2
 --filter-by-os="linux/amd64" \ 3
 --to=<registry_host_name>:<port>/olm/redhat-operators:v1 \ 4
 [-a ${REG_CREDS}] \ 5
 [--insecure] \ 6
 [--auth-token "${AUTH_TOKEN}"] 7

INFO[0013] loading Bundles
dir=/var/folders/st/9cskxqs53ll3wdn434vw4cd80000gn/T/300666084/manifests-829192605
...
Pushed sha256:f73d42950021f9240389f99ddc5b0c7f1b533c054ba344654ff1edaf6bf827e3
to example_registry:5000/olm/redhat-operators:v1

Organization (namespace) to pull from an App Registry instance.

Set --from to the ose-operator-registry base image using the tag that matches the target
OpenShift Container Platform cluster major and minor version.

Set --filter-by-os to the operating system and architecture to use for the base image,
which must match the target OpenShift Container Platform cluster. Valid values are
linux/amd64, linux/ppc64le, and linux/s390x.

Name your catalog image and include a tag, for example, v1.

Optional: If required, specify the location of your registry credentials file.

Optional: If you do not want to configure trust for the target registry, add the --insecure
flag.

Optional: If other application registry catalogs are used that are not public, specify a Quay
authentication token.

Sometimes invalid manifests are accidentally introduced into Red Hat’s catalogs; when this

 "username": "'"<quay_username>"'",
 "password": "'"<quay_password>"'"
 }
 }' | jq -r '.token')

CHAPTER 10. USING OPERATOR LIFECYCLE MANAGER ON RESTRICTED NETWORKS

57

https://quay.io/

Sometimes invalid manifests are accidentally introduced into Red Hat’s catalogs; when this
happens, you might see some errors:

...
INFO[0014] directory
dir=/var/folders/st/9cskxqs53ll3wdn434vw4cd80000gn/T/300666084/manifests-829192605
file=4.2 load=package
W1114 19:42:37.876180 34665 builder.go:141] error building database: error loading
package into db: fuse-camel-k-operator.v7.5.0 specifies replacement that couldn't be found
Uploading ... 244.9kB/s

These errors are usually non-fatal, and if the Operator package mentioned does not contain an
Operator you plan to install or a dependency of one, then they can be ignored.

Additional resources

Creating a mirror registry for installation in a restricted network

10.3. CONFIGURING OPERATORHUB FOR RESTRICTED NETWORKS

Cluster administrators can configure OLM and OperatorHub to use local content in a restricted network
environment using a custom Operator catalog image. For this example, the procedure uses a custom
redhat-operators catalog image previously built and pushed to a supported registry.

Prerequisites

A Linux workstation with unrestricted network access [1]

A custom Operator catalog image pushed to a supported registry

oc version 4.3.5+

podman version 1.4.4+

Access to mirror registry that supports Docker v2-2

If you are working with private registries, set the REG_CREDS environment variable to the file
path of your registry credentials for use in later steps. For example, for the podman CLI:

$ REG_CREDS=${XDG_RUNTIME_DIR}/containers/auth.json

Procedure

1. Disable the default OperatorSources by adding disableAllDefaultSources: true to the spec:

$ oc patch OperatorHub cluster --type json \
 -p '[{"op": "add", "path": "/spec/disableAllDefaultSources", "value": true}]'

This disables the default OperatorSources that are configured by default during an OpenShift
Container Platform installation.

2. The oc adm catalog mirror command extracts the contents of your custom Operator catalog
image to generate the manifests required for mirroring. You can choose to either:

Allow the default behavior of the command to automatically mirror all of the image content

OpenShift Container Platform 4.3 Operators

58

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/installing/#installing-restricted-networks-preparations
https://docs.docker.com/registry/spec/manifest-v2-2/

1

2

3

4

5

1

Allow the default behavior of the command to automatically mirror all of the image content
to your mirror registry after generating manifests, or

Add the --manifests-only flag to only generate the manifests required for mirroring, but do
not actually mirror the image content to a registry yet. This can be useful for reviewing what
will be mirrored, and it allows you to make any changes to the mapping list if you only require
a subset of the content. You can then use that file with the oc image mirror command to
mirror the modified list of images in a later step.

On your workstation with unrestricted network access, run the following command:

$ oc adm catalog mirror \
 <registry_host_name>:<port>/olm/redhat-operators:v1 \ 1
 <registry_host_name>:<port> \
 [-a ${REG_CREDS}] \ 2
 [--insecure] \ 3
 [--filter-by-os="<os>/<arch>"] \ 4
 [--manifests-only] 5

Specify your Operator catalog image.

Optional: If required, specify the location of your registry credentials file.

Optional: If you do not want to configure trust for the target registry, add the --insecure
flag.

Optional: Because the catalog might reference images that support multiple architectures
and operating systems, you can filter by architecture and operating system to mirror only
the images that match. Valid values are linux/amd64, linux/ppc64le, and linux/s390x.

Optional: Only generate the manifests required for mirroring and do not actually mirror the
image content to a registry.

Example output

Temporary database generated by the command.

After running the command, a <image_name>-manifests/ directory is created in the current
directory and generates the following files:

The imageContentSourcePolicy.yaml file defines an ImageContentSourcePolicy object
that can configure nodes to translate between the image references stored in Operator
manifests and the mirrored registry.

The mapping.txt file contains all of the source images and where to map them in the target
registry. This file is compatible with the oc image mirror command and can be used to
further customize the mirroring configuration.

3. If you used the --manifests-only flag in the previous step and want to mirror only a subset of

using database path mapping: /:/tmp/190214037
wrote database to /tmp/190214037
using database at: /tmp/190214037/bundles.db 1
...

CHAPTER 10. USING OPERATOR LIFECYCLE MANAGER ON RESTRICTED NETWORKS

59

1

3. If you used the --manifests-only flag in the previous step and want to mirror only a subset of
the content:

a. Modify the list of images in your mapping.txt file to your specifications. If you are unsure of
the exact names and versions of the subset of images you want to mirror, use the following
steps to find them:

i. Run the sqlite3 tool against the temporary database that was generated by the oc
adm catalog mirror command to retrieve a list of images matching a general search
query. The output helps inform how you will later edit your mapping.txt file.
For example, to retrieve a list of images that are similar to the string clusterlogging.4.3:

Refer to the previous output of the oc adm catalog mirror command to find the
path of the database file.

Example output

ii. Use the results from the previous step to edit the mapping.txt file to only include the
subset of images you want to mirror.
For example, you can use the image values from the previous example output to find
that the following matching lines exist in your mapping.txt file:

Matching image mappings in mapping.txt

In this example, if you only want to mirror these images, you would then remove all other
entries in the mapping.txt file and leave only the above two lines.

b. Still on your workstation with unrestricted network access, use your modified mapping.txt
file to mirror the images to your registry using the oc image mirror command:

$ echo "select * from related_image \
 where operatorbundle_name like 'clusterlogging.4.3%';" \
 | sqlite3 -line /tmp/190214037/bundles.db 1

image = registry.redhat.io/openshift4/ose-logging-
kibana5@sha256:aa4a8b2a00836d0e28aa6497ad90a3c116f135f382d8211e3c55f34f
b36dfe61
operatorbundle_name = clusterlogging.4.3.33-202008111029.p0

image = registry.redhat.io/openshift4/ose-oauth-
proxy@sha256:6b4db07f6e6c962fc96473d86c44532c93b146bbefe311d0c348117bf75
9c506
operatorbundle_name = clusterlogging.4.3.33-202008111029.p0
...

registry.redhat.io/openshift4/ose-logging-
kibana5@sha256:aa4a8b2a00836d0e28aa6497ad90a3c116f135f382d8211e3c55f34f
b36dfe61=<registry_host_name>:<port>/openshift4-ose-logging-kibana5:a767c8f0
registry.redhat.io/openshift4/ose-oauth-
proxy@sha256:6b4db07f6e6c962fc96473d86c44532c93b146bbefe311d0c348117bf75
9c506=<registry_host_name>:<port>/openshift4-ose-oauth-proxy:3754ea2b

OpenShift Container Platform 4.3 Operators

60

1

$ oc image mirror \
 [-a ${REG_CREDS}] \
 -f ./redhat-operators-manifests/mapping.txt

4. Apply the ImageContentSourcePolicy:

$ oc apply -f ./redhat-operators-manifests/imageContentSourcePolicy.yaml

5. Create a CatalogSource object that references your catalog image.

a. Modify the following to your specifications and save it as a catalogsource.yaml file:

Specify your custom Operator catalog image.

b. Use the file to create the CatalogSource object:

$ oc create -f catalogsource.yaml

6. Verify the following resources are created successfully.

a. Check the Pods:

$ oc get pods -n openshift-marketplace

Example output

NAME READY STATUS RESTARTS AGE
my-operator-catalog-6njx6 1/1 Running 0 28s
marketplace-operator-d9f549946-96sgr 1/1 Running 0 26h

b. Check the CatalogSource:

$ oc get catalogsource -n openshift-marketplace

Example output

NAME DISPLAY TYPE PUBLISHER AGE
my-operator-catalog My Operator Catalog grpc 5s

c. Check the PackageManifest:

apiVersion: operators.coreos.com/v1alpha1
kind: CatalogSource
metadata:
 name: my-operator-catalog
 namespace: openshift-marketplace
spec:
 sourceType: grpc
 image: <registry_host_name>:<port>/olm/redhat-operators:v1 1
 displayName: My Operator Catalog
 publisher: grpc

CHAPTER 10. USING OPERATOR LIFECYCLE MANAGER ON RESTRICTED NETWORKS

61

$ oc get packagemanifest -n openshift-marketplace

Example output

NAME CATALOG AGE
etcd My Operator Catalog 34s

You can now install the Operators from the OperatorHub page on your restricted network OpenShift
Container Platform cluster web console.

Additional resources

Architecture and operating system support for Operators

10.4. UPDATING AN OPERATOR CATALOG IMAGE

After a cluster administrator has configured OperatorHub to use custom Operator catalog images,
administrators can keep their OpenShift Container Platform cluster up to date with the latest Operators
by capturing updates made to Red Hat’s App Registry catalogs. This is done by building and pushing a
new Operator catalog image, then replacing the existing CatalogSource’s spec.image parameter with
the new image digest.

For this example, the procedure assumes a custom redhat-operators catalog image is already
configured for use with OperatorHub.

Prerequisites

A Linux workstation with unrestricted network access [1]

oc version 4.3.5+

podman version 1.4.4+

Access to mirror registry that supports Docker v2-2

OperatorHub configured to use custom catalog images

If you are working with private registries, set the REG_CREDS environment variable to the file
path of your registry credentials for use in later steps. For example, for the podman CLI:

$ REG_CREDS=${XDG_RUNTIME_DIR}/containers/auth.json

If you are working with private namespaces that your quay.io account has access to, you must
set a Quay authentication token. Set the AUTH_TOKEN environment variable for use with the -
-auth-token flag by making a request against the login API using your quay.io credentials:

$ AUTH_TOKEN=$(curl -sH "Content-Type: application/json" \
 -XPOST https://quay.io/cnr/api/v1/users/login -d '
 {
 "user": {
 "username": "'"<quay_username>"'",
 "password": "'"<quay_password>"'"
 }
 }' | jq -r '.token')

OpenShift Container Platform 4.3 Operators

62

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/operators/#olm-arch-os-support_osdk-generating-csvs
https://docs.docker.com/registry/spec/manifest-v2-2/
https://quay.io
https://quay.io

1

2

3

4

5

6

7

Procedure

1. On the workstation with unrestricted network access, authenticate with the target mirror
registry:

$ podman login <registry_host_name>

Also authenticate with registry.redhat.io so that the base image can be pulled during the build:

$ podman login registry.redhat.io

2. Build a new catalog image based on the redhat-operators catalog from quay.io, tagging and
pushing it to your mirror registry:

$ oc adm catalog build \
 --appregistry-org redhat-operators \ 1
 --from=registry.redhat.io/openshift4/ose-operator-registry:v4.3 \ 2
 --filter-by-os="linux/amd64" \ 3
 --to=<registry_host_name>:<port>/olm/redhat-operators:v2 \ 4
 [-a ${REG_CREDS}] \ 5
 [--insecure] \ 6
 [--auth-token "${AUTH_TOKEN}"] 7

INFO[0013] loading Bundles
dir=/var/folders/st/9cskxqs53ll3wdn434vw4cd80000gn/T/300666084/manifests-829192605
...
Pushed sha256:f73d42950021f9240389f99ddc5b0c7f1b533c054ba344654ff1edaf6bf827e3
to example_registry:5000/olm/redhat-operators:v2

Organization (namespace) to pull from an App Registry instance.

Set --from to the ose-operator-registry base image using the tag that matches the target
OpenShift Container Platform cluster major and minor version.

Set --filter-by-os to the operating system and architecture to use for the base image,
which must match the target OpenShift Container Platform cluster. Valid values are
linux/amd64, linux/ppc64le, and linux/s390x.

Name your catalog image and include a tag, for example, v2 because it is the updated
catalog.

Optional: If required, specify the location of your registry credentials file.

Optional: If you do not want to configure trust for the target registry, add the --insecure
flag.

Optional: If other application registry catalogs are used that are not public, specify a Quay
authentication token.

3. Mirror the contents of your catalog to your target registry. The following oc adm catalog
mirror command extracts the contents of your custom Operator catalog image to generate the
manifests required for mirroring and mirrors the images to your registry:

CHAPTER 10. USING OPERATOR LIFECYCLE MANAGER ON RESTRICTED NETWORKS

63

https://quay.io/

1

2

3

4

1

$ oc adm catalog mirror \
 <registry_host_name>:<port>/olm/redhat-operators:v2 \ 1
 <registry_host_name>:<port> \
 [-a ${REG_CREDS}] \ 2
 [--insecure] \ 3
 [--filter-by-os="<os>/<arch>"] 4

mirroring ...

Specify your new Operator catalog image.

Optional: If required, specify the location of your registry credentials file.

Optional: If you do not want to configure trust for the target registry, add the --insecure
flag.

Optional: Because the catalog might reference images that support multiple architectures
and operating systems, you can filter by architecture and operating system to mirror only
the images that match. Valid values are linux/amd64, linux/ppc64le, and linux/s390x.

4. Apply the newly generated manifests:

$ oc apply -f ./redhat-operators-manifests

IMPORTANT

It is possible that you do not need to apply the
imageContentSourcePolicy.yaml manifest. Complete a diff of the files to
determine if changes are necessary.

5. Update your CatalogSource object that references your catalog image.

a. If you have your original catalogsource.yaml file for this CatalogSource:

i. Edit your catalogsource.yaml file to reference your new catalog image in the
spec.image field:

Specify your new Operator catalog image.

ii. Use the updated file to replace the CatalogSource object:

apiVersion: operators.coreos.com/v1alpha1
kind: CatalogSource
metadata:
 name: my-operator-catalog
 namespace: openshift-marketplace
spec:
 sourceType: grpc
 image: <registry_host_name>:<port>/olm/redhat-operators:v2 1
 displayName: My Operator Catalog
 publisher: grpc

OpenShift Container Platform 4.3 Operators

64

$ oc replace -f catalogsource.yaml

b. Alternatively, edit the CatalogSource using the following command and reference your new
catalog image in the spec.image parameter:

$ oc edit catalogsource <catalog_source_name> -n openshift-marketplace

Updated Operators should now be available from the OperatorHub page on your OpenShift Container
Platform cluster.

Additional resources

Architecture and operating system support for Operators

10.5. TESTING AN OPERATOR CATALOG IMAGE

You can validate Operator catalog image content by running it as a container and querying its gRPC API.
To further test the image, you can then resolve an OLM Subscription by referencing the image in a
CatalogSource. For this example, the procedure uses a custom redhat-operators catalog image
previously built and pushed to a supported registry.

Prerequisites

A custom Operator catalog image pushed to a supported registry

podman version 1.4.4+

oc version 4.3.5+

Access to mirror registry that supports Docker v2-2

grpcurl

Procedure

1. Pull the Operator catalog image:

$ podman pull <registry_host_name>:<port>/olm/redhat-operators:v1

2. Run the image:

$ podman run -p 50051:50051 \
 -it <registry_host_name>:<port>/olm/redhat-operators:v1

3. Query the running image for available packages using grpcurl:

$ grpcurl -plaintext localhost:50051 api.Registry/ListPackages
{
 "name": "3scale-operator"
}
{
 "name": "amq-broker"
}

CHAPTER 10. USING OPERATOR LIFECYCLE MANAGER ON RESTRICTED NETWORKS

65

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/operators/#olm-arch-os-support_osdk-generating-csvs
https://docs.docker.com/registry/spec/manifest-v2-2/
https://github.com/fullstorydev/grpcurl

{
 "name": "amq-online"
}

4. Get the latest Operator bundle in a channel:

$ grpcurl -plaintext -d '{"pkgName":"kiali-ossm","channelName":"stable"}' localhost:50051
api.Registry/GetBundleForChannel
{
 "csvName": "kiali-operator.v1.0.7",
 "packageName": "kiali-ossm",
 "channelName": "stable",
...

5. Get the digest of the image:

$ podman inspect \
 --format='{{index .RepoDigests 0}}' \
 <registry_host_name>:<port>/olm/redhat-operators:v1

example_registry:5000/olm/redhat-
operators@sha256:f73d42950021f9240389f99ddc5b0c7f1b533c054ba344654ff1edaf6bf827e3

6. Assuming an OperatorGroup exists in namespace my-ns that supports your Operator and its
dependencies, create a CatalogSource object using the image digest. For example:

7. Create a Subscription that resolves the latest available servicemeshoperator and its
dependencies from your catalog image:

apiVersion: operators.coreos.com/v1alpha1
kind: CatalogSource
metadata:
 name: custom-redhat-operators
 namespace: my-ns
spec:
 sourceType: grpc
 image: example_registry:5000/olm/redhat-
operators@sha256:f73d42950021f9240389f99ddc5b0c7f1b533c054ba344654ff1edaf6bf827e3

 displayName: Red Hat Operators

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: servicemeshoperator
 namespace: my-ns
spec:
 source: custom-redhat-operators
 sourceNamespace: my-ns
 name: servicemeshoperator
 channel: "1.0"

OpenShift Container Platform 4.3 Operators

66

[1] The oc adm catalog command is currently only supported on Linux. (BZ#1771329)

CHAPTER 10. USING OPERATOR LIFECYCLE MANAGER ON RESTRICTED NETWORKS

67

https://bugzilla.redhat.com/show_bug.cgi?id=1771329

CHAPTER 11. CRDS

11.1. EXTENDING THE KUBERNETES API WITH CUSTOM RESOURCE
DEFINITIONS

This guide describes how cluster administrators can extend their OpenShift Container Platform cluster
by creating and managing Custom Resource Definitions (CRDs).

11.1.1. Custom Resource Definitions

In the Kubernetes API, a resource is an endpoint that stores a collection of API objects of a certain kind.
For example, the built-in Pods resource contains a collection of Pod objects.

A Custom Resource Definition (CRD) object defines a new, unique object Kind in the cluster and lets the
Kubernetes API server handle its entire lifecycle.

Custom Resource (CR) objects are created from CRDs that have been added to the cluster by a cluster
administrator, allowing all cluster users to add the new resource type into projects.

When a cluster administrator adds a new CRD to the cluster, the Kubernetes API server reacts by
creating a new RESTful resource path that can be accessed by the entire cluster or a single project
(namespace) and begins serving the specified CR.

Cluster administrators that want to grant access to the CRD to other users can use cluster role
aggregation to grant access to users with the admin, edit, or view default cluster roles. Cluster role
aggregation allows the insertion of custom policy rules into these cluster roles. This behavior integrates
the new resource into the cluster’s RBAC policy as if it was a built-in resource.

Operators in particular make use of CRDs by packaging them with any required RBAC policy and other
software-specific logic. Cluster administrators can also add CRDs manually to the cluster outside of an
Operator’s lifecycle, making them available to all users.

NOTE

While only cluster administrators can create CRDs, developers can create the CR from an
existing CRD if they have read and write permission to it.

