
OpenShift Container Platform 4.9

CI/CD

Contains information on builds, pipelines and GitOps for OpenShift Container
Platform

Last Updated: 2023-05-08

OpenShift Container Platform 4.9 CI/CD

Contains information on builds, pipelines and GitOps for OpenShift Container Platform

Legal Notice

Copyright © 2023 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

CI/CD for the OpenShift Container Platform

. .

. .

Table of Contents

CHAPTER 1. OPENSHIFT CONTAINER PLATFORM CI/CD OVERVIEW
1.1. OPENSHIFT BUILDS
1.2. OPENSHIFT PIPELINES
1.3. OPENSHIFT GITOPS
1.4. JENKINS

CHAPTER 2. BUILDS
2.1. UNDERSTANDING IMAGE BUILDS

2.1.1. Builds
2.1.1.1. Docker build
2.1.1.2. Source-to-image build
2.1.1.3. Custom build
2.1.1.4. Pipeline build

2.2. UNDERSTANDING BUILD CONFIGURATIONS
2.2.1. BuildConfigs

2.3. CREATING BUILD INPUTS
2.3.1. Build inputs
2.3.2. Dockerfile source
2.3.3. Image source
2.3.4. Git source

2.3.4.1. Using a proxy
2.3.4.2. Source Clone Secrets

2.3.4.2.1. Automatically adding a source clone secret to a build configuration
2.3.4.2.2. Manually adding a source clone secret
2.3.4.2.3. Creating a secret from a .gitconfig file
2.3.4.2.4. Creating a secret from a .gitconfig file for secured Git
2.3.4.2.5. Creating a secret from source code basic authentication
2.3.4.2.6. Creating a secret from source code SSH key authentication
2.3.4.2.7. Creating a secret from source code trusted certificate authorities
2.3.4.2.8. Source secret combinations

2.3.4.2.8.1. Creating a SSH-based authentication secret with a .gitconfig file
2.3.4.2.8.2. Creating a secret that combines a .gitconfig file and CA certificate
2.3.4.2.8.3. Creating a basic authentication secret with a CA certificate
2.3.4.2.8.4. Creating a basic authentication secret with a .gitconfig file
2.3.4.2.8.5. Creating a basic authentication secret with a .gitconfig file and CA certificate

2.3.5. Binary (local) source
2.3.6. Input secrets and config maps

2.3.6.1. What is a secret?
2.3.6.1.1. Properties of secrets
2.3.6.1.2. Types of Secrets
2.3.6.1.3. Updates to secrets

2.3.6.2. Creating secrets
2.3.6.3. Using secrets
2.3.6.4. Adding input secrets and config maps
2.3.6.5. Source-to-image strategy
2.3.6.6. Docker strategy
2.3.6.7. Custom strategy

2.3.7. External artifacts
2.3.8. Using docker credentials for private registries
2.3.9. Build environments

2.3.9.1. Using build fields as environment variables

12
12
12
12
12

13
13
13
13
13
14
14
14
14
16
16
17
17
18
19

20
20
22
22
23
24
24
25
25
25
26
26
27
27
27
29
29
30
30
30
31
32
34
36
36
37
37
38
40
40

Table of Contents

1

2.3.9.2. Using secrets as environment variables
2.3.10. Service serving certificate secrets
2.3.11. Secrets restrictions

2.4. MANAGING BUILD OUTPUT
2.4.1. Build output
2.4.2. Output image environment variables
2.4.3. Output image labels

2.5. USING BUILD STRATEGIES
2.5.1. Docker build

2.5.1.1. Replacing Dockerfile FROM image
2.5.1.2. Using Dockerfile path
2.5.1.3. Using docker environment variables
2.5.1.4. Adding docker build arguments
2.5.1.5. Squashing layers with docker builds
2.5.1.6. Using build volumes

2.5.2. Source-to-image build
2.5.2.1. Performing source-to-image incremental builds
2.5.2.2. Overriding source-to-image builder image scripts
2.5.2.3. Source-to-image environment variables

2.5.2.3.1. Using source-to-image environment files
2.5.2.3.2. Using source-to-image build configuration environment

2.5.2.4. Ignoring source-to-image source files
2.5.2.5. Creating images from source code with source-to-image

2.5.2.5.1. Understanding the source-to-image build process
2.5.2.5.2. How to write source-to-image scripts

2.5.2.6. Using build volumes
2.5.3. Custom build

2.5.3.1. Using FROM image for custom builds
2.5.3.2. Using secrets in custom builds
2.5.3.3. Using environment variables for custom builds
2.5.3.4. Using custom builder images

2.5.3.4.1. Custom builder image
2.5.3.4.2. Custom builder workflow

2.5.4. Pipeline build
2.5.4.1. Understanding OpenShift Container Platform pipelines
2.5.4.2. Providing the Jenkins file for pipeline builds
2.5.4.3. Using environment variables for pipeline builds

2.5.4.3.1. Mapping between BuildConfig environment variables and Jenkins job parameters
2.5.4.4. Pipeline build tutorial

2.5.5. Adding secrets with web console
2.5.6. Enabling pulling and pushing

2.6. CUSTOM IMAGE BUILDS WITH BUILDAH
2.6.1. Prerequisites
2.6.2. Creating custom build artifacts
2.6.3. Build custom builder image
2.6.4. Use custom builder image

2.7. PERFORMING AND CONFIGURING BASIC BUILDS
2.7.1. Starting a build

2.7.1.1. Re-running a build
2.7.1.2. Streaming build logs
2.7.1.3. Setting environment variables when starting a build
2.7.1.4. Starting a build with source

2.7.2. Canceling a build

41
41

42
42
42
43
43
44
44
44
45
45
45
46
46
47
47
48
48
48
49
49
49
50
50
52
53
53
54
54
54
55
55
56
56
57
59
59
60
64
64
65
65
65
66
67
68
68
68
68
68
69
69

OpenShift Container Platform 4.9 CI/CD

2

2.7.2.1. Canceling multiple builds
2.7.2.2. Canceling all builds
2.7.2.3. Canceling all builds in a given state

2.7.3. Editing a BuildConfig
2.7.4. Deleting a BuildConfig
2.7.5. Viewing build details
2.7.6. Accessing build logs

2.7.6.1. Accessing BuildConfig logs
2.7.6.2. Accessing BuildConfig logs for a given version build
2.7.6.3. Enabling log verbosity

2.8. TRIGGERING AND MODIFYING BUILDS
2.8.1. Build triggers

2.8.1.1. Webhook triggers
2.8.1.1.1. Using GitHub webhooks
2.8.1.1.2. Using GitLab webhooks
2.8.1.1.3. Using Bitbucket webhooks
2.8.1.1.4. Using generic webhooks
2.8.1.1.5. Displaying webhook URLs

2.8.1.2. Using image change triggers
2.8.1.3. Identifying the image change trigger of a build
2.8.1.4. Configuration change triggers

2.8.1.4.1. Setting triggers manually
2.8.2. Build hooks

2.8.2.1. Configuring post commit build hooks
2.8.2.2. Using the CLI to set post commit build hooks

2.9. PERFORMING ADVANCED BUILDS
2.9.1. Setting build resources
2.9.2. Setting maximum duration
2.9.3. Assigning builds to specific nodes
2.9.4. Chained builds
2.9.5. Pruning builds
2.9.6. Build run policy

2.10. USING RED HAT SUBSCRIPTIONS IN BUILDS
2.10.1. Creating an image stream tag for the Red Hat Universal Base Image
2.10.2. Adding subscription entitlements as a build secret
2.10.3. Running builds with Subscription Manager

2.10.3.1. Docker builds using Subscription Manager
2.10.4. Running builds with Red Hat Satellite subscriptions

2.10.4.1. Adding Red Hat Satellite configurations to builds
2.10.4.2. Docker builds using Red Hat Satellite subscriptions

2.10.5. Additional resources
2.11. SECURING BUILDS BY STRATEGY

2.11.1. Disabling access to a build strategy globally
2.11.2. Restricting build strategies to users globally
2.11.3. Restricting build strategies to a user within a project

2.12. BUILD CONFIGURATION RESOURCES
2.12.1. Build controller configuration parameters
2.12.2. Configuring build settings

2.13. TROUBLESHOOTING BUILDS
2.13.1. Resolving denial for access to resources
2.13.2. Service certificate generation failure

2.14. SETTING UP ADDITIONAL TRUSTED CERTIFICATE AUTHORITIES FOR BUILDS
2.14.1. Adding certificate authorities to the cluster

70
70
70
70
71
72
72
72
73
73
74
74
74
75
76
77
78
79
80
81

83
84
84
85
85
86
86
87
87
88
89
90
90
90
91

92
92
92
93
93
94
94
94
96
96
97
97
98
99

100
100
100
101

Table of Contents

3

. .

. .

2.14.2. Additional resources

CHAPTER 3. MIGRATING FROM JENKINS TO TEKTON
3.1. MIGRATING FROM JENKINS TO TEKTON

3.1.1. Comparison of Jenkins and Tekton concepts
3.1.1.1. Jenkins terminology
3.1.1.2. Tekton terminology
3.1.1.3. Mapping of concepts

3.1.2. Migrating a sample pipeline from Jenkins to Tekton
3.1.2.1. Jenkins pipeline
3.1.2.2. Tekton pipeline

3.1.3. Migrating from Jenkins plugins to Tekton Hub tasks
3.1.4. Extending Tekton capabilities using custom tasks and scripts
3.1.5. Comparison of Jenkins and Tekton execution models
3.1.6. Examples of common use cases

3.1.6.1. Running a maven pipeline in Jenkins and Tekton
3.1.6.2. Extending the core capabilities of Jenkins and Tekton by using plugins
3.1.6.3. Sharing reusable code in Jenkins and Tekton

3.1.7. Additional resources

CHAPTER 4. PIPELINES
4.1. RED HAT OPENSHIFT PIPELINES RELEASE NOTES

4.1.1. Compatibility and support matrix
4.1.2. Making open source more inclusive
4.1.3. Release notes for Red Hat OpenShift Pipelines General Availability 1.7

4.1.3.1. New features
4.1.3.1.1. Pipelines
4.1.3.1.2. Triggers
4.1.3.1.3. CLI
4.1.3.1.4. Operator
4.1.3.1.5. Hub
4.1.3.1.6. Chains
4.1.3.1.7. Pipelines as Code (PAC)

4.1.3.2. Deprecated features
4.1.3.3. Known issues
4.1.3.4. Fixed issues
4.1.3.5. Release notes for Red Hat OpenShift Pipelines General Availability 1.7.1

4.1.3.5.1. Fixed issues
4.1.3.6. Release notes for Red Hat OpenShift Pipelines General Availability 1.7.2

4.1.3.6.1. Known issues
4.1.3.6.2. Fixed issues

4.1.3.7. Release notes for Red Hat OpenShift Pipelines General Availability 1.7.3
4.1.3.7.1. Fixed issues

4.1.4. Release notes for Red Hat OpenShift Pipelines General Availability 1.6
4.1.4.1. New features
4.1.4.2. Deprecated features
4.1.4.3. Known issues
4.1.4.4. Fixed issues
4.1.4.5. Release notes for Red Hat OpenShift Pipelines General Availability 1.6.1

4.1.4.5.1. Known issues
4.1.4.5.2. Fixed issues

4.1.4.6. Release notes for Red Hat OpenShift Pipelines General Availability 1.6.2
4.1.4.6.1. Known issues

101

102
102
102
102
102
103
103
103
104
105
106
106
107
107
109
110
110

111
111
111

112
112
112
112
113
114
115
116
116
116
117
117
118
118
118
119
119
119

120
120
120
120
123
124
125
125
125
126
126
126

OpenShift Container Platform 4.9 CI/CD

4

4.1.4.6.2. Fixed issues
4.1.4.7. Release notes for Red Hat OpenShift Pipelines General Availability 1.6.3

4.1.4.7.1. Fixed issues
4.1.4.8. Release notes for Red Hat OpenShift Pipelines General Availability 1.6.4

4.1.4.8.1. Known issues
4.1.4.8.2. Fixed issues

4.1.5. Release notes for Red Hat OpenShift Pipelines General Availability 1.5
4.1.5.1. Compatibility and support matrix
4.1.5.2. New features
4.1.5.3. Deprecated features
4.1.5.4. Known issues
4.1.5.5. Fixed issues

4.1.6. Release notes for Red Hat OpenShift Pipelines General Availability 1.4
4.1.6.1. Compatibility and support matrix
4.1.6.2. New features
4.1.6.3. Deprecated features
4.1.6.4. Known issues
4.1.6.5. Fixed issues

4.1.7. Release notes for Red Hat OpenShift Pipelines Technology Preview 1.3
4.1.7.1. New features

4.1.7.1.1. Pipelines
4.1.7.1.2. Pipelines CLI
4.1.7.1.3. Triggers

4.1.7.2. Deprecated features
4.1.7.3. Known issues
4.1.7.4. Fixed issues

4.1.8. Release notes for Red Hat OpenShift Pipelines Technology Preview 1.2
4.1.8.1. New features

4.1.8.1.1. Pipelines
4.1.8.1.2. Pipelines CLI
4.1.8.1.3. Triggers

4.1.8.2. Deprecated features
4.1.8.3. Known issues
4.1.8.4. Fixed issues

4.1.9. Release notes for Red Hat OpenShift Pipelines Technology Preview 1.1
4.1.9.1. New features

4.1.9.1.1. Pipelines
4.1.9.1.2. Pipelines CLI
4.1.9.1.3. Triggers

4.1.9.2. Deprecated features
4.1.9.3. Known issues
4.1.9.4. Fixed issues

4.1.10. Release notes for Red Hat OpenShift Pipelines Technology Preview 1.0
4.1.10.1. New features

4.1.10.1.1. Pipelines
4.1.10.1.2. Pipelines CLI
4.1.10.1.3. Triggers

4.1.10.2. Deprecated features
4.1.10.3. Known issues
4.1.10.4. Fixed issues

4.2. UNDERSTANDING OPENSHIFT PIPELINES
4.2.1. Key features
4.2.2. OpenShift Pipeline Concepts

126
127
127
127
127
128
128
128
129
131

133
135
135
136
136
138
138
139
140
141
141

142
142
143
143
143
144
144
145
145
146
146
147
148
148
148
148
150
150
151
151
152
152
152
152
153
153
153
154
155
156
156
156

Table of Contents

5

4.2.2.1. Tasks
4.2.2.2. When expression
4.2.2.3. Finally tasks
4.2.2.4. TaskRun
4.2.2.5. Pipelines
4.2.2.6. PipelineRun
4.2.2.7. Workspaces
4.2.2.8. Triggers

4.2.3. Additional resources
4.3. INSTALLING OPENSHIFT PIPELINES

Prerequisites
4.3.1. Installing the Red Hat OpenShift Pipelines Operator in web console
4.3.2. Installing the OpenShift Pipelines Operator using the CLI
4.3.3. Red Hat OpenShift Pipelines Operator in a restricted environment
4.3.4. Disabling the automatic creation of RBAC resources
4.3.5. Additional resources

4.4. UNINSTALLING OPENSHIFT PIPELINES
4.4.1. Deleting the Red Hat OpenShift Pipelines components and Custom Resources
4.4.2. Uninstalling the Red Hat OpenShift Pipelines Operator

4.5. CREATING CI/CD SOLUTIONS FOR APPLICATIONS USING OPENSHIFT PIPELINES
4.5.1. Prerequisites
4.5.2. Creating a project and checking your pipeline service account
4.5.3. Creating pipeline tasks
4.5.4. Assembling a pipeline
4.5.5. Mirroring images to run pipelines in a restricted environment
4.5.6. Running a pipeline
4.5.7. Adding triggers to a pipeline
4.5.8. Configuring event listeners to serve multiple namespaces
4.5.9. Creating webhooks
4.5.10. Triggering a pipeline run
4.5.11. Enabling monitoring of event listeners for Triggers for user-defined projects
4.5.12. Additional resources

4.6. MANAGING NON-VERSIONED AND VERSIONED CLUSTER TASKS
4.6.1. Differences between non-versioned and versioned cluster tasks
4.6.2. Advantages and disadvantages of non-versioned and versioned cluster tasks
4.6.3. Disabling non-versioned and versioned cluster tasks

4.7. USING TEKTON HUB WITH OPENSHIFT PIPELINES
4.7.1. Installing and deploying Tekton Hub on a OpenShift Container Platform cluster

4.7.1.1. Manually refreshing the catalog in Tekton Hub
4.7.1.2. Optional: Setting a cron job for refreshing catalog in Tekton Hub
4.7.1.3. Optional: Adding new users in Tekton Hub configuration

4.7.2. Opting out of Tekton Hub in the Developer perspective
4.7.3. Additional resources

4.8. USING PIPELINES AS CODE
4.8.1. Key features
4.8.2. Installing Pipelines as Code on an OpenShift Container Platform
4.8.3. Installing Pipelines as Code CLI
4.8.4. Configuring Pipelines as Code for a Git repository hosting service provider

4.8.4.1. Configuring Pipelines as Code for a GitHub App
4.8.4.1.1. Configuring a GitHub App
4.8.4.1.2. Configuring Pipelines as Code to access a GitHub App

4.8.5. Pipelines as Code command reference
4.8.5.1. Basic syntax

156
157
161

162
163
165
166
168
172
172
172
172
175
175
175
176
177
177
177
178
178
178
179
180
182
185
187
191

193
194
195
196
196
196
197
198
199
199

202
203
204
205
205
205
206
206
207
208
208
208
209
210
210

OpenShift Container Platform 4.9 CI/CD

6

4.8.5.2. Global options
4.8.5.3. Utility commands

4.8.5.3.1. bootstrap
4.8.5.3.2. repository
4.8.5.3.3. generate
4.8.5.3.4. resolve

4.8.6. Customizing Pipelines as Code configuration
4.8.7. Additional resources

4.9. WORKING WITH RED HAT OPENSHIFT PIPELINES USING THE DEVELOPER PERSPECTIVE
Prerequisites
4.9.1. Constructing Pipelines using the Pipeline builder
4.9.2. Creating applications with OpenShift Pipelines
4.9.3. Interacting with pipelines using the Developer perspective
4.9.4. Using a custom pipeline template for creating and deploying an application from a Git repository
4.9.5. Starting pipelines
4.9.6. Editing Pipelines
4.9.7. Deleting Pipelines

4.10. REDUCING RESOURCE CONSUMPTION OF OPENSHIFT PIPELINES
4.10.1. Understanding resource consumption in pipelines
4.10.2. Mitigating extra resource consumption in pipelines
4.10.3. Additional resources

4.11. SETTING COMPUTE RESOURCE QUOTA FOR OPENSHIFT PIPELINES
4.11.1. Alternative approaches for limiting compute resource consumption in OpenShift Pipelines
4.11.2. Specifying pipelines resource quota using priority class
4.11.3. Additional resources

4.12. AUTOMATIC PRUNING OF TASK RUN AND PIPELINE RUN
4.12.1. Annotations for automatically pruning task runs and pipeline runs
4.12.2. Additional resources

4.13. USING PODS IN A PRIVILEGED SECURITY CONTEXT
4.13.1. Running pipeline run and task run pods with privileged security context
4.13.2. Running pipeline run and task run by using a custom SCC and a custom service account
4.13.3. Additional resources

4.14. SECURING WEBHOOKS WITH EVENT LISTENERS
4.14.1. Providing secure connection with OpenShift routes
4.14.2. Creating a sample EventListener resource using a secure HTTPS connection

4.15. AUTHENTICATING PIPELINES USING GIT SECRET
4.15.1. Credential selection
4.15.2. Configuring basic authentication for Git
4.15.3. Configuring SSH authentication for Git
4.15.4. Using SSH authentication in git type tasks
4.15.5. Using secrets as a non-root user
4.15.6. Limiting secret access to specific steps

4.16. USING TEKTON CHAINS FOR OPENSHIFT PIPELINES SUPPLY CHAIN SECURITY
4.16.1. Key features
4.16.2. Installing Tekton Chains using the Red Hat OpenShift Pipelines Operator
4.16.3. Configuring Tekton Chains

4.16.3.1. Supported keys for Tekton Chains configuration
4.16.3.1.1. Supported keys for task run
4.16.3.1.2. Supported keys for OCI
4.16.3.1.3. Supported keys for storage

4.16.4. Signing secrets in Tekton Chains
4.16.4.1. Signing using x509
4.16.4.2. Signing using cosign

210
210
211
211
211
212
212
213
213
214
214
217
217
219
221

224
224
225
225
226
227
227
227
228
232
232
232
233
233
233
235
237
237
237
238
239
239
240
241

243
244
244
244
245
245
246
246
246
246
247
247
247
247

Table of Contents

7

. .

4.16.4.3. Troubleshooting signing
4.16.5. Authenticating to an OCI registry

4.16.5.1. Creating and verifying task run signatures without any additional authentication
4.16.6. Using Tekton Chains to sign and verify image and provenance
4.16.7. Additional resources

4.17. VIEWING PIPELINE LOGS USING THE OPENSHIFT LOGGING OPERATOR
4.17.1. Prerequisites
4.17.2. Viewing pipeline logs in Kibana
4.17.3. Additional resources

CHAPTER 5. GITOPS
5.1. RED HAT OPENSHIFT GITOPS RELEASE NOTES

5.1.1. Compatibility and support matrix
5.1.1.1. Technology Preview features

5.1.2. Making open source more inclusive
5.1.3. Release notes for Red Hat OpenShift GitOps 1.6.7

5.1.3.1. Fixed issues
5.1.4. Release notes for Red Hat OpenShift GitOps 1.6.6

5.1.4.1. Fixed issues
5.1.5. Release notes for Red Hat OpenShift GitOps 1.6.4

5.1.5.1. Fixed issues
5.1.6. Release notes for Red Hat OpenShift GitOps 1.6.2

5.1.6.1. New features
5.1.6.2. Fixed issues

5.1.7. Release notes for Red Hat OpenShift GitOps 1.6.1
5.1.7.1. Fixed issues

5.1.8. Release notes for Red Hat OpenShift GitOps 1.6.0
5.1.8.1. New features
5.1.8.2. Fixed issues
5.1.8.3. Known issues

5.1.9. Release notes for Red Hat OpenShift GitOps 1.5.9
5.1.9.1. Fixed issues

5.1.10. Release notes for Red Hat OpenShift GitOps 1.5.7
5.1.10.1. Fixed issues

5.1.11. Release notes for Red Hat OpenShift GitOps 1.5.6
5.1.11.1. Fixed issues

5.1.12. Release notes for Red Hat OpenShift GitOps 1.5.5
5.1.12.1. New features
5.1.12.2. Fixed issues
5.1.12.3. Known issues

5.1.13. Release notes for Red Hat OpenShift GitOps 1.5.4
5.1.13.1. Fixed issues

5.1.14. Release notes for Red Hat OpenShift GitOps 1.5.3
5.1.14.1. Fixed issues

5.1.15. Release notes for Red Hat OpenShift GitOps 1.5.2
5.1.15.1. Fixed issues

5.1.16. Release notes for Red Hat OpenShift GitOps 1.5.1
5.1.16.1. Fixed issues

5.1.17. Release notes for Red Hat OpenShift GitOps 1.5.0
5.1.17.1. New features
5.1.17.2. Fixed issues
5.1.17.3. Known issues

5.1.18. Release notes for Red Hat OpenShift GitOps 1.4.13

248
248
249
251

253
253
254
254
256

257
257
257
258
258
258
259
259
259
259
259
259
259
259
260
260
261
261
262
262
263
263
263
263
263
263
264
264
264
264
265
265
265
265
265
266
266
266
266
266
267
267
267

OpenShift Container Platform 4.9 CI/CD

8

5.1.18.1. Fixed issues
5.1.19. Release notes for Red Hat OpenShift GitOps 1.4.12

5.1.19.1. Fixed issues
5.1.20. Release notes for Red Hat OpenShift GitOps 1.4.11

5.1.20.1. New features
5.1.20.2. Fixed issues
5.1.20.3. Known issues

5.1.21. Release notes for Red Hat OpenShift GitOps 1.4.6
5.1.21.1. Fixed issues

5.1.22. Release notes for Red Hat OpenShift GitOps 1.4.5
5.1.22.1. Fixed issues

5.1.23. Release notes for Red Hat OpenShift GitOps 1.4.3
5.1.23.1. Fixed issues

5.1.24. Release notes for Red Hat OpenShift GitOps 1.4.2
5.1.24.1. Fixed issues

5.1.25. Release notes for Red Hat OpenShift GitOps 1.4.1
5.1.25.1. Fixed issues

5.1.26. Release notes for Red Hat OpenShift GitOps 1.4.0
5.1.26.1. New features
5.1.26.2. Fixed issues
5.1.26.3. Known issues

5.1.27. Release notes for Red Hat OpenShift GitOps 1.3.7
5.1.27.1. Fixed issues

5.1.28. Release notes for Red Hat OpenShift GitOps 1.3.6
5.1.28.1. Fixed issues

5.1.29. Release notes for Red Hat OpenShift GitOps 1.3.2
5.1.29.1. New features
5.1.29.2. Fixed issues

5.1.30. Release notes for Red Hat OpenShift GitOps 1.3.1
5.1.30.1. Fixed issues

5.1.31. Release notes for Red Hat OpenShift GitOps 1.3
5.1.31.1. New features
5.1.31.2. Fixed issues
5.1.31.3. Known issues

5.1.32. Release notes for Red Hat OpenShift GitOps 1.2.2
5.1.32.1. Fixed issues

5.1.33. Release notes for Red Hat OpenShift GitOps 1.2.1
5.1.33.1. Support matrix
5.1.33.2. Fixed issues

5.1.34. Release notes for Red Hat OpenShift GitOps 1.2
5.1.34.1. Support matrix
5.1.34.2. New features
5.1.34.3. Fixed issues
5.1.34.4. Known issues

5.1.35. Release notes for Red Hat OpenShift GitOps 1.1
5.1.35.1. Support matrix
5.1.35.2. New features
5.1.35.3. Fixed issues
5.1.35.4. Known issues
5.1.35.5. Breaking Change

5.1.35.5.1. Upgrading from Red Hat OpenShift GitOps v1.0.1
5.2. UNDERSTANDING OPENSHIFT GITOPS

5.2.1. About GitOps

268
268
268
269
269
269
269
269
269
270
270
270
270
270
271
271
271
271
271

272
272
273
273
273
273
273
273
273
274
274
274
274
275
275
275
275
275
275
276
276
277
277
278
278
279
279
280
280
280
281
281
282
282

Table of Contents

9

5.2.2. About Red Hat OpenShift GitOps
5.2.2.1. Key features

5.3. INSTALLING RED HAT OPENSHIFT GITOPS
5.3.1. Installing Red Hat OpenShift GitOps Operator in web console
5.3.2. Installing Red Hat OpenShift GitOps Operator using CLI
5.3.3. Logging in to the Argo CD instance by using the Argo CD admin account

5.4. UNINSTALLING OPENSHIFT GITOPS
5.4.1. Deleting the Argo CD instances
5.4.2. Uninstalling the GitOps Operator

5.5. CONFIGURING AN OPENSHIFT CLUSTER BY DEPLOYING AN APPLICATION WITH CLUSTER
CONFIGURATIONS

5.5.1. Using an Argo CD instance to manage cluster-scoped resources
5.5.2. Default permissions of an Argocd instance
5.5.3. Running the Argo CD instance at the cluster-level
5.5.4. Creating an application by using the Argo CD dashboard
5.5.5. Creating an application by using the oc tool
5.5.6. Synchronizing your application with your Git repository
5.5.7. In-built permissions for cluster configuration
5.5.8. Adding permissions for cluster configuration
5.5.9. Installing OLM Operators using Red Hat OpenShift GitOps

5.5.9.1. Installing cluster-scoped Operators
5.5.9.2. Installing namepace-scoped Operators

5.6. DEPLOYING A SPRING BOOT APPLICATION WITH ARGO CD
5.6.1. Creating an application by using the Argo CD dashboard
5.6.2. Creating an application by using the oc tool
5.6.3. Verifying Argo CD self-healing behavior

5.7. ARGO CD OPERATOR
5.7.1. Argo CD CLI tool
5.7.2. Argo CD custom resource properties
5.7.3. Repo server properties
5.7.4. Enabling notifications with Argo CD instance

5.8. MONITORING HEALTH INFORMATION FOR APPLICATION RESOURCES AND DEPLOYMENTS
5.8.1. Checking health information

5.9. CONFIGURING SSO FOR ARGO CD USING DEX
5.9.1. Enabling the Dex OpenShift OAuth Connector

5.9.1.1. Mapping users to specific roles
5.9.2. Disabling Dex

5.10. CONFIGURING SSO FOR ARGO CD USING KEYCLOAK
5.10.1. Configuring a new client in Keycloak
5.10.2. Logging in to Keycloak
5.10.3. Uninstalling Keycloak

5.11. CONFIGURING ARGO CD RBAC
5.11.1. Configuring user level access
5.11.2. Modifying RHSSO resource requests/limits

5.12. RUNNING GITOPS CONTROL PLANE WORKLOADS ON INFRASTRUCTURE NODES
5.12.1. Moving GitOps workloads to infrastructure nodes

5.13. SIZING REQUIREMENTS FOR GITOPS OPERATOR
5.13.1. Sizing requirements for GitOps

283
283
283
283
284
285
286
286
286

287
287
288
289
290
291
291
291
292
293
293
294
295
295
296
297
298
298
298
309
310
311
311
311
312
312
312
313
313
314
315
315
315
316
317
317
318
318

OpenShift Container Platform 4.9 CI/CD

10

Table of Contents

11

CHAPTER 1. OPENSHIFT CONTAINER PLATFORM CI/CD
OVERVIEW

OpenShift Container Platform is an enterprise-ready Kubernetes platform for developers, which enables
organizations to automate the application delivery process through DevOps practices, such as
continuous integration (CI) and continuous delivery (CD). To meet your organizational needs, the
OpenShift Container Platform provides the following CI/CD solutions:

OpenShift Builds

OpenShift Pipelines

OpenShift GitOps

1.1. OPENSHIFT BUILDS

With OpenShift Builds, you can create cloud-native apps by using a declarative build process. You can
define the build process in a YAML file that you use to create a BuildConfig object. This definition
includes attributes such as build triggers, input parameters, and source code. When deployed, the
BuildConfig object typically builds a runnable image and pushes it to a container image registry.

OpenShift Builds provides the following extensible support for build strategies:

Docker build

Source-to-image (S2I) build

Custom build

For more information, see Understanding image builds

1.2. OPENSHIFT PIPELINES

OpenShift Pipelines provides a Kubernetes-native CI/CD framework to design and run each step of the
CI/CD pipeline in its own container. It can scale independently to meet the on-demand pipelines with
predictable outcomes.

For more information, see Understanding OpenShift Pipelines

1.3. OPENSHIFT GITOPS

OpenShift GitOps is an Operator that uses Argo CD as the declarative GitOps engine. It enables GitOps
workflows across multicluster OpenShift and Kubernetes infrastructure. Using OpenShift GitOps,
administrators can consistently configure and deploy Kubernetes-based infrastructure and applications
across clusters and development lifecycles.

For more information, see Understanding OpenShift GitOps

1.4. JENKINS

Jenkins automates the process of building, testing, and deploying applications and projects. OpenShift
Developer Tools provides a Jenkins image that integrates directly with the OpenShift Container
Platform. Jenkins can be deployed on OpenShift by using the Samples Operator templates or certified
Helm chart.

OpenShift Container Platform 4.9 CI/CD

12

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/cicd/#understanding-image-builds
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/cicd/#understanding-openshift-pipelines
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/cicd/#understanding-openshift-gitops

CHAPTER 2. BUILDS

2.1. UNDERSTANDING IMAGE BUILDS

2.1.1. Builds

A build is the process of transforming input parameters into a resulting object. Most often, the process
is used to transform input parameters or source code into a runnable image. A BuildConfig object is the
definition of the entire build process.

OpenShift Container Platform uses Kubernetes by creating containers from build images and pushing
them to a container image registry.

Build objects share common characteristics including inputs for a build, the requirement to complete a
build process, logging the build process, publishing resources from successful builds, and publishing the
final status of the build. Builds take advantage of resource restrictions, specifying limitations on
resources such as CPU usage, memory usage, and build or pod execution time.

The OpenShift Container Platform build system provides extensible support for build strategies that are
based on selectable types specified in the build API. There are three primary build strategies available:

Docker build

Source-to-image (S2I) build

Custom build

By default, docker builds and S2I builds are supported.

The resulting object of a build depends on the builder used to create it. For docker and S2I builds, the
resulting objects are runnable images. For custom builds, the resulting objects are whatever the builder
image author has specified.

Additionally, the pipeline build strategy can be used to implement sophisticated workflows:

Continuous integration

Continuous deployment

2.1.1.1. Docker build

OpenShift Container Platform uses Buildah to build a container image from a Dockerfile. For more
information on building container images with Dockerfiles, see the Dockerfile reference documentation.

TIP

If you set Docker build arguments by using the buildArgs array, see Understand how ARG and FROM
interact in the Dockerfile reference documentation.

2.1.1.2. Source-to-image build

Source-to-image (S2I) is a tool for building reproducible container images. It produces ready-to-run
images by injecting application source into a container image and assembling a new image. The new
image incorporates the base image, the builder, and built source and is ready to use with the buildah

CHAPTER 2. BUILDS

13

https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/#understand-how-arg-and-from-interact

run command. S2I supports incremental builds, which re-use previously downloaded dependencies,
previously built artifacts, and so on.

2.1.1.3. Custom build

The custom build strategy allows developers to define a specific builder image responsible for the entire
build process. Using your own builder image allows you to customize your build process.

A custom builder image is a plain container image embedded with build process logic, for example for
building RPMs or base images.

Custom builds run with a high level of privilege and are not available to users by default. Only users who
can be trusted with cluster administration permissions should be granted access to run custom builds.

2.1.1.4. Pipeline build

IMPORTANT

The Pipeline build strategy is deprecated in OpenShift Container Platform 4. Equivalent
and improved functionality is present in the OpenShift Container Platform Pipelines
based on Tekton.

Jenkins images on OpenShift Container Platform are fully supported and users should
follow Jenkins user documentation for defining their jenkinsfile in a job or store it in a
Source Control Management system.

The Pipeline build strategy allows developers to define a Jenkins pipeline for use by the Jenkins pipeline
plugin. The build can be started, monitored, and managed by OpenShift Container Platform in the same
way as any other build type.

Pipeline workflows are defined in a jenkinsfile, either embedded directly in the build configuration, or
supplied in a Git repository and referenced by the build configuration.

2.2. UNDERSTANDING BUILD CONFIGURATIONS

The following sections define the concept of a build, build configuration, and outline the primary build
strategies available.

2.2.1. BuildConfigs

A build configuration describes a single build definition and a set of triggers for when a new build is
created. Build configurations are defined by a BuildConfig, which is a REST object that can be used in a
POST to the API server to create a new instance.

A build configuration, or BuildConfig, is characterized by a build strategy and one or more sources. The
strategy determines the process, while the sources provide its input.

Depending on how you choose to create your application using OpenShift Container Platform, a
BuildConfig is typically generated automatically for you if you use the web console or CLI, and it can be
edited at any time. Understanding the parts that make up a BuildConfig and their available options can
help if you choose to manually change your configuration later.

The following example BuildConfig results in a new build every time a container image tag or the source
code changes:

OpenShift Container Platform 4.9 CI/CD

14

1

2

3

4

5

6

7

BuildConfig object definition

This specification creates a new BuildConfig named ruby-sample-build.

The runPolicy field controls whether builds created from this build configuration can be run
simultaneously. The default value is Serial, which means new builds run sequentially, not
simultaneously.

You can specify a list of triggers, which cause a new build to be created.

The source section defines the source of the build. The source type determines the primary
source of input, and can be either Git, to point to a code repository location, Dockerfile, to build
from an inline Dockerfile, or Binary, to accept binary payloads. It is possible to have multiple
sources at once. For more information about each source type, see "Creating build inputs".

The strategy section describes the build strategy used to execute the build. You can specify a
Source , Docker, or Custom strategy here. This example uses the ruby-20-centos7 container
image that Source-to-image (S2I) uses for the application build.

After the container image is successfully built, it is pushed into the repository described in the
output section.

The postCommit section defines an optional build hook.

kind: BuildConfig
apiVersion: build.openshift.io/v1
metadata:
 name: "ruby-sample-build" 1
spec:
 runPolicy: "Serial" 2
 triggers: 3
 -
 type: "GitHub"
 github:
 secret: "secret101"
 - type: "Generic"
 generic:
 secret: "secret101"
 -
 type: "ImageChange"
 source: 4
 git:
 uri: "https://github.com/openshift/ruby-hello-world"
 strategy: 5
 sourceStrategy:
 from:
 kind: "ImageStreamTag"
 name: "ruby-20-centos7:latest"
 output: 6
 to:
 kind: "ImageStreamTag"
 name: "origin-ruby-sample:latest"
 postCommit: 7
 script: "bundle exec rake test"

CHAPTER 2. BUILDS

15

2.3. CREATING BUILD INPUTS

Use the following sections for an overview of build inputs, instructions on how to use inputs to provide
source content for builds to operate on, and how to use build environments and create secrets.

2.3.1. Build inputs

A build input provides source content for builds to operate on. You can use the following build inputs to
provide sources in OpenShift Container Platform, listed in order of precedence:

Inline Dockerfile definitions

Content extracted from existing images

Git repositories

Binary (Local) inputs

Input secrets

External artifacts

You can combine multiple inputs in a single build. However, as the inline Dockerfile takes precedence, it
can overwrite any other file named Dockerfile provided by another input. Binary (local) input and Git
repositories are mutually exclusive inputs.

You can use input secrets when you do not want certain resources or credentials used during a build to
be available in the final application image produced by the build, or want to consume a value that is
defined in a secret resource. External artifacts can be used to pull in additional files that are not available
as one of the other build input types.

When you run a build:

1. A working directory is constructed and all input content is placed in the working directory. For
example, the input Git repository is cloned into the working directory, and files specified from
input images are copied into the working directory using the target path.

2. The build process changes directories into the contextDir, if one is defined.

3. The inline Dockerfile, if any, is written to the current directory.

4. The content from the current directory is provided to the build process for reference by the
Dockerfile, custom builder logic, or assemble script. This means any input content that resides
outside the contextDir is ignored by the build.

The following example of a source definition includes multiple input types and an explanation of how
they are combined. For more details on how each input type is defined, see the specific sections for
each input type.

source:
 git:
 uri: https://github.com/openshift/ruby-hello-world.git 1
 ref: "master"
 images:
 - from:
 kind: ImageStreamTag

OpenShift Container Platform 4.9 CI/CD

16

1

2

3

4

1

The repository to be cloned into the working directory for the build.

/usr/lib/somefile.jar from myinputimage is stored in <workingdir>/app/dir/injected/dir.

The working directory for the build becomes <original_workingdir>/app/dir.

A Dockerfile with this content is created in <original_workingdir>/app/dir, overwriting any existing
file with that name.

2.3.2. Dockerfile source

When you supply a dockerfile value, the content of this field is written to disk as a file named dockerfile.
This is done after other input sources are processed, so if the input source repository contains a
Dockerfile in the root directory, it is overwritten with this content.

The source definition is part of the spec section in the BuildConfig:

The dockerfile field contains an inline Dockerfile that is built.

Additional resources

The typical use for this field is to provide a Dockerfile to a docker strategy build.

2.3.3. Image source

You can add additional files to the build process with images. Input images are referenced in the same
way the From and To image targets are defined. This means both container images and image stream
tags can be referenced. In conjunction with the image, you must provide one or more path pairs to
indicate the path of the files or directories to copy the image and the destination to place them in the
build context.

The source path can be any absolute path within the image specified. The destination must be a relative
directory path. At build time, the image is loaded and the indicated files and directories are copied into
the context directory of the build process. This is the same directory into which the source repository
content is cloned. If the source path ends in /. then the content of the directory is copied, but the
directory itself is not created at the destination.

Image inputs are specified in the source definition of the BuildConfig:

 name: myinputimage:latest
 namespace: mynamespace
 paths:
 - destinationDir: app/dir/injected/dir 2
 sourcePath: /usr/lib/somefile.jar
 contextDir: "app/dir" 3
 dockerfile: "FROM centos:7\nRUN yum install -y httpd" 4

source:
 dockerfile: "FROM centos:7\nRUN yum install -y httpd" 1

source:
 git:

CHAPTER 2. BUILDS

17

1

2

3

4

5

6

An array of one or more input images and files.

A reference to the image containing the files to be copied.

An array of source/destination paths.

The directory relative to the build root where the build process can access the file.

The location of the file to be copied out of the referenced image.

An optional secret provided if credentials are needed to access the input image.

NOTE

If your cluster uses an ImageContentSourcePolicy object to configure repository
mirroring, you can use only global pull secrets for mirrored registries. You cannot add
a pull secret to a project.

Optionally, if an input image requires a pull secret, you can link the pull secret to the service account
used by the build. By default, builds use the builder service account. The pull secret is automatically
added to the build if the secret contains a credential that matches the repository hosting the input
image. To link a pull secret to the service account used by the build, run:

NOTE

This feature is not supported for builds using the custom strategy.

2.3.4. Git source

When specified, source code is fetched from the supplied location.

If you supply an inline Dockerfile, it overwrites the Dockerfile in the contextDir of the Git repository.

 uri: https://github.com/openshift/ruby-hello-world.git
 ref: "master"
 images: 1
 - from: 2
 kind: ImageStreamTag
 name: myinputimage:latest
 namespace: mynamespace
 paths: 3
 - destinationDir: injected/dir 4
 sourcePath: /usr/lib/somefile.jar 5
 - from:
 kind: ImageStreamTag
 name: myotherinputimage:latest
 namespace: myothernamespace
 pullSecret: mysecret 6
 paths:
 - destinationDir: injected/dir
 sourcePath: /usr/lib/somefile.jar

$ oc secrets link builder dockerhub

OpenShift Container Platform 4.9 CI/CD

18

1

2

3

The source definition is part of the spec section in the BuildConfig:

The git field contains the URI to the remote Git repository of the source code. Optionally, specify
the ref field to check out a specific Git reference. A valid ref can be a SHA1 tag or a branch name.

The contextDir field allows you to override the default location inside the source code repository
where the build looks for the application source code. If your application exists inside a sub-
directory, you can override the default location (the root folder) using this field.

If the optional dockerfile field is provided, it should be a string containing a Dockerfile that
overwrites any Dockerfile that may exist in the source repository.

If the ref field denotes a pull request, the system uses a git fetch operation and then checkout
FETCH_HEAD.

When no ref value is provided, OpenShift Container Platform performs a shallow clone (--depth=1). In
this case, only the files associated with the most recent commit on the default branch (typically master)
are downloaded. This results in repositories downloading faster, but without the full commit history. To
perform a full git clone of the default branch of a specified repository, set ref to the name of the
default branch (for example master).

WARNING

Git clone operations that go through a proxy that is performing man in the middle
(MITM) TLS hijacking or reencrypting of the proxied connection do not work.

2.3.4.1. Using a proxy

If your Git repository can only be accessed using a proxy, you can define the proxy to use in the source
section of the build configuration. You can configure both an HTTP and HTTPS proxy to use. Both fields
are optional. Domains for which no proxying should be performed can also be specified in the NoProxy
field.

NOTE

Your source URI must use the HTTP or HTTPS protocol for this to work.

source:
 git: 1
 uri: "https://github.com/openshift/ruby-hello-world"
 ref: "master"
 contextDir: "app/dir" 2
 dockerfile: "FROM openshift/ruby-22-centos7\nUSER example" 3



source:
 git:
 uri: "https://github.com/openshift/ruby-hello-world"
 ref: "master"

CHAPTER 2. BUILDS

19

NOTE

For Pipeline strategy builds, given the current restrictions with the Git plugin for Jenkins,
any Git operations through the Git plugin do not leverage the HTTP or HTTPS proxy
defined in the BuildConfig. The Git plugin only uses the proxy configured in the Jenkins
UI at the Plugin Manager panel. This proxy is then used for all git interactions within
Jenkins, across all jobs.

Additional resources

You can find instructions on how to configure proxies through the Jenkins UI at
JenkinsBehindProxy.

2.3.4.2. Source Clone Secrets

Builder pods require access to any Git repositories defined as source for a build. Source clone secrets
are used to provide the builder pod with access it would not normally have access to, such as private
repositories or repositories with self-signed or untrusted SSL certificates.

The following source clone secret configurations are supported:

.gitconfig File

Basic Authentication

SSH Key Authentication

Trusted Certificate Authorities

NOTE

You can also use combinations of these configurations to meet your specific needs.

2.3.4.2.1. Automatically adding a source clone secret to a build configuration

When a BuildConfig is created, OpenShift Container Platform can automatically populate its source
clone secret reference. This behavior allows the resulting builds to automatically use the credentials
stored in the referenced secret to authenticate to a remote Git repository, without requiring further
configuration.

