& RedHat

OpenShift Container Platform 4.5

CLI tools

Learning how to use the command-line tools for OpenShift Container Platform

Last Updated: 2021-07-26

OpenShift Container Platform 4.5 CLI tools

Learning how to use the command-line tools for OpenShift Container Platform

Legal Notice

Copyright © 2021 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides information about installing, configuring, and using the command-line tools
for OpenShift Container Platform. It also contains a reference of CLI commands and examples of
how to use them.

Table of Contents

CHAPTER 1. OPENSHIFTCLI(OC) ...viiiiiiii i

1.1. GETTING STARTED WITH THE CLI
1.1.1. About the CLI
1.1.2. Installing the CLI
1.1.2.1. Installing the CLI by downloading the binary
1.1.2.1.1. Installing the CLI on Linux
11.2.1.2. Installing the CLI on Windows
1.1.2.1.3. Installing the CLI on macOS
1.1.2.2. Installing the CLI by using an RPM
1.1.3. Logging in to the CLI
1.1.4. Using the CLI
1.1.4.1. Creating a project
1.1.4.2. Creating a new app
1.1.4.3. Viewing pods
1.1.4.4. Viewing pod logs
1.1.4.5. Viewing the current project
1.1.4.6. Viewing the status for the current project
1.1.4.7. Listing supported APl resources
1.1.5. Getting help
1.1.6. Logging out of the CLI
1.2. CONFIGURING THE CLI
1.2.1. Enabling tab completion
1.3. EXTENDING THE CLI WITH PLUG-INS
1.3.1. Writing CLI plug-ins
1.3.2. Installing and using CLI plug-ins
1.4. DEVELOPER CLI COMMANDS
1.4.1. Basic CLI commands
1.4.1.1. explain
1.4.1.2. login
1.4.1.3. new-app
1.4.1.4. new-project
1.4.1.5. project
1.4.1.6. projects
1.4.1.7. status
1.4.2. Build and Deploy CLI commands
1.4.2.1. cancel-build
1.4.2.2. import-image
1.4.2.3. new-build
1.4.2.4. rollback
1.4.2.5. rollout
1.4.2.6. start-build
1.4.2.7. tag
1.4.3. Application management CLI commands
1.4.3.1. annotate
1.4.3.2. apply
1.4.3.3. autoscale
1.4.3.4. create
1.4.3.5. delete
1.4.3.6. describe
1.4.3.7. edit
1.4.3.8. expose

Table of Contents

O © OV O VO

OpenShift Container Platform 4.5 CLlI tools

1.4.3.9. get

1.4.3.10. label

1.4.3.11. scale

1.4.3.12. secrets

1.4.3.13. serviceaccounts
1.4.3.14. set

1.4.4. Troubleshooting and debugging CLI commands

1.4.4.1. attach
1.4.4.2.cp
1.4.4.3. debug
1.4.4.4. exec
1.4.4.5. logs
1.4.4.6. port-forward
1.4.4.7. proxy
1.4.4.8. rsh
1.4.4.9. rsync
1.4.4.10. run
1.4.4.11. wait

1.4.5. Advanced developer CLI commands

1.4.5.1. api-resources
1.4.5.2. api-versions
1.4.5.3. auth

1.4.5.4. cluster-info
1.4.5.5. convert
1.4.5.6. extract
1.4.5.7. idle

1.4.5.8. image
1.4.5.9. observe
1.4.5.10. patch
1.4.5.11. policy
1.4.5.12. process
1.4.5.13. registry
1.4.5.14. replace

1.4.6. Settings CLI commands

1.4.6.1. completion
1.4.6.2. config
1.4.6.3. logout
1.4.6.4. whoami

1.4.7. Other developer CLI commands

1.4.7.1. help
1.4.7.2. plugin
1.4.7.3. version

1.5. ADMINISTRATOR CLI COMMANDS
1.5.1. Cluster management CLI commands

1.5.1.1. inspect
1.5.1.2. must-gather
1.5.1.3. top

1.5.2. Node management CLI commands

1.5.2.1. cordon
1.5.2.2. drain
1.5.2.3. node-logs
15.2.4. taint
1.5.2.5. uncordon

24
24
24
24
24
25
25
25
25
25
25
25
26
26
26
26
26
26
27
27
27
27
27
27
28
28
28
28
28
29
29
29
29
29
29
29
30
30
30
30
30
30

31

31

31

31

31

31

31
32
32
32
32

CHAPTER 2. DEVELOPER CLI (ODO)
2.1. UNDERSTANDING ODO

1.5.3. Security and policy CLI commands
1.5.3.1. certificate
1.5.3.2. groups
1.5.3.3. new-project
1.5.3.4. pod-network
1.5.3.5. policy
1.5.4. Maintenance CLI commands
1.5.4.1. migrate
15.4.2. prune
1.5.5. Configuration CLI commands
1.5.5.1. create-bootstrap-project-template
1.5.5.2. create-error-template
1.5.5.3. create-kubeconfig
1.5.5.4. create-login-template
1.5.5.5. create-provider-selection-template
1.5.6. Other Administrator CLI commands
1.5.6.1. build-chain
1.5.6.2. completion
1.5.6.3. config
1.5.6.4. release
1.5.6.5. verify-image-signature

1.6. USAGE OF OC AND KUBECTL COMMANDS

1.6.1. The oc binary
1.6.2. The kubectl binary

2.1.1. Key features
2.1.2. Core concepts
2.1.2.1. Officially supported languages and corresponding container images
2.1.2.1.1. Listing available container images

2.2.0DO ARCHITECTURE

2.2.1. Developer setup
2.2.2. OpenShift source-to-image
2.2.3. OpenShift cluster objects
2.2.3.1. Init Containers
2.2.3.1.1. copy-supervisord
2.2.3.1.2. copy-files-to-volume
2.2.3.2. Application container
2.2.3.3. Persistent volumes and persistent volume claims
2.2.3.4. emptyDir volume
2.2.3.5. Service
2.2.4. odo push workflow

2.3.INSTALLING ODO

2.3.1. Installing odo on Linux
2.3.1.1. Binary installation
2.3.1.2. Tarball installation
2.3.2. Installing odo on Linux on IBM Power
2.3.2.1. Binary installation
2.3.2.2. Tarball installation
2.3.3. Installing odo on Linux on IBM Z and LinuxONE
2.3.3.1. Binary installation
2.3.3.2. Tarball installation

Table of Contents

32
32
33
33
33
33
33
33
34
34
34
34
34
34
34
35
35
35
35
35
35
36
36
36

..................... 37

37
37
37
37
38
39
39
39
39
39
39
40
40

41

41

41

41
42
43
43
43
43
43
43
44
44
44

OpenShift Container Platform 4.5 CLlI tools

2.3.4. Installing odo on Windows
2.3.4.1. Binary installation
Setting the PATH variable for Windows 7/8
Setting the PATH variable for Windows 10
2.3.5. Installing odo on macOS
2.3.5.1. Binary installation
2.3.5.2. Tarball installation
2.4.USING ODO IN A RESTRICTED ENVIRONMENT
2.4.1. About odo in a restricted environment
2.4.2. Pushing the odo init image to the restricted cluster registry
2.4.2.1. Prerequisites
2.4.2.2. Pushing the odo init image to a mirror registry
2.4.2.2.1. Pushing the init image to a mirror registry on Linux
2.4.2.2.2. Pushing the init image to a mirror registry on MacOS
2.4.2.2.3. Pushing the init image to a mirror registry on Windows
2.4.2.3. Pushing the odo initimage to an internal registry directly
2.4.2.3.1. Pushing the init image directly on Linux
2.4.2.3.2. Pushing the init image directly on MacOS
2.4.2.3.3. Pushing the init image directly on Windows
2.4.3. Creating and deploying a component to the disconnected cluster
2.4.3.1. Prerequisites
2.4.3.2. Mirroring a supported builder image
2.4.3.3. Overwriting the mirror registry
2.4.3.4. Creating a Node.js application with odo
2.5. CREATING A SINGLE-COMPONENT APPLICATION WITH ODO
2.5.1. Prerequisites
2.5.2. Creating a project
2.5.3. Creating a Node.js application with odo
2.5.4. Modifying your application code
2.5.5. Adding storage to the application components
2.5.6. Adding a custom builder to specify a build image
2.5.7. Connecting your application to multiple services using OpenShift Service Catalog
2.5.8. Deleting an application
2.6. CREATING A MULTICOMPONENT APPLICATION WITH ODO
2.6.1. Prerequisites
2.6.2. Creating a project
2.6.3. Deploying the back-end component
2.6.4. Deploying the front-end component
2.6.5. Linking both components
2.6.6. Exposing components to the public
2.6.7. Modifying the running application
2.6.8. Deleting an application
2.7. CREATING AN APPLICATION WITH A DATABASE
2.7.1. Prerequisites
2.7.2. Creating a project
2.7.3. Deploying the front-end component
2.7.4. Deploying a database in interactive mode
2.7.5. Deploying a database manually
2.7.6. Connecting the database to the front-end application
2.7.7. Deleting an application
2.8. USING DEVFILES IN ODO
2.8.1. About the devfile in odo
2.8.2. Creating a Java application by using a devfile

