
OpenShift Container Platform 4.5

Pipelines

Configuring and using Pipelines in OpenShift Container Platform

Last Updated: 2021-06-08

OpenShift Container Platform 4.5 Pipelines

Configuring and using Pipelines in OpenShift Container Platform

Legal Notice

Copyright © 2021 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides instructions for configuring and using pipelines in OpenShift Container
Platform.

. .

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. UNDERSTANDING OPENSHIFT PIPELINES
1.1. KEY FEATURES
1.2. RED HAT OPENSHIFT PIPELINES CONCEPTS
1.3. DETAILED OPENSHIFT PIPELINE CONCEPTS

1.3.1. Tasks
1.3.2. TaskRun
1.3.3. Pipelines
1.3.4. PipelineRun
1.3.5. Workspaces
1.3.6. Triggers

1.4. ADDITIONAL RESOURCES

CHAPTER 2. INSTALLING OPENSHIFT PIPELINES
Prerequisites
2.1. INSTALLING THE RED HAT OPENSHIFT PIPELINES OPERATOR IN WEB CONSOLE
2.2. INSTALLING THE OPENSHIFT PIPELINES OPERATOR USING THE CLI

CHAPTER 3. UNINSTALLING OPENSHIFT PIPELINES
3.1. DELETING THE RED HAT OPENSHIFT PIPELINES COMPONENTS AND CUSTOM RESOURCES
3.2. UNINSTALLING THE RED HAT OPENSHIFT PIPELINES OPERATOR

CHAPTER 4. CREATING CI/CD SOLUTIONS FOR APPLICATIONS USING OPENSHIFT PIPELINES
4.1. PREREQUISITES
4.2. CREATING A PROJECT AND CHECKING YOUR PIPELINE SERVICEACCOUNT
4.3. CREATING PIPELINE TASKS
4.4. ASSEMBLING A PIPELINE
4.5. SPECIFYING PERSISTENTVOLUMECLAIMS AS VOLUMESOURCE IN WORKSPACES
4.6. RUNNING A PIPELINE
4.7. ADDING TRIGGERS TO A PIPELINE
4.8. CREATING WEBHOOKS
4.9. TRIGGERING A PIPELINERUN
4.10. ADDITIONAL RESOURCES

CHAPTER 5. WORKING WITH RED HAT OPENSHIFT PIPELINES USING THE DEVELOPER PERSPECTIVE
Prerequisites
5.1. CONSTRUCTING PIPELINES USING THE PIPELINE BUILDER
5.2. CREATING APPLICATIONS WITH OPENSHIFT PIPELINES
5.3. INTERACTING WITH PIPELINES USING THE DEVELOPER PERSPECTIVE
5.4. STARTING PIPELINES
5.5. EDITING PIPELINES
5.6. DELETING PIPELINES

CHAPTER 6. RED HAT OPENSHIFT PIPELINES RELEASE NOTES
6.1. GETTING SUPPORT
6.2. RELEASE NOTES FOR RED HAT RED HAT OPENSHIFT PIPELINES TECHNOLOGY PREVIEW 1.1

6.2.1. New features
6.2.1.1. Pipelines
6.2.1.2. Pipelines CLI
6.2.1.3. Triggers

6.2.2. Deprecated features
6.2.3. Known issues
6.2.4. Fixed issues

4
4
4
5
5
6
7
9

10
12
14

15
15
15
16

17
17
17

18
18
18
19

20
22
23
24
26
26
27

28
28
28
30
30
31

34
34

35
35
35
35
35
37
37
38
38
39

Table of Contents

1

6.3. RELEASE NOTES FOR RED HAT RED HAT OPENSHIFT PIPELINES TECHNOLOGY PREVIEW 1.0
6.3.1. New features

6.3.1.1. Pipelines
6.3.1.2. Pipelines CLI
6.3.1.3. Triggers

6.3.2. Deprecated features
6.3.3. Known issues
6.3.4. Fixed issues

39
39
39
40
41
41
41

42

OpenShift Container Platform 4.5 Pipelines

2

Table of Contents

3

CHAPTER 1. UNDERSTANDING OPENSHIFT PIPELINES

IMPORTANT

OpenShift Pipelines is a Technology Preview feature only. Technology Preview features
are not supported with Red Hat production service level agreements (SLAs) and might
not be functionally complete. Red Hat does not recommend using them in production.
These features provide early access to upcoming product features, enabling customers
to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see https://access.redhat.com/support/offerings/techpreview/.

Red Hat OpenShift Pipelines is a cloud-native, continuous integration and continuous delivery (CI/CD)
solution based on Kubernetes resources. It uses Tekton building blocks to automate deployments across
multiple platforms by abstracting away the underlying implementation details. Tekton introduces a
number of standard Custom Resource Definitions (CRDs) for defining CI/CD pipelines that are portable
across Kubernetes distributions.

1.1. KEY FEATURES

Red Hat OpenShift Pipelines is a serverless CI/CD system that runs Pipelines with all the
required dependencies in isolated containers.

Red Hat OpenShift Pipelines are designed for decentralized teams that work on microservice-
based architecture.

Red Hat OpenShift Pipelines use standard CI/CD pipeline definitions that are easy to extend
and integrate with the existing Kubernetes tools, enabling you to scale on-demand.

You can use Red Hat OpenShift Pipelines to build images with Kubernetes tools such as
Source-to-Image (S2I), Buildah, Buildpacks, and Kaniko that are portable across any Kubernetes
platform.

You can use the OpenShift Container Platform Developer Console to create Tekton resources,
view logs of Pipeline runs, and manage pipelines in your OpenShift Container Platform
namespaces.

1.2. RED HAT OPENSHIFT PIPELINES CONCEPTS

Red Hat OpenShift Pipelines provide a set of standard Custom Resource Definitions (CRDs) that act as
the building blocks from which you can assemble a CI/CD pipeline for your application.

Task

A Task is the smallest configurable unit in a Pipeline. It is essentially a function of inputs and outputs
that form the Pipeline build. It can run individually or as a part of a Pipeline. A Pipeline includes one or
more Tasks, where each Task consists of one or more Steps. Steps are a series of commands that are
sequentially executed by the Task.

Pipeline

A Pipeline consists of a series of Tasks that are executed to construct complex workflows that
automate the build, deployment, and delivery of applications. It is a collection of PipelineResources,
parameters, and one or more Tasks. A Pipeline interacts with the outside world by using
PipelineResources, which are added to Tasks as inputs and outputs.

OpenShift Container Platform 4.5 Pipelines

4

https://access.redhat.com/support/offerings/techpreview/

PipelineRun

A PipelineRun is the running instance of a Pipeline. A PipelineRun initiates a Pipeline and manages
the creation of a TaskRun for each Task being executed in the Pipeline.

TaskRun

A TaskRun is automatically created by a PipelineRun for each Task in a Pipeline. It is the result of
running an instance of a Task in a Pipeline. It can also be manually created if a Task runs outside of a
Pipeline.

Workspace

A Workspace is a storage volume that a Task requires at runtime to receive input or provide output. A
Task or Pipeline declares the Workspace, and a TaskRun or PipelineRun provides the actual location
of the storage volume, which mounts on the declared Workspace. This makes the Task flexible,
reusable, and allows the Workspaces to be shared across multiple Tasks.

Trigger

A Trigger captures an external event, such as a Git pull request and processes the event payload to
extract key pieces of information. This extracted information is then mapped to a set of predefined
parameters, which trigger a series of tasks that may involve creation and deployment of Kubernetes
resources. You can use Triggers along with Pipelines to create full-fledged CI/CD systems where the
execution is defined entirely through Kubernetes resources.

Condition

A Condition refers to a validation or check, which is executed before a Task is run in your Pipeline.
Conditions are like if statements which perform logical tests, with a return value of True or False. A
Task is executed if all Conditions return True, but if any of the Conditions fail, the Task and all
subsequent Tasks are skipped. You can use Conditions in your Pipeline to create complex workflows
covering multiple scenarios.

1.3. DETAILED OPENSHIFT PIPELINE CONCEPTS

This guide provides a detailed view of the various Pipeline concepts.

1.3.1. Tasks

Tasks are the building blocks of a Pipeline and consist of sequentially executed Steps. Tasks are reusable
and can be used in multiple Pipelines.

Steps are a series of commands that achieve a specific goal, such as building an image. Every Task runs
as a pod and each Step runs in its own container within the same pod. Because Steps run within the
same pod, they have access to the same volumes for caching files, ConfigMaps, and Secrets.

The following example shows the apply-manifests Task.

apiVersion: tekton.dev/v1beta1 1
kind: Task 2
metadata:
 name: apply-manifests 3
spec: 4
 params:
 - default: k8s
 description: The directory in source that contains yaml manifests
 name: manifest_dir
 type: string
 steps:

CHAPTER 1. UNDERSTANDING OPENSHIFT PIPELINES

5

1

2

3

4

Task API version v1beta1.

Specifies the type of Kubernetes object. In this example, Task.

Unique name of this Task.

Lists the parameters and Steps in the Task and the workspace used by the Task.

This Task starts the pod and runs a container inside that pod using the maven:3.6.0-jdk-8-slim image to
run the specified commands. It receives an input directory called workspace-git that contains the
source code of the application.

The Task only declares the placeholder for the Git repository, it does not specify which Git repository to
use. This allows Tasks to be reusable for multiple Pipelines and purposes.

1.3.2. TaskRun

A TaskRun instantiates a Task for execution with specific inputs, outputs, and execution parameters on a
cluster. It can be invoked on its own or as part of a PipelineRun.

A Task consists of one or more Steps that execute container images, and each container image
performs a specific piece of build work. A TaskRun executes the Steps in a Task in the specified order,
until all Steps execute successfully or a failure occurs.

