
OpenShift Container Platform 4.6

Serverless

OpenShift Serverless installation, usage, and release notes

Last Updated: 2022-10-21

OpenShift Container Platform 4.6 Serverless

OpenShift Serverless installation, usage, and release notes

Legal Notice

Copyright © 2022 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides information on how to use OpenShift Serverless in OpenShift Container
Platform.

. .

. .

Table of Contents

CHAPTER 1. RELEASE NOTES
1.1. ABOUT API VERSIONS
1.2. GENERALLY AVAILABLE AND TECHNOLOGY PREVIEW FEATURES
1.3. DEPRECATED AND REMOVED FEATURES
1.4. RELEASE NOTES FOR RED HAT OPENSHIFT SERVERLESS 1.25.0

1.4.1. New features
1.4.2. Fixed issues
1.4.3. Known issues

1.5. RELEASE NOTES FOR RED HAT OPENSHIFT SERVERLESS 1.24.0
1.5.1. New features
1.5.2. Fixed issues
1.5.3. Known issues

1.6. RELEASE NOTES FOR RED HAT OPENSHIFT SERVERLESS 1.23.0
1.6.1. New features
1.6.2. Known issues

1.7. RELEASE NOTES FOR RED HAT OPENSHIFT SERVERLESS 1.22.0
1.7.1. New features
1.7.2. Known issues

1.8. RELEASE NOTES FOR RED HAT OPENSHIFT SERVERLESS 1.21.0
1.8.1. New features
1.8.2. Fixed issues
1.8.3. Known issues

1.9. RELEASE NOTES FOR RED HAT OPENSHIFT SERVERLESS 1.20.0
1.9.1. New features
1.9.2. Known issues

1.10. RELEASE NOTES FOR RED HAT OPENSHIFT SERVERLESS 1.19.0
1.10.1. New features
1.10.2. Fixed issues
1.10.3. Known issues

1.11. RELEASE NOTES FOR RED HAT OPENSHIFT SERVERLESS 1.18.0
1.11.1. New features
1.11.2. Fixed issues
1.11.3. Known issues

1.12. RELEASE NOTES FOR RED HAT OPENSHIFT SERVERLESS 1.17.0
1.12.1. New features
1.12.2. Known issues

1.13. RELEASE NOTES FOR RED HAT OPENSHIFT SERVERLESS 1.16.0
1.13.1. New features
1.13.2. Known issues

1.14. RELEASE NOTES FOR RED HAT OPENSHIFT SERVERLESS 1.15.0
1.14.1. New features
1.14.2. Known issues

1.15. RELEASE NOTES FOR RED HAT OPENSHIFT SERVERLESS 1.14.0
1.15.1. New features
1.15.2. Known issues

CHAPTER 2. DISCOVER
2.1. ABOUT OPENSHIFT SERVERLESS

2.1.1. Knative Serving
2.1.1.1. Knative Serving resources

2.1.2. Knative Eventing

12
12
12
13
13
13
14
14
14
14
14
15
15
15
16
16
16
17
17
17
18
18
18
19
19

20
20
21
21
21
22
23
23
23
23
24
25
25
25
26
26
27
27
27
28

29
29
29
29
29

Table of Contents

1

. .

. .

2.1.3. Supported configurations
2.1.4. Scalability and performance
2.1.5. Additional resources

2.2. ABOUT OPENSHIFT SERVERLESS FUNCTIONS
2.2.1. Included runtimes
2.2.2. Next steps

2.3. EVENT SOURCES
2.4. BROKERS

2.4.1. Broker types
2.4.1.1. Default broker implementation for development purposes
2.4.1.2. Production-ready Kafka broker implementation

2.4.2. Next steps
2.5. CHANNELS AND SUBSCRIPTIONS

2.5.1. Channel implementation types
2.5.2. Next steps

CHAPTER 3. INSTALL
3.1. INSTALLING THE OPENSHIFT SERVERLESS OPERATOR

3.1.1. Before you begin
3.1.1.1. Defining cluster size requirements
3.1.1.2. Scaling your cluster using machine sets

3.1.2. Installing the OpenShift Serverless Operator
3.1.3. Additional resources
3.1.4. Next steps

3.2. INSTALLING KNATIVE SERVING
3.2.1. Installing Knative Serving by using the web console
3.2.2. Installing Knative Serving by using YAML
3.2.3. Next steps

3.3. INSTALLING KNATIVE EVENTING
3.3.1. Installing Knative Eventing by using the web console
3.3.2. Installing Knative Eventing by using YAML
3.3.3. Next steps

3.4. REMOVING OPENSHIFT SERVERLESS
3.4.1. Uninstalling Knative Serving
3.4.2. Uninstalling Knative Eventing
3.4.3. Removing the OpenShift Serverless Operator

3.4.3.1. Deleting Operators from a cluster using the web console
3.4.3.2. Deleting Operators from a cluster using the CLI
3.4.3.3. Refreshing failing subscriptions

3.4.4. Deleting OpenShift Serverless custom resource definitions

CHAPTER 4. KNATIVE CLI
4.1. INSTALLING THE KNATIVE CLI

4.1.1. Installing the Knative CLI using the OpenShift Container Platform web console
4.1.2. Installing the Knative CLI for Linux by using an RPM package manager
4.1.3. Installing the Knative CLI for Linux
4.1.4. Installing the Knative CLI for macOS
4.1.5. Installing the Knative CLI for Windows

4.2. CONFIGURING THE KNATIVE CLI
4.3. KNATIVE CLI PLUG-INS

4.3.1. Building events by using the kn-event plug-in
4.3.2. Sending events by using the kn-event plug-in

4.4. KNATIVE SERVING CLI COMMANDS

30
30
30
31
31
31
31
32
32
32
32
33
33
34
34

35
35
35
35
35
35
37
37
37
37
39
41
41
41

43
44
44
45
45
45
46
46
47
49

50
50
50
51
52
53
53
54
54
55
56
57

OpenShift Container Platform 4.6 Serverless

2

. .

4.4.1. kn service commands
4.4.1.1. Creating serverless applications by using the Knative CLI
4.4.1.2. Updating serverless applications by using the Knative CLI
4.4.1.3. Applying service declarations
4.4.1.4. Describing serverless applications by using the Knative CLI

4.4.2. About the Knative CLI offline mode
4.4.2.1. Creating a service using offline mode

4.4.3. kn container commands
4.4.3.1. Knative client multi-container support

Example commands
4.4.4. kn domain commands

4.4.4.1. Creating a custom domain mapping by using the Knative CLI
4.4.4.2. Managing custom domain mappings by using the Knative CLI

4.5. KNATIVE EVENTING CLI COMMANDS
4.5.1. kn source commands

4.5.1.1. Listing available event source types by using the Knative CLI
4.5.1.2. Knative CLI sink flag
4.5.1.3. Creating and managing container sources by using the Knative CLI
4.5.1.4. Creating an API server source by using the Knative CLI
4.5.1.5. Creating a ping source by using the Knative CLI
4.5.1.6. Creating a Kafka event source by using the Knative CLI

4.6. FUNCTIONS COMMANDS
4.6.1. Creating functions
4.6.2. Running a function locally
4.6.3. Building functions

4.6.3.1. Image container types
4.6.3.2. Image registry types
4.6.3.3. Push flag
4.6.3.4. Help command

4.6.4. Deploying functions
4.6.5. Listing existing functions
4.6.6. Describing a function
4.6.7. Invoking a deployed function with a test event

4.6.7.1. kn func invoke optional parameters
4.6.7.1.1. Main parameters
4.6.7.1.2. Example commands

4.6.7.1.2.1. Specifying the file with data
4.6.7.1.2.2. Specifying the function project
4.6.7.1.2.3. Specifying where the target function is deployed

4.6.8. Deleting a function

CHAPTER 5. DEVELOP
5.1. SERVERLESS APPLICATIONS

5.1.1. Creating serverless applications by using the Knative CLI
5.1.2. Creating a service using offline mode
5.1.3. Creating serverless applications using YAML
5.1.4. Verifying your serverless application deployment
5.1.5. Interacting with a serverless application using HTTP2 and gRPC
5.1.6. Enabling communication with Knative applications on a cluster with restrictive network policies
5.1.7. Configuring init containers
5.1.8. HTTPS redirection per service
5.1.9. Additional resources

5.2. AUTOSCALING

57
57
58
59
59
61
61

64
64
64
65
65
66
67
67
67
68
68
69
72
74
76
76
77
78
78
78
79
79
79
80
80
81
81

82
83
83
83
84
84

85
85
85
86
89
90
91

92
94
95
95
95

Table of Contents

3

5.2.1. Scale bounds
5.2.1.1. Minimum scale bounds

5.2.1.1.1. Setting the min-scale annotation by using the Knative CLI
5.2.1.2. Maximum scale bounds

5.2.1.2.1. Setting the max-scale annotation by using the Knative CLI
5.2.2. Concurrency

5.2.2.1. Configuring a soft concurrency target
5.2.2.2. Configuring a hard concurrency limit
5.2.2.3. Concurrency target utilization

5.3. TRAFFIC MANAGEMENT
5.3.1. Traffic spec examples
5.3.2. Knative CLI traffic management flags

5.3.2.1. Multiple flags and order precedence
5.3.2.2. Custom URLs for revisions

5.3.2.2.1. Example: Assign a tag to a revision
5.3.2.2.2. Example: Remove a tag from a revision

5.3.3. Creating a traffic split by using the Knative CLI
5.3.4. Managing traffic between revisions by using the OpenShift Container Platform web console
5.3.5. Routing and managing traffic by using a blue-green deployment strategy

5.4. ROUTING
5.4.1. Customizing labels and annotations for OpenShift Container Platform routes
5.4.2. Configuring OpenShift Container Platform routes for Knative services
5.4.3. Setting cluster availability to cluster local
5.4.4. Additional resources

5.5. EVENT SINKS
5.5.1. Knative CLI sink flag
5.5.2. Connect an event source to a sink using the Developer perspective
5.5.3. Connecting a trigger to a sink

5.6. EVENT DELIVERY
5.6.1. Event delivery behavior patterns for channels and brokers

5.6.1.1. Knative Kafka channels and brokers
5.6.2. Configurable event delivery parameters
5.6.3. Examples of configuring event delivery parameters
5.6.4. Configuring event delivery ordering for triggers

5.7. LISTING EVENT SOURCES AND EVENT SOURCE TYPES
5.7.1. Listing available event source types by using the Knative CLI
5.7.2. Viewing available event source types within the Developer perspective
5.7.3. Listing available event sources by using the Knative CLI

5.8. CREATING AN API SERVER SOURCE
5.8.1. Creating an API server source by using the web console
5.8.2. Creating an API server source by using the Knative CLI

5.8.2.1. Knative CLI sink flag
5.8.3. Creating an API server source by using YAML files

5.9. CREATING A PING SOURCE
5.9.1. Creating a ping source by using the web console
5.9.2. Creating a ping source by using the Knative CLI

5.9.2.1. Knative CLI sink flag
5.9.3. Creating a ping source by using YAML

5.10. CUSTOM EVENT SOURCES
5.10.1. Sink binding

5.10.1.1. Creating a sink binding by using YAML
5.10.1.2. Creating a sink binding by using the Knative CLI

5.10.1.2.1. Knative CLI sink flag

96
96
96
97
97
98
98
99

100
100
101
102
103
103
103
103
104
105
106
108
108
110
112
113
113
113
113
114
115
115
115
115
115
117
118
118
119
119

120
120
121
125
125
129
130
131

133
133
136
136
137
140
143

OpenShift Container Platform 4.6 Serverless

4

5.10.1.3. Creating a sink binding by using the web console
5.10.1.4. Sink binding reference

5.10.1.4.1. Subject parameter
5.10.1.4.2. CloudEvent overrides
5.10.1.4.3. The include label

5.10.2. Container source
5.10.2.1. Guidelines for creating a container image
5.10.2.2. Creating and managing container sources by using the Knative CLI
5.10.2.3. Creating a container source by using the web console
5.10.2.4. Container source reference

5.10.2.4.1. CloudEvent overrides
5.11. CREATING CHANNELS

5.11.1. Creating a channel by using the web console
5.11.2. Creating a channel by using the Knative CLI
5.11.3. Creating a default implementation channel by using YAML
5.11.4. Creating a Kafka channel by using YAML
5.11.5. Next steps

5.12. CREATING AND MANAGING SUBSCRIPTIONS
5.12.1. Creating a subscription by using the web console
5.12.2. Creating a subscription by using YAML
5.12.3. Creating a subscription by using the Knative CLI
5.12.4. Describing subscriptions by using the Knative CLI
5.12.5. Listing subscriptions by using the Knative CLI
5.12.6. Updating subscriptions by using the Knative CLI
5.12.7. Next steps

5.13. CREATING BROKERS
5.13.1. Creating a broker by using the Knative CLI
5.13.2. Creating a broker by annotating a trigger
5.13.3. Creating a broker by labeling a namespace
5.13.4. Deleting a broker that was created by injection
5.13.5. Creating a Kafka broker when it is not configured as the default broker type

5.13.5.1. Creating a Kafka broker by using YAML
5.13.5.2. Creating a Kafka broker that uses an externally managed Kafka topic

5.13.6. Managing brokers
5.13.6.1. Listing existing brokers by using the Knative CLI
5.13.6.2. Describing an existing broker by using the Knative CLI

5.13.7. Next steps
5.13.8. Additional resources

5.14. TRIGGERS
5.14.1. Creating a trigger by using the web console
5.14.2. Creating a trigger by using the Knative CLI
5.14.3. Listing triggers by using the Knative CLI
5.14.4. Describing a trigger by using the Knative CLI
5.14.5. Filtering events with triggers by using the Knative CLI
5.14.6. Updating a trigger by using the Knative CLI
5.14.7. Deleting a trigger by using the Knative CLI
5.14.8. Configuring event delivery ordering for triggers
5.14.9. Next steps

5.15. USING KNATIVE KAFKA
5.15.1. Kafka event delivery and retries
5.15.2. Kafka source

5.15.2.1. Creating a Kafka event source by using the web console
5.15.2.2. Creating a Kafka event source by using the Knative CLI

143
146
147
149
150
150
150
153
154
155
156
157
157
158
159
159
160
160
160
161

163
164
165
165
166
166
166
167
169
170
171
171
172
172
172
173
174
174
174
174
175
176
176
177
178
178
179
180
180
180
180
181

182

Table of Contents

5

. .

5.15.2.2.1. Knative CLI sink flag
5.15.2.3. Creating a Kafka event source by using YAML

5.15.3. Kafka broker
5.15.4. Creating a Kafka channel by using YAML
5.15.5. Kafka sink

5.15.5.1. Using a Kafka sink
5.15.6. Additional resources

CHAPTER 6. ADMINISTER
6.1. GLOBAL CONFIGURATION

6.1.1. Configuring the default channel implementation
6.1.2. Configuring the default broker backing channel
6.1.3. Configuring the default broker class
6.1.4. Enabling scale-to-zero
6.1.5. Configuring the scale-to-zero grace period
6.1.6. Overriding system deployment configurations

6.1.6.1. Overriding Knative Serving system deployment configurations
6.1.6.2. Overriding Knative Eventing system deployment configurations

6.1.7. Configuring the EmptyDir extension
6.1.8. HTTPS redirection global settings
6.1.9. Setting the URL scheme for external routes
6.1.10. Setting the Kourier Gateway service type
6.1.11. Enabling PVC support
6.1.12. Enabling init containers
6.1.13. Tag-to-digest resolution

6.1.13.1. Configuring tag-to-digest resolution by using a secret
6.1.14. Additional resources

6.2. CONFIGURING KNATIVE KAFKA
6.2.1. Installing Knative Kafka
6.2.2. Security configuration for Knative Kafka

6.2.2.1. Configuring TLS authentication for Kafka brokers
6.2.2.2. Configuring SASL authentication for Kafka brokers
6.2.2.3. Configuring TLS authentication for Kafka channels
6.2.2.4. Configuring SASL authentication for Kafka channels
6.2.2.5. Configuring SASL authentication for Kafka sources
6.2.2.6. Configuring security for Kafka sinks

6.2.3. Configuring Kafka broker settings
6.2.4. Additional resources

6.3. SERVERLESS COMPONENTS IN THE ADMINISTRATOR PERSPECTIVE
6.3.1. Creating serverless applications using the Administrator perspective
6.3.2. Additional resources

6.4. INTEGRATING SERVICE MESH WITH OPENSHIFT SERVERLESS
6.4.1. Prerequisites
6.4.2. Creating a certificate to encrypt incoming external traffic
6.4.3. Integrating Service Mesh with OpenShift Serverless
6.4.4. Enabling Knative Serving metrics when using Service Mesh with mTLS
6.4.5. Integrating Service Mesh with OpenShift Serverless when Kourier is enabled
6.4.6. Improving memory usage by using secret filtering for Service Mesh

6.5. SERVERLESS ADMINISTRATOR METRICS
6.5.1. Prerequisites
6.5.2. Controller metrics
6.5.3. Webhook metrics
6.5.4. Knative Eventing metrics

184
184
186
186
187
187
188

190
190
190
191

192
193
194
195
195
196
197
197
198
198
199

200
201

202
202
202
203
205
206
207
208
209

211
212
214
216
216
216
217
217
217
218
219
223
224
225
226
227
227
228
229

OpenShift Container Platform 4.6 Serverless

6

. .

. .

. .

6.5.4.1. Broker ingress metrics
6.5.4.2. Broker filter metrics
6.5.4.3. InMemoryChannel dispatcher metrics
6.5.4.4. Event source metrics

6.5.5. Knative Serving metrics
6.5.5.1. Activator metrics
6.5.5.2. Autoscaler metrics
6.5.5.3. Go runtime metrics

6.6. USING METERING WITH OPENSHIFT SERVERLESS
6.6.1. Installing metering
6.6.2. Data source reports for Knative Serving metering

6.6.2.1. Data source report for CPU usage in Knative Serving
6.6.2.2. Data source report for memory usage in Knative Serving
6.6.2.3. Applying data source reports for Knative Serving metering

6.6.3. Queries for Knative Serving metering
6.6.3.1. Applying Queries for Knative Serving metering

6.6.4. Metering reports for Knative Serving
6.6.4.1. Running a metering report

6.7. HIGH AVAILABILITY
6.7.1. Configuring high availability replicas for Knative Serving
6.7.2. Configuring high availability replicas for Knative Eventing
6.7.3. Configuring high availability replicas for Knative Kafka

CHAPTER 7. MONITOR
7.1. USING OPENSHIFT LOGGING WITH OPENSHIFT SERVERLESS

7.1.1. About deploying cluster logging
7.1.2. About deploying and configuring cluster logging

7.1.2.1. Configuring and Tuning Cluster Logging
7.1.2.2. Sample modified ClusterLogging custom resource

7.1.3. Using cluster logging to find logs for Knative Serving components
7.1.4. Using cluster logging to find logs for services deployed with Knative Serving

7.2. SERVERLESS DEVELOPER METRICS
7.2.1. Knative service metrics exposed by default
7.2.2. Knative service with custom application metrics
7.2.3. Configuration for scraping custom metrics
7.2.4. Examining metrics of a service

7.2.4.1. Queue proxy metrics
7.2.5. Examining metrics of a service in the dashboard
7.2.6. Additional resources

CHAPTER 8. TRACING REQUESTS
8.1. DISTRIBUTED TRACING OVERVIEW
8.2. USING RED HAT OPENSHIFT DISTRIBUTED TRACING TO ENABLE DISTRIBUTED TRACING
8.3. USING JAEGER TO ENABLE DISTRIBUTED TRACING
8.4. ADDITIONAL RESOURCES

CHAPTER 9. OPENSHIFT SERVERLESS SUPPORT
9.1. ABOUT THE RED HAT KNOWLEDGEBASE
9.2. SEARCHING THE RED HAT KNOWLEDGEBASE
9.3. SUBMITTING A SUPPORT CASE
9.4. GATHERING DIAGNOSTIC INFORMATION FOR SUPPORT

9.4.1. About the must-gather tool
9.4.2. About collecting OpenShift Serverless data

229
230
231
231

232
232
233
235
239
239
239
239
240
240
241

243
243
243
244
244
245
247

249
249
249
249
249
251

252
253
254
254
257
259
260
261

263
263

265
265
265
268
269

270
270
270
270
272
272
273

Table of Contents

7

. .

. .

CHAPTER 10. SECURITY
10.1. CONFIGURING TLS AUTHENTICATION

10.1.1. Enabling TLS authentication for internal traffic
10.1.2. Enabling TLS authentication for cluster local services
10.1.3. Securing a service with a custom domain by using a TLS certificate
10.1.4. Configuring TLS authentication for Kafka brokers
10.1.5. Configuring TLS authentication for Kafka channels

10.2. CONFIGURING JSON WEB TOKEN AUTHENTICATION FOR KNATIVE SERVICES
10.2.1. Using JSON Web Token authentication with Service Mesh 2.x and OpenShift Serverless
10.2.2. Using JSON Web Token authentication with Service Mesh 1.x and OpenShift Serverless

10.3. CONFIGURING A CUSTOM DOMAIN FOR A KNATIVE SERVICE
10.3.1. Creating a custom domain mapping
10.3.2. Creating a custom domain mapping by using the Knative CLI
10.3.3. Securing a service with a custom domain by using a TLS certificate

CHAPTER 11. FUNCTIONS
11.1. SETTING UP OPENSHIFT SERVERLESS FUNCTIONS

11.1.1. Prerequisites
11.1.2. Setting up podman
11.1.3. Setting up podman on macOS
11.1.4. Next steps

11.2. GETTING STARTED WITH FUNCTIONS
11.2.1. Prerequisites
11.2.2. Creating functions
11.2.3. Running a function locally
11.2.4. Building functions

11.2.4.1. Image container types
11.2.4.2. Image registry types
11.2.4.3. Push flag
11.2.4.4. Help command

11.2.5. Deploying functions
11.2.6. Invoking a deployed function with a test event
11.2.7. Deleting a function
11.2.8. Additional resources

11.3. ON-CLUSTER FUNCTION BUILDING AND DEPLOYING
11.3.1. Building and deploying functions on the cluster
11.3.2. Specifying function revision

11.4. DEVELOPING NODE.JS FUNCTIONS
11.4.1. Prerequisites
11.4.2. Node.js function template structure
11.4.3. About invoking Node.js functions

11.4.3.1. Node.js context objects
11.4.3.1.1. Context object methods
11.4.3.1.2. CloudEvent data

11.4.4. Node.js function return values
11.4.4.1. Returning headers
11.4.4.2. Returning status codes

11.4.5. Testing Node.js functions
11.4.6. Next steps

11.5. DEVELOPING TYPESCRIPT FUNCTIONS
11.5.1. Prerequisites
11.5.2. TypeScript function template structure
11.5.3. About invoking TypeScript functions

274
274
274
275
276
277
278
280
280
283
285
285
287
288

290
290
290
290
291
292
292
292
292
293
294
294
295
295
295
295
296
297
297
297
297
299
300
300
300
301
301
301
302
302
303
303
303
304
304
304
304
305

OpenShift Container Platform 4.6 Serverless

8

11.5.3.1. TypeScript context objects
11.5.3.1.1. Context object methods
11.5.3.1.2. Context types
11.5.3.1.3. CloudEvent data

11.5.4. TypeScript function return values
11.5.4.1. Returning headers
11.5.4.2. Returning status codes

11.5.5. Testing TypeScript functions
11.5.6. Next steps

11.6. DEVELOPING GO FUNCTIONS
11.6.1. Prerequisites
11.6.2. Go function template structure
11.6.3. About invoking Go functions

11.6.3.1. Functions triggered by an HTTP request
11.6.3.2. Functions triggered by a cloud event

11.6.3.2.1. CloudEvent trigger example
11.6.4. Go function return values
11.6.5. Testing Go functions
11.6.6. Next steps

11.7. DEVELOPING PYTHON FUNCTIONS
11.7.1. Prerequisites
11.7.2. Python function template structure
11.7.3. About invoking Python functions
11.7.4. Python function return values

11.7.4.1. Returning CloudEvents
11.7.5. Testing Python functions
11.7.6. Next steps

11.8. DEVELOPING QUARKUS FUNCTIONS
11.8.1. Prerequisites
11.8.2. Quarkus function template structure
11.8.3. About invoking Quarkus functions

11.8.3.1. Invocation examples
11.8.4. CloudEvent attributes
11.8.5. Quarkus function return values

11.8.5.1. Permitted types
11.8.6. Testing Quarkus functions
11.8.7. Next steps

11.9. FUNCTION PROJECT CONFIGURATION IN FUNC.YAML
11.9.1. Configurable fields in func.yaml

11.9.1.1. buildEnvs
11.9.1.2. envs
11.9.1.3. builder
11.9.1.4. build
11.9.1.5. volumes
11.9.1.6. options
11.9.1.7. image
11.9.1.8. imageDigest
11.9.1.9. labels
11.9.1.10. name
11.9.1.11. namespace
11.9.1.12. runtime

11.9.2. Referencing local environment variables from func.yaml fields
11.9.3. Additional resources

305
305
306
307
307
308
308
308
309
309
309
310
310
310
311
311
312
313
313
313
313
314
314
315
315
315
316
316
316
316
317
318

320
321
321

322
322
322
322
322
323
323
324
324
324
325
325
325
326
326
326
326
327

Table of Contents

9

. .

11.10. ACCESSING SECRETS AND CONFIG MAPS FROM FUNCTIONS
11.10.1. Modifying function access to secrets and config maps interactively
11.10.2. Modifying function access to secrets and config maps interactively by using specialized commands
11.10.3. Adding function access to secrets and config maps manually

11.10.3.1. Mounting a secret as a volume
11.10.3.2. Mounting a config map as a volume
11.10.3.3. Setting environment variable from a key value defined in a secret
11.10.3.4. Setting environment variable from a key value defined in a config map
11.10.3.5. Setting environment variables from all values defined in a secret
11.10.3.6. Setting environment variables from all values defined in a config map

11.11. ADDING ANNOTATIONS TO FUNCTIONS
11.11.1. Adding annotations to a function

11.12. FUNCTIONS DEVELOPMENT REFERENCE GUIDE
11.12.1. Node.js context object reference

11.12.1.1. log
11.12.1.2. query
11.12.1.3. body
11.12.1.4. headers
11.12.1.5. HTTP requests

11.12.2. TypeScript context object reference
11.12.2.1. log
11.12.2.2. query
11.12.2.3. body
11.12.2.4. headers
11.12.2.5. HTTP requests

CHAPTER 12. INTEGRATIONS
12.1. INTEGRATING SERVERLESS WITH THE COST MANAGEMENT SERVICE

12.1.1. Prerequisites
12.1.2. Using labels for cost management queries
12.1.3. Additional resources

12.2. USING NVIDIA GPU RESOURCES WITH SERVERLESS APPLICATIONS
12.2.1. Specifying GPU requirements for a service
12.2.2. Additional resources

327
327
328
329
329
330
330
331
332
333
334
334
335
335
335
336
336
337
337
338
338
338
339
339
340

341
341
341
341
341
341

342
342

OpenShift Container Platform 4.6 Serverless

10

Table of Contents

11

CHAPTER 1. RELEASE NOTES
Release notes contain information about new and deprecated features, breaking changes, and known
issues. The following release notes apply for the most recent OpenShift Serverless releases on
OpenShift Container Platform.

For an overview of OpenShift Serverless functionality, see About OpenShift Serverless.

NOTE

OpenShift Serverless is based on the open source Knative project.

For details about the latest Knative component releases, see the Knative blog.

1.1. ABOUT API VERSIONS

API versions are an important measure of the development status of certain features and custom
resources in OpenShift Serverless. Creating resources on your cluster that do not use the correct API
version can cause issues in your deployment.

The OpenShift Serverless Operator automatically upgrades older resources that use deprecated
versions of APIs to use the latest version. For example, if you have created resources on your cluster
that use older versions of the ApiServerSource API, such as v1beta1, the OpenShift Serverless
Operator automatically updates these resources to use the v1 version of the API when this is available
and the v1beta1 version is deprecated.

After they have been deprecated, older versions of APIs might be removed in any upcoming release.
Using deprecated versions of APIs does not cause resources to fail. However, if you try to use a version
of an API that has been removed, it will cause resources to fail. Ensure that your manifests are updated
to use the latest version to avoid issues.

1.2. GENERALLY AVAILABLE AND TECHNOLOGY PREVIEW FEATURES

Features which are Generally Available (GA) are fully supported and are suitable for production use.
Technology Preview (TP) features are experimental features and are not intended for production use.
See the Technology Preview scope of support on the Red Hat Customer Portal for more information
about TP features.

The following table provides information about which OpenShift Serverless features are GA and which
are TP:

Table 1.1. Generally Available and Technology Preview features tracker

Feature 1.23 1.24 1.25

kn func TP TP TP

Service Mesh mTLS GA GA GA

emptyDir volumes GA GA GA

HTTPS redirection GA GA GA

OpenShift Container Platform 4.6 Serverless

12

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/serverless/#about-serverless
https://knative.dev/blog/
https://access.redhat.com/support/offerings/techpreview

Kafka broker TP TP GA

Kafka sink TP TP GA

Init containers support for Knative services TP GA GA

PVC support for Knative services TP TP TP

TLS for internal traffic - - TP

Feature 1.23 1.24 1.25

1.3. DEPRECATED AND REMOVED FEATURES

Some features that were Generally Available (GA) or a Technology Preview (TP) in previous releases
have been deprecated or removed. Deprecated functionality is still included in OpenShift Serverless and
continues to be supported; however, it will be removed in a future release of this product and is not
recommended for new deployments.

For the most recent list of major functionality deprecated and removed within OpenShift Serverless,
refer to the following table:

Table 1.2. Deprecated and removed features tracker

Feature 1.20 1.21 1.22 to 1.25

KafkaBinding API Deprecated Deprecated Removed

kn func emit (kn func invoke in 1.21+) Deprecated Removed Removed

1.4. RELEASE NOTES FOR RED HAT OPENSHIFT SERVERLESS 1.25.0

OpenShift Serverless 1.25.0 is now available. New features, changes, and known issues that pertain to
OpenShift Serverless on OpenShift Container Platform are included in this topic.

1.4.1. New features

OpenShift Serverless now uses Knative Serving 1.4.

OpenShift Serverless now uses Knative Eventing 1.4.

OpenShift Serverless now uses Kourier 1.4.

OpenShift Serverless now uses Knative (kn) CLI 1.4.

OpenShift Serverless now uses Knative Kafka 1.4.

The kn func CLI plug-in now uses func 1.7.0.

Integrated development environment (IDE) plug-ins for creating and deploying functions are

CHAPTER 1. RELEASE NOTES

13

Integrated development environment (IDE) plug-ins for creating and deploying functions are
now available for Visual Studio Code and IntelliJ.

Knative Kafka broker is now GA. Knative Kafka broker is a highly performant implementation of
the Knative broker API, directly targeting Apache Kafka.
It is recommended to not use the MT-Channel-Broker, but the Knative Kafka broker instead.

Knative Kafka sink is now GA. A KafkaSink takes a CloudEvent and sends it to an Apache Kafka
topic. Events can be specified in either structured or binary content modes.

Enabling TLS for internal traffic is now available as a Technology Preview.

1.4.2. Fixed issues

Previously, Knative Serving had an issue where the readiness probe failed if the container was
restarted after a liveness probe fail. This issue has been fixed.

1.4.3. Known issues

The Federal Information Processing Standards (FIPS) mode is disabled for Kafka broker, Kafka
source, and Kafka sink.

The SinkBinding object does not support custom revision names for services.

Additional resources

Configuring TLS authentication

1.5. RELEASE NOTES FOR RED HAT OPENSHIFT SERVERLESS 1.24.0

OpenShift Serverless 1.24.0 is now available. New features, changes, and known issues that pertain to
OpenShift Serverless on OpenShift Container Platform are included in this topic.

1.5.1. New features

OpenShift Serverless now uses Knative Serving 1.3.

OpenShift Serverless now uses Knative Eventing 1.3.

OpenShift Serverless now uses Kourier 1.3.

OpenShift Serverless now uses Knative kn CLI 1.3.

OpenShift Serverless now uses Knative Kafka 1.3.

The kn func CLI plug-in now uses func 0.24.

Init containers support for Knative services is now generally available (GA).

OpenShift Serverless logic is now available as a Developer Preview. It enables defining
declarative workflow models for managing serverless applications.

You can now use the cost management service with OpenShift Serverless.

1.5.2. Fixed issues

OpenShift Container Platform 4.6 Serverless

14

https://github.com/redhat-developer/vscode-knative
https://github.com/redhat-developer/intellij-knative
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/serverless/#serverless-config-tls

Integrating OpenShift Serverless with Red Hat OpenShift Service Mesh causes the net-istio-
controller pod to run out of memory on startup when too many secrets are present on the
cluster.
It is now possible to enable secret filtering, which causes net-istio-controller to consider only
secrets with a networking.internal.knative.dev/certificate-uid label, thus reducing the amount
of memory needed.

The OpenShift Serverless Functions Technology Preview now uses Cloud Native Buildpacks by
default to build container images.

1.5.3. Known issues

The Federal Information Processing Standards (FIPS) mode is disabled for Kafka broker, Kafka
source, and Kafka sink.

In OpenShift Serverless 1.23, support for KafkaBindings and the kafka-binding webhook were
removed. However, an existing kafkabindings.webhook.kafka.sources.knative.dev
MutatingWebhookConfiguration might remain, pointing to the kafka-source-webhook
service, which no longer exists.
For certain specifications of KafkaBindings on the cluster,
kafkabindings.webhook.kafka.sources.knative.dev MutatingWebhookConfiguration might
be configured to pass any create and update events to various resources, such as Deployments,
Knative Services, or Jobs, through the webhook, which would then fail.

To work around this issue, manually delete
kafkabindings.webhook.kafka.sources.knative.dev MutatingWebhookConfiguration from
the cluster after upgrading to OpenShift Serverless 1.23:

1.6. RELEASE NOTES FOR RED HAT OPENSHIFT SERVERLESS 1.23.0

OpenShift Serverless 1.23.0 is now available. New features, changes, and known issues that pertain to
OpenShift Serverless on OpenShift Container Platform are included in this topic.

1.6.1. New features

OpenShift Serverless now uses Knative Serving 1.2.

OpenShift Serverless now uses Knative Eventing 1.2.

OpenShift Serverless now uses Kourier 1.2.

OpenShift Serverless now uses Knative (kn) CLI 1.2.

OpenShift Serverless now uses Knative Kafka 1.2.

The kn func CLI plug-in now uses func 0.24.

It is now possible to use the kafka.eventing.knative.dev/external.topic annotation with the
Kafka broker. This annotation makes it possible to use an existing externally managed topic
instead of the broker creating its own internal topic.

The kafka-ch-controller and kafka-webhook Kafka components no longer exist. These
components have been replaced by the kafka-webhook-eventing component.

$ oc delete mutatingwebhookconfiguration kafkabindings.webhook.kafka.sources.knative.dev

CHAPTER 1. RELEASE NOTES

15

https://buildpacks.io/

The OpenShift Serverless Functions Technology Preview now uses Source-to-Image (S2I) by
default to build container images.

1.6.2. Known issues

The Federal Information Processing Standards (FIPS) mode is disabled for Kafka broker, Kafka
source, and Kafka sink.

If you delete a namespace that includes a Kafka broker, the namespace finalizer may fail to be
removed if the broker’s auth.secret.ref.name secret is deleted before the broker.

Running OpenShift Serverless with a large number of Knative services can cause Knative
activator pods to run close to their default memory limits of 600MB. These pods might be
restarted if memory consumption reaches this limit. Requests and limits for the activator
deployment can be configured by modifying the KnativeServing custom resource:

If you are using Cloud Native Buildpacks as the local build strategy for a function, kn func is
unable to automatically start podman or use an SSH tunnel to a remote daemon. The
workaround for these issues is to have a Docker or podman daemon already running on the local
development computer before deploying a function.

On-cluster function builds currently fail for Quarkus and Golang runtimes. They work correctly
for Node, Typescript, Python, and Springboot runtimes.

Additional resources

Source-to-Image

1.7. RELEASE NOTES FOR RED HAT OPENSHIFT SERVERLESS 1.22.0

OpenShift Serverless 1.22.0 is now available. New features, changes, and known issues that pertain to
OpenShift Serverless on OpenShift Container Platform are included in this topic.

1.7.1. New features

OpenShift Serverless now uses Knative Serving 1.1.

apiVersion: operator.knative.dev/v1alpha1
kind: KnativeServing
metadata:
 name: knative-serving
 namespace: knative-serving
spec:
 deployments:
 - name: activator
 resources:
 - container: activator
 requests:
 cpu: 300m
 memory: 60Mi
 limits:
 cpu: 1000m
 memory: 1000Mi

OpenShift Container Platform 4.6 Serverless

16

https://buildpacks.io/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/images/#using-s21-images

OpenShift Serverless now uses Knative Eventing 1.1.

OpenShift Serverless now uses Kourier 1.1.

OpenShift Serverless now uses Knative (kn) CLI 1.1.

OpenShift Serverless now uses Knative Kafka 1.1.

The kn func CLI plug-in now uses func 0.23.

Init containers support for Knative services is now available as a Technology Preview.

Persistent volume claim (PVC) support for Knative services is now available as a Technology
Preview.

The knative-serving, knative-serving-ingress, knative-eventing and knative-kafka system
namespaces now have the knative.openshift.io/part-of: "openshift-serverless" label by
default.

The Knative Eventing - Kafka Broker/Trigger dashboard has been added, which allows
visualizing Kafka broker and trigger metrics in the web console.

The Knative Eventing - KafkaSink dashboard has been added, which allows visualizing
KafkaSink metrics in the web console.

The Knative Eventing - Broker/Trigger dashboard is now called Knative Eventing - Channel-
based Broker/Trigger.

The knative.openshift.io/part-of: "openshift-serverless" label has substituted the
knative.openshift.io/system-namespace label.

Naming style in Knative Serving YAML configuration files changed from camel case
(ExampleName) to hyphen style (example-name). Beginning with this release, use the hyphen
style notation when creating or editing Knative Serving YAML configuration files.

1.7.2. Known issues

The Federal Information Processing Standards (FIPS) mode is disabled for Kafka broker, Kafka
source, and Kafka sink.

1.8. RELEASE NOTES FOR RED HAT OPENSHIFT SERVERLESS 1.21.0

OpenShift Serverless 1.21.0 is now available. New features, changes, and known issues that pertain to
OpenShift Serverless on OpenShift Container Platform are included in this topic.

1.8.1. New features

OpenShift Serverless now uses Knative Serving 1.0

OpenShift Serverless now uses Knative Eventing 1.0.

OpenShift Serverless now uses Kourier 1.0.

OpenShift Serverless now uses Knative (kn) CLI 1.0.

OpenShift Serverless now uses Knative Kafka 1.0.

CHAPTER 1. RELEASE NOTES

17

The kn func CLI plug-in now uses func 0.21.

The Kafka sink is now available as a Technology Preview.

The Knative open source project has begun to deprecate camel-cased configuration keys in
favor of using kebab-cased keys consistently. As a result, the defaultExternalScheme key,
previously mentioned in the OpenShift Serverless 1.18.0 release notes, is now deprecated and
replaced by the default-external-scheme key. Usage instructions for the key remain the same.

1.8.2. Fixed issues

In OpenShift Serverless 1.20.0, there was an event delivery issue affecting the use of kn event
send to send events to a service. This issue is now fixed.

In OpenShift Serverless 1.20.0 (func 0.20), TypeScript functions created with the http template
failed to deploy on the cluster. This issue is now fixed.

In OpenShift Serverless 1.20.0 (func 0.20), deploying a function using the gcr.io registry failed
with an error. This issue is now fixed.

In OpenShift Serverless 1.20.0 (func 0.20), creating a Springboot function project directory with
the kn func create command and then running the kn func build command failed with an error
message. This issue is now fixed.

In OpenShift Serverless 1.19.0 (func 0.19), some runtimes were unable to build a function by
using podman. This issue is now fixed.

1.8.3. Known issues

Currently, the domain mapping controller cannot process the URI of a broker, which contains a
path that is currently not supported.
This means that, if you want to use a DomainMapping custom resource (CR) to map a custom
domain to a broker, you must configure the DomainMapping CR with the broker’s ingress
service, and append the exact path of the broker to the custom domain:

Example DomainMapping CR

The URI for the broker is then <domain-name>/<broker-namespace>/<broker-name>.

1.9. RELEASE NOTES FOR RED HAT OPENSHIFT SERVERLESS 1.20.0

OpenShift Serverless 1.20.0 is now available. New features, changes, and known issues that pertain to
OpenShift Serverless on OpenShift Container Platform are included in this topic.

apiVersion: serving.knative.dev/v1alpha1
kind: DomainMapping
metadata:
 name: <domain-name>
 namespace: knative-eventing
spec:
 ref:
 name: broker-ingress
 kind: Service
 apiVersion: v1

OpenShift Container Platform 4.6 Serverless

18

1.9.1. New features

OpenShift Serverless now uses Knative Serving 0.26.

OpenShift Serverless now uses Knative Eventing 0.26.

OpenShift Serverless now uses Kourier 0.26.

OpenShift Serverless now uses Knative (kn) CLI 0.26.

OpenShift Serverless now uses Knative Kafka 0.26.

The kn func CLI plug-in now uses func 0.20.

The Kafka broker is now available as a Technology Preview.

IMPORTANT

The Kafka broker, which is currently in Technology Preview, is not supported on
FIPS.

The kn event plug-in is now available as a Technology Preview.

The --min-scale and --max-scale flags for the kn service create command have been
deprecated. Use the --scale-min and --scale-max flags instead.

1.9.2. Known issues

OpenShift Serverless deploys Knative services with a default address that uses HTTPS. When
sending an event to a resource inside the cluster, the sender does not have the cluster
certificate authority (CA) configured. This causes event delivery to fail, unless the cluster uses
globally accepted certificates.
For example, an event delivery to a publicly accessible address works:

On the other hand, this delivery fails if the service uses a public address with an HTTPS
certificate issued by a custom CA:

Sending an event to other addressable objects, such as brokers or channels, is not affected by
this issue and works as expected.

The Kafka broker currently does not work on a cluster with Federal Information Processing
Standards (FIPS) mode enabled.

If you create a Springboot function project directory with the kn func create command,
subsequent running of the kn func build command fails with this error message:

As a workaround, you can change the builder property to gcr.io/paketo-

$ kn event send --to-url https://ce-api.foo.example.com/

$ kn event send --to Service:serving.knative.dev/v1:event-display

[analyzer] no stack metadata found at path ''
[analyzer] ERROR: failed to : set API for buildpack 'paketo-buildpacks/ca-certificates@3.0.2':
buildpack API version '0.7' is incompatible with the lifecycle

CHAPTER 1. RELEASE NOTES

19

As a workaround, you can change the builder property to gcr.io/paketo-
buildpacks/builder:base in the function configuration file func.yaml.

Deploying a function using the gcr.io registry fails with this error message:

As a workaround, use a different registry than gcr.io, such as quay.io or docker.io.

TypeScript functions created with the http template fail to deploy on the cluster.
As a workaround, in the func.yaml file, replace the following section:

with this:

In func version 0.20, some runtimes might be unable to build a function by using podman. You
might see an error message similar to the following:

The following workaround exists for this issue:

a. Update the podman service by adding --time=0 to the service ExecStart definition:

Example service configuration

b. Restart the podman service by running the following commands:

Alternatively, you can expose the podman API by using TCP:

1.10. RELEASE NOTES FOR RED HAT OPENSHIFT SERVERLESS 1.19.0

OpenShift Serverless 1.19.0 is now available. New features, changes, and known issues that pertain to
OpenShift Serverless on OpenShift Container Platform are included in this topic.

1.10.1. New features

Error: failed to get credentials: failed to verify credentials: status code: 404

buildEnvs: []

buildEnvs:
- name: BP_NODE_RUN_SCRIPTS
 value: build

ERROR: failed to image: error during connect: Get
"http://%2Fvar%2Frun%2Fdocker.sock/v1.40/info": EOF

ExecStart=/usr/bin/podman $LOGGING system service --time=0

$ systemctl --user daemon-reload

$ systemctl restart --user podman.socket

$ podman system service --time=0 tcp:127.0.0.1:5534 &
export DOCKER_HOST=tcp://127.0.0.1:5534

OpenShift Container Platform 4.6 Serverless

20

OpenShift Serverless now uses Knative Serving 0.25.

OpenShift Serverless now uses Knative Eventing 0.25.

OpenShift Serverless now uses Kourier 0.25.

OpenShift Serverless now uses Knative (kn) CLI 0.25.

OpenShift Serverless now uses Knative Kafka 0.25.

The kn func CLI plug-in now uses func 0.19.

The KafkaBinding API is deprecated in OpenShift Serverless 1.19.0 and will be removed in a
future release.

HTTPS redirection is now supported and can be configured either globally for a cluster or per
each Knative service.

1.10.2. Fixed issues

In previous releases, the Kafka channel dispatcher waited only for the local commit to succeed
before responding, which might have caused lost events in the case of an Apache Kafka node
failure. The Kafka channel dispatcher now waits for all in-sync replicas to commit before
responding.

1.10.3. Known issues

In func version 0.19, some runtimes might be unable to build a function by using podman. You
might see an error message similar to the following:

The following workaround exists for this issue:

a. Update the podman service by adding --time=0 to the service ExecStart definition:

Example service configuration

b. Restart the podman service by running the following commands:

Alternatively, you can expose the podman API by using TCP:

1.11. RELEASE NOTES FOR RED HAT OPENSHIFT SERVERLESS 1.18.0

ERROR: failed to image: error during connect: Get
"http://%2Fvar%2Frun%2Fdocker.sock/v1.40/info": EOF

ExecStart=/usr/bin/podman $LOGGING system service --time=0

$ systemctl --user daemon-reload

$ systemctl restart --user podman.socket

$ podman system service --time=0 tcp:127.0.0.1:5534 &
export DOCKER_HOST=tcp://127.0.0.1:5534

CHAPTER 1. RELEASE NOTES

21

OpenShift Serverless 1.18.0 is now available. New features, changes, and known issues that pertain to
OpenShift Serverless on OpenShift Container Platform are included in this topic.

1.11.1. New features

OpenShift Serverless now uses Knative Serving 0.24.0.

OpenShift Serverless now uses Knative Eventing 0.24.0.

OpenShift Serverless now uses Kourier 0.24.0.

OpenShift Serverless now uses Knative (kn) CLI 0.24.0.

OpenShift Serverless now uses Knative Kafka 0.24.7.

The kn func CLI plug-in now uses func 0.18.0.

In the upcoming OpenShift Serverless 1.19.0 release, the URL scheme of external routes will
default to HTTPS for enhanced security.
If you do not want this change to apply for your workloads, you can override the default setting
before upgrading to 1.19.0, by adding the following YAML to your KnativeServing custom
resource (CR):

If you want the change to apply in 1.18.0 already, add the following YAML:

In the upcoming OpenShift Serverless 1.19.0 release, the default service type by which the
Kourier Gateway is exposed will be ClusterIP and not LoadBalancer.
If you do not want this change to apply to your workloads, you can override the default setting
before upgrading to 1.19.0, by adding the following YAML to your KnativeServing custom
resource (CR):

You can now use emptyDir volumes with OpenShift Serverless. See the OpenShift Serverless
documentation about Knative Serving for details.

...
spec:
 config:
 network:
 defaultExternalScheme: "http"
...

...
spec:
 config:
 network:
 defaultExternalScheme: "https"
...

...
spec:
 ingress:
 kourier:
 service-type: LoadBalancer
...

OpenShift Container Platform 4.6 Serverless

22

Rust templates are now available when you create a function using kn func.

1.11.2. Fixed issues

The prior 1.4 version of Camel-K was not compatible with OpenShift Serverless 1.17.0. The issue
in Camel-K has been fixed, and Camel-K version 1.4.1 can be used with OpenShift Serverless
1.17.0.

Previously, if you created a new subscription for a Kafka channel, or a new Kafka source, a delay
was possible in the Kafka data plane becoming ready to dispatch messages after the newly
created subscription or sink reported a ready status.
As a result, messages that were sent during the time when the data plane was not reporting a
ready status, might not have been delivered to the subscriber or sink.

In OpenShift Serverless 1.18.0, the issue is fixed and the initial messages are no longer lost. For
more information about the issue, see Knowledgebase Article #6343981 .

1.11.3. Known issues

Older versions of the Knative kn CLI might use older versions of the Knative Serving and
Knative Eventing APIs. For example, version 0.23.2 of the kn CLI uses the v1alpha1 API version.
On the other hand, newer releases of OpenShift Serverless might no longer support older API
versions. For example, OpenShift Serverless 1.18.0 no longer supports version v1alpha1 of the
kafkasources.sources.knative.dev API.

Consequently, using an older version of the Knative kn CLI with a newer OpenShift Serverless
might produce an error because the kn cannot find the outdated API. For example, version
0.23.2 of the kn CLI does not work with OpenShift Serverless 1.18.0.

To avoid issues, use the latest kn CLI version available for your OpenShift Serverless release.
For OpenShift Serverless 1.18.0, use Knative kn CLI 0.24.0.

1.12. RELEASE NOTES FOR RED HAT OPENSHIFT SERVERLESS 1.17.0

OpenShift Serverless 1.17.0 is now available. New features, changes, and known issues that pertain to
OpenShift Serverless on OpenShift Container Platform are included in this topic.

1.12.1. New features

OpenShift Serverless now uses Knative Serving 0.23.0.

OpenShift Serverless now uses Knative Eventing 0.23.0.

OpenShift Serverless now uses Kourier 0.23.0.

OpenShift Serverless now uses Knative kn CLI 0.23.0.

OpenShift Serverless now uses Knative Kafka 0.23.0.

The kn func CLI plug-in now uses func 0.17.0.

In the upcoming OpenShift Serverless 1.19.0 release, the URL scheme of external routes will
default to HTTPS for enhanced security.

If you do not want this change to apply for your workloads, you can override the default setting

CHAPTER 1. RELEASE NOTES

23

https://access.redhat.com/articles/6343981

If you do not want this change to apply for your workloads, you can override the default setting
before upgrading to 1.19.0, by adding the following YAML to your KnativeServing custom
resource (CR):

mTLS functionality is now Generally Available (GA).

TypeScript templates are now available when you create a function using kn func.

Changes to API versions in Knative Eventing 0.23.0:

The v1alpha1 version of the KafkaChannel API, which was deprecated in OpenShift
Serverless version 1.14.0, has been removed. If the ChannelTemplateSpec parameters of
your config maps contain references to this older version, you must update this part of the
spec to use the correct API version.

1.12.2. Known issues

If you try to use an older version of the Knative kn CLI with a newer OpenShift Serverless
release, the API is not found and an error occurs.
For example, if you use the 1.16.0 release of the kn CLI, which uses version 0.22.0, with the 1.17.0
OpenShift Serverless release, which uses the 0.23.0 versions of the Knative Serving and Knative
Eventing APIs, the CLI does not work because it continues to look for the outdated 0.22.0 API
versions.

Ensure that you are using the latest kn CLI version for your OpenShift Serverless release to
avoid issues.

Kafka channel metrics are not monitored or shown in the corresponding web console dashboard
in this release. This is due to a breaking change in the Kafka dispatcher reconciling process.

If you create a new subscription for a Kafka channel, or a new Kafka source, there might be a
delay in the Kafka data plane becoming ready to dispatch messages after the newly created
subscription or sink reports a ready status.
As a result, messages that are sent during the time when the data plane is not reporting a ready
status might not be delivered to the subscriber or sink.

For more information about this issue and possible workarounds, see Knowledge Article
#6343981.

The Camel-K 1.4 release is not compatible with OpenShift Serverless version 1.17.0. This is
because Camel-K 1.4 uses APIs that were removed in Knative version 0.23.0. There is currently
no workaround available for this issue. If you need to use Camel-K 1.4 with OpenShift Serverless,
do not upgrade to OpenShift Serverless version 1.17.0.

NOTE

The issue has been fixed, and Camel-K version 1.4.1 is compatible with OpenShift
Serverless 1.17.0.

...
spec:
 config:
 network:
 defaultExternalScheme: "http"
...

OpenShift Container Platform 4.6 Serverless

24

https://access.redhat.com/articles/6343981

1.13. RELEASE NOTES FOR RED HAT OPENSHIFT SERVERLESS 1.16.0

OpenShift Serverless 1.16.0 is now available. New features, changes, and known issues that pertain to
OpenShift Serverless on OpenShift Container Platform are included in this topic.

1.13.1. New features

OpenShift Serverless now uses Knative Serving 0.22.0.

OpenShift Serverless now uses Knative Eventing 0.22.0.

OpenShift Serverless now uses Kourier 0.22.0.

OpenShift Serverless now uses Knative kn CLI 0.22.0.

OpenShift Serverless now uses Knative Kafka 0.22.0.

The kn func CLI plug-in now uses func 0.16.0.

The kn func emit command has been added to the functions kn plug-in. You can use this
command to send events to test locally deployed functions.

1.13.2. Known issues

You must upgrade OpenShift Container Platform to version 4.6.30, 4.7.11, or higher before
upgrading to OpenShift Serverless 1.16.0.

The AMQ Streams Operator might prevent the installation or upgrade of the OpenShift
Serverless Operator. If this happens, the following error is thrown by Operator Lifecycle
Manager (OLM):

You can fix this issue by uninstalling the AMQ Streams Operator before installing or upgrading
the OpenShift Serverless Operator. You can then reinstall the AMQ Streams Operator.

If Service Mesh is enabled with mTLS, metrics for Knative Serving are disabled by default
because Service Mesh prevents Prometheus from scraping metrics. For instructions on enabling
Knative Serving metrics for use with Service Mesh and mTLS, see the "Integrating Service Mesh
with OpenShift Serverless" section of the Serverless documentation.

If you deploy Service Mesh CRs with the Istio ingress enabled, you might see the following
warning in the istio-ingressgateway pod:

Your Knative services might also not be accessible.

You can use the following workaround to fix this issue by recreating the knative-local-gateway
service:

WARNING: found multiple channel heads: [amqstreams.v1.7.2 amqstreams.v1.6.2], please
check the `replaces`/`skipRange` fields of the operator bundles.

2021-05-02T12:56:17.700398Z warning envoy config
[external/envoy/source/common/config/grpc_subscription_impl.cc:101] gRPC config for
type.googleapis.com/envoy.api.v2.Listener rejected: Error adding/updating listener(s)
0.0.0.0_8081: duplicate listener 0.0.0.0_8081 found

CHAPTER 1. RELEASE NOTES

25

a. Delete the existing knative-local-gateway service in the istio-system namespace:

b. Create and apply a knative-local-gateway service that contains the following YAML:

If you have 1000 Knative services on a cluster, and then perform a reinstall or upgrade of
Knative Serving, there is a delay when you create the first new service after the KnativeServing
custom resource (CR) becomes Ready.
The 3scale-kourier-control service reconciles all previously existing Knative services before
processing the creation of a new service, which causes the new service to spend approximately
800 seconds in an IngressNotConfigured or Unknown state before the state updates to
Ready.

If you create a new subscription for a Kafka channel, or a new Kafka source, there might be a
delay in the Kafka data plane becoming ready to dispatch messages after the newly created
subscription or sink reports a ready status.
As a result, messages that are sent during the time when the data plane is not reporting a ready
status might not be delivered to the subscriber or sink.

For more information about this issue and possible workarounds, see Knowledge Article
#6343981.

1.14. RELEASE NOTES FOR RED HAT OPENSHIFT SERVERLESS 1.15.0

OpenShift Serverless 1.15.0 is now available. New features, changes, and known issues that pertain to
OpenShift Serverless on OpenShift Container Platform are included in this topic.

1.14.1. New features

OpenShift Serverless now uses Knative Serving 0.21.0.

OpenShift Serverless now uses Knative Eventing 0.21.0.

OpenShift Serverless now uses Kourier 0.21.0.

OpenShift Serverless now uses Knative kn CLI 0.21.0.

OpenShift Serverless now uses Knative Kafka 0.21.1.

$ oc delete services -n istio-system knative-local-gateway

apiVersion: v1
kind: Service
metadata:
 name: knative-local-gateway
 namespace: istio-system
 labels:
 experimental.istio.io/disable-gateway-port-translation: "true"
spec:
 type: ClusterIP
 selector:
 istio: ingressgateway
 ports:
 - name: http2
 port: 80
 targetPort: 8081

OpenShift Container Platform 4.6 Serverless

26

https://access.redhat.com/articles/6343981

OpenShift Serverless Functions is now available as a Technology Preview.

IMPORTANT

The serving.knative.dev/visibility label, which was previously used to create private
services, is now deprecated. You must update existing services to use the
networking.knative.dev/visibility label instead.

1.14.2. Known issues

If you create a new subscription for a Kafka channel, or a new Kafka source, there might be a
delay in the Kafka data plane becoming ready to dispatch messages after the newly created
subscription or sink reports a ready status.
As a result, messages that are sent during the time when the data plane is not reporting a ready
status might not be delivered to the subscriber or sink.

For more information about this issue and possible workarounds, see Knowledge Article
#6343981.

1.15. RELEASE NOTES FOR RED HAT OPENSHIFT SERVERLESS 1.14.0

OpenShift Serverless 1.14.0 is now available. New features, changes, and known issues that pertain to
OpenShift Serverless on OpenShift Container Platform are included in this topic.

1.15.1. New features

OpenShift Serverless now uses Knative Serving 0.20.0.

OpenShift Serverless uses Knative Eventing 0.20.0.

OpenShift Serverless now uses Kourier 0.20.0.

OpenShift Serverless now uses Knative kn CLI 0.20.0.

OpenShift Serverless now uses Knative Kafka 0.20.0.

Knative Kafka on OpenShift Serverless is now Generally Available (GA).

IMPORTANT

Only the v1beta1 version of the APIs for KafkaChannel and KafkaSource
objects on OpenShift Serverless are supported. Do not use the v1alpha1 version
of these APIs, as this version is now deprecated.

The Operator channel for installing and upgrading OpenShift Serverless has been updated to
stable for OpenShift Container Platform 4.6 and newer versions.

OpenShift Serverless is now supported on IBM Power Systems, IBM Z, and LinuxONE, except
for the following features, which are not yet supported:

Knative Kafka functionality.

OpenShift Serverless Functions developer preview.

CHAPTER 1. RELEASE NOTES

27

https://access.redhat.com/articles/6343981

1.15.2. Known issues

Subscriptions for the Kafka channel sometimes fail to become marked as READY and remain in
the SubscriptionNotMarkedReadyByChannel state. You can fix this by restarting the
dispatcher for the Kafka channel.

If you create a new subscription for a Kafka channel, or a new Kafka source, there might be a
delay in the Kafka data plane becoming ready to dispatch messages after the newly created
subscription or sink reports a ready status.
As a result, messages that are sent during the time when the data plane is not reporting a ready
status might not be delivered to the subscriber or sink.

For more information about this issue and possible workarounds, see Knowledge Article
#6343981.

OpenShift Container Platform 4.6 Serverless

28

https://access.redhat.com/articles/6343981

CHAPTER 2. DISCOVER

2.1. ABOUT OPENSHIFT SERVERLESS

OpenShift Serverless provides Kubernetes native building blocks that enable developers to create and
deploy serverless, event-driven applications on OpenShift Container Platform. OpenShift Serverless is
based on the open source Knative project, which provides portability and consistency for hybrid and
multi-cloud environments by enabling an enterprise-grade serverless platform.

2.1.1. Knative Serving

Knative Serving supports developers who want to create, deploy, and manage cloud-native applications.
It provides a set of objects as Kubernetes custom resource definitions (CRDs) that define and control
the behavior of serverless workloads on an OpenShift Container Platform cluster.

Developers use these CRDs to create custom resource (CR) instances that can be used as building
blocks to address complex use cases. For example:

Rapidly deploying serverless containers.

Automatically scaling pods.

2.1.1.1. Knative Serving resources

Service

The service.serving.knative.dev CRD automatically manages the life cycle of your workload to
ensure that the application is deployed and reachable through the network. It creates a route, a
configuration, and a new revision for each change to a user created service, or custom resource.
Most developer interactions in Knative are carried out by modifying services.

Revision

The revision.serving.knative.dev CRD is a point-in-time snapshot of the code and configuration
for each modification made to the workload. Revisions are immutable objects and can be retained for
as long as necessary.

Route

The route.serving.knative.dev CRD maps a network endpoint to one or more revisions. You can
manage the traffic in several ways, including fractional traffic and named routes.

Configuration

The configuration.serving.knative.dev CRD maintains the desired state for your deployment. It
provides a clean separation between code and configuration. Modifying a configuration creates a
new revision.

2.1.2. Knative Eventing

Knative Eventing on OpenShift Container Platform enables developers to use an event-driven
architecture with serverless applications. An event-driven architecture is based on the concept of
decoupled relationships between event producers and event consumers.

Event producers create events, and event sinks, or consumers, receive events. Knative Eventing uses
standard HTTP POST requests to send and receive events between event producers and sinks. These
events conform to the CloudEvents specifications, which enables creating, parsing, sending, and
receiving events in any programming language.

CHAPTER 2. DISCOVER

29

https://knative.dev/docs/
https://www.redhat.com/en/topics/cloud-native-apps
https://www.redhat.com/en/topics/integration/what-is-event-driven-architecture
https://cloudevents.io

Knative Eventing supports the following use cases:

Publish an event without creating a consumer

You can send events to a broker as an HTTP POST, and use binding to decouple the destination
configuration from your application that produces events.

Consume an event without creating a publisher

You can use a trigger to consume events from a broker based on event attributes. The application
receives events as an HTTP POST.

To enable delivery to multiple types of sinks, Knative Eventing defines the following generic interfaces
that can be implemented by multiple Kubernetes resources:

Addressable resources

Able to receive and acknowledge an event delivered over HTTP to an address defined in the
status.address.url field of the event. The Kubernetes Service resource also satisfies the
addressable interface.

Callable resources

Able to receive an event delivered over HTTP and transform it, returning 0 or 1 new events in the
HTTP response payload. These returned events may be further processed in the same way that
events from an external event source are processed.

You can propagate an event from an event source to multiple event sinks by using:

Channels and subscriptions, or

Brokers and Triggers.

2.1.3. Supported configurations

The set of supported features, configurations, and integrations for OpenShift Serverless, current and
past versions, are available at the Supported Configurations page .

2.1.4. Scalability and performance

OpenShift Serverless has been tested with a configuration of 3 main nodes and 3 worker nodes, each of
which has 64 CPUs, 457 GB of memory, and 394 GB of storage each.

The maximum number of Knative services that can be created using this configuration is 3,000. This
corresponds to the OpenShift Container Platform Kubernetes services limit of 10,000 , since 1 Knative
service creates 3 Kubernetes services.

The average scale from zero response time was approximately 3.4 seconds, with a maximum response
time of 8 seconds, and a 99.9th percentile of 4.5 seconds for a simple Quarkus application. These times
might vary depending on the application and the runtime of the application.

2.1.5. Additional resources

Extending the Kubernetes API with custom resource definitions

Managing resources from custom resource definitions

What is serverless?

OpenShift Container Platform 4.6 Serverless

30

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/serverless/#knative-event-sources
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/serverless/#serverless-channels
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/serverless/#serverless-using-brokers
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/serverless/#serverless-triggers
https://access.redhat.com/articles/4912821
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/scalability_and_performance/#cluster-maximums-major-releases_object-limits
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/operators/#crd-extending-api-with-crds
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/operators/#crd-managing-resources-from-crds
https://www.redhat.com/en/topics/cloud-native-apps/what-is-serverless

2.2. ABOUT OPENSHIFT SERVERLESS FUNCTIONS

OpenShift Serverless Functions enables developers to create and deploy stateless, event-driven
functions as a Knative service on OpenShift Container Platform. The kn func CLI is provided as a plug-
in for the Knative kn CLI. You can use the kn func CLI to create, build, and deploy the container image
as a Knative service on the cluster.

IMPORTANT

OpenShift Serverless Functions is a Technology Preview feature only. Technology
Preview features are not supported with Red Hat production service level agreements
(SLAs) and might not be functionally complete. Red Hat does not recommend using
them in production. These features provide early access to upcoming product features,
enabling customers to test functionality and provide feedback during the development
process.

For more information about the support scope of Red Hat Technology Preview features,
see https://access.redhat.com/support/offerings/techpreview/.

2.2.1. Included runtimes

OpenShift Serverless Functions provides templates that can be used to create basic functions for the
following runtimes:

Node.js

Python

Go

Quarkus

TypeScript

2.2.2. Next steps

Getting started with functions.

2.3. EVENT SOURCES

A Knative event source can be any Kubernetes object that generates or imports cloud events, and relays
those events to another endpoint, known as a sink. Sourcing events is critical to developing a distributed
system that reacts to events.

You can create and manage Knative event sources by using the Developer perspective in the OpenShift
Container Platform web console, the Knative (kn) CLI, or by applying YAML files.

Currently, OpenShift Serverless supports the following event source types:

API server source

Brings Kubernetes API server events into Knative. The API server source sends a new event each
time a Kubernetes resource is created, updated or deleted.

Ping source

Produces events with a fixed payload on a specified cron schedule.

CHAPTER 2. DISCOVER

31

https://access.redhat.com/support/offerings/techpreview/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/serverless/#serverless-developing-nodejs-functions
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/serverless/#serverless-developing-python-functions
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/serverless/#serverless-developing-go-functions
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/serverless/#serverless-developing-quarkus-functions
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/serverless/#serverless-developing-typescript-functions
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/serverless/#serverless-functions-getting-started
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/serverless/#serverless-event-sinks
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/serverless/#serverless-apiserversource
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/serverless/#serverless-pingsource

Kafka event source

Connects a Kafka cluster to a sink as an event source.

You can also create a custom event source.

2.4. BROKERS

Brokers can be used in combination with triggers to deliver events from an event source to an event
sink. Events are sent from an event source to a broker as an HTTP POST request. After events have
entered the broker, they can be filtered by CloudEvent attributes using triggers, and sent as an HTTP
POST request to an event sink.

2.4.1. Broker types

Cluster administrators can set the default broker implementation for a cluster. When you create a
broker, the default broker implementation is used, unless you provide set configurations in the Broker
object.

