
OpenShift Container Platform 4.7

CI/CD

Contains information on builds, pipelines and GitOps for OpenShift Container
Platform

Last Updated: 2022-09-29

OpenShift Container Platform 4.7 CI/CD

Contains information on builds, pipelines and GitOps for OpenShift Container Platform

Legal Notice

Copyright © 2022 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

CI/CD for the OpenShift Container Platform

. .

. .

Table of Contents

CHAPTER 1. OPENSHIFT CONTAINER PLATFORM CI/CD OVERVIEW
1.1. OPENSHIFT BUILDS
1.2. OPENSHIFT PIPELINES
1.3. OPENSHIFT GITOPS
1.4. JENKINS

CHAPTER 2. BUILDS
2.1. UNDERSTANDING IMAGE BUILDS

2.1.1. Builds
2.1.1.1. Docker build
2.1.1.2. Source-to-image build
2.1.1.3. Custom build
2.1.1.4. Pipeline build

2.2. UNDERSTANDING BUILD CONFIGURATIONS
2.2.1. BuildConfigs

2.3. CREATING BUILD INPUTS
2.3.1. Build inputs
2.3.2. Dockerfile source
2.3.3. Image source
2.3.4. Git source

2.3.4.1. Using a proxy
2.3.4.2. Source Clone Secrets

2.3.4.2.1. Automatically adding a source clone secret to a build configuration
2.3.4.2.2. Manually adding a source clone secret
2.3.4.2.3. Creating a secret from a .gitconfig file
2.3.4.2.4. Creating a secret from a .gitconfig file for secured Git
2.3.4.2.5. Creating a secret from source code basic authentication
2.3.4.2.6. Creating a secret from source code SSH key authentication
2.3.4.2.7. Creating a secret from source code trusted certificate authorities
2.3.4.2.8. Source secret combinations

2.3.4.2.8.1. Creating a SSH-based authentication secret with a .gitconfig file
2.3.4.2.8.2. Creating a secret that combines a .gitconfig file and CA certificate
2.3.4.2.8.3. Creating a basic authentication secret with a CA certificate
2.3.4.2.8.4. Creating a basic authentication secret with a .gitconfig file
2.3.4.2.8.5. Creating a basic authentication secret with a .gitconfig file and CA certificate

2.3.5. Binary (local) source
2.3.6. Input secrets and config maps

2.3.6.1. What is a secret?
2.3.6.1.1. Properties of secrets
2.3.6.1.2. Types of Secrets
2.3.6.1.3. Updates to secrets

2.3.6.2. Creating secrets
2.3.6.3. Using secrets
2.3.6.4. Adding input secrets and config maps
2.3.6.5. Source-to-image strategy
2.3.6.6. Docker strategy
2.3.6.7. Custom strategy

2.3.7. External artifacts
2.3.8. Using docker credentials for private registries
2.3.9. Build environments

2.3.9.1. Using build fields as environment variables

8
8
8
8
8

9
9
9
9
9

10
10
10
10
12
12
13
13
14
15
16
16
18
18
19

20
20
21
21
21
22
22
23
23
23
25
25
25
26
26
27
28
30
31
31
32
32
33
35
35

Table of Contents

1

2.3.9.2. Using secrets as environment variables
2.3.10. Service serving certificate secrets
2.3.11. Secrets restrictions

2.4. MANAGING BUILD OUTPUT
2.4.1. Build output
2.4.2. Output image environment variables
2.4.3. Output image labels

2.5. USING BUILD STRATEGIES
2.5.1. Docker build

2.5.1.1. Replacing Dockerfile FROM image
2.5.1.2. Using Dockerfile path
2.5.1.3. Using docker environment variables
2.5.1.4. Adding docker build arguments
2.5.1.5. Squash layers with docker builds

2.5.2. Source-to-image build
2.5.2.1. Performing source-to-image incremental builds
2.5.2.2. Overriding source-to-image builder image scripts
2.5.2.3. Source-to-image environment variables

2.5.2.3.1. Using source-to-image environment files
2.5.2.3.2. Using source-to-image build configuration environment

2.5.2.4. Ignoring source-to-image source files
2.5.2.5. Creating images from source code with source-to-image

2.5.2.5.1. Understanding the source-to-image build process
2.5.2.5.2. How to write source-to-image scripts

2.5.3. Custom build
2.5.3.1. Using FROM image for custom builds
2.5.3.2. Using secrets in custom builds
2.5.3.3. Using environment variables for custom builds
2.5.3.4. Using custom builder images

2.5.3.4.1. Custom builder image
2.5.3.4.2. Custom builder workflow

2.5.4. Pipeline build
2.5.4.1. Understanding OpenShift Container Platform pipelines
2.5.4.2. Providing the Jenkins file for pipeline builds
2.5.4.3. Using environment variables for pipeline builds

2.5.4.3.1. Mapping between BuildConfig environment variables and Jenkins job parameters
2.5.4.4. Pipeline build tutorial

2.5.5. Adding secrets with web console
2.5.6. Enabling pulling and pushing

2.6. CUSTOM IMAGE BUILDS WITH BUILDAH
2.6.1. Prerequisites
2.6.2. Creating custom build artifacts
2.6.3. Build custom builder image
2.6.4. Use custom builder image

2.7. PERFORMING BASIC BUILDS
2.7.1. Starting a build

2.7.1.1. Re-running a build
2.7.1.2. Streaming build logs
2.7.1.3. Setting environment variables when starting a build
2.7.1.4. Starting a build with source

2.7.2. Canceling a build
2.7.2.1. Canceling multiple builds
2.7.2.2. Canceling all builds

36
36
37
37
37
38
38
39
39
39
40
40
40
41
41
41

42
42
43
43
43
43
44
44
47
47
47
47
48
48
49
49
49
51
52
53
53
58
58
58
59
59
60
60
61
61

62
62
62
62
63
63
63

OpenShift Container Platform 4.7 CI/CD

2

. .

2.7.2.3. Canceling all builds in a given state
2.7.3. Deleting a BuildConfig
2.7.4. Viewing build details
2.7.5. Accessing build logs

2.7.5.1. Accessing BuildConfig logs
2.7.5.2. Accessing BuildConfig logs for a given version build
2.7.5.3. Enabling log verbosity

2.8. TRIGGERING AND MODIFYING BUILDS
2.8.1. Build triggers

2.8.1.1. Webhook triggers
2.8.1.1.1. Using GitHub webhooks
2.8.1.1.2. Using GitLab webhooks
2.8.1.1.3. Using Bitbucket webhooks
2.8.1.1.4. Using generic webhooks
2.8.1.1.5. Displaying webhook URLs

2.8.1.2. Using image change triggers
2.8.1.3. Configuration change triggers

2.8.1.3.1. Setting triggers manually
2.8.2. Build hooks

2.8.2.1. Configuring post commit build hooks
2.8.2.2. Using the CLI to set post commit build hooks

2.9. PERFORMING ADVANCED BUILDS
2.9.1. Setting build resources
2.9.2. Setting maximum duration
2.9.3. Assigning builds to specific nodes
2.9.4. Chained builds
2.9.5. Pruning builds
2.9.6. Build run policy

2.10. USING RED HAT SUBSCRIPTIONS IN BUILDS
2.10.1. Creating an image stream tag for the Red Hat Universal Base Image
2.10.2. Adding subscription entitlements as a build secret
2.10.3. Running builds with Subscription Manager

2.10.3.1. Docker builds using Subscription Manager
2.10.4. Running builds with Red Hat Satellite subscriptions

2.10.4.1. Adding Red Hat Satellite configurations to builds
2.10.4.2. Docker builds using Red Hat Satellite subscriptions

2.10.5. Additional resources
2.11. SECURING BUILDS BY STRATEGY

2.11.1. Disabling access to a build strategy globally
2.11.2. Restricting build strategies to users globally
2.11.3. Restricting build strategies to a user within a project

2.12. BUILD CONFIGURATION RESOURCES
2.12.1. Build controller configuration parameters
2.12.2. Configuring build settings

2.13. TROUBLESHOOTING BUILDS
2.13.1. Resolving denial for access to resources
2.13.2. Service certificate generation failure

2.14. SETTING UP ADDITIONAL TRUSTED CERTIFICATE AUTHORITIES FOR BUILDS
2.14.1. Adding certificate authorities to the cluster
2.14.2. Additional resources

CHAPTER 3. PIPELINES
3.1. RED HAT OPENSHIFT PIPELINES RELEASE NOTES

64
64
64
65
65
65
65
66
66
66
67
69
69
70
72
72
74
74
75
75
76
76
76
77
78
78
80
80
81
81
81

82
82
83
83
83
84
84
85
86
87
87
87
88
90
90
90
91
91

92

93
93

Table of Contents

3

3.1.1. Making open source more inclusive
3.1.2. Release notes for Red Hat OpenShift Pipelines General Availability 1.4

3.1.2.1. Compatibility and support matrix
3.1.2.2. New features
3.1.2.3. Deprecated features
3.1.2.4. Known issues
3.1.2.5. Fixed issues

3.1.3. Release notes for Red Hat OpenShift Pipelines Technology Preview 1.3
3.1.3.1. New features

3.1.3.1.1. Pipelines
3.1.3.1.2. Pipelines CLI
3.1.3.1.3. Triggers

3.1.3.2. Deprecated features
3.1.3.3. Known issues
3.1.3.4. Fixed issues

3.1.4. Release notes for Red Hat OpenShift Pipelines Technology Preview 1.2
3.1.4.1. New features

3.1.4.1.1. Pipelines
3.1.4.1.2. Pipelines CLI
3.1.4.1.3. Triggers

3.1.4.2. Deprecated features
3.1.4.3. Known issues
3.1.4.4. Fixed issues

3.1.5. Release notes for Red Hat OpenShift Pipelines Technology Preview 1.1
3.1.5.1. New features

3.1.5.1.1. Pipelines
3.1.5.1.2. Pipelines CLI
3.1.5.1.3. Triggers

3.1.5.2. Deprecated features
3.1.5.3. Known issues
3.1.5.4. Fixed issues

3.1.6. Release notes for Red Hat OpenShift Pipelines Technology Preview 1.0
3.1.6.1. New features

3.1.6.1.1. Pipelines
3.1.6.1.2. Pipelines CLI
3.1.6.1.3. Triggers

3.1.6.2. Deprecated features
3.1.6.3. Known issues
3.1.6.4. Fixed issues

3.2. UNDERSTANDING OPENSHIFT PIPELINES
3.2.1. Key features
3.2.2. OpenShift Pipeline Concepts

3.2.2.1. Tasks
3.2.2.2. TaskRun
3.2.2.3. Pipelines
3.2.2.4. PipelineRun
3.2.2.5. Workspaces
3.2.2.6. Triggers

3.2.3. Additional resources
3.3. INSTALLING OPENSHIFT PIPELINES

Prerequisites
3.3.1. Installing the Red Hat OpenShift Pipelines Operator in web console
3.3.2. Installing the OpenShift Pipelines Operator using the CLI

93
93
93
94
95
96
96
98
98
98
99

100
100
100
101
102
102
102
103
103
104
104
105
106
106
106
107
108
109
109
109
110
110
110
110
111
111

112
113
113
113
114
114
115
115
117
118
121

124
124
124
124
126

OpenShift Container Platform 4.7 CI/CD

4

. .

3.3.3. Red Hat OpenShift Pipelines Operator in a restricted environment
3.3.4. Additional resources

3.4. UNINSTALLING OPENSHIFT PIPELINES
3.4.1. Deleting the Red Hat OpenShift Pipelines components and Custom Resources
3.4.2. Uninstalling the Red Hat OpenShift Pipelines Operator

3.5. CREATING CI/CD SOLUTIONS FOR APPLICATIONS USING OPENSHIFT PIPELINES
3.5.1. Prerequisites
3.5.2. Creating a project and checking your pipeline service account
3.5.3. Creating pipeline tasks
3.5.4. Assembling a pipeline
3.5.5. Mirroring images to run pipelines in a restricted environment
3.5.6. Running a pipeline
3.5.7. Adding triggers to a pipeline
3.5.8. Creating webhooks
3.5.9. Triggering a pipeline run
3.5.10. Additional resources

3.6. WORKING WITH RED HAT OPENSHIFT PIPELINES USING THE DEVELOPER PERSPECTIVE
Prerequisites
3.6.1. Constructing Pipelines using the Pipeline Builder
3.6.2. Creating applications with OpenShift Pipelines
3.6.3. Interacting with pipelines using the Developer perspective
3.6.4. Starting pipelines
3.6.5. Editing Pipelines
3.6.6. Deleting Pipelines

3.7. REDUCING RESOURCE CONSUMPTION OF PIPELINES
3.7.1. Understanding resource consumption in pipelines
3.7.2. Mitigating extra resource consumption in pipelines
3.7.3. Additional resources

3.8. USING PODS IN A PRIVILEGED SECURITY CONTEXT
3.8.1. Running pipeline run and task run pods with privileged security context
3.8.2. Running pipeline run and task run by using a custom SCC and a custom service account
3.8.3. Additional resources

3.9. VIEWING PIPELINE LOGS USING THE OPENSHIFT LOGGING OPERATOR
3.9.1. Prerequisites
3.9.2. Viewing pipeline logs in Kibana
3.9.3. Additional resources

CHAPTER 4. GITOPS
4.1. RED HAT OPENSHIFT GITOPS RELEASE NOTES

4.1.1. Making open source more inclusive
4.1.2. Release notes for Red Hat OpenShift GitOps 1.2.1

4.1.2.1. Support matrix
4.1.2.2. Fixed issues

4.1.3. Release notes for Red Hat OpenShift GitOps 1.2
4.1.3.1. Support matrix
4.1.3.2. New features
4.1.3.3. Fixed issues
4.1.3.4. Known issues

4.1.4. Release notes for Red Hat OpenShift GitOps 1.1
4.1.4.1. Support matrix
4.1.4.2. New features
4.1.4.3. Fixed issues
4.1.4.4. Known issues

127
127
127
127
128
128
129
129
129
130
132
136
137
141

142
142
143
143
143
146
146
147
150
150
151
151
152
153
153
153
154
157
157
157
157
160

161
161
161
161
161

162
162
162
163
164
164
165
165
165
166
166

Table of Contents

5

4.1.4.5. Breaking Change
4.1.4.5.1. Upgrading from Red Hat OpenShift GitOps v1.0.1

4.2. UNDERSTANDING OPENSHIFT GITOPS
4.2.1. About GitOps
4.2.2. About Red Hat OpenShift GitOps

4.2.2.1. Key features
4.3. GETTING STARTED WITH OPENSHIFT GITOPS

4.3.1. Installing GitOps Operator in web console
4.4. CONFIGURING ARGO CD TO RECURSIVELY SYNC A GIT REPOSITORY WITH YOUR APPLICATION

4.4.1. Configuring an OpenShift cluster by deploying an application with cluster configurations
4.4.1.1. Logging in to the Argo CD instance by using your OpenShift credentials
4.4.1.2. Creating an application by using the Argo CD dashboard
4.4.1.3. Creating an application by using the oc tool
4.4.1.4. Synchronizing your application with your Git repository

4.4.2. Deploying a Spring Boot application with Argo CD
4.4.2.1. Logging in to the Argo CD instance by using your OpenShift credentials
4.4.2.2. Creating an application by using the Argo CD dashboard
4.4.2.3. Creating an application by using the oc tool
4.4.2.4. Verifying Argo CD self-healing behavior

4.5. CONFIGURING SSO FOR ARGO CD ON OPENSHIFT
4.5.1. Creating a new client in Keycloak
4.5.2. Configuring the groups claim
4.5.3. Configuring Argo CD OIDC
4.5.4. Keycloak Identity Brokering with OpenShift
4.5.5. Registering an additional an OAuth client
4.5.6. Configure groups and Argo CD RBAC
4.5.7. In-built permissions for Argo CD

4.6. SIZING REQUIREMENTS FOR GITOPS OPERATOR
4.6.1. Sizing requirements for GitOps

166
166
168
168
168
169
169
169
170
170
170
171
171
172
172
173
173
175
175
176
176
177
177
179
179
180
181
181
181

OpenShift Container Platform 4.7 CI/CD

6

Table of Contents

7

CHAPTER 1. OPENSHIFT CONTAINER PLATFORM CI/CD
OVERVIEW

OpenShift Container Platform is an enterprise-ready Kubernetes platform for developers, which enables
organizations to automate the application delivery process through DevOps practices, such as
continuous integration (CI) and continuous delivery (CD). To meet your organizational needs, the
OpenShift Container Platform provides the following CI/CD solutions:

OpenShift Builds

OpenShift Pipelines

OpenShift GitOps

1.1. OPENSHIFT BUILDS

With OpenShift Builds, you can create cloud-native apps by using a declarative build process. You can
define the build process in a YAML file that you use to create a BuildConfig object. This definition
includes attributes such as build triggers, input parameters, and source code. When deployed, the
BuildConfig object typically builds a runnable image and pushes it to a container image registry.

OpenShift Builds provides the following extensible support for build strategies:

Docker build

Source-to-image (S2I) build

Custom build

For more information, see Understanding image builds

1.2. OPENSHIFT PIPELINES

OpenShift Pipelines provides a Kubernetes-native CI/CD framework to design and run each step of the
CI/CD pipeline in its own container. It can scale independently to meet the on-demand pipelines with
predictable outcomes.

For more information, see Understanding OpenShift Pipelines

1.3. OPENSHIFT GITOPS

OpenShift GitOps is an Operator that uses Argo CD as the declarative GitOps engine. It enables GitOps
workflows across multicluster OpenShift and Kubernetes infrastructure. Using OpenShift GitOps,
administrators can consistently configure and deploy Kubernetes-based infrastructure and applications
across clusters and development lifecycles.

For more information, see Understanding OpenShift GitOps

1.4. JENKINS

Jenkins automates the process of building, testing, and deploying applications and projects. OpenShift
Developer Tools provides a Jenkins image that integrates directly with the OpenShift Container
Platform. Jenkins can be deployed on OpenShift by using the Samples Operator templates or certified
Helm chart.

OpenShift Container Platform 4.7 CI/CD

8

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/cicd/#understanding-image-builds
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/cicd/#understanding-openshift-pipelines
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/cicd/#understanding-openshift-gitops

CHAPTER 2. BUILDS

2.1. UNDERSTANDING IMAGE BUILDS

2.1.1. Builds

A build is the process of transforming input parameters into a resulting object. Most often, the process
is used to transform input parameters or source code into a runnable image. A BuildConfig object is the
definition of the entire build process.

OpenShift Container Platform uses Kubernetes by creating containers from build images and pushing
them to a container image registry.

Build objects share common characteristics including inputs for a build, the requirement to complete a
build process, logging the build process, publishing resources from successful builds, and publishing the
final status of the build. Builds take advantage of resource restrictions, specifying limitations on
resources such as CPU usage, memory usage, and build or pod execution time.

The OpenShift Container Platform build system provides extensible support for build strategies that are
based on selectable types specified in the build API. There are three primary build strategies available:

Docker build

Source-to-image (S2I) build

Custom build

By default, docker builds and S2I builds are supported.

The resulting object of a build depends on the builder used to create it. For docker and S2I builds, the
resulting objects are runnable images. For custom builds, the resulting objects are whatever the builder
image author has specified.

Additionally, the pipeline build strategy can be used to implement sophisticated workflows:

Continuous integration

Continuous deployment

2.1.1.1. Docker build

OpenShift Container Platform uses Buildah to build a container image from a Dockerfile. For more
information on building container images with Dockerfiles, see the Dockerfile reference documentation.

TIP

If you set Docker build arguments by using the buildArgs array, see Understand how ARG and FROM
interact in the Dockerfile reference documentation.

2.1.1.2. Source-to-image build

Source-to-image (S2I) is a tool for building reproducible container images. It produces ready-to-run
images by injecting application source into a container image and assembling a new image. The new
image incorporates the base image, the builder, and built source and is ready to use with the buildah

CHAPTER 2. BUILDS

9

https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/#understand-how-arg-and-from-interact

run command. S2I supports incremental builds, which re-use previously downloaded dependencies,
previously built artifacts, and so on.

2.1.1.3. Custom build

The custom build strategy allows developers to define a specific builder image responsible for the entire
build process. Using your own builder image allows you to customize your build process.

A custom builder image is a plain container image embedded with build process logic, for example for
building RPMs or base images.

Custom builds run with a high level of privilege and are not available to users by default. Only users who
can be trusted with cluster administration permissions should be granted access to run custom builds.

2.1.1.4. Pipeline build

IMPORTANT

The Pipeline build strategy is deprecated in OpenShift Container Platform 4. Equivalent
and improved functionality is present in the OpenShift Container Platform Pipelines
based on Tekton.

Jenkins images on OpenShift Container Platform are fully supported and users should
follow Jenkins user documentation for defining their jenkinsfile in a job or store it in a
Source Control Management system.

The Pipeline build strategy allows developers to define a Jenkins pipeline for use by the Jenkins pipeline
plug-in. The build can be started, monitored, and managed by OpenShift Container Platform in the same
way as any other build type.

Pipeline workflows are defined in a jenkinsfile, either embedded directly in the build configuration, or
supplied in a Git repository and referenced by the build configuration.

2.2. UNDERSTANDING BUILD CONFIGURATIONS

The following sections define the concept of a build, build configuration, and outline the primary build
strategies available.

2.2.1. BuildConfigs

A build configuration describes a single build definition and a set of triggers for when a new build is
created. Build configurations are defined by a BuildConfig, which is a REST object that can be used in a
POST to the API server to create a new instance.

A build configuration, or BuildConfig, is characterized by a build strategy and one or more sources. The
strategy determines the process, while the sources provide its input.

Depending on how you choose to create your application using OpenShift Container Platform, a
BuildConfig is typically generated automatically for you if you use the web console or CLI, and it can be
edited at any time. Understanding the parts that make up a BuildConfig and their available options can
help if you choose to manually change your configuration later.

The following example BuildConfig results in a new build every time a container image tag or the source
code changes:

OpenShift Container Platform 4.7 CI/CD

10

1

2

3

4

5

6

7

BuildConfig object definition

This specification creates a new BuildConfig named ruby-sample-build.

The runPolicy field controls whether builds created from this build configuration can be run
simultaneously. The default value is Serial, which means new builds run sequentially, not
simultaneously.

You can specify a list of triggers, which cause a new build to be created.

The source section defines the source of the build. The source type determines the primary
source of input, and can be either Git, to point to a code repository location, Dockerfile, to build
from an inline Dockerfile, or Binary, to accept binary payloads. It is possible to have multiple
sources at once. For more information about each source type, see "Creating build inputs".

The strategy section describes the build strategy used to execute the build. You can specify a
Source , Docker, or Custom strategy here. This example uses the ruby-20-centos7 container
image that Source-to-image (S2I) uses for the application build.

After the container image is successfully built, it is pushed into the repository described in the
output section.

The postCommit section defines an optional build hook.

kind: BuildConfig
apiVersion: build.openshift.io/v1
metadata:
 name: "ruby-sample-build" 1
spec:
 runPolicy: "Serial" 2
 triggers: 3
 -
 type: "GitHub"
 github:
 secret: "secret101"
 - type: "Generic"
 generic:
 secret: "secret101"
 -
 type: "ImageChange"
 source: 4
 git:
 uri: "https://github.com/openshift/ruby-hello-world"
 strategy: 5
 sourceStrategy:
 from:
 kind: "ImageStreamTag"
 name: "ruby-20-centos7:latest"
 output: 6
 to:
 kind: "ImageStreamTag"
 name: "origin-ruby-sample:latest"
 postCommit: 7
 script: "bundle exec rake test"

CHAPTER 2. BUILDS

11

2.3. CREATING BUILD INPUTS

Use the following sections for an overview of build inputs, instructions on how to use inputs to provide
source content for builds to operate on, and how to use build environments and create secrets.

2.3.1. Build inputs

A build input provides source content for builds to operate on. You can use the following build inputs to
provide sources in OpenShift Container Platform, listed in order of precedence:

Inline Dockerfile definitions

Content extracted from existing images

Git repositories

Binary (Local) inputs

Input secrets

External artifacts

You can combine multiple inputs in a single build. However, as the inline Dockerfile takes precedence, it
can overwrite any other file named Dockerfile provided by another input. Binary (local) input and Git
repositories are mutually exclusive inputs.

You can use input secrets when you do not want certain resources or credentials used during a build to
be available in the final application image produced by the build, or want to consume a value that is
defined in a secret resource. External artifacts can be used to pull in additional files that are not available
as one of the other build input types.

When you run a build:

1. A working directory is constructed and all input content is placed in the working directory. For
example, the input Git repository is cloned into the working directory, and files specified from
input images are copied into the working directory using the target path.

2. The build process changes directories into the contextDir, if one is defined.

3. The inline Dockerfile, if any, is written to the current directory.

4. The content from the current directory is provided to the build process for reference by the
Dockerfile, custom builder logic, or assemble script. This means any input content that resides
outside the contextDir is ignored by the build.

The following example of a source definition includes multiple input types and an explanation of how
they are combined. For more details on how each input type is defined, see the specific sections for
each input type.

source:
 git:
 uri: https://github.com/openshift/ruby-hello-world.git 1
 ref: "master"
 images:
 - from:
 kind: ImageStreamTag

OpenShift Container Platform 4.7 CI/CD

12

1

2

3

4

1

The repository to be cloned into the working directory for the build.

/usr/lib/somefile.jar from myinputimage is stored in <workingdir>/app/dir/injected/dir.

The working directory for the build becomes <original_workingdir>/app/dir.

A Dockerfile with this content is created in <original_workingdir>/app/dir, overwriting any existing
file with that name.

2.3.2. Dockerfile source

When you supply a dockerfile value, the content of this field is written to disk as a file named dockerfile.
This is done after other input sources are processed, so if the input source repository contains a
Dockerfile in the root directory, it is overwritten with this content.

The source definition is part of the spec section in the BuildConfig:

The dockerfile field contains an inline Dockerfile that is built.

Additional resources

The typical use for this field is to provide a Dockerfile to a docker strategy build.

2.3.3. Image source

You can add additional files to the build process with images. Input images are referenced in the same
way the From and To image targets are defined. This means both container images and image stream
tags can be referenced. In conjunction with the image, you must provide one or more path pairs to
indicate the path of the files or directories to copy the image and the destination to place them in the
build context.

The source path can be any absolute path within the image specified. The destination must be a relative
directory path. At build time, the image is loaded and the indicated files and directories are copied into
the context directory of the build process. This is the same directory into which the source repository
content is cloned. If the source path ends in /. then the content of the directory is copied, but the
directory itself is not created at the destination.

Image inputs are specified in the source definition of the BuildConfig:

 name: myinputimage:latest
 namespace: mynamespace
 paths:
 - destinationDir: app/dir/injected/dir 2
 sourcePath: /usr/lib/somefile.jar
 contextDir: "app/dir" 3
 dockerfile: "FROM centos:7\nRUN yum install -y httpd" 4

source:
 dockerfile: "FROM centos:7\nRUN yum install -y httpd" 1

source:
 git:

CHAPTER 2. BUILDS

13

1

2

3

4

5

6

An array of one or more input images and files.

A reference to the image containing the files to be copied.

An array of source/destination paths.

The directory relative to the build root where the build process can access the file.

The location of the file to be copied out of the referenced image.

An optional secret provided if credentials are needed to access the input image.

NOTE

If your cluster uses an ImageContentSourcePolicy object to configure repository
mirroring, you can use only global pull secrets for mirrored registries. You cannot add
a pull secret to a project.

Optionally, if an input image requires a pull secret, you can link the pull secret to the service account
used by the build. By default, builds use the builder service account. The pull secret is automatically
added to the build if the secret contains a credential that matches the repository hosting the input
image. To link a pull secret to the service account used by the build, run:

NOTE

This feature is not supported for builds using the custom strategy.

2.3.4. Git source

When specified, source code is fetched from the supplied location.

If you supply an inline Dockerfile, it overwrites the Dockerfile in the contextDir of the Git repository.

 uri: https://github.com/openshift/ruby-hello-world.git
 ref: "master"
 images: 1
 - from: 2
 kind: ImageStreamTag
 name: myinputimage:latest
 namespace: mynamespace
 paths: 3
 - destinationDir: injected/dir 4
 sourcePath: /usr/lib/somefile.jar 5
 - from:
 kind: ImageStreamTag
 name: myotherinputimage:latest
 namespace: myothernamespace
 pullSecret: mysecret 6
 paths:
 - destinationDir: injected/dir
 sourcePath: /usr/lib/somefile.jar

$ oc secrets link builder dockerhub

OpenShift Container Platform 4.7 CI/CD

14

1

2

3

The source definition is part of the spec section in the BuildConfig:

The git field contains the URI to the remote Git repository of the source code. Optionally, specify
the ref field to check out a specific Git reference. A valid ref can be a SHA1 tag or a branch name.

The contextDir field allows you to override the default location inside the source code repository
where the build looks for the application source code. If your application exists inside a sub-
directory, you can override the default location (the root folder) using this field.

If the optional dockerfile field is provided, it should be a string containing a Dockerfile that
overwrites any Dockerfile that may exist in the source repository.

If the ref field denotes a pull request, the system uses a git fetch operation and then checkout
FETCH_HEAD.

When no ref value is provided, OpenShift Container Platform performs a shallow clone (--depth=1). In
this case, only the files associated with the most recent commit on the default branch (typically master)
are downloaded. This results in repositories downloading faster, but without the full commit history. To
perform a full git clone of the default branch of a specified repository, set ref to the name of the
default branch (for example master).

WARNING

Git clone operations that go through a proxy that is performing man in the middle
(MITM) TLS hijacking or reencrypting of the proxied connection do not work.

2.3.4.1. Using a proxy

If your Git repository can only be accessed using a proxy, you can define the proxy to use in the source
section of the build configuration. You can configure both an HTTP and HTTPS proxy to use. Both fields
are optional. Domains for which no proxying should be performed can also be specified in the NoProxy
field.

NOTE

Your source URI must use the HTTP or HTTPS protocol for this to work.

source:
 git: 1
 uri: "https://github.com/openshift/ruby-hello-world"
 ref: "master"
 contextDir: "app/dir" 2
 dockerfile: "FROM openshift/ruby-22-centos7\nUSER example" 3

source:
 git:
 uri: "https://github.com/openshift/ruby-hello-world"
 ref: "master"

CHAPTER 2. BUILDS

15

NOTE

For Pipeline strategy builds, given the current restrictions with the Git plug-in for
Jenkins, any Git operations through the Git plug-in do not leverage the HTTP or HTTPS
proxy defined in the BuildConfig. The Git plug-in only uses the proxy configured in the
Jenkins UI at the Plugin Manager panel. This proxy is then used for all git interactions
within Jenkins, across all jobs.

Additional resources

You can find instructions on how to configure proxies through the Jenkins UI at
JenkinsBehindProxy.

2.3.4.2. Source Clone Secrets

Builder pods require access to any Git repositories defined as source for a build. Source clone secrets
are used to provide the builder pod with access it would not normally have access to, such as private
repositories or repositories with self-signed or untrusted SSL certificates.

The following source clone secret configurations are supported:

.gitconfig File

Basic Authentication

SSH Key Authentication

Trusted Certificate Authorities

NOTE

You can also use combinations of these configurations to meet your specific needs.

2.3.4.2.1. Automatically adding a source clone secret to a build configuration

When a BuildConfig is created, OpenShift Container Platform can automatically populate its source
clone secret reference. This behavior allows the resulting builds to automatically use the credentials
stored in the referenced secret to authenticate to a remote Git repository, without requiring further
configuration.

To use this functionality, a secret containing the Git repository credentials must exist in the namespace
in which the BuildConfig is later created. This secrets must include one or more annotations prefixed
with build.openshift.io/source-secret-match-uri-. The value of each of these annotations is a Uniform
Resource Identifier (URI) pattern, which is defined as follows. When a BuildConfig is created without a
source clone secret reference and its Git source URI matches a URI pattern in a secret annotation,
OpenShift Container Platform automatically inserts a reference to that secret in the BuildConfig.

Prerequisites

A URI pattern must consist of:

 httpProxy: http://proxy.example.com
 httpsProxy: https://proxy.example.com
 noProxy: somedomain.com, otherdomain.com

OpenShift Container Platform 4.7 CI/CD

16

https://wiki.jenkins-ci.org/display/JENKINS/JenkinsBehindProxy

A valid scheme: *://, git://, http://, https:// or ssh://

A host: *` or a valid hostname or IP address optionally preceded by *.

A path: /* or / followed by any characters optionally including * characters

In all of the above, a * character is interpreted as a wildcard.

IMPORTANT

URI patterns must match Git source URIs which are conformant to RFC3986. Do not
include a username (or password) component in a URI pattern.

For example, if you use ssh://git@bitbucket.atlassian.com:7999/ATLASSIAN jira.git
for a git repository URL, the source secret must be specified as
ssh://bitbucket.atlassian.com:7999/* (and not
ssh://git@bitbucket.atlassian.com:7999/*).

Procedure

If multiple secrets match the Git URI of a particular BuildConfig, OpenShift Container Platform selects
the secret with the longest match. This allows for basic overriding, as in the following example.

The following fragment shows two partial source clone secrets, the first matching any server in the
domain mycorp.com accessed by HTTPS, and the second overriding access to servers
mydev1.mycorp.com and mydev2.mycorp.com:

Add a build.openshift.io/source-secret-match-uri- annotation to a pre-existing secret using:

$ oc annotate secret mysecret \
 'build.openshift.io/source-secret-match-uri-1=ssh://bitbucket.atlassian.com:7999/*'

kind: Secret
apiVersion: v1
metadata:
 name: matches-all-corporate-servers-https-only
 annotations:
 build.openshift.io/source-secret-match-uri-1: https://*.mycorp.com/*
data:
 ...

kind: Secret
apiVersion: v1
metadata:
 name: override-for-my-dev-servers-https-only
 annotations:
 build.openshift.io/source-secret-match-uri-1: https://mydev1.mycorp.com/*
 build.openshift.io/source-secret-match-uri-2: https://mydev2.mycorp.com/*
data:
 ...

$ oc annotate secret mysecret \
 'build.openshift.io/source-secret-match-uri-1=https://*.mycorp.com/*'

CHAPTER 2. BUILDS

17

https://www.ietf.org/rfc/rfc3986.txt

2.3.4.2.2. Manually adding a source clone secret

Source clone secrets can be added manually to a build configuration by adding a sourceSecret field to
the source section inside the BuildConfig and setting it to the name of the secret that you created. In
this example, it is the basicsecret.

Procedure

You can also use the oc set build-secret command to set the source clone secret on an existing build
configuration.

To set the source clone secret on an existing build configuration, enter the following command:

2.3.4.2.3. Creating a secret from a .gitconfig file

If the cloning of your application is dependent on a .gitconfig file, then you can create a secret that
contains it. Add it to the builder service account and then your BuildConfig.

Procedure

To create a secret from a .gitconfig file:

NOTE

SSL verification can be turned off if sslVerify=false is set for the http section in your
.gitconfig file:

apiVersion: "v1"
kind: "BuildConfig"
metadata:
 name: "sample-build"
spec:
 output:
 to:
 kind: "ImageStreamTag"
 name: "sample-image:latest"
 source:
 git:
 uri: "https://github.com/user/app.git"
 sourceSecret:
 name: "basicsecret"
 strategy:
 sourceStrategy:
 from:
 kind: "ImageStreamTag"
 name: "python-33-centos7:latest"

$ oc set build-secret --source bc/sample-build basicsecret

$ oc create secret generic <secret_name> --from-file=<path/to/.gitconfig>

[http]
 sslVerify=false

OpenShift Container Platform 4.7 CI/CD

18

1

2

2.3.4.2.4. Creating a secret from a .gitconfig file for secured Git

If your Git server is secured with two-way SSL and user name with password, you must add the
certificate files to your source build and add references to the certificate files in the .gitconfig file.

Prerequisites

You must have Git credentials.

Procedure

Add the certificate files to your source build and add references to the certificate files in the .gitconfig
file.

1. Add the client.crt, cacert.crt, and client.key files to the /var/run/secrets/openshift.io/source/
folder in the application source code.

2. In the .gitconfig file for the server, add the [http] section shown in the following example:

Example output

3. Create the secret:

The user’s Git user name.

The password for this user.

IMPORTANT

To avoid having to enter your password again, be sure to specify the source-to-image
(S2I) image in your builds. However, if you cannot clone the repository, you must still
specify your user name and password to promote the build.

Additional resources

cat .gitconfig

[user]
 name = <name>
 email = <email>
[http]
 sslVerify = false
 sslCert = /var/run/secrets/openshift.io/source/client.crt
 sslKey = /var/run/secrets/openshift.io/source/client.key
 sslCaInfo = /var/run/secrets/openshift.io/source/cacert.crt

$ oc create secret generic <secret_name> \
--from-literal=username=<user_name> \ 1
--from-literal=password=<password> \ 2
--from-file=.gitconfig=.gitconfig \
--from-file=client.crt=/var/run/secrets/openshift.io/source/client.crt \
--from-file=cacert.crt=/var/run/secrets/openshift.io/source/cacert.crt \
--from-file=client.key=/var/run/secrets/openshift.io/source/client.key

CHAPTER 2. BUILDS

19

/var/run/secrets/openshift.io/source/ folder in the application source code.

2.3.4.2.5. Creating a secret from source code basic authentication

Basic authentication requires either a combination of --username and --password, or a token to
authenticate against the software configuration management (SCM) server.

Prerequisites

User name and password to access the private repository.

Procedure

1. Create the secret first before using the --username and --password to access the private
repository:

2. Create a basic authentication secret with a token:

2.3.4.2.6. Creating a secret from source code SSH key authentication

SSH key based authentication requires a private SSH key.

The repository keys are usually located in the $HOME/.ssh/ directory, and are named id_dsa.pub,
id_ecdsa.pub, id_ed25519.pub, or id_rsa.pub by default.

Procedure

1. Generate SSH key credentials:

NOTE

Creating a passphrase for the SSH key prevents OpenShift Container Platform
from building. When prompted for a passphrase, leave it blank.

Two files are created: the public key and a corresponding private key (one of id_dsa, id_ecdsa,
id_ed25519, or id_rsa). With both of these in place, consult your source control management
(SCM) system’s manual on how to upload the public key. The private key is used to access your
private repository.

2. Before using the SSH key to access the private repository, create the secret:

$ oc create secret generic <secret_name> \
 --from-literal=username=<user_name> \
 --from-literal=password=<password> \
 --type=kubernetes.io/basic-auth

$ oc create secret generic <secret_name> \
 --from-literal=password=<token> \
 --type=kubernetes.io/basic-auth

$ ssh-keygen -t ed25519 -C "your_email@example.com"

$ oc create secret generic <secret_name> \

OpenShift Container Platform 4.7 CI/CD

20

1

1

Optional: Adding this field enables strict server host key check.

WARNING

Skipping the known_hosts file while creating the secret makes the build
vulnerable to a potential man-in-the-middle (MITM) attack.

NOTE

Ensure that the known_hosts file includes an entry for the host of your source
code.

2.3.4.2.7. Creating a secret from source code trusted certificate authorities

The set of Transport Layer Security (TLS) certificate authorities (CA) that are trusted during a Git clone
operation are built into the OpenShift Container Platform infrastructure images. If your Git server uses a
self-signed certificate or one signed by an authority not trusted by the image, you can create a secret
that contains the certificate or disable TLS verification.

If you create a secret for the CA certificate, OpenShift Container Platform uses it to access your Git
server during the Git clone operation. Using this method is significantly more secure than disabling Git
SSL verification, which accepts any TLS certificate that is presented.

Procedure

Create a secret with a CA certificate file.

1. If your CA uses Intermediate Certificate Authorities, combine the certificates for all CAs in a
ca.crt file. Enter the following command:

a. Create the secret:

You must use the key name ca.crt.

2.3.4.2.8. Source secret combinations

You can combine the different methods for creating source clone secrets for your specific needs.