The following example shows a TaskRun that runs the apply-manifests Task with the relevant input
parameters:

 - args:
 - |-
 echo Applying manifests in $(inputs.params.manifest_dir) directory
 oc apply -f $(inputs.params.manifest_dir)
 echo -----------------------------------
 command:
 - /bin/bash
 - -c
 image: quay.io/openshift/origin-cli:latest
 name: apply
 workingDir: /workspace/source
 workspaces:
 - name: source

apiVersion: tekton.dev/v1beta1 1
kind: TaskRun 2
metadata:
 name: apply-manifests-taskrun 3
spec: 4
 serviceAccountName: pipeline
 taskRef: 5
 kind: Task
 name: apply-manifests
 workspaces: 6
 - name: source
 persistentVolumeClaim:
 claimName: source-pvc

OpenShift Container Platform 4.5 Pipelines

6

1

2

3

4

5

6

TaskRun API version v1beta1.

Specifies the type of Kubernetes object. In this example, TaskRun.

Unique name to identify this TaskRun.

Definition of the TaskRun. For this TaskRun, the Task and the required workspace are specified.

Name of the Task reference used for this TaskRun. This TaskRun executes the apply-manifests
Task.

Workspace used by the TaskRun.

1.3.3. Pipelines

A Pipeline is a collection of Tasks arranged in a specific order of execution. You can define a CI/CD
workflow for your application using Pipelines containing one or more Tasks.

A Pipeline definition consists of a number of fields or attributes, which together enable the Pipeline to
accomplish a specific goal. Each Pipeline definition must contain at least one Task, which ingests specific
inputs and produces specific outputs. The Pipeline definition can also optionally include Conditions,
Workspaces, Parameters, or Resources depending on the application requirements.

The following example shows the build-and-deploy Pipeline, which builds an application image from a
Git repository using the buildah ClusterTask:

apiVersion: tekton.dev/v1beta1 1
kind: Pipeline 2
metadata:
 name: build-and-deploy 3
spec: 4
 workspaces: 5
 - name: shared-workspace
 params: 6
 - name: deployment-name
 type: string
 description: name of the deployment to be patched
 - name: git-url
 type: string
 description: url of the git repo for the code of deployment
 - name: git-revision
 type: string
 description: revision to be used from repo of the code for deployment
 default: "release-tech-preview-2"
 - name: IMAGE
 type: string
 description: image to be built from the code
 tasks: 7
 - name: fetch-repository
 taskRef:
 name: git-clone
 kind: ClusterTask
 workspaces:
 - name: output

CHAPTER 1. UNDERSTANDING OPENSHIFT PIPELINES

7

1

2

3

4

5

Pipeline API version v1beta1.

Specifies the type of Kubernetes object. In this example, Pipeline.

Unique name of this Pipeline.

Specifies the definition and structure of the Pipeline.

Workspaces used across all the Tasks in the Pipeline.

 workspace: shared-workspace
 params:
 - name: url
 value: $(params.git-url)
 - name: subdirectory
 value: ""
 - name: deleteExisting
 value: "true"
 - name: revision
 value: $(params.git-revision)
 - name: build-image 8
 taskRef:
 name: buildah
 kind: ClusterTask
 params:
 - name: TLSVERIFY
 value: "false"
 - name: IMAGE
 value: $(params.IMAGE)
 workspaces:
 - name: source
 workspace: shared-workspace
 runAfter:
 - fetch-repository
 - name: apply-manifests 9
 taskRef:
 name: apply-manifests
 workspaces:
 - name: source
 workspace: shared-workspace
 runAfter: 10
 - build-image
 - name: update-deployment
 taskRef:
 name: update-deployment
 workspaces:
 - name: source
 workspace: shared-workspace
 params:
 - name: deployment
 value: $(params.deployment-name)
 - name: IMAGE
 value: $(params.IMAGE)
 runAfter:
 - apply-manifests

OpenShift Container Platform 4.5 Pipelines

8

6

7

8

9

10

1

2

3

4

5

Parameters used across all the Tasks in the Pipeline.

Specifies the list of Tasks used in the Pipeline.

Task build-image, which uses the buildah ClusterTask to build application images from a given Git
repository.

Task apply-manifests, which uses a user-defined Task with the same name.

Specifies the sequence in which Tasks are run in a Pipeline. In this example, the apply-manifests
Task is run only after the build-image Task is completed.

1.3.4. PipelineRun

A PipelineRun instantiates a Pipeline for execution with specific inputs, outputs, and execution
parameters on a cluster. A corresponding TaskRun is created for each Task automatically in the
PipelineRun.

All the Tasks in the Pipeline are executed in the defined sequence until all Tasks are successful or a Task
fails. The status field tracks and stores the progress of each TaskRun in the PipelineRun for monitoring
and auditing purpose.

The following example shows a PipelineRun to run the build-and-deploy Pipeline with relevant
resources and parameters:

PipelineRun API version v1beta1.

Specifies the type of Kubernetes object. In this example, PipelineRun.

Unique name to identify this PipelineRun.

Name of the Pipeline to be run. In this example, build-and-deploy.

Specifies the list of parameters required to run the Pipeline.

apiVersion: tekton.dev/v1beta1 1
kind: PipelineRun 2
metadata:
 name: build-deploy-api-pipelinerun 3
spec:
 pipelineRef:
 name: build-and-deploy 4
 params: 5
 - name: deployment-name
 value: vote-api
 - name: git-url
 value: http://github.com/openshift-pipelines/vote-api.git
 - name: IMAGE
 value: image-registry.openshift-image-registry.svc:5000/pipelines-tutorial/vote-api
 workspaces: 6
 - name: shared-workspace
 persistentvolumeclaim:
 claimName: source-pvc

CHAPTER 1. UNDERSTANDING OPENSHIFT PIPELINES

9

6 Workspace used by the PipelineRun.

1.3.5. Workspaces

NOTE

It is recommended that you use Workspaces instead of PipelineResources in OpenShift
Pipelines, as PipelineResources are difficult to debug, limited in scope, and make Tasks
less reusable.

Workspaces declare shared storage volumes that a Task in a Pipeline needs at runtime. Instead of
specifying the actual location of the volumes, Workspaces enable you to declare the filesystem or parts
of the filesystem that would be required at runtime. You must provide the specific location details of the
volume that is mounted into that Workspace in a TaskRun or a PipelineRun. This separation of volume
declaration from runtime storage volumes makes the Tasks reusable, flexible, and independent of the
user environment.

With Workspaces, you can:

Store Task inputs and outputs

Share data among Tasks

Use it as a mount point for credentials held in Secrets

Use it as a mount point for configurations held in ConfigMaps

Use it as a mount point for common tools shared by an organization

Create a cache of build artifacts that speed up jobs

You can specify Workspaces in the TaskRun or PipelineRun using:

A read-only ConfigMaps or Secret

An existing PersistentVolumeClaim shared with other Tasks

A PersistentVolumeClaim from a provided VolumeClaimTemplate

An emptyDir that is discarded when the TaskRun completes

The following example shows a code snippet of the build-and-deploy Pipeline, which declares a shared-
workspace Workspace for the build-image and apply-manifests Tasks as defined in the Pipeline.

apiVersion: tekton.dev/v1beta1
kind: Pipeline
metadata:
 name: build-and-deploy
spec:
 workspaces: 1
 - name: shared-workspace
 params:
...
 tasks: 2

OpenShift Container Platform 4.5 Pipelines

10

1

2

3

4

5

6

List of Workspaces shared between the Tasks defined in the Pipeline. A Pipeline can define as
many Workspaces as required. In this example, only one Workspace named shared-workspace is
declared.

Definition of Tasks used in the Pipeline. This snippet defines two Tasks, build-image and apply-
manifests, which share a common Workspace.

List of Workspaces used in the build-image Task. A Task definition can include as many
Workspaces as it requires. However, it is recommended that a Task uses at most one writable
Workspace.

Name that uniquely identifies the Workspace used in the Task. This Task uses one Workspace
named source.

Name of the Pipeline Workspace used by the Task. Note that the Workspace source in turn uses
the Pipeline Workspace named shared-workspace.

List of Workspaces used in the apply-manifests Task. Note that this Task shares the source
Workspace with the build-image Task.

Here is a code snippet of the build-deploy-api-pipelinerun PipelineRun, which uses a
PersistentVolumeClaim for defining the storage volume for the shared-workspace Workspace used in
the build-and-deploy Pipeline.

 - name: build-image
 taskRef:
 name: buildah
 kind: ClusterTask
 params:
 - name: TLSVERIFY
 value: "false"
 - name: IMAGE
 value: $(params.IMAGE)
 workspaces: 3
 - name: source 4
 workspace: shared-workspace 5
 runAfter:
 - fetch-repository
 - name: apply-manifests
 taskRef:
 name: apply-manifests
 workspaces: 6
 - name: source
 workspace: shared-workspace
 runAfter:
 - build-image
...

apiVersion: tekton.dev/v1beta1
kind: PipelineRun
metadata:
 name: build-deploy-api-pipelinerun
spec:
 pipelineRef:
 name: build-and-deploy

CHAPTER 1. UNDERSTANDING OPENSHIFT PIPELINES

11

1

2

3

Specifies the list of Pipeline Workspaces for which volume binding will be provided in the
PipelineRun.

The name of the Workspace in the Pipeline for which the volume is being provided.

Specifies the name of a predefined PersistentVolumeClaim, which will be attached to the
Workspace. In this example, an existing source-pvc PersistentVolumeClaim is attached with the
shared-workspace Workspace.

1.3.6. Triggers

Use Triggers in conjunction with Pipelines to create a full-fledged CI/CD system where the Kubernetes
resources define the entire CI/CD execution. Pipeline Triggers capture the external events and process
them to extract key pieces of information. Mapping this event data to a set of predefined parameters
triggers a series of tasks that can then create and deploy Kubernetes resources.