11.1.2. Creating a Custom Resource Definition

To create Custom Resource (CR) objects, cluster administrators must first create a Custom Resource
Definition (CRD).

Prerequisites

Access to an OpenShift Container Platform cluster with cluster-admin user privileges.

Procedure

To create a CRD:

1. Create a YAML file that contains the following field types:

Example YAML file for a CRD

OpenShift Container Platform 4.3 Operators

68

1

2

3

4

5

6

7

8

9

Use the apiextensions.k8s.io/v1beta1 API.

Specify a name for the definition. This must be in the <plural-name>.<group> format using
the values from the group and plural fields.

Specify a group name for the API. An API group is a collection of objects that are logically
related. For example, all batch objects like Job or ScheduledJob could be in the batch API
Group (such as batch.api.example.com). A good practice is to use a fully-qualified-domain
name of your organization.

Specify a version name to be used in the URL. Each API Group can exist in multiple
versions. For example: v1alpha, v1beta, v1.

Specify whether the custom objects are available to a project (Namespaced) or all
projects in the cluster (Cluster).

Specify the plural name to use in the URL. The plural field is the same as a resource in an
API URL.

Specify a singular name to use as an alias on the CLI and for display.

Specify the kind of objects that can be created. The type can be in CamelCase.

Specify a shorter string to match your resource on the CLI.

NOTE

By default, a CRD is cluster-scoped and available to all projects.

2. Create the CRD object:

$ oc create -f <file_name>.yaml

A new RESTful API endpoint is created at:

/apis/<spec:group>/<spec:version>/<scope>/*/<names-plural>/...

apiVersion: apiextensions.k8s.io/v1beta1 1
kind: CustomResourceDefinition
metadata:
 name: crontabs.stable.example.com 2
spec:
 group: stable.example.com 3
 version: v1 4
 scope: Namespaced 5
 names:
 plural: crontabs 6
 singular: crontab 7
 kind: CronTab 8
 shortNames:
 - ct 9

CHAPTER 11. CRDS

69

For example, using the example file, the following endpoint is created:

/apis/stable.example.com/v1/namespaces/*/crontabs/...

You can now use this endpoint URL to create and manage CRs. The object Kind is based on the
spec.kind field of the CRD object you created.

11.1.3. Creating cluster roles for Custom Resource Definitions

Cluster administrators can grant permissions to existing cluster-scoped Custom Resource Definitions
(CRDs). If you use the admin, edit, and view default cluster roles, take advantage of cluster role
aggregation for their rules.

IMPORTANT

You must explicitly assign permissions to each of these roles. The roles with more
permissions do not inherit rules from roles with fewer permissions. If you assign a rule to a
role, you must also assign that verb to roles that have more permissions. For example, if
you grant the get crontabs permission to the view role, you must also grant it to the edit
and admin roles. The admin or edit role is usually assigned to the user that created a
project through the project template.

Prerequisites

Create a CRD.

Procedure

1. Create a cluster role definition file for the CRD. The cluster role definition is a YAML file that
contains the rules that apply to each cluster role. The OpenShift Container Platform controller
adds the rules that you specify to the default cluster roles.

Example YAML file for a cluster role definition

kind: ClusterRole
apiVersion: rbac.authorization.k8s.io/v1 1
metadata:
 name: aggregate-cron-tabs-admin-edit 2
 labels:
 rbac.authorization.k8s.io/aggregate-to-admin: "true" 3
 rbac.authorization.k8s.io/aggregate-to-edit: "true" 4
rules:
- apiGroups: ["stable.example.com"] 5
 resources: ["crontabs"] 6
 verbs: ["get", "list", "watch", "create", "update", "patch", "delete", "deletecollection"] 7

kind: ClusterRole
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 name: aggregate-cron-tabs-view 8
 labels:
 # Add these permissions to the "view" default role.
 rbac.authorization.k8s.io/aggregate-to-view: "true" 9

OpenShift Container Platform 4.3 Operators

70

1

2 8

3

4

5 11

6 12

7 13

9

10

Use the rbac.authorization.k8s.io/v1 API.

Specify a name for the definition.

Specify this label to grant permissions to the admin default role.

Specify this label to grant permissions to the edit default role.

Specify the group name of the CRD.

Specify the plural name of the CRD that these rules apply to.

Specify the verbs that represent the permissions that are granted to the role. For example,
apply read and write permissions to the admin and edit roles and only read permission to
the view role.

Specify this label to grant permissions to the view default role.

Specify this label to grant permissions to the cluster-reader default role.

2. Create the cluster role:

$ oc create -f <file_name>.yaml

11.1.4. Creating Custom Resources from a file

After a Custom Resource Definition (CRD) has been added to the cluster, Custom Resources (CRs) can
be created with the CLI from a file using the CR specification.

Prerequisites

CRD added to the cluster by a cluster administrator.

Procedure

1. Create a YAML file for the CR. In the following example definition, the cronSpec and image
custom fields are set in a CR of Kind: CronTab. The Kind comes from the spec.kind field of
the CRD object.

Example YAML file for a CR

 rbac.authorization.k8s.io/aggregate-to-cluster-reader: "true" 10
rules:
- apiGroups: ["stable.example.com"] 11
 resources: ["crontabs"] 12
 verbs: ["get", "list", "watch"] 13

apiVersion: "stable.example.com/v1" 1
kind: CronTab 2
metadata:
 name: my-new-cron-object 3
 finalizers: 4
 - finalizer.stable.example.com

CHAPTER 11. CRDS

71

1

2

3

4

5

Specify the group name and API version (name/version) from the Custom Resource
Definition.

Specify the type in the CRD.

Specify a name for the object.

Specify the finalizers for the object, if any. Finalizers allow controllers to implement
conditions that must be completed before the object can be deleted.

Specify conditions specific to the type of object.

2. After you create the file, create the object:

$ oc create -f <file_name>.yaml

11.1.5. Inspecting Custom Resources

You can inspect Custom Resource (CR) objects that exist in your cluster using the CLI.

Prerequisites

A CR object exists in a namespace to which you have access.

Procedure

1. To get information on a specific Kind of a CR, run:

$ oc get <kind>

For example:

$ oc get crontab

NAME KIND
my-new-cron-object CronTab.v1.stable.example.com

Resource names are not case-sensitive, and you can use either the singular or plural forms
defined in the CRD, as well as any short name. For example:

$ oc get crontabs
$ oc get crontab
$ oc get ct

2. You can also view the raw YAML data for a CR:

$ oc get <kind> -o yaml

spec: 5
 cronSpec: "* * * * /5"
 image: my-awesome-cron-image

OpenShift Container Platform 4.3 Operators

72

https://kubernetes.io/docs/tasks/access-kubernetes-api/extend-api-custom-resource-definitions/#finalizers

1 2

$ oc get ct -o yaml

apiVersion: v1
items:
- apiVersion: stable.example.com/v1
 kind: CronTab
 metadata:
 clusterName: ""
 creationTimestamp: 2017-05-31T12:56:35Z
 deletionGracePeriodSeconds: null
 deletionTimestamp: null
 name: my-new-cron-object
 namespace: default
 resourceVersion: "285"
 selfLink: /apis/stable.example.com/v1/namespaces/default/crontabs/my-new-cron-object
 uid: 9423255b-4600-11e7-af6a-28d2447dc82b
 spec:
 cronSpec: '* * * * /5' 1
 image: my-awesome-cron-image 2

Custom data from the YAML that you used to create the object displays.

11.2. MANAGING RESOURCES FROM CUSTOM RESOURCE
DEFINITIONS

This guide describes how developers can manage Custom Resources (CRs) that come from Custom
Resource Definitions (CRDs).

11.2.1. Custom Resource Definitions

In the Kubernetes API, a resource is an endpoint that stores a collection of API objects of a certain kind.
For example, the built-in Pods resource contains a collection of Pod objects.

A Custom Resource Definition (CRD) object defines a new, unique object Kind in the cluster and lets the
Kubernetes API server handle its entire lifecycle.

Custom Resource (CR) objects are created from CRDs that have been added to the cluster by a cluster
administrator, allowing all cluster users to add the new resource type into projects.

Operators in particular make use of CRDs by packaging them with any required RBAC policy and other
software-specific logic. Cluster administrators can also add CRDs manually to the cluster outside of an
Operator’s lifecycle, making them available to all users.

NOTE

While only cluster administrators can create CRDs, developers can create the CR from an
existing CRD if they have read and write permission to it.

11.2.2. Creating Custom Resources from a file

After a Custom Resource Definition (CRD) has been added to the cluster, Custom Resources (CRs) can
be created with the CLI from a file using the CR specification.

CHAPTER 11. CRDS

73

1

2

3

4

5

Prerequisites

CRD added to the cluster by a cluster administrator.

Procedure

1. Create a YAML file for the CR. In the following example definition, the cronSpec and image
custom fields are set in a CR of Kind: CronTab. The Kind comes from the spec.kind field of
the CRD object.

Example YAML file for a CR

Specify the group name and API version (name/version) from the Custom Resource
Definition.

Specify the type in the CRD.

Specify a name for the object.

Specify the finalizers for the object, if any. Finalizers allow controllers to implement
conditions that must be completed before the object can be deleted.

Specify conditions specific to the type of object.

2. After you create the file, create the object:

$ oc create -f <file_name>.yaml

11.2.3. Inspecting Custom Resources

You can inspect Custom Resource (CR) objects that exist in your cluster using the CLI.

Prerequisites

A CR object exists in a namespace to which you have access.

Procedure

1. To get information on a specific Kind of a CR, run:

$ oc get <kind>

For example:

apiVersion: "stable.example.com/v1" 1
kind: CronTab 2
metadata:
 name: my-new-cron-object 3
 finalizers: 4
 - finalizer.stable.example.com
spec: 5
 cronSpec: "* * * * /5"
 image: my-awesome-cron-image

OpenShift Container Platform 4.3 Operators

74

https://kubernetes.io/docs/tasks/access-kubernetes-api/extend-api-custom-resource-definitions/#finalizers

1 2

$ oc get crontab

NAME KIND
my-new-cron-object CronTab.v1.stable.example.com

Resource names are not case-sensitive, and you can use either the singular or plural forms
defined in the CRD, as well as any short name. For example:

$ oc get crontabs
$ oc get crontab
$ oc get ct

2. You can also view the raw YAML data for a CR:

$ oc get <kind> -o yaml

$ oc get ct -o yaml

apiVersion: v1
items:
- apiVersion: stable.example.com/v1
 kind: CronTab
 metadata:
 clusterName: ""
 creationTimestamp: 2017-05-31T12:56:35Z
 deletionGracePeriodSeconds: null
 deletionTimestamp: null
 name: my-new-cron-object
 namespace: default
 resourceVersion: "285"
 selfLink: /apis/stable.example.com/v1/namespaces/default/crontabs/my-new-cron-object
 uid: 9423255b-4600-11e7-af6a-28d2447dc82b
 spec:
 cronSpec: '* * * * /5' 1
 image: my-awesome-cron-image 2

Custom data from the YAML that you used to create the object displays.

CHAPTER 11. CRDS

75

CHAPTER 12. OPERATOR SDK

12.1. GETTING STARTED WITH THE OPERATOR SDK

This guide outlines the basics of the Operator SDK and walks Operator authors with cluster
administrator access to a Kubernetes-based cluster (such as OpenShift Container Platform) through an
example of building a simple Go-based Memcached Operator and managing its lifecycle from
installation to upgrade.

This is accomplished using two centerpieces of the Operator Framework: the Operator SDK (the
operator-sdk CLI tool and controller-runtime library API) and the Operator Lifecycle Manager (OLM).

NOTE

OpenShift Container Platform 4.3 supports Operator SDK v0.12.0 or later.

12.1.1. Architecture of the Operator SDK

The Operator Framework is an open source toolkit to manage Kubernetes native applications, called
Operators, in an effective, automated, and scalable way. Operators take advantage of Kubernetes'
extensibility to deliver the automation advantages of cloud services like provisioning, scaling, and
backup and restore, while being able to run anywhere that Kubernetes can run.

Operators make it easy to manage complex, stateful applications on top of Kubernetes. However,
writing an Operator today can be difficult because of challenges such as using low-level APIs, writing
boilerplate, and a lack of modularity, which leads to duplication.

The Operator SDK is a framework designed to make writing Operators easier by providing:

High-level APIs and abstractions to write the operational logic more intuitively

Tools for scaffolding and code generation to quickly bootstrap a new project

Extensions to cover common Operator use cases

12.1.1.1. Workflow

The Operator SDK provides the following workflow to develop a new Operator:

1. Create a new Operator project using the Operator SDK command line interface (CLI).

2. Define new resource APIs by adding Custom Resource Definitions (CRDs).

3. Specify resources to watch using the Operator SDK API.

4. Define the Operator reconciling logic in a designated handler and use the Operator SDK API to
interact with resources.

5. Use the Operator SDK CLI to build and generate the Operator deployment manifests.

Figure 12.1. Operator SDK workflow

OpenShift Container Platform 4.3 Operators

76

https://coreos.com/operators/

Figure 12.1. Operator SDK workflow

At a high level, an Operator using the Operator SDK processes events for watched resources in an
Operator author-defined handler and takes actions to reconcile the state of the application.

12.1.1.2. Manager file

The main program for the Operator is the manager file at cmd/manager/main.go. The manager
automatically registers the scheme for all Custom Resources (CRs) defined under pkg/apis/ and runs all
controllers under pkg/controller/.

The manager can restrict the namespace that all controllers watch for resources:

mgr, err := manager.New(cfg, manager.Options{Namespace: namespace})

By default, this is the namespace that the Operator is running in. To watch all namespaces, you can
leave the namespace option empty:

mgr, err := manager.New(cfg, manager.Options{Namespace: ""})

12.1.1.3. Prometheus Operator support

Prometheus is an open-source systems monitoring and alerting toolkit. The Prometheus Operator
creates, configures, and manages Prometheus clusters running on Kubernetes-based clusters, such as
OpenShift Container Platform.

Helper functions exist in the Operator SDK by default to automatically set up metrics in any generated
Go-based Operator for use on clusters where the Prometheus Operator is deployed.

12.1.2. Installing the Operator SDK CLI

The Operator SDK has a CLI tool that assists developers in creating, building, and deploying a new
Operator project. You can install the SDK CLI on your workstation so you are prepared to start authoring
your own Operators.

NOTE

CHAPTER 12. OPERATOR SDK

77

https://prometheus.io/

NOTE

This guide uses minikube v0.25.0+ as the local Kubernetes cluster and Quay.io for the
public registry.

12.1.2.1. Installing from GitHub release

You can download and install a pre-built release binary of the SDK CLI from the project on GitHub.

Prerequisites

Go v1.13+

docker v17.03+, podman v1.2.0+, or buildah v1.7+

OpenShift CLI (oc) v4.3+ installed

Access to a cluster based on Kubernetes v1.12.0+

Access to a container registry

Procedure

1. Set the release version variable:

RELEASE_VERSION=v0.12.0

2. Download the release binary.

For Linux:

$ curl -OJL https://github.com/operator-framework/operator-
sdk/releases/download/${RELEASE_VERSION}/operator-sdk-${RELEASE_VERSION}-
x86_64-linux-gnu

For macOS:

$ curl -OJL https://github.com/operator-framework/operator-
sdk/releases/download/${RELEASE_VERSION}/operator-sdk-${RELEASE_VERSION}-
x86_64-apple-darwin

3. Verify the downloaded release binary.

a. Download the provided ASC file.

For Linux:

$ curl -OJL https://github.com/operator-framework/operator-
sdk/releases/download/${RELEASE_VERSION}/operator-sdk-
${RELEASE_VERSION}-x86_64-linux-gnu.asc

For macOS:

OpenShift Container Platform 4.3 Operators

78

https://github.com/kubernetes/minikube#installation
https://quay.io/
https://golang.org/dl/

1

1

$ curl -OJL https://github.com/operator-framework/operator-
sdk/releases/download/${RELEASE_VERSION}/operator-sdk-
${RELEASE_VERSION}-x86_64-apple-darwin.asc

b. Place the binary and corresponding ASC file into the same directory and run the following
command to verify the binary:

For Linux:

$ gpg --verify operator-sdk-${RELEASE_VERSION}-x86_64-linux-gnu.asc

For macOS:

$ gpg --verify operator-sdk-${RELEASE_VERSION}-x86_64-apple-darwin.asc

If you do not have the maintainer’s public key on your workstation, you will get the following
error:

$ gpg --verify operator-sdk-${RELEASE_VERSION}-x86_64-apple-darwin.asc
$ gpg: assuming signed data in 'operator-sdk-${RELEASE_VERSION}-x86_64-apple-
darwin'
$ gpg: Signature made Fri Apr 5 20:03:22 2019 CEST
$ gpg: using RSA key <key_id> 1
$ gpg: Can't check signature: No public key

RSA key string.

To download the key, run the following command, replacing <key_id> with the RSA key
string provided in the output of the previous command:

$ gpg [--keyserver keys.gnupg.net] --recv-key "<key_id>" 1

If you do not have a key server configured, specify one with the --keyserver option.

4. Install the release binary in your PATH:

For Linux:

$ chmod +x operator-sdk-${RELEASE_VERSION}-x86_64-linux-gnu
$ sudo cp operator-sdk-${RELEASE_VERSION}-x86_64-linux-gnu
/usr/local/bin/operator-sdk
$ rm operator-sdk-${RELEASE_VERSION}-x86_64-linux-gnu

For macOS:

$ chmod +x operator-sdk-${RELEASE_VERSION}-x86_64-apple-darwin
$ sudo cp operator-sdk-${RELEASE_VERSION}-x86_64-apple-darwin
/usr/local/bin/operator-sdk
$ rm operator-sdk-${RELEASE_VERSION}-x86_64-apple-darwin

5. Verify that the CLI tool was installed correctly:

CHAPTER 12. OPERATOR SDK

79

$ operator-sdk version

12.1.2.2. Installing from Homebrew

You can install the SDK CLI using Homebrew.

Prerequisites

Homebrew

docker v17.03+, podman v1.2.0+, or buildah v1.7+

OpenShift CLI (oc) v4.3+ installed

Access to a cluster based on Kubernetes v1.12.0+

Access to a container registry

Procedure

1. Install the SDK CLI using the brew command:

$ brew install operator-sdk

2. Verify that the CLI tool was installed correctly:

$ operator-sdk version

12.1.2.3. Compiling and installing from source

You can obtain the Operator SDK source code to compile and install the SDK CLI.

Prerequisites

Git

Go v1.13+

docker v17.03+, podman v1.2.0+, or buildah v1.7+

OpenShift CLI (oc) v4.3+ installed

Access to a cluster based on Kubernetes v1.12.0+

Access to a container registry

Procedure

1. Clone the operator-sdk repository:

$ mkdir -p $GOPATH/src/github.com/operator-framework
$ cd $GOPATH/src/github.com/operator-framework
$ git clone https://github.com/operator-framework/operator-sdk
$ cd operator-sdk

OpenShift Container Platform 4.3 Operators

80

https://brew.sh/
https://git-scm.com/downloads
https://golang.org/dl/

2. Check out the desired release branch:

$ git checkout master

3. Compile and install the SDK CLI:

$ make dep
$ make install

This installs the CLI binary operator-sdk at $GOPATH/bin.

4. Verify that the CLI tool was installed correctly:

$ operator-sdk version

12.1.3. Building a Go-based Memcached Operator using the Operator SDK

The Operator SDK makes it easier to build Kubernetes native applications, a process that can require
deep, application-specific operational knowledge. The SDK not only lowers that barrier, but it also helps
reduce the amount of boilerplate code needed for many common management capabilities, such as
metering or monitoring.

This procedure walks through an example of building a simple Memcached Operator using tools and
libraries provided by the SDK.