2.3.4.2.8.1. Creating a SSH-based authentication secret with a .gitconfig file

 --from-file=ssh-privatekey=<path/to/ssh/private/key> \
 --from-file=<path/to/known_hosts> \ 1
 --type=kubernetes.io/ssh-auth

$ cat intermediateCA.crt intermediateCA.crt rootCA.crt > ca.crt

$ oc create secret generic mycert --from-file=ca.crt=</path/to/file> 1

CHAPTER 2. BUILDS

21

You can combine the different methods for creating source clone secrets for your specific needs, such
as a SSH-based authentication secret with a .gitconfig file.

Prerequisites

SSH authentication

.gitconfig file

Procedure

To create a SSH-based authentication secret with a .gitconfig file, run:

2.3.4.2.8.2. Creating a secret that combines a .gitconfig file and CA certificate

You can combine the different methods for creating source clone secrets for your specific needs, such
as a secret that combines a .gitconfig file and certificate authority (CA) certificate.

Prerequisites

.gitconfig file

CA certificate

Procedure

To create a secret that combines a .gitconfig file and CA certificate, run:

2.3.4.2.8.3. Creating a basic authentication secret with a CA certificate

You can combine the different methods for creating source clone secrets for your specific needs, such
as a secret that combines a basic authentication and certificate authority (CA) certificate.

Prerequisites

Basic authentication credentials

CA certificate

Procedure

Create a basic authentication secret with a CA certificate, run:

$ oc create secret generic <secret_name> \
 --from-file=ssh-privatekey=<path/to/ssh/private/key> \
 --from-file=<path/to/.gitconfig> \
 --type=kubernetes.io/ssh-auth

$ oc create secret generic <secret_name> \
 --from-file=ca.crt=<path/to/certificate> \
 --from-file=<path/to/.gitconfig>

$ oc create secret generic <secret_name> \

OpenShift Container Platform 4.7 CI/CD

22

2.3.4.2.8.4. Creating a basic authentication secret with a .gitconfig file

You can combine the different methods for creating source clone secrets for your specific needs, such
as a secret that combines a basic authentication and .gitconfig file.

Prerequisites

Basic authentication credentials

.gitconfig file

Procedure

To create a basic authentication secret with a .gitconfig file, run:

2.3.4.2.8.5. Creating a basic authentication secret with a .gitconfig file and CA certificate

You can combine the different methods for creating source clone secrets for your specific needs, such
as a secret that combines a basic authentication, .gitconfig file, and certificate authority (CA)
certificate.

Prerequisites

Basic authentication credentials

.gitconfig file

CA certificate

Procedure

To create a basic authentication secret with a .gitconfig file and CA certificate, run:

2.3.5. Binary (local) source

Streaming content from a local file system to the builder is called a Binary type build. The

 --from-literal=username=<user_name> \
 --from-literal=password=<password> \
 --from-file=ca-cert=</path/to/file> \
 --type=kubernetes.io/basic-auth

$ oc create secret generic <secret_name> \
 --from-literal=username=<user_name> \
 --from-literal=password=<password> \
 --from-file=</path/to/.gitconfig> \
 --type=kubernetes.io/basic-auth

$ oc create secret generic <secret_name> \
 --from-literal=username=<user_name> \
 --from-literal=password=<password> \
 --from-file=</path/to/.gitconfig> \
 --from-file=ca-cert=</path/to/file> \
 --type=kubernetes.io/basic-auth

CHAPTER 2. BUILDS

23

Streaming content from a local file system to the builder is called a Binary type build. The
corresponding value of BuildConfig.spec.source.type is Binary for these builds.

This source type is unique in that it is leveraged solely based on your use of the oc start-build.

NOTE

Binary type builds require content to be streamed from the local file system, so
automatically triggering a binary type build, like an image change trigger, is not possible.
This is because the binary files cannot be provided. Similarly, you cannot launch binary
type builds from the web console.

To utilize binary builds, invoke oc start-build with one of these options:

--from-file: The contents of the file you specify are sent as a binary stream to the builder. You
can also specify a URL to a file. Then, the builder stores the data in a file with the same name at
the top of the build context.

--from-dir and --from-repo: The contents are archived and sent as a binary stream to the
builder. Then, the builder extracts the contents of the archive within the build context directory.
With --from-dir, you can also specify a URL to an archive, which is extracted.

--from-archive: The archive you specify is sent to the builder, where it is extracted within the
build context directory. This option behaves the same as --from-dir; an archive is created on
your host first, whenever the argument to these options is a directory.

In each of the previously listed cases:

If your BuildConfig already has a Binary source type defined, it is effectively ignored and
replaced by what the client sends.

If your BuildConfig has a Git source type defined, it is dynamically disabled, since Binary and
Git are mutually exclusive, and the data in the binary stream provided to the builder takes
precedence.

Instead of a file name, you can pass a URL with HTTP or HTTPS schema to --from-file and --from-
archive. When using --from-file with a URL, the name of the file in the builder image is determined by
the Content-Disposition header sent by the web server, or the last component of the URL path if the
header is not present. No form of authentication is supported and it is not possible to use custom TLS
certificate or disable certificate validation.

When using oc new-build --binary=true, the command ensures that the restrictions associated with
binary builds are enforced. The resulting BuildConfig has a source type of Binary, meaning that the
only valid way to run a build for this BuildConfig is to use oc start-build with one of the --from options
to provide the requisite binary data.

The Dockerfile and contextDir source options have special meaning with binary builds.

Dockerfile can be used with any binary build source. If Dockerfile is used and the binary stream is an
archive, its contents serve as a replacement Dockerfile to any Dockerfile in the archive. If Dockerfile is
used with the --from-file argument, and the file argument is named Dockerfile, the value from Dockerfile
replaces the value from the binary stream.

In the case of the binary stream encapsulating extracted archive content, the value of the contextDir
field is interpreted as a subdirectory within the archive, and, if valid, the builder changes into that
subdirectory before executing the build.

OpenShift Container Platform 4.7 CI/CD

24

1

2

3

4

5

2.3.6. Input secrets and config maps

In some scenarios, build operations require credentials or other configuration data to access dependent
resources, but it is undesirable for that information to be placed in source control. You can define input
secrets and input config maps for this purpose.

For example, when building a Java application with Maven, you can set up a private mirror of Maven
Central or JCenter that is accessed by private keys. To download libraries from that private mirror, you
have to supply the following:

1. A settings.xml file configured with the mirror’s URL and connection settings.

2. A private key referenced in the settings file, such as ~/.ssh/id_rsa.

For security reasons, you do not want to expose your credentials in the application image.

This example describes a Java application, but you can use the same approach for adding SSL
certificates into the /etc/ssl/certs directory, API keys or tokens, license files, and more.

2.3.6.1. What is a secret?

The Secret object type provides a mechanism to hold sensitive information such as passwords,
OpenShift Container Platform client configuration files, dockercfg files, private source repository
credentials, and so on. Secrets decouple sensitive content from the pods. You can mount secrets into
containers using a volume plug-in or the system can use secrets to perform actions on behalf of a pod.

YAML Secret Object Definition

Indicates the structure of the secret’s key names and values.

The allowable format for the keys in the data field must meet the guidelines in the
DNS_SUBDOMAIN value in the Kubernetes identifiers glossary.

The value associated with keys in the data map must be base64 encoded.

Entries in the stringData map are converted to base64 and the entry are then moved to the data
map automatically. This field is write-only. The value is only be returned by the data field.

The value associated with keys in the stringData map is made up of plain text strings.

2.3.6.1.1. Properties of secrets

apiVersion: v1
kind: Secret
metadata:
 name: test-secret
 namespace: my-namespace
type: Opaque 1
data: 2
 username: dmFsdWUtMQ0K 3
 password: dmFsdWUtMg0KDQo=
stringData: 4
 hostname: myapp.mydomain.com 5

CHAPTER 2. BUILDS

25

Key properties include:

Secret data can be referenced independently from its definition.

Secret data volumes are backed by temporary file-storage facilities (tmpfs) and never come to
rest on a node.

Secret data can be shared within a namespace.

2.3.6.1.2. Types of Secrets

The value in the type field indicates the structure of the secret’s key names and values. The type can be
used to enforce the presence of user names and keys in the secret object. If you do not want validation,
use the opaque type, which is the default.

Specify one of the following types to trigger minimal server-side validation to ensure the presence of
specific key names in the secret data:

kubernetes.io/service-account-token. Uses a service account token.

kubernetes.io/dockercfg. Uses the .dockercfg file for required Docker credentials.

kubernetes.io/dockerconfigjson. Uses the .docker/config.json file for required Docker
credentials.

kubernetes.io/basic-auth. Use with basic authentication.

kubernetes.io/ssh-auth. Use with SSH key authentication.

kubernetes.io/tls. Use with TLS certificate authorities.

Specify type= Opaque if you do not want validation, which means the secret does not claim to conform
to any convention for key names or values. An opaque secret, allows for unstructured key:value pairs
that can contain arbitrary values.

NOTE

You can specify other arbitrary types, such as example.com/my-secret-type. These
types are not enforced server-side, but indicate that the creator of the secret intended to
conform to the key/value requirements of that type.

2.3.6.1.3. Updates to secrets

When you modify the value of a secret, the value used by an already running pod does not dynamically
change. To change a secret, you must delete the original pod and create a new pod, in some cases with
an identical PodSpec.

Updating a secret follows the same workflow as deploying a new container image. You can use the
kubectl rolling-update command.

The resourceVersion value in a secret is not specified when it is referenced. Therefore, if a secret is
updated at the same time as pods are starting, then the version of the secret is used for the pod is not
defined.

NOTE

OpenShift Container Platform 4.7 CI/CD

26

1

NOTE

Currently, it is not possible to check the resource version of a secret object that was used
when a pod was created. It is planned that pods report this information, so that a
controller could restart ones using an old resourceVersion. In the interim, do not update
the data of existing secrets, but create new ones with distinct names.

2.3.6.2. Creating secrets

You must create a secret before creating the pods that depend on that secret.

When creating secrets:

Create a secret object with secret data.

Update the pod service account to allow the reference to the secret.

Create a pod, which consumes the secret as an environment variable or as a file using a secret
volume.

Procedure

Use the create command to create a secret object from a JSON or YAML file:

For example, you can create a secret from your local .docker/config.json file:

This command generates a JSON specification of the secret named dockerhub and creates the
object.

YAML Opaque Secret Object Definition

Specifies an opaque secret.

Docker Configuration JSON File Secret Object Definition

$ oc create -f <filename>

$ oc create secret generic dockerhub \
 --from-file=.dockerconfigjson=<path/to/.docker/config.json> \
 --type=kubernetes.io/dockerconfigjson

apiVersion: v1
kind: Secret
metadata:
 name: mysecret
type: Opaque 1
data:
 username: dXNlci1uYW1l
 password: cGFzc3dvcmQ=

apiVersion: v1
kind: Secret
metadata:

CHAPTER 2. BUILDS

27

1

2

1

Specifies that the secret is using a docker configuration JSON file.

The output of a base64-encoded the docker configuration JSON file

2.3.6.3. Using secrets

After creating secrets, you can create a pod to reference your secret, get logs, and delete the pod.

Procedure

1. Create the pod to reference your secret:

2. Get the logs:

3. Delete the pod:

Additional resources

Example YAML files with secret data:

YAML Secret That Will Create Four Files

File contains decoded values.

 name: aregistrykey
 namespace: myapps
type: kubernetes.io/dockerconfigjson 1
data:

.dockerconfigjson:bm5ubm5ubm5ubm5ubm5ubm5ubm5ubmdnZ2dnZ2dnZ2dnZ2dnZ2dnZ2cg
YXV0aCBrZXlzCg== 2

$ oc create -f <your_yaml_file>.yaml

$ oc logs secret-example-pod

$ oc delete pod secret-example-pod

apiVersion: v1
kind: Secret
metadata:
 name: test-secret
data:
 username: dmFsdWUtMQ0K 1
 password: dmFsdWUtMQ0KDQo= 2
stringData:
 hostname: myapp.mydomain.com 3
 secret.properties: |- 4
 property1=valueA
 property2=valueB

OpenShift Container Platform 4.7 CI/CD

28

2

3

4

File contains decoded values.

File contains the provided string.

File contains the provided data.

YAML of a pod populating files in a volume with secret data

YAML of a pod populating environment variables with secret data

YAML of a Build Config Populating Environment Variables with Secret Data

apiVersion: v1
kind: Pod
metadata:
 name: secret-example-pod
spec:
 containers:
 - name: secret-test-container
 image: busybox
 command: ["/bin/sh", "-c", "cat /etc/secret-volume/*"]
 volumeMounts:
 # name must match the volume name below
 - name: secret-volume
 mountPath: /etc/secret-volume
 readOnly: true
 volumes:
 - name: secret-volume
 secret:
 secretName: test-secret
 restartPolicy: Never

apiVersion: v1
kind: Pod
metadata:
 name: secret-example-pod
spec:
 containers:
 - name: secret-test-container
 image: busybox
 command: ["/bin/sh", "-c", "export"]
 env:
 - name: TEST_SECRET_USERNAME_ENV_VAR
 valueFrom:
 secretKeyRef:
 name: test-secret
 key: username
 restartPolicy: Never

apiVersion: build.openshift.io/v1
kind: BuildConfig
metadata:
 name: secret-example-bc
spec:

CHAPTER 2. BUILDS

29

2.3.6.4. Adding input secrets and config maps

In some scenarios, build operations require credentials or other configuration data to access dependent
resources, but it is undesirable for that information to be placed in source control. You can define input
secrets and input config maps for this purpose.

Procedure

To add an input secret, config maps, or both to an existing BuildConfig object:

1. Create the ConfigMap object, if it does not exist:

This creates a new config map named settings-mvn, which contains the plain text content of
the settings.xml file.

2. Create the Secret object, if it does not exist:

This creates a new secret named secret-mvn, which contains the base64 encoded content of
the id_rsa private key.

3. Add the config map and secret to the source section in the existing BuildConfig object:

To include the secret and config map in a new BuildConfig object, run the following command:

 strategy:
 sourceStrategy:
 env:
 - name: TEST_SECRET_USERNAME_ENV_VAR
 valueFrom:
 secretKeyRef:
 name: test-secret
 key: username

$ oc create configmap settings-mvn \
 --from-file=settings.xml=<path/to/settings.xml>

$ oc create secret generic secret-mvn \
 --from-file=id_rsa=<path/to/.ssh/id_rsa>

source:
 git:
 uri: https://github.com/wildfly/quickstart.git
 contextDir: helloworld
 configMaps:
 - configMap:
 name: settings-mvn
 secrets:
 - secret:
 name: secret-mvn

$ oc new-build \
 openshift/wildfly-101-centos7~https://github.com/wildfly/quickstart.git \
 --context-dir helloworld --build-secret “secret-mvn” \
 --build-config-map "settings-mvn"

OpenShift Container Platform 4.7 CI/CD

30

During the build, the settings.xml and id_rsa files are copied into the directory where the source code
is located. In OpenShift Container Platform S2I builder images, this is the image working directory, which
is set using the WORKDIR instruction in the Dockerfile. If you want to specify another directory, add a
destinationDir to the definition:

You can also specify the destination directory when creating a new BuildConfig object:

In both cases, the settings.xml file is added to the ./.m2 directory of the build environment, and the
id_rsa key is added to the ./.ssh directory.

2.3.6.5. Source-to-image strategy

When using a Source strategy, all defined input secrets are copied to their respective destinationDir. If
you left destinationDir empty, then the secrets are placed in the working directory of the builder image.

The same rule is used when a destinationDir is a relative path. The secrets are placed in the paths that
are relative to the working directory of the image. The final directory in the destinationDir path is
created if it does not exist in the builder image. All preceding directories in the destinationDir must
exist, or an error will occur.

NOTE

Input secrets are added as world-writable, have 0666 permissions, and are truncated to
size zero after executing the assemble script. This means that the secret files exist in the
resulting image, but they are empty for security reasons.

Input config maps are not truncated after the assemble script completes.

2.3.6.6. Docker strategy

When using a docker strategy, you can add all defined input secrets into your container image using the
ADD and COPY instructions in your Dockerfile.

If you do not specify the destinationDir for a secret, then the files are copied into the same directory in
which the Dockerfile is located. If you specify a relative path as destinationDir, then the secrets are
copied into that directory, relative to your Dockerfile location. This makes the secret files available to the
Docker build operation as part of the context directory used during the build.

source:
 git:
 uri: https://github.com/wildfly/quickstart.git
 contextDir: helloworld
 configMaps:
 - configMap:
 name: settings-mvn
 destinationDir: ".m2"
 secrets:
 - secret:
 name: secret-mvn
 destinationDir: ".ssh"

$ oc new-build \
 openshift/wildfly-101-centos7~https://github.com/wildfly/quickstart.git \
 --context-dir helloworld --build-secret “secret-mvn:.ssh” \
 --build-config-map "settings-mvn:.m2"

CHAPTER 2. BUILDS

31

https://docs.docker.com/engine/reference/builder/#add
https://docs.docker.com/engine/reference/builder/#copy

Example of a Dockerfile referencing secret and config map data

FROM centos/ruby-22-centos7

USER root
COPY ./secret-dir /secrets
COPY ./config /

Create a shell script that will output secrets and ConfigMaps when the image is run
RUN echo '#!/bin/sh' > /input_report.sh
RUN echo '(test -f /secrets/secret1 && echo -n "secret1=" && cat /secrets/secret1)' >>
/input_report.sh
RUN echo '(test -f /config && echo -n "relative-configMap=" && cat /config)' >> /input_report.sh
RUN chmod 755 /input_report.sh

CMD ["/bin/sh", "-c", "/input_report.sh"]

NOTE

Users normally remove their input secrets from the final application image so that the
secrets are not present in the container running from that image. However, the secrets
still exist in the image itself in the layer where they were added. This removal is part of the
Dockerfile itself.

2.3.6.7. Custom strategy

When using a Custom strategy, all the defined input secrets and config maps are available in the builder
container in the /var/run/secrets/openshift.io/build directory. The custom build image must use these
secrets and config maps appropriately. With the Custom strategy, you can define secrets as described in
Custom strategy options.

There is no technical difference between existing strategy secrets and the input secrets. However, your
builder image can distinguish between them and use them differently, based on your build use case.

The input secrets are always mounted into the /var/run/secrets/openshift.io/build directory, or your
builder can parse the $BUILD environment variable, which includes the full build object.

IMPORTANT

If a pull secret for the registry exists in both the namespace and the node, builds default
to using the pull secret in the namespace.

2.3.7. External artifacts

It is not recommended to store binary files in a source repository. Therefore, you must define a build
which pulls additional files, such as Java .jar dependencies, during the build process. How this is done
depends on the build strategy you are using.

For a Source build strategy, you must put appropriate shell commands into the assemble script:

.s2i/bin/assemble File

OpenShift Container Platform 4.7 CI/CD

32

.s2i/bin/run File

For a Docker build strategy, you must modify the Dockerfile and invoke shell commands with the RUN
instruction:

Excerpt of Dockerfile

In practice, you may want to use an environment variable for the file location so that the specific file to
be downloaded can be customized using an environment variable defined on the BuildConfig, rather
than updating the Dockerfile or assemble script.

You can choose between different methods of defining environment variables:

Using the .s2i/environment file] (only for a Source build strategy)

Setting in BuildConfig

Providing explicitly using oc start-build --env (only for builds that are triggered manually)

2.3.8. Using docker credentials for private registries

You can supply builds with a .docker/config.json file with valid credentials for private container
registries. This allows you to push the output image into a private container image registry or pull a
builder image from the private container image registry that requires authentication.

NOTE

For the OpenShift Container Platform container image registry, this is not required
because secrets are generated automatically for you by OpenShift Container Platform.

The .docker/config.json file is found in your home directory by default and has the following format:

#!/bin/sh
APP_VERSION=1.0
wget http://repository.example.com/app/app-$APP_VERSION.jar -O app.jar

#!/bin/sh
exec java -jar app.jar

FROM jboss/base-jdk:8

ENV APP_VERSION 1.0
RUN wget http://repository.example.com/app/app-$APP_VERSION.jar -O app.jar

EXPOSE 8080
CMD ["java", "-jar", "app.jar"]

auths:
 https://index.docker.io/v1/: 1
 auth: "YWRfbGzhcGU6R2labnRib21ifTE=" 2
 email: "user@example.com" 3

CHAPTER 2. BUILDS

33

https://docs.docker.com/engine/reference/builder/#run

1

2

3

URL of the registry.

Encrypted password.

Email address for the login.

You can define multiple container image registry entries in this file. Alternatively, you can also add
authentication entries to this file by running the docker login command. The file will be created if it
does not exist.

Kubernetes provides Secret objects, which can be used to store configuration and passwords.

Prerequisites

You must have a .docker/config.json file.

Procedure

1. Create the secret from your local .docker/config.json file:

This generates a JSON specification of the secret named dockerhub and creates the object.

2. Add a pushSecret field into the output section of the BuildConfig and set it to the name of
the secret that you created, which in the previous example is dockerhub:

You can use the oc set build-secret command to set the push secret on the build
configuration:

You can also link the push secret to the service account used by the build instead of specifying
the pushSecret field. By default, builds use the builder service account. The push secret is
automatically added to the build if the secret contains a credential that matches the repository
hosting the build’s output image.

3. Pull the builder container image from a private container image registry by specifying the
pullSecret field, which is part of the build strategy definition:

$ oc create secret generic dockerhub \
 --from-file=.dockerconfigjson=<path/to/.docker/config.json> \
 --type=kubernetes.io/dockerconfigjson

spec:
 output:
 to:
 kind: "DockerImage"
 name: "private.registry.com/org/private-image:latest"
 pushSecret:
 name: "dockerhub"

$ oc set build-secret --push bc/sample-build dockerhub

$ oc secrets link builder dockerhub

strategy:
 sourceStrategy:

OpenShift Container Platform 4.7 CI/CD

34

You can use the oc set build-secret command to set the pull secret on the build configuration:

NOTE

This example uses pullSecret in a Source build, but it is also applicable in Docker
and Custom builds.

You can also link the pull secret to the service account used by the build instead of specifying
the pullSecret field. By default, builds use the builder service account. The pull secret is
automatically added to the build if the secret contains a credential that matches the repository
hosting the build’s input image. To link the pull secret to the service account used by the build
instead of specifying the pullSecret field, run:

NOTE

You must specify a from image in the BuildConfig spec to take advantage of
this feature. Docker strategy builds generated by oc new-build or oc new-app
may not do this in some situations.

2.3.9. Build environments

As with pod environment variables, build environment variables can be defined in terms of references to
other resources or variables using the Downward API. There are some exceptions, which are noted.

You can also manage environment variables defined in the BuildConfig with the oc set env command.

NOTE

Referencing container resources using valueFrom in build environment variables is not
supported as the references are resolved before the container is created.

2.3.9.1. Using build fields as environment variables

You can inject information about the build object by setting the fieldPath environment variable source
to the JsonPath of the field from which you are interested in obtaining the value.

NOTE

Jenkins Pipeline strategy does not support valueFrom syntax for environment variables.

Procedure

 from:
 kind: "DockerImage"
 name: "docker.io/user/private_repository"
 pullSecret:
 name: "dockerhub"

$ oc set build-secret --pull bc/sample-build dockerhub

$ oc secrets link builder dockerhub

CHAPTER 2. BUILDS

35

Set the fieldPath environment variable source to the JsonPath of the field from which you are
interested in obtaining the value:

2.3.9.2. Using secrets as environment variables

You can make key values from secrets available as environment variables using the valueFrom syntax.

IMPORTANT

This method shows the secrets as plain text in the output of the build pod console. To
avoid this, use input secrets and config maps instead.

Procedure

To use a secret as an environment variable, set the valueFrom syntax:

Additional resources

Input secrets and config maps

2.3.10. Service serving certificate secrets

Service serving certificate secrets are intended to support complex middleware applications that need
out-of-the-box certificates. It has the same settings as the server certificates generated by the
administrator tooling for nodes and masters.

Procedure

To secure communication to your service, have the cluster generate a signed serving certificate/key pair
into a secret in your namespace.

Set the service.beta.openshift.io/serving-cert-secret-name annotation on your service with
the value set to the name you want to use for your secret.

Then, your PodSpec can mount that secret. When it is available, your pod runs. The certificate

env:
 - name: FIELDREF_ENV
 valueFrom:
 fieldRef:
 fieldPath: metadata.name

apiVersion: build.openshift.io/v1
kind: BuildConfig
metadata:
 name: secret-example-bc
spec:
 strategy:
 sourceStrategy:
 env:
 - name: MYVAL
 valueFrom:
 secretKeyRef:
 key: myval
 name: mysecret

OpenShift Container Platform 4.7 CI/CD

36

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/cicd/#builds-input-secrets-configmaps_creating-build-inputs

Then, your PodSpec can mount that secret. When it is available, your pod runs. The certificate
is good for the internal service DNS name, <service.name>.<service.namespace>.svc.

The certificate and key are in PEM format, stored in tls.crt and tls.key respectively. The
certificate/key pair is automatically replaced when it gets close to expiration. View the expiration
date in the service.beta.openshift.io/expiry annotation on the secret, which is in RFC3339
format.

NOTE

In most cases, the service DNS name <service.name>.<service.namespace>.svc is not
externally routable. The primary use of <service.name>.<service.namespace>.svc is
for intracluster or intraservice communication, and with re-encrypt routes.

Other pods can trust cluster-created certificates, which are only signed for internal DNS names, by using
the certificate authority (CA) bundle in the /var/run/secrets/kubernetes.io/serviceaccount/service-
ca.crt file that is automatically mounted in their pod.

The signature algorithm for this feature is x509.SHA256WithRSA. To manually rotate, delete the
generated secret. A new certificate is created.

2.3.11. Secrets restrictions

To use a secret, a pod needs to reference the secret. A secret can be used with a pod in three ways:

To populate environment variables for containers.

As files in a volume mounted on one or more of its containers.

By kubelet when pulling images for the pod.

Volume type secrets write data into the container as a file using the volume mechanism.
imagePullSecrets use service accounts for the automatic injection of the secret into all pods in a
namespaces.

When a template contains a secret definition, the only way for the template to use the provided secret is
to ensure that the secret volume sources are validated and that the specified object reference actually
points to an object of type Secret. Therefore, a secret needs to be created before any pods that
depend on it. The most effective way to ensure this is to have it get injected automatically through the
use of a service account.

Secret API objects reside in a namespace. They can only be referenced by pods in that same
namespace.

Individual secrets are limited to 1MB in size. This is to discourage the creation of large secrets that would
exhaust apiserver and kubelet memory. However, creation of a number of smaller secrets could also
exhaust memory.

2.4. MANAGING BUILD OUTPUT

Use the following sections for an overview of and instructions for managing build output.

2.4.1. Build output

Builds that use the docker or source-to-image (S2I) strategy result in the creation of a new container

CHAPTER 2. BUILDS

37

Builds that use the docker or source-to-image (S2I) strategy result in the creation of a new container
image. The image is then pushed to the container image registry specified in the output section of the
Build specification.

If the output kind is ImageStreamTag, then the image will be pushed to the integrated OpenShift
Container Platform registry and tagged in the specified imagestream. If the output is of type
DockerImage, then the name of the output reference will be used as a docker push specification. The
specification may contain a registry or will default to DockerHub if no registry is specified. If the output
section of the build specification is empty, then the image will not be pushed at the end of the build.

Output to an ImageStreamTag

Output to a docker Push Specification

2.4.2. Output image environment variables

docker and source-to-image (S2I) strategy builds set the following environment variables on output
images:

Variable Description

OPENSHIFT_BUILD_NAME Name of the build

OPENSHIFT_BUILD_NAMESPACE Namespace of the build

OPENSHIFT_BUILD_SOURCE The source URL of the build

OPENSHIFT_BUILD_REFERENCE The Git reference used in the build

OPENSHIFT_BUILD_COMMIT Source commit used in the build

Additionally, any user-defined environment variable, for example those configured with S2I] or docker
strategy options, will also be part of the output image environment variable list.

2.4.3. Output image labels

docker and source-to-image (S2I)` builds set the following labels on output images:

spec:
 output:
 to:
 kind: "ImageStreamTag"
 name: "sample-image:latest"

spec:
 output:
 to:
 kind: "DockerImage"
 name: "my-registry.mycompany.com:5000/myimages/myimage:tag"

OpenShift Container Platform 4.7 CI/CD

38

Label Description

io.openshift.build.commit.author Author of the source commit used in the build

io.openshift.build.commit.date Date of the source commit used in the build

io.openshift.build.commit.id Hash of the source commit used in the build

io.openshift.build.commit.message Message of the source commit used in the build

io.openshift.build.commit.ref Branch or reference specified in the source

io.openshift.build.source-location Source URL for the build

You can also use the BuildConfig.spec.output.imageLabels field to specify a list of custom labels that
will be applied to each image built from the build configuration.

Custom Labels to be Applied to Built Images

2.5. USING BUILD STRATEGIES

The following sections define the primary supported build strategies, and how to use them.

2.5.1. Docker build

OpenShift Container Platform uses Buildah to build a container image from a Dockerfile. For more
information on building container images with Dockerfiles, see the Dockerfile reference documentation.

TIP

If you set Docker build arguments by using the buildArgs array, see Understand how ARG and FROM
interact in the Dockerfile reference documentation.

2.5.1.1. Replacing Dockerfile FROM image

You can replace the FROM instruction of the Dockerfile with the from of the BuildConfig object. If the
Dockerfile uses multi-stage builds, the image in the last FROM instruction will be replaced.

Procedure

spec:
 output:
 to:
 kind: "ImageStreamTag"
 name: "my-image:latest"
 imageLabels:
 - name: "vendor"
 value: "MyCompany"
 - name: "authoritative-source-url"
 value: "registry.mycompany.com"

CHAPTER 2. BUILDS

39

https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/#understand-how-arg-and-from-interact

To replace the FROM instruction of the Dockerfile with the from of the BuildConfig.

2.5.1.2. Using Dockerfile path

By default, docker builds use a Dockerfile located at the root of the context specified in the
BuildConfig.spec.source.contextDir field.

The dockerfilePath field allows the build to use a different path to locate your Dockerfile, relative to the
BuildConfig.spec.source.contextDir field. It can be a different file name than the default Dockerfile,
such as MyDockerfile, or a path to a Dockerfile in a subdirectory, such as dockerfiles/app1/Dockerfile.

Procedure

To use the dockerfilePath field for the build to use a different path to locate your Dockerfile, set:

2.5.1.3. Using docker environment variables

To make environment variables available to the docker build process and resulting image, you can add
environment variables to the dockerStrategy definition of the build configuration.

The environment variables defined there are inserted as a single ENV Dockerfile instruction right after
the FROM instruction, so that it can be referenced later on within the Dockerfile.

Procedure

The variables are defined during build and stay in the output image, therefore they will be present in any
container that runs that image as well.

For example, defining a custom HTTP proxy to be used during build and runtime:

You can also manage environment variables defined in the build configuration with the oc set env
command.

2.5.1.4. Adding docker build arguments

You can set docker build arguments using the buildArgs array. The build arguments are passed to
docker when a build is started.

TIP

strategy:
 dockerStrategy:
 from:
 kind: "ImageStreamTag"
 name: "debian:latest"

strategy:
 dockerStrategy:
 dockerfilePath: dockerfiles/app1/Dockerfile

dockerStrategy:
...
 env:
 - name: "HTTP_PROXY"
 value: "http://myproxy.net:5187/"

OpenShift Container Platform 4.7 CI/CD

40

http://docs.docker.com/v1.7/reference/api/hub_registry_spec/#docker-registry-1-0

TIP

See Understand how ARG and FROM interact in the Dockerfile reference documentation.

Procedure

To set docker build arguments, add entries to the buildArgs array, which is located in the
dockerStrategy definition of the BuildConfig object. For example:

NOTE

Only the name and value fields are supported. Any settings on the valueFrom field are
ignored.

2.5.1.5. Squash layers with docker builds

Docker builds normally create a layer representing each instruction in a Dockerfile. Setting the
imageOptimizationPolicy to SkipLayers merges all instructions into a single layer on top of the base
image.

Procedure

Set the imageOptimizationPolicy to SkipLayers:

2.5.2. Source-to-image build

Source-to-image (S2I) is a tool for building reproducible container images. It produces ready-to-run
images by injecting application source into a container image and assembling a new image. The new
image incorporates the base image, the builder, and built source and is ready to use with the buildah
run command. S2I supports incremental builds, which re-use previously downloaded dependencies,
previously built artifacts, and so on.

2.5.2.1. Performing source-to-image incremental builds

Source-to-image (S2I) can perform incremental builds, which means it reuses artifacts from previously-
built images.

Procedure

To create an incremental build, create a with the following modification to the strategy
definition:

dockerStrategy:
...
 buildArgs:
 - name: "foo"
 value: "bar"

strategy:
 dockerStrategy:
 imageOptimizationPolicy: SkipLayers

strategy:

CHAPTER 2. BUILDS

41

https://docs.docker.com/engine/reference/builder/#understand-how-arg-and-from-interact

1

2

1

Specify an image that supports incremental builds. Consult the documentation of the
builder image to determine if it supports this behavior.

This flag controls whether an incremental build is attempted. If the builder image does not
support incremental builds, the build will still succeed, but you will get a log message
stating the incremental build was not successful because of a missing save-artifacts script.

Additional resources

See S2I Requirements for information on how to create a builder image supporting incremental
builds.

2.5.2.2. Overriding source-to-image builder image scripts

You can override the assemble, run, and save-artifacts source-to-image (S2I) scripts provided by the
builder image.

Procedure

To override the assemble, run, and save-artifacts S2I scripts provided by the builder image, either:

Provide an assemble, run, or save-artifacts script in the .s2i/bin directory of your application
source repository.

Provide a URL of a directory containing the scripts as part of the strategy definition. For
example:

This path will have run, assemble, and save-artifacts appended to it. If any or all scripts
are found they will be used in place of the same named scripts provided in the image.

NOTE

Files located at the scripts URL take precedence over files located in .s2i/bin of the
source repository.

2.5.2.3. Source-to-image environment variables

There are two ways to make environment variables available to the source build process and resulting
image. Environment files and BuildConfig environment values. Variables provided will be present during
the build process and in the output image.

 sourceStrategy:
 from:
 kind: "ImageStreamTag"
 name: "incremental-image:latest" 1
 incremental: true 2

strategy:
 sourceStrategy:
 from:
 kind: "ImageStreamTag"
 name: "builder-image:latest"
 scripts: "http://somehost.com/scripts_directory" 1

OpenShift Container Platform 4.7 CI/CD

42

2.5.2.3.1. Using source-to-image environment files

Source build enables you to set environment values, one per line, inside your application, by specifying
them in a .s2i/environment file in the source repository. The environment variables specified in this file
are present during the build process and in the output image.

If you provide a .s2i/environment file in your source repository, source-to-image (S2I) reads this file
during the build. This allows customization of the build behavior as the assemble script may use these
variables.

Procedure

For example, to disable assets compilation for your Rails application during the build:

Add DISABLE_ASSET_COMPILATION=true in the .s2i/environment file.

In addition to builds, the specified environment variables are also available in the running application
itself. For example, to cause the Rails application to start in development mode instead of production:

Add RAILS_ENV=development to the .s2i/environment file.

The complete list of supported environment variables is available in the using images section for each
image.

2.5.2.3.2. Using source-to-image build configuration environment

You can add environment variables to the sourceStrategy definition of the build configuration. The
environment variables defined there are visible during the assemble script execution and will be defined
in the output image, making them also available to the run script and application code.

Procedure

For example, to disable assets compilation for your Rails application:

Additional resources

The build environment section provides more advanced instructions.

You can also manage environment variables defined in the build configuration with the oc set
env command.

2.5.2.4. Ignoring source-to-image source files

Source-to-image (S2I) supports a .s2iignore file, which contains a list of file patterns that should be
ignored. Files in the build working directory, as provided by the various input sources, that match a
pattern found in the .s2iignore file will not be made available to the assemble script.

2.5.2.5. Creating images from source code with source-to-image

Source-to-image (S2I) is a framework that makes it easy to write images that take application source

sourceStrategy:
...
 env:
 - name: "DISABLE_ASSET_COMPILATION"
 value: "true"

CHAPTER 2. BUILDS

43

Source-to-image (S2I) is a framework that makes it easy to write images that take application source
code as an input and produce a new image that runs the assembled application as output.

The main advantage of using S2I for building reproducible container images is the ease of use for
developers. As a builder image author, you must understand two basic concepts in order for your images
to provide the best S2I performance, the build process and S2I scripts.

2.5.2.5.1. Understanding the source-to-image build process

The build process consists of the following three fundamental elements, which are combined into a final
container image:

Sources

Source-to-image (S2I) scripts

Builder image

S2I generates a Dockerfile with the builder image as the first FROM instruction. The Dockerfile
generated by S2I is then passed to Buildah.

2.5.2.5.2. How to write source-to-image scripts

You can write source-to-image (S2I) scripts in any programming language, as long as the scripts are
executable inside the builder image. S2I supports multiple options providing assemble/run/save-
artifacts scripts. All of these locations are checked on each build in the following order:

1. A script specified in the build configuration.

2. A script found in the application source .s2i/bin directory.

3. A script found at the default image URL with the io.openshift.s2i.scripts-url label.

Both the io.openshift.s2i.scripts-url label specified in the image and the script specified in a build
configuration can take one of the following forms:

image:///path_to_scripts_dir: absolute path inside the image to a directory where the S2I
scripts are located.

file:///path_to_scripts_dir: relative or absolute path to a directory on the host where the S2I
scripts are located.

http(s)://path_to_scripts_dir: URL to a directory where the S2I scripts are located.

Table 2.1. S2I scripts

Script Description

OpenShift Container Platform 4.7 CI/CD

44

assemble The assemble script builds the application artifacts from a source and places
them into appropriate directories inside the image. This script is required. The
workflow for this script is:

1. Optional: Restore build artifacts. If you want to support incremental
builds, make sure to define save-artifacts as well.

2. Place the application source in the desired location.

3. Build the application artifacts.

4. Install the artifacts into locations appropriate for them to run.

run The run script executes your application. This script is required.

save-artifacts The save-artifacts script gathers all dependencies that can speed up the
build processes that follow. This script is optional. For example:

For Ruby, gems installed by Bundler.

For Java, .m2 contents.

These dependencies are gathered into a tar file and streamed to the standard
output.

usage The usage script allows you to inform the user how to properly use your image.
This script is optional.

test/run The test/run script allows you to create a process to check if the image is
working correctly. This script is optional. The proposed flow of that process is:

1. Build the image.

2. Run the image to verify the usage script.

3. Run s2i build to verify the assemble script.

4. Optional: Run s2i build again to verify the save-artifacts and
assemble scripts save and restore artifacts functionality.

5. Run the image to verify the test application is working.

NOTE

The suggested location to put the test application built by your
test/run script is the test/test-app directory in your image
repository.

Script Description

Example S2I scripts

The following example S2I scripts are written in Bash. Each example assumes its tar contents are
unpacked into the /tmp/s2i directory.

CHAPTER 2. BUILDS

45

assemble script:

run script:

save-artifacts script:

usage script:

Additional resources

S2I Image Creation Tutorial

#!/bin/bash

restore build artifacts
if ["$(ls /tmp/s2i/artifacts/ 2>/dev/null)"]; then
 mv /tmp/s2i/artifacts/* $HOME/.
fi

move the application source
mv /tmp/s2i/src $HOME/src

build application artifacts
pushd ${HOME}
make all

install the artifacts
make install
popd

#!/bin/bash

run the application
/opt/application/run.sh

#!/bin/bash

pushd ${HOME}
if [-d deps]; then
 # all deps contents to tar stream
 tar cf - deps
fi
popd

#!/bin/bash

inform the user how to use the image
cat <<EOF
This is a S2I sample builder image, to use it, install
https://github.com/openshift/source-to-image
EOF

OpenShift Container Platform 4.7 CI/CD

46

https://blog.openshift.com/create-s2i-builder-image/

1

2

2.5.3. Custom build

The custom build strategy allows developers to define a specific builder image responsible for the entire
build process. Using your own builder image allows you to customize your build process.

A custom builder image is a plain container image embedded with build process logic, for example for
building RPMs or base images.

Custom builds run with a high level of privilege and are not available to users by default. Only users who
can be trusted with cluster administration permissions should be granted access to run custom builds.