To use this functionality, a secret containing the Git repository credentials must exist in the namespace
in which the BuildConfig is later created. This secrets must include one or more annotations prefixed
with build.openshift.io/source-secret-match-uri-. The value of each of these annotations is a Uniform
Resource Identifier (URI) pattern, which is defined as follows. When a BuildConfig is created without a
source clone secret reference and its Git source URI matches a URI pattern in a secret annotation,
OpenShift Container Platform automatically inserts a reference to that secret in the BuildConfig.

Prerequisites

A URI pattern must consist of:

 httpProxy: http://proxy.example.com
 httpsProxy: https://proxy.example.com
 noProxy: somedomain.com, otherdomain.com

OpenShift Container Platform 4.9 CI/CD

20

https://wiki.jenkins-ci.org/display/JENKINS/JenkinsBehindProxy

A valid scheme: *://, git://, http://, https:// or ssh://

A host: *` or a valid hostname or IP address optionally preceded by *.

A path: /* or / followed by any characters optionally including * characters

In all of the above, a * character is interpreted as a wildcard.

IMPORTANT

URI patterns must match Git source URIs which are conformant to RFC3986. Do not
include a username (or password) component in a URI pattern.

For example, if you use ssh://git@bitbucket.atlassian.com:7999/ATLASSIAN jira.git
for a git repository URL, the source secret must be specified as
ssh://bitbucket.atlassian.com:7999/* (and not
ssh://git@bitbucket.atlassian.com:7999/*).

Procedure

If multiple secrets match the Git URI of a particular BuildConfig, OpenShift Container Platform selects
the secret with the longest match. This allows for basic overriding, as in the following example.

The following fragment shows two partial source clone secrets, the first matching any server in the
domain mycorp.com accessed by HTTPS, and the second overriding access to servers
mydev1.mycorp.com and mydev2.mycorp.com:

Add a build.openshift.io/source-secret-match-uri- annotation to a pre-existing secret using:

$ oc annotate secret mysecret \
 'build.openshift.io/source-secret-match-uri-1=ssh://bitbucket.atlassian.com:7999/*'

kind: Secret
apiVersion: v1
metadata:
 name: matches-all-corporate-servers-https-only
 annotations:
 build.openshift.io/source-secret-match-uri-1: https://*.mycorp.com/*
data:
 ...

kind: Secret
apiVersion: v1
metadata:
 name: override-for-my-dev-servers-https-only
 annotations:
 build.openshift.io/source-secret-match-uri-1: https://mydev1.mycorp.com/*
 build.openshift.io/source-secret-match-uri-2: https://mydev2.mycorp.com/*
data:
 ...

$ oc annotate secret mysecret \
 'build.openshift.io/source-secret-match-uri-1=https://*.mycorp.com/*'

CHAPTER 2. BUILDS

21

https://www.ietf.org/rfc/rfc3986.txt

2.3.4.2.2. Manually adding a source clone secret

Source clone secrets can be added manually to a build configuration by adding a sourceSecret field to
the source section inside the BuildConfig and setting it to the name of the secret that you created. In
this example, it is the basicsecret.

Procedure

You can also use the oc set build-secret command to set the source clone secret on an existing build
configuration.

To set the source clone secret on an existing build configuration, enter the following command:

2.3.4.2.3. Creating a secret from a .gitconfig file

If the cloning of your application is dependent on a .gitconfig file, then you can create a secret that
contains it. Add it to the builder service account and then your BuildConfig.

Procedure

To create a secret from a .gitconfig file:

NOTE

SSL verification can be turned off if sslVerify=false is set for the http section in your
.gitconfig file:

apiVersion: "v1"
kind: "BuildConfig"
metadata:
 name: "sample-build"
spec:
 output:
 to:
 kind: "ImageStreamTag"
 name: "sample-image:latest"
 source:
 git:
 uri: "https://github.com/user/app.git"
 sourceSecret:
 name: "basicsecret"
 strategy:
 sourceStrategy:
 from:
 kind: "ImageStreamTag"
 name: "python-33-centos7:latest"

$ oc set build-secret --source bc/sample-build basicsecret

$ oc create secret generic <secret_name> --from-file=<path/to/.gitconfig>

[http]
 sslVerify=false

OpenShift Container Platform 4.9 CI/CD

22

1

2

2.3.4.2.4. Creating a secret from a .gitconfig file for secured Git

If your Git server is secured with two-way SSL and user name with password, you must add the
certificate files to your source build and add references to the certificate files in the .gitconfig file.

Prerequisites

You must have Git credentials.

Procedure

Add the certificate files to your source build and add references to the certificate files in the .gitconfig
file.

1. Add the client.crt, cacert.crt, and client.key files to the /var/run/secrets/openshift.io/source/
folder in the application source code.

2. In the .gitconfig file for the server, add the [http] section shown in the following example:

Example output

3. Create the secret:

The user’s Git user name.

The password for this user.

IMPORTANT

To avoid having to enter your password again, be sure to specify the source-to-image
(S2I) image in your builds. However, if you cannot clone the repository, you must still
specify your user name and password to promote the build.

Additional resources

cat .gitconfig

[user]
 name = <name>
 email = <email>
[http]
 sslVerify = false
 sslCert = /var/run/secrets/openshift.io/source/client.crt
 sslKey = /var/run/secrets/openshift.io/source/client.key
 sslCaInfo = /var/run/secrets/openshift.io/source/cacert.crt

$ oc create secret generic <secret_name> \
--from-literal=username=<user_name> \ 1
--from-literal=password=<password> \ 2
--from-file=.gitconfig=.gitconfig \
--from-file=client.crt=/var/run/secrets/openshift.io/source/client.crt \
--from-file=cacert.crt=/var/run/secrets/openshift.io/source/cacert.crt \
--from-file=client.key=/var/run/secrets/openshift.io/source/client.key

CHAPTER 2. BUILDS

23

/var/run/secrets/openshift.io/source/ folder in the application source code.

2.3.4.2.5. Creating a secret from source code basic authentication

Basic authentication requires either a combination of --username and --password, or a token to
authenticate against the software configuration management (SCM) server.

Prerequisites

User name and password to access the private repository.

Procedure

1. Create the secret first before using the --username and --password to access the private
repository:

2. Create a basic authentication secret with a token:

2.3.4.2.6. Creating a secret from source code SSH key authentication

SSH key based authentication requires a private SSH key.

The repository keys are usually located in the $HOME/.ssh/ directory, and are named id_dsa.pub,
id_ecdsa.pub, id_ed25519.pub, or id_rsa.pub by default.

Procedure

1. Generate SSH key credentials:

NOTE

Creating a passphrase for the SSH key prevents OpenShift Container Platform
from building. When prompted for a passphrase, leave it blank.

Two files are created: the public key and a corresponding private key (one of id_dsa, id_ecdsa,
id_ed25519, or id_rsa). With both of these in place, consult your source control management
(SCM) system’s manual on how to upload the public key. The private key is used to access your
private repository.

2. Before using the SSH key to access the private repository, create the secret:

$ oc create secret generic <secret_name> \
 --from-literal=username=<user_name> \
 --from-literal=password=<password> \
 --type=kubernetes.io/basic-auth

$ oc create secret generic <secret_name> \
 --from-literal=password=<token> \
 --type=kubernetes.io/basic-auth

$ ssh-keygen -t ed25519 -C "your_email@example.com"

$ oc create secret generic <secret_name> \

OpenShift Container Platform 4.9 CI/CD

24

1

1

Optional: Adding this field enables strict server host key check.

WARNING

Skipping the known_hosts file while creating the secret makes the build
vulnerable to a potential man-in-the-middle (MITM) attack.

NOTE

Ensure that the known_hosts file includes an entry for the host of your source
code.

2.3.4.2.7. Creating a secret from source code trusted certificate authorities

The set of Transport Layer Security (TLS) certificate authorities (CA) that are trusted during a Git clone
operation are built into the OpenShift Container Platform infrastructure images. If your Git server uses a
self-signed certificate or one signed by an authority not trusted by the image, you can create a secret
that contains the certificate or disable TLS verification.

If you create a secret for the CA certificate, OpenShift Container Platform uses it to access your Git
server during the Git clone operation. Using this method is significantly more secure than disabling Git
SSL verification, which accepts any TLS certificate that is presented.

Procedure

Create a secret with a CA certificate file.

1. If your CA uses Intermediate Certificate Authorities, combine the certificates for all CAs in a
ca.crt file. Enter the following command:

a. Create the secret:

You must use the key name ca.crt.

2.3.4.2.8. Source secret combinations

You can combine the different methods for creating source clone secrets for your specific needs.

2.3.4.2.8.1. Creating a SSH-based authentication secret with a .gitconfig file

 --from-file=ssh-privatekey=<path/to/ssh/private/key> \
 --from-file=<path/to/known_hosts> \ 1
 --type=kubernetes.io/ssh-auth



$ cat intermediateCA.crt intermediateCA.crt rootCA.crt > ca.crt

$ oc create secret generic mycert --from-file=ca.crt=</path/to/file> 1

CHAPTER 2. BUILDS

25

You can combine the different methods for creating source clone secrets for your specific needs, such
as a SSH-based authentication secret with a .gitconfig file.

Prerequisites

SSH authentication

.gitconfig file

Procedure

To create a SSH-based authentication secret with a .gitconfig file, run:

2.3.4.2.8.2. Creating a secret that combines a .gitconfig file and CA certificate

You can combine the different methods for creating source clone secrets for your specific needs, such
as a secret that combines a .gitconfig file and certificate authority (CA) certificate.

Prerequisites

.gitconfig file

CA certificate

Procedure

To create a secret that combines a .gitconfig file and CA certificate, run:

2.3.4.2.8.3. Creating a basic authentication secret with a CA certificate

You can combine the different methods for creating source clone secrets for your specific needs, such
as a secret that combines a basic authentication and certificate authority (CA) certificate.

Prerequisites

Basic authentication credentials

CA certificate

Procedure

Create a basic authentication secret with a CA certificate, run:

$ oc create secret generic <secret_name> \
 --from-file=ssh-privatekey=<path/to/ssh/private/key> \
 --from-file=<path/to/.gitconfig> \
 --type=kubernetes.io/ssh-auth

$ oc create secret generic <secret_name> \
 --from-file=ca.crt=<path/to/certificate> \
 --from-file=<path/to/.gitconfig>

$ oc create secret generic <secret_name> \

OpenShift Container Platform 4.9 CI/CD

26

2.3.4.2.8.4. Creating a basic authentication secret with a .gitconfig file

You can combine the different methods for creating source clone secrets for your specific needs, such
as a secret that combines a basic authentication and .gitconfig file.

Prerequisites

Basic authentication credentials

.gitconfig file

Procedure

To create a basic authentication secret with a .gitconfig file, run:

2.3.4.2.8.5. Creating a basic authentication secret with a .gitconfig file and CA certificate

You can combine the different methods for creating source clone secrets for your specific needs, such
as a secret that combines a basic authentication, .gitconfig file, and certificate authority (CA)
certificate.

Prerequisites

Basic authentication credentials

.gitconfig file

CA certificate

Procedure

To create a basic authentication secret with a .gitconfig file and CA certificate, run:

2.3.5. Binary (local) source

Streaming content from a local file system to the builder is called a Binary type build. The

 --from-literal=username=<user_name> \
 --from-literal=password=<password> \
 --from-file=ca-cert=</path/to/file> \
 --type=kubernetes.io/basic-auth

$ oc create secret generic <secret_name> \
 --from-literal=username=<user_name> \
 --from-literal=password=<password> \
 --from-file=</path/to/.gitconfig> \
 --type=kubernetes.io/basic-auth

$ oc create secret generic <secret_name> \
 --from-literal=username=<user_name> \
 --from-literal=password=<password> \
 --from-file=</path/to/.gitconfig> \
 --from-file=ca-cert=</path/to/file> \
 --type=kubernetes.io/basic-auth

CHAPTER 2. BUILDS

27

Streaming content from a local file system to the builder is called a Binary type build. The
corresponding value of BuildConfig.spec.source.type is Binary for these builds.

This source type is unique in that it is leveraged solely based on your use of the oc start-build.

NOTE

Binary type builds require content to be streamed from the local file system, so
automatically triggering a binary type build, like an image change trigger, is not possible.
This is because the binary files cannot be provided. Similarly, you cannot launch binary
type builds from the web console.

To utilize binary builds, invoke oc start-build with one of these options:

--from-file: The contents of the file you specify are sent as a binary stream to the builder. You
can also specify a URL to a file. Then, the builder stores the data in a file with the same name at
the top of the build context.

--from-dir and --from-repo: The contents are archived and sent as a binary stream to the
builder. Then, the builder extracts the contents of the archive within the build context directory.
With --from-dir, you can also specify a URL to an archive, which is extracted.

--from-archive: The archive you specify is sent to the builder, where it is extracted within the
build context directory. This option behaves the same as --from-dir; an archive is created on
your host first, whenever the argument to these options is a directory.

In each of the previously listed cases:

If your BuildConfig already has a Binary source type defined, it is effectively ignored and
replaced by what the client sends.

If your BuildConfig has a Git source type defined, it is dynamically disabled, since Binary and
Git are mutually exclusive, and the data in the binary stream provided to the builder takes
precedence.

Instead of a file name, you can pass a URL with HTTP or HTTPS schema to --from-file and --from-
archive. When using --from-file with a URL, the name of the file in the builder image is determined by
the Content-Disposition header sent by the web server, or the last component of the URL path if the
header is not present. No form of authentication is supported and it is not possible to use custom TLS
certificate or disable certificate validation.

When using oc new-build --binary=true, the command ensures that the restrictions associated with
binary builds are enforced. The resulting BuildConfig has a source type of Binary, meaning that the
only valid way to run a build for this BuildConfig is to use oc start-build with one of the --from options
to provide the requisite binary data.

The Dockerfile and contextDir source options have special meaning with binary builds.

Dockerfile can be used with any binary build source. If Dockerfile is used and the binary stream is an
archive, its contents serve as a replacement Dockerfile to any Dockerfile in the archive. If Dockerfile is
used with the --from-file argument, and the file argument is named Dockerfile, the value from Dockerfile
replaces the value from the binary stream.

In the case of the binary stream encapsulating extracted archive content, the value of the contextDir
field is interpreted as a subdirectory within the archive, and, if valid, the builder changes into that
subdirectory before executing the build.

OpenShift Container Platform 4.9 CI/CD

28

1

2

3

4

2.3.6. Input secrets and config maps

IMPORTANT

To prevent the contents of input secrets and config maps from appearing in build output
container images, use build volumes in your Docker build and source-to-image build
strategies.

In some scenarios, build operations require credentials or other configuration data to access dependent
resources, but it is undesirable for that information to be placed in source control. You can define input
secrets and input config maps for this purpose.

For example, when building a Java application with Maven, you can set up a private mirror of Maven
Central or JCenter that is accessed by private keys. To download libraries from that private mirror, you
have to supply the following:

1. A settings.xml file configured with the mirror’s URL and connection settings.

2. A private key referenced in the settings file, such as ~/.ssh/id_rsa.

For security reasons, you do not want to expose your credentials in the application image.

This example describes a Java application, but you can use the same approach for adding SSL
certificates into the /etc/ssl/certs directory, API keys or tokens, license files, and more.

2.3.6.1. What is a secret?

The Secret object type provides a mechanism to hold sensitive information such as passwords,
OpenShift Container Platform client configuration files, dockercfg files, private source repository
credentials, and so on. Secrets decouple sensitive content from the pods. You can mount secrets into
containers using a volume plugin or the system can use secrets to perform actions on behalf of a pod.

YAML Secret Object Definition

Indicates the structure of the secret’s key names and values.

The allowable format for the keys in the data field must meet the guidelines in the
DNS_SUBDOMAIN value in the Kubernetes identifiers glossary.

The value associated with keys in the data map must be base64 encoded.

Entries in the stringData map are converted to base64 and the entry are then moved to the data

apiVersion: v1
kind: Secret
metadata:
 name: test-secret
 namespace: my-namespace
type: Opaque 1
data: 2
 username: dmFsdWUtMQ0K 3
 password: dmFsdWUtMg0KDQo=
stringData: 4
 hostname: myapp.mydomain.com 5

CHAPTER 2. BUILDS

29

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/cicd/#builds-using-build-volumes_build-strategies-docker
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/cicd/#builds-using-build-volumes_build-strategies-s2i

5

Entries in the stringData map are converted to base64 and the entry are then moved to the data
map automatically. This field is write-only. The value is only be returned by the data field.

The value associated with keys in the stringData map is made up of plain text strings.

2.3.6.1.1. Properties of secrets

Key properties include:

Secret data can be referenced independently from its definition.

Secret data volumes are backed by temporary file-storage facilities (tmpfs) and never come to
rest on a node.

Secret data can be shared within a namespace.

2.3.6.1.2. Types of Secrets

The value in the type field indicates the structure of the secret’s key names and values. The type can be
used to enforce the presence of user names and keys in the secret object. If you do not want validation,
use the opaque type, which is the default.

Specify one of the following types to trigger minimal server-side validation to ensure the presence of
specific key names in the secret data:

kubernetes.io/service-account-token. Uses a service account token.

kubernetes.io/dockercfg. Uses the .dockercfg file for required Docker credentials.

kubernetes.io/dockerconfigjson. Uses the .docker/config.json file for required Docker
credentials.

kubernetes.io/basic-auth. Use with basic authentication.

kubernetes.io/ssh-auth. Use with SSH key authentication.

kubernetes.io/tls. Use with TLS certificate authorities.

Specify type= Opaque if you do not want validation, which means the secret does not claim to conform
to any convention for key names or values. An opaque secret, allows for unstructured key:value pairs
that can contain arbitrary values.

NOTE

You can specify other arbitrary types, such as example.com/my-secret-type. These
types are not enforced server-side, but indicate that the creator of the secret intended to
conform to the key/value requirements of that type.

2.3.6.1.3. Updates to secrets

When you modify the value of a secret, the value used by an already running pod does not dynamically
change. To change a secret, you must delete the original pod and create a new pod, in some cases with
an identical PodSpec.

Updating a secret follows the same workflow as deploying a new container image. You can use the

OpenShift Container Platform 4.9 CI/CD

30

1

Updating a secret follows the same workflow as deploying a new container image. You can use the
kubectl rolling-update command.

The resourceVersion value in a secret is not specified when it is referenced. Therefore, if a secret is
updated at the same time as pods are starting, the version of the secret that is used for the pod is not
defined.

NOTE

Currently, it is not possible to check the resource version of a secret object that was used
when a pod was created. It is planned that pods report this information, so that a
controller could restart ones using an old resourceVersion. In the interim, do not update
the data of existing secrets, but create new ones with distinct names.

2.3.6.2. Creating secrets

You must create a secret before creating the pods that depend on that secret.

When creating secrets:

Create a secret object with secret data.

Update the pod service account to allow the reference to the secret.

Create a pod, which consumes the secret as an environment variable or as a file using a secret
volume.

Procedure

Use the create command to create a secret object from a JSON or YAML file:

For example, you can create a secret from your local .docker/config.json file:

This command generates a JSON specification of the secret named dockerhub and creates the
object.

YAML Opaque Secret Object Definition

Specifies an opaque secret.

$ oc create -f <filename>

$ oc create secret generic dockerhub \
 --from-file=.dockerconfigjson=<path/to/.docker/config.json> \
 --type=kubernetes.io/dockerconfigjson

apiVersion: v1
kind: Secret
metadata:
 name: mysecret
type: Opaque 1
data:
 username: dXNlci1uYW1l
 password: cGFzc3dvcmQ=

CHAPTER 2. BUILDS

31

1

2

Docker Configuration JSON File Secret Object Definition

Specifies that the secret is using a docker configuration JSON file.

The output of a base64-encoded the docker configuration JSON file

2.3.6.3. Using secrets

After creating secrets, you can create a pod to reference your secret, get logs, and delete the pod.

Procedure

1. Create the pod to reference your secret:

2. Get the logs:

3. Delete the pod:

Additional resources

Example YAML files with secret data:

YAML Secret That Will Create Four Files

apiVersion: v1
kind: Secret
metadata:
 name: aregistrykey
 namespace: myapps
type: kubernetes.io/dockerconfigjson 1
data:

.dockerconfigjson:bm5ubm5ubm5ubm5ubm5ubm5ubm5ubmdnZ2dnZ2dnZ2dnZ2dnZ2dnZ2cg
YXV0aCBrZXlzCg== 2

$ oc create -f <your_yaml_file>.yaml

$ oc logs secret-example-pod

$ oc delete pod secret-example-pod

apiVersion: v1
kind: Secret
metadata:
 name: test-secret
data:
 username: dmFsdWUtMQ0K 1
 password: dmFsdWUtMQ0KDQo= 2
stringData:
 hostname: myapp.mydomain.com 3

OpenShift Container Platform 4.9 CI/CD

32

1

2

3

4

File contains decoded values.

File contains decoded values.

File contains the provided string.

File contains the provided data.

YAML of a pod populating files in a volume with secret data

YAML of a pod populating environment variables with secret data

YAML of a Build Config Populating Environment Variables with Secret Data

 secret.properties: |- 4
 property1=valueA
 property2=valueB

apiVersion: v1
kind: Pod
metadata:
 name: secret-example-pod
spec:
 containers:
 - name: secret-test-container
 image: busybox
 command: ["/bin/sh", "-c", "cat /etc/secret-volume/*"]
 volumeMounts:
 # name must match the volume name below
 - name: secret-volume
 mountPath: /etc/secret-volume
 readOnly: true
 volumes:
 - name: secret-volume
 secret:
 secretName: test-secret
 restartPolicy: Never

apiVersion: v1
kind: Pod
metadata:
 name: secret-example-pod
spec:
 containers:
 - name: secret-test-container
 image: busybox
 command: ["/bin/sh", "-c", "export"]
 env:
 - name: TEST_SECRET_USERNAME_ENV_VAR
 valueFrom:
 secretKeyRef:
 name: test-secret
 key: username
 restartPolicy: Never

CHAPTER 2. BUILDS

33

2.3.6.4. Adding input secrets and config maps

To provide credentials and other configuration data to a build without placing them in source control,
you can define input secrets and input config maps.

In some scenarios, build operations require credentials or other configuration data to access dependent
resources. To make that information available without placing it in source control, you can define input
secrets and input config maps.

Procedure

To add an input secret, config maps, or both to an existing BuildConfig object:

1. Create the ConfigMap object, if it does not exist:

This creates a new config map named settings-mvn, which contains the plain text content of
the settings.xml file.

TIP

You can alternatively apply the following YAML to create the config map:

2. Create the Secret object, if it does not exist:

apiVersion: build.openshift.io/v1
kind: BuildConfig
metadata:
 name: secret-example-bc
spec:
 strategy:
 sourceStrategy:
 env:
 - name: TEST_SECRET_USERNAME_ENV_VAR
 valueFrom:
 secretKeyRef:
 name: test-secret
 key: username

$ oc create configmap settings-mvn \
 --from-file=settings.xml=<path/to/settings.xml>

apiVersion: core/v1
kind: ConfigMap
metadata:
 name: settings-mvn
data:
 settings.xml: |
 <settings>
 … # Insert maven settings here
 </settings>

$ oc create secret generic secret-mvn \
 --from-file=ssh-privatekey=<path/to/.ssh/id_rsa>
 --type=kubernetes.io/ssh-auth

OpenShift Container Platform 4.9 CI/CD

34

This creates a new secret named secret-mvn, which contains the base64 encoded content of
the id_rsa private key.

TIP

You can alternatively apply the following YAML to create the input secret:

3. Add the config map and secret to the source section in the existing BuildConfig object:

To include the secret and config map in a new BuildConfig object, run the following command:

During the build, the settings.xml and id_rsa files are copied into the directory where the source code
is located. In OpenShift Container Platform S2I builder images, this is the image working directory, which
is set using the WORKDIR instruction in the Dockerfile. If you want to specify another directory, add a
destinationDir to the definition:

apiVersion: core/v1
kind: Secret
metadata:
 name: secret-mvn
type: kubernetes.io/ssh-auth
data:
 ssh-privatekey: |
 # Insert ssh private key, base64 encoded

source:
 git:
 uri: https://github.com/wildfly/quickstart.git
 contextDir: helloworld
 configMaps:
 - configMap:
 name: settings-mvn
 secrets:
 - secret:
 name: secret-mvn

$ oc new-build \
 openshift/wildfly-101-centos7~https://github.com/wildfly/quickstart.git \
 --context-dir helloworld --build-secret “secret-mvn” \
 --build-config-map "settings-mvn"

source:
 git:
 uri: https://github.com/wildfly/quickstart.git
 contextDir: helloworld
 configMaps:
 - configMap:
 name: settings-mvn
 destinationDir: ".m2"
 secrets:
 - secret:
 name: secret-mvn
 destinationDir: ".ssh"

CHAPTER 2. BUILDS

35

You can also specify the destination directory when creating a new BuildConfig object:

In both cases, the settings.xml file is added to the ./.m2 directory of the build environment, and the
id_rsa key is added to the ./.ssh directory.

2.3.6.5. Source-to-image strategy

When using a Source strategy, all defined input secrets are copied to their respective destinationDir. If
you left destinationDir empty, then the secrets are placed in the working directory of the builder image.

The same rule is used when a destinationDir is a relative path. The secrets are placed in the paths that
are relative to the working directory of the image. The final directory in the destinationDir path is
created if it does not exist in the builder image. All preceding directories in the destinationDir must
exist, or an error will occur.

NOTE

Input secrets are added as world-writable, have 0666 permissions, and are truncated to
size zero after executing the assemble script. This means that the secret files exist in the
resulting image, but they are empty for security reasons.

Input config maps are not truncated after the assemble script completes.

2.3.6.6. Docker strategy

When using a docker strategy, you can add all defined input secrets into your container image using the
ADD and COPY instructions in your Dockerfile.

If you do not specify the destinationDir for a secret, then the files are copied into the same directory in
which the Dockerfile is located. If you specify a relative path as destinationDir, then the secrets are
copied into that directory, relative to your Dockerfile location. This makes the secret files available to the
Docker build operation as part of the context directory used during the build.

Example of a Dockerfile referencing secret and config map data

FROM centos/ruby-22-centos7

USER root
COPY ./secret-dir /secrets
COPY ./config /

Create a shell script that will output secrets and ConfigMaps when the image is run
RUN echo '#!/bin/sh' > /input_report.sh
RUN echo '(test -f /secrets/secret1 && echo -n "secret1=" && cat /secrets/secret1)' >>
/input_report.sh
RUN echo '(test -f /config && echo -n "relative-configMap=" && cat /config)' >> /input_report.sh
RUN chmod 755 /input_report.sh

CMD ["/bin/sh", "-c", "/input_report.sh"]

$ oc new-build \
 openshift/wildfly-101-centos7~https://github.com/wildfly/quickstart.git \
 --context-dir helloworld --build-secret “secret-mvn:.ssh” \
 --build-config-map "settings-mvn:.m2"

OpenShift Container Platform 4.9 CI/CD

36

https://docs.docker.com/engine/reference/builder/#add
https://docs.docker.com/engine/reference/builder/#copy

IMPORTANT

Users normally remove their input secrets from the final application image so that the
secrets are not present in the container running from that image. However, the secrets
still exist in the image itself in the layer where they were added. This removal is part of the
Dockerfile itself.

To prevent the contents of input secrets and config maps from appearing in the build
output container images and avoid this removal process altogether, use build volumes in
your Docker build strategy instead.

2.3.6.7. Custom strategy

When using a Custom strategy, all the defined input secrets and config maps are available in the builder
container in the /var/run/secrets/openshift.io/build directory. The custom build image must use these
secrets and config maps appropriately. With the Custom strategy, you can define secrets as described in
Custom strategy options.

There is no technical difference between existing strategy secrets and the input secrets. However, your
builder image can distinguish between them and use them differently, based on your build use case.

The input secrets are always mounted into the /var/run/secrets/openshift.io/build directory, or your
builder can parse the $BUILD environment variable, which includes the full build object.

IMPORTANT

If a pull secret for the registry exists in both the namespace and the node, builds default
to using the pull secret in the namespace.

2.3.7. External artifacts

It is not recommended to store binary files in a source repository. Therefore, you must define a build
which pulls additional files, such as Java .jar dependencies, during the build process. How this is done
depends on the build strategy you are using.

For a Source build strategy, you must put appropriate shell commands into the assemble script:

.s2i/bin/assemble File

.s2i/bin/run File

For a Docker build strategy, you must modify the Dockerfile and invoke shell commands with the RUN
instruction:

Excerpt of Dockerfile

#!/bin/sh
APP_VERSION=1.0
wget http://repository.example.com/app/app-$APP_VERSION.jar -O app.jar

#!/bin/sh
exec java -jar app.jar

FROM jboss/base-jdk:8

CHAPTER 2. BUILDS

37

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/cicd/#builds-using-build-volumes_build-strategies-docker
https://docs.docker.com/engine/reference/builder/#run

1

2

3

4

In practice, you may want to use an environment variable for the file location so that the specific file to
be downloaded can be customized using an environment variable defined on the BuildConfig, rather
than updating the Dockerfile or assemble script.

You can choose between different methods of defining environment variables:

Using the .s2i/environment file] (only for a Source build strategy)

Setting in BuildConfig

Providing explicitly using oc start-build --env (only for builds that are triggered manually)

2.3.8. Using docker credentials for private registries

You can supply builds with a .docker/config.json file with valid credentials for private container
registries. This allows you to push the output image into a private container image registry or pull a
builder image from the private container image registry that requires authentication.

You can supply credentials for multiple repositories within the same registry, each with credentials
specific to that registry path.

NOTE

For the OpenShift Container Platform container image registry, this is not required
because secrets are generated automatically for you by OpenShift Container Platform.

The .docker/config.json file is found in your home directory by default and has the following format:

URL of the registry.

Encrypted password.

Email address for the login.

URL and credentials for a specific image in a namespace.

ENV APP_VERSION 1.0
RUN wget http://repository.example.com/app/app-$APP_VERSION.jar -O app.jar

EXPOSE 8080
CMD ["java", "-jar", "app.jar"]

auths:
 index.docker.io/v1/: 1
 auth: "YWRfbGzhcGU6R2labnRib21ifTE=" 2
 email: "user@example.com" 3
 docker.io/my-namespace/my-user/my-image: 4
 auth: "GzhYWRGU6R2fbclabnRgbkSp=""
 email: "user@example.com"
 docker.io/my-namespace: 5
 auth: "GzhYWRGU6R2deesfrRgbkSp=""
 email: "user@example.com"

OpenShift Container Platform 4.9 CI/CD

38

5 URL and credentials for a registry namespace.

You can define multiple container image registries or define multiple repositories in the same registry.
Alternatively, you can also add authentication entries to this file by running the docker login command.
The file will be created if it does not exist.

Kubernetes provides Secret objects, which can be used to store configuration and passwords.

Prerequisites

You must have a .docker/config.json file.

Procedure

1. Create the secret from your local .docker/config.json file:

This generates a JSON specification of the secret named dockerhub and creates the object.

2. Add a pushSecret field into the output section of the BuildConfig and set it to the name of
the secret that you created, which in the previous example is dockerhub:

You can use the oc set build-secret command to set the push secret on the build
configuration:

You can also link the push secret to the service account used by the build instead of specifying
the pushSecret field. By default, builds use the builder service account. The push secret is
automatically added to the build if the secret contains a credential that matches the repository
hosting the build’s output image.

3. Pull the builder container image from a private container image registry by specifying the
pullSecret field, which is part of the build strategy definition:

$ oc create secret generic dockerhub \
 --from-file=.dockerconfigjson=<path/to/.docker/config.json> \
 --type=kubernetes.io/dockerconfigjson

spec:
 output:
 to:
 kind: "DockerImage"
 name: "private.registry.com/org/private-image:latest"
 pushSecret:
 name: "dockerhub"

$ oc set build-secret --push bc/sample-build dockerhub

$ oc secrets link builder dockerhub

strategy:
 sourceStrategy:
 from:
 kind: "DockerImage"

CHAPTER 2. BUILDS

39

You can use the oc set build-secret command to set the pull secret on the build configuration:

NOTE

This example uses pullSecret in a Source build, but it is also applicable in Docker
and Custom builds.

You can also link the pull secret to the service account used by the build instead of specifying
the pullSecret field. By default, builds use the builder service account. The pull secret is
automatically added to the build if the secret contains a credential that matches the repository
hosting the build’s input image. To link the pull secret to the service account used by the build
instead of specifying the pullSecret field, run:

NOTE

You must specify a from image in the BuildConfig spec to take advantage of
this feature. Docker strategy builds generated by oc new-build or oc new-app
may not do this in some situations.

2.3.9. Build environments

As with pod environment variables, build environment variables can be defined in terms of references to
other resources or variables using the Downward API. There are some exceptions, which are noted.

You can also manage environment variables defined in the BuildConfig with the oc set env command.

NOTE

Referencing container resources using valueFrom in build environment variables is not
supported as the references are resolved before the container is created.

2.3.9.1. Using build fields as environment variables

You can inject information about the build object by setting the fieldPath environment variable source
to the JsonPath of the field from which you are interested in obtaining the value.

NOTE

Jenkins Pipeline strategy does not support valueFrom syntax for environment variables.

Procedure

Set the fieldPath environment variable source to the JsonPath of the field from which you are
interested in obtaining the value:

 name: "docker.io/user/private_repository"
 pullSecret:
 name: "dockerhub"

$ oc set build-secret --pull bc/sample-build dockerhub

$ oc secrets link builder dockerhub

OpenShift Container Platform 4.9 CI/CD

40

2.3.9.2. Using secrets as environment variables

You can make key values from secrets available as environment variables using the valueFrom syntax.

IMPORTANT

This method shows the secrets as plain text in the output of the build pod console. To
avoid this, use input secrets and config maps instead.

Procedure

To use a secret as an environment variable, set the valueFrom syntax:

Additional resources

Input secrets and config maps

2.3.10. Service serving certificate secrets

Service serving certificate secrets are intended to support complex middleware applications that need
out-of-the-box certificates. It has the same settings as the server certificates generated by the
administrator tooling for nodes and masters.

Procedure

To secure communication to your service, have the cluster generate a signed serving certificate/key pair
into a secret in your namespace.

Set the service.beta.openshift.io/serving-cert-secret-name annotation on your service with
the value set to the name you want to use for your secret.
Then, your PodSpec can mount that secret. When it is available, your pod runs. The certificate
is good for the internal service DNS name, <service.name>.<service.namespace>.svc.

The certificate and key are in PEM format, stored in tls.crt and tls.key respectively. The

env:
 - name: FIELDREF_ENV
 valueFrom:
 fieldRef:
 fieldPath: metadata.name

apiVersion: build.openshift.io/v1
kind: BuildConfig
metadata:
 name: secret-example-bc
spec:
 strategy:
 sourceStrategy:
 env:
 - name: MYVAL
 valueFrom:
 secretKeyRef:
 key: myval
 name: mysecret

CHAPTER 2. BUILDS

41

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/cicd/#builds-input-secrets-configmaps_creating-build-inputs

certificate/key pair is automatically replaced when it gets close to expiration. View the expiration
date in the service.beta.openshift.io/expiry annotation on the secret, which is in RFC3339
format.

NOTE

In most cases, the service DNS name <service.name>.<service.namespace>.svc is not
externally routable. The primary use of <service.name>.<service.namespace>.svc is
for intracluster or intraservice communication, and with re-encrypt routes.

Other pods can trust cluster-created certificates, which are only signed for internal DNS names, by using
the certificate authority (CA) bundle in the /var/run/secrets/kubernetes.io/serviceaccount/service-
ca.crt file that is automatically mounted in their pod.

The signature algorithm for this feature is x509.SHA256WithRSA. To manually rotate, delete the
generated secret. A new certificate is created.

2.3.11. Secrets restrictions

To use a secret, a pod needs to reference the secret. A secret can be used with a pod in three ways:

To populate environment variables for containers.

As files in a volume mounted on one or more of its containers.

By kubelet when pulling images for the pod.

Volume type secrets write data into the container as a file using the volume mechanism.
imagePullSecrets use service accounts for the automatic injection of the secret into all pods in a
namespaces.

When a template contains a secret definition, the only way for the template to use the provided secret is
to ensure that the secret volume sources are validated and that the specified object reference actually
points to an object of type Secret. Therefore, a secret needs to be created before any pods that
depend on it. The most effective way to ensure this is to have it get injected automatically through the
use of a service account.

Secret API objects reside in a namespace. They can only be referenced by pods in that same
namespace.

Individual secrets are limited to 1MB in size. This is to discourage the creation of large secrets that would
exhaust apiserver and kubelet memory. However, creation of a number of smaller secrets could also
exhaust memory.

2.4. MANAGING BUILD OUTPUT

Use the following sections for an overview of and instructions for managing build output.

2.4.1. Build output

Builds that use the docker or source-to-image (S2I) strategy result in the creation of a new container
image. The image is then pushed to the container image registry specified in the output section of the
Build specification.

If the output kind is ImageStreamTag, then the image will be pushed to the integrated OpenShift

OpenShift Container Platform 4.9 CI/CD

42

Container Platform registry and tagged in the specified imagestream. If the output is of type
DockerImage, then the name of the output reference will be used as a docker push specification. The
specification may contain a registry or will default to DockerHub if no registry is specified. If the output
section of the build specification is empty, then the image will not be pushed at the end of the build.

Output to an ImageStreamTag

Output to a docker Push Specification

2.4.2. Output image environment variables

docker and source-to-image (S2I) strategy builds set the following environment variables on output
images:

Variable Description

OPENSHIFT_BUILD_NAME Name of the build

OPENSHIFT_BUILD_NAMESPACE Namespace of the build

OPENSHIFT_BUILD_SOURCE The source URL of the build

OPENSHIFT_BUILD_REFERENCE The Git reference used in the build

OPENSHIFT_BUILD_COMMIT Source commit used in the build

Additionally, any user-defined environment variable, for example those configured with S2I] or docker
strategy options, will also be part of the output image environment variable list.

2.4.3. Output image labels

docker and source-to-image (S2I)` builds set the following labels on output images:

Label Description

io.openshift.build.commit.author Author of the source commit used in the build

spec:
 output:
 to:
 kind: "ImageStreamTag"
 name: "sample-image:latest"

spec:
 output:
 to:
 kind: "DockerImage"
 name: "my-registry.mycompany.com:5000/myimages/myimage:tag"

CHAPTER 2. BUILDS

43

io.openshift.build.commit.date Date of the source commit used in the build

io.openshift.build.commit.id Hash of the source commit used in the build

io.openshift.build.commit.message Message of the source commit used in the build

io.openshift.build.commit.ref Branch or reference specified in the source

io.openshift.build.source-location Source URL for the build

Label Description

You can also use the BuildConfig.spec.output.imageLabels field to specify a list of custom labels that
will be applied to each image built from the build configuration.

Custom Labels to be Applied to Built Images

2.5. USING BUILD STRATEGIES

The following sections define the primary supported build strategies, and how to use them.

2.5.1. Docker build

OpenShift Container Platform uses Buildah to build a container image from a Dockerfile. For more
information on building container images with Dockerfiles, see the Dockerfile reference documentation.

TIP

If you set Docker build arguments by using the buildArgs array, see Understand how ARG and FROM
interact in the Dockerfile reference documentation.

2.5.1.1. Replacing Dockerfile FROM image

You can replace the FROM instruction of the Dockerfile with the from of the BuildConfig object. If the
Dockerfile uses multi-stage builds, the image in the last FROM instruction will be replaced.

Procedure

To replace the FROM instruction of the Dockerfile with the from of the BuildConfig.

spec:
 output:
 to:
 kind: "ImageStreamTag"
 name: "my-image:latest"
 imageLabels:
 - name: "vendor"
 value: "MyCompany"
 - name: "authoritative-source-url"
 value: "registry.mycompany.com"

OpenShift Container Platform 4.9 CI/CD

44

https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/#understand-how-arg-and-from-interact

2.5.1.2. Using Dockerfile path

By default, docker builds use a Dockerfile located at the root of the context specified in the
BuildConfig.spec.source.contextDir field.

The dockerfilePath field allows the build to use a different path to locate your Dockerfile, relative to the
BuildConfig.spec.source.contextDir field. It can be a different file name than the default Dockerfile,
such as MyDockerfile, or a path to a Dockerfile in a subdirectory, such as dockerfiles/app1/Dockerfile.

Procedure

To use the dockerfilePath field for the build to use a different path to locate your Dockerfile, set:

2.5.1.3. Using docker environment variables

To make environment variables available to the docker build process and resulting image, you can add
environment variables to the dockerStrategy definition of the build configuration.

The environment variables defined there are inserted as a single ENV Dockerfile instruction right after
the FROM instruction, so that it can be referenced later on within the Dockerfile.

Procedure

The variables are defined during build and stay in the output image, therefore they will be present in any
container that runs that image as well.

For example, defining a custom HTTP proxy to be used during build and runtime:

You can also manage environment variables defined in the build configuration with the oc set env
command.

2.5.1.4. Adding docker build arguments

You can set docker build arguments using the buildArgs array. The build arguments are passed to
docker when a build is started.

TIP

strategy:
 dockerStrategy:
 from:
 kind: "ImageStreamTag"
 name: "debian:latest"

strategy:
 dockerStrategy:
 dockerfilePath: dockerfiles/app1/Dockerfile

dockerStrategy:
...
 env:
 - name: "HTTP_PROXY"
 value: "http://myproxy.net:5187/"

CHAPTER 2. BUILDS

45

http://docs.docker.com/v1.7/reference/api/hub_registry_spec/#docker-registry-1-0

TIP

See Understand how ARG and FROM interact in the Dockerfile reference documentation.

Procedure

To set docker build arguments, add entries to the buildArgs array, which is located in the
dockerStrategy definition of the BuildConfig object. For example:

NOTE

Only the name and value fields are supported. Any settings on the valueFrom field are
ignored.

2.5.1.5. Squashing layers with docker builds

Docker builds normally create a layer representing each instruction in a Dockerfile. Setting the
imageOptimizationPolicy to SkipLayers merges all instructions into a single layer on top of the base
image.

Procedure

Set the imageOptimizationPolicy to SkipLayers:

2.5.1.6. Using build volumes

You can mount build volumes to give running builds access to information that you don’t want to persist
in the output container image.

Build volumes provide sensitive information, such as repository credentials, that the build environment
or configuration only needs at build time. Build volumes are different from build inputs, whose data can
persist in the output container image.

The mount points of build volumes, from which the running build reads data, are functionally similar to
pod volume mounts.

Prerequisites

You have added an input secret, config map, or both to a BuildConfig object .

Procedure

In the dockerStrategy definition of the BuildConfig object, add any build volumes to the
volumes array. For example:

dockerStrategy:
...
 buildArgs:
 - name: "foo"
 value: "bar"

strategy:
 dockerStrategy:
 imageOptimizationPolicy: SkipLayers

OpenShift Container Platform 4.9 CI/CD

46

https://docs.docker.com/engine/reference/builder/#understand-how-arg-and-from-interact
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/cicd/#builds-define-build-inputs_creating-build-inputs
https://kubernetes.io/docs/concepts/storage/volumes/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/cicd/#builds-input-secrets-configmaps_creating-build-inputs

1 5

2 6

3 7

4 8

Required. A unique name.

Required. The absolute path of the mount point. It must not contain .. or : and doesn’t
collide with the destination path generated by the builder. The /opt/app-root/src is the
default home directory for many Red Hat S2I-enabled images.

Required. The type of source, ConfigMap or Secret.

Required. The name of the source.

2.5.2. Source-to-image build

Source-to-image (S2I) is a tool for building reproducible container images. It produces ready-to-run
images by injecting application source into a container image and assembling a new image. The new
image incorporates the base image, the builder, and built source and is ready to use with the buildah
run command. S2I supports incremental builds, which re-use previously downloaded dependencies,
previously built artifacts, and so on.

2.5.2.1. Performing source-to-image incremental builds

Source-to-image (S2I) can perform incremental builds, which means it reuses artifacts from previously-
built images.

Procedure

To create an incremental build, create a with the following modification to the strategy
definition:

spec:
 dockerStrategy:
 volumes:
 - name: secret-mvn 1
 mounts:
 - destinationPath: /opt/app-root/src/.ssh 2
 source:
 type: Secret 3
 secret:
 secretName: my-secret 4
 - name: settings-mvn 5
 mounts:
 - destinationPath: /opt/app-root/src/.m2 6
 source:
 type: ConfigMap 7
 configMap:
 name: my-config 8

strategy:
 sourceStrategy:
 from:
 kind: "ImageStreamTag"
 name: "incremental-image:latest" 1
 incremental: true 2

CHAPTER 2. BUILDS

47

1

2

1

Specify an image that supports incremental builds. Consult the documentation of the
builder image to determine if it supports this behavior.

This flag controls whether an incremental build is attempted. If the builder image does not
support incremental builds, the build will still succeed, but you will get a log message
stating the incremental build was not successful because of a missing save-artifacts script.