44
44
44
45
45
45
45
45
46
46
46
46
46
47
47
48
48
49
50

51

51
52
53
53
54
54
54
55
56
56
57
58
58
59
59
59
59
62
64
64
65
66
67
67
67
67
69
69
70

71
72
73
73

2.8.3. Prerequisites
2.8.3.1. Creating a project
2.8.3.2. Listing available devfile components
2.8.3.3. Deploying a Java application using a devfile
2.8.4. Converting an S2| component into a devfile component
2.9. USING SAMPLE APPLICATIONS
2.9.1. Examples from Git repositories
2.9.1.1. httpd
2.9.1.2. java
2.9.1.3. nodejs
2.9.1.4. perl
2.9.15. php
2.9.1.6. python
2.9.1.7. ruby
2.9.1.8. wildfly
2.9.2. Binary examples
2.9.2.1 java
2.9.2.2. wildfly
2.10. CREATING INSTANCES OF SERVICES MANAGED BY OPERATORS
2.10.1. Prerequisites
2.10.2. Creating a project
2.10.3. Listing available services from the Operators installed on the cluster
2.10.4. Creating a service from an Operator
2.10.5. Creating services from YAML files
2.11. DEBUGGING APPLICATIONS IN ODO
2.11.1. Debugging an application
2.11.2. Configuring debugging parameters
2.12. MANAGING ENVIRONMENT VARIABLES
2.12.1. Setting and unsetting environment variables
2.13. CONFIGURING THE ODO CLI
2.13.1. Using command completion
2.13.2. Ignoring files or patterns
2.14. ODO CLI REFERENCE
2.14.1. Basic odo CLI commands
2.14.1.1. app
2.14.1.2. catalog
2.14.1.3. component
2.14.1.4. config
2.14.15. create
2.14.1.6. debug
2.14.1.7. delete
2.14.1.8. describe
2.14.1.9. link
2.14.1.10. list
214111 log
2.14.1.12. login
2.14.1.13. logout
2.14.1.14. preference
2.14.1.15. project
2.14.1.16. push
2.14.1.17. registry
2.14.1.18. service
2.14.1.19. storage

Table of Contents

73
73
73
74
76
76
77
77
77
77
77
78
78
78
78
78
78
78
79
79
79
80
80

81

81
82
82
82
83
83
83
84
84
84
84
84
85
85
87
88
88
88
88
89
89
90
90
90

91

91
92
92
92

OpenShift Container Platform 4.5 CLlI tools

2.14.1.20. unlink 93
2.14.1.21. update 93
2.14.1.22. url 94
2.14.1.23. utils 94
2.14.1.24. version 94
2.14.1.25. watch 95
2.15. ODO RELEASE NOTES 95
2.15.1. Notable changes and improvements in odo 95
2.15.2. Getting support 96
2.15.3. Known issues 96
2.15.4. Technology Preview features odo 96
CHAPTER 3. HELM CLI ottt ittt ettt ettt ettt e e et aae e aeennneeaneeeaneennneenn 98
3.1. GETTING STARTED WITH HELM 3 ON OPENSHIFT CONTAINER PLATFORM 98
3.1.1. Understanding Helm 98
3.1.1.1. Key features 98
3.1.2. Installing Helm 98
3.1.2.1. On Linux 98
3.1.2.2. On Windows 7/8 99
3.1.2.3. On Windows 10 99
3.1.2.4. On MacOS 99
3.1.3. Installing a Helm chart on an OpenShift Container Platform cluster 100
3.1.4. Creating a custom Helm chart on OpenShift Container Platform 100
CHAPTER 4. KNATIVE CLI (KN) FORUSE WITH OPENSHIFTSERVERLESSciiiiiiiiinnnnnn 103
41.KEY FEATURES 103
4.2. INSTALLING KN 103
CHAPTER 5. PIPELINES CLI (TKN) ottt ittt ettt et e ettt et eeaneeaneeeaneennneennnns 104
5.1. INSTALLING TKN 104
5.1.1. Installing Red Hat OpenShift Pipelines CLI (tkn) on Linux 104
5.1.2. Installing Red Hat OpenShift Pipelines CLI (tkn) on Linux using an RPM 104
5.1.3. Installing Red Hat OpenShift Pipelines CLI (tkn) on Windows 105
5.1.4. Installing Red Hat OpenShift Pipelines CLI (tkn) on macOS 105
5.2. CONFIGURING THE OPENSHIFT PIPELINES TKN CLI 105
5.2.1. Enabling tab completion 106
5.3. OPENSHIFT PIPELINES TKN REFERENCE 106
5.3.1. Basic syntax 106
5.3.2. Global options 106
5.3.3. Utility commands 106
5.3.3.1. tkn 106
5.3.3.2. completion [shell] 106
5.3.3.3. version 107
5.3.4. Pipelines management commands 107
5.3.4.1. pipeline 107
5.3.4.2. pipeline delete 107
5.3.4.3. pipeline describe 107
5.3.4.4. pipeline list 107
5.3.4.5. pipeline logs 107
5.3.4.6. pipeline start 108
5.3.5. PipelineRun commands 108
5.3.5.1. pipelinerun 108
5.3.5.2. pipelinerun cancel 108
5.3.5.3. pipelinerun delete 108

5.3.5.4. pipelinerun describe
5.3.5.5. pipelinerun list
5.3.5.6. pipelinerun logs
5.3.6. Task management commands
5.3.6.1. task
5.3.6.2. task delete
5.3.6.3. task describe
5.3.6.4. task list
5.3.6.5. task logs
5.3.6.6. task start
5.3.7. TaskRun commands
5.3.7.1. taskrun
5.3.7.2. taskrun cancel
5.3.7.3. taskrun delete
5.3.7.4. taskrun describe
5.3.7.5. taskrun list
5.3.7.6. taskrun logs
5.3.8. Condition management commands
5.3.8.1. condition
5.3.8.2. condition delete
5.3.8.3. condition describe
5.3.8.4. condition list

5.3.9. Pipeline Resource management commands

5.3.9.1. resource
5.3.9.2. resource create
5.3.9.3. resource delete
5.3.9.4. resource describe
5.3.9.5. resource list

5.3.10. ClusterTask management commands
5.3.10.1. clustertask
5.3.10.2. clustertask delete
5.3.10.3. clustertask describe
5.3.10.4. clustertask list
5.3.10.5. clustertask start

5.3.11. Trigger management commands
5.3.11.1. eventlistener
5.3.11.2. eventlistener delete
5.3.11.3. eventlistener describe
5.3.11.4. eventlistener list
5.3.11.5. triggerbinding
5.3.11.6. triggerbinding delete
5.3.11.7. triggerbinding describe
5.3.11.8. triggerbinding list
5.3.11.9. triggertemplate
5.3.1110. triggertemplate delete
5.3.1111. triggertemplate describe
5.3.11.12. triggertemplate list
5.3.11.13. clustertriggerbinding
5.3.11.14. clustertriggerbinding delete
5.3.11.15. clustertriggerbinding describe
5.3.11.16. clustertriggerbinding list

Table of Contents

108
108
109
109
109
109
109
109
110
110
110
110
110
110
110
m
m
m
m
m
m
m
12
12
12
12
12
12
12
12
13
13
13
13
13
13
13
14
14
14
14
14
14
15
15
15
15
15
15
116
116

OpenShift Container Platform 4.5 CLI tools

CHAPTER 1. OPENSHIFT CLI (OC)

CHAPTER 1. OPENSHIFT CLI (OC)

1.1. GETTING STARTED WITH THE CLI

1.1.1. About the CLI

With the OpenShift Container Platform command-line interface (CLI), you can create applications and
manage OpenShift Container Platform projects from a terminal. The CLlI is ideal in situations where you:

e work directly with project source code.
® script OpenShift Container Platform operations.

® arerestricted by bandwidth resources and can not use the web console.

1.1.2. Installing the CLI

You can install the OpenShift CLI (oc¢) either by downloading the binary or by using an RPM.

1.1.2.1. Installing the CLI by downloading the binary

You can install the OpenShift CLI (oc¢) in order to interact with OpenShift Container Platform from a
command-line interface. You can install oc on Linux, Windows, or macOS.

IMPORTANT

If you installed an earlier version of o¢, you cannot use it to complete all of the commands
in OpenShift Container Platform 4.5. Download and install the new version of oc.

1.1.2.1.1. Installing the CLI on Linux

You can install the OpenShift CLI (o¢) binary on Linux by using the following procedure.

Procedure

1. Navigate to the Infrastructure Provider page on the Red Hat OpenShift Cluster Manager site.
2. Select your infrastructure provider, and, if applicable, your installation type.