2.4.1.1. Default broker implementation for development purposes

Knative provides a default, channel-based broker implementation. This channel-based broker can be
used for development and testing purposes, but does not provide adequate event delivery guarantees
for production environments. The default broker is backed by the InMemoryChannel channel
implementation by default.

If you want to use Kafka to reduce network hops, use the Kafka broker implementation. Do not configure
the channel-based broker to be backed by the KafkaChannel channel implementation.

2.4.1.2. Production-ready Kafka broker implementation

For production-ready Knative Eventing deployments, Red Hat recommends using the Knative Kafka
broker implementation. The Kafka broker is an Apache Kafka native implementation of the Knative
broker, which sends CloudEvents directly to the Kafka instance.

IMPORTANT

The Federal Information Processing Standards (FIPS) mode is disabled for Kafka broker.

The Kafka broker has a native integration with Kafka for storing and routing events. This allows better

OpenShift Container Platform 4.6 Serverless

32

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/serverless/#serverless-kafka-developer-source
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/serverless/#serverless-custom-event-sources
https://github.com/cloudevents/spec/blob/v1.0/spec.md#context-attributes

The Kafka broker has a native integration with Kafka for storing and routing events. This allows better
integration with Kafka for the broker and trigger model over other broker types, and reduces network
hops. Other benefits of the Kafka broker implementation include:

At-least-once delivery guarantees

Ordered delivery of events, based on the CloudEvents partitioning extension

Control plane high availability

A horizontally scalable data plane

The Knative Kafka broker stores incoming CloudEvents as Kafka records, using the binary content mode.
This means that all CloudEvent attributes and extensions are mapped as headers on the Kafka record,
while the data spec of the CloudEvent corresponds to the value of the Kafka record.

2.4.2. Next steps

Creating brokers

2.5. CHANNELS AND SUBSCRIPTIONS

Channels are custom resources that define a single event-forwarding and persistence layer. After
events have been sent to a channel from an event source or producer, these events can be sent to
multiple Knative services or other sinks by using a subscription.

You can create channels by instantiating a supported Channel object, and configure re-delivery
attempts by modifying the delivery spec in a Subscription object.

After you create a Channel object, a mutating admission webhook adds a set of spec.channelTemplate
properties for the Channel object based on the default channel implementation. For example, for an
InMemoryChannel default implementation, the Channel object looks as follows:

apiVersion: messaging.knative.dev/v1
kind: Channel
metadata:
 name: example-channel
 namespace: default
spec:

CHAPTER 2. DISCOVER

33

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/serverless/#serverless-using-brokers

The channel controller then creates the backing channel instance based on the spec.channelTemplate
configuration.

NOTE

The spec.channelTemplate properties cannot be changed after creation, because they
are set by the default channel mechanism rather than by the user.

When this mechanism is used with the preceding example, two objects are created: a generic backing
channel and an InMemoryChannel channel. If you are using a different default channel implementation,
the InMemoryChannel is replaced with one that is specific to your implementation. For example, with
Knative Kafka, the KafkaChannel channel is created.

The backing channel acts as a proxy that copies its subscriptions to the user-created channel object,
and sets the user-created channel object status to reflect the status of the backing channel.

2.5.1. Channel implementation types

InMemoryChannel and KafkaChannel channel implementations can be used with OpenShift Serverless
for development use.

The following are limitations of InMemoryChannel type channels:

No event persistence is available. If a pod goes down, events on that pod are lost.

InMemoryChannel channels do not implement event ordering, so two events that are received
in the channel at the same time can be delivered to a subscriber in any order.

If a subscriber rejects an event, there are no re-delivery attempts by default. You can configure
re-delivery attempts by modifying the delivery spec in the Subscription object.

For more information about Kafka channels, see the Knative Kafka documentation.

2.5.2. Next steps

Create a channel.

If you are a cluster administrator, you can configure default settings for channels. See
Configuring channel defaults.

 channelTemplate:
 apiVersion: messaging.knative.dev/v1
 kind: InMemoryChannel

OpenShift Container Platform 4.6 Serverless

34

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/serverless/#serverless-kafka-developer
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/serverless/#serverless-creating-channels
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/serverless/#serverless-channel-default_serverless-configuration

CHAPTER 3. INSTALL

3.1. INSTALLING THE OPENSHIFT SERVERLESS OPERATOR

Installing the OpenShift Serverless Operator enables you to install and use Knative Serving, Knative
Eventing, and Knative Kafka on a OpenShift Container Platform cluster. The OpenShift Serverless
Operator manages Knative custom resource definitions (CRDs) for your cluster and enables you to
configure them without directly modifying individual config maps for each component.

3.1.1. Before you begin

Read the following information about supported configurations and prerequisites before you install
OpenShift Serverless.

OpenShift Serverless is supported for installation in a restricted network environment.

OpenShift Serverless currently cannot be used in a multi-tenant configuration on a single
cluster.

3.1.1.1. Defining cluster size requirements

To install and use OpenShift Serverless, the OpenShift Container Platform cluster must be sized
correctly. The total size requirements to run OpenShift Serverless are dependent on the components
that are installed and the applications that are deployed, and might vary depending on your deployment.

NOTE

The following requirements relate only to the pool of worker machines of the OpenShift
Container Platform cluster. Control plane nodes are not used for general scheduling and
are omitted from the requirements.

By default, each pod requests approximately 400m of CPU, so the minimum requirements are based on
this value. Lowering the actual CPU request of applications can increase the number of possible
replicas.

If you have high availability (HA) enabled on your cluster, this requires between 0.5 - 1.5 cores and
between 200MB - 2GB of memory for each replica of the Knative Serving control plane.

3.1.1.2. Scaling your cluster using machine sets

You can use the OpenShift Container Platform MachineSet API to manually scale your cluster up to the
desired size. The minimum requirements usually mean that you must scale up one of the default
machine sets by two additional machines. See Manually scaling a machine set .

3.1.2. Installing the OpenShift Serverless Operator

You can install the OpenShift Serverless Operator from the OperatorHub by using the OpenShift
Container Platform web console. Installing this Operator enables you to install and use Knative
components.

Prerequisites

You have access to an OpenShift Container Platform account with cluster administrator access.

CHAPTER 3. INSTALL

35

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/machine_management/#manually-scaling-machineset

You have logged in to the OpenShift Container Platform web console.

Procedure

1. In the OpenShift Container Platform web console, navigate to the Operators → OperatorHub
page.

2. Scroll, or type the keyword Serverless into the Filter by keyword box to find the OpenShift
Serverless Operator.

3. Review the information about the Operator and click Install.

4. On the Install Operator page:

a. The Installation Mode is All namespaces on the cluster (default). This mode installs the
Operator in the default openshift-serverless namespace to watch and be made available
to all namespaces in the cluster.

b. The Installed Namespace is openshift-serverless.

c. Select the stable channel as the Update Channel. The stable channel will enable
installation of the latest stable release of the OpenShift Serverless Operator.

d. Select Automatic or Manual approval strategy.

5. Click Install to make the Operator available to the selected namespaces on this OpenShift
Container Platform cluster.

6. From the Catalog → Operator Management page, you can monitor the OpenShift Serverless
Operator subscription’s installation and upgrade progress.

a. If you selected a Manual approval strategy, the subscription’s upgrade status will remain
Upgrading until you review and approve its install plan. After approving on the Install Plan
page, the subscription upgrade status moves to Up to date.

b. If you selected an Automatic approval strategy, the upgrade status should resolve to Up to
date without intervention.

Verification

After the Subscription’s upgrade status is Up to date, select Catalog → Installed Operators to verify
that the OpenShift Serverless Operator eventually shows up and its Status ultimately resolves to
InstallSucceeded in the relevant namespace.

If it does not:

1. Switch to the Catalog → Operator Management page and inspect the Operator
Subscriptions and Install Plans tabs for any failure or errors under Status.

2. Check the logs in any pods in the openshift-serverless project on the Workloads → Pods page
that are reporting issues to troubleshoot further.

IMPORTANT

If you want to use Red Hat OpenShift distributed tracing with OpenShift Serverless , you
must install and configure Red Hat OpenShift distributed tracing before you install
Knative Serving or Knative Eventing.

OpenShift Container Platform 4.6 Serverless

36

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/serverless/#serverless-tracing

3.1.3. Additional resources

Using Operator Lifecycle Manager on restricted networks

Configuring high availability replicas on OpenShift Serverless

3.1.4. Next steps

After the OpenShift Serverless Operator is installed, you can install Knative Serving or install
Knative Eventing.

3.2. INSTALLING KNATIVE SERVING

Installing Knative Serving allows you to create Knative services and functions on your cluster. It also
allows you to use additional functionality such as autoscaling and networking options for your
applications.

After you install the OpenShift Serverless Operator, you can install Knative Serving by using the default
settings, or configure more advanced settings in the KnativeServing custom resource (CR). For more
information about configuration options for the KnativeServing CR, see Global configuration.

IMPORTANT

If you want to use Red Hat OpenShift distributed tracing with OpenShift Serverless , you
must install and configure Red Hat OpenShift distributed tracing before you install
Knative Serving.

3.2.1. Installing Knative Serving by using the web console

After you install the OpenShift Serverless Operator, install Knative Serving by using the OpenShift
Container Platform web console. You can install Knative Serving by using the default settings or
configure more advanced settings in the KnativeServing custom resource (CR).

Prerequisites

You have access to an OpenShift Container Platform account with cluster administrator access.

You have logged in to the OpenShift Container Platform web console.

You have installed the OpenShift Serverless Operator.

Procedure

1. In the Administrator perspective of the OpenShift Container Platform web console, navigate
to Operators → Installed Operators.

2. Check that the Project dropdown at the top of the page is set to Project: knative-serving.

3. Click Knative Serving in the list of Provided APIs for the OpenShift Serverless Operator to go
to the Knative Serving tab.

4. Click Create Knative Serving.

5. In the Create Knative Serving page, you can install Knative Serving using the default settings
by clicking Create.
You can also modify settings for the Knative Serving installation by editing the KnativeServing

CHAPTER 3. INSTALL

37

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/operators/#olm-restricted-networks
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/serverless/#serverless-ha
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/serverless/#installing-knative-serving
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/serverless/#installing-knative-eventing
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/serverless/#serverless-configuration
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/serverless/#serverless-tracing

You can also modify settings for the Knative Serving installation by editing the KnativeServing
object using either the form provided, or by editing the YAML.

Using the form is recommended for simpler configurations that do not require full control of
KnativeServing object creation.

Editing the YAML is recommended for more complex configurations that require full control
of KnativeServing object creation. You can access the YAML by clicking the edit YAML
link in the top right of the Create Knative Serving page.
After you complete the form, or have finished modifying the YAML, click Create.

NOTE

For more information about configuration options for the KnativeServing
custom resource definition, see the documentation on Advanced installation
configuration options.

6. After you have installed Knative Serving, the KnativeServing object is created, and you are
automatically directed to the Knative Serving tab. You will see the knative-serving custom
resource in the list of resources.

Verification

1. Click on knative-serving custom resource in the Knative Serving tab.

2. You will be automatically directed to the Knative Serving Overview page.

3. Scroll down to look at the list of Conditions.

4. You should see a list of conditions with a status of True, as shown in the example image.

OpenShift Container Platform 4.6 Serverless

38

NOTE

It may take a few seconds for the Knative Serving resources to be created. You
can check their status in the Resources tab.

5. If the conditions have a status of Unknown or False, wait a few moments and then check again
after you have confirmed that the resources have been created.

3.2.2. Installing Knative Serving by using YAML

After you install the OpenShift Serverless Operator, you can install Knative Serving by using the default
settings, or configure more advanced settings in the KnativeServing custom resource (CR). You can
use the following procedure to install Knative Serving by using YAML files and the oc CLI.

Prerequisites

You have access to an OpenShift Container Platform account with cluster administrator access.

You have installed the OpenShift Serverless Operator.

Install the OpenShift CLI (oc).

Procedure

1. Create a file named serving.yaml and copy the following example YAML into it:

apiVersion: operator.knative.dev/v1alpha1
kind: KnativeServing
metadata:
 name: knative-serving
 namespace: knative-serving

CHAPTER 3. INSTALL

39

2. Apply the serving.yaml file:

Verification

1. To verify the installation is complete, enter the following command:

Example output

NOTE

It may take a few seconds for the Knative Serving resources to be created.

If the conditions have a status of Unknown or False, wait a few moments and then check again
after you have confirmed that the resources have been created.

2. Check that the Knative Serving resources have been created:

Example output

3. Check that the necessary networking components have been installed to the automatically
created knative-serving-ingress namespace:

$ oc apply -f serving.yaml

$ oc get knativeserving.operator.knative.dev/knative-serving -n knative-serving --
template='{{range .status.conditions}}{{printf "%s=%s\n" .type .status}}{{end}}'

DependenciesInstalled=True
DeploymentsAvailable=True
InstallSucceeded=True
Ready=True

$ oc get pods -n knative-serving

NAME READY STATUS RESTARTS AGE
activator-67ddf8c9d7-p7rm5 2/2 Running 0 4m
activator-67ddf8c9d7-q84fz 2/2 Running 0 4m
autoscaler-5d87bc6dbf-6nqc6 2/2 Running 0 3m59s
autoscaler-5d87bc6dbf-h64rl 2/2 Running 0 3m59s
autoscaler-hpa-77f85f5cc4-lrts7 2/2 Running 0 3m57s
autoscaler-hpa-77f85f5cc4-zx7hl 2/2 Running 0 3m56s
controller-5cfc7cb8db-nlccl 2/2 Running 0 3m50s
controller-5cfc7cb8db-rmv7r 2/2 Running 0 3m18s
domain-mapping-86d84bb6b4-r746m 2/2 Running 0 3m58s
domain-mapping-86d84bb6b4-v7nh8 2/2 Running 0 3m58s
domainmapping-webhook-769d679d45-bkcnj 2/2 Running 0 3m58s
domainmapping-webhook-769d679d45-fff68 2/2 Running 0 3m58s
storage-version-migration-serving-serving-0.26.0--1-6qlkb 0/1 Completed 0 3m56s
webhook-5fb774f8d8-6bqrt 2/2 Running 0 3m57s
webhook-5fb774f8d8-b8lt5 2/2 Running 0 3m57s

$ oc get pods -n knative-serving-ingress

OpenShift Container Platform 4.6 Serverless

40

Example output

3.2.3. Next steps

If you want to use Knative event-driven architecture you can install Knative Eventing .

3.3. INSTALLING KNATIVE EVENTING

To use event-driven architecture on your cluster, install Knative Eventing. You can create Knative
components such as event sources, brokers, and channels and then use them to send events to
applications or external systems.

After you install the OpenShift Serverless Operator, you can install Knative Eventing by using the default
settings, or configure more advanced settings in the KnativeEventing custom resource (CR). For more
information about configuration options for the KnativeEventing CR, see Global configuration.

IMPORTANT

If you want to use Red Hat OpenShift distributed tracing with OpenShift Serverless , you
must install and configure Red Hat OpenShift distributed tracing before you install
Knative Eventing.

3.3.1. Installing Knative Eventing by using the web console

After you install the OpenShift Serverless Operator, install Knative Eventing by using the OpenShift
Container Platform web console. You can install Knative Eventing by using the default settings or
configure more advanced settings in the KnativeEventing custom resource (CR).

Prerequisites

You have access to an OpenShift Container Platform account with cluster administrator access.

You have logged in to the OpenShift Container Platform web console.

You have installed the OpenShift Serverless Operator.

Procedure

1. In the Administrator perspective of the OpenShift Container Platform web console, navigate
to Operators → Installed Operators.

2. Check that the Project dropdown at the top of the page is set to Project: knative-eventing.

3. Click Knative Eventing in the list of Provided APIs for the OpenShift Serverless Operator to
go to the Knative Eventing tab.

4. Click Create Knative Eventing.

5. In the Create Knative Eventing page, you can choose to configure the KnativeEventing

NAME READY STATUS RESTARTS AGE
net-kourier-controller-7d4b6c5d95-62mkf 1/1 Running 0 76s
net-kourier-controller-7d4b6c5d95-qmgm2 1/1 Running 0 76s
3scale-kourier-gateway-6688b49568-987qz 1/1 Running 0 75s
3scale-kourier-gateway-6688b49568-b5tnp 1/1 Running 0 75s

CHAPTER 3. INSTALL

41

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/serverless/#installing-knative-eventing
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/serverless/#serverless-configuration
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/serverless/#serverless-tracing

5. In the Create Knative Eventing page, you can choose to configure the KnativeEventing
object by using either the default form provided, or by editing the YAML.

Using the form is recommended for simpler configurations that do not require full control of
KnativeEventing object creation.
Optional. If you are configuring the KnativeEventing object using the form, make any
changes that you want to implement for your Knative Eventing deployment.

6. Click Create.

Editing the YAML is recommended for more complex configurations that require full control
of KnativeEventing object creation. You can access the YAML by clicking the edit YAML
link in the top right of the Create Knative Eventing page.
Optional. If you are configuring the KnativeEventing object by editing the YAML, make any
changes to the YAML that you want to implement for your Knative Eventing deployment.

7. Click Create.

8. After you have installed Knative Eventing, the KnativeEventing object is created, and you are
automatically directed to the Knative Eventing tab. You will see the knative-eventing custom
resource in the list of resources.

Verification

1. Click on the knative-eventing custom resource in the Knative Eventing tab.

2. You are automatically directed to the Knative Eventing Overview page.

3. Scroll down to look at the list of Conditions.

4. You should see a list of conditions with a status of True, as shown in the example image.

OpenShift Container Platform 4.6 Serverless

42

NOTE

It may take a few seconds for the Knative Eventing resources to be created. You
can check their status in the Resources tab.

5. If the conditions have a status of Unknown or False, wait a few moments and then check again
after you have confirmed that the resources have been created.

3.3.2. Installing Knative Eventing by using YAML

After you install the OpenShift Serverless Operator, you can install Knative Eventing by using the default
settings, or configure more advanced settings in the KnativeEventing custom resource (CR). You can
use the following procedure to install Knative Eventing by using YAML files and the oc CLI.

Prerequisites

You have access to an OpenShift Container Platform account with cluster administrator access.

You have installed the OpenShift Serverless Operator.

Install the OpenShift CLI (oc).

Procedure

1. Create a file named eventing.yaml.

2. Copy the following sample YAML into eventing.yaml:

apiVersion: operator.knative.dev/v1alpha1
kind: KnativeEventing
metadata:

CHAPTER 3. INSTALL

43

3. Optional. Make any changes to the YAML that you want to implement for your Knative Eventing
deployment.

4. Apply the eventing.yaml file by entering:

Verification

1. Verify the installation is complete by entering the following command and observing the output:

Example output

NOTE

It may take a few seconds for the Knative Eventing resources to be created.

2. If the conditions have a status of Unknown or False, wait a few moments and then check again
after you have confirmed that the resources have been created.

3. Check that the Knative Eventing resources have been created by entering:

Example output

3.3.3. Next steps

If you want to use Knative services you can install Knative Serving.

3.4. REMOVING OPENSHIFT SERVERLESS

If you need to remove OpenShift Serverless from your cluster, you can do so by manually removing the

 name: knative-eventing
 namespace: knative-eventing

$ oc apply -f eventing.yaml

$ oc get knativeeventing.operator.knative.dev/knative-eventing \
 -n knative-eventing \
 --template='{{range .status.conditions}}{{printf "%s=%s\n" .type .status}}{{end}}'

InstallSucceeded=True
Ready=True

$ oc get pods -n knative-eventing

NAME READY STATUS RESTARTS AGE
broker-controller-58765d9d49-g9zp6 1/1 Running 0 7m21s
eventing-controller-65fdd66b54-jw7bh 1/1 Running 0 7m31s
eventing-webhook-57fd74b5bd-kvhlz 1/1 Running 0 7m31s
imc-controller-5b75d458fc-ptvm2 1/1 Running 0 7m19s
imc-dispatcher-64f6d5fccb-kkc4c 1/1 Running 0 7m18s

OpenShift Container Platform 4.6 Serverless

44

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/serverless/#installing-knative-serving

If you need to remove OpenShift Serverless from your cluster, you can do so by manually removing the
OpenShift Serverless Operator and other OpenShift Serverless components. Before you can remove
the OpenShift Serverless Operator, you must remove Knative Serving and Knative Eventing.

3.4.1. Uninstalling Knative Serving

Before you can remove the OpenShift Serverless Operator, you must remove Knative Serving. To
uninstall Knative Serving, you must remove the KnativeServing custom resource (CR) and delete the
knative-serving namespace.

Prerequisites

You have access to an OpenShift Container Platform account with cluster administrator access.

Install the OpenShift CLI (oc).

Procedure

1. Delete the KnativeServing CR:

2. After the command has completed and all pods have been removed from the knative-serving
namespace, delete the namespace:

3.4.2. Uninstalling Knative Eventing

Before you can remove the OpenShift Serverless Operator, you must remove Knative Eventing. To
uninstall Knative Eventing, you must remove the KnativeEventing custom resource (CR) and delete the
knative-eventing namespace.

Prerequisites

You have access to an OpenShift Container Platform account with cluster administrator access.

Install the OpenShift CLI (oc).

Procedure

1. Delete the KnativeEventing CR:

2. After the command has completed and all pods have been removed from the knative-eventing
namespace, delete the namespace:

3.4.3. Removing the OpenShift Serverless Operator

After you have removed Knative Serving and Knative Eventing, you can remove the OpenShift

$ oc delete knativeservings.operator.knative.dev knative-serving -n knative-serving

$ oc delete namespace knative-serving

$ oc delete knativeeventings.operator.knative.dev knative-eventing -n knative-eventing

$ oc delete namespace knative-eventing

CHAPTER 3. INSTALL

45

After you have removed Knative Serving and Knative Eventing, you can remove the OpenShift
Serverless Operator. You can do this by using the OpenShift Container Platform web console or the oc
CLI.

3.4.3.1. Deleting Operators from a cluster using the web console

Cluster administrators can delete installed Operators from a selected namespace by using the web
console.

Prerequisites

Access to an OpenShift Container Platform cluster web console using an account with cluster-
admin permissions.

Procedure

1. From the Operators → Installed Operators page, scroll or type a keyword into the Filter by
name to find the Operator you want. Then, click on it.

2. On the right side of the Operator Details page, select Uninstall Operator from the Actions list.
An Uninstall Operator? dialog box is displayed, reminding you that:

Removing the Operator will not remove any of its custom resource definitions or managed
resources. If your Operator has deployed applications on the cluster or configured off-
cluster resources, these will continue to run and need to be cleaned up manually.

This action removes the Operator as well as the Operator deployments and pods, if any. Any
Operands, and resources managed by the Operator, including CRDs and CRs, are not removed.
The web console enables dashboards and navigation items for some Operators. To remove
these after uninstalling the Operator, you might need to manually delete the Operator CRDs.

3. Select Uninstall. This Operator stops running and no longer receives updates.

3.4.3.2. Deleting Operators from a cluster using the CLI

Cluster administrators can delete installed Operators from a selected namespace by using the CLI.

Prerequisites

Access to an OpenShift Container Platform cluster using an account with cluster-admin
permissions.

oc command installed on workstation.

Procedure

1. Check the current version of the subscribed Operator (for example, jaeger) in the currentCSV
field:

Example output

$ oc get subscription jaeger -n openshift-operators -o yaml | grep currentCSV

 currentCSV: jaeger-operator.v1.8.2

OpenShift Container Platform 4.6 Serverless

46

2. Delete the subscription (for example, jaeger):

Example output

3. Delete the CSV for the Operator in the target namespace using the currentCSV value from the
previous step:

Example output

3.4.3.3. Refreshing failing subscriptions

In Operator Lifecycle Manager (OLM), if you subscribe to an Operator that references images that are
not accessible on your network, you can find jobs in the openshift-marketplace namespace that are
failing with the following errors:

Example output

Example output

As a result, the subscription is stuck in this failing state and the Operator is unable to install or upgrade.

You can refresh a failing subscription by deleting the subscription, cluster service version (CSV), and
other related objects. After recreating the subscription, OLM then reinstalls the correct version of the
Operator.

Prerequisites

You have a failing subscription that is unable to pull an inaccessible bundle image.

You have confirmed that the correct bundle image is accessible.

Procedure

1. Get the names of the Subscription and ClusterServiceVersion objects from the namespace
where the Operator is installed:

$ oc delete subscription jaeger -n openshift-operators

subscription.operators.coreos.com "jaeger" deleted

$ oc delete clusterserviceversion jaeger-operator.v1.8.2 -n openshift-operators

clusterserviceversion.operators.coreos.com "jaeger-operator.v1.8.2" deleted

ImagePullBackOff for
Back-off pulling image "example.com/openshift4/ose-elasticsearch-operator-
bundle@sha256:6d2587129c846ec28d384540322b40b05833e7e00b25cca584e004af9a1d292e"

rpc error: code = Unknown desc = error pinging docker registry example.com: Get
"https://example.com/v2/": dial tcp: lookup example.com on 10.0.0.1:53: no such host

$ oc get sub,csv -n <namespace>

CHAPTER 3. INSTALL

47

Example output

2. Delete the subscription:

3. Delete the cluster service version:

4. Get the names of any failing jobs and related config maps in the openshift-marketplace
namespace:

Example output

5. Delete the job:

This ensures pods that try to pull the inaccessible image are not recreated.

6. Delete the config map:

7. Reinstall the Operator using OperatorHub in the web console.

Verification

Check that the Operator has been reinstalled successfully:

NAME PACKAGE SOURCE CHANNEL
subscription.operators.coreos.com/elasticsearch-operator elasticsearch-operator redhat-
operators 5.0

NAME DISPLAY VERSION
REPLACES PHASE
clusterserviceversion.operators.coreos.com/elasticsearch-operator.5.0.0-65 OpenShift
Elasticsearch Operator 5.0.0-65 Succeeded

$ oc delete subscription <subscription_name> -n <namespace>

$ oc delete csv <csv_name> -n <namespace>

$ oc get job,configmap -n openshift-marketplace

NAME COMPLETIONS DURATION AGE
job.batch/1de9443b6324e629ddf31fed0a853a121275806170e34c926d69e53a7fcbccb 1/1
26s 9m30s

NAME DATA AGE
configmap/1de9443b6324e629ddf31fed0a853a121275806170e34c926d69e53a7fcbccb 3
9m30s

$ oc delete job <job_name> -n openshift-marketplace

$ oc delete configmap <configmap_name> -n openshift-marketplace

$ oc get sub,csv,installplan -n <namespace>

OpenShift Container Platform 4.6 Serverless

48

3.4.4. Deleting OpenShift Serverless custom resource definitions

After uninstalling the OpenShift Serverless, the Operator and API custom resource definitions (CRDs)
remain on the cluster. You can use the following procedure to remove the remaining CRDs.

IMPORTANT

Removing the Operator and API CRDs also removes all resources that were defined by
using them, including Knative services.

Prerequisites

You have access to an OpenShift Container Platform account with cluster administrator access.

You have uninstalled Knative Serving and removed the OpenShift Serverless Operator.

Install the OpenShift CLI (oc).

Procedure

To delete the remaining OpenShift Serverless CRDs, enter the following command:

$ oc get crd -oname | grep 'knative.dev' | xargs oc delete

CHAPTER 3. INSTALL

49

CHAPTER 4. KNATIVE CLI

4.1. INSTALLING THE KNATIVE CLI

The Knative (kn) CLI does not have its own login mechanism. To log in to the cluster, you must install the
OpenShift CLI (oc) and use the oc login command. Installation options for the CLIs may vary
depending on your operating system.

For more information on installing the oc CLI for your operating system and logging in with oc, see the
OpenShift CLI getting started documentation.

OpenShift Serverless cannot be installed using the Knative (kn) CLI. A cluster administrator must install
the OpenShift Serverless Operator and set up the Knative components, as described in the Installing the
OpenShift Serverless Operator documentation.

IMPORTANT

If you try to use an older version of the Knative (kn) CLI with a newer OpenShift
Serverless release, the API is not found and an error occurs.

For example, if you use the 1.23.0 release of the Knative (kn) CLI, which uses version 1.2,
with the 1.24.0 OpenShift Serverless release, which uses the 1.3 versions of the Knative
Serving and Knative Eventing APIs, the CLI does not work because it continues to look for
the outdated 1.2 API versions.

Ensure that you are using the latest Knative (kn) CLI version for your OpenShift
Serverless release to avoid issues.

4.1.1. Installing the Knative CLI using the OpenShift Container Platform web console

Using the OpenShift Container Platform web console provides a streamlined and intuitive user interface
to install the Knative (kn) CLI. After the OpenShift Serverless Operator is installed, you will see a link to
download the Knative (kn) CLI for Linux (amd64, s390x, ppc64le), macOS, or Windows from the
Command Line Tools page in the OpenShift Container Platform web console.

Prerequisites

You have logged in to the OpenShift Container Platform web console.

The OpenShift Serverless Operator and Knative Serving are installed on your OpenShift
Container Platform cluster.

IMPORTANT

If libc is not available, you might see the following error when you run CLI
commands:

If you want to use the verification steps for this procedure, you must install the OpenShift (oc)
CLI.

Procedure

$ kn: No such file or directory

OpenShift Container Platform 4.6 Serverless

50

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/cli_tools/#cli-getting-started
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/serverless/#install-serverless-operator

1. Download the Knative (kn) CLI from the Command Line Tools page. You can access the

Command Line Tools page by clicking the icon in the top right corner of the web console
and selecting Command Line Tools in the list.

2. Unpack the archive:

3. Move the kn binary to a directory on your PATH.

4. To check your PATH, run:

Verification

Run the following commands to check that the correct Knative CLI resources and route have
been created:

Example output

Example output

4.1.2. Installing the Knative CLI for Linux by using an RPM package manager

For Red Hat Enterprise Linux (RHEL), you can install the Knative (kn) CLI as an RPM by using a package
manager, such as yum or dnf. This allows the Knative CLI version to be automatically managed by the
system. For example, using a command like dnf upgrade upgrades all packages, including kn, if a new
version is available.

Prerequisites

You have an active OpenShift Container Platform subscription on your Red Hat account.

Procedure

1. Register with Red Hat Subscription Manager:

$ tar -xf <file>

$ echo $PATH

$ oc get ConsoleCLIDownload

NAME DISPLAY NAME AGE
kn kn - OpenShift Serverless Command Line Interface (CLI) 2022-09-
20T08:41:18Z
oc-cli-downloads oc - OpenShift Command Line Interface (CLI) 2022-09-
20T08:00:20Z

$ oc get route -n openshift-serverless

NAME HOST/PORT PATH SERVICES PORT
TERMINATION WILDCARD
kn kn-openshift-serverless.apps.example.com knative-openshift-metrics-3 http-cli
edge/Redirect None

CHAPTER 4. KNATIVE CLI

51

1

2. Pull the latest subscription data:

3. Attach the subscription to the registered system:

Pool ID for an active OpenShift Container Platform subscription

4. Enable the repositories required by the Knative (kn) CLI:

Linux (x86_64, amd64)

Linux on IBM Z and LinuxONE (s390x)

Linux on IBM Power (ppc64le)

5. Install the Knative (kn) CLI as an RPM by using a package manager:

Example yum command

4.1.3. Installing the Knative CLI for Linux

If you are using a Linux distribution that does not have RPM or another package manager installed, you
can install the Knative (kn) CLI as a binary file. To do this, you must download and unpack a tar.gz
archive and add the binary to a directory on your PATH.

Prerequisites

If you are not using RHEL or Fedora, ensure that libc is installed in a directory on your library
path.

IMPORTANT

If libc is not available, you might see the following error when you run CLI
commands:

subscription-manager register

subscription-manager refresh

subscription-manager attach --pool=<pool_id> 1

subscription-manager repos --enable="openshift-serverless-1-for-rhel-8-x86_64-rpms"

subscription-manager repos --enable="openshift-serverless-1-for-rhel-8-s390x-rpms"

subscription-manager repos --enable="openshift-serverless-1-for-rhel-8-ppc64le-rpms"

yum install openshift-serverless-clients

$ kn: No such file or directory

OpenShift Container Platform 4.6 Serverless

52

Procedure

1. Download the relevant Knative (kn) CLI tar.gz archive:

Linux (x86_64, amd64)

Linux on IBM Z and LinuxONE (s390x)

Linux on IBM Power (ppc64le)

2. Unpack the archive:

3. Move the kn binary to a directory on your PATH.

4. To check your PATH, run:

4.1.4. Installing the Knative CLI for macOS

If you are using macOS, you can install the Knative (kn) CLI as a binary file. To do this, you must
download and unpack a tar.gz archive and add the binary to a directory on your PATH.

Procedure

1. Download the Knative (kn) CLI tar.gz archive.

2. Unpack and extract the archive.

3. Move the kn binary to a directory on your PATH.

4. To check your PATH, open a terminal window and run:

4.1.5. Installing the Knative CLI for Windows

If you are using Windows, you can install the Knative (kn) CLI as a binary file. To do this, you must
download and unpack a ZIP archive and add the binary to a directory on your PATH.

Procedure

1. Download the Knative (kn) CLI ZIP archive.

2. Extract the archive with a ZIP program.

3. Move the kn binary to a directory on your PATH.

4. To check your PATH, open the command prompt and run the command:

$ tar -xf <filename>

$ echo $PATH

$ echo $PATH

C:\> path

CHAPTER 4. KNATIVE CLI

53

https://mirror.openshift.com/pub/openshift-v4/clients/serverless/latest/kn-linux-amd64.tar.gz
https://mirror.openshift.com/pub/openshift-v4/clients/serverless/latest/kn-linux-s390x.tar.gz
https://mirror.openshift.com/pub/openshift-v4/clients/serverless/latest/kn-linux-ppc64le.tar.gz
https://mirror.openshift.com/pub/openshift-v4/clients/serverless/latest/kn-macos-amd64.tar.gz
https://mirror.openshift.com/pub/openshift-v4/clients/serverless/latest/kn-windows-amd64.zip

1

2

3

4

5

6

7

4.2. CONFIGURING THE KNATIVE CLI

You can customize your Knative (kn) CLI setup by creating a config.yaml configuration file. You can
provide this configuration by using the --config flag, otherwise the configuration is picked up from a
default location. The default configuration location conforms to the XDG Base Directory Specification,
and is different for UNIX systems and Windows systems.

For UNIX systems:

If the XDG_CONFIG_HOME environment variable is set, the default configuration location that
the Knative (kn) CLI looks for is $XDG_CONFIG_HOME/kn.

If the XDG_CONFIG_HOME environment variable is not set, the Knative (kn) CLI looks for the
configuration in the home directory of the user at $HOME/.config/kn/config.yaml.

For Windows systems, the default Knative (kn) CLI configuration location is %APPDATA%\kn.

Example configuration file

Specifies whether the Knative (kn) CLI should look for plug-ins in the PATH environment variable.
This is a boolean configuration option. The default value is false.

Specifies the directory where the Knative (kn) CLI looks for plug-ins. The default path depends on
the operating system, as described previously. This can be any directory that is visible to the user.

The sink-mappings spec defines the Kubernetes addressable resource that is used when you use
the --sink flag with a Knative (kn) CLI command.

The prefix you want to use to describe your sink. svc for a service, channel, and broker are
predefined prefixes for the Knative (kn) CLI.

The API group of the Kubernetes resource.

The version of the Kubernetes resource.

The plural name of the Kubernetes resource type. For example, services or brokers.

4.3. KNATIVE CLI PLUG-INS

The Knative (kn) CLI supports the use of plug-ins, which enable you to extend the functionality of your
kn installation by adding custom commands and other shared commands that are not part of the core
distribution. Knative (kn) CLI plug-ins are used in the same way as the main kn functionality.

Currently, Red Hat supports the kn-source-kafka plug-in and the kn-event plug-in.

plugins:
 path-lookup: true 1
 directory: ~/.config/kn/plugins 2
eventing:
 sink-mappings: 3
 - prefix: svc 4
 group: core 5
 version: v1 6
 resource: services 7

OpenShift Container Platform 4.6 Serverless

54

https://specifications.freedesktop.org/basedir-spec/basedir-spec-latest.html

IMPORTANT

The kn-event plug-in is a Technology Preview feature only. Technology Preview features
are not supported with Red Hat production service level agreements (SLAs) and might
not be functionally complete. Red Hat does not recommend using them in production.
These features provide early access to upcoming product features, enabling customers
to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see https://access.redhat.com/support/offerings/techpreview/.

4.3.1. Building events by using the kn-event plug-in

You can use the builder-like interface of the kn event build command to build an event. You can then
send that event at a later time or use it in another context.

Prerequisites

You have installed the Knative (kn) CLI.

Procedure

Build an event:

where:

The --field flag adds data to the event as a field-value pair. You can use it multiple times.

The --type flag enables you to specify a string that designates the type of the event.

The --id flag specifies the ID of the event.

You can use the json or yaml arguments with the --output flag to change the output
format of the event.
All of these flags are optional.

Building a simple event

Resultant event in the YAML format

Building a sample transaction event

$ kn event build --field <field-name>=<value> --type <type-name> --id <id> --output <format>

$ kn event build -o yaml

data: {}
datacontenttype: application/json
id: 81a402a2-9c29-4c27-b8ed-246a253c9e58
source: kn-event/v0.4.0
specversion: "1.0"
time: "2021-10-15T10:42:57.713226203Z"
type: dev.knative.cli.plugin.event.generic

CHAPTER 4. KNATIVE CLI

55

https://access.redhat.com/support/offerings/techpreview/

Resultant event in the JSON format

4.3.2. Sending events by using the kn-event plug-in

You can use the kn event send command to send an event. The events can be sent either to publicly
available addresses or to addressable resources inside a cluster, such as Kubernetes services, as well as
Knative services, brokers, and channels. The command uses the same builder-like interface as the kn
event build command.

Prerequisites

You have installed the Knative (kn) CLI.

Procedure

Send an event:

where:

The --field flag adds data to the event as a field-value pair. You can use it multiple times.

$ kn event build \
 --field operation.type=local-wire-transfer \
 --field operation.amount=2345.40 \
 --field operation.from=87656231 \
 --field operation.to=2344121 \
 --field automated=true \
 --field signature='FGzCPLvYWdEgsdpb3qXkaVp7Da0=' \
 --type org.example.bank.bar \
 --id $(head -c 10 < /dev/urandom | base64 -w 0) \
 --output json

{
 "specversion": "1.0",
 "id": "RjtL8UH66X+UJg==",
 "source": "kn-event/v0.4.0",
 "type": "org.example.bank.bar",
 "datacontenttype": "application/json",
 "time": "2021-10-15T10:43:23.113187943Z",
 "data": {
 "automated": true,
 "operation": {
 "amount": "2345.40",
 "from": 87656231,
 "to": 2344121,
 "type": "local-wire-transfer"
 },
 "signature": "FGzCPLvYWdEgsdpb3qXkaVp7Da0="
 }
}

$ kn event send --field <field-name>=<value> --type <type-name> --id <id> --to-url <url> --to
<cluster-resource> --namespace <namespace>

OpenShift Container Platform 4.6 Serverless

56

The --type flag enables you to specify a string that designates the type of the event.

The --id flag specifies the ID of the event.

If you are sending the event to a publicly accessible destination, specify the URL using the --
to-url flag.

If you are sending the event to an in-cluster Kubernetes resource, specify the destination
using the --to flag.

Specify the Kubernetes resource using the <Kind>:<ApiVersion>:<name> format.

The --namespace flag specifies the namespace. If omitted, the namespace is taken from
the current context.
All of these flags are optional, except for the destination specification, for which you need to
use either --to-url or --to.

The following example shows sending an event to a URL:

Example command

The following example shows sending an event to an in-cluster resource:

Example command

4.4. KNATIVE SERVING CLI COMMANDS

You can use the following Knative (kn) CLI commands to complete Knative Serving tasks on the cluster.

4.4.1. kn service commands

You can use the following commands to create and manage Knative services.

4.4.1.1. Creating serverless applications by using the Knative CLI

Using the Knative (kn) CLI to create serverless applications provides a more streamlined and intuitive
user interface over modifying YAML files directly. You can use the kn service create command to
create a basic serverless application.

Prerequisites

$ kn event send \
 --field player.id=6354aa60-ddb1-452e-8c13-24893667de20 \
 --field player.game=2345 \
 --field points=456 \
 --type org.example.gaming.foo \
 --to-url http://ce-api.foo.example.com/

$ kn event send \
 --type org.example.kn.ping \
 --id $(uuidgen) \
 --field event.type=test \
 --field event.data=98765 \
 --to Service:serving.knative.dev/v1:event-display

CHAPTER 4. KNATIVE CLI

57

OpenShift Serverless Operator and Knative Serving are installed on your cluster.

You have installed the Knative (kn) CLI.

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

Procedure

Create a Knative service:

Where:

--image is the URI of the image for the application.

--tag is an optional flag that can be used to add a tag to the initial revision that is created
with the service.

Example command

Example output

4.4.1.2. Updating serverless applications by using the Knative CLI

You can use the kn service update command for interactive sessions on the command line as you build
up a service incrementally. In contrast to the kn service apply command, when using the kn service
update command you only have to specify the changes that you want to update, rather than the full
configuration for the Knative service.

Example commands

Update a service by adding a new environment variable:

Update a service by adding a new port:

$ kn service create <service_name> --image <image> --tag <tag-value>

$ kn service create event-display \
 --image quay.io/openshift-knative/knative-eventing-sources-event-display:latest

Creating service 'event-display' in namespace 'default':

 0.271s The Route is still working to reflect the latest desired specification.
 0.580s Configuration "event-display" is waiting for a Revision to become ready.
 3.857s ...
 3.861s Ingress has not yet been reconciled.
 4.270s Ready to serve.

Service 'event-display' created with latest revision 'event-display-bxshg-1' and URL:
http://event-display-default.apps-crc.testing

$ kn service update <service_name> --env <key>=<value>

$ kn service update <service_name> --port 80

OpenShift Container Platform 4.6 Serverless

58

Update a service by adding new request and limit parameters:

Assign the latest tag to a revision:

Update a tag from testing to staging for the latest READY revision of a service:

Add the test tag to a revision that receives 10% of traffic, and send the rest of the traffic to the
latest READY revision of a service:

4.4.1.3. Applying service declarations

You can declaratively configure a Knative service by using the kn service apply command. If the service
does not exist it is created, otherwise the existing service is updated with the options that have been
changed.

The kn service apply command is especially useful for shell scripts or in a continuous integration
pipeline, where users typically want to fully specify the state of the service in a single command to
declare the target state.

When using kn service apply you must provide the full configuration for the Knative service. This is
different from the kn service update command, which only requires you to specify in the command the
options that you want to update.

Example commands

Create a service:

Add an environment variable to a service:

Read the service declaration from a JSON or YAML file:

4.4.1.4. Describing serverless applications by using the Knative CLI

You can describe a Knative service by using the kn service describe command.

Example commands

$ kn service update <service_name> --request cpu=500m --limit memory=1024Mi --limit
cpu=1000m

$ kn service update <service_name> --tag <revision_name>=latest

$ kn service update <service_name> --untag testing --tag @latest=staging

$ kn service update <service_name> --tag <revision_name>=test --traffic test=10,@latest=90

$ kn service apply <service_name> --image <image>

$ kn service apply <service_name> --image <image> --env <key>=<value>

$ kn service apply <service_name> -f <filename>

CHAPTER 4. KNATIVE CLI

59

Describe a service:

The --verbose flag is optional but can be included to provide a more detailed description. The
difference between a regular and verbose output is shown in the following examples:

Example output without --verbose flag

Example output with --verbose flag

Describe a service in YAML format:

Describe a service in JSON format:

Print the service URL only:

$ kn service describe --verbose <service_name>

Name: hello
Namespace: default
Age: 2m
URL: http://hello-default.apps.ocp.example.com

Revisions:
 100% @latest (hello-00001) [1] (2m)
 Image: docker.io/openshift/hello-openshift (pinned to aaea76)

Conditions:
 OK TYPE AGE REASON
 ++ Ready 1m
 ++ ConfigurationsReady 1m
 ++ RoutesReady 1m

Name: hello
Namespace: default
Annotations: serving.knative.dev/creator=system:admin
 serving.knative.dev/lastModifier=system:admin
Age: 3m
URL: http://hello-default.apps.ocp.example.com
Cluster: http://hello.default.svc.cluster.local

Revisions:
 100% @latest (hello-00001) [1] (3m)
 Image: docker.io/openshift/hello-openshift (pinned to aaea76)
 Env: RESPONSE=Hello Serverless!

Conditions:
 OK TYPE AGE REASON
 ++ Ready 3m
 ++ ConfigurationsReady 3m
 ++ RoutesReady 3m

$ kn service describe <service_name> -o yaml

$ kn service describe <service_name> -o json

OpenShift Container Platform 4.6 Serverless

60

4.4.2. About the Knative CLI offline mode

When you execute kn service commands, the changes immediately propagate to the cluster. However,
as an alternative, you can execute kn service commands in offline mode. When you create a service in
offline mode, no changes happen on the cluster, and instead the service descriptor file is created on
your local machine.

IMPORTANT

The offline mode of the Knative CLI is a Technology Preview feature only. Technology
Preview features are not supported with Red Hat production service level agreements
(SLAs) and might not be functionally complete. Red Hat does not recommend using
them in production. These features provide early access to upcoming product features,
enabling customers to test functionality and provide feedback during the development
process.

For more information about the support scope of Red Hat Technology Preview features,
see https://access.redhat.com/support/offerings/techpreview/.

After the descriptor file is created, you can manually modify it and track it in a version control system.
You can also propagate changes to the cluster by using the kn service create -f, kn service apply -f, or
oc apply -f commands on the descriptor files.

The offline mode has several uses:

You can manually modify the descriptor file before using it to make changes on the cluster.

You can locally track the descriptor file of a service in a version control system. This enables you
to reuse the descriptor file in places other than the target cluster, for example in continuous
integration (CI) pipelines, development environments, or demos.

You can examine the created descriptor files to learn about Knative services. In particular, you
can see how the resulting service is influenced by the different arguments passed to the kn
command.

The offline mode has its advantages: it is fast, and does not require a connection to the cluster. However,
offline mode lacks server-side validation. Consequently, you cannot, for example, verify that the service
name is unique or that the specified image can be pulled.

4.4.2.1. Creating a service using offline mode

You can execute kn service commands in offline mode, so that no changes happen on the cluster, and
instead the service descriptor file is created on your local machine. After the descriptor file is created,
you can modify the file before propagating changes to the cluster.

IMPORTANT

$ kn service describe <service_name> -o url

CHAPTER 4. KNATIVE CLI

61

https://access.redhat.com/support/offerings/techpreview/

IMPORTANT

The offline mode of the Knative CLI is a Technology Preview feature only. Technology
Preview features are not supported with Red Hat production service level agreements
(SLAs) and might not be functionally complete. Red Hat does not recommend using
them in production. These features provide early access to upcoming product features,
enabling customers to test functionality and provide feedback during the development
process.

For more information about the support scope of Red Hat Technology Preview features,
see https://access.redhat.com/support/offerings/techpreview/.

Prerequisites

OpenShift Serverless Operator and Knative Serving are installed on your cluster.

You have installed the Knative (kn) CLI.

Procedure

1. In offline mode, create a local Knative service descriptor file:

Example output

The --target ./ flag enables offline mode and specifies ./ as the directory for storing the new
directory tree.
If you do not specify an existing directory, but use a filename, such as --target my-
service.yaml, then no directory tree is created. Instead, only the service descriptor file my-
service.yaml is created in the current directory.

The filename can have the .yaml, .yml, or .json extension. Choosing .json creates the
service descriptor file in the JSON format.

The --namespace test option places the new service in the test namespace.
If you do not use --namespace, and you are logged in to an OpenShift cluster, the
descriptor file is created in the current namespace. Otherwise, the descriptor file is created
in the default namespace.

2. Examine the created directory structure:

Example output

$ kn service create event-display \
 --image quay.io/openshift-knative/knative-eventing-sources-event-display:latest \
 --target ./ \
 --namespace test

Service 'event-display' created in namespace 'test'.

$ tree ./

./
└── test
 └── ksvc

OpenShift Container Platform 4.6 Serverless

62

https://access.redhat.com/support/offerings/techpreview/

The current ./ directory specified with --target contains the new test/ directory that is
named after the specified namespace.

The test/ directory contains the ksvc directory, named after the resource type.

The ksvc directory contains the descriptor file event-display.yaml, named according to the
specified service name.

3. Examine the generated service descriptor file:

Example output

4. List information about the new service:

Example output

 └── event-display.yaml

2 directories, 1 file

$ cat test/ksvc/event-display.yaml

apiVersion: serving.knative.dev/v1
kind: Service
metadata:
 creationTimestamp: null
 name: event-display
 namespace: test
spec:
 template:
 metadata:
 annotations:
 client.knative.dev/user-image: quay.io/openshift-knative/knative-eventing-sources-event-
display:latest
 creationTimestamp: null
 spec:
 containers:
 - image: quay.io/openshift-knative/knative-eventing-sources-event-display:latest
 name: ""
 resources: {}
status: {}

$ kn service describe event-display --target ./ --namespace test

Name: event-display
Namespace: test
Age:
URL:

Revisions:

Conditions:
 OK TYPE AGE REASON

CHAPTER 4. KNATIVE CLI

63

The --target ./ option specifies the root directory for the directory structure containing
namespace subdirectories.
Alternatively, you can directly specify a YAML or JSON filename with the --target option.
The accepted file extensions are .yaml, .yml, and .json.

The --namespace option specifies the namespace, which communicates to kn the
subdirectory that contains the necessary service descriptor file.
If you do not use --namespace, and you are logged in to an OpenShift cluster, kn searches
for the service in the subdirectory that is named after the current namespace. Otherwise, kn
searches in the default/ subdirectory.

5. Use the service descriptor file to create the service on the cluster:

Example output

4.4.3. kn container commands

You can use the following commands to create and manage multiple containers in a Knative service
spec.

4.4.3.1. Knative client multi-container support

You can use the kn container add command to print YAML container spec to standard output. This
command is useful for multi-container use cases because it can be used along with other standard kn
flags to create definitions.

The kn container add command accepts all container-related flags that are supported for use with the
kn service create command. The kn container add command can also be chained by using UNIX pipes
(|) to create multiple container definitions at once.

Example commands

Add a container from an image and print it to standard output:

Example command

$ kn service create -f test/ksvc/event-display.yaml

Creating service 'event-display' in namespace 'test':

 0.058s The Route is still working to reflect the latest desired specification.
 0.098s ...
 0.168s Configuration "event-display" is waiting for a Revision to become ready.
 23.377s ...
 23.419s Ingress has not yet been reconciled.
 23.534s Waiting for load balancer to be ready
 23.723s Ready to serve.

Service 'event-display' created to latest revision 'event-display-00001' is available at URL:
http://event-display-test.apps.example.com

$ kn container add <container_name> --image <image_uri>

$ kn container add sidecar --image docker.io/example/sidecar

OpenShift Container Platform 4.6 Serverless

64

Example output

Chain two kn container add commands together, and then pass them to a kn service create
command to create a Knative service with two containers:

--extra-containers - specifies a special case where kn reads the pipe input instead of a YAML
file.

Example command

The --extra-containers flag can also accept a path to a YAML file:

Example command

4.4.4. kn domain commands

You can use the following commands to create and manage domain mappings.

4.4.4.1. Creating a custom domain mapping by using the Knative CLI

You can customize the domain for your Knative service by mapping a custom domain name that you own
to a Knative service. You can use the Knative (kn) CLI to create a DomainMapping custom resource
(CR) that maps to an Addressable target CR, such as a Knative service or a Knative route.

Prerequisites

The OpenShift Serverless Operator and Knative Serving are installed on your cluster.

You have created a Knative service or route, and control a custom domain that you want to map
to that CR.

NOTE

containers:
- image: docker.io/example/sidecar
 name: sidecar
 resources: {}

$ kn container add <first_container_name> --image <image_uri> | \
kn container add <second_container_name> --image <image_uri> | \
kn service create <service_name> --image <image_uri> --extra-containers -

$ kn container add sidecar --image docker.io/example/sidecar:first | \
kn container add second --image docker.io/example/sidecar:second | \
kn service create my-service --image docker.io/example/my-app:latest --extra-containers -

$ kn service create <service_name> --image <image_uri> --extra-containers <filename>

$ kn service create my-service --image docker.io/example/my-app:latest --extra-containers
my-extra-containers.yaml

CHAPTER 4. KNATIVE CLI

65

NOTE

Your custom domain must point to the DNS of the OpenShift Container Platform
cluster.

You have installed the Knative (kn) CLI.

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

Procedure

Map a domain to a CR in the current namespace:

Example command

The --ref flag specifies an Addressable target CR for domain mapping.

If a prefix is not provided when using the --ref flag, it is assumed that the target is a Knative
service in the current namespace.

Map a domain to a Knative service in a specified namespace:

Example command

Map a domain to a Knative route:

Example command

4.4.4.2. Managing custom domain mappings by using the Knative CLI

After you have created a DomainMapping custom resource (CR), you can list existing CRs, view
information about an existing CR, update CRs, or delete CRs by using the Knative (kn) CLI.

Prerequisites

The OpenShift Serverless Operator and Knative Serving are installed on your cluster.

You have created at least one DomainMapping CR.

$ kn domain create <domain_mapping_name> --ref <target_name>

$ kn domain create example.com --ref example-service

$ kn domain create <domain_mapping_name> --ref
<ksvc:service_name:service_namespace>

$ kn domain create example.com --ref ksvc:example-service:example-namespace

$ kn domain create <domain_mapping_name> --ref <kroute:route_name>

$ kn domain create example.com --ref kroute:example-route

OpenShift Container Platform 4.6 Serverless

66

You have installed the Knative (kn) CLI tool.

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

Procedure

List existing DomainMapping CRs:

View details of an existing DomainMapping CR:

Update a DomainMapping CR to point to a new target:

Delete a DomainMapping CR:

4.5. KNATIVE EVENTING CLI COMMANDS

You can use the following Knative (kn) CLI commands to complete Knative Eventing tasks on the
cluster.

4.5.1. kn source commands

You can use the following commands to list, create, and manage Knative event sources.

4.5.1.1. Listing available event source types by using the Knative CLI

Using the Knative (kn) CLI provides a streamlined and intuitive user interface to view available event
source types on your cluster. You can list event source types that can be created and used on your
cluster by using the kn source list-types CLI command.

Prerequisites

The OpenShift Serverless Operator and Knative Eventing are installed on the cluster.

You have installed the Knative (kn) CLI.

Procedure

1. List the available event source types in the terminal:

Example output

$ kn domain list -n <domain_mapping_namespace>

$ kn domain describe <domain_mapping_name>

$ kn domain update --ref <target>

$ kn domain delete <domain_mapping_name>

$ kn source list-types

CHAPTER 4. KNATIVE CLI

67

1

2. Optional: You can also list the available event source types in YAML format:

4.5.1.2. Knative CLI sink flag

When you create an event source by using the Knative (kn) CLI, you can specify a sink where events are
sent to from that resource by using the --sink flag. The sink can be any addressable or callable resource
that can receive incoming events from other resources.

The following example creates a sink binding that uses a service, http://event-display.svc.cluster.local,
as the sink:

Example command using the sink flag

svc in http://event-display.svc.cluster.local determines that the sink is a Knative service. Other
default sink prefixes include channel, and broker.

4.5.1.3. Creating and managing container sources by using the Knative CLI

You can use the kn source container commands to create and manage container sources by using the
Knative (kn) CLI. Using the Knative CLI to create event sources provides a more streamlined and
intuitive user interface than modifying YAML files directly.

Create a container source

Delete a container source

Describe a container source

List existing container sources

TYPE NAME DESCRIPTION
ApiServerSource apiserversources.sources.knative.dev Watch and send Kubernetes
API events to a sink
PingSource pingsources.sources.knative.dev Periodically send ping events to
a sink
SinkBinding sinkbindings.sources.knative.dev Binding for connecting a
PodSpecable to a sink

$ kn source list-types -o yaml

$ kn source binding create bind-heartbeat \
 --namespace sinkbinding-example \
 --subject "Job:batch/v1:app=heartbeat-cron" \
 --sink http://event-display.svc.cluster.local \ 1
 --ce-override "sink=bound"

$ kn source container create <container_source_name> --image <image_uri> --sink <sink>

$ kn source container delete <container_source_name>

$ kn source container describe <container_source_name>

OpenShift Container Platform 4.6 Serverless

68

List existing container sources in YAML format

Update a container source

This command updates the image URI for an existing container source:

4.5.1.4. Creating an API server source by using the Knative CLI

You can use the kn source apiserver create command to create an API server source by using the kn
CLI. Using the kn CLI to create an API server source provides a more streamlined and intuitive user
interface than modifying YAML files directly.

Prerequisites

The OpenShift Serverless Operator and Knative Eventing are installed on the cluster.

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

You have installed the OpenShift CLI (oc).

You have installed the Knative (kn) CLI.

PROCEDURE

If you want to re-use an existing service account, you can modify your existing
ServiceAccount resource to include the required permissions instead of creating a new
resource.

1. Create a service account, role, and role binding for the event source as a YAML file:

$ kn source container list

$ kn source container list -o yaml

$ kn source container update <container_source_name> --image <image_uri>

apiVersion: v1
kind: ServiceAccount
metadata:
 name: events-sa
 namespace: default 1

apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
 name: event-watcher
 namespace: default 2
rules:
 - apiGroups:
 - ""
 resources:

CHAPTER 4. KNATIVE CLI

69

1 2 3 4 Change this namespace to the namespace that you have selected for installing the
event source.

2. Apply the YAML file:

3. Create an API server source that has an event sink. In the following example, the sink is a broker:

4. To check that the API server source is set up correctly, create a Knative service that dumps
incoming messages to its log:

5. If you used a broker as an event sink, create a trigger to filter events from the default broker to
the service:

6. Create events by launching a pod in the default namespace:

7. Check that the controller is mapped correctly by inspecting the output generated by the
following command:

 - events
 verbs:
 - get
 - list
 - watch

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
 name: k8s-ra-event-watcher
 namespace: default 3
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: Role
 name: event-watcher
subjects:
 - kind: ServiceAccount
 name: events-sa
 namespace: default 4

$ oc apply -f <filename>

$ kn source apiserver create <event_source_name> --sink broker:<broker_name> --
resource "event:v1" --service-account <service_account_name> --mode Resource

$ kn service create <service_name> --image quay.io/openshift-knative/knative-eventing-
sources-event-display:latest

$ kn trigger create <trigger_name> --sink ksvc:<service_name>

$ oc create deployment hello-node --image quay.io/openshift-knative/knative-eventing-
sources-event-display:latest

$ kn source apiserver describe <source_name>

OpenShift Container Platform 4.6 Serverless

70

Example output

Verification

You can verify that the Kubernetes events were sent to Knative by looking at the message dumper
function logs.

1. Get the pods:

2. View the message dumper function logs for the pods:

Example output

Name: mysource
Namespace: default
Annotations: sources.knative.dev/creator=developer,
sources.knative.dev/lastModifier=developer
Age: 3m
ServiceAccountName: events-sa
Mode: Resource
Sink:
 Name: default
 Namespace: default
 Kind: Broker (eventing.knative.dev/v1)
Resources:
 Kind: event (v1)
 Controller: false
Conditions:
 OK TYPE AGE REASON
 ++ Ready 3m
 ++ Deployed 3m
 ++ SinkProvided 3m
 ++ SufficientPermissions 3m
 ++ EventTypesProvided 3m

$ oc get pods

$ oc logs $(oc get pod -o name | grep event-display) -c user-container

☁� cloudevents.Event
Validation: valid
Context Attributes,
 specversion: 1.0
 type: dev.knative.apiserver.resource.update
 datacontenttype: application/json
 ...
Data,
 {
 "apiVersion": "v1",
 "involvedObject": {
 "apiVersion": "v1",
 "fieldPath": "spec.containers{hello-node}",
 "kind": "Pod",
 "name": "hello-node",

CHAPTER 4. KNATIVE CLI

71

Deleting the API server source

1. Delete the trigger:

2. Delete the event source:

3. Delete the service account, cluster role, and cluster binding:

4.5.1.5. Creating a ping source by using the Knative CLI

You can use the kn source ping create command to create a ping source by using the Knative (kn) CLI.
Using the Knative CLI to create event sources provides a more streamlined and intuitive user interface
than modifying YAML files directly.

Prerequisites

The OpenShift Serverless Operator, Knative Serving and Knative Eventing are installed on the
cluster.

You have installed the Knative (kn) CLI.

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

Optional: If you want to use the verification steps for this procedure, install the OpenShift CLI
(oc).

Procedure

1. To verify that the ping source is working, create a simple Knative service that dumps incoming
messages to the service logs:

 "namespace": "default",

 },
 "kind": "Event",
 "message": "Started container",
 "metadata": {
 "name": "hello-node.159d7608e3a3572c",
 "namespace": "default",

 },
 "reason": "Started",
 ...
 }

$ kn trigger delete <trigger_name>

$ kn source apiserver delete <source_name>

$ oc delete -f authentication.yaml

$ kn service create event-display \
 --image quay.io/openshift-knative/knative-eventing-sources-event-display:latest

OpenShift Container Platform 4.6 Serverless

72

2. For each set of ping events that you want to request, create a ping source in the same
namespace as the event consumer:

3. Check that the controller is mapped correctly by entering the following command and
inspecting the output:

Example output

Verification

You can verify that the Kubernetes events were sent to the Knative event sink by looking at the logs of
the sink pod.

By default, Knative services terminate their pods if no traffic is received within a 60 second period. The
example shown in this guide creates a ping source that sends a message every 2 minutes, so each
message should be observed in a newly created pod.

1. Watch for new pods created:

2. Cancel watching the pods using Ctrl+C, then look at the logs of the created pod:

$ kn source ping create test-ping-source \
 --schedule "*/2 * * * *" \
 --data '{"message": "Hello world!"}' \
 --sink ksvc:event-display

$ kn source ping describe test-ping-source

Name: test-ping-source
Namespace: default
Annotations: sources.knative.dev/creator=developer,
sources.knative.dev/lastModifier=developer
Age: 15s
Schedule: */2 * * * *
Data: {"message": "Hello world!"}

Sink:
 Name: event-display
 Namespace: default
 Resource: Service (serving.knative.dev/v1)

Conditions:
 OK TYPE AGE REASON
 ++ Ready 8s
 ++ Deployed 8s
 ++ SinkProvided 15s
 ++ ValidSchedule 15s
 ++ EventTypeProvided 15s
 ++ ResourcesCorrect 15s

$ watch oc get pods

$ oc logs $(oc get pod -o name | grep event-display) -c user-container

CHAPTER 4. KNATIVE CLI

73

Example output

Deleting the ping source

Delete the ping source:

4.5.1.6. Creating a Kafka event source by using the Knative CLI

You can use the kn source kafka create command to create a Kafka source by using the Knative (kn)
CLI. Using the Knative CLI to create event sources provides a more streamlined and intuitive user
interface than modifying YAML files directly.

Prerequisites

The OpenShift Serverless Operator, Knative Eventing, Knative Serving, and the KnativeKafka
custom resource (CR) are installed on your cluster.

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

You have access to a Red Hat AMQ Streams (Kafka) cluster that produces the Kafka messages
you want to import.

You have installed the Knative (kn) CLI.

Optional: You have installed the OpenShift CLI (oc) if you want to use the verification steps in
this procedure.

Procedure

1. To verify that the Kafka event source is working, create a Knative service that dumps incoming
events into the service logs:

2. Create a KafkaSource CR:

☁� cloudevents.Event
Validation: valid
Context Attributes,
 specversion: 1.0
 type: dev.knative.sources.ping
 source: /apis/v1/namespaces/default/pingsources/test-ping-source
 id: 99e4f4f6-08ff-4bff-acf1-47f61ded68c9
 time: 2020-04-07T16:16:00.000601161Z
 datacontenttype: application/json
Data,
 {
 "message": "Hello world!"
 }

$ kn delete pingsources.sources.knative.dev <ping_source_name>

$ kn service create event-display \
 --image quay.io/openshift-knative/knative-eventing-sources-event-display

OpenShift Container Platform 4.6 Serverless

74

NOTE

Replace the placeholder values in this command with values for your source
name, bootstrap servers, and topics.

The --servers, --topics, and --consumergroup options specify the connection parameters to
the Kafka cluster. The --consumergroup option is optional.

3. Optional: View details about the KafkaSource CR you created:

Example output

Verification steps

1. Trigger the Kafka instance to send a message to the topic:

Enter the message in the prompt. This command assumes that:

The Kafka cluster is installed in the kafka namespace.

The KafkaSource object has been configured to use the my-topic topic.

2. Verify that the message arrived by viewing the logs:

$ kn source kafka create <kafka_source_name> \
 --servers <cluster_kafka_bootstrap>.kafka.svc:9092 \
 --topics <topic_name> --consumergroup my-consumer-group \
 --sink event-display

$ kn source kafka describe <kafka_source_name>

Name: example-kafka-source
Namespace: kafka
Age: 1h
BootstrapServers: example-cluster-kafka-bootstrap.kafka.svc:9092
Topics: example-topic
ConsumerGroup: example-consumer-group

Sink:
 Name: event-display
 Namespace: default
 Resource: Service (serving.knative.dev/v1)

Conditions:
 OK TYPE AGE REASON
 ++ Ready 1h
 ++ Deployed 1h
 ++ SinkProvided 1h

$ oc -n kafka run kafka-producer \
 -ti --image=quay.io/strimzi/kafka:latest-kafka-2.7.0 --rm=true \
 --restart=Never -- bin/kafka-console-producer.sh \
 --broker-list <cluster_kafka_bootstrap>:9092 --topic my-topic

CHAPTER 4. KNATIVE CLI

75

Example output

4.6. FUNCTIONS COMMANDS

4.6.1. Creating functions

Before you can build and deploy a function, you must create it by using the Knative (kn) CLI. You can
specify the path, runtime, template, and image registry as flags on the command line, or use the -c flag
to start the interactive experience in the terminal.

IMPORTANT

OpenShift Serverless Functions is a Technology Preview feature only. Technology
Preview features are not supported with Red Hat production service level agreements
(SLAs) and might not be functionally complete. Red Hat does not recommend using
them in production. These features provide early access to upcoming product features,
enabling customers to test functionality and provide feedback during the development
process.

For more information about the support scope of Red Hat Technology Preview features,
see https://access.redhat.com/support/offerings/techpreview/.