Additional resources

See S2I Requirements for information on how to create a builder image supporting incremental
builds.

2.5.2.2. Overriding source-to-image builder image scripts

You can override the assemble, run, and save-artifacts source-to-image (S2I) scripts provided by the
builder image.

Procedure

To override the assemble, run, and save-artifacts S2I scripts provided by the builder image, either:

Provide an assemble, run, or save-artifacts script in the .s2i/bin directory of your application
source repository.

Provide a URL of a directory containing the scripts as part of the strategy definition. For
example:

This path will have run, assemble, and save-artifacts appended to it. If any or all scripts
are found they will be used in place of the same named scripts provided in the image.

NOTE

Files located at the scripts URL take precedence over files located in .s2i/bin of the
source repository.

2.5.2.3. Source-to-image environment variables

There are two ways to make environment variables available to the source build process and resulting
image. Environment files and BuildConfig environment values. Variables provided will be present during
the build process and in the output image.

2.5.2.3.1. Using source-to-image environment files

Source build enables you to set environment values, one per line, inside your application, by specifying
them in a .s2i/environment file in the source repository. The environment variables specified in this file
are present during the build process and in the output image.

strategy:
 sourceStrategy:
 from:
 kind: "ImageStreamTag"
 name: "builder-image:latest"
 scripts: "http://somehost.com/scripts_directory" 1

OpenShift Container Platform 4.9 CI/CD

48

If you provide a .s2i/environment file in your source repository, source-to-image (S2I) reads this file
during the build. This allows customization of the build behavior as the assemble script may use these
variables.

Procedure

For example, to disable assets compilation for your Rails application during the build:

Add DISABLE_ASSET_COMPILATION=true in the .s2i/environment file.

In addition to builds, the specified environment variables are also available in the running application
itself. For example, to cause the Rails application to start in development mode instead of production:

Add RAILS_ENV=development to the .s2i/environment file.

The complete list of supported environment variables is available in the using images section for each
image.

2.5.2.3.2. Using source-to-image build configuration environment

You can add environment variables to the sourceStrategy definition of the build configuration. The
environment variables defined there are visible during the assemble script execution and will be defined
in the output image, making them also available to the run script and application code.

Procedure

For example, to disable assets compilation for your Rails application:

Additional resources

The build environment section provides more advanced instructions.

You can also manage environment variables defined in the build configuration with the oc set
env command.

2.5.2.4. Ignoring source-to-image source files

Source-to-image (S2I) supports a .s2iignore file, which contains a list of file patterns that should be
ignored. Files in the build working directory, as provided by the various input sources, that match a
pattern found in the .s2iignore file will not be made available to the assemble script.

2.5.2.5. Creating images from source code with source-to-image

Source-to-image (S2I) is a framework that makes it easy to write images that take application source
code as an input and produce a new image that runs the assembled application as output.

The main advantage of using S2I for building reproducible container images is the ease of use for
developers. As a builder image author, you must understand two basic concepts in order for your images
to provide the best S2I performance, the build process and S2I scripts.

sourceStrategy:
...
 env:
 - name: "DISABLE_ASSET_COMPILATION"
 value: "true"

CHAPTER 2. BUILDS

49

2.5.2.5.1. Understanding the source-to-image build process

The build process consists of the following three fundamental elements, which are combined into a final
container image:

Sources

Source-to-image (S2I) scripts

Builder image

S2I generates a Dockerfile with the builder image as the first FROM instruction. The Dockerfile
generated by S2I is then passed to Buildah.

2.5.2.5.2. How to write source-to-image scripts

You can write source-to-image (S2I) scripts in any programming language, as long as the scripts are
executable inside the builder image. S2I supports multiple options providing assemble/run/save-
artifacts scripts. All of these locations are checked on each build in the following order:

1. A script specified in the build configuration.

2. A script found in the application source .s2i/bin directory.

3. A script found at the default image URL with the io.openshift.s2i.scripts-url label.

Both the io.openshift.s2i.scripts-url label specified in the image and the script specified in a build
configuration can take one of the following forms:

image:///path_to_scripts_dir: absolute path inside the image to a directory where the S2I
scripts are located.

file:///path_to_scripts_dir: relative or absolute path to a directory on the host where the S2I
scripts are located.

http(s)://path_to_scripts_dir: URL to a directory where the S2I scripts are located.

Table 2.1. S2I scripts

Script Description

assemble The assemble script builds the application artifacts from a source and places
them into appropriate directories inside the image. This script is required. The
workflow for this script is:

1. Optional: Restore build artifacts. If you want to support incremental
builds, make sure to define save-artifacts as well.

2. Place the application source in the desired location.

3. Build the application artifacts.

4. Install the artifacts into locations appropriate for them to run.

run The run script executes your application. This script is required.

OpenShift Container Platform 4.9 CI/CD

50

save-artifacts The save-artifacts script gathers all dependencies that can speed up the
build processes that follow. This script is optional. For example:

For Ruby, gems installed by Bundler.

For Java, .m2 contents.

These dependencies are gathered into a tar file and streamed to the standard
output.

usage The usage script allows you to inform the user how to properly use your image.
This script is optional.

test/run The test/run script allows you to create a process to check if the image is
working correctly. This script is optional. The proposed flow of that process is:

1. Build the image.

2. Run the image to verify the usage script.

3. Run s2i build to verify the assemble script.

4. Optional: Run s2i build again to verify the save-artifacts and
assemble scripts save and restore artifacts functionality.

5. Run the image to verify the test application is working.

NOTE

The suggested location to put the test application built by your
test/run script is the test/test-app directory in your image
repository.

Script Description

Example S2I scripts

The following example S2I scripts are written in Bash. Each example assumes its tar contents are
unpacked into the /tmp/s2i directory.

assemble script:

#!/bin/bash

restore build artifacts
if ["$(ls /tmp/s2i/artifacts/ 2>/dev/null)"]; then
 mv /tmp/s2i/artifacts/* $HOME/.
fi

move the application source
mv /tmp/s2i/src $HOME/src

build application artifacts
pushd ${HOME}

CHAPTER 2. BUILDS

51

run script:

save-artifacts script:

usage script:

Additional resources

S2I Image Creation Tutorial

2.5.2.6. Using build volumes

You can mount build volumes to give running builds access to information that you don’t want to persist
in the output container image.

Build volumes provide sensitive information, such as repository credentials, that the build environment
or configuration only needs at build time. Build volumes are different from build inputs, whose data can
persist in the output container image.

The mount points of build volumes, from which the running build reads data, are functionally similar to
pod volume mounts.

Prerequisites

You have added an input secret, config map, or both to a BuildConfig object .

make all

install the artifacts
make install
popd

#!/bin/bash

run the application
/opt/application/run.sh

#!/bin/bash

pushd ${HOME}
if [-d deps]; then
 # all deps contents to tar stream
 tar cf - deps
fi
popd

#!/bin/bash

inform the user how to use the image
cat <<EOF
This is a S2I sample builder image, to use it, install
https://github.com/openshift/source-to-image
EOF

OpenShift Container Platform 4.9 CI/CD

52

https://blog.openshift.com/create-s2i-builder-image/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/cicd/#builds-define-build-inputs_creating-build-inputs
https://kubernetes.io/docs/concepts/storage/volumes/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/cicd/#builds-input-secrets-configmaps_creating-build-inputs

1 5

2 6

3 7

4 8

Procedure

In the sourceStrategy definition of the BuildConfig object, add any build volumes to the
volumes array. For example:

Required. A unique name.

Required. The absolute path of the mount point. It must not contain .. or : and doesn’t collide with
the destination path generated by the builder. The /opt/app-root/src is the default home directory
for many Red Hat S2I-enabled images.

Required. The type of source, ConfigMap or Secret.

Required. The name of the source.

2.5.3. Custom build

The custom build strategy allows developers to define a specific builder image responsible for the entire
build process. Using your own builder image allows you to customize your build process.

A custom builder image is a plain container image embedded with build process logic, for example for
building RPMs or base images.

Custom builds run with a high level of privilege and are not available to users by default. Only users who
can be trusted with cluster administration permissions should be granted access to run custom builds.

2.5.3.1. Using FROM image for custom builds

You can use the customStrategy.from section to indicate the image to use for the custom build

Procedure

Set the customStrategy.from section:

spec:
 sourceStrategy:
 volumes:
 - name: secret-mvn 1
 mounts:
 - destinationPath: /opt/app-root/src/.ssh 2
 source:
 type: Secret 3
 secret:
 secretName: my-secret 4
 - name: settings-mvn 5
 mounts:
 - destinationPath: /opt/app-root/src/.m2 6
 source:
 type: ConfigMap 7
 configMap:
 name: my-config 8

strategy:

CHAPTER 2. BUILDS

53

1

2

2.5.3.2. Using secrets in custom builds

In addition to secrets for source and images that can be added to all build types, custom strategies allow
adding an arbitrary list of secrets to the builder pod.

Procedure

To mount each secret at a specific location, edit the secretSource and mountPath fields of the
strategy YAML file:

secretSource is a reference to a secret in the same namespace as the build.

mountPath is the path inside the custom builder where the secret should be mounted.

2.5.3.3. Using environment variables for custom builds

To make environment variables available to the custom build process, you can add environment
variables to the customStrategy definition of the build configuration.

The environment variables defined there are passed to the pod that runs the custom build.

Procedure

1. Define a custom HTTP proxy to be used during build:

2. To manage environment variables defined in the build configuration, enter the following
command:

2.5.3.4. Using custom builder images

OpenShift Container Platform’s custom build strategy enables you to define a specific builder image

 customStrategy:
 from:
 kind: "DockerImage"
 name: "openshift/sti-image-builder"

strategy:
 customStrategy:
 secrets:
 - secretSource: 1
 name: "secret1"
 mountPath: "/tmp/secret1" 2
 - secretSource:
 name: "secret2"
 mountPath: "/tmp/secret2"

customStrategy:
...
 env:
 - name: "HTTP_PROXY"
 value: "http://myproxy.net:5187/"

$ oc set env <enter_variables>

OpenShift Container Platform 4.9 CI/CD

54

OpenShift Container Platform’s custom build strategy enables you to define a specific builder image
responsible for the entire build process. When you need a build to produce individual artifacts such as
packages, JARs, WARs, installable ZIPs, or base images, use a custom builder image using the custom
build strategy.

A custom builder image is a plain container image embedded with build process logic, which is used for
building artifacts such as RPMs or base container images.

Additionally, the custom builder allows implementing any extended build process, such as a CI/CD flow
that runs unit or integration tests.

2.5.3.4.1. Custom builder image

Upon invocation, a custom builder image receives the following environment variables with the
information needed to proceed with the build:

Table 2.2. Custom Builder Environment Variables

Variable Name Description

BUILD The entire serialized JSON of the Build object definition. If you must use a
specific API version for serialization, you can set the buildAPIVersion parameter
in the custom strategy specification of the build configuration.

SOURCE_REPOSITO
RY

The URL of a Git repository with source to be built.

SOURCE_URI Uses the same value as SOURCE_REPOSITORY. Either can be used.

SOURCE_CONTEXT
_DIR

Specifies the subdirectory of the Git repository to be used when building. Only
present if defined.

SOURCE_REF The Git reference to be built.

ORIGIN_VERSION The version of the OpenShift Container Platform master that created this build
object.

OUTPUT_REGISTRY The container image registry to push the image to.

OUTPUT_IMAGE The container image tag name for the image being built.

PUSH_DOCKERCFG
_PATH

The path to the container registry credentials for running a podman push
operation.

2.5.3.4.2. Custom builder workflow

Although custom builder image authors have flexibility in defining the build process, your builder image
must adhere to the following required steps necessary for running a build inside of OpenShift Container
Platform:

1. The Build object definition contains all the necessary information about input parameters for
the build.

CHAPTER 2. BUILDS

55

2. Run the build process.

3. If your build produces an image, push it to the output location of the build if it is defined. Other
output locations can be passed with environment variables.

2.5.4. Pipeline build

IMPORTANT

The Pipeline build strategy is deprecated in OpenShift Container Platform 4. Equivalent
and improved functionality is present in the OpenShift Container Platform Pipelines
based on Tekton.

Jenkins images on OpenShift Container Platform are fully supported and users should
follow Jenkins user documentation for defining their jenkinsfile in a job or store it in a
Source Control Management system.

The Pipeline build strategy allows developers to define a Jenkins pipeline for use by the Jenkins pipeline
plugin. The build can be started, monitored, and managed by OpenShift Container Platform in the same
way as any other build type.

Pipeline workflows are defined in a jenkinsfile, either embedded directly in the build configuration, or
supplied in a Git repository and referenced by the build configuration.

2.5.4.1. Understanding OpenShift Container Platform pipelines

IMPORTANT

The Pipeline build strategy is deprecated in OpenShift Container Platform 4. Equivalent
and improved functionality is present in the OpenShift Container Platform Pipelines
based on Tekton.

Jenkins images on OpenShift Container Platform are fully supported and users should
follow Jenkins user documentation for defining their jenkinsfile in a job or store it in a
Source Control Management system.

Pipelines give you control over building, deploying, and promoting your applications on OpenShift
Container Platform. Using a combination of the Jenkins Pipeline build strategy, jenkinsfiles, and the
OpenShift Container Platform Domain Specific Language (DSL) provided by the Jenkins Client Plugin,
you can create advanced build, test, deploy, and promote pipelines for any scenario.

OpenShift Container Platform Jenkins Sync Plugin

The OpenShift Container Platform Jenkins Sync Plugin keeps the build configuration and build objects
in sync with Jenkins jobs and builds, and provides the following:

Dynamic job and run creation in Jenkins.

Dynamic creation of agent pod templates from image streams, image stream tags, or config
maps.

Injection of environment variables.

Pipeline visualization in the OpenShift Container Platform web console.

OpenShift Container Platform 4.9 CI/CD

56

Integration with the Jenkins Git plugin, which passes commit information from OpenShift
Container Platform builds to the Jenkins Git plugin.

Synchronization of secrets into Jenkins credential entries.

OpenShift Container Platform Jenkins Client Plugin

The OpenShift Container Platform Jenkins Client Plugin is a Jenkins plugin which aims to provide a
readable, concise, comprehensive, and fluent Jenkins Pipeline syntax for rich interactions with an
OpenShift Container Platform API Server. The plugin uses the OpenShift Container Platform command
line tool, oc, which must be available on the nodes executing the script.

The Jenkins Client Plugin must be installed on your Jenkins master so the OpenShift Container Platform
DSL will be available to use within the jenkinsfile for your application. This plugin is installed and
enabled by default when using the OpenShift Container Platform Jenkins image.

For OpenShift Container Platform Pipelines within your project, you will must use the Jenkins Pipeline
Build Strategy. This strategy defaults to using a jenkinsfile at the root of your source repository, but
also provides the following configuration options:

An inline jenkinsfile field within your build configuration.

A jenkinsfilePath field within your build configuration that references the location of the
jenkinsfile to use relative to the source contextDir.

NOTE

The optional jenkinsfilePath field specifies the name of the file to use, relative to the
source contextDir. If contextDir is omitted, it defaults to the root of the repository. If
jenkinsfilePath is omitted, it defaults to jenkinsfile.

2.5.4.2. Providing the Jenkins file for pipeline builds

IMPORTANT

The Pipeline build strategy is deprecated in OpenShift Container Platform 4. Equivalent
and improved functionality is present in the OpenShift Container Platform Pipelines
based on Tekton.

Jenkins images on OpenShift Container Platform are fully supported and users should
follow Jenkins user documentation for defining their jenkinsfile in a job or store it in a
Source Control Management system.

The jenkinsfile uses the standard groovy language syntax to allow fine grained control over the
configuration, build, and deployment of your application.

You can supply the jenkinsfile in one of the following ways:

A file located within your source code repository.

Embedded as part of your build configuration using the jenkinsfile field.

When using the first option, the jenkinsfile must be included in your applications source code repository
at one of the following locations:

CHAPTER 2. BUILDS

57

1

A file named jenkinsfile at the root of your repository.

A file named jenkinsfile at the root of the source contextDir of your repository.

A file name specified via the jenkinsfilePath field of the JenkinsPipelineStrategy section of
your BuildConfig, which is relative to the source contextDir if supplied, otherwise it defaults to
the root of the repository.

The jenkinsfile is run on the Jenkins agent pod, which must have the OpenShift Container Platform
client binaries available if you intend to use the OpenShift Container Platform DSL.

Procedure

To provide the Jenkins file, you can either:

Embed the Jenkins file in the build configuration.

Include in the build configuration a reference to the Git repository that contains the Jenkins file.

Embedded Definition

Reference to Git Repository

The optional jenkinsfilePath field specifies the name of the file to use, relative to the source
contextDir. If contextDir is omitted, it defaults to the root of the repository. If jenkinsfilePath is
omitted, it defaults to jenkinsfile.

kind: "BuildConfig"
apiVersion: "v1"
metadata:
 name: "sample-pipeline"
spec:
 strategy:
 jenkinsPipelineStrategy:
 jenkinsfile: |-
 node('agent') {
 stage 'build'
 openshiftBuild(buildConfig: 'ruby-sample-build', showBuildLogs: 'true')
 stage 'deploy'
 openshiftDeploy(deploymentConfig: 'frontend')
 }

kind: "BuildConfig"
apiVersion: "v1"
metadata:
 name: "sample-pipeline"
spec:
 source:
 git:
 uri: "https://github.com/openshift/ruby-hello-world"
 strategy:
 jenkinsPipelineStrategy:
 jenkinsfilePath: some/repo/dir/filename 1

OpenShift Container Platform 4.9 CI/CD

58

2.5.4.3. Using environment variables for pipeline builds

IMPORTANT

The Pipeline build strategy is deprecated in OpenShift Container Platform 4. Equivalent
and improved functionality is present in the OpenShift Container Platform Pipelines
based on Tekton.

Jenkins images on OpenShift Container Platform are fully supported and users should
follow Jenkins user documentation for defining their jenkinsfile in a job or store it in a
Source Control Management system.

To make environment variables available to the Pipeline build process, you can add environment
variables to the jenkinsPipelineStrategy definition of the build configuration.

Once defined, the environment variables will be set as parameters for any Jenkins job associated with
the build configuration.

Procedure

To define environment variables to be used during build, edit the YAML file:

You can also manage environment variables defined in the build configuration with the oc set env
command.

2.5.4.3.1. Mapping between BuildConfig environment variables and Jenkins job parameters

When a Jenkins job is created or updated based on changes to a Pipeline strategy build configuration,
any environment variables in the build configuration are mapped to Jenkins job parameters definitions,
where the default values for the Jenkins job parameters definitions are the current values of the
associated environment variables.

After the Jenkins job’s initial creation, you can still add additional parameters to the job from the Jenkins
console. The parameter names differ from the names of the environment variables in the build
configuration. The parameters are honored when builds are started for those Jenkins jobs.

How you start builds for the Jenkins job dictates how the parameters are set.

If you start with oc start-build, the values of the environment variables in the build configuration
are the parameters set for the corresponding job instance. Any changes you make to the
parameters' default values from the Jenkins console are ignored. The build configuration values
take precedence.

If you start with oc start-build -e, the values for the environment variables specified in the -e
option take precedence.

If you specify an environment variable not listed in the build configuration, they will be
added as a Jenkins job parameter definitions.

jenkinsPipelineStrategy:
...
 env:
 - name: "FOO"
 value: "BAR"

CHAPTER 2. BUILDS

59

Any changes you make from the Jenkins console to the parameters corresponding to the
environment variables are ignored. The build configuration and what you specify with oc
start-build -e takes precedence.

If you start the Jenkins job with the Jenkins console, then you can control the setting of the
parameters with the Jenkins console as part of starting a build for the job.

NOTE

It is recommended that you specify in the build configuration all possible environment
variables to be associated with job parameters. Doing so reduces disk I/O and improves
performance during Jenkins processing.

2.5.4.4. Pipeline build tutorial

IMPORTANT

The Pipeline build strategy is deprecated in OpenShift Container Platform 4. Equivalent
and improved functionality is present in the OpenShift Container Platform Pipelines
based on Tekton.

Jenkins images on OpenShift Container Platform are fully supported and users should
follow Jenkins user documentation for defining their jenkinsfile in a job or store it in a
Source Control Management system.

This example demonstrates how to create an OpenShift Container Platform Pipeline that will build,
deploy, and verify a Node.js/MongoDB application using the nodejs-mongodb.json template.

Procedure

1. Create the Jenkins master:

Select the project that you want to use or create a new project with oc new-project
<project_name>.

If you want to use persistent storage, use jenkins-persistent instead.

2. Create a file named nodejs-sample-pipeline.yaml with the following content:

NOTE

This creates a BuildConfig object that employs the Jenkins pipeline strategy to
build, deploy, and scale the Node.js/MongoDB example application.

 $ oc project <project_name>

 $ oc new-app jenkins-ephemeral 1

kind: "BuildConfig"
apiVersion: "v1"
metadata:
 name: "nodejs-sample-pipeline"

OpenShift Container Platform 4.9 CI/CD

60

3. After you create a BuildConfig object with a jenkinsPipelineStrategy, tell the pipeline what to
do by using an inline jenkinsfile:

NOTE

This example does not set up a Git repository for the application.

The following jenkinsfile content is written in Groovy using the OpenShift
Container Platform DSL. For this example, include inline content in the
BuildConfig object using the YAML Literal Style, though including a jenkinsfile
in your source repository is the preferred method.

spec:
 strategy:
 jenkinsPipelineStrategy:
 jenkinsfile: <pipeline content from below>
 type: JenkinsPipeline

def templatePath = 'https://raw.githubusercontent.com/openshift/nodejs-
ex/master/openshift/templates/nodejs-mongodb.json' 1
def templateName = 'nodejs-mongodb-example' 2
pipeline {
 agent {
 node {
 label 'nodejs' 3
 }
 }
 options {
 timeout(time: 20, unit: 'MINUTES') 4
 }
 stages {
 stage('preamble') {
 steps {
 script {
 openshift.withCluster() {
 openshift.withProject() {
 echo "Using project: ${openshift.project()}"
 }
 }
 }
 }
 }
 stage('cleanup') {
 steps {
 script {
 openshift.withCluster() {
 openshift.withProject() {
 openshift.selector("all", [template : templateName]).delete() 5
 if (openshift.selector("secrets", templateName).exists()) { 6
 openshift.selector("secrets", templateName).delete()
 }
 }
 }
 }

CHAPTER 2. BUILDS

61

 }
 }
 stage('create') {
 steps {
 script {
 openshift.withCluster() {
 openshift.withProject() {
 openshift.newApp(templatePath) 7
 }
 }
 }
 }
 }
 stage('build') {
 steps {
 script {
 openshift.withCluster() {
 openshift.withProject() {
 def builds = openshift.selector("bc", templateName).related('builds')
 timeout(5) { 8
 builds.untilEach(1) {
 return (it.object().status.phase == "Complete")
 }
 }
 }
 }
 }
 }
 }
 stage('deploy') {
 steps {
 script {
 openshift.withCluster() {
 openshift.withProject() {
 def rm = openshift.selector("dc", templateName).rollout()
 timeout(5) { 9
 openshift.selector("dc", templateName).related('pods').untilEach(1) {
 return (it.object().status.phase == "Running")
 }
 }
 }
 }
 }
 }
 }
 stage('tag') {
 steps {
 script {
 openshift.withCluster() {
 openshift.withProject() {
 openshift.tag("${templateName}:latest", "${templateName}-staging:latest") 10
 }
 }
 }
 }

OpenShift Container Platform 4.9 CI/CD

62

1

1 2

3

4

5

6

7

8

9

10

Path of the template to use.

Name of the template that will be created.

Spin up a node.js agent pod on which to run this build.

Set a timeout of 20 minutes for this pipeline.

Delete everything with this template label.

Delete any secrets with this template label.

Create a new application from the templatePath.

Wait up to five minutes for the build to complete.

Wait up to five minutes for the deployment to complete.

If everything else succeeded, tag the $ {templateName}:latest image as $
{templateName}-staging:latest. A pipeline build configuration for the staging
environment can watch for the $ {templateName}-staging:latest image to change and
then deploy it to the staging environment.

NOTE

The previous example was written using the declarative pipeline style, but the
older scripted pipeline style is also supported.

4. Create the Pipeline BuildConfig in your OpenShift Container Platform cluster:

a. If you do not want to create your own file, you can use the sample from the Origin repository
by running:

5. Start the Pipeline:

NOTE

Alternatively, you can start your pipeline with the OpenShift Container Platform
web console by navigating to the Builds → Pipeline section and clicking Start
Pipeline, or by visiting the Jenkins Console, navigating to the Pipeline that you
created, and clicking Build Now.

 }
 }
}

$ oc create -f nodejs-sample-pipeline.yaml

$ oc create -f
https://raw.githubusercontent.com/openshift/origin/master/examples/jenkins/pipeline/nodejs-
sample-pipeline.yaml

$ oc start-build nodejs-sample-pipeline

CHAPTER 2. BUILDS

63

Once the pipeline is started, you should see the following actions performed within your project:

A job instance is created on the Jenkins server.

An agent pod is launched, if your pipeline requires one.

The pipeline runs on the agent pod, or the master if no agent is required.

Any previously created resources with the template=nodejs-mongodb-example label
will be deleted.

A new application, and all of its associated resources, will be created from the nodejs-
mongodb-example template.

A build will be started using the nodejs-mongodb-example BuildConfig.

The pipeline will wait until the build has completed to trigger the next stage.

A deployment will be started using the nodejs-mongodb-example deployment
configuration.

The pipeline will wait until the deployment has completed to trigger the next stage.

If the build and deploy are successful, the nodejs-mongodb-example:latest image will
be tagged as nodejs-mongodb-example:stage.

The agent pod is deleted, if one was required for the pipeline.

NOTE

The best way to visualize the pipeline execution is by viewing it in the
OpenShift Container Platform web console. You can view your pipelines by
logging in to the web console and navigating to Builds → Pipelines.

2.5.5. Adding secrets with web console

You can add a secret to your build configuration so that it can access a private repository.

Procedure

To add a secret to your build configuration so that it can access a private repository from the OpenShift
Container Platform web console:

1. Create a new OpenShift Container Platform project.

2. Create a secret that contains credentials for accessing a private source code repository.

3. Create a build configuration.

4. On the build configuration editor page or in the create app from builder image page of the
web console, set the Source Secret.

5. Click Save.

2.5.6. Enabling pulling and pushing

You can enable pulling to a private registry by setting the pull secret and pushing by setting the push

OpenShift Container Platform 4.9 CI/CD

64

You can enable pulling to a private registry by setting the pull secret and pushing by setting the push
secret in the build configuration.

Procedure

To enable pulling to a private registry:

Set the pull secret in the build configuration.

To enable pushing:

Set the push secret in the build configuration.

2.6. CUSTOM IMAGE BUILDS WITH BUILDAH

With OpenShift Container Platform 4.9, a docker socket will not be present on the host nodes. This
means the mount docker socket option of a custom build is not guaranteed to provide an accessible
docker socket for use within a custom build image.

If you require this capability in order to build and push images, add the Buildah tool your custom build
image and use it to build and push the image within your custom build logic. The following is an example
of how to run custom builds with Buildah.

NOTE

Using the custom build strategy requires permissions that normal users do not have by
default because it allows the user to execute arbitrary code inside a privileged container
running on the cluster. This level of access can be used to compromise the cluster and
therefore should be granted only to users who are trusted with administrative privileges
on the cluster.

2.6.1. Prerequisites

Review how to grant custom build permissions.

2.6.2. Creating custom build artifacts

You must create the image you want to use as your custom build image.

Procedure

1. Starting with an empty directory, create a file named Dockerfile with the following content:

2. In the same directory, create a file named dockerfile.sample. This file is included in the custom

FROM registry.redhat.io/rhel8/buildah
In this example, `/tmp/build` contains the inputs that build when this
custom builder image is run. Normally the custom builder image fetches
this content from some location at build time, by using git clone as an example.
ADD dockerfile.sample /tmp/input/Dockerfile
ADD build.sh /usr/bin
RUN chmod a+x /usr/bin/build.sh
/usr/bin/build.sh contains the actual custom build logic that will be run when
this custom builder image is run.
ENTRYPOINT ["/usr/bin/build.sh"]

CHAPTER 2. BUILDS

65

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/cicd/#securing-builds-by-strategy

2. In the same directory, create a file named dockerfile.sample. This file is included in the custom
build image and defines the image that is produced by the custom build:

3. In the same directory, create a file named build.sh. This file contains the logic that is run when
the custom build runs:

2.6.3. Build custom builder image

You can use OpenShift Container Platform to build and push custom builder images to use in a custom
strategy.

Prerequisites

Define all the inputs that will go into creating your new custom builder image.

Procedure

1. Define a BuildConfig object that will build your custom builder image:

2. From the directory in which you created your custom build image, run the build:

After the build completes, your new custom builder image is available in your project in an image
stream tag that is named custom-builder-image:latest.

FROM registry.access.redhat.com/ubi8/ubi
RUN touch /tmp/build

#!/bin/sh
Note that in this case the build inputs are part of the custom builder image, but normally this
is retrieved from an external source.
cd /tmp/input
OUTPUT_REGISTRY and OUTPUT_IMAGE are env variables provided by the custom
build framework
TAG="${OUTPUT_REGISTRY}/${OUTPUT_IMAGE}"

performs the build of the new image defined by dockerfile.sample
buildah --storage-driver vfs bud --isolation chroot -t ${TAG} .

buildah requires a slight modification to the push secret provided by the service
account to use it for pushing the image
cp /var/run/secrets/openshift.io/push/.dockercfg /tmp
(echo "{ \"auths\": " ; cat /var/run/secrets/openshift.io/push/.dockercfg ; echo "}") >
/tmp/.dockercfg

push the new image to the target for the build
buildah --storage-driver vfs push --tls-verify=false --authfile /tmp/.dockercfg ${TAG}

$ oc new-build --binary --strategy=docker --name custom-builder-image

$ oc start-build custom-builder-image --from-dir . -F

OpenShift Container Platform 4.9 CI/CD

66

1

2.6.4. Use custom builder image

You can define a BuildConfig object that uses the custom strategy in conjunction with your custom
builder image to execute your custom build logic.

Prerequisites

Define all the required inputs for new custom builder image.

Build your custom builder image.

Procedure

1. Create a file named buildconfig.yaml. This file defines the BuildConfig object that is created
in your project and executed:

Specify your project name.

2. Create the BuildConfig:

3. Create a file named imagestream.yaml. This file defines the image stream to which the build
will push the image:

4. Create the imagestream:

kind: BuildConfig
apiVersion: build.openshift.io/v1
metadata:
 name: sample-custom-build
 labels:
 name: sample-custom-build
 annotations:
 template.alpha.openshift.io/wait-for-ready: 'true'
spec:
 strategy:
 type: Custom
 customStrategy:
 forcePull: true
 from:
 kind: ImageStreamTag
 name: custom-builder-image:latest
 namespace: <yourproject> 1
 output:
 to:
 kind: ImageStreamTag
 name: sample-custom:latest

$ oc create -f buildconfig.yaml

kind: ImageStream
apiVersion: image.openshift.io/v1
metadata:
 name: sample-custom
spec: {}

CHAPTER 2. BUILDS

67

5. Run your custom build:

When the build runs, it launches a pod running the custom builder image that was built earlier.
The pod runs the build.sh logic that is defined as the entrypoint for the custom builder image.
The build.sh logic invokes Buildah to build the dockerfile.sample that was embedded in the
custom builder image, and then uses Buildah to push the new image to the sample-custom
image stream.

2.7. PERFORMING AND CONFIGURING BASIC BUILDS

The following sections provide instructions for basic build operations, including starting and canceling
builds, editing BuildConfigs, deleting BuildConfigs, viewing build details, and accessing build logs.

2.7.1. Starting a build

You can manually start a new build from an existing build configuration in your current project.

Procedure

To manually start a build, enter the following command:

2.7.1.1. Re-running a build

You can manually re-run a build using the --from-build flag.

Procedure

To manually re-run a build, enter the following command:

2.7.1.2. Streaming build logs

You can specify the --follow flag to stream the build’s logs in stdout.

Procedure

To manually stream a build’s logs in stdout, enter the following command:

2.7.1.3. Setting environment variables when starting a build

You can specify the --env flag to set any desired environment variable for the build.

$ oc create -f imagestream.yaml

$ oc start-build sample-custom-build -F

$ oc start-build <buildconfig_name>

$ oc start-build --from-build=<build_name>

$ oc start-build <buildconfig_name> --follow

OpenShift Container Platform 4.9 CI/CD

68

Procedure

To specify a desired environment variable, enter the following command:

2.7.1.4. Starting a build with source

Rather than relying on a Git source pull or a Dockerfile for a build, you can also start a build by directly
pushing your source, which could be the contents of a Git or SVN working directory, a set of pre-built
binary artifacts you want to deploy, or a single file. This can be done by specifying one of the following
options for the start-build command:

Option Description

--from-dir=<directory> Specifies a directory that will be archived and used as a binary input for
the build.

--from-file=<file> Specifies a single file that will be the only file in the build source. The file
is placed in the root of an empty directory with the same file name as the
original file provided.

--from-repo=
<local_source_repo>

Specifies a path to a local repository to use as the binary input for a
build. Add the --commit option to control which branch, tag, or commit
is used for the build.

When passing any of these options directly to the build, the contents are streamed to the build and
override the current build source settings.

NOTE

Builds triggered from binary input will not preserve the source on the server, so rebuilds
triggered by base image changes will use the source specified in the build configuration.

Procedure

Start a build from a source using the following command to send the contents of a local Git
repository as an archive from the tag v2:

2.7.2. Canceling a build

You can cancel a build using the web console, or with the following CLI command.

Procedure

To manually cancel a build, enter the following command:

$ oc start-build <buildconfig_name> --env=<key>=<value>

$ oc start-build hello-world --from-repo=../hello-world --commit=v2

$ oc cancel-build <build_name>

CHAPTER 2. BUILDS

69

2.7.2.1. Canceling multiple builds

You can cancel multiple builds with the following CLI command.

Procedure

To manually cancel multiple builds, enter the following command:

2.7.2.2. Canceling all builds

You can cancel all builds from the build configuration with the following CLI command.

Procedure

To cancel all builds, enter the following command:

2.7.2.3. Canceling all builds in a given state

You can cancel all builds in a given state, such as new or pending, while ignoring the builds in other
states.

Procedure

To cancel all in a given state, enter the following command:

2.7.3. Editing a BuildConfig

To edit your build configurations, you use the Edit BuildConfig option in the Builds view of the
Developer perspective.

You can use either of the following views to edit a BuildConfig:

The Form view enables you to edit your BuildConfig using the standard form fields and
checkboxes.

The YAML view enables you to edit your BuildConfig with full control over the operations.

You can switch between the Form view and YAML view without losing any data. The data in the Form
view is transferred to the YAML view and vice versa.

Procedure

1. In the Builds view of the Developer perspective, click the menu to see the Edit
BuildConfig option.

2. Click Edit BuildConfig to see the Form view option.
3. In the Git section, enter the Git repository URL for the codebase you want to use to create an

$ oc cancel-build <build1_name> <build2_name> <build3_name>

$ oc cancel-build bc/<buildconfig_name>

$ oc cancel-build bc/<buildconfig_name>

OpenShift Container Platform 4.9 CI/CD

70

3. In the Git section, enter the Git repository URL for the codebase you want to use to create an
application. The URL is then validated.

Optional: Click Show Advanced Git Options to add details such as:

Git Reference to specify a branch, tag, or commit that contains code you want to use
to build the application.

Context Dir to specify the subdirectory that contains code you want to use to build the
application.

Source Secret to create a Secret Name with credentials for pulling your source code
from a private repository.

4. In the Build from section, select the option that you would like to build from. You can use the
following options:

Image Stream tag references an image for a given image stream and tag. Enter the project,
image stream, and tag of the location you would like to build from and push to.

Image Stream image references an image for a given image stream and image name. Enter
the image stream image you would like to build from. Also enter the project, image stream,
and tag to push to.

Docker image: The Docker image is referenced through a Docker image repository. You will
also need to enter the project, image stream, and tag to refer to where you would like to
push to.

5. Optional: In the Environment Variables section, add the environment variables associated with
the project by using the Name and Value fields. To add more environment variables, use Add
Value, or Add from ConfigMap and Secret .

6. Optional: To further customize your application, use the following advanced options:

Trigger

Triggers a new image build when the builder image changes. Add more triggers by clicking
Add Trigger and selecting the Type and Secret.

Secrets

Adds secrets for your application. Add more secrets by clicking Add secret and selecting the
Secret and Mount point.

Policy

Click Run policy to select the build run policy. The selected policy determines the order in
which builds created from the build configuration must run.

Hooks

Select Run build hooks after image is built to run commands at the end of the build and
verify the image. Add Hook type, Command, and Arguments to append to the command.

7. Click Save to save the BuildConfig.

2.7.4. Deleting a BuildConfig

You can delete a BuildConfig using the following command.

Procedure

CHAPTER 2. BUILDS

71

To delete a BuildConfig, enter the following command:

This also deletes all builds that were instantiated from this BuildConfig.

To delete a BuildConfig and keep the builds instatiated from the BuildConfig, specify the --
cascade=false flag when you enter the following command:

2.7.5. Viewing build details

You can view build details with the web console or by using the oc describe CLI command.

This displays information including:

The build source.

The build strategy.

The output destination.

Digest of the image in the destination registry.

How the build was created.

If the build uses the Docker or Source strategy, the oc describe output also includes information about
the source revision used for the build, including the commit ID, author, committer, and message.

Procedure

To view build details, enter the following command:

2.7.6. Accessing build logs

You can access build logs using the web console or the CLI.

Procedure

To stream the logs using the build directly, enter the following command:

2.7.6.1. Accessing BuildConfig logs

You can access BuildConfig logs using the web console or the CLI.

Procedure

To stream the logs of the latest build for a BuildConfig, enter the following command:

$ oc delete bc <BuildConfigName>

$ oc delete --cascade=false bc <BuildConfigName>

$ oc describe build <build_name>

$ oc describe build <build_name>

OpenShift Container Platform 4.9 CI/CD

72

2.7.6.2. Accessing BuildConfig logs for a given version build

You can access logs for a given version build for a BuildConfig using the web console or the CLI.

Procedure

To stream the logs for a given version build for a BuildConfig, enter the following command:

2.7.6.3. Enabling log verbosity

You can enable a more verbose output by passing the BUILD_LOGLEVEL environment variable as part
of the sourceStrategy or dockerStrategy in a BuildConfig.

NOTE

An administrator can set the default build verbosity for the entire OpenShift Container
Platform instance by configuring env/BUILD_LOGLEVEL. This default can be overridden
by specifying BUILD_LOGLEVEL in a given BuildConfig. You can specify a higher
priority override on the command line for non-binary builds by passing --build-loglevel to
oc start-build.

Available log levels for source builds are as follows:

Level 0 Produces output from containers running the assemble script and all encountered errors.
This is the default.

Level 1 Produces basic information about the executed process.

Level 2 Produces very detailed information about the executed process.

Level 3 Produces very detailed information about the executed process, and a listing of the archive
contents.

Level 4 Currently produces the same information as level 3.

Level 5 Produces everything mentioned on previous levels and additionally provides docker push
messages.

Procedure

To enable more verbose output, pass the BUILD_LOGLEVEL environment variable as part of
the sourceStrategy or dockerStrategy in a BuildConfig:

$ oc logs -f bc/<buildconfig_name>

$ oc logs --version=<number> bc/<buildconfig_name>

sourceStrategy:
...
 env:

CHAPTER 2. BUILDS

73

1 Adjust this value to the desired log level.

2.8. TRIGGERING AND MODIFYING BUILDS

The following sections outline how to trigger builds and modify builds using build hooks.

2.8.1. Build triggers

When defining a BuildConfig, you can define triggers to control the circumstances in which the
BuildConfig should be run. The following build triggers are available:

Webhook

Image change

Configuration change

2.8.1.1. Webhook triggers

Webhook triggers allow you to trigger a new build by sending a request to the OpenShift Container
Platform API endpoint. You can define these triggers using GitHub, GitLab, Bitbucket, or Generic
webhooks.

Currently, OpenShift Container Platform webhooks only support the analogous versions of the push
event for each of the Git-based Source Code Management (SCM) systems. All other event types are
ignored.

When the push events are processed, the OpenShift Container Platform control plane host confirms if
the branch reference inside the event matches the branch reference in the corresponding BuildConfig.
If so, it then checks out the exact commit reference noted in the webhook event on the OpenShift
Container Platform build. If they do not match, no build is triggered.

NOTE

oc new-app and oc new-build create GitHub and Generic webhook triggers
automatically, but any other needed webhook triggers must be added manually. You can
manually add triggers by setting triggers.

For all webhooks, you must define a secret with a key named WebHookSecretKey and the value being
the value to be supplied when invoking the webhook. The webhook definition must then reference the
secret. The secret ensures the uniqueness of the URL, preventing others from triggering the build. The
value of the key is compared to the secret provided during the webhook invocation.

For example here is a GitHub webhook with a reference to a secret named mysecret:

The secret is then defined as follows. Note that the value of the secret is base64 encoded as is required

 - name: "BUILD_LOGLEVEL"
 value: "2" 1

type: "GitHub"
github:
 secretReference:
 name: "mysecret"

OpenShift Container Platform 4.9 CI/CD

74

The secret is then defined as follows. Note that the value of the secret is base64 encoded as is required
for any data field of a Secret object.

2.8.1.1.1. Using GitHub webhooks

GitHub webhooks handle the call made by GitHub when a repository is updated. When defining the
trigger, you must specify a secret, which is part of the URL you supply to GitHub when configuring the
webhook.

Example GitHub webhook definition:

NOTE

The secret used in the webhook trigger configuration is not the same as secret field you
encounter when configuring webhook in GitHub UI. The former is to make the webhook
URL unique and hard to predict, the latter is an optional string field used to create HMAC
hex digest of the body, which is sent as an X-Hub-Signature header.

The payload URL is returned as the GitHub Webhook URL by the oc describe command (see Displaying
Webhook URLs), and is structured as follows:

Example output

Prerequisites

Create a BuildConfig from a GitHub repository.

Procedure

1. To configure a GitHub Webhook:

a. After creating a BuildConfig from a GitHub repository, run:

This generates a webhook GitHub URL that looks like:

- kind: Secret
 apiVersion: v1
 metadata:
 name: mysecret
 creationTimestamp:
 data:
 WebHookSecretKey: c2VjcmV0dmFsdWUx

type: "GitHub"
github:
 secretReference:
 name: "mysecret"

https://<openshift_api_host:port>/apis/build.openshift.io/v1/namespaces/<namespace>/buildconfigs/<na
me>/webhooks/<secret>/github

$ oc describe bc/<name-of-your-BuildConfig>

CHAPTER 2. BUILDS

75

Example output

b. Cut and paste this URL into GitHub, from the GitHub web console.

c. In your GitHub repository, select Add Webhook from Settings → Webhooks.

d. Paste the URL output into the Payload URL field.

e. Change the Content Type from GitHub’s default application/x-www-form-urlencoded to
application/json.

f. Click Add webhook.
You should see a message from GitHub stating that your webhook was successfully
configured.

Now, when you push a change to your GitHub repository, a new build automatically starts,
and upon a successful build a new deployment starts.

NOTE

Gogs supports the same webhook payload format as GitHub. Therefore, if
you are using a Gogs server, you can define a GitHub webhook trigger on
your BuildConfig and trigger it by your Gogs server as well.

2. Given a file containing a valid JSON payload, such as payload.json, you can manually trigger
the webhook with curl:

The -k argument is only necessary if your API server does not have a properly signed certificate.

Additional resources

Gogs

2.8.1.1.2. Using GitLab webhooks

GitLab webhooks handle the call made by GitLab when a repository is updated. As with the GitHub
triggers, you must specify a secret. The following example is a trigger definition YAML within the
BuildConfig:

The payload URL is returned as the GitLab Webhook URL by the oc describe command, and is

<https://api.starter-us-east-
1.openshift.com:443/apis/build.openshift.io/v1/namespaces/<namespace>/buildconfigs/<na
me>/webhooks/<secret>/github

$ curl -H "X-GitHub-Event: push" -H "Content-Type: application/json" -k -X POST --data-
binary @payload.json
https://<openshift_api_host:port>/apis/build.openshift.io/v1/namespaces/<namespace>/buildconfi
gs/<name>/webhooks/<secret>/github

type: "GitLab"
gitlab:
 secretReference:
 name: "mysecret"

OpenShift Container Platform 4.9 CI/CD

76

https://gogs.io
https://gogs.io

The payload URL is returned as the GitLab Webhook URL by the oc describe command, and is
structured as follows:

Example output

Procedure

1. To configure a GitLab Webhook:

a. Describe the BuildConfig to get the webhook URL:

b. Copy the webhook URL, replacing <secret> with your secret value.

c. Follow the GitLab setup instructions to paste the webhook URL into your GitLab repository
settings.