For example, you define a CI/CD workflow using Red Hat OpenShift Pipelines for your application. The
PipelineRun must start for any new changes to take effect in the application repository. Triggers
automate this process by capturing and processing any change events and by triggering a PipelineRun
that deploys the new image with the latest changes.

Triggers consist of the following main components that work together to form a reusable, decoupled,
and self-sustaining CI/CD system:

EventListeners provide endpoints, or an event sink, that listen for incoming HTTP-based events
with a JSON payload. The EventListener performs lightweight event processing on the payload
using Event Interceptors, which identify the type of payload and optionally modify it. Currently,
Pipeline Triggers support four types of Interceptors: Webhook Interceptors, GitHub
Interceptors, GitLab Interceptors, and Common Expression Language (CEL) Interceptors.

TriggerBindings extract the fields from an event payload and store them as parameters.

TriggerTemplates specify how to use the parameterized data from the TriggerBindings. A
TriggerTemplate defines a resource template that receives input from the TriggerBindings, and
then performs a series of actions that result in creation of new PipelineResources and initiation
of a new PipelineRun.

EventListeners tie the concepts of TriggerBindings and TriggerTemplates together. The EventListener
listens for the incoming event, handles basic filtering using Interceptors, extracts data using
TriggerBindings, and then processes this data to create Kubernetes resources using TriggerTemplates.

The following example shows a code snippet of the vote-app-binding TriggerBinding, which extracts
the Git repository information from the received event payload:

 params:
...

 workspaces: 1
 - name: shared-workspace 2
 persistentvolumeclaim:
 claimName: source-pvc 3

apiVersion: triggers.tekton.dev/v1alpha1 1
kind: TriggerBinding 2

OpenShift Container Platform 4.5 Pipelines

12

1

2

3

4

TriggerBinding API version v1alpha1.

Specifies the type of Kubernetes object. In this example, TriggerBinding.

Unique name to identify this TriggerBinding.

List of parameters which will be extracted from the received event payload and passed to the
TriggerTemplate. In this example, the Git repository URL, name, and revision are extracted from
the body of the event payload.

The following example shows a code snippet of a vote-app-template TriggerTemplate, which creates
Pipeline Resources from the Git repository information received from the TriggerBinding:

metadata:
 name: vote-app 3
spec:
 params: 4
 - name: git-repo-url
 value: $(body.repository.url)
 - name: git-repo-name
 value: $(body.repository.name)
 - name: git-revision
 value: $(body.head_commit.id)

apiVersion: triggers.tekton.dev/v1alpha1 1
kind: TriggerTemplate 2
metadata:
 name: vote-app 3
spec:
 params: 4
 - name: git-repo-url
 description: The git repository url
 - name: git-revision
 description: The git revision
 default: master
 - name: git-repo-name
 description: The name of the deployment to be created / patched

 resourcetemplates: 5
 - apiVersion: tekton.dev/v1beta1
 kind: PipelineRun
 metadata:
 name: build-deploy-$(tt.params.git-repo-name)-$(uid)
 spec:
 serviceAccountName: pipeline
 pipelineRef:
 name: build-and-deploy
 params:
 - name: deployment-name
 value: $(tt.params.git-repo-name)
 - name: git-url
 value: $(tt.params.git-repo-url)
 - name: git-revision
 value: $(tt.params.git-revision)

CHAPTER 1. UNDERSTANDING OPENSHIFT PIPELINES

13

1

2

3

4

5

1

2

3

4

5

6

TriggerTemplate API version v1alpha1.

Specifies the type of Kubernetes object. In this example, TriggerTemplate.

Unique name to identify this TriggerTemplate.

Parameters supplied by the TriggerBinding or EventListerner.

List of Resource templates created for the Pipeline from the parameters received in the
TriggerBinding or EventListener.

The following example shows an EventListener which uses vote-app-binding TriggerBinding and vote-
app-template TriggerTemplate to process incoming events.

EventListener API version v1alpha1.

Specifies the type of Kubernetes object. In this example, EventListener.

Unique name to identify this EventListener.

Service account name to be used.

Name of the TriggerBinding to be used for this EventListener.

Name of the Triggertemplate to be used for this Eventlistener.

1.4. ADDITIONAL RESOURCES

For information on installing Pipelines, see Installing OpenShift Pipelines .

For more details on creating custom CI/CD solutions, see Creating applications with CI/CD
Pipelines.

 - name: IMAGE
 value: image-registry.openshift-image-registry.svc:5000/pipelines-tutorial/$(tt.params.git-repo-
name)
 workspaces:
 - name: shared-workspace
 persistentvolumeclaim:
 claimName: source-pvc

apiVersion: triggers.tekton.dev/v1alpha1 1
kind: EventListener 2
metadata:
 name: vote-app 3
spec:
 serviceAccountName: pipeline 4
 triggers:
 - bindings: 5
 - ref: vote-app
 template: 6
 name: vote-app

OpenShift Container Platform 4.5 Pipelines

14

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/pipelines/#installing-pipelines
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/pipelines/#creating-applications-with-cicd-pipelines

CHAPTER 2. INSTALLING OPENSHIFT PIPELINES

Prerequisites

You have access to an OpenShift Container Platform cluster using an account with cluster-
admin permissions.

You have installed oc CLI.

You have installed OpenShift Pipelines (tkn) CLI on your local system.

2.1. INSTALLING THE RED HAT OPENSHIFT PIPELINES OPERATOR IN
WEB CONSOLE

You can install Red Hat OpenShift Pipelines using the Operator listed in the OpenShift Container
Platform OperatorHub. When you install the Red Hat OpenShift Pipelines Operator, the Custom
Resources (CRs) required for the Pipelines configuration are automatically installed along with the
Operator.

Procedure

1. In the Administrator perspective of the web console, navigate to Operators → OperatorHub.

2. Use the Filter by keyword box to search for Red Hat OpenShift Pipelines Operator in the
catalog. Click the OpenShift Pipelines Operator tile.

NOTE

Ensure that you do not select the Community version of the OpenShift
Pipelines Operator.

3. Read the brief description about the Operator on the Red Hat OpenShift Pipelines Operator
page. Click Install.

4. On the Install Operator page:

a. Select All namespaces on the cluster (default) for the Installation Mode. This mode
installs the Operator in the default openshift-operators namespace, which enables the
Operator to watch and be made available to all namespaces in the cluster.

b. Select Automatic for the Approval Strategy. This ensures that the future upgrades to the
Operator are handled automatically by the Operator Lifecycle Manager (OLM). If you select
the Manual approval strategy, OLM creates an update request. As a cluster administrator,
you must then manually approve the OLM update request to update the Operator to the
new version.

c. Select an Update Channel.

The ocp-<4.x> channel enables installation of the latest stable release of the Red Hat
OpenShift Pipelines Operator.

The preview channel enables installation of the latest preview version of the Red Hat
OpenShift Pipelines Operator, which may contain features that are not yet available
from the 4.x update channel.

CHAPTER 2. INSTALLING OPENSHIFT PIPELINES

15

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/cli_tools/#installing-tkn

1

2

3

4

5. Click Install. You will see the Operator listed on the Installed Operators page.

NOTE

The Operator is installed automatically into the openshift-operators namespace.

6. Verify that the Status is set to Succeeded Up to date to confirm successful installation of Red
Hat OpenShift Pipelines Operator.

2.2. INSTALLING THE OPENSHIFT PIPELINES OPERATOR USING THE
CLI

You can install Red Hat OpenShift Pipelines Operator from the OperatorHub using the CLI.

Procedure

1. Create a Subscription object YAML file to subscribe a namespace to the Red Hat OpenShift
Pipelines Operator, for example, sub.yaml:

Example Subscription

Specify the channel name from where you want to subscribe the Operator

Name of the Operator to subscribe to.

Name of the CatalogSource that provides the Operator.

Namespace of the CatalogSource. Use openshift-marketplace for the default
OperatorHub CatalogSources.

2. Create the Subscription object:

$ oc apply -f sub.yaml

The Red Hat OpenShift Pipelines Operator is now installed in the default target namespace
openshift-operators.

Additional Resources

You can learn more about installing Operators on OpenShift Container Platform in the adding
Operators to a cluster section.

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: openshift-pipelines-operator
 namespace: openshift-operators
spec:
 channel: <channel name> 1
 name: openshift-pipelines-operator-rh 2
 source: redhat-operators 3
 sourceNamespace: openshift-marketplace 4

OpenShift Container Platform 4.5 Pipelines

16

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/operators/#olm-adding-operators-to-a-cluster

CHAPTER 3. UNINSTALLING OPENSHIFT PIPELINES
Uninstalling the Red Hat OpenShift Pipelines Operator is a two-step process:

1. Delete the Custom Resources (CRs) that were added by default when you installed the Red Hat
OpenShift Pipelines Operator.

2. Uninstall the Red Hat OpenShift Pipelines Operator.

Uninstalling only the Operator will not remove the Red Hat OpenShift Pipelines components created by
default when the Operator is installed.

3.1. DELETING THE RED HAT OPENSHIFT PIPELINES COMPONENTS
AND CUSTOM RESOURCES

Delete the Custom Resources (CRs) created by default during installation of the Red Hat OpenShift
Pipelines Operator.

Procedure

1. In the Administrator perspective of the web console, navigate to Administration → Custom
Resource Definition.

2. Type config.operator.tekton.dev in the Filter by name box to search for the Red Hat
OpenShift Pipelines Operator CRs.

3. Click CRD Config to see the Custom Resource Definition Details page.

4. Click the Actions drop-down menu and select Delete Custom Resource Definition.

NOTE

Deleting the CRs will delete the Red Hat OpenShift Pipelines components, and
all the Tasks and Pipelines on the cluster will be lost.

5. Click Delete to confirm the deletion of the CRs.

3.2. UNINSTALLING THE RED HAT OPENSHIFT PIPELINES OPERATOR

Procedure

1. From the Operators → OperatorHub page, use the Filter by keyword box to search for Red
Hat OpenShift Pipelines Operator.