Prerequisites

The OpenShift Serverless Operator and Knative Serving are installed on the cluster.

You have installed the Knative (kn) CLI.

Procedure

Create a function project:

Accepted runtime values include quarkus, node, typescript, go, python, springboot, and
rust.

$ oc logs $(oc get pod -o name | grep event-display) -c user-container

☁� cloudevents.Event
Validation: valid
Context Attributes,
 specversion: 1.0
 type: dev.knative.kafka.event
 source: /apis/v1/namespaces/default/kafkasources/example-kafka-source#example-topic
 subject: partition:46#0
 id: partition:46/offset:0
 time: 2021-03-10T11:21:49.4Z
Extensions,
 traceparent: 00-161ff3815727d8755848ec01c866d1cd-7ff3916c44334678-00
Data,
 Hello!

$ kn func create -r <repository> -l <runtime> -t <template> <path>

OpenShift Container Platform 4.6 Serverless

76

https://access.redhat.com/support/offerings/techpreview/

Accepted template values include http and cloudevents.

Example command

Example output

Alternatively, you can specify a repository that contains a custom template.

Example command

Example output

4.6.2. Running a function locally

You can use the kn func run command to run a function locally in the current directory or in the
directory specified by the --path flag. If the function that you are running has never previously been built,
or if the project files have been modified since the last time it was built, the kn func run command
builds the function before running it by default.

Example command to run a function in the current directory

Example command to run a function in a directory specified as a path

You can also force a rebuild of an existing image before running the function, even if there have been no
changes to the project files, by using the --build flag:

Example run command using the build flag

If you set the build flag as false, this disables building of the image, and runs the function using the
previously built image:

Example run command using the build flag

You can use the help command to learn more about kn func run command options:

$ kn func create -l typescript -t cloudevents examplefunc

Created typescript function in /home/user/demo/examplefunc

$ kn func create -r https://github.com/boson-project/templates/ -l node -t hello-world
examplefunc

Created node function in /home/user/demo/examplefunc

$ kn func run

$ kn func run --path=<directory_path>

$ kn func run --build

$ kn func run --build=false

CHAPTER 4. KNATIVE CLI

77

Build help command

4.6.3. Building functions

Before you can run a function, you must build the function project. If you are using the kn func run
command, the function is built automatically. However, you can use the kn func build command to build
a function without running it, which can be useful for advanced users or debugging scenarios.

The kn func build command creates an OCI container image that can be run locally on your computer
or on an OpenShift Container Platform cluster. This command uses the function project name and the
image registry name to construct a fully qualified image name for your function.

4.6.3.1. Image container types

By default, kn func build creates a container image by using Red Hat Source-to-Image (S2I)
technology.

Example build command using Red Hat Source-to-Image (S2I)

You can use CNCF Cloud Native Buildpacks technology instead, by adding the --builder flag to the
command and specifying the pack strategy:

Example build command using CNCF Cloud Native Buildpacks

4.6.3.2. Image registry types

The OpenShift Container Registry is used by default as the image registry for storing function images.

Example build command using OpenShift Container Registry

Example output

You can override using OpenShift Container Registry as the default image registry by using the --
registry flag:

Example build command overriding OpenShift Container Registry to use quay.io

Example output

$ kn func help run

$ kn func build

$ kn func build --builder pack

$ kn func build

Building function image
Function image has been built, image: registry.redhat.io/example/example-function:latest

$ kn func build --registry quay.io/username

OpenShift Container Platform 4.6 Serverless

78

https://buildpacks.io/

4.6.3.3. Push flag

You can add the --push flag to a kn func build command to automatically push the function image
after it is successfully built:

Example build command using OpenShift Container Registry

4.6.3.4. Help command

You can use the help command to learn more about kn func build command options:

Build help command

4.6.4. Deploying functions

You can deploy a function to your cluster as a Knative service by using the kn func deploy command. If
the targeted function is already deployed, it is updated with a new container image that is pushed to a
container image registry, and the Knative service is updated.

Prerequisites

The OpenShift Serverless Operator and Knative Serving are installed on the cluster.

You have installed the Knative (kn) CLI.

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

You must have already created and initialized the function that you want to deploy.

Procedure

Deploy a function:

Example output

If no namespace is specified, the function is deployed in the current namespace.

The function is deployed from the current directory, unless a path is specified.

The Knative service name is derived from the project name, and cannot be changed using

Building function image
Function image has been built, image: quay.io/username/example-function:latest

$ kn func build --push

$ kn func help build

$ kn func deploy [-n <namespace> -p <path> -i <image>]

Function deployed at: http://func.example.com

CHAPTER 4. KNATIVE CLI

79

The Knative service name is derived from the project name, and cannot be changed using
this command.

4.6.5. Listing existing functions

You can list existing functions by using kn func list. If you want to list functions that have been deployed
as Knative services, you can also use kn service list.

Procedure

List existing functions:

Example output

List functions deployed as Knative services:

Example output

4.6.6. Describing a function

The kn func info command prints information about a deployed function, such as the function name,
image, namespace, Knative service information, route information, and event subscriptions.

Procedure

Describe a function:

Example command

Example output

$ kn func list [-n <namespace> -p <path>]

NAME NAMESPACE RUNTIME URL
READY
example-function default node http://example-function.default.apps.ci-ln-g9f36hb-
d5d6b.origin-ci-int-aws.dev.rhcloud.com True

$ kn service list -n <namespace>

NAME URL LATEST
AGE CONDITIONS READY REASON
example-function http://example-function.default.apps.ci-ln-g9f36hb-d5d6b.origin-ci-int-
aws.dev.rhcloud.com example-function-gzl4c 16m 3 OK / 3 True

$ kn func info [-f <format> -n <namespace> -p <path>]

$ kn func info -p function/example-function

Function name:
 example-function
Function is built in image:

OpenShift Container Platform 4.6 Serverless

80

4.6.7. Invoking a deployed function with a test event

You can use the kn func invoke CLI command to send a test request to invoke a function either locally
or on your OpenShift Container Platform cluster. You can use this command to test that a function is
working and able to receive events correctly. Invoking a function locally is useful for a quick test during
function development. Invoking a function on the cluster is useful for testing that is closer to the
production environment.

Prerequisites

The OpenShift Serverless Operator and Knative Serving are installed on the cluster.

You have installed the Knative (kn) CLI.

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

You must have already deployed the function that you want to invoke.

Procedure

Invoke a function:

The kn func invoke command only works when there is either a local container image
currently running, or when there is a function deployed in the cluster.

The kn func invoke command executes on the local directory by default, and assumes that
this directory is a function project.

4.6.7.1. kn func invoke optional parameters

You can specify optional parameters for the request by using the following kn func invoke CLI
command flags.

Flags Description

-t, --target Specifies the target instance of the invoked function, for example, local or
remote or https://staging.example.com/. The default target is local.

-f, --format Specifies the format of the message, for example, cloudevent or http.

--id Specifies a unique string identifier for the request.

 docker.io/user/example-function:latest
Function is deployed as Knative Service:
 example-function
Function is deployed in namespace:
 default
Routes:
 http://example-function.default.apps.ci-ln-g9f36hb-d5d6b.origin-ci-int-aws.dev.rhcloud.com

$ kn func invoke

CHAPTER 4. KNATIVE CLI

81

https://staging.example.com/

-n, --namespace Specifies the namespace on the cluster.

--source Specifies sender name for the request. This corresponds to the CloudEvent
source attribute.

--type Specifies the type of request, for example, boson.fn. This corresponds to the
CloudEvent type attribute.

--data Specifies content for the request. For CloudEvent requests, this is the CloudEvent
data attribute.

--file Specifies path to a local file containing data to be sent.

--content-type Specifies the MIME content type for the request.

-p, --path Specifies path to the project directory.

-c, --confirm Enables prompting to interactively confirm all options.

-v, --verbose Enables printing verbose output.

-h, --help Prints information on usage of kn func invoke.

Flags Description

4.6.7.1.1. Main parameters

The following parameters define the main properties of the kn func invoke command:

Event target (-t, --target)

The target instance of the invoked function. Accepts the local value for a locally deployed function,
the remote value for a remotely deployed function, or a URL for a function deployed to an arbitrary
endpoint. If a target is not specified, it defaults to local.

Event message format (-f, --format)

The message format for the event, such as http or cloudevent. This defaults to the format of the
template that was used when creating the function.

Event type (--type)

The type of event that is sent. You can find information about the type parameter that is set in the
documentation for each event producer. For example, the API server source might set the type
parameter of produced events as dev.knative.apiserver.resource.update.

Event source (--source)

The unique event source that produced the event. This might be a URI for the event source, for
example https://10.96.0.1/, or the name of the event source.

Event ID (--id)

A random, unique ID that is created by the event producer.

Event data (--data)

Allows you to specify a data value for the event sent by the kn func invoke command. For example,

OpenShift Container Platform 4.6 Serverless

82

https://10.96.0.1/

Allows you to specify a data value for the event sent by the kn func invoke command. For example,
you can specify a --data value such as "Hello World" so that the event contains this data string. By
default, no data is included in the events created by kn func invoke.

NOTE

Functions that have been deployed to a cluster can respond to events from an existing
event source that provides values for properties such as source and type. These
events often have a data value in JSON format, which captures the domain specific
context of the event. By using the CLI flags noted in this document, developers can
simulate those events for local testing.

You can also send event data using the --file flag to provide a local file containing data for the event.
In this case, specify the content type using --content-type.

Data content type (--content-type)

If you are using the --data flag to add data for events, you can use the --content-type flag to specify
what type of data is carried by the event. In the previous example, the data is plain text, so you might
specify kn func invoke --data "Hello world!" --content-type "text/plain".

4.6.7.1.2. Example commands

This is the general invocation of the kn func invoke command:

For example, to send a "Hello world!" event, you can run:

4.6.7.1.2.1. Specifying the file with data

To specify the file on disk that contains the event data, use the --file and --content-type flags:

For example, to send JSON data stored in the test.json file, use this command:

4.6.7.1.2.2. Specifying the function project

You can specify a path to the function project by using the --path flag:

For example, to use the function project located in the ./example/example-function directory, use this
command:

$ kn func invoke --type <event_type> --source <event_source> --data <event_data> --content-type
<content_type> --id <event_ID> --format <format> --namespace <namespace>

$ kn func invoke --type ping --source example-ping --data "Hello world!" --content-type "text/plain" --
id example-ID --format http --namespace my-ns

$ kn func invoke --file <path> --content-type <content-type>

$ kn func invoke --file ./test.json --content-type application/json

$ kn func invoke --path <path_to_function>

CHAPTER 4. KNATIVE CLI

83

4.6.7.1.2.3. Specifying where the target function is deployed

By default, kn func invoke targets the local deployment of the function:

To use a different deployment, use the --target flag:

For example, to use the function deployed on the cluster, use the --target remote flag:

To use the function deployed at an arbitrary URL, use the --target <URL> flag:

You can explicitly target the local deployment. In this case, if the function is not running locally, the
command fails:

4.6.8. Deleting a function

You can delete a function by using the kn func delete command. This is useful when a function is no
longer required, and can help to save resources on your cluster.

Procedure

Delete a function:

If the name or path of the function to delete is not specified, the current directory is
searched for a func.yaml file that is used to determine the function to delete.

If the namespace is not specified, it defaults to the namespace value in the func.yaml file.

$ kn func invoke --path ./example/example-function

$ kn func invoke

$ kn func invoke --target <target>

$ kn func invoke --target remote

$ kn func invoke --target "https://my-event-broker.example.com"

$ kn func invoke --target local

$ kn func delete [<function_name> -n <namespace> -p <path>]

OpenShift Container Platform 4.6 Serverless

84

1

2

3

4

CHAPTER 5. DEVELOP

5.1. SERVERLESS APPLICATIONS

Serverless applications are created and deployed as Kubernetes services, defined by a route and a
configuration, and contained in a YAML file. To deploy a serverless application using OpenShift
Serverless, you must create a Knative Service object.

Example Knative Service object YAML file

The name of the application.

The namespace the application uses.

The image of the application.

The environment variable printed out by the sample application.

You can create a serverless application by using one of the following methods:

Create a Knative service from the OpenShift Container Platform web console. See the
documentation about Creating applications using the Developer perspective .

Create a Knative service by using the Knative (kn) CLI.

Create and apply a Knative Service object as a YAML file, by using the oc CLI.

5.1.1. Creating serverless applications by using the Knative CLI

Using the Knative (kn) CLI to create serverless applications provides a more streamlined and intuitive
user interface over modifying YAML files directly. You can use the kn service create command to
create a basic serverless application.

Prerequisites

OpenShift Serverless Operator and Knative Serving are installed on your cluster.

You have installed the Knative (kn) CLI.

You have created a project or have access to a project with the appropriate roles and

apiVersion: serving.knative.dev/v1
kind: Service
metadata:
 name: hello 1
 namespace: default 2
spec:
 template:
 spec:
 containers:
 - image: docker.io/openshift/hello-openshift 3
 env:
 - name: RESPONSE 4
 value: "Hello Serverless!"

CHAPTER 5. DEVELOP

85

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/applications/#odc-creating-applications-using-developer-perspective

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

Procedure

Create a Knative service:

Where:

--image is the URI of the image for the application.

--tag is an optional flag that can be used to add a tag to the initial revision that is created
with the service.

Example command

Example output

5.1.2. Creating a service using offline mode

You can execute kn service commands in offline mode, so that no changes happen on the cluster, and
instead the service descriptor file is created on your local machine. After the descriptor file is created,
you can modify the file before propagating changes to the cluster.

IMPORTANT

The offline mode of the Knative CLI is a Technology Preview feature only. Technology
Preview features are not supported with Red Hat production service level agreements
(SLAs) and might not be functionally complete. Red Hat does not recommend using
them in production. These features provide early access to upcoming product features,
enabling customers to test functionality and provide feedback during the development
process.

For more information about the support scope of Red Hat Technology Preview features,
see https://access.redhat.com/support/offerings/techpreview/.

Prerequisites

$ kn service create <service_name> --image <image> --tag <tag-value>

$ kn service create event-display \
 --image quay.io/openshift-knative/knative-eventing-sources-event-display:latest

Creating service 'event-display' in namespace 'default':

 0.271s The Route is still working to reflect the latest desired specification.
 0.580s Configuration "event-display" is waiting for a Revision to become ready.
 3.857s ...
 3.861s Ingress has not yet been reconciled.
 4.270s Ready to serve.

Service 'event-display' created with latest revision 'event-display-bxshg-1' and URL:
http://event-display-default.apps-crc.testing

OpenShift Container Platform 4.6 Serverless

86

https://access.redhat.com/support/offerings/techpreview/

OpenShift Serverless Operator and Knative Serving are installed on your cluster.

You have installed the Knative (kn) CLI.

Procedure

1. In offline mode, create a local Knative service descriptor file:

Example output

The --target ./ flag enables offline mode and specifies ./ as the directory for storing the new
directory tree.
If you do not specify an existing directory, but use a filename, such as --target my-
service.yaml, then no directory tree is created. Instead, only the service descriptor file my-
service.yaml is created in the current directory.

The filename can have the .yaml, .yml, or .json extension. Choosing .json creates the
service descriptor file in the JSON format.

The --namespace test option places the new service in the test namespace.
If you do not use --namespace, and you are logged in to an OpenShift cluster, the
descriptor file is created in the current namespace. Otherwise, the descriptor file is created
in the default namespace.

2. Examine the created directory structure:

Example output

The current ./ directory specified with --target contains the new test/ directory that is
named after the specified namespace.

The test/ directory contains the ksvc directory, named after the resource type.

The ksvc directory contains the descriptor file event-display.yaml, named according to the
specified service name.

3. Examine the generated service descriptor file:

$ kn service create event-display \
 --image quay.io/openshift-knative/knative-eventing-sources-event-display:latest \
 --target ./ \
 --namespace test

Service 'event-display' created in namespace 'test'.

$ tree ./

./
└── test
 └── ksvc
 └── event-display.yaml

2 directories, 1 file

CHAPTER 5. DEVELOP

87

Example output

4. List information about the new service:

Example output

The --target ./ option specifies the root directory for the directory structure containing
namespace subdirectories.
Alternatively, you can directly specify a YAML or JSON filename with the --target option.
The accepted file extensions are .yaml, .yml, and .json.

The --namespace option specifies the namespace, which communicates to kn the
subdirectory that contains the necessary service descriptor file.
If you do not use --namespace, and you are logged in to an OpenShift cluster, kn searches
for the service in the subdirectory that is named after the current namespace. Otherwise, kn
searches in the default/ subdirectory.

5. Use the service descriptor file to create the service on the cluster:

$ cat test/ksvc/event-display.yaml

apiVersion: serving.knative.dev/v1
kind: Service
metadata:
 creationTimestamp: null
 name: event-display
 namespace: test
spec:
 template:
 metadata:
 annotations:
 client.knative.dev/user-image: quay.io/openshift-knative/knative-eventing-sources-event-
display:latest
 creationTimestamp: null
 spec:
 containers:
 - image: quay.io/openshift-knative/knative-eventing-sources-event-display:latest
 name: ""
 resources: {}
status: {}

$ kn service describe event-display --target ./ --namespace test

Name: event-display
Namespace: test
Age:
URL:

Revisions:

Conditions:
 OK TYPE AGE REASON

$ kn service create -f test/ksvc/event-display.yaml

OpenShift Container Platform 4.6 Serverless

88

Example output

5.1.3. Creating serverless applications using YAML

Creating Knative resources by using YAML files uses a declarative API, which enables you to describe
applications declaratively and in a reproducible manner. To create a serverless application by using
YAML, you must create a YAML file that defines a Knative Service object, then apply it by using oc
apply.

After the service is created and the application is deployed, Knative creates an immutable revision for
this version of the application. Knative also performs network programming to create a route, ingress,
service, and load balancer for your application and automatically scales your pods up and down based on
traffic.

Prerequisites

OpenShift Serverless Operator and Knative Serving are installed on your cluster.

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

Install the OpenShift CLI (oc).

Procedure

1. Create a YAML file containing the following sample code:

Creating service 'event-display' in namespace 'test':

 0.058s The Route is still working to reflect the latest desired specification.
 0.098s ...
 0.168s Configuration "event-display" is waiting for a Revision to become ready.
 23.377s ...
 23.419s Ingress has not yet been reconciled.
 23.534s Waiting for load balancer to be ready
 23.723s Ready to serve.

Service 'event-display' created to latest revision 'event-display-00001' is available at URL:
http://event-display-test.apps.example.com

apiVersion: serving.knative.dev/v1
kind: Service
metadata:
 name: event-delivery
 namespace: default
spec:
 template:
 spec:
 containers:
 - image: quay.io/openshift-knative/knative-eventing-sources-event-display:latest
 env:
 - name: RESPONSE
 value: "Hello Serverless!"

CHAPTER 5. DEVELOP

89

2. Navigate to the directory where the YAML file is contained, and deploy the application by
applying the YAML file:

5.1.4. Verifying your serverless application deployment

To verify that your serverless application has been deployed successfully, you must get the application
URL created by Knative, and then send a request to that URL and observe the output. OpenShift
Serverless supports the use of both HTTP and HTTPS URLs, however the output from oc get ksvc
always prints URLs using the http:// format.

Prerequisites

OpenShift Serverless Operator and Knative Serving are installed on your cluster.

You have installed the oc CLI.

You have created a Knative service.

Prerequisites

Install the OpenShift CLI (oc).

Procedure

1. Find the application URL:

Example command

Example output

2. Make a request to your cluster and observe the output.

Example HTTP request

Example HTTPS request

Example output

$ oc apply -f <filename>

$ oc get ksvc <service_name>

$ oc get ksvc event-delivery

NAME URL LATESTCREATED LATESTREADY
READY REASON
event-delivery http://event-delivery-default.example.com event-delivery-4wsd2 event-
delivery-4wsd2 True

$ curl http://event-delivery-default.example.com

$ curl https://event-delivery-default.example.com

OpenShift Container Platform 4.6 Serverless

90

3. Optional. If you receive an error relating to a self-signed certificate in the certificate chain, you
can add the --insecure flag to the curl command to ignore the error:

Example output

IMPORTANT

Self-signed certificates must not be used in a production deployment. This
method is only for testing purposes.

4. Optional. If your OpenShift Container Platform cluster is configured with a certificate that is
signed by a certificate authority (CA) but not yet globally configured for your system, you can
specify this with the curl command. The path to the certificate can be passed to the curl
command by using the --cacert flag:

Example output

5.1.5. Interacting with a serverless application using HTTP2 and gRPC

OpenShift Serverless supports only insecure or edge-terminated routes. Insecure or edge-terminated
routes do not support HTTP2 on OpenShift Container Platform. These routes also do not support gRPC
because gRPC is transported by HTTP2. If you use these protocols in your application, you must call the
application using the ingress gateway directly. To do this you must find the ingress gateway’s public
address and the application’s specific host.

IMPORTANT

This method needs to expose Kourier Gateway using the LoadBalancer service type. You
can configure this by adding the following YAML to your KnativeServing custom
resource definition (CRD):

Prerequisites

OpenShift Serverless Operator and Knative Serving are installed on your cluster.

Hello Serverless!

$ curl https://event-delivery-default.example.com --insecure

Hello Serverless!

$ curl https://event-delivery-default.example.com --cacert <file>

Hello Serverless!

...
spec:
 ingress:
 kourier:
 service-type: LoadBalancer
...

CHAPTER 5. DEVELOP

91

Install the OpenShift CLI (oc).

You have created a Knative service.

Procedure

1. Find the application host. See the instructions in Verifying your serverless application
deployment.

2. Find the ingress gateway’s public address:

Example output

The public address is surfaced in the EXTERNAL-IP field, and in this case is
a83e86291bcdd11e993af02b7a65e514-33544245.us-east-1.elb.amazonaws.com.

3. Manually set the host header of your HTTP request to the application’s host, but direct the
request itself against the public address of the ingress gateway.

Example output

You can also make a gRPC request by setting the authority to the application’s host, while
directing the request against the ingress gateway directly:

NOTE

Ensure that you append the respective port, 80 by default, to both hosts as
shown in the previous example.

5.1.6. Enabling communication with Knative applications on a cluster with restrictive
network policies

If you are using a cluster that multiple users have access to, your cluster might use network policies to

$ oc -n knative-serving-ingress get svc kourier

NAME TYPE CLUSTER-IP EXTERNAL-IP
PORT(S)
AGE
kourier LoadBalancer 172.30.51.103 a83e86291bcdd11e993af02b7a65e514-
33544245.us-east-1.elb.amazonaws.com 80:31380/TCP,443:31390/TCP 67m

$ curl -H "Host: hello-default.example.com" a83e86291bcdd11e993af02b7a65e514-
33544245.us-east-1.elb.amazonaws.com

Hello Serverless!

grpc.Dial(
 "a83e86291bcdd11e993af02b7a65e514-33544245.us-east-1.elb.amazonaws.com:80",
 grpc.WithAuthority("hello-default.example.com:80"),
 grpc.WithInsecure(),
)

OpenShift Container Platform 4.6 Serverless

92

control which pods, services, and namespaces can communicate with each other over the network. If
your cluster uses restrictive network policies, it is possible that Knative system pods are not able to
access your Knative application. For example, if your namespace has the following network policy, which
denies all requests, Knative system pods cannot access your Knative application:

Example NetworkPolicy object that denies all requests to the namespace

To allow access to your applications from Knative system pods, you must add a label to each of the
Knative system namespaces, and then create a NetworkPolicy object in your application namespace
that allows access to the namespace for other namespaces that have this label.

IMPORTANT

A network policy that denies requests to non-Knative services on your cluster still
prevents access to these services. However, by allowing access from Knative system
namespaces to your Knative application, you are allowing access to your Knative
application from all namespaces in the cluster.

If you do not want to allow access to your Knative application from all namespaces on the
cluster, you might want to use JSON Web Token authentication for Knative services
instead. JSON Web Token authentication for Knative services requires Service Mesh.

Prerequisites

Install the OpenShift CLI (oc).

OpenShift Serverless Operator and Knative Serving are installed on your cluster.

Procedure

1. Add the knative.openshift.io/system-namespace=true label to each Knative system
namespace that requires access to your application:

a. Label the knative-serving namespace:

b. Label the knative-serving-ingress namespace:

c. Label the knative-eventing namespace:

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: deny-by-default
 namespace: example-namespace
spec:
 podSelector:
 ingress: []

$ oc label namespace knative-serving knative.openshift.io/system-namespace=true

$ oc label namespace knative-serving-ingress knative.openshift.io/system-
namespace=true

$ oc label namespace knative-eventing knative.openshift.io/system-namespace=true

CHAPTER 5. DEVELOP

93

1

2

d. Label the knative-kafka namespace:

2. Create a NetworkPolicy object in your application namespace to allow access from
namespaces with the knative.openshift.io/system-namespace label:

Example NetworkPolicy object

Provide a name for your network policy.

The namespace where your application exists.

5.1.7. Configuring init containers

Init containers are specialized containers that are run before application containers in a pod. They are
generally used to implement initialization logic for an application, which may include running setup
scripts or downloading required configurations.

NOTE

Init containers may cause longer application start-up times and should be used with
caution for serverless applications, which are expected to scale up and down frequently.

Multiple init containers are supported in a single Knative service spec. Knative provides a default,
configurable naming template if a template name is not provided. The init containers template can be
set by adding an appropriate value in a Knative Service object spec.

Prerequisites

OpenShift Serverless Operator and Knative Serving are installed on your cluster.

Before you can use init containers for Knative services, an administrator must add the
kubernetes.podspec-init-containers flag to the KnativeServing custom resource (CR). See
the OpenShift Serverless "Global configuration" documentation for more information.

Procedure

$ oc label namespace knative-kafka knative.openshift.io/system-namespace=true

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: <network_policy_name> 1
 namespace: <namespace> 2
spec:
 ingress:
 - from:
 - namespaceSelector:
 matchLabels:
 knative.openshift.io/system-namespace: "true"
 podSelector: {}
 policyTypes:
 - Ingress

OpenShift Container Platform 4.6 Serverless

94

https://kubernetes.io/docs/concepts/workloads/pods/init-containers/

1

2

3

Add the initContainers spec to a Knative Service object:

Example service spec

The image pull policy when the image is downloaded.

The URI for the init container image.

The location where volumes are mounted within the container file system.

5.1.8. HTTPS redirection per service

You can enable or disable HTTPS redirection for a service by configuring the
networking.knative.dev/http-option annotation. The following example shows how you can use this
annotation in a Knative Service YAML object:

5.1.9. Additional resources

Knative Serving CLI commands

Configuring JSON Web Token authentication for Knative services

5.2. AUTOSCALING

Knative Serving provides automatic scaling, or autoscaling, for applications to match incoming demand.
For example, if an application is receiving no traffic, and scale-to-zero is enabled, Knative Serving scales
the application down to zero replicas. If scale-to-zero is disabled, the application is scaled down to the

apiVersion: serving.knative.dev/v1
kind: Service
...
spec:
 template:
 spec:
 initContainers:
 - imagePullPolicy: IfNotPresent 1
 image: <image_uri> 2
 volumeMounts: 3
 - name: data
 mountPath: /data
...

apiVersion: serving.knative.dev/v1
kind: Service
metadata:
 name: example
 namespace: default
 annotations:
 networking.knative.dev/http-option: "redirected"
spec:
 ...

CHAPTER 5. DEVELOP

95

https://kubernetes.io/docs/concepts/containers/images/#image-pull-policy
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/serverless/#kn-serving-ref
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/serverless/#serverless-ossm-with-kourier-jwt

minimum number of replicas configured for applications on the cluster. Replicas can also be scaled up to
meet demand if traffic to the application increases.

Autoscaling settings for Knative services can be global settings that are configured by cluster
administrators, or per-revision settings that are configured for individual services. You can modify per-
revision settings for your services by using the OpenShift Container Platform web console, by modifying
the YAML file for your service, or by using the Knative (kn) CLI.

NOTE

Any limits or targets that you set for a service are measured against a single instance of
your application. For example, setting the target annotation to 50 configures the
autoscaler to scale the application so that each revision handles 50 requests at a time.

5.2.1. Scale bounds

Scale bounds determine the minimum and maximum numbers of replicas that can serve an application at
any given time. You can set scale bounds for an application to help prevent cold starts or control
computing costs.

5.2.1.1. Minimum scale bounds

The minimum number of replicas that can serve an application is determined by the min-scale
annotation. If scale to zero is not enabled, the min-scale value defaults to 1.

The min-scale value defaults to 0 replicas if the following conditions are met:

The min-scale annotation is not set

Scaling to zero is enabled

The class KPA is used

Example service spec with min-scale annotation

5.2.1.1.1. Setting the min-scale annotation by using the Knative CLI

Using the Knative (kn) CLI to set the min-scale annotation provides a more streamlined and intuitive
user interface over modifying YAML files directly. You can use the kn service command with the --
scale-min flag to create or modify the min-scale value for a service.

Prerequisites

apiVersion: serving.knative.dev/v1
kind: Service
metadata:
 name: example-service
 namespace: default
spec:
 template:
 metadata:
 annotations:
 autoscaling.knative.dev/min-scale: "0"
...

OpenShift Container Platform 4.6 Serverless

96

Knative Serving is installed on the cluster.

You have installed the Knative (kn) CLI.

Procedure

Set the minimum number of replicas for the service by using the --scale-min flag:

Example command

5.2.1.2. Maximum scale bounds

The maximum number of replicas that can serve an application is determined by the max-scale
annotation. If the max-scale annotation is not set, there is no upper limit for the number of replicas
created.

Example service spec with max-scale annotation

5.2.1.2.1. Setting the max-scale annotation by using the Knative CLI

Using the Knative (kn) CLI to set the max-scale annotation provides a more streamlined and intuitive
user interface over modifying YAML files directly. You can use the kn service command with the --
scale-max flag to create or modify the max-scale value for a service.

Prerequisites

Knative Serving is installed on the cluster.

You have installed the Knative (kn) CLI.

Procedure

Set the maximum number of replicas for the service by using the --scale-max flag:

$ kn service create <service_name> --image <image_uri> --scale-min <integer>

$ kn service create example-service --image quay.io/openshift-knative/knative-eventing-
sources-event-display:latest --scale-min 2

apiVersion: serving.knative.dev/v1
kind: Service
metadata:
 name: example-service
 namespace: default
spec:
 template:
 metadata:
 annotations:
 autoscaling.knative.dev/max-scale: "10"
...

$ kn service create <service_name> --image <image_uri> --scale-max <integer>

CHAPTER 5. DEVELOP

97

Example command

5.2.2. Concurrency

Concurrency determines the number of simultaneous requests that can be processed by each replica of
an application at any given time. Concurrency can be configured as a soft limit or a hard limit:

A soft limit is a targeted requests limit, rather than a strictly enforced bound. For example, if
there is a sudden burst of traffic, the soft limit target can be exceeded.

A hard limit is a strictly enforced upper bound requests limit. If concurrency reaches the hard
limit, surplus requests are buffered and must wait until there is enough free capacity to execute
the requests.

IMPORTANT

Using a hard limit configuration is only recommended if there is a clear use case
for it with your application. Having a low, hard limit specified may have a negative
impact on the throughput and latency of an application, and might cause cold
starts.

Adding a soft target and a hard limit means that the autoscaler targets the soft target number of
concurrent requests, but imposes a hard limit of the hard limit value for the maximum number of
requests.

If the hard limit value is less than the soft limit value, the soft limit value is tuned down, because there is
no need to target more requests than the number that can actually be handled.

5.2.2.1. Configuring a soft concurrency target

A soft limit is a targeted requests limit, rather than a strictly enforced bound. For example, if there is a
sudden burst of traffic, the soft limit target can be exceeded. You can specify a soft concurrency target
for your Knative service by setting the autoscaling.knative.dev/target annotation in the spec, or by
using the kn service command with the correct flags.

Procedure

Optional: Set the autoscaling.knative.dev/target annotation for your Knative service in the
spec of the Service custom resource:

Example service spec

$ kn service create example-service --image quay.io/openshift-knative/knative-eventing-
sources-event-display:latest --scale-max 10

apiVersion: serving.knative.dev/v1
kind: Service
metadata:
 name: example-service
 namespace: default
spec:
 template:

OpenShift Container Platform 4.6 Serverless

98

Optional: Use the kn service command to specify the --concurrency-target flag:

Example command to create a service with a concurrency target of 50 requests

5.2.2.2. Configuring a hard concurrency limit

A hard concurrency limit is a strictly enforced upper bound requests limit. If concurrency reaches the
hard limit, surplus requests are buffered and must wait until there is enough free capacity to execute the
requests. You can specify a hard concurrency limit for your Knative service by modifying the
containerConcurrency spec, or by using the kn service command with the correct flags.

Procedure

Optional: Set the containerConcurrency spec for your Knative service in the spec of the
Service custom resource:

Example service spec

The default value is 0, which means that there is no limit on the number of simultaneous
requests that are permitted to flow into one replica of the service at a time.

A value greater than 0 specifies the exact number of requests that are permitted to flow into
one replica of the service at a time. This example would enable a hard concurrency limit of 50
requests.

Optional: Use the kn service command to specify the --concurrency-limit flag:

Example command to create a service with a concurrency limit of 50 requests

 metadata:
 annotations:
 autoscaling.knative.dev/target: "200"

$ kn service create <service_name> --image <image_uri> --concurrency-target <integer>

$ kn service create example-service --image quay.io/openshift-knative/knative-eventing-
sources-event-display:latest --concurrency-target 50

apiVersion: serving.knative.dev/v1
kind: Service
metadata:
 name: example-service
 namespace: default
spec:
 template:
 spec:
 containerConcurrency: 50

$ kn service create <service_name> --image <image_uri> --concurrency-limit <integer>

$ kn service create example-service --image quay.io/openshift-knative/knative-eventing-
sources-event-display:latest --concurrency-limit 50

CHAPTER 5. DEVELOP

99

5.2.2.3. Concurrency target utilization

This value specifies the percentage of the concurrency limit that is actually targeted by the autoscaler.
This is also known as specifying the hotness at which a replica runs, which enables the autoscaler to scale
up before the defined hard limit is reached.

For example, if the containerConcurrency value is set to 10, and the target-utilization-percentage
value is set to 70 percent, the autoscaler creates a new replica when the average number of concurrent
requests across all existing replicas reaches 7. Requests numbered 7 to 10 are still sent to the existing
replicas, but additional replicas are started in anticipation of being required after the
containerConcurrency value is reached.

Example service configured using the target-utilization-percentage annotation

5.3. TRAFFIC MANAGEMENT

In a Knative application, traffic can be managed by creating a traffic split. A traffic split is configured as
part of a route, which is managed by a Knative service.

Configuring a route allows requests to be sent to different revisions of a service. This routing is
determined by the traffic spec of the Service object.

A traffic spec declaration consists of one or more revisions, each responsible for handling a portion of

apiVersion: serving.knative.dev/v1
kind: Service
metadata:
 name: example-service
 namespace: default
spec:
 template:
 metadata:
 annotations:
 autoscaling.knative.dev/target-utilization-percentage: "70"
...

OpenShift Container Platform 4.6 Serverless

100

A traffic spec declaration consists of one or more revisions, each responsible for handling a portion of
the overall traffic. The percentages of traffic routed to each revision must add up to 100%, which is
ensured by a Knative validation.

The revisions specified in a traffic spec can either be a fixed, named revision, or can point to the “latest”
revision, which tracks the head of the list of all revisions for the service. The "latest" revision is a type of
floating reference that updates if a new revision is created. Each revision can have a tag attached that
creates an additional access URL for that revision.

The traffic spec can be modified by:

Editing the YAML of a Service object directly.

Using the Knative (kn) CLI --traffic flag.

Using the OpenShift Container Platform web console.

When you create a Knative service, it does not have any default traffic spec settings.

5.3.1. Traffic spec examples

The following example shows a traffic spec where 100% of traffic is routed to the latest revision of the
service. Under status, you can see the name of the latest revision that latestRevision resolves to:

The following example shows a traffic spec where 100% of traffic is routed to the revision tagged as
current, and the name of that revision is specified as example-service. The revision tagged as latest is
kept available, even though no traffic is routed to it:

apiVersion: serving.knative.dev/v1
kind: Service
metadata:
 name: example-service
 namespace: default
spec:
...
 traffic:
 - latestRevision: true
 percent: 100
status:
 ...
 traffic:
 - percent: 100
 revisionName: example-service

apiVersion: serving.knative.dev/v1
kind: Service
metadata:
 name: example-service
 namespace: default
spec:
...
 traffic:
 - tag: current
 revisionName: example-service
 percent: 100

CHAPTER 5. DEVELOP

101

The following example shows how the list of revisions in the traffic spec can be extended so that traffic
is split between multiple revisions. This example sends 50% of traffic to the revision tagged as current,
and 50% of traffic to the revision tagged as candidate. The revision tagged as latest is kept available,
even though no traffic is routed to it:

5.3.2. Knative CLI traffic management flags

The Knative (kn) CLI supports traffic operations on the traffic block of a service as part of the kn
service update command.

The following table displays a summary of traffic splitting flags, value formats, and the operation the flag
performs. The Repetition column denotes whether repeating the particular value of flag is allowed in a
kn service update command.

Flag Value(s) Operation Repetition

--traffic RevisionName=Perc
ent

Gives Percent traffic to
RevisionName

Yes

--traffic Tag=Percent Gives Percent traffic to
the revision having Tag

Yes

--traffic @latest=Percent Gives Percent traffic to
the latest ready revision

No

--tag RevisionName=Tag Gives Tag to
RevisionName

Yes

--tag @latest=Tag Gives Tag to the latest
ready revision

No

 - tag: latest
 latestRevision: true
 percent: 0

apiVersion: serving.knative.dev/v1
kind: Service
metadata:
 name: example-service
 namespace: default
spec:
...
 traffic:
 - tag: current
 revisionName: example-service-1
 percent: 50
 - tag: candidate
 revisionName: example-service-2
 percent: 50
 - tag: latest
 latestRevision: true
 percent: 0

OpenShift Container Platform 4.6 Serverless

102

--untag Tag Removes Tag from
revision

Yes

Flag Value(s) Operation Repetition

5.3.2.1. Multiple flags and order precedence

All traffic-related flags can be specified using a single kn service update command. kn defines the
precedence of these flags. The order of the flags specified when using the command is not taken into
account.

The precedence of the flags as they are evaluated by kn are:

1. --untag: All the referenced revisions with this flag are removed from the traffic block.

2. --tag: Revisions are tagged as specified in the traffic block.

3. --traffic: The referenced revisions are assigned a portion of the traffic split.

You can add tags to revisions and then split traffic according to the tags you have set.

5.3.2.2. Custom URLs for revisions

Assigning a --tag flag to a service by using the kn service update command creates a custom URL for
the revision that is created when you update the service. The custom URL follows the pattern
https://<tag>-<service_name>-<namespace>.<domain> or http://<tag>-<service_name>-
<namespace>.<domain>.

The --tag and --untag flags use the following syntax:

Require one value.

Denote a unique tag in the traffic block of the service.

Can be specified multiple times in one command.

5.3.2.2.1. Example: Assign a tag to a revision

The following example assigns the tag latest to a revision named example-revision:

5.3.2.2.2. Example: Remove a tag from a revision

You can remove a tag to remove the custom URL, by using the --untag flag.

NOTE

If a revision has its tags removed, and it is assigned 0% of the traffic, the revision is
removed from the traffic block entirely.

The following command removes all tags from the revision named example-revision:

$ kn service update <service_name> --tag @latest=example-tag

CHAPTER 5. DEVELOP

103

https:
http:

5.3.3. Creating a traffic split by using the Knative CLI

Using the Knative (kn) CLI to create traffic splits provides a more streamlined and intuitive user
interface over modifying YAML files directly. You can use the kn service update command to split
traffic between revisions of a service.

Prerequisites

The OpenShift Serverless Operator and Knative Serving are installed on your cluster.

You have installed the Knative (kn) CLI.

You have created a Knative service.

Procedure

Specify the revision of your service and what percentage of traffic you want to route to it by
using the --traffic tag with a standard kn service update command:

Example command

Where:

<service_name> is the name of the Knative service that you are configuring traffic routing
for.

<revision> is the revision that you want to configure to receive a percentage of traffic. You
can either specify the name of the revision, or a tag that you assigned to the revision by
using the --tag flag.

<percentage> is the percentage of traffic that you want to send to the specified revision.

Optional: The --traffic flag can be specified multiple times in one command. For example, if you
have a revision tagged as @latest and a revision named stable, you can specify the percentage
of traffic that you want to split to each revision as follows:

Example command

If you have multiple revisions and do not specify the percentage of traffic that should be split to
the last revision, the --traffic flag can calculate this automatically. For example, if you have a
third revision named example, and you use the following command:

Example command

The remaining 30% of traffic is split to the example revision, even though it was not specified.

$ kn service update <service_name> --untag example-tag

$ kn service update <service_name> --traffic <revision>=<percentage>

$ kn service update example-service --traffic @latest=20,stable=80

$ kn service update example-service --traffic @latest=10,stable=60

OpenShift Container Platform 4.6 Serverless

104

5.3.4. Managing traffic between revisions by using the OpenShift Container
Platform web console

After you create a serverless application, the application is displayed in the Topology view of the
Developer perspective in the OpenShift Container Platform web console. The application revision is
represented by the node, and the Knative service is indicated by a quadrilateral around the node.

Any new change in the code or the service configuration creates a new revision, which is a snapshot of
the code at a given time. For a service, you can manage the traffic between the revisions of the service
by splitting and routing it to the different revisions as required.

Prerequisites

The OpenShift Serverless Operator and Knative Serving are installed on your cluster.

You have logged in to the OpenShift Container Platform web console.

Procedure

To split traffic between multiple revisions of an application in the Topology view:

1. Click the Knative service to see its overview in the side panel.

2. Click the Resources tab, to see a list of Revisions and Routes for the service.

Figure 5.1. Serverless application

3. Click the service, indicated by the S icon at the top of the side panel, to see an overview of the
service details.

4. Click the YAML tab and modify the service configuration in the YAML editor, and click Save.
For example, change the timeoutseconds from 300 to 301 . This change in the configuration
triggers a new revision. In the Topology view, the latest revision is displayed and the Resources
tab for the service now displays the two revisions.

5. In the Resources tab, click Set Traffic Distribution to see the traffic distribution dialog box:

a. Add the split traffic percentage portion for the two revisions in the Splits field.

CHAPTER 5. DEVELOP

105

b. Add tags to create custom URLs for the two revisions.

c. Click Save to see two nodes representing the two revisions in the Topology view.

Figure 5.2. Serverless application revisions

5.3.5. Routing and managing traffic by using a blue-green deployment strategy

You can safely reroute traffic from a production version of an app to a new version, by using a blue-
green deployment strategy.

Prerequisites

The OpenShift Serverless Operator and Knative Serving are installed on the cluster.

Install the OpenShift CLI (oc).

Procedure

1. Create and deploy an app as a Knative service.

2. Find the name of the first revision that was created when you deployed the service, by viewing
the output from the following command:

Example command

Example output

3. Add the following YAML to the service spec to send inbound traffic to the revision:

$ oc get ksvc <service_name> -o=jsonpath='{.status.latestCreatedRevisionName}'

$ oc get ksvc example-service -o=jsonpath='{.status.latestCreatedRevisionName}'

$ example-service-00001

...
spec:

OpenShift Container Platform 4.6 Serverless

106

https://en.wikipedia.org/wiki/Blue-green_deployment

4. Verify that you can view your app at the URL output you get from running the following
command:

5. Deploy a second revision of your app by modifying at least one field in the template spec of the
service and redeploying it. For example, you can modify the image of the service, or an env
environment variable. You can redeploy the service by applying the service YAML file, or by
using the kn service update command if you have installed the Knative (kn) CLI.

6. Find the name of the second, latest revision that was created when you redeployed the service,
by running the command:

At this point, both the first and second revisions of the service are deployed and running.

7. Update your existing service to create a new, test endpoint for the second revision, while still
sending all other traffic to the first revision:

Example of updated service spec with test endpoint

After you redeploy this service by reapplying the YAML resource, the second revision of the app
is now staged. No traffic is routed to the second revision at the main URL, and Knative creates a
new service named v2 for testing the newly deployed revision.

8. Get the URL of the new service for the second revision, by running the following command:

You can use this URL to validate that the new version of the app is behaving as expected before
you route any traffic to it.

9. Update your existing service again, so that 50% of traffic is sent to the first revision, and 50% is
sent to the second revision:

Example of updated service spec splitting traffic 50/50 between revisions

 traffic:
 - revisionName: <first_revision_name>
 percent: 100 # All traffic goes to this revision
...

$ oc get ksvc <service_name>

$ oc get ksvc <service_name> -o=jsonpath='{.status.latestCreatedRevisionName}'

...
spec:
 traffic:
 - revisionName: <first_revision_name>
 percent: 100 # All traffic is still being routed to the first revision
 - revisionName: <second_revision_name>
 percent: 0 # No traffic is routed to the second revision
 tag: v2 # A named route
...

$ oc get ksvc <service_name> --output jsonpath="{.status.traffic[*].url}"

...

CHAPTER 5. DEVELOP

107

10. When you are ready to route all traffic to the new version of the app, update the service again to
send 100% of traffic to the second revision:

Example of updated service spec sending all traffic to the second revision

TIP

You can remove the first revision instead of setting it to 0% of traffic if you do not plan to roll
back the revision. Non-routeable revision objects are then garbage-collected.

11. Visit the URL of the first revision to verify that no more traffic is being sent to the old version of
the app.

5.4. ROUTING

Knative leverages OpenShift Container Platform TLS termination to provide routing for Knative
services. When a Knative service is created, a OpenShift Container Platform route is automatically
created for the service. This route is managed by the OpenShift Serverless Operator. The OpenShift
Container Platform route exposes the Knative service through the same domain as the OpenShift
Container Platform cluster.

You can disable Operator control of OpenShift Container Platform routing so that you can configure a
Knative route to directly use your TLS certificates instead.

Knative routes can also be used alongside the OpenShift Container Platform route to provide additional
fine-grained routing capabilities, such as traffic splitting.

5.4.1. Customizing labels and annotations for OpenShift Container Platform routes

OpenShift Container Platform routes support the use of custom labels and annotations, which you can
configure by modifying the metadata spec of a Knative service. Custom labels and annotations are
propagated from the service to the Knative route, then to the Knative ingress, and finally to the
OpenShift Container Platform route.

spec:
 traffic:
 - revisionName: <first_revision_name>
 percent: 50
 - revisionName: <second_revision_name>
 percent: 50
 tag: v2
...

...
spec:
 traffic:
 - revisionName: <first_revision_name>
 percent: 0
 - revisionName: <second_revision_name>
 percent: 100
 tag: v2
...

OpenShift Container Platform 4.6 Serverless

108

1

2

3

Prerequisites

You must have the OpenShift Serverless Operator and Knative Serving installed on your
OpenShift Container Platform cluster.

Install the OpenShift CLI (oc).

Procedure

1. Create a Knative service that contains the label or annotation that you want to propagate to the
OpenShift Container Platform route:

To create a service by using YAML:

Example service created by using YAML

To create a service by using the Knative (kn) CLI, enter:

Example service created by using a kn command

2. Verify that the OpenShift Container Platform route has been created with the annotation or
label that you added by inspecting the output from the following command:

Example command for verification

Use the name of your service.

Use the namespace where your service was created.

Use your values for the label and annotation names and values.

apiVersion: serving.knative.dev/v1
kind: Service
metadata:
 name: <service_name>
 labels:
 <label_name>: <label_value>
 annotations:
 <annotation_name>: <annotation_value>
...

$ kn service create <service_name> \
 --image=<image> \
 --annotation <annotation_name>=<annotation_value> \
 --label <label_value>=<label_value>

$ oc get routes.route.openshift.io \
 -l serving.knative.openshift.io/ingressName=<service_name> \ 1
 -l serving.knative.openshift.io/ingressNamespace=<service_namespace> \ 2
 -n knative-serving-ingress -o yaml \
 | grep -e "<label_name>: \"<label_value>\"" -e "<annotation_name>:
<annotation_value>" 3

CHAPTER 5. DEVELOP

109

5.4.2. Configuring OpenShift Container Platform routes for Knative services

If you want to configure a Knative service to use your TLS certificate on OpenShift Container Platform,
you must disable the automatic creation of a route for the service by the OpenShift Serverless Operator
and instead manually create a route for the service.

NOTE

When you complete the following procedure, the default OpenShift Container Platform
route in the knative-serving-ingress namespace is not created. However, the Knative
route for the application is still created in this namespace.

Prerequisites

The OpenShift Serverless Operator and Knative Serving component must be installed on your
OpenShift Container Platform cluster.

Install the OpenShift CLI (oc).

Procedure

1. Create a Knative service that includes the serving.knative.openshift.io/disableRoute=true
annotation:

IMPORTANT

The serving.knative.openshift.io/disableRoute=true annotation instructs
OpenShift Serverless to not automatically create a route for you. However, the
service still shows a URL and reaches a status of Ready. This URL does not work
externally until you create your own route with the same hostname as the
hostname in the URL.

a. Create a Knative Service resource:

Example resource

b. Apply the Service resource:

c. Optional. Create a Knative service by using the kn service create command:

apiVersion: serving.knative.dev/v1
kind: Service
metadata:
 name: <service_name>
 annotations:
 serving.knative.openshift.io/disableRoute: "true"
spec:
 template:
 spec:
 containers:
 - image: <image>
...

$ oc apply -f <filename>

OpenShift Container Platform 4.6 Serverless

110

Example kn command

2. Verify that no OpenShift Container Platform route has been created for the service:

Example command

You will see the following output:

3. Create a Route resource in the knative-serving-ingress namespace:

$ kn service create <service_name> \
 --image=gcr.io/knative-samples/helloworld-go \
 --annotation serving.knative.openshift.io/disableRoute=true

$ $ oc get routes.route.openshift.io \
 -l serving.knative.openshift.io/ingressName=$KSERVICE_NAME \
 -l serving.knative.openshift.io/ingressNamespace=$KSERVICE_NAMESPACE \
 -n knative-serving-ingress

No resources found in knative-serving-ingress namespace.

apiVersion: route.openshift.io/v1
kind: Route
metadata:
 annotations:
 haproxy.router.openshift.io/timeout: 600s 1
 name: <route_name> 2
 namespace: knative-serving-ingress 3
spec:
 host: <service_host> 4
 port:
 targetPort: http2
 to:
 kind: Service
 name: kourier
 weight: 100
 tls:
 insecureEdgeTerminationPolicy: Allow
 termination: edge 5
 key: |-
 -----BEGIN PRIVATE KEY-----
 [...]
 -----END PRIVATE KEY-----
 certificate: |-
 -----BEGIN CERTIFICATE-----
 [...]
 -----END CERTIFICATE-----
 caCertificate: |-
 -----BEGIN CERTIFICATE-----
 [...]
 -----END CERTIFICATE----
 wildcardPolicy: None

CHAPTER 5. DEVELOP

111

1

2

3

4

5

The timeout value for the OpenShift Container Platform route. You must set the same
value as the max-revision-timeout-seconds setting (600s by default).

The name of the OpenShift Container Platform route.

The namespace for the OpenShift Container Platform route. This must be knative-
serving-ingress.

The hostname for external access. You can set this to <service_name>-
<service_namespace>.<domain>.

The certificates you want to use. Currently, only edge termination is supported.

4. Apply the Route resource:

5.4.3. Setting cluster availability to cluster local

By default, Knative services are published to a public IP address. Being published to a public IP address
means that Knative services are public applications, and have a publicly accessible URL.

Publicly accessible URLs are accessible from outside of the cluster. However, developers may need to
build back-end services that are only be accessible from inside the cluster, known as private services .
Developers can label individual services in the cluster with the
networking.knative.dev/visibility=cluster-local label to make them private.

IMPORTANT

For OpenShift Serverless 1.15.0 and newer versions, the serving.knative.dev/visibility
label is no longer available. You must update existing services to use the
networking.knative.dev/visibility label instead.

Prerequisites

The OpenShift Serverless Operator and Knative Serving are installed on the cluster.

You have created a Knative service.

Procedure

Set the visibility for your service by adding the networking.knative.dev/visibility=cluster-local
label:

Verification

Check that the URL for your service is now in the format http://<service_name>.
<namespace>.svc.cluster.local, by entering the following command and reviewing the output:

$ oc apply -f <filename>

$ oc label ksvc <service_name> networking.knative.dev/visibility=cluster-local

$ oc get ksvc

OpenShift Container Platform 4.6 Serverless

112

1

Example output

5.4.4. Additional resources

Route-specific annotations

5.5. EVENT SINKS

When you create an event source, you can specify a sink where events are sent to from the source. A sink
is an addressable or a callable resource that can receive incoming events from other resources. Knative
services, channels and brokers are all examples of sinks.

Addressable objects receive and acknowledge an event delivered over HTTP to an address defined in
their status.address.url field. As a special case, the core Kubernetes Service object also fulfills the
addressable interface.

Callable objects are able to receive an event delivered over HTTP and transform the event, returning 0
or 1 new events in the HTTP response. These returned events may be further processed in the same
way that events from an external event source are processed.

5.5.1. Knative CLI sink flag

When you create an event source by using the Knative (kn) CLI, you can specify a sink where events are
sent to from that resource by using the --sink flag. The sink can be any addressable or callable resource
that can receive incoming events from other resources.

The following example creates a sink binding that uses a service, http://event-display.svc.cluster.local,
as the sink:

Example command using the sink flag

svc in http://event-display.svc.cluster.local determines that the sink is a Knative service. Other
default sink prefixes include channel, and broker.

TIP

You can configure which CRs can be used with the --sink flag for Knative (kn) CLI commands by
Customizing kn.

5.5.2. Connect an event source to a sink using the Developer perspective

When you create an event source by using the OpenShift Container Platform web console, you can

NAME URL LATESTCREATED
LATESTREADY READY REASON
hello http://hello.default.svc.cluster.local hello-tx2g7 hello-
tx2g7 True

$ kn source binding create bind-heartbeat \
 --namespace sinkbinding-example \
 --subject "Job:batch/v1:app=heartbeat-cron" \
 --sink http://event-display.svc.cluster.local \ 1
 --ce-override "sink=bound"

CHAPTER 5. DEVELOP

113

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/networking/#nw-route-specific-annotations_route-configuration
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/serverless/#advanced-kn-config

1

2

When you create an event source by using the OpenShift Container Platform web console, you can
specify a sink where events are sent to from that resource. The sink can be any addressable or callable
resource that can receive incoming events from other resources.

Prerequisites

The OpenShift Serverless Operator, Knative Serving, and Knative Eventing are installed on your
OpenShift Container Platform cluster.

You have logged in to the web console and are in the Developer perspective.

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

You have created a sink, such as a Knative service, channel or broker.

Procedure

1. Create an event source of any type, by navigating to +Add → Event Sources and then selecting
the event source type that you want to create.

2. In the Sink section of the Create Event Source form view, select your sink in the Resource list.

3. Click Create.

Verification

You can verify that the event source was created and is connected to the sink by viewing the Topology
page. . In the Developer perspective, navigate to Topology.

1. View the event source and click on the connected sink to see the sink details in the side panel.

5.5.3. Connecting a trigger to a sink

You can connect a trigger to a sink, so that events from a broker are filtered before they are sent to the
sink. A sink that is connected to a trigger is configured as a subscriber in the Trigger object’s resource
spec.

Example of a Trigger object connected to a Kafka sink

The name of the trigger being connected to the sink.

The name of a KafkaSink object.

apiVersion: eventing.knative.dev/v1
kind: Trigger
metadata:
 name: <trigger_name> 1
spec:
...
 subscriber:
 ref:
 apiVersion: eventing.knative.dev/v1alpha1
 kind: KafkaSink
 name: <kafka_sink_name> 2

OpenShift Container Platform 4.6 Serverless

114

5.6. EVENT DELIVERY

You can configure event delivery parameters that are applied in cases where an event fails to be
delivered to an event sink. Configuring event delivery parameters, including a dead letter sink, ensures
that any events that fail to be delivered to an event sink are retried. Otherwise, undelivered events are
dropped.

5.6.1. Event delivery behavior patterns for channels and brokers

Different channel and broker types have their own behavior patterns that are followed for event
delivery.

5.6.1.1. Knative Kafka channels and brokers

If an event is successfully delivered to a Kafka channel or broker receiver, the receiver responds with a
202 status code, which means that the event has been safely stored inside a Kafka topic and is not lost.

If the receiver responds with any other status code, the event is not safely stored, and steps must be
taken by the user to resolve the issue.

5.6.2. Configurable event delivery parameters

The following parameters can be configured for event delivery:

Dead letter sink

You can configure the deadLetterSink delivery parameter so that if an event fails to be delivered, it
is stored in the specified event sink. Undelivered events that are not stored in a dead letter sink are
dropped. The dead letter sink be any addressable object that conforms to the Knative Eventing sink
contract, such as a Knative service, a Kubernetes service, or a URI.

Retries

You can set a minimum number of times that the delivery must be retried before the event is sent to
the dead letter sink, by configuring the retry delivery parameter with an integer value.

Back off delay

You can set the backoffDelay delivery parameter to specify the time delay before an event delivery
retry is attempted after a failure. The duration of the backoffDelay parameter is specified using the
ISO 8601 format. For example, PT1S specifies a 1 second delay.

Back off policy

The backoffPolicy delivery parameter can be used to specify the retry back off policy. The policy
can be specified as either linear or exponential. When using the linear back off policy, the back off
delay is equal to backoffDelay * <numberOfRetries>. When using the exponential backoff policy,
the back off delay is equal to backoffDelay*2^<numberOfRetries>.

5.6.3. Examples of configuring event delivery parameters

You can configure event delivery parameters for Broker, Trigger, Channel, and Subscription objects.
If you configure event delivery parameters for a broker or channel, these parameters are propagated to
triggers or subscriptions created for those objects. You can also set event delivery parameters for
triggers or subscriptions to override the settings for the broker or channel.

Example Broker object

apiVersion: eventing.knative.dev/v1

CHAPTER 5. DEVELOP

115

https://en.wikipedia.org/wiki/ISO_8601#Durations

Example Trigger object

Example Channel object

Example Subscription object

kind: Broker
metadata:
...
spec:
 delivery:
 deadLetterSink:
 ref:
 apiVersion: eventing.knative.dev/v1alpha1
 kind: KafkaSink
 name: <sink_name>
 backoffDelay: <duration>
 backoffPolicy: <policy_type>
 retry: <integer>
...

apiVersion: eventing.knative.dev/v1
kind: Trigger
metadata:
...
spec:
 broker: <broker_name>
 delivery:
 deadLetterSink:
 ref:
 apiVersion: serving.knative.dev/v1
 kind: Service
 name: <sink_name>
 backoffDelay: <duration>
 backoffPolicy: <policy_type>
 retry: <integer>
...

apiVersion: messaging.knative.dev/v1
kind: Channel
metadata:
...
spec:
 delivery:
 deadLetterSink:
 ref:
 apiVersion: serving.knative.dev/v1
 kind: Service
 name: <sink_name>
 backoffDelay: <duration>
 backoffPolicy: <policy_type>
 retry: <integer>
...

OpenShift Container Platform 4.6 Serverless

116

5.6.4. Configuring event delivery ordering for triggers

If you are using a Kafka broker, you can configure the delivery order of events from triggers to event
sinks.

Prerequisites

The OpenShift Serverless Operator, Knative Eventing, and Knative Kafka are installed on your
OpenShift Container Platform cluster.

Kafka broker is enabled for use on your cluster, and you have created a Kafka broker.

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

You have installed the OpenShift (oc) CLI.

Procedure

1. Create or modify a Trigger object and set the kafka.eventing.knative.dev/delivery.order
annotation:

The supported consumer delivery guarantees are:

unordered

An unordered consumer is a non-blocking consumer that delivers messages unordered, while

apiVersion: messaging.knative.dev/v1
kind: Subscription
metadata:
...
spec:
 channel:
 apiVersion: messaging.knative.dev/v1
 kind: Channel
 name: <channel_name>
 delivery:
 deadLetterSink:
 ref:
 apiVersion: serving.knative.dev/v1
 kind: Service
 name: <sink_name>
 backoffDelay: <duration>
 backoffPolicy: <policy_type>
 retry: <integer>
...

apiVersion: eventing.knative.dev/v1
kind: Trigger
metadata:
 name: <trigger_name>
 annotations:
 kafka.eventing.knative.dev/delivery.order: ordered
...

CHAPTER 5. DEVELOP

117

An unordered consumer is a non-blocking consumer that delivers messages unordered, while
preserving proper offset management.

ordered

An ordered consumer is a per-partition blocking consumer that waits for a successful
response from the CloudEvent subscriber before it delivers the next message of the
partition.
The default ordering guarantee is unordered.

2. Apply the Trigger object:

5.7. LISTING EVENT SOURCES AND EVENT SOURCE TYPES

It is possible to view a list of all event sources or event source types that exist or are available for use on
your OpenShift Container Platform cluster. You can use the Knative (kn) CLI or the Developer
perspective in the OpenShift Container Platform web console to list available event sources or event
source types.

5.7.1. Listing available event source types by using the Knative CLI

Using the Knative (kn) CLI provides a streamlined and intuitive user interface to view available event
source types on your cluster. You can list event source types that can be created and used on your
cluster by using the kn source list-types CLI command.

Prerequisites

The OpenShift Serverless Operator and Knative Eventing are installed on the cluster.

You have installed the Knative (kn) CLI.

Procedure

1. List the available event source types in the terminal:

Example output

2. Optional: You can also list the available event source types in YAML format:

$ oc apply -f <filename>

$ kn source list-types

TYPE NAME DESCRIPTION
ApiServerSource apiserversources.sources.knative.dev Watch and send Kubernetes
API events to a sink
PingSource pingsources.sources.knative.dev Periodically send ping events to
a sink
SinkBinding sinkbindings.sources.knative.dev Binding for connecting a
PodSpecable to a sink

$ kn source list-types -o yaml

OpenShift Container Platform 4.6 Serverless

118

5.7.2. Viewing available event source types within the Developer perspective

It is possible to view a list of all available event source types on your cluster. Using the OpenShift
Container Platform web console provides a streamlined and intuitive user interface to view available
event source types.

Prerequisites

You have logged in to the OpenShift Container Platform web console.

The OpenShift Serverless Operator and Knative Eventing are installed on your OpenShift
Container Platform cluster.

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

Procedure

1. Access the Developer perspective.

2. Click +Add.

3. Click Event source.

4. View the available event source types.

5.7.3. Listing available event sources by using the Knative CLI

Using the Knative (kn) CLI provides a streamlined and intuitive user interface to view existing event
sources on your cluster. You can list existing event sources by using the kn source list command.

Prerequisites

The OpenShift Serverless Operator and Knative Eventing are installed on the cluster.

You have installed the Knative (kn) CLI.

Procedure

1. List the existing event sources in the terminal:

Example output

2. Optional: You can list event sources of a specific type only, by using the --type flag:

$ kn source list

NAME TYPE RESOURCE SINK READY
a1 ApiServerSource apiserversources.sources.knative.dev ksvc:eshow2 True
b1 SinkBinding sinkbindings.sources.knative.dev ksvc:eshow3 False
p1 PingSource pingsources.sources.knative.dev ksvc:eshow1 True

$ kn source list --type <event_source_type>

CHAPTER 5. DEVELOP

119

Example command

Example output

5.8. CREATING AN API SERVER SOURCE

The API server source is an event source that can be used to connect an event sink, such as a Knative
service, to the Kubernetes API server. The API server source watches for Kubernetes events and
forwards them to the Knative Eventing broker.

5.8.1. Creating an API server source by using the web console

After Knative Eventing is installed on your cluster, you can create an API server source by using the web
console. Using the OpenShift Container Platform web console provides a streamlined and intuitive user
interface to create an event source.

Prerequisites

You have logged in to the OpenShift Container Platform web console.

The OpenShift Serverless Operator and Knative Eventing are installed on the cluster.

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

You have installed the OpenShift CLI (oc).

Procedure

1. Navigate to the Add page and select Event Source.

2. In the Event Sources page, select ApiServerSource in the Type section.

3. Configure the ApiServerSource settings:

a. Enter v1 as the APIVERSION, and Event as the KIND.

b. Select the Service Account Name for the service account that you created.

c. Select the Sink for the event source. A Sink can be either a Resource, such as a channel,
broker, or service, or a URI.

4. Click Create.

Verification

After you have created the API server source, you will see it connected to the service it is sinked
to in the Topology view.

$ kn source list --type PingSource

NAME TYPE RESOURCE SINK READY
p1 PingSource pingsources.sources.knative.dev ksvc:eshow1 True

OpenShift Container Platform 4.6 Serverless

120

NOTE

If a URI sink is used, modify the URI by right-clicking on URI sink → Edit URI.

Deleting the API server source

1. Navigate to the Topology view.

2. Right-click the API server source and select Delete ApiServerSource.

5.8.2. Creating an API server source by using the Knative CLI

You can use the kn source apiserver create command to create an API server source by using the kn

CHAPTER 5. DEVELOP

121

You can use the kn source apiserver create command to create an API server source by using the kn
CLI. Using the kn CLI to create an API server source provides a more streamlined and intuitive user
interface than modifying YAML files directly.

Prerequisites

The OpenShift Serverless Operator and Knative Eventing are installed on the cluster.

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

You have installed the OpenShift CLI (oc).

You have installed the Knative (kn) CLI.

PROCEDURE

If you want to re-use an existing service account, you can modify your existing
ServiceAccount resource to include the required permissions instead of creating a new
resource.

1. Create a service account, role, and role binding for the event source as a YAML file:

apiVersion: v1
kind: ServiceAccount
metadata:
 name: events-sa
 namespace: default 1

apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
 name: event-watcher
 namespace: default 2
rules:
 - apiGroups:
 - ""
 resources:
 - events
 verbs:
 - get
 - list
 - watch

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
 name: k8s-ra-event-watcher
 namespace: default 3
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: Role
 name: event-watcher

OpenShift Container Platform 4.6 Serverless

122

1 2 3 4 Change this namespace to the namespace that you have selected for installing the
event source.