2. Given a file containing a valid JSON payload, such as payload.json, you can manually trigger
the webhook with curl:

The -k argument is only necessary if your API server does not have a properly signed certificate.

2.8.1.1.3. Using Bitbucket webhooks

Bitbucket webhooks handle the call made by Bitbucket when a repository is updated. Similar to the
previous triggers, you must specify a secret. The following example is a trigger definition YAML within
the BuildConfig:

The payload URL is returned as the Bitbucket Webhook URL by the oc describe command, and is
structured as follows:

Example output

Procedure

1. To configure a Bitbucket Webhook:

https://<openshift_api_host:port>/apis/build.openshift.io/v1/namespaces/<namespace>/buildconfigs/<na
me>/webhooks/<secret>/gitlab

$ oc describe bc <name>

$ curl -H "X-GitLab-Event: Push Hook" -H "Content-Type: application/json" -k -X POST --
data-binary @payload.json
https://<openshift_api_host:port>/apis/build.openshift.io/v1/namespaces/<namespace>/buildconfi
gs/<name>/webhooks/<secret>/gitlab

type: "Bitbucket"
bitbucket:
 secretReference:
 name: "mysecret"

https://<openshift_api_host:port>/apis/build.openshift.io/v1/namespaces/<namespace>/buildconfigs/<na
me>/webhooks/<secret>/bitbucket

CHAPTER 2. BUILDS

77

https://docs.gitlab.com/ce/user/project/integrations/webhooks.html#webhooks
https://confluence.atlassian.com/bitbucket/manage-webhooks-735643732.html

1

a. Describe the 'BuildConfig' to get the webhook URL:

b. Copy the webhook URL, replacing <secret> with your secret value.

c. Follow the Bitbucket setup instructions to paste the webhook URL into your Bitbucket
repository settings.

2. Given a file containing a valid JSON payload, such as payload.json, you can manually trigger
the webhook with curl:

The -k argument is only necessary if your API server does not have a properly signed certificate.

2.8.1.1.4. Using generic webhooks

Generic webhooks are invoked from any system capable of making a web request. As with the other
webhooks, you must specify a secret, which is part of the URL that the caller must use to trigger the
build. The secret ensures the uniqueness of the URL, preventing others from triggering the build. The
following is an example trigger definition YAML within the BuildConfig:

Set to true to allow a generic webhook to pass in environment variables.

Procedure

1. To set up the caller, supply the calling system with the URL of the generic webhook endpoint for
your build:

Example output

The caller must invoke the webhook as a POST operation.

2. To invoke the webhook manually you can use curl:

The HTTP verb must be set to POST. The insecure -k flag is specified to ignore certificate

$ oc describe bc <name>

$ curl -H "X-Event-Key: repo:push" -H "Content-Type: application/json" -k -X POST --data-
binary @payload.json
https://<openshift_api_host:port>/apis/build.openshift.io/v1/namespaces/<namespace>/buildconfi
gs/<name>/webhooks/<secret>/bitbucket

type: "Generic"
generic:
 secretReference:
 name: "mysecret"
 allowEnv: true 1

https://<openshift_api_host:port>/apis/build.openshift.io/v1/namespaces/<namespace>/buildconfi
gs/<name>/webhooks/<secret>/generic

$ curl -X POST -k
https://<openshift_api_host:port>/apis/build.openshift.io/v1/namespaces/<namespace>/buildconfi
gs/<name>/webhooks/<secret>/generic

OpenShift Container Platform 4.9 CI/CD

78

https://confluence.atlassian.com/bitbucket/manage-webhooks-735643732.html

1

The HTTP verb must be set to POST. The insecure -k flag is specified to ignore certificate
validation. This second flag is not necessary if your cluster has properly signed certificates.

The endpoint can accept an optional payload with the following format:

Similar to the BuildConfig environment variables, the environment variables defined here
are made available to your build. If these variables collide with the BuildConfig
environment variables, these variables take precedence. By default, environment variables
passed by webhook are ignored. Set the allowEnv field to true on the webhook definition
to enable this behavior.

3. To pass this payload using curl, define it in a file named payload_file.yaml and run:

The arguments are the same as the previous example with the addition of a header and a
payload. The -H argument sets the Content-Type header to application/yaml or
application/json depending on your payload format. The --data-binary argument is used to
send a binary payload with newlines intact with the POST request.

NOTE

OpenShift Container Platform permits builds to be triggered by the generic webhook
even if an invalid request payload is presented, for example, invalid content type,
unparsable or invalid content, and so on. This behavior is maintained for backwards
compatibility. If an invalid request payload is presented, OpenShift Container Platform
returns a warning in JSON format as part of its HTTP 200 OK response.

2.8.1.1.5. Displaying webhook URLs

You can use the following command to display webhook URLs associated with a build configuration. If
the command does not display any webhook URLs, then no webhook trigger is defined for that build
configuration.

Procedure

To display any webhook URLs associated with a BuildConfig, run:

git:
 uri: "<url to git repository>"
 ref: "<optional git reference>"
 commit: "<commit hash identifying a specific git commit>"
 author:
 name: "<author name>"
 email: "<author e-mail>"
 committer:
 name: "<committer name>"
 email: "<committer e-mail>"
 message: "<commit message>"
env: 1
 - name: "<variable name>"
 value: "<variable value>"

$ curl -H "Content-Type: application/yaml" --data-binary @payload_file.yaml -X POST -k
https://<openshift_api_host:port>/apis/build.openshift.io/v1/namespaces/<namespace>/buildconfi
gs/<name>/webhooks/<secret>/generic

CHAPTER 2. BUILDS

79

1

2.8.1.2. Using image change triggers

As a developer, you can configure your build to run automatically every time a base image changes.

You can use image change triggers to automatically invoke your build when a new version of an
upstream image is available. For example, if a build is based on a RHEL image, you can trigger that build
to run any time the RHEL image changes. As a result, the application image is always running on the
latest RHEL base image.

NOTE

Image streams that point to container images in v1 container registries only trigger a build
once when the image stream tag becomes available and not on subsequent image
updates. This is due to the lack of uniquely identifiable images in v1 container registries.

Procedure

1. Define an ImageStream that points to the upstream image you want to use as a trigger:

This defines the image stream that is tied to a container image repository located at <system-
registry>/<namespace>/ruby-20-centos7. The <system-registry> is defined as a service with
the name docker-registry running in OpenShift Container Platform.

2. If an image stream is the base image for the build, set the from field in the build strategy to
point to the ImageStream:

In this case, the sourceStrategy definition is consuming the latest tag of the image stream
named ruby-20-centos7 located within this namespace.

3. Define a build with one or more triggers that point to ImageStreams:

An image change trigger that monitors the ImageStream and Tag as defined by the build
strategy’s from field. The imageChange object here must be empty.

$ oc describe bc <name>

kind: "ImageStream"
apiVersion: "v1"
metadata:
 name: "ruby-20-centos7"

strategy:
 sourceStrategy:
 from:
 kind: "ImageStreamTag"
 name: "ruby-20-centos7:latest"

type: "ImageChange" 1
imageChange: {}
type: "ImageChange" 2
imageChange:
 from:
 kind: "ImageStreamTag"
 name: "custom-image:latest"

OpenShift Container Platform 4.9 CI/CD

80

http://docs.docker.com/v1.7/reference/api/hub_registry_spec/#docker-registry-1-0

2 An image change trigger that monitors an arbitrary image stream. The imageChange part,
in this case, must include a from field that references the ImageStreamTag to monitor.

When using an image change trigger for the strategy image stream, the generated build is supplied with
an immutable docker tag that points to the latest image corresponding to that tag. This new image
reference is used by the strategy when it executes for the build.

For other image change triggers that do not reference the strategy image stream, a new build is started,
but the build strategy is not updated with a unique image reference.

Since this example has an image change trigger for the strategy, the resulting build is:

This ensures that the triggered build uses the new image that was just pushed to the repository, and the
build can be re-run any time with the same inputs.

You can pause an image change trigger to allow multiple changes on the referenced image stream
before a build is started. You can also set the paused attribute to true when initially adding an
ImageChangeTrigger to a BuildConfig to prevent a build from being immediately triggered.

In addition to setting the image field for all Strategy types, for custom builds, the
OPENSHIFT_CUSTOM_BUILD_BASE_IMAGE environment variable is checked. If it does not exist,
then it is created with the immutable image reference. If it does exist, then it is updated with the
immutable image reference.

If a build is triggered due to a webhook trigger or manual request, the build that is created uses the
<immutableid> resolved from the ImageStream referenced by the Strategy. This ensures that builds
are performed using consistent image tags for ease of reproduction.

Additional resources

v1 container registries

2.8.1.3. Identifying the image change trigger of a build

As a developer, if you have image change triggers, you can identify which image change initiated the last
build. This can be useful for debugging or troubleshooting builds.

Example BuildConfig

strategy:
 sourceStrategy:
 from:
 kind: "DockerImage"
 name: "172.30.17.3:5001/mynamespace/ruby-20-centos7:<immutableid>"

type: "ImageChange"
imageChange:
 from:
 kind: "ImageStreamTag"
 name: "custom-image:latest"
 paused: true

apiVersion: build.openshift.io/v1
kind: BuildConfig

CHAPTER 2. BUILDS

81

http://docs.docker.com/v1.7/reference/api/hub_registry_spec/#docker-registry-1-0

NOTE

This example omits elements that are not related to image change triggers.

Prerequisites

You have configured multiple image change triggers. These triggers have triggered one or more
builds.

Procedure

1. In buildConfig.status.imageChangeTriggers to identify the lastTriggerTime that has the
latest timestamp.
This ImageChangeTriggerStatus

Then you use the `name` and `namespace` from that build to find the corresponding image
change trigger in `buildConfig.spec.triggers`.

metadata:
 name: bc-ict-example
 namespace: bc-ict-example-namespace
spec:

...

 triggers:
 - imageChange:
 from:
 kind: ImageStreamTag
 name: input:latest
 namespace: bc-ict-example-namespace
 - imageChange:
 from:
 kind: ImageStreamTag
 name: input2:latest
 namespace: bc-ict-example-namespace
 type: ImageChange
status:
 imageChangeTriggers:
 - from:
 name: input:latest
 namespace: bc-ict-example-namespace
 lastTriggerTime: "2021-06-30T13:47:53Z"
 lastTriggeredImageID: image-registry.openshift-image-registry.svc:5000/bc-ict-example-
namespace/input@sha256:0f88ffbeb9d25525720bfa3524cb1bf0908b7f791057cf1acfae917b11266a69

 - from:
 name: input2:latest
 namespace: bc-ict-example-namespace
 lastTriggeredImageID: image-registry.openshift-image-registry.svc:5000/bc-ict-example-
namespace/input2@sha256:0f88ffbeb9d25525720bfa3524cb2ce0908b7f791057cf1acfae917b11266a6
9

 lastVersion: 1

OpenShift Container Platform 4.9 CI/CD

82

2. Under imageChangeTriggers, compare timestamps to identify the latest

Image change triggers

In your build configuration, buildConfig.spec.triggers is an array of build trigger policies,
BuildTriggerPolicy.

Each BuildTriggerPolicy has a type field and set of pointers fields. Each pointer field corresponds to
one of the allowed values for the type field. As such, you can only set BuildTriggerPolicy to only one
pointer field.

For image change triggers, the value of type is ImageChange. Then, the imageChange field is the
pointer to an ImageChangeTrigger object, which has the following fields:

lastTriggeredImageID: This field, which is not shown in the example, is deprecated in OpenShift
Container Platform 4.8 and will be ignored in a future release. It contains the resolved image
reference for the ImageStreamTag when the last build was triggered from this BuildConfig.

paused: You can use this field, which is not shown in the example, to temporarily disable this
particular image change trigger.

from: You use this field to reference the ImageStreamTag that drives this image change
trigger. Its type is the core Kubernetes type, OwnerReference.

The from field has the following fields of note: kind: For image change triggers, the only supported
value is ImageStreamTag. namespace: You use this field to specify the namespace of the
ImageStreamTag. ** name: You use this field to specify the ImageStreamTag.

Image change trigger status

In your build configuration, buildConfig.status.imageChangeTriggers is an array of
ImageChangeTriggerStatus elements. Each ImageChangeTriggerStatus element includes the from,
lastTriggeredImageID, and lastTriggerTime elements shown in the preceding example.

The ImageChangeTriggerStatus that has the most recent lastTriggerTime triggered the most recent
build. You use its name and namespace to identify the image change trigger in
buildConfig.spec.triggers that triggered the build.

The lastTriggerTime with the most recent timestamp signifies the ImageChangeTriggerStatus of the
last build. This ImageChangeTriggerStatus has the same name and namespace as the image change
trigger in buildConfig.spec.triggers that triggered the build.

Additional resources

v1 container registries

2.8.1.4. Configuration change triggers

A configuration change trigger allows a build to be automatically invoked as soon as a new BuildConfig
is created.

The following is an example trigger definition YAML within the BuildConfig:

NOTE

 type: "ConfigChange"

CHAPTER 2. BUILDS

83

http://docs.docker.com/v1.7/reference/api/hub_registry_spec/#docker-registry-1-0

NOTE

Configuration change triggers currently only work when creating a new BuildConfig. In a
future release, configuration change triggers will also be able to launch a build whenever a
BuildConfig is updated.

2.8.1.4.1. Setting triggers manually

Triggers can be added to and removed from build configurations with oc set triggers.

Procedure

To set a GitHub webhook trigger on a build configuration, use:

To set an imagechange trigger, use:

To remove a trigger, add --remove:

NOTE

When a webhook trigger already exists, adding it again regenerates the webhook secret.

For more information, consult the help documentation with by running:

2.8.2. Build hooks

Build hooks allow behavior to be injected into the build process.

The postCommit field of a BuildConfig object runs commands inside a temporary container that is
running the build output image. The hook is run immediately after the last layer of the image has been
committed and before the image is pushed to a registry.

The current working directory is set to the image’s WORKDIR, which is the default working directory of
the container image. For most images, this is where the source code is located.

The hook fails if the script or command returns a non-zero exit code or if starting the temporary
container fails. When the hook fails it marks the build as failed and the image is not pushed to a registry.
The reason for failing can be inspected by looking at the build logs.

Build hooks can be used to run unit tests to verify the image before the build is marked complete and
the image is made available in a registry. If all tests pass and the test runner returns with exit code 0, the
build is marked successful. In case of any test failure, the build is marked as failed. In all cases, the build
log contains the output of the test runner, which can be used to identify failed tests.

The postCommit hook is not only limited to running tests, but can be used for other commands as well.

$ oc set triggers bc <name> --from-github

$ oc set triggers bc <name> --from-image='<image>'

$ oc set triggers bc <name> --from-bitbucket --remove

$ oc set triggers --help

OpenShift Container Platform 4.9 CI/CD

84

Since it runs in a temporary container, changes made by the hook do not persist, meaning that running
the hook cannot affect the final image. This behavior allows for, among other uses, the installation and
usage of test dependencies that are automatically discarded and are not present in the final image.

2.8.2.1. Configuring post commit build hooks

There are different ways to configure the post build hook. All forms in the following examples are
equivalent and run bundle exec rake test --verbose.

Procedure

Shell script:

The script value is a shell script to be run with /bin/sh -ic. Use this when a shell script is
appropriate to execute the build hook. For example, for running unit tests as above. To control
the image entry point, or if the image does not have /bin/sh, use command and/or args.

NOTE

The additional -i flag was introduced to improve the experience working with
CentOS and RHEL images, and may be removed in a future release.

Command as the image entry point:

In this form, command is the command to run, which overrides the image entry point in the exec
form, as documented in the Dockerfile reference. This is needed if the image does not have
/bin/sh, or if you do not want to use a shell. In all other cases, using script might be more
convenient.

Command with arguments:

This form is equivalent to appending the arguments to command.

NOTE

Providing both script and command simultaneously creates an invalid build hook.

2.8.2.2. Using the CLI to set post commit build hooks

The oc set build-hook command can be used to set the build hook for a build configuration.

Procedure

postCommit:
 script: "bundle exec rake test --verbose"

postCommit:
 command: ["/bin/bash", "-c", "bundle exec rake test --verbose"]

postCommit:
 command: ["bundle", "exec", "rake", "test"]
 args: ["--verbose"]

CHAPTER 2. BUILDS

85

https://docs.docker.com/engine/reference/builder/#entrypoint

1

2

1. To set a command as the post-commit build hook:

2. To set a script as the post-commit build hook:

2.9. PERFORMING ADVANCED BUILDS

The following sections provide instructions for advanced build operations including setting build
resources and maximum duration, assigning builds to nodes, chaining builds, build pruning, and build run
policies.

2.9.1. Setting build resources

By default, builds are completed by pods using unbound resources, such as memory and CPU. These
resources can be limited.

Procedure

You can limit resource use in two ways:

Limit resource use by specifying resource limits in the default container limits of a project.

Limit resource use by specifying resource limits as part of the build configuration. ** In the
following example, each of the resources, cpu, and memory parameters are optional:

cpu is in CPU units: 100m represents 0.1 CPU units (100 * 1e-3).

memory is in bytes: 256Mi represents 268435456 bytes (256 * 2 ^ 20).

However, if a quota has been defined for your project, one of the following two items is required:

A resources section set with an explicit requests:

$ oc set build-hook bc/mybc \
 --post-commit \
 --command \
 -- bundle exec rake test --verbose

$ oc set build-hook bc/mybc --post-commit --script="bundle exec rake test --verbose"

apiVersion: "v1"
kind: "BuildConfig"
metadata:
 name: "sample-build"
spec:
 resources:
 limits:
 cpu: "100m" 1
 memory: "256Mi" 2

resources:
 requests: 1
 cpu: "100m"
 memory: "256Mi"

OpenShift Container Platform 4.9 CI/CD

86

1 The requests object contains the list of resources that correspond to the list of
resources in the quota.

A limit range defined in your project, where the defaults from the LimitRange object apply
to pods created during the build process.
Otherwise, build pod creation will fail, citing a failure to satisfy quota.

2.9.2. Setting maximum duration

When defining a BuildConfig object, you can define its maximum duration by setting the
completionDeadlineSeconds field. It is specified in seconds and is not set by default. When not set,
there is no maximum duration enforced.

The maximum duration is counted from the time when a build pod gets scheduled in the system, and
defines how long it can be active, including the time needed to pull the builder image. After reaching the
specified timeout, the build is terminated by OpenShift Container Platform.

Procedure

To set maximum duration, specify completionDeadlineSeconds in your BuildConfig. The
following example shows the part of a BuildConfig specifying completionDeadlineSeconds
field for 30 minutes:

NOTE

This setting is not supported with the Pipeline Strategy option.

2.9.3. Assigning builds to specific nodes

Builds can be targeted to run on specific nodes by specifying labels in the nodeSelector field of a build
configuration. The nodeSelector value is a set of key-value pairs that are matched to Node labels when
scheduling the build pod.

The nodeSelector value can also be controlled by cluster-wide default and override values. Defaults will
only be applied if the build configuration does not define any key-value pairs for the nodeSelector and
also does not define an explicitly empty map value of nodeSelector:{}. Override values will replace
values in the build configuration on a key by key basis.

NOTE

If the specified NodeSelector cannot be matched to a node with those labels, the build
still stay in the Pending state indefinitely.

Procedure

Assign builds to run on specific nodes by assigning labels in the nodeSelector field of the
BuildConfig, for example:

spec:
 completionDeadlineSeconds: 1800

apiVersion: "v1"
kind: "BuildConfig"

CHAPTER 2. BUILDS

87

1 Builds associated with this build configuration will run only on nodes with the key1=value2
and key2=value2 labels.

2.9.4. Chained builds

For compiled languages such as Go, C, C++, and Java, including the dependencies necessary for
compilation in the application image might increase the size of the image or introduce vulnerabilities
that can be exploited.

To avoid these problems, two builds can be chained together. One build that produces the compiled
artifact, and a second build that places that artifact in a separate image that runs the artifact.

In the following example, a source-to-image (S2I) build is combined with a docker build to compile an
artifact that is then placed in a separate runtime image.

NOTE

Although this example chains a S2I build and a docker build, the first build can use any
strategy that produces an image containing the desired artifacts, and the second build
can use any strategy that can consume input content from an image.

The first build takes the application source and produces an image containing a WAR file. The image is
pushed to the artifact-image image stream. The path of the output artifact depends on the assemble
script of the S2I builder used. In this case, it is output to /wildfly/standalone/deployments/ROOT.war.

The second build uses image source with a path to the WAR file inside the output image from the first
build. An inline dockerfile copies that WAR file into a runtime image.

metadata:
 name: "sample-build"
spec:
 nodeSelector: 1
 key1: value1
 key2: value2

apiVersion: build.openshift.io/v1
kind: BuildConfig
metadata:
 name: artifact-build
spec:
 output:
 to:
 kind: ImageStreamTag
 name: artifact-image:latest
 source:
 git:
 uri: https://github.com/openshift/openshift-jee-sample.git
 ref: "master"
 strategy:
 sourceStrategy:
 from:
 kind: ImageStreamTag
 name: wildfly:10.1
 namespace: openshift

OpenShift Container Platform 4.9 CI/CD

88

1

2

3

from specifies that the docker build should include the output of the image from the artifact-
image image stream, which was the target of the previous build.

paths specifies which paths from the target image to include in the current docker build.

The runtime image is used as the source image for the docker build.

The result of this setup is that the output image of the second build does not have to contain any of the
build tools that are needed to create the WAR file. Also, because the second build contains an image
change trigger, whenever the first build is run and produces a new image with the binary artifact, the
second build is automatically triggered to produce a runtime image that contains that artifact.
Therefore, both builds behave as a single build with two stages.

2.9.5. Pruning builds

By default, builds that have completed their lifecycle are persisted indefinitely. You can limit the number
of previous builds that are retained.

Procedure

1. Limit the number of previous builds that are retained by supplying a positive integer value for
successfulBuildsHistoryLimit or failedBuildsHistoryLimit in your BuildConfig, for example:

apiVersion: build.openshift.io/v1
kind: BuildConfig
metadata:
 name: image-build
spec:
 output:
 to:
 kind: ImageStreamTag
 name: image-build:latest
 source:
 dockerfile: |-
 FROM jee-runtime:latest
 COPY ROOT.war /deployments/ROOT.war
 images:
 - from: 1
 kind: ImageStreamTag
 name: artifact-image:latest
 paths: 2
 - sourcePath: /wildfly/standalone/deployments/ROOT.war
 destinationDir: "."
 strategy:
 dockerStrategy:
 from: 3
 kind: ImageStreamTag
 name: jee-runtime:latest
 triggers:
 - imageChange: {}
 type: ImageChange

apiVersion: "v1"
kind: "BuildConfig"

CHAPTER 2. BUILDS

89

1

2

successfulBuildsHistoryLimit will retain up to two builds with a status of completed.

failedBuildsHistoryLimit will retain up to two builds with a status of failed, canceled, or
error.

2. Trigger build pruning by one of the following actions:

Updating a build configuration.

Waiting for a build to complete its lifecycle.

Builds are sorted by their creation timestamp with the oldest builds being pruned first.

NOTE

Administrators can manually prune builds using the 'oc adm' object pruning command.

2.9.6. Build run policy

The build run policy describes the order in which the builds created from the build configuration should
run. This can be done by changing the value of the runPolicy field in the spec section of the Build
specification.

It is also possible to change the runPolicy value for existing build configurations, by:

Changing Parallel to Serial or SerialLatestOnly and triggering a new build from this
configuration causes the new build to wait until all parallel builds complete as the serial build can
only run alone.

Changing Serial to SerialLatestOnly and triggering a new build causes cancellation of all
existing builds in queue, except the currently running build and the most recently created build.
The newest build runs next.

2.10. USING RED HAT SUBSCRIPTIONS IN BUILDS

Use the following sections to run entitled builds on OpenShift Container Platform.

2.10.1. Creating an image stream tag for the Red Hat Universal Base Image

To use Red Hat subscriptions within a build, you create an image stream tag to reference the Universal
Base Image (UBI).

To make the UBI available in every project in the cluster, you add the image stream tag to the
openshift namespace. Otherwise, to make it available in a specific project, you add the image stream
tag to that project.

The benefit of using image stream tags this way is that doing so grants access to the UBI based on the
registry.redhat.io credentials in the install pull secret without exposing the pull secret to other users.

metadata:
 name: "sample-build"
spec:
 successfulBuildsHistoryLimit: 2 1
 failedBuildsHistoryLimit: 2 2

OpenShift Container Platform 4.9 CI/CD

90

This is more convenient than requiring each developer to install pull secrets with registry.redhat.io
credentials in each project.

Procedure

To create an ImageStreamTag in the openshift namespace, so it is available to developers in all
projects, enter:

TIP

You can alternatively apply the following YAML to create an ImageStreamTag in the openshift
namespace:

To create an ImageStreamTag in a single project, enter:

TIP

You can alternatively apply the following YAML to create an ImageStreamTag in a single
project:

2.10.2. Adding subscription entitlements as a build secret

$ oc tag --source=docker registry.redhat.io/ubi8/ubi:latest ubi:latest -n openshift

apiVersion: image.openshift.io/v1
kind: ImageStream
metadata:
 name: ubi
 namespace: openshift
spec:
 tags:
 - from:
 kind: DockerImage
 name: registry.redhat.io/ubi8/ubi:latest
 name: latest
 referencePolicy:
 type: Source

$ oc tag --source=docker registry.redhat.io/ubi8/ubi:latest ubi:latest

apiVersion: image.openshift.io/v1
kind: ImageStream
metadata:
 name: ubi
spec:
 tags:
 - from:
 kind: DockerImage
 name: registry.redhat.io/ubi8/ubi:latest
 name: latest
 referencePolicy:
 type: Source

CHAPTER 2. BUILDS

91

Builds that use Red Hat subscriptions to install content must include the entitlement keys as a build
secret.

Prerequisites

You must have access to Red Hat entitlements through your subscription. The entitlement secret is
automatically created by the Insights Operator.

TIP

When you perform an Entitlement Build using Red Hat Enterprise Linux (RHEL) 7, you must have the
following instructions in your Dockerfile before you run any yum commands:

Procedure

1. Add the etc-pki-entitlement secret as a build volume in the build configuration’s Docker
strategy:

2.10.3. Running builds with Subscription Manager

2.10.3.1. Docker builds using Subscription Manager

Docker strategy builds can use the Subscription Manager to install subscription content.

Prerequisites

The entitlement keys must be added as build strategy volumes.

Procedure

Use the following as an example Dockerfile to install content with the Subscription Manager:

2.10.4. Running builds with Red Hat Satellite subscriptions

RUN rm /etc/rhsm-host

strategy:
 dockerStrategy:
 from:
 kind: ImageStreamTag
 name: ubi:latest
 volumes:
 - name: etc-pki-entitlement
 mounts:
 - destinationPath: /etc/pki/entitlement
 source:
 type: Secret
 secret:
 secretName: etc-pki-entitlement

FROM registry.redhat.io/ubi8/ubi:latest
RUN dnf search kernel-devel --showduplicates && \
 dnf install -y kernel-devel

OpenShift Container Platform 4.9 CI/CD

92

2.10.4.1. Adding Red Hat Satellite configurations to builds

Builds that use Red Hat Satellite to install content must provide appropriate configurations to obtain
content from Satellite repositories.

Prerequisites

You must provide or create a yum-compatible repository configuration file that downloads
content from your Satellite instance.

Sample repository configuration

Procedure

1. Create a ConfigMap containing the Satellite repository configuration file:

2. Add the Satellite repository configuration and entitlement key as a build volumes:

2.10.4.2. Docker builds using Red Hat Satellite subscriptions

Docker strategy builds can use Red Hat Satellite repositories to install subscription content.

Prerequisites

[test-<name>]
name=test-<number>
baseurl = https://satellite.../content/dist/rhel/server/7/7Server/x86_64/os
enabled=1
gpgcheck=0
sslverify=0
sslclientkey = /etc/pki/entitlement/...-key.pem
sslclientcert = /etc/pki/entitlement/....pem

$ oc create configmap yum-repos-d --from-file /path/to/satellite.repo

strategy:
 dockerStrategy:
 from:
 kind: ImageStreamTag
 name: ubi:latest
 volumes:
 - name: yum-repos-d
 mounts:
 - destinationPath: /etc/yum.repos.d
 source:
 type: ConfigMap
 configMap:
 name: yum-repos-d
 - name: etc-pki-entitlement
 mounts:
 - destinationPath: /etc/pki/entitlement
 source:
 type: Secret
 secret:
 secretName: etc-pki-entitlement

CHAPTER 2. BUILDS

93

Prerequisites

You have added the entitlement keys and Satellite repository configurations as build volumes.

Procedure

Use the following as an example Dockerfile to install content with Satellite:

2.10.5. Additional resources

Managing image streams

build strategy

2.11. SECURING BUILDS BY STRATEGY

Builds in OpenShift Container Platform are run in privileged containers. Depending on the build strategy
used, if you have privileges, you can run builds to escalate their permissions on the cluster and host
nodes. And as a security measure, it limits who can run builds and the strategy that is used for those
builds. Custom builds are inherently less safe than source builds, because they can execute any code
within a privileged container, and are disabled by default. Grant docker build permissions with caution,
because a vulnerability in the Dockerfile processing logic could result in a privileges being granted on the
host node.

By default, all users that can create builds are granted permission to use the docker and Source-to-
image (S2I) build strategies. Users with cluster administrator privileges can enable the custom build
strategy, as referenced in the restricting build strategies to a user globally section.

You can control who can build and which build strategies they can use by using an authorization policy.
Each build strategy has a corresponding build subresource. A user must have permission to create a build
and permission to create on the build strategy subresource to create builds using that strategy. Default
roles are provided that grant the create permission on the build strategy subresource.

Table 2.3. Build Strategy Subresources and Roles

Strategy Subresource Role

Docker builds/docker system:build-strategy-docker

Source-to-Image builds/source system:build-strategy-source

Custom builds/custom system:build-strategy-custom

JenkinsPipeline builds/jenkinspipeline system:build-strategy-
jenkinspipeline

2.11.1. Disabling access to a build strategy globally

To prevent access to a particular build strategy globally, log in as a user with cluster administrator

FROM registry.redhat.io/ubi8/ubi:latest
RUN dnf search kernel-devel --showduplicates && \
 dnf install -y kernel-devel

OpenShift Container Platform 4.9 CI/CD

94

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/images/#image-streams-managing
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/cicd/#build-strategies

1

privileges, remove the corresponding role from the system:authenticated group, and apply the
annotation rbac.authorization.kubernetes.io/autoupdate: "false" to protect them from changes
between the API restarts. The following example shows disabling the docker build strategy.

Procedure

1. Apply the rbac.authorization.kubernetes.io/autoupdate annotation:

Example output

Change the rbac.authorization.kubernetes.io/autoupdate annotation’s value to "false".

2. Remove the role:

3. Ensure the build strategy subresources are also removed from these roles:

4. For each role, specify the subresources that correspond to the resource of the strategy to
disable.

a. Disable the docker Build Strategy for admin:

$ oc edit clusterrolebinding system:build-strategy-docker-binding

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 annotations:
 rbac.authorization.kubernetes.io/autoupdate: "false" 1
 creationTimestamp: 2018-08-10T01:24:14Z
 name: system:build-strategy-docker-binding
 resourceVersion: "225"
 selfLink: /apis/rbac.authorization.k8s.io/v1/clusterrolebindings/system%3Abuild-strategy-
docker-binding
 uid: 17b1f3d4-9c3c-11e8-be62-0800277d20bf
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: system:build-strategy-docker
subjects:
- apiGroup: rbac.authorization.k8s.io
 kind: Group
 name: system:authenticated

$ oc adm policy remove-cluster-role-from-group system:build-strategy-docker
system:authenticated

$ oc edit clusterrole admin

$ oc edit clusterrole edit

kind: ClusterRole
metadata:
 name: admin

CHAPTER 2. BUILDS

95

1 Add builds/custom and builds/source to disable docker builds globally for users with
the admin role.

2.11.2. Restricting build strategies to users globally

You can allow a set of specific users to create builds with a particular strategy.

Prerequisites

Disable global access to the build strategy.

Procedure

Assign the role that corresponds to the build strategy to a specific user. For example, to add the
system:build-strategy-docker cluster role to the user devuser:

WARNING

Granting a user access at the cluster level to the builds/docker
subresource means that the user can create builds with the docker strategy
in any project in which they can create builds.

2.11.3. Restricting build strategies to a user within a project

Similar to granting the build strategy role to a user globally, you can allow a set of specific users within a
project to create builds with a particular strategy.

...
- apiGroups:
 - ""
 - build.openshift.io
 resources:
 - buildconfigs
 - buildconfigs/webhooks
 - builds/custom 1
 - builds/source
 verbs:
 - create
 - delete
 - deletecollection
 - get
 - list
 - patch
 - update
 - watch
...

$ oc adm policy add-cluster-role-to-user system:build-strategy-docker devuser



OpenShift Container Platform 4.9 CI/CD

96

Prerequisites

Disable global access to the build strategy.

Procedure

Assign the role that corresponds to the build strategy to a specific user within a project. For
example, to add the system:build-strategy-docker role within the project devproject to the
user devuser:

2.12. BUILD CONFIGURATION RESOURCES

Use the following procedure to configure build settings.

2.12.1. Build controller configuration parameters

The build.config.openshift.io/cluster resource offers the following configuration parameters.

Parameter Description

Build Holds cluster-wide information on how to handle builds. The canonical, and
only valid name is cluster.

spec: Holds user-settable values for the build controller configuration.

buildDefaults Controls the default information for builds.

defaultProxy: Contains the default proxy settings for all build operations,
including image pull or push and source download.

You can override values by setting the HTTP_PROXY, HTTPS_PROXY, and
NO_PROXY environment variables in the BuildConfig strategy.

gitProxy: Contains the proxy settings for Git operations only. If set, this
overrides any proxy settings for all Git commands, such as git clone.

Values that are not set here are inherited from DefaultProxy.

env: A set of default environment variables that are applied to the build if the
specified variables do not exist on the build.

imageLabels: A list of labels that are applied to the resulting image. You can
override a default label by providing a label with the same name in the
BuildConfig.

resources: Defines resource requirements to execute the build.

ImageLabel name: Defines the name of the label. It must have non-zero length.

$ oc adm policy add-role-to-user system:build-strategy-docker devuser -n devproject

CHAPTER 2. BUILDS

97

buildOverrides Controls override settings for builds.

imageLabels: A list of labels that are applied to the resulting image. If you
provided a label in the BuildConfig with the same name as one in this table,
your label will be overwritten.

nodeSelector: A selector which must be true for the build pod to fit on a
node.

tolerations: A list of tolerations that overrides any existing tolerations set on a
build pod.

BuildList items: Standard object’s metadata.

Parameter Description

2.12.2. Configuring build settings

You can configure build settings by editing the build.config.openshift.io/cluster resource.

Procedure

Edit the build.config.openshift.io/cluster resource:

The following is an example build.config.openshift.io/cluster resource:

$ oc edit build.config.openshift.io/cluster

apiVersion: config.openshift.io/v1
kind: Build 1
metadata:
 annotations:
 release.openshift.io/create-only: "true"
 creationTimestamp: "2019-05-17T13:44:26Z"
 generation: 2
 name: cluster
 resourceVersion: "107233"
 selfLink: /apis/config.openshift.io/v1/builds/cluster
 uid: e2e9cc14-78a9-11e9-b92b-06d6c7da38dc
spec:
 buildDefaults: 2
 defaultProxy: 3
 httpProxy: http://proxy.com
 httpsProxy: https://proxy.com
 noProxy: internal.com
 env: 4
 - name: envkey
 value: envvalue
 gitProxy: 5
 httpProxy: http://gitproxy.com

OpenShift Container Platform 4.9 CI/CD

98

1

2

3

4

5

6

7

8

9

10

11

Build: Holds cluster-wide information on how to handle builds. The canonical, and only
valid name is cluster.

buildDefaults: Controls the default information for builds.

defaultProxy: Contains the default proxy settings for all build operations, including image
pull or push and source download.

env: A set of default environment variables that are applied to the build if the specified
variables do not exist on the build.

gitProxy: Contains the proxy settings for Git operations only. If set, this overrides any
Proxy settings for all Git commands, such as git clone.

imageLabels: A list of labels that are applied to the resulting image. You can override a
default label by providing a label with the same name in the BuildConfig.

resources: Defines resource requirements to execute the build.

buildOverrides: Controls override settings for builds.

imageLabels: A list of labels that are applied to the resulting image. If you provided a label
in the BuildConfig with the same name as one in this table, your label will be overwritten.

nodeSelector: A selector which must be true for the build pod to fit on a node.

tolerations: A list of tolerations that overrides any existing tolerations set on a build pod.

2.13. TROUBLESHOOTING BUILDS

Use the following to troubleshoot build issues.

 httpsProxy: https://gitproxy.com
 noProxy: internalgit.com
 imageLabels: 6
 - name: labelkey
 value: labelvalue
 resources: 7
 limits:
 cpu: 100m
 memory: 50Mi
 requests:
 cpu: 10m
 memory: 10Mi
 buildOverrides: 8
 imageLabels: 9
 - name: labelkey
 value: labelvalue
 nodeSelector: 10
 selectorkey: selectorvalue
 tolerations: 11
 - effect: NoSchedule
 key: node-role.kubernetes.io/builds
operator: Exists

CHAPTER 2. BUILDS

99

2.13.1. Resolving denial for access to resources

If your request for access to resources is denied:

Issue

A build fails with:

Resolution

You have exceeded one of the image quotas set on your project. Check your current quota and
verify the limits applied and storage in use:

2.13.2. Service certificate generation failure

If your request for access to resources is denied:

Issue

If a service certificate generation fails with (service’s service.beta.openshift.io/serving-cert-
generation-error annotation contains):

Example output

Resolution

The service that generated the certificate no longer exists, or has a different serviceUID. You must
force certificates regeneration by removing the old secret, and clearing the following annotations on
the service: service.beta.openshift.io/serving-cert-generation-error and
service.beta.openshift.io/serving-cert-generation-error-num:

NOTE

The command removing annotation has a - after the annotation name to be removed.

2.14. SETTING UP ADDITIONAL TRUSTED CERTIFICATE AUTHORITIES
FOR BUILDS

Use the following sections to set up additional certificate authorities (CA) to be trusted by builds when
pulling images from an image registry.

requested access to the resource is denied

$ oc describe quota

secret/ssl-key references serviceUID 62ad25ca-d703-11e6-9d6f-0e9c0057b608, which does not
match 77b6dd80-d716-11e6-9d6f-0e9c0057b60

$ oc delete secret <secret_name>

$ oc annotate service <service_name> service.beta.openshift.io/serving-cert-generation-error-

$ oc annotate service <service_name> service.beta.openshift.io/serving-cert-generation-error-num-

OpenShift Container Platform 4.9 CI/CD

100

The procedure requires a cluster administrator to create a ConfigMap and add additional CAs as keys in
the ConfigMap.

The ConfigMap must be created in the openshift-config namespace.

domain is the key in the ConfigMap and value is the PEM-encoded certificate.

Each CA must be associated with a domain. The domain format is hostname[..port].

The ConfigMap name must be set in the image.config.openshift.io/cluster cluster scoped
configuration resource’s spec.additionalTrustedCA field.

2.14.1. Adding certificate authorities to the cluster

You can add certificate authorities (CA) to the cluster for use when pushing and pulling images with the
following procedure.

Prerequisites

You must have cluster administrator privileges.

You must have access to the public certificates of the registry, usually a hostname/ca.crt file
located in the /etc/docker/certs.d/ directory.

Procedure

1. Create a ConfigMap in the openshift-config namespace containing the trusted certificates for
the registries that use self-signed certificates. For each CA file, ensure the key in the
ConfigMap is the hostname of the registry in the hostname[..port] format:

2. Update the cluster image configuration:

2.14.2. Additional resources

Create a ConfigMap

Secrets and ConfigMaps

Configuring a custom PKI

$ oc create configmap registry-cas -n openshift-config \
--from-file=myregistry.corp.com..5000=/etc/docker/certs.d/myregistry.corp.com:5000/ca.crt \
--from-file=otherregistry.com=/etc/docker/certs.d/otherregistry.com/ca.crt

$ oc patch image.config.openshift.io/cluster --patch '{"spec":{"additionalTrustedCA":
{"name":"registry-cas"}}}' --type=merge

CHAPTER 2. BUILDS

101

https://kubernetes.io/docs/tasks/configure-pod-container/configure-pod-configmap/#create-a-configmap
https://kubectl.docs.kubernetes.io/guides/config_management/secrets_configmaps/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/networking/#configuring-a-custom-pki

CHAPTER 3. MIGRATING FROM JENKINS TO TEKTON

3.1. MIGRATING FROM JENKINS TO TEKTON

Jenkins and Tekton are extensively used to automate the process of building, testing, and deploying
applications and projects. However, Tekton is a cloud-native CI/CD solution that works seamlessly with
Kubernetes and OpenShift Container Platform. This document helps you migrate your Jenkins CI/CD
workflows to Tekton.

3.1.1. Comparison of Jenkins and Tekton concepts

This section summarizes the basic terms used in Jenkins and Tekton, and compares the equivalent
terms.

3.1.1.1. Jenkins terminology

Jenkins offers declarative and scripted pipelines that are extensible using shared libraries and plugins.
Some basic terms in Jenkins are as follows:

Pipeline: Automates the entire process of building, testing, and deploying applications, using
the Groovy syntax.

Node: A machine capable of either orchestrating or executing a scripted pipeline.

Stage: A conceptually distinct subset of tasks performed in a pipeline. Plugins or user interfaces
often use this block to display status or progress of tasks.

Step: A single task that specifies the exact action to be taken, either by using a command or a
script.

3.1.1.2. Tekton terminology

Tekton uses the YAML syntax for declarative pipelines and consists of tasks. Some basic terms in
Tekton are as follows:

Pipeline: A set of tasks in a series, in parallel, or both.

Task: A sequence of steps as commands, binaries, or scripts.

PipelineRun: Execution of a pipeline with one or more tasks.

TaskRun: Execution of a task with one or more steps.

NOTE

You can initiate a PipelineRun or a TaskRun with a set of inputs such as
parameters and workspaces, and the execution results in a set of outputs and
artifacts.

Workspace: In Tekton, workspaces are conceptual blocks that serve the following purposes:

Storage of inputs, outputs, and build artifacts.

Common space to share data among tasks.

Mount points for credentials held in secrets, configurations held in config maps, and

OpenShift Container Platform 4.9 CI/CD

102

https://groovy-lang.org/
https://yaml.org/

Mount points for credentials held in secrets, configurations held in config maps, and
common tools shared by an organization.

NOTE

In Jenkins, there is no direct equivalent of Tekton workspaces. You can think of
the control node as a workspace, as it stores the cloned code repository, build
history, and artifacts. In situations where a job is assigned to a different node, the
cloned code and the generated artifacts are stored in that node, but the build
history is maintained by the control node.

3.1.1.3. Mapping of concepts

The building blocks of Jenkins and Tekton are not equivalent, and a comparison does not provide a
technically accurate mapping. The following terms and concepts in Jenkins and Tekton correlate in
general:

Table 3.1. Jenkins and Tekton - basic comparison

Jenkins Tekton

Pipeline Pipeline and PipelineRun

Stage Task

Step A step in a task

3.1.2. Migrating a sample pipeline from Jenkins to Tekton

This section provides equivalent examples of pipelines in Jenkins and Tekton and helps you to migrate
your build, test, and deploy pipelines from Jenkins to Tekton.

3.1.2.1. Jenkins pipeline

Consider a Jenkins pipeline written in Groovy for building, testing, and deploying:

pipeline {
 agent any
 stages {
 stage('Build') {
 steps {
 sh 'make'
 }
 }
 stage('Test'){
 steps {
 sh 'make check'
 junit 'reports/**/*.xml'
 }
 }
 stage('Deploy') {
 steps {
 sh 'make publish'

CHAPTER 3. MIGRATING FROM JENKINS TO TEKTON

103

3.1.2.2. Tekton pipeline

In Tekton, the equivalent example of the Jenkins pipeline comprises of three tasks, each of which can be
written declaratively using the YAML syntax:

Example build task

Example test task:

Example deploy task:

 }
 }
 }
}

apiVersion: tekton.dev/v1beta1
kind: Task
metadata:
 name: myproject-build
spec:
 workspaces:
 - name: source
 steps:
 - image: my-ci-image
 command: ["make"]
 workingDir: $(workspaces.source.path)

apiVersion: tekton.dev/v1beta1
kind: Task
metadata:
 name: myproject-test
spec:
 workspaces:
 - name: source
 steps:
 - image: my-ci-image
 command: ["make check"]
 workingDir: $(workspaces.source.path)
 - image: junit-report-image
 script: |
 #!/usr/bin/env bash
 junit-report reports/**/*.xml
 workingDir: $(workspaces.source.path)

apiVersion: tekton.dev/v1beta1
kind: Task
metadata:
 name: myprojectd-deploy
spec:
 workspaces:
 - name: source
 steps:

OpenShift Container Platform 4.9 CI/CD

104

You can combine the three tasks sequentially to form a Tekton pipeline:

Example: Tekton pipeline for building, testing, and deployment

3.1.3. Migrating from Jenkins plugins to Tekton Hub tasks

You can extend the capability of Jenkins by using plugins. To achieve similar extensibility in Tekton, use
any of the available tasks from Tekton Hub.