2.5.3.1. Using FROM image for custom builds

You can use the customStrategy.from section to indicate the image to use for the custom build

Procedure

Set the customStrategy.from section:

2.5.3.2. Using secrets in custom builds

In addition to secrets for source and images that can be added to all build types, custom strategies allow
adding an arbitrary list of secrets to the builder pod.

Procedure

To mount each secret at a specific location, edit the secretSource and mountPath fields of the
strategy YAML file:

secretSource is a reference to a secret in the same namespace as the build.

mountPath is the path inside the custom builder where the secret should be mounted.

2.5.3.3. Using environment variables for custom builds

To make environment variables available to the custom build process, you can add environment
variables to the customStrategy definition of the build configuration.

strategy:
 customStrategy:
 from:
 kind: "DockerImage"
 name: "openshift/sti-image-builder"

strategy:
 customStrategy:
 secrets:
 - secretSource: 1
 name: "secret1"
 mountPath: "/tmp/secret1" 2
 - secretSource:
 name: "secret2"
 mountPath: "/tmp/secret2"

CHAPTER 2. BUILDS

47

The environment variables defined there are passed to the pod that runs the custom build.

Procedure

1. Define a custom HTTP proxy to be used during build:

2. To manage environment variables defined in the build configuration, enter the following
command:

2.5.3.4. Using custom builder images

OpenShift Container Platform’s custom build strategy enables you to define a specific builder image
responsible for the entire build process. When you need a build to produce individual artifacts such as
packages, JARs, WARs, installable ZIPs, or base images, use a custom builder image using the custom
build strategy.

A custom builder image is a plain container image embedded with build process logic, which is used for
building artifacts such as RPMs or base container images.

Additionally, the custom builder allows implementing any extended build process, such as a CI/CD flow
that runs unit or integration tests.

2.5.3.4.1. Custom builder image

Upon invocation, a custom builder image receives the following environment variables with the
information needed to proceed with the build:

Table 2.2. Custom Builder Environment Variables

Variable Name Description

BUILD The entire serialized JSON of the Build object definition. If you must use a
specific API version for serialization, you can set the buildAPIVersion parameter
in the custom strategy specification of the build configuration.

SOURCE_REPOSITO
RY

The URL of a Git repository with source to be built.

SOURCE_URI Uses the same value as SOURCE_REPOSITORY. Either can be used.

SOURCE_CONTEXT
_DIR

Specifies the subdirectory of the Git repository to be used when building. Only
present if defined.

SOURCE_REF The Git reference to be built.

customStrategy:
...
 env:
 - name: "HTTP_PROXY"
 value: "http://myproxy.net:5187/"

$ oc set env <enter_variables>

OpenShift Container Platform 4.7 CI/CD

48

ORIGIN_VERSION The version of the OpenShift Container Platform master that created this build
object.

OUTPUT_REGISTRY The container image registry to push the image to.

OUTPUT_IMAGE The container image tag name for the image being built.

PUSH_DOCKERCFG
_PATH

The path to the container registry credentials for running a podman push
operation.

Variable Name Description

2.5.3.4.2. Custom builder workflow

Although custom builder image authors have flexibility in defining the build process, your builder image
must adhere to the following required steps necessary for running a build inside of OpenShift Container
Platform:

1. The Build object definition contains all the necessary information about input parameters for
the build.

2. Run the build process.

3. If your build produces an image, push it to the output location of the build if it is defined. Other
output locations can be passed with environment variables.

2.5.4. Pipeline build

IMPORTANT

The Pipeline build strategy is deprecated in OpenShift Container Platform 4. Equivalent
and improved functionality is present in the OpenShift Container Platform Pipelines
based on Tekton.

Jenkins images on OpenShift Container Platform are fully supported and users should
follow Jenkins user documentation for defining their jenkinsfile in a job or store it in a
Source Control Management system.

The Pipeline build strategy allows developers to define a Jenkins pipeline for use by the Jenkins pipeline
plug-in. The build can be started, monitored, and managed by OpenShift Container Platform in the same
way as any other build type.

Pipeline workflows are defined in a jenkinsfile, either embedded directly in the build configuration, or
supplied in a Git repository and referenced by the build configuration.

2.5.4.1. Understanding OpenShift Container Platform pipelines

IMPORTANT

CHAPTER 2. BUILDS

49

IMPORTANT

The Pipeline build strategy is deprecated in OpenShift Container Platform 4. Equivalent
and improved functionality is present in the OpenShift Container Platform Pipelines
based on Tekton.

Jenkins images on OpenShift Container Platform are fully supported and users should
follow Jenkins user documentation for defining their jenkinsfile in a job or store it in a
Source Control Management system.

Pipelines give you control over building, deploying, and promoting your applications on OpenShift
Container Platform. Using a combination of the Jenkins Pipeline build strategy, jenkinsfiles, and the
OpenShift Container Platform Domain Specific Language (DSL) provided by the Jenkins Client Plug-in,
you can create advanced build, test, deploy, and promote pipelines for any scenario.

OpenShift Container Platform Jenkins Sync Plugin

The OpenShift Container Platform Jenkins Sync Plugin keeps the build configuration and build objects
in sync with Jenkins jobs and builds, and provides the following:

Dynamic job and run creation in Jenkins.

Dynamic creation of agent pod templates from image streams, image stream tags, or config
maps.

Injection of environment variables.

Pipeline visualization in the OpenShift Container Platform web console.

Integration with the Jenkins Git plug-in, which passes commit information from OpenShift
Container Platform builds to the Jenkins Git plug-in.

Synchronization of secrets into Jenkins credential entries.

OpenShift Container Platform Jenkins Client Plugin

The OpenShift Container Platform Jenkins Client Plugin is a Jenkins plugin which aims to provide a
readable, concise, comprehensive, and fluent Jenkins Pipeline syntax for rich interactions with an
OpenShift Container Platform API Server. The plugin uses the OpenShift Container Platform command
line tool, oc, which must be available on the nodes executing the script.

The Jenkins Client Plug-in must be installed on your Jenkins master so the OpenShift Container
Platform DSL will be available to use within the jenkinsfile for your application. This plug-in is installed
and enabled by default when using the OpenShift Container Platform Jenkins image.

For OpenShift Container Platform Pipelines within your project, you will must use the Jenkins Pipeline
Build Strategy. This strategy defaults to using a jenkinsfile at the root of your source repository, but
also provides the following configuration options:

An inline jenkinsfile field within your build configuration.

A jenkinsfilePath field within your build configuration that references the location of the
jenkinsfile to use relative to the source contextDir.

NOTE

OpenShift Container Platform 4.7 CI/CD

50

NOTE

The optional jenkinsfilePath field specifies the name of the file to use, relative to the
source contextDir. If contextDir is omitted, it defaults to the root of the repository. If
jenkinsfilePath is omitted, it defaults to jenkinsfile.

2.5.4.2. Providing the Jenkins file for pipeline builds

IMPORTANT

The Pipeline build strategy is deprecated in OpenShift Container Platform 4. Equivalent
and improved functionality is present in the OpenShift Container Platform Pipelines
based on Tekton.

Jenkins images on OpenShift Container Platform are fully supported and users should
follow Jenkins user documentation for defining their jenkinsfile in a job or store it in a
Source Control Management system.

The jenkinsfile uses the standard groovy language syntax to allow fine grained control over the
configuration, build, and deployment of your application.

You can supply the jenkinsfile in one of the following ways:

A file located within your source code repository.

Embedded as part of your build configuration using the jenkinsfile field.

When using the first option, the jenkinsfile must be included in your applications source code repository
at one of the following locations:

A file named jenkinsfile at the root of your repository.

A file named jenkinsfile at the root of the source contextDir of your repository.

A file name specified via the jenkinsfilePath field of the JenkinsPipelineStrategy section of
your BuildConfig, which is relative to the source contextDir if supplied, otherwise it defaults to
the root of the repository.

The jenkinsfile is run on the Jenkins agent pod, which must have the OpenShift Container Platform
client binaries available if you intend to use the OpenShift Container Platform DSL.

Procedure

To provide the Jenkins file, you can either:

Embed the Jenkins file in the build configuration.

Include in the build configuration a reference to the Git repository that contains the Jenkins file.

Embedded Definition

kind: "BuildConfig"
apiVersion: "v1"
metadata:
 name: "sample-pipeline"
spec:

CHAPTER 2. BUILDS

51

1

Reference to Git Repository

The optional jenkinsfilePath field specifies the name of the file to use, relative to the source
contextDir. If contextDir is omitted, it defaults to the root of the repository. If jenkinsfilePath is
omitted, it defaults to jenkinsfile.

2.5.4.3. Using environment variables for pipeline builds

IMPORTANT

The Pipeline build strategy is deprecated in OpenShift Container Platform 4. Equivalent
and improved functionality is present in the OpenShift Container Platform Pipelines
based on Tekton.

Jenkins images on OpenShift Container Platform are fully supported and users should
follow Jenkins user documentation for defining their jenkinsfile in a job or store it in a
Source Control Management system.

To make environment variables available to the Pipeline build process, you can add environment
variables to the jenkinsPipelineStrategy definition of the build configuration.

Once defined, the environment variables will be set as parameters for any Jenkins job associated with
the build configuration.

Procedure

To define environment variables to be used during build, edit the YAML file:

 strategy:
 jenkinsPipelineStrategy:
 jenkinsfile: |-
 node('agent') {
 stage 'build'
 openshiftBuild(buildConfig: 'ruby-sample-build', showBuildLogs: 'true')
 stage 'deploy'
 openshiftDeploy(deploymentConfig: 'frontend')
 }

kind: "BuildConfig"
apiVersion: "v1"
metadata:
 name: "sample-pipeline"
spec:
 source:
 git:
 uri: "https://github.com/openshift/ruby-hello-world"
 strategy:
 jenkinsPipelineStrategy:
 jenkinsfilePath: some/repo/dir/filename 1

jenkinsPipelineStrategy:
...
 env:

OpenShift Container Platform 4.7 CI/CD

52

You can also manage environment variables defined in the build configuration with the oc set env
command.

2.5.4.3.1. Mapping between BuildConfig environment variables and Jenkins job parameters

When a Jenkins job is created or updated based on changes to a Pipeline strategy build configuration,
any environment variables in the build configuration are mapped to Jenkins job parameters definitions,
where the default values for the Jenkins job parameters definitions are the current values of the
associated environment variables.

After the Jenkins job’s initial creation, you can still add additional parameters to the job from the Jenkins
console. The parameter names differ from the names of the environment variables in the build
configuration. The parameters are honored when builds are started for those Jenkins jobs.

How you start builds for the Jenkins job dictates how the parameters are set.

If you start with oc start-build, the values of the environment variables in the build configuration
are the parameters set for the corresponding job instance. Any changes you make to the
parameters' default values from the Jenkins console are ignored. The build configuration values
take precedence.

If you start with oc start-build -e, the values for the environment variables specified in the -e
option take precedence.

If you specify an environment variable not listed in the build configuration, they will be
added as a Jenkins job parameter definitions.

Any changes you make from the Jenkins console to the parameters corresponding to the
environment variables are ignored. The build configuration and what you specify with oc
start-build -e takes precedence.

If you start the Jenkins job with the Jenkins console, then you can control the setting of the
parameters with the Jenkins console as part of starting a build for the job.

NOTE

It is recommended that you specify in the build configuration all possible environment
variables to be associated with job parameters. Doing so reduces disk I/O and improves
performance during Jenkins processing.

2.5.4.4. Pipeline build tutorial

IMPORTANT

The Pipeline build strategy is deprecated in OpenShift Container Platform 4. Equivalent
and improved functionality is present in the OpenShift Container Platform Pipelines
based on Tekton.

Jenkins images on OpenShift Container Platform are fully supported and users should
follow Jenkins user documentation for defining their jenkinsfile in a job or store it in a
Source Control Management system.

 - name: "FOO"
 value: "BAR"

CHAPTER 2. BUILDS

53

This example demonstrates how to create an OpenShift Container Platform Pipeline that will build,
deploy, and verify a Node.js/MongoDB application using the nodejs-mongodb.json template.

Procedure

1. Create the Jenkins master:

Select the project that you want to use or create a new project with oc new-project
<project_name>.

If you want to use persistent storage, use jenkins-persistent instead.

2. Create a file named nodejs-sample-pipeline.yaml with the following content:

NOTE

This creates a BuildConfig object that employs the Jenkins pipeline strategy to
build, deploy, and scale the Node.js/MongoDB example application.

3. Once you create a BuildConfig object with a jenkinsPipelineStrategy, tell the pipeline what to
do by using an inline jenkinsfile:

NOTE

This example does not set up a Git repository for the application.

The following jenkinsfile content is written in Groovy using the OpenShift
Container Platform DSL. For this example, include inline content in the
BuildConfig object using the YAML Literal Style, though including a jenkinsfile
in your source repository is the preferred method.

 $ oc project <project_name>

 $ oc new-app jenkins-ephemeral 1

kind: "BuildConfig"
apiVersion: "v1"
metadata:
 name: "nodejs-sample-pipeline"
spec:
 strategy:
 jenkinsPipelineStrategy:
 jenkinsfile: <pipeline content from below>
 type: JenkinsPipeline

def templatePath = 'https://raw.githubusercontent.com/openshift/nodejs-
ex/master/openshift/templates/nodejs-mongodb.json' 1
def templateName = 'nodejs-mongodb-example' 2
pipeline {
 agent {
 node {
 label 'nodejs' 3

OpenShift Container Platform 4.7 CI/CD

54

 }
 }
 options {
 timeout(time: 20, unit: 'MINUTES') 4
 }
 stages {
 stage('preamble') {
 steps {
 script {
 openshift.withCluster() {
 openshift.withProject() {
 echo "Using project: ${openshift.project()}"
 }
 }
 }
 }
 }
 stage('cleanup') {
 steps {
 script {
 openshift.withCluster() {
 openshift.withProject() {
 openshift.selector("all", [template : templateName]).delete() 5
 if (openshift.selector("secrets", templateName).exists()) { 6
 openshift.selector("secrets", templateName).delete()
 }
 }
 }
 }
 }
 }
 stage('create') {
 steps {
 script {
 openshift.withCluster() {
 openshift.withProject() {
 openshift.newApp(templatePath) 7
 }
 }
 }
 }
 }
 stage('build') {
 steps {
 script {
 openshift.withCluster() {
 openshift.withProject() {
 def builds = openshift.selector("bc", templateName).related('builds')
 timeout(5) { 8
 builds.untilEach(1) {
 return (it.object().status.phase == "Complete")
 }
 }
 }
 }

CHAPTER 2. BUILDS

55

1

1 2

3

4

5

6

7

8

9

10

Path of the template to use.

Name of the template that will be created.

Spin up a node.js agent pod on which to run this build.

Set a timeout of 20 minutes for this pipeline.

Delete everything with this template label.

Delete any secrets with this template label.

Create a new application from the templatePath.

Wait up to five minutes for the build to complete.

Wait up to five minutes for the deployment to complete.

If everything else succeeded, tag the $ {templateName}:latest image as $
{templateName}-staging:latest. A pipeline build configuration for the staging
environment can watch for the $ {templateName}-staging:latest image to change and
then deploy it to the staging environment.

NOTE

 }
 }
 }
 stage('deploy') {
 steps {
 script {
 openshift.withCluster() {
 openshift.withProject() {
 def rm = openshift.selector("dc", templateName).rollout()
 timeout(5) { 9
 openshift.selector("dc", templateName).related('pods').untilEach(1) {
 return (it.object().status.phase == "Running")
 }
 }
 }
 }
 }
 }
 }
 stage('tag') {
 steps {
 script {
 openshift.withCluster() {
 openshift.withProject() {
 openshift.tag("${templateName}:latest", "${templateName}-staging:latest") 10
 }
 }
 }
 }
 }
 }
}

OpenShift Container Platform 4.7 CI/CD

56

NOTE

The previous example was written using the declarative pipeline style, but the
older scripted pipeline style is also supported.

4. Create the Pipeline BuildConfig in your OpenShift Container Platform cluster:

a. If you do not want to create your own file, you can use the sample from the Origin repository
by running:

5. Start the Pipeline:

NOTE

Alternatively, you can start your pipeline with the OpenShift Container Platform
web console by navigating to the Builds → Pipeline section and clicking Start
Pipeline, or by visiting the Jenkins Console, navigating to the Pipeline that you
created, and clicking Build Now.

Once the pipeline is started, you should see the following actions performed within your project:

A job instance is created on the Jenkins server.

An agent pod is launched, if your pipeline requires one.

The pipeline runs on the agent pod, or the master if no agent is required.

Any previously created resources with the template=nodejs-mongodb-example label
will be deleted.

A new application, and all of its associated resources, will be created from the nodejs-
mongodb-example template.

A build will be started using the nodejs-mongodb-example BuildConfig.

The pipeline will wait until the build has completed to trigger the next stage.

A deployment will be started using the nodejs-mongodb-example deployment
configuration.

The pipeline will wait until the deployment has completed to trigger the next stage.

If the build and deploy are successful, the nodejs-mongodb-example:latest image will
be tagged as nodejs-mongodb-example:stage.

The agent pod is deleted, if one was required for the pipeline.

NOTE

$ oc create -f nodejs-sample-pipeline.yaml

$ oc create -f
https://raw.githubusercontent.com/openshift/origin/master/examples/jenkins/pipeline/nodejs-
sample-pipeline.yaml

$ oc start-build nodejs-sample-pipeline

CHAPTER 2. BUILDS

57

NOTE

The best way to visualize the pipeline execution is by viewing it in the
OpenShift Container Platform web console. You can view your pipelines by
logging in to the web console and navigating to Builds → Pipelines.

2.5.5. Adding secrets with web console

You can add a secret to your build configuration so that it can access a private repository.

Procedure

To add a secret to your build configuration so that it can access a private repository from the OpenShift
Container Platform web console:

1. Create a new OpenShift Container Platform project.

2. Create a secret that contains credentials for accessing a private source code repository.

3. Create a build configuration.

4. On the build configuration editor page or in the create app from builder image page of the
web console, set the Source Secret.

5. Click Save.

2.5.6. Enabling pulling and pushing

You can enable pulling to a private registry by setting the pull secret and pushing by setting the push
secret in the build configuration.

Procedure

To enable pulling to a private registry:

Set the pull secret in the build configuration.

To enable pushing:

Set the push secret in the build configuration.

2.6. CUSTOM IMAGE BUILDS WITH BUILDAH

With OpenShift Container Platform 4.7, a docker socket will not be present on the host nodes. This
means the mount docker socket option of a custom build is not guaranteed to provide an accessible
docker socket for use within a custom build image.

If you require this capability in order to build and push images, add the Buildah tool your custom build
image and use it to build and push the image within your custom build logic. The following is an example
of how to run custom builds with Buildah.

NOTE

OpenShift Container Platform 4.7 CI/CD

58

NOTE

Using the custom build strategy requires permissions that normal users do not have by
default because it allows the user to execute arbitrary code inside a privileged container
running on the cluster. This level of access can be used to compromise the cluster and
therefore should be granted only to users who are trusted with administrative privileges
on the cluster.

2.6.1. Prerequisites

Review how to grant custom build permissions.

2.6.2. Creating custom build artifacts

You must create the image you want to use as your custom build image.

Procedure

1. Starting with an empty directory, create a file named Dockerfile with the following content:

2. In the same directory, create a file named dockerfile.sample. This file is included in the custom
build image and defines the image that is produced by the custom build:

3. In the same directory, create a file named build.sh. This file contains the logic that is run when
the custom build runs:

FROM registry.redhat.io/rhel8/buildah
In this example, `/tmp/build` contains the inputs that build when this
custom builder image is run. Normally the custom builder image fetches
this content from some location at build time, by using git clone as an example.
ADD dockerfile.sample /tmp/input/Dockerfile
ADD build.sh /usr/bin
RUN chmod a+x /usr/bin/build.sh
/usr/bin/build.sh contains the actual custom build logic that will be run when
this custom builder image is run.
ENTRYPOINT ["/usr/bin/build.sh"]

FROM registry.access.redhat.com/ubi8/ubi
RUN touch /tmp/build

#!/bin/sh
Note that in this case the build inputs are part of the custom builder image, but normally this
is retrieved from an external source.
cd /tmp/input
OUTPUT_REGISTRY and OUTPUT_IMAGE are env variables provided by the custom
build framework
TAG="${OUTPUT_REGISTRY}/${OUTPUT_IMAGE}"

performs the build of the new image defined by dockerfile.sample
buildah --storage-driver vfs bud --isolation chroot -t ${TAG} .

buildah requires a slight modification to the push secret provided by the service

CHAPTER 2. BUILDS

59

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/cicd/#securing-builds-by-strategy

2.6.3. Build custom builder image

You can use OpenShift Container Platform to build and push custom builder images to use in a custom
strategy.

Prerequisites

Define all the inputs that will go into creating your new custom builder image.

Procedure

1. Define a BuildConfig object that will build your custom builder image:

2. From the directory in which you created your custom build image, run the build:

After the build completes, your new custom builder image is available in your project in an image
stream tag that is named custom-builder-image:latest.

2.6.4. Use custom builder image

You can define a BuildConfig object that uses the custom strategy in conjunction with your custom
builder image to execute your custom build logic.

Prerequisites

Define all the required inputs for new custom builder image.

Build your custom builder image.

Procedure

1. Create a file named buildconfig.yaml. This file defines the BuildConfig object that is created
in your project and executed:

account to use it for pushing the image
cp /var/run/secrets/openshift.io/push/.dockercfg /tmp
(echo "{ \"auths\": " ; cat /var/run/secrets/openshift.io/push/.dockercfg ; echo "}") >
/tmp/.dockercfg

push the new image to the target for the build
buildah --storage-driver vfs push --tls-verify=false --authfile /tmp/.dockercfg ${TAG}

$ oc new-build --binary --strategy=docker --name custom-builder-image

$ oc start-build custom-builder-image --from-dir . -F

kind: BuildConfig
apiVersion: build.openshift.io/v1
metadata:
 name: sample-custom-build
 labels:
 name: sample-custom-build

OpenShift Container Platform 4.7 CI/CD

60

1 Specify your project name.

2. Create the BuildConfig:

3. Create a file named imagestream.yaml. This file defines the image stream to which the build
will push the image:

4. Create the imagestream:

5. Run your custom build:

When the build runs, it launches a pod running the custom builder image that was built earlier.
The pod runs the build.sh logic that is defined as the entrypoint for the custom builder image.
The build.sh logic invokes Buildah to build the dockerfile.sample that was embedded in the
custom builder image, and then uses Buildah to push the new image to the sample-custom
image stream.

2.7. PERFORMING BASIC BUILDS

The following sections provide instructions for basic build operations including starting and canceling
builds, deleting BuildConfigs, viewing build details, and accessing build logs.

2.7.1. Starting a build

You can manually start a new build from an existing build configuration in your current project.

 annotations:
 template.alpha.openshift.io/wait-for-ready: 'true'
spec:
 strategy:
 type: Custom
 customStrategy:
 forcePull: true
 from:
 kind: ImageStreamTag
 name: custom-builder-image:latest
 namespace: <yourproject> 1
 output:
 to:
 kind: ImageStreamTag
 name: sample-custom:latest

$ oc create -f buildconfig.yaml

kind: ImageStream
apiVersion: image.openshift.io/v1
metadata:
 name: sample-custom
spec: {}

$ oc create -f imagestream.yaml

$ oc start-build sample-custom-build -F

CHAPTER 2. BUILDS

61

Procedure

To manually start a build, enter the following command:

2.7.1.1. Re-running a build

You can manually re-run a build using the --from-build flag.

Procedure

To manually re-run a build, enter the following command:

2.7.1.2. Streaming build logs

You can specify the --follow flag to stream the build’s logs in stdout.

Procedure

To manually stream a build’s logs in stdout, enter the following command:

2.7.1.3. Setting environment variables when starting a build

You can specify the --env flag to set any desired environment variable for the build.

Procedure

To specify a desired environment variable, enter the following command:

2.7.1.4. Starting a build with source

Rather than relying on a Git source pull or a Dockerfile for a build, you can also start a build by directly
pushing your source, which could be the contents of a Git or SVN working directory, a set of pre-built
binary artifacts you want to deploy, or a single file. This can be done by specifying one of the following
options for the start-build command:

Option Description

--from-dir=<directory> Specifies a directory that will be archived and used as a binary input for
the build.

--from-file=<file> Specifies a single file that will be the only file in the build source. The file
is placed in the root of an empty directory with the same file name as the
original file provided.

$ oc start-build <buildconfig_name>

$ oc start-build --from-build=<build_name>

$ oc start-build <buildconfig_name> --follow

$ oc start-build <buildconfig_name> --env=<key>=<value>

OpenShift Container Platform 4.7 CI/CD

62

--from-repo=
<local_source_repo>

Specifies a path to a local repository to use as the binary input for a
build. Add the --commit option to control which branch, tag, or commit
is used for the build.

Option Description

When passing any of these options directly to the build, the contents are streamed to the build and
override the current build source settings.

NOTE

Builds triggered from binary input will not preserve the source on the server, so rebuilds
triggered by base image changes will use the source specified in the build configuration.

Procedure

Start a build from a source using the following command to send the contents of a local Git
repository as an archive from the tag v2:

2.7.2. Canceling a build

You can cancel a build using the web console, or with the following CLI command.

Procedure

To manually cancel a build, enter the following command:

2.7.2.1. Canceling multiple builds

You can cancel multiple builds with the following CLI command.

Procedure

To manually cancel multiple builds, enter the following command:

2.7.2.2. Canceling all builds

You can cancel all builds from the build configuration with the following CLI command.

Procedure

To cancel all builds, enter the following command:

$ oc start-build hello-world --from-repo=../hello-world --commit=v2

$ oc cancel-build <build_name>

$ oc cancel-build <build1_name> <build2_name> <build3_name>

$ oc cancel-build bc/<buildconfig_name>

CHAPTER 2. BUILDS

63

2.7.2.3. Canceling all builds in a given state

You can cancel all builds in a given state, such as new or pending, while ignoring the builds in other
states.

Procedure

To cancel all in a given state, enter the following command:

2.7.3. Deleting a BuildConfig

You can delete a BuildConfig using the following command.

Procedure

To delete a BuildConfig, enter the following command:

This also deletes all builds that were instantiated from this BuildConfig.

To delete a BuildConfig and keep the builds instatiated from the BuildConfig, specify the --
cascade=false flag when you enter the following command:

2.7.4. Viewing build details

You can view build details with the web console or by using the oc describe CLI command.

This displays information including:

The build source.

The build strategy.

The output destination.

Digest of the image in the destination registry.

How the build was created.

If the build uses the Docker or Source strategy, the oc describe output also includes information about
the source revision used for the build, including the commit ID, author, committer, and message.

Procedure

To view build details, enter the following command:

$ oc cancel-build bc/<buildconfig_name>

$ oc delete bc <BuildConfigName>

$ oc delete --cascade=false bc <BuildConfigName>

$ oc describe build <build_name>

OpenShift Container Platform 4.7 CI/CD

64

2.7.5. Accessing build logs

You can access build logs using the web console or the CLI.

Procedure

To stream the logs using the build directly, enter the following command:

2.7.5.1. Accessing BuildConfig logs

You can access BuildConfig logs using the web console or the CLI.

Procedure

To stream the logs of the latest build for a BuildConfig, enter the following command:

2.7.5.2. Accessing BuildConfig logs for a given version build

You can access logs for a given version build for a BuildConfig using the web console or the CLI.

Procedure

To stream the logs for a given version build for a BuildConfig, enter the following command:

2.7.5.3. Enabling log verbosity

You can enable a more verbose output by passing the BUILD_LOGLEVEL environment variable as part
of the sourceStrategy or dockerStrategy in a BuildConfig.

NOTE

An administrator can set the default build verbosity for the entire OpenShift Container
Platform instance by configuring env/BUILD_LOGLEVEL. This default can be overridden
by specifying BUILD_LOGLEVEL in a given BuildConfig. You can specify a higher
priority override on the command line for non-binary builds by passing --build-loglevel to
oc start-build.

Available log levels for source builds are as follows:

Level 0 Produces output from containers running the assemble script and all encountered errors.
This is the default.

Level 1 Produces basic information about the executed process.

$ oc describe build <build_name>

$ oc logs -f bc/<buildconfig_name>

$ oc logs --version=<number> bc/<buildconfig_name>

CHAPTER 2. BUILDS

65

1

Level 2 Produces very detailed information about the executed process.

Level 3 Produces very detailed information about the executed process, and a listing of the archive
contents.

Level 4 Currently produces the same information as level 3.

Level 5 Produces everything mentioned on previous levels and additionally provides docker push
messages.

Procedure

To enable more verbose output, pass the BUILD_LOGLEVEL environment variable as part of
the sourceStrategy or dockerStrategy in a BuildConfig:

Adjust this value to the desired log level.

2.8. TRIGGERING AND MODIFYING BUILDS

The following sections outline how to trigger builds and modify builds using build hooks.

2.8.1. Build triggers

When defining a BuildConfig, you can define triggers to control the circumstances in which the
BuildConfig should be run. The following build triggers are available:

Webhook

Image change

Configuration change

2.8.1.1. Webhook triggers

Webhook triggers allow you to trigger a new build by sending a request to the OpenShift Container
Platform API endpoint. You can define these triggers using GitHub, GitLab, Bitbucket, or Generic
webhooks.

Currently, OpenShift Container Platform webhooks only support the analogous versions of the push
event for each of the Git-based Source Code Management (SCM) systems. All other event types are
ignored.

When the push events are processed, the OpenShift Container Platform control plane host (also known
as the master host) confirms if the branch reference inside the event matches the branch reference in

sourceStrategy:
...
 env:
 - name: "BUILD_LOGLEVEL"
 value: "2" 1

OpenShift Container Platform 4.7 CI/CD

66

the corresponding BuildConfig. If so, it then checks out the exact commit reference noted in the
webhook event on the OpenShift Container Platform build. If they do not match, no build is triggered.

NOTE

oc new-app and oc new-build create GitHub and Generic webhook triggers
automatically, but any other needed webhook triggers must be added manually. You can
manually add triggers by setting triggers.

For all webhooks, you must define a secret with a key named WebHookSecretKey and the value being
the value to be supplied when invoking the webhook. The webhook definition must then reference the
secret. The secret ensures the uniqueness of the URL, preventing others from triggering the build. The
value of the key is compared to the secret provided during the webhook invocation.

For example here is a GitHub webhook with a reference to a secret named mysecret:

The secret is then defined as follows. Note that the value of the secret is base64 encoded as is required
for any data field of a Secret object.

2.8.1.1.1. Using GitHub webhooks

GitHub webhooks handle the call made by GitHub when a repository is updated. When defining the
trigger, you must specify a secret, which is part of the URL you supply to GitHub when configuring the
webhook.

Example GitHub webhook definition:

NOTE

The secret used in the webhook trigger configuration is not the same as secret field you
encounter when configuring webhook in GitHub UI. The former is to make the webhook
URL unique and hard to predict, the latter is an optional string field used to create HMAC
hex digest of the body, which is sent as an X-Hub-Signature header.

The payload URL is returned as the GitHub Webhook URL by the oc describe command (see Displaying

type: "GitHub"
github:
 secretReference:
 name: "mysecret"

- kind: Secret
 apiVersion: v1
 metadata:
 name: mysecret
 creationTimestamp:
 data:
 WebHookSecretKey: c2VjcmV0dmFsdWUx

type: "GitHub"
github:
 secretReference:
 name: "mysecret"

CHAPTER 2. BUILDS

67

The payload URL is returned as the GitHub Webhook URL by the oc describe command (see Displaying
Webhook URLs), and is structured as follows:

Example output

Prerequisites

Create a BuildConfig from a GitHub repository.

Procedure

1. To configure a GitHub Webhook:

a. After creating a BuildConfig from a GitHub repository, run:

This generates a webhook GitHub URL that looks like:

Example output

b. Cut and paste this URL into GitHub, from the GitHub web console.

c. In your GitHub repository, select Add Webhook from Settings → Webhooks.

d. Paste the URL output into the Payload URL field.

e. Change the Content Type from GitHub’s default application/x-www-form-urlencoded to
application/json.

f. Click Add webhook.
You should see a message from GitHub stating that your webhook was successfully
configured.

Now, when you push a change to your GitHub repository, a new build automatically starts,
and upon a successful build a new deployment starts.

NOTE

Gogs supports the same webhook payload format as GitHub. Therefore, if
you are using a Gogs server, you can define a GitHub webhook trigger on
your BuildConfig and trigger it by your Gogs server as well.

2. Given a file containing a valid JSON payload, such as payload.json, you can manually trigger
the webhook with curl:

https://<openshift_api_host:port>/apis/build.openshift.io/v1/namespaces/<namespace>/buildconfigs/<na
me>/webhooks/<secret>/github

$ oc describe bc/<name-of-your-BuildConfig>

<https://api.starter-us-east-
1.openshift.com:443/apis/build.openshift.io/v1/namespaces/<namespace>/buildconfigs/<na
me>/webhooks/<secret>/github

$ curl -H "X-GitHub-Event: push" -H "Content-Type: application/json" -k -X POST --data-

OpenShift Container Platform 4.7 CI/CD

68

https://gogs.io

The -k argument is only necessary if your API server does not have a properly signed certificate.

Additional resources

Gogs

2.8.1.1.2. Using GitLab webhooks

GitLab webhooks handle the call made by GitLab when a repository is updated. As with the GitHub
triggers, you must specify a secret. The following example is a trigger definition YAML within the
BuildConfig:

The payload URL is returned as the GitLab Webhook URL by the oc describe command, and is
structured as follows:

Example output

Procedure

1. To configure a GitLab Webhook:

a. Describe the BuildConfig to get the webhook URL:

b. Copy the webhook URL, replacing <secret> with your secret value.

c. Follow the GitLab setup instructions to paste the webhook URL into your GitLab repository
settings.

2. Given a file containing a valid JSON payload, such as payload.json, you can manually trigger
the webhook with curl:

The -k argument is only necessary if your API server does not have a properly signed certificate.

2.8.1.1.3. Using Bitbucket webhooks

binary @payload.json
https://<openshift_api_host:port>/apis/build.openshift.io/v1/namespaces/<namespace>/buildconfi
gs/<name>/webhooks/<secret>/github

type: "GitLab"
gitlab:
 secretReference:
 name: "mysecret"

https://<openshift_api_host:port>/apis/build.openshift.io/v1/namespaces/<namespace>/buildconfigs/<na
me>/webhooks/<secret>/gitlab

$ oc describe bc <name>

$ curl -H "X-GitLab-Event: Push Hook" -H "Content-Type: application/json" -k -X POST --
data-binary @payload.json
https://<openshift_api_host:port>/apis/build.openshift.io/v1/namespaces/<namespace>/buildconfi
gs/<name>/webhooks/<secret>/gitlab

CHAPTER 2. BUILDS

69

https://gogs.io
https://docs.gitlab.com/ce/user/project/integrations/webhooks.html#webhooks

Bitbucket webhooks handle the call made by Bitbucket when a repository is updated. Similar to the
previous triggers, you must specify a secret. The following example is a trigger definition YAML within
the BuildConfig:

The payload URL is returned as the Bitbucket Webhook URL by the oc describe command, and is
structured as follows:

Example output

Procedure

1. To configure a Bitbucket Webhook:

a. Describe the 'BuildConfig' to get the webhook URL:

b. Copy the webhook URL, replacing <secret> with your secret value.

c. Follow the Bitbucket setup instructions to paste the webhook URL into your Bitbucket
repository settings.

2. Given a file containing a valid JSON payload, such as payload.json, you can manually trigger
the webhook with curl:

The -k argument is only necessary if your API server does not have a properly signed certificate.

2.8.1.1.4. Using generic webhooks

Generic webhooks are invoked from any system capable of making a web request. As with the other
webhooks, you must specify a secret, which is part of the URL that the caller must use to trigger the
build. The secret ensures the uniqueness of the URL, preventing others from triggering the build. The
following is an example trigger definition YAML within the BuildConfig:

type: "Bitbucket"
bitbucket:
 secretReference:
 name: "mysecret"

https://<openshift_api_host:port>/apis/build.openshift.io/v1/namespaces/<namespace>/buildconfigs/<na
me>/webhooks/<secret>/bitbucket

$ oc describe bc <name>

$ curl -H "X-Event-Key: repo:push" -H "Content-Type: application/json" -k -X POST --data-
binary @payload.json
https://<openshift_api_host:port>/apis/build.openshift.io/v1/namespaces/<namespace>/buildconfi
gs/<name>/webhooks/<secret>/bitbucket

type: "Generic"
generic:
 secretReference:
 name: "mysecret"
 allowEnv: true 1

OpenShift Container Platform 4.7 CI/CD

70

https://confluence.atlassian.com/bitbucket/manage-webhooks-735643732.html
https://confluence.atlassian.com/bitbucket/manage-webhooks-735643732.html

1

1

Set to true to allow a generic webhook to pass in environment variables.

Procedure

1. To set up the caller, supply the calling system with the URL of the generic webhook endpoint for
your build:

Example output

The caller must invoke the webhook as a POST operation.

2. To invoke the webhook manually you can use curl:

The HTTP verb must be set to POST. The insecure -k flag is specified to ignore certificate
validation. This second flag is not necessary if your cluster has properly signed certificates.

The endpoint can accept an optional payload with the following format:

Similar to the BuildConfig environment variables, the environment variables defined here
are made available to your build. If these variables collide with the BuildConfig
environment variables, these variables take precedence. By default, environment variables
passed by webhook are ignored. Set the allowEnv field to true on the webhook definition
to enable this behavior.

3. To pass this payload using curl, define it in a file named payload_file.yaml and run:

The arguments are the same as the previous example with the addition of a header and a

https://<openshift_api_host:port>/apis/build.openshift.io/v1/namespaces/<namespace>/buildconfi
gs/<name>/webhooks/<secret>/generic

$ curl -X POST -k
https://<openshift_api_host:port>/apis/build.openshift.io/v1/namespaces/<namespace>/buildconfi
gs/<name>/webhooks/<secret>/generic

git:
 uri: "<url to git repository>"
 ref: "<optional git reference>"
 commit: "<commit hash identifying a specific git commit>"
 author:
 name: "<author name>"
 email: "<author e-mail>"
 committer:
 name: "<committer name>"
 email: "<committer e-mail>"
 message: "<commit message>"
env: 1
 - name: "<variable name>"
 value: "<variable value>"

$ curl -H "Content-Type: application/yaml" --data-binary @payload_file.yaml -X POST -k
https://<openshift_api_host:port>/apis/build.openshift.io/v1/namespaces/<namespace>/buildconfi
gs/<name>/webhooks/<secret>/generic

CHAPTER 2. BUILDS

71

payload. The -H argument sets the Content-Type header to application/yaml or
application/json depending on your payload format. The --data-binary argument is used to
send a binary payload with newlines intact with the POST request.

NOTE

OpenShift Container Platform permits builds to be triggered by the generic webhook
even if an invalid request payload is presented, for example, invalid content type,
unparsable or invalid content, and so on. This behavior is maintained for backwards
compatibility. If an invalid request payload is presented, OpenShift Container Platform
returns a warning in JSON format as part of its HTTP 200 OK response.

2.8.1.1.5. Displaying webhook URLs

You can use the following command to display webhook URLs associated with a build configuration. If
the command does not display any webhook URLs, then no webhook trigger is defined for that build
configuration.

Procedure

To display any webhook URLs associated with a BuildConfig, run:

2.8.1.2. Using image change triggers

Image change triggers allow your build to be automatically invoked when a new version of an upstream
image is available. For example, if a build is based on top of a RHEL image, then you can trigger that
build to run any time the RHEL image changes. As a result, the application image is always running on
the latest RHEL base image.

NOTE

Image streams that point to container images in v1 container registries only trigger a build
once when the image stream tag becomes available and not on subsequent image
updates. This is due to the lack of uniquely identifiable images in v1 container registries.

Procedure

Configuring an image change trigger requires the following actions:

1. Define an ImageStream that points to the upstream image you want to trigger on:

This defines the image stream that is tied to a container image repository located at <system-
registry>_/<namespace>/ruby-20-centos7. The <system-registry> is defined as a service
with the name docker-registry running in OpenShift Container Platform.