2. Apply the YAML file:

3. Create an API server source that has an event sink. In the following example, the sink is a broker:

4. To check that the API server source is set up correctly, create a Knative service that dumps
incoming messages to its log:

5. If you used a broker as an event sink, create a trigger to filter events from the default broker to
the service:

6. Create events by launching a pod in the default namespace:

7. Check that the controller is mapped correctly by inspecting the output generated by the
following command:

Example output

subjects:
 - kind: ServiceAccount
 name: events-sa
 namespace: default 4

$ oc apply -f <filename>

$ kn source apiserver create <event_source_name> --sink broker:<broker_name> --
resource "event:v1" --service-account <service_account_name> --mode Resource

$ kn service create <service_name> --image quay.io/openshift-knative/knative-eventing-
sources-event-display:latest

$ kn trigger create <trigger_name> --sink ksvc:<service_name>

$ oc create deployment hello-node --image quay.io/openshift-knative/knative-eventing-
sources-event-display:latest

$ kn source apiserver describe <source_name>

Name: mysource
Namespace: default
Annotations: sources.knative.dev/creator=developer,
sources.knative.dev/lastModifier=developer
Age: 3m
ServiceAccountName: events-sa
Mode: Resource
Sink:
 Name: default
 Namespace: default
 Kind: Broker (eventing.knative.dev/v1)
Resources:

CHAPTER 5. DEVELOP

123

Verification

You can verify that the Kubernetes events were sent to Knative by looking at the message dumper
function logs.

1. Get the pods:

2. View the message dumper function logs for the pods:

Example output

Deleting the API server source

 Kind: event (v1)
 Controller: false
Conditions:
 OK TYPE AGE REASON
 ++ Ready 3m
 ++ Deployed 3m
 ++ SinkProvided 3m
 ++ SufficientPermissions 3m
 ++ EventTypesProvided 3m

$ oc get pods

$ oc logs $(oc get pod -o name | grep event-display) -c user-container

☁� cloudevents.Event
Validation: valid
Context Attributes,
 specversion: 1.0
 type: dev.knative.apiserver.resource.update
 datacontenttype: application/json
 ...
Data,
 {
 "apiVersion": "v1",
 "involvedObject": {
 "apiVersion": "v1",
 "fieldPath": "spec.containers{hello-node}",
 "kind": "Pod",
 "name": "hello-node",
 "namespace": "default",

 },
 "kind": "Event",
 "message": "Started container",
 "metadata": {
 "name": "hello-node.159d7608e3a3572c",
 "namespace": "default",

 },
 "reason": "Started",
 ...
 }

OpenShift Container Platform 4.6 Serverless

124

1

Deleting the API server source

1. Delete the trigger:

2. Delete the event source:

3. Delete the service account, cluster role, and cluster binding:

5.8.2.1. Knative CLI sink flag

When you create an event source by using the Knative (kn) CLI, you can specify a sink where events are
sent to from that resource by using the --sink flag. The sink can be any addressable or callable resource
that can receive incoming events from other resources.

The following example creates a sink binding that uses a service, http://event-display.svc.cluster.local,
as the sink:

Example command using the sink flag

svc in http://event-display.svc.cluster.local determines that the sink is a Knative service. Other
default sink prefixes include channel, and broker.

5.8.3. Creating an API server source by using YAML files

Creating Knative resources by using YAML files uses a declarative API, which enables you to describe
event sources declaratively and in a reproducible manner. To create an API server source by using
YAML, you must create a YAML file that defines an ApiServerSource object, then apply it by using the
oc apply command.

Prerequisites

The OpenShift Serverless Operator and Knative Eventing are installed on the cluster.

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

You have created the default broker in the same namespace as the one defined in the API
server source YAML file.

Install the OpenShift CLI (oc).

PROCEDURE

$ kn trigger delete <trigger_name>

$ kn source apiserver delete <source_name>

$ oc delete -f authentication.yaml

$ kn source binding create bind-heartbeat \
 --namespace sinkbinding-example \
 --subject "Job:batch/v1:app=heartbeat-cron" \
 --sink http://event-display.svc.cluster.local \ 1
 --ce-override "sink=bound"

CHAPTER 5. DEVELOP

125

1 2 3 4

PROCEDURE

If you want to re-use an existing service account, you can modify your existing
ServiceAccount resource to include the required permissions instead of creating a new
resource.

1. Create a service account, role, and role binding for the event source as a YAML file:

Change this namespace to the namespace that you have selected for installing the
event source.

2. Apply the YAML file:

3. Create an API server source as a YAML file:

apiVersion: v1
kind: ServiceAccount
metadata:
 name: events-sa
 namespace: default 1

apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
 name: event-watcher
 namespace: default 2
rules:
 - apiGroups:
 - ""
 resources:
 - events
 verbs:
 - get
 - list
 - watch

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
 name: k8s-ra-event-watcher
 namespace: default 3
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: Role
 name: event-watcher
subjects:
 - kind: ServiceAccount
 name: events-sa
 namespace: default 4

$ oc apply -f <filename>

OpenShift Container Platform 4.6 Serverless

126

4. Apply the ApiServerSource YAML file:

5. To check that the API server source is set up correctly, create a Knative service as a YAML file
that dumps incoming messages to its log:

6. Apply the Service YAML file:

7. Create a Trigger object as a YAML file that filters events from the default broker to the service
created in the previous step:

apiVersion: sources.knative.dev/v1alpha1
kind: ApiServerSource
metadata:
 name: testevents
spec:
 serviceAccountName: events-sa
 mode: Resource
 resources:
 - apiVersion: v1
 kind: Event
 sink:
 ref:
 apiVersion: eventing.knative.dev/v1
 kind: Broker
 name: default

$ oc apply -f <filename>

apiVersion: serving.knative.dev/v1
kind: Service
metadata:
 name: event-display
 namespace: default
spec:
 template:
 spec:
 containers:
 - image: quay.io/openshift-knative/knative-eventing-sources-event-display:latest

$ oc apply -f <filename>

apiVersion: eventing.knative.dev/v1
kind: Trigger
metadata:
 name: event-display-trigger
 namespace: default
spec:
 broker: default
 subscriber:
 ref:
 apiVersion: serving.knative.dev/v1
 kind: Service
 name: event-display

CHAPTER 5. DEVELOP

127

8. Apply the Trigger YAML file:

9. Create events by launching a pod in the default namespace:

10. Check that the controller is mapped correctly, by entering the following command and
inspecting the output:

Example output

Verification

To verify that the Kubernetes events were sent to Knative, you can look at the message dumper
function logs.

1. Get the pods by entering the following command:

$ oc apply -f <filename>

$ oc create deployment hello-node --image=quay.io/openshift-knative/knative-eventing-
sources-event-display

$ oc get apiserversource.sources.knative.dev testevents -o yaml

apiVersion: sources.knative.dev/v1alpha1
kind: ApiServerSource
metadata:
 annotations:
 creationTimestamp: "2020-04-07T17:24:54Z"
 generation: 1
 name: testevents
 namespace: default
 resourceVersion: "62868"
 selfLink:
/apis/sources.knative.dev/v1alpha1/namespaces/default/apiserversources/testevents2
 uid: 1603d863-bb06-4d1c-b371-f580b4db99fa
spec:
 mode: Resource
 resources:
 - apiVersion: v1
 controller: false
 controllerSelector:
 apiVersion: ""
 kind: ""
 name: ""
 uid: ""
 kind: Event
 labelSelector: {}
 serviceAccountName: events-sa
 sink:
 ref:
 apiVersion: eventing.knative.dev/v1
 kind: Broker
 name: default

OpenShift Container Platform 4.6 Serverless

128

2. View the message dumper function logs for the pods by entering the following command:

Example output

Deleting the API server source

1. Delete the trigger:

2. Delete the event source:

3. Delete the service account, cluster role, and cluster binding:

5.9. CREATING A PING SOURCE

$ oc get pods

$ oc logs $(oc get pod -o name | grep event-display) -c user-container

☁� cloudevents.Event
Validation: valid
Context Attributes,
 specversion: 1.0
 type: dev.knative.apiserver.resource.update
 datacontenttype: application/json
 ...
Data,
 {
 "apiVersion": "v1",
 "involvedObject": {
 "apiVersion": "v1",
 "fieldPath": "spec.containers{hello-node}",
 "kind": "Pod",
 "name": "hello-node",
 "namespace": "default",

 },
 "kind": "Event",
 "message": "Started container",
 "metadata": {
 "name": "hello-node.159d7608e3a3572c",
 "namespace": "default",

 },
 "reason": "Started",
 ...
 }

$ oc delete -f trigger.yaml

$ oc delete -f k8s-events.yaml

$ oc delete -f authentication.yaml

CHAPTER 5. DEVELOP

129

A ping source is an event source that can be used to periodically send ping events with a constant
payload to an event consumer. A ping source can be used to schedule sending events, similar to a timer.

5.9.1. Creating a ping source by using the web console

After Knative Eventing is installed on your cluster, you can create a ping source by using the web console.
Using the OpenShift Container Platform web console provides a streamlined and intuitive user interface
to create an event source.

Prerequisites

You have logged in to the OpenShift Container Platform web console.

The OpenShift Serverless Operator, Knative Serving and Knative Eventing are installed on the
cluster.

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

Procedure

1. To verify that the ping source is working, create a simple Knative service that dumps incoming
messages to the logs of the service.

a. In the Developer perspective, navigate to +Add → YAML.

b. Copy the example YAML:

c. Click Create.

2. Create a ping source in the same namespace as the service created in the previous step, or any
other sink that you want to send events to.

a. In the Developer perspective, navigate to +Add → Event Source.

b. Select Ping Source.

c. Optional: You can enter a value for Data, which is the message payload.

d. Enter a value for Schedule. In this example, the value is */2 * * * *, which creates a ping
source that sends a message every two minutes.

e. Select a Sink. This can be either a Resource or a URI. In this example, the event-display
service created in the previous step is used as the Resource sink.

f. Click Create.

apiVersion: serving.knative.dev/v1
kind: Service
metadata:
 name: event-display
spec:
 template:
 spec:
 containers:
 - image: quay.io/openshift-knative/knative-eventing-sources-event-display:latest

OpenShift Container Platform 4.6 Serverless

130

Verification

You can verify that the ping source was created and is connected to the sink by viewing the Topology
page.

1. In the Developer perspective, navigate to Topology.

2. View the ping source and sink.

Deleting the ping source

1. Navigate to the Topology view.

2. Right-click the API server source and select Delete Ping Source.

5.9.2. Creating a ping source by using the Knative CLI

You can use the kn source ping create command to create a ping source by using the Knative (kn) CLI.
Using the Knative CLI to create event sources provides a more streamlined and intuitive user interface
than modifying YAML files directly.

Prerequisites

The OpenShift Serverless Operator, Knative Serving and Knative Eventing are installed on the
cluster.

You have installed the Knative (kn) CLI.

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

Optional: If you want to use the verification steps for this procedure, install the OpenShift CLI
(oc).

Procedure

1. To verify that the ping source is working, create a simple Knative service that dumps incoming
messages to the service logs:

2. For each set of ping events that you want to request, create a ping source in the same
namespace as the event consumer:

$ kn service create event-display \
 --image quay.io/openshift-knative/knative-eventing-sources-event-display:latest

CHAPTER 5. DEVELOP

131

3. Check that the controller is mapped correctly by entering the following command and
inspecting the output:

Example output

Verification

You can verify that the Kubernetes events were sent to the Knative event sink by looking at the logs of
the sink pod.

By default, Knative services terminate their pods if no traffic is received within a 60 second period. The
example shown in this guide creates a ping source that sends a message every 2 minutes, so each
message should be observed in a newly created pod.

1. Watch for new pods created:

2. Cancel watching the pods using Ctrl+C, then look at the logs of the created pod:

Example output

$ kn source ping create test-ping-source \
 --schedule "*/2 * * * *" \
 --data '{"message": "Hello world!"}' \
 --sink ksvc:event-display

$ kn source ping describe test-ping-source

Name: test-ping-source
Namespace: default
Annotations: sources.knative.dev/creator=developer,
sources.knative.dev/lastModifier=developer
Age: 15s
Schedule: */2 * * * *
Data: {"message": "Hello world!"}

Sink:
 Name: event-display
 Namespace: default
 Resource: Service (serving.knative.dev/v1)

Conditions:
 OK TYPE AGE REASON
 ++ Ready 8s
 ++ Deployed 8s
 ++ SinkProvided 15s
 ++ ValidSchedule 15s
 ++ EventTypeProvided 15s
 ++ ResourcesCorrect 15s

$ watch oc get pods

$ oc logs $(oc get pod -o name | grep event-display) -c user-container

☁� cloudevents.Event

OpenShift Container Platform 4.6 Serverless

132

1

Deleting the ping source

Delete the ping source:

5.9.2.1. Knative CLI sink flag

When you create an event source by using the Knative (kn) CLI, you can specify a sink where events are
sent to from that resource by using the --sink flag. The sink can be any addressable or callable resource
that can receive incoming events from other resources.

The following example creates a sink binding that uses a service, http://event-display.svc.cluster.local,
as the sink:

Example command using the sink flag

svc in http://event-display.svc.cluster.local determines that the sink is a Knative service. Other
default sink prefixes include channel, and broker.

5.9.3. Creating a ping source by using YAML

Creating Knative resources by using YAML files uses a declarative API, which enables you to describe
event sources declaratively and in a reproducible manner. To create a serverless ping source by using
YAML, you must create a YAML file that defines a PingSource object, then apply it by using oc apply.

Example PingSource object

Validation: valid
Context Attributes,
 specversion: 1.0
 type: dev.knative.sources.ping
 source: /apis/v1/namespaces/default/pingsources/test-ping-source
 id: 99e4f4f6-08ff-4bff-acf1-47f61ded68c9
 time: 2020-04-07T16:16:00.000601161Z
 datacontenttype: application/json
Data,
 {
 "message": "Hello world!"
 }

$ kn delete pingsources.sources.knative.dev <ping_source_name>

$ kn source binding create bind-heartbeat \
 --namespace sinkbinding-example \
 --subject "Job:batch/v1:app=heartbeat-cron" \
 --sink http://event-display.svc.cluster.local \ 1
 --ce-override "sink=bound"

apiVersion: sources.knative.dev/v1
kind: PingSource
metadata:
 name: test-ping-source
spec:

CHAPTER 5. DEVELOP

133

1

2

3

The schedule of the event specified using CRON expression.

The event message body expressed as a JSON encoded data string.

These are the details of the event consumer. In this example, we are using a Knative service named
event-display.

Prerequisites

The OpenShift Serverless Operator, Knative Serving and Knative Eventing are installed on the
cluster.

Install the OpenShift CLI (oc).

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

Procedure

1. To verify that the ping source is working, create a simple Knative service that dumps incoming
messages to the service’s logs.

a. Create a service YAML file:

b. Create the service:

2. For each set of ping events that you want to request, create a ping source in the same
namespace as the event consumer.

a. Create a YAML file for the ping source:

 schedule: "*/2 * * * *" 1
 data: '{"message": "Hello world!"}' 2
 sink: 3
 ref:
 apiVersion: serving.knative.dev/v1
 kind: Service
 name: event-display

apiVersion: serving.knative.dev/v1
kind: Service
metadata:
 name: event-display
spec:
 template:
 spec:
 containers:
 - image: quay.io/openshift-knative/knative-eventing-sources-event-display:latest

$ oc apply -f <filename>

apiVersion: sources.knative.dev/v1
kind: PingSource
metadata:

OpenShift Container Platform 4.6 Serverless

134

https://kubernetes.io/docs/tasks/job/automated-tasks-with-cron-jobs/#schedule

b. Create the ping source:

3. Check that the controller is mapped correctly by entering the following command:

Example output

Verification

You can verify that the Kubernetes events were sent to the Knative event sink by looking at the sink
pod’s logs.

By default, Knative services terminate their pods if no traffic is received within a 60 second period. The
example shown in this guide creates a PingSource that sends a message every 2 minutes, so each
message should be observed in a newly created pod.

1. Watch for new pods created:

 name: test-ping-source
spec:
 schedule: "*/2 * * * *"
 data: '{"message": "Hello world!"}'
 sink:
 ref:
 apiVersion: serving.knative.dev/v1
 kind: Service
 name: event-display

$ oc apply -f <filename>

$ oc get pingsource.sources.knative.dev <ping_source_name> -oyaml

apiVersion: sources.knative.dev/v1
kind: PingSource
metadata:
 annotations:
 sources.knative.dev/creator: developer
 sources.knative.dev/lastModifier: developer
 creationTimestamp: "2020-04-07T16:11:14Z"
 generation: 1
 name: test-ping-source
 namespace: default
 resourceVersion: "55257"
 selfLink: /apis/sources.knative.dev/v1/namespaces/default/pingsources/test-ping-source
 uid: 3d80d50b-f8c7-4c1b-99f7-3ec00e0a8164
spec:
 data: '{ value: "hello" }'
 schedule: '*/2 * * * *'
 sink:
 ref:
 apiVersion: serving.knative.dev/v1
 kind: Service
 name: event-display
 namespace: default

$ watch oc get pods

CHAPTER 5. DEVELOP

135

2. Cancel watching the pods using Ctrl+C, then look at the logs of the created pod:

Example output

Deleting the ping source

Delete the ping source:

Example command

5.10. CUSTOM EVENT SOURCES

If you need to ingress events from an event producer that is not included in Knative, or from a producer
that emits events which are not in the CloudEvent format, you can do this by creating a custom event
source. You can create a custom event source by using one of the following methods:

Use a PodSpecable object as an event source, by creating a sink binding.

Use a container as an event source, by creating a container source.

5.10.1. Sink binding

The SinkBinding object supports decoupling event production from delivery addressing. Sink binding is
used to connect event producers to an event consumer, or sink. An event producer is a Kubernetes
resource that embeds a PodSpec template and produces events. A sink is an addressable Kubernetes
object that can receive events.

The SinkBinding object injects environment variables into the PodTemplateSpec of the sink, which
means that the application code does not need to interact directly with the Kubernetes API to locate the
event destination. These environment variables are as follows:

K_SINK

$ oc logs $(oc get pod -o name | grep event-display) -c user-container

☁� cloudevents.Event
Validation: valid
Context Attributes,
 specversion: 1.0
 type: dev.knative.sources.ping
 source: /apis/v1/namespaces/default/pingsources/test-ping-source
 id: 042ff529-240e-45ee-b40c-3a908129853e
 time: 2020-04-07T16:22:00.000791674Z
 datacontenttype: application/json
Data,
 {
 "message": "Hello world!"
 }

$ oc delete -f <filename>

$ oc delete -f ping-source.yaml

OpenShift Container Platform 4.6 Serverless

136

The URL of the resolved sink.

K_CE_OVERRIDES

A JSON object that specifies overrides to the outbound event.

NOTE

The SinkBinding object currently does not support custom revision names for services.

5.10.1.1. Creating a sink binding by using YAML

Creating Knative resources by using YAML files uses a declarative API, which enables you to describe
event sources declaratively and in a reproducible manner. To create a sink binding by using YAML, you
must create a YAML file that defines an SinkBinding object, then apply it by using the oc apply
command.

Prerequisites

The OpenShift Serverless Operator, Knative Serving and Knative Eventing are installed on the
cluster.

Install the OpenShift CLI (oc).

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

Procedure

1. To check that sink binding is set up correctly, create a Knative event display service, or event
sink, that dumps incoming messages to its log.

a. Create a service YAML file:

Example service YAML file

b. Create the service:

2. Create a sink binding instance that directs events to the service.

a. Create a sink binding YAML file:

Example service YAML file

apiVersion: serving.knative.dev/v1
kind: Service
metadata:
 name: event-display
spec:
 template:
 spec:
 containers:
 - image: quay.io/openshift-knative/knative-eventing-sources-event-display:latest

$ oc apply -f <filename>

CHAPTER 5. DEVELOP

137

1 In this example, any Job with the label app: heartbeat-cron will be bound to the event
sink.

b. Create the sink binding:

3. Create a CronJob object.

a. Create a cron job YAML file:

Example cron job YAML file

apiVersion: sources.knative.dev/v1alpha1
kind: SinkBinding
metadata:
 name: bind-heartbeat
spec:
 subject:
 apiVersion: batch/v1
 kind: Job 1
 selector:
 matchLabels:
 app: heartbeat-cron

 sink:
 ref:
 apiVersion: serving.knative.dev/v1
 kind: Service
 name: event-display

$ oc apply -f <filename>

apiVersion: batch/v1beta1
kind: CronJob
metadata:
 name: heartbeat-cron
spec:
 # Run every minute
 schedule: "* * * * *"
 jobTemplate:
 metadata:
 labels:
 app: heartbeat-cron
 bindings.knative.dev/include: "true"
 spec:
 template:
 spec:
 restartPolicy: Never
 containers:
 - name: single-heartbeat
 image: quay.io/openshift-knative/heartbeats:latest
 args:
 - --period=1
 env:
 - name: ONE_SHOT

OpenShift Container Platform 4.6 Serverless

138

IMPORTANT

To use sink binding, you must manually add a
bindings.knative.dev/include=true label to your Knative resources.

For example, to add this label to a CronJob resource, add the following lines
to the Job resource YAML definition:

b. Create the cron job:

4. Check that the controller is mapped correctly by entering the following command and
inspecting the output:

Example output

Verification

You can verify that the Kubernetes events were sent to the Knative event sink by looking at the

 value: "true"
 - name: POD_NAME
 valueFrom:
 fieldRef:
 fieldPath: metadata.name
 - name: POD_NAMESPACE
 valueFrom:
 fieldRef:
 fieldPath: metadata.namespace

 jobTemplate:
 metadata:
 labels:
 app: heartbeat-cron
 bindings.knative.dev/include: "true"

$ oc apply -f <filename>

$ oc get sinkbindings.sources.knative.dev bind-heartbeat -oyaml

spec:
 sink:
 ref:
 apiVersion: serving.knative.dev/v1
 kind: Service
 name: event-display
 namespace: default
 subject:
 apiVersion: batch/v1
 kind: Job
 namespace: default
 selector:
 matchLabels:
 app: heartbeat-cron

CHAPTER 5. DEVELOP

139

You can verify that the Kubernetes events were sent to the Knative event sink by looking at the
message dumper function logs.

1. Enter the command:

2. Enter the command:

Example output

5.10.1.2. Creating a sink binding by using the Knative CLI

You can use the kn source binding create command to create a sink binding by using the Knative (kn)
CLI. Using the Knative CLI to create event sources provides a more streamlined and intuitive user
interface than modifying YAML files directly.

Prerequisites

The OpenShift Serverless Operator, Knative Serving and Knative Eventing are installed on the
cluster.

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

Install the Knative (kn) CLI.

Install the OpenShift CLI (oc).

NOTE

$ oc get pods

$ oc logs $(oc get pod -o name | grep event-display) -c user-container

☁� cloudevents.Event
Validation: valid
Context Attributes,
 specversion: 1.0
 type: dev.knative.eventing.samples.heartbeat
 source: https://knative.dev/eventing-contrib/cmd/heartbeats/#event-test/mypod
 id: 2b72d7bf-c38f-4a98-a433-608fbcdd2596
 time: 2019-10-18T15:23:20.809775386Z
 contenttype: application/json
Extensions,
 beats: true
 heart: yes
 the: 42
Data,
 {
 "id": 1,
 "label": ""
 }

OpenShift Container Platform 4.6 Serverless

140

NOTE

The following procedure requires you to create YAML files.

If you change the names of the YAML files from those used in the examples, you must
ensure that you also update the corresponding CLI commands.

Procedure

1. To check that sink binding is set up correctly, create a Knative event display service, or event
sink, that dumps incoming messages to its log:

2. Create a sink binding instance that directs events to the service:

3. Create a CronJob object.

a. Create a cron job YAML file:

Example cron job YAML file

$ kn service create event-display --image quay.io/openshift-knative/knative-eventing-
sources-event-display:latest

$ kn source binding create bind-heartbeat --subject Job:batch/v1:app=heartbeat-cron --sink
ksvc:event-display

apiVersion: batch/v1beta1
kind: CronJob
metadata:
 name: heartbeat-cron
spec:
 # Run every minute
 schedule: "* * * * *"
 jobTemplate:
 metadata:
 labels:
 app: heartbeat-cron
 bindings.knative.dev/include: "true"
 spec:
 template:
 spec:
 restartPolicy: Never
 containers:
 - name: single-heartbeat
 image: quay.io/openshift-knative/heartbeats:latest
 args:
 - --period=1
 env:
 - name: ONE_SHOT
 value: "true"
 - name: POD_NAME
 valueFrom:
 fieldRef:
 fieldPath: metadata.name
 - name: POD_NAMESPACE

CHAPTER 5. DEVELOP

141

IMPORTANT

To use sink binding, you must manually add a
bindings.knative.dev/include=true label to your Knative CRs.

For example, to add this label to a CronJob CR, add the following lines to the
Job CR YAML definition:

b. Create the cron job:

4. Check that the controller is mapped correctly by entering the following command and
inspecting the output:

Example output

Verification

You can verify that the Kubernetes events were sent to the Knative event sink by looking at the
message dumper function logs.

View the message dumper function logs by entering the following commands:

 valueFrom:
 fieldRef:
 fieldPath: metadata.namespace

 jobTemplate:
 metadata:
 labels:
 app: heartbeat-cron
 bindings.knative.dev/include: "true"

$ oc apply -f <filename>

$ kn source binding describe bind-heartbeat

Name: bind-heartbeat
Namespace: demo-2
Annotations: sources.knative.dev/creator=minikube-user,
sources.knative.dev/lastModifier=minikub ...
Age: 2m
Subject:
 Resource: job (batch/v1)
 Selector:
 app: heartbeat-cron
Sink:
 Name: event-display
 Resource: Service (serving.knative.dev/v1)

Conditions:
 OK TYPE AGE REASON
 ++ Ready 2m

OpenShift Container Platform 4.6 Serverless

142

1

Example output

5.10.1.2.1. Knative CLI sink flag

When you create an event source by using the Knative (kn) CLI, you can specify a sink where events are
sent to from that resource by using the --sink flag. The sink can be any addressable or callable resource
that can receive incoming events from other resources.

The following example creates a sink binding that uses a service, http://event-display.svc.cluster.local,
as the sink:

Example command using the sink flag

svc in http://event-display.svc.cluster.local determines that the sink is a Knative service. Other
default sink prefixes include channel, and broker.

5.10.1.3. Creating a sink binding by using the web console

After Knative Eventing is installed on your cluster, you can create a sink binding by using the web console.
Using the OpenShift Container Platform web console provides a streamlined and intuitive user interface
to create an event source.

Prerequisites

$ oc get pods

$ oc logs $(oc get pod -o name | grep event-display) -c user-container

☁� cloudevents.Event
Validation: valid
Context Attributes,
 specversion: 1.0
 type: dev.knative.eventing.samples.heartbeat
 source: https://knative.dev/eventing-contrib/cmd/heartbeats/#event-test/mypod
 id: 2b72d7bf-c38f-4a98-a433-608fbcdd2596
 time: 2019-10-18T15:23:20.809775386Z
 contenttype: application/json
Extensions,
 beats: true
 heart: yes
 the: 42
Data,
 {
 "id": 1,
 "label": ""
 }

$ kn source binding create bind-heartbeat \
 --namespace sinkbinding-example \
 --subject "Job:batch/v1:app=heartbeat-cron" \
 --sink http://event-display.svc.cluster.local \ 1
 --ce-override "sink=bound"

CHAPTER 5. DEVELOP

143

You have logged in to the OpenShift Container Platform web console.

The OpenShift Serverless Operator, Knative Serving, and Knative Eventing are installed on your
OpenShift Container Platform cluster.

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

Procedure

1. Create a Knative service to use as a sink:

a. In the Developer perspective, navigate to +Add → YAML.

b. Copy the example YAML:

c. Click Create.

2. Create a CronJob resource that is used as an event source and sends an event every minute.

a. In the Developer perspective, navigate to +Add → YAML.

b. Copy the example YAML:

apiVersion: serving.knative.dev/v1
kind: Service
metadata:
 name: event-display
spec:
 template:
 spec:
 containers:
 - image: quay.io/openshift-knative/knative-eventing-sources-event-display:latest

apiVersion: batch/v1
kind: CronJob
metadata:
 name: heartbeat-cron
spec:
 # Run every minute
 schedule: "*/1 * * * *"
 jobTemplate:
 metadata:
 labels:
 app: heartbeat-cron
 bindings.knative.dev/include: true 1
 spec:
 template:
 spec:
 restartPolicy: Never
 containers:
 - name: single-heartbeat
 image: quay.io/openshift-knative/heartbeats
 args:
 - --period=1
 env:

OpenShift Container Platform 4.6 Serverless

144

1 Ensure that you include the bindings.knative.dev/include: true label. The default
namespace selection behavior of OpenShift Serverless uses inclusion mode.

c. Click Create.

3. Create a sink binding in the same namespace as the service created in the previous step, or any
other sink that you want to send events to.

a. In the Developer perspective, navigate to +Add → Event Source. The Event Sources page
is displayed.

b. Optional: If you have multiple providers for your event sources, select the required provider
from the Providers list to filter the available event sources from the provider.

c. Select Sink Binding and then click Create Event Source. The Create Event Source page is
displayed.

d. In the apiVersion field enter batch/v1.

e. In the Kind field enter Job.

NOTE

The CronJob kind is not supported directly by OpenShift Serverless sink
binding, so the Kind field must target the Job objects created by the cron
job, rather than the cron job object itself.

f. Select a Sink. This can be either a Resource or a URI. In this example, the event-display
service created in the previous step is used as the Resource sink.

g. In the Match labels section:

i. Enter app in the Name field.

ii. Enter heartbeat-cron in the Value field.

NOTE

The label selector is required when using cron jobs with sink binding,
rather than the resource name. This is because jobs created by a cron job
do not have a predictable name, and contain a randomly generated string
in their name. For example, hearthbeat-cron-1cc23f.

h. Click Create.

 - name: ONE_SHOT
 value: "true"
 - name: POD_NAME
 valueFrom:
 fieldRef:
 fieldPath: metadata.name
 - name: POD_NAMESPACE
 valueFrom:
 fieldRef:
 fieldPath: metadata.namespace

CHAPTER 5. DEVELOP

145

Verification

You can verify that the sink binding, sink, and cron job have been created and are working correctly by
viewing the Topology page and pod logs.

1. In the Developer perspective, navigate to Topology.

2. View the sink binding, sink, and heartbeats cron job.

3. Observe that successful jobs are being registered by the cron job once the sink binding is added.
This means that the sink binding is successfully reconfiguring the jobs created by the cron job.

4. Browse the logs of the event-display service pod to see events produced by the heartbeats
cron job.

5.10.1.4. Sink binding reference

You can use a PodSpecable object as an event source by creating a sink binding. You can configure
multiple parameters when creating a SinkBinding object.

SinkBinding objects support the following parameters:

Field Description Required or optional

apiVersion Specifies the API version, for
example
sources.knative.dev/v1.

Required

kind Identifies this resource object as a
SinkBinding object.

Required

metadata Specifies metadata that uniquely
identifies the SinkBinding
object. For example, a name.

Required

spec Specifies the configuration
information for this SinkBinding
object.

Required

OpenShift Container Platform 4.6 Serverless

146

spec.sink A reference to an object that
resolves to a URI to use as the
sink.

Required

spec.subject References the resources for
which the runtime contract is
augmented by binding
implementations.

Required

spec.ceOverrides Defines overrides to control the
output format and modifications
to the event sent to the sink.

Optional

Field Description Required or optional

5.10.1.4.1. Subject parameter

The Subject parameter references the resources for which the runtime contract is augmented by
binding implementations. You can configure multiple fields for a Subject definition.

The Subject definition supports the following fields:

Field Description Required or optional

apiVersion API version of the referent. Required

kind Kind of the referent. Required

namespace Namespace of the referent. If
omitted, this defaults to the
namespace of the object.

Optional

name Name of the referent. Do not use if you configure
selector.

selector Selector of the referents. Do not use if you configure
name.

selector.matchExpressions A list of label selector
requirements.

Only use one of either
matchExpressions or
matchLabels.

selector.matchExpressions.k
ey

The label key that the selector
applies to.

Required if using
matchExpressions.

selector.matchExpressions.o
perator

Represents a key’s relationship to
a set of values. Valid operators
are In, NotIn, Exists and
DoesNotExist.

Required if using
matchExpressions.

CHAPTER 5. DEVELOP

147

selector.matchExpressions.v
alues

An array of string values. If the
operator parameter value is In
or NotIn, the values array must be
non-empty. If the operator
parameter value is Exists or
DoesNotExist, the values array
must be empty. This array is
replaced during a strategic merge
patch.

Required if using
matchExpressions.

selector.matchLabels A map of key-value pairs. Each
key-value pair in the
matchLabels map is equivalent
to an element of
matchExpressions, where the
key field is matchLabels.<key>,
the operator is In, and the
values array contains only
matchLabels.<value>.

Only use one of either
matchExpressions or
matchLabels.

Field Description Required or optional

Subject parameter examples

Given the following YAML, the Deployment object named mysubject in the default namespace is
selected:

Given the following YAML, any Job object with the label working=example in the default namespace is
selected:

apiVersion: sources.knative.dev/v1
kind: SinkBinding
metadata:
 name: bind-heartbeat
spec:
 subject:
 apiVersion: apps/v1
 kind: Deployment
 namespace: default
 name: mysubject
 ...

apiVersion: sources.knative.dev/v1
kind: SinkBinding
metadata:
 name: bind-heartbeat
spec:
 subject:
 apiVersion: batch/v1
 kind: Job
 namespace: default
 selector:

OpenShift Container Platform 4.6 Serverless

148

Given the following YAML, any Pod object with the label working=example or working=sample in the
default namespace is selected:

5.10.1.4.2. CloudEvent overrides

A ceOverrides definition provides overrides that control the CloudEvent’s output format and
modifications sent to the sink. You can configure multiple fields for the ceOverrides definition.

A ceOverrides definition supports the following fields:

Field Description Required or optional

extensions Specifies which attributes are
added or overridden on the
outbound event. Each
extensions key-value pair is set
independently on the event as an
attribute extension.

Optional

NOTE

Only valid CloudEvent attribute names are allowed as extensions. You cannot set the
spec defined attributes from the extensions override configuration. For example, you can
not modify the type attribute.

CloudEvent Overrides example

 matchLabels:
 working: example
 ...

apiVersion: sources.knative.dev/v1
kind: SinkBinding
metadata:
 name: bind-heartbeat
spec:
 subject:
 apiVersion: v1
 kind: Pod
 namespace: default
 selector:
 - matchExpression:
 key: working
 operator: In
 values:
 - example
 - sample
 ...

apiVersion: sources.knative.dev/v1
kind: SinkBinding
metadata:

CHAPTER 5. DEVELOP

149

This sets the K_CE_OVERRIDES environment variable on the subject:

Example output

5.10.1.4.3. The include label

To use a sink binding, you need to do assign the bindings.knative.dev/include: "true" label to either
the resource or the namespace that the resource is included in. If the resource definition does not
include the label, a cluster administrator can attach it to the namespace by running:

5.10.2. Container source

Container sources create a container image that generates events and sends events to a sink. You can
use a container source to create a custom event source, by creating a container image and a
ContainerSource object that uses your image URI.

5.10.2.1. Guidelines for creating a container image

Two environment variables are injected by the container source controller: K_SINK and
K_CE_OVERRIDES. These variables are resolved from the sink and ceOverrides spec, respectively.
Events are sent to the sink URI specified in the K_SINK environment variable. The message must be
sent as a POST using the CloudEvent HTTP format.

Example container images

The following is an example of a heartbeats container image:

 name: bind-heartbeat
spec:
 ...
 ceOverrides:
 extensions:
 extra: this is an extra attribute
 additional: 42

{ "extensions": { "extra": "this is an extra attribute", "additional": "42" } }

$ oc label namespace <namespace> bindings.knative.dev/include=true

package main

import (
 "context"
 "encoding/json"
 "flag"
 "fmt"
 "log"
 "os"
 "strconv"
 "time"

 duckv1 "knative.dev/pkg/apis/duck/v1"

 cloudevents "github.com/cloudevents/sdk-go/v2"

OpenShift Container Platform 4.6 Serverless

150

https://cloudevents.io/

 "github.com/kelseyhightower/envconfig"
)

type Heartbeat struct {
 Sequence int `json:"id"`
 Label string `json:"label"`
}

var (
 eventSource string
 eventType string
 sink string
 label string
 periodStr string
)

func init() {
 flag.StringVar(&eventSource, "eventSource", "", "the event-source (CloudEvents)")
 flag.StringVar(&eventType, "eventType", "dev.knative.eventing.samples.heartbeat", "the event-type
(CloudEvents)")
 flag.StringVar(&sink, "sink", "", "the host url to heartbeat to")
 flag.StringVar(&label, "label", "", "a special label")
 flag.StringVar(&periodStr, "period", "5", "the number of seconds between heartbeats")
}

type envConfig struct {
 // Sink URL where to send heartbeat cloud events
 Sink string `envconfig:"K_SINK"`

 // CEOverrides are the CloudEvents overrides to be applied to the outbound event.
 CEOverrides string `envconfig:"K_CE_OVERRIDES"`

 // Name of this pod.
 Name string `envconfig:"POD_NAME" required:"true"`

 // Namespace this pod exists in.
 Namespace string `envconfig:"POD_NAMESPACE" required:"true"`

 // Whether to run continuously or exit.
 OneShot bool `envconfig:"ONE_SHOT" default:"false"`
}

func main() {
 flag.Parse()

 var env envConfig
 if err := envconfig.Process("", &env); err != nil {
 log.Printf("[ERROR] Failed to process env var: %s", err)
 os.Exit(1)
 }

 if env.Sink != "" {
 sink = env.Sink
 }

 var ceOverrides *duckv1.CloudEventOverrides

CHAPTER 5. DEVELOP

151

 if len(env.CEOverrides) > 0 {
 overrides := duckv1.CloudEventOverrides{}
 err := json.Unmarshal([]byte(env.CEOverrides), &overrides)
 if err != nil {
 log.Printf("[ERROR] Unparseable CloudEvents overrides %s: %v", env.CEOverrides, err)
 os.Exit(1)
 }
 ceOverrides = &overrides
 }

 p, err := cloudevents.NewHTTP(cloudevents.WithTarget(sink))
 if err != nil {
 log.Fatalf("failed to create http protocol: %s", err.Error())
 }

 c, err := cloudevents.NewClient(p, cloudevents.WithUUIDs(), cloudevents.WithTimeNow())
 if err != nil {
 log.Fatalf("failed to create client: %s", err.Error())
 }

 var period time.Duration
 if p, err := strconv.Atoi(periodStr); err != nil {
 period = time.Duration(5) * time.Second
 } else {
 period = time.Duration(p) * time.Second
 }

 if eventSource == "" {
 eventSource = fmt.Sprintf("https://knative.dev/eventing-contrib/cmd/heartbeats/#%s/%s",
env.Namespace, env.Name)
 log.Printf("Heartbeats Source: %s", eventSource)
 }

 if len(label) > 0 && label[0] == '"' {
 label, _ = strconv.Unquote(label)
 }
 hb := &Heartbeat{
 Sequence: 0,
 Label: label,
 }
 ticker := time.NewTicker(period)
 for {
 hb.Sequence++

 event := cloudevents.NewEvent("1.0")
 event.SetType(eventType)
 event.SetSource(eventSource)
 event.SetExtension("the", 42)
 event.SetExtension("heart", "yes")
 event.SetExtension("beats", true)

 if ceOverrides != nil && ceOverrides.Extensions != nil {
 for n, v := range ceOverrides.Extensions {
 event.SetExtension(n, v)
 }
 }

OpenShift Container Platform 4.6 Serverless

152

The following is an example of a container source that references the previous heartbeats container
image:

5.10.2.2. Creating and managing container sources by using the Knative CLI

You can use the kn source container commands to create and manage container sources by using the
Knative (kn) CLI. Using the Knative CLI to create event sources provides a more streamlined and
intuitive user interface than modifying YAML files directly.

Create a container source

 if err := event.SetData(cloudevents.ApplicationJSON, hb); err != nil {
 log.Printf("failed to set cloudevents data: %s", err.Error())
 }

 log.Printf("sending cloudevent to %s", sink)
 if res := c.Send(context.Background(), event); !cloudevents.IsACK(res) {
 log.Printf("failed to send cloudevent: %v", res)
 }

 if env.OneShot {
 return
 }

 // Wait for next tick
 <-ticker.C
 }
}

apiVersion: sources.knative.dev/v1
kind: ContainerSource
metadata:
 name: test-heartbeats
spec:
 template:
 spec:
 containers:
 # This corresponds to a heartbeats image URI that you have built and published
 - image: gcr.io/knative-releases/knative.dev/eventing/cmd/heartbeats
 name: heartbeats
 args:
 - --period=1
 env:
 - name: POD_NAME
 value: "example-pod"
 - name: POD_NAMESPACE
 value: "event-test"
 sink:
 ref:
 apiVersion: serving.knative.dev/v1
 kind: Service
 name: example-service
...

CHAPTER 5. DEVELOP

153

Delete a container source

Describe a container source

List existing container sources

List existing container sources in YAML format

Update a container source

This command updates the image URI for an existing container source:

5.10.2.3. Creating a container source by using the web console

After Knative Eventing is installed on your cluster, you can create a container source by using the web
console. Using the OpenShift Container Platform web console provides a streamlined and intuitive user
interface to create an event source.

Prerequisites

You have logged in to the OpenShift Container Platform web console.

The OpenShift Serverless Operator, Knative Serving, and Knative Eventing are installed on your
OpenShift Container Platform cluster.

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

Procedure

1. In the Developer perspective, navigate to +Add → Event Source. The Event Sources page is
displayed.

2. Select Container Source.

3. Configure the Container Source settings:

a. In the Image field, enter the URI of the image that you want to run in the container created
by the container source.

b. In the Name field, enter the name of the image.

$ kn source container create <container_source_name> --image <image_uri> --sink <sink>

$ kn source container delete <container_source_name>

$ kn source container describe <container_source_name>

$ kn source container list

$ kn source container list -o yaml

$ kn source container update <container_source_name> --image <image_uri>

OpenShift Container Platform 4.6 Serverless

154

c. Optional: In the Arguments field, enter any arguments to be passed to the container.

d. Optional: In the Environment variables field, add any environment variables to set in the
container.

e. In the Sink section, add a sink where events from the container source are routed to.

i. Select Resource to use a channel, broker, or service as a sink for the event source.

ii. Select URI to specify where the events from the container source are routed to.

4. After you have finished configuring the container source, click Create.

5.10.2.4. Container source reference

You can use a container as an event source, by creating a ContainerSource object. You can configure
multiple parameters when creating a ContainerSource object.

ContainerSource objects support the following fields:

Field Description Required or optional

apiVersion Specifies the API version, for
example
sources.knative.dev/v1.

Required

kind Identifies this resource object as a
ContainerSource object.

Required

metadata Specifies metadata that uniquely
identifies the ContainerSource
object. For example, a name.

Required

spec Specifies the configuration
information for this
ContainerSource object.

Required

spec.sink A reference to an object that
resolves to a URI to use as the
sink.

Required

spec.template A template spec for the
ContainerSource object.

Required

spec.ceOverrides Defines overrides to control the
output format and modifications
to the event sent to the sink.

Optional

Template parameter example

apiVersion: sources.knative.dev/v1
kind: ContainerSource

CHAPTER 5. DEVELOP

155

5.10.2.4.1. CloudEvent overrides

A ceOverrides definition provides overrides that control the CloudEvent’s output format and
modifications sent to the sink. You can configure multiple fields for the ceOverrides definition.

A ceOverrides definition supports the following fields:

Field Description Required or optional

extensions Specifies which attributes are
added or overridden on the
outbound event. Each
extensions key-value pair is set
independently on the event as an
attribute extension.

Optional

NOTE

Only valid CloudEvent attribute names are allowed as extensions. You cannot set the
spec defined attributes from the extensions override configuration. For example, you can
not modify the type attribute.

CloudEvent Overrides example

This sets the K_CE_OVERRIDES environment variable on the subject:

metadata:
 name: test-heartbeats
spec:
 template:
 spec:
 containers:
 - image: quay.io/openshift-knative/heartbeats:latest
 name: heartbeats
 args:
 - --period=1
 env:
 - name: POD_NAME
 value: "mypod"
 - name: POD_NAMESPACE
 value: "event-test"
 ...

apiVersion: sources.knative.dev/v1
kind: ContainerSource
metadata:
 name: test-heartbeats
spec:
 ...
 ceOverrides:
 extensions:
 extra: this is an extra attribute
 additional: 42

OpenShift Container Platform 4.6 Serverless

156

Example output

5.11. CREATING CHANNELS

Channels are custom resources that define a single event-forwarding and persistence layer. After
events have been sent to a channel from an event source or producer, these events can be sent to
multiple Knative services or other sinks by using a subscription.

You can create channels by instantiating a supported Channel object, and configure re-delivery
attempts by modifying the delivery spec in a Subscription object.

5.11.1. Creating a channel by using the web console

Using the OpenShift Container Platform web console provides a streamlined and intuitive user interface
to create a channel. After Knative Eventing is installed on your cluster, you can create a channel by using
the web console.

Prerequisites

You have logged in to the OpenShift Container Platform web console.

The OpenShift Serverless Operator and Knative Eventing are installed on your OpenShift
Container Platform cluster.

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

Procedure

1. In the Developer perspective, navigate to +Add → Channel.

2. Select the type of Channel object that you want to create in the Type list.

3. Click Create.

Verification

Confirm that the channel now exists by navigating to the Topology page.

{ "extensions": { "extra": "this is an extra attribute", "additional": "42" } }

CHAPTER 5. DEVELOP

157

5.11.2. Creating a channel by using the Knative CLI

Using the Knative (kn) CLI to create channels provides a more streamlined and intuitive user interface
than modifying YAML files directly. You can use the kn channel create command to create a channel.

Prerequisites

The OpenShift Serverless Operator and Knative Eventing are installed on the cluster.

You have installed the Knative (kn) CLI.

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

Procedure

Create a channel:

The channel type is optional, but where specified, must be given in the format
Group:Version:Kind. For example, you can create an InMemoryChannel object:

Example output

Verification

To confirm that the channel now exists, list the existing channels and inspect the output:

Example output

$ kn channel create <channel_name> --type <channel_type>

$ kn channel create mychannel --type messaging.knative.dev:v1:InMemoryChannel

Channel 'mychannel' created in namespace 'default'.

$ kn channel list

kn channel list
NAME TYPE URL AGE READY REASON
mychannel InMemoryChannel http://mychannel-kn-channel.default.svc.cluster.local 93s
True

OpenShift Container Platform 4.6 Serverless

158

Deleting a channel

Delete a channel:

5.11.3. Creating a default implementation channel by using YAML

Creating Knative resources by using YAML files uses a declarative API, which enables you to describe
channels declaratively and in a reproducible manner. To create a serverless channel by using YAML, you
must create a YAML file that defines a Channel object, then apply it by using the oc apply command.

Prerequisites

The OpenShift Serverless Operator and Knative Eventing are installed on the cluster.

Install the OpenShift CLI (oc).

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

Procedure

1. Create a Channel object as a YAML file:

2. Apply the YAML file:

5.11.4. Creating a Kafka channel by using YAML

Creating Knative resources by using YAML files uses a declarative API, which enables you to describe
channels declaratively and in a reproducible manner. You can create a Knative Eventing channel that is
backed by Kafka topics by creating a Kafka channel. To create a Kafka channel by using YAML, you must
create a YAML file that defines a KafkaChannel object, then apply it by using the oc apply command.

Prerequisites

The OpenShift Serverless Operator, Knative Eventing, and the KnativeKafka custom resource
are installed on your OpenShift Container Platform cluster.

Install the OpenShift CLI (oc).

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

Procedure

$ kn channel delete <channel_name>

apiVersion: messaging.knative.dev/v1
kind: Channel
metadata:
 name: example-channel
 namespace: default

$ oc apply -f <filename>

CHAPTER 5. DEVELOP

159

1. Create a KafkaChannel object as a YAML file:

IMPORTANT

Only the v1beta1 version of the API for KafkaChannel objects on OpenShift
Serverless is supported. Do not use the v1alpha1 version of this API, as this
version is now deprecated.

2. Apply the KafkaChannel YAML file:

5.11.5. Next steps

After you have created a channel, create a subscription that allows event sinks to subscribe to
channels and receive events.

Configure event delivery parameters that are applied in cases where an event fails to be
delivered to an event sink. See Examples of configuring event delivery parameters .

5.12. CREATING AND MANAGING SUBSCRIPTIONS

After you have created a channel and an event sink, you can create a subscription to enable event
delivery. Subscriptions are created by configuring a Subscription object, which specifies the channel
and the sink (also known as a subscriber) to deliver events to.

5.12.1. Creating a subscription by using the web console

After you have created a channel and an event sink, you can create a subscription to enable event
delivery. Using the OpenShift Container Platform web console provides a streamlined and intuitive user
interface to create a subscription.

Prerequisites

The OpenShift Serverless Operator, Knative Serving, and Knative Eventing are installed on your
OpenShift Container Platform cluster.

You have logged in to the web console.

You have created an event sink, such as a Knative service, and a channel.

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

apiVersion: messaging.knative.dev/v1beta1
kind: KafkaChannel
metadata:
 name: example-channel
 namespace: default
spec:
 numPartitions: 3
 replicationFactor: 1

$ oc apply -f <filename>

OpenShift Container Platform 4.6 Serverless

160

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/serverless/#serverless-subs
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/serverless/#serverless-configuring-event-delivery-examples_serverless-event-delivery

Procedure

1. In the Developer perspective, navigate to the Topology page.

2. Create a subscription using one of the following methods:

a. Hover over the channel that you want to create a subscription for, and drag the arrow. The
Add Subscription option is displayed.

i. Select your sink in the Subscriber list.

ii. Click Add.

b. If the service is available in the Topology view under the same namespace or project as the
channel, click on the channel that you want to create a subscription for, and drag the arrow
directly to a service to immediately create a subscription from the channel to that service.

Verification

After the subscription has been created, you can see it represented as a line that connects the
channel to the service in the Topology view:

5.12.2. Creating a subscription by using YAML

After you have created a channel and an event sink, you can create a subscription to enable event
delivery. Creating Knative resources by using YAML files uses a declarative API, which enables you to
describe subscriptions declaratively and in a reproducible manner. To create a subscription by using

CHAPTER 5. DEVELOP

161

1

2

3

4

YAML, you must create a YAML file that defines a Subscription object, then apply it by using the oc
apply command.

Prerequisites

The OpenShift Serverless Operator and Knative Eventing are installed on the cluster.

Install the OpenShift CLI (oc).

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

Procedure

Create a Subscription object:

Create a YAML file and copy the following sample code into it:

Name of the subscription.

Configuration settings for the channel that the subscription connects to.

Configuration settings for event delivery. This tells the subscription what happens to
events that cannot be delivered to the subscriber. When this is configured, events that
failed to be consumed are sent to the deadLetterSink. The event is dropped, no re-
delivery of the event is attempted, and an error is logged in the system. The
deadLetterSink value must be a Destination.

Configuration settings for the subscriber. This is the event sink that events are
delivered to from the channel.

Apply the YAML file:

apiVersion: messaging.knative.dev/v1beta1
kind: Subscription
metadata:
 name: my-subscription 1
 namespace: default
spec:
 channel: 2
 apiVersion: messaging.knative.dev/v1beta1
 kind: Channel
 name: example-channel
 delivery: 3
 deadLetterSink:
 ref:
 apiVersion: serving.knative.dev/v1
 kind: Service
 name: error-handler
 subscriber: 4
 ref:
 apiVersion: serving.knative.dev/v1
 kind: Service
 name: event-display

OpenShift Container Platform 4.6 Serverless

162

https://pkg.go.dev/knative.dev/pkg/apis/duck/v1?tab=doc#Destination

1

2

3

5.12.3. Creating a subscription by using the Knative CLI

After you have created a channel and an event sink, you can create a subscription to enable event
delivery. Using the Knative (kn) CLI to create subscriptions provides a more streamlined and intuitive
user interface than modifying YAML files directly. You can use the kn subscription create command
with the appropriate flags to create a subscription.

Prerequisites

The OpenShift Serverless Operator and Knative Eventing are installed on your OpenShift
Container Platform cluster.

You have installed the Knative (kn) CLI.

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

Procedure

Create a subscription to connect a sink to a channel:

--channel specifies the source for cloud events that should be processed. You must
provide the channel name. If you are not using the default InMemoryChannel channel that
is backed by the Channel custom resource, you must prefix the channel name with the
<group:version:kind> for the specified channel type. For example, this will be
messaging.knative.dev:v1beta1:KafkaChannel for a Kafka backed channel.

--sink specifies the target destination to which the event should be delivered. By default,
the <sink_name> is interpreted as a Knative service of this name, in the same namespace
as the subscription. You can specify the type of the sink by using one of the following
prefixes:

ksvc
A Knative service.

channel
A channel that should be used as destination. Only default channel types can be
referenced here.

broker
An Eventing broker.

Optional: --sink-dead-letter is an optional flag that can be used to specify a sink which
events should be sent to in cases where events fail to be delivered. For more information,
see the OpenShift Serverless Event delivery documentation.

Example command

$ oc apply -f <filename>

$ kn subscription create <subscription_name> \
 --channel <group:version:kind>:<channel_name> \ 1
 --sink <sink_prefix>:<sink_name> \ 2
 --sink-dead-letter <sink_prefix>:<sink_name> 3

$ kn subscription create mysubscription --channel mychannel --sink ksvc:event-display

CHAPTER 5. DEVELOP

163

Example output

Verification

To confirm that the channel is connected to the event sink, or subscriber, by a subscription, list
the existing subscriptions and inspect the output:

Example output

Deleting a subscription

Delete a subscription:

5.12.4. Describing subscriptions by using the Knative CLI

You can use the kn subscription describe command to print information about a subscription in the
terminal by using the Knative (kn) CLI. Using the Knative CLI to describe subscriptions provides a more
streamlined and intuitive user interface than viewing YAML files directly.

Prerequisites

You have installed the Knative (kn) CLI.

You have created a subscription in your cluster.

Procedure

Describe a subscription:

Example output

Subscription 'mysubscription' created in namespace 'default'.

$ kn subscription list

NAME CHANNEL SUBSCRIBER REPLY DEAD LETTER SINK
READY REASON
mysubscription Channel:mychannel ksvc:event-display True

$ kn subscription delete <subscription_name>

$ kn subscription describe <subscription_name>

Name: my-subscription
Namespace: default
Annotations: messaging.knative.dev/creator=openshift-user,
messaging.knative.dev/lastModifier=min ...
Age: 43s
Channel: Channel:my-channel (messaging.knative.dev/v1)
Subscriber:
 URI: http://edisplay.default.example.com

OpenShift Container Platform 4.6 Serverless

164

5.12.5. Listing subscriptions by using the Knative CLI

You can use the kn subscription list command to list existing subscriptions on your cluster by using the
Knative (kn) CLI. Using the Knative CLI to list subscriptions provides a streamlined and intuitive user
interface.

Prerequisites

You have installed the Knative (kn) CLI.

Procedure

List subscriptions on your cluster:

Example output

5.12.6. Updating subscriptions by using the Knative CLI

You can use the kn subscription update command as well as the appropriate flags to update a
subscription from the terminal by using the Knative (kn) CLI. Using the Knative CLI to update
subscriptions provides a more streamlined and intuitive user interface than updating YAML files directly.

Prerequisites

You have installed the Knative (kn) CLI.

You have created a subscription.

Procedure

Update a subscription:

Reply:
 Name: default
 Resource: Broker (eventing.knative.dev/v1)
DeadLetterSink:
 Name: my-sink
 Resource: Service (serving.knative.dev/v1)

Conditions:
 OK TYPE AGE REASON
 ++ Ready 43s
 ++ AddedToChannel 43s
 ++ ChannelReady 43s
 ++ ReferencesResolved 43s

$ kn subscription list

NAME CHANNEL SUBSCRIBER REPLY DEAD LETTER SINK
READY REASON
mysubscription Channel:mychannel ksvc:event-display True

CHAPTER 5. DEVELOP

165

1

2

--sink specifies the updated target destination to which the event should be delivered.
You can specify the type of the sink by using one of the following prefixes:

ksvc
A Knative service.

channel
A channel that should be used as destination. Only default channel types can be
referenced here.

broker
An Eventing broker.

Optional: --sink-dead-letter is an optional flag that can be used to specify a sink which
events should be sent to in cases where events fail to be delivered. For more information,
see the OpenShift Serverless Event delivery documentation.

Example command

5.12.7. Next steps

Configure event delivery parameters that are applied in cases where an event fails to be
delivered to an event sink. See Examples of configuring event delivery parameters .

5.13. CREATING BROKERS

Knative provides a default, channel-based broker implementation. This channel-based broker can be
used for development and testing purposes, but does not provide adequate event delivery guarantees
for production environments.

If a cluster administrator has configured your OpenShift Serverless deployment to use Kafka as the
default broker type, creating a broker by using the default settings creates a Kafka-based broker.

If your OpenShift Serverless deployment is not configured to use Kafka broker as the default broker
type, the channel-based broker is created when you use the default settings in the following
procedures.

5.13.1. Creating a broker by using the Knative CLI

Brokers can be used in combination with triggers to deliver events from an event source to an event
sink. Using the Knative (kn) CLI to create brokers provides a more streamlined and intuitive user
interface over modifying YAML files directly. You can use the kn broker create command to create a
broker.

Prerequisites

The OpenShift Serverless Operator and Knative Eventing are installed on your OpenShift
Container Platform cluster.

$ kn subscription update <subscription_name> \
 --sink <sink_prefix>:<sink_name> \ 1
 --sink-dead-letter <sink_prefix>:<sink_name> 2

$ kn subscription update mysubscription --sink ksvc:event-display

OpenShift Container Platform 4.6 Serverless

166

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/serverless/#serverless-configuring-event-delivery-examples_serverless-event-delivery

You have installed the Knative (kn) CLI.

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

Procedure

Create a broker:

Verification

1. Use the kn command to list all existing brokers:

Example output

2. Optional: If you are using the OpenShift Container Platform web console, you can navigate to
the Topology view in the Developer perspective, and observe that the broker exists:

5.13.2. Creating a broker by annotating a trigger

Brokers can be used in combination with triggers to deliver events from an event source to an event
sink. You can create a broker by adding the eventing.knative.dev/injection: enabled annotation to a
Trigger object.

IMPORTANT

If you create a broker by using the eventing.knative.dev/injection: enabled annotation,
you cannot delete this broker without cluster administrator permissions. If you delete the
broker without having a cluster administrator remove this annotation first, the broker is
created again after deletion.

$ kn broker create <broker_name>

$ kn broker list

NAME URL AGE CONDITIONS READY
REASON
default http://broker-ingress.knative-eventing.svc.cluster.local/test/default 45s 5 OK / 5
True

CHAPTER 5. DEVELOP

167

1

Prerequisites

The OpenShift Serverless Operator and Knative Eventing are installed on your OpenShift
Container Platform cluster.

Install the OpenShift CLI (oc).

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

Procedure

1. Create a Trigger object as a YAML file that has the eventing.knative.dev/injection: enabled
annotation:

Specify details about the event sink, or subscriber, that the trigger sends events to.

2. Apply the Trigger YAML file:

Verification

You can verify that the broker has been created successfully by using the oc CLI, or by observing it in
the Topology view in the web console.

1. Enter the following oc command to get the broker:

Example output

2. Optional: If you are using the OpenShift Container Platform web console, you can navigate to
the Topology view in the Developer perspective, and observe that the broker exists:

apiVersion: eventing.knative.dev/v1
kind: Trigger
metadata:
 annotations:
 eventing.knative.dev/injection: enabled
 name: <trigger_name>
spec:
 broker: default
 subscriber: 1
 ref:
 apiVersion: serving.knative.dev/v1
 kind: Service
 name: <service_name>

$ oc apply -f <filename>

$ oc -n <namespace> get broker default

NAME READY REASON URL AGE
default True http://broker-ingress.knative-eventing.svc.cluster.local/test/default
3m56s

OpenShift Container Platform 4.6 Serverless

168

5.13.3. Creating a broker by labeling a namespace

Brokers can be used in combination with triggers to deliver events from an event source to an event
sink. You can create the default broker automatically by labelling a namespace that you own or have
write permissions for.

NOTE

Brokers created using this method are not removed if you remove the label. You must
manually delete them.

Prerequisites

The OpenShift Serverless Operator and Knative Eventing are installed on your OpenShift
Container Platform cluster.

Install the OpenShift CLI (oc).

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

Procedure

Label a namespace with eventing.knative.dev/injection=enabled:

Verification

You can verify that the broker has been created successfully by using the oc CLI, or by observing it in
the Topology view in the web console.

1. Use the oc command to get the broker:

Example command

$ oc label namespace <namespace> eventing.knative.dev/injection=enabled

$ oc -n <namespace> get broker <broker_name>

$ oc -n default get broker default

CHAPTER 5. DEVELOP

169

Example output

2. Optional: If you are using the OpenShift Container Platform web console, you can navigate to
the Topology view in the Developer perspective, and observe that the broker exists:

5.13.4. Deleting a broker that was created by injection

If you create a broker by injection and later want to delete it, you must delete it manually. Brokers
created by using a namespace label or trigger annotation are not deleted permanently if you remove the
label or annotation.

Prerequisites

Install the OpenShift CLI (oc).

Procedure

1. Remove the eventing.knative.dev/injection=enabled label from the namespace:

Removing the annotation prevents Knative from recreating the broker after you delete it.

2. Delete the broker from the selected namespace:

Verification

Use the oc command to get the broker:

Example command

NAME READY REASON URL AGE
default True http://broker-ingress.knative-eventing.svc.cluster.local/test/default
3m56s

$ oc label namespace <namespace> eventing.knative.dev/injection-

$ oc -n <namespace> delete broker <broker_name>

$ oc -n <namespace> get broker <broker_name>

$ oc -n default get broker default

OpenShift Container Platform 4.6 Serverless

170

1

2

Example output

5.13.5. Creating a Kafka broker when it is not configured as the default broker type

If your OpenShift Serverless deployment is not configured to use Kafka broker as the default broker
type, you can use one of the following procedures to create a Kafka-based broker.

5.13.5.1. Creating a Kafka broker by using YAML

Creating Knative resources by using YAML files uses a declarative API, which enables you to describe
applications declaratively and in a reproducible manner. To create a Kafka broker by using YAML, you
must create a YAML file that defines a Broker object, then apply it by using the oc apply command.

Prerequisites

The OpenShift Serverless Operator, Knative Eventing, and the KnativeKafka custom resource
are installed on your OpenShift Container Platform cluster.

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

You have installed the OpenShift CLI (oc).

Procedure

1. Create a Kafka-based broker as a YAML file:

The broker class. If not specified, brokers use the default class as configured by cluster
administrators. To use the Kafka broker, this value must be Kafka.

The default config map for Knative Kafka brokers. This config map is created when the
Kafka broker functionality is enabled on the cluster by a cluster administrator.

2. Apply the Kafka-based broker YAML file:

No resources found.
Error from server (NotFound): brokers.eventing.knative.dev "default" not found

apiVersion: eventing.knative.dev/v1
kind: Broker
metadata:
 annotations:
 eventing.knative.dev/broker.class: Kafka 1
 name: example-kafka-broker
spec:
 config:
 apiVersion: v1
 kind: ConfigMap
 name: kafka-broker-config 2
 namespace: knative-eventing

$ oc apply -f <filename>

CHAPTER 5. DEVELOP

171

1

2

5.13.5.2. Creating a Kafka broker that uses an externally managed Kafka topic

If you want to use a Kafka broker without allowing it to create its own internal topic, you can use an
externally managed Kafka topic instead. To do this, you must create a Kafka Broker object that uses the
kafka.eventing.knative.dev/external.topic annotation.

Prerequisites

The OpenShift Serverless Operator, Knative Eventing, and the KnativeKafka custom resource
are installed on your OpenShift Container Platform cluster.

You have access to a Kafka instance such as Red Hat AMQ Streams , and have created a Kafka
topic.

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

You have installed the OpenShift CLI (oc).

Procedure

1. Create a Kafka-based broker as a YAML file:

The broker class. If not specified, brokers use the default class as configured by cluster
administrators. To use the Kafka broker, this value must be Kafka.

The name of the Kafka topic that you want to use.

2. Apply the Kafka-based broker YAML file:

5.13.6. Managing brokers

The Knative (kn) CLI provides commands that can be used to describe and list existing brokers.

5.13.6.1. Listing existing brokers by using the Knative CLI

Using the Knative (kn) CLI to list brokers provides a streamlined and intuitive user interface. You can
use the kn broker list command to list existing brokers in your cluster by using the Knative CLI.

Prerequisites

The OpenShift Serverless Operator and Knative Eventing are installed on your OpenShift
Container Platform cluster.

apiVersion: eventing.knative.dev/v1
kind: Broker
metadata:
 annotations:
 eventing.knative.dev/broker.class: Kafka 1
 kafka.eventing.knative.dev/external.topic: <topic_name> 2
...

$ oc apply -f <filename>

OpenShift Container Platform 4.6 Serverless

172

https://access.redhat.com/documentation/en-us/red_hat_amq/7.6/html/amq_streams_on_openshift_overview/kafka-concepts_str#kafka-concepts-key_str

You have installed the Knative (kn) CLI.

Procedure

List all existing brokers:

Example output

5.13.6.2. Describing an existing broker by using the Knative CLI

Using the Knative (kn) CLI to describe brokers provides a streamlined and intuitive user interface. You
can use the kn broker describe command to print information about existing brokers in your cluster by
using the Knative CLI.

Prerequisites

The OpenShift Serverless Operator and Knative Eventing are installed on your OpenShift
Container Platform cluster.

You have installed the Knative (kn) CLI.

Procedure

Describe an existing broker:

Example command using default broker

Example output

$ kn broker list

NAME URL AGE CONDITIONS READY
REASON
default http://broker-ingress.knative-eventing.svc.cluster.local/test/default 45s 5 OK / 5
True

$ kn broker describe <broker_name>

$ kn broker describe default

Name: default
Namespace: default
Annotations: eventing.knative.dev/broker.class=MTChannelBasedBroker,
eventing.knative.dev/creato ...
Age: 22s

Address:
 URL: http://broker-ingress.knative-eventing.svc.cluster.local/default/default

Conditions:
 OK TYPE AGE REASON
 ++ Ready 22s
 ++ Addressable 22s

CHAPTER 5. DEVELOP

173

5.13.7. Next steps

Configure event delivery parameters that are applied in cases where an event fails to be
delivered to an event sink. See Examples of configuring event delivery parameters .