2. Click the OpenShift Pipelines Operator tile. The Operator tile indicates it is installed.

3. In the OpenShift Pipelines Operator descriptor page, click Uninstall.

Additional Resources

You can learn more about uninstalling Operators on OpenShift Container Platform in the
deleting Operators from a cluster section.

CHAPTER 3. UNINSTALLING OPENSHIFT PIPELINES

17

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/operators/#olm-deleting-operators-from-a-cluster

CHAPTER 4. CREATING CI/CD SOLUTIONS FOR
APPLICATIONS USING OPENSHIFT PIPELINES

With Red Hat OpenShift Pipelines, you can create a customized CI/CD solution to build, test, and deploy
your application.

To create a full-fledged, self-serving CI/CD Pipeline for an application, you must perform the following
tasks:

Create custom Tasks, or install existing reusable Tasks.

Create and define the delivery Pipeline for your application.

Create a PersistentVolumeClaim attached to the Workspace to provide the volume or
filesystem for Pipeline execution.

Create a PipelineRun to instantiate and invoke the Pipeline.

Add Triggers to capture any events in the source repository.

This section uses the pipelines-tutorial example to demonstrate the preceding tasks. The example uses
a simple application which consists of:

A front-end interface, vote-ui, with the source code in the ui-repo Git repository.

A back-end interface, vote-api, with the source code in the api-repo Git repository.

The apply_manifest and update-deployment Tasks in the pipelines-tutorial Git repository.

4.1. PREREQUISITES

You have access to an OpenShift Container Platform cluster.

You have installed OpenShift Pipelines using the Red Hat OpenShift Pipelines Operator listed in
the OpenShift OperatorHub. Once installed, it is applicable to the entire cluster.

You have installed OpenShift Pipelines CLI.

You have forked the front-end ui-repo and back-end api-repo Git repositories using your
GitHub ID, and have Administrator access to these repositories.

Optional: You have cloned the pipelines-tutorial Git repository.

4.2. CREATING A PROJECT AND CHECKING YOUR PIPELINE
SERVICEACCOUNT

Procedure

1. Log in to your OpenShift Container Platform cluster:

$ oc login -u <login> -p <password> https://openshift.example.com:6443

2. Create a project for the sample application. For this example workflow, create the pipelines-
tutorial project:

OpenShift Container Platform 4.5 Pipelines

18

https://github.com/openshift-pipelines/vote-ui/tree/release-tech-preview-2
https://github.com/openshift-pipelines/vote-api/tree/release-tech-preview-2
https://github.com/openshift/pipelines-tutorial/tree/release-tech-preview-2
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/pipelines/#installing-pipelines
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/cli_tools/#installing-tkn
https://github.com/openshift-pipelines/vote-ui/tree/release-tech-preview-2
https://github.com/openshift-pipelines/vote-api/tree/release-tech-preview-2
https://github.com/openshift/pipelines-tutorial/tree/release-tech-preview-2

$ oc new-project pipelines-tutorial

NOTE

If you create a project with a different name, be sure to update the resource
URLs used in the example with your project name.

3. View the pipeline ServiceAccount:
Red Hat OpenShift Pipelines Operator adds and configures a ServiceAccount named pipeline
that has sufficient permissions to build and push an image. This ServiceAccount is used by
PipelineRun.

$ oc get serviceaccount pipeline

4.3. CREATING PIPELINE TASKS

Procedure

1. Install the apply-manifests and update-deployment Tasks from the pipelines-tutorial
repository, which contains a list of reusable Tasks for Pipelines:

$ oc create -f https://raw.githubusercontent.com/openshift/pipelines-tutorial/release-tech-
preview-2/01_pipeline/01_apply_manifest_task.yaml
$ oc create -f https://raw.githubusercontent.com/openshift/pipelines-tutorial/release-tech-
preview-2/01_pipeline/02_update_deployment_task.yaml

2. Use the tkn task list command to list the Tasks you created:

$ tkn task list

The output verifies that the apply-manifests and update-deployment Tasks were created:

NAME DESCRIPTION AGE
apply-manifests 1 minute ago
update-deployment 48 seconds ago

3. Use the tkn clustertasks list command to list the Operator-installed additional ClusterTasks,
for example --buildah and s2i-python-3:

NOTE

You must use a privileged Pod container to run the buildah ClusterTask because
it requires a privileged security context. To learn more about security context
constraints (SCC) for pods, see the Additional resources section.

$ tkn clustertasks list

The output lists the Operator-installed ClusterTasks:

NAME DESCRIPTION AGE

CHAPTER 4. CREATING CI/CD SOLUTIONS FOR APPLICATIONS USING OPENSHIFT PIPELINES

19

buildah 1 day ago
git-clone 1 day ago
s2i-php 1 day ago
tkn 1 day ago

4.4. ASSEMBLING A PIPELINE

A Pipeline represents a CI/CD flow and is defined by the Tasks to be executed. It is designed to be
generic and reusable in multiple applications and environments.

A Pipeline specifies how the Tasks interact with each other and their order of execution using the from
and runAfter parameters. It uses the workspaces field to specify one or more volumes that each Task in
the Pipeline requires during execution.

In this section, you will create a Pipeline that takes the source code of the application from GitHub and
then builds and deploys it on OpenShift Container Platform.

The Pipeline performs the following tasks for the back-end application vote-api and front-end
application vote-ui:

Clones the source code of the application from the Git repository by referring to the git-url and
git-revision parameters.

Builds the container image using the buildah ClusterTask.

Pushes the image to the internal image registry by referring to the image parameter.

Deploys the new image on OpenShift Container Platform by using the apply-manifests and
update-deployment Tasks.

Procedure

1. Copy the contents of the following sample Pipeline YAML file and save it:

apiVersion: tekton.dev/v1beta1
kind: Pipeline
metadata:
 name: build-and-deploy
spec:
 workspaces:
 - name: shared-workspace
 params:
 - name: deployment-name
 type: string
 description: name of the deployment to be patched
 - name: git-url
 type: string
 description: url of the git repo for the code of deployment
 - name: git-revision
 type: string
 description: revision to be used from repo of the code for deployment
 default: "release-tech-preview-2"
 - name: IMAGE
 type: string
 description: image to be built from the code

OpenShift Container Platform 4.5 Pipelines

20

The Pipeline definition abstracts away the specifics of the Git source repository and image
registries. These details are added as params when a Pipeline is triggered and executed.

 tasks:
 - name: fetch-repository
 taskRef:
 name: git-clone
 kind: ClusterTask
 workspaces:
 - name: output
 workspace: shared-workspace
 params:
 - name: url
 value: $(params.git-url)
 - name: subdirectory
 value: ""
 - name: deleteExisting
 value: "true"
 - name: revision
 value: $(params.git-revision)
 - name: build-image
 taskRef:
 name: buildah
 kind: ClusterTask
 params:
 - name: TLSVERIFY
 value: "false"
 - name: IMAGE
 value: $(params.IMAGE)
 workspaces:
 - name: source
 workspace: shared-workspace
 runAfter:
 - fetch-repository
 - name: apply-manifests
 taskRef:
 name: apply-manifests
 workspaces:
 - name: source
 workspace: shared-workspace
 runAfter:
 - build-image
 - name: update-deployment
 taskRef:
 name: update-deployment
 workspaces:
 - name: source
 workspace: shared-workspace
 params:
 - name: deployment
 value: $(params.deployment-name)
 - name: IMAGE
 value: $(params.IMAGE)
 runAfter:
 - apply-manifests

CHAPTER 4. CREATING CI/CD SOLUTIONS FOR APPLICATIONS USING OPENSHIFT PIPELINES

21

2. Create the Pipeline:

$ oc create -f <pipeline-yaml-file-name.yaml>

Alternatively, you can also execute the YAML file directly from the Git repository:

$ oc create -f https://raw.githubusercontent.com/openshift/pipelines-tutorial/release-tech-
preview-2/01_pipeline/04_pipeline.yaml

3. Use the tkn pipeline list command to verify that the Pipeline is added to the application:

$ tkn pipeline list

The output verifies that the build-and-deploy Pipeline was created:

NAME AGE LAST RUN STARTED DURATION STATUS
build-and-deploy 1 minute ago --- --- --- ---

4.5. SPECIFYING PERSISTENTVOLUMECLAIMS AS VOLUMESOURCE
IN WORKSPACES

Workspaces help Tasks share data, and allow you to specify one or more volumes that each Task in the
Pipeline requires during execution.

In this section, you will create a PersistentVolumeClaim to provide data storage and bind it to the
Workspace. This PersistentVolumeClaim provides the volumes or filesystem required for the Pipeline
execution.

Procedure

1. Copy and save the contents of the following sample PersistentVolumeClaim YAML file:

2. Create the PersistentVolumeClaim, specifying the file you just created:

$ oc create -f <PersistentVolumeClaim-yaml-file-name.yaml>

Alternatively, you can execute the YAML file directly from the Git repository:

$ oc create -f https://raw.githubusercontent.com/openshift/pipelines-tutorial/release-tech-
preview-2/01_pipeline/03_persistent_volume_claim.yaml

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: source-pvc
spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 500Mi

OpenShift Container Platform 4.5 Pipelines

22

4.6. RUNNING A PIPELINE

A PipelineRun starts a Pipeline and ties it to the Git and image resources that should be used for the
specific invocation. It automatically creates and starts the TaskRuns for each Task in the Pipeline.

Procedure

1. Start the Pipeline for the back-end application:

$ tkn pipeline start build-and-deploy -w name=shared-workspace,claimName=source-pvc -p
deployment-name=vote-api -p git-url=http://github.com/openshift-pipelines/vote-api.git -p
IMAGE=image-registry.openshift-image-registry.svc:5000/pipelines-tutorial/vote-api

Note the PipelineRun ID returned in the command output.