2. If an image stream is the base image for the build, set the from field in the build strategy to
point to the ImageStream:

$ oc describe bc <name>

kind: "ImageStream"
apiVersion: "v1"
metadata:
 name: "ruby-20-centos7"

OpenShift Container Platform 4.7 CI/CD

72

http://docs.docker.com/v1.7/reference/api/hub_registry_spec/#docker-registry-1-0

1

2

In this case, the sourceStrategy definition is consuming the latest tag of the image stream
named ruby-20-centos7 located within this namespace.

3. Define a build with one or more triggers that point to ImageStreams:

An image change trigger that monitors the ImageStream and Tag as defined by the build
strategy’s from field. The imageChange object here must be empty.

An image change trigger that monitors an arbitrary imagestream. The imageChange part
in this case must include a from field that references the ImageStreamTag to monitor.

When using an image change trigger for the strategy image stream, the generated build is supplied with
an immutable docker tag that points to the latest image corresponding to that tag. This new image
reference is used by the strategy when it executes for the build.

For other image change triggers that do not reference the strategy image stream, a new build is started,
but the build strategy is not updated with a unique image reference.

Since this example has an image change trigger for the strategy, the resulting build is:

This ensures that the triggered build uses the new image that was just pushed to the repository, and the
build can be re-run any time with the same inputs.

You can pause an image change trigger to allow multiple changes on the referenced image stream
before a build is started. You can also set the paused attribute to true when initially adding an
ImageChangeTrigger to a BuildConfig to prevent a build from being immediately triggered.

strategy:
 sourceStrategy:
 from:
 kind: "ImageStreamTag"
 name: "ruby-20-centos7:latest"

type: "ImageChange" 1
imageChange: {}
type: "ImageChange" 2
imageChange:
 from:
 kind: "ImageStreamTag"
 name: "custom-image:latest"

strategy:
 sourceStrategy:
 from:
 kind: "DockerImage"
 name: "172.30.17.3:5001/mynamespace/ruby-20-centos7:<immutableid>"

type: "ImageChange"
imageChange:
 from:
 kind: "ImageStreamTag"
 name: "custom-image:latest"
 paused: true

CHAPTER 2. BUILDS

73

In addition to setting the image field for all Strategy types, for custom builds, the
OPENSHIFT_CUSTOM_BUILD_BASE_IMAGE environment variable is checked. If it does not exist,
then it is created with the immutable image reference. If it does exist then it is updated with the
immutable image reference.

If a build is triggered due to a webhook trigger or manual request, the build that is created uses the
<immutableid> resolved from the ImageStream referenced by the Strategy. This ensures that builds
are performed using consistent image tags for ease of reproduction.

Additional resources

v1 container registries

2.8.1.3. Configuration change triggers

A configuration change trigger allows a build to be automatically invoked as soon as a new BuildConfig
is created.

The following is an example trigger definition YAML within the BuildConfig:

NOTE

Configuration change triggers currently only work when creating a new BuildConfig. In a
future release, configuration change triggers will also be able to launch a build whenever a
BuildConfig is updated.

2.8.1.3.1. Setting triggers manually

Triggers can be added to and removed from build configurations with oc set triggers.

Procedure

To set a GitHub webhook trigger on a build configuration, use:

To set an imagechange trigger, use:

To remove a trigger, add --remove:

NOTE

When a webhook trigger already exists, adding it again regenerates the webhook secret.

For more information, consult the help documentation with by running:

 type: "ConfigChange"

$ oc set triggers bc <name> --from-github

$ oc set triggers bc <name> --from-image='<image>'

$ oc set triggers bc <name> --from-bitbucket --remove

OpenShift Container Platform 4.7 CI/CD

74

http://docs.docker.com/v1.7/reference/api/hub_registry_spec/#docker-registry-1-0

2.8.2. Build hooks

Build hooks allow behavior to be injected into the build process.

The postCommit field of a BuildConfig object runs commands inside a temporary container that is
running the build output image. The hook is run immediately after the last layer of the image has been
committed and before the image is pushed to a registry.

The current working directory is set to the image’s WORKDIR, which is the default working directory of
the container image. For most images, this is where the source code is located.

The hook fails if the script or command returns a non-zero exit code or if starting the temporary
container fails. When the hook fails it marks the build as failed and the image is not pushed to a registry.
The reason for failing can be inspected by looking at the build logs.

Build hooks can be used to run unit tests to verify the image before the build is marked complete and
the image is made available in a registry. If all tests pass and the test runner returns with exit code 0, the
build is marked successful. In case of any test failure, the build is marked as failed. In all cases, the build
log contains the output of the test runner, which can be used to identify failed tests.

The postCommit hook is not only limited to running tests, but can be used for other commands as well.
Since it runs in a temporary container, changes made by the hook do not persist, meaning that running
the hook cannot affect the final image. This behavior allows for, among other uses, the installation and
usage of test dependencies that are automatically discarded and are not present in the final image.

2.8.2.1. Configuring post commit build hooks

There are different ways to configure the post build hook. All forms in the following examples are
equivalent and run bundle exec rake test --verbose.

Procedure

Shell script:

The script value is a shell script to be run with /bin/sh -ic. Use this when a shell script is
appropriate to execute the build hook. For example, for running unit tests as above. To control
the image entry point, or if the image does not have /bin/sh, use command and/or args.

NOTE

The additional -i flag was introduced to improve the experience working with
CentOS and RHEL images, and may be removed in a future release.

Command as the image entry point:

In this form, command is the command to run, which overrides the image entry point in the exec

$ oc set triggers --help

postCommit:
 script: "bundle exec rake test --verbose"

postCommit:
 command: ["/bin/bash", "-c", "bundle exec rake test --verbose"]

CHAPTER 2. BUILDS

75

form, as documented in the Dockerfile reference. This is needed if the image does not have
/bin/sh, or if you do not want to use a shell. In all other cases, using script might be more
convenient.

Command with arguments:

This form is equivalent to appending the arguments to command.

NOTE

Providing both script and command simultaneously creates an invalid build hook.

2.8.2.2. Using the CLI to set post commit build hooks

The oc set build-hook command can be used to set the build hook for a build configuration.

Procedure

1. To set a command as the post-commit build hook:

2. To set a script as the post-commit build hook:

2.9. PERFORMING ADVANCED BUILDS

The following sections provide instructions for advanced build operations including setting build
resources and maximum duration, assigning builds to nodes, chaining builds, build pruning, and build run
policies.

2.9.1. Setting build resources

By default, builds are completed by pods using unbound resources, such as memory and CPU. These
resources can be limited.

Procedure

You can limit resource use in two ways:

Limit resource use by specifying resource limits in the default container limits of a project.

Limit resource use by specifying resource limits as part of the build configuration. ** In the
following example, each of the resources, cpu, and memory parameters are optional:

postCommit:
 command: ["bundle", "exec", "rake", "test"]
 args: ["--verbose"]

$ oc set build-hook bc/mybc \
 --post-commit \
 --command \
 -- bundle exec rake test --verbose

$ oc set build-hook bc/mybc --post-commit --script="bundle exec rake test --verbose"

apiVersion: "v1"

OpenShift Container Platform 4.7 CI/CD

76

https://docs.docker.com/engine/reference/builder/#entrypoint

1

2

1

cpu is in CPU units: 100m represents 0.1 CPU units (100 * 1e-3).

memory is in bytes: 256Mi represents 268435456 bytes (256 * 2 ^ 20).

However, if a quota has been defined for your project, one of the following two items is required:

A resources section set with an explicit requests:

The requests object contains the list of resources that correspond to the list of
resources in the quota.

A limit range defined in your project, where the defaults from the LimitRange object apply
to pods created during the build process.
Otherwise, build pod creation will fail, citing a failure to satisfy quota.

2.9.2. Setting maximum duration

When defining a BuildConfig object, you can define its maximum duration by setting the
completionDeadlineSeconds field. It is specified in seconds and is not set by default. When not set,
there is no maximum duration enforced.

The maximum duration is counted from the time when a build pod gets scheduled in the system, and
defines how long it can be active, including the time needed to pull the builder image. After reaching the
specified timeout, the build is terminated by OpenShift Container Platform.

Procedure

To set maximum duration, specify completionDeadlineSeconds in your BuildConfig. The
following example shows the part of a BuildConfig specifying completionDeadlineSeconds
field for 30 minutes:

NOTE

This setting is not supported with the Pipeline Strategy option.

kind: "BuildConfig"
metadata:
 name: "sample-build"
spec:
 resources:
 limits:
 cpu: "100m" 1
 memory: "256Mi" 2

resources:
 requests: 1
 cpu: "100m"
 memory: "256Mi"

spec:
 completionDeadlineSeconds: 1800

CHAPTER 2. BUILDS

77

1

2.9.3. Assigning builds to specific nodes

Builds can be targeted to run on specific nodes by specifying labels in the nodeSelector field of a build
configuration. The nodeSelector value is a set of key-value pairs that are matched to Node labels when
scheduling the build pod.

The nodeSelector value can also be controlled by cluster-wide default and override values. Defaults will
only be applied if the build configuration does not define any key-value pairs for the nodeSelector and
also does not define an explicitly empty map value of nodeSelector:{}. Override values will replace
values in the build configuration on a key by key basis.

NOTE

If the specified NodeSelector cannot be matched to a node with those labels, the build
still stay in the Pending state indefinitely.

Procedure

Assign builds to run on specific nodes by assigning labels in the nodeSelector field of the
BuildConfig, for example:

Builds associated with this build configuration will run only on nodes with the key1=value2
and key2=value2 labels.

2.9.4. Chained builds

For compiled languages such as Go, C, C++, and Java, including the dependencies necessary for
compilation in the application image might increase the size of the image or introduce vulnerabilities
that can be exploited.

To avoid these problems, two builds can be chained together. One build that produces the compiled
artifact, and a second build that places that artifact in a separate image that runs the artifact.

In the following example, a source-to-image (S2I) build is combined with a docker build to compile an
artifact that is then placed in a separate runtime image.

NOTE

Although this example chains a S2I build and a docker build, the first build can use any
strategy that produces an image containing the desired artifacts, and the second build
can use any strategy that can consume input content from an image.

The first build takes the application source and produces an image containing a WAR file. The image is

apiVersion: "v1"
kind: "BuildConfig"
metadata:
 name: "sample-build"
spec:
 nodeSelector: 1
 key1: value1
 key2: value2

OpenShift Container Platform 4.7 CI/CD

78

The first build takes the application source and produces an image containing a WAR file. The image is
pushed to the artifact-image image stream. The path of the output artifact depends on the assemble
script of the S2I builder used. In this case, it is output to /wildfly/standalone/deployments/ROOT.war.

The second build uses image source with a path to the WAR file inside the output image from the first
build. An inline dockerfile copies that WAR file into a runtime image.

apiVersion: build.openshift.io/v1
kind: BuildConfig
metadata:
 name: artifact-build
spec:
 output:
 to:
 kind: ImageStreamTag
 name: artifact-image:latest
 source:
 git:
 uri: https://github.com/openshift/openshift-jee-sample.git
 ref: "master"
 strategy:
 sourceStrategy:
 from:
 kind: ImageStreamTag
 name: wildfly:10.1
 namespace: openshift

apiVersion: build.openshift.io/v1
kind: BuildConfig
metadata:
 name: image-build
spec:
 output:
 to:
 kind: ImageStreamTag
 name: image-build:latest
 source:
 dockerfile: |-
 FROM jee-runtime:latest
 COPY ROOT.war /deployments/ROOT.war
 images:
 - from: 1
 kind: ImageStreamTag
 name: artifact-image:latest
 paths: 2
 - sourcePath: /wildfly/standalone/deployments/ROOT.war
 destinationDir: "."
 strategy:
 dockerStrategy:
 from: 3
 kind: ImageStreamTag
 name: jee-runtime:latest
 triggers:
 - imageChange: {}
 type: ImageChange

CHAPTER 2. BUILDS

79

1

2

3

1

2

from specifies that the docker build should include the output of the image from the artifact-
image image stream, which was the target of the previous build.

paths specifies which paths from the target image to include in the current docker build.

The runtime image is used as the source image for the docker build.

The result of this setup is that the output image of the second build does not have to contain any of the
build tools that are needed to create the WAR file. Also, because the second build contains an image
change trigger, whenever the first build is run and produces a new image with the binary artifact, the
second build is automatically triggered to produce a runtime image that contains that artifact.
Therefore, both builds behave as a single build with two stages.

2.9.5. Pruning builds

By default, builds that have completed their lifecycle are persisted indefinitely. You can limit the number
of previous builds that are retained.

Procedure

1. Limit the number of previous builds that are retained by supplying a positive integer value for
successfulBuildsHistoryLimit or failedBuildsHistoryLimit in your BuildConfig, for example:

successfulBuildsHistoryLimit will retain up to two builds with a status of completed.

failedBuildsHistoryLimit will retain up to two builds with a status of failed, canceled, or
error.

2. Trigger build pruning by one of the following actions:

Updating a build configuration.

Waiting for a build to complete its lifecycle.

Builds are sorted by their creation timestamp with the oldest builds being pruned first.

NOTE

Administrators can manually prune builds using the 'oc adm' object pruning command.

2.9.6. Build run policy

The build run policy describes the order in which the builds created from the build configuration should
run. This can be done by changing the value of the runPolicy field in the spec section of the Build
specification.

apiVersion: "v1"
kind: "BuildConfig"
metadata:
 name: "sample-build"
spec:
 successfulBuildsHistoryLimit: 2 1
 failedBuildsHistoryLimit: 2 2

OpenShift Container Platform 4.7 CI/CD

80

It is also possible to change the runPolicy value for existing build configurations, by:

Changing Parallel to Serial or SerialLatestOnly and triggering a new build from this
configuration causes the new build to wait until all parallel builds complete as the serial build can
only run alone.

Changing Serial to SerialLatestOnly and triggering a new build causes cancellation of all
existing builds in queue, except the currently running build and the most recently created build.
The newest build runs next.

2.10. USING RED HAT SUBSCRIPTIONS IN BUILDS

Use the following sections to run entitled builds on OpenShift Container Platform.

2.10.1. Creating an image stream tag for the Red Hat Universal Base Image

To use Red Hat subscriptions within a build, you create an image stream tag to reference the Universal
Base Image (UBI).

To make the UBI available in every project in the cluster, you add the image stream tag to the
openshift namespace. Otherwise, to make it available in a specific project, you add the image stream
tag to that project.

The benefit of using image stream tags this way is that doing so grants access to the UBI based on the
registry.redhat.io credentials in the install pull secret without exposing the pull secret to other users.
This is more convenient than requiring each developer to install pull secrets with registry.redhat.io
credentials in each project.

Procedure

To create an ImageStreamTag in the openshift namespace, so it is available to developers in all
projects, enter:

To create an ImageStreamTag in a single project, enter:

2.10.2. Adding subscription entitlements as a build secret

Builds that use Red Hat subscriptions to install content must include the entitlement keys as a build
secret.

Prerequisites

You must have access to Red Hat entitlements through your subscription, and the entitlements must
have separate public and private key files.

TIP

$ oc tag --source=docker registry.redhat.io/ubi7/ubi:latest ubi:latest -n openshift

$ oc tag --source=docker registry.redhat.io/ubi7/ubi:latest ubi:latest

CHAPTER 2. BUILDS

81

TIP

When you perform an Entitlement Build using Red Hat Enterprise Linux (RHEL) 7, you must have the
following instructions in your Dockerfile before you run any yum commands:

Procedure

1. Create a secret containing your entitlements, ensuring that there are separate files containing
the public and private keys:

2. Add the secret as a build input in the build configuration:

2.10.3. Running builds with Subscription Manager

2.10.3.1. Docker builds using Subscription Manager

Docker strategy builds can use the Subscription Manager to install subscription content.

Prerequisites

The entitlement keys, subscription manager configuration, and subscription manager certificate
authority must be added as build inputs.

Procedure

Use the following as an example Dockerfile to install content with the Subscription Manager:

RUN rm /etc/rhsm-host

$ oc create secret generic etc-pki-entitlement --from-file /path/to/entitlement/{ID}.pem \
> --from-file /path/to/entitlement/{ID}-key.pem ...

source:
 secrets:
 - secret:
 name: etc-pki-entitlement
 destinationDir: etc-pki-entitlement

FROM registry.redhat.io/rhel7:latest
USER root
Copy entitlements
COPY ./etc-pki-entitlement /etc/pki/entitlement
Copy subscription manager configurations
COPY ./rhsm-conf /etc/rhsm
COPY ./rhsm-ca /etc/rhsm/ca
Delete /etc/rhsm-host to use entitlements from the build container
RUN rm /etc/rhsm-host && \
 # Initialize /etc/yum.repos.d/redhat.repo
 # See https://access.redhat.com/solutions/1443553
 yum repolist --disablerepo=* && \
 subscription-manager repos --enable <enabled-repo> && \
 yum -y update && \
 yum -y install <rpms> && \
 # Remove entitlements and Subscription Manager configs

OpenShift Container Platform 4.7 CI/CD

82

2.10.4. Running builds with Red Hat Satellite subscriptions

2.10.4.1. Adding Red Hat Satellite configurations to builds

Builds that use Red Hat Satellite to install content must provide appropriate configurations to obtain
content from Satellite repositories.

Prerequisites

You must provide or create a yum-compatible repository configuration file that downloads
content from your Satellite instance.

Sample repository configuration

Procedure

1. Create a ConfigMap containing the Satellite repository configuration file:

2. Add the Satellite repository configuration to the BuildConfig:

2.10.4.2. Docker builds using Red Hat Satellite subscriptions

Docker strategy builds can use Red Hat Satellite repositories to install subscription content.

Prerequisites

The entitlement keys and Satellite repository configurations must be added as build inputs.

Procedure

 rm -rf /etc/pki/entitlement && \
 rm -rf /etc/rhsm
OpenShift requires images to run as non-root by default
USER 1001
ENTRYPOINT ["/bin/bash"]

[test-<name>]
name=test-<number>
baseurl = https://satellite.../content/dist/rhel/server/7/7Server/x86_64/os
enabled=1
gpgcheck=0
sslverify=0
sslclientkey = /etc/pki/entitlement/...-key.pem
sslclientcert = /etc/pki/entitlement/....pem

$ oc create configmap yum-repos-d --from-file /path/to/satellite.repo

source:
 configMaps:
 - configMap:
 name: yum-repos-d
 destinationDir: yum.repos.d

CHAPTER 2. BUILDS

83

1

Use the following as an example Dockerfile to install content with Satellite:

If adding Satellite configurations to builds using enabled=1 fails, add RUN sed -i".org" -e
"s#^enabled=1#enabled=0#g" /etc/yum/pluginconf.d/subscription-manager.conf to the
Dockerfile.

2.10.5. Additional resources

Managing image streams

build strategy

2.11. SECURING BUILDS BY STRATEGY

Builds in OpenShift Container Platform are run in privileged containers. Depending on the build strategy
used, if you have privileges, you can run builds to escalate their permissions on the cluster and host
nodes. And as a security measure, it limits who can run builds and the strategy that is used for those
builds. Custom builds are inherently less safe than source builds, because they can execute any code
within a privileged container, and are disabled by default. Grant docker build permissions with caution,
because a vulnerability in the Dockerfile processing logic could result in a privileges being granted on the
host node.

By default, all users that can create builds are granted permission to use the docker and Source-to-
image (S2I) build strategies. Users with cluster administrator privileges can enable the custom build
strategy, as referenced in the restricting build strategies to a user globally section.

You can control who can build and which build strategies they can use by using an authorization policy.
Each build strategy has a corresponding build subresource. A user must have permission to create a build
and permission to create on the build strategy subresource to create builds using that strategy. Default
roles are provided that grant the create permission on the build strategy subresource.

Table 2.3. Build Strategy Subresources and Roles

FROM registry.redhat.io/rhel7:latest
USER root
Copy entitlements
COPY ./etc-pki-entitlement /etc/pki/entitlement
Copy repository configuration
COPY ./yum.repos.d /etc/yum.repos.d
Delete /etc/rhsm-host to use entitlements from the build container
RUN sed -i".org" -e "s#^enabled=1#enabled=0#g" /etc/yum/pluginconf.d/subscription-manager.conf
1

#RUN cat /etc/yum/pluginconf.d/subscription-manager.conf
RUN yum clean all
#RUN yum-config-manager
RUN rm /etc/rhsm-host && \
 # yum repository info provided by Satellite
 yum -y update && \
 yum -y install <rpms> && \
 # Remove entitlements
 rm -rf /etc/pki/entitlement
OpenShift requires images to run as non-root by default
USER 1001
ENTRYPOINT ["/bin/bash"]

OpenShift Container Platform 4.7 CI/CD

84

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/images/#image-streams-managing
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/cicd/#build-strategies

1

Strategy Subresource Role

Docker builds/docker system:build-strategy-docker

Source-to-Image builds/source system:build-strategy-source

Custom builds/custom system:build-strategy-custom

JenkinsPipeline builds/jenkinspipeline system:build-strategy-
jenkinspipeline

2.11.1. Disabling access to a build strategy globally

To prevent access to a particular build strategy globally, log in as a user with cluster administrator
privileges, remove the corresponding role from the system:authenticated group, and apply the
annotation rbac.authorization.kubernetes.io/autoupdate: "false" to protect them from changes
between the API restarts. The following example shows disabling the docker build strategy.

Procedure

1. Apply the rbac.authorization.kubernetes.io/autoupdate annotation:

Example output

Change the rbac.authorization.kubernetes.io/autoupdate annotation’s value to "false".

2. Remove the role:

$ oc edit clusterrolebinding system:build-strategy-docker-binding

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 annotations:
 rbac.authorization.kubernetes.io/autoupdate: "false" 1
 creationTimestamp: 2018-08-10T01:24:14Z
 name: system:build-strategy-docker-binding
 resourceVersion: "225"
 selfLink: /apis/rbac.authorization.k8s.io/v1/clusterrolebindings/system%3Abuild-strategy-
docker-binding
 uid: 17b1f3d4-9c3c-11e8-be62-0800277d20bf
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: system:build-strategy-docker
subjects:
- apiGroup: rbac.authorization.k8s.io
 kind: Group
 name: system:authenticated

CHAPTER 2. BUILDS

85

1

3. Ensure the build strategy subresources are also removed from these roles:

4. For each role, specify the subresources that correspond to the resource of the strategy to
disable.

a. Disable the docker Build Strategy for admin:

Add builds/custom and builds/source to disable docker builds globally for users with
the admin role.

2.11.2. Restricting build strategies to users globally

You can allow a set of specific users to create builds with a particular strategy.

Prerequisites

Disable global access to the build strategy.

Procedure

Assign the role that corresponds to the build strategy to a specific user. For example, to add the
system:build-strategy-docker cluster role to the user devuser:

$ oc adm policy remove-cluster-role-from-group system:build-strategy-docker
system:authenticated

$ oc edit clusterrole admin

$ oc edit clusterrole edit

kind: ClusterRole
metadata:
 name: admin
...
- apiGroups:
 - ""
 - build.openshift.io
 resources:
 - buildconfigs
 - buildconfigs/webhooks
 - builds/custom 1
 - builds/source
 verbs:
 - create
 - delete
 - deletecollection
 - get
 - list
 - patch
 - update
 - watch
...

OpenShift Container Platform 4.7 CI/CD

86

WARNING

Granting a user access at the cluster level to the builds/docker
subresource means that the user can create builds with the docker strategy
in any project in which they can create builds.

2.11.3. Restricting build strategies to a user within a project

Similar to granting the build strategy role to a user globally, you can allow a set of specific users within a
project to create builds with a particular strategy.

Prerequisites

Disable global access to the build strategy.

Procedure

Assign the role that corresponds to the build strategy to a specific user within a project. For
example, to add the system:build-strategy-docker role within the project devproject to the
user devuser:

2.12. BUILD CONFIGURATION RESOURCES

Use the following procedure to configure build settings.

2.12.1. Build controller configuration parameters

The build.config.openshift.io/cluster resource offers the following configuration parameters.

Parameter Description

Build Holds cluster-wide information on how to handle builds. The canonical, and
only valid name is cluster.

spec: Holds user-settable values for the build controller configuration.

$ oc adm policy add-cluster-role-to-user system:build-strategy-docker devuser

$ oc adm policy add-role-to-user system:build-strategy-docker devuser -n devproject

CHAPTER 2. BUILDS

87

buildDefaults Controls the default information for builds.

defaultProxy: Contains the default proxy settings for all build operations,
including image pull or push and source download.

You can override values by setting the HTTP_PROXY, HTTPS_PROXY, and
NO_PROXY environment variables in the BuildConfig strategy.

gitProxy: Contains the proxy settings for Git operations only. If set, this
overrides any proxy settings for all Git commands, such as git clone.

Values that are not set here are inherited from DefaultProxy.

env: A set of default environment variables that are applied to the build if the
specified variables do not exist on the build.

imageLabels: A list of labels that are applied to the resulting image. You can
override a default label by providing a label with the same name in the
BuildConfig.

resources: Defines resource requirements to execute the build.

ImageLabel name: Defines the name of the label. It must have non-zero length.

buildOverrides Controls override settings for builds.

imageLabels: A list of labels that are applied to the resulting image. If you
provided a label in the BuildConfig with the same name as one in this table,
your label will be overwritten.

nodeSelector: A selector which must be true for the build pod to fit on a
node.

tolerations: A list of tolerations that overrides any existing tolerations set on a
build pod.

BuildList items: Standard object’s metadata.

Parameter Description

2.12.2. Configuring build settings

You can configure build settings by editing the build.config.openshift.io/cluster resource.

Procedure

Edit the build.config.openshift.io/cluster resource:

The following is an example build.config.openshift.io/cluster resource:

$ oc edit build.config.openshift.io/cluster

OpenShift Container Platform 4.7 CI/CD

88

1

2

3

4

Build: Holds cluster-wide information on how to handle builds. The canonical, and only
valid name is cluster.

buildDefaults: Controls the default information for builds.

defaultProxy: Contains the default proxy settings for all build operations, including image
pull or push and source download.

env: A set of default environment variables that are applied to the build if the specified
variables do not exist on the build.

apiVersion: config.openshift.io/v1
kind: Build 1
metadata:
 annotations:
 release.openshift.io/create-only: "true"
 creationTimestamp: "2019-05-17T13:44:26Z"
 generation: 2
 name: cluster
 resourceVersion: "107233"
 selfLink: /apis/config.openshift.io/v1/builds/cluster
 uid: e2e9cc14-78a9-11e9-b92b-06d6c7da38dc
spec:
 buildDefaults: 2
 defaultProxy: 3
 httpProxy: http://proxy.com
 httpsProxy: https://proxy.com
 noProxy: internal.com
 env: 4
 - name: envkey
 value: envvalue
 gitProxy: 5
 httpProxy: http://gitproxy.com
 httpsProxy: https://gitproxy.com
 noProxy: internalgit.com
 imageLabels: 6
 - name: labelkey
 value: labelvalue
 resources: 7
 limits:
 cpu: 100m
 memory: 50Mi
 requests:
 cpu: 10m
 memory: 10Mi
 buildOverrides: 8
 imageLabels: 9
 - name: labelkey
 value: labelvalue
 nodeSelector: 10
 selectorkey: selectorvalue
 tolerations: 11
 - effect: NoSchedule
 key: node-role.kubernetes.io/builds
operator: Exists

CHAPTER 2. BUILDS

89

5

6

7

8

9

10

11

variables do not exist on the build.

gitProxy: Contains the proxy settings for Git operations only. If set, this overrides any
Proxy settings for all Git commands, such as git clone.

imageLabels: A list of labels that are applied to the resulting image. You can override a
default label by providing a label with the same name in the BuildConfig.

resources: Defines resource requirements to execute the build.

buildOverrides: Controls override settings for builds.

imageLabels: A list of labels that are applied to the resulting image. If you provided a label
in the BuildConfig with the same name as one in this table, your label will be overwritten.

nodeSelector: A selector which must be true for the build pod to fit on a node.

tolerations: A list of tolerations that overrides any existing tolerations set on a build pod.

2.13. TROUBLESHOOTING BUILDS

Use the following to troubleshoot build issues.

2.13.1. Resolving denial for access to resources

If your request for access to resources is denied:

Issue

A build fails with:

Resolution

You have exceeded one of the image quotas set on your project. Check your current quota and
verify the limits applied and storage in use:

2.13.2. Service certificate generation failure

If your request for access to resources is denied:

Issue

If a service certificate generation fails with (service’s service.beta.openshift.io/serving-cert-
generation-error annotation contains):

Example output

Resolution

requested access to the resource is denied

$ oc describe quota

secret/ssl-key references serviceUID 62ad25ca-d703-11e6-9d6f-0e9c0057b608, which does not
match 77b6dd80-d716-11e6-9d6f-0e9c0057b60

OpenShift Container Platform 4.7 CI/CD

90

The service that generated the certificate no longer exists, or has a different serviceUID. You must
force certificates regeneration by removing the old secret, and clearing the following annotations on
the service: service.beta.openshift.io/serving-cert-generation-error and
service.beta.openshift.io/serving-cert-generation-error-num:

NOTE

The command removing annotation has a - after the annotation name to be removed.

2.14. SETTING UP ADDITIONAL TRUSTED CERTIFICATE AUTHORITIES
FOR BUILDS

Use the following sections to set up additional certificate authorities (CA) to be trusted by builds when
pulling images from an image registry.

The procedure requires a cluster administrator to create a ConfigMap and add additional CAs as keys in
the ConfigMap.

The ConfigMap must be created in the openshift-config namespace.

domain is the key in the ConfigMap and value is the PEM-encoded certificate.

Each CA must be associated with a domain. The domain format is hostname[..port].

The ConfigMap name must be set in the image.config.openshift.io/cluster cluster scoped
configuration resource’s spec.additionalTrustedCA field.

2.14.1. Adding certificate authorities to the cluster

You can add certificate authorities (CA) to the cluster for use when pushing and pulling images with the
following procedure.

Prerequisites

You must have cluster administrator privileges.

You must have access to the public certificates of the registry, usually a hostname/ca.crt file
located in the /etc/docker/certs.d/ directory.

Procedure

1. Create a ConfigMap in the openshift-config namespace containing the trusted certificates for
the registries that use self-signed certificates. For each CA file, ensure the key in the
ConfigMap is the hostname of the registry in the hostname[..port] format:

$ oc delete secret <secret_name>

$ oc annotate service <service_name> service.beta.openshift.io/serving-cert-generation-error-

$ oc annotate service <service_name> service.beta.openshift.io/serving-cert-generation-error-num-

CHAPTER 2. BUILDS

91

2. Update the cluster image configuration:

2.14.2. Additional resources

Create a ConfigMap

Secrets and ConfigMaps

Configuring a custom PKI

$ oc create configmap registry-cas -n openshift-config \
--from-file=myregistry.corp.com..5000=/etc/docker/certs.d/myregistry.corp.com:5000/ca.crt \
--from-file=otherregistry.com=/etc/docker/certs.d/otherregistry.com/ca.crt

$ oc patch image.config.openshift.io/cluster --patch '{"spec":{"additionalTrustedCA":
{"name":"registry-cas"}}}' --type=merge

OpenShift Container Platform 4.7 CI/CD

92

https://kubernetes.io/docs/tasks/configure-pod-container/configure-pod-configmap/#create-a-configmap
https://kubectl.docs.kubernetes.io/guides/config_management/secrets_configmaps/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/networking/#configuring-a-custom-pki

CHAPTER 3. PIPELINES

3.1. RED HAT OPENSHIFT PIPELINES RELEASE NOTES

Red Hat OpenShift Pipelines is a cloud-native CI/CD experience based on the Tekton project which
provides:

Standard Kubernetes-native pipeline definitions (CRDs).

Serverless pipelines with no CI server management overhead.

Extensibility to build images using any Kubernetes tool, such as S2I, Buildah, JIB, and Kaniko.

Portability across any Kubernetes distribution.

Powerful CLI for interacting with pipelines.

Integrated user experience with the Developer perspective of the OpenShift Container
Platform web console.

For an overview of Red Hat OpenShift Pipelines, see Understanding OpenShift Pipelines .

3.1.1. Making open source more inclusive

Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see Red Hat CTO Chris Wright’s message .

3.1.2. Release notes for Red Hat OpenShift Pipelines General Availability 1.4

Red Hat OpenShift Pipelines General Availability (GA) 1.4 is now available on OpenShift Container
Platform 4.7.

NOTE

In addition to the stable and preview Operator channels, the Red Hat OpenShift Pipelines
Operator 1.4.0 comes with the ocp-4.6, ocp-4.5, and ocp-4.4 deprecated channels.
These deprecated channels and support for them will be removed in the following release
of Red Hat OpenShift Pipelines.

3.1.2.1. Compatibility and support matrix

Some features in this release are currently in Technology Preview. These experimental features are not
intended for production use.

Technology Preview Features Support Scope

In the table below, features are marked with the following statuses:

TP: Technology Preview

GA: General Availability

CHAPTER 3. PIPELINES

93

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/cicd/#understanding-openshift-pipelines
https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language
https://access.redhat.com/support/offerings/techpreview

Note the following scope of support on the Red Hat Customer Portal for these features:

Table 3.1. Compatibility and support matrix

Feature Version Support Status

Pipelines 0.22 GA

CLI 0.17 GA

Catalog 0.22 GA

Triggers 0.12 TP

Pipeline resources - TP

For questions and feedback, you can send an email to the product team at pipelines-
interest@redhat.com.

3.1.2.2. New features

In addition to the fixes and stability improvements, the following sections highlight what is new in Red
Hat OpenShift Pipelines 1.4.

The custom tasks have the following enhancements:

Pipeline results can now refer to results produced by custom tasks.

Custom tasks can now use workspaces, service accounts, and pod templates to build more
complex custom tasks.

The finally task has the following enhancements:

The when expressions are supported in finally tasks, which provides efficient guarded
execution and improved reusability of tasks.

A finally task can be configured to consume the results of any task within the same pipeline.

NOTE

Support for when expressions and finally tasks are unavailable in the
OpenShift Container Platform 4.7 web console.

Support for multiple secrets of the type dockercfg or dockerconfigjson is added for
authentication at runtime.

Functionality to support sparse-checkout with the git-clone task is added. This enables you to
clone only a subset of the repository as your local copy, and helps you to restrict the size of the
cloned repositories.

You can create pipeline runs in a pending state without actually starting them. In clusters that
are under heavy load, this allows Operators to have control over the start time of the pipeline
runs.

Ensure that you set the SYSTEM_NAMESPACE environment variable manually for the

OpenShift Container Platform 4.7 CI/CD

94

mailto:pipelines-interest@redhat.com

Ensure that you set the SYSTEM_NAMESPACE environment variable manually for the
controller; this was previously set by default.

A non-root user is now added to the build-base image of pipelines so that git-init can clone
repositories as a non-root user.

Support to validate dependencies between resolved resources before a pipeline run starts is
added. All result variables in the pipeline must be valid, and optional workspaces from a pipeline
can only be passed to tasks expecting it for the pipeline to start running.

The controller and webhook runs as a non-root group, and their superfluous capabilities have
been removed to make them more secure.

You can use the tkn pr logs command to see the log streams for retried task runs.

You can use the --clustertask option in the tkn tr delete command to delete all the task runs
associated with a particular cluster task.

Support for using Knative service with the EventListener resource is added by introducing a
new customResource field.

An error message is displayed when an event payload does not use the JSON format.

The source control interceptors such as GitLab, BitBucket, and GitHub, now use the new
InterceptorRequest or InterceptorResponse type interface.

A new CEL function marshalJSON is implemented so that you can encode a JSON object or an
array to a string.

An HTTP handler for serving the CEL and the source control core interceptors is added. It
packages four core interceptors into a single HTTP server that is deployed in the tekton-
pipelines namespace. The EventListener object forwards events over the HTTP server to the
interceptor. Each interceptor is available at a different path. For example, the CEL interceptor is
available on the /cel path.

The pipelines-scc Security Context Constraint (SCC) is used with the default pipeline service
account for pipelines. This new service account is similar to anyuid, but with a minor difference
as defined in the YAML for SCC of OpenShift Container Platform 4.7:

3.1.2.3. Deprecated features

The build-gcs sub-type in the pipeline resource storage, and the gcs-fetcher image, are not
supported.

In the taskRun field of cluster tasks, the label tekton.dev/task is removed.

For webhooks, the value v1beta1 corresponding to the field admissionReviewVersions is
removed.

The creds-init helper image for building and deploying is removed.

In the triggers spec and binding, the deprecated field template.name is removed in favor of
template.ref. You should update all eventListener definitions to use the ref field.

NOTE

fsGroup:
 type: MustRunAs

CHAPTER 3. PIPELINES

95

NOTE

Upgrade from Pipelines 1.3.x and earlier versions to Pipelines 1.4.0 breaks event
listeners because of the unavailability of the template.name field. For such
cases, use Pipelines 1.4.1 to avail the restored template.name field.

For EventListener custom resources/objects, the fields PodTemplate and ServiceType are
deprecated in favor of Resource.

The deprecated spec style embedded bindings is removed.

The spec field is removed from the triggerSpecBinding.

The event ID representation is changed from a five-character random string to a UUID.

3.1.2.4. Known issues

In the Developer perspective, the pipeline metrics and triggers features are available only on
OpenShift Container Platform 4.7.6 or later versions.

On IBM Power Systems, IBM Z, and LinuxONE, the tkn hub command is not supported.

When you run Maven and Jib Maven cluster tasks on an IBM Power Systems (ppc64le), IBM Z,
and LinuxONE (s390x) clusters, set the MAVEN_IMAGE parameter value to maven:3.6.3-
adoptopenjdk-11.

Triggers throw error resulting from bad handling of the JSON format, if you have the following
configuration in the trigger binding:

To resolve the issue:

If you are using triggers v0.11.0 and above, use the marshalJSON CEL function, which takes
a JSON object or array and returns the JSON encoding of that object or array as a string.

If you are using older triggers version, add the following annotation in the trigger template:

When upgrading from Pipelines 1.3.x to 1.4.x, you must recreate the routes.

3.1.2.5. Fixed issues

Previously, the tekton.dev/task label was removed from the task runs of cluster tasks, and the
tekton.dev/clusterTask label was introduced. The problems resulting from that change is
resolved by fixing the clustertask describe and delete commands. In addition, the lastrun
function for tasks is modified, to fix the issue of the tekton.dev/task label being applied to the
task runs of both tasks and cluster tasks in older versions of pipelines.

When doing an interactive tkn pipeline start pipelinename, a PipelineResource is created

params:
 - name: github_json
 value: $(body)

annotations:
 triggers.tekton.dev/old-escape-quotes: "true"

OpenShift Container Platform 4.7 CI/CD

96

When doing an interactive tkn pipeline start pipelinename, a PipelineResource is created
interactively. The tkn p start command prints the resource status if the resource status is not
nil.

Previously, the tekton.dev/task=name label was removed from the task runs created from
cluster tasks. This fix modifies the tkn clustertask start command with the --last flag to check
for the tekton.dev/task=name label in the created task runs.

When a task uses an inline task specification, the corresponding task run now gets embedded in
the pipeline when you run the tkn pipeline describe command, and the task name is returned
as embedded.

The tkn version command is fixed to display the version of the installed Tekton CLI tool,
without a configured kubeConfiguration namespace or access to a cluster.

If an argument is unexpected or more than one arguments are used, the tkn completion
command gives an error.

Previously, pipeline runs with the finally tasks nested in a pipeline specification would lose those
finally tasks, when converted to the v1alpha1 version and restored back to the v1beta1
version. This error occurring during conversion is fixed to avoid potential data loss. Pipeline runs
with the finally tasks nested in a pipeline specification is now serialized and stored on the alpha
version, only to be deserialized later.

Previously, there was an error in the pod generation when a service account had the secrets
field as {}. The task runs failed with CouldntGetTask because the GET request with an empty
secret name returned an error, indicating that the resource name may not be empty. This issue
is fixed by avoiding an empty secret name in the kubeclient GET request.

Pipelines with the v1beta1 API versions can now be requested along with the v1alpha1 version,
without losing the finally tasks. Applying the returned v1alpha1 version will store the resource
as v1beta1, with the finally section restored to its original state.