5.13.8. Additional resources

Configuring the default broker class

TriggersEvent sources

Event delivery

Kafka broker

Configuring Knative Kafka

5.14. TRIGGERS

Brokers can be used in combination with triggers to deliver events from an event source to an event
sink. Events are sent from an event source to a broker as an HTTP POST request. After events have
entered the broker, they can be filtered by CloudEvent attributes using triggers, and sent as an HTTP
POST request to an event sink.

If you are using a Kafka broker, you can configure the delivery order of events from triggers to event
sinks. See Configuring event delivery ordering for triggers .

5.14.1. Creating a trigger by using the web console

Using the OpenShift Container Platform web console provides a streamlined and intuitive user interface
to create a trigger. After Knative Eventing is installed on your cluster and you have created a broker, you
can create a trigger by using the web console.

Prerequisites

The OpenShift Serverless Operator, Knative Serving, and Knative Eventing are installed on your

 ++ FilterReady 22s
 ++ IngressReady 22s
 ++ TriggerChannelReady 22s

OpenShift Container Platform 4.6 Serverless

174

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/serverless/#serverless-configuring-event-delivery-examples_serverless-event-delivery
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/serverless/#serverless-global-config-broker-class-default_serverless-configuration
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/serverless/#serverless-triggers
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/serverless/#knative-event-sources
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/serverless/#serverless-event-delivery
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/serverless/#serverless-kafka-developer-broker
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/serverless/#serverless-kafka-admin
https://github.com/cloudevents/spec/blob/v1.0/spec.md#context-attributes
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/serverless/#trigger-event-delivery-config_serverless-triggers

The OpenShift Serverless Operator, Knative Serving, and Knative Eventing are installed on your
OpenShift Container Platform cluster.

You have logged in to the web console.

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

You have created a broker and a Knative service or other event sink to connect to the trigger.

Procedure

1. In the Developer perspective, navigate to the Topology page.

2. Hover over the broker that you want to create a trigger for, and drag the arrow. The Add
Trigger option is displayed.

3. Click Add Trigger.

4. Select your sink in the Subscriber list.

5. Click Add.

Verification

After the subscription has been created, you can view it in the Topology page, where it is
represented as a line that connects the broker to the event sink.

Deleting a trigger

1. In the Developer perspective, navigate to the Topology page.

2. Click on the trigger that you want to delete.

3. In the Actions context menu, select Delete Trigger.

5.14.2. Creating a trigger by using the Knative CLI

Using the Knative (kn) CLI to create triggers provides a more streamlined and intuitive user interface
over modifying YAML files directly. You can use the kn trigger create command to create a trigger.

Prerequisites

The OpenShift Serverless Operator and Knative Eventing are installed on your OpenShift
Container Platform cluster.

You have installed the Knative (kn) CLI.

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

Procedure

Create a trigger:

CHAPTER 5. DEVELOP

175

Alternatively, you can create a trigger and simultaneously create the default broker using broker
injection:

By default, triggers forward all events sent to a broker to sinks that are subscribed to that
broker. Using the --filter attribute for triggers allows you to filter events from a broker, so that
subscribers will only receive a subset of events based on your defined criteria.

5.14.3. Listing triggers by using the Knative CLI

Using the Knative (kn) CLI to list triggers provides a streamlined and intuitive user interface. You can
use the kn trigger list command to list existing triggers in your cluster.

Prerequisites

The OpenShift Serverless Operator and Knative Eventing are installed on your OpenShift
Container Platform cluster.

You have installed the Knative (kn) CLI.

Procedure

1. Print a list of available triggers:

Example output

2. Optional: Print a list of triggers in JSON format:

5.14.4. Describing a trigger by using the Knative CLI

Using the Knative (kn) CLI to describe triggers provides a streamlined and intuitive user interface. You
can use the kn trigger describe command to print information about existing triggers in your cluster by
using the Knative CLI.

Prerequisites

The OpenShift Serverless Operator and Knative Eventing are installed on your OpenShift
Container Platform cluster.

You have installed the Knative (kn) CLI.

$ kn trigger create <trigger_name> --broker <broker_name> --filter <key=value> --sink
<sink_name>

$ kn trigger create <trigger_name> --inject-broker --filter <key=value> --sink <sink_name>

$ kn trigger list

NAME BROKER SINK AGE CONDITIONS READY REASON
email default ksvc:edisplay 4s 5 OK / 5 True
ping default ksvc:edisplay 32s 5 OK / 5 True

$ kn trigger list -o json

OpenShift Container Platform 4.6 Serverless

176

You have created a trigger.

Procedure

Enter the command:

Example output

5.14.5. Filtering events with triggers by using the Knative CLI

Using the Knative (kn) CLI to filter events by using triggers provides a streamlined and intuitive user
interface. You can use the kn trigger create command, along with the appropriate flags, to filter events
by using triggers.

In the following trigger example, only events with the attribute type: dev.knative.samples.helloworld
are sent to the event sink:

You can also filter events by using multiple attributes. The following example shows how to filter events
using the type, source, and extension attributes:

$ kn trigger describe <trigger_name>

Name: ping
Namespace: default
Labels: eventing.knative.dev/broker=default
Annotations: eventing.knative.dev/creator=kube:admin,
eventing.knative.dev/lastModifier=kube:admin
Age: 2m
Broker: default
Filter:
 type: dev.knative.event

Sink:
 Name: edisplay
 Namespace: default
 Resource: Service (serving.knative.dev/v1)

Conditions:
 OK TYPE AGE REASON
 ++ Ready 2m
 ++ BrokerReady 2m
 ++ DependencyReady 2m
 ++ Subscribed 2m
 ++ SubscriberResolved 2m

$ kn trigger create <trigger_name> --broker <broker_name> --filter
type=dev.knative.samples.helloworld --sink ksvc:<service_name>

$ kn trigger create <trigger_name> --broker <broker_name> --sink ksvc:<service_name> \
--filter type=dev.knative.samples.helloworld \
--filter source=dev.knative.samples/helloworldsource \
--filter myextension=my-extension-value

CHAPTER 5. DEVELOP

177

5.14.6. Updating a trigger by using the Knative CLI

Using the Knative (kn) CLI to update triggers provides a streamlined and intuitive user interface. You
can use the kn trigger update command with certain flags to update attributes for a trigger.

Prerequisites

The OpenShift Serverless Operator and Knative Eventing are installed on your OpenShift
Container Platform cluster.

You have installed the Knative (kn) CLI.

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

Procedure

Update a trigger:

You can update a trigger to filter exact event attributes that match incoming events. For
example, using the type attribute:

You can remove a filter attribute from a trigger. For example, you can remove the filter
attribute with key type:

You can use the --sink parameter to change the event sink of a trigger:

5.14.7. Deleting a trigger by using the Knative CLI

Using the Knative (kn) CLI to delete a trigger provides a streamlined and intuitive user interface. You
can use the kn trigger delete command to delete a trigger.

Prerequisites

The OpenShift Serverless Operator and Knative Eventing are installed on your OpenShift
Container Platform cluster.

You have installed the Knative (kn) CLI.

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

Procedure

Delete a trigger:

$ kn trigger update <trigger_name> --filter <key=value> --sink <sink_name> [flags]

$ kn trigger update <trigger_name> --filter type=knative.dev.event

$ kn trigger update <trigger_name> --filter type-

$ kn trigger update <trigger_name> --sink ksvc:my-event-sink

OpenShift Container Platform 4.6 Serverless

178

Verification

1. List existing triggers:

2. Verify that the trigger no longer exists:

Example output

5.14.8. Configuring event delivery ordering for triggers

If you are using a Kafka broker, you can configure the delivery order of events from triggers to event
sinks.

Prerequisites

The OpenShift Serverless Operator, Knative Eventing, and Knative Kafka are installed on your
OpenShift Container Platform cluster.

Kafka broker is enabled for use on your cluster, and you have created a Kafka broker.

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

You have installed the OpenShift (oc) CLI.

Procedure

1. Create or modify a Trigger object and set the kafka.eventing.knative.dev/delivery.order
annotation:

The supported consumer delivery guarantees are:

unordered

An unordered consumer is a non-blocking consumer that delivers messages unordered, while
preserving proper offset management.

ordered

An ordered consumer is a per-partition blocking consumer that waits for a successful
response from the CloudEvent subscriber before it delivers the next message of the
partition.

$ kn trigger delete <trigger_name>

$ kn trigger list

No triggers found.

apiVersion: eventing.knative.dev/v1
kind: Trigger
metadata:
 name: <trigger_name>
 annotations:
 kafka.eventing.knative.dev/delivery.order: ordered
...

CHAPTER 5. DEVELOP

179

The default ordering guarantee is unordered.

2. Apply the Trigger object:

5.14.9. Next steps

Configure event delivery parameters that are applied in cases where an event fails to be
delivered to an event sink. See Examples of configuring event delivery parameters .

5.15. USING KNATIVE KAFKA

Knative Kafka provides integration options for you to use supported versions of the Apache Kafka
message streaming platform with OpenShift Serverless. Kafka provides options for event source,
channel, broker, and event sink capabilities.

Knative Kafka functionality is available in an OpenShift Serverless installation if a cluster administrator
has installed the KnativeKafka custom resource.

NOTE

Knative Kafka is not currently supported for IBM Z and IBM Power Systems.

Knative Kafka provides additional options, such as:

Kafka source

Kafka channel

Kafka broker

Kafka sink

5.15.1. Kafka event delivery and retries

Using Kafka components in an event-driven architecture provides "at least once" event delivery. This
means that operations are retried until a return code value is received. This makes applications more
resilient to lost events; however, it might result in duplicate events being sent.

For the Kafka event source, there is a fixed number of retries for event delivery by default. For Kafka
channels, retries are only performed if they are configured in the Kafka channel Delivery spec.

See the Event delivery documentation for more information about delivery guarantees.

5.15.2. Kafka source

You can create a Kafka source that reads events from an Apache Kafka cluster and passes these events
to a sink. You can create a Kafka source by using the OpenShift Container Platform web console, the
Knative (kn) CLI, or by creating a KafkaSource object directly as a YAML file and using the OpenShift
CLI (oc) to apply it.

$ oc apply -f <filename>

OpenShift Container Platform 4.6 Serverless

180

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/serverless/#serverless-configuring-event-delivery-examples_serverless-event-delivery
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/serverless/#serverless-install-kafka-odc_serverless-kafka-admin
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/serverless/#serverless-event-delivery

5.15.2.1. Creating a Kafka event source by using the web console

After Knative Kafka is installed on your cluster, you can create a Kafka source by using the web console.
Using the OpenShift Container Platform web console provides a streamlined and intuitive user interface
to create a Kafka source.

Prerequisites

The OpenShift Serverless Operator, Knative Eventing, and the KnativeKafka custom resource
are installed on your cluster.

You have logged in to the web console.

You have access to a Red Hat AMQ Streams (Kafka) cluster that produces the Kafka messages
you want to import.

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

Procedure

1. In the Developer perspective, navigate to the Add page and select Event Source.

2. In the Event Sources page, select Kafka Source in the Type section.

3. Configure the Kafka Source settings:

a. Add a comma-separated list of Bootstrap Servers.

b. Add a comma-separated list of Topics.

c. Add a Consumer Group.

d. Select the Service Account Name for the service account that you created.

e. Select the Sink for the event source. A Sink can be either a Resource, such as a channel,
broker, or service, or a URI.

f. Enter a Name for the Kafka event source.

4. Click Create.

Verification

You can verify that the Kafka event source was created and is connected to the sink by viewing the
Topology page.

1. In the Developer perspective, navigate to Topology.

2. View the Kafka event source and sink.

CHAPTER 5. DEVELOP

181

5.15.2.2. Creating a Kafka event source by using the Knative CLI

You can use the kn source kafka create command to create a Kafka source by using the Knative (kn)
CLI. Using the Knative CLI to create event sources provides a more streamlined and intuitive user
interface than modifying YAML files directly.

Prerequisites

The OpenShift Serverless Operator, Knative Eventing, Knative Serving, and the KnativeKafka
custom resource (CR) are installed on your cluster.

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

You have access to a Red Hat AMQ Streams (Kafka) cluster that produces the Kafka messages
you want to import.

You have installed the Knative (kn) CLI.

Optional: You have installed the OpenShift CLI (oc) if you want to use the verification steps in
this procedure.

Procedure

1. To verify that the Kafka event source is working, create a Knative service that dumps incoming
events into the service logs:

2. Create a KafkaSource CR:

NOTE

$ kn service create event-display \
 --image quay.io/openshift-knative/knative-eventing-sources-event-display

$ kn source kafka create <kafka_source_name> \
 --servers <cluster_kafka_bootstrap>.kafka.svc:9092 \
 --topics <topic_name> --consumergroup my-consumer-group \
 --sink event-display

OpenShift Container Platform 4.6 Serverless

182

NOTE

Replace the placeholder values in this command with values for your source
name, bootstrap servers, and topics.

The --servers, --topics, and --consumergroup options specify the connection parameters to
the Kafka cluster. The --consumergroup option is optional.

3. Optional: View details about the KafkaSource CR you created:

Example output

Verification steps

1. Trigger the Kafka instance to send a message to the topic:

Enter the message in the prompt. This command assumes that:

The Kafka cluster is installed in the kafka namespace.

The KafkaSource object has been configured to use the my-topic topic.

2. Verify that the message arrived by viewing the logs:

Example output

$ kn source kafka describe <kafka_source_name>

Name: example-kafka-source
Namespace: kafka
Age: 1h
BootstrapServers: example-cluster-kafka-bootstrap.kafka.svc:9092
Topics: example-topic
ConsumerGroup: example-consumer-group

Sink:
 Name: event-display
 Namespace: default
 Resource: Service (serving.knative.dev/v1)

Conditions:
 OK TYPE AGE REASON
 ++ Ready 1h
 ++ Deployed 1h
 ++ SinkProvided 1h

$ oc -n kafka run kafka-producer \
 -ti --image=quay.io/strimzi/kafka:latest-kafka-2.7.0 --rm=true \
 --restart=Never -- bin/kafka-console-producer.sh \
 --broker-list <cluster_kafka_bootstrap>:9092 --topic my-topic

$ oc logs $(oc get pod -o name | grep event-display) -c user-container

☁� cloudevents.Event

CHAPTER 5. DEVELOP

183

1

5.15.2.2.1. Knative CLI sink flag

When you create an event source by using the Knative (kn) CLI, you can specify a sink where events are
sent to from that resource by using the --sink flag. The sink can be any addressable or callable resource
that can receive incoming events from other resources.

The following example creates a sink binding that uses a service, http://event-display.svc.cluster.local,
as the sink:

Example command using the sink flag

svc in http://event-display.svc.cluster.local determines that the sink is a Knative service. Other
default sink prefixes include channel, and broker.

5.15.2.3. Creating a Kafka event source by using YAML

Creating Knative resources by using YAML files uses a declarative API, which enables you to describe
applications declaratively and in a reproducible manner. To create a Kafka source by using YAML, you
must create a YAML file that defines a KafkaSource object, then apply it by using the oc apply
command.

Prerequisites

The OpenShift Serverless Operator, Knative Eventing, and the KnativeKafka custom resource
are installed on your cluster.

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

You have access to a Red Hat AMQ Streams (Kafka) cluster that produces the Kafka messages
you want to import.

Install the OpenShift CLI (oc).

Validation: valid
Context Attributes,
 specversion: 1.0
 type: dev.knative.kafka.event
 source: /apis/v1/namespaces/default/kafkasources/example-kafka-source#example-topic
 subject: partition:46#0
 id: partition:46/offset:0
 time: 2021-03-10T11:21:49.4Z
Extensions,
 traceparent: 00-161ff3815727d8755848ec01c866d1cd-7ff3916c44334678-00
Data,
 Hello!

$ kn source binding create bind-heartbeat \
 --namespace sinkbinding-example \
 --subject "Job:batch/v1:app=heartbeat-cron" \
 --sink http://event-display.svc.cluster.local \ 1
 --ce-override "sink=bound"

OpenShift Container Platform 4.6 Serverless

184

1

2

3

Procedure

1. Create a KafkaSource object as a YAML file:

A consumer group is a group of consumers that use the same group ID, and consume data
from a topic.

A topic provides a destination for the storage of data. Each topic is split into one or more
partitions.

A sink specifies where events are sent to from a source.

IMPORTANT

Only the v1beta1 version of the API for KafkaSource objects on OpenShift
Serverless is supported. Do not use the v1alpha1 version of this API, as this
version is now deprecated.

Example KafkaSource object

2. Apply the KafkaSource YAML file:

apiVersion: sources.knative.dev/v1beta1
kind: KafkaSource
metadata:
 name: <source_name>
spec:
 consumerGroup: <group_name> 1
 bootstrapServers:
 - <list_of_bootstrap_servers>
 topics:
 - <list_of_topics> 2
 sink:
 - <list_of_sinks> 3

apiVersion: sources.knative.dev/v1beta1
kind: KafkaSource
metadata:
 name: kafka-source
spec:
 consumerGroup: knative-group
 bootstrapServers:
 - my-cluster-kafka-bootstrap.kafka:9092
 topics:
 - knative-demo-topic
 sink:
 ref:
 apiVersion: serving.knative.dev/v1
 kind: Service
 name: event-display

$ oc apply -f <filename>

CHAPTER 5. DEVELOP

185

Verification

Verify that the Kafka event source was created by entering the following command:

Example output

5.15.3. Kafka broker

For production-ready Knative Eventing deployments, Red Hat recommends using the Knative Kafka
broker implementation. The Kafka broker is an Apache Kafka native implementation of the Knative
broker, which sends CloudEvents directly to the Kafka instance.

IMPORTANT

The Federal Information Processing Standards (FIPS) mode is disabled for Kafka broker.

The Kafka broker has a native integration with Kafka for storing and routing events. This allows better
integration with Kafka for the broker and trigger model over other broker types, and reduces network
hops. Other benefits of the Kafka broker implementation include:

At-least-once delivery guarantees

Ordered delivery of events, based on the CloudEvents partitioning extension

Control plane high availability

A horizontally scalable data plane

The Knative Kafka broker stores incoming CloudEvents as Kafka records, using the binary content mode.
This means that all CloudEvent attributes and extensions are mapped as headers on the Kafka record,
while the data spec of the CloudEvent corresponds to the value of the Kafka record.

For information about using Kafka brokers, see Creating brokers.

5.15.4. Creating a Kafka channel by using YAML

Creating Knative resources by using YAML files uses a declarative API, which enables you to describe
channels declaratively and in a reproducible manner. You can create a Knative Eventing channel that is
backed by Kafka topics by creating a Kafka channel. To create a Kafka channel by using YAML, you must
create a YAML file that defines a KafkaChannel object, then apply it by using the oc apply command.

Prerequisites

The OpenShift Serverless Operator, Knative Eventing, and the KnativeKafka custom resource
are installed on your OpenShift Container Platform cluster.

Install the OpenShift CLI (oc).

You have created a project or have access to a project with the appropriate roles and

$ oc get pods

NAME READY STATUS RESTARTS AGE
kafkasource-kafka-source-5ca0248f-... 1/1 Running 0 13m

OpenShift Container Platform 4.6 Serverless

186

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/serverless/#serverless-using-brokers

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

Procedure

1. Create a KafkaChannel object as a YAML file:

IMPORTANT

Only the v1beta1 version of the API for KafkaChannel objects on OpenShift
Serverless is supported. Do not use the v1alpha1 version of this API, as this
version is now deprecated.

2. Apply the KafkaChannel YAML file:

5.15.5. Kafka sink

Kafka sinks are a type of event sink that are available if a cluster administrator has enabled Kafka on your
cluster. You can send events directly from an event source to a Kafka topic by using a Kafka sink.

5.15.5.1. Using a Kafka sink

You can create an event sink called a Kafka sink that sends events to a Kafka topic. Creating Knative
resources by using YAML files uses a declarative API, which enables you to describe applications
declaratively and in a reproducible manner. To create a Kafka sink by using YAML, you must create a
YAML file that defines a KafkaSink object, then apply it by using the oc apply command.

Prerequisites

The OpenShift Serverless Operator, Knative Eventing, and the KnativeKafka custom resource
(CR) are installed on your cluster.

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

You have access to a Red Hat AMQ Streams (Kafka) cluster that produces the Kafka messages
you want to import.

Install the OpenShift CLI (oc).

Procedure

apiVersion: messaging.knative.dev/v1beta1
kind: KafkaChannel
metadata:
 name: example-channel
 namespace: default
spec:
 numPartitions: 3
 replicationFactor: 1

$ oc apply -f <filename>

CHAPTER 5. DEVELOP

187

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/serverless/#serverless-event-sinks
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/serverless/#knative-event-sources

1

2

3

4

1. Create a KafkaSink object definition as a YAML file:

Kafka sink YAML

2. To create the Kafka sink, apply the KafkaSink YAML file:

3. Configure an event source so that the sink is specified in its spec:

Example of a Kafka sink connected to an API server source

The name of the event source.

The namespace of the event source.

The service account for the event source.

The Kafka sink name.

5.15.6. Additional resources

Red Hat AMQ Streams documentation

Red Hat AMQ Streams TLS and SASL on Kafka documentation

apiVersion: eventing.knative.dev/v1alpha1
kind: KafkaSink
metadata:
 name: <sink-name>
 namespace: <namespace>
spec:
 topic: <topic-name>
 bootstrapServers:
 - <bootstrap-server>

$ oc apply -f <filename>

apiVersion: sources.knative.dev/v1alpha2
kind: ApiServerSource
metadata:
 name: <source-name> 1
 namespace: <namespace> 2
spec:
 serviceAccountName: <service-account-name> 3
 mode: Resource
 resources:
 - apiVersion: v1
 kind: Event
 sink:
 ref:
 apiVersion: eventing.knative.dev/v1alpha1
 kind: KafkaSink
 name: <sink-name> 4

OpenShift Container Platform 4.6 Serverless

188

https://access.redhat.com/documentation/en-us/red_hat_amq/7.6/html/amq_streams_on_openshift_overview/kafka-concepts_str#kafka-concepts-key_str
https://access.redhat.com/documentation/en-us/red_hat_amq/7.6/html-single/using_amq_streams_on_rhel/index#assembly-kafka-encryption-and-authentication-str

Event delivery

Knative Kafka cluster administrator documentation

CHAPTER 5. DEVELOP

189

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/serverless/#serverless-event-delivery
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/serverless/#serverless-kafka-admin

CHAPTER 6. ADMINISTER

6.1. GLOBAL CONFIGURATION

The OpenShift Serverless Operator manages the global configuration of a Knative installation, including
propagating values from the KnativeServing and KnativeEventing custom resources to system config
maps. Any updates to config maps which are applied manually are overwritten by the Operator. However,
modifying the Knative custom resources allows you to set values for these config maps.

Knative has multiple config maps that are named with the prefix config-. All Knative config maps are
created in the same namespace as the custom resource that they apply to. For example, if the
KnativeServing custom resource is created in the knative-serving namespace, all Knative Serving
config maps are also created in this namespace.

The spec.config in the Knative custom resources have one <name> entry for each config map, named
config-<name>, with a value which is be used for the config map data.

6.1.1. Configuring the default channel implementation

You can use the default-ch-webhook config map to specify the default channel implementation of
Knative Eventing. You can specify the default channel implementation for the entire cluster or for one
or more namespaces. Currently the InMemoryChannel and KafkaChannel channel types are
supported.

Prerequisites

You have administrator permissions on OpenShift Container Platform.

You have installed the OpenShift Serverless Operator and Knative Eventing on your cluster.

If you want to use Kafka channels as the default channel implementation, you must also install
the KnativeKafka CR on your cluster.

Procedure

Modify the KnativeEventing custom resource to add configuration details for the default-ch-
webhook config map:

apiVersion: operator.knative.dev/v1alpha1
kind: KnativeEventing
metadata:
 name: knative-eventing
 namespace: knative-eventing
spec:
 config: 1
 default-ch-webhook: 2
 default-ch-config: |
 clusterDefault: 3
 apiVersion: messaging.knative.dev/v1
 kind: InMemoryChannel
 spec:
 delivery:
 backoffDelay: PT0.5S
 backoffPolicy: exponential

OpenShift Container Platform 4.6 Serverless

190

https://kubernetes.io/docs/concepts/configuration/configmap/

1

2

3

4

In spec.config, you can specify the config maps that you want to add modified
configurations for.

The default-ch-webhook config map can be used to specify the default channel
implementation for the cluster or for one or more namespaces.

The cluster-wide default channel type configuration. In this example, the default channel
implementation for the cluster is InMemoryChannel.

The namespace-scoped default channel type configuration. In this example, the default
channel implementation for the my-namespace namespace is KafkaChannel.

IMPORTANT

Configuring a namespace-specific default overrides any cluster-wide settings.

6.1.2. Configuring the default broker backing channel

If you are using a channel-based broker, you can set the default backing channel type for the broker to
either InMemoryChannel or KafkaChannel.

Prerequisites

You have administrator permissions on OpenShift Container Platform.

You have installed the OpenShift Serverless Operator and Knative Eventing on your cluster.

You have installed the OpenShift (oc) CLI.

If you want to use Kafka channels as the default backing channel type, you must also install the
KnativeKafka CR on your cluster.

Procedure

1. Modify the KnativeEventing custom resource (CR) to add configuration details for the config-
br-default-channel config map:

 retry: 5
 namespaceDefaults: 4
 my-namespace:
 apiVersion: messaging.knative.dev/v1beta1
 kind: KafkaChannel
 spec:
 numPartitions: 1
 replicationFactor: 1

apiVersion: operator.knative.dev/v1alpha1
kind: KnativeEventing
metadata:
 name: knative-eventing
 namespace: knative-eventing
spec:
 config: 1
 config-br-default-channel:

CHAPTER 6. ADMINISTER

191

1

2

3

4

In spec.config, you can specify the config maps that you want to add modified
configurations for.

The default backing channel type configuration. In this example, the default channel
implementation for the cluster is KafkaChannel.

The number of partitions for the Kafka channel that backs the broker.

The replication factor for the Kafka channel that backs the broker.

2. Apply the updated KnativeEventing CR:

6.1.3. Configuring the default broker class

You can use the config-br-defaults config map to specify default broker class settings for Knative
Eventing. You can specify the default broker class for the entire cluster or for one or more namespaces.
Currently the MTChannelBasedBroker and Kafka broker types are supported.

Prerequisites

You have administrator permissions on OpenShift Container Platform.

You have installed the OpenShift Serverless Operator and Knative Eventing on your cluster.

If you want to use Kafka broker as the default broker implementation, you must also install the
KnativeKafka CR on your cluster.

Procedure

Modify the KnativeEventing custom resource to add configuration details for the config-br-
defaults config map:

 channel-template-spec: |
 apiVersion: messaging.knative.dev/v1beta1
 kind: KafkaChannel 2
 spec:
 numPartitions: 6 3
 replicationFactor: 3 4

$ oc apply -f <filename>

apiVersion: operator.knative.dev/v1alpha1
kind: KnativeEventing
metadata:
 name: knative-eventing
 namespace: knative-eventing
spec:
 defaultBrokerClass: Kafka 1
 config: 2
 config-br-defaults: 3
 default-br-config: |
 clusterDefault: 4
 brokerClass: Kafka

OpenShift Container Platform 4.6 Serverless

192

1

2

3

4

5

6

7

8

9

The default broker class for Knative Eventing.

In spec.config, you can specify the config maps that you want to add modified
configurations for.

The config-br-defaults config map specifies the default settings for any broker that does
not specify spec.config settings or a broker class.

The cluster-wide default broker class configuration. In this example, the default broker
class implementation for the cluster is Kafka.

The kafka-broker-config config map specifies default settings for the Kafka broker. See
"Configuring Kafka broker settings" in the "Additional resources" section.

The namespace where the kafka-broker-config config map exists.

The namespace-scoped default broker class configuration. In this example, the default
broker class implementation for the my-namespace namespace is
MTChannelBasedBroker. You can specify default broker class implementations for
multiple namespaces.

The config-br-default-channel config map specifies the default backing channel for the
broker. See "Configuring the default broker backing channel" in the "Additional resources"
section.

The namespace where the config-br-default-channel config map exists.

IMPORTANT

Configuring a namespace-specific default overrides any cluster-wide settings.

Additional resources

Configuring Kafka broker settings

Configuring the default broker backing channel

6.1.4. Enabling scale-to-zero

Knative Serving provides automatic scaling, or autoscaling, for applications to match incoming demand.

 apiVersion: v1
 kind: ConfigMap
 name: kafka-broker-config 5
 namespace: knative-eventing 6
 namespaceDefaults: 7
 my-namespace:
 brokerClass: MTChannelBasedBroker
 apiVersion: v1
 kind: ConfigMap
 name: config-br-default-channel 8
 namespace: knative-eventing 9
...

CHAPTER 6. ADMINISTER

193

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/serverless/#serverless-kafka-broker-configmap_serverless-kafka-admin
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/serverless/#serverless-broker-backing-channel-default_serverless-configuration

1

Knative Serving provides automatic scaling, or autoscaling, for applications to match incoming demand.
You can use the enable-scale-to-zero spec to enable or disable scale-to-zero globally for applications
on the cluster.

Prerequisites

You have installed OpenShift Serverless Operator and Knative Serving on your cluster.

You have cluster administrator permissions.

You are using the default Knative Pod Autoscaler. The scale to zero feature is not available if
you are using the Kubernetes Horizontal Pod Autoscaler.

Procedure

Modify the enable-scale-to-zero spec in the KnativeServing custom resource (CR):

Example KnativeServing CR

The enable-scale-to-zero spec can be either "true" or "false". If set to true, scale-to-zero
is enabled. If set to false, applications are scaled down to the configured minimum scale
bound. The default value is "true".

6.1.5. Configuring the scale-to-zero grace period

Knative Serving provides automatic scaling down to zero pods for applications. You can use the scale-
to-zero-grace-period spec to define an upper bound time limit that Knative waits for scale-to-zero
machinery to be in place before the last replica of an application is removed.

Prerequisites

You have installed OpenShift Serverless Operator and Knative Serving on your cluster.

You have cluster administrator permissions.

You are using the default Knative Pod Autoscaler. The scale to zero feature is not available if
you are using the Kubernetes Horizontal Pod Autoscaler.

Procedure

Modify the scale-to-zero-grace-period spec in the KnativeServing custom resource (CR):

Example KnativeServing CR

apiVersion: operator.knative.dev/v1alpha1
kind: KnativeServing
metadata:
 name: knative-serving
spec:
 config:
 autoscaler:
 enable-scale-to-zero: "false" 1

OpenShift Container Platform 4.6 Serverless

194

1 The grace period time in seconds. The default value is 30 seconds.

6.1.6. Overriding system deployment configurations

You can override the default configurations for some specific deployments by modifying the
deployments spec in the KnativeServing and KnativeEventing custom resources (CRs).

6.1.6.1. Overriding Knative Serving system deployment configurations

You can override the default configurations for some specific deployments by modifying the
deployments spec in the KnativeServing custom resource (CR). Currently, overriding default
configuration settings is supported for the resources, replicas, labels, annotations, and nodeSelector
fields.

In the following example, a KnativeServing CR overrides the webhook deployment so that:

The deployment has specified CPU and memory resource limits.

The deployment has 3 replicas.

The example-label: label label is added.

The example-annotation: annotation annotation is added.

The nodeSelector field is set to select nodes with the disktype: hdd label.

NOTE

The KnativeServing CR label and annotation settings override the deployment’s labels
and annotations for both the deployment itself and the resulting pods.

KnativeServing CR example

apiVersion: operator.knative.dev/v1alpha1
kind: KnativeServing
metadata:
 name: knative-serving
spec:
 config:
 autoscaler:
 scale-to-zero-grace-period: "30s" 1

apiVersion: operator.knative.dev/v1alpha1
kind: KnativeServing
metadata:
 name: ks
 namespace: knative-serving
spec:
 high-availability:
 replicas: 2
 deployments:
 - name: webhook
 resources:

CHAPTER 6. ADMINISTER

195

6.1.6.2. Overriding Knative Eventing system deployment configurations

You can override the default configurations for some specific deployments by modifying the
deployments spec in the KnativeEventing custom resource (CR). Currently, overriding default
configuration settings is supported for the eventing-controller, eventing-webhook, and imc-
controller fields.

IMPORTANT

The replicas spec cannot override the number of replicas for deployments that use the
Horizontal Pod Autoscaler (HPA), and does not work for the eventing-webhook
deployment.

In the following example, a KnativeEventing CR overrides the eventing-controller deployment so that:

The deployment has specified CPU and memory resource limits.

The deployment has 3 replicas.

The example-label: label label is added.

The example-annotation: annotation annotation is added.

The nodeSelector field is set to select nodes with the disktype: hdd label.

KnativeEventing CR example

 - container: webhook
 requests:
 cpu: 300m
 memory: 60Mi
 limits:
 cpu: 1000m
 memory: 1000Mi
 replicas: 3
 labels:
 example-label: label
 annotations:
 example-annotation: annotation
 nodeSelector:
 disktype: hdd

apiVersion: operator.knative.dev/v1beta1
kind: KnativeEventing
metadata:
 name: knative-eventing
 namespace: knative-eventing
spec:
 deployments:
 - name: eventing-controller
 resources:
 - container: eventing-controller
 requests:
 cpu: 300m
 memory: 100Mi

OpenShift Container Platform 4.6 Serverless

196

NOTE

The KnativeEventing CR label and annotation settings override the deployment’s labels
and annotations for both the deployment itself and the resulting pods.

6.1.7. Configuring the EmptyDir extension

emptyDir volumes are empty volumes that are created when a pod is created, and are used to provide
temporary working disk space. emptyDir volumes are deleted when the pod they were created for is
deleted.

The kubernetes.podspec-volumes-emptydir extension controls whether emptyDir volumes can be
used with Knative Serving. To enable using emptyDir volumes, you must modify the KnativeServing
custom resource (CR) to include the following YAML:

Example KnativeServing CR

6.1.8. HTTPS redirection global settings

HTTPS redirection provides redirection for incoming HTTP requests. These redirected HTTP requests
are encrypted. You can enable HTTPS redirection for all services on the cluster by configuring the
httpProtocol spec for the KnativeServing custom resource (CR).

Example KnativeServing CR that enables HTTPS redirection

 limits:
 cpu: 1000m
 memory: 250Mi
 replicas: 3
 labels:
 example-label: label
 annotations:
 example-annotation: annotation
 nodeSelector:
 disktype: hdd

apiVersion: operator.knative.dev/v1alpha1
kind: KnativeServing
metadata:
 name: knative-serving
spec:
 config:
 features:
 kubernetes.podspec-volumes-emptydir: enabled
...

apiVersion: operator.knative.dev/v1alpha1
kind: KnativeServing
metadata:
 name: knative-serving
spec:
 config:

CHAPTER 6. ADMINISTER

197

6.1.9. Setting the URL scheme for external routes

The URL scheme of external routes defaults to HTTPS for enhanced security. This scheme is
determined by the default-external-scheme key in the KnativeServing custom resource (CR) spec.

Default spec

You can override the default spec to use HTTP by modifying the default-external-scheme key:

HTTP override spec

6.1.10. Setting the Kourier Gateway service type

The Kourier Gateway is exposed by default as the ClusterIP service type. This service type is
determined by the service-type ingress spec in the KnativeServing custom resource (CR).

Default spec

You can override the default service type to use a load balancer service type instead by modifying the
service-type spec:

LoadBalancer override spec

 network:
 httpProtocol: "redirected"
...

...
spec:
 config:
 network:
 default-external-scheme: "https"
...

...
spec:
 config:
 network:
 default-external-scheme: "http"
...

...
spec:
 ingress:
 kourier:
 service-type: ClusterIP
...

...
spec:
 ingress:

OpenShift Container Platform 4.6 Serverless

198

6.1.11. Enabling PVC support

Some serverless applications need permanent data storage. To achieve this, you can configure
persistent volume claims (PVCs) for your Knative services.

IMPORTANT

PVC support for Knative services is a Technology Preview feature only. Technology
Preview features are not supported with Red Hat production service level agreements
(SLAs) and might not be functionally complete. Red Hat does not recommend using
them in production. These features provide early access to upcoming product features,
enabling customers to test functionality and provide feedback during the development
process.

For more information about the support scope of Red Hat Technology Preview features,
see https://access.redhat.com/support/offerings/techpreview/.

Procedure

1. To enable Knative Serving to use PVCs and write to them, modify the KnativeServing custom
resource (CR) to include the following YAML:

Enabling PVCs with write access

The kubernetes.podspec-persistent-volume-claim extension controls whether persistent
volumes (PVs) can be used with Knative Serving.

The kubernetes.podspec-persistent-volume-write extension controls whether PVs are
available to Knative Serving with the write access.

2. To claim a PV, modify your service to include the PV configuration. For example, you might have
a persistent volume claim with the following configuration:

NOTE

Use the storage class that supports the access mode that you are requesting.
For example, you can use the ocs-storagecluster-cephfs class for the
ReadWriteMany access mode.

PersistentVolumeClaim configuration

 kourier:
 service-type: LoadBalancer
...

...
spec:
 config:
 features:
 "kubernetes.podspec-persistent-volume-claim": enabled
 "kubernetes.podspec-persistent-volume-write": enabled
...

CHAPTER 6. ADMINISTER

199

https://access.redhat.com/support/offerings/techpreview/

1

2

3

In this case, to claim a PV with write access, modify your service as follows:

Knative service PVC configuration

Volume mount specification.

Persistent volume claim specification.

Flag that enables read-only access.

NOTE

To successfully use persistent storage in Knative services, you need additional
configuration, such as the user permissions for the Knative container user.

6.1.12. Enabling init containers

Init containers are specialized containers that are run before application containers in a pod. They are
generally used to implement initialization logic for an application, which may include running setup
scripts or downloading required configurations. You can enable the use of init containers for Knative

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: example-pv-claim
 namespace: my-ns
spec:
 accessModes:
 - ReadWriteMany
 storageClassName: ocs-storagecluster-cephfs
 resources:
 requests:
 storage: 1Gi

apiVersion: serving.knative.dev/v1
kind: Service
metadata:
 namespace: my-ns
...
spec:
 template:
 spec:
 containers:
 ...
 volumeMounts: 1
 - mountPath: /data
 name: mydata
 readOnly: false
 volumes:
 - name: mydata
 persistentVolumeClaim: 2
 claimName: example-pv-claim
 readOnly: false 3

OpenShift Container Platform 4.6 Serverless

200

https://kubernetes.io/docs/concepts/workloads/pods/init-containers/

services by modifying the KnativeServing custom resource (CR).

IMPORTANT

Init containers for Knative services is a Technology Preview feature only. Technology
Preview features are not supported with Red Hat production service level agreements
(SLAs) and might not be functionally complete. Red Hat does not recommend using
them in production. These features provide early access to upcoming product features,
enabling customers to test functionality and provide feedback during the development
process.

For more information about the support scope of Red Hat Technology Preview features,
see https://access.redhat.com/support/offerings/techpreview/.

NOTE

Init containers may cause longer application start-up times and should be used with
caution for serverless applications, which are expected to scale up and down frequently.

Prerequisites

You have installed OpenShift Serverless Operator and Knative Serving on your cluster.

You have cluster administrator permissions.

Procedure

Enable the use of init containers by adding the kubernetes.podspec-init-containers flag to
the KnativeServing CR:

Example KnativeServing CR

6.1.13. Tag-to-digest resolution

If the Knative Serving controller has access to the container registry, Knative Serving resolves image
tags to a digest when you create a revision of a service. This is known as tag-to-digest resolution, and
helps to provide consistency for deployments.

To give the controller access to the container registry on OpenShift Container Platform, you must
create a secret and then configure controller custom certificates. You can configure controller custom
certificates by modifying the controller-custom-certs spec in the KnativeServing custom resource
(CR). The secret must reside in the same namespace as the KnativeServing CR.

If a secret is not included in the KnativeServing CR, this setting defaults to using public key

apiVersion: operator.knative.dev/v1alpha1
kind: KnativeServing
metadata:
 name: knative-serving
spec:
 config:
 features:
 kubernetes.podspec-init-containers: enabled
...

CHAPTER 6. ADMINISTER

201

https://access.redhat.com/support/offerings/techpreview/

infrastructure (PKI). When using PKI, the cluster-wide certificates are automatically injected into the
Knative Serving controller by using the config-service-sa config map. The OpenShift Serverless
Operator populates the config-service-sa config map with cluster-wide certificates and mounts the
config map as a volume to the controller.

6.1.13.1. Configuring tag-to-digest resolution by using a secret

If the controller-custom-certs spec uses the Secret type, the secret is mounted as a secret volume.
Knative components consume the secret directly, assuming that the secret has the required certificates.

Prerequisites

You have cluster administrator permissions on OpenShift Container Platform.

You have installed the OpenShift Serverless Operator and Knative Serving on your cluster.

Procedure

1. Create a secret:

Example command

2. Configure the controller-custom-certs spec in the KnativeServing custom resource (CR) to
use the Secret type:

Example KnativeServing CR

6.1.14. Additional resources

Managing resources from custom resource definitions

Understanding persistent storage

Configuring a custom PKI

6.2. CONFIGURING KNATIVE KAFKA

Knative Kafka provides integration options for you to use supported versions of the Apache Kafka
message streaming platform with OpenShift Serverless. Kafka provides options for event source,
channel, broker, and event sink capabilities.

$ oc -n knative-serving create secret generic custom-secret --from-file=<secret_name>.crt=
<path_to_certificate>

apiVersion: operator.knative.dev/v1alpha1
kind: KnativeServing
metadata:
 name: knative-serving
 namespace: knative-serving
spec:
 controller-custom-certs:
 name: custom-secret
 type: Secret

OpenShift Container Platform 4.6 Serverless

202

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/operators/#managing-resources-from-crds
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/storage/#understanding-persistent-storage
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/networking/#configuring-a-custom-pki-1

In addition to the Knative Eventing components that are provided as part of a core OpenShift Serverless
installation, cluster administrators can install the KnativeKafka custom resource (CR).

NOTE

Knative Kafka is not currently supported for IBM Z and IBM Power Systems.

The KnativeKafka CR provides users with additional options, such as:

Kafka source

Kafka channel

Kafka broker

Kafka sink

6.2.1. Installing Knative Kafka

Knative Kafka provides integration options for you to use supported versions of the Apache Kafka
message streaming platform with OpenShift Serverless. Knative Kafka functionality is available in an
OpenShift Serverless installation if you have installed the KnativeKafka custom resource.

Prerequisites

You have installed the OpenShift Serverless Operator and Knative Eventing on your cluster.

You have access to a Red Hat AMQ Streams cluster.

Install the OpenShift CLI (oc) if you want to use the verification steps.

You have cluster administrator permissions on OpenShift Container Platform.

You are logged in to the OpenShift Container Platform web console.

Procedure

1. In the Administrator perspective, navigate to Operators → Installed Operators.

2. Check that the Project dropdown at the top of the page is set to Project: knative-eventing.

3. In the list of Provided APIs for the OpenShift Serverless Operator, find the Knative Kafka box
and click Create Instance.

4. Configure the KnativeKafka object in the Create Knative Kafka page.

IMPORTANT

To use the Kafka channel, source, broker, or sink on your cluster, you must toggle
the enabled switch for the options you want to use to true. These switches are
set to false by default. Additionally, to use the Kafka channel, broker, or sink you
must specify the bootstrap servers.

Example KnativeKafka custom resource

CHAPTER 6. ADMINISTER

203

1

2

3

4

5

6

7

8

Enables developers to use the KafkaChannel channel type in the cluster.

A comma-separated list of bootstrap servers from your AMQ Streams cluster.

Enables developers to use the KafkaSource event source type in the cluster.

Enables developers to use the Knative Kafka broker implementation in the cluster.

A comma-separated list of bootstrap servers from your Red Hat AMQ Streams cluster.

Defines the number of partitions of the Kafka topics, backed by the Broker objects. The
default is 10.

Defines the replication factor of the Kafka topics, backed by the Broker objects. The
default is 3.

Enables developers to use a Kafka sink in the cluster.

NOTE

The replicationFactor value must be less than or equal to the number of nodes
of your Red Hat AMQ Streams cluster.

a. Using the form is recommended for simpler configurations that do not require full control of
KnativeKafka object creation.

b. Editing the YAML is recommended for more complex configurations that require full control
of KnativeKafka object creation. You can access the YAML by clicking the Edit YAML link
in the top right of the Create Knative Kafka page.

5. Click Create after you have completed any of the optional configurations for Kafka. You are
automatically directed to the Knative Kafka tab where knative-kafka is in the list of resources.

apiVersion: operator.serverless.openshift.io/v1alpha1
kind: KnativeKafka
metadata:
 name: knative-kafka
 namespace: knative-eventing
spec:
 channel:
 enabled: true 1
 bootstrapServers: <bootstrap_servers> 2
 source:
 enabled: true 3
 broker:
 enabled: true 4
 defaultConfig:
 bootstrapServers: <bootstrap_servers> 5
 numPartitions: <num_partitions> 6
 replicationFactor: <replication_factor> 7
 sink:
 enabled: true 8

OpenShift Container Platform 4.6 Serverless

204

Verification

1. Click on the knative-kafka resource in the Knative Kafka tab. You are automatically directed to
the Knative Kafka Overview page.

2. View the list of Conditions for the resource and confirm that they have a status of True.

If the conditions have a status of Unknown or False, wait a few moments to refresh the page.

3. Check that the Knative Kafka resources have been created:

Example output

6.2.2. Security configuration for Knative Kafka

Kafka clusters are generally secured by using the TLS or SASL authentication methods. You can

$ oc get pods -n knative-eventing

NAME READY STATUS RESTARTS AGE
kafka-broker-dispatcher-7769fbbcbb-xgffn 2/2 Running 0 44s
kafka-broker-receiver-5fb56f7656-fhq8d 2/2 Running 0 44s
kafka-channel-dispatcher-84fd6cb7f9-k2tjv 2/2 Running 0 44s
kafka-channel-receiver-9b7f795d5-c76xr 2/2 Running 0 44s
kafka-controller-6f95659bf6-trd6r 2/2 Running 0 44s
kafka-source-dispatcher-6bf98bdfff-8bcsn 2/2 Running 0 44s
kafka-webhook-eventing-68dc95d54b-825xs 2/2 Running 0 44s

CHAPTER 6. ADMINISTER

205

Kafka clusters are generally secured by using the TLS or SASL authentication methods. You can
configure a Kafka broker or channel to work against a protected Red Hat AMQ Streams cluster by using
TLS or SASL.

NOTE

Red Hat recommends that you enable both SASL and TLS together.

6.2.2.1. Configuring TLS authentication for Kafka brokers

Transport Layer Security (TLS) is used by Apache Kafka clients and servers to encrypt traffic between
Knative and Kafka, as well as for authentication. TLS is the only supported method of traffic encryption
for Knative Kafka.

Prerequisites

You have cluster administrator permissions on OpenShift Container Platform.

The OpenShift Serverless Operator, Knative Eventing, and the KnativeKafka CR are installed
on your OpenShift Container Platform cluster.

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

You have a Kafka cluster CA certificate stored as a .pem file.

You have a Kafka cluster client certificate and a key stored as .pem files.

Install the OpenShift CLI (oc).

Procedure

1. Create the certificate files as a secret in the knative-eventing namespace:

IMPORTANT

Use the key names ca.crt, user.crt, and user.key. Do not change them.

2. Edit the KnativeKafka CR and add a reference to your secret in the broker spec:

$ oc create secret -n knative-eventing generic <secret_name> \
 --from-literal=protocol=SSL \
 --from-file=ca.crt=caroot.pem \
 --from-file=user.crt=certificate.pem \
 --from-file=user.key=key.pem

apiVersion: operator.serverless.openshift.io/v1alpha1
kind: KnativeKafka
metadata:
 namespace: knative-eventing
 name: knative-kafka
spec:
 broker:
 enabled: true

OpenShift Container Platform 4.6 Serverless

206

6.2.2.2. Configuring SASL authentication for Kafka brokers

Simple Authentication and Security Layer (SASL) is used by Apache Kafka for authentication. If you use
SASL authentication on your cluster, users must provide credentials to Knative for communicating with
the Kafka cluster; otherwise events cannot be produced or consumed.

Prerequisites

You have cluster administrator permissions on OpenShift Container Platform.

The OpenShift Serverless Operator, Knative Eventing, and the KnativeKafka CR are installed
on your OpenShift Container Platform cluster.

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

You have a username and password for a Kafka cluster.

You have chosen the SASL mechanism to use, for example, PLAIN, SCRAM-SHA-256, or
SCRAM-SHA-512.

If TLS is enabled, you also need the ca.crt certificate file for the Kafka cluster.

Install the OpenShift CLI (oc).

Procedure

1. Create the certificate files as a secret in the knative-eventing namespace:

Use the key names ca.crt, password, and sasl.mechanism. Do not change them.

If you want to use SASL with public CA certificates, you must use the tls.enabled=true flag,
rather than the ca.crt argument, when creating the secret. For example:

2. Edit the KnativeKafka CR and add a reference to your secret in the broker spec:

 defaultConfig:
 authSecretName: <secret_name>
...

$ oc create secret -n knative-eventing generic <secret_name> \
 --from-literal=protocol=SASL_SSL \
 --from-literal=sasl.mechanism=<sasl_mechanism> \
 --from-file=ca.crt=caroot.pem \
 --from-literal=password="SecretPassword" \
 --from-literal=user="my-sasl-user"

$ oc create secret -n <namespace> generic <kafka_auth_secret> \
 --from-literal=tls.enabled=true \
 --from-literal=password="SecretPassword" \
 --from-literal=saslType="SCRAM-SHA-512" \
 --from-literal=user="my-sasl-user"

apiVersion: operator.serverless.openshift.io/v1alpha1
kind: KnativeKafka

CHAPTER 6. ADMINISTER

207

6.2.2.3. Configuring TLS authentication for Kafka channels

Transport Layer Security (TLS) is used by Apache Kafka clients and servers to encrypt traffic between
Knative and Kafka, as well as for authentication. TLS is the only supported method of traffic encryption
for Knative Kafka.

Prerequisites

You have cluster administrator permissions on OpenShift Container Platform.

The OpenShift Serverless Operator, Knative Eventing, and the KnativeKafka CR are installed
on your OpenShift Container Platform cluster.

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

You have a Kafka cluster CA certificate stored as a .pem file.

You have a Kafka cluster client certificate and a key stored as .pem files.

Install the OpenShift CLI (oc).

Procedure

1. Create the certificate files as secrets in your chosen namespace:

IMPORTANT

Use the key names ca.crt, user.crt, and user.key. Do not change them.

2. Start editing the KnativeKafka custom resource:

3. Reference your secret and the namespace of the secret:

metadata:
 namespace: knative-eventing
 name: knative-kafka
spec:
 broker:
 enabled: true
 defaultConfig:
 authSecretName: <secret_name>
...

$ oc create secret -n <namespace> generic <kafka_auth_secret> \
 --from-file=ca.crt=caroot.pem \
 --from-file=user.crt=certificate.pem \
 --from-file=user.key=key.pem

$ oc edit knativekafka

apiVersion: operator.serverless.openshift.io/v1alpha1
kind: KnativeKafka
metadata:

OpenShift Container Platform 4.6 Serverless

208

NOTE

Make sure to specify the matching port in the bootstrap server.

For example:

6.2.2.4. Configuring SASL authentication for Kafka channels

Simple Authentication and Security Layer (SASL) is used by Apache Kafka for authentication. If you use
SASL authentication on your cluster, users must provide credentials to Knative for communicating with
the Kafka cluster; otherwise events cannot be produced or consumed.

Prerequisites

You have cluster administrator permissions on OpenShift Container Platform.

The OpenShift Serverless Operator, Knative Eventing, and the KnativeKafka CR are installed
on your OpenShift Container Platform cluster.

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

You have a username and password for a Kafka cluster.

You have chosen the SASL mechanism to use, for example, PLAIN, SCRAM-SHA-256, or
SCRAM-SHA-512.

If TLS is enabled, you also need the ca.crt certificate file for the Kafka cluster.

 namespace: knative-eventing
 name: knative-kafka
spec:
 channel:
 authSecretName: <kafka_auth_secret>
 authSecretNamespace: <kafka_auth_secret_namespace>
 bootstrapServers: <bootstrap_servers>
 enabled: true
 source:
 enabled: true

apiVersion: operator.serverless.openshift.io/v1alpha1
kind: KnativeKafka
metadata:
 namespace: knative-eventing
 name: knative-kafka
spec:
 channel:
 authSecretName: tls-user
 authSecretNamespace: kafka
 bootstrapServers: eventing-kafka-bootstrap.kafka.svc:9094
 enabled: true
 source:
 enabled: true

CHAPTER 6. ADMINISTER

209

Install the OpenShift CLI (oc).

Procedure

1. Create the certificate files as secrets in your chosen namespace:

Use the key names ca.crt, password, and sasl.mechanism. Do not change them.

If you want to use SASL with public CA certificates, you must use the tls.enabled=true flag,
rather than the ca.crt argument, when creating the secret. For example:

2. Start editing the KnativeKafka custom resource:

3. Reference your secret and the namespace of the secret:

NOTE

Make sure to specify the matching port in the bootstrap server.

For example:

$ oc create secret -n <namespace> generic <kafka_auth_secret> \
 --from-file=ca.crt=caroot.pem \
 --from-literal=password="SecretPassword" \
 --from-literal=saslType="SCRAM-SHA-512" \
 --from-literal=user="my-sasl-user"

$ oc create secret -n <namespace> generic <kafka_auth_secret> \
 --from-literal=tls.enabled=true \
 --from-literal=password="SecretPassword" \
 --from-literal=saslType="SCRAM-SHA-512" \
 --from-literal=user="my-sasl-user"

$ oc edit knativekafka

apiVersion: operator.serverless.openshift.io/v1alpha1
kind: KnativeKafka
metadata:
 namespace: knative-eventing
 name: knative-kafka
spec:
 channel:
 authSecretName: <kafka_auth_secret>
 authSecretNamespace: <kafka_auth_secret_namespace>
 bootstrapServers: <bootstrap_servers>
 enabled: true
 source:
 enabled: true

apiVersion: operator.serverless.openshift.io/v1alpha1
kind: KnativeKafka
metadata:
 namespace: knative-eventing

OpenShift Container Platform 4.6 Serverless

210

1

6.2.2.5. Configuring SASL authentication for Kafka sources

Simple Authentication and Security Layer (SASL) is used by Apache Kafka for authentication. If you use
SASL authentication on your cluster, users must provide credentials to Knative for communicating with
the Kafka cluster; otherwise events cannot be produced or consumed.

Prerequisites

You have cluster or dedicated administrator permissions on OpenShift Container Platform.

The OpenShift Serverless Operator, Knative Eventing, and the KnativeKafka CR are installed
on your OpenShift Container Platform cluster.

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

You have a username and password for a Kafka cluster.

You have chosen the SASL mechanism to use, for example, PLAIN, SCRAM-SHA-256, or
SCRAM-SHA-512.

If TLS is enabled, you also need the ca.crt certificate file for the Kafka cluster.

You have installed the OpenShift (oc) CLI.

Procedure

1. Create the certificate files as secrets in your chosen namespace:

The SASL type can be PLAIN, SCRAM-SHA-256, or SCRAM-SHA-512.

2. Create or modify your Kafka source so that it contains the following spec configuration:

 name: knative-kafka
spec:
 channel:
 authSecretName: scram-user
 authSecretNamespace: kafka
 bootstrapServers: eventing-kafka-bootstrap.kafka.svc:9093
 enabled: true
 source:
 enabled: true

$ oc create secret -n <namespace> generic <kafka_auth_secret> \
 --from-file=ca.crt=caroot.pem \
 --from-literal=password="SecretPassword" \
 --from-literal=saslType="SCRAM-SHA-512" \ 1
 --from-literal=user="my-sasl-user"

apiVersion: sources.knative.dev/v1beta1
kind: KafkaSource
metadata:
 name: example-source
spec:

CHAPTER 6. ADMINISTER

211

1 The caCert spec is not required if you are using a public cloud Kafka service, such as Red
Hat OpenShift Streams for Apache Kafka.

6.2.2.6. Configuring security for Kafka sinks

Transport Layer Security (TLS) is used by Apache Kafka clients and servers to encrypt traffic between
Knative and Kafka, as well as for authentication. TLS is the only supported method of traffic encryption
for Knative Kafka.

Simple Authentication and Security Layer (SASL) is used by Apache Kafka for authentication. If you use
SASL authentication on your cluster, users must provide credentials to Knative for communicating with
the Kafka cluster; otherwise events cannot be produced or consumed.

Prerequisites

The OpenShift Serverless Operator, Knative Eventing, and the KnativeKafka custom resources
(CRs) are installed on your OpenShift Container Platform cluster.

Kafka sink is enabled in the KnativeKafka CR.

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

You have a Kafka cluster CA certificate stored as a .pem file.

You have a Kafka cluster client certificate and a key stored as .pem files.

You have installed the OpenShift (oc) CLI.

You have chosen the SASL mechanism to use, for example, PLAIN, SCRAM-SHA-256, or
SCRAM-SHA-512.

...
 net:
 sasl:
 enable: true
 user:
 secretKeyRef:
 name: <kafka_auth_secret>
 key: user
 password:
 secretKeyRef:
 name: <kafka_auth_secret>
 key: password
 type:
 secretKeyRef:
 name: <kafka_auth_secret>
 key: saslType
 tls:
 enable: true
 caCert: 1
 secretKeyRef:
 name: <kafka_auth_secret>
 key: ca.crt
...

OpenShift Container Platform 4.6 Serverless

212

1

1

Procedure

1. Create the certificate files as a secret in the same namespace as your KafkaSink object:

IMPORTANT

Certificates and keys must be in PEM format.

For authentication using SASL without encryption:

For authentication using SASL and encryption using TLS:

The ca.crt can be omitted to use the system’s root CA set if you are using a public
cloud managed Kafka service, such as Red Hat OpenShift Streams for Apache Kafka.

For authentication and encryption using TLS:

The ca.crt can be omitted to use the system’s root CA set if you are using a public
cloud managed Kafka service, such as Red Hat OpenShift Streams for Apache Kafka.

2. Create or modify a KafkaSink object and add a reference to your secret in the auth spec:

$ oc create secret -n <namespace> generic <secret_name> \
 --from-literal=protocol=SASL_PLAINTEXT \
 --from-literal=sasl.mechanism=<sasl_mechanism> \
 --from-literal=user=<username> \
 --from-literal=password=<password>

$ oc create secret -n <namespace> generic <secret_name> \
 --from-literal=protocol=SASL_SSL \
 --from-literal=sasl.mechanism=<sasl_mechanism> \
 --from-file=ca.crt=<my_caroot.pem_file_path> \ 1
 --from-literal=user=<username> \
 --from-literal=password=<password>

$ oc create secret -n <namespace> generic <secret_name> \
 --from-literal=protocol=SSL \
 --from-file=ca.crt=<my_caroot.pem_file_path> \ 1
 --from-file=user.crt=<my_cert.pem_file_path> \
 --from-file=user.key=<my_key.pem_file_path>

apiVersion: eventing.knative.dev/v1alpha1
kind: KafkaSink
metadata:
 name: <sink_name>
 namespace: <namespace>
spec:
...
 auth:
 secret:

CHAPTER 6. ADMINISTER

213

1

2

3

4

5

3. Apply the KafkaSink object:

6.2.3. Configuring Kafka broker settings

You can configure the replication factor, bootstrap servers, and the number of topic partitions for a
Kafka broker, by creating a config map and referencing this config map in the Kafka Broker object.

Prerequisites

You have cluster or dedicated administrator permissions on OpenShift Container Platform.

The OpenShift Serverless Operator, Knative Eventing, and the KnativeKafka custom resource
(CR) are installed on your OpenShift Container Platform cluster.

You have created a project or have access to a project that has the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

You have installed the OpenShift CLI (oc).

Procedure

1. Modify the kafka-broker-config config map, or create your own config map that contains the
following configuration:

The config map name.

The namespace where the config map exists.

The number of topic partitions for the Kafka broker. This controls how quickly events can
be sent to the broker. A higher number of partitions requires greater compute resources.

The replication factor of topic messages. This prevents against data loss. A higher
replication factor requires greater compute resources and more storage.

A comma separated list of bootstrap servers. This can be inside or outside of the
OpenShift Container Platform cluster, and is a list of Kafka clusters that the broker
receives events from and sends events to.

IMPORTANT

 ref:
 name: <secret_name>
...

$ oc apply -f <filename>

apiVersion: v1
kind: ConfigMap
metadata:
 name: <config_map_name> 1
 namespace: <namespace> 2
data:
 default.topic.partitions: <integer> 3
 default.topic.replication.factor: <integer> 4
 bootstrap.servers: <list_of_servers> 5

OpenShift Container Platform 4.6 Serverless

214

1

2

3

4

5

IMPORTANT

The default.topic.replication.factor value must be less than or equal to the
number of Kafka broker instances in your cluster. For example, if you only have
one Kafka broker, the default.topic.replication.factor value should not be more
than "1".

Example Kafka broker config map

2. Apply the config map:

3. Specify the config map for the Kafka Broker object:

Example Broker object

The broker name.

The namespace where the broker exists.

The broker class annotation. In this example, the broker is a Kafka broker that uses the
class value Kafka.

The config map name.

The namespace where the config map exists.

apiVersion: v1
kind: ConfigMap
metadata:
 name: kafka-broker-config
 namespace: knative-eventing
data:
 default.topic.partitions: "10"
 default.topic.replication.factor: "3"
 bootstrap.servers: "my-cluster-kafka-bootstrap.kafka:9092"

$ oc apply -f <config_map_filename>

apiVersion: eventing.knative.dev/v1
kind: Broker
metadata:
 name: <broker_name> 1
 namespace: <namespace> 2
 annotations:
 eventing.knative.dev/broker.class: Kafka 3
spec:
 config:
 apiVersion: v1
 kind: ConfigMap
 name: <config_map_name> 4
 namespace: <namespace> 5
...

CHAPTER 6. ADMINISTER

215

1

2

3

4

4. Apply the broker:

Additional resources

Creating brokers

6.2.4. Additional resources

Red Hat AMQ Streams documentation

TLS and SASL on Kafka

6.3. SERVERLESS COMPONENTS IN THE ADMINISTRATOR
PERSPECTIVE

If you do not want to switch to the Developer perspective in the OpenShift Container Platform web
console or use the Knative (kn) CLI or YAML files, you can create Knative components by using the
Administator perspective of the OpenShift Container Platform web console.

6.3.1. Creating serverless applications using the Administrator perspective

Serverless applications are created and deployed as Kubernetes services, defined by a route and a
configuration, and contained in a YAML file. To deploy a serverless application using OpenShift
Serverless, you must create a Knative Service object.

Example Knative Service object YAML file

The name of the application.

The namespace the application uses.

The image of the application.

The environment variable printed out by the sample application.

After the service is created and the application is deployed, Knative creates an immutable revision for

$ oc apply -f <broker_filename>

apiVersion: serving.knative.dev/v1
kind: Service
metadata:
 name: hello 1
 namespace: default 2
spec:
 template:
 spec:
 containers:
 - image: docker.io/openshift/hello-openshift 3
 env:
 - name: RESPONSE 4
 value: "Hello Serverless!"

OpenShift Container Platform 4.6 Serverless

216

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/serverless/#serverless-using-brokers
https://access.redhat.com/documentation/en-us/red_hat_amq/7.6/html/amq_streams_on_openshift_overview/kafka-concepts_str#kafka-concepts-key_str
https://access.redhat.com/documentation/en-us/red_hat_amq/7.5/html-single/using_amq_streams_on_rhel/index#assembly-kafka-encryption-and-authentication-str

this version of the application. Knative also performs network programming to create a route, ingress,
service, and load balancer for your application and automatically scales your pods up and down based on
traffic.

Prerequisites

To create serverless applications using the Administrator perspective, ensure that you have completed
the following steps.

The OpenShift Serverless Operator and Knative Serving are installed.

You have logged in to the web console and are in the Administrator perspective.

Procedure

1. Navigate to the Serverless → Serving page.

2. In the Create list, select Service.

3. Manually enter YAML or JSON definitions, or by dragging and dropping a file into the editor.

4. Click Create.

6.3.2. Additional resources

Serverless applications

6.4. INTEGRATING SERVICE MESH WITH OPENSHIFT SERVERLESS

The OpenShift Serverless Operator provides Kourier as the default ingress for Knative. However, you
can use Service Mesh with OpenShift Serverless whether Kourier is enabled or not. Integrating with
Kourier disabled allows you to configure additional networking and routing options that the Kourier
ingress does not support, such as mTLS functionality.

IMPORTANT

OpenShift Serverless only supports the use of Red Hat OpenShift Service Mesh
functionality that is explicitly documented in this guide, and does not support other
undocumented features.

6.4.1. Prerequisites

The examples in the following procedures use the domain example.com. The example
certificate for this domain is used as a certificate authority (CA) that signs the subdomain
certificate.
To complete and verify these procedures in your deployment, you need either a certificate
signed by a widely trusted public CA or a CA provided by your organization. Example commands
must be adjusted according to your domain, subdomain, and CA.

You must configure the wildcard certificate to match the domain of your OpenShift Container
Platform cluster. For example, if your OpenShift Container Platform console address is
https://console-openshift-console.apps.openshift.example.com, you must configure the
wildcard certificate so that the domain is *.apps.openshift.example.com. For more information
about configuring wildcard certificates, see the following topic about Creating a certificate to
encrypt incoming external traffic.

CHAPTER 6. ADMINISTER

217

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/serverless/#serverless-applications
https://console-openshift-console.apps.openshift.example.com

If you want to use any domain name, including those which are not subdomains of the default
OpenShift Container Platform cluster domain, you must set up domain mapping for those
domains. For more information, see the OpenShift Serverless documentation about Creating a
custom domain mapping.

6.4.2. Creating a certificate to encrypt incoming external traffic

By default, the Service Mesh mTLS feature only secures traffic inside of the Service Mesh itself,
between the ingress gateway and individual pods that have sidecars. To encrypt traffic as it flows into
the OpenShift Container Platform cluster, you must generate a certificate before you enable the
OpenShift Serverless and Service Mesh integration.