2. Track the PipelineRun progress:

$ tkn pipelinerun logs <pipelinerun ID> -f

3. Start the Pipeline for the front-end application:

$ tkn pipeline start build-and-deploy -w name=shared-workspace,claimName=source-pvc -p
deployment-name=vote-api -p git-url=http://github.com/openshift-pipelines/vote-ui.git -p
IMAGE=image-registry.openshift-image-registry.svc:5000/pipelines-tutorial/vote-ui

Note the PipelineRun ID returned in the command output.

4. Track the PipelineRun progress:

$ tkn pipelinerun logs <pipelinerun ID> -f

5. After a few minutes, use tkn pipelinerun list command to verify that the Pipeline ran
successfully by listing all the PipelineRuns:

$ tkn pipelinerun list

The output lists the PipelineRuns:

 NAME STARTED DURATION STATUS
 build-and-deploy-run-xy7rw 1 hour ago 2 minutes Succeeded
 build-and-deploy-run-z2rz8 1 hour ago 19 minutes Succeeded

6. Get the application route:

$ oc get route vote-ui --template='http://{{.spec.host}}'

Note the output of the previous command. You can access the application using this route.

7. To rerun the last PipelineRun, using the PipelineResources and ServiceAccount of the previous
Pipeline, run:

$ tkn pipeline start build-and-deploy --last

CHAPTER 4. CREATING CI/CD SOLUTIONS FOR APPLICATIONS USING OPENSHIFT PIPELINES

23

4.7. ADDING TRIGGERS TO A PIPELINE

Triggers enable Pipelines to respond to external GitHub events, such as push events and pull requests.
After you have assembled and started the Pipeline for the application, add TriggerBindings,
TriggerTemplates, and an EventListener to capture the GitHub events.

Procedure

1. Copy the content of the following sample TriggerBinding YAML file and save it:

2. Create the TriggerBinding:

$ oc create -f <triggerbinding-yaml-file-name.yaml>

Alternatively, you can create the TriggerBinding directly from the pipelines-tutorial Git
repository:

$ oc create -f https://raw.githubusercontent.com/openshift/pipelines-tutorial/release-tech-
preview-2/03_triggers/01_binding.yaml

3. Copy the content of the following sample TriggerTemplate YAML file and save it:

apiVersion: triggers.tekton.dev/v1alpha1
kind: TriggerBinding
metadata:
 name: vote-app
spec:
 params:
 - name: git-repo-url
 value: $(body.repository.url)
 - name: git-repo-name
 value: $(body.repository.name)
 - name: git-revision
 value: $(body.head_commit.id)

apiVersion: triggers.tekton.dev/v1alpha1
kind: TriggerTemplate
metadata:
 name: vote-app
spec:
 params:
 - name: git-repo-url
 description: The git repository url
 - name: git-revision
 description: The git revision
 default: release-tech-preview-2
 - name: git-repo-name
 description: The name of the deployment to be created / patched

 resourcetemplates:
 - apiVersion: tekton.dev/v1beta1
 kind: PipelineRun
 metadata:
 name: build-deploy-$(params.git-repo-name)-$(uid)

OpenShift Container Platform 4.5 Pipelines

24

4. Create the TriggerTemplate:

$ oc create -f <triggertemplate-yaml-file-name.yaml>

Alternatively, you can create the TriggerTemplate directly from the pipelines-tutorial Git
repository:

$ oc create -f https://raw.githubusercontent.com/openshift/pipelines-tutorial/release-tech-
preview-2/03_triggers/02_template.yaml

5. Copy the contents of the following sample EventListener YAML file and save it:

6. Create the EventListener:

$ oc create -f <eventlistener-yaml-file-name.yaml>

Alternatively, you can create the EvenListener directly from the pipelines-tutorial Git
repository:

$ oc create -f https://raw.githubusercontent.com/openshift/pipelines-tutorial/release-tech-
preview-2/03_triggers/03_event_listener.yaml

7. Expose the EventListener service as an OpenShift Container Platform route to make it publicly

 spec:
 serviceAccountName: pipeline
 pipelineRef:
 name: build-and-deploy
 params:
 - name: deployment-name
 value: $(tt.params.git-repo-name)
 - name: git-url
 value: $(tt.params.git-repo-url)
 - name: git-revision
 value: $(tt.params.git-revision)
 - name: IMAGE
 value: image-registry.openshift-image-registry.svc:5000/pipelines-
tutorial/$(tt.params.git-repo-name)
 workspaces:
 - name: shared-workspace
 persistentvolumeclaim:
 claimName: source-pvc

apiVersion: triggers.tekton.dev/v1alpha1
kind: EventListener
metadata:
 name: vote-app
spec:
 serviceAccountName: pipeline
 triggers:
 - bindings:
 - ref: vote-app
 template:
 name: vote-app

CHAPTER 4. CREATING CI/CD SOLUTIONS FOR APPLICATIONS USING OPENSHIFT PIPELINES

25

7. Expose the EventListener service as an OpenShift Container Platform route to make it publicly
accessible:

$ oc expose svc el-vote-app

4.8. CREATING WEBHOOKS

Webhooks are HTTP POST messages that are received by the EventListeners whenever a configured
event occurs in your repository. The event payload is then mapped to TriggerBindings, and processed by
TriggerTemplates. The TriggerTemplates eventually start one or more PipelineRuns, leading to the
creation and deployment of Kubernetes resources.

In this section, you will configure a Webhook URL on your forked Git repositories vote-ui and vote-api.
This URL points to the publicly accessible EventListener service route.

NOTE

Adding Webhooks requires administrative privileges to the repository. If you do not have
administrative access to your repository, contact your system administrator for adding
Webhooks.

Procedure

1. Get the Webhook URL:

$ echo "URL: $(oc get route el-vote-app --template='http://{{.spec.host}}')"

Note the URL obtained in the output.

2. Configure Webhooks manually on the front-end repository:

a. Open the front-end Git repository vote-ui in your browser.

b. Click Settings → Webhooks → Add Webhook

c. On the Webhooks/Add Webhook page:

i. Enter the Webhook URL from step 1 in Payload URL field

ii. Select application/json for the Content type

iii. Specify the secret in the Secret field

iv. Ensure that the Just the push event is selected

v. Select Active

vi. Click Add Webhook

3. Repeat step 2 for the back-end repository vote-api.

4.9. TRIGGERING A PIPELINERUN

Whenever a push event occurs in the Git repository, the configured Webhook sends an event payload
to the publicly exposed EventListener service route. The EventListener service of the application

OpenShift Container Platform 4.5 Pipelines

26

processes the payload, and passes it to the relevant TriggerBindings and TriggerTemplates pair. The
TriggerBinding extracts the parameters and the TriggerTemplate uses these parameters to create
resources. This may rebuild and redeploy the application.

In this section, you push an empty commit to the front-end vote-ui repository, which then triggers the
PipelineRun.

Procedure

1. From the terminal, clone your forked Git repository vote-ui:

$ git clone git@github.com:<your GitHub ID>/vote-ui.git -b release-tech-preview-2

2. Push an empty commit:

$ git commit -m "empty-commit" --allow-empty && git push origin release-tech-preview-2

3. Check if the PipelineRun was triggered:

$ tkn pipelinerun list

Notice that a new PipelineRun was initiated.

4.10. ADDITIONAL RESOURCES

For more details on pipelines in the Developer perspective, see the working with Pipelines in
the Developer perspective section.

To learn more about Security Context Constraints (SCCs), see Managing Security Context
Constraints section.

For more examples of reusable Tasks, see the OpenShift Catalog repository. Additionally, you
can also see the Tekton Catalog in the Tekton project.

CHAPTER 4. CREATING CI/CD SOLUTIONS FOR APPLICATIONS USING OPENSHIFT PIPELINES

27

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/pipelines/#working-with-pipelines-using-the-developer-perspective
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/authentication_and_authorization/#managing-pod-security-policies
https://github.com/openshift/pipelines-catalog

CHAPTER 5. WORKING WITH RED HAT OPENSHIFT PIPELINES
USING THE DEVELOPER PERSPECTIVE

You can use the Developer perspective of the OpenShift Container Platform web console to create
CI/CD Pipelines for your software delivery process.

In the Developer perspective:

Use the Add → Pipeline → Pipeline Builder option to create customized Pipelines for your
application.

Use the Add → From Git option to create Pipelines using operator-installed Pipeline templates
and resources while creating an application on OpenShift Container Platform.

After you create the Pipelines for your application, you can view and visually interact with the deployed
Pipelines in the Pipelines view. You can also use the Topology view to interact with the Pipelines
created using the From Git option. You need to apply custom labels to a Pipeline created using the
Pipeline Builder to see it in the Topology view.

Prerequisites

You have access to an OpenShift Container Platform cluster and have switched to the
Developer perspective in the web console.

You have the OpenShift Pipelines Operator installed in your cluster.

You are a cluster administrator or a user with create and edit permissions.

You have created a project.

5.1. CONSTRUCTING PIPELINES USING THE PIPELINE BUILDER

In the Developer perspective of the console, you can use the Add → Pipeline → Pipeline Builder option
to:

Construct a Pipeline flow using existing Tasks and ClusterTasks. When you install the OpenShift
Pipelines Operator, it adds reusable Pipeline ClusterTasks to your cluster.

Specify the type of resources required for the Pipeline Run, and if required, add additional
parameters to the Pipeline.

Reference these Pipeline resources in each of the Tasks in the Pipeline as input and output
resources.

The parameters for a Task are prepopulated based on the specifications of the Task. If required,
reference any additional parameters added to the Pipeline in the Task.