Previously, an unset selfLink field in the controller caused an error in the Kubernetes v1.20
clusters. As a temporary fix, the CloudEvent source field is set to a value that matches the
current source URI, without the value of the auto-populated selfLink field.

Previously, a secret name with dots such as gcr.io led to a task run creation failure. This
happened because of the secret name being used internally as part of a volume mount name.
The volume mount name conforms to the RFC1123 DNS label and disallows dots as part of the
name. This issue is fixed by replacing the dot with a dash that results in a readable name.

Context variables are now validated in the finally tasks.

Previously, when the task run reconciler was passed a task run that did not have a previous
status update containing the name of the pod it created, the task run reconciler listed the pods
associated with the task run. The task run reconciler used the labels of the task run, which were
propagated to the pod, to find the pod. Changing these labels while the task run was running,
caused the code to not find the existing pod. As a result, duplicate pods were created. This issue
is fixed by changing the task run reconciler to only use the tekton.dev/taskRun Tekton-
controlled label when finding the pod.

Previously, when a pipeline accepted an optional workspace and passed it to a pipeline task, the
pipeline run reconciler stopped with an error if the workspace was not provided, even if a missing
workspace binding is a valid state for an optional workspace. This issue is fixed by ensuring that
the pipeline run reconciler does not fail to create a task run, even if an optional workspace is not
provided.

CHAPTER 3. PIPELINES

97

The sorted order of step statuses matches the order of step containers.

Previously, the task run status was set to unknown when a pod encountered the
CreateContainerConfigError reason, which meant that the task and the pipeline ran until the
pod timed out. This issue is fixed by setting the task run status to false, so that the task is set as
failed when the pod encounters the CreateContainerConfigError reason.

Previously, pipeline results were resolved on the first reconciliation, after a pipeline run was
completed. This could fail the resolution resulting in the Succeeded condition of the pipeline
run being overwritten. As a result, the final status information was lost, potentially confusing any
services watching the pipeline run conditions. This issue is fixed by moving the resolution of
pipeline results to the end of a reconciliation, when the pipeline run is put into a Succeeded or
True condition.

Execution status variable is now validated. This avoids validating task results while validating
context variables to access execution status.

Previously, a pipeline result that contained an invalid variable would be added to the pipeline run
with the literal expression of the variable intact. Therefore, it was difficult to assess whether the
results were populated correctly. This issue is fixed by filtering out the pipeline run results that
reference failed task runs. Now, a pipeline result that contains an invalid variable will not be
emitted by the pipeline run at all.

The tkn eventlistener describe command is fixed to avoid crashing without a template. It also
displays the details about trigger references.

Upgrades from Pipelines 1.3.x and earlier versions to Pipelines 1.4.0 breaks event listeners
because of the unavailability of template.name. In Pipelines 1.4.1, the template.name has been
restored to avoid breaking event listeners in triggers.

In Pipelines 1.4.1, the ConsoleQuickStart custom resource has been updated to align with
OpenShift Container Platform 4.7 capabilities and behavior.

3.1.3. Release notes for Red Hat OpenShift Pipelines Technology Preview 1.3

3.1.3.1. New features

Red Hat OpenShift Pipelines Technology Preview (TP) 1.3 is now available on OpenShift Container
Platform 4.7. Red Hat OpenShift Pipelines TP 1.3 is updated to support:

Tekton Pipelines 0.19.0

Tekton tkn CLI 0.15.0

Tekton Triggers 0.10.2

cluster tasks based on Tekton Catalog 0.19.0

IBM Power Systems on OpenShift Container Platform 4.7

IBM Z and LinuxONE on OpenShift Container Platform 4.7

In addition to the fixes and stability improvements, the following sections highlight what is new in Red
Hat OpenShift Pipelines 1.3.

3.1.3.1.1. Pipelines

Tasks that build images, such as S2I and Buildah tasks, now emit a URL of the image built that

OpenShift Container Platform 4.7 CI/CD

98

Tasks that build images, such as S2I and Buildah tasks, now emit a URL of the image built that
includes the image SHA.

Conditions in pipeline tasks that reference custom tasks are disallowed because the Condition
custom resource definition (CRD) has been deprecated.

Variable expansion is now added in the Task CRD for the following fields:
spec.steps[].imagePullPolicy and spec.sidecar[].imagePullPolicy.

You can disable the built-in credential mechanism in Tekton by setting the disable-creds-init
feature-flag to true.

Resolved when expressions are now listed in the Skipped Tasks and the Task Runs sections in
the Status field of the PipelineRun configuration.

The git init command can now clone recursive submodules.

A Task CR author can now specify a timeout for a step in the Task spec.

You can now base the entry point image on the distroless/static:nonroot image and give it a
mode to copy itself to the destination, without relying on the cp command being present in the
base image.

You can now use the configuration flag require-git-ssh-secret-known-hosts to disallow
omitting known hosts in the Git SSH secret. When the flag value is set to true, you must include
the known_host field in the Git SSH secret. The default value for the flag is false.

The concept of optional workspaces is now introduced. A task or pipeline might declare a
workspace optional and conditionally change their behavior based on its presence. A task run or
pipeline run might also omit that workspace, thereby modifying the task or pipeline behavior.
The default task run workspaces are not added in place of an omitted optional workspace.

Credentials initialization in Tekton now detects an SSH credential that is used with a non-SSH
URL, and vice versa in Git pipeline resources, and logs a warning in the step containers.

The task run controller emits a warning event if the affinity specified by the pod template is
overwritten by the affinity assistant.

The task run reconciler now records metrics for cloud events that are emitted once a task run is
completed. This includes retries.

3.1.3.1.2. Pipelines CLI

Support for --no-headers flag is now added to the following commands: tkn condition list,tkn
triggerbinding list,tkn eventlistener list,tkn clustertask list, tkn clustertriggerbinding list.

When used together, the --last or --use options override the --prefix-name and --timeout
options.

The tkn eventlistener logs command is now added to view the EventListener logs.

The tekton hub commands are now integrated into the tkn CLI.

The --nocolour option is now changed to --no-color.

The --all-namespaces flag is added to the following commands: tkn triggertemplate list, tkn
condition list, tkn triggerbinding list, tkn eventlistener list.

CHAPTER 3. PIPELINES

99

3.1.3.1.3. Triggers

You can now specify your resource information in the EventListener template.

It is now mandatory for EventListener service accounts to have the list and watch verbs, in
addition to the get verb for all the triggers resources. This enables you to use Listers to fetch
data from EventListener, Trigger, TriggerBinding, TriggerTemplate, and
ClusterTriggerBinding resources. You can use this feature to create a Sink object rather than
specifying multiple informers, and directly make calls to the API server.

A new Interceptor interface is added to support immutable input event bodies. Interceptors can
now add data or fields to a new extensions field, and cannot modify the input bodies making
them immutable. The CEL interceptor uses this new Interceptor interface.

A namespaceSelector field is added to the EventListener resource. Use it to specify the
namespaces from where the EventListener resource can fetch the Trigger object for
processing events. To use the namespaceSelector field, the service account for the
EventListener resource must have a cluster role.

The triggers EventListener resource now supports end-to-end secure connection to the
eventlistener pod.

The escaping parameters behavior in the TriggerTemplates resource by replacing " with \" is
now removed.

A new resources field, supporting Kubernetes resources, is introduced as part of the
EventListener spec.

A new functionality for the CEL interceptor, with support for upper and lower-casing of ASCII
strings, is added.

You can embed TriggerBinding resources by using the name and value fields in a trigger, or an
event listener.

The PodSecurityPolicy configuration is updated to run in restricted environments. It ensures
that containers must run as non-root. In addition, the role-based access control for using the
pod security policy is moved from cluster-scoped to namespace-scoped. This ensures that the
triggers cannot use other pod security policies that are unrelated to a namespace.

Support for embedded trigger templates is now added. You can either use the name field to
refer to an embedded template or embed the template inside the spec field.

3.1.3.2. Deprecated features

Pipeline templates that use PipelineResources CRDs are now deprecated and will be removed
in a future release.

The template.name field is deprecated in favor of the template.ref field and will be removed in
a future release.

The -c shorthand for the --check command has been removed. In addition, global tkn flags are
added to the version command.

3.1.3.3. Known issues

CEL overlays add fields to a new top-level extensions function, instead of modifying the
incoming event body. TriggerBinding resources can access values within this new extensions

OpenShift Container Platform 4.7 CI/CD

100

function using the $(extensions.<key>) syntax. Update your binding to use the $(extensions.
<key>) syntax instead of the $(body.<overlay-key>) syntax.

The escaping parameters behavior by replacing " with \" is now removed. If you need to retain
the old escaping parameters behavior add the tekton.dev/old-escape-quotes: true"
annotation to your TriggerTemplate specification.

You can embed TriggerBinding resources by using the name and value fields inside a trigger
or an event listener. However, you cannot specify both name and ref fields for a single binding.
Use the ref field to refer to a TriggerBinding resource and the name field for embedded
bindings.

An interceptor cannot attempt to reference a secret outside the namespace of an
EventListener resource. You must include secrets in the namespace of the
`EventListener`resource.

In Triggers 0.9.0 and later, if a body or header based TriggerBinding parameter is missing or
malformed in an event payload, the default values are used instead of displaying an error.

Tasks and pipelines created with WhenExpression objects using Tekton Pipelines 0.16.x must
be reapplied to fix their JSON annotations.

When a pipeline accepts an optional workspace and gives it to a task, the pipeline run stalls if the
workspace is not provided.

To use the Buildah cluster task in a disconnected environment, ensure that the Dockerfile uses
an internal image stream as the base image, and then use it in the same manner as any S2I
cluster task.

3.1.3.4. Fixed issues

Extensions added by a CEL Interceptor are passed on to webhook interceptors by adding the
Extensions field within the event body.

The activity timeout for log readers is now configurable using the LogOptions field. However,
the default behavior of timeout in 10 seconds is retained.

The log command ignores the --follow flag when a task run or pipeline run is complete, and
reads available logs instead of live logs.

References to the following Tekton resources: EventListener, TriggerBinding,
ClusterTriggerBinding, Condition, and TriggerTemplate are now standardized and made
consistent across all user-facing messages in tkn commands.

Previously, if you started a canceled task run or pipeline run with the --use-taskrun <canceled-
task-run-name>, --use-pipelinerun <canceled-pipeline-run-name> or --last flags, the new
run would be canceled. This bug is now fixed.

The tkn pr desc command is now enhanced to ensure that it does not fail in case of pipeline
runs with conditions.

When you delete a task run using the tkn tr delete command with the --task option, and a
cluster task exists with the same name, the task runs for the cluster task also get deleted. As a
workaround, filter the task runs by using the TaskRefKind field.

The tkn triggertemplate describe command would display only part of the apiVersion value in

CHAPTER 3. PIPELINES

101

The tkn triggertemplate describe command would display only part of the apiVersion value in
the output. For example, only triggers.tekton.dev was displayed instead of
triggers.tekton.dev/v1alpha1. This bug is now fixed.

The webhook, under certain conditions, would fail to acquire a lease and not function correctly.
This bug is now fixed.

Pipelines with when expressions created in v0.16.3 can now be run in v0.17.1 and later. After an
upgrade, you do not need to reapply pipeline definitions created in previous versions because
both the uppercase and lowercase first letters for the annotations are now supported.

By default, the leader-election-ha field is now enabled for high availability. When the disable-
ha controller flag is set to true, it disables high availability support.

Issues with duplicate cloud events are now fixed. Cloud events are now sent only when a
condition changes the state, reason, or message.

When a service account name is missing from a PipelineRun or TaskRun spec, the controller
uses the service account name from the config-defaults config map. If the service account
name is also missing in the config-defaults config map, the controller now sets it to default in
the spec.

Validation for compatibility with the affinity assistant is now supported when the same
persistent volume claim is used for multiple workspaces, but with different subpaths.

3.1.4. Release notes for Red Hat OpenShift Pipelines Technology Preview 1.2

3.1.4.1. New features

Red Hat OpenShift Pipelines Technology Preview (TP) 1.2 is now available on OpenShift Container
Platform 4.6. Red Hat OpenShift Pipelines TP 1.2 is updated to support:

Tekton Pipelines 0.16.3

Tekton tkn CLI 0.13.1

Tekton Triggers 0.8.1

cluster tasks based on Tekton Catalog 0.16

IBM Power Systems on OpenShift Container Platform 4.6

IBM Z and LinuxONE on OpenShift Container Platform 4.6

In addition to the fixes and stability improvements, the following sections highlight what is new in Red
Hat OpenShift Pipelines 1.2.

3.1.4.1.1. Pipelines

This release of Red Hat OpenShift Pipelines adds support for a disconnected installation.

NOTE

Installations in restricted environments are currently not supported on IBM Power
Systems, IBM Z, and LinuxONE.

You can now use the when field, instead of conditions resource, to run a task only when certain

OpenShift Container Platform 4.7 CI/CD

102

You can now use the when field, instead of conditions resource, to run a task only when certain
criteria are met. The key components of WhenExpression resources are Input, Operator, and
Values. If all the when expressions evaluate to True, then the task is run. If any of the when
expressions evaluate to False, the task is skipped.

Step statuses are now updated if a task run is canceled or times out.

Support for Git Large File Storage (LFS) is now available to build the base image used by git-
init.

You can now use the taskSpec field to specify metadata, such as labels and annotations, when a
task is embedded in a pipeline.

Cloud events are now supported by pipeline runs. Retries with backoff are now enabled for
cloud events sent by the cloud event pipeline resource.

You can now set a default Workspace configuration for any workspace that a Task resource
declares, but that a TaskRun resource does not explicitly provide.

Support is available for namespace variable interpolation for the PipelineRun namespace and
TaskRun namespace.

Validation for TaskRun objects is now added to check that not more than one persistent
volume claim workspace is used when a TaskRun resource is associated with an Affinity
Assistant. If more than one persistent volume claim workspace is used, the task run fails with a
TaskRunValidationFailed condition. Note that by default, the Affinity Assistant is disabled in
Red Hat OpenShift Pipelines, so you will need to enable the assistant to use it.

3.1.4.1.2. Pipelines CLI

The tkn task describe, tkn taskrun describe, tkn clustertask describe, tkn pipeline describe,
and tkn pipelinerun describe commands now:

Automatically select the Task, TaskRun, ClusterTask, Pipeline and PipelineRun resource,
respectively, if only one of them is present.

Display the results of the Task, TaskRun, ClusterTask, Pipeline and PipelineRun
resource in their outputs, respectively.

Display workspaces declared in the Task, TaskRun, ClusterTask, Pipeline and
PipelineRun resource in their outputs, respectively.

You can now use the --prefix-name option with the tkn clustertask start command to specify a
prefix for the name of a task run.

Interactive mode support has now been provided to the tkn clustertask start command.

You can now specify PodTemplate properties supported by pipelines using local or remote file
definitions for TaskRun and PipelineRun objects.

You can now use the --use-params-defaults option with the tkn clustertask start command to
use the default values set in the ClusterTask configuration and create the task run.

The --use-param-defaults flag for the tkn pipeline start command now prompts the
interactive mode if the default values have not been specified for some of the parameters.

3.1.4.1.3. Triggers

CHAPTER 3. PIPELINES

103

The Common Expression Language (CEL) function named parseYAML has been added to
parse a YAML string into a map of strings.

Error messages for parsing CEL expressions have been improved to make them more granular
while evaluating expressions and when parsing the hook body for creating the evaluation
environment.

Support is now available for marshaling boolean values and maps if they are used as the values
of expressions in a CEL overlay mechanism.

The following fields have been added to the EventListener object:

The replicas field enables the event listener to run more than one pod by specifying the
number of replicas in the YAML file.

The NodeSelector field enables the EventListener object to schedule the event listener
pod to a specific node.

Webhook interceptors can now parse the EventListener-Request-URL header to extract
parameters from the original request URL being handled by the event listener.

Annotations from the event listener can now be propagated to the deployment, services, and
other pods. Note that custom annotations on services or deployment are overwritten, and
hence, must be added to the event listener annotations so that they are propagated.

Proper validation for replicas in the EventListener specification is now available for cases when
a user specifies the spec.replicas values as negative or zero.

You can now specify the TriggerCRD object inside the EventListener spec as a reference
using the TriggerRef field to create the TriggerCRD object separately and then bind it inside
the EventListener spec.

Validation and defaults for the TriggerCRD object are now available.

3.1.4.2. Deprecated features

$(params) parameters are now removed from the triggertemplate resource and replaced by
$(tt.params) to avoid confusion between the resourcetemplate and triggertemplate resource
parameters.

The ServiceAccount reference of the optional EventListenerTrigger-based authentication
level has changed from an object reference to a ServiceAccountName string. This ensures that
the ServiceAccount reference is in the same namespace as the EventListenerTrigger object.

The Conditions custom resource definition (CRD) is now deprecated; use the
WhenExpressions CRD instead.

The PipelineRun.Spec.ServiceAccountNames object is being deprecated and replaced by
the PipelineRun.Spec.TaskRunSpec[].ServiceAccountName object.

3.1.4.3. Known issues

This release of Red Hat OpenShift Pipelines adds support for a disconnected installation.
However, some images used by the cluster tasks must be mirrored for them to work in
disconnected clusters.

Pipelines in the openshift namespace are not deleted after you uninstall the Red Hat OpenShift

OpenShift Container Platform 4.7 CI/CD

104

Pipelines in the openshift namespace are not deleted after you uninstall the Red Hat OpenShift
Pipelines Operator. Use the oc delete pipelines -n openshift --all command to delete the
pipelines.

Uninstalling the Red Hat OpenShift Pipelines Operator does not remove the event listeners.
As a workaround, to remove the EventListener and Pod CRDs:

1. Edit the EventListener object with the foregroundDeletion finalizers:

For example:

2. Delete the EventListener CRD:

When you run a multi-arch container image task without command specification on an IBM
Power Systems (ppc64le) or IBM Z (s390x) cluster, the TaskRun resource fails with the
following error:

As a workaround, use an architecture specific container image or specify the sha256 digest to
point to the correct architecture. To get the sha256 digest enter:

3.1.4.4. Fixed issues

A simple syntax validation to check the CEL filter, overlays in the Webhook validator, and the
expressions in the interceptor has now been added.

Triggers no longer overwrite annotations set on the underlying deployment and service objects.

Previously, an event listener would stop accepting events. This fix adds an idle timeout of 120
seconds for the EventListener sink to resolve this issue.

Previously, canceling a pipeline run with a Failed(Canceled) state gave a success message. This
has been fixed to display an error instead.

The tkn eventlistener list command now provides the status of the listed event listeners, thus
enabling you to easily identify the available ones.

Consistent error messages are now displayed for the triggers list and triggers describe
commands when triggers are not installed or when a resource cannot be found.

Previously, a large number of idle connections would build up during cloud event delivery. The

$ oc patch el/<eventlistener_name> -p '{"metadata":{"finalizers":["foregroundDeletion"]}}'
--type=merge

$ oc patch el/github-listener-interceptor -p '{"metadata":{"finalizers":
["foregroundDeletion"]}}' --type=merge

$ oc patch crd/eventlisteners.triggers.tekton.dev -p '{"metadata":{"finalizers":[]}}' --
type=merge

Error executing command: fork/exec /bin/bash: exec format error

$ skopeo inspect --raw <image_name>| jq '.manifests[] | select(.platform.architecture == "
<architecture>") | .digest'

CHAPTER 3. PIPELINES

105

Previously, a large number of idle connections would build up during cloud event delivery. The
DisableKeepAlives: true parameter was added to the cloudeventclient config to fix this issue.
Thus, a new connection is set up for every cloud event.

Previously, the creds-init code would write empty files to the disk even if credentials of a given
type were not provided. This fix modifies the creds-init code to write files for only those
credentials that have actually been mounted from correctly annotated secrets.

3.1.5. Release notes for Red Hat OpenShift Pipelines Technology Preview 1.1

3.1.5.1. New features

Red Hat OpenShift Pipelines Technology Preview (TP) 1.1 is now available on OpenShift Container
Platform 4.5. Red Hat OpenShift Pipelines TP 1.1 is updated to support:

Tekton Pipelines 0.14.3

Tekton tkn CLI 0.11.0

Tekton Triggers 0.6.1

cluster tasks based on Tekton Catalog 0.14

In addition to the fixes and stability improvements, the following sections highlight what is new in Red
Hat OpenShift Pipelines 1.1.

3.1.5.1.1. Pipelines

Workspaces can now be used instead of pipeline resources. It is recommended that you use
workspaces in OpenShift Pipelines, as pipeline resources are difficult to debug, limited in scope,
and make tasks less reusable. For more details on workspaces, see the Understanding
OpenShift Pipelines section.

Workspace support for volume claim templates has been added:

The volume claim template for a pipeline run and task run can now be added as a volume
source for workspaces. The tekton-controller then creates a persistent volume claim (PVC)
using the template that is seen as a PVC for all task runs in the pipeline. Thus you do not
need to define the PVC configuration every time it binds a workspace that spans multiple
tasks.

Support to find the name of the PVC when a volume claim template is used as a volume
source is now available using variable substitution.

Support for improving audits:

The PipelineRun.Status field now contains the status of every task run in the pipeline and
the pipeline specification used to instantiate a pipeline run to monitor the progress of the
pipeline run.

Pipeline results have been added to the pipeline specification and PipelineRun status.

The TaskRun.Status field now contains the exact task specification used to instantiate the
TaskRun resource.

Support to apply the default parameter to conditions.

A task run created by referencing a cluster task now adds the tekton.dev/clusterTask label

OpenShift Container Platform 4.7 CI/CD

106

A task run created by referencing a cluster task now adds the tekton.dev/clusterTask label
instead of the tekton.dev/task label.

The kube config writer now adds the ClientKeyData and the ClientCertificateData
configurations in the resource structure to enable replacement of the pipeline resource type
cluster with the kubeconfig-creator task.

The names of the feature-flags and the config-defaults config maps are now customizable.

Support for the host network in the pod template used by the task run is now available.

An Affinity Assistant is now available to support node affinity in task runs that share workspace
volume. By default, this is disabled on OpenShift Pipelines.

The pod template has been updated to specify imagePullSecrets to identify secrets that the
container runtime should use to authorize container image pulls when starting a pod.

Support for emitting warning events from the task run controller if the controller fails to update
the task run.

Standard or recommended k8s labels have been added to all resources to identify resources
belonging to an application or component.

The Entrypoint process is now notified for signals and these signals are then propagated using
a dedicated PID Group of the Entrypoint process.

The pod template can now be set on a task level at runtime using task run specs.

Support for emitting Kubernetes events:

The controller now emits events for additional task run lifecycle events - taskrun started
and taskrun running.

The pipeline run controller now emits an event every time a pipeline starts.

In addition to the default Kubernetes events, support for cloud events for task runs is now
available. The controller can be configured to send any task run events, such as create, started,
and failed, as cloud events.

Support for using the $context.<task|taskRun|pipeline|pipelineRun>.name variable to
reference the appropriate name when in pipeline runs and task runs.

Validation for pipeline run parameters is now available to ensure that all the parameters
required by the pipeline are provided by the pipeline run. This also allows pipeline runs to provide
extra parameters in addition to the required parameters.

You can now specify tasks within a pipeline that will always execute before the pipeline exits,
either after finishing all tasks successfully or after a task in the pipeline failed, using the finally
field in the pipeline YAML file.

The git-clone cluster task is now available.

3.1.5.1.2. Pipelines CLI

Support for embedded trigger binding is now available to the tkn evenlistener describe
command.

Support to recommend subcommands and make suggestions if an incorrect subcommand is

CHAPTER 3. PIPELINES

107

Support to recommend subcommands and make suggestions if an incorrect subcommand is
used.

The tkn task describe command now auto selects the task if only one task is present in the
pipeline.

You can now start a task using default parameter values by specifying the --use-param-
defaults flag in the tkn task start command.

You can now specify a volume claim template for pipeline runs or task runs using the --
workspace option with the tkn pipeline start or tkn task start commands.

The tkn pipelinerun logs command now displays logs for the final tasks listed in the finally
section.

Interactive mode support has now been provided to the tkn task start command and the
describe subcommand for the following tkn resources: pipeline, pipelinerun, task, taskrun,
clustertask, and pipelineresource.

The tkn version command now displays the version of the triggers installed in the cluster.

The tkn pipeline describe command now displays parameter values and timeouts specified for
tasks used in the pipeline.

Support added for the --last option for the tkn pipelinerun describe and the tkn taskrun
describe commands to describe the most recent pipeline run or task run, respectively.

The tkn pipeline describe command now displays the conditions applicable to the tasks in the
pipeline.

You can now use the --no-headers and --all-namespaces flags with the tkn resource list
command.

3.1.5.1.3. Triggers

The following Common Expression Language (CEL) functions are now available:

parseURL to parse and extract portions of a URL

parseJSON to parse JSON value types embedded in a string in the payload field of the
deployment webhook

A new interceptor for webhooks from Bitbucket has been added.

Event listeners now display the Address URL and the Available status as additional fields
when listed with the kubectl get command.

trigger template params now use the $(tt.params.<paramName>) syntax instead of $(params.
<paramName>) to reduce the confusion between trigger template and resource templates
params.

You can now add tolerations in the EventListener CRD to ensure that event listeners are
deployed with the same configuration even if all nodes are tainted due to security or
management issues.

You can now add a Readiness Probe for event listener Deployment at URL/live.

OpenShift Container Platform 4.7 CI/CD

108

Support for embedding TriggerBinding specifications in event listener triggers is now added.

Trigger resources are now annotated with the recommended app.kubernetes.io labels.

3.1.5.2. Deprecated features

The following items are deprecated in this release:

The --namespace or -n flags for all cluster-wide commands, including the clustertask and
clustertriggerbinding commands, are deprecated. It will be removed in a future release.

The name field in triggers.bindings within an event listener has been deprecated in favor of
the ref field and will be removed in a future release.

Variable interpolation in trigger templates using $(params) has been deprecated in favor of
using $(tt.params) to reduce confusion with the pipeline variable interpolation syntax. The
$(params.<paramName>) syntax will be removed in a future release.

The tekton.dev/task label is deprecated on cluster tasks.

The TaskRun.Status.ResourceResults.ResourceRef field is deprecated and will be removed.

The tkn pipeline create, tkn task create, and tkn resource create -f subcommands have been
removed.

Namespace validation has been removed from tkn commands.

The default timeout of 1h and the -t flag for the tkn ct start command have been removed.

The s2i cluster task has been deprecated.

3.1.5.3. Known issues

Conditions do not support workspaces.

The --workspace option and the interactive mode is not supported for the tkn clustertask
start command.

Support of backward compatibility for $(params.<paramName>) syntax forces you to use
trigger templates with pipeline specific params as the trigger s webhook is unable to
differentiate trigger params from pipelines params.

Pipeline metrics report incorrect values when you run a promQL query for
tekton_taskrun_count and tekton_taskrun_duration_seconds_count.

pipeline runs and task runs continue to be in the Running and Running(Pending) states
respectively even when a non existing PVC name is given to a workspace.

3.1.5.4. Fixed issues

Previously, the tkn task delete <name> --trs command would delete both the task and cluster
task if the name of the task and cluster task were the same. With this fix, the command deletes
only the task runs that are created by the task <name>.

Previously the tkn pr delete -p <name> --keep 2 command would disregard the -p flag when
used with the --keep flag and would delete all the pipeline runs except the latest two. With this

CHAPTER 3. PIPELINES

109

fix, the command deletes only the pipeline runs that are created by the pipeline <name>, except
for the latest two.

The tkn triggertemplate describe output now displays resource templates in a table format
instead of YAML format.

Previously the buildah cluster task failed when a new user was added to a container. With this
fix, the issue has been resolved.

3.1.6. Release notes for Red Hat OpenShift Pipelines Technology Preview 1.0

3.1.6.1. New features

Red Hat OpenShift Pipelines Technology Preview (TP) 1.0 is now available on OpenShift Container
Platform 4.4. Red Hat OpenShift Pipelines TP 1.0 is updated to support:

Tekton Pipelines 0.11.3

Tekton tkn CLI 0.9.0

Tekton Triggers 0.4.0

cluster tasks based on Tekton Catalog 0.11

In addition to the fixes and stability improvements, the following sections highlight what is new in Red
Hat OpenShift Pipelines 1.0.

3.1.6.1.1. Pipelines

Support for v1beta1 API Version.

Support for an improved limit range. Previously, limit range was specified exclusively for the task
run and the pipeline run. Now there is no need to explicitly specify the limit range. The minimum
limit range across the namespace is used.

Support for sharing data between tasks using task results and task params.

Pipelines can now be configured to not overwrite the HOME environment variable and the
working directory of steps.

Similar to task steps, sidecars now support script mode.

You can now specify a different scheduler name in task run podTemplate resource.

Support for variable substitution using Star Array Notation.

Tekton controller can now be configured to monitor an individual namespace.

A new description field is now added to the specification of pipelines, tasks, cluster tasks,
resources, and conditions.

Addition of proxy parameters to Git pipeline resources.

3.1.6.1.2. Pipelines CLI

The describe subcommand is now added for the following tkn resources: EventListener,

OpenShift Container Platform 4.7 CI/CD

110

The describe subcommand is now added for the following tkn resources: EventListener,
Condition, TriggerTemplate, ClusterTask, and TriggerSBinding.

Support added for v1beta1 to the following resources along with backward compatibility for
v1alpha1: ClusterTask, Task, Pipeline, PipelineRun, and TaskRun.

The following commands can now list output from all namespaces using the --all-namespaces
flag option: tkn task list, tkn pipeline list, tkn taskrun list, tkn pipelinerun list
The output of these commands is also enhanced to display information without headers using
the --no-headers flag option.

You can now start a pipeline using default parameter values by specifying --use-param-
defaults flag in the tkn pipelines start command.

Support for workspace is now added to tkn pipeline start and tkn task start commands.

A new clustertriggerbinding command is now added with the following subcommands:
describe, delete, and list.

You can now directly start a pipeline run using a local or remote yaml file.

The describe subcommand now displays an enhanced and detailed output. With the addition of
new fields, such as description, timeout, param description, and sidecar status, the command
output now provides more detailed information about a specific tkn resource.

The tkn task log command now displays logs directly if only one task is present in the
namespace.

3.1.6.1.3. Triggers

Triggers can now create both v1alpha1 and v1beta1 pipeline resources.

Support for new Common Expression Language (CEL) interceptor function - compareSecret.
This function securely compares strings to secrets in CEL expressions.

Support for authentication and authorization at the event listener trigger level.

3.1.6.2. Deprecated features

The following items are deprecated in this release:

The environment variable $HOME, and variable workingDir in the Steps specification are
deprecated and might be changed in a future release. Currently in a Step container, the HOME
and workingDir variables are overwritten to /tekton/home and /workspace variables,
respectively.
In a later release, these two fields will not be modified, and will be set to values defined in the
container image and the Task YAML. For this release, use the disable-home-env-overwrite
and disable-working-directory-overwrite flags to disable overwriting of the HOME and
workingDir variables.

The following commands are deprecated and might be removed in the future release: tkn
pipeline create, tkn task create.

The -f flag with the tkn resource create command is now deprecated. It might be removed in
the future release.

The -t flag and the --timeout flag (with seconds format) for the tkn clustertask create

CHAPTER 3. PIPELINES

111

The -t flag and the --timeout flag (with seconds format) for the tkn clustertask create
command are now deprecated. Only duration timeout format is now supported, for example
1h30s. These deprecated flags might be removed in the future release.

3.1.6.3. Known issues

If you are upgrading from an older version of Red Hat OpenShift Pipelines, you must delete your
existing deployments before upgrading to Red Hat OpenShift Pipelines version 1.0. To delete an
existing deployment, you must first delete Custom Resources and then uninstall the Red Hat
OpenShift Pipelines Operator. For more details, see the uninstalling Red Hat OpenShift
Pipelines section.

Submitting the same v1alpha1 tasks more than once results in an error. Use the oc replace
command instead of oc apply when re-submitting a v1alpha1 task.

The buildah cluster task does not work when a new user is added to a container.
When the Operator is installed, the --storage-driver flag for the buildah cluster task is not
specified, therefore the flag is set to its default value. In some cases, this causes the storage
driver to be set incorrectly. When a new user is added, the incorrect storage-driver results in the
failure of the buildah cluster task with the following error:

useradd: /etc/passwd.8: lock file already used
useradd: cannot lock /etc/passwd; try again later.

As a workaround, manually set the --storage-driver flag value to overlay in the buildah-
task.yaml file:

1. Login to your cluster as a cluster-admin:

$ oc login -u <login> -p <password> https://openshift.example.com:6443

2. Use the oc edit command to edit buildah cluster task:

$ oc edit clustertask buildah

The current version of the buildah clustertask YAML file opens in the editor set by your
EDITOR environment variable.

3. Under the Steps field, locate the following command field:

 command: ['buildah', 'bud', '--format=$(params.FORMAT)', '--tls-
verify=$(params.TLSVERIFY)', '--layers', '-f', '$(params.DOCKERFILE)', '-t',
'$(resources.outputs.image.url)', '$(params.CONTEXT)']

4. Replace the command field with the following:

 command: ['buildah', '--storage-driver=overlay', 'bud', '--format=$(params.FORMAT)', '--
tls-verify=$(params.TLSVERIFY)', '--no-cache', '-f', '$(params.DOCKERFILE)', '-t',
'$(params.IMAGE)', '$(params.CONTEXT)']

5. Save the file and exit.

Alternatively, you can also modify the buildah cluster task YAML file directly on the web

OpenShift Container Platform 4.7 CI/CD

112

Alternatively, you can also modify the buildah cluster task YAML file directly on the web
console by navigating to Pipelines → Cluster Tasks → buildah. Select Edit Cluster Task from
the Actions menu and replace the command field as shown in the previous procedure.

3.1.6.4. Fixed issues

Previously, the DeploymentConfig task triggered a new deployment build even when an image
build was already in progress. This caused the deployment of the pipeline to fail. With this fix, the
deploy task command is now replaced with the oc rollout status command which waits for the
in-progress deployment to finish.

Support for APP_NAME parameter is now added in pipeline templates.

Previously, the pipeline template for Java S2I failed to look up the image in the registry. With
this fix, the image is looked up using the existing image pipeline resources instead of the user
provided IMAGE_NAME parameter.

All the OpenShift Pipelines images are now based on the Red Hat Universal Base Images (UBI).

Previously, when the pipeline was installed in a namespace other than tekton-pipelines, the tkn
version command displayed the pipeline version as unknown. With this fix, the tkn version
command now displays the correct pipeline version in any namespace.

The -c flag is no longer supported for the tkn version command.

Non-admin users can now list the cluster trigger bindings.

The event listener CompareSecret function is now fixed for the CEL Interceptor.

The list, describe, and start subcommands for tasks and cluster tasks now correctly display the
output in case a task and cluster task have the same name.

Previously, the OpenShift Pipelines Operator modified the privileged security context
constraints (SCCs), which caused an error during cluster upgrade. This error is now fixed.

In the tekton-pipelines namespace, the timeouts of all task runs and pipeline runs are now set
to the value of default-timeout-minutes field using the config map.

Previously, the pipelines section in the web console was not displayed for non-admin users. This
issue is now resolved.

3.2. UNDERSTANDING OPENSHIFT PIPELINES

Red Hat OpenShift Pipelines is a cloud-native, continuous integration and continuous delivery (CI/CD)
solution based on Kubernetes resources. It uses Tekton building blocks to automate deployments across
multiple platforms by abstracting away the underlying implementation details. Tekton introduces a
number of standard custom resource definitions (CRDs) for defining CI/CD pipelines that are portable
across Kubernetes distributions.

3.2.1. Key features

Red Hat OpenShift Pipelines is a serverless CI/CD system that runs pipelines with all the
required dependencies in isolated containers.

Red Hat OpenShift Pipelines are designed for decentralized teams that work on microservice-
based architecture.

CHAPTER 3. PIPELINES

113

1

2

Red Hat OpenShift Pipelines use standard CI/CD pipeline definitions that are easy to extend
and integrate with the existing Kubernetes tools, enabling you to scale on-demand.

You can use Red Hat OpenShift Pipelines to build images with Kubernetes tools such as
Source-to-Image (S2I), Buildah, Buildpacks, and Kaniko that are portable across any Kubernetes
platform.

You can use the OpenShift Container Platform Developer console to create Tekton resources,
view logs of pipeline runs, and manage pipelines in your OpenShift Container Platform
namespaces.

3.2.2. OpenShift Pipeline Concepts

This guide provides a detailed view of the various pipeline concepts.

3.2.2.1. Tasks

Tasks are the building blocks of a Pipeline and consists of sequentially executed steps. It is essentially a
function of inputs and outputs. A Task can run individually or as a part of the pipeline. Tasks are reusable
and can be used in multiple Pipelines.

Steps are a series of commands that are sequentially executed by the Task and achieve a specific goal,
such as building an image. Every Task runs as a pod, and each Step runs as a container within that pod.
Because Steps run within the same pod, they can access the same volumes for caching files, config
maps, and secrets.

The following example shows the apply-manifests Task.

The Task API version, v1beta1.

The type of Kubernetes object, Task.

apiVersion: tekton.dev/v1beta1 1
kind: Task 2
metadata:
 name: apply-manifests 3
spec: 4
 workspaces:
 - name: source
 params:
 - name: manifest_dir
 description: The directory in source that contains yaml manifests
 type: string
 default: "k8s"
 steps:
 - name: apply
 image: image-registry.openshift-image-registry.svc:5000/openshift/cli:latest
 workingDir: /workspace/source
 command: ["/bin/bash", "-c"]
 args:
 - |-
 echo Applying manifests in $(params.manifest_dir) directory
 oc apply -f $(params.manifest_dir)
 echo -----------------------------------

OpenShift Container Platform 4.7 CI/CD

114

3

4

1

2

3

4

5

6

The unique name of this Task.

The list of parameters and Steps in the Task and the workspace used by the Task.

This Task starts the pod and runs a container inside that pod using the specified image to run the
specified commands.

3.2.2.2. TaskRun

A TaskRun instantiates a Task for execution with specific inputs, outputs, and execution parameters on a
cluster. It can be invoked on its own or as part of a PipelineRun for each Task in a pipeline.

A Task consists of one or more Steps that execute container images, and each container image
performs a specific piece of build work. A TaskRun executes the Steps in a Task in the specified order,
until all Steps execute successfully or a failure occurs. A TaskRun is automatically created by a
PipelineRun for each Task in a Pipeline.

The following example shows a TaskRun that runs the apply-manifests Task with the relevant input
parameters:

TaskRun API version v1beta1.

Specifies the type of Kubernetes object. In this example, TaskRun.

Unique name to identify this TaskRun.

Definition of the TaskRun. For this TaskRun, the Task and the required workspace are specified.

Name of the Task reference used for this TaskRun. This TaskRun executes the apply-manifests
Task.

Workspace used by the TaskRun.

3.2.2.3. Pipelines

A Pipeline is a collection of Task resources arranged in a specific order of execution. They are executed
to construct complex workflows that automate the build, deployment and delivery of applications. You
can define a CI/CD workflow for your application using pipelines containing one or more tasks.

A Pipeline resource definition consists of a number of fields or attributes, which together enable the

apiVersion: tekton.dev/v1beta1 1
kind: TaskRun 2
metadata:
 name: apply-manifests-taskrun 3
spec: 4
 serviceAccountName: pipeline
 taskRef: 5
 kind: Task
 name: apply-manifests
 workspaces: 6
 - name: source
 persistentVolumeClaim:
 claimName: source-pvc

CHAPTER 3. PIPELINES

115

A Pipeline resource definition consists of a number of fields or attributes, which together enable the
pipeline to accomplish a specific goal. Each Pipeline resource definition must contain at least one Task
resource, which ingests specific inputs and produces specific outputs. The pipeline definition can also
optionally include Conditions, Workspaces, Parameters, or Resources depending on the application
requirements.