Prerequisites

You have access to an OpenShift Container Platform account with cluster administrator access.

You have installed the OpenShift Serverless Operator and Knative Serving.

Install the OpenShift CLI (oc).

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

Procedure

1. Create a root certificate and private key that signs the certificates for your Knative services:

2. Create a wildcard certificate:

3. Sign the wildcard certificate:

4. Create a secret by using the wildcard certificate:

This certificate is picked up by the gateways created when you integrate OpenShift Serverless

$ openssl req -x509 -sha256 -nodes -days 365 -newkey rsa:2048 \
 -subj '/O=Example Inc./CN=example.com' \
 -keyout root.key \
 -out root.crt

$ openssl req -nodes -newkey rsa:2048 \
 -subj "/CN=*.apps.openshift.example.com/O=Example Inc." \
 -keyout wildcard.key \
 -out wildcard.csr

$ openssl x509 -req -days 365 -set_serial 0 \
 -CA root.crt \
 -CAkey root.key \
 -in wildcard.csr \
 -out wildcard.crt

$ oc create -n istio-system secret tls wildcard-certs \
 --key=wildcard.key \
 --cert=wildcard.crt

OpenShift Container Platform 4.6 Serverless

218

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/serverless/#serverless-create-domain-mapping_serverless-custom-domains

1

This certificate is picked up by the gateways created when you integrate OpenShift Serverless
with Service Mesh, so that the ingress gateway serves traffic with this certificate.

6.4.3. Integrating Service Mesh with OpenShift Serverless

You can integrate Service Mesh with OpenShift Serverless without using Kourier as the default ingress.
To do this, do not install the Knative Serving component before completing the following procedure.
There are additional steps required when creating the KnativeServing custom resource definition
(CRD) to integrate Knative Serving with Service Mesh, which are not covered in the general Knative
Serving installation procedure. This procedure might be useful if you want to integrate Service Mesh as
the default and only ingress for your OpenShift Serverless installation.

Prerequisites

You have access to an OpenShift Container Platform account with cluster administrator access.

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

Install the Red Hat OpenShift Service Mesh Operator and create a ServiceMeshControlPlane
resource in the istio-system namespace. If you want to use mTLS functionality, you must also
set the spec.security.dataPlane.mtls field for the ServiceMeshControlPlane resource to
true.

IMPORTANT

Using OpenShift Serverless with Service Mesh is only supported with Red Hat
OpenShift Service Mesh version 2.0.5 or later.

Install the OpenShift Serverless Operator.

Install the OpenShift CLI (oc).

Procedure

1. Add the namespaces that you would like to integrate with Service Mesh to the
ServiceMeshMemberRoll object as members:

A list of namespaces to be integrated with Service Mesh.

IMPORTANT

This list of namespaces must include the knative-serving namespace.

apiVersion: maistra.io/v1
kind: ServiceMeshMemberRoll
metadata:
 name: default
 namespace: istio-system
spec:
 members: 1
 - knative-serving
 - <namespace>

CHAPTER 6. ADMINISTER

219

2. Apply the ServiceMeshMemberRoll resource:

3. Create the necessary gateways so that Service Mesh can accept traffic:

Example knative-local-gateway object using HTTP

$ oc apply -f <filename>

apiVersion: networking.istio.io/v1alpha3
kind: Gateway
metadata:
 name: knative-ingress-gateway
 namespace: knative-serving
spec:
 selector:
 istio: ingressgateway
 servers:
 - port:
 number: 443
 name: https
 protocol: HTTPS
 hosts:
 - "*"
 tls:
 mode: SIMPLE
 credentialName: <wildcard_certs> 1

apiVersion: networking.istio.io/v1alpha3
kind: Gateway
metadata:
 name: knative-local-gateway
 namespace: knative-serving
spec:
 selector:
 istio: ingressgateway
 servers:
 - port:
 number: 8081
 name: http
 protocol: HTTP 2
 hosts:
 - "*"

apiVersion: v1
kind: Service
metadata:
 name: knative-local-gateway
 namespace: istio-system
 labels:
 experimental.istio.io/disable-gateway-port-translation: "true"
spec:
 type: ClusterIP
 selector:
 istio: ingressgateway
 ports:

OpenShift Container Platform 4.6 Serverless

220

1

2

Add the name of the secret that contains the wildcard certificate.

The knative-local-gateway serves HTTP traffic. Using HTTP means that traffic coming
from outside of Service Mesh, but using an internal hostname, such as
example.default.svc.cluster.local, is not encrypted. You can set up encryption for this
path by creating another wildcard certificate and an additional gateway that uses a
different protocol spec.

Example knative-local-gateway object using HTTPS

4. Apply the Gateway resources:

5. Install Knative Serving by creating the following KnativeServing custom resource definition
(CRD), which also enables the Istio integration:

 - name: http2
 port: 80
 targetPort: 8081

apiVersion: networking.istio.io/v1alpha3
kind: Gateway
metadata:
 name: knative-local-gateway
 namespace: knative-serving
spec:
 selector:
 istio: ingressgateway
 servers:
 - port:
 number: 443
 name: https
 protocol: HTTPS
 hosts:
 - "*"
 tls:
 mode: SIMPLE
 credentialName: <wildcard_certs>

$ oc apply -f <filename>

apiVersion: operator.knative.dev/v1alpha1
kind: KnativeServing
metadata:
 name: knative-serving
 namespace: knative-serving
spec:
 ingress:
 istio:
 enabled: true 1
 deployments: 2
 - name: activator
 annotations:
 "sidecar.istio.io/inject": "true"
 "sidecar.istio.io/rewriteAppHTTPProbers": "true"

CHAPTER 6. ADMINISTER

221

1

2

1

2

3

Enables Istio integration.

Enables sidecar injection for Knative Serving data plane pods.

6. Apply the KnativeServing resource:

7. Create a Knative Service that has sidecar injection enabled and uses a pass-through route:

A namespace that is part of the Service Mesh member roll.

Instructs Knative Serving to generate an OpenShift Container Platform pass-through
enabled route, so that the certificates you have generated are served through the ingress
gateway directly.

Injects Service Mesh sidecars into the Knative service pods.

8. Apply the Service resource:

Verification

Access your serverless application by using a secure connection that is now trusted by the CA:

Example command

 - name: autoscaler
 annotations:
 "sidecar.istio.io/inject": "true"
 "sidecar.istio.io/rewriteAppHTTPProbers": "true"

$ oc apply -f <filename>

apiVersion: serving.knative.dev/v1
kind: Service
metadata:
 name: <service_name>
 namespace: <namespace> 1
 annotations:
 serving.knative.openshift.io/enablePassthrough: "true" 2
spec:
 template:
 metadata:
 annotations:
 sidecar.istio.io/inject: "true" 3
 sidecar.istio.io/rewriteAppHTTPProbers: "true"
 spec:
 containers:
 - image: <image_url>

$ oc apply -f <filename>

$ curl --cacert root.crt <service_url>

OpenShift Container Platform 4.6 Serverless

222

Example output

6.4.4. Enabling Knative Serving metrics when using Service Mesh with mTLS

If Service Mesh is enabled with mTLS, metrics for Knative Serving are disabled by default, because
Service Mesh prevents Prometheus from scraping metrics. This section shows how to enable Knative
Serving metrics when using Service Mesh and mTLS.

Prerequisites

You have installed the OpenShift Serverless Operator and Knative Serving on your cluster.

You have installed Red Hat OpenShift Service Mesh with the mTLS functionality enabled.

You have access to an OpenShift Container Platform account with cluster administrator access.

Install the OpenShift CLI (oc).

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

Procedure

1. Specify prometheus as the metrics.backend-destination in the observability spec of the
Knative Serving custom resource (CR):

This step prevents metrics from being disabled by default.

2. Apply the following network policy to allow traffic from the Prometheus namespace:

$ curl --cacert root.crt https://hello-default.apps.openshift.example.com

Hello Openshift!

apiVersion: operator.knative.dev/v1beta1
kind: KnativeServing
metadata:
 name: knative-serving
spec:
 config:
 observability:
 metrics.backend-destination: "prometheus"
...

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: allow-from-openshift-monitoring-ns
 namespace: knative-serving
spec:
 ingress:
 - from:
 - namespaceSelector:
 matchLabels:

CHAPTER 6. ADMINISTER

223

1

3. Modify and reapply the default Service Mesh control plane in the istio-system namespace, so
that it includes the following spec:

6.4.5. Integrating Service Mesh with OpenShift Serverless when Kourier is enabled

You can use Service Mesh with OpenShift Serverless even if Kourier is already enabled. This procedure
might be useful if you have already installed Knative Serving with Kourier enabled, but decide to add a
Service Mesh integration later.

Prerequisites

You have access to an OpenShift Container Platform account with cluster administrator access.

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

Install the OpenShift CLI (oc).

Install the OpenShift Serverless Operator and Knative Serving on your cluster.

Install Red Hat OpenShift Service Mesh. OpenShift Serverless with Service Mesh and Kourier is
supported for use with both Red Hat OpenShift Service Mesh versions 1.x and 2.x.

Procedure

1. Add the namespaces that you would like to integrate with Service Mesh to the
ServiceMeshMemberRoll object as members:

A list of namespaces to be integrated with Service Mesh.

 name: "openshift-monitoring"
 podSelector: {}
...

...
spec:
 proxy:
 networking:
 trafficControl:
 inbound:
 excludedPorts:
 - 8444
...

apiVersion: maistra.io/v1
kind: ServiceMeshMemberRoll
metadata:
 name: default
 namespace: istio-system
spec:
 members:
 - <namespace> 1
...

OpenShift Container Platform 4.6 Serverless

224

1

2. Apply the ServiceMeshMemberRoll resource:

3. Create a network policy that permits traffic flow from Knative system pods to Knative services:

a. For each namespace that you want to integrate with Service Mesh, create a NetworkPolicy
resource:

Add the namespace that you want to integrate with Service Mesh.

NOTE

The knative.openshift.io/part-of: "openshift-serverless" label was added
in OpenShift Serverless 1.22.0. If you are using OpenShift Serverless 1.21.1 or
earlier, add the knative.openshift.io/part-of label to the knative-serving
and knative-serving-ingress namespaces.

Add the label to the knative-serving namespace:

Add the label to the knative-serving-ingress namespace:

b. Apply the NetworkPolicy resource:

6.4.6. Improving memory usage by using secret filtering for Service Mesh

By default, the informers implementation for the Kubernetes client-go library fetches all resources of a
particular type. This can lead to a substantial overhead when many resources are available, which can

$ oc apply -f <filename>

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: allow-from-serving-system-namespace
 namespace: <namespace> 1
spec:
 ingress:
 - from:
 - namespaceSelector:
 matchLabels:
 knative.openshift.io/part-of: "openshift-serverless"
 podSelector: {}
 policyTypes:
 - Ingress
...

$ oc label namespace knative-serving knative.openshift.io/part-
of=openshift-serverless

$ oc label namespace knative-serving-ingress knative.openshift.io/part-
of=openshift-serverless

$ oc apply -f <filename>

CHAPTER 6. ADMINISTER

225

https://aly.arriqaaq.com/kubernetes-informers/

1

cause the Knative net-istio ingress controller to fail on large clusters due to memory leaking. However, a
filtering mechanism is available for the Knative net-istio ingress controller, which enables the controller
to only fetch Knative related secrets. You can enable this mechanism by adding an annotation to the
KnativeServing custom resource (CR).

Prerequisites

You have access to an OpenShift Container Platform account with cluster administrator access.

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

Install Red Hat OpenShift Service Mesh. OpenShift Serverless with Service Mesh only is
supported for use with Red Hat OpenShift Service Mesh version 2.0.5 or later.

Install the OpenShift Serverless Operator and Knative Serving.

Install the OpenShift CLI (oc).

Procedure

Add the serverless.openshift.io/enable-secret-informer-filtering annotation to the
KnativeServing CR:

Example KnativeServing CR

Adding this annotation injects an environment variable,
ENABLE_SECRET_INFORMER_FILTERING_BY_CERT_UID=true, to the net-istio
controller pod.

6.5. SERVERLESS ADMINISTRATOR METRICS

Metrics enable cluster administrators to monitor how OpenShift Serverless cluster components and

apiVersion: operator.knative.dev/v1alpha1
kind: KnativeServing
metadata:
 name: knative-serving
 namespace: knative-serving
 annotations:
 serverless.openshift.io/enable-secret-informer-filtering: "true" 1
spec:
 ingress:
 istio:
 enabled: true
 deployments:
 - annotations:
 sidecar.istio.io/inject: "true"
 sidecar.istio.io/rewriteAppHTTPProbers: "true"
 name: activator
 - annotations:
 sidecar.istio.io/inject: "true"
 sidecar.istio.io/rewriteAppHTTPProbers: "true"
 name: autoscaler

OpenShift Container Platform 4.6 Serverless

226

Metrics enable cluster administrators to monitor how OpenShift Serverless cluster components and
workloads are performing.

You can view different metrics for OpenShift Serverless by navigating to Dashboards in the OpenShift
Container Platform web console Administrator perspective.

6.5.1. Prerequisites

See the OpenShift Container Platform documentation on Managing metrics for information
about enabling metrics for your cluster.

To view metrics for Knative components on OpenShift Container Platform, you need cluster
administrator permissions, and access to the web console Administrator perspective.

WARNING

If Service Mesh is enabled with mTLS, metrics for Knative Serving are disabled by
default because Service Mesh prevents Prometheus from scraping metrics.

For information about resolving this issue, see Enabling Knative Serving metrics
when using Service Mesh with mTLS.

Scraping the metrics does not affect autoscaling of a Knative service, because
scraping requests do not go through the activator. Consequently, no scraping takes
place if no pods are running.

6.5.2. Controller metrics

The following metrics are emitted by any component that implements a controller logic. These metrics
show details about reconciliation operations and the work queue behavior upon which reconciliation
requests are added to the work queue.

Metric name Description Type Tags Unit

work_queue_de
pth

The depth of the
work queue.

Gauge reconciler Integer (no units)

reconcile_count The number of
reconcile
operations.

Counter reconciler,
success

Integer (no units)

reconcile_laten
cy

The latency of
reconcile
operations.

Histogram reconciler,
success

Milliseconds



CHAPTER 6. ADMINISTER

227

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/monitoring/#reviewing-monitoring-dashboards-admin_reviewing-monitoring-dashboards
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/monitoring/#managing-metrics
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/serverless/#serverless-ossm-enabling-serving-metrics_serverless-ossm-setup

workqueue_add
s_total

The total number
of add actions
handled by the
work queue.

Counter name Integer (no units)

workqueue_que
ue_latency_sec
onds

The length of time
an item stays in the
work queue before
being requested.

Histogram name Seconds

workqueue_retri
es_total

The total number
of retries that have
been handled by
the work queue.

Counter name Integer (no units)

workqueue_wor
k_duration_sec
onds

The length of time
it takes to process
and item from the
work queue.

Histogram name Seconds

workqueue_unfi
nished_work_s
econds

The length of time
that outstanding
work queue items
have been in
progress.

Histogram name Seconds

workqueue_lon
gest_running_p
rocessor_secon
ds

The length of time
that the longest
outstanding work
queue items has
been in progress.

Histogram name Seconds

Metric name Description Type Tags Unit

6.5.3. Webhook metrics

Webhook metrics report useful information about operations. For example, if a large number of
operations fail, this might indicate an issue with a user-created resource.

Metric name Description Type Tags Unit

OpenShift Container Platform 4.6 Serverless

228

request_count The number of
requests that are
routed to the
webhook.

Counter admission_allo
wed,
kind_group,
kind_kind,
kind_version,
request_operati
on,
resource_group
,
resource_name
space,
resource_resou
rce,
resource_versio
n

Integer (no units)

request_latenci
es

The response time
for a webhook
request.

Histogram admission_allo
wed,
kind_group,
kind_kind,
kind_version,
request_operati
on,
resource_group
,
resource_name
space,
resource_resou
rce,
resource_versio
n

Milliseconds

Metric name Description Type Tags Unit

6.5.4. Knative Eventing metrics

Cluster administrators can view the following metrics for Knative Eventing components.

By aggregating the metrics from HTTP code, events can be separated into two categories; successful
events (2xx) and failed events (5xx).

6.5.4.1. Broker ingress metrics

You can use the following metrics to debug the broker ingress, see how it is performing, and see which
events are being dispatched by the ingress component.

Metric name Description Type Tags Unit

CHAPTER 6. ADMINISTER

229

event_count Number of events
received by a
broker.

Counter broker_name,
event_type,
namespace_na
me,
response_code,
response_code
_class,
unique_name

Integer (no units)

event_dispatch
_latencies

The time taken to
dispatch an event
to a channel.

Histogram broker_name,
event_type,
namespace_na
me,
response_code,
response_code
_class,
unique_name

Milliseconds

Metric name Description Type Tags Unit

6.5.4.2. Broker filter metrics

You can use the following metrics to debug broker filters, see how they are performing, and see which
events are being dispatched by the filters. You can also measure the latency of the filtering action on an
event.

Metric name Description Type Tags Unit

event_count Number of events
received by a
broker.

Counter broker_name,
container_name
, filter_type,
namespace_na
me,
response_code,
response_code
_class,
trigger_name,
unique_name

Integer (no units)

event_dispatch
_latencies

The time taken to
dispatch an event
to a channel.

Histogram broker_name,
container_name
, filter_type,
namespace_na
me,
response_code,
response_code
_class,
trigger_name,
unique_name

Milliseconds

OpenShift Container Platform 4.6 Serverless

230

event_processi
ng_latencies

The time it takes to
process an event
before it is
dispatched to a
trigger subscriber.

Histogram broker_name,
container_name
, filter_type,
namespace_na
me,
trigger_name,
unique_name

Milliseconds

Metric name Description Type Tags Unit

6.5.4.3. InMemoryChannel dispatcher metrics

You can use the following metrics to debug InMemoryChannel channels, see how they are performing,
and see which events are being dispatched by the channels.

Metric name Description Type Tags Unit

event_count Number of events
dispatched by
InMemoryChan
nel channels.

Counter broker_name,
container_name
, filter_type,
namespace_na
me,
response_code,
response_code
_class,
trigger_name,
unique_name

Integer (no units)

event_dispatch
_latencies

The time taken to
dispatch an event
from an
InMemoryChan
nel channel.

Histogram broker_name,
container_name
, filter_type,
namespace_na
me,
response_code,
response_code
_class,
trigger_name,
unique_name

Milliseconds

6.5.4.4. Event source metrics

You can use the following metrics to verify that events have been delivered from the event source to
the connected event sink.

Metric name Description Type Tags Unit

CHAPTER 6. ADMINISTER

231

event_count Number of events
sent by the event
source.

Counter broker_name,
container_name
, filter_type,
namespace_na
me,
response_code,
response_code
_class,
trigger_name,
unique_name

Integer (no units)

retry_event_cou
nt

Number of retried
events sent by the
event source after
initially failing to
be delivered.

Counter event_source,
event_type,
name,
namespace_na
me,
resource_group
,
response_code,
response_code
_class,
response_error,
response_timeo
ut

Integer (no units)

Metric name Description Type Tags Unit

6.5.5. Knative Serving metrics

Cluster administrators can view the following metrics for Knative Serving components.

6.5.5.1. Activator metrics

You can use the following metrics to understand how applications respond when traffic passes through
the activator.

Metric name Description Type Tags Unit

request_concur
rency

The number of
concurrent
requests that are
routed to the
activator, or
average
concurrency over a
reporting period.

Gauge configuration_n
ame,
container_name
,
namespace_na
me, pod_name,
revision_name,
service_name

Integer (no units)

OpenShift Container Platform 4.6 Serverless

232

request_count The number of
requests that are
routed to
activator. These
are requests that
have been fulfilled
from the activator
handler.

Counter configuration_n
ame,
container_name
,
namespace_na
me, pod_name,
response_code,
response_code
_class,
revision_name,
service_name,

Integer (no units)

request_latenci
es

The response time
in milliseconds for
a fulfilled, routed
request.

Histogram configuration_n
ame,
container_name
,
namespace_na
me, pod_name,
response_code,
response_code
_class,
revision_name,
service_name

Milliseconds

Metric name Description Type Tags Unit

6.5.5.2. Autoscaler metrics

The autoscaler component exposes a number of metrics related to autoscaler behavior for each
revision. For example, at any given time, you can monitor the targeted number of pods the autoscaler
tries to allocate for a service, the average number of requests per second during the stable window, or
whether the autoscaler is in panic mode if you are using the Knative pod autoscaler (KPA).

Metric name Description Type Tags Unit

desired_pods The number of
pods the
autoscaler tries to
allocate for a
service.

Gauge configuration_n
ame,
namespace_na
me,
revision_name,
service_name

Integer (no units)

excess_burst_c
apacity

The excess burst
capacity served
over the stable
window.

Gauge configuration_n
ame,
namespace_na
me,
revision_name,
service_name

Integer (no units)

CHAPTER 6. ADMINISTER

233

stable_request_
concurrency

The average
number of
requests for each
observed pod over
the stable window.

Gauge configuration_n
ame,
namespace_na
me,
revision_name,
service_name

Integer (no units)

panic_request_
concurrency

The average
number of
requests for each
observed pod over
the panic window.

Gauge configuration_n
ame,
namespace_na
me,
revision_name,
service_name

Integer (no units)

target_concurre
ncy_per_pod

The number of
concurrent
requests that the
autoscaler tries to
send to each pod.

Gauge configuration_n
ame,
namespace_na
me,
revision_name,
service_name

Integer (no units)

stable_requests
_per_second

The average
number of
requests-per-
second for each
observed pod over
the stable window.

Gauge configuration_n
ame,
namespace_na
me,
revision_name,
service_name

Integer (no units)

panic_requests
_per_second

The average
number of
requests-per-
second for each
observed pod over
the panic window.

Gauge configuration_n
ame,
namespace_na
me,
revision_name,
service_name

Integer (no units)

target_requests
_per_second

The number of
requests-per-
second that the
autoscaler targets
for each pod.

Gauge configuration_n
ame,
namespace_na
me,
revision_name,
service_name

Integer (no units)

Metric name Description Type Tags Unit

OpenShift Container Platform 4.6 Serverless

234

panic_mode This value is 1 if
the autoscaler is in
panic mode, or 0 if
the autoscaler is
not in panic mode.

Gauge configuration_n
ame,
namespace_na
me,
revision_name,
service_name

Integer (no units)

requested_pods The number of
pods that the
autoscaler has
requested from
the Kubernetes
cluster.

Gauge configuration_n
ame,
namespace_na
me,
revision_name,
service_name

Integer (no units)

actual_pods The number of
pods that are
allocated and
currently have a
ready state.

Gauge configuration_n
ame,
namespace_na
me,
revision_name,
service_name

Integer (no units)

not_ready_pods The number of
pods that have a
not ready state.

Gauge configuration_n
ame,
namespace_na
me,
revision_name,
service_name

Integer (no units)

pending_pods The number of
pods that are
currently pending.

Gauge configuration_n
ame,
namespace_na
me,
revision_name,
service_name

Integer (no units)

terminating_po
ds

The number of
pods that are
currently
terminating.

Gauge configuration_n
ame,
namespace_na
me,
revision_name,
service_name

Integer (no units)

Metric name Description Type Tags Unit

6.5.5.3. Go runtime metrics

Each Knative Serving control plane process emits a number of Go runtime memory statistics
(MemStats).

NOTE

CHAPTER 6. ADMINISTER

235

https://golang.org/pkg/runtime/#MemStats

NOTE

The name tag for each metric is an empty tag.

Metric name Description Type Tags Unit

go_alloc The number of
bytes of allocated
heap objects. This
metric is the same
as heap_alloc.

Gauge name Integer (no units)

go_total_alloc The cumulative
bytes allocated for
heap objects.

Gauge name Integer (no units)

go_sys The total bytes of
memory obtained
from the operating
system.

Gauge name Integer (no units)

go_lookups The number of
pointer lookups
performed by the
runtime.

Gauge name Integer (no units)

go_mallocs The cumulative
count of heap
objects allocated.

Gauge name Integer (no units)

go_frees The cumulative
count of heap
objects that have
been freed.

Gauge name Integer (no units)

go_heap_alloc The number of
bytes of allocated
heap objects.

Gauge name Integer (no units)

go_heap_sys The number of
bytes of heap
memory obtained
from the operating
system.

Gauge name Integer (no units)

go_heap_idle The number of
bytes in idle,
unused spans.

Gauge name Integer (no units)

OpenShift Container Platform 4.6 Serverless

236

go_heap_in_us
e

The number of
bytes in spans that
are currently in
use.

Gauge name Integer (no units)

go_heap_releas
ed

The number of
bytes of physical
memory returned
to the operating
system.

Gauge name Integer (no units)

go_heap_object
s

The number of
allocated heap
objects.

Gauge name Integer (no units)

go_stack_in_us
e

The number of
bytes in stack
spans that are
currently in use.

Gauge name Integer (no units)

go_stack_sys The number of
bytes of stack
memory obtained
from the operating
system.

Gauge name Integer (no units)

go_mspan_in_u
se

The number of
bytes of allocated
mspan structures.

Gauge name Integer (no units)

go_mspan_sys The number of
bytes of memory
obtained from the
operating system
for mspan
structures.

Gauge name Integer (no units)

go_mcache_in_
use

The number of
bytes of allocated
mcache
structures.

Gauge name Integer (no units)

go_mcache_sys The number of
bytes of memory
obtained from the
operating system
for mcache
structures.

Gauge name Integer (no units)

Metric name Description Type Tags Unit

CHAPTER 6. ADMINISTER

237

go_bucket_has
h_sys

The number of
bytes of memory
in profiling bucket
hash tables.

Gauge name Integer (no units)

go_gc_sys The number of
bytes of memory
in garbage
collection
metadata.

Gauge name Integer (no units)

go_other_sys The number of
bytes of memory
in miscellaneous,
off-heap runtime
allocations.

Gauge name Integer (no units)

go_next_gc The target heap
size of the next
garbage collection
cycle.

Gauge name Integer (no units)

go_last_gc The time that the
last garbage
collection was
completed in
Epoch or Unix
time.

Gauge name Nanoseconds

go_total_gc_pa
use_ns

The cumulative
time in garbage
collection stop-
the-world pauses
since the program
started.

Gauge name Nanoseconds

go_num_gc The number of
completed
garbage collection
cycles.

Gauge name Integer (no units)

go_num_forced
_gc

The number of
garbage collection
cycles that were
forced due to an
application calling
the garbage
collection function.

Gauge name Integer (no units)

Metric name Description Type Tags Unit

OpenShift Container Platform 4.6 Serverless

238

https://en.wikipedia.org/wiki/Unix_time

go_gc_cpu_frac
tion

The fraction of the
available CPU time
of the program
that has been used
by the garbage
collector since the
program started.

Gauge name Integer (no units)

Metric name Description Type Tags Unit

6.6. USING METERING WITH OPENSHIFT SERVERLESS

IMPORTANT

Metering is a deprecated feature. Deprecated functionality is still included in OpenShift
Container Platform and continues to be supported; however, it will be removed in a future
release of this product and is not recommended for new deployments.

For the most recent list of major functionality that has been deprecated or removed
within OpenShift Container Platform, refer to the Deprecated and removed features
section of the OpenShift Container Platform release notes.

As a cluster administrator, you can use metering to analyze what is happening in your OpenShift
Serverless cluster.

For more information about metering on OpenShift Container Platform, see About metering.

NOTE

Metering is not currently supported for IBM Z and IBM Power Systems.

6.6.1. Installing metering

For information about installing metering on OpenShift Container Platform, see Installing Metering .

6.6.2. Data source reports for Knative Serving metering

The following data source reports are examples of how Knative Serving can be used with OpenShift
Container Platform metering.

6.6.2.1. Data source report for CPU usage in Knative Serving

This data source report provides the accumulated CPU seconds used per Knative service over the
report time period.

Example YAML file

apiVersion: metering.openshift.io/v1
kind: ReportDataSource
metadata:
 name: knative-service-cpu-usage

CHAPTER 6. ADMINISTER

239

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/metering/#about-metering
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/metering/#installing-metering

6.6.2.2. Data source report for memory usage in Knative Serving

This data source report provides the average memory consumption per Knative service over the report
time period.

Example YAML file

6.6.2.3. Applying data source reports for Knative Serving metering

You can apply data source reports by using the following command:

Example command

spec:
 prometheusMetricsImporter:
 query: >
 sum
 by(namespace,
 label_serving_knative_dev_service,
 label_serving_knative_dev_revision)
 (

label_replace(rate(container_cpu_usage_seconds_total{container!="POD",container!="",pod!=""}
[1m]), "pod", "$1", "pod", "(.*)")
 *
 on(pod, namespace)
 group_left(label_serving_knative_dev_service, label_serving_knative_dev_revision)
 kube_pod_labels{label_serving_knative_dev_service!=""}
)

apiVersion: metering.openshift.io/v1
kind: ReportDataSource
metadata:
 name: knative-service-memory-usage
spec:
 prometheusMetricsImporter:
 query: >
 sum
 by(namespace,
 label_serving_knative_dev_service,
 label_serving_knative_dev_revision)
 (
 label_replace(container_memory_usage_bytes{container!="POD", container!="",pod!=""},
"pod", "$1", "pod", "(.*)")
 *
 on(pod, namespace)
 group_left(label_serving_knative_dev_service, label_serving_knative_dev_revision)
 kube_pod_labels{label_serving_knative_dev_service!=""}
)

$ oc apply -f <data_source_report_name>.yaml

$ oc apply -f knative-service-memory-usage.yaml

OpenShift Container Platform 4.6 Serverless

240

6.6.3. Queries for Knative Serving metering

The following ReportQuery resources reference the example ReportDataSource resources provided:

Query for CPU usage in Knative Serving

apiVersion: metering.openshift.io/v1
kind: ReportQuery
metadata:
 name: knative-service-cpu-usage
spec:
 inputs:
 - name: ReportingStart
 type: time
 - name: ReportingEnd
 type: time
 - default: knative-service-cpu-usage
 name: KnativeServiceCpuUsageDataSource
 type: ReportDataSource
 columns:
 - name: period_start
 type: timestamp
 unit: date
 - name: period_end
 type: timestamp
 unit: date
 - name: namespace
 type: varchar
 unit: kubernetes_namespace
 - name: service
 type: varchar
 - name: data_start
 type: timestamp
 unit: date
 - name: data_end
 type: timestamp
 unit: date
 - name: service_cpu_seconds
 type: double
 unit: cpu_core_seconds
 query: |
 SELECT
 timestamp '{| default .Report.ReportingStart .Report.Inputs.ReportingStart| prestoTimestamp |}'
AS period_start,
 timestamp '{| default .Report.ReportingEnd .Report.Inputs.ReportingEnd | prestoTimestamp |}' AS
period_end,
 labels['namespace'] as project,
 labels['label_serving_knative_dev_service'] as service,
 min("timestamp") as data_start,
 max("timestamp") as data_end,
 sum(amount * "timeprecision") AS service_cpu_seconds
 FROM {| dataSourceTableName .Report.Inputs.KnativeServiceCpuUsageDataSource |}
 WHERE "timestamp" >= timestamp '{| default .Report.ReportingStart .Report.Inputs.ReportingStart
| prestoTimestamp |}'

CHAPTER 6. ADMINISTER

241

Query for memory usage in Knative Serving

 AND "timestamp" < timestamp '{| default .Report.ReportingEnd .Report.Inputs.ReportingEnd |
prestoTimestamp |}'
 GROUP BY labels['namespace'],labels['label_serving_knative_dev_service']

apiVersion: metering.openshift.io/v1
kind: ReportQuery
metadata:
 name: knative-service-memory-usage
spec:
 inputs:
 - name: ReportingStart
 type: time
 - name: ReportingEnd
 type: time
 - default: knative-service-memory-usage
 name: KnativeServiceMemoryUsageDataSource
 type: ReportDataSource
 columns:
 - name: period_start
 type: timestamp
 unit: date
 - name: period_end
 type: timestamp
 unit: date
 - name: namespace
 type: varchar
 unit: kubernetes_namespace
 - name: service
 type: varchar
 - name: data_start
 type: timestamp
 unit: date
 - name: data_end
 type: timestamp
 unit: date
 - name: service_usage_memory_byte_seconds
 type: double
 unit: byte_seconds
 query: |
 SELECT
 timestamp '{| default .Report.ReportingStart .Report.Inputs.ReportingStart| prestoTimestamp |}'
AS period_start,
 timestamp '{| default .Report.ReportingEnd .Report.Inputs.ReportingEnd | prestoTimestamp |}' AS
period_end,
 labels['namespace'] as project,
 labels['label_serving_knative_dev_service'] as service,
 min("timestamp") as data_start,
 max("timestamp") as data_end,
 sum(amount * "timeprecision") AS service_usage_memory_byte_seconds
 FROM {| dataSourceTableName .Report.Inputs.KnativeServiceMemoryUsageDataSource |}
 WHERE "timestamp" >= timestamp '{| default .Report.ReportingStart .Report.Inputs.ReportingStart
| prestoTimestamp |}'

OpenShift Container Platform 4.6 Serverless

242

1

2

3

6.6.3.1. Applying Queries for Knative Serving metering

1. Apply the ReportQuery resource:

Example command

6.6.4. Metering reports for Knative Serving

You can run metering reports against Knative Serving by creating Report resources. Before you run a
report, you must modify the input parameter within the Report resource to specify the start and end
dates of the reporting period.

Example Report resource

Start date of the report, in ISO 8601 format.

End date of the report, in ISO 8601 format.

Either knative-service-cpu-usage for CPU usage report or knative-service-memory-usage for a
memory usage report.

6.6.4.1. Running a metering report

1. Run the report:

2. You can then check the report:

Example output

 AND "timestamp" < timestamp '{| default .Report.ReportingEnd .Report.Inputs.ReportingEnd |
prestoTimestamp |}'
 GROUP BY labels['namespace'],labels['label_serving_knative_dev_service']

$ oc apply -f <query_name>.yaml

$ oc apply -f knative-service-memory-usage.yaml

apiVersion: metering.openshift.io/v1
kind: Report
metadata:
 name: knative-service-cpu-usage
spec:
 reportingStart: '2019-06-01T00:00:00Z' 1
 reportingEnd: '2019-06-30T23:59:59Z' 2
 query: knative-service-cpu-usage 3
runImmediately: true

$ oc apply -f <report_name>.yml

$ oc get report

CHAPTER 6. ADMINISTER

243

6.7. HIGH AVAILABILITY

High availability (HA) is a standard feature of Kubernetes APIs that helps to ensure that APIs stay
operational if a disruption occurs. In an HA deployment, if an active controller crashes or is deleted,
another controller is readily available. This controller takes over processing of the APIs that were being
serviced by the controller that is now unavailable.

HA in OpenShift Serverless is available through leader election, which is enabled by default after the
Knative Serving or Eventing control plane is installed. When using a leader election HA pattern, instances
of controllers are already scheduled and running inside the cluster before they are required. These
controller instances compete to use a shared resource, known as the leader election lock. The instance
of the controller that has access to the leader election lock resource at any given time is called the
leader.

6.7.1. Configuring high availability replicas for Knative Serving

High availability (HA) is available by default for the Knative Serving activator, autoscaler, autoscaler-
hpa, controller, webhook, kourier-control, and kourier-gateway components, which are configured to
have two replicas each by default. You can change the number of replicas for these components by
modifying the spec.high-availability.replicas value in the KnativeServing custom resource (CR).

Prerequisites

You have access to an OpenShift Container Platform cluster with cluster administrator
permissions.

The OpenShift Serverless Operator and Knative Serving are installed on your cluster.

You have logged into the web console.

Procedure

1. In the OpenShift Container Platform web console Administrator perspective, navigate to
OperatorHub → Installed Operators.

2. Select the knative-serving namespace.

3. Click Knative Serving in the list of Provided APIs for the OpenShift Serverless Operator to go
to the Knative Serving tab.

4. Click knative-serving, then go to the YAML tab in the knative-serving page.

NAME QUERY SCHEDULE RUNNING FAILED LAST
REPORT TIME AGE
knative-service-cpu-usage knative-service-cpu-usage Finished 2019-06-
30T23:59:59Z 10h

OpenShift Container Platform 4.6 Serverless

244

5. Modify the number of replicas in the KnativeServing CR:

Example YAML

6.7.2. Configuring high availability replicas for Knative Eventing

High availability (HA) is available by default for the Knative Eventing eventing-controller, eventing-
webhook, imc-controller, imc-dispatcher, and mt-broker-controller components, which are
configured to have two replicas each by default. You can change the number of replicas for these
components by modifying the spec.high-availability.replicas value in the KnativeEventing custom
resource (CR).

NOTE

For Knative Eventing, the mt-broker-filter and mt-broker-ingress deployments are not
scaled by HA. If multiple deployments are needed, scale these components manually.

Prerequisites

apiVersion: operator.knative.dev/v1alpha1
kind: KnativeServing
metadata:
 name: knative-serving
 namespace: knative-serving
spec:
 high-availability:
 replicas: 3

CHAPTER 6. ADMINISTER

245

You have access to an OpenShift Container Platform cluster with cluster administrator
permissions.

The OpenShift Serverless Operator and Knative Eventing are installed on your cluster.

Procedure

1. In the OpenShift Container Platform web console Administrator perspective, navigate to
OperatorHub → Installed Operators.

2. Select the knative-eventing namespace.

3. Click Knative Eventing in the list of Provided APIs for the OpenShift Serverless Operator to
go to the Knative Eventing tab.

4. Click knative-eventing, then go to the YAML tab in the knative-eventing page.

5. Modify the number of replicas in the KnativeEventing CR:

Example YAML

apiVersion: operator.knative.dev/v1alpha1
kind: KnativeEventing
metadata:
 name: knative-eventing
 namespace: knative-eventing
spec:
 high-availability:
 replicas: 3

OpenShift Container Platform 4.6 Serverless

246

6.7.3. Configuring high availability replicas for Knative Kafka

High availability (HA) is available by default for the Knative Kafka kafka-controller and kafka-webhook-
eventing components, which are configured to have two each replicas by default. You can change the
number of replicas for these components by modifying the spec.high-availability.replicas value in the
KnativeKafka custom resource (CR).

Prerequisites

You have access to an OpenShift Container Platform cluster with cluster administrator
permissions.

The OpenShift Serverless Operator and Knative Kafka are installed on your cluster.

Procedure

1. In the OpenShift Container Platform web console Administrator perspective, navigate to
OperatorHub → Installed Operators.

2. Select the knative-eventing namespace.

3. Click Knative Kafka in the list of Provided APIs for the OpenShift Serverless Operator to go to
the Knative Kafka tab.

4. Click knative-kafka, then go to the YAML tab in the knative-kafka page.

5. Modify the number of replicas in the KnativeKafka CR:

Example YAML

apiVersion: operator.serverless.openshift.io/v1alpha1

CHAPTER 6. ADMINISTER

247

kind: KnativeKafka
metadata:
 name: knative-kafka
 namespace: knative-eventing
spec:
 high-availability:
 replicas: 3

OpenShift Container Platform 4.6 Serverless

248

CHAPTER 7. MONITOR

7.1. USING OPENSHIFT LOGGING WITH OPENSHIFT SERVERLESS

7.1.1. About deploying cluster logging

OpenShift Container Platform cluster administrators can deploy cluster logging using the OpenShift
Container Platform web console or CLI to install the Elasticsearch Operator and Cluster Logging
Operator. When the operators are installed, you create a ClusterLogging custom resource (CR) to
schedule cluster logging pods and other resources necessary to support cluster logging. The operators
are responsible for deploying, upgrading, and maintaining cluster logging.

The ClusterLogging CR defines a complete cluster logging environment that includes all the
components of the logging stack to collect, store and visualize logs. The Cluster Logging Operator
watches the Cluster Logging CR and adjusts the logging deployment accordingly.

Administrators and application developers can view the logs of the projects for which they have view
access.

7.1.2. About deploying and configuring cluster logging

OpenShift Container Platform cluster logging is designed to be used with the default configuration,
which is tuned for small to medium sized OpenShift Container Platform clusters.

The installation instructions that follow include a sample ClusterLogging custom resource (CR), which
you can use to create a cluster logging instance and configure your cluster logging environment.

If you want to use the default cluster logging install, you can use the sample CR directly.

If you want to customize your deployment, make changes to the sample CR as needed. The following
describes the configurations you can make when installing your cluster logging instance or modify after
installation. See the Configuring sections for more information on working with each component,
including modifications you can make outside of the ClusterLogging custom resource.

7.1.2.1. Configuring and Tuning Cluster Logging

You can configure your cluster logging environment by modifying the ClusterLogging custom resource
deployed in the openshift-logging project.

You can modify any of the following components upon install or after install:

Memory and CPU

You can adjust both the CPU and memory limits for each component by modifying the resources
block with valid memory and CPU values:

spec:
 logStore:
 elasticsearch:
 resources:
 limits:
 cpu:
 memory: 16Gi
 requests:
 cpu: 500m

CHAPTER 7. MONITOR

249

Elasticsearch storage

You can configure a persistent storage class and size for the Elasticsearch cluster using the
storageClass name and size parameters. The Cluster Logging Operator creates a persistent
volume claim (PVC) for each data node in the Elasticsearch cluster based on these parameters.

This example specifies each data node in the cluster will be bound to a PVC that requests "200G" of
"gp2" storage. Each primary shard will be backed by a single replica.

NOTE

 memory: 16Gi
 type: "elasticsearch"
 collection:
 logs:
 fluentd:
 resources:
 limits:
 cpu:
 memory:
 requests:
 cpu:
 memory:
 type: "fluentd"
 visualization:
 kibana:
 resources:
 limits:
 cpu:
 memory:
 requests:
 cpu:
 memory:
 type: kibana
 curation:
 curator:
 resources:
 limits:
 memory: 200Mi
 requests:
 cpu: 200m
 memory: 200Mi
 type: "curator"

 spec:
 logStore:
 type: "elasticsearch"
 elasticsearch:
 nodeCount: 3
 storage:
 storageClassName: "gp2"
 size: "200G"

OpenShift Container Platform 4.6 Serverless

250

NOTE

Omitting the storage block results in a deployment that includes ephemeral storage only.

Elasticsearch replication policy

You can set the policy that defines how Elasticsearch shards are replicated across data nodes in the
cluster:

FullRedundancy. The shards for each index are fully replicated to every data node.

MultipleRedundancy. The shards for each index are spread over half of the data nodes.

SingleRedundancy. A single copy of each shard. Logs are always available and recoverable
as long as at least two data nodes exist.

ZeroRedundancy. No copies of any shards. Logs may be unavailable (or lost) in the event a
node is down or fails.

Curator schedule

You specify the schedule for Curator in the cron format.

7.1.2.2. Sample modified ClusterLogging custom resource

The following is an example of a ClusterLogging custom resource modified using the options previously
described.

Sample modified ClusterLogging custom resource

 spec:
 logStore:
 type: "elasticsearch"
 elasticsearch:
 nodeCount: 3
 storage: {}

 spec:
 curation:
 type: "curator"
 resources:
 curator:
 schedule: "30 3 * * *"

apiVersion: "logging.openshift.io/v1"
kind: "ClusterLogging"
metadata:
 name: "instance"
 namespace: "openshift-logging"
spec:
 managementState: "Managed"
 logStore:
 type: "elasticsearch"
 retentionPolicy:
 application:

CHAPTER 7. MONITOR

251

https://en.wikipedia.org/wiki/Cron

7.1.3. Using cluster logging to find logs for Knative Serving components

Prerequisites

Install the OpenShift CLI (oc).

Procedure

 maxAge: 1d
 infra:
 maxAge: 7d
 audit:
 maxAge: 7d
 elasticsearch:
 nodeCount: 3
 resources:
 limits:
 memory: 32Gi
 requests:
 cpu: 3
 memory: 32Gi
 storage:
 storageClassName: "gp2"
 size: "200G"
 redundancyPolicy: "SingleRedundancy"
 visualization:
 type: "kibana"
 kibana:
 resources:
 limits:
 memory: 1Gi
 requests:
 cpu: 500m
 memory: 1Gi
 replicas: 1
 curation:
 type: "curator"
 curator:
 resources:
 limits:
 memory: 200Mi
 requests:
 cpu: 200m
 memory: 200Mi
 schedule: "*/5 * * * *"
 collection:
 logs:
 type: "fluentd"
 fluentd:
 resources:
 limits:
 memory: 1Gi
 requests:
 cpu: 200m
 memory: 1Gi

OpenShift Container Platform 4.6 Serverless

252

1. Get the Kibana route:

2. Use the route’s URL to navigate to the Kibana dashboard and log in.

3. Check that the index is set to .all. If the index is not set to .all, only the OpenShift Container
Platform system logs will be listed.

4. Filter the logs by using the knative-serving namespace. Enter
kubernetes.namespace_name:knative-serving in the search box to filter results.

NOTE

Knative Serving uses structured logging by default. You can enable the parsing of these
logs by customizing the cluster logging Fluentd settings. This makes the logs more
searchable and enables filtering on the log level to quickly identify issues.

7.1.4. Using cluster logging to find logs for services deployed with Knative Serving

With OpenShift Cluster Logging, the logs that your applications write to the console are collected in
Elasticsearch. The following procedure outlines how to apply these capabilities to applications deployed
by using Knative Serving.

Prerequisites

Install the OpenShift CLI (oc).

Procedure

1. Get the Kibana route:

2. Use the route’s URL to navigate to the Kibana dashboard and log in.

3. Check that the index is set to .all. If the index is not set to .all, only the OpenShift system logs
will be listed.

4. Filter the logs by using the knative-serving namespace. Enter a filter for the service in the
search box to filter results.

Example filter

You can also filter by using /configuration or /revision.

5. Narrow your search by using kubernetes.container_name:<user_container> to only display
the logs generated by your application. Otherwise, you will see logs from the queue-proxy.

NOTE

$ oc -n openshift-logging get route kibana

$ oc -n openshift-logging get route kibana

kubernetes.namespace_name:default AND kubernetes.labels.serving_knative_dev\/service:
{service_name}

CHAPTER 7. MONITOR

253

NOTE

Use JSON-based structured logging in your application to allow for the quick filtering of
these logs in production environments.

7.2. SERVERLESS DEVELOPER METRICS

Metrics enable developers to monitor how Knative services are performing. You can use the OpenShift
Container Platform monitoring stack to record and view health checks and metrics for your Knative
services.

You can view different metrics for OpenShift Serverless by navigating to Dashboards in the OpenShift
Container Platform web console Developer perspective.

WARNING

If Service Mesh is enabled with mTLS, metrics for Knative Serving are disabled by
default because Service Mesh prevents Prometheus from scraping metrics.

For information about resolving this issue, see Enabling Knative Serving metrics
when using Service Mesh with mTLS.

Scraping the metrics does not affect autoscaling of a Knative service, because
scraping requests do not go through the activator. Consequently, no scraping takes
place if no pods are running.

7.2.1. Knative service metrics exposed by default

Table 7.1. Metrics exposed by default for each Knative service on port 9090

Metric name, unit, and type Description Metric tags

queue_requests_per_second

Metric unit: dimensionless

Metric type: gauge

Number of requests per second
that hit the queue proxy.

Formula: stats.RequestCount /
r.reportingPeriodSeconds

stats.RequestCount is
calculated directly from the
networking pkg stats for the
given reporting duration.

destination_configuration="event
-display",
destination_namespace="pingsou
rce1", destination_pod="event-
display-00001-deployment-
6b455479cb-75p6w",
destination_revision="event-
display-00001"



OpenShift Container Platform 4.6 Serverless

254

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/monitoring/#reviewing-monitoring-dashboards-developer_reviewing-monitoring-dashboards
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/serverless/#serverless-ossm-enabling-serving-metrics_serverless-ossm-setup

queue_proxied_operations_p
er_second

Metric unit: dimensionless

Metric type: gauge

Number of proxied requests per
second.

Formula:
stats.ProxiedRequestCount /
r.reportingPeriodSeconds

stats.ProxiedRequestCount
is calculated directly from the
networking pkg stats for the
given reporting duration.

queue_average_concurrent_
requests

Metric unit: dimensionless

Metric type: gauge

Number of requests currently
being handled by this pod.

Average concurrency is calculated
at the networking pkg side as
follows:

When a req change
happens, the time delta
between changes is
calculated. Based on the
result, the current
concurrency number
over delta is computed
and added to the current
computed concurrency.
Additionally, a sum of
the deltas is kept.
Current concurrency
over delta is computed
as follows:

global_concurrency ×
delta

Each time a reporting is
done, the sum and
current computed
concurrency are reset.

When reporting the
average concurrency the
current computed
concurrency is divided by
the sum of deltas.

When a new request
comes in, the global
concurrency counter is
increased. When a
request is completed,
the counter is decreased.

destination_configuration="event
-display",
destination_namespace="pingsou
rce1", destination_pod="event-
display-00001-deployment-
6b455479cb-75p6w",
destination_revision="event-
display-00001"

Metric name, unit, and type Description Metric tags

CHAPTER 7. MONITOR

255

queue_average_proxied_con
current_requests

Metric unit: dimensionless

Metric type: gauge

Number of proxied requests
currently being handled by this
pod:

stats.AverageProxiedConcur
rency

destination_configuration="event
-display",
destination_namespace="pingsou
rce1", destination_pod="event-
display-00001-deployment-
6b455479cb-75p6w",
destination_revision="event-
display-00001"

process_uptime

Metric unit: seconds

Metric type: gauge

The number of seconds that the
process has been up.

destination_configuration="event
-display",
destination_namespace="pingsou
rce1", destination_pod="event-
display-00001-deployment-
6b455479cb-75p6w",
destination_revision="event-
display-00001"

Metric name, unit, and type Description Metric tags

Table 7.2. Metrics exposed by default for each Knative service on port 9091

Metric name, unit, and type Description Metric tags

request_count

Metric unit: dimensionless

Metric type: counter

The number of requests that are
routed to queue-proxy.

configuration_name="event-
display", container_name="queue-
proxy",
namespace_name="apiserversour
ce1", pod_name="event-display-
00001-deployment-658fd4f9cf-
qcnr5", response_code="200",
response_code_class="2xx",
revision_name="event-display-
00001", service_name="event-
display"

request_latencies

Metric unit: milliseconds

Metric type: histogram

The response time in milliseconds. configuration_name="event-
display", container_name="queue-
proxy",
namespace_name="apiserversour
ce1", pod_name="event-display-
00001-deployment-658fd4f9cf-
qcnr5", response_code="200",
response_code_class="2xx",
revision_name="event-display-
00001", service_name="event-
display"

OpenShift Container Platform 4.6 Serverless

256

app_request_count

Metric unit: dimensionless

Metric type: counter

The number of requests that are
routed to user-container.

configuration_name="event-
display", container_name="queue-
proxy",
namespace_name="apiserversour
ce1", pod_name="event-display-
00001-deployment-658fd4f9cf-
qcnr5", response_code="200",
response_code_class="2xx",
revision_name="event-display-
00001", service_name="event-
display"

app_request_latencies

Metric unit: milliseconds

Metric type: histogram

The response time in milliseconds. configuration_name="event-
display", container_name="queue-
proxy",
namespace_name="apiserversour
ce1", pod_name="event-display-
00001-deployment-658fd4f9cf-
qcnr5", response_code="200",
response_code_class="2xx",
revision_name="event-display-
00001", service_name="event-
display"

queue_depth

Metric unit: dimensionless

Metric type: gauge

The current number of items in
the serving and waiting queue, or
not reported if unlimited
concurrency. breaker.inFlight is
used.

configuration_name="event-
display", container_name="queue-
proxy",
namespace_name="apiserversour
ce1", pod_name="event-display-
00001-deployment-658fd4f9cf-
qcnr5", response_code="200",
response_code_class="2xx",
revision_name="event-display-
00001", service_name="event-
display"

Metric name, unit, and type Description Metric tags

7.2.2. Knative service with custom application metrics

You can extend the set of metrics exported by a Knative service. The exact implementation depends on
your application and the language used.

The following listing implements a sample Go application that exports the count of processed events
custom metric.

package main

import (
 "fmt"
 "log"
 "net/http"
 "os"

CHAPTER 7. MONITOR

257

1

2

Including the Prometheus packages.

Defining the opsProcessed metric.

 "github.com/prometheus/client_golang/prometheus" 1
 "github.com/prometheus/client_golang/prometheus/promauto"
 "github.com/prometheus/client_golang/prometheus/promhttp"
)

var (
 opsProcessed = promauto.NewCounter(prometheus.CounterOpts{ 2
 Name: "myapp_processed_ops_total",
 Help: "The total number of processed events",
 })
)

func handler(w http.ResponseWriter, r *http.Request) {
 log.Print("helloworld: received a request")
 target := os.Getenv("TARGET")
 if target == "" {
 target = "World"
 }
 fmt.Fprintf(w, "Hello %s!\n", target)
 opsProcessed.Inc() 3
}

func main() {
 log.Print("helloworld: starting server...")

 port := os.Getenv("PORT")
 if port == "" {
 port = "8080"
 }

 http.HandleFunc("/", handler)

 // Separate server for metrics requests
 go func() { 4
 mux := http.NewServeMux()
 server := &http.Server{
 Addr: fmt.Sprintf(":%s", "9095"),
 Handler: mux,
 }
 mux.Handle("/metrics", promhttp.Handler())
 log.Printf("prometheus: listening on port %s", 9095)
 log.Fatal(server.ListenAndServe())
 }()

 // Use same port as normal requests for metrics
 //http.Handle("/metrics", promhttp.Handler()) 5
 log.Printf("helloworld: listening on port %s", port)
 log.Fatal(http.ListenAndServe(fmt.Sprintf(":%s", port), nil))
}

OpenShift Container Platform 4.6 Serverless

258

3

4

5

Incrementing the opsProcessed metric.

Configuring to use a separate server for metrics requests.

Configuring to use the same port as normal requests for metrics and the metrics subpath.

7.2.3. Configuration for scraping custom metrics

Custom metrics scraping is performed by an instance of Prometheus purposed for user workload
monitoring. After you enable user workload monitoring and create the application, you need a
configuration that defines how the monitoring stack will scrape the metrics.

The following sample configuration defines the ksvc for your application and configures the service
monitor. The exact configuration depends on your application and how it exports the metrics.

apiVersion: serving.knative.dev/v1 1
kind: Service
metadata:
 name: helloworld-go
spec:
 template:
 metadata:
 labels:
 app: helloworld-go
 annotations:
 spec:
 containers:
 - image: docker.io/skonto/helloworld-go:metrics
 resources:
 requests:
 cpu: "200m"
 env:
 - name: TARGET
 value: "Go Sample v1"

apiVersion: monitoring.coreos.com/v1 2
kind: ServiceMonitor
metadata:
 labels:
 name: helloworld-go-sm
spec:
 endpoints:
 - port: queue-proxy-metrics
 scheme: http
 - port: app-metrics
 scheme: http
 namespaceSelector: {}
 selector:
 matchLabels:
 name: helloworld-go-sm

apiVersion: v1 3
kind: Service
metadata:

CHAPTER 7. MONITOR

259

1

2

3

Application specification.

Configuration of which application’s metrics are scraped.

Configuration of the way metrics are scraped.

7.2.4. Examining metrics of a service

After you have configured the application to export the metrics and the monitoring stack to scrape
them, you can examine the metrics in the web console.

Prerequisites

You have logged in to the OpenShift Container Platform web console.

You have installed the OpenShift Serverless Operator and Knative Serving.

Procedure

1. Optional: Run requests against your application that you will be able to see in the metrics:

Example output

2. In the web console, navigate to the Monitoring → Metrics interface.

3. In the input field, enter the query for the metric you want to observe, for example:

revision_app_request_count{namespace="ns1", job="helloworld-go-sm"}

Another example:

 labels:
 name: helloworld-go-sm
 name: helloworld-go-sm
spec:
 ports:
 - name: queue-proxy-metrics
 port: 9091
 protocol: TCP
 targetPort: 9091
 - name: app-metrics
 port: 9095
 protocol: TCP
 targetPort: 9095
 selector:
 serving.knative.dev/service: helloworld-go
 type: ClusterIP

$ hello_route=$(oc get ksvc helloworld-go -n ns1 -o jsonpath='{.status.url}') && \
 curl $hello_route

Hello Go Sample v1!

OpenShift Container Platform 4.6 Serverless

260

myapp_processed_ops_total{namespace="ns1", job="helloworld-go-sm"}

4. Observe the visualized metrics:

7.2.4.1. Queue proxy metrics

Each Knative service has a proxy container that proxies the connections to the application container. A
number of metrics are reported for the queue proxy performance.

You can use the following metrics to measure if requests are queued at the proxy side and the actual
delay in serving requests at the application side.

Metric name Description Type Tags Unit

CHAPTER 7. MONITOR

261

revision_reques
t_count

The number of
requests that are
routed to queue-
proxy pod.

Counter configuration_n
ame,
container_name
,
namespace_na
me, pod_name,
response_code,
response_code
_class,
revision_name,
service_name

Integer (no units)

revision_reques
t_latencies

The response time
of revision
requests.

Histogram configuration_n
ame,
container_name
,
namespace_na
me, pod_name,
response_code,
response_code
_class,
revision_name,
service_name

Milliseconds

revision_app_re
quest_count

The number of
requests that are
routed to the
user-container
pod.

Counter configuration_n
ame,
container_name
,
namespace_na
me, pod_name,
response_code,
response_code
_class,
revision_name,
service_name

Integer (no units)

revision_app_re
quest_latencies

The response time
of revision app
requests.

Histogram configuration_n
ame,
namespace_na
me, pod_name,
response_code,
response_code
_class,
revision_name,
service_name

Milliseconds

Metric name Description Type Tags Unit

OpenShift Container Platform 4.6 Serverless

262

revision_queue
_depth

The current
number of items in
the serving and
waiting queues.
This metric is not
reported if
unlimited
concurrency is
configured.

Gauge configuration_n
ame, event-
display,
container_name
,
namespace_na
me, pod_name,
response_code
_class,
revision_name,
service_name

Integer (no units)

Metric name Description Type Tags Unit

7.2.5. Examining metrics of a service in the dashboard

You can examine the metrics using a dedicated dashboard that aggregates queue proxy metrics by
namespace.

Prerequisites

You have logged in to the OpenShift Container Platform web console.

You have installed the OpenShift Serverless Operator and Knative Serving.

Procedure

1. In the web console, navigate to the Monitoring → Metrics interface.

2. Select the Knative User Services (Queue Proxy metrics) dashboard.

3. Select the Namespace, Configuration, and Revision that correspond to your application.

4. Observe the visualized metrics:

7.2.6. Additional resources

Monitoring overview

CHAPTER 7. MONITOR

263

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/monitoring/#monitoring-overview

Enabling monitoring for user-defined projects

Specifying how a service is monitored

OpenShift Container Platform 4.6 Serverless

264

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/monitoring/#specifying-how-a-service-is-monitored
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/monitoring/#enabling-monitoring-for-user-defined-projects

CHAPTER 8. TRACING REQUESTS
Distributed tracing records the path of a request through the various services that make up an
application. It is used to tie information about different units of work together, to understand a whole
chain of events in a distributed transaction. The units of work might be executed in different processes
or hosts.

8.1. DISTRIBUTED TRACING OVERVIEW

As a service owner, you can use distributed tracing to instrument your services to gather insights into
your service architecture. You can use distributed tracing for monitoring, network profiling, and
troubleshooting the interaction between components in modern, cloud-native, microservices-based
applications.

With distributed tracing you can perform the following functions:

Monitor distributed transactions

Optimize performance and latency

Perform root cause analysis

Red Hat OpenShift distributed tracing consists of two main components:

Red Hat OpenShift distributed tracing platform - This component is based on the open
source Jaeger project.

Red Hat OpenShift distributed tracing data collection - This component is based on the open
source OpenTelemetry project.

Both of these components are based on the vendor-neutral OpenTracing APIs and instrumentation.

8.2. USING RED HAT OPENSHIFT DISTRIBUTED TRACING TO ENABLE
DISTRIBUTED TRACING

Red Hat OpenShift distributed tracing is made up of several components that work together to collect,
store, and display tracing data. You can use Red Hat OpenShift distributed tracing with OpenShift
Serverless to monitor and troubleshoot serverless applications.

Prerequisites

You have access to an OpenShift Container Platform account with cluster administrator access.

You have not yet installed the OpenShift Serverless Operator and Knative Serving. These must
be installed after the Red Hat OpenShift distributed tracing installation.

You have installed Red Hat OpenShift distributed tracing by following the OpenShift Container
Platform "Installing distributed tracing" documentation.

You have installed the OpenShift CLI (oc).

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

CHAPTER 8. TRACING REQUESTS

265

https://www.jaegertracing.io/
https://opentelemetry.io/
https://opentracing.io/

Procedure

1. Create an OpenTelemetryCollector custom resource (CR):

Example OpenTelemetryCollector CR

2. Verify that you have two pods running in the namespace where Red Hat OpenShift distributed
tracing is installed:

Example output

3. Verify that the following headless services have been created:

Example output

These services are used to configure Jaeger and Knative Serving. The name of the Jaeger
service may vary.

4. Install the OpenShift Serverless Operator by following the "Installing the OpenShift Serverless

apiVersion: opentelemetry.io/v1alpha1
kind: OpenTelemetryCollector
metadata:
 name: cluster-collector
 namespace: <namespace>
spec:
 mode: deployment
 config: |
 receivers:
 zipkin:
 processors:
 exporters:
 jaeger:
 endpoint: jaeger-all-in-one-inmemory-collector-headless.tracing-system.svc:14250
 tls:
 ca_file: "/var/run/secrets/kubernetes.io/serviceaccount/service-ca.crt"
 logging:
 service:
 pipelines:
 traces:
 receivers: [zipkin]
 processors: []
 exporters: [jaeger, logging]

$ oc get pods -n <namespace>

NAME READY STATUS RESTARTS AGE
cluster-collector-collector-85c766b5c-b5g99 1/1 Running 0 5m56s
jaeger-all-in-one-inmemory-ccbc9df4b-ndkl5 2/2 Running 0 15m

$ oc get svc -n <namespace> | grep headless

cluster-collector-collector-headless ClusterIP None <none> 9411/TCP
7m28s
jaeger-all-in-one-inmemory-collector-headless ClusterIP None <none>
9411/TCP,14250/TCP,14267/TCP,14268/TCP 16m

OpenShift Container Platform 4.6 Serverless

266

1

4. Install the OpenShift Serverless Operator by following the "Installing the OpenShift Serverless
Operator" documentation.

5. Install Knative Serving by creating the following KnativeServing CR:

Example KnativeServing CR

The sample-rate defines sampling probability. Using sample-rate: "0.1" means that 1 in 10
traces are sampled.

6. Create a Knative service:

Example service

7. Make some requests to the service:

Example HTTPS request

apiVersion: operator.knative.dev/v1alpha1
kind: KnativeServing
metadata:
 name: knative-serving
 namespace: knative-serving
spec:
 config:
 tracing:
 backend: "zipkin"
 zipkin-endpoint: "http://cluster-collector-collector-headless.tracing-
system.svc:9411/api/v2/spans"
 debug: "true"
 sample-rate: "0.1" 1

apiVersion: serving.knative.dev/v1
kind: Service
metadata:
 name: helloworld-go
spec:
 template:
 metadata:
 labels:
 app: helloworld-go
 annotations:
 autoscaling.knative.dev/minScale: "1"
 autoscaling.knative.dev/target: "1"
 spec:
 containers:
 - image: quay.io/openshift-knative/helloworld:v1.2
 imagePullPolicy: Always
 resources:
 requests:
 cpu: "200m"
 env:
 - name: TARGET
 value: "Go Sample v1"

CHAPTER 8. TRACING REQUESTS

267

8. Get the URL for the Jaeger web console:

Example command

You can now examine traces by using the Jaeger console.

8.3. USING JAEGER TO ENABLE DISTRIBUTED TRACING

If you do not want to install all of the components of Red Hat OpenShift distributed tracing, you can still
use distributed tracing on OpenShift Container Platform with OpenShift Serverless. To do this, you
must install and configure Jaeger as a standalone integration.

Prerequisites

You have access to an OpenShift Container Platform account with cluster administrator access.

You have installed the OpenShift Serverless Operator and Knative Serving.

You have installed the Red Hat OpenShift distributed tracing platform Operator.

You have installed the OpenShift CLI (oc).

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

Procedure

1. Create and apply a Jaeger custom resource (CR) that contains the following:

Jaeger CR

2. Enable tracing for Knative Serving, by editing the KnativeServing CR and adding a YAML
configuration for tracing:

Tracing YAML example

$ curl https://helloworld-go.example.com

$ oc get route jaeger-all-in-one-inmemory -o jsonpath='{.spec.host}' -n <namespace>

apiVersion: jaegertracing.io/v1
kind: Jaeger
metadata:
 name: jaeger
 namespace: default

apiVersion: operator.knative.dev/v1alpha1
kind: KnativeServing
metadata:
 name: knative-serving
 namespace: knative-serving
spec:
 config:

OpenShift Container Platform 4.6 Serverless

268

1

2

3

4

The sample-rate defines sampling probability. Using sample-rate: "0.1" means that 1 in 10
traces are sampled.

backend must be set to zipkin.

The zipkin-endpoint must point to your jaeger-collector service endpoint. To get this
endpoint, substitute the namespace where the Jaeger CR is applied.

Debugging should be set to false. Enabling debug mode by setting debug: "true" allows
all spans to be sent to the server, bypassing sampling.

Verification

You can access the Jaeger web console to see tracing data, by using the jaeger route.

1. Get the host name of the jaeger route:

Example output

2. Open the endpoint address in your browser to view the console.

8.4. ADDITIONAL RESOURCES

Red Hat OpenShift distributed tracing architecture

Installing distributed tracing

 tracing:
 sample-rate: "0.1" 1
 backend: zipkin 2
 zipkin-endpoint: "http://jaeger-collector.default.svc.cluster.local:9411/api/v2/spans" 3
 debug: "false" 4

$ oc get route jaeger -n default

NAME HOST/PORT PATH SERVICES PORT TERMINATION
WILDCARD
jaeger jaeger-default.apps.example.com jaeger-query <all> reencrypt None

CHAPTER 8. TRACING REQUESTS

269

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/distributed_tracing/#distr-tracing-architecture
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/distributed_tracing/#installing-distributed-tracing

CHAPTER 9. OPENSHIFT SERVERLESS SUPPORT
If you experience difficulty with a procedure described in this documentation, visit the Red Hat
Customer Portal at http://access.redhat.com. You can use the Red Hat Customer Portal to search or
browse through the Red Hat Knowledgebase of technical support articles about Red Hat products. You
can also submit a support case to Red Hat Global Support Services (GSS), or access other product
documentation.