As an example, consider the git-clone task available in the Tekton Hub, that corresponds to the git
plugin for Jenkins.

Example: git-clone task from Tekton Hub

 - image: my-deploy-image
 command: ["make deploy"]
 workingDir: $(workspaces.source.path)

apiVersion: tekton.dev/v1beta1
kind: Pipeline
metadata:
 name: myproject-pipeline
spec:
 workspaces:
 - name: shared-dir
 tasks:
 - name: build
 taskRef:
 name: myproject-build
 workspaces:
 - name: source
 workspace: shared-dir
 - name: test
 taskRef:
 name: myproject-test
 workspaces:
 - name: source
 workspace: shared-dir
 - name: deploy
 taskRef:
 name: myproject-deploy
 workspaces:
 - name: source
 workspace: shared-dir

apiVersion: tekton.dev/v1beta1
kind: Pipeline
metadata:
 name: demo-pipeline
spec:
 params:
 - name: repo_url
 - name: revision
 workspaces:
 - name: source

CHAPTER 3. MIGRATING FROM JENKINS TO TEKTON

105

https://plugins.jenkinsci.org
https://hub.tekton.dev
https://hub.tekton.dev/tekton/task/git-clone
https://plugins.jenkins.io/git/

3.1.4. Extending Tekton capabilities using custom tasks and scripts

In Tekton, if you do not find the right task in Tekton Hub, or need greater control over tasks, you can
create custom tasks and scripts to extend Tekton’s capabilities.

Example: Custom task for running the maven test command

Example: Execute a custom shell script by providing its path

Example: Execute a custom Python script by writing it in the YAML file

3.1.5. Comparison of Jenkins and Tekton execution models

 tasks:
 - name: fetch-from-git
 taskRef:
 name: git-clone
 params:
 - name: url
 value: $(params.repo_url)
 - name: revision
 value: $(params.revision)
 workspaces:
 - name: output
 workspace: source

apiVersion: tekton.dev/v1beta1
kind: Task
metadata:
 name: maven-test
spec:
 workspaces:
 - name: source
 steps:
 - image: my-maven-image
 command: ["mvn test"]
 workingDir: $(workspaces.source.path)

...
steps:
 image: ubuntu
 script: |
 #!/usr/bin/env bash
 /workspace/my-script.sh
...

...
steps:
 image: python
 script: |
 #!/usr/bin/env python3
 print(“hello from python!”)
...

OpenShift Container Platform 4.9 CI/CD

106

Jenkins and Tekton offer similar functions but are different in architecture and execution. This section
outlines a brief comparison of the two execution models.

Table 3.2. Comparison of execution models in Jenkins and Tekton

Jenkins Tekton

Jenkins has a control node. Jenkins executes
pipelines and steps centrally, or orchestrates jobs
running in other nodes.

Tekton is serverless and distributed, and there is no
central dependency for execution.

The containers are launched by the control node
through the pipeline.

Tekton adopts a 'container-first' approach, where
every step is executed as a container running in a
pod (equivalent to nodes in Jenkins).

Extensibility is achieved using plugins. Extensibility is achieved using tasks in Tekton Hub, or
by creating custom tasks and scripts.

3.1.6. Examples of common use cases

Both Jenkins and Tekton offer capabilities for common CI/CD use cases, such as:

Compiling, building, and deploying images using maven

Extending the core capabilities by using plugins

Reusing shareable libraries and custom scripts

3.1.6.1. Running a maven pipeline in Jenkins and Tekton

You can use maven in both Jenkins and Tekton workflows for compiling, building, and deploying images.
To map your existing Jenkins workflow to Tekton, consider the following examples:

Example: Compile and build an image and deploy it to OpenShift using maven in Jenkins

#!/usr/bin/groovy
node('maven') {
 stage 'Checkout'
 checkout scm

 stage 'Build'
 sh 'cd helloworld && mvn clean'
 sh 'cd helloworld && mvn compile'

 stage 'Run Unit Tests'
 sh 'cd helloworld && mvn test'

 stage 'Package'
 sh 'cd helloworld && mvn package'

 stage 'Archive artifact'
 sh 'mkdir -p artifacts/deployments && cp helloworld/target/*.war artifacts/deployments'
 archive 'helloworld/target/*.war'

CHAPTER 3. MIGRATING FROM JENKINS TO TEKTON

107

Example: Compile and build an image and deploy it to OpenShift using maven in Tekton.

 stage 'Create Image'
 sh 'oc login https://kubernetes.default -u admin -p admin --insecure-skip-tls-verify=true'
 sh 'oc new-project helloworldproject'
 sh 'oc project helloworldproject'
 sh 'oc process -f helloworld/jboss-eap70-binary-build.json | oc create -f -'
 sh 'oc start-build eap-helloworld-app --from-dir=artifacts/'

 stage 'Deploy'
 sh 'oc new-app helloworld/jboss-eap70-deploy.json' }

apiVersion: tekton.dev/v1beta1
kind: Pipeline
metadata:
 name: maven-pipeline
spec:
 workspaces:
 - name: shared-workspace
 - name: maven-settings
 - name: kubeconfig-dir
 optional: true
 params:
 - name: repo-url
 - name: revision
 - name: context-path
 tasks:
 - name: fetch-repo
 taskRef:
 name: git-clone
 workspaces:
 - name: output
 workspace: shared-workspace
 params:
 - name: url
 value: "$(params.repo-url)"
 - name: subdirectory
 value: ""
 - name: deleteExisting
 value: "true"
 - name: revision
 value: $(params.revision)
 - name: mvn-build
 taskRef:
 name: maven
 runAfter:
 - fetch-repo
 workspaces:
 - name: source
 workspace: shared-workspace
 - name: maven-settings
 workspace: maven-settings
 params:
 - name: CONTEXT_DIR
 value: "$(params.context-path)"

OpenShift Container Platform 4.9 CI/CD

108

3.1.6.2. Extending the core capabilities of Jenkins and Tekton by using plugins

Jenkins has the advantage of a large ecosystem of numerous plugins developed over the years by its

 - name: GOALS
 value: ["-DskipTests", "clean", "compile"]
 - name: mvn-tests
 taskRef:
 name: maven
 runAfter:
 - mvn-build
 workspaces:
 - name: source
 workspace: shared-workspace
 - name: maven-settings
 workspace: maven-settings
 params:
 - name: CONTEXT_DIR
 value: "$(params.context-path)"
 - name: GOALS
 value: ["test"]
 - name: mvn-package
 taskRef:
 name: maven
 runAfter:
 - mvn-tests
 workspaces:
 - name: source
 workspace: shared-workspace
 - name: maven-settings
 workspace: maven-settings
 params:
 - name: CONTEXT_DIR
 value: "$(params.context-path)"
 - name: GOALS
 value: ["package"]
 - name: create-image-and-deploy
 taskRef:
 name: openshift-client
 runAfter:
 - mvn-package
 workspaces:
 - name: manifest-dir
 workspace: shared-workspace
 - name: kubeconfig-dir
 workspace: kubeconfig-dir
 params:
 - name: SCRIPT
 value: |
 cd "$(params.context-path)"
 mkdir -p ./artifacts/deployments && cp ./target/*.war ./artifacts/deployments
 oc new-project helloworldproject
 oc project helloworldproject
 oc process -f jboss-eap70-binary-build.json | oc create -f -
 oc start-build eap-helloworld-app --from-dir=artifacts/
 oc new-app jboss-eap70-deploy.json

CHAPTER 3. MIGRATING FROM JENKINS TO TEKTON

109

Jenkins has the advantage of a large ecosystem of numerous plugins developed over the years by its
extensive user base. You can search and browse the plugins in the Jenkins Plugin Index .

Tekton also has many tasks developed and contributed by the community and enterprise users. A
publicly available catalog of reusable Tekton tasks are available in the Tekton Hub.

In addition, Tekton incorporates many of the plugins of the Jenkins ecosystem within its core
capabilities. For example, authorization is a critical function in both Jenkins and Tekton. While Jenkins
ensures authorization using the Role-based Authorization Strategy plugin, Tekton uses OpenShift’s
built-in Role-based Access Control system.

3.1.6.3. Sharing reusable code in Jenkins and Tekton

Jenkins shared libraries provide reusable code for parts of Jenkins pipelines. The libraries are shared
between Jenkinsfiles to create highly modular pipelines without code repetition.

Although there is no direct equivalent of Jenkins shared libraries in Tekton, you can achieve similar
workflows by using tasks from the Tekton Hub, in combination with custom tasks and scripts.

3.1.7. Additional resources

Role-based Access Control

OpenShift Container Platform 4.9 CI/CD

110

https://plugins.jenkins.io/
https://hub.tekton.dev/
https://plugins.jenkins.io/role-strategy/
https://www.jenkins.io/doc/book/pipeline/shared-libraries/
https://www.jenkins.io/doc/book/pipeline/jenkinsfile/
https://hub.tekton.dev/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/authentication_and_authorization/#using-rbac

CHAPTER 4. PIPELINES

4.1. RED HAT OPENSHIFT PIPELINES RELEASE NOTES

Red Hat OpenShift Pipelines is a cloud-native CI/CD experience based on the Tekton project which
provides:

Standard Kubernetes-native pipeline definitions (CRDs).

Serverless pipelines with no CI server management overhead.

Extensibility to build images using any Kubernetes tool, such as S2I, Buildah, JIB, and Kaniko.

Portability across any Kubernetes distribution.

Powerful CLI for interacting with pipelines.

Integrated user experience with the Developer perspective of the OpenShift Container
Platform web console.

For an overview of Red Hat OpenShift Pipelines, see Understanding OpenShift Pipelines .

4.1.1. Compatibility and support matrix

Some features in this release are currently in Technology Preview. These experimental features are not
intended for production use.

In the table, features are marked with the following statuses:

TP Technology Preview

GA General Availability

Table 4.1. Compatibility and support matrix

Red
Hat
OpenS
hift
Pipelin
es
Versio
n

Component Version OpenS
hift
Versio
n

Suppor
t
Status

Operat
or

Pipelin
es

Trigger
s

CLI Catalo
g

Chains Hub Pipelin
es as
Code

1.7 0.33.x 0.19.x 0.23.x 0.33 0.8.0
(TP)

1.7.0
(TP)

0.5.x
(TP)

4.9,
4.10,
4.11

GA

CHAPTER 4. PIPELINES

111

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/cicd/#understanding-openshift-pipelines
https://access.redhat.com/support/offerings/techpreview

1.6 0.28.x 0.16.x 0.21.x 0.28 N/A N/A N/A 4.9 GA

1.5 0.24.x 0.14.x
(TP)

0.19.x 0.24 N/A N/A N/A 4.8 GA

1.4 0.22.x 0.12.x
(TP)

0.17.x 0.22 N/A N/A N/A 4.7 GA

Red
Hat
OpenS
hift
Pipelin
es
Versio
n

Component Version OpenS
hift
Versio
n

Suppor
t
Status

NOTE

In Red Hat OpenShift Pipelines 1.6, Triggers 0.16.x transitioned to GA status. In earlier
versions, Triggers was available as a technology preview feature.

For questions and feedback, you can send an email to the product team at pipelines-
interest@redhat.com.

4.1.2. Making open source more inclusive

Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

4.1.3. Release notes for Red Hat OpenShift Pipelines General Availability 1.7

With this update, Red Hat OpenShift Pipelines General Availability (GA) 1.7 is available on OpenShift
Container Platform 4.9, 4.10, and 4.11.

4.1.3.1. New features

In addition to the fixes and stability improvements, the following sections highlight what is new in Red
Hat OpenShift Pipelines 1.7.

4.1.3.1.1. Pipelines

With this update, pipelines-<version> is the default channel to install the Red Hat OpenShift
Pipelines Operator. For example, the default channel to install the Pipelines Operator version
1.7 is pipelines-1.7. Cluster administrators can also use the latest channel to install the most
recent stable version of the Operator.

NOTE

OpenShift Container Platform 4.9 CI/CD

112

mailto:pipelines-interest@redhat.com
https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

NOTE

The preview and stable channels will be deprecated and removed in a future
release.

When you run a command in a user namespace, your container runs as root (user id 0) but has
user privileges on the host. With this update, to run pods in the user namespace, you must pass
the annotations that CRI-O expects.

To add these annotations for all users, run the oc edit clustertask buildah command and
edit the buildah cluster task.

To add the annotations to a specific namespace, export the cluster task as a task to that
namespace.

Before this update, if certain conditions were not met, the when expression skipped a Task
object and its dependent tasks. With this update, you can scope the when expression to guard
the Task object only, not its dependent tasks. To enable this update, set the scope-when-
expressions-to-task flag to true in the TektonConfig CRD.

NOTE

The scope-when-expressions-to-task flag is deprecated and will be removed in
a future release. As a best practice for Pipelines, use when expressions scoped to
the guarded Task only.

With this update, you can use variable substitution in the subPath field of a workspace within a
task.

With this update, you can reference parameters and results by using a bracket notation with
single or double quotes. Prior to this update, you could only use the dot notation. For example,
the following are now equivalent:

$(param.myparam), $(param['myparam']), and $(param["myparam"]).
You can use single or double quotes to enclose parameter names that contain problematic
characters, such as ".". For example, $(param['my.param']) and $(param["my.param"]).

With this update, you can include the onError parameter of a step in the task definition without
enabling the enable-api-fields flag.

4.1.3.1.2. Triggers

With this update, the feature-flag-triggers config map has a new field labels-exclusion-
pattern. You can set the value of this field to a regular expression (regex) pattern. The controller
filters out labels that match the regex pattern from propagating from the event listener to the
resources created for the event listener.

With this update, the TriggerGroups field is added to the EventListener specification. Using
this field, you can specify a set of interceptors to run before selecting and running a group of
triggers. To enable this feature, set the enable-api-fields flag in the feature-flags-triggers
config map to alpha.

With this update, Trigger resources support custom runs defined by a TriggerTemplate
template.

With this update, Triggers support emitting Kubernetes events from an EventListener pod.

CHAPTER 4. PIPELINES

113

https://cri-o.io/

With this update, count metrics are available for the following objects: ClusterInteceptor,
EventListener, TriggerTemplate, ClusterTriggerBinding, and TriggerBinding.

This update adds the ServicePort specification to Kubernetes resource. You can use this
specification to modify which port exposes the event listener service. The default port is 8080.

With this update, you can use the targetURI field in the EventListener specification to send
cloud events during trigger processing. To enable this feature, set the enable-api-fields flag in
the feature-flags-triggers config map to alpha.

With this update, the tekton-triggers-eventlistener-roles object now has a patch verb, in
addition to the create verb that already exists.

With this update, the securityContext.runAsUser parameter is removed from event listener
deployment.

4.1.3.1.3. CLI

With this update, the tkn [pipeline | pipelinerun] export command exports a pipeline or
pipeline run as a YAML file. For example:

Export a pipeline named test_pipeline in the openshift-pipelines namespace:

Export a pipeline run named test_pipeline_run in the openshift-pipelines namespace:

With this update, the --grace option is added to the tkn pipelinerun cancel. Use the --grace
option to terminate a pipeline run gracefully instead of forcing the termination. To enable this
feature, set the enable-api-fields flag in the feature-flags config map to alpha.

This update adds the Operator and Chains versions to the output of the tkn version command.

IMPORTANT

Tekton Chains is a Technology Preview feature.

With this update, the tkn pipelinerun describe command displays all canceled task runs, when
you cancel a pipeline run. Before this fix, only one task run was displayed.

With this update, you can skip supplying the asking specifications for optional workspace when
you run the tkn [t | p | ct] start command skips with the --skip-optional-workspace flag. You
can also skip it when running in interactive mode.

With this update, you can use the tkn chains command to manage Tekton Chains. You can also
use the --chains-namespace option to specify the namespace where you want to install Tekton
Chains.

IMPORTANT

Tekton Chains is a Technology Preview feature.

$ tkn pipeline export test_pipeline -n openshift-pipelines

$ tkn pipelinerun export test_pipeline_run -n openshift-pipelines

OpenShift Container Platform 4.9 CI/CD

114

4.1.3.1.4. Operator

With this update, you can use the Red Hat OpenShift Pipelines Operator to install and deploy
Tekton Hub and Tekton Chains.

IMPORTANT

Tekton Chains and deployment of Tekton Hub on a cluster are Technology
Preview features.

With this update, you can find and use Pipelines as Code (PAC) as an add-on option.

IMPORTANT

Pipelines as Code is a Technology Preview feature.

With this update, you can now disable the installation of community cluster tasks by setting the
communityClusterTasks parameter to false. For example:

With this update, you can disable the integration of Tekton Hub with the Developer perspective
by setting the enable-devconsole-integration flag in the TektonConfig custom resource to
false. For example:

With this update, the operator-config.yaml config map enables the output of the tkn version
command to display of the Operator version.

With this update, the version of the argocd-task-sync-and-wait tasks is modified to v0.2.

With this update to the TektonConfig CRD, the oc get tektonconfig command displays the
OPerator version.

With this update, service monitor is added to the Triggers metrics.

...
spec:
 profile: all
 targetNamespace: openshift-pipelines
 addon:
 params:
 - name: clusterTasks
 value: "true"
 - name: pipelineTemplates
 value: "true"
 - name: communityClusterTasks
 value: "false"
...

...
hub:
 params:
 - name: enable-devconsole-integration
 value: "true"
...

CHAPTER 4. PIPELINES

115

4.1.3.1.5. Hub

IMPORTANT

Deploying Tekton Hub on a cluster is a Technology Preview feature.

Tekton Hub helps you discover, search, and share reusable tasks and pipelines for your CI/CD workflows.
A public instance of Tekton Hub is available at hub.tekton.dev.

Staring with Red Hat OpenShift Pipelines 1.7, cluster administrators can also install and deploy a custom
instance of Tekton Hub on enterprise clusters. You can curate a catalog with reusable tasks and
pipelines specific to your organization.

4.1.3.1.6. Chains

IMPORTANT

Tekton Chains is a Technology Preview feature.

Tekton Chains is a Kubernetes Custom Resource Definition (CRD) controller. You can use it to manage
the supply chain security of the tasks and pipelines created using Red Hat OpenShift Pipelines.

By default, Tekton Chains monitors the task runs in your OpenShift Container Platform cluster. Chains
takes snapshots of completed task runs, converts them to one or more standard payload formats, and
signs and stores all artifacts.

Tekton Chains supports the following features:

You can sign task runs, task run results, and OCI registry images with cryptographic key types
and services such as cosign.

You can use attestation formats such as in-toto.

You can securely store signatures and signed artifacts using OCI repository as a storage
backend.

4.1.3.1.7. Pipelines as Code (PAC)

IMPORTANT

Pipelines as Code is a Technology Preview feature.

With Pipelines as Code, cluster administrators and users with the required privileges can define pipeline
templates as part of source code Git repositories. When triggered by a source code push or a pull
request for the configured Git repository, the feature runs the pipeline and reports status.

Pipelines as Code supports the following features:

Pull request status. When iterating over a pull request, the status and control of the pull request
is exercised on the platform hosting the Git repository.

GitHub checks the API to set the status of a pipeline run, including rechecks.

GitHub pull request and commit events.

OpenShift Container Platform 4.9 CI/CD

116

https://hub.tekton.dev/

Pull request actions in comments, such as /retest.

Git events filtering, and a separate pipeline for each event.

Automatic task resolution in Pipelines for local tasks, Tekton Hub, and remote URLs.

Use of GitHub blobs and objects API for retrieving configurations.

Access Control List (ACL) over a GitHub organization, or using a Prow-style OWNER file.

The tkn-pac plugin for the tkn CLI tool, which you can use to manage Pipelines as Code
repositories and bootstrapping.

Support for GitHub Application, GitHub Webhook, Bitbucket Server, and Bitbucket Cloud.

4.1.3.2. Deprecated features

Breaking change: This update removes the disable-working-directory-overwrite and disable-
home-env-overwrite fields from the TektonConfig custom resource (CR). As a result, the
TektonConfig CR no longer automatically sets the $HOME environment variable and
workingDir parameter. You can still set the $HOME environment variable and workingDir
parameter by using the env and workingDir fields in the Task custom resource definition
(CRD).

The Conditions custom resource definition (CRD) type is deprecated and planned to be
removed in a future release. Instead, use the recommended When expression.

Breaking change: The Triggers resource validates the templates and generates an error if you
do not specify the EventListener and TriggerBinding values.

4.1.3.3. Known issues

When you run Maven and Jib-Maven cluster tasks, the default container image is supported
only on Intel (x86) architecture. Therefore, tasks will fail on IBM Power Systems (ppc64le), IBM
Z, and LinuxONE (s390x) clusters. As a workaround, you can specify a custom image by setting
the MAVEN_IMAGE parameter value to maven:3.6.3-adoptopenjdk-11.

TIP

Before you install tasks based on the Tekton Catalog on IBM Power Systems (ppc64le), IBM Z,
and LinuxONE (s390x) using tkn hub, verify if the task can be executed on these platforms. To
check if ppc64le and s390x are listed in the "Platforms" section of the task information, you can
run the following command: tkn hub info task <name>

On IBM Power Systems, IBM Z, and LinuxONE, the s2i-dotnet cluster task is unsupported.

You cannot use the nodejs:14-ubi8-minimal image stream because doing so generates the
following errors:

STEP 7: RUN /usr/libexec/s2i/assemble
/bin/sh: /usr/libexec/s2i/assemble: No such file or directory
subprocess exited with status 127
subprocess exited with status 127
error building at STEP "RUN /usr/libexec/s2i/assemble": exit status 127
time="2021-11-04T13:05:26Z" level=error msg="exit status 127"

CHAPTER 4. PIPELINES

117

Implicit parameter mapping incorrectly passes parameters from the top-level Pipeline or
PipelineRun definitions to the taskRef tasks. Mapping should only occur from a top-level
resource to tasks with in-line taskSpec specifications. This issue only affects users who have set
the enable-api-fields feature flag to alpha.

4.1.3.4. Fixed issues

With this update, if metadata such as labels and annotations are present in both Pipeline and
PipelineRun object definitions, the values in the PipelineRun type takes precedence. You can
observe similar behavior for Task and TaskRun objects.

With this update, if the timeouts.tasks field or the timeouts.finally field is set to 0, then the
timeouts.pipeline is also set to 0.

With this update, the -x set flag is removed from scripts that do not use a shebang. The fix
reduces potential data leak from script execution.

With this update, any backslash character present in the usernames in Git credentials is escaped
with an additional backslash in the .gitconfig file.

With this update, the finalizer property of the EventListener object is not necessary for
cleaning up logging and config maps.

With this update, the default HTTP client associated with the event listener server is removed,
and a custom HTTP client added. As a result, the timeouts have improved.

With this update, the Triggers cluster role now works with owner references.

With this update, the race condition in the event listener does not happen when multiple
interceptors return extensions.

With this update, the tkn pr delete command does not delete the pipeline runs with the ignore-
running flag.

With this update, the Operator pods do not continue restarting when you modify any add-on
parameters.

With this update, the tkn serve CLI pod is scheduled on infra nodes, if not configured in the
subscription and config custom resources.

With this update, cluster tasks with specified versions are not deleted during upgrade.

4.1.3.5. Release notes for Red Hat OpenShift Pipelines General Availability 1.7.1

With this update, Red Hat OpenShift Pipelines General Availability (GA) 1.7.1 is available on OpenShift
Container Platform 4.9, 4.10, and 4.11.

4.1.3.5.1. Fixed issues

Before this update, upgrading the Red Hat OpenShift Pipelines Operator deleted the data in
the database associated with Tekton Hub and installed a new database. With this update, an
Operator upgrade preserves the data.

Before this update, only cluster administrators could access pipeline metrics in the OpenShift
Container Platform console. With this update, users with other cluster roles also can access the
pipeline metrics.

OpenShift Container Platform 4.9 CI/CD

118

Before this update, pipeline runs failed for pipelines containing tasks that emit large termination
messages. The pipeline runs failed because the total size of termination messages of all
containers in a pod cannot exceed 12 KB. With this update, the place-tools and step-init
initialization containers that uses the same image are merged to reduce the number of
containers running in each tasks’s pod. The solution reduces the chance of failed pipeline runs
by minimizing the number of containers running in a task’s pod. However, it does not remove the
limitation of the maximum allowed size of a termination message.

Before this update, attempts to access resource URLs directly from the Tekton Hub web
console resulted in an Nginx 404 error. With this update, the Tekton Hub web console image is
fixed to allow accessing resource URLs directly from the Tekton Hub web console.

Before this update, for each namespace the resource pruner job created a separate container
to prune resources. With this update, the resource pruner job runs commands for all
namespaces as a loop in one container.

4.1.3.6. Release notes for Red Hat OpenShift Pipelines General Availability 1.7.2

With this update, Red Hat OpenShift Pipelines General Availability (GA) 1.7.2 is available on OpenShift
Container Platform 4.9, 4.10, and the upcoming version.

4.1.3.6.1. Known issues

The chains-config config map for Tekton Chains in the openshift-pipelines namespace is
automatically reset to default after upgrading the Red Hat OpenShift Pipelines Operator.
Currently, there is no workaround for this issue.

4.1.3.6.2. Fixed issues

Before this update, tasks on Pipelines 1.7.1 failed on using init as the first argument, followed by
two or more arguments. With this update, the flags are parsed correctly and the task runs are
successful.

Before this update, installation of the Red Hat OpenShift Pipelines Operator on OpenShift
Container Platform 4.9 and 4.10 failed due to invalid role binding, with the following error
message:

With this update, the Red Hat OpenShift Pipelines Operator installs with distinct role binding
namespaces to avoid conflict with installation of other Operators.

Before this update, upgrading the Operator triggered a reset of the signing-secrets secret key
for Tekton Chains to its default value. With this update, the custom secret key persists after you
upgrade the Operator.

NOTE

Upgrading to Red Hat OpenShift Pipelines 1.7.2 resets the key. However, when
you upgrade to future releases, the key is expected to persist.

Before this update, all S2I build tasks failed with an error similar to the following message:

error updating rolebinding openshift-operators-prometheus-k8s-read-binding:
RoleBinding.rbac.authorization.k8s.io "openshift-operators-prometheus-k8s-read-binding" is
invalid: roleRef: Invalid value: rbac.RoleRef{APIGroup:"rbac.authorization.k8s.io",
Kind:"Role", Name:"openshift-operator-read"}: cannot change roleRef

CHAPTER 4. PIPELINES

119

With this update, the pipelines-scc security context constraint (SCC) is compatible with the
SETFCAP capability necessary for Buildah and S2I cluster tasks. As a result, the Buildah and
S2I build tasks can run successfully.

To successfully run the Buildah cluster task and S2I build tasks for applications written in
various languages and frameworks, add the following snippet for appropriate steps objects
such as build and push:

4.1.3.7. Release notes for Red Hat OpenShift Pipelines General Availability 1.7.3

With this update, Red Hat OpenShift Pipelines General Availability (GA) 1.7.3 is available on OpenShift
Container Platform 4.9, 4.10, and 4.11.

4.1.3.7.1. Fixed issues

Before this update, the Operator failed when creating RBAC resources if any namespace was in
a Terminating state. With this update, the Operator ignores namespaces in a Terminating
state and creates the RBAC resources.

Previously, upgrading the Red Hat OpenShift Pipelines Operator caused the pipeline service
account to be recreated, which meant that the secrets linked to the service account were lost.
This update fixes the issue. During upgrades, the Operator no longer recreates the pipeline
service account. As a result, secrets attached to the pipeline service account persist after
upgrades, and the resources (tasks and pipelines) continue to work correctly.

4.1.4. Release notes for Red Hat OpenShift Pipelines General Availability 1.6

With this update, Red Hat OpenShift Pipelines General Availability (GA) 1.6 is available on OpenShift
Container Platform 4.9.

4.1.4.1. New features

In addition to the fixes and stability improvements, the following sections highlight what is new in Red
Hat OpenShift Pipelines 1.6.

With this update, you can configure a pipeline or task start command to return a YAML or
JSON-formatted string by using the --output <string>, where <string> is yaml or json.
Otherwise, without the --output option, the start command returns a human-friendly message
that is hard for other programs to parse. Returning a YAML or JSON-formatted string is useful
for continuous integration (CI) environments. For example, after a resource is created, you can
use yq or jq to parse the YAML or JSON-formatted message about the resource and wait until
that resource is terminated without using the showlog option.

With this update, you can authenticate to a registry using the auth.json authentication file of

Error: error writing "0 0 4294967295\n" to /proc/22/uid_map: write /proc/22/uid_map:
operation not permitted
time="2022-03-04T09:47:57Z" level=error msg="error writing \"0 0 4294967295\\n\" to
/proc/22/uid_map: write /proc/22/uid_map: operation not permitted"
time="2022-03-04T09:47:57Z" level=error msg="(unable to determine exit status)"

securityContext:
 capabilities:
 add: ["SETFCAP"]

OpenShift Container Platform 4.9 CI/CD

120

With this update, you can authenticate to a registry using the auth.json authentication file of
Podman. For example, you can use tkn bundle push to push to a remote registry using Podman
instead of Docker CLI.

With this update, if you use the tkn [taskrun | pipelinerun] delete --all command, you can
preserve runs that are younger than a specified number of minutes by using the new --keep-
since <minutes> option. For example, to keep runs that are less than five minutes old, you
enter tkn [taskrun | pipelinerun] delete -all --keep-since 5.

With this update, when you delete task runs or pipeline runs, you can use the --parent-resource
and --keep-since options together. For example, the tkn pipelinerun delete --pipeline
pipelinename --keep-since 5 command preserves pipeline runs whose parent resource is
named pipelinename and whose age is five minutes or less. The tkn tr delete -t <taskname> --
keep-since 5 and tkn tr delete --clustertask <taskname> --keep-since 5 commands work
similarly for task runs.

This update adds support for the triggers resources to work with v1beta1 resources.

This update adds an ignore-running option to the tkn pipelinerun delete and tkn taskrun
delete commands.

This update adds a create subcommand to the tkn task and tkn clustertask commands.

With this update, when you use the tkn pipelinerun delete --all command, you can use the new
--label <string> option to filter the pipeline runs by label. Optionally, you can use the --label
option with = and == as equality operators, or != as an inequality operator. For example, the tkn
pipelinerun delete --all --label asdf and tkn pipelinerun delete --all --label==asdf commands
both delete all the pipeline runs that have the asdf label.

With this update, you can fetch the version of installed Tekton components from the config map
or, if the config map is not present, from the deployment controller.

With this update, triggers support the feature-flags and config-defaults config map to
configure feature flags and to set default values respectively.

This update adds a new metric, eventlistener_event_count, that you can use to count events
received by the EventListener resource.

This update adds v1beta1 Go API types. With this update, triggers now support the v1beta1
API version.
With the current release, the v1alpha1 features are now deprecated and will be removed in a
future release. Begin using the v1beta1 features instead.

In the current release, auto-prunning of resources is enabled by default. In addition, you can
configure auto-prunning of task run and pipeline run for each namespace separately, by using
the following new annotations:

operator.tekton.dev/prune.schedule: If the value of this annotation is different from the
value specified at the TektonConfig custom resource definition, a new cron job in that
namespace is created.

operator.tekton.dev/prune.skip: When set to true, the namespace for which it is
configured will not be prunned.

operator.tekton.dev/prune.resources: This annotation accepts a comma-separated list of
resources. To prune a single resource such as a pipeline run, set this annotation to
"pipelinerun". To prune multiple resources, such as task run and pipeline run, set this
annotation to "taskrun, pipelinerun".

CHAPTER 4. PIPELINES

121

operator.tekton.dev/prune.keep: Use this annotation to retain a resource without prunning.

operator.tekton.dev/prune.keep-since: Use this annotation to retain resources based on
their age. The value for this annotation must be equal to the age of the resource in minutes.
For example, to retain resources which were created not more than five days ago, set keep-
since to 7200.

NOTE

The keep and keep-since annotations are mutually exclusive. For any
resource, you must configure only one of them.

operator.tekton.dev/prune.strategy: Set the value of this annotation to either keep or
keep-since.

Administrators can disable the creation of the pipeline service account for the entire cluster,
and prevent privilege escalation by misusing the associated SCC, which is very similar to anyuid.

You can now configure feature flags and components by using the TektonConfig custom
resource (CR) and the CRs for individual components, such as TektonPipeline and
TektonTriggers. This level of granularity helps customize and test alpha features such as the
Tekton OCI bundle for individual components.

You can now configure optional Timeouts field for the PipelineRun resource. For example, you
can configure timeouts separately for a pipeline run, each task run, and the finally tasks.

The pods generated by the TaskRun resource now sets the activeDeadlineSeconds field of
the pods. This enables OpenShift to consider them as terminating, and allows you to use
specifically scoped ResourceQuota object for the pods.

You can use configmaps to eliminate metrics tags or labels type on a task run, pipeline run, task,
and pipeline. In addition, you can configure different types of metrics for measuring duration,
such as a histogram, gauge, or last value.

You can define requests and limits on a pod coherently, as Tekton now fully supports the
LimitRange object by considering the Min, Max, Default, and DefaultRequest fields.

The following alpha features are introduced:

A pipeline run can now stop after running the finally tasks, rather than the previous
behavior of stopping the execution of all task run directly. This update adds the following
spec.status values:

StoppedRunFinally will stop the currently running tasks after they are completed, and
then run the finally tasks.

CancelledRunFinally will immediately cancel the running tasks, and then run the
finally tasks.

Cancelled will retain the previous behavior provided by the PipelineRunCancelled
status.

NOTE

The Cancelled status replaces the deprecated PipelineRunCancelled
status, which will be removed in the v1 version.

OpenShift Container Platform 4.9 CI/CD

122

You can now use the oc debug command to put a task run into debug mode, which pauses
the execution and allows you to inspect specific steps in a pod.

When you set the onError field of a step to continue, the exit code for the step is recorded
and passed on to subsequent steps. However, the task run does not fail and the execution
of the rest of the steps in the task continues. To retain the existing behavior, you can set the
value of the onError field to stopAndFail.

Tasks can now accept more parameters than are actually used. When the alpha feature flag
is enabled, the parameters can implicitly propagate to inlined specs. For example, an inlined
task can access parameters of its parent pipeline run, without explicitly defining each
parameter for the task.

If you enable the flag for the alpha features, the conditions under When expressions will
only apply to the task with which it is directly associated, and not the dependents of the
task. To apply the When expressions to the associated task and its dependents, you must
associate the expression with each dependent task separately. Note that, going forward, this
will be the default behavior of the When expressions in any new API versions of Tekton. The
existing default behavior will be deprecated in favor of this update.

The current release enables you to configure node selection by specifying the nodeSelector
and tolerations values in the TektonConfig custom resource (CR). The Operator adds these
values to all the deployments that it creates.

To configure node selection for the Operator’s controller and webhook deployment, you
edit the config.nodeSelector and config.tolerations fields in the specification for the
Subscription CR, after installing the Operator.

To deploy the rest of the control plane pods of OpenShift Pipelines on an infrastructure
node, update the TektonConfig CR with the nodeSelector and tolerations fields. The
modifications are then applied to all the pods created by Operator.

4.1.4.2. Deprecated features

In CLI 0.21.0, support for all v1alpha1 resources for clustertask, task, taskrun, pipeline, and
pipelinerun commands are deprecated. These resources are now deprecated and will be
removed in a future release.

In Tekton Triggers v0.16.0, the redundant status label is removed from the metrics for the
EventListener resource.

IMPORTANT

Breaking change: The status label has been removed from the
eventlistener_http_duration_seconds_* metric. Remove queries that are based
on the status label.

With the current release, the v1alpha1 features are now deprecated and will be removed in a
future release. With this update, you can begin using the v1beta1 Go API types instead. Triggers
now supports the v1beta1 API version.

With the current release, the EventListener resource sends a response before the triggers
finish processing.

IMPORTANT

CHAPTER 4. PIPELINES

123

IMPORTANT

Breaking change: With this change, the EventListener resource stops
responding with a 201 Created status code when it creates resources. Instead, it
responds with a 202 Accepted response code.

The current release removes the podTemplate field from the EventListener resource.

IMPORTANT

Breaking change: The podTemplate field, which was deprecated as part of #1100,
has been removed.

The current release removes the deprecated replicas field from the specification for the
EventListener resource.

IMPORTANT

Breaking change: The deprecated replicas field has been removed.

In Red Hat OpenShift Pipelines 1.6, the values of HOME="/tekton/home" and
workingDir="/workspace" are removed from the specification of the Step objects.
Instead, Red Hat OpenShift Pipelines sets HOME and workingDir to the values defined by the
containers running the Step objects. You can override these values in the specification of your
Step objects.

To use the older behavior, you can change the disable-working-directory-overwrite and
disable-home-env-overwrite fields in the TektonConfig CR to false:

IMPORTANT

The disable-working-directory-overwrite and disable-home-env-overwrite
fields in the TektonConfig CR are now deprecated and will be removed in a
future release.

4.1.4.3. Known issues

When you run Maven and Jib-Maven cluster tasks, the default container image is supported
only on Intel (x86) architecture. Therefore, tasks will fail on IBM Power Systems (ppc64le), IBM
Z, and LinuxONE (s390x) clusters. As a workaround, you can specify a custom image by setting
the MAVEN_IMAGE parameter value to maven:3.6.3-adoptopenjdk-11.

On IBM Power Systems, IBM Z, and LinuxONE, the s2i-dotnet cluster task is unsupported.

apiVersion: operator.tekton.dev/v1alpha1
 kind: TektonConfig
 metadata:
 name: config
 spec:
 pipeline:
 disable-working-directory-overwrite: false
 disable-home-env-overwrite: false
 ...

OpenShift Container Platform 4.9 CI/CD

124

https://github.com/tektoncd/triggers/pull/1100

Before you install tasks based on the Tekton Catalog on IBM Power Systems (ppc64le), IBM Z,
and LinuxONE (s390x) using tkn hub, verify if the task can be executed on these platforms. To
check if ppc64le and s390x are listed in the "Platforms" section of the task information, you can
run the following command: tkn hub info task <name>

You cannot use the nodejs:14-ubi8-minimal image stream because doing so generates the
following errors:

4.1.4.4. Fixed issues

The tkn hub command is now supported on IBM Power Systems, IBM Z, and LinuxONE.

Before this update, the terminal was not available after the user ran a tkn command, and the
pipeline run was done, even if retries were specified. Specifying a timeout in the task run or
pipeline run had no effect. This update fixes the issue so that the terminal is available after
running the command.

Before this update, running tkn pipelinerun delete --all would delete all resources. This update
prevents the resources in the running state from getting deleted.

Before this update, using the tkn version --component=<component> command did not
return the component version. This update fixes the issue so that this command returns the
component version.

Before this update, when you used the tkn pr logs command, it displayed the pipelines output
logs in the wrong task order. This update resolves the issue so that logs of completed
PipelineRuns are listed in the appropriate TaskRun execution order.

Before this update, editing the specification of a running pipeline might prevent the pipeline run
from stopping when it was complete. This update fixes the issue by fetching the definition only
once and then using the specification stored in the status for verification. This change reduces
the probability of a race condition when a PipelineRun or a TaskRun refers to a Pipeline or
Task that changes while it is running.

When expression values can now have array parameter references, such as: values:
[$(params.arrayParam[*])].

4.1.4.5. Release notes for Red Hat OpenShift Pipelines General Availability 1.6.1

4.1.4.5.1. Known issues

After upgrading to Red Hat OpenShift Pipelines 1.6.1 from an older version, Pipelines might
enter an inconsistent state where you are unable to perform any operations
(create/delete/apply) on Tekton resources (tasks and pipelines). For example, while deleting a
resource, you might encounter the following error:

STEP 7: RUN /usr/libexec/s2i/assemble
/bin/sh: /usr/libexec/s2i/assemble: No such file or directory
subprocess exited with status 127
subprocess exited with status 127
error building at STEP "RUN /usr/libexec/s2i/assemble": exit status 127
time="2021-11-04T13:05:26Z" level=error msg="exit status 127"

Error from server (InternalError): Internal error occurred: failed calling webhook
"validation.webhook.pipeline.tekton.dev": Post "https://tekton-pipelines-webhook.openshift-

CHAPTER 4. PIPELINES

125

4.1.4.5.2. Fixed issues

The SSL_CERT_DIR environment variable (/tekton-custom-certs) set by Red Hat OpenShift
Pipelines will not override the following default system directories with certificate files:

/etc/pki/tls/certs

/etc/ssl/certs

/system/etc/security/cacerts

The Horizontal Pod Autoscaler can manage the replica count of deployments controlled by the
Red Hat OpenShift Pipelines Operator. From this release onward, if the count is changed by an
end user or an on-cluster agent, the Red Hat OpenShift Pipelines Operator will not reset the
replica count of deployments managed by it. However, the replicas will be reset when you
upgrade the Red Hat OpenShift Pipelines Operator.

The pod serving the tkn CLI will now be scheduled on nodes, based on the node selector and
toleration limits specified in the TektonConfig custom resource.

4.1.4.6. Release notes for Red Hat OpenShift Pipelines General Availability 1.6.2

4.1.4.6.1. Known issues

When you create a new project, the creation of the pipeline service account is delayed, and
removal of existing cluster tasks and pipeline templates takes more than 10 minutes.

4.1.4.6.2. Fixed issues

Before this update, multiple instances of Tekton installer sets were created for a pipeline after
upgrading to Red Hat OpenShift Pipelines 1.6.1 from an older version. With this update, the
Operator ensures that only one instance of each type of TektonInstallerSet exists after an
upgrade.

Before this update, all the reconcilers in the Operator used the component version to decide
resource recreation during an upgrade to Red Hat OpenShift Pipelines 1.6.1 from an older
version. As a result, those resources were not recreated whose component versions did not
change in the upgrade. With this update, the Operator uses the Operator version instead of the
component version to decide resource recreation during an upgrade.

Before this update, the pipelines webhook service was missing in the cluster after an upgrade.
This was due to an upgrade deadlock on the config maps. With this update, a mechanism is
added to disable webhook validation if the config maps are absent in the cluster. As a result, the
pipelines webhook service persists in the cluster after an upgrade.

Before this update, cron jobs for auto-pruning got recreated after any configuration change to
the namespace. With this update, cron jobs for auto-pruning get recreated only if there is a
relevant annotation change in the namespace.

The upstream version of Tekton Pipelines is revised to v0.28.3, which has the following fixes:

Fix PipelineRun or TaskRun objects to allow label or annotation propagation.

pipelines.svc:443/resource-validation?timeout=10s": service "tekton-pipelines-webhook" not
found.

OpenShift Container Platform 4.9 CI/CD

126

For implicit params:

Do not apply the PipelineSpec parameters to the TaskRefs object.

Disable implicit param behavior for the Pipeline objects.

4.1.4.7. Release notes for Red Hat OpenShift Pipelines General Availability 1.6.3

4.1.4.7.1. Fixed issues

Before this update, the Red Hat OpenShift Pipelines Operator installed pod security policies
from components such as Pipelines and Triggers. However, the pod security policies shipped as
part of the components were deprecated in an earlier release. With this update, the Operator
stops installing pod security policies from components. As a result, the following upgrade paths
are affected:

Upgrading from Pipelines 1.6.1 or 1.6.2 to Pipelines 1.6.3 deletes the pod security policies,
including those from the Pipelines and Triggers components.

Upgrading from Pipelines 1.5.x to 1.6.3 retains the pod security policies installed from
components. As a cluster administrator, you can delete them manually.

NOTE

When you upgrade to future releases, the Red Hat OpenShift Pipelines
Operator will automatically delete all obsolete pod security policies.

Before this update, only cluster administrators could access pipeline metrics in the OpenShift
Container Platform console. With this update, users with other cluster roles also can access the
pipeline metrics.

Before this update, role-based access control (RBAC) issues with the Pipelines Operator
caused problems upgrading or installing components. This update improves the reliability and
consistency of installing various Red Hat OpenShift Pipelines components.

Before this update, setting the clusterTasks and pipelineTemplates fields to false in the
TektonConfig CR slowed the removal of cluster tasks and pipeline templates. This update
improves the speed of lifecycle management of Tekton resources such as cluster tasks and
pipeline templates.

4.1.4.8. Release notes for Red Hat OpenShift Pipelines General Availability 1.6.4

4.1.4.8.1. Known issues

After upgrading from Red Hat OpenShift Pipelines 1.5.2 to 1.6.4, accessing the event listener
routes returns a 503 error.
Workaround: Modify the target port in the YAML file for the event listener’s route.