The following example shows the build-and-deploy pipeline, which builds an application image from a
Git repository using the buildah ClusterTask resource:

apiVersion: tekton.dev/v1beta1 1
kind: Pipeline 2
metadata:
 name: build-and-deploy 3
spec: 4
 workspaces: 5
 - name: shared-workspace
 params: 6
 - name: deployment-name
 type: string
 description: name of the deployment to be patched
 - name: git-url
 type: string
 description: url of the git repo for the code of deployment
 - name: git-revision
 type: string
 description: revision to be used from repo of the code for deployment
 default: "pipelines-1.4"
 - name: IMAGE
 type: string
 description: image to be built from the code
 tasks: 7
 - name: fetch-repository
 taskRef:
 name: git-clone
 kind: ClusterTask
 workspaces:
 - name: output
 workspace: shared-workspace
 params:
 - name: url
 value: $(params.git-url)
 - name: subdirectory
 value: ""
 - name: deleteExisting
 value: "true"
 - name: revision
 value: $(params.git-revision)
 - name: build-image 8
 taskRef:
 name: buildah
 kind: ClusterTask
 params:
 - name: TLSVERIFY
 value: "false"
 - name: IMAGE

OpenShift Container Platform 4.7 CI/CD

116

1

2

3

4

5

6

7

8

9

10

Pipeline API version v1beta1.

Specifies the type of Kubernetes object. In this example, Pipeline.

Unique name of this Pipeline.

Specifies the definition and structure of the Pipeline.

Workspaces used across all the Tasks in the Pipeline.

Parameters used across all the Tasks in the Pipeline.

Specifies the list of Tasks used in the Pipeline.

Task build-image, which uses the buildah ClusterTask to build application images from a given Git
repository.

Task apply-manifests, which uses a user-defined Task with the same name.

Specifies the sequence in which Tasks are run in a Pipeline. In this example, the apply-manifests
Task is run only after the build-image Task is completed.

3.2.2.4. PipelineRun

A PipelineRun is the running instance of a Pipeline. It instantiates a Pipeline for execution with specific
inputs, outputs, and execution parameters on a cluster. A corresponding TaskRun is created for each
Task automatically in the PipelineRun.

 value: $(params.IMAGE)
 workspaces:
 - name: source
 workspace: shared-workspace
 runAfter:
 - fetch-repository
 - name: apply-manifests 9
 taskRef:
 name: apply-manifests
 workspaces:
 - name: source
 workspace: shared-workspace
 runAfter: 10
 - build-image
 - name: update-deployment
 taskRef:
 name: update-deployment
 workspaces:
 - name: source
 workspace: shared-workspace
 params:
 - name: deployment
 value: $(params.deployment-name)
 - name: IMAGE
 value: $(params.IMAGE)
 runAfter:
 - apply-manifests

CHAPTER 3. PIPELINES

117

1

2

3

4

5

6

All the Tasks in the Pipeline are executed in the defined sequence until all Tasks are successful or a Task
fails. The status field tracks and stores the progress of each TaskRun in the PipelineRun for monitoring
and auditing purpose.

The following example shows a PipelineRun to run the build-and-deploy Pipeline with relevant
resources and parameters:

PipelineRun API version v1beta1.

Specifies the type of Kubernetes object. In this example, PipelineRun.

Unique name to identify this PipelineRun.

Name of the Pipeline to be run. In this example, build-and-deploy.

Specifies the list of parameters required to run the Pipeline.

Workspace used by the PipelineRun.

3.2.2.5. Workspaces

NOTE

It is recommended that you use Workspaces instead of PipelineResources in OpenShift
Pipelines, as PipelineResources are difficult to debug, limited in scope, and make Tasks
less reusable.

Workspaces declare shared storage volumes that a Task in a Pipeline needs at runtime to receive input
or provide output. Instead of specifying the actual location of the volumes, Workspaces enable you to

apiVersion: tekton.dev/v1beta1 1
kind: PipelineRun 2
metadata:
 name: build-deploy-api-pipelinerun 3
spec:
 pipelineRef:
 name: build-and-deploy 4
 params: 5
 - name: deployment-name
 value: vote-api
 - name: git-url
 value: https://github.com/openshift-pipelines/vote-api.git
 - name: IMAGE
 value: image-registry.openshift-image-registry.svc:5000/pipelines-tutorial/vote-api
 workspaces: 6
 - name: shared-workspace
 volumeClaimTemplate:
 spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 500Mi

OpenShift Container Platform 4.7 CI/CD

118

declare the filesystem or parts of the filesystem that would be required at runtime. A Task or Pipeline
declares the Workspace and you must provide the specific location details of the volume. It is then
mounted into that Workspace in a TaskRun or a PipelineRun. This separation of volume declaration from
runtime storage volumes makes the Tasks reusable, flexible, and independent of the user environment.

With Workspaces, you can:

Store Task inputs and outputs

Share data among Tasks

Use it as a mount point for credentials held in Secrets

Use it as a mount point for configurations held in ConfigMaps

Use it as a mount point for common tools shared by an organization

Create a cache of build artifacts that speed up jobs

You can specify Workspaces in the TaskRun or PipelineRun using:

A read-only ConfigMaps or Secret

An existing PersistentVolumeClaim shared with other Tasks

A PersistentVolumeClaim from a provided VolumeClaimTemplate

An emptyDir that is discarded when the TaskRun completes

The following example shows a code snippet of the build-and-deploy Pipeline, which declares a shared-
workspace Workspace for the build-image and apply-manifests Tasks as defined in the Pipeline.

apiVersion: tekton.dev/v1beta1
kind: Pipeline
metadata:
 name: build-and-deploy
spec:
 workspaces: 1
 - name: shared-workspace
 params:
...
 tasks: 2
 - name: build-image
 taskRef:
 name: buildah
 kind: ClusterTask
 params:
 - name: TLSVERIFY
 value: "false"
 - name: IMAGE
 value: $(params.IMAGE)
 workspaces: 3
 - name: source 4
 workspace: shared-workspace 5
 runAfter:
 - fetch-repository

CHAPTER 3. PIPELINES

119

1

2

3

4

5

6

List of Workspaces shared between the Tasks defined in the Pipeline. A Pipeline can define as
many Workspaces as required. In this example, only one Workspace named shared-workspace is
declared.

Definition of Tasks used in the Pipeline. This snippet defines two Tasks, build-image and apply-
manifests, which share a common Workspace.

List of Workspaces used in the build-image Task. A Task definition can include as many
Workspaces as it requires. However, it is recommended that a Task uses at most one writable
Workspace.

Name that uniquely identifies the Workspace used in the Task. This Task uses one Workspace
named source.

Name of the Pipeline Workspace used by the Task. Note that the Workspace source in turn uses
the Pipeline Workspace named shared-workspace.

List of Workspaces used in the apply-manifests Task. Note that this Task shares the source
Workspace with the build-image Task.

Workspaces help tasks share data, and allow you to specify one or more volumes that each task in the
pipeline requires during execution. You can create a persistent volume claim or provide a volume claim
template that creates a persistent volume claim for you.

The following code snippet of the build-deploy-api-pipelinerun PipelineRun uses a volume claim
template to create a persistent volume claim for defining the storage volume for the shared-
workspace Workspace used in the build-and-deploy Pipeline.

 - name: apply-manifests
 taskRef:
 name: apply-manifests
 workspaces: 6
 - name: source
 workspace: shared-workspace
 runAfter:
 - build-image
...

apiVersion: tekton.dev/v1beta1
kind: PipelineRun
metadata:
 name: build-deploy-api-pipelinerun
spec:
 pipelineRef:
 name: build-and-deploy
 params:
...

 workspaces: 1
 - name: shared-workspace 2
 volumeClaimTemplate: 3
 spec:
 accessModes:
 - ReadWriteOnce

OpenShift Container Platform 4.7 CI/CD

120

1

2

3

1

2

3

4

Specifies the list of Pipeline Workspaces for which volume binding will be provided in the
PipelineRun.

The name of the Workspace in the Pipeline for which the volume is being provided.

Specifies a volume claim template that creates a persistent volume claim to define the storage
volume for the workspace.

3.2.2.6. Triggers

Use Triggers in conjunction with pipelines to create a full-fledged CI/CD system where Kubernetes
resources define the entire CI/CD execution. Triggers capture the external events, such as a Git pull
request, and process them to extract key pieces of information. Mapping this event data to a set of
predefined parameters triggers a series of tasks that can then create and deploy Kubernetes resources
and instantiate the pipeline.

For example, you define a CI/CD workflow using Red Hat OpenShift Pipelines for your application. The
pipeline must start for any new changes to take effect in the application repository. Triggers automate
this process by capturing and processing any change event and by triggering a pipeline run that deploys
the new image with the latest changes.

Triggers consist of the following main resources that work together to form a reusable, decoupled, and
self-sustaining CI/CD system:

The TriggerBinding resource validates events, extracts the fields from an event payload, and
stores them as parameters.
The following example shows a code snippet of the TriggerBinding resource, which extracts
the Git repository information from the received event payload:

The API version of the TriggerBinding resource. In this example, v1alpha1.

Specifies the type of Kubernetes object. In this example, TriggerBinding.

Unique name to identify the TriggerBinding resource.

List of parameters which will be extracted from the received event payload and passed to
the TriggerTemplate resource. In this example, the Git repository URL, name, and revision
are extracted from the body of the event payload.

 resources:
 requests:
 storage: 500Mi

apiVersion: triggers.tekton.dev/v1alpha1 1
kind: TriggerBinding 2
metadata:
 name: vote-app 3
spec:
 params: 4
 - name: git-repo-url
 value: $(body.repository.url)
 - name: git-repo-name
 value: $(body.repository.name)
 - name: git-revision
 value: $(body.head_commit.id)

CHAPTER 3. PIPELINES

121

1

are extracted from the body of the event payload.

The TriggerTemplate resource acts as a standard for the way resources must be created. It
specifies the way parameterized data from the TriggerBinding resource should be used. A
trigger template receives input from the trigger binding, and then performs a series of actions
that results in creation of new pipeline resources, and initiation of a new pipeline run.
The following example shows a code snippet of a TriggerTemplate resource, which creates a
pipeline run using the Git repository information received from the TriggerBinding resource
you just created:

The API version of the TriggerTemplate resource. In this example, v1alpha1.

apiVersion: triggers.tekton.dev/v1alpha1 1
kind: TriggerTemplate 2
metadata:
 name: vote-app 3
spec:
 params: 4
 - name: git-repo-url
 description: The git repository url
 - name: git-revision
 description: The git revision
 default: pipelines-1.4
 - name: git-repo-name
 description: The name of the deployment to be created / patched

 resourcetemplates: 5
 - apiVersion: tekton.dev/v1beta1
 kind: PipelineRun
 metadata:
 name: build-deploy-$(tt.params.git-repo-name)-$(uid)
 spec:
 serviceAccountName: pipeline
 pipelineRef:
 name: build-and-deploy
 params:
 - name: deployment-name
 value: $(tt.params.git-repo-name)
 - name: git-url
 value: $(tt.params.git-repo-url)
 - name: git-revision
 value: $(tt.params.git-revision)
 - name: IMAGE
 value: image-registry.openshift-image-registry.svc:5000/pipelines-
tutorial/$(tt.params.git-repo-name)
 workspaces:
 - name: shared-workspace
 volumeClaimTemplate:
 spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 500Mi

OpenShift Container Platform 4.7 CI/CD

122

2

3

4

5

1

2

3

4

5

6

Specifies the type of Kubernetes object. In this example, TriggerTemplate.

Unique name to identify the TriggerTemplate resource.

Parameters supplied by the TriggerBinding or EventListerner resources.

List of templates that specify the way resources must be created using the parameters
received through the TriggerBinding or EventListener resources.

The Trigger resource connects the TriggerBinding and TriggerTemplate resources, and this
Trigger resource is referenced in the EventListener specification.
The following example shows a code snippet of a Trigger resource, named vote-trigger that
connects the TriggerBinding and TriggerTemplate resources.

The API version of the Trigger resource. In this example, v1alpha1.

Specifies the type of Kubernetes object. In this example, Trigger.

Unique name to identify the Trigger resource.

Service account name to be used.

Name of the TriggerBinding resource to be connected to the TriggerTemplate resource.

Name of the TriggerTemplate resource to be connected to the TriggerBinding resource.

The EventListener resource provides an endpoint, or an event sink, that listens for incoming
HTTP-based events with a JSON payload. It extracts event parameters from each
TriggerBinding resource, and then processes this data to create Kubernetes resources as
specified by the corresponding TriggerTemplate resource. The EventListener resource also
performs lightweight event processing or basic filtering on the payload using event
interceptors, which identify the type of payload and optionally modify it. Currently, pipeline
triggers support four types of interceptors: Webhook Interceptors, GitHub Interceptors, GitLab
Interceptors, and Common Expression Language (CEL) Interceptors .
The following example shows an EventListener resource, which references the Trigger
resource named vote-trigger.

apiVersion: triggers.tekton.dev/v1alpha1 1
kind: Trigger 2
metadata:
 name: vote-trigger 3
spec:
 serviceAccountName: pipeline 4
 bindings:
 - ref: vote-app 5
 template: 6
 ref: vote-app

apiVersion: triggers.tekton.dev/v1alpha1 1
kind: EventListener 2
metadata:
 name: vote-app 3
spec:

CHAPTER 3. PIPELINES

123

1

2

3

4

5

The API version of the EventListener resource. In this example, v1alpha1.

Specifies the type of Kubernetes object. In this example, EventListener.

Unique name to identify the EventListener resource.

Service account name to be used.

Name of the Trigger resource referenced by the EventListener resource.

Triggers in Red Hat OpenShift Pipelines support both HTTP (insecure) and HTTPS (secure HTTP)
connections to the Eventlistener resource. With the secure HTTPS connection, you get end-to-end
secure connection within and outside the cluster. After you create a namespace, you can enable this
secure HTTPS connection for the Eventlistener resource by adding the operator.tekton.dev/enable-
annotation=enabled label to the namespace, and then creating a Trigger resource and a secured route
using re-encrypt TLS termination.

3.2.3. Additional resources

For information on installing pipelines, see Installing OpenShift Pipelines .

For more details on creating custom CI/CD solutions, see Creating applications with CI/CD
Pipelines.

For more details on re-encrypt TLS termination, see Re-encryption Termination.

For more details on secured routes, see the Secured routes section.

3.3. INSTALLING OPENSHIFT PIPELINES

This guide walks cluster administrators through the process of installing the Red Hat OpenShift
Pipelines Operator to an OpenShift Container Platform cluster.

Prerequisites

You have access to an OpenShift Container Platform cluster using an account with cluster-
admin permissions.

You have installed oc CLI.

You have installed OpenShift Pipelines (tkn) CLI on your local system.

3.3.1. Installing the Red Hat OpenShift Pipelines Operator in web console

You can install Red Hat OpenShift Pipelines using the Operator listed in the OpenShift Container
Platform OperatorHub. When you install the Red Hat OpenShift Pipelines Operator, the custom
resources (CRs) required for the pipelines configuration are automatically installed along with the
Operator.

The default Operator custom resource definition (CRD) config.operator.tekton.dev is now replaced by
tektonconfigs.operator.tekton.dev. In addition, the Operator provides the following additional CRDs to

 serviceAccountName: pipeline 4
 triggers:
 - triggerRef: vote-trigger 5

OpenShift Container Platform 4.7 CI/CD

124

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/cicd/#installing-pipelines
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/cicd/#creating-applications-with-cicd-pipelines
https://docs.openshift.com/container-platform/3.11/architecture/networking/routes.html#re-encryption-termination
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/networking/#secured-routes
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/cli_tools/#installing-tkn

individually manage OpenShift Pipelines components: tektonpipelines.operator.tekton.dev,
tektontriggers.operator.tekton.dev and tektonaddons.operator.tekton.dev.

If you have OpenShift Pipelines already installed on your cluster, the existing installation is seamlessly
upgraded. The Operator will replace the instance of config.operator.tekton.dev on your cluster with an
instance of tektonconfigs.operator.tekton.dev and additional objects of the other CRDs as necessary.

WARNING

If you manually changed your existing installation, such as, changing the target
namespace in the config.operator.tekton.dev CRD instance by making changes to
the resource name - cluster field, then the upgrade path is not smooth. In such
cases, the recommended workflow is to uninstall your installation and reinstall the
Red Hat OpenShift Pipelines Operator.

The Red Hat OpenShift Pipelines Operator now provides the option to choose the components that you
want to install by specifying profiles as part of the TektonConfig CR. The TektonConfig CR is
automatically installed when the Operator is installed. The supported profiles are:

Basic: This installs only Tekton pipelines.

Default: This installs Tekton pipeline and Tekton triggers.

All: This is the default profile used when the TektonConfig CR is installed. This profile installs all
of the Tekton components: Tekton Pipelines, Tekton Triggers, Tekton Addons(which include
ClusterTasks, ClusterTriggerBindings, ConsoleCLIDownload, ConsoleQuickStart and
ConsoleYAMLSample resources).

Procedure

1. In the Administrator perspective of the web console, navigate to Operators → OperatorHub.

2. Use the Filter by keyword box to search for Red Hat OpenShift Pipelines Operator in the
catalog. Click the Red Hat OpenShift Pipelines Operator tile.

3. Read the brief description about the Operator on the Red Hat OpenShift Pipelines Operator
page. Click Install.

4. On the Install Operator page:

a. Select All namespaces on the cluster (default) for the Installation Mode. This mode
installs the Operator in the default openshift-operators namespace, which enables the
Operator to watch and be made available to all namespaces in the cluster.

b. Select Automatic for the Approval Strategy. This ensures that the future upgrades to the
Operator are handled automatically by the Operator Lifecycle Manager (OLM). If you select
the Manual approval strategy, OLM creates an update request. As a cluster administrator,
you must then manually approve the OLM update request to update the Operator to the
new version.

c. Select an Update Channel.

The stable channel enables installation of the latest stable and supported release of the

CHAPTER 3. PIPELINES

125

1

2

3

4

The stable channel enables installation of the latest stable and supported release of the
Red Hat OpenShift Pipelines Operator.

The preview channel enables installation of the latest preview version of the Red Hat
OpenShift Pipelines Operator, which may contain features that are not yet available
from the stable channel and is not supported.

5. Click Install. You will see the Operator listed on the Installed Operators page.

NOTE

The Operator is installed automatically into the openshift-operators namespace.

6. Verify that the Status is set to Succeeded Up to date to confirm successful installation of Red
Hat OpenShift Pipelines Operator.

3.3.2. Installing the OpenShift Pipelines Operator using the CLI

You can install Red Hat OpenShift Pipelines Operator from the OperatorHub using the CLI.

Procedure

1. Create a Subscription object YAML file to subscribe a namespace to the Red Hat OpenShift
Pipelines Operator, for example, sub.yaml:

Example Subscription

Specify the channel name from where you want to subscribe the Operator

Name of the Operator to subscribe to.

Name of the CatalogSource that provides the Operator.

Namespace of the CatalogSource. Use openshift-marketplace for the default
OperatorHub CatalogSources.

2. Create the Subscription object:

$ oc apply -f sub.yaml

The Red Hat OpenShift Pipelines Operator is now installed in the default target namespace
openshift-operators.

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: openshift-pipelines-operator
 namespace: openshift-operators
spec:
 channel: <channel name> 1
 name: openshift-pipelines-operator-rh 2
 source: redhat-operators 3
 sourceNamespace: openshift-marketplace 4

OpenShift Container Platform 4.7 CI/CD

126

3.3.3. Red Hat OpenShift Pipelines Operator in a restricted environment

The Red Hat OpenShift Pipelines Operator enables support for installation of pipelines in a restricted
network environment.

The Operator installs a proxy webhook that sets the proxy environment variables in the containers of
the pod created by tekton-controllers based on the cluster proxy object. It also sets the proxy
environment variables in the TektonPipelines, TektonTriggers, Controllers, Webhooks, and Operator
Proxy Webhook resources.

By default, the proxy webhook is disabled for the openshift-pipelines namespace. To disable it for any
other namespace, you can add the operator.tekton.dev/disable-proxy: true label to the namespace
object.

3.3.4. Additional resources

You can learn more about installing Operators on OpenShift Container Platform in the adding
Operators to a cluster section.

For more information on using pipelines in a restricted environment see:

Mirroring images to run pipelines in a restricted environment

Configuring Samples Operator for a restricted cluster

Creating a cluster with a mirrored registry

3.4. UNINSTALLING OPENSHIFT PIPELINES

Uninstalling the Red Hat OpenShift Pipelines Operator is a two-step process:

1. Delete the Custom Resources (CRs) that were added by default when you installed the Red Hat
OpenShift Pipelines Operator.

2. Uninstall the Red Hat OpenShift Pipelines Operator.

Uninstalling only the Operator will not remove the Red Hat OpenShift Pipelines components created by
default when the Operator is installed.

3.4.1. Deleting the Red Hat OpenShift Pipelines components and Custom Resources

Delete the Custom Resources (CRs) created by default during installation of the Red Hat OpenShift
Pipelines Operator.

Procedure

1. In the Administrator perspective of the web console, navigate to Administration → Custom
Resource Definition.

2. Type config.operator.tekton.dev in the Filter by name box to search for the Red Hat
OpenShift Pipelines Operator CRs.

3. Click CRD Config to see the Custom Resource Definition Details page.

4. Click the Actions drop-down menu and select Delete Custom Resource Definition.

NOTE

CHAPTER 3. PIPELINES

127

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/operators/#olm-adding-operators-to-a-cluster
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/cicd/#op-mirroring-images-to-run-pipelines-in-restricted-environment_creating-applications-with-cicd-pipelines
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/images/#samples-operator-restricted-network-install
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/installing/#installation-about-mirror-registry_installing-mirroring-installation-images

NOTE

Deleting the CRs will delete the Red Hat OpenShift Pipelines components, and
all the Tasks and Pipelines on the cluster will be lost.

5. Click Delete to confirm the deletion of the CRs.

3.4.2. Uninstalling the Red Hat OpenShift Pipelines Operator

Procedure

1. From the Operators → OperatorHub page, use the Filter by keyword box to search for Red
Hat OpenShift Pipelines Operator.

2. Click the OpenShift Pipelines Operator tile. The Operator tile indicates it is installed.

3. In the OpenShift Pipelines Operator descriptor page, click Uninstall.

Additional resources

You can learn more about uninstalling Operators on OpenShift Container Platform in the
deleting Operators from a cluster section.

3.5. CREATING CI/CD SOLUTIONS FOR APPLICATIONS USING
OPENSHIFT PIPELINES

With Red Hat OpenShift Pipelines, you can create a customized CI/CD solution to build, test, and deploy
your application.

To create a full-fledged, self-serving CI/CD pipeline for an application, perform the following tasks:

Create custom tasks, or install existing reusable tasks.

Create and define the delivery pipeline for your application.

Provide a storage volume or filesystem that is attached to a workspace for the pipeline
execution, using one of the following approaches:

Specify a volume claim template that creates a persistent volume claim

Specify a persistent volume claim

Create a PipelineRun object to instantiate and invoke the pipeline.

Add triggers to capture events in the source repository.

This section uses the pipelines-tutorial example to demonstrate the preceding tasks. The example uses
a simple application which consists of:

A front-end interface, pipelines-vote-ui, with the source code in the pipelines-vote-ui Git
repository.

A back-end interface, pipelines-vote-api, with the source code in the pipelines-vote-api Git
repository.

OpenShift Container Platform 4.7 CI/CD

128

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/operators/#olm-deleting-operators-from-a-cluster
https://github.com/openshift/pipelines-vote-ui/tree/pipelines-1.4
https://github.com/openshift/pipelines-vote-api/tree/pipelines-1.4

The apply-manifests and update-deployment tasks in the pipelines-tutorial Git repository.

3.5.1. Prerequisites

You have access to an OpenShift Container Platform cluster.

You have installed OpenShift Pipelines using the Red Hat OpenShift Pipelines Operator listed in
the OpenShift OperatorHub. Once installed, it is applicable to the entire cluster.

You have installed OpenShift Pipelines CLI.

You have forked the front-end pipelines-vote-ui and back-end pipelines-vote-api Git
repositories using your GitHub ID, and have administrator access to these repositories.

Optional: You have cloned the pipelines-tutorial Git repository.

3.5.2. Creating a project and checking your pipeline service account

Procedure

1. Log in to your OpenShift Container Platform cluster:

$ oc login -u <login> -p <password> https://openshift.example.com:6443

2. Create a project for the sample application. For this example workflow, create the pipelines-
tutorial project:

$ oc new-project pipelines-tutorial

NOTE

If you create a project with a different name, be sure to update the resource
URLs used in the example with your project name.

3. View the pipeline service account:
Red Hat OpenShift Pipelines Operator adds and configures a service account named pipeline
that has sufficient permissions to build and push an image. This service account is used by the
PipelineRun object.

$ oc get serviceaccount pipeline

3.5.3. Creating pipeline tasks

Procedure

1. Install the apply-manifests and update-deployment task resources from the pipelines-
tutorial repository, which contains a list of reusable tasks for pipelines:

$ oc create -f https://raw.githubusercontent.com/openshift/pipelines-tutorial/pipelines-
1.4/01_pipeline/01_apply_manifest_task.yaml
$ oc create -f https://raw.githubusercontent.com/openshift/pipelines-tutorial/pipelines-
1.4/01_pipeline/02_update_deployment_task.yaml

CHAPTER 3. PIPELINES

129

https://github.com/openshift/pipelines-tutorial/tree/pipelines-1.4
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/cicd/#installing-pipelines
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/cli_tools/#installing-tkn
https://github.com/openshift/pipelines-vote-ui/tree/pipelines-1.4
https://github.com/openshift/pipelines-vote-api/tree/pipelines-1.4
https://github.com/openshift/pipelines-tutorial/tree/pipelines-1.4

2. Use the tkn task list command to list the tasks you created:

The output verifies that the apply-manifests and update-deployment task resources were
created:

3. Use the tkn clustertasks list command to list the Operator-installed additional cluster tasks
such as buildah and s2i-python:

NOTE

To use the buildah cluster task in a restricted environment, you must ensure that
the Dockerfile uses an internal image stream as the base image.

The output lists the Operator-installed ClusterTask resources:

3.5.4. Assembling a pipeline

A pipeline represents a CI/CD flow and is defined by the tasks to be executed. It is designed to be
generic and reusable in multiple applications and environments.

A pipeline specifies how the tasks interact with each other and their order of execution using the from
and runAfter parameters. It uses the workspaces field to specify one or more volumes that each task in
the pipeline requires during execution.

In this section, you will create a pipeline that takes the source code of the application from GitHub, and
then builds and deploys it on OpenShift Container Platform.

The pipeline performs the following tasks for the back-end application pipelines-vote-api and front-
end application pipelines-vote-ui:

Clones the source code of the application from the Git repository by referring to the git-url and
git-revision parameters.

Builds the container image using the buildah cluster task.

Pushes the image to the internal image registry by referring to the image parameter.

Deploys the new image on OpenShift Container Platform by using the apply-manifests and
update-deployment tasks.

$ tkn task list

NAME DESCRIPTION AGE
apply-manifests 1 minute ago
update-deployment 48 seconds ago

$ tkn clustertasks list

NAME DESCRIPTION AGE
buildah 1 day ago
git-clone 1 day ago
s2i-python 1 day ago
tkn 1 day ago

OpenShift Container Platform 4.7 CI/CD

130

Procedure

1. Copy the contents of the following sample pipeline YAML file and save it:

apiVersion: tekton.dev/v1beta1
kind: Pipeline
metadata:
 name: build-and-deploy
spec:
 workspaces:
 - name: shared-workspace
 params:
 - name: deployment-name
 type: string
 description: name of the deployment to be patched
 - name: git-url
 type: string
 description: url of the git repo for the code of deployment
 - name: git-revision
 type: string
 description: revision to be used from repo of the code for deployment
 default: "pipelines-1.4"
 - name: IMAGE
 type: string
 description: image to be built from the code
 tasks:
 - name: fetch-repository
 taskRef:
 name: git-clone
 kind: ClusterTask
 workspaces:
 - name: output
 workspace: shared-workspace
 params:
 - name: url
 value: $(params.git-url)
 - name: subdirectory
 value: ""
 - name: deleteExisting
 value: "true"
 - name: revision
 value: $(params.git-revision)
 - name: build-image
 taskRef:
 name: buildah
 kind: ClusterTask
 params:
 - name: IMAGE
 value: $(params.IMAGE)
 workspaces:
 - name: source
 workspace: shared-workspace
 runAfter:
 - fetch-repository
 - name: apply-manifests
 taskRef:

CHAPTER 3. PIPELINES

131

The pipeline definition abstracts away the specifics of the Git source repository and image
registries. These details are added as params when a pipeline is triggered and executed.

2. Create the pipeline:

$ oc create -f <pipeline-yaml-file-name.yaml>

Alternatively, you can also execute the YAML file directly from the Git repository:

3. Use the tkn pipeline list command to verify that the pipeline is added to the application:

$ tkn pipeline list

The output verifies that the build-and-deploy pipeline was created:

NAME AGE LAST RUN STARTED DURATION STATUS
build-and-deploy 1 minute ago --- --- --- ---

3.5.5. Mirroring images to run pipelines in a restricted environment

To run OpenShift Pipelines in a disconnected cluster or a cluster provisioned in a restricted
environment, ensure that either the Samples Operator is configured for a restricted network, or a cluster
administrator has created a cluster with a mirrored registry.

The following procedure uses the pipelines-tutorial example to create a pipeline for an application in a
restricted environment using a cluster with a mirrored registry. To ensure that the pipelines-tutorial
example works in a restricted environment, you must mirror the respective builder images from the
mirror registry for the front-end interface, pipelines-vote-ui; back-end interface, pipelines-vote-api;
and the cli.

Procedure

1. Mirror the builder image from the mirror registry for the front-end interface, pipelines-vote-ui.

 name: apply-manifests
 workspaces:
 - name: source
 workspace: shared-workspace
 runAfter:
 - build-image
 - name: update-deployment
 taskRef:
 name: update-deployment
 params:
 - name: deployment
 value: $(params.deployment-name)
 - name: IMAGE
 value: $(params.IMAGE)
 runAfter:
 - apply-manifests

$ oc create -f https://raw.githubusercontent.com/openshift/pipelines-tutorial/pipelines-
1.4/01_pipeline/04_pipeline.yaml

OpenShift Container Platform 4.7 CI/CD

132

a. Verify that the required images tag is not imported:

Example output

b. Mirror the supported image tag to the private registry:

c. Import the image:

You must periodically re-import the image. The --scheduled flag enables automatic re-
import of the image.

d. Verify that the images with the given tag have been imported:

Example output

$ oc describe imagestream python -n openshift

Name: python
Namespace: openshift
[...]

3.8-ubi8 (latest)
 tagged from registry.redhat.io/ubi8/python-38:latest
 prefer registry pullthrough when referencing this tag

 Build and run Python 3.8 applications on UBI 8. For more information about using this
builder image, including OpenShift considerations, see https://github.com/sclorg/s2i-
python-container/blob/master/3.8/README.md.
 Tags: builder, python
 Supports: python:3.8, python
 Example Repo: https://github.com/sclorg/django-ex.git

[...]

$ oc image mirror registry.redhat.io/ubi8/python-38:latest <mirror-registry>:
<port>/ubi8/python-38

$ oc tag <mirror-registry>:<port>/ubi8/python-38 python:latest --scheduled -n openshift

$ oc describe imagestream python -n openshift

Name: python
Namespace: openshift
[...]

latest
 updates automatically from registry <mirror-registry>:<port>/ubi8/python-38

 * <mirror-registry>:<port>/ubi8/python-
38@sha256:3ee3c2e70251e75bfeac25c0c33356add9cc4abcbc9c51d858f39e4dc29c5f58

[...]

CHAPTER 3. PIPELINES

133

2. Mirror the builder image from the mirror registry for the back-end interface, pipelines-vote-api.

a. Verify that the required images tag is not imported:

Example output

b. Mirror the supported image tag to the private registry:

c. Import the image:

You must periodically re-import the image. The --scheduled flag enables automatic re-
import of the image.

d. Verify that the images with the given tag have been imported:

Example output

$ oc describe imagestream golang -n openshift

Name: golang
Namespace: openshift
[...]

1.14.7-ubi8 (latest)
 tagged from registry.redhat.io/ubi8/go-toolset:1.14.7
 prefer registry pullthrough when referencing this tag

 Build and run Go applications on UBI 8. For more information about using this builder
image, including OpenShift considerations, see https://github.com/sclorg/golang-
container/blob/master/README.md.
 Tags: builder, golang, go
 Supports: golang
 Example Repo: https://github.com/sclorg/golang-ex.git

[...]

$ oc image mirror registry.redhat.io/ubi8/go-toolset:1.14.7 <mirror-registry>:
<port>/ubi8/go-toolset

$ oc tag <mirror-registry>:<port>/ubi8/go-toolset golang:latest --scheduled -n openshift

$ oc describe imagestream golang -n openshift

Name: golang
Namespace: openshift
[...]

latest
 updates automatically from registry <mirror-registry>:<port>/ubi8/go-toolset

 * <mirror-registry>:<port>/ubi8/go-
toolset@sha256:59a74d581df3a2bd63ab55f7ac106677694bf612a1fe9e7e3e1487f55c421

OpenShift Container Platform 4.7 CI/CD

134

3. Mirror the builder image from the mirror registry for the cli.

a. Verify that the required images tag is not imported:

Example output

b. Mirror the supported image tag to the private registry:

c. Import the image:

You must periodically re-import the image. The --scheduled flag enables automatic re-
import of the image.

d. Verify that the images with the given tag have been imported:

Example output

b37

[...]

$ oc describe imagestream cli -n openshift

Name: cli
Namespace: openshift
[...]

latest
 updates automatically from registry quay.io/openshift-release-dev/ocp-v4.0-art-
dev@sha256:65c68e8c22487375c4c6ce6f18ed5485915f2bf612e41fef6d41cbfcdb143551

 * quay.io/openshift-release-dev/ocp-v4.0-art-
dev@sha256:65c68e8c22487375c4c6ce6f18ed5485915f2bf612e41fef6d41cbfcdb143551

[...]

$ oc image mirror quay.io/openshift-release-dev/ocp-v4.0-art-
dev@sha256:65c68e8c22487375c4c6ce6f18ed5485915f2bf612e41fef6d41cbfcdb143551
<mirror-registry>:<port>/openshift-release-dev/ocp-v4.0-art-dev:latest

$ oc tag <mirror-registry>:<port>/openshift-release-dev/ocp-v4.0-art-dev cli:latest --
scheduled -n openshift

$ oc describe imagestream cli -n openshift

Name: cli
Namespace: openshift
[...]

latest
 updates automatically from registry <mirror-registry>:<port>/openshift-release-dev/ocp-
v4.0-art-dev

CHAPTER 3. PIPELINES

135

Additional resources

Configuring Samples Operator for a restricted cluster

Creating a cluster with a mirrored registry

3.5.6. Running a pipeline

A PipelineRun resource starts a pipeline and ties it to the Git and image resources that should be used
for the specific invocation. It automatically creates and starts the TaskRun resources for each task in
the pipeline.

Procedure

1. Start the pipeline for the back-end application:

The previous command uses a volume claim template, which creates a persistent volume claim
for the pipeline execution.

2. To track the progress of the pipeline run, enter the following command::

The <pipelinerun_id> in the above command is the ID for the PipelineRun that was returned in
the output of the previous command.

3. Start the pipeline for the front-end application:

4. To track the progress of the pipeline run, enter the following command:

 * <mirror-registry>:<port>/openshift-release-dev/ocp-v4.0-art-
dev@sha256:65c68e8c22487375c4c6ce6f18ed5485915f2bf612e41fef6d41cbfcdb143551

[...]

$ tkn pipeline start build-and-deploy \
 -w name=shared-
workspace,volumeClaimTemplateFile=https://raw.githubusercontent.com/openshift/pipelines-
tutorial/pipelines-1.4/01_pipeline/03_persistent_volume_claim.yaml \
 -p deployment-name=pipelines-vote-api \
 -p git-url=https://github.com/openshift/pipelines-vote-api.git \
 -p IMAGE=image-registry.openshift-image-registry.svc:5000/pipelines-tutorial/pipelines-
vote-api

$ tkn pipelinerun logs <pipelinerun_id> -f

$ tkn pipeline start build-and-deploy \
 -w name=shared-
workspace,volumeClaimTemplateFile=https://raw.githubusercontent.com/openshift/pipelines-
tutorial/pipelines-1.4/01_pipeline/03_persistent_volume_claim.yaml \
 -p deployment-name=pipelines-vote-ui \
 -p git-url=https://github.com/openshift/pipelines-vote-ui.git \
 -p IMAGE=image-registry.openshift-image-registry.svc:5000/pipelines-tutorial/pipelines-
vote-ui

OpenShift Container Platform 4.7 CI/CD

136

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/images/#samples-operator-restricted-network-install
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/installing/#installation-about-mirror-registry_installing-mirroring-installation-images

The <pipelinerun_id> in the above command is the ID for the PipelineRun that was returned in
the output of the previous command.

5. After a few minutes, use tkn pipelinerun list command to verify that the pipeline ran
successfully by listing all the pipeline runs:

The output lists the pipeline runs:

6. Get the application route:

Note the output of the previous command. You can access the application using this route.

7. To rerun the last pipeline run, using the pipeline resources and service account of the previous
pipeline, run:

3.5.7. Adding triggers to a pipeline

Triggers enable pipelines to respond to external GitHub events, such as push events and pull requests.
After you assemble and start a pipeline for the application, add the TriggerBinding, TriggerTemplate,
Trigger, and EventListener resources to capture the GitHub events.

Procedure

1. Copy the content of the following sample TriggerBinding YAML file and save it:

2. Create the TriggerBinding resource:

Alternatively, you can create the TriggerBinding resource directly from the pipelines-tutorial

$ tkn pipelinerun logs <pipelinerun_id> -f

$ tkn pipelinerun list

 NAME STARTED DURATION STATUS
 build-and-deploy-run-xy7rw 1 hour ago 2 minutes Succeeded
 build-and-deploy-run-z2rz8 1 hour ago 19 minutes Succeeded

$ oc get route pipelines-vote-ui --template='http://{{.spec.host}}'

$ tkn pipeline start build-and-deploy --last

apiVersion: triggers.tekton.dev/v1alpha1
kind: TriggerBinding
metadata:
 name: vote-app
spec:
 params:
 - name: git-repo-url
 value: $(body.repository.url)
 - name: git-repo-name
 value: $(body.repository.name)
 - name: git-revision
 value: $(body.head_commit.id)

$ oc create -f <triggerbinding-yaml-file-name.yaml>

CHAPTER 3. PIPELINES

137

Alternatively, you can create the TriggerBinding resource directly from the pipelines-tutorial
Git repository:

3. Copy the content of the following sample TriggerTemplate YAML file and save it:

The template specifies a volume claim template to create a persistent volume claim for defining
the storage volume for the workspace. Therefore, you do not need to create a persistent volume
claim to provide data storage.