If you have a suggestion for improving this guide or have found an error, you can submit a Jira issue for
the most relevant documentation component. Provide specific details, such as the section number, guide
name, and OpenShift Serverless version so we can easily locate the content.

9.1. ABOUT THE RED HAT KNOWLEDGEBASE

The Red Hat Knowledgebase provides rich content aimed at helping you make the most of Red Hat’s
products and technologies. The Red Hat Knowledgebase consists of articles, product documentation,
and videos outlining best practices on installing, configuring, and using Red Hat products. In addition, you
can search for solutions to known issues, each providing concise root cause descriptions and remedial
steps.

9.2. SEARCHING THE RED HAT KNOWLEDGEBASE

In the event of an OpenShift Container Platform issue, you can perform an initial search to determine if
a solution already exists within the Red Hat Knowledgebase.

Prerequisites

You have a Red Hat Customer Portal account.

Procedure

1. Log in to the Red Hat Customer Portal .

2. In the main Red Hat Customer Portal search field, input keywords and strings relating to the
problem, including:

OpenShift Container Platform components (such as etcd)

Related procedure (such as installation)

Warnings, error messages, and other outputs related to explicit failures

3. Click Search.

4. Select the OpenShift Container Platform product filter.

5. Select the Knowledgebase content type filter.

9.3. SUBMITTING A SUPPORT CASE

Prerequisites

You have installed the OpenShift CLI (oc).

OpenShift Container Platform 4.6 Serverless

270

http://access.redhat.com
https://issues.redhat.com/secure/CreateIssueDetails!init.jspa?pid=12332330&summary=Documentation_issue&issuetype=1&components=12367614&priority=10200&versions=12391130
https://access.redhat.com/knowledgebase
http://access.redhat.com

You have a Red Hat Customer Portal account.

You have access to OpenShift Cluster Manager.

Procedure

1. Log in to the Red Hat Customer Portal and select SUPPORT CASES → Open a case.

2. Select the appropriate category for your issue (such as Defect / Bug), product (OpenShift
Container Platform), and product version (4.6, if this is not already autofilled).

3. Review the list of suggested Red Hat Knowledgebase solutions for a potential match against the
problem that is being reported. If the suggested articles do not address the issue, click
Continue.

4. Enter a concise but descriptive problem summary and further details about the symptoms being
experienced, as well as your expectations.

5. Review the updated list of suggested Red Hat Knowledgebase solutions for a potential match
against the problem that is being reported. The list is refined as you provide more information
during the case creation process. If the suggested articles do not address the issue, click
Continue.

6. Ensure that the account information presented is as expected, and if not, amend accordingly.

7. Check that the autofilled OpenShift Container Platform Cluster ID is correct. If it is not,
manually obtain your cluster ID.

To manually obtain your cluster ID using the OpenShift Container Platform web console:

a. Navigate to Home → Dashboards → Overview.

b. Find the value in the Cluster ID field of the Details section.

Alternatively, it is possible to open a new support case through the OpenShift Container
Platform web console and have your cluster ID autofilled.

a. From the toolbar, navigate to (?) Help → Open Support Case.

b. The Cluster ID value is autofilled.

To obtain your cluster ID using the OpenShift CLI (oc), run the following command:

8. Complete the following questions where prompted and then click Continue:

Where are you experiencing the behavior? What environment?

When does the behavior occur? Frequency? Repeatedly? At certain times?

What information can you provide around time-frames and the business impact?

9. Upload relevant diagnostic data files and click Continue. It is recommended to include data
gathered using the oc adm must-gather command as a starting point, plus any issue specific
data that is not collected by that command.

$ oc get clusterversion -o jsonpath='{.items[].spec.clusterID}{"\n"}'

CHAPTER 9. OPENSHIFT SERVERLESS SUPPORT

271

https://console.redhat.com/openshift
http://access.redhat.com

10. Input relevant case management details and click Continue.

11. Preview the case details and click Submit.

9.4. GATHERING DIAGNOSTIC INFORMATION FOR SUPPORT

When you open a support case, it is helpful to provide debugging information about your cluster to Red
Hat Support. The must-gather tool enables you to collect diagnostic information about your OpenShift
Container Platform cluster, including data related to OpenShift Serverless. For prompt support, supply
diagnostic information for both OpenShift Container Platform and OpenShift Serverless.

9.4.1. About the must-gather tool

The oc adm must-gather CLI command collects the information from your cluster that is most likely
needed for debugging issues, including:

Resource definitions

Service logs

By default, the oc adm must-gather command uses the default plug-in image and writes into ./must-
gather.local.

Alternatively, you can collect specific information by running the command with the appropriate
arguments as described in the following sections:

To collect data related to one or more specific features, use the --image argument with an
image, as listed in a following section.
For example:

To collect the audit logs, use the -- /usr/bin/gather_audit_logs argument, as described in a
following section.
For example:

NOTE

Audit logs are not collected as part of the default set of information to reduce
the size of the files.

When you run oc adm must-gather, a new pod with a random name is created in a new project on the
cluster. The data is collected on that pod and saved in a new directory that starts with must-
gather.local. This directory is created in the current working directory.

For example:

$ oc adm must-gather --image=registry.redhat.io/container-native-virtualization/cnv-must-
gather-rhel8:v4.9.0

$ oc adm must-gather -- /usr/bin/gather_audit_logs

NAMESPACE NAME READY STATUS RESTARTS AGE
...
openshift-must-gather-5drcj must-gather-bklx4 2/2 Running 0 72s

OpenShift Container Platform 4.6 Serverless

272

9.4.2. About collecting OpenShift Serverless data

You can use the oc adm must-gather CLI command to collect information about your cluster, including
features and objects associated with OpenShift Serverless. To collect OpenShift Serverless data with
must-gather, you must specify the OpenShift Serverless image and the image tag for your installed
version of OpenShift Serverless.

Prerequisites

Install the OpenShift CLI (oc).

Procedure

Collect data by using the oc adm must-gather command:

Example command

openshift-must-gather-5drcj must-gather-s8sdh 2/2 Running 0 72s
...

$ oc adm must-gather --image=registry.redhat.io/openshift-serverless-1/svls-must-gather-
rhel8:<image_version_tag>

$ oc adm must-gather --image=registry.redhat.io/openshift-serverless-1/svls-must-gather-
rhel8:1.14.0

CHAPTER 9. OPENSHIFT SERVERLESS SUPPORT

273

CHAPTER 10. SECURITY

10.1. CONFIGURING TLS AUTHENTICATION

You can use Transport Layer Security (TLS) to encrypt Knative traffic and for authentication.

TLS is the only supported method of traffic encryption for Knative Kafka. Red Hat recommends using
both SASL and TLS together for Knative Kafka resources.

NOTE

If you want to enable internal TLS with a Red Hat OpenShift Service Mesh integration,
you must enable Service Mesh with mTLS instead of the internal encryption explained in
the following procedure. See the documentation for Enabling Knative Serving metrics
when using Service Mesh with mTLS.

10.1.1. Enabling TLS authentication for internal traffic

OpenShift Serverless supports TLS edge termination by default, so that HTTPS traffic from end users is
encrypted. However, internal traffic behind the OpenShift route is forwarded to applications by using
plain data. By enabling TLS for internal traffic, the traffic sent between components is encrypted, which
makes this traffic more secure.

NOTE

If you want to enable internal TLS with a Red Hat OpenShift Service Mesh integration,
you must enable Service Mesh with mTLS instead of the internal encryption explained in
the following procedure.

IMPORTANT

Internal TLS encryption support is a Technology Preview feature only. Technology
Preview features are not supported with Red Hat production service level agreements
(SLAs) and might not be functionally complete. Red Hat does not recommend using
them in production. These features provide early access to upcoming product features,
enabling customers to test functionality and provide feedback during the development
process.

For more information about the support scope of Red Hat Technology Preview features,
see https://access.redhat.com/support/offerings/techpreview/.

Prerequisites

You have installed the OpenShift Serverless Operator and Knative Serving.

You have installed the OpenShift (oc) CLI.

Procedure

1. Create a Knative service that includes the internal-encryption: "true" field in the spec:

...
spec:

OpenShift Container Platform 4.6 Serverless

274

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/serverless/#serverless-ossm-enabling-serving-metrics_serverless-ossm-setup
https://access.redhat.com/support/offerings/techpreview/

2. Restart the activator pods in the knative-serving namespace to load the certificates:

10.1.2. Enabling TLS authentication for cluster local services

For cluster local services, the Kourier local gateway kourier-internal is used. If you want to use TLS
traffic against the Kourier local gateway, you must configure your own server certificates in the local
gateway.

Prerequisites

You have installed the OpenShift Serverless Operator and Knative Serving.

You have administrator permissions.

You have installed the OpenShift (oc) CLI.

Procedure

1. Deploy server certificates in the knative-serving-ingress namespace:

NOTE

Subject Alternative Name (SAN) validation is required so that these certificates
can serve the request to <app_name>.<namespace>.svc.cluster.local.

2. Generate a root key and certificate:

3. Generate a server key that uses SAN validation:

4. Create server certificates:

 config:
 network:
 internal-encryption: "true"
...

$ oc delete pod -n knative-serving --selector app=activator

$ export san="knative"

$ openssl req -x509 -sha256 -nodes -days 365 -newkey rsa:2048 \
 -subj '/O=Example/CN=Example' \
 -keyout ca.key \
 -out ca.crt

$ openssl req -out tls.csr -newkey rsa:2048 -nodes -keyout tls.key \
 -subj "/CN=Example/O=Example" \
 -addext "subjectAltName = DNS:$san"

$ openssl x509 -req -extfile <(printf "subjectAltName=DNS:$san") \
 -days 365 -in tls.csr \
 -CA ca.crt -CAkey ca.key -CAcreateserial -out tls.crt

CHAPTER 10. SECURITY

275

5. Configure a secret for the Kourier local gateway:

a. Deploy a secret in knative-serving-ingress namespace from the certificates created by
the previous steps:

b. Update the KnativeServing custom resource (CR) spec to use the secret that was created
by the Kourier gateway:

Example KnativeServing CR

The Kourier controller sets the certificate without restarting the service, so that you do not need to
restart the pod.

You can access the Kourier internal service with TLS through port 443 by mounting and using the ca.crt
from the client.

Additional resources

Enabling Knative Serving metrics when using Service Mesh with mTLS

10.1.3. Securing a service with a custom domain by using a TLS certificate

After you have configured a custom domain for a Knative service, you can use a TLS certificate to secure
the mapped service. To do this, you must create a Kubernetes TLS secret, and then update the
DomainMapping CR to use the TLS secret that you have created.

Prerequisites

You configured a custom domain for a Knative service and have a working DomainMapping CR.

You have a TLS certificate from your Certificate Authority provider or a self-signed certificate.

You have obtained the cert and key files from your Certificate Authority provider, or a self-
signed certificate.

Install the OpenShift CLI (oc).

Procedure

1. Create a Kubernetes TLS secret:

$ oc create -n knative-serving-ingress secret tls server-certs \
 --key=tls.key \
 --cert=tls.crt --dry-run=client -o yaml | oc apply -f -

...
spec:
 config:
 kourier:
 cluster-cert-secret: server-certs
...

$ oc create secret tls <tls_secret_name> --cert=<path_to_certificate_file> --key=
<path_to_key_file>

OpenShift Container Platform 4.6 Serverless

276

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/serverless/#serverless-ossm-enabling-serving-metrics_serverless-ossm-setup

2. If you are using Red Hat OpenShift Service Mesh as the ingress for your OpenShift Serverless
installation, label the Kubernetes TLS secret with the following:

If you are using a third-party secret provider such as cert-manager, you can configure your
secret manager to label the Kubernetes TLS secret automatically. Cert-manager users can use
the secret template offered to automatically generate secrets with the correct label. In this case,
secret filtering is done based on the key only, but this value can carry useful information such as
the certificate ID that the secret contains.

NOTE

The {cert-manager-operator} is a Technology Preview feature. For more
information, see the Installing the {cert-manager-operator} documentation.

3. Update the DomainMapping CR to use the TLS secret that you have created:

Verification

1. Verify that the DomainMapping CR status is True, and that the URL column of the output
shows the mapped domain with the scheme https:

Example output

2. Optional: If the service is exposed publicly, verify that it is available by running the following
command:

If the certificate is self-signed, skip verification by adding the -k flag to the curl command.

10.1.4. Configuring TLS authentication for Kafka brokers

“networking.internal.knative.dev/certificate-uid": “<value>”

apiVersion: serving.knative.dev/v1alpha1
kind: DomainMapping
metadata:
 name: <domain_name>
 namespace: <namespace>
spec:
 ref:
 name: <service_name>
 kind: Service
 apiVersion: serving.knative.dev/v1
TLS block specifies the secret to be used
 tls:
 secretName: <tls_secret_name>

$ oc get domainmapping <domain_name>

NAME URL READY REASON
example.com https://example.com True

$ curl https://<domain_name>

CHAPTER 10. SECURITY

277

Transport Layer Security (TLS) is used by Apache Kafka clients and servers to encrypt traffic between
Knative and Kafka, as well as for authentication. TLS is the only supported method of traffic encryption
for Knative Kafka.

Prerequisites

You have cluster administrator permissions on OpenShift Container Platform.

The OpenShift Serverless Operator, Knative Eventing, and the KnativeKafka CR are installed
on your OpenShift Container Platform cluster.

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

You have a Kafka cluster CA certificate stored as a .pem file.

You have a Kafka cluster client certificate and a key stored as .pem files.

Install the OpenShift CLI (oc).

Procedure

1. Create the certificate files as a secret in the knative-eventing namespace:

IMPORTANT

Use the key names ca.crt, user.crt, and user.key. Do not change them.

2. Edit the KnativeKafka CR and add a reference to your secret in the broker spec:

10.1.5. Configuring TLS authentication for Kafka channels

Transport Layer Security (TLS) is used by Apache Kafka clients and servers to encrypt traffic between
Knative and Kafka, as well as for authentication. TLS is the only supported method of traffic encryption
for Knative Kafka.

$ oc create secret -n knative-eventing generic <secret_name> \
 --from-literal=protocol=SSL \
 --from-file=ca.crt=caroot.pem \
 --from-file=user.crt=certificate.pem \
 --from-file=user.key=key.pem

apiVersion: operator.serverless.openshift.io/v1alpha1
kind: KnativeKafka
metadata:
 namespace: knative-eventing
 name: knative-kafka
spec:
 broker:
 enabled: true
 defaultConfig:
 authSecretName: <secret_name>
...

OpenShift Container Platform 4.6 Serverless

278

Prerequisites

You have cluster administrator permissions on OpenShift Container Platform.

The OpenShift Serverless Operator, Knative Eventing, and the KnativeKafka CR are installed
on your OpenShift Container Platform cluster.

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

You have a Kafka cluster CA certificate stored as a .pem file.

You have a Kafka cluster client certificate and a key stored as .pem files.

Install the OpenShift CLI (oc).

Procedure

1. Create the certificate files as secrets in your chosen namespace:

IMPORTANT

Use the key names ca.crt, user.crt, and user.key. Do not change them.

2. Start editing the KnativeKafka custom resource:

3. Reference your secret and the namespace of the secret:

NOTE

Make sure to specify the matching port in the bootstrap server.

$ oc create secret -n <namespace> generic <kafka_auth_secret> \
 --from-file=ca.crt=caroot.pem \
 --from-file=user.crt=certificate.pem \
 --from-file=user.key=key.pem

$ oc edit knativekafka

apiVersion: operator.serverless.openshift.io/v1alpha1
kind: KnativeKafka
metadata:
 namespace: knative-eventing
 name: knative-kafka
spec:
 channel:
 authSecretName: <kafka_auth_secret>
 authSecretNamespace: <kafka_auth_secret_namespace>
 bootstrapServers: <bootstrap_servers>
 enabled: true
 source:
 enabled: true

CHAPTER 10. SECURITY

279

For example:

10.2. CONFIGURING JSON WEB TOKEN AUTHENTICATION FOR
KNATIVE SERVICES

OpenShift Serverless does not currently have user-defined authorization features. To add user-defined
authorization to your deployment, you must integrate OpenShift Serverless with Red Hat OpenShift
Service Mesh, and then configure JSON Web Token (JWT) authentication and sidecar injection for
Knative services.

10.2.1. Using JSON Web Token authentication with Service Mesh 2.x and OpenShift
Serverless

You can use JSON Web Token (JWT) authentication with Knative services by using Service Mesh 2.x
and OpenShift Serverless. To do this, you must create authentication requests and policies in the
application namespace that is a member of the ServiceMeshMemberRoll object. You must also enable
sidecar injection for the service.

IMPORTANT

Adding sidecar injection to pods in system namespaces, such as knative-serving and
knative-serving-ingress, is not supported when Kourier is enabled.

If you require sidecar injection for pods in these namespaces, see the OpenShift
Serverless documentation on Integrating Service Mesh with OpenShift Serverless natively .

Prerequisites

You have installed the OpenShift Serverless Operator, Knative Serving, and Red Hat OpenShift
Service Mesh on your cluster.

Install the OpenShift CLI (oc).

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

Procedure

1. Add the sidecar.istio.io/inject="true" annotation to your service:

apiVersion: operator.serverless.openshift.io/v1alpha1
kind: KnativeKafka
metadata:
 namespace: knative-eventing
 name: knative-kafka
spec:
 channel:
 authSecretName: tls-user
 authSecretNamespace: kafka
 bootstrapServers: eventing-kafka-bootstrap.kafka.svc:9094
 enabled: true
 source:
 enabled: true

OpenShift Container Platform 4.6 Serverless

280

1

2

Example service

Add the sidecar.istio.io/inject="true" annotation.

You must set the annotation sidecar.istio.io/rewriteAppHTTPProbers: "true" in your
Knative service, because OpenShift Serverless versions 1.14.0 and higher use an HTTP
probe as the readiness probe for Knative services by default.

2. Apply the Service resource:

3. Create a RequestAuthentication resource in each serverless application namespace that is a
member in the ServiceMeshMemberRoll object:

4. Apply the RequestAuthentication resource:

5. Allow access to the RequestAuthenticaton resource from system pods for each serverless
application namespace that is a member in the ServiceMeshMemberRoll object, by creating
the following AuthorizationPolicy resource:

apiVersion: serving.knative.dev/v1
kind: Service
metadata:
 name: <service_name>
spec:
 template:
 metadata:
 annotations:
 sidecar.istio.io/inject: "true" 1
 sidecar.istio.io/rewriteAppHTTPProbers: "true" 2
...

$ oc apply -f <filename>

apiVersion: security.istio.io/v1beta1
kind: RequestAuthentication
metadata:
 name: jwt-example
 namespace: <namespace>
spec:
 jwtRules:
 - issuer: testing@secure.istio.io
 jwksUri: https://raw.githubusercontent.com/istio/istio/release-
1.8/security/tools/jwt/samples/jwks.json

$ oc apply -f <filename>

apiVersion: security.istio.io/v1beta1
kind: AuthorizationPolicy
metadata:
 name: allowlist-by-paths
 namespace: <namespace>
spec:
 action: ALLOW

CHAPTER 10. SECURITY

281

1

2

The path on your application to collect metrics by system pod.

The path on your application to probe by system pod.

6. Apply the AuthorizationPolicy resource:

7. For each serverless application namespace that is a member in the ServiceMeshMemberRoll
object, create the following AuthorizationPolicy resource:

8. Apply the AuthorizationPolicy resource:

Verification

1. If you try to use a curl request to get the Knative service URL, it is denied:

Example command

Example output

2. Verify the request with a valid JWT.

a. Get the valid JWT token:

 rules:
 - to:
 - operation:
 paths:
 - /metrics 1
 - /healthz 2

$ oc apply -f <filename>

apiVersion: security.istio.io/v1beta1
kind: AuthorizationPolicy
metadata:
 name: require-jwt
 namespace: <namespace>
spec:
 action: ALLOW
 rules:
 - from:
 - source:
 requestPrincipals: ["testing@secure.istio.io/testing@secure.istio.io"]

$ oc apply -f <filename>

$ curl http://hello-example-1-default.apps.mycluster.example.com/

RBAC: access denied

OpenShift Container Platform 4.6 Serverless

282

b. Access the service by using the valid token in the curl request header:

The request is now allowed:

Example output

10.2.2. Using JSON Web Token authentication with Service Mesh 1.x and OpenShift
Serverless

You can use JSON Web Token (JWT) authentication with Knative services by using Service Mesh 1.x and
OpenShift Serverless. To do this, you must create a policy in the application namespace that is a
member of the ServiceMeshMemberRoll object. You must also enable sidecar injection for the service.

IMPORTANT

Adding sidecar injection to pods in system namespaces, such as knative-serving and
knative-serving-ingress, is not supported when Kourier is enabled.

If you require sidecar injection for pods in these namespaces, see the OpenShift
Serverless documentation on Integrating Service Mesh with OpenShift Serverless natively .

Prerequisites

You have installed the OpenShift Serverless Operator, Knative Serving, and Red Hat OpenShift
Service Mesh on your cluster.

Install the OpenShift CLI (oc).

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

Procedure

1. Add the sidecar.istio.io/inject="true" annotation to your service:

Example service

$ TOKEN=$(curl https://raw.githubusercontent.com/istio/istio/release-
1.8/security/tools/jwt/samples/demo.jwt -s) && echo "$TOKEN" | cut -d '.' -f2 - | base64 --
decode -

$ curl -H "Authorization: Bearer $TOKEN" http://hello-example-1-
default.apps.example.com

Hello OpenShift!

apiVersion: serving.knative.dev/v1
kind: Service
metadata:
 name: <service_name>
spec:
 template:
 metadata:

CHAPTER 10. SECURITY

283

1

2

1

2

Add the sidecar.istio.io/inject="true" annotation.

You must set the annotation sidecar.istio.io/rewriteAppHTTPProbers: "true" in your
Knative service, because OpenShift Serverless versions 1.14.0 and higher use an HTTP
probe as the readiness probe for Knative services by default.

2. Apply the Service resource:

3. Create a policy in a serverless application namespace which is a member in the
ServiceMeshMemberRoll object, that only allows requests with valid JSON Web Tokens
(JWT):

IMPORTANT

The paths /metrics and /healthz must be included in excludedPaths because
they are accessed from system pods in the knative-serving namespace.

The path on your application to collect metrics by system pod.

The path on your application to probe by system pod.

4. Apply the Policy resource:

Verification

 annotations:
 sidecar.istio.io/inject: "true" 1
 sidecar.istio.io/rewriteAppHTTPProbers: "true" 2
...

$ oc apply -f <filename>

apiVersion: authentication.istio.io/v1alpha1
kind: Policy
metadata:
 name: default
 namespace: <namespace>
spec:
 origins:
 - jwt:
 issuer: testing@secure.istio.io
 jwksUri: "https://raw.githubusercontent.com/istio/istio/release-
1.6/security/tools/jwt/samples/jwks.json"
 triggerRules:
 - excludedPaths:
 - prefix: /metrics 1
 - prefix: /healthz 2
 principalBinding: USE_ORIGIN

$ oc apply -f <filename>

OpenShift Container Platform 4.6 Serverless

284

1. If you try to use a curl request to get the Knative service URL, it is denied:

Example output

2. Verify the request with a valid JWT.

a. Get the valid JWT token:

b. Access the service by using the valid token in the curl request header:

The request is now allowed:

Example output

10.3. CONFIGURING A CUSTOM DOMAIN FOR A KNATIVE SERVICE

Knative services are automatically assigned a default domain name based on your cluster configuration.
For example, <service_name>-<namespace>.example.com. You can customize the domain for your
Knative service by mapping a custom domain name that you own to a Knative service.

You can do this by creating a DomainMapping resource for the service. You can also create multiple
DomainMapping resources to map multiple domains and subdomains to a single service.

10.3.1. Creating a custom domain mapping

You can customize the domain for your Knative service by mapping a custom domain name that you own
to a Knative service. To map a custom domain name to a custom resource (CR), you must create a
DomainMapping CR that maps to an Addressable target CR, such as a Knative service or a Knative
route.

Prerequisites

The OpenShift Serverless Operator and Knative Serving are installed on your cluster.

Install the OpenShift CLI (oc).

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

You have created a Knative service and control a custom domain that you want to map to that

$ curl http://hello-example-default.apps.mycluster.example.com/

Origin authentication failed.

$ TOKEN=$(curl https://raw.githubusercontent.com/istio/istio/release-
1.6/security/tools/jwt/samples/demo.jwt -s) && echo "$TOKEN" | cut -d '.' -f2 - | base64 --
decode -

$ curl http://hello-example-default.apps.mycluster.example.com/ -H "Authorization:
Bearer $TOKEN"

Hello OpenShift!

CHAPTER 10. SECURITY

285

1

2

3

4

You have created a Knative service and control a custom domain that you want to map to that
service.

NOTE

Your custom domain must point to the IP address of the OpenShift Container
Platform cluster.

Procedure

1. Create a YAML file containing the DomainMapping CR in the same namespace as the target
CR you want to map to:

The custom domain name that you want to map to the target CR.

The namespace of both the DomainMapping CR and the target CR.

The name of the target CR to map to the custom domain.

The type of CR being mapped to the custom domain.

Example service domain mapping

Example route domain mapping

apiVersion: serving.knative.dev/v1alpha1
kind: DomainMapping
metadata:
 name: <domain_name> 1
 namespace: <namespace> 2
spec:
 ref:
 name: <target_name> 3
 kind: <target_type> 4
 apiVersion: serving.knative.dev/v1

apiVersion: serving.knative.dev/v1alpha1
kind: DomainMapping
metadata:
 name: example.com
 namespace: default
spec:
 ref:
 name: example-service
 kind: Service
 apiVersion: serving.knative.dev/v1

apiVersion: serving.knative.dev/v1alpha1
kind: DomainMapping
metadata:
 name: example.com
 namespace: default
spec:

OpenShift Container Platform 4.6 Serverless

286

2. Apply the DomainMapping CR as a YAML file:

10.3.2. Creating a custom domain mapping by using the Knative CLI

You can customize the domain for your Knative service by mapping a custom domain name that you own
to a Knative service. You can use the Knative (kn) CLI to create a DomainMapping custom resource
(CR) that maps to an Addressable target CR, such as a Knative service or a Knative route.

Prerequisites

The OpenShift Serverless Operator and Knative Serving are installed on your cluster.

You have created a Knative service or route, and control a custom domain that you want to map
to that CR.

NOTE

Your custom domain must point to the DNS of the OpenShift Container Platform
cluster.

You have installed the Knative (kn) CLI.

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

Procedure

Map a domain to a CR in the current namespace:

Example command

The --ref flag specifies an Addressable target CR for domain mapping.

If a prefix is not provided when using the --ref flag, it is assumed that the target is a Knative
service in the current namespace.

Map a domain to a Knative service in a specified namespace:

Example command

 ref:
 name: example-route
 kind: Route
 apiVersion: serving.knative.dev/v1

$ oc apply -f <filename>

$ kn domain create <domain_mapping_name> --ref <target_name>

$ kn domain create example.com --ref example-service

$ kn domain create <domain_mapping_name> --ref
<ksvc:service_name:service_namespace>

CHAPTER 10. SECURITY

287

Map a domain to a Knative route:

Example command

10.3.3. Securing a service with a custom domain by using a TLS certificate

After you have configured a custom domain for a Knative service, you can use a TLS certificate to secure
the mapped service. To do this, you must create a Kubernetes TLS secret, and then update the
DomainMapping CR to use the TLS secret that you have created.

Prerequisites

You configured a custom domain for a Knative service and have a working DomainMapping CR.

You have a TLS certificate from your Certificate Authority provider or a self-signed certificate.

You have obtained the cert and key files from your Certificate Authority provider, or a self-
signed certificate.

Install the OpenShift CLI (oc).

Procedure

1. Create a Kubernetes TLS secret:

2. If you are using Red Hat OpenShift Service Mesh as the ingress for your OpenShift Serverless
installation, label the Kubernetes TLS secret with the following:

If you are using a third-party secret provider such as cert-manager, you can configure your
secret manager to label the Kubernetes TLS secret automatically. Cert-manager users can use
the secret template offered to automatically generate secrets with the correct label. In this case,
secret filtering is done based on the key only, but this value can carry useful information such as
the certificate ID that the secret contains.

NOTE

The {cert-manager-operator} is a Technology Preview feature. For more
information, see the Installing the {cert-manager-operator} documentation.

3. Update the DomainMapping CR to use the TLS secret that you have created:

$ kn domain create example.com --ref ksvc:example-service:example-namespace

$ kn domain create <domain_mapping_name> --ref <kroute:route_name>

$ kn domain create example.com --ref kroute:example-route

$ oc create secret tls <tls_secret_name> --cert=<path_to_certificate_file> --key=
<path_to_key_file>

“networking.internal.knative.dev/certificate-uid": “<value>”

OpenShift Container Platform 4.6 Serverless

288

Verification

1. Verify that the DomainMapping CR status is True, and that the URL column of the output
shows the mapped domain with the scheme https:

Example output

2. Optional: If the service is exposed publicly, verify that it is available by running the following
command:

If the certificate is self-signed, skip verification by adding the -k flag to the curl command.

apiVersion: serving.knative.dev/v1alpha1
kind: DomainMapping
metadata:
 name: <domain_name>
 namespace: <namespace>
spec:
 ref:
 name: <service_name>
 kind: Service
 apiVersion: serving.knative.dev/v1
TLS block specifies the secret to be used
 tls:
 secretName: <tls_secret_name>

$ oc get domainmapping <domain_name>

NAME URL READY REASON
example.com https://example.com True

$ curl https://<domain_name>

CHAPTER 10. SECURITY

289

CHAPTER 11. FUNCTIONS

11.1. SETTING UP OPENSHIFT SERVERLESS FUNCTIONS

IMPORTANT

OpenShift Serverless Functions is a Technology Preview feature only. Technology
Preview features are not supported with Red Hat production service level agreements
(SLAs) and might not be functionally complete. Red Hat does not recommend using
them in production. These features provide early access to upcoming product features,
enabling customers to test functionality and provide feedback during the development
process.

For more information about the support scope of Red Hat Technology Preview features,
see https://access.redhat.com/support/offerings/techpreview/.

To improve the process of deployment of your application code, you can use OpenShift Serverless to
deploy stateless, event-driven functions as a Knative service on OpenShift Container Platform. If you
want to develop functions, you must complete the set up steps.

11.1.1. Prerequisites

To enable the use of OpenShift Serverless Functions on your cluster, you must complete the following
steps:

The OpenShift Serverless Operator and Knative Serving are installed on your cluster.

NOTE

Functions are deployed as a Knative service. If you want to use event-driven
architecture with your functions, you must also install Knative Eventing.

You have the oc CLI installed.

You have the Knative (kn) CLI installed. Installing the Knative CLI enables the use of kn func
commands which you can use to create and manage functions.

You have installed Docker Container Engine or podman version 3.4.7 or higher, and have access
to an available image registry, such as the OpenShift Container Registry.

If you are using Quay.io as the image registry, you must ensure that either the repository is not
private, or that you have followed the OpenShift Container Platform documentation on Allowing
pods to reference images from other secured registries.

If you are using the OpenShift Container Registry, a cluster administrator must expose the
registry.

11.1.2. Setting up podman

To use advanced container management features, you might want to use podman with OpenShift
Serverless Functions. To do so, you need to start the podman service and configure the Knative (kn) CLI
to connect to it.

OpenShift Container Platform 4.6 Serverless

290

https://access.redhat.com/support/offerings/techpreview/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/cli_tools/#cli-getting-started
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/serverless/#installing-kn
https://quay.io/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/images/#images-allow-pods-to-reference-images-from-secure-registries_using-image-pull-secrets
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/registry/#securing-exposing-registry

Procedure

1. Start the podman service that serves the Docker API on a UNIX socket at
${XDG_RUNTIME_DIR}/podman/podman.sock:

NOTE

On most systems, this socket is located at /run/user/$(id -
u)/podman/podman.sock.

2. Establish the environment variable that is used to build a function:

3. Run the build command inside your function project directory with the -v flag to see verbose
output. You should see a connection to your local UNIX socket:

11.1.3. Setting up podman on macOS

To use advanced container management features, you might want to use podman with OpenShift
Serverless Functions. To do so on macOS, you need to start the podman machine and configure the
Knative (kn) CLI to connect to it.

Procedure

1. Create the podman machine:

2. Start the podman machine, which serves the Docker API on a UNIX socket:

NOTE

$ systemctl start --user podman.socket

$ export DOCKER_HOST="unix://${XDG_RUNTIME_DIR}/podman/podman.sock"

$ kn func build -v

$ podman machine init --memory=8192 --cpus=2 --disk-size=20

$ podman machine start
Starting machine "podman-machine-default"
Waiting for VM ...
Mounting volume... /Users/myuser:/Users/user

[...truncated output...]

You can still connect Docker API clients by setting DOCKER_HOST using the
following command in your terminal session:

 export
DOCKER_HOST='unix:///Users/myuser/.local/share/containers/podman/machine/podman-
machine-default/podman.sock'

Machine "podman-machine-default" started successfully

CHAPTER 11. FUNCTIONS

291

NOTE

On most macOS systems, this socket is located at
/Users/myuser/.local/share/containers/podman/machine/podman-machine-
default/podman.sock.

3. Establish the environment variable that is used to build a function:

4. Run the build command inside your function project directory with the -v flag to see verbose
output. You should see a connection to your local UNIX socket:

11.1.4. Next steps

For more information about Docker Container Engine or podman, see Container build tool
options.

See Getting started with functions.

11.2. GETTING STARTED WITH FUNCTIONS

Function lifecycle management includes creating, building, and deploying a function. Optionally, you can
also test a deployed function by invoking it. You can do all of these operations on OpenShift Serverless
using the kn func tool.

IMPORTANT

OpenShift Serverless Functions is a Technology Preview feature only. Technology
Preview features are not supported with Red Hat production service level agreements
(SLAs) and might not be functionally complete. Red Hat does not recommend using
them in production. These features provide early access to upcoming product features,
enabling customers to test functionality and provide feedback during the development
process.

For more information about the support scope of Red Hat Technology Preview features,
see https://access.redhat.com/support/offerings/techpreview/.

11.2.1. Prerequisites

Before you can complete the following procedures, you must ensure that you have completed all of the
prerequisite tasks in Setting up OpenShift Serverless Functions.

11.2.2. Creating functions

Before you can build and deploy a function, you must create it by using the Knative (kn) CLI. You can
specify the path, runtime, template, and image registry as flags on the command line, or use the -c flag
to start the interactive experience in the terminal.

IMPORTANT

$ export
DOCKER_HOST='unix:///Users/myuser/.local/share/containers/podman/machine/podman-
machine-default/podman.sock'

$ kn func build -v

OpenShift Container Platform 4.6 Serverless

292

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/architecture/#container-build-tool-options
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/serverless/#serverless-functions-getting-started
https://access.redhat.com/support/offerings/techpreview/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/serverless/#serverless-functions-setup

IMPORTANT

OpenShift Serverless Functions is a Technology Preview feature only. Technology
Preview features are not supported with Red Hat production service level agreements
(SLAs) and might not be functionally complete. Red Hat does not recommend using
them in production. These features provide early access to upcoming product features,
enabling customers to test functionality and provide feedback during the development
process.

For more information about the support scope of Red Hat Technology Preview features,
see https://access.redhat.com/support/offerings/techpreview/.

Prerequisites

The OpenShift Serverless Operator and Knative Serving are installed on the cluster.

You have installed the Knative (kn) CLI.

Procedure

Create a function project:

Accepted runtime values include quarkus, node, typescript, go, python, springboot, and
rust.

Accepted template values include http and cloudevents.

Example command

Example output

Alternatively, you can specify a repository that contains a custom template.

Example command

Example output

11.2.3. Running a function locally

You can use the kn func run command to run a function locally in the current directory or in the
directory specified by the --path flag. If the function that you are running has never previously been built,
or if the project files have been modified since the last time it was built, the kn func run command

$ kn func create -r <repository> -l <runtime> -t <template> <path>

$ kn func create -l typescript -t cloudevents examplefunc

Created typescript function in /home/user/demo/examplefunc

$ kn func create -r https://github.com/boson-project/templates/ -l node -t hello-world
examplefunc

Created node function in /home/user/demo/examplefunc

CHAPTER 11. FUNCTIONS

293

https://access.redhat.com/support/offerings/techpreview/

builds the function before running it by default.

Example command to run a function in the current directory

Example command to run a function in a directory specified as a path

You can also force a rebuild of an existing image before running the function, even if there have been no
changes to the project files, by using the --build flag:

Example run command using the build flag

If you set the build flag as false, this disables building of the image, and runs the function using the
previously built image:

Example run command using the build flag

You can use the help command to learn more about kn func run command options:

Build help command

11.2.4. Building functions

Before you can run a function, you must build the function project. If you are using the kn func run
command, the function is built automatically. However, you can use the kn func build command to build
a function without running it, which can be useful for advanced users or debugging scenarios.

The kn func build command creates an OCI container image that can be run locally on your computer
or on an OpenShift Container Platform cluster. This command uses the function project name and the
image registry name to construct a fully qualified image name for your function.

11.2.4.1. Image container types

By default, kn func build creates a container image by using Red Hat Source-to-Image (S2I)
technology.

Example build command using Red Hat Source-to-Image (S2I)

You can use CNCF Cloud Native Buildpacks technology instead, by adding the --builder flag to the
command and specifying the pack strategy:

$ kn func run

$ kn func run --path=<directory_path>

$ kn func run --build

$ kn func run --build=false

$ kn func help run

$ kn func build

OpenShift Container Platform 4.6 Serverless

294

https://buildpacks.io/

Example build command using CNCF Cloud Native Buildpacks

11.2.4.2. Image registry types

The OpenShift Container Registry is used by default as the image registry for storing function images.

Example build command using OpenShift Container Registry

Example output

You can override using OpenShift Container Registry as the default image registry by using the --
registry flag:

Example build command overriding OpenShift Container Registry to use quay.io

Example output

11.2.4.3. Push flag

You can add the --push flag to a kn func build command to automatically push the function image
after it is successfully built:

Example build command using OpenShift Container Registry

11.2.4.4. Help command

You can use the help command to learn more about kn func build command options:

Build help command

11.2.5. Deploying functions

You can deploy a function to your cluster as a Knative service by using the kn func deploy command. If

$ kn func build --builder pack

$ kn func build

Building function image
Function image has been built, image: registry.redhat.io/example/example-function:latest

$ kn func build --registry quay.io/username

Building function image
Function image has been built, image: quay.io/username/example-function:latest

$ kn func build --push

$ kn func help build

CHAPTER 11. FUNCTIONS

295

You can deploy a function to your cluster as a Knative service by using the kn func deploy command. If
the targeted function is already deployed, it is updated with a new container image that is pushed to a
container image registry, and the Knative service is updated.

Prerequisites

The OpenShift Serverless Operator and Knative Serving are installed on the cluster.

You have installed the Knative (kn) CLI.

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

You must have already created and initialized the function that you want to deploy.

Procedure

Deploy a function:

Example output

If no namespace is specified, the function is deployed in the current namespace.

The function is deployed from the current directory, unless a path is specified.

The Knative service name is derived from the project name, and cannot be changed using
this command.

11.2.6. Invoking a deployed function with a test event

You can use the kn func invoke CLI command to send a test request to invoke a function either locally
or on your OpenShift Container Platform cluster. You can use this command to test that a function is
working and able to receive events correctly. Invoking a function locally is useful for a quick test during
function development. Invoking a function on the cluster is useful for testing that is closer to the
production environment.

Prerequisites

The OpenShift Serverless Operator and Knative Serving are installed on the cluster.

You have installed the Knative (kn) CLI.

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

You must have already deployed the function that you want to invoke.

Procedure

Invoke a function:

$ kn func deploy [-n <namespace> -p <path> -i <image>]

Function deployed at: http://func.example.com

OpenShift Container Platform 4.6 Serverless

296

The kn func invoke command only works when there is either a local container image
currently running, or when there is a function deployed in the cluster.

The kn func invoke command executes on the local directory by default, and assumes that
this directory is a function project.

11.2.7. Deleting a function

You can delete a function by using the kn func delete command. This is useful when a function is no
longer required, and can help to save resources on your cluster.

Procedure

Delete a function:

If the name or path of the function to delete is not specified, the current directory is
searched for a func.yaml file that is used to determine the function to delete.

If the namespace is not specified, it defaults to the namespace value in the func.yaml file.

11.2.8. Additional resources

Exposing a default registry manually

Marketplace page for the Intellij Knative plug-in

Marketplace page for the Visual Studio Code Knative plug-in

11.3. ON-CLUSTER FUNCTION BUILDING AND DEPLOYING

Instead of building a function locally, you can build a function directly on the cluster. When using this
workflow on a local development machine, you only need to work with the function source code. This is
useful, for example, when you cannot install on-cluster function building tools, such as docker or podman.

11.3.1. Building and deploying functions on the cluster

You can use the Knative (kn) CLI to initiate a function project build and then deploy the function directly
on the cluster. To build a function project in this way, the source code for your function project must
exist in a Git repository branch that is accessible to your cluster.

IMPORTANT

$ kn func invoke

$ kn func delete [<function_name> -n <namespace> -p <path>]

CHAPTER 11. FUNCTIONS

297

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/registry/#securing-exposing-registry
https://plugins.jetbrains.com/plugin/16476-knative--serverless-functions-by-red-hat
https://marketplace.visualstudio.com/items?itemName=redhat.vscode-knative&utm_source=VSCode.pro&utm_campaign=AhmadAwais

1

IMPORTANT

OpenShift Serverless Functions is a Technology Preview feature only. Technology
Preview features are not supported with Red Hat production service level agreements
(SLAs) and might not be functionally complete. Red Hat does not recommend using
them in production. These features provide early access to upcoming product features,
enabling customers to test functionality and provide feedback during the development
process.

For more information about the support scope of Red Hat Technology Preview features,
see https://access.redhat.com/support/offerings/techpreview/.

Prerequisites

Red Hat OpenShift Pipelines must be installed on your cluster.

You have installed the OpenShift CLI (oc).

You have installed the Knative (kn) CLI.

Procedure

1. In each namespace where you want to run Pipelines and deploy a function, you must create the
following resources:

a. Create the s2i Tekton task to be able to use Source-to-Image in the pipeline:

b. Create the kn func deploy Tekton task to be able to deploy the function in the pipeline:

2. Create a function:

3. After you have created a new function project, you must add the project to a Git repository and
ensure that the repository is available to the cluster. Information about this Git repository is
used to update the func.yaml file in the next step.

4. Update the configuration in the func.yaml file for your function project to enable on-cluster
builds for the Git repository:

Required. Specify the Git repository that contains your function’s source code.

$ oc apply -f https://raw.githubusercontent.com/openshift-knative/kn-plugin-
func/serverless-1.25.0/pipelines/resources/tekton/task/func-s2i/0.1/func-s2i.yaml

$ oc apply -f https://raw.githubusercontent.com/openshift-knative/kn-plugin-
func/serverless-1.25.0/pipelines/resources/tekton/task/func-deploy/0.1/func-deploy.yaml

$ kn func create <function_name> -l <runtime>

...
git:
 url: <git_repository_url> 1
 revision: main 2
 contextDir: <directory_path> 3
...

OpenShift Container Platform 4.6 Serverless

298

https://access.redhat.com/support/offerings/techpreview/

2

3

Optional. Specify the Git repository revision to be used. This can be a branch, tag, or
commit.

Optional. Specify the function’s directory path if the function is not located in the Git
repository root folder.

5. Implement the business logic of your function. Then, use Git to commit and push the changes.

6. Deploy your function:

If you are not logged into the container registry referenced in your function configuration, you
are prompted to provide credentials for the remote container registry that hosts the function
image:

Example output and prompts

7. To update your function, commit and push new changes by using Git, then run the kn func
deploy --remote command again.

11.3.2. Specifying function revision

When building and deploying a function on the cluster, you must specify the location of the function
code by specifying the Git repository, branch, and subdirectory within the repository. You do not need to
specify the branch if you use the main branch. Similarly, you do not need to specify the subdirectory if
your function is at the root of the repository. You can specify these parameters in the func.yaml
configuration file, or by using flags with the kn func deploy command.

Prerequisites

Red Hat OpenShift Pipelines must be installed on your cluster.

You have installed the OpenShift (oc) CLI.

You have installed the Knative (kn) CLI.

Procedure

Deploy your function:

$ kn func deploy --remote

� Creating Pipeline resources
Please provide credentials for image registry used by Pipeline.
? Server: https://index.docker.io/v1/
? Username: my-repo
? Password: ********
 Function deployed at URL: http://test-function.default.svc.cluster.local

$ kn func deploy --remote \ 1
 --git-url <repo-url> \ 2
 [--git-branch <branch>] \ 3
 [--git-dir <function-dir>] 4

CHAPTER 11. FUNCTIONS

299

1

2

3

4

With the --remote flag, the build runs remotely.

Substitute <repo-url> with the URL of the Git repository.

Substitute <branch> with the Git branch, tag, or commit. If using the latest commit on the
main branch, you can skip this flag.

Substitute <function-dir> with the directory containing the function if it is different than
the repository root directory.

For example:

11.4. DEVELOPING NODE.JS FUNCTIONS

IMPORTANT

OpenShift Serverless Functions is a Technology Preview feature only. Technology
Preview features are not supported with Red Hat production service level agreements
(SLAs) and might not be functionally complete. Red Hat does not recommend using
them in production. These features provide early access to upcoming product features,
enabling customers to test functionality and provide feedback during the development
process.

For more information about the support scope of Red Hat Technology Preview features,
see https://access.redhat.com/support/offerings/techpreview/.

After you have created a Node.js function project , you can modify the template files provided to add
business logic to your function. This includes configuring function invocation and the returned headers
and status codes.

11.4.1. Prerequisites

Before you can develop functions, you must complete the steps in Setting up OpenShift
Serverless Functions.

11.4.2. Node.js function template structure

When you create a Node.js function using the Knative (kn) CLI, the project directory looks like a typical
Node.js project. The only exception is the additional func.yaml file, which is used to configure the
function.

Both http and event trigger functions have the same template structure:

Template structure

$ kn func deploy --remote \
 --git-url https://example.com/alice/myfunc.git \
 --git-branch my-feature \
 --git-dir functions/example-func/

.
├── func.yaml 1

OpenShift Container Platform 4.6 Serverless

300

https://access.redhat.com/support/offerings/techpreview/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/serverless/#serverless-create-func-kn_serverless-functions-getting-started
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/serverless/#serverless-functions-setup

1

2

3

4

The func.yaml configuration file is used to determine the image name and registry.

Your project must contain an index.js file which exports a single function.

You are not restricted to the dependencies provided in the template package.json file. You can
add additional dependencies as you would in any other Node.js project.

Example of adding npm dependencies

When the project is built for deployment, these dependencies are included in the created runtime
container image.

Integration and unit test scripts are provided as part of the function template.

11.4.3. About invoking Node.js functions

When using the Knative (kn) CLI to create a function project, you can generate a project that responds
to CloudEvents, or one that responds to simple HTTP requests. CloudEvents in Knative are transported
over HTTP as a POST request, so both function types listen for and respond to incoming HTTP events.

Node.js functions can be invoked with a simple HTTP request. When an incoming request is received,
functions are invoked with a context object as the first parameter.

11.4.3.1. Node.js context objects

Functions are invoked by providing a context object as the first parameter. This object provides access
to the incoming HTTP request information.

Example context object

This information includes the HTTP request method, any query strings or headers sent with the request,
the HTTP version, and the request body. Incoming requests that contain a CloudEvent attach the
incoming instance of the CloudEvent to the context object so that it can be accessed by using
context.cloudevent.

11.4.3.1.1. Context object methods

The context object has a single method, cloudEventResponse(), that accepts a data value and returns
a CloudEvent.

In a Knative system, if a function deployed as a service is invoked by an event broker sending a

├── index.js 2
├── package.json 3
├── README.md
└── test 4
 ├── integration.js
 └── unit.js

npm install --save opossum

function handle(context, data)

CHAPTER 11. FUNCTIONS

301

In a Knative system, if a function deployed as a service is invoked by an event broker sending a
CloudEvent, the broker examines the response. If the response is a CloudEvent, this event is handled by
the broker.

Example context object method

11.4.3.1.2. CloudEvent data

If the incoming request is a CloudEvent, any data associated with the CloudEvent is extracted from the
event and provided as a second parameter. For example, if a CloudEvent is received that contains a
JSON string in its data property that is similar to the following:

When invoked, the second parameter to the function, after the context object, will be a JavaScript
object that has customerId and productId properties.

Example signature

The data parameter in this example is a JavaScript object that contains the customerId and productId
properties.

11.4.4. Node.js function return values

Functions can return any valid JavaScript type or can have no return value. When a function has no
return value specified, and no failure is indicated, the caller receives a 204 No Content response.

Functions can also return a CloudEvent or a Message object in order to push events into the Knative
Eventing system. In this case, the developer is not required to understand or implement the CloudEvent
messaging specification. Headers and other relevant information from the returned values are extracted
and sent with the response.

Example

// Expects to receive a CloudEvent with customer data
function handle(context, customer) {
 // process the customer
 const processed = handle(customer);
 return context.cloudEventResponse(customer)
 .source('/handle')
 .type('fn.process.customer')
 .response();
}

{
 "customerId": "0123456",
 "productId": "6543210"
}

function handle(context, data)

function handle(context, customer) {
 // process customer and return a new CloudEvent
 return new CloudEvent({
 source: 'customer.processor',

OpenShift Container Platform 4.6 Serverless

302

11.4.4.1. Returning headers

You can set a response header by adding a headers property to the return object. These headers are
extracted and sent with the response to the caller.

Example response header

11.4.4.2. Returning status codes

You can set a status code that is returned to the caller by adding a statusCode property to the return
object:

Example status code

Status codes can also be set for errors that are created and thrown by the function:

Example error status code

11.4.5. Testing Node.js functions

Node.js functions can be tested locally on your computer. In the default project that is created when you
create a function by using kn func create, there is a test folder that contains some simple unit and
integration tests.

Prerequisites

The OpenShift Serverless Operator and Knative Serving are installed on the cluster.

 type: 'customer.processed'
 })
}

function handle(context, customer) {
 // process customer and return custom headers
 // the response will be '204 No content'
 return { headers: { customerid: customer.id } };
}

function handle(context, customer) {
 // process customer
 if (customer.restricted) {
 return { statusCode: 451 }
 }
}

function handle(context, customer) {
 // process customer
 if (customer.restricted) {
 const err = new Error(‘Unavailable for legal reasons’);
 err.statusCode = 451;
 throw err;
 }
}

CHAPTER 11. FUNCTIONS

303

You have installed the Knative (kn) CLI.

You have created a function by using kn func create.

Procedure

1. Navigate to the test folder for your function.

2. Run the tests:

11.4.6. Next steps

See the Node.js context object reference documentation.

Build and deploy a function.

11.5. DEVELOPING TYPESCRIPT FUNCTIONS

IMPORTANT

OpenShift Serverless Functions is a Technology Preview feature only. Technology
Preview features are not supported with Red Hat production service level agreements
(SLAs) and might not be functionally complete. Red Hat does not recommend using
them in production. These features provide early access to upcoming product features,
enabling customers to test functionality and provide feedback during the development
process.

For more information about the support scope of Red Hat Technology Preview features,
see https://access.redhat.com/support/offerings/techpreview/.

After you have created a TypeScript function project , you can modify the template files provided to add
business logic to your function. This includes configuring function invocation and the returned headers
and status codes.

11.5.1. Prerequisites

Before you can develop functions, you must complete the steps in Setting up OpenShift
Serverless Functions.

11.5.2. TypeScript function template structure

When you create a TypeScript function using the Knative (kn) CLI, the project directory looks like a
typical TypeScript project. The only exception is the additional func.yaml file, which is used for
configuring the function.

Both http and event trigger functions have the same template structure:

Template structure

$ npm test

.
├── func.yaml 1

OpenShift Container Platform 4.6 Serverless

304

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/serverless/#serverless-nodejs-context-object-reference_serverless-functions-reference-guide
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/serverless/#serverless-build-func-kn_serverless-functions-getting-started
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/serverless/#serverless-deploy-func-kn_serverless-functions-getting-started
https://access.redhat.com/support/offerings/techpreview/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/serverless/#serverless-create-func-kn_serverless-functions-getting-started
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/serverless/#serverless-functions-setup

1

2

3

4

The func.yaml configuration file is used to determine the image name and registry.

You are not restricted to the dependencies provided in the template package.json file. You can
add additional dependencies as you would in any other TypeScript project.

Example of adding npm dependencies

When the project is built for deployment, these dependencies are included in the created runtime
container image.

Your project must contain an src/index.js file which exports a function named handle.

Integration and unit test scripts are provided as part of the function template.

11.5.3. About invoking TypeScript functions

When using the Knative (kn) CLI to create a function project, you can generate a project that responds
to CloudEvents or one that responds to simple HTTP requests. CloudEvents in Knative are transported
over HTTP as a POST request, so both function types listen for and respond to incoming HTTP events.

TypeScript functions can be invoked with a simple HTTP request. When an incoming request is received,
functions are invoked with a context object as the first parameter.

11.5.3.1. TypeScript context objects

To invoke a function, you provide a context object as the first parameter. Accessing properties of the
context object can provide information about the incoming HTTP request.

Example context object

This information includes the HTTP request method, any query strings or headers sent with the request,
the HTTP version, and the request body. Incoming requests that contain a CloudEvent attach the
incoming instance of the CloudEvent to the context object so that it can be accessed by using
context.cloudevent.

11.5.3.1.1. Context object methods

The context object has a single method, cloudEventResponse(), that accepts a data value and returns
a CloudEvent.

In a Knative system, if a function deployed as a service is invoked by an event broker sending a

├── package.json 2
├── package-lock.json
├── README.md
├── src
│ └── index.ts 3
├── test 4
│ ├── integration.ts
│ └── unit.ts
└── tsconfig.json

npm install --save opossum

function handle(context:Context): string

CHAPTER 11. FUNCTIONS

305

In a Knative system, if a function deployed as a service is invoked by an event broker sending a
CloudEvent, the broker examines the response. If the response is a CloudEvent, this event is handled by
the broker.

Example context object method

11.5.3.1.2. Context types

The TypeScript type definition files export the following types for use in your functions.

Exported type definitions

// Expects to receive a CloudEvent with customer data
export function handle(context: Context, cloudevent?: CloudEvent): CloudEvent {
 // process the customer
 const customer = cloudevent.data;
 const processed = processCustomer(customer);
 return context.cloudEventResponse(customer)
 .source('/customer/process')
 .type('customer.processed')
 .response();
}

// Invokable is the expeted Function signature for user functions
export interface Invokable {
 (context: Context, cloudevent?: CloudEvent): any
}

// Logger can be used for structural logging to the console
export interface Logger {
 debug: (msg: any) => void,
 info: (msg: any) => void,
 warn: (msg: any) => void,
 error: (msg: any) => void,
 fatal: (msg: any) => void,
 trace: (msg: any) => void,
}

// Context represents the function invocation context, and provides
// access to the event itself as well as raw HTTP objects.
export interface Context {
 log: Logger;
 req: IncomingMessage;
 query?: Record<string, any>;
 body?: Record<string, any>|string;
 method: string;
 headers: IncomingHttpHeaders;
 httpVersion: string;
 httpVersionMajor: number;
 httpVersionMinor: number;
 cloudevent: CloudEvent;
 cloudEventResponse(data: string|object): CloudEventResponse;
}

// CloudEventResponse is a convenience class used to create

OpenShift Container Platform 4.6 Serverless

306

11.5.3.1.3. CloudEvent data

If the incoming request is a CloudEvent, any data associated with the CloudEvent is extracted from the
event and provided as a second parameter. For example, if a CloudEvent is received that contains a
JSON string in its data property that is similar to the following:

When invoked, the second parameter to the function, after the context object, will be a JavaScript
object that has customerId and productId properties.

Example signature

The cloudevent parameter in this example is a JavaScript object that contains the customerId and
productId properties.

11.5.4. TypeScript function return values

Functions can return any valid JavaScript type or can have no return value. When a function has no
return value specified, and no failure is indicated, the caller receives a 204 No Content response.

Functions can also return a CloudEvent or a Message object in order to push events into the Knative
Eventing system. In this case, the developer is not required to understand or implement the CloudEvent
messaging specification. Headers and other relevant information from the returned values are extracted
and sent with the response.

Example

// CloudEvents on function returns
export interface CloudEventResponse {
 id(id: string): CloudEventResponse;
 source(source: string): CloudEventResponse;
 type(type: string): CloudEventResponse;
 version(version: string): CloudEventResponse;
 response(): CloudEvent;
}

{
 "customerId": "0123456",
 "productId": "6543210"
}

function handle(context: Context, cloudevent?: CloudEvent): CloudEvent

export const handle: Invokable = function (
 context: Context,
 cloudevent?: CloudEvent
): Message {
 // process customer and return a new CloudEvent
 const customer = cloudevent.data;
 return HTTP.binary(
 new CloudEvent({
 source: 'customer.processor',
 type: 'customer.processed'

CHAPTER 11. FUNCTIONS

307

11.5.4.1. Returning headers

You can set a response header by adding a headers property to the return object. These headers are
extracted and sent with the response to the caller.

Example response header

11.5.4.2. Returning status codes

You can set a status code that is returned to the caller by adding a statusCode property to the return
object:

Example status code

Status codes can also be set for errors that are created and thrown by the function:

Example error status code

11.5.5. Testing TypeScript functions

 })
);
};

export function handle(context: Context, cloudevent?: CloudEvent): Record<string, any> {
 // process customer and return custom headers
 const customer = cloudevent.data as Record<string, any>;
 return { headers: { 'customer-id': customer.id } };
}

export function handle(context: Context, cloudevent?: CloudEvent): Record<string, any> {
 // process customer
 const customer = cloudevent.data as Record<string, any>;
 if (customer.restricted) {
 return {
 statusCode: 451
 }
 }
 // business logic, then
 return {
 statusCode: 240
 }
}

export function handle(context: Context, cloudevent?: CloudEvent): Record<string, string> {
 // process customer
 const customer = cloudevent.data as Record<string, any>;
 if (customer.restricted) {
 const err = new Error(‘Unavailable for legal reasons’);
 err.statusCode = 451;
 throw err;
 }
}

OpenShift Container Platform 4.6 Serverless

308

TypeScript functions can be tested locally on your computer. In the default project that is created when
you create a function using kn func create, there is a test folder that contains some simple unit and
integration tests.

Prerequisites

The OpenShift Serverless Operator and Knative Serving are installed on the cluster.

You have installed the Knative (kn) CLI.

You have created a function by using kn func create.

Procedure

1. If you have not previously run tests, install the dependencies first:

2. Navigate to the test folder for your function.

3. Run the tests:

11.5.6. Next steps

See the TypeScript context object reference documentation.

Build and deploy a function.

See the Pino API documentation for more information on logging with functions.

11.6. DEVELOPING GO FUNCTIONS

IMPORTANT

OpenShift Serverless Functions is a Technology Preview feature only. Technology
Preview features are not supported with Red Hat production service level agreements
(SLAs) and might not be functionally complete. Red Hat does not recommend using
them in production. These features provide early access to upcoming product features,
enabling customers to test functionality and provide feedback during the development
process.

For more information about the support scope of Red Hat Technology Preview features,
see https://access.redhat.com/support/offerings/techpreview/.

After you have created a Go function project , you can modify the template files provided to add
business logic to your function. This includes configuring function invocation and the returned headers
and status codes.

11.6.1. Prerequisites

Before you can develop functions, you must complete the steps in Setting up OpenShift

$ npm install

$ npm test

CHAPTER 11. FUNCTIONS

309

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/serverless/#serverless-typescript-context-object-reference_serverless-functions-reference-guide
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/serverless/#serverless-build-func-kn_serverless-functions-getting-started
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/serverless/#serverless-deploy-func-kn_serverless-functions-getting-started
https://getpino.io/#/docs/api
https://access.redhat.com/support/offerings/techpreview/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/serverless/#serverless-create-func-kn_serverless-functions-getting-started

1

2

Before you can develop functions, you must complete the steps in Setting up OpenShift
Serverless Functions.

11.6.2. Go function template structure

When you create a Go function using the Knative (kn) CLI, the project directory looks like a typical Go
project. The only exception is the additional func.yaml configuration file, which is used for specifying
the image.

Go functions have few restrictions. The only requirements are that your project must be defined in a
function module, and must export the function Handle().

Both http and event trigger functions have the same template structure:

Template structure

The func.yaml configuration file is used to determine the image name and registry.

You can add any required dependencies to the go.mod file, which can include additional local Go
files. When the project is built for deployment, these dependencies are included in the resulting
runtime container image.

Example of adding dependencies

11.6.3. About invoking Go functions

When using the Knative (kn) CLI to create a function project, you can generate a project that responds
to CloudEvents, or one that responds to simple HTTP requests. Go functions are invoked by using
different methods, depending on whether they are triggered by an HTTP request or a CloudEvent.

11.6.3.1. Functions triggered by an HTTP request

When an incoming HTTP request is received, functions are invoked with a standard Go Context as the
first parameter, followed by the http.ResponseWriter and http.Request parameters. You can use
standard Go techniques to access the request, and set a corresponding HTTP response for your
function.

Example HTTP response

fn
├── README.md
├── func.yaml 1
├── go.mod 2
├── go.sum
├── handle.go
└── handle_test.go

$ go get gopkg.in/yaml.v2@v2.4.0

func Handle(ctx context.Context, res http.ResponseWriter, req *http.Request) {
 // Read body
 body, err := ioutil.ReadAll(req.Body)
 defer req.Body.Close()

OpenShift Container Platform 4.6 Serverless

310

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/serverless/#serverless-functions-setup
https://golang.org/pkg/context/
https://golang.org/pkg/net/http/#ResponseWriter
https://golang.org/pkg/net/http/#Request

11.6.3.2. Functions triggered by a cloud event

When an incoming cloud event is received, the event is invoked by the CloudEvents Go SDK . The
invocation uses the Event type as a parameter.

You can leverage the Go Context as an optional parameter in the function contract, as shown in the list
of supported function signatures:

Supported function signatures

11.6.3.2.1. CloudEvent trigger example

A cloud event is received which contains a JSON string in the data property:

To access this data, a structure must be defined which maps properties in the cloud event data, and
retrieves the data from the incoming event. The following example uses the Purchase structure:

 if err != nil {
 http.Error(res, err.Error(), 500)
 return
 }
 // Process body and function logic
 // ...
}

Handle()
Handle() error
Handle(context.Context)
Handle(context.Context) error
Handle(cloudevents.Event)
Handle(cloudevents.Event) error
Handle(context.Context, cloudevents.Event)
Handle(context.Context, cloudevents.Event) error
Handle(cloudevents.Event) *cloudevents.Event
Handle(cloudevents.Event) (*cloudevents.Event, error)
Handle(context.Context, cloudevents.Event) *cloudevents.Event
Handle(context.Context, cloudevents.Event) (*cloudevents.Event, error)

{
 "customerId": "0123456",
 "productId": "6543210"
}

type Purchase struct {
 CustomerId string `json:"customerId"`
 ProductId string `json:"productId"`
}
func Handle(ctx context.Context, event cloudevents.Event) (err error) {

 purchase := &Purchase{}
 if err = event.DataAs(purchase); err != nil {
 fmt.Fprintf(os.Stderr, "failed to parse incoming CloudEvent %s\n", err)
 return

CHAPTER 11. FUNCTIONS

311

https://cloudevents.github.io/sdk-go/
https://golang.org/pkg/context/

Alternatively, a Go encoding/json package could be used to access the cloud event directly as JSON in
the form of a bytes array:

11.6.4. Go function return values

Functions triggered by HTTP requests can set the response directly. You can configure the function to
do this by using the Go http.ResponseWriter.

Example HTTP response

Functions triggered by a cloud event might return nothing, error, or CloudEvent in order to push events
into the Knative Eventing system. In this case, you must set a unique ID, proper Source, and a Type for
the cloud event. The data can be populated from a defined structure, or from a map.

Example CloudEvent response

 }
 // ...
}

func Handle(ctx context.Context, event cloudevents.Event) {
 bytes, err := json.Marshal(event)
 // ...
}

func Handle(ctx context.Context, res http.ResponseWriter, req *http.Request) {
 // Set response
 res.Header().Add("Content-Type", "text/plain")
 res.Header().Add("Content-Length", "3")
 res.WriteHeader(200)
 _, err := fmt.Fprintf(res, "OK\n")
 if err != nil {
 fmt.Fprintf(os.Stderr, "error or response write: %v", err)
 }
}

func Handle(ctx context.Context, event cloudevents.Event) (resp *cloudevents.Event, err error) {
 // ...
 response := cloudevents.NewEvent()
 response.SetID("example-uuid-32943bac6fea")
 response.SetSource("purchase/getter")
 response.SetType("purchase")
 // Set the data from Purchase type
 response.SetData(cloudevents.ApplicationJSON, Purchase{
 CustomerId: custId,
 ProductId: prodId,
 })
 // OR set the data directly from map
 response.SetData(cloudevents.ApplicationJSON, map[string]string{"customerId": custId, "productId":
prodId})
 // Validate the response
 resp = &response
 if err = resp.Validate(); err != nil {
 fmt.Printf("invalid event created. %v", err)

OpenShift Container Platform 4.6 Serverless

312

https://golang.org/pkg/net/http/#ResponseWriter

11.6.5. Testing Go functions

Go functions can be tested locally on your computer. In the default project that is created when you
create a function using kn func create, there is a handle_test.go file, which contains some basic tests.
These tests can be extended as needed.

Prerequisites

The OpenShift Serverless Operator and Knative Serving are installed on the cluster.

You have installed the Knative (kn) CLI.

You have created a function by using kn func create.

Procedure

1. Navigate to the test folder for your function.

2. Run the tests:

11.6.6. Next steps

Build and deploy a function.