Prerequisites

Operator SDK CLI installed on the development workstation

Operator Lifecycle Manager (OLM) installed on a Kubernetes-based cluster (v1.8 or above to
support the apps/v1beta2 API group), for example OpenShift Container Platform 4.3

Access to the cluster using an account with cluster-admin permissions

OpenShift CLI (oc) v4.1+ installed

Procedure

1. Create a new project.
Use the CLI to create a new memcached-operator project:

$ mkdir -p $GOPATH/src/github.com/example-inc/
$ cd $GOPATH/src/github.com/example-inc/
$ operator-sdk new memcached-operator
$ cd memcached-operator

2. Add a new Custom Resource Definition (CRD).

a. Use the CLI to add a new CRD API called Memcached, with APIVersion set to
cache.example.com/v1apha1 and Kind set to Memcached:

$ operator-sdk add api \
 --api-version=cache.example.com/v1alpha1 \
 --kind=Memcached

CHAPTER 12. OPERATOR SDK

81

This scaffolds the Memcached resource API under pkg/apis/cache/v1alpha1/.

b. Modify the spec and status of the Memcached Custom Resource (CR) at the
pkg/apis/cache/v1alpha1/memcached_types.go file:

c. After modifying the *_types.go file, always run the following command to update the
generated code for that resource type:

$ operator-sdk generate k8s

3. Optional: Add custom validation to your CRD.
OpenAPI v3.0 schemas are added to CRD manifests in the spec.validation block when the
manifests are generated. This validation block allows Kubernetes to validate the properties in a
Memcached CR when it is created or updated.

Additionally, a pkg/apis/<group>/<version>/zz_generated.openapi.go file is generated. This
file contains the Go representation of this validation block if the +k8s:openapi-gen=true
annotation is present above the Kind type declaration, which is present by default. This auto-
generated code is your Go Kind type’s OpenAPI model, from which you can create a full
OpenAPI Specification and generate a client.

As an Operator author, you can use Kubebuilder markers (annotations) to configure custom
validations for your API. These markers must always have a +kubebuilder:validation prefix. For
example, adding an enum-type specification can be done by adding the following marker:

Usage of markers in API code is discussed in the Kubebuilder Generating CRDs and Markers for
Config/Code Generation documentation. A full list of OpenAPIv3 validation markers is also
available in the Kubebuilder CRD Validation documentation.

If you add any custom validations, run the following command to update the OpenAPI validation
section in the CRD’s deploy/crds/cache.example.com_memcacheds_crd.yaml file:

$ operator-sdk generate openapi

Example generated YAML

type MemcachedSpec struct {
 // Size is the size of the memcached deployment
 Size int32 `json:"size"`
}
type MemcachedStatus struct {
 // Nodes are the names of the memcached pods
 Nodes []string `json:"nodes"`
}

// +kubebuilder:validation:Enum=Lion;Wolf;Dragon
type Alias string

spec:
 validation:
 openAPIV3Schema:
 properties:
 spec:
 properties:

OpenShift Container Platform 4.3 Operators

82

https://book.kubebuilder.io/reference/generating-crd.html
https://book.kubebuilder.io/reference/markers.html
https://book.kubebuilder.io/reference/markers/crd-validation.html

4. Add a new Controller.

a. Add a new Controller to the project to watch and reconcile the Memcached resource:

$ operator-sdk add controller \
 --api-version=cache.example.com/v1alpha1 \
 --kind=Memcached

This scaffolds a new Controller implementation under pkg/controller/memcached/.

b. For this example, replace the generated controller file
pkg/controller/memcached/memcached_controller.go with the example implementation.
The example controller executes the following reconciliation logic for each Memcached CR:

Create a Memcached Deployment if it does not exist.

Ensure that the Deployment size is the same as specified by the Memcached CR spec.

Update the Memcached CR status with the names of the Memcached Pods.

The next two sub-steps inspect how the Controller watches resources and how the
reconcile loop is triggered. You can skip these steps to go directly to building and running
the Operator.

c. Inspect the Controller implementation at the
pkg/controller/memcached/memcached_controller.go file to see how the Controller
watches resources.
The first watch is for the Memcached type as the primary resource. For each Add, Update,
or Delete event, the reconcile loop is sent a reconcile Request (a <namespace>:<name>
key) for that Memcached object:

err := c.Watch(
 &source.Kind{Type: &cachev1alpha1.Memcached{}},
&handler.EnqueueRequestForObject{})

The next watch is for Deployments, but the event handler maps each event to a reconcile
Request for the owner of the Deployment. In this case, this is the Memcached object for
which the Deployment was created. This allows the controller to watch Deployments as a
secondary resource:

err := c.Watch(&source.Kind{Type: &appsv1.Deployment{}},
&handler.EnqueueRequestForOwner{
 IsController: true,
 OwnerType: &cachev1alpha1.Memcached{},
 })

d. Every Controller has a Reconciler object with a Reconcile() method that implements the
reconcile loop. The reconcile loop is passed the Request argument which is a
<namespace>:<name> key used to lookup the primary resource object, Memcached, from
the cache:

 size:
 format: int32
 type: integer

CHAPTER 12. OPERATOR SDK

83

https://github.com/operator-framework/operator-sdk/blob/master/example/memcached-operator/memcached_controller.go.tmpl

func (r *ReconcileMemcached) Reconcile(request reconcile.Request) (reconcile.Result,
error) {
 // Lookup the Memcached instance for this reconcile request
 memcached := &cachev1alpha1.Memcached{}
 err := r.client.Get(context.TODO(), request.NamespacedName, memcached)
 ...
}

Based on the return value of Reconcile() the reconcile Request may be requeued and the
loop may be triggered again:

// Reconcile successful - don't requeue
return reconcile.Result{}, nil
// Reconcile failed due to error - requeue
return reconcile.Result{}, err
// Requeue for any reason other than error
return reconcile.Result{Requeue: true}, nil

5. Build and run the Operator.

a. Before running the Operator, the CRD must be registered with the Kubernetes API server:

$ oc create \
 -f deploy/crds/cache_v1alpha1_memcached_crd.yaml

b. After registering the CRD, there are two options for running the Operator:

As a Deployment inside a Kubernetes cluster

As Go program outside a cluster

Choose one of the following methods.

i. Option A: Running as a Deployment inside the cluster.

A. Build the memcached-operator image and push it to a registry:

$ operator-sdk build quay.io/example/memcached-operator:v0.0.1

B. The Deployment manifest is generated at deploy/operator.yaml. Update the
Deployment image as follows since the default is just a placeholder:

$ sed -i 's|REPLACE_IMAGE|quay.io/example/memcached-operator:v0.0.1|g'
deploy/operator.yaml

C. Ensure you have an account on Quay.io for the next step, or substitute your
preferred container registry. On the registry, create a new public image repository
named memcached-operator.

D. Push the image to the registry:

$ podman push quay.io/example/memcached-operator:v0.0.1

E. Setup RBAC and deploy memcached-operator:

OpenShift Container Platform 4.3 Operators

84

https://quay.io
https://quay.io/new/

$ oc create -f deploy/role.yaml
$ oc create -f deploy/role_binding.yaml
$ oc create -f deploy/service_account.yaml
$ oc create -f deploy/operator.yaml

F. Verify that memcached-operator is up and running:

$ oc get deployment
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
memcached-operator 1 1 1 1 1m

ii. Option B: Running locally outside the cluster.
This method is preferred during development cycle to deploy and test faster.

Run the Operator locally with the default Kubernetes configuration file present at
$HOME/.kube/config:

$ operator-sdk up local --namespace=default

You can use a specific kubeconfig using the flag --kubeconfig=<path/to/kubeconfig>.

6. Verify that the Operator can deploy a Memcached application by creating a Memcached CR.

a. Create the example Memcached CR that was generated at
deploy/crds/cache_v1alpha1_memcached_cr.yaml:

$ cat deploy/crds/cache_v1alpha1_memcached_cr.yaml
apiVersion: "cache.example.com/v1alpha1"
kind: "Memcached"
metadata:
 name: "example-memcached"
spec:
 size: 3

$ oc apply -f deploy/crds/cache_v1alpha1_memcached_cr.yaml

b. Ensure that memcached-operator creates the Deployment for the CR:

$ oc get deployment
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
memcached-operator 1 1 1 1 2m
example-memcached 3 3 3 3 1m

c. Check the Pods and CR status to confirm the status is updated with the memcached Pod
names:

$ oc get pods
NAME READY STATUS RESTARTS AGE
example-memcached-6fd7c98d8-7dqdr 1/1 Running 0 1m
example-memcached-6fd7c98d8-g5k7v 1/1 Running 0 1m
example-memcached-6fd7c98d8-m7vn7 1/1 Running 0 1m
memcached-operator-7cc7cfdf86-vvjqk 1/1 Running 0 2m

$ oc get memcached/example-memcached -o yaml

CHAPTER 12. OPERATOR SDK

85

apiVersion: cache.example.com/v1alpha1
kind: Memcached
metadata:
 clusterName: ""
 creationTimestamp: 2018-03-31T22:51:08Z
 generation: 0
 name: example-memcached
 namespace: default
 resourceVersion: "245453"
 selfLink:
/apis/cache.example.com/v1alpha1/namespaces/default/memcacheds/example-
memcached
 uid: 0026cc97-3536-11e8-bd83-0800274106a1
spec:
 size: 3
status:
 nodes:
 - example-memcached-6fd7c98d8-7dqdr
 - example-memcached-6fd7c98d8-g5k7v
 - example-memcached-6fd7c98d8-m7vn7

7. Verify that the Operator can manage a deployed Memcached application by updating the
size of the deployment.

a. Change the spec.size field in the memcached CR from 3 to 4:

$ cat deploy/crds/cache_v1alpha1_memcached_cr.yaml
apiVersion: "cache.example.com/v1alpha1"
kind: "Memcached"
metadata:
 name: "example-memcached"
spec:
 size: 4

b. Apply the change:

$ oc apply -f deploy/crds/cache_v1alpha1_memcached_cr.yaml

c. Confirm that the Operator changes the Deployment size:

$ oc get deployment
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
example-memcached 4 4 4 4 5m

8. Clean up the resources:

$ oc delete -f deploy/crds/cache_v1alpha1_memcached_cr.yaml
$ oc delete -f deploy/crds/cache_v1alpha1_memcached_crd.yaml
$ oc delete -f deploy/operator.yaml
$ oc delete -f deploy/role.yaml
$ oc delete -f deploy/role_binding.yaml
$ oc delete -f deploy/service_account.yaml

Additional resources

OpenShift Container Platform 4.3 Operators

86

For more information about OpenAPI v3.0 validation schemas in CRDs, refer to the Kubernetes
documentation.

12.1.4. Managing a Memcached Operator using the Operator Lifecycle Manager

The previous section has covered manually running an Operator. In the next sections, we will explore
using the Operator Lifecycle Manager (OLM), which is what enables a more robust deployment model
for Operators being run in production environments.

The OLM helps you to install, update, and generally manage the lifecycle of all of the Operators (and
their associated services) on a Kubernetes cluster. It runs as an Kubernetes extension and lets you use
oc for all the lifecycle management functions without any additional tools.

Prerequisites

OLM installed on a Kubernetes-based cluster (v1.8 or above to support the apps/v1beta2 API
group), for example OpenShift Container Platform 4.3 Preview OLM enabled

Memcached Operator built

Procedure

1. Generate an Operator manifest.
An Operator manifest describes how to display, create, and manage the application, in this case
Memcached, as a whole. It is defined by a ClusterServiceVersion (CSV) object and is required
for the OLM to function.

From the memcached-operator/ directory that was created when you built the Memcached
Operator, generate the CSV manifest:

$ operator-sdk olm-catalog gen-csv --csv-version 0.0.1

NOTE

See Building a CSV for the Operator Framework for more information on
manually defining a manifest file.

2. Create an OperatorGroup that specifies the namespaces that the Operator will target. Create
the following OperatorGroup in the namespace where you will create the CSV. In this example,
the default namespace is used:

3. Deploy the Operator. Use the files that were generated into the deploy/ directory by the
Operator SDK when you built the Memcached Operator.

a. Apply the Operator’s CSV manifest to the specified namespace in the cluster:

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: memcached-operator-group
 namespace: default
spec:
 targetNamespaces:
 - default

CHAPTER 12. OPERATOR SDK

87

https://kubernetes.io/docs/tasks/access-kubernetes-api/custom-resources/custom-resource-definitions/#specifying-a-structural-schema
https://github.com/operator-framework/operator-lifecycle-manager/blob/master/doc/design/building-your-csv.md

$ oc apply -f deploy/olm-catalog/memcached-operator/0.0.1/memcached-
operator.v0.0.1.clusterserviceversion.yaml

When you apply this manifest, the cluster does not immediately update because it does not
yet meet the requirements specified in the manifest.

b. Create the role, role binding, and service account to grant resource permissions to the
Operator, and the Custom Resource Definition (CRD) to create the Memcached type that
the Operator manages:

$ oc create -f deploy/crds/cache.example.com_memcacheds_crd.yaml
$ oc create -f deploy/service_account.yaml
$ oc create -f deploy/role.yaml
$ oc create -f deploy/role_binding.yaml

Because the OLM creates Operators in a particular namespace when a manifest is applied,
administrators can leverage the native Kubernetes RBAC permission model to restrict which
users are allowed to install Operators.

4. Create an application instance.
The Memcached Operator is now running in the default namespace. Users interact with
Operators via instances of CustomResources; in this case, the resource has the kind
Memcached. Native Kubernetes RBAC also applies to CustomResources, providing
administrators control over who can interact with each Operator.

Creating instances of Memcached in this namespace will now trigger the Memcached Operator
to instantiate pods running the memcached server that are managed by the Operator. The
more CustomResources you create, the more unique instances of Memcached are managed
by the Memcached Operator running in this namespace.

$ cat <<EOF | oc apply -f -
apiVersion: "cache.example.com/v1alpha1"
kind: "Memcached"
metadata:
 name: "memcached-for-wordpress"
spec:
 size: 1
EOF

$ cat <<EOF | oc apply -f -
apiVersion: "cache.example.com/v1alpha1"
kind: "Memcached"
metadata:
 name: "memcached-for-drupal"
spec:
 size: 1
EOF

$ oc get Memcached
NAME AGE
memcached-for-drupal 22s
memcached-for-wordpress 27s

$ oc get pods
NAME READY STATUS RESTARTS AGE

OpenShift Container Platform 4.3 Operators

88

memcached-app-operator-66b5777b79-pnsfj 1/1 Running 0 14m
memcached-for-drupal-5476487c46-qbd66 1/1 Running 0 3s
memcached-for-wordpress-65b75fd8c9-7b9x7 1/1 Running 0 8s

5. Update an application.
Manually apply an update to the Operator by creating a new Operator manifest with a replaces
field that references the old Operator manifest. The OLM ensures that all resources being
managed by the old Operator have their ownership moved to the new Operator without fear of
any programs stopping execution. It is up to the Operators themselves to execute any data
migrations required to upgrade resources to run under a new version of the Operator.

The following command demonstrates applying a new Operator manifest file using a new version
of the Operator and shows that the pods remain executing:

$ curl -Lo memcachedoperator.0.0.2.csv.yaml https://raw.githubusercontent.com/operator-
framework/getting-started/master/memcachedoperator.0.0.2.csv.yaml
$ oc apply -f memcachedoperator.0.0.2.csv.yaml
$ oc get pods
NAME READY STATUS RESTARTS AGE
memcached-app-operator-66b5777b79-pnsfj 1/1 Running 0 3s
memcached-for-drupal-5476487c46-qbd66 1/1 Running 0 14m
memcached-for-wordpress-65b75fd8c9-7b9x7 1/1 Running 0 14m

12.1.5. Additional resources

See Appendices to learn about the project directory structures created by the Operator SDK.

Operator Development Guide for Red Hat Partners

12.2. CREATING ANSIBLE-BASED OPERATORS

This guide outlines Ansible support in the Operator SDK and walks Operator authors through examples
building and running Ansible-based Operators with the operator-sdk CLI tool that use Ansible
playbooks and modules.

12.2.1. Ansible support in the Operator SDK

The Operator Framework is an open source toolkit to manage Kubernetes native applications, called
Operators, in an effective, automated, and scalable way. This framework includes the Operator SDK,
which assists developers in bootstrapping and building an Operator based on their expertise without
requiring knowledge of Kubernetes API complexities.

One of the Operator SDK’s options for generating an Operator project includes leveraging existing
Ansible playbooks and modules to deploy Kubernetes resources as a unified application, without having
to write any Go code.

12.2.1.1. Custom Resource files

Operators use the Kubernetes' extension mechanism, Custom Resource Definitions (CRDs), so your
Custom Resource (CR) looks and acts just like the built-in, native Kubernetes objects.

The CR file format is a Kubernetes resource file. The object has mandatory and optional fields:

Table 12.1. Custom Resource fields

CHAPTER 12. OPERATOR SDK

89

https://github.com/operator-framework/getting-started/blob/master/memcachedoperator.0.0.2.csv.yaml
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/operators/#osdk-project-scaffolding-layout_operator-appendices
https://operators.gitbook.io/operator-developer-guide-for-red-hat-partners/
https://coreos.com/operators/

Field Description

apiVersion Version of the CR to be created.

kind Kind of the CR to be created.

metadata Kubernetes-specific metadata to be created.

spec (optional) Key-value list of variables which are passed to Ansible. This field is empty by
default.

status Summarizes the current state of the object. For Ansible-based Operators,
the status subresource is enabled for CRDs and managed by the
k8s_status Ansible module by default, which includes condition
information to the CR’s status.

annotations Kubernetes-specific annotations to be appended to the CR.

The following list of CR annotations modify the behavior of the Operator:

Table 12.2. Ansible-based Operator annotations

Annotation Description

ansible.operator-
sdk/reconcile-period

Specifies the reconciliation interval for the CR. This value is parsed using the
standard Golang package time. Specifically, ParseDuration is used which
applies the default suffix of s, giving the value in seconds.

Example Ansible-based Operator annotation

12.2.1.2. Watches file

The Watches file contains a list of mappings from Custom Resources (CRs), identified by its Group,
Version, and Kind, to an Ansible role or playbook. The Operator expects this mapping file in a
predefined location, /opt/ansible/watches.yaml.

Table 12.3. Watches file mappings

Field Description

group Group of CR to watch.

apiVersion: "foo.example.com/v1alpha1"
kind: "Foo"
metadata:
 name: "example"
annotations:
 ansible.operator-sdk/reconcile-period: "30s"

OpenShift Container Platform 4.3 Operators

90

https://kubernetes.io/docs/tasks/access-kubernetes-api/custom-resources/custom-resource-definitions/#status-subresource
https://golang.org/pkg/time/
https://golang.org/pkg/time/#ParseDuration

1

2

3

version Version of CR to watch.

kind Kind of CR to watch

role (default) Path to the Ansible role added to the container. For example, if your roles
directory is at /opt/ansible/roles/ and your role is named busybox, this
value would be /opt/ansible/roles/busybox. This field is mutually
exclusive with the playbook field.

playbook Path to the Ansible playbook added to the container. This playbook is
expected to be simply a way to call roles. This field is mutually exclusive with
the role field.

reconcilePeriod (optional) The reconciliation interval, how often the role or playbook is run, for a given
CR.

manageStatus (optional) When set to true (default), the Operator manages the status of the CR
generically. When set to false, the status of the CR is managed elsewhere,
by the specified role or playbook or in a separate controller.

Field Description

Example Watches file

Simple example mapping Foo to the Foo role.

Simple example mapping Bar to a playbook.

More complex example for the Baz kind. Disables re-queuing and managing the CR status in the
playbook.

12.2.1.2.1. Advanced options

Advanced features can be enabled by adding them to your Watches file per GVK (group, version, and

- version: v1alpha1 1
 group: foo.example.com
 kind: Foo
 role: /opt/ansible/roles/Foo

- version: v1alpha1 2
 group: bar.example.com
 kind: Bar
 playbook: /opt/ansible/playbook.yml

- version: v1alpha1 3
 group: baz.example.com
 kind: Baz
 playbook: /opt/ansible/baz.yml
 reconcilePeriod: 0
 manageStatus: false

CHAPTER 12. OPERATOR SDK

91

Advanced features can be enabled by adding them to your Watches file per GVK (group, version, and
kind). They can go below the group, version, kind and playbook or role fields.