$ oc create -f https://raw.githubusercontent.com/openshift/pipelines-tutorial/pipelines-
1.4/03_triggers/01_binding.yaml

apiVersion: triggers.tekton.dev/v1alpha1
kind: TriggerTemplate
metadata:
 name: vote-app
spec:
 params:
 - name: git-repo-url
 description: The git repository url
 - name: git-revision
 description: The git revision
 default: pipelines-1.4
 - name: git-repo-name
 description: The name of the deployment to be created / patched

 resourcetemplates:
 - apiVersion: tekton.dev/v1beta1
 kind: PipelineRun
 metadata:
 generateName: build-deploy-$(tt.params.git-repo-name)-
 spec:
 serviceAccountName: pipeline
 pipelineRef:
 name: build-and-deploy
 params:
 - name: deployment-name
 value: $(tt.params.git-repo-name)
 - name: git-url
 value: $(tt.params.git-repo-url)
 - name: git-revision
 value: $(tt.params.git-revision)
 - name: IMAGE
 value: image-registry.openshift-image-registry.svc:5000/pipelines-
tutorial/$(tt.params.git-repo-name)
 workspaces:
 - name: shared-workspace
 volumeClaimTemplate:
 spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 500Mi

OpenShift Container Platform 4.7 CI/CD

138

4. Create the TriggerTemplate resource:

Alternatively, you can create the TriggerTemplate resource directly from the pipelines-tutorial
Git repository:

5. Copy the contents of the following sample Trigger YAML file and save it:

6. Create the Trigger resource:

Alternatively, you can create the Trigger resource directly from the pipelines-tutorial Git
repository:

7. Copy the contents of the following sample EventListener YAML file and save it:

Alternatively, if you have not defined a trigger custom resource, add the binding and template
spec to the EventListener YAML file, instead of referring to the name of the trigger:

$ oc create -f <triggertemplate-yaml-file-name.yaml>

$ oc create -f https://raw.githubusercontent.com/openshift/pipelines-tutorial/pipelines-
1.4/03_triggers/02_template.yaml

apiVersion: triggers.tekton.dev/v1alpha1
kind: Trigger
metadata:
 name: vote-trigger
spec:
 serviceAccountName: pipeline
 bindings:
 - ref: vote-app
 template:
 ref: vote-app

$ oc create -f <trigger-yaml-file-name.yaml>

$ oc create -f https://raw.githubusercontent.com/openshift/pipelines-tutorial/pipelines-
1.4/03_triggers/03_trigger.yaml

apiVersion: triggers.tekton.dev/v1alpha1
kind: EventListener
metadata:
 name: vote-app
spec:
 serviceAccountName: pipeline
 triggers:
 - triggerRef: vote-trigger

apiVersion: triggers.tekton.dev/v1alpha1
kind: EventListener
metadata:
 name: vote-app
spec:
 serviceAccountName: pipeline

CHAPTER 3. PIPELINES

139

8. Create the EventListener resource by performing the following steps:

To create an EventListener resource using a secure HTTPS connection:

a. Add a label to enable the secure HTTPS connection to the Eventlistener resource:

b. Create the EventListener resource:

Alternatively, you can create the EvenListener resource directly from the pipelines-
tutorial Git repository:

c. Create a route with the re-encrypt TLS termination:

Alternatively, you can create a re-encrypt TLS termination YAML file to create a
secured route.

Example Re-encrypt TLS Termination YAML of the Secured Route

 triggers:
 - bindings:
 - ref: vote-app
 template:
 ref: vote-app

$ oc label namespace <ns-name> operator.tekton.dev/enable-annotation=enabled

$ oc create -f <eventlistener-yaml-file-name.yaml>

$ oc create -f https://raw.githubusercontent.com/openshift/pipelines-tutorial/pipelines-
1.4/03_triggers/04_event_listener.yaml

$ oc create route reencrypt --service=<svc-name> --cert=tls.crt --key=tls.key --ca-
cert=ca.crt --hostname=<hostname>

apiVersion: route.openshift.io/v1
kind: Route
metadata:
 name: route-passthrough-secured 1
spec:
 host: <hostname>
 to:
 kind: Service
 name: frontend 2
 tls:
 termination: reencrypt 3
 key: [as in edge termination]
 certificate: [as in edge termination]
 caCertificate: [as in edge termination]
 destinationCACertificate: |- 4
 -----BEGIN CERTIFICATE-----
 [...]
 -----END CERTIFICATE-----

OpenShift Container Platform 4.7 CI/CD

140

1 2

3

4

The name of the object, which is limited to 63 characters.

The termination field is set to reencrypt. This is the only required tls field.

Required for re-encryption. destinationCACertificate specifies a CA certificate to
validate the endpoint certificate, securing the connection from the router to the
destination pods. If the service is using a service signing certificate, or the
administrator has specified a default CA certificate for the router and the service
has a certificate signed by that CA, this field can be omitted.

See oc create route reencrypt --help for more options.

To create an EventListener resource using an insecure HTTP connection:

a. Create the EventListener resource.

b. Expose the EventListener service as an OpenShift Container Platform route to make it
publicly accessible:

3.5.8. Creating webhooks

Webhooks are HTTP POST messages that are received by the event listeners whenever a configured
event occurs in your repository. The event payload is then mapped to trigger bindings, and processed by
trigger templates. The trigger templates eventually start one or more pipeline runs, leading to the
creation and deployment of Kubernetes resources.

In this section, you will configure a webhook URL on your forked Git repositories pipelines-vote-ui and
pipelines-vote-api. This URL points to the publicly accessible EventListener service route.

NOTE

Adding webhooks requires administrative privileges to the repository. If you do not have
administrative access to your repository, contact your system administrator for adding
webhooks.

Procedure

1. Get the webhook URL:

For a secure HTTPS connection:

$ echo "URL: $(oc get route el-vote-app --template='https://{{.spec.host}}')"

For an HTTP (insecure) connection:

$ echo "URL: $(oc get route el-vote-app --template='http://{{.spec.host}}')"

Note the URL obtained in the output.

2. Configure webhooks manually on the front-end repository:

a. Open the front-end Git repository pipelines-vote-ui in your browser.

$ oc expose svc el-vote-app

CHAPTER 3. PIPELINES

141

b. Click Settings → Webhooks → Add Webhook

c. On the Webhooks/Add Webhook page:

i. Enter the webhook URL from step 1 in Payload URL field

ii. Select application/json for the Content type

iii. Specify the secret in the Secret field

iv. Ensure that the Just the push event is selected

v. Select Active

vi. Click Add Webhook

3. Repeat step 2 for the back-end repository pipelines-vote-api.

3.5.9. Triggering a pipeline run

Whenever a push event occurs in the Git repository, the configured webhook sends an event payload to
the publicly exposed EventListener service route. The EventListener service of the application
processes the payload, and passes it to the relevant TriggerBinding and TriggerTemplate resource
pairs. The TriggerBinding resource extracts the parameters, and the TriggerTemplate resource uses
these parameters and specifies the way the resources must be created. This may rebuild and redeploy
the application.

In this section, you push an empty commit to the front-end pipelines-vote-ui repository, which then
triggers the pipeline run.

Procedure

1. From the terminal, clone your forked Git repository pipelines-vote-ui:

2. Push an empty commit:

3. Check if the pipeline run was triggered:

$ tkn pipelinerun list

Notice that a new pipeline run was initiated.

3.5.10. Additional resources

For more details on pipelines in the Developer perspective, see the working with pipelines in the
Developer perspective section.

To learn more about Security Context Constraints (SCCs), see the Managing Security Context
Constraints section.

For more examples of reusable tasks, see the OpenShift Catalog repository. Additionally, you

$ git clone git@github.com:<your GitHub ID>/pipelines-vote-ui.git -b pipelines-1.4

$ git commit -m "empty-commit" --allow-empty && git push origin pipelines-1.4

OpenShift Container Platform 4.7 CI/CD

142

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/cicd/#working-with-pipelines-using-the-developer-perspective
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/authentication_and_authorization/#managing-pod-security-policies

For more examples of reusable tasks, see the OpenShift Catalog repository. Additionally, you
can also see the Tekton Catalog in the Tekton project.

For more details on re-encrypt TLS termination, see Re-encryption Termination.

For more details on secured routes, see the Secured routes section.

3.6. WORKING WITH RED HAT OPENSHIFT PIPELINES USING THE
DEVELOPER PERSPECTIVE

You can use the Developer perspective of the OpenShift Container Platform web console to create
CI/CD pipelines for your software delivery process.

In the Developer perspective:

Use the Add → Pipeline → Pipeline Builder option to create customized pipelines for your
application.

Use the Add → From Git option to create pipelines using operator-installed pipeline templates
and resources while creating an application on OpenShift Container Platform.

After you create the pipelines for your application, you can view and visually interact with the deployed
pipelines in the Pipelines view. You can also use the Topology view to interact with the pipelines
created using the From Git option. You need to apply custom labels to a pipeline created using the
Pipeline Builder to see it in the Topology view.

Prerequisites

You have access to an OpenShift Container Platform cluster and have switched to the
Developer perspective.

You have the OpenShift Pipelines Operator installed in your cluster.

You are a cluster administrator or a user with create and edit permissions.

You have created a project.

3.6.1. Constructing Pipelines using the Pipeline Builder

In the Developer perspective of the console, you can use the +Add → Pipeline → Pipeline builder
option to:

Configure pipelines using either the Pipeline builder or the YAML view.

Construct a pipeline flow using existing tasks and cluster tasks. When you install the OpenShift
Pipelines Operator, it adds reusable pipeline cluster tasks to your cluster.

Specify the type of resources required for the pipeline run, and if required, add additional
parameters to the pipeline.

Reference these pipeline resources in each of the tasks in the pipeline as input and output
resources.

If required, reference any additional parameters added to the pipeline in the task. The
parameters for a task are prepopulated based on the specifications of the task.

CHAPTER 3. PIPELINES

143

https://github.com/openshift/pipelines-catalog
https://docs.openshift.com/container-platform/3.11/architecture/networking/routes.html#re-encryption-termination
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/networking/#secured-routes
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/web_console/#about-developer-perspective_web-console-overview
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/cicd/#installing-pipelines

Use the Operator-installed, reusable snippets and samples to create detailed pipelines.

Procedure

1. In the +Add view of the Developer perspective, click the Pipeline tile to see the Pipeline
builder page.

2. Configure the pipeline using either the Pipeline builder view or the YAML view.

NOTE

The Pipeline builder view supports a limited number of fields whereas the YAML
view supports all available fields. Optionally, you can also use the Operator-
installed, reusable snippets and samples to create detailed Pipelines.

Figure 3.1. YAML view

To configure your pipeline using the Pipeline Builder:

a. Enter a unique name for the pipeline.

b. Select a task from the Select Task list to add a task to the pipeline. This example uses the
s2i-nodejs task.

To add sequential tasks to the pipeline, click the plus icon to the right or left of the task,
and from the Select Task list, select the task you want to add to the pipeline. For this
example, use the plus icon to the right of the s2i-nodejs task to add an openshift-
client task.

To add a parallel task to the existing task, click the plus icon displayed next to the task,
and from the Select Task list, select the parallel task you want to add to the pipeline.

Figure 3.2. Pipeline Builder

OpenShift Container Platform 4.7 CI/CD

144

Figure 3.2. Pipeline Builder

c. Click Add Resources to specify the name and type of resources that the pipeline run will
use. These resources are then used by the tasks in the pipeline as inputs and outputs. For
this example:

i. Add an input resource. In the Name field, enter Source, and then from the Resource
Type drop-down list, select Git.

ii. Add an output resource. In the Name field, enter Img, and then from the Resource
Type drop-down list, select Image.

d. Optional: The Parameters for a task are prepopulated based on the specifications of the
task. If required, use the Add Parameters link to add additional parameters.

e. A Missing Resources warning is displayed on a task if the resources for the task are not
specified. Click the s2i-nodejs task to see the side panel with details for the task.

Figure 3.3. Tasks details in Pipelines Builder

f. In the task side panel, specify the resources and parameters for the s2i-nodejs task:

i. In the Input Resources → Source section, the Select Resources drop-down list
displays the resources that you added to the pipeline. For this example, select Source.

ii. In the Output Resources → Image section, click the Select Resources list, and select

CHAPTER 3. PIPELINES

145

ii. In the Output Resources → Image section, click the Select Resources list, and select
Img.

iii. If required, in the Parameters section, add more parameters to the default ones, by
using the $(params.<param-name>) syntax.

iv. Similarly, add an input resource for the openshift-client task.

3. Click Create to create and view the pipeline in the Pipeline Details page.

4. Click the Actions drop-down menu, and then click Start to start the Pipeline.

3.6.2. Creating applications with OpenShift Pipelines

To create pipelines along with applications, use the From Git option in the Add view of the Developer
perspective. For more information, see Creating applications using the Developer perspective .

3.6.3. Interacting with pipelines using the Developer perspective

The Pipelines view in the Developer perspective lists all the pipelines in a project, along with the
following details:

The namespace in which the pipeline was created

The last pipeline run

The status of the tasks in the pipeline run

The status of the pipeline run

The creation time of the last pipeline run

Procedure

1. In the Pipelines view of the Developer perspective, select a project from the Project drop-
down list to see the pipelines in that project.

2. Click the required pipeline to see the Pipeline details page. By default, the Details tab opens
and provides a visual representation of all the serial and parallel tasks in the pipeline. The tasks
are also listed in the lower right portion of the page. You can click the listed Tasks to view the
task details.

Figure 3.4. Pipeline details

OpenShift Container Platform 4.7 CI/CD

146

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/applications/#odc-importing-codebase-from-git-to-create-application_odc-creating-applications-using-developer-perspective

Figure 3.4. Pipeline details

3. Optionally, in the Pipeline details page:

Click the Metrics tab to see the following information about pipelines:

Pipeline Success Ratio

Number of Pipeline Runs

Pipeline Run Duration

Task Run Duration
You can use this information to improve the pipeline workflow and eliminate issues early
in the pipeline lifecycle.

Click the YAML tab to edit the YAML file for the pipeline.

Click the Pipeline Runs tab to see the completed, running, or failed runs for the pipeline.

NOTE

The Details section of the Pipeline Run Details page displays a Log Snippet
of the failed pipeline run. Log Snippet provides a general error message and
a snippet of the log. A link to the Logs section provides quick access to the
details about the failed run. The Log Snippet is also displayed in the Details
section of the Task Run Details page.

You can use the Options menu to stop a running pipeline, to rerun a pipeline using the
same parameters and resources as that of the previous pipeline execution, or to delete a
pipeline run.

Click the Parameters tab to see the parameters defined in the pipeline. You can also add or
edit additional parameters, as required.

Click the Resources tab to see the resources defined in the pipeline. You can also add or
edit additional resources, as required.

3.6.4. Starting pipelines

CHAPTER 3. PIPELINES

147

After you create a pipeline, you need to start it to execute the included tasks in the defined sequence.
You can start a pipeline from the Pipelines view, the Pipeline Details page, or the Topology view.

Procedure

To start a pipeline using the Pipelines view:

1. In the Pipelines view of the Developer perspective, click the Options menu adjoining a
pipeline, and select Start.

2. The Start Pipeline dialog box displays the Git Resources and the Image Resources based on
the pipeline definition.

NOTE

For pipelines created using the From Git option, the Start Pipeline dialog box
also displays an APP_NAME field in the Parameters section, and all the fields in
the dialog box are prepopulated by the pipeline template.

a. If you have resources in your namespace, the Git Resources and the Image Resources
fields are prepopulated with those resources. If required, use the drop-downs to select or
create the required resources and customize the pipeline run instance.

3. Optional: Modify the Advanced Options to add the credentials that authenticate the specified
private Git server or the image registry.

a. Under Advanced Options, click Show Credentials Options and select Add Secret.

b. In the Create Source Secret section, specify the following:

i. A unique Secret Name for the secret.

ii. In the Designated provider to be authenticated section, specify the provider to be
authenticated in the Access to field, and the base Server URL.

iii. Select the Authentication Type and provide the credentials:

For the Authentication Type Image Registry Credentials, specify the Registry
Server Address that you want to authenticate, and provide your credentials in the
Username, Password, and Email fields.
Select Add Credentials if you want to specify an additional Registry Server
Address.

For the Authentication Type Basic Authentication, specify the values for the
UserName and Password or Token fields.

For the Authentication Type SSH Keys, specify the value of the SSH Private Key
field.

iv. Select the check mark to add the secret.

You can add multiple secrets based upon the number of resources in your pipeline.

4. Click Start to start the pipeline.

5. The Pipeline Run Details page displays the pipeline being executed. After the pipeline starts,

OpenShift Container Platform 4.7 CI/CD

148

5. The Pipeline Run Details page displays the pipeline being executed. After the pipeline starts,
the tasks and steps within each task are executed. You can:

Hover over the tasks to see the time taken to execute each step.

Click on a task to see the logs for each step in the task.

Click the Logs tab to see the logs relating to the execution sequence of the tasks. You can
also expand the pane and download the logs individually or in bulk, by using the relevant
button.

Click the Events tab to see the stream of events generated by a pipeline run.
You can use the Task Runs, Logs, and Events tabs to assist in debugging a failed pipeline
run or a failed task run.

Figure 3.5. Pipeline run details

6. For pipelines created using the From Git option, you can use the Topology view to interact with
pipelines after you start them:

NOTE

To see the pipelines created using the Pipeline Builder in the Topology view,
customize the pipeline labels to link the pipeline with the application workload.

a. On the left navigation panel, click Topology, and click on the application to see the pipeline
runs listed in the side panel.

b. In the Pipeline Runs section, click Start Last Run to start a new pipeline run with the same
parameters and resources as the previous one. This option is disabled if a pipeline run has
not been initiated.

CHAPTER 3. PIPELINES

149

Figure 3.6. Pipelines in Topology view

c. In the Topology page, hover to the left of the application to see the status of the pipeline
run for the application.

NOTE

The side panel of the application node in the Topology page displays a Log
Snippet when a pipeline run fails on a specific task run. You can view the Log
Snippet in the Pipeline Runs section, under the Resources tab. Log Snippet
provides a general error message and a snippet of the log. A link to the Logs
section provides quick access to the details about the failed run.

3.6.5. Editing Pipelines

You can edit the Pipelines in your cluster using the Developer perspective of the web console:

Procedure

1. In the Pipelines view of the Developer perspective, select the Pipeline you want to edit to see
the details of the Pipeline. In the Pipeline Details page, click Actions and select Edit Pipeline.

2. In the Pipeline Builder page:

You can add additional Tasks, parameters, or resources to the Pipeline.

You can click the Task you want to modify to see the Task details in the side panel and
modify the required Task details, such as the display name, parameters and resources.

Alternatively, to delete the Task, click the Task, and in the side panel, click Actions and
select Remove Task.

3. Click Save to save the modified Pipeline.

3.6.6. Deleting Pipelines

You can delete the Pipelines in your cluster using the Developer perspective of the web console.

Procedure

OpenShift Container Platform 4.7 CI/CD

150

1. In the Pipelines view of the Developer perspective, click the Options menu adjoining a
Pipeline, and select Delete Pipeline.

2. In the Delete Pipeline confirmation prompt, click Delete to confirm the deletion.

3.7. REDUCING RESOURCE CONSUMPTION OF PIPELINES

If you use clusters in multi-tenant environments you must control the consumption of CPU, memory, and
storage resources for each project and Kubernetes object. This helps prevent any one application from
consuming too many resources and affecting other applications.

To define the final resource limits that are set on the resulting pods, Red Hat OpenShift Pipelines use
resource quota limits and limit ranges of the project in which they are executed.

To restrict resource consumption in your project, you can:

Set and manage resource quotas to limit the aggregate resource consumption.

Use limit ranges to restrict resource consumption for specific objects, such as pods, images,
image streams, and persistent volume claims.

3.7.1. Understanding resource consumption in pipelines

Each task consists of a number of required steps to be executed in a particular order defined in the
steps field of the Task resource. Every task runs as a pod, and each step runs as a container within that
pod.

Steps are executed one at a time. The pod that executes the task only requests enough resources to
run a single container image (step) in the task at a time, and thus does not store resources for all the
steps in the task.

The Resources field in the steps spec specifies the limits for resource consumption. By default, the
resource requests for the CPU, memory, and ephemeral storage are set to BestEffort (zero) values or
to the minimums set through limit ranges in that project.

Example configuration of resource requests and limits for a step

When the LimitRange parameter and the minimum values for container resource requests are specified
in the project in which the pipeline and task runs are executed, Red Hat OpenShift Pipelines looks at all
the LimitRange values in the project and uses the minimum values instead of zero.

Example configuration of limit range parameters at a project level

spec:
 steps:
 - name: <step_name>
 resources:
 requests:
 memory: 2Gi
 cpu: 600m
 limits:
 memory: 4Gi
 cpu: 900m

CHAPTER 3. PIPELINES

151

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/applications/#resource-quotas-per-project
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/nodes/#setting-limit-ranges

3.7.2. Mitigating extra resource consumption in pipelines

When you have resource limits set on the containers in your pod, OpenShift Container Platform sums up
the resource limits requested as all containers run simultaneously.

To consume the minimum amount of resources needed to execute one step at a time in the invoked
task, Red Hat OpenShift Pipelines requests the maximum CPU, memory, and ephemeral storage as
specified in the step that requires the most amount of resources. This ensures that the resource
requirements of all the steps are met. Requests other than the maximum values are set to zero.

However, this behavior can lead to higher resource usage than required. If you use resource quotas, this
could also lead to unschedulable pods.

For example, consider a task with two steps that uses scripts, and that does not define any resource
limits and requests. The resulting pod has two init containers (one for entrypoint copy, the other for
writing scripts) and two containers, one for each step.

OpenShift Container Platform uses the limit range set up for the project to compute required resource
requests and limits. For this example, set the following limit range in the project:

In this scenario, each init container uses a request memory of 1Gi (the max limit of the limit range), and
each container uses a request memory of 500Mi. Thus, the total memory request for the pod is 2Gi.

apiVersion: v1
kind: LimitRange
metadata:
 name: <limit_container_resource>
spec:
 limits:
 - max:
 cpu: "600m"
 memory: "2Gi"
 min:
 cpu: "200m"
 memory: "100Mi"
 default:
 cpu: "500m"
 memory: "800Mi"
 defaultRequest:
 cpu: "100m"
 memory: "100Mi"
 type: Container
...

apiVersion: v1
kind: LimitRange
metadata:
 name: mem-min-max-demo-lr
spec:
 limits:
 - max:
 memory: 1Gi
 min:
 memory: 500Mi
 type: Container

OpenShift Container Platform 4.7 CI/CD

152

If the same limit range is used with a task of ten steps, the final memory request is 5Gi, which is higher
than what each step actually needs, that is 500Mi (since each step runs after the other).

Thus, to reduce resource consumption of resources, you can:

Reduce the number of steps in a given task by grouping different steps into one bigger step,
using the script feature, and the same image. This reduces the minimum requested resource.

Distribute steps that are relatively independent of each other and can run on their own to
multiple tasks instead of a single task. This lowers the number of steps in each task, making the
request for each task smaller, and the scheduler can then run them when the resources are
available.

3.7.3. Additional resources

Resource Quotas

Restricting resource consumption using limit ranges

Resource requests and limits in Kubernetes

3.8. USING PODS IN A PRIVILEGED SECURITY CONTEXT

The default configuration of OpenShift Pipelines 1.3.x and later versions does not allow you to run pods
with privileged security context, if the pods result from pipeline run or task run. For such pods, the
default service account is pipeline, and the security context constraint (SCC) associated with the
pipelines service account is pipelines-scc. The pipelines-scc SCC is similar to the anyuid SCC, but
with a minor difference as defined in the YAML file for the SCC of pipelines:

Example SecurityContextConstraints object

In addition, the Buildah cluster task, shipped as part of the OpenShift Pipelines, uses vfs as the default
storage driver.

3.8.1. Running pipeline run and task run pods with privileged security context

Procedure

To run a pod (resulting from pipeline run or task run) with the privileged security context, do the
following modifications:

Configure the associated user account or service account to have an explicit SCC. You can
perform the configuration using any of the following methods:

Execute the following OpenShift command:

apiVersion: security.openshift.io/v1
kind: SecurityContextConstraints
...
fsGroup:
 type: MustRunAs
...

$ oc adm policy add-scc-to-user <scc-name> -z <service-account-name>

CHAPTER 3. PIPELINES

153

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/applications/#resource-quotas-per-project
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/nodes/#setting-limit-ranges
https://kubernetes.io/docs/concepts/workloads/pods/init-containers/#resources

1

2

1

Alternatively, modify the YAML files for RoleBinding, and Role or ClusterRole:

Example RoleBinding object

Substitute with an appropriate service account name.

Substitute with an appropriate cluster role based on the role binding you use.

Example ClusterRole object

Substitute with an appropriate cluster role based on the role binding you use.

NOTE

As a best practice, create a copy of the default YAML files and make changes in
the duplicate file.

If you do not use the vfs storage driver, configure the service account associated with the task
run or the pipeline run to have a privileged SCC, and set the security context as privileged:
true.

3.8.2. Running pipeline run and task run by using a custom SCC and a custom service
account

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
 name: service-account-name 1
 namespace: default
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: pipelines-scc-clusterrole 2
subjects:
- kind: ServiceAccount
 name: pipeline
 namespace: default

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 name: pipelines-scc-clusterrole 1
rules:
- apiGroups:
 - security.openshift.io
 resourceNames:
 - nonroot
 resources:
 - securitycontextconstraints
 verbs:
 - use

OpenShift Container Platform 4.7 CI/CD

154

When using the pipelines-scc security context constraint (SCC) associated with the default pipelines
service account, the pipeline run and task run pods may face timeouts. This happens because in the
default pipelines-scc SCC, the fsGroup.type parameter is set to MustRunAs.

NOTE

For more information about pod timeouts, see BZ#1995779.

To avoid pod timeouts, you can create a custom SCC with the fsGroup.type parameter set to
RunAsAny, and associate it with a custom service account.

NOTE

As a best practice, use a custom SCC and a custom service account for pipeline runs and
task runs. This approach allows greater flexibility and does not break the runs when the
defaults are modified during an upgrade.

Procedure

1. Define a custom SCC with the fsGroup.type parameter set to RunAsAny:

Example: Custom SCC

apiVersion: security.openshift.io/v1
kind: SecurityContextConstraints
metadata:
 annotations:
 kubernetes.io/description: my-scc is a close replica of anyuid scc. pipelines-scc has
fsGroup - RunAsAny.
 name: my-scc
allowHostDirVolumePlugin: false
allowHostIPC: false
allowHostNetwork: false
allowHostPID: false
allowHostPorts: false
allowPrivilegeEscalation: true
allowPrivilegedContainer: false
allowedCapabilities: null
defaultAddCapabilities: null
fsGroup:
 type: RunAsAny
groups:
- system:cluster-admins
priority: 10
readOnlyRootFilesystem: false
requiredDropCapabilities:
- MKNOD
runAsUser:
 type: RunAsAny
seLinuxContext:
 type: MustRunAs
supplementalGroups:
 type: RunAsAny
volumes:

CHAPTER 3. PIPELINES

155

https://bugzilla.redhat.com/show_bug.cgi?id=1995779

2. Create the custom SCC:

Example: Create the my-scc SCC

3. Create a custom service account:

Example: Create a fsgroup-runasany service account

4. Associate the custom SCC with the custom service account:

Example: Associate the my-scc SCC with the fsgroup-runasany service account

If you want to use the custom service account for privileged tasks, you can associate the
privileged SCC with the custom service account by running the following command:

Example: Associate the privileged SCC with the fsgroup-runasany service account

5. Use the custom service account in the pipeline run and task run:

Example: Pipeline run YAML with fsgroup-runasany custom service account

Example: Task run YAML with fsgroup-runasany custom service account

- configMap
- downwardAPI
- emptyDir
- persistentVolumeClaim
- projected
- secret

$ oc create -f my-scc.yaml

$ oc create serviceaccount fsgroup-runasany

$ oc adm policy add-scc-to-user my-scc -z fsgroup-runasany

$ oc adm policy add-scc-to-user privileged -z fsgroup-runasany

apiVersion: tekton.dev/v1beta1
kind: PipelineRun
metadata:
 name: <pipeline-run-name>
spec:
 pipelineRef:
 name: <pipeline-cluster-task-name>
 serviceAccountName: 'fsgroup-runasany'

apiVersion: tekton.dev/v1beta1
kind: TaskRun
metadata:
 name: <task-run-name>
spec:

OpenShift Container Platform 4.7 CI/CD

156

3.8.3. Additional resources

For information on managing SCCs, refer to Managing security context constraints.

3.9. VIEWING PIPELINE LOGS USING THE OPENSHIFT LOGGING
OPERATOR

The logs generated by pipeline runs, task runs, and event listeners are stored in their respective pods. It
is useful to review and analyze logs for troubleshooting and audits.

However, retaining the pods indefinitely leads to unnecessary resource consumption and cluttered
namespaces.

To eliminate any dependency on the pods for viewing pipeline logs, you can use the OpenShift
Elasticsearch Operator and the OpenShift Logging Operator. These Operators help you to view pipeline
logs by using the Elasticsearch Kibana stack, even after you have deleted the pods that contained the
logs.

3.9.1. Prerequisites

Before trying to view pipeline logs in a Kibana dashboard, ensure the following:

The steps are performed by a cluster administrator.

Logs for pipeline runs and task runs are available.

The OpenShift Elasticsearch Operator and the OpenShift Logging Operator are installed.

3.9.2. Viewing pipeline logs in Kibana

To view pipeline logs in the Kibana web console:

Procedure

1. Log in to OpenShift Container Platform web console as a cluster administrator.

2. In the top right of the menu bar, click the grid icon → Observability → Logging. The Kibana
web console is displayed.

3. Create an index pattern:

a. On the left navigation panel of the Kibana web console, click Management.

b. Click Create index pattern.

c. Under Step 1 of 2: Define index pattern → Index pattern, enter a * pattern and click Next
Step.

d. Under Step 2 of 2: Configure settings → Time filter field name, select @timestamp from
the drop-down menu, and click Create index pattern.

 taskRef:
 name: <cluster-task-name>
 serviceAccountName: 'fsgroup-runasany'

CHAPTER 3. PIPELINES

157

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/authentication_and_authorization/#managing-security-context-constraints
https://www.elastic.co/guide/en/kibana/6.8/connect-to-elasticsearch.html

4. Add a filter:

a. On the left navigation panel of the Kibana web console, click Discover.

b. Click Add a filter + → Edit Query DSL.

NOTE

For each of the example filters that follows, edit the query and click
Save.

The filters are applied one after another.

i. Filter the containers related to pipelines:

Example query to filter pipelines containers

ii. Filter all containers that are not place-tools container. As an illustration of using the
graphical drop-down menus instead of editing the query DSL, consider the following
approach:

Figure 3.7. Example of filtering using the drop-down fields

iii. Filter pipelinerun in labels for highlighting:

{
 "query": {
 "match": {
 "kubernetes.flat_labels": {
 "query": "app_kubernetes_io/managed-by=tekton-pipelines",
 "type": "phrase"
 }
 }
 }
}

OpenShift Container Platform 4.7 CI/CD

158

Example query to filter pipelinerun in labels for highlighting

iv. Filter pipeline in labels for highlighting:

Example query to filter pipeline in labels for highlighting

c. From the Available fields list, select the following fields:

kubernetes.flat_labels

message
Ensure that the selected fields are displayed under the Selected fields list.

d. The logs are displayed under the message field.

Figure 3.8. Filtered messages

{
 "query": {
 "match": {
 "kubernetes.flat_labels": {
 "query": "tekton_dev/pipelineRun=",
 "type": "phrase"
 }
 }
 }
}

{
 "query": {
 "match": {
 "kubernetes.flat_labels": {
 "query": "tekton_dev/pipeline=",
 "type": "phrase"
 }
 }
 }
}

CHAPTER 3. PIPELINES

159

Figure 3.8. Filtered messages

3.9.3. Additional resources

Installing OpenShift Logging

Viewing logs for a resource

Viewing cluster logs by using Kibana

OpenShift Container Platform 4.7 CI/CD

160

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/logging/#installing-logging
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/logging/#viewing-logs-for-a-specific-resource
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/logging/#viewing-cluster-logs-in-kibana

CHAPTER 4. GITOPS

4.1. RED HAT OPENSHIFT GITOPS RELEASE NOTES

Red Hat OpenShift GitOps is a declarative way to implement continuous deployment for cloud native
applications. Red Hat OpenShift GitOps ensures consistency in applications when you deploy them to
different clusters in different environments, such as: development, staging, and production. Red Hat
OpenShift GitOps helps you automate the following tasks:

Ensure that the clusters have similar states for configuration, monitoring, and storage

Recover or recreate clusters from a known state

Apply or revert configuration changes to multiple OpenShift Container Platform clusters

Associate templated configuration with different environments

Promote applications across clusters, from staging to production

For an overview of Red Hat OpenShift GitOps, see Understanding OpenShift GitOps .

4.1.1. Making open source more inclusive

Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see Red Hat CTO Chris Wright’s message .

4.1.2. Release notes for Red Hat OpenShift GitOps 1.2.1

Red Hat OpenShift GitOps 1.2.1 is now available on OpenShift Container Platform 4.7 and 4.8.

4.1.2.1. Support matrix

Some features in this release are currently in Technology Preview. These experimental features are not
intended for production use.

Technology Preview Features Support Scope

In the table below, features are marked with the following statuses:

TP: Technology Preview

GA: General Availability

Note the following scope of support on the Red Hat Customer Portal for these features:

Table 4.1. Support matrix

Feature Red Hat OpenShift GitOps 1.2.1

Argo CD GA

CHAPTER 4. GITOPS

161

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/cicd/#understanding-openshift-gitops
https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language
https://access.redhat.com/support/offerings/techpreview

Argo CD ApplicationSet TP

Red Hat OpenShift GitOps Application Manager
(kam)

TP

Feature Red Hat OpenShift GitOps 1.2.1

4.1.2.2. Fixed issues

The following issues were resolved in the current release:

Previously, huge memory spikes were observed on the application controller on startup. The flag
--kubectl-parallelism-limit for the application controller is now set to 10 by default, however
this value can be overridden by specifying a number for .spec.controller.kubeParallelismLimit
in the Argo CD CR specification. GITOPS-1255

The latest Triggers APIs caused Kubernetes build failure due to duplicate entries in the
kustomization.yaml when using the kam bootstrap command. The Pipelines and Tekton
triggers components have now been updated to v0.24.2 and v0.14.2, respectively, to address
this issue. GITOPS-1273

Persisting RBAC roles and bindings are now automatically removed from the target namespace
when the Argo CD instance from the source namespace is deleted. GITOPS-1228

Previously, when deploying an Argo CD instance into a namespace, the Argo CD instance would
change the "managed-by" label to be its own namespace. This fix would make namespaces
unlabelled while also making sure the required RBAC roles and bindings are created and deleted
for the namespace. GITOPS-1247

Previously, the default resource request limits on Argo CD workloads, specifically for the repo-
server and application controller, were found to be very restrictive. The existing resource quota
has now been removed and the default memory limit has been increased to 1024M in the repo
server. Please note that this change will only affect new installations; existing Argo CD instance
workloads will not be affected. GITOPS-1274

4.1.3. Release notes for Red Hat OpenShift GitOps 1.2

Red Hat OpenShift GitOps 1.2 is now available on OpenShift Container Platform 4.7 and 4.8.

4.1.3.1. Support matrix

Some features in this release are currently in Technology Preview. These experimental features are not
intended for production use.

Technology Preview Features Support Scope

In the table below, features are marked with the following statuses:

TP: Technology Preview

GA: General Availability

Note the following scope of support on the Red Hat Customer Portal for these features:

OpenShift Container Platform 4.7 CI/CD

162

https://issues.redhat.com/browse/GITOPS-1255
https://issues.redhat.com/browse/GITOPS-1273
https://issues.redhat.com/browse/GITOPS-1228
https://issues.redhat.com/browse/GITOPS-1247
https://issues.redhat.com/browse/GITOPS-1274
https://access.redhat.com/support/offerings/techpreview

Table 4.2. Support matrix

Feature Red Hat OpenShift GitOps 1.2

Argo CD GA

Argo CD ApplicationSet TP

Red Hat OpenShift GitOps Application Manager
(kam)

TP

4.1.3.2. New features

In addition to the fixes and stability improvements, the following sections highlight what is new in Red
Hat OpenShift GitOps 1.2:

If you do not have read or write access to the openshift-gitops namespace, you can now use the
DISABLE_DEFAULT_ARGOCD_INSTANCE environment variable in the GitOps Operator and
set the value to TRUE to prevent the default Argo CD instance from starting in the openshift-
gitops namespace.

Resource requests and limits are now configured in Argo CD workloads. Resource quota is
enabled in the openshift-gitops namespace. As a result, out-of-band workloads deployed
manually in the openshift-gitops namespace must be configured with resource requests and
limits and the resource quota may need to be increased.

Argo CD authentication is now integrated with Red Hat SSO and it is automatically configured
with OpenShift 4 Identity Provider on the cluster. This feature is disabled by default. To enable
Red Hat SSO, add SSO configuration in ArgoCD CR as shown below. Currently,keycloak is the
only supported provider.

You can now define hostnames using route labels to support router sharding. Support for
setting labels on the server (argocd server), grafana, and prometheus routes is now available.
To set labels on a route, add labels under the route configuration for a server in the ArgoCD
CR.

Example ArgoCD CR YAML to set labels on argocd server

apiVersion: argoproj.io/v1alpha1
kind: ArgoCD
metadata:
 name: example-argocd
 labels:
 example: basic
spec:
 sso:
 provider: keycloak
 server:
 route:
 enabled: true

apiVersion: argoproj.io/v1alpha1
kind: ArgoCD

CHAPTER 4. GITOPS

163

The GitOps Operator now automatically grants permissions to Argo CD instances to manage
resources in target namespaces by applying labels. Users can label the target namespace with
the label argocd.argoproj.io/managed-by: <source-namespace>, where the source-
namespace is the namespace where the argocd instance is deployed.

4.1.3.3. Fixed issues

The following issues were resolved in the current release:

Previously, if a user created additional instances of Argo CD managed by the default cluster
instance in the openshift-gitops namespace, the application responsible for the new Argo CD
instance would get stuck in an OutOfSync status. This issue has now been resolved by adding an
owner reference to the cluster secret. GITOPS-1025

4.1.3.4. Known issues

These are the known issues in Red Hat OpenShift GitOps 1.2:

When an Argo CD instance is deleted from the source namespace, the
argocd.argoproj.io/managed-by labels in the target namespaces are not removed. GITOPS-
1228

Resource quota has been enabled in the openshift-gitops namespace in Red Hat OpenShift
GitOps 1.2. This can affect out-of-band workloads deployed manually and workloads deployed
by the default Argo CD instance in the openshift-gitops namespace. When you upgrade from
Red Hat OpenShift GitOps v1.1.2 to v1.2 such workloads must be configured with resource
requests and limits. If there are any additional workloads, the resource quota in the openshift-
gitops namespace must be increased.
Current Resource Quota for openshift-gitops namespace.

Resource Requests Limits

CPU 6688m 13750m

Memory 4544Mi 9070Mi

You can use the below command to update the CPU limits.

metadata:
 name: example-argocd
 labels:
 example: basic
spec:
 server:
 route:
 enabled: true
 labels:
 key1: value1
 key2: value2

$ oc patch resourcequota openshift-gitops-compute-resources -n openshift-gitops --
type='json' -p='[{"op": "replace", "path": "/spec/hard/limits.cpu", "value":"9000m"}]'

OpenShift Container Platform 4.7 CI/CD

164

https://issues.redhat.com/browse/GITOPS-1025
https://issues.redhat.com/browse/GITOPS-1228

You can use the below command to update the CPU requests.

You can replace the path in the above commands from cpu to memory to update the memory.

4.1.4. Release notes for Red Hat OpenShift GitOps 1.1

Red Hat OpenShift GitOps 1.1 is now available on OpenShift Container Platform 4.7.

4.1.4.1. Support matrix

Some features in this release are currently in Technology Preview. These experimental features are not
intended for production use.

Technology Preview Features Support Scope

In the table below, features are marked with the following statuses:

TP: Technology Preview

GA: General Availability

Note the following scope of support on the Red Hat Customer Portal for these features:

Table 4.3. Support matrix

Feature Red Hat OpenShift GitOps 1.1

Argo CD GA

Argo CD ApplicationSet TP

Red Hat OpenShift GitOps Application Manager
(kam)

TP

4.1.4.2. New features

In addition to the fixes and stability improvements, the following sections highlight what is new in Red
Hat OpenShift GitOps 1.1:

The ApplicationSet feature is now added (Technology Preview). The ApplicationSet feature
enables both automation and greater flexibility when managing Argo CD applications across a
large number of clusters and within monorepos. It also makes self-service usage possible on
multitenant Kubernetes clusters.

Argo CD is now integrated with cluster logging stack and with the OpenShift Container
Platform Monitoring and Alerting features.

Argo CD auth is now integrated with OpenShift Container Platform.

Argo CD applications controller now supports horizontal scaling.

$ oc patch resourcequota openshift-gitops-compute-resources -n openshift-gitops --
type='json' -p='[{"op": "replace", "path": "/spec/hard/cpu", "value":"7000m"}]

CHAPTER 4. GITOPS

165

https://access.redhat.com/support/offerings/techpreview

Argo CD Redis servers now support high availability (HA).