11.7. DEVELOPING PYTHON FUNCTIONS

IMPORTANT

OpenShift Serverless Functions is a Technology Preview feature only. Technology
Preview features are not supported with Red Hat production service level agreements
(SLAs) and might not be functionally complete. Red Hat does not recommend using
them in production. These features provide early access to upcoming product features,
enabling customers to test functionality and provide feedback during the development
process.

For more information about the support scope of Red Hat Technology Preview features,
see https://access.redhat.com/support/offerings/techpreview/.

After you have created a Python function project , you can modify the template files provided to add
business logic to your function. This includes configuring function invocation and the returned headers
and status codes.

11.7.1. Prerequisites

Before you can develop functions, you must complete the steps in Setting up OpenShift
Serverless Functions.

 }
 return
}

$ go test

CHAPTER 11. FUNCTIONS

313

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/serverless/#serverless-build-func-kn_serverless-functions-getting-started
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/serverless/#serverless-deploy-func-kn_serverless-functions-getting-started
https://access.redhat.com/support/offerings/techpreview/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/serverless/#serverless-create-func-kn_serverless-functions-getting-started
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/serverless/#serverless-functions-setup

1

2

3

4

11.7.2. Python function template structure

When you create a Python function by using the Knative (kn) CLI, the project directory looks similar to a
typical Python project. Python functions have very few restrictions. The only requirements are that your
project contains a func.py file that contains a main() function, and a func.yaml configuration file.

Developers are not restricted to the dependencies provided in the template requirements.txt file.
Additional dependencies can be added as they would be in any other Python project. When the project
is built for deployment, these dependencies will be included in the created runtime container image.

Both http and event trigger functions have the same template structure:

Template structure

Contains a main() function.

Used to determine the image name and registry.

Additional dependencies can be added to the requirements.txt file as they are in any other Python
project.

Contains a simple unit test that can be used to test your function locally.

11.7.3. About invoking Python functions

Python functions can be invoked with a simple HTTP request. When an incoming request is received,
functions are invoked with a context object as the first parameter.

The context object is a Python class with two attributes:

The request attribute is always present, and contains the Flask request object.

The second attribute, cloud_event, is populated if the incoming request is a CloudEvent
object.

Developers can access any CloudEvent data from the context object.

Example context object

fn
├── func.py 1
├── func.yaml 2
├── requirements.txt 3
└── test_func.py 4

def main(context: Context):
 """
 The context parameter contains the Flask request object and any
 CloudEvent received with the request.
 """
 print(f"Method: {context.request.method}")
 print(f"Event data {context.cloud_event.data}")
 # ... business logic here

OpenShift Container Platform 4.6 Serverless

314

11.7.4. Python function return values

Functions can return any value supported by Flask. This is because the invocation framework proxies
these values directly to the Flask server.

Example

Functions can set both headers and response codes as secondary and tertiary response values from
function invocation.

11.7.4.1. Returning CloudEvents

Developers can use the @event decorator to tell the invoker that the function return value must be
converted to a CloudEvent before sending the response.

Example

This example sends a CloudEvent as the response value, with a type of "my.type" and a source of
"/my/function". The CloudEvent data property is set to the returned data variable. The event_source
and event_type decorator attributes are both optional.

11.7.5. Testing Python functions

You can test Python functions locally on your computer. The default project contains a test_func.py
file, which provides a simple unit test for functions.

NOTE

The default test framework for Python functions is unittest. You can use a different test
framework if you prefer.

Prerequisites

To run Python functions tests locally, you must install the required dependencies:

Procedure

1. Navigate to the folder for your function that contains the test_func.py file.

def main(context: Context):
 body = { "message": "Howdy!" }
 headers = { "content-type": "application/json" }
 return body, 200, headers

@event("event_source"="/my/function", "event_type"="my.type")
def main(context):
 # business logic here
 data = do_something()
 # more data processing
 return data

$ pip install -r requirements.txt

CHAPTER 11. FUNCTIONS

315

https://flask.palletsprojects.com/en/1.1.x/quickstart/#about-responses
https://github.com/cloudevents/spec/blob/v1.0.1/spec.md#event-data

2. Run the tests:

11.7.6. Next steps

Build and deploy a function.

11.8. DEVELOPING QUARKUS FUNCTIONS

IMPORTANT

OpenShift Serverless Functions is a Technology Preview feature only. Technology
Preview features are not supported with Red Hat production service level agreements
(SLAs) and might not be functionally complete. Red Hat does not recommend using
them in production. These features provide early access to upcoming product features,
enabling customers to test functionality and provide feedback during the development
process.

For more information about the support scope of Red Hat Technology Preview features,
see https://access.redhat.com/support/offerings/techpreview/.

After you have created a Quarkus function project , you can modify the template files provided to add
business logic to your function. This includes configuring function invocation and the returned headers
and status codes.

11.8.1. Prerequisites

Before you can develop functions, you must complete the setup steps in Setting up OpenShift
Serverless Functions.

11.8.2. Quarkus function template structure

When you create a Quarkus function by using the Knative (kn) CLI, the project directory looks similar to
a typical Maven project. Additionally, the project contains the func.yaml file, which is used for
configuring the function.

Both http and event trigger functions have the same template structure:

Template structure

$ python3 test_func.py

.
├── func.yaml 1
├── mvnw
├── mvnw.cmd
├── pom.xml 2
├── README.md
└── src
 ├── main
 │ ├── java
 │ │ └── functions
 │ │ ├── Function.java 3

OpenShift Container Platform 4.6 Serverless

316

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/serverless/#serverless-build-func-kn_serverless-functions-getting-started
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/serverless/#serverless-deploy-func-kn_serverless-functions-getting-started
https://access.redhat.com/support/offerings/techpreview/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/serverless/#serverless-create-func-kn_serverless-functions-getting-started
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/serverless/#serverless-functions-setup

1

2

3

4

Used to determine the image name and registry.

The Project Object Model (POM) file contains project configuration, such as information about
dependencies. You can add additional dependencies by modifying this file.

Example of additional dependencies

Dependencies are downloaded during the first compilation.

The function project must contain a Java method annotated with @Funq. You can place this
method in the Function.java class.

Contains simple test cases that can be used to test your function locally.

11.8.3. About invoking Quarkus functions

You can create a Quarkus project that responds to cloud events, or one that responds to simple HTTP
requests. Cloud events in Knative are transported over HTTP as a POST request, so either function type
can listen and respond to incoming HTTP requests.

When an incoming request is received, Quarkus functions are invoked with an instance of a permitted
type.

Table 11.1. Function invocation options

 │ │ ├── Input.java
 │ │ └── Output.java
 │ └── resources
 │ └── application.properties
 └── test
 └── java
 └── functions 4
 ├── FunctionTest.java
 └── NativeFunctionIT.java

...
 <dependencies>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>4.11</version>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>org.assertj</groupId>
 <artifactId>assertj-core</artifactId>
 <version>3.8.0</version>
 <scope>test</scope>
 </dependency>
 </dependencies>
...

CHAPTER 11. FUNCTIONS

317

Invocation method Data type contained in the
instance

Example of data

HTTP POST request JSON object in the body of the
request

{ "customerId": "0123456",
"productId": "6543210" }

HTTP GET request Data in the query string ?
customerId=0123456&produ
ctId=6543210

CloudEvent JSON object in the data property { "customerId": "0123456",
"productId": "6543210" }

The following example shows a function that receives and processes the customerId and productId
purchase data that is listed in the previous table:

Example Quarkus function

The corresponding Purchase JavaBean class that contains the purchase data looks as follows:

Example class

11.8.3.1. Invocation examples

The following example code defines three functions named withBeans, withCloudEvent, and
withBinary;

Example

public class Functions {
 @Funq
 public void processPurchase(Purchase purchase) {
 // process the purchase
 }
}

public class Purchase {
 private long customerId;
 private long productId;
 // getters and setters
}

import io.quarkus.funqy.Funq;
import io.quarkus.funqy.knative.events.CloudEvent;

public class Input {
 private String message;

 // getters and setters
}

OpenShift Container Platform 4.6 Serverless

318

The withBeans function of the Functions class can be invoked by:

An HTTP POST request with a JSON body:

An HTTP GET request with query parameters:

A CloudEvent object in binary encoding:

A CloudEvent object in structured encoding:

public class Output {
 private String message;

 // getters and setters
}

public class Functions {
 @Funq
 public Output withBeans(Input in) {
 // function body
 }

 @Funq
 public CloudEvent<Output> withCloudEvent(CloudEvent<Input> in) {
 // function body
 }

 @Funq
 public void withBinary(byte[] in) {
 // function body
 }
}

$ curl "http://localhost:8080/withBeans" -X POST \
 -H "Content-Type: application/json" \
 -d '{"message": "Hello there."}'

$ curl "http://localhost:8080/withBeans?message=Hello%20there." -X GET

$ curl "http://localhost:8080/" -X POST \
 -H "Content-Type: application/json" \
 -H "Ce-SpecVersion: 1.0" \
 -H "Ce-Type: withBeans" \
 -H "Ce-Source: cURL" \
 -H "Ce-Id: 42" \
 -d '{"message": "Hello there."}'

$ curl http://localhost:8080/ \
 -H "Content-Type: application/cloudevents+json" \
 -d '{ "data": {"message":"Hello there."},
 "datacontenttype": "application/json",
 "id": "42",
 "source": "curl",
 "type": "withBeans",
 "specversion": "1.0"}'

CHAPTER 11. FUNCTIONS

319

The withCloudEvent function of the Functions class can be invoked by using a CloudEvent object,
similarly to the withBeans function. However, unlike withBeans, withCloudEvent cannot be invoked
with a plain HTTP request.

The withBinary function of the Functions class can be invoked by:

A CloudEvent object in binary encoding:

$ curl "http://localhost:8080/" -X POST \
 -H "Content-Type: application/octet-stream" \
 -H "Ce-SpecVersion: 1.0"\
 -H "Ce-Type: withBinary" \
 -H "Ce-Source: cURL" \
 -H "Ce-Id: 42" \
 --data-binary '@img.jpg'

A CloudEvent object in structured encoding:

$ curl http://localhost:8080/ \
 -H "Content-Type: application/cloudevents+json" \
 -d "{ \"data_base64\": \"$(base64 --wrap=0 img.jpg)\",
 \"datacontenttype\": \"application/octet-stream\",
 \"id\": \"42\",
 \"source\": \"curl\",
 \"type\": \"withBinary\",
 \"specversion\": \"1.0\"}"

11.8.4. CloudEvent attributes

If you need to read or write the attributes of a CloudEvent, such as type or subject, you can use the
CloudEvent<T> generic interface and the CloudEventBuilder builder. The <T> type parameter must
be one of the permitted types.

In the following example, CloudEventBuilder is used to return success or failure of processing the
purchase:

public class Functions {

 private boolean _processPurchase(Purchase purchase) {
 // do stuff
 }

 public CloudEvent<Void> processPurchase(CloudEvent<Purchase> purchaseEvent) {
 System.out.println("subject is: " + purchaseEvent.subject());

 if (!_processPurchase(purchaseEvent.data())) {
 return CloudEventBuilder.create()
 .type("purchase.error")
 .build();
 }
 return CloudEventBuilder.create()
 .type("purchase.success")

OpenShift Container Platform 4.6 Serverless

320

11.8.5. Quarkus function return values

Functions can return an instance of any type from the list of permitted types. Alternatively, they can
return the Uni<T> type, where the <T> type parameter can be of any type from the permitted types.

The Uni<T> type is useful if a function calls asynchronous APIs, because the returned object is serialized
in the same format as the received object. For example:

If a function receives an HTTP request, then the returned object is sent in the body of an HTTP
response.

If a function receives a CloudEvent object in binary encoding, then the returned object is sent in
the data property of a binary-encoded CloudEvent object.

The following example shows a function that fetches a list of purchases:

Example command

Invoking this function through an HTTP request produces an HTTP response that contains a list
of purchases in the body of the response.

Invoking this function through an incoming CloudEvent object produces a CloudEvent
response with a list of purchases in the data property.

11.8.5.1. Permitted types

The input and output of a function can be any of the void, String, or byte[] types. Additionally, they can
be primitive types and their wrappers, for example, int and Integer. They can also be the following
complex objects: Javabeans, maps, lists, arrays, and the special CloudEvents<T> type.

Maps, lists, arrays, the <T> type parameter of the CloudEvents<T> type, and attributes of Javabeans
can only be of types listed here.

Example

 .build();
 }
}

public class Functions {
 @Funq
 public List<Purchase> getPurchasesByName(String name) {
 // logic to retrieve purchases
 }
}

public class Functions {
 public List<Integer> getIds();
 public Purchase[] getPurchasesByName(String name);
 public String getNameById(int id);
 public Map<String,Integer> getNameIdMapping();
 public void processImage(byte[] img);
}

CHAPTER 11. FUNCTIONS

321

11.8.6. Testing Quarkus functions

Quarkus functions can be tested locally on your computer. In the default project that is created when
you create a function using kn func create, there is the src/test/ directory, which contains basic Maven
tests. These tests can be extended as needed.

Prerequisites

You have created a Quarkus function.

You have installed the Knative (kn) CLI.

Procedure

1. Navigate to the project folder for your function.

2. Run the Maven tests:

11.8.7. Next steps

Build and deploy a function.

11.9. FUNCTION PROJECT CONFIGURATION IN FUNC.YAML

The func.yaml file contains the configuration for your function project. Values specified in func.yaml
are used when you execute a kn func command. For example, when you run the kn func build
command, the value in the build field is used. In some cases, you can override these values with
command line flags or environment variables.

11.9.1. Configurable fields in func.yaml

Many of the fields in func.yaml are generated automatically when you create, build, and deploy your
function. However, there are also fields that you modify manually to change things, such as the function
name or the image name.

11.9.1.1. buildEnvs

The buildEnvs field enables you to set environment variables to be available to the environment that
builds your function. Unlike variables set using envs, a variable set using buildEnv is not available during
function runtime.

You can set a buildEnv variable directly from a value. In the following example, the buildEnv variable
named EXAMPLE1 is directly assigned the one value:

You can also set a buildEnv variable from a local environment variable. In the following example, the
buildEnv variable named EXAMPLE2 is assigned the value of the LOCAL_ENV_VAR local environment
variable:

$./mvnw test

buildEnvs:
- name: EXAMPLE1
 value: one

OpenShift Container Platform 4.6 Serverless

322

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/serverless/#serverless-build-func-kn_serverless-functions-getting-started
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/serverless/#serverless-deploy-func-kn_serverless-functions-getting-started

1

2

3

4

5

6

11.9.1.2. envs

The envs field enables you to set environment variables to be available to your function at runtime. You
can set an environment variable in several different ways:

1. Directly from a value.

2. From a value assigned to a local environment variable. See the section "Referencing local
environment variables from func.yaml fields" for more information.

3. From a key-value pair stored in a secret or config map.

4. You can also import all key-value pairs stored in a secret or config map, with keys used as names
of the created environment variables.

This examples demonstrates the different ways to set an environment variable:

An environment variable set directly from a value.

An environment variable set from a value assigned to a local environment variable.

An environment variable assigned from a key-value pair stored in a secret.

An environment variable assigned from a key-value pair stored in a config map.

A set of environment variables imported from key-value pairs of a secret.

A set of environment variables imported from key-value pairs of a config map.

11.9.1.3. builder

The builder field specifies the strategy used by the function to build the image. It accepts values of
pack or s2i.

buildEnvs:
- name: EXAMPLE1
 value: '{{ env:LOCAL_ENV_VAR }}'

name: test
namespace: ""
runtime: go
...
envs:
- name: EXAMPLE1 1
 value: value
- name: EXAMPLE2 2
 value: '{{ env:LOCAL_ENV_VALUE }}'
- name: EXAMPLE3 3
 value: '{{ secret:mysecret:key }}'
- name: EXAMPLE4 4
 value: '{{ configMap:myconfigmap:key }}'
- value: '{{ secret:mysecret2 }}' 5
- value: '{{ configMap:myconfigmap2 }}' 6

CHAPTER 11. FUNCTIONS

323

1

2

11.9.1.4. build

The build field indicates how the function should be built. The value local indicates that the function is
built locally on your machine. The value git indicates that the function is built on a cluster by using the
values specified in the git field.

11.9.1.5. volumes

The volumes field enables you to mount secrets and config maps as a volume accessible to the function
at the specified path, as shown in the following example:

The mysecret secret is mounted as a volume residing at /workspace/secret.

The myconfigmap config map is mounted as a volume residing at /workspace/configmap.

11.9.1.6. options

The options field enables you to modify Knative Service properties for the deployed function, such as
autoscaling. If these options are not set, the default ones are used.

These options are available:

scale

min: The minimum number of replicas. Must be a non-negative integer. The default is 0.

max: The maximum number of replicas. Must be a non-negative integer. The default is 0,
which means no limit.

metric: Defines which metric type is watched by the Autoscaler. It can be set to
concurrency, which is the default, or rps.

target: Recommendation for when to scale up based on the number of concurrently
incoming requests. The target option can be a float value greater than 0.01. The default is
100, unless the options.resources.limits.concurrency is set, in which case target defaults
to its value.

utilization: Percentage of concurrent requests utilization allowed before scaling up. It can
be a float value between 1 and 100. The default is 70.

resources

requests

cpu: A CPU resource request for the container with deployed function.

name: test
namespace: ""
runtime: go
...
volumes:
- secret: mysecret 1
 path: /workspace/secret
- configMap: myconfigmap 2
 path: /workspace/configmap

OpenShift Container Platform 4.6 Serverless

324

memory: A memory resource request for the container with deployed function.

limits

cpu: A CPU resource limit for the container with deployed function.

memory: A memory resource limit for the container with deployed function.

concurrency: Hard Limit of concurrent requests to be processed by a single replica. It
can be integer value greater than or equal to 0, default is 0 - meaning no limit.

This is an example configuration of the scale options:

11.9.1.7. image

The image field sets the image name for your function after it has been built. You can modify this field. If
you do, the next time you run kn func build or kn func deploy, the function image will be created with
the new name.

11.9.1.8. imageDigest

The imageDigest field contains the SHA256 hash of the image manifest when the function is deployed.
Do not modify this value.

11.9.1.9. labels

The labels field enables you to set labels on a deployed function.

You can set a label directly from a value. In the following example, the label with the role key is directly
assigned the value of backend:

name: test
namespace: ""
runtime: go
...
options:
 scale:
 min: 0
 max: 10
 metric: concurrency
 target: 75
 utilization: 75
 resources:
 requests:
 cpu: 100m
 memory: 128Mi
 limits:
 cpu: 1000m
 memory: 256Mi
 concurrency: 100

labels:
- key: role
 value: backend

CHAPTER 11. FUNCTIONS

325

You can also set a label from a local environment variable. In the following example, the label with the
author key is assigned the value of the USER local environment variable:

11.9.1.10. name

The name field defines the name of your function. This value is used as the name of your Knative service
when it is deployed. You can change this field to rename the function on subsequent deployments.

11.9.1.11. namespace

The namespace field specifies the namespace in which your function is deployed.

11.9.1.12. runtime

The runtime field specifies the language runtime for your function, for example, python.

11.9.2. Referencing local environment variables from func.yaml fields

If you want to avoid storing sensitive information such as an API key in the function configuration, you
can add a reference to an environment variable available in the local environment. You can do this by
modifying the envs field in the func.yaml file.

Prerequisites

You need to have the function project created.

The local environment needs to contain the variable that you want to reference.

Procedure

To refer to a local environment variable, use the following syntax:

{{ env:ENV_VAR }}

Substitute ENV_VAR with the name of the variable in the local environment that you want to
use.

For example, you might have the API_KEY variable available in the local environment. You can
assign its value to the MY_API_KEY variable, which you can then directly use within your
function:

Example function

labels:
- key: author
 value: '{{ env:USER }}'

name: test
namespace: ""
runtime: go
...
envs:

OpenShift Container Platform 4.6 Serverless

326

11.9.3. Additional resources

Getting started with functions

Accessing secrets and config maps from Serverless functions

Knative documentation on Autoscaling

Kubernetes documentation on managing resources for containers

Knative documentation on configuring concurrency

11.10. ACCESSING SECRETS AND CONFIG MAPS FROM FUNCTIONS

After your functions have been deployed to the cluster, they can access data stored in secrets and
config maps. This data can be mounted as volumes, or assigned to environment variables. You can
configure this access interactively by using the Knative CLI, or by manually by editing the function
configuration YAML file.

IMPORTANT

To access secrets and config maps, the function must be deployed on the cluster. This
functionality is not available to a function running locally.

If a secret or config map value cannot be accessed, the deployment fails with an error
message specifying the inaccessible values.

11.10.1. Modifying function access to secrets and config maps interactively

You can manage the secrets and config maps accessed by your function by using the kn func config
interactive utility. The available operations include listing, adding, and removing values stored in config
maps and secrets as environment variables, as well as listing, adding, and removing volumes. This
functionality enables you to manage what data stored on the cluster is accessible by your function.

Prerequisites

The OpenShift Serverless Operator and Knative Serving are installed on the cluster.

You have installed the Knative (kn) CLI.

You have created a function.

Procedure

1. Run the following command in the function project directory:

Alternatively, you can specify the function project directory using the --path or -p option.

2. Use the interactive interface to perform the necessary operation. For example, using the utility

- name: MY_API_KEY
 value: '{{ env:API_KEY }}'
...

$ kn func config

CHAPTER 11. FUNCTIONS

327

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/serverless/#serverless-functions-getting-started
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/serverless/#serverless-functions-accessing-secrets-configmaps
https://knative.dev/docs/serving/autoscaling/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://knative.dev/docs/serving/autoscaling/concurrency/

2. Use the interactive interface to perform the necessary operation. For example, using the utility
to list configured volumes produces an output similar to this:

This scheme shows all operations available in the interactive utility and how to navigate to them:

kn func config
 ├─> Environment variables
 │ ├─> Add
 │ │ ├─> ConfigMap: Add all key-value pairs from a config map
 │ │ ├─> ConfigMap: Add value from a key in a config map
 │ │ ├─> Secret: Add all key-value pairs from a secret
 │ │ └─> Secret: Add value from a key in a secret
 │ ├─> List: List all configured environment variables
 │ └─> Remove: Remove a configured environment variable
 └─> Volumes
 ├─> Add
 │ ├─> ConfigMap: Mount a config map as a volume
 │ └─> Secret: Mount a secret as a volume
 ├─> List: List all configured volumes
 └─> Remove: Remove a configured volume

3. Optional. Deploy the function to make the changes take effect:

11.10.2. Modifying function access to secrets and config maps interactively by using
specialized commands

Every time you run the kn func config utility, you need to navigate the entire dialogue to select the
operation you need, as shown in the previous section. To save steps, you can directly execute a specific
operation by running a more specific form of the kn func config command:

To list configured environment variables:

To add environment variables to the function configuration:

To remove environment variables from the function configuration:

To list configured volumes:

$ kn func config
? What do you want to configure? Volumes
? What operation do you want to perform? List
Configured Volumes mounts:
- Secret "mysecret" mounted at path: "/workspace/secret"
- Secret "mysecret2" mounted at path: "/workspace/secret2"

$ kn func deploy -p test

$ kn func config envs [-p <function-project-path>]

$ kn func config envs add [-p <function-project-path>]

$ kn func config envs remove [-p <function-project-path>]

OpenShift Container Platform 4.6 Serverless

328

To add a volume to the function configuration:

To remove a volume from the function configuration:

11.10.3. Adding function access to secrets and config maps manually

You can manually add configuration for accessing secrets and config maps to your function. This might
be preferable to using the kn func config interactive utility and commands, for example when you have
an existing configuration snippet.

11.10.3.1. Mounting a secret as a volume

You can mount a secret as a volume. Once a secret is mounted, you can access it from the function as a
regular file. This enables you to store on the cluster data needed by the function, for example, a list of
URIs that need to be accessed by the function.

Prerequisites

The OpenShift Serverless Operator and Knative Serving are installed on the cluster.

You have installed the Knative (kn) CLI.

You have created a function.

Procedure

1. Open the func.yaml file for your function.

2. For each secret you want to mount as a volume, add the following YAML to the volumes
section:

Substitute mysecret with the name of the target secret.

Substitute /workspace/secret with the path where you want to mount the secret.
For example, to mount the addresses secret, use the following YAML:

$ kn func config volumes [-p <function-project-path>]

$ kn func config volumes add [-p <function-project-path>]

$ kn func config volumes remove [-p <function-project-path>]

name: test
namespace: ""
runtime: go
...
volumes:
- secret: mysecret
 path: /workspace/secret

name: test
namespace: ""
runtime: go

CHAPTER 11. FUNCTIONS

329

3. Save the configuration.

11.10.3.2. Mounting a config map as a volume

You can mount a config map as a volume. Once a config map is mounted, you can access it from the
function as a regular file. This enables you to store on the cluster data needed by the function, for
example, a list of URIs that need to be accessed by the function.

Prerequisites

The OpenShift Serverless Operator and Knative Serving are installed on the cluster.

You have installed the Knative (kn) CLI.

You have created a function.

Procedure

1. Open the func.yaml file for your function.

2. For each config map you want to mount as a volume, add the following YAML to the volumes
section:

Substitute myconfigmap with the name of the target config map.

Substitute /workspace/configmap with the path where you want to mount the config map.
For example, to mount the addresses config map, use the following YAML:

3. Save the configuration.

11.10.3.3. Setting environment variable from a key value defined in a secret

You can set an environment variable from a key value defined as a secret. A value previously stored in a

...
volumes:
- configMap: addresses
 path: /workspace/secret-addresses

name: test
namespace: ""
runtime: go
...
volumes:
- configMap: myconfigmap
 path: /workspace/configmap

name: test
namespace: ""
runtime: go
...
volumes:
- configMap: addresses
 path: /workspace/configmap-addresses

OpenShift Container Platform 4.6 Serverless

330

You can set an environment variable from a key value defined as a secret. A value previously stored in a
secret can then be accessed as an environment variable by the function at runtime. This can be useful
for getting access to a value stored in a secret, such as the ID of a user.

Prerequisites

The OpenShift Serverless Operator and Knative Serving are installed on the cluster.

You have installed the Knative (kn) CLI.

You have created a function.

Procedure

1. Open the func.yaml file for your function.

2. For each value from a secret key-value pair that you want to assign to an environment variable,
add the following YAML to the envs section:

Substitute EXAMPLE with the name of the environment variable.

Substitute mysecret with the name of the target secret.

Substitute key with the key mapped to the target value.
For example, to access the user ID that is stored in userdetailssecret, use the following
YAML:

3. Save the configuration.

11.10.3.4. Setting environment variable from a key value defined in a config map

You can set an environment variable from a key value defined as a config map. A value previously stored
in a config map can then be accessed as an environment variable by the function at runtime. This can be
useful for getting access to a value stored in a config map, such as the ID of a user.

Prerequisites

The OpenShift Serverless Operator and Knative Serving are installed on the cluster.

You have installed the Knative (kn) CLI.

name: test
namespace: ""
runtime: go
...
envs:
- name: EXAMPLE
 value: '{{ secret:mysecret:key }}'

name: test
namespace: ""
runtime: go
...
envs:
- value: '{{ configMap:userdetailssecret:userid }}'

CHAPTER 11. FUNCTIONS

331

You have created a function.

Procedure

1. Open the func.yaml file for your function.

2. For each value from a config map key-value pair that you want to assign to an environment
variable, add the following YAML to the envs section:

Substitute EXAMPLE with the name of the environment variable.

Substitute myconfigmap with the name of the target config map.

Substitute key with the key mapped to the target value.
For example, to access the user ID that is stored in userdetailsmap, use the following
YAML:

3. Save the configuration.

11.10.3.5. Setting environment variables from all values defined in a secret

You can set an environment variable from all values defined in a secret. Values previously stored in a
secret can then be accessed as environment variables by the function at runtime. This can be useful for
simultaneously getting access to a collection of values stored in a secret, for example, a set of data
pertaining to a user.

Prerequisites

The OpenShift Serverless Operator and Knative Serving are installed on the cluster.

You have installed the Knative (kn) CLI.

You have created a function.

Procedure

1. Open the func.yaml file for your function.

2. For every secret for which you want to import all key-value pairs as environment variables, add
the following YAML to the envs section:

name: test
namespace: ""
runtime: go
...
envs:
- name: EXAMPLE
 value: '{{ configMap:myconfigmap:key }}'

name: test
namespace: ""
runtime: go
...
envs:
- value: '{{ configMap:userdetailsmap:userid }}'

OpenShift Container Platform 4.6 Serverless

332

1

1

Substitute mysecret with the name of the target secret.

For example, to access all user data that is stored in userdetailssecret, use the following YAML:

3. Save the configuration.

11.10.3.6. Setting environment variables from all values defined in a config map

You can set an environment variable from all values defined in a config map. Values previously stored in a
config map can then be accessed as environment variables by the function at runtime. This can be useful
for simultaneously getting access to a collection of values stored in a config map, for example, a set of
data pertaining to a user.

Prerequisites

The OpenShift Serverless Operator and Knative Serving are installed on the cluster.

You have installed the Knative (kn) CLI.

You have created a function.

Procedure

1. Open the func.yaml file for your function.

2. For every config map for which you want to import all key-value pairs as environment variables,
add the following YAML to the envs section:

Substitute myconfigmap with the name of the target config map.

For example, to access all user data that is stored in userdetailsmap, use the following YAML:

name: test
namespace: ""
runtime: go
...
envs:
- value: '{{ secret:mysecret }}' 1

name: test
namespace: ""
runtime: go
...
envs:
- value: '{{ configMap:userdetailssecret }}'

name: test
namespace: ""
runtime: go
...
envs:
- value: '{{ configMap:myconfigmap }}' 1

CHAPTER 11. FUNCTIONS

333

1

3. Save the file.

11.11. ADDING ANNOTATIONS TO FUNCTIONS

You can add Kubernetes annotations to a deployed Serverless function. Annotations enable you to
attach arbitrary metadata to a function, for example, a note about the function’s purpose. Annotations
are added to the annotations section of the func.yaml configuration file.

There are two limitations of the function annotation feature:

After a function annotation propagates to the corresponding Knative service on the cluster, it
cannot be removed from the service by deleting it from the func.yaml file. You must remove
the annotation from the Knative service by modifying the YAML file of the service directly, or by
using the OpenShift Container Platform web console.

You cannot set annotations that are set by Knative, for example, the autoscaling annotations.

11.11.1. Adding annotations to a function

You can add annotations to a function. Similar to a label, an annotation is defined as a key-value map.
Annotations are useful, for example, for providing metadata about a function, such as the function’s
author.

Prerequisites

The OpenShift Serverless Operator and Knative Serving are installed on the cluster.

You have installed the Knative (kn) CLI.

You have created a function.

Procedure

1. Open the func.yaml file for your function.

2. For every annotation that you want to add, add the following YAML to the annotations section:

Substitute <annotation_name>: "<annotation_value>" with your annotation.

For example, to indicate that a function was authored by Alice, you might include the following

name: test
namespace: ""
runtime: go
...
envs:
- value: '{{ configMap:userdetailsmap }}'

name: test
namespace: ""
runtime: go
...
annotations:
 <annotation_name>: "<annotation_value>" 1

OpenShift Container Platform 4.6 Serverless

334

For example, to indicate that a function was authored by Alice, you might include the following
annotation:

3. Save the configuration.

The next time you deploy your function to the cluster, the annotations are added to the corresponding
Knative service.

11.12. FUNCTIONS DEVELOPMENT REFERENCE GUIDE

IMPORTANT

OpenShift Serverless Functions is a Technology Preview feature only. Technology
Preview features are not supported with Red Hat production service level agreements
(SLAs) and might not be functionally complete. Red Hat does not recommend using
them in production. These features provide early access to upcoming product features,
enabling customers to test functionality and provide feedback during the development
process.

For more information about the support scope of Red Hat Technology Preview features,
see https://access.redhat.com/support/offerings/techpreview/.

OpenShift Serverless Functions provides templates that can be used to create basic functions. A
template initiates the function project boilerplate and prepares it for use with the kn func tool. Each
function template is tailored for a specific runtime and follows its conventions. With a template, you can
initiate your function project automatically.

Templates for the following runtimes are available:

Node.js

Python

Go

Quarkus

TypeScript

11.12.1. Node.js context object reference

The context object has several properties that can be accessed by the function developer. Accessing
these properties can provide information about HTTP requests and write output to the cluster logs.

11.12.1.1. log

Provides a logging object that can be used to write output to the cluster logs. The log adheres to the

name: test
namespace: ""
runtime: go
...
annotations:
 author: "alice@example.com"

CHAPTER 11. FUNCTIONS

335

https://access.redhat.com/support/offerings/techpreview/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/serverless/#serverless-developing-nodejs-functions
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/serverless/#serverless-developing-python-functions
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/serverless/#serverless-developing-go-functions
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/serverless/#serverless-developing-quarkus-functions
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/serverless/#serverless-developing-typescript-functions

Provides a logging object that can be used to write output to the cluster logs. The log adheres to the
Pino logging API .

Example log

You can access the function by using the kn func invoke command:

Example command

Example output

You can change the log level to one of fatal, error, warn, info, debug, trace, or silent. To do that,
change the value of logLevel by assigning one of these values to the environment variable
FUNC_LOG_LEVEL using the config command.

11.12.1.2. query

Returns the query string for the request, if any, as key-value pairs. These attributes are also found on the
context object itself.

Example query

You can access the function by using the kn func invoke command:

Example command

Example output

11.12.1.3. body

Returns the request body if any. If the request body contains JSON code, this will be parsed so that the

function handle(context) {
 context.log.info(“Processing customer”);
}

$ kn func invoke --target 'http://example.function.com'

{"level":30,"time":1604511655265,"pid":3430203,"hostname":"localhost.localdomain","reqId":1,"msg":"Pr
ocessing customer"}

function handle(context) {
 // Log the 'name' query parameter
 context.log.info(context.query.name);
 // Query parameters are also attached to the context
 context.log.info(context.name);
}

$ kn func invoke --target 'http://example.com?name=tiger'

{"level":30,"time":1604511655265,"pid":3430203,"hostname":"localhost.localdomain","reqId":1,"msg":"tig
er"}

OpenShift Container Platform 4.6 Serverless

336

https://getpino.io/#/docs/api

Returns the request body if any. If the request body contains JSON code, this will be parsed so that the
attributes are directly available.

Example body

You can access the function by using the curl command to invoke it:

Example command

Example output

11.12.1.4. headers

Returns the HTTP request headers as an object.

Example header

You can access the function by using the kn func invoke command:

Example command

Example output

11.12.1.5. HTTP requests

method

Returns the HTTP request method as a string.

httpVersion

Returns the HTTP version as a string.

httpVersionMajor

Returns the HTTP major version number as a string.

function handle(context) {
 // log the incoming request body's 'hello' parameter
 context.log.info(context.body.hello);
}

$ kn func invoke -d '{"Hello": "world"}'

{"level":30,"time":1604511655265,"pid":3430203,"hostname":"localhost.localdomain","reqId":1,"msg":"w
orld"}

function handle(context) {
 context.log.info(context.headers["custom-header"]);
}

$ kn func invoke --target 'http://example.function.com'

{"level":30,"time":1604511655265,"pid":3430203,"hostname":"localhost.localdomain","reqId":1,"msg":"so
me-value"}

CHAPTER 11. FUNCTIONS

337

httpVersionMinor

Returns the HTTP minor version number as a string.

11.12.2. TypeScript context object reference

The context object has several properties that can be accessed by the function developer. Accessing
these properties can provide information about incoming HTTP requests and write output to the cluster
logs.

11.12.2.1. log

Provides a logging object that can be used to write output to the cluster logs. The log adheres to the
Pino logging API .

Example log

You can access the function by using the kn func invoke command:

Example command

Example output

You can change the log level to one of fatal, error, warn, info, debug, trace, or silent. To do that,
change the value of logLevel by assigning one of these values to the environment variable
FUNC_LOG_LEVEL using the config command.

11.12.2.2. query

Returns the query string for the request, if any, as key-value pairs. These attributes are also found on the
context object itself.

Example query

export function handle(context: Context): string {
 // log the incoming request body's 'hello' parameter
 if (context.body) {
 context.log.info((context.body as Record<string, string>).hello);
 } else {
 context.log.info('No data received');
 }
 return 'OK';
}

$ kn func invoke --target 'http://example.function.com'

{"level":30,"time":1604511655265,"pid":3430203,"hostname":"localhost.localdomain","reqId":1,"msg":"Pr
ocessing customer"}

export function handle(context: Context): string {
 // log the 'name' query parameter
 if (context.query) {
 context.log.info((context.query as Record<string, string>).name);
 } else {

OpenShift Container Platform 4.6 Serverless

338

https://getpino.io/#/docs/api

You can access the function by using the kn func invoke command:

Example command

Example output

11.12.2.3. body

Returns the request body, if any. If the request body contains JSON code, this will be parsed so that the
attributes are directly available.

Example body

You can access the function by using the kn func invoke command:

Example command

Example output

11.12.2.4. headers

Returns the HTTP request headers as an object.

Example header

 context.log.info('No data received');
 }
 return 'OK';
}

$ kn func invoke --target 'http://example.function.com' --data '{"name": "tiger"}'

{"level":30,"time":1604511655265,"pid":3430203,"hostname":"localhost.localdomain","reqId":1,"msg":"tig
er"}
{"level":30,"time":1604511655265,"pid":3430203,"hostname":"localhost.localdomain","reqId":1,"msg":"tig
er"}

export function handle(context: Context): string {
 // log the incoming request body's 'hello' parameter
 if (context.body) {
 context.log.info((context.body as Record<string, string>).hello);
 } else {
 context.log.info('No data received');
 }
 return 'OK';
}

$ kn func invoke --target 'http://example.function.com' --data '{"hello": "world"}'

{"level":30,"time":1604511655265,"pid":3430203,"hostname":"localhost.localdomain","reqId":1,"msg":"w
orld"}

CHAPTER 11. FUNCTIONS

339

You can access the function by using the curl command to invoke it:

Example command

Example output

11.12.2.5. HTTP requests

method

Returns the HTTP request method as a string.

httpVersion

Returns the HTTP version as a string.

httpVersionMajor

Returns the HTTP major version number as a string.

httpVersionMinor

Returns the HTTP minor version number as a string.

export function handle(context: Context): string {
 // log the incoming request body's 'hello' parameter
 if (context.body) {
 context.log.info((context.headers as Record<string, string>)['custom-header']);
 } else {
 context.log.info('No data received');
 }
 return 'OK';
}

$ curl -H'x-custom-header: some-value’' http://example.function.com

{"level":30,"time":1604511655265,"pid":3430203,"hostname":"localhost.localdomain","reqId":1,"msg":"so
me-value"}

OpenShift Container Platform 4.6 Serverless

340

CHAPTER 12. INTEGRATIONS

12.1. INTEGRATING SERVERLESS WITH THE COST MANAGEMENT
SERVICE

Cost management is an OpenShift Container Platform service that enables you to better understand
and track costs for clouds and containers. It is based on the open source Koku project.

12.1.1. Prerequisites

You have cluster administrator permissions.

You have set up cost management and added an OpenShift Container Platform source .

12.1.2. Using labels for cost management queries

Labels, also known as tags in cost management, can be applied for nodes, namespaces or pods. Each
label is a key and value pair. You can use a combination of multiple labels to generate reports. You can
access reports about costs by using the Red Hat hybrid console .

Labels are inherited from nodes to namespaces, and from namespaces to pods. However, labels are not
overridden if they already exist on a resource. For example, Knative services have a default app=
<revision_name> label:

Example Knative service default label

If you define a label for a namespace, such as app=my-domain, the cost management service does not
take into account costs coming from a Knative service with the tag app=<revision_name> when
querying the application using the app=my-domain tag. Costs for Knative services that have this tag
must be queried under the app=<revision_name> tag.

12.1.3. Additional resources

Configure tagging for your sources

Use the Cost Explorer to visualize your costs

12.2. USING NVIDIA GPU RESOURCES WITH SERVERLESS
APPLICATIONS

NVIDIA supports experimental use of GPU resources on OpenShift Container Platform. See OpenShift

apiVersion: serving.knative.dev/v1
kind: Service
metadata:
 name: example-service
spec:
...
 labels:
 app: <revision_name>
...

CHAPTER 12. INTEGRATIONS

341

https://access.redhat.com/documentation/en-us/cost_management_service/2022/html/getting_started_with_cost_management/assembly-introduction-cost-management#about-cost-management_getting-started
https://project-koku.github.io/
https://access.redhat.com/documentation/en-us/cost_management_service/2022/html/adding_an_openshift_container_platform_source_to_cost_management/index
https://console.redhat.com/openshift/cost-management/
https://access.redhat.com/documentation/en-us/cost_management_service/2022/html/getting_started_with_cost_management/assembly-installing-cost-management#configure-tagging-next-step_configuring
https://access.redhat.com/documentation/en-us/cost_management_service/2022/html/getting_started_with_cost_management/assembly-using-cost-management#cost-explorer-next-step_using-cost-management

NVIDIA supports experimental use of GPU resources on OpenShift Container Platform. See OpenShift
Container Platform on NVIDIA GPU accelerated clusters for more information about setting up GPU
resources on OpenShift Container Platform.

12.2.1. Specifying GPU requirements for a service

After GPU resources are enabled for your OpenShift Container Platform cluster, you can specify GPU
requirements for a Knative service using the Knative (kn) CLI.

Prerequisites

The OpenShift Serverless Operator, Knative Serving and Knative Eventing are installed on the
cluster.

You have installed the Knative (kn) CLI.

GPU resources are enabled for your OpenShift Container Platform cluster.

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

NOTE

Using NVIDIA GPU resources is not supported for IBM Z and IBM Power Systems.

Procedure

1. Create a Knative service and set the GPU resource requirement limit to 1 by using the --limit
nvidia.com/gpu=1 flag:

A GPU resource requirement limit of 1 means that the service has 1 GPU resource dedicated.
Services do not share GPU resources. Any other services that require GPU resources must wait
until the GPU resource is no longer in use.

A limit of 1 GPU also means that applications exceeding usage of 1 GPU resource are restricted.
If a service requests more than 1 GPU resource, it is deployed on a node where the GPU
resource requirements can be met.

2. Optional. For an existing service, you can change the GPU resource requirement limit to 3 by
using the --limit nvidia.com/gpu=3 flag:

12.2.2. Additional resources

Setting resource quotas for extended resources

$ kn service create hello --image <service-image> --limit nvidia.com/gpu=1

$ kn service update hello --limit nvidia.com/gpu=3

OpenShift Container Platform 4.6 Serverless

342

https://docs.nvidia.com/datacenter/kubernetes/openshift-on-gpu-install-guide/index.html
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/applications/#resource-quotas-per-project

	Table of Contents
	CHAPTER 1. RELEASE NOTES
	1.1. ABOUT API VERSIONS
	1.2. GENERALLY AVAILABLE AND TECHNOLOGY PREVIEW FEATURES
	1.3. DEPRECATED AND REMOVED FEATURES
	1.4. RELEASE NOTES FOR RED HAT OPENSHIFT SERVERLESS 1.25.0
	1.4.1. New features
	1.4.2. Fixed issues
	1.4.3. Known issues

	1.5. RELEASE NOTES FOR RED HAT OPENSHIFT SERVERLESS 1.24.0
	1.5.1. New features
	1.5.2. Fixed issues
	1.5.3. Known issues

	1.6. RELEASE NOTES FOR RED HAT OPENSHIFT SERVERLESS 1.23.0
	1.6.1. New features
	1.6.2. Known issues

	1.7. RELEASE NOTES FOR RED HAT OPENSHIFT SERVERLESS 1.22.0
	1.7.1. New features
	1.7.2. Known issues

	1.8. RELEASE NOTES FOR RED HAT OPENSHIFT SERVERLESS 1.21.0
	1.8.1. New features
	1.8.2. Fixed issues
	1.8.3. Known issues

	1.9. RELEASE NOTES FOR RED HAT OPENSHIFT SERVERLESS 1.20.0
	1.9.1. New features
	1.9.2. Known issues

	1.10. RELEASE NOTES FOR RED HAT OPENSHIFT SERVERLESS 1.19.0
	1.10.1. New features
	1.10.2. Fixed issues
	1.10.3. Known issues

	1.11. RELEASE NOTES FOR RED HAT OPENSHIFT SERVERLESS 1.18.0
	1.11.1. New features
	1.11.2. Fixed issues
	1.11.3. Known issues

	1.12. RELEASE NOTES FOR RED HAT OPENSHIFT SERVERLESS 1.17.0
	1.12.1. New features
	1.12.2. Known issues

	1.13. RELEASE NOTES FOR RED HAT OPENSHIFT SERVERLESS 1.16.0
	1.13.1. New features
	1.13.2. Known issues

	1.14. RELEASE NOTES FOR RED HAT OPENSHIFT SERVERLESS 1.15.0
	1.14.1. New features
	1.14.2. Known issues

	1.15. RELEASE NOTES FOR RED HAT OPENSHIFT SERVERLESS 1.14.0
	1.15.1. New features
	1.15.2. Known issues

	CHAPTER 2. DISCOVER
	2.1. ABOUT OPENSHIFT SERVERLESS
	2.1.1. Knative Serving
	2.1.1.1. Knative Serving resources

	2.1.2. Knative Eventing
	2.1.3. Supported configurations
	2.1.4. Scalability and performance
	2.1.5. Additional resources

	2.2. ABOUT OPENSHIFT SERVERLESS FUNCTIONS
	2.2.1. Included runtimes
	2.2.2. Next steps

	2.3. EVENT SOURCES
	2.4. BROKERS
	2.4.1. Broker types
	2.4.1.1. Default broker implementation for development purposes
	2.4.1.2. Production-ready Kafka broker implementation

	2.4.2. Next steps

	2.5. CHANNELS AND SUBSCRIPTIONS
	2.5.1. Channel implementation types
	2.5.2. Next steps

	CHAPTER 3. INSTALL
	3.1. INSTALLING THE OPENSHIFT SERVERLESS OPERATOR
	3.1.1. Before you begin
	3.1.1.1. Defining cluster size requirements
	3.1.1.2. Scaling your cluster using machine sets

	3.1.2. Installing the OpenShift Serverless Operator
	3.1.3. Additional resources
	3.1.4. Next steps

	3.2. INSTALLING KNATIVE SERVING
	3.2.1. Installing Knative Serving by using the web console
	3.2.2. Installing Knative Serving by using YAML
	3.2.3. Next steps

	3.3. INSTALLING KNATIVE EVENTING
	3.3.1. Installing Knative Eventing by using the web console
	3.3.2. Installing Knative Eventing by using YAML
	3.3.3. Next steps

	3.4. REMOVING OPENSHIFT SERVERLESS
	3.4.1. Uninstalling Knative Serving
	3.4.2. Uninstalling Knative Eventing
	3.4.3. Removing the OpenShift Serverless Operator
	3.4.3.1. Deleting Operators from a cluster using the web console
	3.4.3.2. Deleting Operators from a cluster using the CLI
	3.4.3.3. Refreshing failing subscriptions

	3.4.4. Deleting OpenShift Serverless custom resource definitions

	CHAPTER 4. KNATIVE CLI
	4.1. INSTALLING THE KNATIVE CLI
	4.1.1. Installing the Knative CLI using the OpenShift Container Platform web console
	4.1.2. Installing the Knative CLI for Linux by using an RPM package manager
	4.1.3. Installing the Knative CLI for Linux
	4.1.4. Installing the Knative CLI for macOS
	4.1.5. Installing the Knative CLI for Windows

	4.2. CONFIGURING THE KNATIVE CLI
	4.3. KNATIVE CLI PLUG-INS
	4.3.1. Building events by using the kn-event plug-in
	4.3.2. Sending events by using the kn-event plug-in

	4.4. KNATIVE SERVING CLI COMMANDS
	4.4.1. kn service commands
	4.4.1.1. Creating serverless applications by using the Knative CLI
	4.4.1.2. Updating serverless applications by using the Knative CLI
	4.4.1.3. Applying service declarations
	4.4.1.4. Describing serverless applications by using the Knative CLI

	4.4.2. About the Knative CLI offline mode
	4.4.2.1. Creating a service using offline mode

	4.4.3. kn container commands
	4.4.3.1. Knative client multi-container support

	4.4.4. kn domain commands
	4.4.4.1. Creating a custom domain mapping by using the Knative CLI
	4.4.4.2. Managing custom domain mappings by using the Knative CLI

	4.5. KNATIVE EVENTING CLI COMMANDS
	4.5.1. kn source commands
	4.5.1.1. Listing available event source types by using the Knative CLI
	4.5.1.2. Knative CLI sink flag
	4.5.1.3. Creating and managing container sources by using the Knative CLI
	4.5.1.4. Creating an API server source by using the Knative CLI
	4.5.1.5. Creating a ping source by using the Knative CLI
	4.5.1.6. Creating a Kafka event source by using the Knative CLI

	4.6. FUNCTIONS COMMANDS
	4.6.1. Creating functions
	4.6.2. Running a function locally
	4.6.3. Building functions
	4.6.3.1. Image container types
	4.6.3.2. Image registry types
	4.6.3.3. Push flag
	4.6.3.4. Help command

	4.6.4. Deploying functions
	4.6.5. Listing existing functions
	4.6.6. Describing a function
	4.6.7. Invoking a deployed function with a test event
	4.6.7.1. kn func invoke optional parameters

	4.6.8. Deleting a function

	CHAPTER 5. DEVELOP
	5.1. SERVERLESS APPLICATIONS
	5.1.1. Creating serverless applications by using the Knative CLI
	5.1.2. Creating a service using offline mode
	5.1.3. Creating serverless applications using YAML
	5.1.4. Verifying your serverless application deployment
	5.1.5. Interacting with a serverless application using HTTP2 and gRPC
	5.1.6. Enabling communication with Knative applications on a cluster with restrictive network policies
	5.1.7. Configuring init containers
	5.1.8. HTTPS redirection per service
	5.1.9. Additional resources

	5.2. AUTOSCALING
	5.2.1. Scale bounds
	5.2.1.1. Minimum scale bounds
	5.2.1.2. Maximum scale bounds

	5.2.2. Concurrency
	5.2.2.1. Configuring a soft concurrency target
	5.2.2.2. Configuring a hard concurrency limit
	5.2.2.3. Concurrency target utilization

	5.3. TRAFFIC MANAGEMENT
	5.3.1. Traffic spec examples
	5.3.2. Knative CLI traffic management flags
	5.3.2.1. Multiple flags and order precedence
	5.3.2.2. Custom URLs for revisions

	5.3.3. Creating a traffic split by using the Knative CLI
	5.3.4. Managing traffic between revisions by using the OpenShift Container Platform web console
	5.3.5. Routing and managing traffic by using a blue-green deployment strategy

	5.4. ROUTING
	5.4.1. Customizing labels and annotations for OpenShift Container Platform routes
	5.4.2. Configuring OpenShift Container Platform routes for Knative services
	5.4.3. Setting cluster availability to cluster local
	5.4.4. Additional resources

	5.5. EVENT SINKS
	5.5.1. Knative CLI sink flag
	5.5.2. Connect an event source to a sink using the Developer perspective
	5.5.3. Connecting a trigger to a sink

	5.6. EVENT DELIVERY
	5.6.1. Event delivery behavior patterns for channels and brokers
	5.6.1.1. Knative Kafka channels and brokers

	5.6.2. Configurable event delivery parameters
	5.6.3. Examples of configuring event delivery parameters
	5.6.4. Configuring event delivery ordering for triggers

	5.7. LISTING EVENT SOURCES AND EVENT SOURCE TYPES
	5.7.1. Listing available event source types by using the Knative CLI
	5.7.2. Viewing available event source types within the Developer perspective
	5.7.3. Listing available event sources by using the Knative CLI

	5.8. CREATING AN API SERVER SOURCE
	5.8.1. Creating an API server source by using the web console
	5.8.2. Creating an API server source by using the Knative CLI
	5.8.2.1. Knative CLI sink flag

	5.8.3. Creating an API server source by using YAML files

	5.9. CREATING A PING SOURCE
	5.9.1. Creating a ping source by using the web console
	5.9.2. Creating a ping source by using the Knative CLI
	5.9.2.1. Knative CLI sink flag

	5.9.3. Creating a ping source by using YAML

	5.10. CUSTOM EVENT SOURCES
	5.10.1. Sink binding
	5.10.1.1. Creating a sink binding by using YAML
	5.10.1.2. Creating a sink binding by using the Knative CLI
	5.10.1.3. Creating a sink binding by using the web console
	5.10.1.4. Sink binding reference

	5.10.2. Container source
	5.10.2.1. Guidelines for creating a container image
	5.10.2.2. Creating and managing container sources by using the Knative CLI
	5.10.2.3. Creating a container source by using the web console
	5.10.2.4. Container source reference

	5.11. CREATING CHANNELS
	5.11.1. Creating a channel by using the web console
	5.11.2. Creating a channel by using the Knative CLI
	5.11.3. Creating a default implementation channel by using YAML
	5.11.4. Creating a Kafka channel by using YAML
	5.11.5. Next steps

	5.12. CREATING AND MANAGING SUBSCRIPTIONS
	5.12.1. Creating a subscription by using the web console
	5.12.2. Creating a subscription by using YAML
	5.12.3. Creating a subscription by using the Knative CLI
	5.12.4. Describing subscriptions by using the Knative CLI
	5.12.5. Listing subscriptions by using the Knative CLI
	5.12.6. Updating subscriptions by using the Knative CLI
	5.12.7. Next steps

	5.13. CREATING BROKERS
	5.13.1. Creating a broker by using the Knative CLI
	5.13.2. Creating a broker by annotating a trigger
	5.13.3. Creating a broker by labeling a namespace
	5.13.4. Deleting a broker that was created by injection
	5.13.5. Creating a Kafka broker when it is not configured as the default broker type
	5.13.5.1. Creating a Kafka broker by using YAML
	5.13.5.2. Creating a Kafka broker that uses an externally managed Kafka topic

	5.13.6. Managing brokers
	5.13.6.1. Listing existing brokers by using the Knative CLI
	5.13.6.2. Describing an existing broker by using the Knative CLI

	5.13.7. Next steps
	5.13.8. Additional resources

	5.14. TRIGGERS
	5.14.1. Creating a trigger by using the web console
	5.14.2. Creating a trigger by using the Knative CLI
	5.14.3. Listing triggers by using the Knative CLI
	5.14.4. Describing a trigger by using the Knative CLI
	5.14.5. Filtering events with triggers by using the Knative CLI
	5.14.6. Updating a trigger by using the Knative CLI
	5.14.7. Deleting a trigger by using the Knative CLI
	5.14.8. Configuring event delivery ordering for triggers
	5.14.9. Next steps

	5.15. USING KNATIVE KAFKA
	5.15.1. Kafka event delivery and retries
	5.15.2. Kafka source
	5.15.2.1. Creating a Kafka event source by using the web console
	5.15.2.2. Creating a Kafka event source by using the Knative CLI
	5.15.2.3. Creating a Kafka event source by using YAML

	5.15.3. Kafka broker
	5.15.4. Creating a Kafka channel by using YAML
	5.15.5. Kafka sink
	5.15.5.1. Using a Kafka sink

	5.15.6. Additional resources

	CHAPTER 6. ADMINISTER
	6.1. GLOBAL CONFIGURATION
	6.1.1. Configuring the default channel implementation
	6.1.2. Configuring the default broker backing channel
	6.1.3. Configuring the default broker class
	6.1.4. Enabling scale-to-zero
	6.1.5. Configuring the scale-to-zero grace period
	6.1.6. Overriding system deployment configurations
	6.1.6.1. Overriding Knative Serving system deployment configurations
	6.1.6.2. Overriding Knative Eventing system deployment configurations

	6.1.7. Configuring the EmptyDir extension
	6.1.8. HTTPS redirection global settings
	6.1.9. Setting the URL scheme for external routes
	6.1.10. Setting the Kourier Gateway service type
	6.1.11. Enabling PVC support
	6.1.12. Enabling init containers
	6.1.13. Tag-to-digest resolution
	6.1.13.1. Configuring tag-to-digest resolution by using a secret

	6.1.14. Additional resources

	6.2. CONFIGURING KNATIVE KAFKA
	6.2.1. Installing Knative Kafka
	6.2.2. Security configuration for Knative Kafka
	6.2.2.1. Configuring TLS authentication for Kafka brokers
	6.2.2.2. Configuring SASL authentication for Kafka brokers
	6.2.2.3. Configuring TLS authentication for Kafka channels
	6.2.2.4. Configuring SASL authentication for Kafka channels
	6.2.2.5. Configuring SASL authentication for Kafka sources
	6.2.2.6. Configuring security for Kafka sinks

	6.2.3. Configuring Kafka broker settings
	6.2.4. Additional resources

	6.3. SERVERLESS COMPONENTS IN THE ADMINISTRATOR PERSPECTIVE
	6.3.1. Creating serverless applications using the Administrator perspective
	6.3.2. Additional resources

	6.4. INTEGRATING SERVICE MESH WITH OPENSHIFT SERVERLESS
	6.4.1. Prerequisites
	6.4.2. Creating a certificate to encrypt incoming external traffic
	6.4.3. Integrating Service Mesh with OpenShift Serverless
	6.4.4. Enabling Knative Serving metrics when using Service Mesh with mTLS
	6.4.5. Integrating Service Mesh with OpenShift Serverless when Kourier is enabled
	6.4.6. Improving memory usage by using secret filtering for Service Mesh

	6.5. SERVERLESS ADMINISTRATOR METRICS
	6.5.1. Prerequisites
	6.5.2. Controller metrics
	6.5.3. Webhook metrics
	6.5.4. Knative Eventing metrics
	6.5.4.1. Broker ingress metrics
	6.5.4.2. Broker filter metrics
	6.5.4.3. InMemoryChannel dispatcher metrics
	6.5.4.4. Event source metrics

	6.5.5. Knative Serving metrics
	6.5.5.1. Activator metrics
	6.5.5.2. Autoscaler metrics
	6.5.5.3. Go runtime metrics

	6.6. USING METERING WITH OPENSHIFT SERVERLESS
	6.6.1. Installing metering
	6.6.2. Data source reports for Knative Serving metering
	6.6.2.1. Data source report for CPU usage in Knative Serving
	6.6.2.2. Data source report for memory usage in Knative Serving
	6.6.2.3. Applying data source reports for Knative Serving metering

	6.6.3. Queries for Knative Serving metering
	6.6.3.1. Applying Queries for Knative Serving metering

	6.6.4. Metering reports for Knative Serving
	6.6.4.1. Running a metering report

	6.7. HIGH AVAILABILITY
	6.7.1. Configuring high availability replicas for Knative Serving
	6.7.2. Configuring high availability replicas for Knative Eventing
	6.7.3. Configuring high availability replicas for Knative Kafka

	CHAPTER 7. MONITOR
	7.1. USING OPENSHIFT LOGGING WITH OPENSHIFT SERVERLESS
	7.1.1. About deploying cluster logging
	7.1.2. About deploying and configuring cluster logging
	7.1.2.1. Configuring and Tuning Cluster Logging
	7.1.2.2. Sample modified ClusterLogging custom resource

	7.1.3. Using cluster logging to find logs for Knative Serving components
	7.1.4. Using cluster logging to find logs for services deployed with Knative Serving

	7.2. SERVERLESS DEVELOPER METRICS
	7.2.1. Knative service metrics exposed by default
	7.2.2. Knative service with custom application metrics
	7.2.3. Configuration for scraping custom metrics
	7.2.4. Examining metrics of a service
	7.2.4.1. Queue proxy metrics

	7.2.5. Examining metrics of a service in the dashboard
	7.2.6. Additional resources

	CHAPTER 8. TRACING REQUESTS
	8.1. DISTRIBUTED TRACING OVERVIEW
	8.2. USING RED HAT OPENSHIFT DISTRIBUTED TRACING TO ENABLE DISTRIBUTED TRACING
	8.3. USING JAEGER TO ENABLE DISTRIBUTED TRACING
	8.4. ADDITIONAL RESOURCES

	CHAPTER 9. OPENSHIFT SERVERLESS SUPPORT
	9.1. ABOUT THE RED HAT KNOWLEDGEBASE
	9.2. SEARCHING THE RED HAT KNOWLEDGEBASE
	9.3. SUBMITTING A SUPPORT CASE
	9.4. GATHERING DIAGNOSTIC INFORMATION FOR SUPPORT
	9.4.1. About the must-gather tool
	9.4.2. About collecting OpenShift Serverless data

	CHAPTER 10. SECURITY
	10.1. CONFIGURING TLS AUTHENTICATION
	10.1.1. Enabling TLS authentication for internal traffic
	10.1.2. Enabling TLS authentication for cluster local services
	10.1.3. Securing a service with a custom domain by using a TLS certificate
	10.1.4. Configuring TLS authentication for Kafka brokers
	10.1.5. Configuring TLS authentication for Kafka channels

	10.2. CONFIGURING JSON WEB TOKEN AUTHENTICATION FOR KNATIVE SERVICES
	10.2.1. Using JSON Web Token authentication with Service Mesh 2.x and OpenShift Serverless
	10.2.2. Using JSON Web Token authentication with Service Mesh 1.x and OpenShift Serverless

	10.3. CONFIGURING A CUSTOM DOMAIN FOR A KNATIVE SERVICE
	10.3.1. Creating a custom domain mapping
	10.3.2. Creating a custom domain mapping by using the Knative CLI
	10.3.3. Securing a service with a custom domain by using a TLS certificate

	CHAPTER 11. FUNCTIONS
	11.1. SETTING UP OPENSHIFT SERVERLESS FUNCTIONS
	11.1.1. Prerequisites
	11.1.2. Setting up podman
	11.1.3. Setting up podman on macOS
	11.1.4. Next steps

	11.2. GETTING STARTED WITH FUNCTIONS
	11.2.1. Prerequisites
	11.2.2. Creating functions
	11.2.3. Running a function locally
	11.2.4. Building functions
	11.2.4.1. Image container types
	11.2.4.2. Image registry types
	11.2.4.3. Push flag
	11.2.4.4. Help command

	11.2.5. Deploying functions
	11.2.6. Invoking a deployed function with a test event
	11.2.7. Deleting a function
	11.2.8. Additional resources

	11.3. ON-CLUSTER FUNCTION BUILDING AND DEPLOYING
	11.3.1. Building and deploying functions on the cluster
	11.3.2. Specifying function revision

	11.4. DEVELOPING NODE.JS FUNCTIONS
	11.4.1. Prerequisites
	11.4.2. Node.js function template structure
	11.4.3. About invoking Node.js functions
	11.4.3.1. Node.js context objects

	11.4.4. Node.js function return values
	11.4.4.1. Returning headers
	11.4.4.2. Returning status codes

	11.4.5. Testing Node.js functions
	11.4.6. Next steps

	11.5. DEVELOPING TYPESCRIPT FUNCTIONS
	11.5.1. Prerequisites
	11.5.2. TypeScript function template structure
	11.5.3. About invoking TypeScript functions
	11.5.3.1. TypeScript context objects

	11.5.4. TypeScript function return values
	11.5.4.1. Returning headers
	11.5.4.2. Returning status codes

	11.5.5. Testing TypeScript functions
	11.5.6. Next steps

	11.6. DEVELOPING GO FUNCTIONS
	11.6.1. Prerequisites
	11.6.2. Go function template structure
	11.6.3. About invoking Go functions
	11.6.3.1. Functions triggered by an HTTP request
	11.6.3.2. Functions triggered by a cloud event

	11.6.4. Go function return values
	11.6.5. Testing Go functions
	11.6.6. Next steps

	11.7. DEVELOPING PYTHON FUNCTIONS
	11.7.1. Prerequisites
	11.7.2. Python function template structure
	11.7.3. About invoking Python functions
	11.7.4. Python function return values
	11.7.4.1. Returning CloudEvents

	11.7.5. Testing Python functions
	11.7.6. Next steps

	11.8. DEVELOPING QUARKUS FUNCTIONS
	11.8.1. Prerequisites
	11.8.2. Quarkus function template structure
	11.8.3. About invoking Quarkus functions
	11.8.3.1. Invocation examples

	11.8.4. CloudEvent attributes
	11.8.5. Quarkus function return values
	11.8.5.1. Permitted types

	11.8.6. Testing Quarkus functions
	11.8.7. Next steps

	11.9. FUNCTION PROJECT CONFIGURATION IN FUNC.YAML
	11.9.1. Configurable fields in func.yaml
	11.9.1.1. buildEnvs
	11.9.1.2. envs
	11.9.1.3. builder
	11.9.1.4. build
	11.9.1.5. volumes
	11.9.1.6. options
	11.9.1.7. image
	11.9.1.8. imageDigest
	11.9.1.9. labels
	11.9.1.10. name
	11.9.1.11. namespace
	11.9.1.12. runtime

	11.9.2. Referencing local environment variables from func.yaml fields
	11.9.3. Additional resources

	11.10. ACCESSING SECRETS AND CONFIG MAPS FROM FUNCTIONS
	11.10.1. Modifying function access to secrets and config maps interactively
	11.10.2. Modifying function access to secrets and config maps interactively by using specialized commands
	11.10.3. Adding function access to secrets and config maps manually
	11.10.3.1. Mounting a secret as a volume
	11.10.3.2. Mounting a config map as a volume
	11.10.3.3. Setting environment variable from a key value defined in a secret
	11.10.3.4. Setting environment variable from a key value defined in a config map
	11.10.3.5. Setting environment variables from all values defined in a secret
	11.10.3.6. Setting environment variables from all values defined in a config map

	11.11. ADDING ANNOTATIONS TO FUNCTIONS
	11.11.1. Adding annotations to a function

	11.12. FUNCTIONS DEVELOPMENT REFERENCE GUIDE
	11.12.1. Node.js context object reference
	11.12.1.1. log
	11.12.1.2. query
	11.12.1.3. body
	11.12.1.4. headers
	11.12.1.5. HTTP requests

	11.12.2. TypeScript context object reference
	11.12.2.1. log
	11.12.2.2. query
	11.12.2.3. body
	11.12.2.4. headers
	11.12.2.5. HTTP requests

	CHAPTER 12. INTEGRATIONS
	12.1. INTEGRATING SERVERLESS WITH THE COST MANAGEMENT SERVICE
	12.1.1. Prerequisites
	12.1.2. Using labels for cost management queries
	12.1.3. Additional resources

	12.2. USING NVIDIA GPU RESOURCES WITH SERVERLESS APPLICATIONS
	12.2.1. Specifying GPU requirements for a service
	12.2.2. Additional resources