Some features can be overridden per resource using an annotation on that Custom Resource (CR). The
options that can be overridden have the annotation specified below.

Table 12.4. Advanced Watches file options

Feature YAML key Description Annotation for
override

Defa
ult
valu
e

Reconcile period reconcilePeri
od

Time between reconcile runs for a
particular CR.

ansbile.oper
ator-
sdk/reconcil
e-period

1m

Manage status manageStatu
s

Allows the Operator to manage
the conditions section of each
CR’s status section.

 true

Watch dependent
resources

watchDepen
dentResourc
es

Allows the Operator to
dynamically watch resources that
are created by Ansible.

 true

Watch cluster-scoped
resources

watchCluster
ScopedReso
urces

Allows the Operator to watch
cluster-scoped resources that
are created by Ansible.

 fals
e

Max runner artifacts maxRunnerA
rtifacts

Manages the number of artifact
directories that Ansible Runner
keeps in the Operator container
for each individual resource.

ansible.oper
ator-
sdk/max-
runner-
artifacts

20

Example Watches file with advanced options

12.2.1.3. Extra variables sent to Ansible

Extra variables can be sent to Ansible, which are then managed by the Operator. The spec section of the
Custom Resource (CR) passes along the key-value pairs as extra variables. This is equivalent to extra
variables passed in to the ansible-playbook command.

- version: v1alpha1
 group: app.example.com
 kind: AppService
 playbook: /opt/ansible/playbook.yml
 maxRunnerArtifacts: 30
 reconcilePeriod: 5s
 manageStatus: False
 watchDependentResources: False

OpenShift Container Platform 4.3 Operators

92

https://ansible-runner.readthedocs.io/en/latest/intro.html#runner-artifacts-directory-hierarchy

The Operator also passes along additional variables under the meta field for the name of the CR and
the namespace of the CR.

For the following CR example:

The structure passed to Ansible as extra variables is:

The message and newParameter fields are set in the top level as extra variables, and meta provides
the relevant metadata for the CR as defined in the Operator. The meta fields can be accessed using dot
notation in Ansible, for example:

12.2.1.4. Ansible Runner directory

Ansible Runner keeps information about Ansible runs in the container. This is located at /tmp/ansible-
operator/runner/<group>/<version>/<kind>/<namespace>/<name>.

Additional resources

To learn more about the runner directory, see the Ansible Runner documentation.

12.2.2. Installing the Operator SDK CLI

The Operator SDK has a CLI tool that assists developers in creating, building, and deploying a new
Operator project. You can install the SDK CLI on your workstation so you are prepared to start authoring
your own Operators.

NOTE

This guide uses minikube v0.25.0+ as the local Kubernetes cluster and Quay.io for the
public registry.

apiVersion: "app.example.com/v1alpha1"
kind: "Database"
metadata:
 name: "example"
spec:
 message:"Hello world 2"
 newParameter: "newParam"

{ "meta": {
 "name": "<cr_name>",
 "namespace": "<cr_namespace>",
 },
 "message": "Hello world 2",
 "new_parameter": "newParam",
 "_app_example_com_database": {
 <full_crd>
 },
}

- debug:
 msg: "name: {{ meta.name }}, {{ meta.namespace }}"

CHAPTER 12. OPERATOR SDK

93

https://ansible-runner.readthedocs.io/en/latest/index.html
https://github.com/kubernetes/minikube#installation
https://quay.io/

12.2.2.1. Installing from GitHub release

You can download and install a pre-built release binary of the SDK CLI from the project on GitHub.

Prerequisites

Go v1.13+

docker v17.03+, podman v1.2.0+, or buildah v1.7+

OpenShift CLI (oc) v4.3+ installed

Access to a cluster based on Kubernetes v1.12.0+

Access to a container registry

Procedure

1. Set the release version variable:

RELEASE_VERSION=v0.12.0

2. Download the release binary.

For Linux:

$ curl -OJL https://github.com/operator-framework/operator-
sdk/releases/download/${RELEASE_VERSION}/operator-sdk-${RELEASE_VERSION}-
x86_64-linux-gnu

For macOS:

$ curl -OJL https://github.com/operator-framework/operator-
sdk/releases/download/${RELEASE_VERSION}/operator-sdk-${RELEASE_VERSION}-
x86_64-apple-darwin

3. Verify the downloaded release binary.

a. Download the provided ASC file.

For Linux:

$ curl -OJL https://github.com/operator-framework/operator-
sdk/releases/download/${RELEASE_VERSION}/operator-sdk-
${RELEASE_VERSION}-x86_64-linux-gnu.asc

For macOS:

$ curl -OJL https://github.com/operator-framework/operator-
sdk/releases/download/${RELEASE_VERSION}/operator-sdk-
${RELEASE_VERSION}-x86_64-apple-darwin.asc

b. Place the binary and corresponding ASC file into the same directory and run the following
command to verify the binary:

OpenShift Container Platform 4.3 Operators

94

https://golang.org/dl/

1

1

For Linux:

$ gpg --verify operator-sdk-${RELEASE_VERSION}-x86_64-linux-gnu.asc

For macOS:

$ gpg --verify operator-sdk-${RELEASE_VERSION}-x86_64-apple-darwin.asc

If you do not have the maintainer’s public key on your workstation, you will get the following
error:

$ gpg --verify operator-sdk-${RELEASE_VERSION}-x86_64-apple-darwin.asc
$ gpg: assuming signed data in 'operator-sdk-${RELEASE_VERSION}-x86_64-apple-
darwin'
$ gpg: Signature made Fri Apr 5 20:03:22 2019 CEST
$ gpg: using RSA key <key_id> 1
$ gpg: Can't check signature: No public key

RSA key string.

To download the key, run the following command, replacing <key_id> with the RSA key
string provided in the output of the previous command:

$ gpg [--keyserver keys.gnupg.net] --recv-key "<key_id>" 1

If you do not have a key server configured, specify one with the --keyserver option.

4. Install the release binary in your PATH:

For Linux:

$ chmod +x operator-sdk-${RELEASE_VERSION}-x86_64-linux-gnu
$ sudo cp operator-sdk-${RELEASE_VERSION}-x86_64-linux-gnu
/usr/local/bin/operator-sdk
$ rm operator-sdk-${RELEASE_VERSION}-x86_64-linux-gnu

For macOS:

$ chmod +x operator-sdk-${RELEASE_VERSION}-x86_64-apple-darwin
$ sudo cp operator-sdk-${RELEASE_VERSION}-x86_64-apple-darwin
/usr/local/bin/operator-sdk
$ rm operator-sdk-${RELEASE_VERSION}-x86_64-apple-darwin

5. Verify that the CLI tool was installed correctly:

$ operator-sdk version

12.2.2.2. Installing from Homebrew

You can install the SDK CLI using Homebrew.

Prerequisites

CHAPTER 12. OPERATOR SDK

95

Prerequisites

Homebrew

docker v17.03+, podman v1.2.0+, or buildah v1.7+

OpenShift CLI (oc) v4.3+ installed

Access to a cluster based on Kubernetes v1.12.0+

Access to a container registry

Procedure

1. Install the SDK CLI using the brew command:

$ brew install operator-sdk

2. Verify that the CLI tool was installed correctly:

$ operator-sdk version

12.2.2.3. Compiling and installing from source

You can obtain the Operator SDK source code to compile and install the SDK CLI.

Prerequisites

Git

Go v1.13+

docker v17.03+, podman v1.2.0+, or buildah v1.7+

OpenShift CLI (oc) v4.3+ installed

Access to a cluster based on Kubernetes v1.12.0+

Access to a container registry

Procedure

1. Clone the operator-sdk repository:

$ mkdir -p $GOPATH/src/github.com/operator-framework
$ cd $GOPATH/src/github.com/operator-framework
$ git clone https://github.com/operator-framework/operator-sdk
$ cd operator-sdk

2. Check out the desired release branch:

$ git checkout master

3. Compile and install the SDK CLI:

OpenShift Container Platform 4.3 Operators

96

https://brew.sh/
https://git-scm.com/downloads
https://golang.org/dl/

$ make dep
$ make install

This installs the CLI binary operator-sdk at $GOPATH/bin.

4. Verify that the CLI tool was installed correctly:

$ operator-sdk version

12.2.3. Building an Ansible-based Operator using the Operator SDK

This procedure walks through an example of building a simple Memcached Operator powered by Ansible
playbooks and modules using tools and libraries provided by the Operator SDK.

Prerequisites

Operator SDK CLI installed on the development workstation

Access to a Kubernetes-based cluster v1.11.3+ (for example OpenShift Container Platform 4.3)
using an account with cluster-admin permissions

OpenShift CLI (oc) v4.1+ installed

ansible v2.6.0+

ansible-runner v1.1.0+

ansible-runner-http v1.0.0+

Procedure

1. Create a new Operator project. A namespace-scoped Operator watches and manages
resources in a single namespace. Namespace-scoped Operators are preferred because of their
flexibility. They enable decoupled upgrades, namespace isolation for failures and monitoring,
and differing API definitions.
To create a new Ansible-based, namespace-scoped memcached-operator project and change
to its directory, use the following commands:

$ operator-sdk new memcached-operator \
 --api-version=cache.example.com/v1alpha1 \
 --kind=Memcached \
 --type=ansible
$ cd memcached-operator

This creates the memcached-operator project specifically for watching the Memcached
resource with APIVersion example.com/v1apha1 and Kind Memcached.

2. Customize the Operator logic.
For this example, the memcached-operator executes the following reconciliation logic for each
Memcached Custom Resource (CR):

Create a memcached Deployment if it does not exist.

Ensure that the Deployment size is the same as specified by the Memcached CR.

By default, the memcached-operator watches Memcached resource events as shown in the

CHAPTER 12. OPERATOR SDK

97

https://docs.ansible.com/ansible/latest/index.html
https://ansible-runner.readthedocs.io/en/latest/install.html
https://github.com/ansible/ansible-runner-http

By default, the memcached-operator watches Memcached resource events as shown in the
watches.yaml file and executes the Ansible role Memcached:

You can optionally customize the following logic in the watches.yaml file:

a. Specifying a role option configures the Operator to use this specified path when launching
ansible-runner with an Ansible role. By default, the new command fills in an absolute path
to where your role should go:

b. Specifying a playbook option in the watches.yaml file configures the Operator to use this
specified path when launching ansible-runner with an Ansible playbook:

3. Build the Memcached Ansible role.
Modify the generated Ansible role under the roles/memcached/ directory. This Ansible role
controls the logic that is executed when a resource is modified.

a. Define the Memcached spec.
Defining the spec for an Ansible-based Operator can be done entirely in Ansible. The
Ansible Operator passes all key-value pairs listed in the CR spec field along to Ansible as
variables. The names of all variables in the spec field are converted to snake case
(lowercase with an underscore) by the Operator before running Ansible. For example,
serviceAccount in the spec becomes service_account in Ansible.

TIP

You should perform some type validation in Ansible on the variables to ensure that your
application is receiving expected input.

In case the user does not set the spec field, set a default by modifying the
roles/memcached/defaults/main.yml file:

b. Define the Memcached Deployment.
With the Memcached spec now defined, you can define what Ansible is actually executed
on resource changes. Because this is an Ansible role, the default behavior executes the
tasks in the roles/memcached/tasks/main.yml file.

The goal is for Ansible to create a Deployment if it does not exist, which runs the

- version: v1alpha1
 group: cache.example.com
 kind: Memcached

- version: v1alpha1
 group: cache.example.com
 kind: Memcached
 role: /opt/ansible/roles/memcached

- version: v1alpha1
 group: cache.example.com
 kind: Memcached
 playbook: /opt/ansible/playbook.yaml

size: 1

OpenShift Container Platform 4.3 Operators

98

https://docs.ansible.com/ansible/2.5/user_guide/playbooks_variables.html#passing-variables-on-the-command-line

The goal is for Ansible to create a Deployment if it does not exist, which runs the
memcached:1.4.36-alpine image. Ansible 2.7+ supports the k8s Ansible module , which this
example leverages to control the Deployment definition.

Modify the roles/memcached/tasks/main.yml to match the following:

NOTE

This example used the size variable to control the number of replicas of the
Memcached Deployment. This example sets the default to 1, but any user
can create a CR that overwrites the default.

4. Deploy the CRD.
Before running the Operator, Kubernetes needs to know about the new Custom Resource
Definition (CRD) the Operator will be watching. Deploy the Memcached CRD:

$ oc create -f deploy/crds/cache.example.com_memcacheds_crd.yaml

5. Build and run the Operator.
There are two ways to build and run the Operator:

As a Pod inside a Kubernetes cluster.

As a Go program outside the cluster using the operator-sdk up command.

- name: start memcached
 k8s:
 definition:
 kind: Deployment
 apiVersion: apps/v1
 metadata:
 name: '{{ meta.name }}-memcached'
 namespace: '{{ meta.namespace }}'
 spec:
 replicas: "{{size}}"
 selector:
 matchLabels:
 app: memcached
 template:
 metadata:
 labels:
 app: memcached
 spec:
 containers:
 - name: memcached
 command:
 - memcached
 - -m=64
 - -o
 - modern
 - -v
 image: "docker.io/memcached:1.4.36-alpine"
 ports:
 - containerPort: 11211

CHAPTER 12. OPERATOR SDK

99

https://docs.ansible.com/ansible/2.7/modules/k8s_module.html

Choose one of the following methods:

a. Run as a Pod inside a Kubernetes cluster. This is the preferred method for production use.

i. Build the memcached-operator image and push it to a registry:

$ operator-sdk build quay.io/example/memcached-operator:v0.0.1
$ podman push quay.io/example/memcached-operator:v0.0.1

ii. Deployment manifests are generated in the deploy/operator.yaml file. The deployment
image in this file needs to be modified from the placeholder REPLACE_IMAGE to the
previous built image. To do this, run:

$ sed -i 's|REPLACE_IMAGE|quay.io/example/memcached-operator:v0.0.1|g'
deploy/operator.yaml

iii. Deploy the memcached-operator:

$ oc create -f deploy/service_account.yaml
$ oc create -f deploy/role.yaml
$ oc create -f deploy/role_binding.yaml
$ oc create -f deploy/operator.yaml

iv. Verify that the memcached-operator is up and running:

$ oc get deployment
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
memcached-operator 1 1 1 1 1m

b. Run outside the cluster. This method is preferred during the development cycle to speed
up deployment and testing.
Ensure that Ansible Runner and Ansible Runner HTTP Plug-in are installed or else you will
see unexpected errors from Ansible Runner when a CR is created.

It is also important that the role path referenced in the watches.yaml file exists on your
machine. Because normally a container is used where the role is put on disk, the role must be
manually copied to the configured Ansible roles path (for example /etc/ansible/roles).

i. To run the Operator locally with the default Kubernetes configuration file present at
$HOME/.kube/config:

$ operator-sdk up local

To run the Operator locally with a provided Kubernetes configuration file:

$ operator-sdk up local --kubeconfig=config

6. Create a Memcached CR.

a. Modify the deploy/crds/cache_v1alpha1_memcached_cr.yaml file as shown and create a
Memcached CR:

$ cat deploy/crds/cache_v1alpha1_memcached_cr.yaml
apiVersion: "cache.example.com/v1alpha1"

OpenShift Container Platform 4.3 Operators

100

kind: "Memcached"
metadata:
 name: "example-memcached"
spec:
 size: 3

$ oc apply -f deploy/crds/cache_v1alpha1_memcached_cr.yaml

b. Ensure that the memcached-operator creates the Deployment for the CR:

$ oc get deployment
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
memcached-operator 1 1 1 1 2m
example-memcached 3 3 3 3 1m

c. Check the Pods to confirm three replicas were created:

$ oc get pods
NAME READY STATUS RESTARTS AGE
example-memcached-6fd7c98d8-7dqdr 1/1 Running 0 1m
example-memcached-6fd7c98d8-g5k7v 1/1 Running 0 1m
example-memcached-6fd7c98d8-m7vn7 1/1 Running 0 1m
memcached-operator-7cc7cfdf86-vvjqk 1/1 Running 0 2m

7. Update the size.

a. Change the spec.size field in the memcached CR from 3 to 4 and apply the change:

$ cat deploy/crds/cache_v1alpha1_memcached_cr.yaml
apiVersion: "cache.example.com/v1alpha1"
kind: "Memcached"
metadata:
 name: "example-memcached"
spec:
 size: 4

$ oc apply -f deploy/crds/cache_v1alpha1_memcached_cr.yaml

b. Confirm that the Operator changes the Deployment size:

$ oc get deployment
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
example-memcached 4 4 4 4 5m

8. Clean up the resources:

$ oc delete -f deploy/crds/cache_v1alpha1_memcached_cr.yaml
$ oc delete -f deploy/operator.yaml
$ oc delete -f deploy/role_binding.yaml
$ oc delete -f deploy/role.yaml
$ oc delete -f deploy/service_account.yaml
$ oc delete -f deploy/crds/cache_v1alpha1_memcached_crd.yaml

CHAPTER 12. OPERATOR SDK

101

12.2.4. Managing application lifecycle using the k8s Ansible module

To manage the lifecycle of your application on Kubernetes using Ansible, you can use the k8s Ansible
module. This Ansible module allows a developer to either leverage their existing Kubernetes resource
files (written in YAML) or express the lifecycle management in native Ansible.

One of the biggest benefits of using Ansible in conjunction with existing Kubernetes resource files is the
ability to use Jinja templating so that you can customize resources with the simplicity of a few variables
in Ansible.

This section goes into detail on usage of the k8s Ansible module. To get started, install the module on
your local workstation and test it using a playbook before moving on to using it within an Operator.

12.2.4.1. Installing the k8s Ansible module

To install the k8s Ansible module on your local workstation:

Procedure

1. Install Ansible 2.6+:

$ sudo yum install ansible

2. Install the OpenShift python client package using pip:

$ pip install openshift

12.2.4.2. Testing the k8s Ansible module locally

Sometimes, it is beneficial for a developer to run the Ansible code from their local machine as opposed
to running and rebuilding the Operator each time.

Procedure

1. Initialize a new Ansible-based Operator project:

$ operator-sdk new --type ansible --kind Foo --api-version foo.example.com/v1alpha1 foo-
operator
Create foo-operator/tmp/init/galaxy-init.sh
Create foo-operator/tmp/build/Dockerfile
Create foo-operator/tmp/build/test-framework/Dockerfile
Create foo-operator/tmp/build/go-test.sh
Rendering Ansible Galaxy role [foo-operator/roles/Foo]...
Cleaning up foo-operator/tmp/init
Create foo-operator/watches.yaml
Create foo-operator/deploy/rbac.yaml
Create foo-operator/deploy/crd.yaml
Create foo-operator/deploy/cr.yaml
Create foo-operator/deploy/operator.yaml
Run git init ...
Initialized empty Git repository in /home/dymurray/go/src/github.com/dymurray/opsdk/foo-
operator/.git/
Run git init done

OpenShift Container Platform 4.3 Operators

102

https://docs.ansible.com/ansible/2.7/modules/k8s_module.html
https://github.com/openshift/openshift-restclient-python

1

$ cd foo-operator

2. Modify the roles/foo/tasks/main.yml file with the desired Ansible logic. This example creates
and deletes a namespace with the switch of a variable.

Setting ignore_errors: true ensures that deleting a nonexistent project does not fail.