Procedure

1. In the Add view of the Developer perspective, click the Pipeline tile to see the Pipeline Builder
page.

2. Enter a unique name for the Pipeline.

3. Select a Task from the Select task list to add a Task to the Pipeline. This example uses the s2i-

OpenShift Container Platform 4.5 Pipelines

28

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/web_console/#developer-perspective
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/pipelines/#installing-pipelines

3. Select a Task from the Select task list to add a Task to the Pipeline. This example uses the s2i-
nodejs Task.

a. To add sequential Tasks to the Pipeline, click the plus icon to the right or left of the Task,
and from the Select task list, select the Task you want to add to the Pipeline. For this
example, use the plus icon to the right of the s2i-nodejs Task to add an openshift-client
Task.

b. To add a parallel Task to the existing Task, click the plus icon displayed below the Task, and
from the Select Task list, select the parallel Task you want to add to the Pipeline.

Figure 5.1. Pipeline Builder

4. Click Add Resources to specify the name and type of resources that the Pipeline Run will use.
These resources are then used by the Tasks in the Pipeline as inputs and outputs. For this
example:

a. Add an input resource. In the Name field, enter Source, and from the Resource Type drop-
down list, select Git.

b. Add an output resource. In the Name field, enter Img, and from the Resource Type drop-
down list, select Image.

5. The Parameters for a Task are prepopulated based on the specifications of the Task. If
required, use the Add Parameters link to add additional parameters.

6. A Missing Resources warning is displayed on a Task if the resources for the Task are not
specified. Click the s2i-nodejs Task to see the side panel with details for the Task.

Figure 5.2. Tasks details in Pipelines Builder

CHAPTER 5. WORKING WITH RED HAT OPENSHIFT PIPELINES USING THE DEVELOPER PERSPECTIVE

29

Figure 5.2. Tasks details in Pipelines Builder

7. In the Task side panel, specify the resources and parameters for it:

a. In the Input Resources → Source section, the Select Resources drop-down list displays
the resources that you added to the Pipeline. For this example, select Source.

b. In the Output Resources → Image section, click the Select Resources list, and select Img.

c. If required, in the Parameters section, add more parameters to the default ones, by using
the $(params.<param-name>) syntax.

8. Similarly, add an input resource for the openshift-client Task.

9. Click Create to create the Pipeline. You are redirected to the Pipeline Details page that
displays the details of the created Pipeline. You can now use the Action button to start the
Pipeline.

Optionally, you can also use the Edit YAML link, on the upper right of the Pipeline Builder page, to
directly modify a Pipeline YAML file in the console. You can also use the operator-installed, reusable
snippets and samples to create detailed Pipelines.

5.2. CREATING APPLICATIONS WITH OPENSHIFT PIPELINES

To create Pipelines along with applications, use the From Git option in the Add view of the Developer
perspective. For more information, see Creating applications using the Developer perspective .

5.3. INTERACTING WITH PIPELINES USING THE DEVELOPER
PERSPECTIVE

The Pipelines view in the Developer perspective lists all the Pipelines in a project along with details,
such as the namespace in which the Pipeline was created, the last PipelineRun, the status of the Tasks in
the PipelineRun, the status of the PipelineRun, and the time taken for the run.

Procedure

1. In the Pipelines view of the Developer perspective, select a project from the Project drop-
down list to see the Pipelines in that project.

Figure 5.3. Pipelines view in the Developer perspective

OpenShift Container Platform 4.5 Pipelines

30

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/applications/#odc-importing-codebase-from-git-to-create-application_odc-creating-applications-using-developer-perspective

Figure 5.3. Pipelines view in the Developer perspective

2. Click the required Pipeline to see the Pipeline Details page. This page provides a visual
representation of all the serial and parallel Tasks in the Pipeline. The Tasks are also listed at the
lower right of the page. You can click the listed Tasks to view Task details.

3. Optionally, in the Pipeline Details page:

Click the YAML tab to edit the YAML file for the Pipeline.

Click the Pipeline Runs tab to see the completed, running, or failed runs for the Pipeline.

You can use the Options menu to stop a running Pipeline, to rerun a Pipeline using
the same parameters and resources as that of the previous Pipeline execution, or to delete
a PipelineRun.

Click the Parameters tab to see the parameters defined in the Pipeline. You can also add or
edit additional parameters as required.

Click the Resources tab to see the resources defined in the Pipeline. You can also add or
edit additional resources as required.

5.4. STARTING PIPELINES

After you create a Pipeline, you need to start it to execute the included Tasks in the defined sequence.
You can start a Pipeline Run from the Pipelines view, Pipeline Details page, or the Topology view.

Procedure

To start a Pipeline using the Pipelines view:

1. In the Pipelines view of the Developer perspective, click the Options menu adjoining a
Pipeline, and select Start.

2. The Start Pipeline dialog box displays the Git Resources and the Image Resources based on
the Pipeline definition.

NOTE

For Pipelines created using the From Git option, the Start Pipeline dialog box
also displays an APP_NAME field in the Parameters section, and all the fields in
the dialog box are prepopulated by the Pipeline templates.

a. If you have resources in your namespace, the Git Resources and the Image Resources

CHAPTER 5. WORKING WITH RED HAT OPENSHIFT PIPELINES USING THE DEVELOPER PERSPECTIVE

31

a. If you have resources in your namespace, the Git Resources and the Image Resources
fields are prepopulated with those resources. If required, use the drop-downs to select or
create the required resources and customize the Pipeline Run instance.

3. Optional: Modify the Advanced Options to add credentials to authenticate the specified
private Git server or Docker registry.

a. Under Advanced Options, click Show Credentials Options and select Add Secret.

b. In the Create Source Secret section, specify the following:

i. A unique Secret Name for the secret.

ii. In the Designated provider to be authenticated section, specify the provider to be
authenticated in the Access to field, and the base Server URL.

iii. Select the Authentication Type and provide the credentials:

For the Authentication Type Image Registry Crendentials, specify the Registry
Server Address that you want to authenticate, and provide your credentials in the
Username, Password, and Email fields.
Select Add Credentials if you want to specify an additional Registry Server
Address.

For the Authentication Type Basic Authentication, specify the values for the
UserName and Password or Token fields.

For the Authentication Type SSH Keys, specify the value for the SSH Private Key
field.

iv. Select the check mark to add the secret.

You can add multiple secrets based upon the number of resources in your Pipeline.

4. Click Start to start the PipelineRun.

5. The Pipeline Run Details page displays the Pipeline being executed. After the Pipeline starts,
the Tasks and Steps within each Task are executed. You can:

Hover over the Tasks to see the time taken for the execution of each Step.

Click on a Task to see logs for each of the Steps in the Task.

Click the Logs tab to see the logs according to the execution sequence of the Tasks and
use the Download button to download the logs to a text file.

Figure 5.4. Pipeline run

OpenShift Container Platform 4.5 Pipelines

32

Figure 5.4. Pipeline run

6. For Pipelines created using the From Git option, you can use the Topology view to interact
with Pipelines after you start them:

NOTE

To see Pipelines created using the Pipeline Builder in the Topology view,
customize the Pipeline labels to link the Pipeline with the application workload.

a. On the left navigation panel, click Topology, and click on the application to see the Pipeline
Runs listed in the side panel.

b. In the Pipeline Runs section, click Start Last Run to start a new Pipeline Run with the same
parameters and resources as the previous ones. This option is disabled if a Pipeline Run has
not been initiated.

Figure 5.5. Pipelines on the Topology view

CHAPTER 5. WORKING WITH RED HAT OPENSHIFT PIPELINES USING THE DEVELOPER PERSPECTIVE

33

Figure 5.5. Pipelines on the Topology view

c. In the Topology page, hover to the left of the application to see the status of the Pipeline
Run for the application.

5.5. EDITING PIPELINES

You can edit the Pipelines in your cluster using the Developer perspective of the web console:

Procedure

1. In the Pipelines view of the Developer perspective, select the Pipeline you want to edit to see
the details of the Pipeline. In the Pipeline Details page, click Actions and select Edit Pipeline.

2. In the Pipeline Builder page:

You can add additional Tasks, parameters, or resources to the Pipeline.

You can click the Task you want to modify to see the Task details in the side panel and
modify the required Task details, such as the display name, parameters and resources.

Alternatively, to delete the Task, click the Task, and in the side panel, click Actions and
select Remove Task.

3. Click Save to save the modified Pipeline.

5.6. DELETING PIPELINES

You can delete the Pipelines in your cluster using the Developer perspective of the web console.

Procedure

1. In the Pipelines view of the Developer perspective, click the Options menu adjoining a
Pipeline, and select Delete Pipeline.

2. In the Delete Pipeline confirmation prompt, click Delete to confirm the deletion.

OpenShift Container Platform 4.5 Pipelines

34

CHAPTER 6. RED HAT OPENSHIFT PIPELINES RELEASE
NOTES

Red Hat OpenShift Pipelines is a cloud-native CI/CD experience based on the Tekton project which
provides:

Standard Kubernetes-native pipeline definitions (CRDs).

Serverless pipelines with no CI server management overhead.

Extensibility to build images using any Kubernetes tool, such as S2I, Buildah, JIB, and Kaniko.

Portability across any Kubernetes distribution.

Powerful CLI for interacting with pipelines.

Integrated user experience with the Developer perspective of the OpenShift Container
Platform web console.

For an overview of Red Hat OpenShift Pipelines, see Understanding OpenShift Pipelines .

6.1. GETTING SUPPORT

If you experience difficulty with a procedure described in this documentation, visit the Red Hat
Customer Portal to learn more about Red Hat Technology Preview features support scope .

For questions and feedback, you can send an email to the product team at pipelines-
interest@redhat.com.

6.2. RELEASE NOTES FOR RED HAT RED HAT OPENSHIFT PIPELINES
TECHNOLOGY PREVIEW 1.1

6.2.1. New features

Red Hat OpenShift Pipelines Technology Preview (TP) 1.1 is now available on OpenShift Container
Platform 4.5. Red Hat OpenShift Pipelines TP 1.1 is updated to support:

Tekton Pipelines 0.14.3

Tekton tkn CLI 0.11.0

Tekton Triggers 0.6.1

ClusterTasks based on Tekton Catalog 0.14

In addition to the fixes and stability improvements, here is a highlight of what’s new in OpenShift
Pipelines 1.1.