1. Extract the route name for the relevant namespace.

2. Edit the route to modify the value of the targetPort field.

$ oc get route -n <namespace>

CHAPTER 4. PIPELINES

127

Example: Existing event listener route

Example: Modified event listener route

4.1.4.8.2. Fixed issues

Before this update, the Operator failed when creating RBAC resources if any namespace was in
a Terminating state. With this update, the Operator ignores namespaces in a Terminating
state and creates the RBAC resources.

Before this update, the task runs failed or restarted due to absence of annotation specifying
the release version of the associated Tekton controller. With this update, the inclusion of the
appropriate annotations are automated, and the tasks run without failure or restarts.

4.1.5. Release notes for Red Hat OpenShift Pipelines General Availability 1.5

Red Hat OpenShift Pipelines General Availability (GA) 1.5 is now available on OpenShift Container
Platform 4.8.

4.1.5.1. Compatibility and support matrix

Some features in this release are currently in Technology Preview. These experimental features are not
intended for production use.

In the table, features are marked with the following statuses:

$ oc edit route -n <namespace> <el-route_name>

...
spec:
 host: el-event-listener-q8c3w5-test-upgrade1.apps.ve49aws.aws.ospqa.com
 port:
 targetPort: 8000
 to:
 kind: Service
 name: el-event-listener-q8c3w5
 weight: 100
 wildcardPolicy: None
...

...
spec:
 host: el-event-listener-q8c3w5-test-upgrade1.apps.ve49aws.aws.ospqa.com
 port:
 targetPort: http-listener
 to:
 kind: Service
 name: el-event-listener-q8c3w5
 weight: 100
 wildcardPolicy: None
...

OpenShift Container Platform 4.9 CI/CD

128

https://access.redhat.com/support/offerings/techpreview

TP Technology Preview

GA General Availability

Note the following scope of support on the Red Hat Customer Portal for these features:

Table 4.2. Compatibility and support matrix

Feature Version Support Status

Pipelines 0.24 GA

CLI 0.19 GA

Catalog 0.24 GA

Triggers 0.14 TP

Pipeline resources - TP

For questions and feedback, you can send an email to the product team at pipelines-
interest@redhat.com.

4.1.5.2. New features

In addition to the fixes and stability improvements, the following sections highlight what is new in Red
Hat OpenShift Pipelines 1.5.

Pipeline run and task runs will be automatically pruned by a cron job in the target namespace.
The cron job uses the IMAGE_JOB_PRUNER_TKN environment variable to get the value of
tkn image. With this enhancement, the following fields are introduced to the TektonConfig
custom resource:

In OpenShift Container Platform, you can customize the installation of the Tekton Add-ons
component by modifying the values of the new parameters clusterTasks and
pipelinesTemplates in the TektonConfig custom resource:

...
pruner:
 resources:
 - pipelinerun
 - taskrun
 schedule: "*/5 * * * *" # cron schedule
 keep: 2 # delete all keeping n
...

apiVersion: operator.tekton.dev/v1alpha1
kind: TektonConfig
metadata:
 name: config
spec:

CHAPTER 4. PIPELINES

129

mailto:pipelines-interest@redhat.com

The customization is allowed if you create the add-on using TektonConfig, or directly by using
Tekton Add-ons. However, if the parameters are not passed, the controller adds parameters
with default values.

NOTE

If add-on is created using the TektonConfig custom resource, and you
change the parameter values later in the Addon custom resource, then the
values in the TektonConfig custom resource overwrites the changes.

You can set the value of the pipelinesTemplates parameter to true only
when the value of the clusterTasks parameter is true.

The enableMetrics parameter is added to the TektonConfig custom resource. You can use it
to disable the service monitor, which is part of Tekton Pipelines for OpenShift Container
Platform.

Eventlistener OpenCensus metrics, which captures metrics at process level, is added.

Triggers now has label selector; you can configure triggers for an event listener using labels.

The ClusterInterceptor custom resource definition for registering interceptors is added, which
allows you to register new Interceptor types that you can plug in. In addition, the following
relevant changes are made:

In the trigger specifications, you can configure interceptors using a new API that includes a
ref field to refer to a cluster interceptor. In addition, you can use the params field to add
parameters that pass on to the interceptors for processing.

The bundled interceptors CEL, GitHub, GitLab, and BitBucket, have been migrated. They
are implemented using the new ClusterInterceptor custom resource definition.

 profile: all
 targetNamespace: openshift-pipelines
 addon:
 params:
 - name: clusterTasks
 value: "true"
 - name: pipelineTemplates
 value: "true"
...

apiVersion: operator.tekton.dev/v1alpha1
kind: TektonConfig
metadata:
 name: config
spec:
 profile: all
 targetNamespace: openshift-pipelines
 pipeline:
 params:
 - name: enableMetrics
 value: "true"
...

OpenShift Container Platform 4.9 CI/CD

130

Core interceptors are migrated to the new format, and any new triggers created using the
old syntax automatically switch to the new ref or params based syntax.

To disable prefixing the name of the task or step while displaying logs, use the --prefix option
for log commands.

To display the version of a specific component, use the new --component flag in the tkn
version command.

The tkn hub check-upgrade command is added, and other commands are revised to be based
on the pipeline version. In addition, catalog names are displayed in the search command output.

Support for optional workspaces are added to the start command.

If the plugins are not present in the plugins directory, they are searched in the current path.

The tkn start [task | clustertask | pipeline] command starts interactively and ask for the
params value, even when you specify the default parameters are specified. To stop the
interactive prompts, pass the --use-param-defaults flag at the time of invoking the command.
For example:

The version field is added in the tkn task describe command.

The option to automatically select resources such as TriggerTemplate, or TriggerBinding, or
ClusterTriggerBinding, or Eventlistener, is added in the describe command, if only one is
present.

In the tkn pr describe command, a section for skipped tasks is added.

Support for the tkn clustertask logs is added.

The YAML merge and variable from config.yaml is removed. In addition, the release.yaml file
can now be more easily consumed by tools such as kustomize and ytt.

The support for resource names to contain the dot character (".") is added.

The hostAliases array in the PodTemplate specification is added to the pod-level override of
hostname resolution. It is achieved by modifying the /etc/hosts file.

A variable $(tasks.status) is introduced to access the aggregate execution status of tasks.

An entry-point binary build for Windows is added.

4.1.5.3. Deprecated features

In the when expressions, support for fields written is PascalCase is removed. The when

$ tkn pipeline start build-and-deploy \
 -w name=shared-
workspace,volumeClaimTemplateFile=https://raw.githubusercontent.com/openshift/pipelines-
tutorial/pipelines-1.7/01_pipeline/03_persistent_volume_claim.yaml \
 -p deployment-name=pipelines-vote-api \
 -p git-url=https://github.com/openshift/pipelines-vote-api.git \
 -p IMAGE=image-registry.openshift-image-registry.svc:5000/pipelines-tutorial/pipelines-
vote-api \
 --use-param-defaults

CHAPTER 4. PIPELINES

131

In the when expressions, support for fields written is PascalCase is removed. The when
expressions only support fields written in lowercase.

NOTE

If you had applied a pipeline with when expressions in Tekton Pipelines v0.16
(Operator v1.2.x), you have to reapply it.

When you upgrade the Red Hat OpenShift Pipelines Operator to v1.5, the openshift-client and
the openshift-client-v-1-5-0 cluster tasks have the SCRIPT parameter. However, the ARGS
parameter and the git resource are removed from the specification of the openshift-client
cluster task. This is a breaking change, and only those cluster tasks that do not have a specific
version in the name field of the ClusterTask resource upgrade seamlessly.
To prevent the pipeline runs from breaking, use the SCRIPT parameter after the upgrade
because it moves the values previously specified in the ARGS parameter into the SCRIPT
parameter of the cluster task. For example:

When you upgrade from Red Hat OpenShift Pipelines Operator v1.4 to v1.5, the profile names
in which the TektonConfig custom resource is installed now change.

Table 4.3. Profiles for TektonConfig custom resource

Profiles in Pipelines 1.5 Corresponding profile in
Pipelines 1.4

Installed Tekton components

All (default profile) All (default profile) Pipelines, Triggers, Add-ons

Basic Default Pipelines, Triggers

Lite Basic Pipelines

NOTE

If you used profile: all in the config instance of the TektonConfig custom
resource, no change is necessary in the resource specification.

However, if the installed Operator is either in the Default or the Basic profile
before the upgrade, you must edit the config instance of the TektonConfig
custom resource after the upgrade. For example, if the configuration was profile:
basic before the upgrade, ensure that it is profile: lite after upgrading to
Pipelines 1.5.

...
- name: deploy
 params:
 - name: SCRIPT
 value: oc rollout status <deployment-name>
 runAfter:
 - build
 taskRef:
 kind: ClusterTask
 name: openshift-client
...

OpenShift Container Platform 4.9 CI/CD

132

The disable-home-env-overwrite and disable-working-dir-overwrite fields are now
deprecated and will be removed in a future release. For this release, the default value of these
flags is set to true for backward compatibility.

NOTE

In the next release (Red Hat OpenShift Pipelines 1.6), the HOME environment
variable will not be automatically set to /tekton/home, and the default working
directory will not be set to /workspace for task runs. These defaults collide with
any value set by image Dockerfile of the step.

The ServiceType and podTemplate fields are removed from the EventListener spec.

The controller service account no longer requests cluster-wide permission to list and watch
namespaces.

The status of the EventListener resource has a new condition called Ready.

NOTE

In the future, the other status conditions for the EventListener resource will be
deprecated in favor of the Ready status condition.

The eventListener and namespace fields in the EventListener response are deprecated. Use
the eventListenerUID field instead.

The replicas field is deprecated from the EventListener spec. Instead, the spec.replicas field
is moved to spec.resources.kubernetesResource.replicas in the KubernetesResource spec.

NOTE

The replicas field will be removed in a future release.

The old method of configuring the core interceptors is deprecated. However, it continues to
work until it is removed in a future release. Instead, interceptors in a Trigger resource are now
configured using a new ref and params based syntax. The resulting default webhook
automatically switch the usages of the old syntax to the new syntax for new triggers.

Use rbac.authorization.k8s.io/v1 instead of the deprecated
rbac.authorization.k8s.io/v1beta1 for the ClusterRoleBinding resource.

In cluster roles, the cluster-wide write access to resources such as serviceaccounts, secrets,
configmaps, and limitranges are removed. In addition, cluster-wide access to resources such
as deployments, statefulsets, and deployment/finalizers are removed.

The image custom resource definition in the caching.internal.knative.dev group is not used by
Tekton anymore, and is excluded in this release.

4.1.5.4. Known issues

The git-cli cluster task is built off the alpine/git base image, which expects /root as the user’s
home directory. However, this is not explicitly set in the git-cli cluster task.

In Tekton, the default home directory is overwritten with /tekton/home for every step of a task,

CHAPTER 4. PIPELINES

133

https://github.com/tektoncd/catalog/tree/main/task/git-cli/0.1
https://github.com/tektoncd/catalog/blob/68e44c629c9ee287393681030ed391d2c2e856cd/task/git-cli/0.1/git-cli.yaml#L32

In Tekton, the default home directory is overwritten with /tekton/home for every step of a task,
unless otherwise specified. This overwriting of the $HOME environment variable of the base
image causes the git-cli cluster task to fail.

This issue is expected to be fixed in the upcoming releases. For Red Hat OpenShift Pipelines 1.5
and earlier versions, you can use any one of the following workarounds to avoid the failure of the
git-cli cluster task:

Set the $HOME environment variable in the steps, so that it is not overwritten.

1. [OPTIONAL] If you installed Red Hat OpenShift Pipelines using the Operator, then
clone the git-cli cluster task into a separate task. This approach ensures that the
Operator does not overwrite the changes made to the cluster task.

2. Execute the oc edit clustertasks git-cli command.

3. Add the expected HOME environment variable to the YAML of the step:

WARNING

For Red Hat OpenShift Pipelines installed by the Operator, if you
do not clone the git-cli cluster task into a separate task before
changing the HOME environment variable, then the changes are
overwritten during Operator reconciliation.

Disable overwriting the HOME environment variable in the feature-flags config map.

1. Execute the oc edit -n openshift-pipelines configmap feature-flags command.

2. Set the value of the disable-home-env-overwrite flag to true.

...
steps:
 - name: git
 env:
 - name: HOME
 value: /root
 image: $(params.BASE_IMAGE)
 workingDir: $(workspaces.source.path)
...



OpenShift Container Platform 4.9 CI/CD

134

WARNING

If you installed Red Hat OpenShift Pipelines using the
Operator, then the changes are overwritten during Operator
reconciliation.

Modifying the default value of the disable-home-env-
overwrite flag can break other tasks and cluster tasks, as it
changes the default behavior for all tasks.

Use a different service account for the git-cli cluster task, as the overwriting of the HOME
environment variable happens when the default service account for pipelines is used.

1. Create a new service account.

2. Link your Git secret to the service account you just created.

3. Use the service account while executing a task or a pipeline.

On IBM Power Systems, IBM Z, and LinuxONE, the s2i-dotnet cluster task and the tkn hub
command are unsupported.

When you run Maven and Jib-Maven cluster tasks, the default container image is supported
only on Intel (x86) architecture. Therefore, tasks will fail on IBM Power Systems (ppc64le), IBM
Z, and LinuxONE (s390x) clusters. As a workaround, you can specify a custom image by setting
the MAVEN_IMAGE parameter value to maven:3.6.3-adoptopenjdk-11.

4.1.5.5. Fixed issues

The when expressions in dag tasks are not allowed to specify the context variable accessing the
execution status ($(tasks.<pipelineTask>.status)) of any other task.

Use Owner UIDs instead of Owner names, as it helps avoid race conditions created by deleting a
volumeClaimTemplate PVC, in situations where a PipelineRun resource is quickly deleted and
then recreated.

A new Dockerfile is added for pullrequest-init for build-base image triggered by non-root
users.

When a pipeline or task is executed with the -f option and the param in its definition does not
have a type defined, a validation error is generated instead of the pipeline or task run failing
silently.

For the tkn start [task | pipeline | clustertask] commands, the description of the --workspace
flag is now consistent.

While parsing the parameters, if an empty array is encountered, the corresponding interactive
help is displayed as an empty string now.

4.1.6. Release notes for Red Hat OpenShift Pipelines General Availability 1.4

Red Hat OpenShift Pipelines General Availability (GA) 1.4 is now available on OpenShift Container



CHAPTER 4. PIPELINES

135

Red Hat OpenShift Pipelines General Availability (GA) 1.4 is now available on OpenShift Container
Platform 4.7.

NOTE

In addition to the stable and preview Operator channels, the Red Hat OpenShift Pipelines
Operator 1.4.0 comes with the ocp-4.6, ocp-4.5, and ocp-4.4 deprecated channels.
These deprecated channels and support for them will be removed in the following release
of Red Hat OpenShift Pipelines.

4.1.6.1. Compatibility and support matrix

Some features in this release are currently in Technology Preview. These experimental features are not
intended for production use.

In the table, features are marked with the following statuses:

TP Technology Preview

GA General Availability

Note the following scope of support on the Red Hat Customer Portal for these features:

Table 4.4. Compatibility and support matrix

Feature Version Support Status

Pipelines 0.22 GA

CLI 0.17 GA

Catalog 0.22 GA

Triggers 0.12 TP

Pipeline resources - TP

For questions and feedback, you can send an email to the product team at pipelines-
interest@redhat.com.

4.1.6.2. New features

In addition to the fixes and stability improvements, the following sections highlight what is new in Red
Hat OpenShift Pipelines 1.4.

The custom tasks have the following enhancements:

Pipeline results can now refer to results produced by custom tasks.

Custom tasks can now use workspaces, service accounts, and pod templates to build more
complex custom tasks.

OpenShift Container Platform 4.9 CI/CD

136

https://access.redhat.com/support/offerings/techpreview
mailto:pipelines-interest@redhat.com

The finally task has the following enhancements:

The when expressions are supported in finally tasks, which provides efficient guarded
execution and improved reusability of tasks.

A finally task can be configured to consume the results of any task within the same pipeline.

NOTE

Support for when expressions and finally tasks are unavailable in the
OpenShift Container Platform 4.7 web console.

Support for multiple secrets of the type dockercfg or dockerconfigjson is added for
authentication at runtime.

Functionality to support sparse-checkout with the git-clone task is added. This enables you to
clone only a subset of the repository as your local copy, and helps you to restrict the size of the
cloned repositories.

You can create pipeline runs in a pending state without actually starting them. In clusters that
are under heavy load, this allows Operators to have control over the start time of the pipeline
runs.

Ensure that you set the SYSTEM_NAMESPACE environment variable manually for the
controller; this was previously set by default.

A non-root user is now added to the build-base image of pipelines so that git-init can clone
repositories as a non-root user.

Support to validate dependencies between resolved resources before a pipeline run starts is
added. All result variables in the pipeline must be valid, and optional workspaces from a pipeline
can only be passed to tasks expecting it for the pipeline to start running.

The controller and webhook runs as a non-root group, and their superfluous capabilities have
been removed to make them more secure.

You can use the tkn pr logs command to see the log streams for retried task runs.

You can use the --clustertask option in the tkn tr delete command to delete all the task runs
associated with a particular cluster task.

Support for using Knative service with the EventListener resource is added by introducing a
new customResource field.

An error message is displayed when an event payload does not use the JSON format.

The source control interceptors such as GitLab, BitBucket, and GitHub, now use the new
InterceptorRequest or InterceptorResponse type interface.

A new CEL function marshalJSON is implemented so that you can encode a JSON object or an
array to a string.

An HTTP handler for serving the CEL and the source control core interceptors is added. It
packages four core interceptors into a single HTTP server that is deployed in the tekton-
pipelines namespace. The EventListener object forwards events over the HTTP server to the
interceptor. Each interceptor is available at a different path. For example, the CEL interceptor is
available on the /cel path.

CHAPTER 4. PIPELINES

137

The pipelines-scc Security Context Constraint (SCC) is used with the default pipeline service
account for pipelines. This new service account is similar to anyuid, but with a minor difference
as defined in the YAML for SCC of OpenShift Container Platform 4.7:

4.1.6.3. Deprecated features

The build-gcs sub-type in the pipeline resource storage, and the gcs-fetcher image, are not
supported.

In the taskRun field of cluster tasks, the label tekton.dev/task is removed.

For webhooks, the value v1beta1 corresponding to the field admissionReviewVersions is
removed.

The creds-init helper image for building and deploying is removed.

In the triggers spec and binding, the deprecated field template.name is removed in favor of
template.ref. You should update all eventListener definitions to use the ref field.

NOTE

Upgrade from Pipelines 1.3.x and earlier versions to Pipelines 1.4.0 breaks event
listeners because of the unavailability of the template.name field. For such
cases, use Pipelines 1.4.1 to avail the restored template.name field.

For EventListener custom resources/objects, the fields PodTemplate and ServiceType are
deprecated in favor of Resource.

The deprecated spec style embedded bindings is removed.

The spec field is removed from the triggerSpecBinding.

The event ID representation is changed from a five-character random string to a UUID.

4.1.6.4. Known issues

In the Developer perspective, the pipeline metrics and triggers features are available only on
OpenShift Container Platform 4.7.6 or later versions.

On IBM Power Systems, IBM Z, and LinuxONE, the tkn hub command is not supported.

When you run Maven and Jib Maven cluster tasks on an IBM Power Systems (ppc64le), IBM Z,
and LinuxONE (s390x) clusters, set the MAVEN_IMAGE parameter value to maven:3.6.3-
adoptopenjdk-11.

Triggers throw error resulting from bad handling of the JSON format, if you have the following
configuration in the trigger binding:

fsGroup:
 type: MustRunAs

params:
 - name: github_json
 value: $(body)

OpenShift Container Platform 4.9 CI/CD

138

To resolve the issue:

If you are using triggers v0.11.0 and above, use the marshalJSON CEL function, which takes
a JSON object or array and returns the JSON encoding of that object or array as a string.

If you are using older triggers version, add the following annotation in the trigger template:

When upgrading from Pipelines 1.3.x to 1.4.x, you must recreate the routes.

4.1.6.5. Fixed issues

Previously, the tekton.dev/task label was removed from the task runs of cluster tasks, and the
tekton.dev/clusterTask label was introduced. The problems resulting from that change is
resolved by fixing the clustertask describe and delete commands. In addition, the lastrun
function for tasks is modified, to fix the issue of the tekton.dev/task label being applied to the
task runs of both tasks and cluster tasks in older versions of pipelines.

When doing an interactive tkn pipeline start pipelinename, a PipelineResource is created
interactively. The tkn p start command prints the resource status if the resource status is not
nil.

Previously, the tekton.dev/task=name label was removed from the task runs created from
cluster tasks. This fix modifies the tkn clustertask start command with the --last flag to check
for the tekton.dev/task=name label in the created task runs.

When a task uses an inline task specification, the corresponding task run now gets embedded in
the pipeline when you run the tkn pipeline describe command, and the task name is returned
as embedded.

The tkn version command is fixed to display the version of the installed Tekton CLI tool,
without a configured kubeConfiguration namespace or access to a cluster.

If an argument is unexpected or more than one arguments are used, the tkn completion
command gives an error.

Previously, pipeline runs with the finally tasks nested in a pipeline specification would lose those
finally tasks, when converted to the v1alpha1 version and restored back to the v1beta1
version. This error occurring during conversion is fixed to avoid potential data loss. Pipeline runs
with the finally tasks nested in a pipeline specification is now serialized and stored on the alpha
version, only to be deserialized later.

Previously, there was an error in the pod generation when a service account had the secrets
field as {}. The task runs failed with CouldntGetTask because the GET request with an empty
secret name returned an error, indicating that the resource name may not be empty. This issue
is fixed by avoiding an empty secret name in the kubeclient GET request.

Pipelines with the v1beta1 API versions can now be requested along with the v1alpha1 version,
without losing the finally tasks. Applying the returned v1alpha1 version will store the resource
as v1beta1, with the finally section restored to its original state.

Previously, an unset selfLink field in the controller caused an error in the Kubernetes v1.20
clusters. As a temporary fix, the CloudEvent source field is set to a value that matches the
current source URI, without the value of the auto-populated selfLink field.

annotations:
 triggers.tekton.dev/old-escape-quotes: "true"

CHAPTER 4. PIPELINES

139

Previously, a secret name with dots such as gcr.io led to a task run creation failure. This
happened because of the secret name being used internally as part of a volume mount name.
The volume mount name conforms to the RFC1123 DNS label and disallows dots as part of the
name. This issue is fixed by replacing the dot with a dash that results in a readable name.

Context variables are now validated in the finally tasks.

Previously, when the task run reconciler was passed a task run that did not have a previous
status update containing the name of the pod it created, the task run reconciler listed the pods
associated with the task run. The task run reconciler used the labels of the task run, which were
propagated to the pod, to find the pod. Changing these labels while the task run was running,
caused the code to not find the existing pod. As a result, duplicate pods were created. This issue
is fixed by changing the task run reconciler to only use the tekton.dev/taskRun Tekton-
controlled label when finding the pod.

Previously, when a pipeline accepted an optional workspace and passed it to a pipeline task, the
pipeline run reconciler stopped with an error if the workspace was not provided, even if a missing
workspace binding is a valid state for an optional workspace. This issue is fixed by ensuring that
the pipeline run reconciler does not fail to create a task run, even if an optional workspace is not
provided.

The sorted order of step statuses matches the order of step containers.

Previously, the task run status was set to unknown when a pod encountered the
CreateContainerConfigError reason, which meant that the task and the pipeline ran until the
pod timed out. This issue is fixed by setting the task run status to false, so that the task is set as
failed when the pod encounters the CreateContainerConfigError reason.

Previously, pipeline results were resolved on the first reconciliation, after a pipeline run was
completed. This could fail the resolution resulting in the Succeeded condition of the pipeline
run being overwritten. As a result, the final status information was lost, potentially confusing any
services watching the pipeline run conditions. This issue is fixed by moving the resolution of
pipeline results to the end of a reconciliation, when the pipeline run is put into a Succeeded or
True condition.

Execution status variable is now validated. This avoids validating task results while validating
context variables to access execution status.

Previously, a pipeline result that contained an invalid variable would be added to the pipeline run
with the literal expression of the variable intact. Therefore, it was difficult to assess whether the
results were populated correctly. This issue is fixed by filtering out the pipeline run results that
reference failed task runs. Now, a pipeline result that contains an invalid variable will not be
emitted by the pipeline run at all.

The tkn eventlistener describe command is fixed to avoid crashing without a template. It also
displays the details about trigger references.

Upgrades from Pipelines 1.3.x and earlier versions to Pipelines 1.4.0 breaks event listeners
because of the unavailability of template.name. In Pipelines 1.4.1, the template.name has been
restored to avoid breaking event listeners in triggers.

In Pipelines 1.4.1, the ConsoleQuickStart custom resource has been updated to align with
OpenShift Container Platform 4.7 capabilities and behavior.

4.1.7. Release notes for Red Hat OpenShift Pipelines Technology Preview 1.3

OpenShift Container Platform 4.9 CI/CD

140

4.1.7.1. New features

Red Hat OpenShift Pipelines Technology Preview (TP) 1.3 is now available on OpenShift Container
Platform 4.7. Red Hat OpenShift Pipelines TP 1.3 is updated to support:

Tekton Pipelines 0.19.0

Tekton tkn CLI 0.15.0

Tekton Triggers 0.10.2

cluster tasks based on Tekton Catalog 0.19.0

IBM Power Systems on OpenShift Container Platform 4.7

IBM Z and LinuxONE on OpenShift Container Platform 4.7

In addition to the fixes and stability improvements, the following sections highlight what is new in Red
Hat OpenShift Pipelines 1.3.

4.1.7.1.1. Pipelines

Tasks that build images, such as S2I and Buildah tasks, now emit a URL of the image built that
includes the image SHA.

Conditions in pipeline tasks that reference custom tasks are disallowed because the Condition
custom resource definition (CRD) has been deprecated.

Variable expansion is now added in the Task CRD for the following fields:
spec.steps[].imagePullPolicy and spec.sidecar[].imagePullPolicy.

You can disable the built-in credential mechanism in Tekton by setting the disable-creds-init
feature-flag to true.

Resolved when expressions are now listed in the Skipped Tasks and the Task Runs sections in
the Status field of the PipelineRun configuration.

The git init command can now clone recursive submodules.

A Task CR author can now specify a timeout for a step in the Task spec.

You can now base the entry point image on the distroless/static:nonroot image and give it a
mode to copy itself to the destination, without relying on the cp command being present in the
base image.

You can now use the configuration flag require-git-ssh-secret-known-hosts to disallow
omitting known hosts in the Git SSH secret. When the flag value is set to true, you must include
the known_host field in the Git SSH secret. The default value for the flag is false.

The concept of optional workspaces is now introduced. A task or pipeline might declare a
workspace optional and conditionally change their behavior based on its presence. A task run or
pipeline run might also omit that workspace, thereby modifying the task or pipeline behavior.
The default task run workspaces are not added in place of an omitted optional workspace.

Credentials initialization in Tekton now detects an SSH credential that is used with a non-SSH
URL, and vice versa in Git pipeline resources, and logs a warning in the step containers.

CHAPTER 4. PIPELINES

141

The task run controller emits a warning event if the affinity specified by the pod template is
overwritten by the affinity assistant.

The task run reconciler now records metrics for cloud events that are emitted once a task run is
completed. This includes retries.

4.1.7.1.2. Pipelines CLI

Support for --no-headers flag is now added to the following commands: tkn condition list,tkn
triggerbinding list,tkn eventlistener list,tkn clustertask list, tkn clustertriggerbinding list.

When used together, the --last or --use options override the --prefix-name and --timeout
options.

The tkn eventlistener logs command is now added to view the EventListener logs.

The tekton hub commands are now integrated into the tkn CLI.

The --nocolour option is now changed to --no-color.

The --all-namespaces flag is added to the following commands: tkn triggertemplate list, tkn
condition list, tkn triggerbinding list, tkn eventlistener list.

4.1.7.1.3. Triggers

You can now specify your resource information in the EventListener template.

It is now mandatory for EventListener service accounts to have the list and watch verbs, in
addition to the get verb for all the triggers resources. This enables you to use Listers to fetch
data from EventListener, Trigger, TriggerBinding, TriggerTemplate, and
ClusterTriggerBinding resources. You can use this feature to create a Sink object rather than
specifying multiple informers, and directly make calls to the API server.

A new Interceptor interface is added to support immutable input event bodies. Interceptors can
now add data or fields to a new extensions field, and cannot modify the input bodies making
them immutable. The CEL interceptor uses this new Interceptor interface.

A namespaceSelector field is added to the EventListener resource. Use it to specify the
namespaces from where the EventListener resource can fetch the Trigger object for
processing events. To use the namespaceSelector field, the service account for the
EventListener resource must have a cluster role.

The triggers EventListener resource now supports end-to-end secure connection to the
eventlistener pod.

The escaping parameters behavior in the TriggerTemplates resource by replacing " with \" is
now removed.

A new resources field, supporting Kubernetes resources, is introduced as part of the
EventListener spec.

A new functionality for the CEL interceptor, with support for upper and lower-casing of ASCII
strings, is added.

You can embed TriggerBinding resources by using the name and value fields in a trigger, or an
event listener.

OpenShift Container Platform 4.9 CI/CD

142

The PodSecurityPolicy configuration is updated to run in restricted environments. It ensures
that containers must run as non-root. In addition, the role-based access control for using the
pod security policy is moved from cluster-scoped to namespace-scoped. This ensures that the
triggers cannot use other pod security policies that are unrelated to a namespace.

Support for embedded trigger templates is now added. You can either use the name field to
refer to an embedded template or embed the template inside the spec field.

4.1.7.2. Deprecated features

Pipeline templates that use PipelineResources CRDs are now deprecated and will be removed
in a future release.

The template.name field is deprecated in favor of the template.ref field and will be removed in
a future release.

The -c shorthand for the --check command has been removed. In addition, global tkn flags are
added to the version command.

4.1.7.3. Known issues

CEL overlays add fields to a new top-level extensions function, instead of modifying the
incoming event body. TriggerBinding resources can access values within this new extensions
function using the $(extensions.<key>) syntax. Update your binding to use the $(extensions.
<key>) syntax instead of the $(body.<overlay-key>) syntax.

The escaping parameters behavior by replacing " with \" is now removed. If you need to retain
the old escaping parameters behavior add the tekton.dev/old-escape-quotes: true"
annotation to your TriggerTemplate specification.

You can embed TriggerBinding resources by using the name and value fields inside a trigger
or an event listener. However, you cannot specify both name and ref fields for a single binding.
Use the ref field to refer to a TriggerBinding resource and the name field for embedded
bindings.

An interceptor cannot attempt to reference a secret outside the namespace of an
EventListener resource. You must include secrets in the namespace of the
`EventListener`resource.

In Triggers 0.9.0 and later, if a body or header based TriggerBinding parameter is missing or
malformed in an event payload, the default values are used instead of displaying an error.

Tasks and pipelines created with WhenExpression objects using Tekton Pipelines 0.16.x must
be reapplied to fix their JSON annotations.

When a pipeline accepts an optional workspace and gives it to a task, the pipeline run stalls if the
workspace is not provided.

To use the Buildah cluster task in a disconnected environment, ensure that the Dockerfile uses
an internal image stream as the base image, and then use it in the same manner as any S2I
cluster task.

4.1.7.4. Fixed issues

Extensions added by a CEL Interceptor are passed on to webhook interceptors by adding the
Extensions field within the event body.

CHAPTER 4. PIPELINES

143

The activity timeout for log readers is now configurable using the LogOptions field. However,
the default behavior of timeout in 10 seconds is retained.

The log command ignores the --follow flag when a task run or pipeline run is complete, and
reads available logs instead of live logs.

References to the following Tekton resources: EventListener, TriggerBinding,
ClusterTriggerBinding, Condition, and TriggerTemplate are now standardized and made
consistent across all user-facing messages in tkn commands.

Previously, if you started a canceled task run or pipeline run with the --use-taskrun <canceled-
task-run-name>, --use-pipelinerun <canceled-pipeline-run-name> or --last flags, the new
run would be canceled. This bug is now fixed.

The tkn pr desc command is now enhanced to ensure that it does not fail in case of pipeline
runs with conditions.

When you delete a task run using the tkn tr delete command with the --task option, and a
cluster task exists with the same name, the task runs for the cluster task also get deleted. As a
workaround, filter the task runs by using the TaskRefKind field.

The tkn triggertemplate describe command would display only part of the apiVersion value in
the output. For example, only triggers.tekton.dev was displayed instead of
triggers.tekton.dev/v1alpha1. This bug is now fixed.

The webhook, under certain conditions, would fail to acquire a lease and not function correctly.
This bug is now fixed.

Pipelines with when expressions created in v0.16.3 can now be run in v0.17.1 and later. After an
upgrade, you do not need to reapply pipeline definitions created in previous versions because
both the uppercase and lowercase first letters for the annotations are now supported.

By default, the leader-election-ha field is now enabled for high availability. When the disable-
ha controller flag is set to true, it disables high availability support.

Issues with duplicate cloud events are now fixed. Cloud events are now sent only when a
condition changes the state, reason, or message.

When a service account name is missing from a PipelineRun or TaskRun spec, the controller
uses the service account name from the config-defaults config map. If the service account
name is also missing in the config-defaults config map, the controller now sets it to default in
the spec.

Validation for compatibility with the affinity assistant is now supported when the same
persistent volume claim is used for multiple workspaces, but with different subpaths.

4.1.8. Release notes for Red Hat OpenShift Pipelines Technology Preview 1.2

4.1.8.1. New features

Red Hat OpenShift Pipelines Technology Preview (TP) 1.2 is now available on OpenShift Container
Platform 4.6. Red Hat OpenShift Pipelines TP 1.2 is updated to support:

Tekton Pipelines 0.16.3

Tekton tkn CLI 0.13.1

OpenShift Container Platform 4.9 CI/CD

144

Tekton Triggers 0.8.1

cluster tasks based on Tekton Catalog 0.16

IBM Power Systems on OpenShift Container Platform 4.6

IBM Z and LinuxONE on OpenShift Container Platform 4.6

In addition to the fixes and stability improvements, the following sections highlight what is new in Red
Hat OpenShift Pipelines 1.2.

4.1.8.1.1. Pipelines

This release of Red Hat OpenShift Pipelines adds support for a disconnected installation.

NOTE

Installations in restricted environments are currently not supported on IBM Power
Systems, IBM Z, and LinuxONE.

You can now use the when field, instead of conditions resource, to run a task only when certain
criteria are met. The key components of WhenExpression resources are Input, Operator, and
Values. If all the when expressions evaluate to True, then the task is run. If any of the when
expressions evaluate to False, the task is skipped.

Step statuses are now updated if a task run is canceled or times out.

Support for Git Large File Storage (LFS) is now available to build the base image used by git-
init.

You can now use the taskSpec field to specify metadata, such as labels and annotations, when a
task is embedded in a pipeline.

Cloud events are now supported by pipeline runs. Retries with backoff are now enabled for
cloud events sent by the cloud event pipeline resource.

You can now set a default Workspace configuration for any workspace that a Task resource
declares, but that a TaskRun resource does not explicitly provide.

Support is available for namespace variable interpolation for the PipelineRun namespace and
TaskRun namespace.

Validation for TaskRun objects is now added to check that not more than one persistent
volume claim workspace is used when a TaskRun resource is associated with an Affinity
Assistant. If more than one persistent volume claim workspace is used, the task run fails with a
TaskRunValidationFailed condition. Note that by default, the Affinity Assistant is disabled in
Red Hat OpenShift Pipelines, so you will need to enable the assistant to use it.

4.1.8.1.2. Pipelines CLI

The tkn task describe, tkn taskrun describe, tkn clustertask describe, tkn pipeline describe,
and tkn pipelinerun describe commands now:

Automatically select the Task, TaskRun, ClusterTask, Pipeline and PipelineRun resource,
respectively, if only one of them is present.

Display the results of the Task, TaskRun, ClusterTask, Pipeline and PipelineRun

CHAPTER 4. PIPELINES

145

Display the results of the Task, TaskRun, ClusterTask, Pipeline and PipelineRun
resource in their outputs, respectively.

Display workspaces declared in the Task, TaskRun, ClusterTask, Pipeline and
PipelineRun resource in their outputs, respectively.

You can now use the --prefix-name option with the tkn clustertask start command to specify a
prefix for the name of a task run.

Interactive mode support has now been provided to the tkn clustertask start command.

You can now specify PodTemplate properties supported by pipelines using local or remote file
definitions for TaskRun and PipelineRun objects.

You can now use the --use-params-defaults option with the tkn clustertask start command to
use the default values set in the ClusterTask configuration and create the task run.

The --use-param-defaults flag for the tkn pipeline start command now prompts the
interactive mode if the default values have not been specified for some of the parameters.

4.1.8.1.3. Triggers

The Common Expression Language (CEL) function named parseYAML has been added to
parse a YAML string into a map of strings.

Error messages for parsing CEL expressions have been improved to make them more granular
while evaluating expressions and when parsing the hook body for creating the evaluation
environment.

Support is now available for marshaling boolean values and maps if they are used as the values
of expressions in a CEL overlay mechanism.

The following fields have been added to the EventListener object:

The replicas field enables the event listener to run more than one pod by specifying the
number of replicas in the YAML file.

The NodeSelector field enables the EventListener object to schedule the event listener
pod to a specific node.

Webhook interceptors can now parse the EventListener-Request-URL header to extract
parameters from the original request URL being handled by the event listener.

Annotations from the event listener can now be propagated to the deployment, services, and
other pods. Note that custom annotations on services or deployment are overwritten, and
hence, must be added to the event listener annotations so that they are propagated.

Proper validation for replicas in the EventListener specification is now available for cases when
a user specifies the spec.replicas values as negative or zero.

You can now specify the TriggerCRD object inside the EventListener spec as a reference
using the TriggerRef field to create the TriggerCRD object separately and then bind it inside
the EventListener spec.

Validation and defaults for the TriggerCRD object are now available.

4.1.8.2. Deprecated features

OpenShift Container Platform 4.9 CI/CD

146

$(params) parameters are now removed from the triggertemplate resource and replaced by
$(tt.params) to avoid confusion between the resourcetemplate and triggertemplate resource
parameters.

The ServiceAccount reference of the optional EventListenerTrigger-based authentication
level has changed from an object reference to a ServiceAccountName string. This ensures that
the ServiceAccount reference is in the same namespace as the EventListenerTrigger object.

The Conditions custom resource definition (CRD) is now deprecated; use the
WhenExpressions CRD instead.

The PipelineRun.Spec.ServiceAccountNames object is being deprecated and replaced by
the PipelineRun.Spec.TaskRunSpec[].ServiceAccountName object.

4.1.8.3. Known issues

This release of Red Hat OpenShift Pipelines adds support for a disconnected installation.
However, some images used by the cluster tasks must be mirrored for them to work in
disconnected clusters.

Pipelines in the openshift namespace are not deleted after you uninstall the Red Hat OpenShift
Pipelines Operator. Use the oc delete pipelines -n openshift --all command to delete the
pipelines.

Uninstalling the Red Hat OpenShift Pipelines Operator does not remove the event listeners.
As a workaround, to remove the EventListener and Pod CRDs:

1. Edit the EventListener object with the foregroundDeletion finalizers:

For example:

2. Delete the EventListener CRD:

When you run a multi-arch container image task without command specification on an IBM
Power Systems (ppc64le) or IBM Z (s390x) cluster, the TaskRun resource fails with the
following error:

As a workaround, use an architecture specific container image or specify the sha256 digest to
point to the correct architecture. To get the sha256 digest enter:

$ oc patch el/<eventlistener_name> -p '{"metadata":{"finalizers":["foregroundDeletion"]}}'
--type=merge

$ oc patch el/github-listener-interceptor -p '{"metadata":{"finalizers":
["foregroundDeletion"]}}' --type=merge

$ oc patch crd/eventlisteners.triggers.tekton.dev -p '{"metadata":{"finalizers":[]}}' --
type=merge

Error executing command: fork/exec /bin/bash: exec format error

$ skopeo inspect --raw <image_name>| jq '.manifests[] | select(.platform.architecture == "
<architecture>") | .digest'

CHAPTER 4. PIPELINES

147

4.1.8.4. Fixed issues

A simple syntax validation to check the CEL filter, overlays in the Webhook validator, and the
expressions in the interceptor has now been added.

Triggers no longer overwrite annotations set on the underlying deployment and service objects.

Previously, an event listener would stop accepting events. This fix adds an idle timeout of 120
seconds for the EventListener sink to resolve this issue.

Previously, canceling a pipeline run with a Failed(Canceled) state gave a success message. This
has been fixed to display an error instead.

The tkn eventlistener list command now provides the status of the listed event listeners, thus
enabling you to easily identify the available ones.

Consistent error messages are now displayed for the triggers list and triggers describe
commands when triggers are not installed or when a resource cannot be found.

Previously, a large number of idle connections would build up during cloud event delivery. The
DisableKeepAlives: true parameter was added to the cloudeventclient config to fix this issue.
Thus, a new connection is set up for every cloud event.

Previously, the creds-init code would write empty files to the disk even if credentials of a given
type were not provided. This fix modifies the creds-init code to write files for only those
credentials that have actually been mounted from correctly annotated secrets.

4.1.9. Release notes for Red Hat OpenShift Pipelines Technology Preview 1.1

4.1.9.1. New features

Red Hat OpenShift Pipelines Technology Preview (TP) 1.1 is now available on OpenShift Container
Platform 4.5. Red Hat OpenShift Pipelines TP 1.1 is updated to support:

Tekton Pipelines 0.14.3

Tekton tkn CLI 0.11.0

Tekton Triggers 0.6.1

cluster tasks based on Tekton Catalog 0.14

In addition to the fixes and stability improvements, the following sections highlight what is new in Red
Hat OpenShift Pipelines 1.1.

4.1.9.1.1. Pipelines

Workspaces can now be used instead of pipeline resources. It is recommended that you use
workspaces in OpenShift Pipelines, as pipeline resources are difficult to debug, limited in scope,
and make tasks less reusable. For more details on workspaces, see the Understanding
OpenShift Pipelines section.

Workspace support for volume claim templates has been added:

The volume claim template for a pipeline run and task run can now be added as a volume
source for workspaces. The tekton-controller then creates a persistent volume claim (PVC)

OpenShift Container Platform 4.9 CI/CD

148

using the template that is seen as a PVC for all task runs in the pipeline. Thus you do not
need to define the PVC configuration every time it binds a workspace that spans multiple
tasks.

Support to find the name of the PVC when a volume claim template is used as a volume
source is now available using variable substitution.

Support for improving audits:

The PipelineRun.Status field now contains the status of every task run in the pipeline and
the pipeline specification used to instantiate a pipeline run to monitor the progress of the
pipeline run.

Pipeline results have been added to the pipeline specification and PipelineRun status.

The TaskRun.Status field now contains the exact task specification used to instantiate the
TaskRun resource.

Support to apply the default parameter to conditions.

A task run created by referencing a cluster task now adds the tekton.dev/clusterTask label
instead of the tekton.dev/task label.

The kube config writer now adds the ClientKeyData and the ClientCertificateData
configurations in the resource structure to enable replacement of the pipeline resource type
cluster with the kubeconfig-creator task.

The names of the feature-flags and the config-defaults config maps are now customizable.

Support for the host network in the pod template used by the task run is now available.

An Affinity Assistant is now available to support node affinity in task runs that share workspace
volume. By default, this is disabled on OpenShift Pipelines.

The pod template has been updated to specify imagePullSecrets to identify secrets that the
container runtime should use to authorize container image pulls when starting a pod.

Support for emitting warning events from the task run controller if the controller fails to update
the task run.

Standard or recommended k8s labels have been added to all resources to identify resources
belonging to an application or component.

The Entrypoint process is now notified for signals and these signals are then propagated using
a dedicated PID Group of the Entrypoint process.

The pod template can now be set on a task level at runtime using task run specs.

Support for emitting Kubernetes events:

The controller now emits events for additional task run lifecycle events - taskrun started
and taskrun running.

The pipeline run controller now emits an event every time a pipeline starts.

In addition to the default Kubernetes events, support for cloud events for task runs is now
available. The controller can be configured to send any task run events, such as create, started,
and failed, as cloud events.

CHAPTER 4. PIPELINES

149

Support for using the $context.<task|taskRun|pipeline|pipelineRun>.name variable to
reference the appropriate name when in pipeline runs and task runs.

Validation for pipeline run parameters is now available to ensure that all the parameters
required by the pipeline are provided by the pipeline run. This also allows pipeline runs to provide
extra parameters in addition to the required parameters.

You can now specify tasks within a pipeline that will always execute before the pipeline exits,
either after finishing all tasks successfully or after a task in the pipeline failed, using the finally
field in the pipeline YAML file.

The git-clone cluster task is now available.