3. Inthe Command line interface section, select Linux from the drop-down menu and click
Download command-line tools.

4. Unpack the archive:

I $ tar xvzf <file>

5. Place the oc binary in a directory that is on your PATH.
To check your PATH, execute the following command:

I $ echo $PATH

After you install the CLlI, it is available using the oc command:

https://cloud.redhat.com/openshift/install

OpenShift Container Platform 4.5 CLI tools

I $ oc <command>

1.1.2.1.2. Installing the CLI on Windows

You can install the OpenShift CLI (oc¢) binary on Windows by using the following procedure.

Procedure

1.

2.

Navigate to the Infrastructure Provider page on the Red Hat OpenShift Cluster Manager site.
Select your infrastructure provider, and, if applicable, your installation type.

In the Command line interface section, select Windows from the drop-down menu and click
Download command-line tools.

Unzip the archive with a ZIP program.

Move the oc binary to a directory that is on your PATH.
To check your PATH, open the command prompt and execute the following command:

I C:\> path

After you install the CLlI, it is available using the oc command:

I C:\> oc <command>

1.1.2.1.3. Installing the CLI on macOS

You can install the OpenShift CLI (o¢) binary on macOS by using the following procedure.

Procedure

1.

2.

Navigate to the Infrastructure Provider page on the Red Hat OpenShift Cluster Manager site.
Select your infrastructure provider, and, if applicable, your installation type.

In the Command line interface section, select MacOS from the drop-down menu and click
Download command-line tools.

Unpack and unzip the archive.

Move the oc binary to a directory on your PATH.
To check your PATH, open a terminal and execute the following command:

I $ echo $PATH

After you install the CLI, it is available using the oc command:

I $ oc <command>

1.1.2.2. Installing the CLI by using an RPM

10

https://cloud.redhat.com/openshift/install
https://cloud.redhat.com/openshift/install

CHAPTER 1. OPENSHIFT CLI (OC)

For Red Hat Enterprise Linux (RHEL), you can install the OpenShift CLI (o¢) as an RPM if you have an
active OpenShift Container Platform subscription on your Red Hat account.

Prerequisites

® Must have root or sudo privileges.

Procedure

1. Register with Red Hat Subscription Manager:
I # subscription-manager register
2. Pull the latest subscription data:
I # subscription-manager refresh
3. List the available subscriptions:
I # subscription-manager list --available --matches *OpenShift*'

4. In the output for the previous command, find the pool ID for an OpenShift Container Platform
subscription and attach the subscription to the registered system:

I # subscription-manager attach --pool=<pool_id>

5. Enable the repositories required by OpenShift Container Platform 4.5.

® For Red Hat Enterprise Linux 8:

I # subscription-manager repos --enable="rhocp-4.5-for-rhel-8-x86_64-rpms"

® For Red Hat Enterprise Linux 7:

I # subscription-manager repos --enable="rhel-7-server-ose-4.5-rpms"

6. Install the openshift-clients package:

I # yum install openshift-clients
After you install the CLlI, it is available using the oc command:
I $ oc <command>
1.1.3. Logging in to the CLI

You can login to the oc CLI to access and manage your cluster.

Prerequisites

® You must have access to an OpenShift Container Platform cluster.

1

OpenShift Container Platform 4.5 CLI tools

® You must have installed the CLI.

NOTE
To access a cluster that is accessible only over an HTTP proxy server, you can set the
HTTP_PROXY, HTTPS_PROXY and NO_PROXY variables. These environment variables

are respected by the oc CLI so that all communication with the cluster goes through the
HTTP proxy.

Procedure

® | oginto the CLIusing the oc login command and enter the required information when
prompted.

I $ oc login
Example output

Server [hitps://localhost:8443]: https://openshift.example.com:6443 ﬂ

The server uses a certificate signed by an unknown authority.

You can bypass the certificate check, but any data you send to the server could be
intercepted by others.

Use insecure connections? (y/n): y g

Authentication required for https://openshift.example.com:6443 (openshift)
Username: user1

Password: ﬂ
Login successful.

You don't have any projects. You can try to create a new project, by running
oc new-project <projectname>

Welcome! See 'oc help' to get started.

ﬂ Enter the OpenShift Container Platform server URL.
9 Enter whether to use insecure connections.
9 Enter the user name to login as.

Q Enter the user’s password.

You can now create a project or issue other commands for managing your cluster.

1.1.4. Using the CLI

Review the following sections to learn how to complete common tasks using the CLI.

1.1.4.1. Creating a project

Use the oc new-project command to create a new project.

12

CHAPTER 1. OPENSHIFT CLI (OC)

I $ oc new-project my-project

Example output

I Now using project "my-project” on server "https://openshift.example.com:6443".
1.1.4.2. Creating a new app

Use the oc new-app command to create a new application.

I $ oc new-app https://github.com/sclorg/cakephp-ex

Example output

--> Found image 40de956 (9 days old) in imagestream "openshift/php" under tag "7.2" for "php"

Run 'oc status' to view your app.

1.1.4.3. Viewing pods

Use the oc get pods command to view the pods for the current project.
I $ oc get pods -0 wide
Example output

NAME READY STATUS RESTARTS AGE IP NODE

NOMINATED NODE

cakephp-ex-1-build 0/1 Completed 0 5m45s 10.131.0.10 ip-10-0-141-74.ec2.internal
<none>

cakephp-ex-1-deploy 0/1 Completed 0 3m44s 10.129.2.9 ip-10-0-147-65.ec2.internal
<none>

cakephp-ex-1-ktz97 1/1 Running 0 3m33s 10.128.2.11 ip-10-0-168-105.ec2.internal
<none>

1.1.4.4. Viewing pod logs

Use the oc logs command to view logs for a particular pod.
I $ oc logs cakephp-ex-1-deploy

Example output

--> Scaling cakephp-ex-1 to 1
--> Success

1.1.4.5. Viewing the current project

13

OpenShift Container Platform 4.5 CLI tools

Use the oc project command to view the current project.

I $ oc project

Example output

I Using project "my-project" on server "https://openshift.example.com:6443".

1.1.4.6. Viewing the status for the current project

Use the oc status command to view information about the current project, such as services,
deployments, and build configs.

I $ oc status
Example output

In project my-project on server https://openshift.example.com:6443
svc/cakephp-ex - 172.30.236.80 ports 8080, 8443
dc/cakephp-ex deploys istag/cakephp-ex:latest <-
bc/cakephp-ex source builds https://github.com/sclorg/cakephp-ex on openshift/php:7.2
deployment #1 deployed 2 minutes ago - 1 pod

3 infos identified, use 'oc status --suggest' to see details.

1.1.4.7. Listing supported API resources
Use the oc api-resources command to view the list of supported API resources on the server.

I $ oc api-resources

Example output

NAME SHORTNAMES APIGROUP NAMESPACED KIND
bindings true Binding

componentstatuses cs false ComponentStatus
configmaps cm true ConfigMap

1.1.5. Getting help

You can get help with CLI commands and OpenShift Container Platform resources in the following
ways.

® Useoc help to get a list and description of all available CLI commands:

Example: Get general help for the CLI

I $ oc help

14

CHAPTER 1. OPENSHIFT CLI (OC)

Example output

OpenShift Client

This client helps you develop, build, deploy, and run your applications on any OpenShift or
Kubernetes compatible

platform. It also includes the administrative commands for managing a cluster under the 'adm'’

subcommand.

Usage:
oc [flags]

Basic Commands:

login Log in to a server
new-project Request a new project
new-app Create a new application

e Use the --help flag to get help about a specific CLI command:

Example: Get help for the oc create command
I $ oc create --help
Example output

Create a resource by filename or stdin
JSON and YAML formats are accepted.

Usage:
oc create -f FILENAME [flags]

e Use the oc explain command to view the description and fields for a particular resource:

Example: View documentation for the Pod resource
I $ oc explain pods
Example output

KIND: Pod
VERSION: v1

DESCRIPTION:
Pod is a collection of containers that can run on a host. This resource is
created by clients and scheduled onto hosts.

FIELDS:
apiVersion <string>

15

OpenShift Container Platform 4.5 CLI tools

APIVersion defines the versioned schema of this representation of an

object. Servers should convert recognized schemas to the latest internal
value, and may reject unrecognized values. More info:
https://git.k8s.io/community/contributors/devel/api-conventions.md#resources

1.1.6. Logging out of the CLI

You can log out the CLI to end your current session.

® Use the oc logout command.
I $ oc logout
Example output
I Logged "user1" out on "https://openshift.example.com”

This deletes the saved authentication token from the server and removes it from your configuration file.

1.2. CONFIGURING THE CLI

1.2.1. Enabling tab completion

After you install the oc CLI tool, you can enable tab completion to automatically complete oc
commands or suggest options when you press Tab.

Prerequisites

® You must have the oc CLI tool installed.
® You must have the package bash-completion installed.

Procedure

The following procedure enables tab completion for Bash.

1. Save the Bash completion code to a file.
I $ oc completion bash > oc_bash_completion
2. Copy the file to /etc/bash_completion.d/.
I $ sudo cp oc_bash_completion /etc/bash_completion.d/

You can also save the file to a local directory and source it from your .bashrec file instead.