3. Modify the roles/foo/defaults/main.yml file to set state to present by default.

4. Create an Ansible playbook playbook.yml in the top-level directory, which includes the Foo
role:

5. Run the playbook:

$ ansible-playbook playbook.yml
 [WARNING]: provided hosts list is empty, only localhost is available. Note that the implicit
localhost does not match 'all'

PLAY [localhost] ***

PROCEDURE [Gathering Facts]

ok: [localhost]

Task [Foo : set test namespace to present]
changed: [localhost]

PLAY RECAP ***
localhost : ok=2 changed=1 unreachable=0 failed=0

6. Check that the namespace was created:

$ oc get namespace
NAME STATUS AGE
default Active 28d
kube-public Active 28d
kube-system Active 28d
test Active 3s

- name: set test namespace to {{ state }}
 k8s:
 api_version: v1
 kind: Namespace
 state: "{{ state }}"
 name: test
 ignore_errors: true 1

state: present

- hosts: localhost
 roles:
 - Foo

CHAPTER 12. OPERATOR SDK

103

7. Rerun the playbook setting state to absent:

$ ansible-playbook playbook.yml --extra-vars state=absent
 [WARNING]: provided hosts list is empty, only localhost is available. Note that the implicit
localhost does not match 'all'

PLAY [localhost] ***

PROCEDURE [Gathering Facts]

ok: [localhost]

Task [Foo : set test namespace to absent]
changed: [localhost]

PLAY RECAP ***
localhost : ok=2 changed=1 unreachable=0 failed=0

8. Check that the namespace was deleted:

$ oc get namespace
NAME STATUS AGE
default Active 28d
kube-public Active 28d
kube-system Active 28d

12.2.4.3. Testing the k8s Ansible module inside an Operator

After you are familiar using the k8s Ansible module locally, you can trigger the same Ansible logic inside
of an Operator when a Custom Resource (CR) changes. This example maps an Ansible role to a specific
Kubernetes resource that the Operator watches. This mapping is done in the Watches file.

12.2.4.3.1. Testing an Ansible-based Operator locally

After getting comfortable testing Ansible workflows locally, you can test the logic inside of an Ansible-
based Operator running locally.

To do so, use the operator-sdk up local command from the top-level directory of your Operator
project. This command reads from the ./watches.yaml file and uses the ~/.kube/config file to
communicate with a Kubernetes cluster just as the k8s Ansible module does.

Procedure

1. Because the up local command reads from the ./watches.yaml file, there are options available
to the Operator author. If role is left alone (by default, /opt/ansible/roles/<name>) you must
copy the role over to the /opt/ansible/roles/ directory from the Operator directly.
This is cumbersome because changes are not reflected from the current directory. Instead,
change the role field to point to the current directory and comment out the existing line:

2. Create a Custom Resource Definiton (CRD) and proper role-based access control (RBAC)

- version: v1alpha1
 group: foo.example.com
 kind: Foo
 # role: /opt/ansible/roles/Foo
 role: /home/user/foo-operator/Foo

OpenShift Container Platform 4.3 Operators

104

2. Create a Custom Resource Definiton (CRD) and proper role-based access control (RBAC)
definitions for the Custom Resource (CR) Foo. The operator-sdk command autogenerates
these files inside of the deploy/ directory:

$ oc create -f deploy/crds/foo_v1alpha1_foo_crd.yaml
$ oc create -f deploy/service_account.yaml
$ oc create -f deploy/role.yaml
$ oc create -f deploy/role_binding.yaml

3. Run the up local command:

$ operator-sdk up local
[...]
INFO[0000] Starting to serve on 127.0.0.1:8888
INFO[0000] Watching foo.example.com/v1alpha1, Foo, default

4. Now that the Operator is watching the resource Foo for events, the creation of a CR triggers
your Ansible role to execute. View the deploy/cr.yaml file:

Because the spec field is not set, Ansible is invoked with no extra variables. The next section
covers how extra variables are passed from a CR to Ansible. This is why it is important to set
sane defaults for the Operator.

5. Create a CR instance of Foo with the default variable state set to present:

$ oc create -f deploy/cr.yaml

6. Check that the namespace test was created:

$ oc get namespace
NAME STATUS AGE
default Active 28d
kube-public Active 28d
kube-system Active 28d
test Active 3s

7. Modify the deploy/cr.yaml file to set the state field to absent:

8. Apply the changes and confirm that the namespace is deleted:

$ oc apply -f deploy/cr.yaml

apiVersion: "foo.example.com/v1alpha1"
kind: "Foo"
metadata:
 name: "example"

apiVersion: "foo.example.com/v1alpha1"
kind: "Foo"
metadata:
 name: "example"
spec:
 state: "absent"

CHAPTER 12. OPERATOR SDK

105

$ oc get namespace
NAME STATUS AGE
default Active 28d
kube-public Active 28d
kube-system Active 28d

12.2.4.3.2. Testing an Ansible-based Operator on a cluster

After getting familiar running Ansible logic inside of an Ansible-based Operator locally, you can test the
Operator inside of a Pod on a Kubernetes cluster, such as OpenShift Container Platform. Running as a
Pod on a cluster is preferred for production use.

Procedure

1. Build the foo-operator image and push it to a registry:

$ operator-sdk build quay.io/example/foo-operator:v0.0.1
$ podman push quay.io/example/foo-operator:v0.0.1

2. Deployment manifests are generated in the deploy/operator.yaml file. The Deployment image
in this file must be modified from the placeholder REPLACE_IMAGE to the previously-built
image. To do so, run the following command:

$ sed -i 's|REPLACE_IMAGE|quay.io/example/foo-operator:v0.0.1|g' deploy/operator.yaml

If you are performing these steps on OSX, use the following command instead:

$ sed -i "" 's|REPLACE_IMAGE|quay.io/example/foo-operator:v0.0.1|g' deploy/operator.yaml

3. Deploy the foo-operator:

$ oc create -f deploy/crds/foo_v1alpha1_foo_crd.yaml # if CRD doesn't exist already
$ oc create -f deploy/service_account.yaml
$ oc create -f deploy/role.yaml
$ oc create -f deploy/role_binding.yaml
$ oc create -f deploy/operator.yaml

4. Verify that the foo-operator is up and running:

$ oc get deployment
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
foo-operator 1 1 1 1 1m

12.2.5. Managing Custom Resource status using the k8s_status Ansible module

Ansible-based Operators automatically update Custom Resource (CR) status subresources with
generic information about the previous Ansible run. This includes the number of successful and failed
tasks and relevant error messages as shown:

status:
 conditions:
 - ansibleResult:
 changed: 3

OpenShift Container Platform 4.3 Operators

106

https://kubernetes.io/docs/tasks/access-kubernetes-api/custom-resources/custom-resource-definitions/#status-subresource

Ansible-based Operators also allow Operator authors to supply custom status values with the
k8s_status Ansible module. This allows the author to update the status from within Ansible with any
key-value pair as desired.

By default, Ansible-based Operators always include the generic Ansible run output as shown above. If
you would prefer your application did not update the status with Ansible output, you can track the status
manually from your application.

Procedure

1. To track CR status manually from your application, update the Watches file with a
manageStatus field set to false:

2. Then, use the k8s_status Ansible module to update the subresource. For example, to update
with key foo and value bar, k8s_status can be used as shown:

Additional resources

For more details about user-driven status management from Ansible-based Operators, see the
Ansible Operator Status Proposal.

12.2.5.1. Using the k8s_status Ansible module when testing locally

If your Operator takes advantage of the k8s_status Ansible module and you want to test the Operator

 completion: 2018-12-03T13:45:57.13329
 failures: 1
 ok: 6
 skipped: 0
 lastTransitionTime: 2018-12-03T13:45:57Z
 message: 'Status code was -1 and not [200]: Request failed: <urlopen error [Errno
 113] No route to host>'
 reason: Failed
 status: "True"
 type: Failure
 - lastTransitionTime: 2018-12-03T13:46:13Z
 message: Running reconciliation
 reason: Running
 status: "True"
 type: Running

- version: v1
 group: api.example.com
 kind: Foo
 role: /opt/ansible/roles/Foo
 manageStatus: false

- k8s_status:
 api_version: app.example.com/v1
 kind: Foo
 name: "{{ meta.name }}"
 namespace: "{{ meta.namespace }}"
 status:
 foo: bar

CHAPTER 12. OPERATOR SDK

107

https://github.com/fabianvf/ansible-k8s-status-module
https://github.com/operator-framework/operator-sdk/blob/master/proposals/ansible-operator-status.md

If your Operator takes advantage of the k8s_status Ansible module and you want to test the Operator
locally with the operator-sdk up local command, you must install the module in a location that Ansible
expects. This is done with the library configuration option for Ansible.

For this example, assume the user is placing third-party Ansible modules in the
/usr/share/ansible/library/ directory.

Procedure

1. To install the k8s_status module, set the ansible.cfg file to search in the
/usr/share/ansible/library/ directory for installed Ansible modules:

$ echo "library=/usr/share/ansible/library/" >> /etc/ansible/ansible.cfg

2. Add the k8s_status.py file to the /usr/share/ansible/library/ directory:

$ wget https://raw.githubusercontent.com/openshift/ocp-release-operator-
sdk/master/library/k8s_status.py -O /usr/share/ansible/library/k8s_status.py

12.2.6. Additional resources

See Appendices to learn about the project directory structures created by the Operator SDK.

Reaching for the Stars with Ansible Operator - Red Hat OpenShift Blog

Operator Development Guide for Red Hat Partners

12.3. CREATING HELM-BASED OPERATORS

This guide outlines Helm chart support in the Operator SDK and walks Operator authors through an
example of building and running an Nginx Operator with the operator-sdk CLI tool that uses an existing
Helm chart.

12.3.1. Helm chart support in the Operator SDK

The Operator Framework is an open source toolkit to manage Kubernetes native applications, called
Operators, in an effective, automated, and scalable way. This framework includes the Operator SDK,
which assists developers in bootstrapping and building an Operator based on their expertise without
requiring knowledge of Kubernetes API complexities.

One of the Operator SDK’s options for generating an Operator project includes leveraging an existing
Helm chart to deploy Kubernetes resources as a unified application, without having to write any Go
code. Such Helm-based Operators are designed to excel at stateless applications that require very little
logic when rolled out, because changes should be applied to the Kubernetes objects that are generated
as part of the chart. This may sound limiting, but can be sufficient for a surprising amount of use-cases
as shown by the proliferation of Helm charts built by the Kubernetes community.

The main function of an Operator is to read from a custom object that represents your application
instance and have its desired state match what is running. In the case of a Helm-based Operator, the
object’s spec field is a list of configuration options that are typically described in Helm’s values.yaml
file. Instead of setting these values with flags using the Helm CLI (for example, helm install -f
values.yaml), you can express them within a Custom Resource (CR), which, as a native Kubernetes
object, enables the benefits of RBAC applied to it and an audit trail.

OpenShift Container Platform 4.3 Operators

108

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/operators/#osdk-project-scaffolding-layout_operator-appendices
https://blog.openshift.com/reaching-for-the-stars-with-ansible-operator/
https://operators.gitbook.io/operator-developer-guide-for-red-hat-partners/
https://coreos.com/operators/

For an example of a simple CR called Tomcat:

apiVersion: apache.org/v1alpha1
kind: Tomcat
metadata:
 name: example-app
spec:
 replicaCount: 2

The replicaCount value, 2 in this case, is propagated into the chart’s templates where following is used:

{{ .Values.replicaCount }}

After an Operator is built and deployed, you can deploy a new instance of an app by creating a new
instance of a CR, or list the different instances running in all environments using the oc command:

$ oc get Tomcats --all-namespaces

There is no requirement use the Helm CLI or install Tiller; Helm-based Operators import code from the
Helm project. All you have to do is have an instance of the Operator running and register the CR with a
Custom Resource Definition (CRD). And because it obeys RBAC, you can more easily prevent
production changes.

12.3.2. Installing the Operator SDK CLI

The Operator SDK has a CLI tool that assists developers in creating, building, and deploying a new
Operator project. You can install the SDK CLI on your workstation so you are prepared to start authoring
your own Operators.

NOTE

This guide uses minikube v0.25.0+ as the local Kubernetes cluster and Quay.io for the
public registry.

12.3.2.1. Installing from GitHub release

You can download and install a pre-built release binary of the SDK CLI from the project on GitHub.

Prerequisites

Go v1.13+

docker v17.03+, podman v1.2.0+, or buildah v1.7+

OpenShift CLI (oc) v4.3+ installed

Access to a cluster based on Kubernetes v1.12.0+

Access to a container registry

Procedure

1. Set the release version variable:

CHAPTER 12. OPERATOR SDK

109

https://github.com/kubernetes/minikube#installation
https://quay.io/
https://golang.org/dl/

RELEASE_VERSION=v0.12.0

2. Download the release binary.

For Linux:

$ curl -OJL https://github.com/operator-framework/operator-
sdk/releases/download/${RELEASE_VERSION}/operator-sdk-${RELEASE_VERSION}-
x86_64-linux-gnu

For macOS:

$ curl -OJL https://github.com/operator-framework/operator-
sdk/releases/download/${RELEASE_VERSION}/operator-sdk-${RELEASE_VERSION}-
x86_64-apple-darwin

3. Verify the downloaded release binary.

a. Download the provided ASC file.

For Linux:

$ curl -OJL https://github.com/operator-framework/operator-
sdk/releases/download/${RELEASE_VERSION}/operator-sdk-
${RELEASE_VERSION}-x86_64-linux-gnu.asc

For macOS:

$ curl -OJL https://github.com/operator-framework/operator-
sdk/releases/download/${RELEASE_VERSION}/operator-sdk-
${RELEASE_VERSION}-x86_64-apple-darwin.asc

b. Place the binary and corresponding ASC file into the same directory and run the following
command to verify the binary:

For Linux:

$ gpg --verify operator-sdk-${RELEASE_VERSION}-x86_64-linux-gnu.asc

For macOS:

$ gpg --verify operator-sdk-${RELEASE_VERSION}-x86_64-apple-darwin.asc

If you do not have the maintainer’s public key on your workstation, you will get the following
error:

$ gpg --verify operator-sdk-${RELEASE_VERSION}-x86_64-apple-darwin.asc
$ gpg: assuming signed data in 'operator-sdk-${RELEASE_VERSION}-x86_64-apple-
darwin'
$ gpg: Signature made Fri Apr 5 20:03:22 2019 CEST
$ gpg: using RSA key <key_id> 1
$ gpg: Can't check signature: No public key

OpenShift Container Platform 4.3 Operators

110

1

1

RSA key string.

To download the key, run the following command, replacing <key_id> with the RSA key
string provided in the output of the previous command:

$ gpg [--keyserver keys.gnupg.net] --recv-key "<key_id>" 1

If you do not have a key server configured, specify one with the --keyserver option.

4. Install the release binary in your PATH:

For Linux:

$ chmod +x operator-sdk-${RELEASE_VERSION}-x86_64-linux-gnu
$ sudo cp operator-sdk-${RELEASE_VERSION}-x86_64-linux-gnu
/usr/local/bin/operator-sdk
$ rm operator-sdk-${RELEASE_VERSION}-x86_64-linux-gnu

For macOS:

$ chmod +x operator-sdk-${RELEASE_VERSION}-x86_64-apple-darwin
$ sudo cp operator-sdk-${RELEASE_VERSION}-x86_64-apple-darwin
/usr/local/bin/operator-sdk
$ rm operator-sdk-${RELEASE_VERSION}-x86_64-apple-darwin

5. Verify that the CLI tool was installed correctly:

$ operator-sdk version

12.3.2.2. Installing from Homebrew

You can install the SDK CLI using Homebrew.

Prerequisites

Homebrew

docker v17.03+, podman v1.2.0+, or buildah v1.7+

OpenShift CLI (oc) v4.3+ installed

Access to a cluster based on Kubernetes v1.12.0+

Access to a container registry

Procedure

1. Install the SDK CLI using the brew command:

$ brew install operator-sdk

2. Verify that the CLI tool was installed correctly:

CHAPTER 12. OPERATOR SDK

111

https://brew.sh/

$ operator-sdk version

12.3.2.3. Compiling and installing from source

You can obtain the Operator SDK source code to compile and install the SDK CLI.

Prerequisites

Git

Go v1.13+

docker v17.03+, podman v1.2.0+, or buildah v1.7+

OpenShift CLI (oc) v4.3+ installed

Access to a cluster based on Kubernetes v1.12.0+

Access to a container registry

Procedure

1. Clone the operator-sdk repository:

$ mkdir -p $GOPATH/src/github.com/operator-framework
$ cd $GOPATH/src/github.com/operator-framework
$ git clone https://github.com/operator-framework/operator-sdk
$ cd operator-sdk

2. Check out the desired release branch:

$ git checkout master

3. Compile and install the SDK CLI:

$ make dep
$ make install

This installs the CLI binary operator-sdk at $GOPATH/bin.

4. Verify that the CLI tool was installed correctly:

$ operator-sdk version

12.3.3. Building a Helm-based Operator using the Operator SDK

This procedure walks through an example of building a simple Nginx Operator powered by a Helm chart
using tools and libraries provided by the Operator SDK.

TIP

OpenShift Container Platform 4.3 Operators

112

https://git-scm.com/downloads
https://golang.org/dl/

TIP

It is best practice to build a new Operator for each chart. This can allow for more native-behaving
Kubernetes APIs (for example, oc get Nginx) and flexibility if you ever want to write a fully-fledged
Operator in Go, migrating away from a Helm-based Operator.

Prerequisites

Operator SDK CLI installed on the development workstation

Access to a Kubernetes-based cluster v1.11.3+ (for example OpenShift Container Platform 4.3)
using an account with cluster-admin permissions

OpenShift CLI (oc) v4.1+ installed

Procedure

1. Create a new Operator project. A namespace-scoped Operator watches and manages
resources in a single namespace. Namespace-scoped Operators are preferred because of their
flexibility. They enable decoupled upgrades, namespace isolation for failures and monitoring,
and differing API definitions.
To create a new Helm-based, namespace-scoped nginx-operator project, use the following
command:

$ operator-sdk new nginx-operator \
 --api-version=example.com/v1alpha1 \
 --kind=Nginx \
 --type=helm
$ cd nginx-operator

This creates the nginx-operator project specifically for watching the Nginx resource with
APIVersion example.com/v1apha1 and Kind Nginx.

2. Customize the Operator logic.
For this example, the nginx-operator executes the following reconciliation logic for each Nginx
Custom Resource (CR):

Create a Nginx Deployment if it does not exist.

Create a Nginx Service if it does not exist.

Create a Nginx Ingress if it is enabled and does not exist.

Ensure that the Deployment, Service, and optional Ingress match the desired configuration
(for example, replica count, image, service type) as specified by the Nginx CR.

By default, the nginx-operator watches Nginx resource events as shown in the watches.yaml
file and executes Helm releases using the specified chart:

a. Review the Nginx Helm chart.

- version: v1alpha1
 group: example.com
 kind: Nginx
 chart: /opt/helm/helm-charts/nginx

CHAPTER 12. OPERATOR SDK

113

When a Helm Operator project is created, the Operator SDK creates an example Helm chart
that contains a set of templates for a simple Nginx release.

For this example, templates are available for Deployment, Service, and Ingress resources,
along with a NOTES.txt template, which Helm chart developers use to convey helpful
information about a release.

If you are not already familiar with Helm Charts, take a moment to review the Helm Chart
developer documentation.

b. Understand the Nginx CR spec.
Helm uses a concept called values to provide customizations to a Helm chart’s defaults,
which are defined in the Helm chart’s values.yaml file.

Override these defaults by setting the desired values in the CR spec. You can use the
number of replicas as an example:

i. First, inspect the helm-charts/nginx/values.yaml file to find that the chart has a value
called replicaCount and it is set to 1 by default. To have 2 Nginx instances in your
deployment, your CR spec must contain replicaCount: 2.
Update the deploy/crds/example.com_v1alpha1_nginx_cr.yaml file to look like the
following:

ii. Similarly, the default service port is set to 80. To instead use 8080, update the
deploy/crds/example.com_v1alpha1_nginx_cr.yaml file again by adding the service
port override:

The Helm Operator applies the entire spec as if it was the contents of a values file, just
like the helm install -f ./overrides.yaml command works.

3. Deploy the CRD.
Before running the Operator, Kubernetes needs to know about the new custom resource
definition (CRD) the operator will be watching. Deploy the following CRD:

$ oc create -f deploy/crds/example_v1alpha1_nginx_crd.yaml

4. Build and run the Operator.
There are two ways to build and run the Operator:

apiVersion: example.com/v1alpha1
kind: Nginx
metadata:
 name: example-nginx
spec:
 replicaCount: 2

apiVersion: example.com/v1alpha1
kind: Nginx
metadata:
 name: example-nginx
spec:
 replicaCount: 2
 service:
 port: 8080

OpenShift Container Platform 4.3 Operators

114

https://docs.helm.sh/developing_charts/
https://docs.helm.sh/using_helm/#customizing-the-chart-before-installing

As a Pod inside a Kubernetes cluster.