4.1.9.1.2. Pipelines CLI

Support for embedded trigger binding is now available to the tkn evenlistener describe
command.

Support to recommend subcommands and make suggestions if an incorrect subcommand is
used.

The tkn task describe command now auto selects the task if only one task is present in the
pipeline.

You can now start a task using default parameter values by specifying the --use-param-
defaults flag in the tkn task start command.

You can now specify a volume claim template for pipeline runs or task runs using the --
workspace option with the tkn pipeline start or tkn task start commands.

The tkn pipelinerun logs command now displays logs for the final tasks listed in the finally
section.

Interactive mode support has now been provided to the tkn task start command and the
describe subcommand for the following tkn resources: pipeline, pipelinerun, task, taskrun,
clustertask, and pipelineresource.

The tkn version command now displays the version of the triggers installed in the cluster.

The tkn pipeline describe command now displays parameter values and timeouts specified for
tasks used in the pipeline.

Support added for the --last option for the tkn pipelinerun describe and the tkn taskrun
describe commands to describe the most recent pipeline run or task run, respectively.

The tkn pipeline describe command now displays the conditions applicable to the tasks in the
pipeline.

You can now use the --no-headers and --all-namespaces flags with the tkn resource list
command.

4.1.9.1.3. Triggers

The following Common Expression Language (CEL) functions are now available:

parseURL to parse and extract portions of a URL

parseJSON to parse JSON value types embedded in a string in the payload field of the

OpenShift Container Platform 4.9 CI/CD

150

parseJSON to parse JSON value types embedded in a string in the payload field of the
deployment webhook

A new interceptor for webhooks from Bitbucket has been added.

Event listeners now display the Address URL and the Available status as additional fields
when listed with the kubectl get command.

trigger template params now use the $(tt.params.<paramName>) syntax instead of $(params.
<paramName>) to reduce the confusion between trigger template and resource templates
params.

You can now add tolerations in the EventListener CRD to ensure that event listeners are
deployed with the same configuration even if all nodes are tainted due to security or
management issues.

You can now add a Readiness Probe for event listener Deployment at URL/live.

Support for embedding TriggerBinding specifications in event listener triggers is now added.

Trigger resources are now annotated with the recommended app.kubernetes.io labels.

4.1.9.2. Deprecated features

The following items are deprecated in this release:

The --namespace or -n flags for all cluster-wide commands, including the clustertask and
clustertriggerbinding commands, are deprecated. It will be removed in a future release.

The name field in triggers.bindings within an event listener has been deprecated in favor of
the ref field and will be removed in a future release.

Variable interpolation in trigger templates using $(params) has been deprecated in favor of
using $(tt.params) to reduce confusion with the pipeline variable interpolation syntax. The
$(params.<paramName>) syntax will be removed in a future release.

The tekton.dev/task label is deprecated on cluster tasks.

The TaskRun.Status.ResourceResults.ResourceRef field is deprecated and will be removed.

The tkn pipeline create, tkn task create, and tkn resource create -f subcommands have been
removed.

Namespace validation has been removed from tkn commands.

The default timeout of 1h and the -t flag for the tkn ct start command have been removed.

The s2i cluster task has been deprecated.

4.1.9.3. Known issues

Conditions do not support workspaces.

The --workspace option and the interactive mode is not supported for the tkn clustertask
start command.

Support of backward compatibility for $(params.<paramName>) syntax forces you to use

CHAPTER 4. PIPELINES

151

Support of backward compatibility for $(params.<paramName>) syntax forces you to use
trigger templates with pipeline specific params as the trigger s webhook is unable to
differentiate trigger params from pipelines params.

Pipeline metrics report incorrect values when you run a promQL query for
tekton_taskrun_count and tekton_taskrun_duration_seconds_count.

pipeline runs and task runs continue to be in the Running and Running(Pending) states
respectively even when a non existing PVC name is given to a workspace.

4.1.9.4. Fixed issues

Previously, the tkn task delete <name> --trs command would delete both the task and cluster
task if the name of the task and cluster task were the same. With this fix, the command deletes
only the task runs that are created by the task <name>.

Previously the tkn pr delete -p <name> --keep 2 command would disregard the -p flag when
used with the --keep flag and would delete all the pipeline runs except the latest two. With this
fix, the command deletes only the pipeline runs that are created by the pipeline <name>, except
for the latest two.

The tkn triggertemplate describe output now displays resource templates in a table format
instead of YAML format.

Previously the buildah cluster task failed when a new user was added to a container. With this
fix, the issue has been resolved.

4.1.10. Release notes for Red Hat OpenShift Pipelines Technology Preview 1.0

4.1.10.1. New features

Red Hat OpenShift Pipelines Technology Preview (TP) 1.0 is now available on OpenShift Container
Platform 4.4. Red Hat OpenShift Pipelines TP 1.0 is updated to support:

Tekton Pipelines 0.11.3

Tekton tkn CLI 0.9.0

Tekton Triggers 0.4.0

cluster tasks based on Tekton Catalog 0.11

In addition to the fixes and stability improvements, the following sections highlight what is new in Red
Hat OpenShift Pipelines 1.0.

4.1.10.1.1. Pipelines

Support for v1beta1 API Version.

Support for an improved limit range. Previously, limit range was specified exclusively for the task
run and the pipeline run. Now there is no need to explicitly specify the limit range. The minimum
limit range across the namespace is used.

Support for sharing data between tasks using task results and task params.

Pipelines can now be configured to not overwrite the HOME environment variable and the

OpenShift Container Platform 4.9 CI/CD

152

Pipelines can now be configured to not overwrite the HOME environment variable and the
working directory of steps.

Similar to task steps, sidecars now support script mode.

You can now specify a different scheduler name in task run podTemplate resource.

Support for variable substitution using Star Array Notation.

Tekton controller can now be configured to monitor an individual namespace.

A new description field is now added to the specification of pipelines, tasks, cluster tasks,
resources, and conditions.

Addition of proxy parameters to Git pipeline resources.

4.1.10.1.2. Pipelines CLI

The describe subcommand is now added for the following tkn resources: EventListener,
Condition, TriggerTemplate, ClusterTask, and TriggerSBinding.

Support added for v1beta1 to the following resources along with backward compatibility for
v1alpha1: ClusterTask, Task, Pipeline, PipelineRun, and TaskRun.

The following commands can now list output from all namespaces using the --all-namespaces
flag option: tkn task list, tkn pipeline list, tkn taskrun list, tkn pipelinerun list
The output of these commands is also enhanced to display information without headers using
the --no-headers flag option.

You can now start a pipeline using default parameter values by specifying --use-param-
defaults flag in the tkn pipelines start command.

Support for workspace is now added to tkn pipeline start and tkn task start commands.

A new clustertriggerbinding command is now added with the following subcommands:
describe, delete, and list.

You can now directly start a pipeline run using a local or remote yaml file.

The describe subcommand now displays an enhanced and detailed output. With the addition of
new fields, such as description, timeout, param description, and sidecar status, the command
output now provides more detailed information about a specific tkn resource.

The tkn task log command now displays logs directly if only one task is present in the
namespace.

4.1.10.1.3. Triggers

Triggers can now create both v1alpha1 and v1beta1 pipeline resources.

Support for new Common Expression Language (CEL) interceptor function - compareSecret.
This function securely compares strings to secrets in CEL expressions.

Support for authentication and authorization at the event listener trigger level.

4.1.10.2. Deprecated features

CHAPTER 4. PIPELINES

153

The following items are deprecated in this release:

The environment variable $HOME, and variable workingDir in the Steps specification are
deprecated and might be changed in a future release. Currently in a Step container, the HOME
and workingDir variables are overwritten to /tekton/home and /workspace variables,
respectively.
In a later release, these two fields will not be modified, and will be set to values defined in the
container image and the Task YAML. For this release, use the disable-home-env-overwrite
and disable-working-directory-overwrite flags to disable overwriting of the HOME and
workingDir variables.

The following commands are deprecated and might be removed in the future release: tkn
pipeline create, tkn task create.

The -f flag with the tkn resource create command is now deprecated. It might be removed in
the future release.

The -t flag and the --timeout flag (with seconds format) for the tkn clustertask create
command are now deprecated. Only duration timeout format is now supported, for example
1h30s. These deprecated flags might be removed in the future release.

4.1.10.3. Known issues

If you are upgrading from an older version of Red Hat OpenShift Pipelines, you must delete your
existing deployments before upgrading to Red Hat OpenShift Pipelines version 1.0. To delete an
existing deployment, you must first delete Custom Resources and then uninstall the Red Hat
OpenShift Pipelines Operator. For more details, see the uninstalling Red Hat OpenShift
Pipelines section.

Submitting the same v1alpha1 tasks more than once results in an error. Use the oc replace
command instead of oc apply when re-submitting a v1alpha1 task.

The buildah cluster task does not work when a new user is added to a container.
When the Operator is installed, the --storage-driver flag for the buildah cluster task is not
specified, therefore the flag is set to its default value. In some cases, this causes the storage
driver to be set incorrectly. When a new user is added, the incorrect storage-driver results in the
failure of the buildah cluster task with the following error:

useradd: /etc/passwd.8: lock file already used
useradd: cannot lock /etc/passwd; try again later.

As a workaround, manually set the --storage-driver flag value to overlay in the buildah-
task.yaml file:

1. Login to your cluster as a cluster-admin:

$ oc login -u <login> -p <password> https://openshift.example.com:6443

2. Use the oc edit command to edit buildah cluster task:

$ oc edit clustertask buildah

The current version of the buildah clustertask YAML file opens in the editor set by your
EDITOR environment variable.

OpenShift Container Platform 4.9 CI/CD

154

3. Under the Steps field, locate the following command field:

 command: ['buildah', 'bud', '--format=$(params.FORMAT)', '--tls-
verify=$(params.TLSVERIFY)', '--layers', '-f', '$(params.DOCKERFILE)', '-t',
'$(resources.outputs.image.url)', '$(params.CONTEXT)']

4. Replace the command field with the following:

 command: ['buildah', '--storage-driver=overlay', 'bud', '--format=$(params.FORMAT)', '--
tls-verify=$(params.TLSVERIFY)', '--no-cache', '-f', '$(params.DOCKERFILE)', '-t',
'$(params.IMAGE)', '$(params.CONTEXT)']

5. Save the file and exit.

Alternatively, you can also modify the buildah cluster task YAML file directly on the web
console by navigating to Pipelines → Cluster Tasks → buildah. Select Edit Cluster Task from
the Actions menu and replace the command field as shown in the previous procedure.

4.1.10.4. Fixed issues

Previously, the DeploymentConfig task triggered a new deployment build even when an image
build was already in progress. This caused the deployment of the pipeline to fail. With this fix, the
deploy task command is now replaced with the oc rollout status command which waits for the
in-progress deployment to finish.

Support for APP_NAME parameter is now added in pipeline templates.

Previously, the pipeline template for Java S2I failed to look up the image in the registry. With
this fix, the image is looked up using the existing image pipeline resources instead of the user
provided IMAGE_NAME parameter.

All the OpenShift Pipelines images are now based on the Red Hat Universal Base Images (UBI).

Previously, when the pipeline was installed in a namespace other than tekton-pipelines, the tkn
version command displayed the pipeline version as unknown. With this fix, the tkn version
command now displays the correct pipeline version in any namespace.

The -c flag is no longer supported for the tkn version command.

Non-admin users can now list the cluster trigger bindings.

The event listener CompareSecret function is now fixed for the CEL Interceptor.

The list, describe, and start subcommands for tasks and cluster tasks now correctly display the
output in case a task and cluster task have the same name.

Previously, the OpenShift Pipelines Operator modified the privileged security context
constraints (SCCs), which caused an error during cluster upgrade. This error is now fixed.

In the tekton-pipelines namespace, the timeouts of all task runs and pipeline runs are now set
to the value of default-timeout-minutes field using the config map.

Previously, the pipelines section in the web console was not displayed for non-admin users. This
issue is now resolved.

CHAPTER 4. PIPELINES

155

4.2. UNDERSTANDING OPENSHIFT PIPELINES

Red Hat OpenShift Pipelines is a cloud-native, continuous integration and continuous delivery (CI/CD)
solution based on Kubernetes resources. It uses Tekton building blocks to automate deployments across
multiple platforms by abstracting away the underlying implementation details. Tekton introduces a
number of standard custom resource definitions (CRDs) for defining CI/CD pipelines that are portable
across Kubernetes distributions.

4.2.1. Key features

Red Hat OpenShift Pipelines is a serverless CI/CD system that runs pipelines with all the
required dependencies in isolated containers.

Red Hat OpenShift Pipelines are designed for decentralized teams that work on microservice-
based architecture.

Red Hat OpenShift Pipelines use standard CI/CD pipeline definitions that are easy to extend
and integrate with the existing Kubernetes tools, enabling you to scale on-demand.

You can use Red Hat OpenShift Pipelines to build images with Kubernetes tools such as
Source-to-Image (S2I), Buildah, Buildpacks, and Kaniko that are portable across any Kubernetes
platform.

You can use the OpenShift Container Platform Developer console to create Tekton resources,
view logs of pipeline runs, and manage pipelines in your OpenShift Container Platform
namespaces.

4.2.2. OpenShift Pipeline Concepts

This guide provides a detailed view of the various pipeline concepts.

4.2.2.1. Tasks

Tasks are the building blocks of a pipeline and consists of sequentially executed steps. It is essentially a
function of inputs and outputs. A task can run individually or as a part of the pipeline. Tasks are reusable
and can be used in multiple Pipelines.

Steps are a series of commands that are sequentially executed by the task and achieve a specific goal,
such as building an image. Every task runs as a pod, and each step runs as a container within that pod.
Because steps run within the same pod, they can access the same volumes for caching files, config
maps, and secrets.

The following example shows the apply-manifests task.

apiVersion: tekton.dev/v1beta1 1
kind: Task 2
metadata:
 name: apply-manifests 3
spec: 4
 workspaces:
 - name: source
 params:
 - name: manifest_dir
 description: The directory in source that contains yaml manifests
 type: string

OpenShift Container Platform 4.9 CI/CD

156

1

2

3

4

The task API version, v1beta1.

The type of Kubernetes object, Task.

The unique name of this task.

The list of parameters and steps in the task and the workspace used by the task.

This task starts the pod and runs a container inside that pod using the specified image to run the
specified commands.

NOTE

Starting with Pipelines 1.6, the following defaults from the step YAML file are removed:

The HOME environment variable does not default to the /tekton/home directory

The workingDir field does not default to the /workspace directory

Instead, the container for the step defines the HOME environment variable and the
workingDir field. However, you can override the default values by specifying the custom
values in the YAML file for the step.

As a temporary measure, to maintain backward compatibility with the older Pipelines
versions, you can set the following fields in the TektonConfig custom resource definition
to false:

spec:
 pipeline:
 disable-working-directory-overwrite: false
 disable-home-env-overwrite: false

4.2.2.2. When expression

When expressions guard task execution by setting criteria for the execution of tasks within a pipeline.
They contain a list of components that allows a task to run only when certain criteria are met. When
expressions are also supported in the final set of tasks that are specified using the finally field in the
pipeline YAML file.

The key components of a when expression are as follows:

input: Specifies static inputs or variables such as a parameter, task result, and execution status.

 default: "k8s"
 steps:
 - name: apply
 image: image-registry.openshift-image-registry.svc:5000/openshift/cli:latest
 workingDir: /workspace/source
 command: ["/bin/bash", "-c"]
 args:
 - |-
 echo Applying manifests in $(params.manifest_dir) directory
 oc apply -f $(params.manifest_dir)
 echo -----------------------------------

CHAPTER 4. PIPELINES

157

input: Specifies static inputs or variables such as a parameter, task result, and execution status.
You must enter a valid input. If you do not enter a valid input, its value defaults to an empty
string.

operator: Specifies the relationship of an input to a set of values. Enter in or notin as your
operator values.

values: Specifies an array of string values. Enter a non-empty array of static values or variables
such as parameters, results, and a bound state of a workspace.

The declared when expressions are evaluated before the task is run. If the value of a when expression is
True, the task is run. If the value of a when expression is False, the task is skipped.

You can use the when expressions in various use cases. For example, whether:

The result of a previous task is as expected.

A file in a Git repository has changed in the previous commits.

An image exists in the registry.

An optional workspace is available.

The following example shows the when expressions for a pipeline run. The pipeline run will execute the
create-file task only if the following criteria are met: the path parameter is README.md, and the echo-
file-exists task executed only if the exists result from the check-file task is yes.

apiVersion: tekton.dev/v1beta1
kind: PipelineRun 1
metadata:
 generateName: guarded-pr-
spec:
 serviceAccountName: 'pipeline'
 pipelineSpec:
 params:
 - name: path
 type: string
 description: The path of the file to be created
 workspaces:
 - name: source
 description: |
 This workspace is shared among all the pipeline tasks to read/write common resources
 tasks:
 - name: create-file 2
 when:
 - input: "$(params.path)"
 operator: in
 values: ["README.md"]
 workspaces:
 - name: source
 workspace: source
 taskSpec:
 workspaces:
 - name: source
 description: The workspace to create the readme file in
 steps:

OpenShift Container Platform 4.9 CI/CD

158

 - name: write-new-stuff
 image: ubuntu
 script: 'touch $(workspaces.source.path)/README.md'
 - name: check-file
 params:
 - name: path
 value: "$(params.path)"
 workspaces:
 - name: source
 workspace: source
 runAfter:
 - create-file
 taskSpec:
 params:
 - name: path
 workspaces:
 - name: source
 description: The workspace to check for the file
 results:
 - name: exists
 description: indicates whether the file exists or is missing
 steps:
 - name: check-file
 image: alpine
 script: |
 if test -f $(workspaces.source.path)/$(params.path); then
 printf yes | tee /tekton/results/exists
 else
 printf no | tee /tekton/results/exists
 fi
 - name: echo-file-exists
 when: 3
 - input: "$(tasks.check-file.results.exists)"
 operator: in
 values: ["yes"]
 taskSpec:
 steps:
 - name: echo
 image: ubuntu
 script: 'echo file exists'
...
 - name: task-should-be-skipped-1
 when: 4
 - input: "$(params.path)"
 operator: notin
 values: ["README.md"]
 taskSpec:
 steps:
 - name: echo
 image: ubuntu
 script: exit 1
...
 finally:
 - name: finally-task-should-be-executed
 when: 5
 - input: "$(tasks.echo-file-exists.status)"

CHAPTER 4. PIPELINES

159

1

2

3

4

5

Specifies the type of Kubernetes object. In this example, PipelineRun.

Task create-file used in the Pipeline.

when expression that specifies to execute the echo-file-exists task only if the exists result from
the check-file task is yes.

when expression that specifies to skip the task-should-be-skipped-1 task only if the path
parameter is README.md.

when expression that specifies to execute the finally-task-should-be-executed task only if the
execution status of the echo-file-exists task and the task status is Succeeded, the exists result
from the check-file task is yes, and the path parameter is README.md.

The Pipeline Run details page of the OpenShift Container Platform web console shows the status of
the tasks and when expressions as follows:

All the criteria are met: Tasks and the when expression symbol, which is represented by a
diamond shape are green.

Any one of the criteria are not met: Task is skipped. Skipped tasks and the when expression
symbol are grey.

None of the criteria are met: Task is skipped. Skipped tasks and the when expression symbol are
grey.

Task run fails: Failed tasks and the when expression symbol are red.

 operator: in
 values: ["Succeeded"]
 - input: "$(tasks.status)"
 operator: in
 values: ["Succeeded"]
 - input: "$(tasks.check-file.results.exists)"
 operator: in
 values: ["yes"]
 - input: "$(params.path)"
 operator: in
 values: ["README.md"]
 taskSpec:
 steps:
 - name: echo
 image: ubuntu
 script: 'echo finally done'
 params:
 - name: path
 value: README.md
 workspaces:
 - name: source
 volumeClaimTemplate:
 spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 16Mi

OpenShift Container Platform 4.9 CI/CD

160

4.2.2.3. Finally tasks

The finally tasks are the final set of tasks specified using the finally field in the pipeline YAML file. A
finally task always executes the tasks within the pipeline, irrespective of whether the pipeline runs are
executed successfully. The finally tasks are executed in parallel after all the pipeline tasks are run,
before the corresponding pipeline exits.

You can configure a finally task to consume the results of any task within the same pipeline. This
approach does not change the order in which this final task is run. It is executed in parallel with other final
tasks after all the non-final tasks are executed.

The following example shows a code snippet of the clone-cleanup-workspace pipeline. This code
clones the repository into a shared workspace and cleans up the workspace. After executing the
pipeline tasks, the cleanup task specified in the finally section of the pipeline YAML file cleans up the
workspace.

apiVersion: tekton.dev/v1beta1
kind: Pipeline
metadata:
 name: clone-cleanup-workspace 1
spec:
 workspaces:
 - name: git-source 2
 tasks:
 - name: clone-app-repo 3
 taskRef:
 name: git-clone-from-catalog
 params:
 - name: url
 value: https://github.com/tektoncd/community.git
 - name: subdirectory
 value: application
 workspaces:
 - name: output
 workspace: git-source
 finally:
 - name: cleanup 4
 taskRef: 5
 name: cleanup-workspace
 workspaces: 6
 - name: source
 workspace: git-source
 - name: check-git-commit
 params: 7
 - name: commit
 value: $(tasks.clone-app-repo.results.commit)
 taskSpec: 8
 params:
 - name: commit
 steps:
 - name: check-commit-initialized
 image: alpine
 script: |

CHAPTER 4. PIPELINES

161

1

2

3

4

5

6

7

8

1

2

3

Unique name of the Pipeline.

The shared workspace where the git repository is cloned.

The task to clone the application repository to the shared workspace.

The task to clean-up the shared workspace.

A reference to the task that is to be executed in the TaskRun.

A shared storage volume that a Task in a Pipeline needs at runtime to receive input or provide
output.

A list of parameters required for a task. If a parameter does not have an implicit default value, you
must explicitly set its value.

Embedded task definition.

4.2.2.4. TaskRun

A TaskRun instantiates a Task for execution with specific inputs, outputs, and execution parameters on a
cluster. It can be invoked on its own or as part of a PipelineRun for each Task in a pipeline.

A Task consists of one or more Steps that execute container images, and each container image
performs a specific piece of build work. A TaskRun executes the Steps in a Task in the specified order,
until all Steps execute successfully or a failure occurs. A TaskRun is automatically created by a
PipelineRun for each Task in a Pipeline.

The following example shows a TaskRun that runs the apply-manifests Task with the relevant input
parameters:

TaskRun API version v1beta1.

Specifies the type of Kubernetes object. In this example, TaskRun.

Unique name to identify this TaskRun.

 if [[! $(params.commit)]]; then
 exit 1
 fi

apiVersion: tekton.dev/v1beta1 1
kind: TaskRun 2
metadata:
 name: apply-manifests-taskrun 3
spec: 4
 serviceAccountName: pipeline
 taskRef: 5
 kind: Task
 name: apply-manifests
 workspaces: 6
 - name: source
 persistentVolumeClaim:
 claimName: source-pvc

OpenShift Container Platform 4.9 CI/CD

162

4

5

6

Definition of the TaskRun. For this TaskRun, the Task and the required workspace are specified.

Name of the Task reference used for this TaskRun. This TaskRun executes the apply-manifests
Task.

Workspace used by the TaskRun.

4.2.2.5. Pipelines

A Pipeline is a collection of Task resources arranged in a specific order of execution. They are executed
to construct complex workflows that automate the build, deployment and delivery of applications. You
can define a CI/CD workflow for your application using pipelines containing one or more tasks.

A Pipeline resource definition consists of a number of fields or attributes, which together enable the
pipeline to accomplish a specific goal. Each Pipeline resource definition must contain at least one Task
resource, which ingests specific inputs and produces specific outputs. The pipeline definition can also
optionally include Conditions, Workspaces, Parameters, or Resources depending on the application
requirements.

The following example shows the build-and-deploy pipeline, which builds an application image from a
Git repository using the buildah ClusterTask resource:

apiVersion: tekton.dev/v1beta1 1
kind: Pipeline 2
metadata:
 name: build-and-deploy 3
spec: 4
 workspaces: 5
 - name: shared-workspace
 params: 6
 - name: deployment-name
 type: string
 description: name of the deployment to be patched
 - name: git-url
 type: string
 description: url of the git repo for the code of deployment
 - name: git-revision
 type: string
 description: revision to be used from repo of the code for deployment
 default: "pipelines-1.7"
 - name: IMAGE
 type: string
 description: image to be built from the code
 tasks: 7
 - name: fetch-repository
 taskRef:
 name: git-clone
 kind: ClusterTask
 workspaces:
 - name: output
 workspace: shared-workspace
 params:
 - name: url
 value: $(params.git-url)

CHAPTER 4. PIPELINES

163

1

2

3

4

5

6

7

Pipeline API version v1beta1.

Specifies the type of Kubernetes object. In this example, Pipeline.

Unique name of this Pipeline.

Specifies the definition and structure of the Pipeline.

Workspaces used across all the Tasks in the Pipeline.

Parameters used across all the Tasks in the Pipeline.

Specifies the list of Tasks used in the Pipeline.

 - name: subdirectory
 value: ""
 - name: deleteExisting
 value: "true"
 - name: revision
 value: $(params.git-revision)
 - name: build-image 8
 taskRef:
 name: buildah
 kind: ClusterTask
 params:
 - name: TLSVERIFY
 value: "false"
 - name: IMAGE
 value: $(params.IMAGE)
 workspaces:
 - name: source
 workspace: shared-workspace
 runAfter:
 - fetch-repository
 - name: apply-manifests 9
 taskRef:
 name: apply-manifests
 workspaces:
 - name: source
 workspace: shared-workspace
 runAfter: 10
 - build-image
 - name: update-deployment
 taskRef:
 name: update-deployment
 workspaces:
 - name: source
 workspace: shared-workspace
 params:
 - name: deployment
 value: $(params.deployment-name)
 - name: IMAGE
 value: $(params.IMAGE)
 runAfter:
 - apply-manifests

OpenShift Container Platform 4.9 CI/CD

164

8

9

10

Task build-image, which uses the buildah ClusterTask to build application images from a given Git
repository.

Task apply-manifests, which uses a user-defined Task with the same name.

Specifies the sequence in which Tasks are run in a Pipeline. In this example, the apply-manifests
Task is run only after the build-image Task is completed.

NOTE

The Red Hat OpenShift Pipelines Operator installs the Buildah cluster task and creates
the pipeline service account with sufficient permission to build and push an image. The
Buildah cluster task can fail when associated with a different service account with
insufficient permissions.

4.2.2.6. PipelineRun

A PipelineRun is a type of resource that binds a pipeline, workspaces, credentials, and a set of
parameter values specific to a scenario to run the CI/CD workflow.

A pipeline run is the running instance of a pipeline. It instantiates a pipeline for execution with specific
inputs, outputs, and execution parameters on a cluster. It also creates a task run for each task in the
pipeline run.

The pipeline runs the tasks sequentially until they are complete or a task fails. The status field tracks
and the progress of each task run and stores it for monitoring and auditing purposes.

The following example runs the build-and-deploy pipeline with relevant resources and parameters:

apiVersion: tekton.dev/v1beta1 1
kind: PipelineRun 2
metadata:
 name: build-deploy-api-pipelinerun 3
spec:
 pipelineRef:
 name: build-and-deploy 4
 params: 5
 - name: deployment-name
 value: vote-api
 - name: git-url
 value: https://github.com/openshift-pipelines/vote-api.git
 - name: IMAGE
 value: image-registry.openshift-image-registry.svc:5000/pipelines-tutorial/vote-api
 workspaces: 6
 - name: shared-workspace
 volumeClaimTemplate:
 spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 500Mi

CHAPTER 4. PIPELINES

165

1

2

3

4

5

6

Pipeline run API version v1beta1.

The type of Kubernetes object. In this example, PipelineRun.

Unique name to identify this pipeline run.

Name of the pipeline to be run. In this example, build-and-deploy.

The list of parameters required to run the pipeline.

Workspace used by the pipeline run.

Additional resources

Authenticating pipelines using git secret

4.2.2.7. Workspaces

NOTE

It is recommended that you use Workspaces instead of PipelineResources in OpenShift
Pipelines, as PipelineResources are difficult to debug, limited in scope, and make Tasks
less reusable.

Workspaces declare shared storage volumes that a Task in a Pipeline needs at runtime to receive input
or provide output. Instead of specifying the actual location of the volumes, Workspaces enable you to
declare the filesystem or parts of the filesystem that would be required at runtime. A Task or Pipeline
declares the Workspace and you must provide the specific location details of the volume. It is then
mounted into that Workspace in a TaskRun or a PipelineRun. This separation of volume declaration from
runtime storage volumes makes the Tasks reusable, flexible, and independent of the user environment.

With Workspaces, you can:

Store Task inputs and outputs

Share data among Tasks

Use it as a mount point for credentials held in Secrets

Use it as a mount point for configurations held in ConfigMaps

Use it as a mount point for common tools shared by an organization

Create a cache of build artifacts that speed up jobs

You can specify Workspaces in the TaskRun or PipelineRun using:

A read-only ConfigMaps or Secret

An existing PersistentVolumeClaim shared with other Tasks

A PersistentVolumeClaim from a provided VolumeClaimTemplate

An emptyDir that is discarded when the TaskRun completes

OpenShift Container Platform 4.9 CI/CD

166

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/cicd/#authenticating-pipelines-using-git-secret

1

2

3

4

5

6

The following example shows a code snippet of the build-and-deploy Pipeline, which declares a shared-
workspace Workspace for the build-image and apply-manifests Tasks as defined in the Pipeline.

List of Workspaces shared between the Tasks defined in the Pipeline. A Pipeline can define as
many Workspaces as required. In this example, only one Workspace named shared-workspace is
declared.

Definition of Tasks used in the Pipeline. This snippet defines two Tasks, build-image and apply-
manifests, which share a common Workspace.

List of Workspaces used in the build-image Task. A Task definition can include as many
Workspaces as it requires. However, it is recommended that a Task uses at most one writable
Workspace.

Name that uniquely identifies the Workspace used in the Task. This Task uses one Workspace
named source.

Name of the Pipeline Workspace used by the Task. Note that the Workspace source in turn uses
the Pipeline Workspace named shared-workspace.

List of Workspaces used in the apply-manifests Task. Note that this Task shares the source

apiVersion: tekton.dev/v1beta1
kind: Pipeline
metadata:
 name: build-and-deploy
spec:
 workspaces: 1
 - name: shared-workspace
 params:
...
 tasks: 2
 - name: build-image
 taskRef:
 name: buildah
 kind: ClusterTask
 params:
 - name: TLSVERIFY
 value: "false"
 - name: IMAGE
 value: $(params.IMAGE)
 workspaces: 3
 - name: source 4
 workspace: shared-workspace 5
 runAfter:
 - fetch-repository
 - name: apply-manifests
 taskRef:
 name: apply-manifests
 workspaces: 6
 - name: source
 workspace: shared-workspace
 runAfter:
 - build-image
...

CHAPTER 4. PIPELINES

167

1

2

3

List of Workspaces used in the apply-manifests Task. Note that this Task shares the source
Workspace with the build-image Task.

Workspaces help tasks share data, and allow you to specify one or more volumes that each task in the
pipeline requires during execution. You can create a persistent volume claim or provide a volume claim
template that creates a persistent volume claim for you.

The following code snippet of the build-deploy-api-pipelinerun PipelineRun uses a volume claim
template to create a persistent volume claim for defining the storage volume for the shared-
workspace Workspace used in the build-and-deploy Pipeline.

Specifies the list of Pipeline Workspaces for which volume binding will be provided in the
PipelineRun.

The name of the Workspace in the Pipeline for which the volume is being provided.

Specifies a volume claim template that creates a persistent volume claim to define the storage
volume for the workspace.

4.2.2.8. Triggers

Use Triggers in conjunction with pipelines to create a full-fledged CI/CD system where Kubernetes
resources define the entire CI/CD execution. Triggers capture the external events, such as a Git pull
request, and process them to extract key pieces of information. Mapping this event data to a set of
predefined parameters triggers a series of tasks that can then create and deploy Kubernetes resources
and instantiate the pipeline.

For example, you define a CI/CD workflow using Red Hat OpenShift Pipelines for your application. The
pipeline must start for any new changes to take effect in the application repository. Triggers automate
this process by capturing and processing any change event and by triggering a pipeline run that deploys
the new image with the latest changes.

Triggers consist of the following main resources that work together to form a reusable, decoupled, and
self-sustaining CI/CD system:

apiVersion: tekton.dev/v1beta1
kind: PipelineRun
metadata:
 name: build-deploy-api-pipelinerun
spec:
 pipelineRef:
 name: build-and-deploy
 params:
...

 workspaces: 1
 - name: shared-workspace 2
 volumeClaimTemplate: 3
 spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 500Mi

OpenShift Container Platform 4.9 CI/CD

168

1

2

3

4

The TriggerBinding resource extracts the fields from an event payload and stores them as
parameters.
The following example shows a code snippet of the TriggerBinding resource, which extracts
the Git repository information from the received event payload:

The API version of the TriggerBinding resource. In this example, v1beta1.

Specifies the type of Kubernetes object. In this example, TriggerBinding.

Unique name to identify the TriggerBinding resource.

List of parameters which will be extracted from the received event payload and passed to
the TriggerTemplate resource. In this example, the Git repository URL, name, and revision
are extracted from the body of the event payload.

The TriggerTemplate resource acts as a standard for the way resources must be created. It
specifies the way parameterized data from the TriggerBinding resource should be used. A
trigger template receives input from the trigger binding, and then performs a series of actions
that results in creation of new pipeline resources, and initiation of a new pipeline run.
The following example shows a code snippet of a TriggerTemplate resource, which creates a
pipeline run using the Git repository information received from the TriggerBinding resource
you just created:

apiVersion: triggers.tekton.dev/v1beta1 1
kind: TriggerBinding 2
metadata:
 name: vote-app 3
spec:
 params: 4
 - name: git-repo-url
 value: $(body.repository.url)
 - name: git-repo-name
 value: $(body.repository.name)
 - name: git-revision
 value: $(body.head_commit.id)

apiVersion: triggers.tekton.dev/v1beta1 1
kind: TriggerTemplate 2
metadata:
 name: vote-app 3
spec:
 params: 4
 - name: git-repo-url
 description: The git repository url
 - name: git-revision
 description: The git revision
 default: pipelines-1.7
 - name: git-repo-name
 description: The name of the deployment to be created / patched

 resourcetemplates: 5
 - apiVersion: tekton.dev/v1beta1
 kind: PipelineRun

CHAPTER 4. PIPELINES

169

1

2

3

4

5

The API version of the TriggerTemplate resource. In this example, v1beta1.

Specifies the type of Kubernetes object. In this example, TriggerTemplate.

Unique name to identify the TriggerTemplate resource.

Parameters supplied by the TriggerBinding resource.

List of templates that specify the way resources must be created using the parameters
received through the TriggerBinding or EventListener resources.

The Trigger resource combines the TriggerBinding and TriggerTemplate resources, and
optionally, the interceptors event processor.
Interceptors process all the events for a specific platform that runs before the TriggerBinding
resource. You can use interceptors to filter the payload, verify events, define and test trigger
conditions, and implement other useful processing. Interceptors use secret for event
verification. Once the event data passes through an interceptor, it then goes to the trigger
before you pass the payload data to the trigger binding. You can also use an interceptor to
modify the behavior of the associated trigger referenced in the EventListener specification.

The following example shows a code snippet of a Trigger resource, named vote-trigger that
connects the TriggerBinding and TriggerTemplate resources, and the interceptors event
processor.

 metadata:
 name: build-deploy-$(tt.params.git-repo-name)-$(uid)
 spec:
 serviceAccountName: pipeline
 pipelineRef:
 name: build-and-deploy
 params:
 - name: deployment-name
 value: $(tt.params.git-repo-name)
 - name: git-url
 value: $(tt.params.git-repo-url)
 - name: git-revision
 value: $(tt.params.git-revision)
 - name: IMAGE
 value: image-registry.openshift-image-registry.svc:5000/pipelines-
tutorial/$(tt.params.git-repo-name)
 workspaces:
 - name: shared-workspace
 volumeClaimTemplate:
 spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 500Mi

apiVersion: triggers.tekton.dev/v1beta1 1
kind: Trigger 2
metadata:
 name: vote-trigger 3
spec:

OpenShift Container Platform 4.9 CI/CD

170

1

2

3

4

5

6

7

8

9

The API version of the Trigger resource. In this example, v1beta1.

Specifies the type of Kubernetes object. In this example, Trigger.

Unique name to identify the Trigger resource.

Service account name to be used.

Interceptor name to be referenced. In this example, github.

Desired parameters to be specified.

Name of the TriggerBinding resource to be connected to the TriggerTemplate resource.

Name of the TriggerTemplate resource to be connected to the TriggerBinding resource.

Secret to be used to verify events.

The EventListener resource provides an endpoint, or an event sink, that listens for incoming
HTTP-based events with a JSON payload. It extracts event parameters from each
TriggerBinding resource, and then processes this data to create Kubernetes resources as
specified by the corresponding TriggerTemplate resource. The EventListener resource also
performs lightweight event processing or basic filtering on the payload using event
interceptors, which identify the type of payload and optionally modify it. Currently, pipeline
triggers support five types of interceptors: Webhook Interceptors, GitHub Interceptors, GitLab
Interceptors, Bitbucket Interceptors, and Common Expression Language (CEL) Interceptors .
The following example shows an EventListener resource, which references the Trigger
resource named vote-trigger.

 serviceAccountName: pipeline 4
 interceptors:
 - ref:
 name: "github" 5
 params: 6
 - name: "secretRef"
 value:
 secretName: github-secret
 secretKey: secretToken
 - name: "eventTypes"
 value: ["push"]
 bindings:
 - ref: vote-app 7
 template: 8
 ref: vote-app

apiVersion: v1
kind: Secret 9
metadata:
 name: github-secret
type: Opaque
stringData:
 secretToken: "1234567"

apiVersion: triggers.tekton.dev/v1beta1 1

CHAPTER 4. PIPELINES

171

1

2

3

4

5

The API version of the EventListener resource. In this example, v1beta1.

Specifies the type of Kubernetes object. In this example, EventListener.

Unique name to identify the EventListener resource.

Service account name to be used.

Name of the Trigger resource referenced by the EventListener resource.

4.2.3. Additional resources

For information on installing pipelines, see Installing OpenShift Pipelines .

For more details on creating custom CI/CD solutions, see Creating applications with CI/CD
Pipelines.

For more details on re-encrypt TLS termination, see Re-encryption Termination.

For more details on secured routes, see the Secured routes section.

4.3. INSTALLING OPENSHIFT PIPELINES

This guide walks cluster administrators through the process of installing the Red Hat OpenShift
Pipelines Operator to an OpenShift Container Platform cluster.

Prerequisites

You have access to an OpenShift Container Platform cluster using an account with cluster-
admin permissions.

You have installed oc CLI.

You have installed OpenShift Pipelines (tkn) CLI on your local system.

4.3.1. Installing the Red Hat OpenShift Pipelines Operator in web console

You can install Red Hat OpenShift Pipelines using the Operator listed in the OpenShift Container
Platform OperatorHub. When you install the Red Hat OpenShift Pipelines Operator, the custom
resources (CRs) required for the pipelines configuration are automatically installed along with the
Operator.

The default Operator custom resource definition (CRD) config.operator.tekton.dev is now replaced by
tektonconfigs.operator.tekton.dev. In addition, the Operator provides the following additional CRDs to
individually manage OpenShift Pipelines components: tektonpipelines.operator.tekton.dev,
tektontriggers.operator.tekton.dev and tektonaddons.operator.tekton.dev.

kind: EventListener 2
metadata:
 name: vote-app 3
spec:
 serviceAccountName: pipeline 4
 triggers:
 - triggerRef: vote-trigger 5

OpenShift Container Platform 4.9 CI/CD

172

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/cicd/#installing-pipelines
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/cicd/#creating-applications-with-cicd-pipelines
https://docs.openshift.com/container-platform/3.11/architecture/networking/routes.html#re-encryption-termination
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/networking/#secured-routes
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/cli_tools/#installing-tkn

If you have OpenShift Pipelines already installed on your cluster, the existing installation is seamlessly
upgraded. The Operator will replace the instance of config.operator.tekton.dev on your cluster with an
instance of tektonconfigs.operator.tekton.dev and additional objects of the other CRDs as necessary.

WARNING

If you manually changed your existing installation, such as, changing the target
namespace in the config.operator.tekton.dev CRD instance by making changes to
the resource name - cluster field, then the upgrade path is not smooth. In such
cases, the recommended workflow is to uninstall your installation and reinstall the
Red Hat OpenShift Pipelines Operator.

The Red Hat OpenShift Pipelines Operator now provides the option to choose the components that you
want to install by specifying profiles as part of the TektonConfig CR. The TektonConfig CR is
automatically installed when the Operator is installed. The supported profiles are:

Lite: This installs only Tekton Pipelines.

Basic: This installs Tekton Pipelines and Tekton Triggers.

All: This is the default profile used when the TektonConfig CR is installed. This profile installs all
of the Tekton components: Tekton Pipelines, Tekton Triggers, Tekton Addons (which include
ClusterTasks, ClusterTriggerBindings, ConsoleCLIDownload, ConsoleQuickStart and
ConsoleYAMLSample resources).

Procedure

1. In the Administrator perspective of the web console, navigate to Operators → OperatorHub.

2. Use the Filter by keyword box to search for Red Hat OpenShift Pipelines Operator in the
catalog. Click the Red Hat OpenShift Pipelines Operator tile.

3. Read the brief description about the Operator on the Red Hat OpenShift Pipelines Operator
page. Click Install.

4. On the Install Operator page:

a. Select All namespaces on the cluster (default) for the Installation Mode. This mode
installs the Operator in the default openshift-operators namespace, which enables the
Operator to watch and be made available to all namespaces in the cluster.

b. Select Automatic for the Approval Strategy. This ensures that the future upgrades to the
Operator are handled automatically by the Operator Lifecycle Manager (OLM). If you select
the Manual approval strategy, OLM creates an update request. As a cluster administrator,
you must then manually approve the OLM update request to update the Operator to the
new version.

c. Select an Update Channel.

The stable channel enables installation of the latest stable and supported release of the
Red Hat OpenShift Pipelines Operator.

The preview channel enables installation of the latest preview version of the Red Hat



CHAPTER 4. PIPELINES

173

The preview channel enables installation of the latest preview version of the Red Hat
OpenShift Pipelines Operator, which may contain features that are not yet available
from the stable channel and is not supported.

5. Click Install. You will see the Operator listed on the Installed Operators page.

NOTE

The Operator is installed automatically into the openshift-operators namespace.

6. Verify that the Status is set to Succeeded Up to date to confirm successful installation of Red
Hat OpenShift Pipelines Operator.

WARNING

The success status may show as Succeeded Up to date even if installation
of other components is in-progress. Therefore, it is important to verify the
installation manually in the terminal.

7. Verify that all components of the Red Hat OpenShift Pipelines Operator were installed
successfully. Login to the cluster on the terminal, and run the following command:

Example output

NAME VERSION READY REASON
config 1.9.2 True

If the READY condition is True, the Operator and its components have been installed
successfully.

Additonally, check the components' versions by running the following command:

Example output

NAME VERSION READY REASON
tektonpipeline.operator.tekton.dev/pipeline v0.41.1 True
NAME VERSION READY REASON
tektontrigger.operator.tekton.dev/trigger v0.22.2 True
NAME VERSION READY REASON
tektonaddon.operator.tekton.dev/addon 1.9.2 True
NAME VERSION READY REASON
openshiftpipelinesascode.operator.tekton.dev/pipelines-as-code v0.15.5 True



$ oc get tektonconfig config

$ oc get tektonpipeline,tektontrigger,tektonaddon,pac

OpenShift Container Platform 4.9 CI/CD

174

1

2

3

4

4.3.2. Installing the OpenShift Pipelines Operator using the CLI

You can install Red Hat OpenShift Pipelines Operator from the OperatorHub using the CLI.

Procedure

1. Create a Subscription object YAML file to subscribe a namespace to the Red Hat OpenShift
Pipelines Operator, for example, sub.yaml:

Example Subscription

Specify the channel name from where you want to subscribe the Operator

Name of the Operator to subscribe to.

Name of the CatalogSource that provides the Operator.

Namespace of the CatalogSource. Use openshift-marketplace for the default
OperatorHub CatalogSources.

2. Create the Subscription object:

$ oc apply -f sub.yaml

The Red Hat OpenShift Pipelines Operator is now installed in the default target namespace
openshift-operators.

4.3.3. Red Hat OpenShift Pipelines Operator in a restricted environment

The Red Hat OpenShift Pipelines Operator enables support for installation of pipelines in a restricted
network environment.

The Operator installs a proxy webhook that sets the proxy environment variables in the containers of
the pod created by tekton-controllers based on the cluster proxy object. It also sets the proxy
environment variables in the TektonPipelines, TektonTriggers, Controllers, Webhooks, and Operator
Proxy Webhook resources.