Tab completion is enabled when you open a new terminal.

1.3. EXTENDING THE CLI WITH PLUG-INS

16

CHAPTER 1. OPENSHIFT CLI (OC)

You can write and install plug-ins to build on the default o¢ commands, allowing you to perform new and
more complex tasks with the OpenShift Container Platform CLI.

1.3.1. Writing CLI plug-ins

You can write a plug-in for the OpenShift Container Platform CLIin any programming language or
script that allows you to write command-line commands. Note that you can not use a plug-in to
overwrite an existing oc command.

IMPORTANT

OpenShift CLI plug-ins are currently a Technology Preview feature. Technology Preview
features are not supported with Red Hat production service level agreements (SLAs),
might not be functionally complete, and Red Hat does not recommend to use them for
production. These features provide early access to upcoming product features, enabling
customers to test functionality and provide feedback during the development process.

See the Red Hat Technology Preview features support scope for more information.

Procedure

This procedure creates a simple Bash plug-in that prints a message to the terminal when the oc foo
command is issued.

1. Create a file called oc-foo.
When naming your plug-in file, keep the following in mind:

® The file must begin with oc- or kubectl- in order to be recognized as a plug-in.

e The file name determines the command that invokes the plug-in. For example, a plug-in
with the file name oc-foo-bar can be invoked by a command of oc foo bar. You can also use
underscores if you want the command to contain dashes. For example, a plug-in with the file
name oc-foo_bar can be invoked by a command of oc foo-bar.

2. Add the following contents to the file.

#!/bin/bash

optional argument handling
if ["$1" == "version"]]
then
echo "1.0.0"
exit 0
fi

optional argument handling
if ["$1" == "config" 1]
then
echo $KUBECONFIG
exit 0
fi

echo "l am a plugin named kubectl-foo"

17

https://access.redhat.com/support/offerings/techpreview/

OpenShift Container Platform 4.5 CLI tools

After you install this plug-in for the OpenShift Container Platform CLI, it can be invoked using the oc
foo command.

Additional resources

® Review the Sample plug-in repository for an example of a plug-in written in Go.

® Review the CLI runtime repository for a set of utilities to assist in writing plug-ins in Go.

1.3.2. Installing and using CLI plug-ins

After you write a custom plug-in for the OpenShift Container Platform CLI, you must install it to use the
functionality that it provides.

IMPORTANT

OpenShift CLI plug-ins are currently a Technology Preview feature. Technology Preview
features are not supported with Red Hat production service level agreements (SLAs),
might not be functionally complete, and Red Hat does not recommend to use them for
production. These features provide early access to upcoming product features, enabling
customers to test functionality and provide feedback during the development process.

See the Red Hat Technology Preview features support scope for more information.

Prerequisites

® You must have the oc CLI tool installed.

® You must have a CLI plug-in file that begins with oc- or kubectl-.

Procedure

1. If necessary, update the plug-in file to be executable.
I $ chmod +x <plugin_file>
2. Place the file anywhere in your PATH, such as /ust/local/bin/.
I $ sudo mv <plugin_file> /usr/local/bin/.
3. Run oc plugin list to make sure that the plug-in is listed.
I $ oc plugin list
Example output

The following compatible plugins are available:

/ust/local/bin/<plugin_file>

If your plug-in is not listed here, verify that the file begins with oc- or kubectl-, is executable,
and is on your PATH.

18

https://github.com/kubernetes/sample-cli-plugin
https://github.com/kubernetes/cli-runtime/
https://access.redhat.com/support/offerings/techpreview/

CHAPTER 1. OPENSHIFT CLI (OC)

4. Invoke the new command or option introduced by the plug-in.
For example, if you built and installed the kubectl-ns plug-in from the Sample plug-in
repository, you can use the following command to view the current namespace.

I $ocns

Note that the command to invoke the plug-in depends on the plug-in file name. For example, a
plug-in with the file name of oc-foo-bar is invoked by the oc foo bar command.

1.4. DEVELOPER CLI COMMANDS

1.4.1. Basic CLI commands

1.4.1.1. explain

Display documentation for a certain resource.

Example: Display documentation for pods
I $ oc explain pods

1.4.1.2. login

Log in to the OpenShift Container Platform server and save login information for subsequent use.

Example: Interactive login

I $ oc login

Example: Log in specifying a user name
I $ oc login -u user

1.4.1.3. new-app

Create a new application by specifying source code, a template, or an image.

Example: Create a new application from a local Git repository

I $ oc new-app .

Example: Create a new application from a remote Git repository

I $ oc new-app https://github.com/sclorg/cakephp-ex

Example: Create a new application from a private remote repository

I $ oc new-app https://github.com/youruser/yourprivaterepo --source-secret=yoursecret

19

https://github.com/kubernetes/sample-cli-plugin

OpenShift Container Platform 4.5 CLI tools

1.4.1.4. new-project

Create a new project and switch to it as the default project in your configuration.

Example: Create a new project
I $ oc new-project myproject

1.4.1.5. project

Switch to another project and make it the default in your configuration.

Example: Switch to a different project
I $ oc project test-project

1.4.1.6. projects

Display information about the current active project and existing projects on the server.

Example: List all projects
I $ oc projects

1.4.1.7. status

Show a high-level overview of the current project.

Example: Show the status of the current project

I $ oc status

1.4.2. Build and Deploy CLI commands

1.4.2.1. cancel-build

Cancel a running, pending, or new build.

Example: Cancel a build

I $ oc cancel-build python-1

Example: Cancel all pending builds from the python build config
I $ oc cancel-build buildconfig/python --state=pending

1.4.2.2. import-image

Import the latest tag and image information from an image repository.

20

CHAPTER 1. OPENSHIFT CLI (OC)

Example: Import the latest image information
I $ oc import-image my-ruby

1.4.2.3. new-build

Create a new build config from source code.

Example: Create a build config from a local Git repository

I $ oc new-build .

Example: Create a build config from a remote Git repository
I $ oc new-build https://github.com/sclorg/cakephp-ex

1.4.2.4. rollback

Revert an application back to a previous deployment.

Example: Roll back to the last successful deployment
I $ oc rollback php
Example: Roll back to a specific version

I $ oc rollback php --to-version=3

1.4.2.5. rollout

Start a new rollout, view its status or history, or roll back to a previous revision of your application.

Example: Roll back to the last successful deployment

I $ oc rollout undo deploymentconfig/php

Example: Start a new rollout for a deployment with its latest state
I $ oc rollout latest deploymentconfig/php

1.4.2.6. start-build

Start a build from a build config or copy an existing build.

Example: Start a build from the specified build config
I $ oc start-build python

Example: Start a build from a previous build

21

OpenShift Container Platform 4.5 CLI tools
I $ oc start-build --from-build=python-1
Example: Set an environment variable to use for the current build
I $ oc start-build python --env=mykey=myvalue

1.4.2.7. tag

Tag existing images into image streams.

Example: Configure the ruby image’s latest tag to refer to the image for the 2.0 tag

I $ oc tag ruby:latest ruby:2.0

1.4.3. Application management CLI commands

1.4.3.1. annotate

Update the annotations on one or more resources.

Example: Add an annotation to a route

I $ oc annotate route/test-route haproxy.router.openshift.io/ip_whitelist="192.168.1.10"
Example: Remove the annotation from the route

I $ oc annotate route/test-route haproxy.router.openshift.io/ip_whitelist-

1.4.3.2. apply

Apply a configuration to a resource by file name or standard in (stdin) in JSON or YAML format.

Example: Apply the configuration in pod.json to a pod

I $ oc apply -f pod.json

1.4.3.3. autoscale

Autoscale a deployment or replication controller.

Example: Autoscale to a minimum of two and maximum of five pods

I $ oc autoscale deploymentconfig/parksmap-katacoda --min=2 --max=5

1.4.3.4. create

Create a resource by file name or standard in (stdin) in JSON or YAML format.

Example: Create a pod using the content in pod.json

22

I $ oc create -f pod.json

1.4.3.5. delete

Delete aresource.

Example: Delete a pod hamed parksmap-katacoda-1-qfqz4

I $ oc delete pod/parksmap-katacoda-1-qfqz4

Example: Delete all pods with the app=parksmap-katacoda label
I $ oc delete pods -l app=parksmap-katacoda

1.4.3.6. describe

Return detailed information about a specific object.

Example: Describe a deployment nhamed example
I $ oc describe deployment/example

Example: Describe all pods

I $ oc describe pods

1.4.3.7. edit

Edit a resource.

Example: Edit a deployment using the default editor

I $ oc edit deploymentconfig/parksmap-katacoda

Example: Edit a deployment using a different editor

I $ OC_EDITOR="nano" oc edit deploymentconfig/parksmap-katacoda
Example: Edit a deployment in JSON format

I $ oc edit deploymentconfig/parksmap-katacoda -o json

1.4.3.8. expose

Expose a service externally as a route.