As a Go program outside the cluster using the operator-sdk up command.

Choose one of the following methods:

a. Run as a Pod inside a Kubernetes cluster. This is the preferred method for production use.

i. Build the nginx-operator image and push it to a registry:

$ operator-sdk build quay.io/example/nginx-operator:v0.0.1
$ podman push quay.io/example/nginx-operator:v0.0.1

ii. Deployment manifests are generated in the deploy/operator.yaml file. The deployment
image in this file needs to be modified from the placeholder REPLACE_IMAGE to the
previous built image. To do this, run:

$ sed -i 's|REPLACE_IMAGE|quay.io/example/nginx-operator:v0.0.1|g'
deploy/operator.yaml

iii. Deploy the nginx-operator:

$ oc create -f deploy/service_account.yaml
$ oc create -f deploy/role.yaml
$ oc create -f deploy/role_binding.yaml
$ oc create -f deploy/operator.yaml

iv. Verify that the nginx-operator is up and running:

$ oc get deployment
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
nginx-operator 1 1 1 1 1m

b. Run outside the cluster. This method is preferred during the development cycle to speed
up deployment and testing.
It is important that the chart path referenced in the watches.yaml file exists on your
machine. By default, the watches.yaml file is scaffolded to work with an Operator image
built with the operator-sdk build command. When developing and testing your operator
with the operator-sdk up local command, the SDK looks in your local file system for this
path.

i. Create a symlink at this location to point to your Helm chart’s path:

$ sudo mkdir -p /opt/helm/helm-charts
$ sudo ln -s $PWD/helm-charts/nginx /opt/helm/helm-charts/nginx

ii. To run the Operator locally with the default Kubernetes configuration file present at
$HOME/.kube/config:

$ operator-sdk up local

To run the Operator locally with a provided Kubernetes configuration file:

$ operator-sdk up local --kubeconfig=<path_to_config>

CHAPTER 12. OPERATOR SDK

115

5. Deploy the Nginx CR.
Apply the Nginx CR that you modified earlier:

$ oc apply -f deploy/crds/example.com_v1alpha1_nginx_cr.yaml

Ensure that the nginx-operator creates the Deployment for the CR:

$ oc get deployment
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
example-nginx-b9phnoz9spckcrua7ihrbkrt1 2 2 2 2 1m

Check the Pods to confirm two replicas were created:

$ oc get pods
NAME READY STATUS RESTARTS AGE
example-nginx-b9phnoz9spckcrua7ihrbkrt1-f8f9c875d-fjcr9 1/1 Running 0 1m
example-nginx-b9phnoz9spckcrua7ihrbkrt1-f8f9c875d-ljbzl 1/1 Running 0 1m

Check that the Service port is set to 8080:

$ oc get service
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
example-nginx-b9phnoz9spckcrua7ihrbkrt1 ClusterIP 10.96.26.3 <none> 8080/TCP
1m

6. Update the replicaCount and remove the port.
Change the spec.replicaCount field from 2 to 3, remove the spec.service field, and apply the
change:

$ cat deploy/crds/example.com_v1alpha1_nginx_cr.yaml
apiVersion: "example.com/v1alpha1"
kind: "Nginx"
metadata:
 name: "example-nginx"
spec:
 replicaCount: 3

$ oc apply -f deploy/crds/example.com_v1alpha1_nginx_cr.yaml

Confirm that the Operator changes the Deployment size:

$ oc get deployment
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
example-nginx-b9phnoz9spckcrua7ihrbkrt1 3 3 3 3 1m

Check that the Service port is set to the default 80:

$ oc get service
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
example-nginx-b9phnoz9spckcrua7ihrbkrt1 ClusterIP 10.96.26.3 <none> 80/TCP
1m

7. Clean up the resources:

OpenShift Container Platform 4.3 Operators

116

$ oc delete -f deploy/crds/example.com_v1alpha1_nginx_cr.yaml
$ oc delete -f deploy/operator.yaml
$ oc delete -f deploy/role_binding.yaml
$ oc delete -f deploy/role.yaml
$ oc delete -f deploy/service_account.yaml
$ oc delete -f deploy/crds/example_v1alpha1_nginx_crd.yaml

12.3.4. Additional resources

See Appendices to learn about the project directory structures created by the Operator SDK.

Operator Development Guide for Red Hat Partners

12.4. GENERATING A CLUSTERSERVICEVERSION (CSV)

A ClusterServiceVersion (CSV) is a YAML manifest created from Operator metadata that assists the
Operator Lifecycle Manager (OLM) in running the Operator in a cluster. It is the metadata that
accompanies an Operator container image, used to populate user interfaces with information like its
logo, description, and version. It is also a source of technical information that is required to run the
Operator, like the RBAC rules it requires and which Custom Resources (CRs) it manages or depends on.

The Operator SDK includes the olm-catalog gen-csv subcommand to generate a ClusterServiceVersion
(CSV) for the current Operator project customized using information contained in manually-defined
YAML manifests and Operator source files.

A CSV-generating command removes the responsibility of Operator authors having in-depth OLM
knowledge in order for their Operator to interact with OLM or publish metadata to the Catalog Registry.
Further, because the CSV spec will likely change over time as new Kubernetes and OLM features are
implemented, the Operator SDK is equipped to easily extend its update system to handle new CSV
features going forward.

The CSV version is the same as the Operator’s, and a new CSV is generated when upgrading Operator
versions. Operator authors can use the --csv-version flag to have their Operators' state encapsulated in
a CSV with the supplied semantic version:

$ operator-sdk olm-catalog gen-csv --csv-version <version>

This action is idempotent and only updates the CSV file when a new version is supplied, or a YAML
manifest or source file is changed. Operator authors should not have to directly modify most fields in a
CSV manifest. Those that require modification are defined in this guide. For example, the CSV version
must be included in metadata.name.

12.4.1. How CSV generation works

An Operator project’s deploy/ directory is the standard location for all manifests required to deploy an
Operator. The Operator SDK can use data from manifests in deploy/ to write a CSV. The following
command:

$ operator-sdk olm-catalog gen-csv --csv-version <version>

writes a CSV YAML file to the deploy/olm-catalog/ directory by default.

Exactly three types of manifests are required to generate a CSV:

CHAPTER 12. OPERATOR SDK

117

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/operators/#osdk-project-scaffolding-layout_operator-appendices
https://operators.gitbook.io/operator-developer-guide-for-red-hat-partners/

operator.yaml

*_{crd,cr}.yaml

RBAC role files, for example role.yaml

Operator authors may have different versioning requirements for these files and can configure which
specific files are included in the deploy/olm-catalog/csv-config.yaml file.

Workflow
Depending on whether an existing CSV is detected, and assuming all configuration defaults are used,
the olm-catalog gen-csv subcommand either:

Creates a new CSV, with the same location and naming convention as exists currently, using
available data in YAML manifests and source files.

a. The update mechanism checks for an existing CSV in deploy/. When one is not found, it
creates a ClusterServiceVersion object, referred to here as a cache, and populates fields
easily derived from Operator metadata, such as Kubernetes API ObjectMeta.

b. The update mechanism searches deploy/ for manifests that contain data a CSV uses, such
as a Deployment resource, and sets the appropriate CSV fields in the cache with this data.

c. After the search completes, every cache field populated is written back to a CSV YAML file.

or:

Updates an existing CSV at the currently pre-defined location, using available data in YAML
manifests and source files.

a. The update mechanism checks for an existing CSV in deploy/. When one is found, the CSV
YAML file contents are marshaled into a ClusterServiceVersion cache.

b. The update mechanism searches deploy/ for manifests that contain data a CSV uses, such
as a Deployment resource, and sets the appropriate CSV fields in the cache with this data.

c. After the search completes, every cache field populated is written back to a CSV YAML file.

NOTE

Individual YAML fields are overwritten and not the entire file, as descriptions and other
non-generated parts of a CSV should be preserved.

12.4.2. CSV composition configuration

Operator authors can configure CSV composition by populating several fields in the deploy/olm-
catalog/csv-config.yaml file:

Field Description

operator-path
(string)

The Operator resource manifest file path. Defaults to deploy/operator.yaml.

crd-cr-path-list
(string(, string)*)

A list of CRD and CR manifest file paths. Defaults to [deploy/crds/*_{crd,cr}.yaml].

OpenShift Container Platform 4.3 Operators

118

rbac-path-list
(string(, string)*)

A list of RBAC role manifest file paths. Defaults to [deploy/role.yaml].

Field Description

12.4.3. Manually-defined CSV fields

Many CSV fields cannot be populated using generated, non-SDK-specific manifests. These fields are
mostly human-written, English metadata about the Operator and various Custom Resource Definitions
(CRDs).

Operator authors must directly modify their CSV YAML file, adding personalized data to the following
required fields. The Operator SDK gives a warning CSV generation when a lack of data in any of the
required fields is detected.

Table 12.5. Required

Field Description

metadata.name A unique name for this CSV. Operator version should be included in the name to ensure
uniqueness, for example app-operator.v0.1.1.

metadata.capab
ilities

The Operator’s capability level according to the Operator maturity model. Options
include Basic Install, Seamless Upgrades, Full Lifecycle, Deep Insights, and
Auto Pilot.

spec.displayNa
me

A public name to identify the Operator.

spec.descriptio
n

A short description of the Operator’s functionality.

spec.keywords Keywords describing the operator.

spec.maintainer
s

Human or organizational entities maintaining the Operator, with a name and email.

spec.provider The Operators' provider (usually an organization), with a name.

spec.labels Key-value pairs to be used by Operator internals.

spec.version Semantic version of the Operator, for example 0.1.1.

CHAPTER 12. OPERATOR SDK

119

spec.customres
ourcedefinitions

Any CRDs the Operator uses. This field is populated automatically by the Operator SDK
if any CRD YAML files are present in deploy/. However, several fields not in the CRD
manifest spec require user input:

description: description of the CRD.

resources: any Kubernetes resources leveraged by the CRD, for example
Pods and StatefulSets.

specDescriptors: UI hints for inputs and outputs of the Operator.

Field Description

Table 12.6. Optional

Field Description

spec.replaces The name of the CSV being replaced by this CSV.

spec.links URLs (for example, websites and documentation) pertaining to the Operator or
application being managed, each with a name and url.

spec.selector Selectors by which the Operator can pair resources in a cluster.

spec.icon A base64-encoded icon unique to the Operator, set in a base64data field with a
mediatype.

spec.maturity The level of maturity the software has achieved at this version. Options include
planning, pre-alpha, alpha, beta, stable, mature, inactive, and deprecated.

Further details on what data each field above should hold are found in the CSV spec.

NOTE

Several YAML fields currently requiring user intervention can potentially be parsed from
Operator code; such Operator SDK functionality will be addressed in a future design
document.

Additional resources

Operator maturity model

12.4.4. Generating a CSV

Prerequisites

An Operator project generated using the Operator SDK

Procedure

1. In your Operator project, configure your CSV composition by modifying the deploy/olm-

OpenShift Container Platform 4.3 Operators

120

https://github.com/operator-framework/operator-lifecycle-manager/blob/master/doc/design/building-your-csv.md
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/operators/#olm-maturity-model_olm-what-operators-are

1

2

3

1. In your Operator project, configure your CSV composition by modifying the deploy/olm-
catalog/csv-config.yaml file, if desired.

2. Generate the CSV:

$ operator-sdk olm-catalog gen-csv --csv-version <version>

3. In the new CSV generated in the deploy/olm-catalog/ directory, ensure all required, manually-
defined fields are set appropriately.

12.4.5. Enabling your Operator for restricted network environments

As an Operator author, your CSV must meet the following additional requirements for your Operator to
run properly in a restricted network environment:

List any related images, or other container images that your Operator might require to perform
their functions.

Reference all specified images by a digest (SHA) and not by a tag.

You must use SHA references to related images in two places in the Operator’s CSV:

in spec.relatedImages:

Create a relatedImages section and set the list of related images.

Specify a unique identifier for the image.

Specify each image by a digest (SHA), not by an image tag.

in the env section of the Operators Deployments when declaring environment variables that
inject the image that the Operator should use:

...
spec:
 relatedImages: 1
 - name: etcd-operator 2
 image: quay.io/etcd-
operator/operator@sha256:d134a9865524c29fcf75bbc4469013bc38d8a15cb5f41acfddb6b9e4
92f556e4 3
 - name: etcd-image
 image: quay.io/etcd-
operator/etcd@sha256:13348c15263bd8838ec1d5fc4550ede9860fcbb0f843e48cbccec07810e
ebb68
...

spec:
 install:
 spec:
 deployments:
 - name: etcd-operator-v3.1.1
 spec:
 replicas: 1
 selector:

CHAPTER 12. OPERATOR SDK

121

1

2

3

Inject the images referenced by the Operator via environment variables.

Specify each image by a digest (SHA), not by an image tag.

Also reference the Operator container image by a digest (SHA), not by an image tag.

12.4.6. Enabling your Operator for multiple architectures and operating systems

Operator Lifecycle Manager (OLM) assumes that all Operators run on Linux hosts. However, as an

 matchLabels:
 name: etcd-operator
 strategy:
 type: Recreate
 template:
 metadata:
 labels:
 name: etcd-operator
 spec:
 containers:
 - args:
 - /opt/etcd/bin/etcd_operator_run.sh
 env:
 - name: WATCH_NAMESPACE
 valueFrom:
 fieldRef:
 fieldPath: metadata.annotations['olm.targetNamespaces']
 - name: ETCD_OPERATOR_DEFAULT_ETCD_IMAGE 1
 value: quay.io/etcd-
operator/etcd@sha256:13348c15263bd8838ec1d5fc4550ede9860fcbb0f843e48cbccec07810e
ebb68 2
 - name: ETCD_LOG_LEVEL
 value: INFO
 image: quay.io/etcd-
operator/operator@sha256:d134a9865524c29fcf75bbc4469013bc38d8a15cb5f41acfddb6b9e4
92f556e4 3
 imagePullPolicy: IfNotPresent
 livenessProbe:
 httpGet:
 path: /healthy
 port: 8080
 initialDelaySeconds: 10
 periodSeconds: 30
 name: etcd-operator
 readinessProbe:
 httpGet:
 path: /ready
 port: 8080
 initialDelaySeconds: 10
 periodSeconds: 30
 resources: {}
 serviceAccountName: etcd-operator
 strategy: deployment

OpenShift Container Platform 4.3 Operators

122

1

2

Operator Lifecycle Manager (OLM) assumes that all Operators run on Linux hosts. However, as an
Operator author, you can specify whether your Operator supports managing workloads on other
architectures, if worker nodes are available in the OpenShift Container Platform cluster.

If your Operator supports variants other than AMD64 and Linux, you can add labels to the CSV that
provides the Operator to list the supported variants. Labels indicating supported architectures and
operating systems are defined by the following:

Set <arch> to a supported string.

Set <os> to a supported string.

NOTE

Only the labels on the channel head of the default channel are considered for filtering
PackageManifests by label. This means, for example, that providing an additional
architecture for an Operator in the non-default channel is possible, but that architecture
is not available for filtering in the PackageManifest API.

If a CSV does not include an os label, it is treated as if it has the following Linux support label by default:

If a CSV does not include an arch label, it is treated as if it has the following AMD64 support label by
default:

If an Operator supports multiple node architectures or operating systems, you can add multiple labels, as
well.

Prerequisites

An Operator project with a CSV.

To support listing multiple architectures and operating systems, your Operator image
referenced in the CSV must be a manifest list image.

For the Operator to work properly in restricted network, or disconnected, environments, the
image referenced must also be specified using a digest (SHA) and not by a tag.

Procedure

Add a label in your CSV’s metadata.labels for each supported architecture and operating
system that your Operator supports:

labels:
 operatorframework.io/arch.<arch>: supported 1
 operatorframework.io/os.<os>: supported 2

labels:
 operatorframework.io/os.linux: supported

labels:
 operatorframework.io/arch.amd64: supported

labels:

CHAPTER 12. OPERATOR SDK

123

1 2 After you add a new architecture or operating system, you must also now include the
default os.linux and arch.amd64 variants explicitly.

Additional resources

See the Image Manifest V 2, Schema 2 specification for more information on manifest lists.

12.4.6.1. Architecture and operating system support for Operators

The following strings are supported in Operator Lifecycle Manager (OLM) on OpenShift Container
Platform when labeling or filtering Operators that support multiple architectures and operating systems:

Table 12.7. Architectures supported on OpenShift Container Platform

Architecture String

AMD64 amd64

64-bit PowerPC little-endian ppc64le

IBM Z s390x

Table 12.8. Operating systems supported on OpenShift Container Platform

Operating system String

Linux linux

z/OS zos

NOTE

Different versions of OpenShift Container Platform and other Kubernetes-based
distributions might support a different set of architectures and operating systems.

12.4.7. Understanding your Custom Resource Definitions (CRDs)

There are two types of Custom Resource Definitions (CRDs) that your Operator may use: ones that are
owned by it and ones that it depends on, which are required.

12.4.7.1. Owned CRDs

The CRDs owned by your Operator are the most important part of your CSV. This establishes the link
between your Operator and the required RBAC rules, dependency management, and other Kubernetes
concepts.

 operatorframework.io/arch.s390x: supported
 operatorframework.io/os.zos: supported
 operatorframework.io/os.linux: supported 1
 operatorframework.io/arch.amd64: supported 2

OpenShift Container Platform 4.3 Operators

124

https://docs.docker.com/registry/spec/manifest-v2-2/#manifest-list

It is common for your Operator to use multiple CRDs to link together concepts, such as top-level
database configuration in one object and a representation of ReplicaSets in another. Each one should be
listed out in the CSV file.

Table 12.9. Owned CRD fields

Field Description Required/Optional

Name The full name of your CRD. Required

Version The version of that object API. Required

Kind The machine readable name of your CRD. Required

DisplayName A human readable version of your CRD name, for example
MongoDB Standalone.

Required

Description A short description of how this CRD is used by the Operator
or a description of the functionality provided by the CRD.

Required

Group The API group that this CRD belongs to, for example
database.example.com.

Optional

Resources Your CRDs own one or more types of Kubernetes objects.
These are listed in the resources section to inform your
users of the objects they might need to troubleshoot or how
to connect to the application, such as the Service or Ingress
rule that exposes a database.

It is recommended to only list out the objects that are
important to a human, not an exhaustive list of everything
you orchestrate. For example, ConfigMaps that store
internal state that should not be modified by a user should
not appear here.

Optional

CHAPTER 12. OPERATOR SDK

125

SpecDescriptors,
StatusDescriptors
, and
ActionDescriptors

These Descriptors are a way to hint UIs with certain inputs
or outputs of your Operator that are most important to an
end user. If your CRD contains the name of a Secret or
ConfigMap that the user must provide, you can specify that
here. These items are linked and highlighted in compatible
UIs.

There are three types of descriptors:

SpecDescriptors: A reference to fields in the
spec block of an object.

StatusDescriptors: A reference to fields in the
status block of an object.

ActionDescriptors: A reference to actions that
can be performed on an object.

All Descriptors accept the following fields:

DisplayName: A human readable name for the
Spec, Status, or Action.

Description: A short description of the Spec,
Status, or Action and how it is used by the
Operator.

Path: A dot-delimited path of the field on the
object that this descriptor describes.

X-Descriptors: Used to determine which
"capabilities" this descriptor has and which UI
component to use. See the openshift/console
project for a canonical list of React UI X-
Descriptors for OpenShift Container Platform.

Also see the openshift/console project for more
information on Descriptors in general.