4.1.4.3. Fixed issues

The following issues were resolved in the current release:

Previously, Red Hat OpenShift GitOps did not work as expected in a proxy server setup with
active global proxy settings. This issue is fixed and now Argo CD is configured by the Red Hat
OpenShift GitOps Operator using fully qualified domain names (FQDN) for the pods to enable
communication between components. GITOPS-703

The Red Hat OpenShift GitOps backend relies on the ?ref= query parameter in the Red Hat
OpenShift GitOps URL to make API calls. Previously, this parameter was not read from the URL,
causing the backend to always consider the default reference. This issue is fixed and the Red
Hat OpenShift GitOps backend now extracts the reference query parameter from the Red Hat
OpenShift GitOps URL and only uses the default reference when there is no input reference
provided. GITOPS-817

Previously, the Red Hat OpenShift GitOps backend failed to find the valid GitLab repository.
This was because the Red Hat OpenShift GitOps backend checked for main as the branch
reference, instead of master in the GitLab repository. This issue is fixed now. GITOPS-768

The Environments page in the Developer perspective of the OpenShift Container Platform
web console now shows the list of applications and the number of environments. This page also
displays an Argo CD link that directs you to the Argo CD Applications page that lists all the
applications. The Argo CD Applications page has LABELS (for example,
app.kubernetes.io/name=appName) that help you filter only the applications of your choice.
GITOPS-544

4.1.4.4. Known issues

These are the known issues in Red Hat OpenShift GitOps 1.1:

Red Hat OpenShift GitOps does not support Helm v2 and ksonnet.

The Red Hat SSO (RH SSO) Operator is not supported in disconnected clusters. As a result, the
Red Hat OpenShift GitOps Operator and RH SSO integration is not supported in disconnected
clusters.

When you delete an Argo CD application from the OpenShift Container Platform web console,
the Argo CD application gets deleted in the user interface, but the deployments are still present
in the cluster. As a workaround, delete the Argo CD application from the Argo CD console.
GITOPS-830

4.1.4.5. Breaking Change

4.1.4.5.1. Upgrading from Red Hat OpenShift GitOps v1.0.1

When you upgrade from Red Hat OpenShift GitOps v1.0.1 to v1.1, the Red Hat OpenShift GitOps
Operator renames the default Argo CD instance created in the openshift-gitops namespace from
argocd-cluster to openshift-gitops.

This is a breaking change and needs the following steps to be performed manually, before the upgrade:

1. Go to the OpenShift Container Platform web console and copy the content of the argocd-

OpenShift Container Platform 4.7 CI/CD

166

https://issues.redhat.com/browse/GITOPS-703
https://issues.redhat.com/browse/GITOPS-817
https://issues.redhat.com/browse/GITOPS-768
https://issues.redhat.com/browse/GITOPS-544
https://issues.redhat.com/browse/GITOPS-830

1

2

1. Go to the OpenShift Container Platform web console and copy the content of the argocd-
cm.yml config map file in the openshift-gitops namespace to a local file. The content may look
like the following example:

Example argocd config map YAML

Restore only the data section of the content in the argocd-cm.yml config map file
manually.

Replace the URL value in the config map entry with the new instance name openshift-
gitops.

kind: ConfigMap
apiVersion: v1
metadata:
selfLink: /api/v1/namespaces/openshift-gitops/configmaps/argocd-cm
resourceVersion: '112532'
name: argocd-cm
uid: f5226fbc-883d-47db-8b53-b5e363f007af
creationTimestamp: '2021-04-16T19:24:08Z'
managedFields:
...
namespace: openshift-gitops
labels:
 app.kubernetes.io/managed-by: argocd-cluster
 app.kubernetes.io/name: argocd-cm
 app.kubernetes.io/part-of: argocd
data: "" 1
admin.enabled: 'true'
statusbadge.enabled: 'false'
resource.exclusions: |
 - apiGroups:
 - tekton.dev
 clusters:
 - '*'
 kinds:
 - TaskRun
 - PipelineRun
ga.trackingid: ''
repositories: |
 - type: git
 url: https://github.com/user-name/argocd-example-apps
ga.anonymizeusers: 'false'
help.chatUrl: ''
url: >-
 https://argocd-cluster-server-openshift-gitops.apps.dev-svc-4.7-
041614.devcluster.openshift.com "" 2
help.chatText: ''
kustomize.buildOptions: ''
resource.inclusions: ''
repository.credentials: ''
users.anonymous.enabled: 'false'
configManagementPlugins: ''
application.instanceLabelKey: ''

CHAPTER 4. GITOPS

167

2. Delete the default argocd-cluster instance.

3. Edit the new argocd-cm.yml config map file to restore the entire data section manually.

4. Replace the URL value in the config map entry with the new instance name openshift-gitops.
For example, in the preceding example, replace the URL value with the following URL value:

5. Login to the Argo CD cluster and verify that the previous configurations are present.

4.2. UNDERSTANDING OPENSHIFT GITOPS

4.2.1. About GitOps

GitOps is a declarative way to implement continuous deployment for cloud native applications. You can
use GitOps to create repeatable processes for managing OpenShift Container Platform clusters and
applications across multi-cluster Kubernetes environments. GitOps handles and automates complex
deployments at a fast pace, saving time during deployment and release cycles.

The GitOps workflow pushes an application through development, testing, staging, and production.
GitOps either deploys a new application or updates an existing one, so you only need to update the
repository; GitOps automates everything else.

GitOps is a set of practices that use Git pull requests to manage infrastructure and application
configurations. In GitOps, the Git repository is the only source of truth for system and application
configuration. This Git repository contains a declarative description of the infrastructure you need in
your specified environment and contains an automated process to make your environment match the
described state. Also, it contains the entire state of the system so that the trail of changes to the system
state are visible and auditable. By using GitOps, you resolve the issues of infrastructure and application
configuration sprawl.

GitOps defines infrastructure and application definitions as code. Then, it uses this code to manage
multiple workspaces and clusters to simplify the creation of infrastructure and application
configurations. By following the principles of the code, you can store the configuration of clusters and
applications in Git repositories, and then follow the Git workflow to apply these repositories to your
chosen clusters. You can apply the core principles of developing and maintaining software in a Git
repository to the creation and management of your cluster and application configuration files.

4.2.2. About Red Hat OpenShift GitOps

Red Hat OpenShift GitOps ensures consistency in applications when you deploy them to different
clusters in different environments, such as: development, staging, and production. Red Hat OpenShift
GitOps organizes the deployment process around the configuration repositories and makes them the
central element. It always has at least two repositories:

1. Application repository with the source code

2. Environment configuration repository that defines the desired state of the application

These repositories contain a declarative description of the infrastructure you need in your specified
environment. They also contain an automated process to make your environment match the described
state.

url: >-
 https://openshift-gitops-server-openshift-gitops.apps.dev-svc-4.7-
041614.devcluster.openshift.com

OpenShift Container Platform 4.7 CI/CD

168

Red Hat OpenShift GitOps uses Argo CD to maintain cluster resources. Argo CD is an open-source
declarative tool for the continuous integration and continuous deployment (CI/CD) of applications. Red
Hat OpenShift GitOps implements Argo CD as a controller so that it continuously monitors application
definitions and configurations defined in a Git repository. Then, Argo CD compares the specified state
of these configurations with their live state on the cluster.

Argo CD reports any configurations that deviate from their specified state. These reports allow
administrators to automatically or manually resync configurations to the defined state. Therefore, Argo
CD enables you to deliver global custom resources, like the resources that are used to configure
OpenShift Container Platform clusters.

4.2.2.1. Key features

Red Hat OpenShift GitOps helps you automate the following tasks:

Ensure that the clusters have similar states for configuration, monitoring, and storage

Recover or recreate clusters from a known state

Apply or revert configuration changes to multiple OpenShift Container Platform clusters

Associate templated configuration with different environments

Promote applications across clusters, from staging to production

4.3. GETTING STARTED WITH OPENSHIFT GITOPS

Red Hat OpenShift GitOps uses Argo CD to manage specific cluster-scoped resources, including
platform Operators, optional Operator Lifecycle Manager (OLM) Operators, and user management.

This guide explains how to install the Red Hat OpenShift GitOps Operator to an OpenShift Container
Platform cluster and logging in to the Argo CD instance.

4.3.1. Installing GitOps Operator in web console

Prerequisites

Access to the OpenShift Container Platform web console.

An account with the cluster-admin role.

You are logged in to the OpenShift cluster as an administrator.

WARNING

If you have already installed the Community version of the Argo CD Operator,
remove the Argo CD Community Operator before you install the Red Hat
OpenShift GitOps Operator.

Procedure

CHAPTER 4. GITOPS

169

1. Open the Administrator perspective of the web console and navigate to Operators →
OperatorHub in the menu on the left.

2. Search for OpenShift GitOps, click the Red Hat OpenShift GitOps tile, and then click Install.
Red Hat OpenShift GitOps will be installed in all namespaces of the cluster.

After the Red Hat OpenShift GitOps Operator is installed, it automatically sets up a ready-to-use Argo
CD instance that is available in the openshift-gitops namespace, and an Argo CD icon is displayed in
the console toolbar. You can create subsequent Argo CD instances for your applications under your
projects.

4.4. CONFIGURING ARGO CD TO RECURSIVELY SYNC A GIT
REPOSITORY WITH YOUR APPLICATION

4.4.1. Configuring an OpenShift cluster by deploying an application with cluster
configurations

With Red Hat OpenShift GitOps, you can configure Argo CD to recursively sync the content of a Git
directory with an application that contains custom configurations for your cluster.

Prerequisites

Red Hat OpenShift GitOps is installed in your cluster.

4.4.1.1. Logging in to the Argo CD instance by using your OpenShift credentials

Red Hat OpenShift GitOps Operator automatically creates a ready-to-use Argo CD instance that is
available in the openshift-gitops namespace.

Prerequisites

You have installed the Red Hat OpenShift GitOps Operator in your cluster.

Procedure

1. In the Administrator perspective of the web console, navigate to Operators → Installed
Operators to verify that the Red Hat OpenShift GitOps Operator is installed.

2. Navigate to the menu → OpenShift GitOps → Cluster Argo CD. The login page of the
Argo CD UI is displayed in a new window.

3. Obtain the password for the Argo CD instance:

a. Navigate to the Developer perspective of the web console. A list of available projects is
displayed.

b. Navigate to the openshift-gitops project.

c. Use the left navigation panel to navigate to the Secrets page.

d. Select the openshift-gitops-cluster instance to display the password.

e. Copy the password.

OpenShift Container Platform 4.7 CI/CD

170

4. Use this password and admin as the username to log in to the Argo CD UI in the new window.

4.4.1.2. Creating an application by using the Argo CD dashboard

Argo CD provides a dashboard which allows you to create applications.

This sample workflow walks you through the process of configuring Argo CD to recursively sync the
content of the cluster directory to the cluster-configs application. The directory defines the
OpenShift Container Platform web console cluster configurations that add a link to the Red Hat

Developer Blog - Kubernetes under the menu in the web console, and defines a namespace
spring-petclinic on the cluster.

Procedure

1. In the Argo CD dashboard, click NEW APP to add a new Argo CD application.

2. For this workflow, create a cluster-configs application with the following configurations:

Application Name

cluster-configs

Project

default

Sync Policy

Manual

Repository URL

https://github.com/redhat-developer/openshift-gitops-getting-started

Revision

HEAD

Path

cluster

Destination

https://kubernetes.default.svc

Namespace

spring-petclinic

Directory Recurse

checked

3. Click CREATE to create your application.

4. Open the Administrator perspective of the web console and navigate to Administration →
Namespaces in the menu on the left.

5. Search for and select the namespace, then enter argocd.argoproj.io/managed-by=openshift-
gitops in the Label field so that the Argo CD instance in the openshift-gitops namespace can
manage your namespace.

4.4.1.3. Creating an application by using the oc tool

CHAPTER 4. GITOPS

171

https://github.com/redhat-developer/openshift-gitops-getting-started
https://kubernetes.default.svc

You can create Argo CD applications in your terminal by using the oc tool.

Procedure

1. Download the sample application:

2. Create the application:

3. Run the oc get command to review the created application:

4. Add a label to the namespace your application is deployed in so that the Argo CD instance in the
openshift-gitops namespace can manage it:

4.4.1.4. Synchronizing your application with your Git repository

Procedure

1. In the Argo CD dashboard, notice that the cluster-configs Argo CD application has the statuses
Missing and OutOfSync. Because the application was configured with a manual sync policy,
Argo CD does not sync it automatically.

2. Click SYNC on the cluster-configs tile, review the changes, and then click SYNCHRONIZE.
Argo CD will detect any changes in the Git repository automatically. If the configurations are
changed, Argo CD will change the status of the cluster-configs to OutOfSync. You can modify
the synchronization policy for Argo CD to automatically apply changes from your Git repository
to the cluster.

3. Notice that the cluster-configs Argo CD application now has the statuses Healthy and Synced.
Click the cluster-configs tile to check the details of the synchronized resources and their status
on the cluster.

4. Navigate to the OpenShift Container Platform web console and click to verify that a link
to the Red Hat Developer Blog - Kubernetes is now present there.

5. Navigate to the Project page and search for the spring-petclinic namespace to verify that it
has been added to the cluster.
Your cluster configurations have been successfully synchronized to the cluster.

4.4.2. Deploying a Spring Boot application with Argo CD

With Argo CD, you can deploy your applications to the OpenShift cluster either by using the Argo CD
dashboard or by using the oc tool.

$ git clone git@github.com:redhat-developer/openshift-gitops-getting-started.git

$ oc create -f openshift-gitops-getting-started/argo/cluster.yaml

$ oc get application -n openshift-gitops

$ oc label namespace spring-petclinic argocd.argoproj.io/managed-by=openshift-gitops

OpenShift Container Platform 4.7 CI/CD

172

https://github.com/redhat-developer/openshift-gitops-getting-started

Prerequisites

Red Hat OpenShift GitOps is installed in your cluster.

4.4.2.1. Logging in to the Argo CD instance by using your OpenShift credentials

Red Hat OpenShift GitOps Operator automatically creates a ready-to-use Argo CD instance that is
available in the openshift-gitops namespace.

Prerequisites

You have installed the Red Hat OpenShift GitOps Operator in your cluster.

Procedure

1. In the Administrator perspective of the web console, navigate to Operators → Installed
Operators to verify that the Red Hat OpenShift GitOps Operator is installed.

2. Navigate to the menu → OpenShift GitOps → Cluster Argo CD. The login page of the
Argo CD UI is displayed in a new window.

3. Obtain the password for the Argo CD instance:

a. Navigate to the Developer perspective of the web console. A list of available projects is
displayed.

b. Navigate to the openshift-gitops project.

c. Use the left navigation panel to navigate to the Secrets page.

d. Select the openshift-gitops-cluster instance to display the password.

e. Copy the password.

4. Use this password and admin as the username to log in to the Argo CD UI in the new window.

4.4.2.2. Creating an application by using the Argo CD dashboard

Argo CD provides a dashboard which allows you to create applications.

This sample workflow walks you through the process of configuring Argo CD to recursively sync the
content of the cluster directory to the cluster-configs application. The directory defines the
OpenShift Container Platform web console cluster configurations that add a link to the Red Hat

Developer Blog - Kubernetes under the menu in the web console, and defines a namespace
spring-petclinic on the cluster.

Procedure

1. In the Argo CD dashboard, click NEW APP to add a new Argo CD application.

2. For this workflow, create a cluster-configs application with the following configurations:

Application Name

CHAPTER 4. GITOPS

173

cluster-configs

Project

default

Sync Policy

Manual

Repository URL

https://github.com/redhat-developer/openshift-gitops-getting-started

Revision

HEAD

Path

cluster

Destination

https://kubernetes.default.svc

Namespace

spring-petclinic

Directory Recurse

checked

3. For this workflow, create a spring-petclinic application with the following configurations:

Application Name

spring-petclinic

Project

default

Sync Policy

Automatic

Repository URL

https://github.com/redhat-developer/openshift-gitops-getting-started

Revision

HEAD

Path

app

Destination

https://kubernetes.default.svc

Namespace

spring-petclinic

4. Click CREATE to create your application.

5. Open the Administrator perspective of the web console and navigate to Administration →
Namespaces in the menu on the left.

6. Search for and select the namespace, then enter argocd.argoproj.io/managed-by=openshift-
gitops in the Label field so that the Argo CD instance in the openshift-gitops namespace can
manage your namespace.

OpenShift Container Platform 4.7 CI/CD

174

https://github.com/redhat-developer/openshift-gitops-getting-started
https://kubernetes.default.svc
https://github.com/redhat-developer/openshift-gitops-getting-started
https://kubernetes.default.svc

4.4.2.3. Creating an application by using the oc tool

You can create Argo CD applications in your terminal by using the oc tool.

Procedure

1. Download the sample application:

2. Create the application:

3. Run the oc get command to review the created application:

4. Add a label to the namespace your application is deployed in so that the Argo CD instance in the
openshift-gitops namespace can manage it:

4.4.2.4. Verifying Argo CD self-healing behavior

Argo CD constantly monitors the state of deployed applications, detects differences between the
specified manifests in Git and live changes in the cluster, and then automatically corrects them. This
behavior is referred to as self-healing.

You can test and observe the self-healing behavior in Argo CD.

Prerequisites

The sample app-spring-petclinic application is deployed and configured.

Procedure

1. In the Argo CD dashboard, verify that your application has the Synced status.

2. Click the app-spring-petclinic tile in the Argo CD dashboard to view the application resources
that are deployed to the cluster.

3. In the OpenShift web console, navigate to the Developer perspective.

4. Modify the Spring PetClinic deployment and commit the changes to the app/ directory of the
Git repository. Argo CD will automatically deploy the changes to the cluster.

5. Test the self-healing behavior by modifying the deployment on the cluster and scaling it up to
two pods while watching the application in the OpenShift web console.

a. Run the following command to modify the deployment:

$ git clone git@github.com:redhat-developer/openshift-gitops-getting-started.git

$ oc create -f openshift-gitops-getting-started/argo/app.yaml

$ oc create -f openshift-gitops-getting-started/argo/cluster.yaml

$ oc get application -n openshift-gitops

$ oc label namespace spring-petclinic argocd.argoproj.io/managed-by=openshift-gitops

$ oc label namespace spring-petclinic argocd.argoproj.io/managed-by=openshift-gitops

CHAPTER 4. GITOPS

175

https://github.com/redhat-developer/openshift-gitops-getting-started

a. Run the following command to modify the deployment:

b. In the OpenShift web console, notice that the deployment scales up to two pods and
immediately scales down again to one pod. Argo CD detected a difference from the Git
repository and auto-healed the application on the OpenShift cluster.

6. In the Argo CD dashboard, click the app-spring-petclinic tile → APP DETAILS → EVENTS.
The EVENTS tab displays the following events: Argo CD detecting out of sync deployment
resources on the cluster and then resyncing the Git repository to correct it.

4.5. CONFIGURING SSO FOR ARGO CD ON OPENSHIFT

After the Red Hat OpenShift GitOps Operator is installed, Argo CD automatically creates a user with
admin permissions. To manage multiple users, Argo CD allows cluster administrators to configure SSO.

NOTE

Bundled Dex OIDC provider is not supported.

Prerequisites

Red Hat SSO is installed on the cluster.

4.5.1. Creating a new client in Keycloak

Procedure

1. Log in to your Keycloak server, select the realm you want to use, navigate to the Clients page,
and then click Create in the upper-right section of the screen.

2. Specify the following values:

Client ID

argocd

Client Protocol

openid-connect

Route URL

<your-argo-cd-route-url>

Access Type

confidential

Valid Redirect URIs

<your-argo-cd-route-url>/auth/callback

Base URL

/applications

3. Click Save to see the Credentials tab added to the Client page.

4. Copy the secret from the Credentials tab for further configuration.

$ oc scale deployment spring-petclinic --replicas 2 -n spring-petclinic

OpenShift Container Platform 4.7 CI/CD

176

4.5.2. Configuring the groups claim

To manage users in Argo CD, you must configure a groups claim that can be included in the
authentication token.

Procedure

1. In the Keycloak dashboard, navigate to Client Scope and add a new client with the following
values:

Name

groups

Protocol

openid-connect

Display On Content Scope

On

Include to Token Scope

On

2. Click Save and navigate to groups → Mappers.

3. Add a new token mapper with the following values:

Name

groups

Mapper Type

Group Membership

Token Claim Name

groups
The token mapper adds the groups claim to the token when the client requests groups.

4. Navigate to Clients → Client Scopes and configure the client to provide the groups scope.
Select groups in the Assigned Default Client Scopes table and click Add selected. The
groups scope must be in the Available Client Scopes table.

5. Navigate to Users → Admin → Groups and create a group ArgoCDAdmins.

4.5.3. Configuring Argo CD OIDC

To configure Argo CD OpenID Connect (OIDC), you must generate your client secret, encode it, and
add it to your custom resource.

Prerequisites

You have obtained your client secret.

Procedure

1. Store the client secret you generated.

a. Encode the client secret in base64:

CHAPTER 4. GITOPS

177

1

2

3

b. Edit the secret and add the base64 value to an oidc.keycloak.clientSecret key:

Example YAML of the secret

2. Edit the argocd custom resource and add the OIDC configuration to enable the Keycloak
authentication:

Example of argocd custom resource

issuer must end with the correct realm name (in this example myrealm).

clientID is the Client ID you configured in your Keycloak account.

clientSecret points to the right key you created in the argocd-secret secret.

$ echo -n '83083958-8ec6-47b0-a411-a8c55381fbd2' | base64

$ oc edit secret argocd-secret -n <namespace>

apiVersion: v1
kind: Secret
metadata:
 name: argocd-secret
data:
 oidc.keycloak.clientSecret:
ODMwODM5NTgtOGVjNi00N2IwLWE0MTEtYThjNTUzODFmYmQy

$ oc edit argocd -n <your_namespace>

apiVersion: argoproj.io/v1alpha1
kind: ArgoCD
metadata:
 creationTimestamp: null
 name: argocd
 namespace: argocd
spec:
 resourceExclusions: |
 - apiGroups:
 - tekton.dev
 clusters:
 - '*'
 kinds:
 - TaskRun
 - PipelineRun
 oidcConfig: |
 name: OpenShift Single Sign-On
 issuer: https://keycloak.example.com/auth/realms/myrealm 1
 clientID: argocd 2
 clientSecret: $oidc.keycloak.clientSecret 3
 requestedScopes: ["openid", "profile", "email", "groups"] 4
 server:
 route:
 enabled: true

OpenShift Container Platform 4.7 CI/CD

178

4 requestedScopes contains the groups claim if you did not add it to the Default scope.

4.5.4. Keycloak Identity Brokering with OpenShift

You can configure a Keycloak instance to use OpenShift for authentication through Identity Brokering.
This allows for Single Sign-On (SSO) between the OpenShift cluster and the Keycloak instance.

Prerequisites

jq CLI tool is installed.

Procedure

1. Obtain the OpenShift Container Platform API URL:

NOTE

The address of the OpenShift Container Platform API is often protected by
HTTPS. Therefore, you must configure X509_CA_BUNDLE in the container and
set it to /var/run/secrets/kubernetes.io/serviceaccount/ca.crt. Otherwise,
Keycloak cannot communicate with the API Server.

2. In the Keycloak server dashboard, navigate to Identity Providers and select Openshift v4.
Specify the following values:

Base Url

OpenShift 4 API URL

Client ID

keycloak-broker

Client Secret

A secret that you want define
Now you can log in to Argo CD with your OpenShift credentials through Keycloak as an
Identity Broker.

4.5.5. Registering an additional an OAuth client

If you need an additional OAuth client to manage authentication for your OpenShift Container Platform
cluster, you can register one.

Procedure

To register your client:

$ curl -s -k -H "Authorization: Bearer $(oc whoami -t)" https://<openshift-user-facing-api-
url>/apis/config.openshift.io/v1/infrastructures/cluster | jq ".status.apiServerURL".

$ oc create -f <(echo '
kind: OAuthClient
apiVersion: oauth.openshift.io/v1
metadata:

CHAPTER 4. GITOPS

179

1

2

3

4

The name of the OAuth client is used as the client_id parameter when making requests to
<namespace_route>/oauth/authorize and <namespace_route>/oauth/token.

The secret is used as the client_secret parameter when making requests to
<namespace_route>/oauth/token.

The redirect_uri parameter specified in requests to <namespace_route>/oauth/authorize and
<namespace_route>/oauth/token must be equal to or prefixed by one of the URIs listed in the
redirectURIs parameter value.

If the user has not granted access to this client, the grantMethod determines which action to take
when this client requests tokens. Specify auto to automatically approve the grant and retry the
request, or prompt to prompt the user to approve or deny the grant.

4.5.6. Configure groups and Argo CD RBAC

Role-based access control (RBAC) allows you to provide relevant permissions to users.

Prerequisites

You have created the ArgoCDAdmins group in Keycloak.

The user you want to give permissions to has logged in to Argo CD.

Procedure

1. In the Keycloak dashboard navigate to Users → Groups. Add the user to the Keycloak group
ArgoCDAdmins.

2. Ensure that ArgoCDAdmins group has the required permissions in the argocd-rbac config
map.

Edit the config map:

Example of a config map that defines admin permissions.

 name: keycloak-broker 1
secret: "..." 2
redirectURIs:
- "https://keycloak-keycloak.apps.dev-svc-4.7-
020201.devcluster.openshift.com/auth/realms/myrealm/broker/openshift-v4/endpoint" 3
grantMethod: prompt 4
')

$ oc edit configmap argocd-rbac-cm -n <namespace>

apiVersion: v1
kind: ConfigMap
metadata:
 name: argocd-rbac-cm
data:
 policy.csv: |
 g, /ArgoCDAdmins, role:admin

OpenShift Container Platform 4.7 CI/CD

180

4.5.7. In-built permissions for Argo CD

This section lists the permissions that are granted to ArgoCD to manage specific cluster-scoped
resources which include cluster operators, optional OLM operators, and user management. Note that
ArgoCD is not granted cluster-admin permissions.

Table 4.4. Permissions granted to Argo CD

Resource group What it configures for a user or an administrator

operators.coreos.com Optional operators managed by OLM

user.openshift.io, rbac.authorization.k8s.io Groups, Users, and their permissions

config.openshift.io Control plane operators managed by CVO used to
configure cluster-wide build configuration, registry
configuration, and scheduler policies

storage.k8s.io Storage

console.openshift.io Console customization

4.6. SIZING REQUIREMENTS FOR GITOPS OPERATOR

The sizing requirements page displays the sizing requirements for installing Red Hat OpenShift GitOps
on OpenShift Container Platform. It also provides the sizing details for the default ArgoCD instance that
is instantiated by the GitOps Operator.

4.6.1. Sizing requirements for GitOps

Red Hat OpenShift GitOps is a declarative way to implement continuous deployment for cloud-native
applications. Through GitOps, you can define and configure the CPU and memory requirements of your
application.

Every time you install the Red Hat OpenShift GitOps Operator, the resources on the namespace are
installed within the defined limits. If the default installation does not set any limits or requests, the
Operator fails within the namespace with quotas. Without enough resources, the cluster cannot
schedule ArgoCD related pods. The following table details the resource requests and limits for the
default workloads:

Workload CPU requests CPU limits Memory requests Memory limits

argocd-
application-
controller

1 2 1024M 2048M

applicationset-
controller

1 2 512M 1024M

argocd-server 0.125 0.5 128M 256M

CHAPTER 4. GITOPS

181

argocd-repo-
server

0.5 1 256M 1024M

argocd-redis 0.25 0.5 128M 256M

argocd-dex 0.25 0.5 128M 256M

HAProxy 0.25 0.5 128M 256M

Workload CPU requests CPU limits Memory requests Memory limits

Optionally, you can also use the ArgoCD custom resource with the oc command to see the specifics and
modify them:

oc edit argocd <name of argo cd> -n namespace

OpenShift Container Platform 4.7 CI/CD

182

	Table of Contents
	CHAPTER 1. OPENSHIFT CONTAINER PLATFORM CI/CD OVERVIEW
	1.1. OPENSHIFT BUILDS
	1.2. OPENSHIFT PIPELINES
	1.3. OPENSHIFT GITOPS
	1.4. JENKINS

	CHAPTER 2. BUILDS
	2.1. UNDERSTANDING IMAGE BUILDS
	2.1.1. Builds
	2.1.1.1. Docker build
	2.1.1.2. Source-to-image build
	2.1.1.3. Custom build
	2.1.1.4. Pipeline build

	2.2. UNDERSTANDING BUILD CONFIGURATIONS
	2.2.1. BuildConfigs

	2.3. CREATING BUILD INPUTS
	2.3.1. Build inputs
	2.3.2. Dockerfile source
	2.3.3. Image source
	2.3.4. Git source
	2.3.4.1. Using a proxy
	2.3.4.2. Source Clone Secrets

	2.3.5. Binary (local) source
	2.3.6. Input secrets and config maps
	2.3.6.1. What is a secret?
	2.3.6.2. Creating secrets
	2.3.6.3. Using secrets
	2.3.6.4. Adding input secrets and config maps
	2.3.6.5. Source-to-image strategy
	2.3.6.6. Docker strategy
	2.3.6.7. Custom strategy

	2.3.7. External artifacts
	2.3.8. Using docker credentials for private registries
	2.3.9. Build environments
	2.3.9.1. Using build fields as environment variables
	2.3.9.2. Using secrets as environment variables

	2.3.10. Service serving certificate secrets
	2.3.11. Secrets restrictions

	2.4. MANAGING BUILD OUTPUT
	2.4.1. Build output
	2.4.2. Output image environment variables
	2.4.3. Output image labels

	2.5. USING BUILD STRATEGIES
	2.5.1. Docker build
	2.5.1.1. Replacing Dockerfile FROM image
	2.5.1.2. Using Dockerfile path
	2.5.1.3. Using docker environment variables
	2.5.1.4. Adding docker build arguments
	2.5.1.5. Squash layers with docker builds

	2.5.2. Source-to-image build
	2.5.2.1. Performing source-to-image incremental builds
	2.5.2.2. Overriding source-to-image builder image scripts
	2.5.2.3. Source-to-image environment variables
	2.5.2.4. Ignoring source-to-image source files
	2.5.2.5. Creating images from source code with source-to-image

	2.5.3. Custom build
	2.5.3.1. Using FROM image for custom builds
	2.5.3.2. Using secrets in custom builds
	2.5.3.3. Using environment variables for custom builds
	2.5.3.4. Using custom builder images

	2.5.4. Pipeline build
	2.5.4.1. Understanding OpenShift Container Platform pipelines
	2.5.4.2. Providing the Jenkins file for pipeline builds
	2.5.4.3. Using environment variables for pipeline builds
	2.5.4.4. Pipeline build tutorial

	2.5.5. Adding secrets with web console
	2.5.6. Enabling pulling and pushing

	2.6. CUSTOM IMAGE BUILDS WITH BUILDAH
	2.6.1. Prerequisites
	2.6.2. Creating custom build artifacts
	2.6.3. Build custom builder image
	2.6.4. Use custom builder image

	2.7. PERFORMING BASIC BUILDS
	2.7.1. Starting a build
	2.7.1.1. Re-running a build
	2.7.1.2. Streaming build logs
	2.7.1.3. Setting environment variables when starting a build
	2.7.1.4. Starting a build with source

	2.7.2. Canceling a build
	2.7.2.1. Canceling multiple builds
	2.7.2.2. Canceling all builds
	2.7.2.3. Canceling all builds in a given state

	2.7.3. Deleting a BuildConfig
	2.7.4. Viewing build details
	2.7.5. Accessing build logs
	2.7.5.1. Accessing BuildConfig logs
	2.7.5.2. Accessing BuildConfig logs for a given version build
	2.7.5.3. Enabling log verbosity

	2.8. TRIGGERING AND MODIFYING BUILDS
	2.8.1. Build triggers
	2.8.1.1. Webhook triggers
	2.8.1.2. Using image change triggers
	2.8.1.3. Configuration change triggers

	2.8.2. Build hooks
	2.8.2.1. Configuring post commit build hooks
	2.8.2.2. Using the CLI to set post commit build hooks

	2.9. PERFORMING ADVANCED BUILDS
	2.9.1. Setting build resources
	2.9.2. Setting maximum duration
	2.9.3. Assigning builds to specific nodes
	2.9.4. Chained builds
	2.9.5. Pruning builds
	2.9.6. Build run policy

	2.10. USING RED HAT SUBSCRIPTIONS IN BUILDS
	2.10.1. Creating an image stream tag for the Red Hat Universal Base Image
	2.10.2. Adding subscription entitlements as a build secret
	2.10.3. Running builds with Subscription Manager
	2.10.3.1. Docker builds using Subscription Manager

	2.10.4. Running builds with Red Hat Satellite subscriptions
	2.10.4.1. Adding Red Hat Satellite configurations to builds
	2.10.4.2. Docker builds using Red Hat Satellite subscriptions

	2.10.5. Additional resources

	2.11. SECURING BUILDS BY STRATEGY
	2.11.1. Disabling access to a build strategy globally
	2.11.2. Restricting build strategies to users globally
	2.11.3. Restricting build strategies to a user within a project

	2.12. BUILD CONFIGURATION RESOURCES
	2.12.1. Build controller configuration parameters
	2.12.2. Configuring build settings

	2.13. TROUBLESHOOTING BUILDS
	2.13.1. Resolving denial for access to resources
	2.13.2. Service certificate generation failure

	2.14. SETTING UP ADDITIONAL TRUSTED CERTIFICATE AUTHORITIES FOR BUILDS
	2.14.1. Adding certificate authorities to the cluster
	2.14.2. Additional resources

	CHAPTER 3. PIPELINES
	3.1. RED HAT OPENSHIFT PIPELINES RELEASE NOTES
	3.1.1. Making open source more inclusive
	3.1.2. Release notes for Red Hat OpenShift Pipelines General Availability 1.4
	3.1.2.1. Compatibility and support matrix
	3.1.2.2. New features
	3.1.2.3. Deprecated features
	3.1.2.4. Known issues
	3.1.2.5. Fixed issues

	3.1.3. Release notes for Red Hat OpenShift Pipelines Technology Preview 1.3
	3.1.3.1. New features
	3.1.3.2. Deprecated features
	3.1.3.3. Known issues
	3.1.3.4. Fixed issues

	3.1.4. Release notes for Red Hat OpenShift Pipelines Technology Preview 1.2
	3.1.4.1. New features
	3.1.4.2. Deprecated features
	3.1.4.3. Known issues
	3.1.4.4. Fixed issues

	3.1.5. Release notes for Red Hat OpenShift Pipelines Technology Preview 1.1
	3.1.5.1. New features
	3.1.5.2. Deprecated features
	3.1.5.3. Known issues
	3.1.5.4. Fixed issues

	3.1.6. Release notes for Red Hat OpenShift Pipelines Technology Preview 1.0
	3.1.6.1. New features
	3.1.6.2. Deprecated features
	3.1.6.3. Known issues
	3.1.6.4. Fixed issues

	3.2. UNDERSTANDING OPENSHIFT PIPELINES
	3.2.1. Key features
	3.2.2. OpenShift Pipeline Concepts
	3.2.2.1. Tasks
	3.2.2.2. TaskRun
	3.2.2.3. Pipelines
	3.2.2.4. PipelineRun
	3.2.2.5. Workspaces
	3.2.2.6. Triggers

	3.2.3. Additional resources

	3.3. INSTALLING OPENSHIFT PIPELINES
	Prerequisites
	3.3.1. Installing the Red Hat OpenShift Pipelines Operator in web console
	3.3.2. Installing the OpenShift Pipelines Operator using the CLI
	3.3.3. Red Hat OpenShift Pipelines Operator in a restricted environment
	3.3.4. Additional resources

	3.4. UNINSTALLING OPENSHIFT PIPELINES
	3.4.1. Deleting the Red Hat OpenShift Pipelines components and Custom Resources
	3.4.2. Uninstalling the Red Hat OpenShift Pipelines Operator

	3.5. CREATING CI/CD SOLUTIONS FOR APPLICATIONS USING OPENSHIFT PIPELINES
	3.5.1. Prerequisites
	3.5.2. Creating a project and checking your pipeline service account
	3.5.3. Creating pipeline tasks
	3.5.4. Assembling a pipeline
	3.5.5. Mirroring images to run pipelines in a restricted environment
	3.5.6. Running a pipeline
	3.5.7. Adding triggers to a pipeline
	3.5.8. Creating webhooks
	3.5.9. Triggering a pipeline run
	3.5.10. Additional resources

	3.6. WORKING WITH RED HAT OPENSHIFT PIPELINES USING THE DEVELOPER PERSPECTIVE
	Prerequisites
	3.6.1. Constructing Pipelines using the Pipeline Builder
	3.6.2. Creating applications with OpenShift Pipelines
	3.6.3. Interacting with pipelines using the Developer perspective
	3.6.4. Starting pipelines
	3.6.5. Editing Pipelines
	3.6.6. Deleting Pipelines

	3.7. REDUCING RESOURCE CONSUMPTION OF PIPELINES
	3.7.1. Understanding resource consumption in pipelines
	3.7.2. Mitigating extra resource consumption in pipelines
	3.7.3. Additional resources

	3.8. USING PODS IN A PRIVILEGED SECURITY CONTEXT
	3.8.1. Running pipeline run and task run pods with privileged security context
	3.8.2. Running pipeline run and task run by using a custom SCC and a custom service account
	3.8.3. Additional resources

	3.9. VIEWING PIPELINE LOGS USING THE OPENSHIFT LOGGING OPERATOR
	3.9.1. Prerequisites
	3.9.2. Viewing pipeline logs in Kibana
	3.9.3. Additional resources

	CHAPTER 4. GITOPS
	4.1. RED HAT OPENSHIFT GITOPS RELEASE NOTES
	4.1.1. Making open source more inclusive
	4.1.2. Release notes for Red Hat OpenShift GitOps 1.2.1
	4.1.2.1. Support matrix
	4.1.2.2. Fixed issues

	4.1.3. Release notes for Red Hat OpenShift GitOps 1.2
	4.1.3.1. Support matrix
	4.1.3.2. New features
	4.1.3.3. Fixed issues
	4.1.3.4. Known issues

	4.1.4. Release notes for Red Hat OpenShift GitOps 1.1
	4.1.4.1. Support matrix
	4.1.4.2. New features
	4.1.4.3. Fixed issues
	4.1.4.4. Known issues
	4.1.4.5. Breaking Change

	4.2. UNDERSTANDING OPENSHIFT GITOPS
	4.2.1. About GitOps
	4.2.2. About Red Hat OpenShift GitOps
	4.2.2.1. Key features

	4.3. GETTING STARTED WITH OPENSHIFT GITOPS
	4.3.1. Installing GitOps Operator in web console

	4.4. CONFIGURING ARGO CD TO RECURSIVELY SYNC A GIT REPOSITORY WITH YOUR APPLICATION
	4.4.1. Configuring an OpenShift cluster by deploying an application with cluster configurations
	4.4.1.1. Logging in to the Argo CD instance by using your OpenShift credentials
	4.4.1.2. Creating an application by using the Argo CD dashboard
	4.4.1.3. Creating an application by using the oc tool
	4.4.1.4. Synchronizing your application with your Git repository

	4.4.2. Deploying a Spring Boot application with Argo CD
	4.4.2.1. Logging in to the Argo CD instance by using your OpenShift credentials
	4.4.2.2. Creating an application by using the Argo CD dashboard
	4.4.2.3. Creating an application by using the oc tool
	4.4.2.4. Verifying Argo CD self-healing behavior

	4.5. CONFIGURING SSO FOR ARGO CD ON OPENSHIFT
	4.5.1. Creating a new client in Keycloak
	4.5.2. Configuring the groups claim
	4.5.3. Configuring Argo CD OIDC
	4.5.4. Keycloak Identity Brokering with OpenShift
	4.5.5. Registering an additional an OAuth client
	4.5.6. Configure groups and Argo CD RBAC
	4.5.7. In-built permissions for Argo CD

	4.6. SIZING REQUIREMENTS FOR GITOPS OPERATOR
	4.6.1. Sizing requirements for GitOps