Example: Expose a service

I $ oc expose service/parksmap-katacoda

CHAPTER 1. OPENSHIFT CLI (OC)

23

OpenShift Container Platform 4.5 CLI tools

Example: Expose a service and specify the host name
I $ oc expose service/parksmap-katacoda --hostname=www.my-host.com

1.4.3.9. get

Display one or more resources.

Example: List pods in the default namespace

I $ oc get pods -n default

Example: Get details about the python deployment in JSON format
I $ oc get deploymentconfig/python -o json

1.4.3.10. label

Update the labels on one or more resources.

Example: Update the python-1-mz2rf pod with the label status set to unhealthy
I $ oc label pod/python-1-mz2rf status=unhealthy

1.4.3.11. scale

Set the desired number of replicas for a replication controller or a deployment.

Example: Scale the ruby-app deployment to three pods
I $ oc scale deploymentconfig/ruby-app --replicas=3

1.4.3.12. secrets

Manage secrets in your project.

Example: Allow my-pull-secret to be used as an image pull secret by the default service
account

I $ oc secrets link default my-pull-secret --for=pull

1.4.3.13. serviceaccounts

Get a token assigned to a service account or create a new token or kubeconfig file for a service
account.

Example: Get the token assigned to the default service account

I $ oc serviceaccounts get-token default

24

CHAPTER 1. OPENSHIFT CLI (OC)

1.4.3.14. set

Configure existing application resources.

Example: Set the name of a secret on a build config

I $ oc set build-secret --source buildconfig/mybc mysecret

1.4.4. Troubleshooting and debugging CLI commands

1.4.4.1. attach

Attach the shell to a running container.

Example: Get output from the python container from pod python-1-mz2rf
I $ oc attach python-1-mz2rf -c python

1.4.4.2. cp

Copy files and directories to and from containers.

Example: Copy a file from the python-1-mz2rf pod to the local file system
I $ oc cp default/python-1-mz2rf:/opt/app-root/src/README.md ~/mydirectory/.

1.4.4.3. debug

Launch a command shell to debug a running application.

Example: Debug the python deployment

I $ oc debug deploymentconfig/python

1.4.4.4. exec

Execute a command in a container.

Example: Execute the Is command in the python container from pod python-1-mz2rf
I $ oc exec python-1-mz2rf -c python Is

1.4.4.5. logs

Retrieve the log output for a specific build, build config, deployment, or pod.

Example: Stream the latest logs from the python deployment

I $ oc logs -f deploymentconfig/python

25

OpenShift Container Platform 4.5 CLI tools

1.4.4.6. port-forward

Forward one or more local ports to a pod.

Example: Listen on port 8888 locally and forward to port 5000 in the pod
I $ oc port-forward python-1-mz2rf 8888:5000

1.4.4.7. proxy

Run a proxy to the Kubernetes API server.

Example: Run a proxy to the APl server on port 8011 serving static content from ./local/www/
I $ oc proxy --port=8011 --www=./local/www/

1.4.4.8. rsh

Open aremote shell session to a container.

Example: Open a shell session on the first container in the python-1-mz2rf pod
I $ oc rsh python-1-mz2rf

1.4.4.9. rsync

Copy contents of a directory to or from a running pod container. Only changed files are copied using the
rsync command from your operating system.

Example: Synchronize files from a local directory with a pod directory
I $ oc rsync ~/mydirectory/ python-1-mz2rf:/opt/app-root/src/

1.4.4.10. run

Create a pod running a particular image.

Example: Start a pod running the perlimage

I $ oc run my-test --image=perl

1.4.4.11. wait

Wait for a specific condition on one or more resources.

NOTE

This command is experimental and might change without notice.

Example: Wait for the python-1-mz2rf pod to be deleted

26

I $ oc wait --for=delete pod/python-1-mz2rf

1.4.5. Advanced developer CLI commands

1.4.5.1. api-resources

Display the full list of APl resources that the server supports.

Example: List the supported API resources
I $ oc api-resources

1.4.5.2. api-versions

Display the full list of APl versions that the server supports.

Example: List the supported API versions
I $ oc api-versions

1.4.5.3. auth

Inspect permissions and reconcile RBAC roles.

Example: Check whether the current user can read pod logs
I $ oc auth can-i get pods --subresource=log

Example: Reconcile RBAC roles and permissions from a file
I $ oc auth reconcile -f policy.json

1.4.5.4. cluster-info

Display the address of the master and cluster services.

Example: Display cluster information

I $ oc cluster-info

1.4.5.5. convert

CHAPTER 1. OPENSHIFT CLI (OC)

Convert a YAML or JSON configuration file to a different APl version and print to standard output

(stdout).

Example: Convert pod.yaml to the latest version

I $ oc convert -f pod.yaml

27

OpenShift Container Platform 4.5 CLI tools

1.4.5.6. extract

Extract the contents of a config map or secret. Each key in the config map or secret is created as a
separate file with the name of the key.

Example: Download the contents of the ruby-1-ca config map to the current directory
I $ oc extract configmap/ruby-1-ca

Example: Print the contents of the ruby-1-ca config map to stdout

I $ oc extract configmap/ruby-1-ca --to=-

1.4.5.7.idle

Idle scalable resources. An idled service will automatically become unidled when it receives traffic or it
can be manually unidled using the oc scale command.

Example: Idle the ruby-app service

I $ oc idle ruby-app

1.4.5.8. image

Manage images in your OpenShift Container Platform cluster.

Example: Copy an image to another tag
I $ oc image mirror myregistry.com/myimage:latest myregistry.com/myimage:stable

1.4.5.9. observe

Observe changes to resources and take action on them.

Example: Observe changes to services
I $ oc observe services

1.4.5.10. patch

Updates one or more fields of an object using strategic merge patch in JSON or YAML format.

Example: Update the spec.unschedulable field for node node1 to true
I $ oc patch node/node1 -p {"spec":{"unschedulable":true}}'
e

NOTE

If you must patch a custom resource definition, you must include the --type merge
option in the command.

28

CHAPTER 1. OPENSHIFT CLI (OC)

1.4.5.11. policy

Manage authorization policies.

Example: Add the edit role to user1 for the current project
I $ oc policy add-role-to-user edit useri

1.4.5.12. process

Process a template into a list of resources.

Example: Convert template.json to a resource list and pass to oc create
I $ oc process -f template.json | oc create -f -

1.4.5.13. registry

Manage the integrated registry on OpenShift Container Platform.

Example: Display information about the integrated registry
I $ oc registry info

1.4.5.14. replace

Modify an existing object based on the contents of the specified configuration file.

Example: Update a pod using the content in pod.json

I $ oc replace -f pod.json

1.4.6. Settings CLI commands

1.4.6.1. completion

Output shell completion code for the specified shell.

Example: Display completion code for Bash
I $ oc completion bash

1.4.6.2. config

Manage the client configuration files.

Example: Display the current configuration

I $ oc config view

29

OpenShift Container Platform 4.5 CLI tools

Example: Switch to a different context
I $ oc config use-context test-context

1.4.6.3. logout

Log out of the current session.

Example: End the current session
I $ oc logout

1.4.6.4. whoami

Display information about the current session.

Example: Display the currently authenticated user

I $ oc whoami

1.4.7. Other developer CLI commands

1.4.7.1. help

Display general help information for the CLI and a list of available commands.

Example: Display available commands

I $ oc help

Example: Display the help for the new-project command
I $ oc help new-project

1.4.7.2. plugin

List the available plug-ins on the user's PATH.

Example: List available plug-ins
I $ oc plugin list

1.4.7.3. version

Display the oc client and server versions.

Example: Display version information

I $ oc version

30

CHAPTER 1. OPENSHIFT CLI (OC)

For cluster administrators, the OpenShift Container Platform server version is also displayed.

1.5. ADMINISTRATOR CLI COMMANDS

1.5.1. Cluster management CLI commands

1.5.1.1. inspect

Gather debugging information for a particular resource.

NOTE

This command is experimental and might change without notice.

-

Example: Collect debugging data for the OpenShift APl server cluster Operator
I $ oc adm inspect clusteroperator/openshift-apiserver

1.5.1.2. must-gather

Bulk collect data about the current state of your cluster to debug issues.

NOTE

This command is experimental and might change without notice.
Example: Gather debugging information
I $ oc adm must-gather

1.5.1.3. top

Show usage statistics of resources on the server.

Example: Show CPU and memory usage for pods
I $ oc adm top pods
Example: Show usage statistics for images

I $ oc adm top images

1.5.2. Node management CLI commands

1.5.2.1. cordon

Mark a node as unschedulable. Manually marking a node as unschedulable blocks any new pods from
being scheduled on the node, but does not affect existing pods on the node.

31

OpenShift Container Platform 4.5 CLI tools
Example: Mark node1 as unschedulable
I $ oc adm cordon node1

1.5.2.2. drain

Drain a node in preparation for maintenance.

Example: Drain node1
I $ oc adm drain nodef

1.5.2.3. node-logs

Display and filter node logs.