Optional

Field Description Required/Optional

The following example depicts a MongoDB Standalone CRD that requires some user input in the form
of a Secret and ConfigMap, and orchestrates Services, StatefulSets, Pods and ConfigMaps:

Example owned CRD

 - displayName: MongoDB Standalone
 group: mongodb.com
 kind: MongoDbStandalone
 name: mongodbstandalones.mongodb.com
 resources:
 - kind: Service
 name: ''
 version: v1
 - kind: StatefulSet
 name: ''
 version: v1beta2

OpenShift Container Platform 4.3 Operators

126

https://github.com/openshift/console/tree/release-4.3/frontend/packages/operator-lifecycle-manager/src/components/descriptors/types.ts
https://github.com/openshift/console/tree/release-4.3/frontend/packages/operator-lifecycle-manager/src/components/descriptors

12.4.7.2. Required CRDs

Relying on other required CRDs is completely optional and only exists to reduce the scope of individual
Operators and provide a way to compose multiple Operators together to solve an end-to-end use case.

An example of this is an Operator that might set up an application and install an etcd cluster (from an
etcd Operator) to use for distributed locking and a Postgres database (from a Postgres Operator) for
data storage.

The Operator Lifecycle Manager (OLM) checks against the available CRDs and Operators in the cluster
to fulfill these requirements. If suitable versions are found, the Operators are started within the desired
namespace and a Service Account created for each Operator to create, watch, and modify the
Kubernetes resources required.

Table 12.10. Required CRD fields

Field Description Required/Optional

Name The full name of the CRD you require. Required

Version The version of that object API. Required

 - kind: Pod
 name: ''
 version: v1
 - kind: ConfigMap
 name: ''
 version: v1
 specDescriptors:
 - description: Credentials for Ops Manager or Cloud Manager.
 displayName: Credentials
 path: credentials
 x-descriptors:
 - 'urn:alm:descriptor:com.tectonic.ui:selector:core:v1:Secret'
 - description: Project this deployment belongs to.
 displayName: Project
 path: project
 x-descriptors:
 - 'urn:alm:descriptor:com.tectonic.ui:selector:core:v1:ConfigMap'
 - description: MongoDB version to be installed.
 displayName: Version
 path: version
 x-descriptors:
 - 'urn:alm:descriptor:com.tectonic.ui:label'
 statusDescriptors:
 - description: The status of each of the Pods for the MongoDB cluster.
 displayName: Pod Status
 path: pods
 x-descriptors:
 - 'urn:alm:descriptor:com.tectonic.ui:podStatuses'
 version: v1
 description: >-
 MongoDB Deployment consisting of only one host. No replication of
 data.

CHAPTER 12. OPERATOR SDK

127

Kind The Kubernetes object kind. Required

DisplayName A human readable version of the CRD. Required

Description A summary of how the component fits in your larger
architecture.

Required

Field Description Required/Optional

Example required CRD

12.4.7.3. CRD templates

Users of your Operator will need to be aware of which options are required versus optional. You can
provide templates for each of your Custom Resource Definitions (CRDs) with a minimum set of
configuration as an annotation named alm-examples. Compatible UIs will pre-fill this template for users
to further customize.

The annotation consists of a list of the kind, for example, the CRD name and the corresponding
metadata and spec of the Kubernetes object.

The following full example provides templates for EtcdCluster, EtcdBackup and EtcdRestore:

12.4.7.4. Hiding internal objects

It is common practice for Operators to use Custom Resource Definitions (CRDs) internally to
accomplish a task. These objects are not meant for users to manipulate and can be confusing to users of
the Operator. For example, a database Operator might have a Replication CRD that is created whenever
a user creates a Database object with replication: true.

If any CRDs are not meant for manipulation by users, they can be hidden in the user interface using the

 required:
 - name: etcdclusters.etcd.database.coreos.com
 version: v1beta2
 kind: EtcdCluster
 displayName: etcd Cluster
 description: Represents a cluster of etcd nodes.

metadata:
 annotations:
 alm-examples: >-
 [{"apiVersion":"etcd.database.coreos.com/v1beta2","kind":"EtcdCluster","metadata":
{"name":"example","namespace":"default"},"spec":{"size":3,"version":"3.2.13"}},
{"apiVersion":"etcd.database.coreos.com/v1beta2","kind":"EtcdRestore","metadata":
{"name":"example-etcd-cluster"},"spec":{"etcdCluster":{"name":"example-etcd-
cluster"},"backupStorageType":"S3","s3":{"path":"<full-s3-path>","awsSecret":"<aws-secret>"}}},
{"apiVersion":"etcd.database.coreos.com/v1beta2","kind":"EtcdBackup","metadata":
{"name":"example-etcd-cluster-backup"},"spec":{"etcdEndpoints":["<etcd-cluster-
endpoints>"],"storageType":"S3","s3":{"path":"<full-s3-path>","awsSecret":"<aws-secret>"}}}]

OpenShift Container Platform 4.3 Operators

128

1

If any CRDs are not meant for manipulation by users, they can be hidden in the user interface using the
operators.operatorframework.io/internal-objects annotation in the Operator’s ClusterServiceVersion
(CSV):

Internal object annotation

Set any internal CRDs as an array of strings.

Before marking one of your CRDs as internal, make sure that any debugging information or
configuration that might be required to manage the application is reflected on the CR’s status or spec
block, if applicable to your Operator.

12.4.8. Understanding your API services

As with CRDs, there are two types of APIServices that your Operator may use: owned and required.

12.4.8.1. Owned APIServices

When a CSV owns an APIService, it is responsible for describing the deployment of the extension api-
server that backs it and the group-version-kinds it provides.

An APIService is uniquely identified by the group-version it provides and can be listed multiple times to
denote the different kinds it is expected to provide.

Table 12.11. Owned APIService fields

Field Description Required/Optional

Group Group that the APIService provides, for example
database.example.com.

Required

Version Version of the APIService, for example v1alpha1. Required

Kind A kind that the APIService is expected to provide. Required

Name The plural name for the APIService provided Required

DeploymentName Name of the deployment defined by your CSV that
corresponds to your APIService (required for owned
APIServices). During the CSV pending phase, the OLM
Operator searches your CSV’s InstallStrategy for a
deployment spec with a matching name, and if not found,
does not transition the CSV to the install ready phase.

Required

apiVersion: operators.coreos.com/v1alpha1
kind: ClusterServiceVersion
metadata:
 name: my-operator-v1.2.3
 annotations:
 operators.operatorframework.io/internal-objects: '["my.internal.crd1.io","my.internal.crd2.io"]' 1
...

CHAPTER 12. OPERATOR SDK

129

DisplayName A human readable version of your APIService name, for
example MongoDB Standalone.

Required

Description A short description of how this APIService is used by the
Operator or a description of the functionality provided by
the APIService.

Required

Resources Your APIServices own one or more types of Kubernetes
objects. These are listed in the resources section to inform
your users of the objects they might need to troubleshoot
or how to connect to the application, such as the Service or
Ingress rule that exposes a database.

It is recommended to only list out the objects that are
important to a human, not an exhaustive list of everything
you orchestrate. For example, ConfigMaps that store
internal state that should not be modified by a user should
not appear here.

Optional

SpecDescriptors,
StatusDescriptors
, and
ActionDescriptors

Essentially the same as for owned CRDs. Optional

Field Description Required/Optional

12.4.8.1.1. APIService Resource Creation

The Operator Lifecycle Manager (OLM) is responsible for creating or replacing the Service and
APIService resources for each unique owned APIService:

Service Pod selectors are copied from the CSV deployment matching the
APIServiceDescription’s DeploymentName.

A new CA key/cert pair is generated for each installation and the base64-encoded CA bundle is
embedded in the respective APIService resource.

12.4.8.1.2. APIService Serving Certs

The OLM handles generating a serving key/cert pair whenever an owned APIService is being installed.
The serving certificate has a CN containing the host name of the generated Service resource and is
signed by the private key of the CA bundle embedded in the corresponding APIService resource.

The cert is stored as a type kubernetes.io/tls Secret in the deployment namespace, and a Volume
named apiservice-cert is automatically appended to the Volumes section of the deployment in the CSV
matching the APIServiceDescription’s DeploymentName field.

If one does not already exist, a VolumeMount with a matching name is also appended to all containers of
that deployment. This allows users to define a VolumeMount with the expected name to accommodate
any custom path requirements. The generated VolumeMount’s path defaults to
/apiserver.local.config/certificates and any existing VolumeMounts with the same path are replaced.

OpenShift Container Platform 4.3 Operators

130

12.4.8.2. Required APIServices

The OLM ensures all required CSVs have an APIService that is available and all expected group-
version-kinds are discoverable before attempting installation. This allows a CSV to rely on specific
kinds provided by APIServices it does not own.

Table 12.12. Required APIService fields

Field Description Required/Optional

Group Group that the APIService provides, for example
database.example.com.

Required

Version Version of the APIService, for example v1alpha1. Required

Kind A kind that the APIService is expected to provide. Required

DisplayName A human readable version of your APIService name, for
example MongoDB Standalone.

Required

Description A short description of how this APIService is used by the
Operator or a description of the functionality provided by
the APIService.

Required

12.5. CONFIGURING BUILT-IN MONITORING WITH PROMETHEUS

This guide describes the built-in monitoring support provided by the Operator SDK using the
Prometheus Operator and details usage for Operator authors.

12.5.1. Prometheus Operator support

Prometheus is an open-source systems monitoring and alerting toolkit. The Prometheus Operator
creates, configures, and manages Prometheus clusters running on Kubernetes-based clusters, such as
OpenShift Container Platform.

Helper functions exist in the Operator SDK by default to automatically set up metrics in any generated
Go-based Operator for use on clusters where the Prometheus Operator is deployed.

12.5.2. Metrics helper

In Go-based Operators generated using the Operator SDK, the following function exposes general
metrics about the running program:

These metrics are inherited from the controller-runtime library API. By default, the metrics are served
on 0.0.0.0:8383/metrics.

A Service object is created with the metrics port exposed, which can be then accessed by Prometheus.
The Service object is garbage collected when the leader Pod’s root owner is deleted.

The following example is present in the cmd/manager/main.go file in all Operators generated using the

func ExposeMetricsPort(ctx context.Context, port int32) (*v1.Service, error)

CHAPTER 12. OPERATOR SDK

131

https://prometheus.io/

1

2

The following example is present in the cmd/manager/main.go file in all Operators generated using the
Operator SDK:

The host that the metrics are exposed on.

The port that the metrics are exposed on.

12.5.2.1. Modifying the metrics port

Operator authors can modify the port that metrics are exposed on.

Prerequisites

Go-based Operator generated using the Operator SDK

Kubernetes-based cluster with the Prometheus Operator deployed

Procedure

In the generated Operator’s cmd/manager/main.go file, change the value of metricsPort in
the line var metricsPort int32 = 8383.

12.5.3. ServiceMonitor resources

A ServiceMonitor is a Custom Resource Definition (CRD) provided by the Prometheus Operator that

import(
 "github.com/operator-framework/operator-sdk/pkg/metrics"
 "machine.openshift.io/controller-runtime/pkg/manager"
)

var (
 // Change the below variables to serve metrics on a different host or port.
 metricsHost = "0.0.0.0" 1
 metricsPort int32 = 8383 2
)
...
func main() {
 ...
 // Pass metrics address to controller-runtime manager
 mgr, err := manager.New(cfg, manager.Options{
 Namespace: namespace,
 MetricsBindAddress: fmt.Sprintf("%s:%d", metricsHost, metricsPort),
 })

 ...
 // Create Service object to expose the metrics port.
 _, err = metrics.ExposeMetricsPort(ctx, metricsPort)
 if err != nil {
 // handle error
 log.Info(err.Error())
 }
 ...
}

OpenShift Container Platform 4.3 Operators

132

A ServiceMonitor is a Custom Resource Definition (CRD) provided by the Prometheus Operator that
discovers the Endpoints in Service objects and configures Prometheus to monitor those Pods.

In Go-based Operators generated using the Operator SDK, the GenerateServiceMonitor() helper
function can take a Service object and generate a ServiceMonitor Custom Resource (CR) based on it.

Additional resources

See the Prometheus Operator documentation for more information about the ServiceMonitor
CRD.

12.5.3.1. Creating ServiceMonitor resources

Operator authors can add Service target discovery of created monitoring Services using the
metrics.CreateServiceMonitor() helper function, which accepts the newly created Service.

Prerequisites

Go-based Operator generated using the Operator SDK

Kubernetes-based cluster with the Prometheus Operator deployed

Procedure

Add the metrics.CreateServiceMonitor() helper function to your Operator code:

12.6. CONFIGURING LEADER ELECTION

During the lifecycle of an Operator, it is possible that there may be more than one instance running at

import(
 "k8s.io/api/core/v1"
 "github.com/operator-framework/operator-sdk/pkg/metrics"
 "machine.openshift.io/controller-runtime/pkg/client/config"
)
func main() {

 ...
 // Populate below with the Service(s) for which you want to create ServiceMonitors.
 services := []*v1.Service{}
 // Create one ServiceMonitor per application per namespace.
 // Change the below value to name of the Namespace you want the ServiceMonitor to be
created in.
 ns := "default"
 // restConfig is used for talking to the Kubernetes apiserver
 restConfig := config.GetConfig()

 // Pass the Service(s) to the helper function, which in turn returns the array of
ServiceMonitor objects.
 serviceMonitors, err := metrics.CreateServiceMonitors(restConfig, ns, services)
 if err != nil {
 // Handle errors here.
 }
 ...
}

CHAPTER 12. OPERATOR SDK

133

https://github.com/coreos/prometheus-operator/blob/7a25bf6b6bb2347dacb235659b73bc210117acc7/Documentation/design.md#servicemonitor

During the lifecycle of an Operator, it is possible that there may be more than one instance running at
any given time, for example when rolling out an upgrade for the Operator. In such a scenario, it is
necessary to avoid contention between multiple Operator instances using leader election. This ensures
only one leader instance handles the reconciliation while the other instances are inactive but ready to
take over when the leader steps down.

There are two different leader election implementations to choose from, each with its own trade-off:

Leader-for-life: The leader Pod only gives up leadership (using garbage collection) when it is
deleted. This implementation precludes the possibility of two instances mistakenly running as
leaders (split brain). However, this method can be subject to a delay in electing a new leader. For
example, when the leader Pod is on an unresponsive or partitioned node, the pod-eviction-
timeout dictates how it takes for the leader Pod to be deleted from the node and step down
(default 5m). See the Leader-for-life Go documentation for more.

Leader-with-lease: The leader Pod periodically renews the leader lease and gives up leadership
when it cannot renew the lease. This implementation allows for a faster transition to a new
leader when the existing leader is isolated, but there is a possibility of split brain in certain
situations. See the Leader-with-lease Go documentation for more.

By default, the Operator SDK enables the Leader-for-life implementation. Consult the related Go
documentation for both approaches to consider the trade-offs that make sense for your use case,

The following examples illustrate how to use the two options.

12.6.1. Using Leader-for-life election

With the Leader-for-life election implementation, a call to leader.Become() blocks the Operator as it
retries until it can become the leader by creating the ConfigMap named memcached-operator-lock:

If the Operator is not running inside a cluster, leader.Become() simply returns without error to skip the
leader election since it cannot detect the Operator’s namespace.

12.6.2. Using Leader-with-lease election

The Leader-with-lease implementation can be enabled using the Manager Options for leader election:

import (
 ...
 "github.com/operator-framework/operator-sdk/pkg/leader"
)

func main() {
 ...
 err = leader.Become(context.TODO(), "memcached-operator-lock")
 if err != nil {
 log.Error(err, "Failed to retry for leader lock")
 os.Exit(1)
 }
 ...
}

import (
 ...
 "sigs.k8s.io/controller-runtime/pkg/manager"

OpenShift Container Platform 4.3 Operators

134

https://kubernetes.io/docs/reference/command-line-tools-reference/kube-controller-manager/#options
https://godoc.org/github.com/operator-framework/operator-sdk/pkg/leader
https://github.com/kubernetes/client-go/blob/30b06a83d67458700a5378239df6b96948cb9160/tools/leaderelection/leaderelection.go#L21-L24
https://godoc.org/github.com/kubernetes-sigs/controller-runtime/pkg/leaderelection
https://godoc.org/github.com/kubernetes-sigs/controller-runtime/pkg/manager#Options

When the Operator is not running in a cluster, the Manager returns an error when starting since it cannot
detect the Operator’s namespace in order to create the ConfigMap for leader election. You can override
this namespace by setting the Manager’s LeaderElectionNamespace option.

12.7. OPERATOR SDK CLI REFERENCE

This guide documents the Operator SDK CLI commands and their syntax:

$ operator-sdk <command> [<subcommand>] [<argument>] [<flags>]

12.7.1. build

The operator-sdk build command compiles the code and builds the executables. After build completes,
the image is built locally in docker. It must then be pushed to a remote registry.

Table 12.13. build arguments

Argument Description

<image> The container image to be built, e.g., quay.io/example/operator:v0.0.1.

Table 12.14. build flags

Flag Description

--enable-tests (bool) Enable in-cluster testing by adding test binary to the image.

--namespaced-
manifest (string)

Path of namespaced resources manifest for tests. Default:
deploy/operator.yaml.

--test-location (string) Location of tests. Default: ./test/e2e

-h, --help Usage help output.

If --enable-tests is set, the build command also builds the testing binary, adds it to the container image,
and generates a deploy/test-pod.yaml file that allows a user to run the tests as a Pod on a cluster.

)

func main() {
 ...
 opts := manager.Options{
 ...
 LeaderElection: true,
 LeaderElectionID: "memcached-operator-lock"
 }
 mgr, err := manager.New(cfg, opts)
 ...
}

CHAPTER 12. OPERATOR SDK

135

Example output

$ operator-sdk build quay.io/example/operator:v0.0.1

building example-operator...

building container quay.io/example/operator:v0.0.1...
Sending build context to Docker daemon 163.9MB
Step 1/4 : FROM alpine:3.6
 ---> 77144d8c6bdc
Step 2/4 : ADD tmp/_output/bin/example-operator /usr/local/bin/example-operator
 ---> 2ada0d6ca93c
Step 3/4 : RUN adduser -D example-operator
 ---> Running in 34b4bb507c14
Removing intermediate container 34b4bb507c14
 ---> c671ec1cff03
Step 4/4 : USER example-operator
 ---> Running in bd336926317c
Removing intermediate container bd336926317c
 ---> d6b58a0fcb8c
Successfully built d6b58a0fcb8c
Successfully tagged quay.io/example/operator:v0.0.1

12.7.2. completion

The operator-sdk completion command generates shell completions to make issuing CLI commands
quicker and easier.

Table 12.15. completion subcommands

Subcommand Description

bash Generate bash completions.

zsh Generate zsh completions.

Table 12.16. completion flags

Flag Description

-h, --help Usage help output.

Example output

$ operator-sdk completion bash

bash completion for operator-sdk -*- shell-script -*-
...
ex: ts=4 sw=4 et filetype=sh

OpenShift Container Platform 4.3 Operators

136

12.7.3. print-deps

The operator-sdk print-deps command prints the most recent Golang packages and versions required
by Operators. It prints in columnar format by default.

Table 12.17. print-deps flags

Flag Description

--as-file Print packages and versions in Gopkg.toml format.

Example output

$ operator-sdk print-deps --as-file
required = [
 "k8s.io/code-generator/cmd/defaulter-gen",
 "k8s.io/code-generator/cmd/deepcopy-gen",
 "k8s.io/code-generator/cmd/conversion-gen",
 "k8s.io/code-generator/cmd/client-gen",
 "k8s.io/code-generator/cmd/lister-gen",
 "k8s.io/code-generator/cmd/informer-gen",
 "k8s.io/code-generator/cmd/openapi-gen",
 "k8s.io/gengo/args",
]

[[override]]
 name = "k8s.io/code-generator"
 revision = "6702109cc68eb6fe6350b83e14407c8d7309fd1a"
...

12.7.4. generate

The operator-sdk generate command invokes a specific generator to generate code as needed.

Table 12.18. generate subcommands

Subcommand Description

k8s Runs the Kubernetes code-generators for all CRD APIs under pkg/apis/.
Currently, k8s only runs deepcopy-gen to generate the required DeepCopy()
functions for all Custom Resource (CR) types.

NOTE

This command must be run every time the API (spec and status) for a custom resource
type is updated.