6.2.1.1. Pipelines

Workspaces can now be used instead of PipelineResources. It is recommended that you use
Workspaces in OpenShift Pipelines, as PipelineResources are difficult to debug, limited in scope,
and make Tasks less reusable. For more details on Workspaces, see Understanding OpenShift
Pipelines.

CHAPTER 6. RED HAT OPENSHIFT PIPELINES RELEASE NOTES

35

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/pipelines/#understanding-openshift-pipelines
https://access.redhat.com/support/offerings/techpreview/
mailto:pipelines-interest@redhat.com

Workspace support for VolumeClaimTemplates has been added:

The VolumeClaimTemplate for a PipelineRun and TaskRun can now be added as a volume
source for Workspaces. The tekton-controller then creates a PersistentVolumeClaim (PVC)
using the template that is seen as a PVC for all TaskRuns in the Pipeline. Thus you do not
need to define the PVC configuration every time it binds a workspace that spans multiple
tasks.

Support to find the name of the PersistentVolumeClaim when a VolumeClaimTemplate is
used as a volume source is now available using variable substitution.

Support for improving audits:

The PipelineRun.Status field now contains the status of every TaskRun in the Pipeline and
the Pipeline specification used to instantiate a PipelineRun to monitor the progress of the
PipelineRun.

Pipeline results have been added to the pipeline specification and PipelineRun status.

The TaskRun.Status field now contains the exact Task specification used to instantiate the
TaskRun.

Support to apply the default parameter to Conditions.

A TaskRun created by referencing a ClusterTask now adds the tekton.dev/clusterTask label
instead of the tekton.dev/task label.

The kubeconfigwriter now adds the ClientKeyData and the ClientCertificateData
configurations in the Resource structure to enable replacement of the pipeline resource type
cluster with the kubeconfig-creator Task.

The names of the feature-flags and the config-defaults ConfigMaps are now customizable.

Support for HostNetwork in the PodTemplate used by TaskRun is now available.

An Affinity Assistant is now available to support node affinity in TaskRuns that share workspace
volume. By default, this is disabled on OpenShift Pipelines.

The PodTemplate has been updated to specify imagePullSecrets to identify secrets that the
container runtime should use to authorize container image pulls when starting a pod.

Support for emitting warning events from the TaskRun controller if the controller fails to update
the TaskRun.

Standard or recommended k8s labels have been added to all resources to identify resources
belonging to an application or component.

The Entrypoint process is now notified for signals and these signals are then propagated using a
dedicated PID Group of the Entrypoint process.

The PodTemplate can now be set on a Task level at runtime using TaskRunSpecs.

Support for emitting Kubernetes events:

The controller now emits events for additional TaskRun lifecycle events - taskrun started
and taskrun running.

The PipelineRun controller now emits an event every time a Pipeline starts.

OpenShift Container Platform 4.5 Pipelines

36

In addition to the default Kubernetes events, support for CloudEvents for TaskRuns is now
available. The controller can be configured to send any TaskRun events, such as create, started,
and failed, as cloud events.

Support for using the $context.<task|taskRun|pipeline|pipelineRun>.name variable to
reference the appropriate name when in PipelineRuns and TaskRuns.

Validation for PipelineRun parameters is now available to ensure that all the parameters
required by the Pipeline are provided by the PipelineRun. This also allows PipelineRuns to
provide extra parameters in addition to the required parameters.

You can now specify Tasks within a Pipeline that will always execute before the pipeline exits,
either after finishing all tasks successfully or after a Task in the Pipeline failed, using the finally
field in the Pipeline YAML file.

The git-clone ClusterTask is now available.

6.2.1.2. Pipelines CLI

Support for embedded Trigger binding is now available to the tkn evenlistener describe
command.

Support to recommend subcommands and make suggestions if an incorrect subcommand is
used.

The tkn task describe command now auto selects the task if only one task is present in the
Pipeline.

You can now start a Task using default parameter values by specifying the --use-param-
defaults flag in the tkn task start command.

You can now specify a volumeClaimTemplate for PipelineRuns or TaskRuns using the --
workspace option with the tkn pipeline start or tkn task start commands.

The tkn pipelinerun logs command now displays logs for the final tasks listed in the finally
section.

Interactive mode support has now been provided to the tkn task start command and the
describe subcommand for the following tkn resources: pipeline, pipelinerun, task, taskrun,
clustertask, and pipelineresource.

The tkn version command now displays the version of the Triggers installed in the cluster.

The tkn pipeline describe command now displays parameter values and timeouts specified for
Tasks used in the Pipeline.

Support added for the --last option for the tkn pipelinerun describe and the tkn taskrun
describe commands to describe the most recent PipelineRun or TaskRun, respectively.

The tkn pipeline describe command now displays the conditions applicable to the Tasks in the
Pipeline.

You can now use the --no-headers and --all-namespaces flags with the tkn resource list
command.

6.2.1.3. Triggers

CHAPTER 6. RED HAT OPENSHIFT PIPELINES RELEASE NOTES

37

The following Common Expression Language (CEL) functions are now available:

parseURL to parse and extract portions of a URL

parseJSON to parse JSON value types embedded in a string in the payload field of the
deployment webhook

A new interceptor for webhooks from Bitbucket has been added.

EventListeners now display the Address URL and the Available status as additional fields
when listed with the kubectl get command.

TriggerTemplate params now use the $(tt.params.<paramName>) syntax instead of $(params.
<paramName>) to reduce the confusion between TriggerTemplate and ResourceTemplates
params.

You can now add tolerations in the EventListener CRD to ensure that EventListeners are
deployed with the same configuration even if all nodes are tainted due to security or
management issues.

You can now add a Readiness Probe for EventListener Deployment at URL/live.

Support for embedding TriggerBinding specifications in EventListener Triggers.

Trigger resources are now annotated with the recommended app.kubernetes.io labels.

6.2.2. Deprecated features

The following items are deprecated in this release:

The --namespace or -n flags for all cluster-wide commands, including the clustertask and
clustertriggerbinding commands, are deprecated. It will be removed in a future release.

The name field in triggers.bindings within an EventListener has been deprecated in favor of
the ref field and will be removed in a future release.

Variable interpolation in TriggerTemplates using $(params) has been deprecated in favor of
using $(tt.params) to reduce confusion with the Pipeline variable interpolation syntax. The
$(params.<paramName>) syntax will be removed in a future release.

The tekton.dev/task label is deprecated on ClusterTasks.

The TaskRun.Status.ResourceResults.ResourceRef field is deprecated and will be removed.

The tkn pipeline create, tkn task create, and tkn resource create -f subcommands have been
removed.

Namespace validation has been removed from tkn commands.

The default timeout of 1h and the -t flag for the tkn ct start command have been removed.

The s2i ClusterTask has been deprecated.

6.2.3. Known issues

Conditions do not support Workspaces.

OpenShift Container Platform 4.5 Pipelines

38

The --workspace option and the interactive mode is not supported for the tkn clustertask
start command.

Support of backward compatibility for $(params.<paramName>) forces you to use
TriggerTemplates with pipeline specific params as the Triggers webhook is unable to
differentiate Trigger params from pipelines params.

Pipeline metrics report incorrect values when you run a promQL query for
tekton_taskrun_count and tekton_taskrun_duration_seconds_count.

PipelineRuns and TaskRuns continue to be in the Running and Running(Pending) states
respectively even when a non existing PVC name is given to a Workspace.

6.2.4. Fixed issues

Previously, the tkn task delete <name> --trs command would delete both the Task and
ClusterTask if the name of the Task and ClusterTask were the same. With this fix, the command
deletes only the TaskRuns that are created by the Task <name>.

Previously the tkn pr delete -p <name> --keep 2 command would disregard the -p flag when
used with the --keep flag and would delete all the PipelineRuns except the latest two. With this
fix, the command deletes only the PipelineRuns that are created by the Pipeline <name>,
except for the latest two.

The tkn triggertemplate describe output now displays ResourceTemplates in a table format
instead of YAML format.

Previously the buildah ClusterTask failed when a new user was added to a container. With this
fix, the issue has been resolved.

6.3. RELEASE NOTES FOR RED HAT RED HAT OPENSHIFT PIPELINES
TECHNOLOGY PREVIEW 1.0

6.3.1. New features

Red Hat OpenShift Pipelines Technology Preview (TP) 1.0 is now available on OpenShift Container
Platform 4.5. Red Hat OpenShift Pipelines TP 1.0 is updated to support:

Tekton Pipelines 0.11.3

Tekton tkn CLI 0.9.0

Tekton Triggers 0.4.0

ClusterTasks based on Tekton Catalog 0.11

In addition to the fixes and stability improvements, here is a highlight of what’s new in OpenShift
Pipelines 1.0.

6.3.1.1. Pipelines

Support for v1beta1 API Version.

Support for an improved LimitRange. Previously, LimitRange was specified exclusively for the

CHAPTER 6. RED HAT OPENSHIFT PIPELINES RELEASE NOTES

39

Support for an improved LimitRange. Previously, LimitRange was specified exclusively for the
TaskRun and the PipelineRun. Now there is no need to explicitly specify the LimitRange. The
minimum LimitRange across the namespace is used.

Support for sharing data between Tasks using TaskResults and TaskParams.

Pipelines can now be configured to not overwrite the HOME environment variable and
workingDir of Steps.

Similar to Task Steps, sidecars now support script mode.

You can now specify a different scheduler name in TaskRun podTemplate.

Support for variable substitution using Star Array Notation.

Tekton Controller can now be configured to monitor an individual namespace.

A new description field is now added to the specification of Pipeline, Task, ClusterTask,
Resource, and Condition.