Example: Get logs for NetworkManager
I $ oc adm node-logs --role master -u NetworkManager.service

1.5.2.4. taint

Update the taints on one or more nodes.

Example: Add a taint to dedicate a node for a set of users
I $ oc adm taint nodes node1 dedicated=groupName:NoSchedule
Example: Remove the taints with key dedicated from node node1

I $ oc adm taint nodes node1 dedicated-

1.5.2.5. uncordon

Mark a node as schedulable.

Example: Mark node1 as schedulable

I $ oc adm uncordon node1

1.5.3. Security and policy CLI commands

1.5.3.1. certificate

Approve or reject certificate signing requests (CSRs).

Example: Approve a CSR

I $ oc adm certificate approve csr-sqgzp

32

CHAPTER 1. OPENSHIFT CLI (OC)

1.5.3.2. groups

Manage groups in your cluster.

Example: Create a new group
I $ oc adm groups new my-group

1.5.3.3. new-project

Create a new project and specify administrative options.

Example: Create a new project using a node selector
I $ oc adm new-project myproject --node-selector="type=user-node,region=east'

1.5.3.4. pod-network

Manage pod networks in the cluster.

Example: Isolate project1 and project2 from other non-global projects
I $ oc adm pod-network isolate-projects project1 project2

1.5.3.5. policy

Manage roles and policies on the cluster.

Example: Add the edit role to user1 for all projects
I $ oc adm policy add-cluster-role-to-user edit user1
Example: Add the privileged security context constraint to a service account

I $ oc adm policy add-scc-to-user privileged -z myserviceaccount

1.5.4. Maintenance CLI commands

1.5.4.1. migrate

Migrate resources on the cluster to a new version or format depending on the subcommand used.

Example: Perform an update of all stored objects
I $ oc adm migrate storage
Example: Perform an update of only pods

I $ oc adm migrate storage --include=pods

33

OpenShift Container Platform 4.5 CLI tools

1.5.4.2. prune

Remove older versions of resources from the server.

Example: Prune older builds including those whose build configs no longer exist

I $ oc adm prune builds --orphans

1.5.5. Configuration CLI commands

1.5.5.1. create-bootstrap-project-template

Create a bootstrap project template.

Example: Output a bootstrap project template in YAML format to stdout

I $ oc adm create-bootstrap-project-template -o yaml

1.5.5.2. create-error-template

Create a template for customizing the error page.

Example: Output a template for the error page to stdout

I $ oc adm create-error-template

1.5.5.3. create-kubeconfig

Creates a basic .kubeconfig file from client certificates.

Example: Create a .kubeconfig file with the provided client certificates

$ oc adm create-kubeconfig \
--client-certificate=/path/to/client.crt \
--client-key=/path/to/client.key \
--certificate-authority=/path/to/ca.crt

1.5.5.4. create-login-template

Create a template for customizing the login page.

Example: Output a template for the login page to stdout

I $ oc adm create-login-template

1.5.5.5. create-provider-selection-template

Create a template for customizing the provider selection page.

Example: Output a template for the provider selection page to stdout

34

CHAPTER 1. OPENSHIFT CLI (OC)
I $ oc adm create-provider-selection-template

1.5.6. Other Administrator CLI commands

1.5.6.1. build-chain

Output the inputs and dependencies of any builds.

Example: Output dependencies for the perl imagestream

I $ oc adm build-chain perl

1.5.6.2. completion

Output shell completion code for the oc adm commands for the specified shell.

Example: Display oc adm completion code for Bash

I $ oc adm completion bash

1.5.6.3. config

Manage the client configuration files. This command has the same behavior as the oc config command.

Example: Display the current configuration
I $ oc adm config view
Example: Switch to a different context

I $ oc adm config use-context test-context

1.5.6.4. release

Manage various aspects of the OpenShift Container Platform release process, such as viewing
information about a release or inspecting the contents of a release.

Example: Generate a changelog between two releases and save to changelog.md

$ oc adm release info --changelog=/tmp/git \
quay.io/openshift-release-dev/ocp-release:4.5.0-rc.7-x86_64 \
quay.io/openshift-release-dev/ocp-release:4.5.4-x86_64 \
> changelog.md

1.5.6.5. verify-image-signature

Verify the image signature of an image imported to the internal registry using the local public GPG key.

Example: Verify the nodejs image signature

35

OpenShift Container Platform 4.5 CLI tools

$ oc adm verify-image-signature \
sha256:2bba968aedb7dd2aafe5fa8c7453f5ac36a0b9639f1bf5b03f95de325238b288 \
--expected-identity 172.30.1.1:5000/openshift/nodejs:latest \
--public-key /etc/pki/rpm-gpg/RPM-GPG-KEY-redhat-release \
--save

1.6. USAGE OF OC AND KUBECTL COMMANDS

Kubernetes' command line interface (CLI), kubectl, can be used to run commands against a Kubernetes
cluster. Because OpenShift Container Platform is a certified Kubernetes distribution, you can use the
supported kubectl binaries that ship with OpenShift Container Platform, or you can gain extended
functionality by using the oc binary.

1.6.1. The oc binary

The oc binary offers the same capabilities as the kubectl binary, but it extends to natively support
additional OpenShift Container Platform features, including:

e Full support for OpenShift Container Platform resources
Resources such as DeploymentConfig, BuildConfig, Route, ImageStream, and
ImageStreamTag objects are specific to OpenShift Container Platform distributions, and build
upon standard Kubernetes primitives.

® Authentication
The oc binary offers a built-in login command that allows authentication and enables you to
work with OpenShift Container Platform projects, which map Kubernetes namespaces to
authenticated users. See Understanding authentication for more information.

® Additional commands
The additional command oc new-app, for example, makes it easier to get new applications
started using existing source code or pre-built images. Similarly, the additional command oc
new-project makes it easier to start a project that you can switch to as your default.

1.6.2. The kubectl binary

The kubectl binary is provided as a means to support existing workflows and scripts for new OpenShift
Container Platform users coming from a standard Kubernetes environment, or for those who prefer to
use the kubectl CLI. Existing users of kubectl can continue to use the binary to interact with Kubernetes
primitives, with no changes required to the OpenShift Container Platform cluster.

You can install the supported kubectl binary by following the steps to Install the CLI. The kubectl binary
is included in the archive if you download the binary, or is installed when you install the CLI by using an
RPM.

For more information, see the kubectl documentation.

36

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/authentication_and_authorization/#understanding-authentication
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/cli_tools/#cli-installing-cli_cli-developer-commands
https://kubernetes.io/docs/reference/kubectl/overview/

CHAPTER 2. DEVELOPER CLI (ODO)

CHAPTER 2. DEVELOPER CLI (ODO)

2.1. UNDERSTANDING ODO

odo is a CLI tool for creating applications on OpenShift Container Platform and Kubernetes. With odo,

you can write, build, and debug applications on a cluster without the need to administer the cluster itself.
Creating deployment configurations, build configurations, service routes and other OpenShift Container
Platform or Kubernetes elements are all automated by odo.

Existing tools such as oc are operations-focused and require a deep understanding of Kubernetes and
OpenShift Container Platform concepts. odo abstracts away complex Kubernetes and OpenShift
Container Platform concepts allowing developers to focus on what is most important to them: code.

2.1.1. Key features

odo is designed to be simple and concise with the following key features:

e Simple syntax and design centered around concepts familiar to developers, such as projects,
applications, and components.

® Completely client based. No additional server other than OpenShift Container Platform is
required for deployment.

e Official support for Node.js and Java components.
® Partial compatibility with languages and frameworks such as Ruby, Perl, PHP, and Python.

® Detects changes to local code and deploys it to the cluster automatically, giving instant
feedback to validate changes in real time.

® |ists all the available components and services from the cluster.

2.1.2. Core concepts

Project
A project is your source code, tests, and libraries organized in a separate single unit.
Application

An application is a program designed for end users. An application consists of multiple microservices
or components that work individually to build the entire application. Examples of applications: a video
game, a media player, a web browser.

Component

A component is a set of Kubernetes resources which host code or data. Each component can be run
and deployed separately. Examples of components: Node.js, Perl, PHP, Python, Ruby.

Service

A service is software that your component links to or depends on. Examples of services: MariaDB,
Jenkins, MySQL. In odo, services are provisioned from the OpenShift Service Catalog and must be
enabled within your cluster.

2.1.2.1. Officially supported languages and corresponding container images

Table 2.1. Supported languages, container images, package managers, and platforms

37

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/cli_tools/#cli-about-cli_cli-developer-commands

OpenShift Container Platform 4.5 CLlI tools

Language Container image Package manager Platform

Node.js rhscl/nodejs-10-rhel7 NPM amd64, s390x, ppcb4le
rhscl/nodejs-12-rhel7 NPM amd64, s390x, ppcb4le

Java redhat-openjdk- Maven, Gradle amd64, s390x, ppcb4le

18/openjdkl8-openshift

openjdk/openjdk-11- Maven, Gradle amd64, s390x, ppcb4le
rhel8
openjdk/openjdk-11- Maven, Gradle amd64, s390x, ppcb4le
rhel7

2.1.2.1.1. Listing available container images

NOTE

The list of available container images is sourced from the cluster’s internal container
registry and external registries associated with the cluster.