Example output

$ tree pkg/apis/app/v1alpha1/
pkg/apis/app/v1alpha1/

CHAPTER 12. OPERATOR SDK

137

https://github.com/kubernetes/code-generator

├── appservice_types.go
├── doc.go
├── register.go

$ operator-sdk generate k8s
Running code-generation for Custom Resource (CR) group versions: [app:v1alpha1]
Generating deepcopy funcs

$ tree pkg/apis/app/v1alpha1/
pkg/apis/app/v1alpha1/
├── appservice_types.go
├── doc.go
├── register.go
└── zz_generated.deepcopy.go

12.7.5. olm-catalog

The operator-sdk olm-catalog is the parent command for all Operator Lifecycle Manager (OLM)
Catalog-related commands.

12.7.5.1. gen-csv

The gen-csv subcommand writes a Cluster Service Version (CSV) manifest and optionally Custom
Resource Definition (CRD) files to deploy/olm-catalog/<operator_name>/<csv_version>.

Table 12.19. olm-catalog gen-csv flags

Flag Description

--csv-version (string) Semantic version of the CSV manifest. Required.

--from-version
(string)

Semantic version of CSV manifest to use as a base for a new version.

--csv-config (string) Path to CSV configuration file. Default: deploy/olm-catalog/csv-config.yaml.

--update-crds Updates CRD manifests in deploy/<operator_name>/<csv_version> using
the latest CRD manifests.

Example output

$ operator-sdk olm-catalog gen-csv --csv-version 0.1.0 --update-crds
INFO[0000] Generating CSV manifest version 0.1.0
INFO[0000] Fill in the following required fields in file deploy/olm-catalog/operator-
name/0.1.0/operator-name.v0.1.0.clusterserviceversion.yaml:
 spec.keywords
 spec.maintainers
 spec.provider
 spec.labels
INFO[0000] Created deploy/olm-catalog/operator-name/0.1.0/operator-
name.v0.1.0.clusterserviceversion.yaml

OpenShift Container Platform 4.3 Operators

138

12.7.6. new

The operator-sdk new command creates a new Operator application and generates (or scaffolds) a
default project directory layout based on the input <project_name>.

Table 12.20. new arguments

Argument Description

<project_name> Name of the new project.

Table 12.21. new flags

Flag Description

--api-version CRD APIVersion in the format $GROUP_NAME/$VERSION, for example
app.example.com/v1alpha1. Used with ansible or helm types.

--generate-playbook Generate an Ansible playbook skeleton. Used with ansible type.

--header-file <string> Path to file containing headers for generated Go files. Copied to
hack/boilerplate.go.txt.

--helm-chart <string> Initialize Helm operator with existing Helm chart: <url>, <repo>/<name>, or
local path.

--helm-chart-repo
<string>

Chart repository URL for the requested Helm chart.

--helm-chart-version
<string>

Specific version of the Helm chart. (Default: latest version)

--help, -h Usage and help output.

--kind <string> CRD Kind, for example AppService. Used with ansible or helm types.

--skip-git-init Do not initialize the directory as a Git repository.

--type Type of Operator to initialize: go, ansible or helm. (Default: go)

NOTE

Starting with Operator SDK v0.12.0, the --dep-manager flag and support for dep-based
projects have been removed. Go projects are now scaffolded to use Go modules.

Example usage for Go project

CHAPTER 12. OPERATOR SDK

139

$ mkdir $GOPATH/src/github.com/example.com/
$ cd $GOPATH/src/github.com/example.com/
$ operator-sdk new app-operator

Example usage for Ansible project

$ operator-sdk new app-operator \
 --type=ansible \
 --api-version=app.example.com/v1alpha1 \
 --kind=AppService

12.7.7. add

The operator-sdk add command adds a controller or resource to the project. The command must be
run from the Operator project root directory.

Table 12.22. add subcommands

Subcommand Description

api Adds a new API definition for a new Custom Resource (CR) under pkg/apis and
generates the Customer Resource Definition (CRD) and Custom Resource (CR)
files under deploy/crds/. If the API already exists at
pkg/apis/<group>/<version>, then the command does not overwrite and
returns an error.

controller Adds a new controller under pkg/controller/<kind>/. The controller expects to
use the CR type that should already be defined under
pkg/apis/<group>/<version> via the operator-sdk add api --kind=
<kind> --api-version=<group/version> command. If the controller package
for that Kind already exists at pkg/controller/<kind>, then the command does
not overwrite and returns an error.

crd Adds a CRD and the CR files. The <project-name>/deploy path must already
exist. The --api-version and --kind flags are required to generate the new
Operator application.

Generated CRD filename: <project-
name>/deploy/crds/<group>_<version>_<kind>_crd.yaml

Generated CR filename: <project-
name>/deploy/crds/<group>_<version>_<kind>_cr.yaml

Table 12.23. add api flags

Flag Description

--api-version (string) CRD APIVersion in the format $GROUP_NAME/$VERSION (e.g.,
app.example.com/v1alpha1).

--kind (string) CRD Kind (e.g., AppService).

OpenShift Container Platform 4.3 Operators

140

Example add api output

$ operator-sdk add api --api-version app.example.com/v1alpha1 --kind AppService
Create pkg/apis/app/v1alpha1/appservice_types.go
Create pkg/apis/addtoscheme_app_v1alpha1.go
Create pkg/apis/app/v1alpha1/register.go
Create pkg/apis/app/v1alpha1/doc.go
Create deploy/crds/app_v1alpha1_appservice_cr.yaml
Create deploy/crds/app_v1alpha1_appservice_crd.yaml
Running code-generation for Custom Resource (CR) group versions: [app:v1alpha1]
Generating deepcopy funcs

$ tree pkg/apis
pkg/apis/
├── addtoscheme_app_appservice.go
├── apis.go
└── app
 └── v1alpha1
 ├── doc.go
 ├── register.go
 ├── types.go

Example add controller output

$ operator-sdk add controller --api-version app.example.com/v1alpha1 --kind AppService
Create pkg/controller/appservice/appservice_controller.go
Create pkg/controller/add_appservice.go

$ tree pkg/controller
pkg/controller/
├── add_appservice.go
├── appservice
│ └── appservice_controller.go
└── controller.go

Example add crd output

$ operator-sdk add crd --api-version app.example.com/v1alpha1 --kind AppService
Generating Custom Resource Definition (CRD) files
Create deploy/crds/app_v1alpha1_appservice_crd.yaml
Create deploy/crds/app_v1alpha1_appservice_cr.yaml

12.7.8. test

The operator-sdk test command can test the Operator locally.

12.7.8.1. local

The local subcommand runs Go tests built using the Operator SDK’s test framework locally.

Table 12.24. test local arguments

CHAPTER 12. OPERATOR SDK

141

Arguments Description

<test_location>
(string)

Location of e2e test files (e.g., ./test/e2e/).

Table 12.25. test local flags

Flags Description

--kubeconfig (string) Location of kubeconfig for a cluster. Default: ~/.kube/config.

--global-manifest
(string)

Path to manifest for global resources. Default: deploy/crd.yaml.

--namespaced-
manifest (string)

Path to manifest for per-test, namespaced resources. Default: combines
deploy/service_account.yaml, deploy/rbac.yaml, and
deploy/operator.yaml.

--namespace (string) If non-empty, a single namespace to run tests in (e.g., operator-test). Default: ""

--go-test-flags (string) Extra arguments to pass to go test (e.g., -f "-v -parallel=2").

--up-local Enable running the Operator locally with go run instead of as an image in the
cluster.

--no-setup Disable test resource creation.

--image (string) Use a different Operator image from the one specified in the namespaced
manifest.

-h, --help Usage help output.

Example output

$ operator-sdk test local ./test/e2e/

Output:
ok github.com/operator-framework/operator-sdk-samples/memcached-operator/test/e2e 20.410s

12.7.9. up

The operator-sdk up command has subcommands that can launch the Operator in various ways.

12.7.9.1. local

The local subcommand launches the Operator on the local machine by building the Operator binary
with the ability to access a Kubernetes cluster using a kubeconfig file.

Table 12.26. up local arguments

OpenShift Container Platform 4.3 Operators

142

Arguments Description

--kubeconfig (string) The file path to a Kubernetes configuration file. Defaults: $HOME/.kube/config

--namespace (string) The namespace where the Operator watches for changes. Default: default

--operator-flags Flags that the local Operator may need. Example: --flag1 value1 --
flag2=value2

-h, --help Usage help output.

Example output

$ operator-sdk up local \
 --kubeconfig "mycluster.kubecfg" \
 --namespace "default" \
 --operator-flags "--flag1 value1 --flag2=value2"

The following example uses the default kubeconfig, the default namespace environment variable, and
passes in flags for the Operator. To use the Operator flags, your Operator must know how to handle the
option. For example, for an Operator that understands the resync-interval flag:

$ operator-sdk up local --operator-flags "--resync-interval 10"

If you are planning on using a different namespace than the default, use the --namespace flag to
change where the Operator is watching for Custom Resources (CRs) to be created:

$ operator-sdk up local --namespace "testing"

For this to work, your Operator must handle the WATCH_NAMESPACE environment variable. This can
be accomplished using the utility functionk8sutil.GetWatchNamespace in your Operator.

12.8. APPENDICES

12.8.1. Operator project scaffolding layout

The operator-sdk CLI generates a number of packages for each Operator project. The following
sections describes a basic rundown of each generated file and directory.

12.8.1.1. Go-based projects

Go-based Operator projects (the default type) generated using the operator-sdk new command
contain the following directories and files:

File/folders Purpose

CHAPTER 12. OPERATOR SDK

143

https://github.com/operator-framework/operator-sdk/blob/89bf021063d18b6769bdc551ed08fc37027939d5/pkg/util/k8sutil/k8sutil.go#L140

cmd/ Contains manager/main.go file, which is the main program of the
Operator. This instantiates a new manager which registers all Custom
Resource Definitions under pkg/apis/ and starts all controllers under
pkg/controllers/.

pkg/apis/ Contains the directory tree that defines the APIs of the Custom
Resource Definitions (CRDs). Users are expected to edit the
pkg/apis/<group>/<version>/<kind>_types.go files to define the
API for each resource type and import these packages in their
controllers to watch for these resource types.

pkg/controller This pkg contains the controller implementations. Users are expected to
edit the pkg/controller/<kind>/<kind>_controller.go files to define
the controller’s reconcile logic for handling a resource type of the
specified kind.

build/ Contains the Dockerfile and build scripts used to build the Operator.

deploy/ Contains various YAML manifests for registering CRDs, setting up
RBAC, and deploying the Operator as a Deployment.

Gopkg.toml
Gopkg.lock

The Go Dep manifests that describe the external dependencies of this
Operator.

vendor/ The golang vendor folder that contains the local copies of the external
dependencies that satisfy the imports of this project. Go Dep manages
the vendor directly.

File/folders Purpose

12.8.1.2. Helm-based projects

Helm-based Operator projects generated using the operator-sdk new --type helm command contain
the following directories and files:

File/folders Purpose

deploy/ Contains various YAML manifests for registering CRDs, setting up
RBAC, and deploying the Operator as a Deployment.

helm-charts/<kind> Contains a Helm chart initialized using the equivalent of the helm
create command.

build/ Contains the Dockerfile and build scripts used to build the Operator.

watches.yaml Contains Group, Version, Kind, and Helm chart location.

OpenShift Container Platform 4.3 Operators

144

https://github.com/golang/dep
https://golang.org/cmd/go/#hdr-Vendor_Directories
https://github.com/golang/dep
https://docs.helm.sh/helm/#helm-create

CHAPTER 12. OPERATOR SDK

145

	Table of Contents
	CHAPTER 1. UNDERSTANDING OPERATORS
	1.1. WHY USE OPERATORS?
	1.2. OPERATOR FRAMEWORK
	1.3. OPERATOR MATURITY MODEL

	CHAPTER 2. UNDERSTANDING THE OPERATOR LIFECYCLE MANAGER (OLM)
	2.1. OPERATOR LIFECYCLE MANAGER WORKFLOW AND ARCHITECTURE
	2.1.1. Overview of the Operator Lifecycle Manager
	2.1.2. ClusterServiceVersions (CSVs)
	2.1.3. Operator installation and upgrade workflow in OLM
	2.1.3.1. Example upgrade path
	2.1.3.2. Skipping upgrades
	2.1.3.3. Replacing multiple Operators
	2.1.3.4. Z-stream support

	2.1.4. Operator Lifecycle Manager architecture
	2.1.4.1. OLM Operator
	2.1.4.2. Catalog Operator
	2.1.4.3. Catalog Registry

	2.1.5. Exposed metrics

	2.2. OPERATOR LIFECYCLE MANAGER DEPENDENCY RESOLUTION
	2.2.1. About dependency resolution
	2.2.2. Custom Resource Definition (CRD) upgrades
	2.2.2.1. Adding a new CRD version
	2.2.2.2. Deprecating or removing a CRD version

	2.2.3. Example dependency resolution scenarios
	Example: Deprecating dependent APIs
	Example: Version deadlock

	2.3. OPERATORGROUPS
	2.3.1. About OperatorGroups
	2.3.2. OperatorGroup membership
	2.3.3. Target namespace selection
	2.3.4. OperatorGroup CSV annotations
	2.3.5. Provided APIs annotation
	2.3.6. Role-based access control
	2.3.7. Copied CSVs
	2.3.8. Static OperatorGroups
	2.3.9. OperatorGroup intersection
	Rules for intersection

	2.3.10. Troubleshooting OperatorGroups
	Membership

	CHAPTER 3. UNDERSTANDING THE OPERATORHUB
	3.1. OVERVIEW OF THE OPERATORHUB
	3.2. OPERATORHUB ARCHITECTURE
	3.2.1. OperatorHub CRD
	3.2.2. OperatorSource CRD

	CHAPTER 4. ADDING OPERATORS TO A CLUSTER
	4.1. INSTALLING OPERATORS FROM THE OPERATORHUB
	4.1.1. Installing from the OperatorHub using the web console
	4.1.2. Installing from the OperatorHub using the CLI

	CHAPTER 5. CONFIGURING PROXY SUPPORT IN OPERATOR LIFECYCLE MANAGER
	5.1. OVERRIDING AN OPERATOR’S PROXY SETTINGS
	5.2. INJECTING A CUSTOM CA CERTIFICATE

	CHAPTER 6. DELETING OPERATORS FROM A CLUSTER
	6.1. DELETING OPERATORS FROM A CLUSTER USING THE WEB CONSOLE
	6.2. DELETING OPERATORS FROM A CLUSTER USING THE CLI

	CHAPTER 7. CREATING APPLICATIONS FROM INSTALLED OPERATORS
	7.1. CREATING AN ETCD CLUSTER USING AN OPERATOR

	CHAPTER 8. VIEWING OPERATOR STATUS
	8.1. CONDITION TYPES
	8.2. VIEWING OPERATOR STATUS USING THE CLI

	CHAPTER 9. CREATING POLICY FOR OPERATOR INSTALLATIONS AND UPGRADES
	9.1. UNDERSTANDING OPERATOR INSTALLATION POLICY
	9.1.1. Installation scenarios
	9.1.2. Installation workflow

	9.2. SCOPING OPERATOR INSTALLATIONS
	9.2.1. Fine-grained permissions

	9.3. TROUBLESHOOTING PERMISSION FAILURES

	CHAPTER 10. USING OPERATOR LIFECYCLE MANAGER ON RESTRICTED NETWORKS
	10.1. UNDERSTANDING OPERATOR CATALOG IMAGES
	10.2. BUILDING AN OPERATOR CATALOG IMAGE
	10.3. CONFIGURING OPERATORHUB FOR RESTRICTED NETWORKS
	10.4. UPDATING AN OPERATOR CATALOG IMAGE
	10.5. TESTING AN OPERATOR CATALOG IMAGE

	CHAPTER 11. CRDS
	11.1. EXTENDING THE KUBERNETES API WITH CUSTOM RESOURCE DEFINITIONS
	11.1.1. Custom Resource Definitions
	11.1.2. Creating a Custom Resource Definition
	11.1.3. Creating cluster roles for Custom Resource Definitions
	11.1.4. Creating Custom Resources from a file
	11.1.5. Inspecting Custom Resources

	11.2. MANAGING RESOURCES FROM CUSTOM RESOURCE DEFINITIONS
	11.2.1. Custom Resource Definitions
	11.2.2. Creating Custom Resources from a file
	11.2.3. Inspecting Custom Resources

	CHAPTER 12. OPERATOR SDK
	12.1. GETTING STARTED WITH THE OPERATOR SDK
	12.1.1. Architecture of the Operator SDK
	12.1.1.1. Workflow
	12.1.1.2. Manager file
	12.1.1.3. Prometheus Operator support

	12.1.2. Installing the Operator SDK CLI
	12.1.2.1. Installing from GitHub release
	12.1.2.2. Installing from Homebrew
	12.1.2.3. Compiling and installing from source

	12.1.3. Building a Go-based Memcached Operator using the Operator SDK
	12.1.4. Managing a Memcached Operator using the Operator Lifecycle Manager
	12.1.5. Additional resources

	12.2. CREATING ANSIBLE-BASED OPERATORS
	12.2.1. Ansible support in the Operator SDK
	12.2.1.1. Custom Resource files
	12.2.1.2. Watches file
	12.2.1.3. Extra variables sent to Ansible
	12.2.1.4. Ansible Runner directory

	12.2.2. Installing the Operator SDK CLI
	12.2.2.1. Installing from GitHub release
	12.2.2.2. Installing from Homebrew
	12.2.2.3. Compiling and installing from source

	12.2.3. Building an Ansible-based Operator using the Operator SDK
	12.2.4. Managing application lifecycle using the k8s Ansible module
	12.2.4.1. Installing the k8s Ansible module
	12.2.4.2. Testing the k8s Ansible module locally
	12.2.4.3. Testing the k8s Ansible module inside an Operator

	12.2.5. Managing Custom Resource status using the k8s_status Ansible module
	12.2.5.1. Using the k8s_status Ansible module when testing locally

	12.2.6. Additional resources

	12.3. CREATING HELM-BASED OPERATORS
	12.3.1. Helm chart support in the Operator SDK
	12.3.2. Installing the Operator SDK CLI
	12.3.2.1. Installing from GitHub release
	12.3.2.2. Installing from Homebrew
	12.3.2.3. Compiling and installing from source

	12.3.3. Building a Helm-based Operator using the Operator SDK
	12.3.4. Additional resources

	12.4. GENERATING A CLUSTERSERVICEVERSION (CSV)
	12.4.1. How CSV generation works
	Workflow

	12.4.2. CSV composition configuration
	12.4.3. Manually-defined CSV fields
	12.4.4. Generating a CSV
	12.4.5. Enabling your Operator for restricted network environments
	12.4.6. Enabling your Operator for multiple architectures and operating systems
	12.4.6.1. Architecture and operating system support for Operators

	12.4.7. Understanding your Custom Resource Definitions (CRDs)
	12.4.7.1. Owned CRDs
	12.4.7.2. Required CRDs
	12.4.7.3. CRD templates
	12.4.7.4. Hiding internal objects

	12.4.8. Understanding your API services
	12.4.8.1. Owned APIServices
	12.4.8.2. Required APIServices

	12.5. CONFIGURING BUILT-IN MONITORING WITH PROMETHEUS
	12.5.1. Prometheus Operator support
	12.5.2. Metrics helper
	12.5.2.1. Modifying the metrics port

	12.5.3. ServiceMonitor resources
	12.5.3.1. Creating ServiceMonitor resources

	12.6. CONFIGURING LEADER ELECTION
	12.6.1. Using Leader-for-life election
	12.6.2. Using Leader-with-lease election

	12.7. OPERATOR SDK CLI REFERENCE
	12.7.1. build
	12.7.2. completion
	12.7.3. print-deps
	12.7.4. generate
	12.7.5. olm-catalog
	12.7.5.1. gen-csv

	12.7.6. new
	12.7.7. add
	12.7.8. test
	12.7.8.1. local

	12.7.9. up
	12.7.9.1. local

	12.8. APPENDICES
	12.8.1. Operator project scaffolding layout
	12.8.1.1. Go-based projects
	12.8.1.2. Helm-based projects