Addition of proxy parameters to Git PipelineResources.

6.3.1.2. Pipelines CLI

The describe subcommand is now added for the following tkn resources: eventlistener,
condition, triggertemplate, clustertask, and triggerbinding.

Support added for v1beta1 to the following commands along with backward comptibility for
v1alpha1: clustertask, task, pipeline, pipelinerun, and taskrun.

The following commands can now list output from all namespaces using the --all-namespaces
flag option:

tkn task list

tkn pipeline list

tkn taskrun list

tkn pipelinerun list
The output of these commands is also enhanced to display information without headers
using the --no-headers flag option.

You can now start a Pipeline using default parameter values by specifying --use-param-
defaults flag in the tkn pipelines start command.

Support for Workspace is now added to tkn pipeline start and tkn task start commands.

A new clustertriggerbinding command is now added with the following subcommands:
describe, delete, and list.

You can now directly start a pipeline run using a local or remote yaml file.

The describe subcommand now displays an enhanced and detailed output. With the addition of
new fields, such as description, timeout, param description, and sidecar status, the command
output now provides more detailed information about a specific tkn resource.

The tkn task log command now displays logs directly if only one task is present in the

OpenShift Container Platform 4.5 Pipelines

40

The tkn task log command now displays logs directly if only one task is present in the
namespace.

6.3.1.3. Triggers

Triggers can now create both v1alpha1 and v1beta1 Pipeline resources.

Support for new Common Expression Language (CEL) interceptor function - compareSecret.
This function securely compares strings to secrets in CEL expressions.

Support for authentication and authorization at the EventListener Trigger level.

6.3.2. Deprecated features

The following items are deprecated in this release:

The environment variable $HOME, and variable workingDir in the Steps specification are
deprecated and might be changed in a future release. Currently in a Step container, HOME and
workingDir are overwritten to /tekton/home and /workspace respectively.
In a later release, these two fields will not be modified, and will be set to values defined in the
container image and Task YAML. For this release, use flags disable-home-env-overwrite and
disable-working-directory-overwrite to disable overwriting of the HOME and workingDir
variables.

The following commands are deprecated and might be removed in the future release:

tkn pipeline create

tkn task create

The -f flag with the tkn resource create command is now deprecated. It might be removed in
the future release.

The -t flag and the --timeout flag (with seconds format) for the tkn clustertask create
command are now deprecated. Only duration timeout format is now supported, for example
1h30s. These deprecated flags might be removed in the future release.

6.3.3. Known issues

If you are upgrading from an older version of Red Hat OpenShift Pipelines, you must delete your
existing deployments before upgrading to Red Hat OpenShift Pipelines version 1.0. To delete an
existing deployment, you must first delete Custom Resources and then uninstall the Red Hat
OpenShift Pipelines Operator. For more details, see the uninstalling Red Hat OpenShift
Pipelines section.

Submitting the same v1alpha1 Tasks more than once results in an error. Use oc replace instead
of oc apply when re-submitting a v1alpha1 Task.

The buildah ClusterTask does not work when a new user is added to a container.
When the Operator is installed, the --storage-driver flag for the buildah ClusterTask is not
specified, therefore the flag is set to its default value. In some cases, this causes the storage
driver to be set incorrectly. When a new user is added, the incorrect storage-driver results in the
failure of the buildah ClusterTask with the following error:

useradd: /etc/passwd.8: lock file already used
useradd: cannot lock /etc/passwd; try again later.

CHAPTER 6. RED HAT OPENSHIFT PIPELINES RELEASE NOTES

41

As a workaround, manually set the --storage-driver flag value to overlay in the buildah-
task.yaml file:

1. Login to your cluster as a cluster-admin:

$ oc login -u <login> -p <password> https://openshift.example.com:6443

2. Use the oc edit command to edit buildah ClusterTask:

$ oc edit clustertask buildah

The current version of the buildah clustertask YAML file opens in the editor set by your
EDITOR environment variable.

3. Under the steps field, locate the following command field:

 command: ['buildah', 'bud', '--format=$(params.FORMAT)', '--tls-
verify=$(params.TLSVERIFY)', '--layers', '-f', '$(params.DOCKERFILE)', '-t',
'$(resources.outputs.image.url)', '$(params.CONTEXT)']

4. Replace the command field with the following:

 command: ['buildah', '--storage-driver=overlay', 'bud', '--format=$(params.FORMAT)', '--
tls-verify=$(params.TLSVERIFY)', '--no-cache', '-f', '$(params.DOCKERFILE)', '-t',
'$(params.IMAGE)', '$(params.CONTEXT)']

5. Save the file and exit.

Alternatively, you can also modify the buildah ClusterTask YAML file directly on the web
console by navigating to Pipelines → Cluster Tasks → buildah. Select Edit Cluster Task from
the Actions menu and replace the command field as shown in the previous procedure.

6.3.4. Fixed issues

Previously, the DeploymentConfig Task triggered a new deployment build even when an image
build was already in progress. This caused the deployment of the Pipeline to fail. With this fix,
the deploy task command is now replaced with the oc rollout status command which waits for
the in-progress deployment to finish.

Support for APP_NAME parameter is now added in Pipeline templates.

Previously, the Pipeline template for Java S2I failed to look up the image in the registry. With
this fix, the image is looked up using the existing image PipelineResources instead of the user
provided IMAGE_NAME parameter.

All the OpenShift Pipelines images are now based on the Red Hat Universal Base Images (UBI).

Previously, when the Pipeline was installed in a namespace other than tekton-pipelines, the tkn
version command displayed the Pipeline version as unknown. With this fix, the tkn version
command now displays the correct Pipeline version in any namespace.

The -c flag is no longer supported for the tkn version command.

Non-admin users can now list the ClusterTriggerBindings.

OpenShift Container Platform 4.5 Pipelines

42

The EventListener CompareSecret function is now fixed for the CEL Interceptor.

The list, describe, and start subcommands for task and clustertask now correctly display the
output in case a Task and ClusterTask have the same name.

Previously, the OpenShift Pipelines Operator modified the privileged security context
constraints (SCCs), which caused an error during cluster upgrade. This error is now fixed.

In the tekton-pipelines namespace, the timeouts of all TaskRuns and PipelineRuns are now set
to the value of default-timeout-minutes field using the ConfigMap.

Previously, the Pipelines section in the web console was not displayed for non-admin users. This
issue is now resolved.

CHAPTER 6. RED HAT OPENSHIFT PIPELINES RELEASE NOTES

43

	Table of Contents
	CHAPTER 1. UNDERSTANDING OPENSHIFT PIPELINES
	1.1. KEY FEATURES
	1.2. RED HAT OPENSHIFT PIPELINES CONCEPTS
	1.3. DETAILED OPENSHIFT PIPELINE CONCEPTS
	1.3.1. Tasks
	1.3.2. TaskRun
	1.3.3. Pipelines
	1.3.4. PipelineRun
	1.3.5. Workspaces
	1.3.6. Triggers

	1.4. ADDITIONAL RESOURCES

	CHAPTER 2. INSTALLING OPENSHIFT PIPELINES
	Prerequisites
	2.1. INSTALLING THE RED HAT OPENSHIFT PIPELINES OPERATOR IN WEB CONSOLE
	2.2. INSTALLING THE OPENSHIFT PIPELINES OPERATOR USING THE CLI

	CHAPTER 3. UNINSTALLING OPENSHIFT PIPELINES
	3.1. DELETING THE RED HAT OPENSHIFT PIPELINES COMPONENTS AND CUSTOM RESOURCES
	3.2. UNINSTALLING THE RED HAT OPENSHIFT PIPELINES OPERATOR

	CHAPTER 4. CREATING CI/CD SOLUTIONS FOR APPLICATIONS USING OPENSHIFT PIPELINES
	4.1. PREREQUISITES
	4.2. CREATING A PROJECT AND CHECKING YOUR PIPELINE SERVICEACCOUNT
	4.3. CREATING PIPELINE TASKS
	4.4. ASSEMBLING A PIPELINE
	4.5. SPECIFYING PERSISTENTVOLUMECLAIMS AS VOLUMESOURCE IN WORKSPACES
	4.6. RUNNING A PIPELINE
	4.7. ADDING TRIGGERS TO A PIPELINE
	4.8. CREATING WEBHOOKS
	4.9. TRIGGERING A PIPELINERUN
	4.10. ADDITIONAL RESOURCES

	CHAPTER 5. WORKING WITH RED HAT OPENSHIFT PIPELINES USING THE DEVELOPER PERSPECTIVE
	Prerequisites
	5.1. CONSTRUCTING PIPELINES USING THE PIPELINE BUILDER
	5.2. CREATING APPLICATIONS WITH OPENSHIFT PIPELINES
	5.3. INTERACTING WITH PIPELINES USING THE DEVELOPER PERSPECTIVE
	5.4. STARTING PIPELINES
	5.5. EDITING PIPELINES
	5.6. DELETING PIPELINES

	CHAPTER 6. RED HAT OPENSHIFT PIPELINES RELEASE NOTES
	6.1. GETTING SUPPORT
	6.2. RELEASE NOTES FOR RED HAT RED HAT OPENSHIFT PIPELINES TECHNOLOGY PREVIEW 1.1
	6.2.1. New features
	6.2.1.1. Pipelines
	6.2.1.2. Pipelines CLI
	6.2.1.3. Triggers

	6.2.2. Deprecated features
	6.2.3. Known issues
	6.2.4. Fixed issues

	6.3. RELEASE NOTES FOR RED HAT RED HAT OPENSHIFT PIPELINES TECHNOLOGY PREVIEW 1.0
	6.3.1. New features
	6.3.1.1. Pipelines
	6.3.1.2. Pipelines CLI
	6.3.1.3. Triggers

	6.3.2. Deprecated features
	6.3.3. Known issues
	6.3.4. Fixed issues