To list the available components and associated container images for your cluster:

38

1. Login to the cluster with odo:

I $ odo login -u developer -p developer

2. List the available odo supported and unsupported components and corresponding container
images:

I $ odo catalog list components
Example output

Odo Devfile Components:

NAME DESCRIPTION REGISTRY

java-maven Upstream Maven and OpenJDK 11 DefaultDevfileRegistry
java-openliberty Open Liberty microservice in Java DefaultDevfileRegistry
java-quarkus Upstream Quarkus with Java+GraalVM DefaultDevfileRegistry
java-springboot Spring Boot® using Java DefaultDevfileRegistry

nodejs Stack with NodedS 12 DefaultDevfileRegistry

Odo OpenShift Components:

NAME PROJECT TAGS SUPPORTED
java openshift 11,8 latest YES

dotnet openshift 2.1,3.1,latest NO

golang openshift 1.13.4-ubi7,1.13.4-ubi8,latest NO
httpd openshift 2.4-el7,2.4-el8,latest NO

nginx openshift 1.14-el7,1.14-el8,1.16-el7,1.16-el8,latest NO
nodejs openshift 10-ubi7,10-ubi8,12-ubi7,12-ubi8 latest NO

https://access.redhat.com/containers/#/registry.access.redhat.com/rhscl/nodejs-10-rhel7
https://access.redhat.com/containers/#/registry.access.redhat.com/rhscl/nodejs-12-rhel7
https://access.redhat.com/containers/#/registry.access.redhat.com/redhat-openjdk-18/openjdk18-openshift
https://access.redhat.com/containers/#/registry.access.redhat.com/openjdk/openjdk-11-rhel8
https://access.redhat.com/containers/#/registry.access.redhat.com/openjdk/openjdk-11-rhel7

CHAPTER 2. DEVELOPER CLI (ODO)

perl openshift 5.26-el7,5.26-ubi8,5.30-¢el7 latest NO

php openshift 7.2-ubi7,7.2-ubi8,7.3-ubi7,7.3-ubi8,latest NO
python openshift 2.7-ubi7,2.7-ubi8,3.6-ubi7,3.6-ubi8,3.8-ubi7,3.8-ubi8,latest

NO

ruby openshift 2.5-ubi7,2.5-ubi8,2.6-ubi7,2.6-ubi8,2.7-ubi7,latest NO

wildfly openshift
10.0,10.1,11.0,12.0,13.0,14.0,15.0,16.0,17.0,18.0,19.0,20.0,8.1,9.0,latest NO

The TAGS column represents the available image versions, for example, 10 represents the
rhoar-nodejs/nodejs-10 container image.

2.2. ODO ARCHITECTURE

This section describes odo architecture and how odo manages resources on a cluster.

2.2.1. Developer setup

With odo you can create and deploy application on OpenShift Container Platform clusters from a
terminal. Code editor plug-ins use odo which allows users to interact with OpenShift Container Platform
clusters from their IDE terminals. Examples of plug-ins that use odo: VS Code OpenShift Connector,
OpenShift Connector for Intellij, Codewind for Eclipse Che.

odo works on Windows, macOS, and Linux operating systems and from any terminal. odo provides
autocompletion for bash and zsh command line shells.

odo supports Node.js and Java components.

2.2.2. OpenShift source-to-image

OpenShift Source-to-Image (S2I) is an open-source project which helps in building artifacts from
source code and injecting these into container images. S2| produces ready-to-run images by building
source code without the need of a Dockerfile. odo uses S2I builder image for executing developer
source code inside a container.

2.2.3. OpenShift cluster objects

2.2.3.1. Init Containers

Init containers are specialized containers that run before the application container starts and configure
the necessary environment for the application containers to run. Init containers can have files that
application images do not have, for example setup scripts. Init containers always run to completion and
the application container does not start if any of the init containers fails.

The pod created by odo executes two Init Containers:

® The copy-supervisord Init container.

® The copy-files-to-volume Init container.

2.2.3.1.1. copy-supervisord

The copy-supervisord Init container copies necessary files onto an emptyDir volume. The main
application container utilizes these files from the emptyDir volume.

39

OpenShift Container Platform 4.5 CLI tools

Files that are copied onto theemptyDir volume:
® Binaries:

o go-init is a minimal init system. It runs as the first process (PID 1) inside the application
container. go-init starts the SupervisorD daemon which runs the developer code. go-init is
required to handle orphaned processes.

o SupervisorD is a process control system. It watches over configured processes and ensures
that they are running. It also restarts services when necessary. For odo, SupervisorD
executes and monitors the developer code.

e Configuration files:
o supervisor.conf is the configuration file necessary for the SupervisorD daemon to start.
® Scripts:

o assemble-and-restart is an OpenShift S2| concept to build and deploy user-source code.
The assemble-and-restart script first assembles the user source code inside the application
container and then restarts SupervisorD for user changes to take effect.

o Runis an OpenShift S2| concept of executing the assembled source code. The run script
executes the assembled code created by the assemble-and-restart script.

o s2j-setup is a script that creates files and directories which are necessary for the
assemble-and-restart and run scripts to execute successfully. The script is executed

whenever the application container starts.

® Directories:

o language-scripts: OpenShift S2| allows custom assemble and run scripts. A few language
specific custom scripts are present in the language-scripts directory. The custom scripts
provide additional configuration to make odo debug work.

The emptyDir volume is mounted at the /opt/odo mount point for both the Init container and the
application container.

2.2.3.1.2. copy-files-to-volume

The copy-files-to-volume Init container copies files that are in /opt/app-root in the S2I builder image
onto the persistent volume. The volume is then mounted at the same location (/fopt/app-root) in an
application container.

Without the persistent volume on /opt/app-root the data in this directory is lost when the persistent
volume claim is mounted at the same location.

The PVC is mounted at the /mnt mount point inside the Init container.

2.2.3.2. Application container
Application container is the main container inside of which the user-source code executes.
Application container is mounted with two volumes:

o emptyDir volume mounted at /opt/odo

® The persistent volume mounted at /opt/app-root

40

CHAPTER 2. DEVELOPER CLI (ODO)

go-init is executed as the first process inside the application container. The go-init process then starts
the SupervisorD daemon.

SupervisorD executes and monitors the user assembled source code. If the user process crashes,
SupervisorD restarts it.

2.2.3.3. Persistent volumes and persistent volume claims

A persistent volume claim (PVC) is a volume type in Kubernetes which provisions a persistent volume.
The life of a persistent volume is independent of a pod lifecycle. The data on the persistent volume
persists across pod restarts.

The copy-files-to-volume Init container copies necessary files onto the persistent volume. The main
application container utilizes these files at runtime for execution.

The naming convention of the persistent volume is <component_name>-s2idata.

Container PVC mounted at

copy-files-to-volume /mnt

Application container /opt/app-root

2.2.3.4. emptyDir volume

An emptyDir volume is created when a pod is assigned to a node, and exists as long as that pod is
running on the node. If the container is restarted or moved, the content of the emptyDir is removed, Init
container restores the data back to the emptyDir. emptyDir is initially empty.

The copy-supervisord Init container copies necessary files onto the emptyDir volume. These files are
then utilized by the main application container at runtime for execution.

Container emptyDir volume mounted at
copy-supervisord /opt/odo
Application container /opt/odo

2.2.3.5. Service

A service is a Kubernetes concept of abstracting the way of communicating with a set of pods.

odo creates a service for every application pod to make it accessible for communication.

2.2.4. odo push workflow

This section describes odo push workflow. odo push deploys user code on an OpenShift Container
Platform cluster with all the necessary OpenShift Container Platform resources.

1. Creating resources
If not already created, odo push creates the following OpenShift Container Platform resources:

41

OpenShift Container Platform 4.5 CLI tools

® DeploymentConfig object:

o Two init containers are executed: copy-supervisord and copy-files-to-volume. The
init containers copy files onto the emptyDir and the PersistentVolume type of
volumes respectively.

o The application container starts. The first process in the application container is the go-
init process with PID=1.

o go-init process starts the SupervisorD daemon.

NOTE

The user application code has not been copied into the application
container yet, so the SupervisorD daemon does not execute the run
script.

® Service object
® Secret objects
e PersistentVolumeClaim object

2. Indexing files

e A file indexer indexes the files in the source code directory. The indexer traverses through
the source code directories recursively and finds files which have been created, deleted, or
renamed.

® A file indexer maintains the indexed information in an odo index file inside the .odo
directory.

® |f the odo index file is not present, it means that the file indexer is being executed for the
first time, and creates a new odo index JSON file. The odo index JSON file contains a file
map - the relative file paths of the traversed files and the absolute paths of the changed
and deleted files.

3. Pushing code
Local code is copied into the application container, usually under /tmp/src.

4. Executing assemble-and-restart
On a successful copy of the source code, the assemble-and-restart script is executed inside
the running application container.

2.3.INSTALLING ODO

The following section describes how to install odo on different platforms using the CLI.

/, NOTE

Currently, odo does not support installation in a restricted network environment.

You can also find the URL to the latest binaries from the OpenShift Container Platform web console by
clicking the ? icon in the upper-right corner and selecting Command Line Tools

42

CHAPTER 2. DEVELOPER CLI (ODO)

2.3.1. Installing odo on Linux
2.3.1.1. Binary installation
Procedure

1. Obtain the binary:

curl -L https://mirror.openshift.com/pub/openshift-v4/clients/odo/latest/odo-linux-amd64 -o
/usr/local/bin/odo

2. Change the permissions on the file:
I # chmod +x /usr/local/bin/odo
2.3.1.2. Tarball installation

Procedure

1. Obtain the tarball:

sh -c 'curl -L https://mirror.openshift.com/pub/openshift-v4/clients/odo/latest/odo-linux-
amd64.tar.gz | gzip -d > /usr/local/bin/odo’

2. Change the permissions on the file:
I # chmod +x /usr/local/bin/odo
2.3.2. Installing odo on Linux on IBM Power
2.3.2.1. Binary installation
Procedure

1. Obtain the binary:

curl -L https://mirror.openshift.com/pub/openshift-v4/clients/odo/latest/odo-linux-ppc64le -0
/usr/local/bin/odo

2. Change the permissions on the file:

I # chmod +x /usr/local/bin/odo

2.3.2.2. Tarball installation

Procedure

1. Obtain the tarball:

43

OpenShift Container Platform 4.5 CLI tools

sh -c 'curl -L https://mirror.openshift.com/pub/openshift-v4/clients/odo/latest/odo-linux-
ppc64le.tar.gz | gzip -d > /usr/local/bin/odo’

2. Change the permissions on the file:

I # chmod +x /usr/local/bin/odo

2.3.3. Installing odo on Linux on IBM Z and LinuxONE
2.3.3.1. Binary installation

Procedure

1. Obtain the binary:

curl -L https://mirror.openshift.com/pub/openshift-v4/clients/odo/latest/odo-linux-s390x -0
/usr/local/bin/odo

2. Change the permissions on the file:

I # chmod +x /usr/local/bin/odo

2.3.3.2. Tarball installation

Procedure

1. Obtain the tarball:

sh -c 'curl -L https://mirror.openshift.com/pub/openshift-v4/clients/odo/latest/odo-linux-
s390x.tar.gz | gzip -d > /usr/local/bin/odo’

2. Change the permissions on the file:

I # chmod +x /usr/local/bin/odo

2.3.4. Installing odo on Windows

2.3.4.1. Binary installation
1. Download the latest odo.exe file.
2. Add the location of your odo.exe to your GOPATH/bin directory.

Setting the PATH variable for Windows 7/8
The following example demonstrates how to set up a path variable. Your binaries can be located in any
location, but this example uses C:\go-bin as the location.

1. Create a folder at C:\go-bin.

2. Right click Start and click Control Panel.

44

https://mirror.openshift.com/pub/openshift-v4/clients/odo/latest/odo-windows-amd64.exe

CHAPTER 2. DEVELOPER CLI (ODO)

3. Select System and Security and then click System.

4. From the menu on the left, select the Advanced systems settings and click the Environment
Variables button at the bottom.

5. Select Path from the Variable section and click Edit.

6. Click New and type C:\go-bin into the field or click Browse and select the directory, and click
OK.

Setting the PATH variable for Windows 10
Edit Environment Variables using search:

1. Click Search and type env or environment.
2. Select Edit environment variables for your account
3. Select Path from the Variable section and click Edit.

4. Click New and type C:\go-bin into the field or click Browse and select the directory, and click
OK.

2.3.5. Installing odo on macOS

2.3.5.1. Binary installation

Procedure

1. Obtain the binary:

curl -L https://mirror.openshift.com/pub/openshift-v4/clients/odo/latest/odo-darwin-amdé4 -o
/usr/local/bin/odo

2. Change the permissions on the file:

I # chmod +x /usr/local/bin/odo

2.3.5.2. Tarball installation

Procedure

1. Obtain the tarball:

sh -c 'curl -L https://mirror.openshift.com/pub/openshift-v4/clients/odo/latest/odo-darwin-
amd64.tar.gz | gzip -d > /ust/local/bin/odo’

2. Change the permissions on the file:

I # chmod +x /usr/local/bin/odo

2.4. USING ODO IN A RESTRICTED ENVIRONMENT

45

OpenShift Container Platform 4.5 CLI tools

2.4.1. About odo in a restricted environment

To run odo in a disconnected cluster or a cluster provisioned in a restricted environment, you must
ensure that a cluster administrator has created a cluster with a mirrored registry.

To start working in a disconnected cluster, you must first push the odo init image to the registry of the
cluster and then overwrite the odo init image path using the ODO_BOOTSTRAPPER_IMAGE
environment variable.

After you push the odo init image, you must mirror a supported builder image from the registry,
overwrite a mirror registry and then create your application. A builder image is necessary to configure a
runtime environment for your application and also contains the build tool needed to build your

application, for example npm for Node.js or Maven for Java. A mirror registry contains all the necessary
dependencies for your application.

Additional resources

® Mirroring images for a disconnected installation

® Accessing the registry

2.4.2. Pushing the odo init image to the restricted cluster registry

Depending on the configuration of your cluster and your operating system you can either push the odo
init image to a mirror registry or directly to an internal registry.

2.4.2.1. Prerequisites

® |[nstall oc on the client operating system.
® |nstall odo on the client operating system.

® Access to a restricted cluster with a configured internal registry or a mirror registry.

2.4.2.2. Pushing the odo init image to a mirror registry

Depending on your operating system, you can push the odo init image to a cluster with a mirror registry
as follows:

2.4.2.2.1. Pushing the init image to a mirror registry on Linux

Procedure

1. Use base64 to encode the root certification authority (CA) content of your mirror registry:

I $ echo <content_of_additional_ca> | base64 --decode > disconnect-ca.crt

2. Copy the encoded root CA certificate to the appropriate location:

I $ sudo cp ./disconnect-ca.crt /etc/pki/ca-trust/source/anchors/<mirror-registry>.crt

3. Trusta CAinyour client platform and log into the OpenShift Container Platform mirror registry:

46

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/cli_tools/#pushing-the-odo-init-image-to-a-mirror-registry_pushing-the-odo-init-image-to-the-restricted-cluster-registry
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/cli_tools/#mirroring-a-supported-builder-image_creating-and-deploying-a-component-to-the-disconnected-cluster
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/cli_tools/#overwriting-the-mirror-registry_creating-and-deploying-a-component-to-the-disconnected-cluster
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/cli_tools/#creating-a-nodejs-application-with-odo_creating-and-deploying-a-component-to-the-disconnected-cluster
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/installing/#installation-about-mirror-registry_installing-mirroring-installation-images
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/registry/#registry-accessing-directly_accessing-the-registry
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/cli_tools/#installing-odo-on-linux

CHAPTER 2. DEVELOPER CLI (ODO)

$ sudo update-ca-trust enable && sudo systemctl daemon-reload && sudo systemctl restart /
docker && docker login <mirror-registry>:5000 -u <username> -p <password>

4. Mirror the odo init image:

$ oc image mirror registry.access.redhat.com/openshiftdo/odo-init-image-rhel7:<tag>
<mirror-registry>:5000/openshiftdo/odo-init-image-rhel7:<tag>

5. Override the default odo init image path by setting the ODO_BOOTSTRAPPER_IMAGE
environment variable:

$ export ODO_BOOTSTRAPPER_IMAGE=<mirror-registry>:5000/openshiftdo/odo-init-
image-rhel7:<tag>

2.4.2.2.2. Pushing the init image to a mirror registry on MacOS
Procedure
1. Use base64 to encode the root certification authority (CA) content of your mirror registry:

I $ echo <content_of_additional_ca> | base64 --decode > disconnect-ca.crt

2. Copy the encoded root CA certificate to the appropriate location:

a. Restart Docker using the Docker UI.

b. Run the following command:

I $ docker login <mirror-registry>:5000 -u <username> -p <password>

3. Mirror the odo init image:

$ oc image mirror registry.access.redhat.com/openshiftdo/odo-init-image-rhel7:<tag>
<mirror-registry>:5000/openshiftdo/odo-init-image-rhel7:<tag>

4. Override the default odo init image path by setting the ODO_BOOTSTRAPPER_IMAGE
environment variable:

$ export ODO_BOOTSTRAPPER_IMAGE=<mirror-registry>:5000/openshiftdo/odo-init-
image-rhel7:<tag>

2.4.2.2.3. Pushing the init image to a mirror registry on Windows
Procedure
1. Use base64 to encode the root certification authority