By default, the proxy webhook is disabled for the openshift-pipelines namespace. To disable it for any
other namespace, you can add the operator.tekton.dev/disable-proxy: true label to the namespace
object.

4.3.4. Disabling the automatic creation of RBAC resources

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: openshift-pipelines-operator
 namespace: openshift-operators
spec:
 channel: <channel name> 1
 name: openshift-pipelines-operator-rh 2
 source: redhat-operators 3
 sourceNamespace: openshift-marketplace 4

CHAPTER 4. PIPELINES

175

The default installation of the Red Hat OpenShift Pipelines Operator creates multiple role-based
access control (RBAC) resources for all namespaces in the cluster, except the namespaces matching
the ^(openshift|kube)-* regular expression pattern. Among these RBAC resources, the pipelines-scc-
rolebinding security context constraint (SCC) role binding resource is a potential security issue,
because the associated pipelines-scc SCC has the RunAsAny privilege.

To disable the automatic creation of cluster-wide RBAC resources after the Red Hat OpenShift
Pipelines Operator is installed, cluster administrators can set the createRbacResource parameter to
false in the cluster-level TektonConfig custom resource (CR).

Example TektonConfig CR

WARNING

As a cluster administrator or an user with appropriate privileges, when you disable
the automatic creation of RBAC resources for all namespaces, the default
ClusterTask resource does not work. For the ClusterTask resource to function,
you must create the RBAC resources manually for each intended namespace.

4.3.5. Additional resources

You can learn more about installing Operators on OpenShift Container Platform in the adding
Operators to a cluster section.

To install Tekton Chains using the Red Hat OpenShift Pipelines Operator, see Using Tekton
Chains for Red Hat OpenShift Pipelines supply chain security.

To install and deploy in-cluster Tekton Hub, see Using Tekton Hub with Red Hat OpenShift
Pipelines.

For more information on using pipelines in a restricted environment, see:

Mirroring images to run pipelines in a restricted environment

apiVersion: operator.tekton.dev/v1alpha1
kind: TektonConfig
metadata:
 name: config
spec:
 params:
 - name: createRbacResource
 value: "false"
 profile: all
 targetNamespace: openshift-pipelines
 addon:
 params:
 - name: clusterTasks
 value: "true"
 - name: pipelineTemplates
 value: "true"
...



OpenShift Container Platform 4.9 CI/CD

176

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/operators/#olm-adding-operators-to-a-cluster
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/cicd/#using-tekton-chains-for-openshift-pipelines-supply-chain-security
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/cicd/#using-tekton-hub-with-openshift-pipelines
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/cicd/#op-mirroring-images-to-run-pipelines-in-restricted-environment_creating-applications-with-cicd-pipelines

Configuring Samples Operator for a restricted cluster

Creating a cluster with a mirrored registry

4.4. UNINSTALLING OPENSHIFT PIPELINES

Uninstalling the Red Hat OpenShift Pipelines Operator is a two-step process:

1. Delete the Custom Resources (CRs) that were added by default when you installed the Red Hat
OpenShift Pipelines Operator.

2. Uninstall the Red Hat OpenShift Pipelines Operator.

Uninstalling only the Operator will not remove the Red Hat OpenShift Pipelines components created by
default when the Operator is installed.

4.4.1. Deleting the Red Hat OpenShift Pipelines components and Custom Resources

Delete the Custom Resources (CRs) created by default during installation of the Red Hat OpenShift
Pipelines Operator.

Procedure

1. In the Administrator perspective of the web console, navigate to Administration → Custom
Resource Definition.

2. Type config.operator.tekton.dev in the Filter by name box to search for the Red Hat
OpenShift Pipelines Operator CRs.

3. Click CRD Config to see the Custom Resource Definition Details page.

4. Click the Actions drop-down menu and select Delete Custom Resource Definition.

NOTE

Deleting the CRs will delete the Red Hat OpenShift Pipelines components, and
all the Tasks and Pipelines on the cluster will be lost.

5. Click Delete to confirm the deletion of the CRs.

4.4.2. Uninstalling the Red Hat OpenShift Pipelines Operator

Procedure

1. From the Operators → OperatorHub page, use the Filter by keyword box to search for Red
Hat OpenShift Pipelines Operator.

2. Click the OpenShift Pipelines Operator tile. The Operator tile indicates it is installed.

3. In the OpenShift Pipelines Operator descriptor page, click Uninstall.

Additional resources

You can learn more about uninstalling Operators on OpenShift Container Platform in the

CHAPTER 4. PIPELINES

177

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/images/#samples-operator-restricted-network-install
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/installing/#installation-about-mirror-registry_installing-mirroring-installation-images

You can learn more about uninstalling Operators on OpenShift Container Platform in the
deleting Operators from a cluster section.

4.5. CREATING CI/CD SOLUTIONS FOR APPLICATIONS USING
OPENSHIFT PIPELINES

With Red Hat OpenShift Pipelines, you can create a customized CI/CD solution to build, test, and deploy
your application.

To create a full-fledged, self-serving CI/CD pipeline for an application, perform the following tasks:

Create custom tasks, or install existing reusable tasks.

Create and define the delivery pipeline for your application.

Provide a storage volume or filesystem that is attached to a workspace for the pipeline
execution, using one of the following approaches:

Specify a volume claim template that creates a persistent volume claim

Specify a persistent volume claim

Create a PipelineRun object to instantiate and invoke the pipeline.

Add triggers to capture events in the source repository.

This section uses the pipelines-tutorial example to demonstrate the preceding tasks. The example uses
a simple application which consists of:

A front-end interface, pipelines-vote-ui, with the source code in the pipelines-vote-ui Git
repository.

A back-end interface, pipelines-vote-api, with the source code in the pipelines-vote-api Git
repository.

The apply-manifests and update-deployment tasks in the pipelines-tutorial Git repository.

4.5.1. Prerequisites

You have access to an OpenShift Container Platform cluster.

You have installed OpenShift Pipelines using the Red Hat OpenShift Pipelines Operator listed in
the OpenShift OperatorHub. After it is installed, it is applicable to the entire cluster.

You have installed OpenShift Pipelines CLI.

You have forked the front-end pipelines-vote-ui and back-end pipelines-vote-api Git
repositories using your GitHub ID, and have administrator access to these repositories.

Optional: You have cloned the pipelines-tutorial Git repository.

4.5.2. Creating a project and checking your pipeline service account

Procedure

1. Log in to your OpenShift Container Platform cluster:

OpenShift Container Platform 4.9 CI/CD

178

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/operators/#olm-deleting-operators-from-a-cluster
https://github.com/openshift/pipelines-vote-ui/tree/pipelines-1.7
https://github.com/openshift/pipelines-vote-api/tree/pipelines-1.7
https://github.com/openshift/pipelines-tutorial/tree/pipelines-1.7
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/cicd/#installing-pipelines
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/cli_tools/#installing-tkn
https://github.com/openshift/pipelines-vote-ui/tree/pipelines-1.7
https://github.com/openshift/pipelines-vote-api/tree/pipelines-1.7
https://github.com/openshift/pipelines-tutorial/tree/pipelines-1.7

$ oc login -u <login> -p <password> https://openshift.example.com:6443

2. Create a project for the sample application. For this example workflow, create the pipelines-
tutorial project:

$ oc new-project pipelines-tutorial

NOTE

If you create a project with a different name, be sure to update the resource
URLs used in the example with your project name.

3. View the pipeline service account:
Red Hat OpenShift Pipelines Operator adds and configures a service account named pipeline
that has sufficient permissions to build and push an image. This service account is used by the
PipelineRun object.

$ oc get serviceaccount pipeline

4.5.3. Creating pipeline tasks

Procedure

1. Install the apply-manifests and update-deployment task resources from the pipelines-
tutorial repository, which contains a list of reusable tasks for pipelines:

2. Use the tkn task list command to list the tasks you created:

The output verifies that the apply-manifests and update-deployment task resources were
created:

3. Use the tkn clustertasks list command to list the Operator-installed additional cluster tasks
such as buildah and s2i-python:

NOTE

To use the buildah cluster task in a restricted environment, you must ensure that
the Dockerfile uses an internal image stream as the base image.

$ oc create -f https://raw.githubusercontent.com/openshift/pipelines-tutorial/pipelines-
1.7/01_pipeline/01_apply_manifest_task.yaml
$ oc create -f https://raw.githubusercontent.com/openshift/pipelines-tutorial/pipelines-
1.7/01_pipeline/02_update_deployment_task.yaml

$ tkn task list

NAME DESCRIPTION AGE
apply-manifests 1 minute ago
update-deployment 48 seconds ago

CHAPTER 4. PIPELINES

179

The output lists the Operator-installed ClusterTask resources:

Additional resources

Managing non-versioned and versioned cluster tasks

4.5.4. Assembling a pipeline

A pipeline represents a CI/CD flow and is defined by the tasks to be executed. It is designed to be
generic and reusable in multiple applications and environments.

A pipeline specifies how the tasks interact with each other and their order of execution using the from
and runAfter parameters. It uses the workspaces field to specify one or more volumes that each task in
the pipeline requires during execution.

In this section, you will create a pipeline that takes the source code of the application from GitHub, and
then builds and deploys it on OpenShift Container Platform.

The pipeline performs the following tasks for the back-end application pipelines-vote-api and front-
end application pipelines-vote-ui:

Clones the source code of the application from the Git repository by referring to the git-url and
git-revision parameters.

Builds the container image using the buildah cluster task.

Pushes the image to the internal image registry by referring to the image parameter.

Deploys the new image on OpenShift Container Platform by using the apply-manifests and
update-deployment tasks.

Procedure

1. Copy the contents of the following sample pipeline YAML file and save it:

$ tkn clustertasks list

NAME DESCRIPTION AGE
buildah 1 day ago
git-clone 1 day ago
s2i-python 1 day ago
tkn 1 day ago

apiVersion: tekton.dev/v1beta1
kind: Pipeline
metadata:
 name: build-and-deploy
spec:
 workspaces:
 - name: shared-workspace
 params:
 - name: deployment-name
 type: string
 description: name of the deployment to be patched
 - name: git-url

OpenShift Container Platform 4.9 CI/CD

180

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/cicd/#managing-nonversioned-and-versioned-cluster-tasks

 type: string
 description: url of the git repo for the code of deployment
 - name: git-revision
 type: string
 description: revision to be used from repo of the code for deployment
 default: "pipelines-1.7"
 - name: IMAGE
 type: string
 description: image to be built from the code
 tasks:
 - name: fetch-repository
 taskRef:
 name: git-clone
 kind: ClusterTask
 workspaces:
 - name: output
 workspace: shared-workspace
 params:
 - name: url
 value: $(params.git-url)
 - name: subdirectory
 value: ""
 - name: deleteExisting
 value: "true"
 - name: revision
 value: $(params.git-revision)
 - name: build-image
 taskRef:
 name: buildah
 kind: ClusterTask
 params:
 - name: IMAGE
 value: $(params.IMAGE)
 workspaces:
 - name: source
 workspace: shared-workspace
 runAfter:
 - fetch-repository
 - name: apply-manifests
 taskRef:
 name: apply-manifests
 workspaces:
 - name: source
 workspace: shared-workspace
 runAfter:
 - build-image
 - name: update-deployment
 taskRef:
 name: update-deployment
 params:
 - name: deployment
 value: $(params.deployment-name)
 - name: IMAGE
 value: $(params.IMAGE)
 runAfter:
 - apply-manifests

CHAPTER 4. PIPELINES

181

The pipeline definition abstracts away the specifics of the Git source repository and image
registries. These details are added as params when a pipeline is triggered and executed.

2. Create the pipeline:

$ oc create -f <pipeline-yaml-file-name.yaml>

Alternatively, you can also execute the YAML file directly from the Git repository:

3. Use the tkn pipeline list command to verify that the pipeline is added to the application:

$ tkn pipeline list

The output verifies that the build-and-deploy pipeline was created:

NAME AGE LAST RUN STARTED DURATION STATUS
build-and-deploy 1 minute ago --- --- --- ---

4.5.5. Mirroring images to run pipelines in a restricted environment

To run OpenShift Pipelines in a disconnected cluster or a cluster provisioned in a restricted
environment, ensure that either the Samples Operator is configured for a restricted network, or a cluster
administrator has created a cluster with a mirrored registry.

The following procedure uses the pipelines-tutorial example to create a pipeline for an application in a
restricted environment using a cluster with a mirrored registry. To ensure that the pipelines-tutorial
example works in a restricted environment, you must mirror the respective builder images from the
mirror registry for the front-end interface, pipelines-vote-ui; back-end interface, pipelines-vote-api;
and the cli.

Procedure

1. Mirror the builder image from the mirror registry for the front-end interface, pipelines-vote-ui.

a. Verify that the required images tag is not imported:

Example output

$ oc create -f https://raw.githubusercontent.com/openshift/pipelines-tutorial/pipelines-
1.7/01_pipeline/04_pipeline.yaml

$ oc describe imagestream python -n openshift

Name: python
Namespace: openshift
[...]

3.8-ubi8 (latest)
 tagged from registry.redhat.io/ubi8/python-38:latest
 prefer registry pullthrough when referencing this tag

 Build and run Python 3.8 applications on UBI 8. For more information about using this
builder image, including OpenShift considerations, see https://github.com/sclorg/s2i-

OpenShift Container Platform 4.9 CI/CD

182

b. Mirror the supported image tag to the private registry:

c. Import the image:

You must periodically re-import the image. The --scheduled flag enables automatic re-
import of the image.

d. Verify that the images with the given tag have been imported:

Example output

2. Mirror the builder image from the mirror registry for the back-end interface, pipelines-vote-api.

a. Verify that the required images tag is not imported:

Example output

python-container/blob/master/3.8/README.md.
 Tags: builder, python
 Supports: python:3.8, python
 Example Repo: https://github.com/sclorg/django-ex.git

[...]

$ oc image mirror registry.redhat.io/ubi8/python-38:latest <mirror-registry>:
<port>/ubi8/python-38

$ oc tag <mirror-registry>:<port>/ubi8/python-38 python:latest --scheduled -n openshift

$ oc describe imagestream python -n openshift

Name: python
Namespace: openshift
[...]

latest
 updates automatically from registry <mirror-registry>:<port>/ubi8/python-38

 * <mirror-registry>:<port>/ubi8/python-
38@sha256:3ee3c2e70251e75bfeac25c0c33356add9cc4abcbc9c51d858f39e4dc29c5f58

[...]

$ oc describe imagestream golang -n openshift

Name: golang
Namespace: openshift
[...]

1.14.7-ubi8 (latest)
 tagged from registry.redhat.io/ubi8/go-toolset:1.14.7
 prefer registry pullthrough when referencing this tag

CHAPTER 4. PIPELINES

183

b. Mirror the supported image tag to the private registry:

c. Import the image:

You must periodically re-import the image. The --scheduled flag enables automatic re-
import of the image.

d. Verify that the images with the given tag have been imported:

Example output

3. Mirror the builder image from the mirror registry for the cli.

a. Verify that the required images tag is not imported:

Example output

 Build and run Go applications on UBI 8. For more information about using this builder
image, including OpenShift considerations, see https://github.com/sclorg/golang-
container/blob/master/README.md.
 Tags: builder, golang, go
 Supports: golang
 Example Repo: https://github.com/sclorg/golang-ex.git

[...]

$ oc image mirror registry.redhat.io/ubi8/go-toolset:1.14.7 <mirror-registry>:
<port>/ubi8/go-toolset

$ oc tag <mirror-registry>:<port>/ubi8/go-toolset golang:latest --scheduled -n openshift

$ oc describe imagestream golang -n openshift

Name: golang
Namespace: openshift
[...]

latest
 updates automatically from registry <mirror-registry>:<port>/ubi8/go-toolset

 * <mirror-registry>:<port>/ubi8/go-
toolset@sha256:59a74d581df3a2bd63ab55f7ac106677694bf612a1fe9e7e3e1487f55c421
b37

[...]

$ oc describe imagestream cli -n openshift

Name: cli
Namespace: openshift
[...]

latest
 updates automatically from registry quay.io/openshift-release-dev/ocp-v4.0-art-

OpenShift Container Platform 4.9 CI/CD

184

b. Mirror the supported image tag to the private registry:

c. Import the image:

You must periodically re-import the image. The --scheduled flag enables automatic re-
import of the image.

d. Verify that the images with the given tag have been imported:

Example output

Additional resources

Configuring Samples Operator for a restricted cluster

Creating a cluster with a mirrored registry

4.5.6. Running a pipeline

A PipelineRun resource starts a pipeline and ties it to the Git and image resources that should be used
for the specific invocation. It automatically creates and starts the TaskRun resources for each task in
the pipeline.

dev@sha256:65c68e8c22487375c4c6ce6f18ed5485915f2bf612e41fef6d41cbfcdb143551

 * quay.io/openshift-release-dev/ocp-v4.0-art-
dev@sha256:65c68e8c22487375c4c6ce6f18ed5485915f2bf612e41fef6d41cbfcdb143551

[...]

$ oc image mirror quay.io/openshift-release-dev/ocp-v4.0-art-
dev@sha256:65c68e8c22487375c4c6ce6f18ed5485915f2bf612e41fef6d41cbfcdb143551
<mirror-registry>:<port>/openshift-release-dev/ocp-v4.0-art-dev:latest

$ oc tag <mirror-registry>:<port>/openshift-release-dev/ocp-v4.0-art-dev cli:latest --
scheduled -n openshift

$ oc describe imagestream cli -n openshift

Name: cli
Namespace: openshift
[...]

latest
 updates automatically from registry <mirror-registry>:<port>/openshift-release-dev/ocp-
v4.0-art-dev

 * <mirror-registry>:<port>/openshift-release-dev/ocp-v4.0-art-
dev@sha256:65c68e8c22487375c4c6ce6f18ed5485915f2bf612e41fef6d41cbfcdb143551

[...]

CHAPTER 4. PIPELINES

185

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/images/#samples-operator-restricted-network-install
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/installing/#installation-about-mirror-registry_installing-mirroring-installation-images

Procedure

1. Start the pipeline for the back-end application:

The previous command uses a volume claim template, which creates a persistent volume claim
for the pipeline execution.

2. To track the progress of the pipeline run, enter the following command::

The <pipelinerun_id> in the above command is the ID for the PipelineRun that was returned in
the output of the previous command.

3. Start the pipeline for the front-end application:

4. To track the progress of the pipeline run, enter the following command:

The <pipelinerun_id> in the above command is the ID for the PipelineRun that was returned in
the output of the previous command.

5. After a few minutes, use tkn pipelinerun list command to verify that the pipeline ran
successfully by listing all the pipeline runs:

The output lists the pipeline runs:

$ tkn pipeline start build-and-deploy \
 -w name=shared-
workspace,volumeClaimTemplateFile=https://raw.githubusercontent.com/openshift/pipelines-
tutorial/pipelines-1.7/01_pipeline/03_persistent_volume_claim.yaml \
 -p deployment-name=pipelines-vote-api \
 -p git-url=https://github.com/openshift/pipelines-vote-api.git \
 -p IMAGE=image-registry.openshift-image-registry.svc:5000/pipelines-tutorial/pipelines-
vote-api \
 --use-param-defaults

$ tkn pipelinerun logs <pipelinerun_id> -f

$ tkn pipeline start build-and-deploy \
 -w name=shared-
workspace,volumeClaimTemplateFile=https://raw.githubusercontent.com/openshift/pipelines-
tutorial/pipelines-1.7/01_pipeline/03_persistent_volume_claim.yaml \
 -p deployment-name=pipelines-vote-ui \
 -p git-url=https://github.com/openshift/pipelines-vote-ui.git \
 -p IMAGE=image-registry.openshift-image-registry.svc:5000/pipelines-tutorial/pipelines-
vote-ui \
 --use-param-defaults

$ tkn pipelinerun logs <pipelinerun_id> -f

$ tkn pipelinerun list

 NAME STARTED DURATION STATUS
 build-and-deploy-run-xy7rw 1 hour ago 2 minutes Succeeded
 build-and-deploy-run-z2rz8 1 hour ago 19 minutes Succeeded

OpenShift Container Platform 4.9 CI/CD

186

6. Get the application route:

Note the output of the previous command. You can access the application using this route.

7. To rerun the last pipeline run, using the pipeline resources and service account of the previous
pipeline, run:

Additional resources

Authenticating pipelines using git secret

4.5.7. Adding triggers to a pipeline

Triggers enable pipelines to respond to external GitHub events, such as push events and pull requests.
After you assemble and start a pipeline for the application, add the TriggerBinding, TriggerTemplate,
Trigger, and EventListener resources to capture the GitHub events.

Procedure

1. Copy the content of the following sample TriggerBinding YAML file and save it:

2. Create the TriggerBinding resource:

Alternatively, you can create the TriggerBinding resource directly from the pipelines-tutorial
Git repository:

3. Copy the content of the following sample TriggerTemplate YAML file and save it:

$ oc get route pipelines-vote-ui --template='http://{{.spec.host}}'

$ tkn pipeline start build-and-deploy --last

apiVersion: triggers.tekton.dev/v1beta1
kind: TriggerBinding
metadata:
 name: vote-app
spec:
 params:
 - name: git-repo-url
 value: $(body.repository.url)
 - name: git-repo-name
 value: $(body.repository.name)
 - name: git-revision
 value: $(body.head_commit.id)

$ oc create -f <triggerbinding-yaml-file-name.yaml>

$ oc create -f https://raw.githubusercontent.com/openshift/pipelines-tutorial/pipelines-
1.7/03_triggers/01_binding.yaml

apiVersion: triggers.tekton.dev/v1beta1
kind: TriggerTemplate
metadata:

CHAPTER 4. PIPELINES

187

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/cicd/#authenticating-pipelines-using-git-secret

The template specifies a volume claim template to create a persistent volume claim for defining
the storage volume for the workspace. Therefore, you do not need to create a persistent volume
claim to provide data storage.

4. Create the TriggerTemplate resource:

Alternatively, you can create the TriggerTemplate resource directly from the pipelines-tutorial
Git repository:

5. Copy the contents of the following sample Trigger YAML file and save it:

 name: vote-app
spec:
 params:
 - name: git-repo-url
 description: The git repository url
 - name: git-revision
 description: The git revision
 default: pipelines-1.7
 - name: git-repo-name
 description: The name of the deployment to be created / patched

 resourcetemplates:
 - apiVersion: tekton.dev/v1beta1
 kind: PipelineRun
 metadata:
 generateName: build-deploy-$(tt.params.git-repo-name)-
 spec:
 serviceAccountName: pipeline
 pipelineRef:
 name: build-and-deploy
 params:
 - name: deployment-name
 value: $(tt.params.git-repo-name)
 - name: git-url
 value: $(tt.params.git-repo-url)
 - name: git-revision
 value: $(tt.params.git-revision)
 - name: IMAGE
 value: image-registry.openshift-image-registry.svc:5000/pipelines-
tutorial/$(tt.params.git-repo-name)
 workspaces:
 - name: shared-workspace
 volumeClaimTemplate:
 spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 500Mi

$ oc create -f <triggertemplate-yaml-file-name.yaml>

$ oc create -f https://raw.githubusercontent.com/openshift/pipelines-tutorial/pipelines-
1.7/03_triggers/02_template.yaml

OpenShift Container Platform 4.9 CI/CD

188

6. Create the Trigger resource:

Alternatively, you can create the Trigger resource directly from the pipelines-tutorial Git
repository:

7. Copy the contents of the following sample EventListener YAML file and save it:

Alternatively, if you have not defined a trigger custom resource, add the binding and template
spec to the EventListener YAML file, instead of referring to the name of the trigger:

8. Create the EventListener resource by performing the following steps:

To create an EventListener resource using a secure HTTPS connection:

a. Add a label to enable the secure HTTPS connection to the Eventlistener resource:

apiVersion: triggers.tekton.dev/v1beta1
kind: Trigger
metadata:
 name: vote-trigger
spec:
 serviceAccountName: pipeline
 bindings:
 - ref: vote-app
 template:
 ref: vote-app

$ oc create -f <trigger-yaml-file-name.yaml>

$ oc create -f https://raw.githubusercontent.com/openshift/pipelines-tutorial/pipelines-
1.7/03_triggers/03_trigger.yaml

apiVersion: triggers.tekton.dev/v1beta1
kind: EventListener
metadata:
 name: vote-app
spec:
 serviceAccountName: pipeline
 triggers:
 - triggerRef: vote-trigger

apiVersion: triggers.tekton.dev/v1beta1
kind: EventListener
metadata:
 name: vote-app
spec:
 serviceAccountName: pipeline
 triggers:
 - bindings:
 - ref: vote-app
 template:
 ref: vote-app

$ oc label namespace <ns-name> operator.tekton.dev/enable-annotation=enabled

CHAPTER 4. PIPELINES

189

1 2

3

4

b. Create the EventListener resource:

Alternatively, you can create the EvenListener resource directly from the pipelines-
tutorial Git repository:

c. Create a route with the re-encrypt TLS termination:

Alternatively, you can create a re-encrypt TLS termination YAML file to create a
secured route.

Example Re-encrypt TLS Termination YAML of the Secured Route

The name of the object, which is limited to 63 characters.

The termination field is set to reencrypt. This is the only required tls field.

Required for re-encryption. destinationCACertificate specifies a CA certificate to
validate the endpoint certificate, securing the connection from the router to the
destination pods. If the service is using a service signing certificate, or the
administrator has specified a default CA certificate for the router and the service
has a certificate signed by that CA, this field can be omitted.

See oc create route reencrypt --help for more options.

To create an EventListener resource using an insecure HTTP connection:

a. Create the EventListener resource.

$ oc create -f <eventlistener-yaml-file-name.yaml>

$ oc create -f https://raw.githubusercontent.com/openshift/pipelines-tutorial/pipelines-
1.7/03_triggers/04_event_listener.yaml

$ oc create route reencrypt --service=<svc-name> --cert=tls.crt --key=tls.key --ca-
cert=ca.crt --hostname=<hostname>

apiVersion: route.openshift.io/v1
kind: Route
metadata:
 name: route-passthrough-secured 1
spec:
 host: <hostname>
 to:
 kind: Service
 name: frontend 2
 tls:
 termination: reencrypt 3
 key: [as in edge termination]
 certificate: [as in edge termination]
 caCertificate: [as in edge termination]
 destinationCACertificate: |- 4
 -----BEGIN CERTIFICATE-----
 [...]
 -----END CERTIFICATE-----

OpenShift Container Platform 4.9 CI/CD

190

b. Expose the EventListener service as an OpenShift Container Platform route to make it
publicly accessible:

4.5.8. Configuring event listeners to serve multiple namespaces

NOTE

You can skip this section if you want to create a basic CI/CD pipeline. However, if your
deployment strategy involves multiple namespaces, you can configure event listeners to
serve multiple namespaces.

To increase reusability of EvenListener objects, cluster administrators can configure and deploy them
as multi-tenant event listeners that serve multiple namespaces.

Procedure

1. Configure cluster-wide fetch permission for the event listener.

a. Set a service account name to be used in the ClusterRoleBinding and EventListener
objects. For example, el-sa.

Example ServiceAccount.yaml

b. In the rules section of the ClusterRole.yaml file, set appropriate permissions for every
event listener deployment to function cluster-wide.

Example ClusterRole.yaml

c. Configure cluster role binding with the appropriate service account name and cluster role

$ oc expose svc el-vote-app

apiVersion: v1
kind: ServiceAccount
metadata:
 name: el-sa

kind: ClusterRole
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 name: el-sel-clusterrole
rules:
- apiGroups: ["triggers.tekton.dev"]
 resources: ["eventlisteners", "clustertriggerbindings", "clusterinterceptors",
"triggerbindings", "triggertemplates", "triggers"]
 verbs: ["get", "list", "watch"]
- apiGroups: [""]
 resources: ["configmaps", "secrets"]
 verbs: ["get", "list", "watch"]
- apiGroups: [""]
 resources: ["serviceaccounts"]
 verbs: ["impersonate"]
...

CHAPTER 4. PIPELINES

191

c. Configure cluster role binding with the appropriate service account name and cluster role
name.

Example ClusterRoleBinding.yaml

2. In the spec parameter of the event listener, add the service account name, for example el-sa.
Fill the namespaceSelector parameter with names of namespaces where event listener is
intended to serve.

Example EventListener.yaml

3. Create a service account with the necessary permissions, for example foo-trigger-sa. Use it for
role binding the triggers.

Example ServiceAccount.yaml

Example RoleBinding.yaml

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 name: el-mul-clusterrolebinding
subjects:
- kind: ServiceAccount
 name: el-sa
 namespace: default
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: el-sel-clusterrole
...

apiVersion: triggers.tekton.dev/v1beta1
kind: EventListener
metadata:
 name: namespace-selector-listener
spec:
 serviceAccountName: el-sa
 namespaceSelector:
 matchNames:
 - default
 - foo
...

apiVersion: v1
kind: ServiceAccount
metadata:
 name: foo-trigger-sa
 namespace: foo
...

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:

OpenShift Container Platform 4.9 CI/CD

192

4. Create a trigger with the appropriate trigger template, trigger binding, and service account
name.

Example Trigger.yaml

4.5.9. Creating webhooks

Webhooks are HTTP POST messages that are received by the event listeners whenever a configured
event occurs in your repository. The event payload is then mapped to trigger bindings, and processed by
trigger templates. The trigger templates eventually start one or more pipeline runs, leading to the
creation and deployment of Kubernetes resources.

In this section, you will configure a webhook URL on your forked Git repositories pipelines-vote-ui and
pipelines-vote-api. This URL points to the publicly accessible EventListener service route.

NOTE

Adding webhooks requires administrative privileges to the repository. If you do not have
administrative access to your repository, contact your system administrator for adding
webhooks.

 name: triggercr-rolebinding
 namespace: foo
subjects:
- kind: ServiceAccount
 name: foo-trigger-sa
 namespace: foo
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: tekton-triggers-eventlistener-roles
...

apiVersion: triggers.tekton.dev/v1beta1
kind: Trigger
metadata:
 name: trigger
 namespace: foo
spec:
 serviceAccountName: foo-trigger-sa
 interceptors:
 - ref:
 name: "github"
 params:
 - name: "secretRef"
 value:
 secretName: github-secret
 secretKey: secretToken
 - name: "eventTypes"
 value: ["push"]
 bindings:
 - ref: vote-app
 template:
 ref: vote-app
...

CHAPTER 4. PIPELINES

193

Procedure

1. Get the webhook URL:

For a secure HTTPS connection:

$ echo "URL: $(oc get route el-vote-app --template='https://{{.spec.host}}')"

For an HTTP (insecure) connection:

$ echo "URL: $(oc get route el-vote-app --template='http://{{.spec.host}}')"

Note the URL obtained in the output.

2. Configure webhooks manually on the front-end repository:

a. Open the front-end Git repository pipelines-vote-ui in your browser.

b. Click Settings → Webhooks → Add Webhook

c. On the Webhooks/Add Webhook page:

i. Enter the webhook URL from step 1 in Payload URL field

ii. Select application/json for the Content type

iii. Specify the secret in the Secret field

iv. Ensure that the Just the push event is selected

v. Select Active

vi. Click Add Webhook

3. Repeat step 2 for the back-end repository pipelines-vote-api.

4.5.10. Triggering a pipeline run

Whenever a push event occurs in the Git repository, the configured webhook sends an event payload to
the publicly exposed EventListener service route. The EventListener service of the application
processes the payload, and passes it to the relevant TriggerBinding and TriggerTemplate resource
pairs. The TriggerBinding resource extracts the parameters, and the TriggerTemplate resource uses
these parameters and specifies the way the resources must be created. This may rebuild and redeploy
the application.

In this section, you push an empty commit to the front-end pipelines-vote-ui repository, which then
triggers the pipeline run.

Procedure

1. From the terminal, clone your forked Git repository pipelines-vote-ui:

2. Push an empty commit:

$ git clone git@github.com:<your GitHub ID>/pipelines-vote-ui.git -b pipelines-1.7

OpenShift Container Platform 4.9 CI/CD

194

3. Check if the pipeline run was triggered:

$ tkn pipelinerun list

Notice that a new pipeline run was initiated.

4.5.11. Enabling monitoring of event listeners for Triggers for user-defined projects

As a cluster administrator, to gather event listener metrics for the Triggers service in a user-defined
project and display them in the OpenShift Container Platform web console, you can create a service
monitor for each event listener. On receiving an HTTP request, event listeners for the Triggers service
return three metrics — eventlistener_http_duration_seconds, eventlistener_event_count, and
eventlistener_triggered_resources.

Prerequisites

You have logged in to the OpenShift Container Platform web console.

You have installed the Red Hat OpenShift Pipelines Operator.

You have enabled monitoring for user-defined projects.

Procedure

1. For each event listener, create a service monitor. For example, to view the metrics for the
github-listener event listener in the test namespace, create the following service monitor:

$ git commit -m "empty-commit" --allow-empty && git push origin pipelines-1.7

apiVersion: monitoring.coreos.com/v1
kind: ServiceMonitor
metadata:
 labels:
 app.kubernetes.io/managed-by: EventListener
 app.kubernetes.io/part-of: Triggers
 eventlistener: github-listener
 annotations:
 networkoperator.openshift.io/ignore-errors: ""
 name: el-monitor
 namespace: test
spec:
 endpoints:
 - interval: 10s
 port: http-metrics
 jobLabel: name
 namespaceSelector:
 matchNames:
 - test
 selector:
 matchLabels:
 app.kubernetes.io/managed-by: EventListener
 app.kubernetes.io/part-of: Triggers
 eventlistener: github-listener
...

CHAPTER 4. PIPELINES

195

2. Test the service monitor by sending a request to the event listener. For example, push an empty
commit:

3. On the OpenShift Container Platform web console, navigate to Administrator → Observe →
Metrics.

4. To view a metric, search by its name. For example, to view the details of the
eventlistener_http_resources metric for the github-listener event listener, search using the
eventlistener_http_resources keyword.

Additional resources

Enabling monitoring for user-defined projects

4.5.12. Additional resources

To include pipelines as code along with the application source code in the same repository, see
Using Pipelines as code .

For more details on pipelines in the Developer perspective, see the working with pipelines in the
Developer perspective section.

To learn more about Security Context Constraints (SCCs), see the Managing Security Context
Constraints section.

For more examples of reusable tasks, see the OpenShift Catalog repository. Additionally, you
can also see the Tekton Catalog in the Tekton project.

To install and deploy a custom instance of Tekton Hub for reusable tasks and pipelines, see
Using Tekton Hub with Red Hat OpenShift Pipelines .

For more details on re-encrypt TLS termination, see Re-encryption Termination.

For more details on secured routes, see the Secured routes section.

4.6. MANAGING NON-VERSIONED AND VERSIONED CLUSTER TASKS

As a cluster administrator, installing the Red Hat OpenShift Pipelines Operator creates variants of each
default cluster task known as versioned cluster tasks (VCT) and non-versioned cluster tasks (NVCT). For
example, installing the Red Hat OpenShift Pipelines Operator v1.7 creates a buildah-1-7-0 VCT and a
buildah NVCT.

Both NVCT and VCT have the same metadata, behavior, and specifications, including params,
workspaces, and steps. However, they behave differently when you disable them or upgrade the
Operator.

4.6.1. Differences between non-versioned and versioned cluster tasks

Non-versioned and versioned cluster tasks have different naming conventions. And, the Red Hat
OpenShift Pipelines Operator upgrades them differently.

Table 4.5. Differences between non-versioned and versioned cluster tasks

$ git commit -m "empty-commit" --allow-empty && git push origin main

OpenShift Container Platform 4.9 CI/CD

196

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/monitoring/#enabling-monitoring-for-user-defined-projects
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/cicd/#using-pipelines-as-code
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/cicd/#working-with-pipelines-using-the-developer-perspective
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/authentication_and_authorization/#managing-pod-security-policies
https://github.com/openshift/pipelines-catalog
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/cicd/#using-tekton-hub-with-openshift-pipelines
https://docs.openshift.com/container-platform/3.11/architecture/networking/routes.html#re-encryption-termination
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/networking/#secured-routes

 Non-versioned cluster task Versioned cluster task

Nomenclature The NVCT only contains the name
of the cluster task. For example,
the name of the NVCT of Buildah
installed with Operator v1.7 is
buildah.

The VCT contains the name of the
cluster task, followed by the
version as a suffix. For example,
the name of the VCT of Buildah
installed with Operator v1.7 is
buildah-1-7-0.

Upgrade When you upgrade the Operator,
it updates the non-versioned
cluster task with the latest
changes. The name of the NVCT
remains unchanged.

Upgrading the Operator installs
the latest version of the VCT and
retains the earlier version. The
latest version of a VCT
corresponds to the upgraded
Operator. For example, installing
Operator 1.7 installs buildah-1-7-
0 and retains buildah-1-6-0.

4.6.2. Advantages and disadvantages of non-versioned and versioned cluster tasks

Before adopting non-versioned or versioned cluster tasks as a standard in production environments,
cluster administrators might consider their advantages and disadvantages.

Table 4.6. Advantages and disadvantages of non-versioned and versioned cluster tasks

Cluster task Advantages Disadvantages

Non-versioned cluster task
(NVCT) If you prefer deploying

pipelines with the latest
updates and bug fixes,
use the NVCT.

Upgrading the Operator
upgrades the non-
versioned cluster tasks,
which consume fewer
resources than multiple
versioned cluster tasks.

If you deploy pipelines that use
NVCT, they might break after an
Operator upgrade if the
automatically upgraded cluster
tasks are not backward-
compatible.

CHAPTER 4. PIPELINES

197

Versioned cluster task (VCT)
If you prefer stable
pipelines in production,
use the VCT.

The earlier version is
retained on the cluster
even after the later
version of a cluster task
is installed. You can
continue using the earlier
cluster tasks.

If you continue using an
earlier version of a
cluster task, you might
miss the latest features
and critical security
updates.

The earlier versions of
cluster tasks that are not
operational consume
cluster resources.

When upgraded , the
Operator cannot manage
the earlier VCT. You can
delete the earlier VCT
manually using the oc
delete clustertask
command, but you
cannot restore it.

Cluster task Advantages Disadvantages

4.6.3. Disabling non-versioned and versioned cluster tasks

As a cluster administrator, you can disable cluster tasks that the Pipelines Operator installed.

Procedure

1. To delete all non-versioned cluster tasks and latest versioned cluster tasks, edit the
TektonConfig custom resource definition (CRD) and set the clusterTasks parameter in
spec.addon.params to false.

Example TektonConfig CR

When you disable cluster tasks, the Operator removes all the non-versioned cluster tasks and
only the latest version of the versioned cluster tasks from the cluster.

NOTE

apiVersion: operator.tekton.dev/v1alpha1
kind: TektonConfig
metadata:
 name: config
spec:
 params:
 - name: createRbacResource
 value: "false"
 profile: all
 targetNamespace: openshift-pipelines
 addon:
 params:
 - name: clusterTasks
 value: "false"
...

OpenShift Container Platform 4.9 CI/CD

198

NOTE

Re-enabling cluster tasks installs the non-versioned cluster tasks.

2. Optional: To delete earlier versions of the versioned cluster tasks, use any one of the following
methods:

a. To delete individual earlier versioned cluster tasks, use the oc delete clustertask command
followed by the versioned cluster task name. For example:

b. To delete all versioned cluster tasks created by an old version of the Operator, you can
delete the corresponding installer set. For example:

CAUTION

If you delete an old versioned cluster task, you cannot restore it. You can only restore
versioned and non-versioned cluster tasks that the current version of the Operator has
created.

4.7. USING TEKTON HUB WITH OPENSHIFT PIPELINES

IMPORTANT

Tekton Hub is a Technology Preview feature only. Technology Preview features are not
supported with Red Hat production service level agreements (SLAs) and might not be
functionally complete. Red Hat does not recommend using them in production. These
features provide early access to upcoming product features, enabling customers to test
functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

Tekton Hub helps you discover, search, and share reusable tasks and pipelines for your CI/CD workflows.
A public instance of Tekton Hub is available at hub.tekton.dev. Cluster administrators can also install and
deploy a custom instance of Tekton Hub for enterprise use.

4.7.1. Installing and deploying Tekton Hub on a OpenShift Container Platform
cluster

Tekton Hub is an optional component; cluster administrators cannot install it using the TektonConfig
custom resource (CR). To install and manage Tekton Hub, use the TektonHub CR.

NOTE

If you are using Github Enterprise or Gitlab Enterprise, install and deploy Tekton Hub in
the same network as the enterprise server. For example, if the enterprise server is running
behind a VPN, deploy Tekton Hub on a cluster that is also behind the VPN.

$ oc delete clustertask buildah-1-6-0

$ oc delete tektoninstallerset versioned-clustertask-1-6-k98as

CHAPTER 4. PIPELINES

199

https://access.redhat.com/support/offerings/techpreview/
https://hub.tekton.dev/

Prerequisites

Ensure that the Red Hat OpenShift Pipelines Operator is installed in the default openshift-
pipelines namespace on the cluster.

Procedure

1. Create a fork of the Tekton Hub repository.

2. Clone the forked repository.

3. Update the config.yaml file to include at least one user with the following scopes:

A user with agent:create scope who can set up a cron job that refreshes the Tekton Hub
database after an interval, if there are any changes in the catalog.

A user with the catalog:refresh scope who can refresh the catalog and all resources in the
database of the Tekton Hub.

A user with the config:refresh scope who can get additional scopes.

The supported service providers are GitHub, GitLab, and BitBucket.

4. Create an OAuth application with your Git repository hosting provider, and note the Client ID
and Client Secret.

For a GitHub OAuth application, set the Homepage URL and the Authorization callback
URL as <auth-route>.

For a GitLab OAuth application, set the REDIRECT_URI as <auth-
route>/auth/gitlab/callback.

For a BitBucket OAuth application, set the Callback URL as <auth-route>.

5. Edit the following fields in the <tekton_hub_repository>/config/02-api/20-api-secret.yaml file
for the Tekton Hub API secret:

GH_CLIENT_ID: The Client ID from the OAuth application created with the Git repository
hosting service provider.

GH_CLIENT_SECRET: The Client Secret from the OAuth application created with the Git
repository hosting service provider.

GHE_URL: GitHub Enterprise URL, if you are authenticating using GitHub Enterprise. Do
not provide the URL to the catalog as a value for this field.

GL_CLIENT_ID: The Client ID from the GitLab OAuth application.

...
scopes:
- name: agent:create
 users: <username_registered_with_the_Git_repository_hosting_service_provider>
- name: catalog:refresh
 users: <username_registered_with_the_Git_repository_hosting_service_provider>
- name: config:refresh
 users: <username_registered_with_the_Git_repository_hosting_service_provider>
...

OpenShift Container Platform 4.9 CI/CD

200

https://github.com/tektoncd/hub

1

2

1

GL_CLIENT_SECRET: The Client Secret from the GitLab OAuth application.

GLE_URL: GitLab Enterprise URL, if you are authenticating using GitLab Enterprise. Do not
provide the URL to the catalog as a value for this field.

BB_CLIENT_ID: The Client ID from the BitBucket OAuth application.

BB_CLIENT_SECRET: The Client Secret from the BitBucket OAuth application.

JWT_SIGNING_KEY: A long, random string used to sign the JSON Web Token (JWT)
created for users.

ACCESS_JWT_EXPIRES_IN: Add the time limit after which the access token expires. For
example, 1m, where m denotes minutes. The supported units of time are seconds (s),
minutes (m), hours (h), days (d), and weeks (w).

REFRESH_JWT_EXPIRES_IN: Add the time limit after which the refresh token expires.
For example, 1m, where m denotes minutes. The supported units of time are seconds (s),
minutes (m), hours (h), days (d), and weeks (w). Ensure that the expiry time set for token
refresh is greater than the expiry time set for token access.

AUTH_BASE_URL: Route URL for the OAuth application.

NOTE

Use the fields related to Client ID and Client Secret for any one of the
supported Git repository hosting service providers.

The account credentials registered with the Git repository hosting
service provider enables the users with catalog: refresh scope to
authenticate and load all catalog resources to the database.

6. Commit and push the changes to your forked repository.

7. Ensure that the TektonHub CR is similar to the following example:

The namespace in which Tekton Hub must be installed; default is openshift-pipelines.

Substitute with the URL of the config.yaml file of your forked repository.

8. Install the Tekton Hub.

The file name or path of the TektonConfig CR.

apiVersion: operator.tekton.dev/v1alpha1
kind: TektonHub
metadata:
 name: hub
spec:
 targetNamespace: openshift-pipelines 1
 api:
 hubConfigUrl: https://raw.githubusercontent.com/tektoncd/hub/main/config.yaml 2

$ oc apply -f TektonHub.yaml 1

CHAPTER 4. PIPELINES

201

1

2

1

2

9. Check the status of the installation.

4.7.1.1. Manually refreshing the catalog in Tekton Hub

When you install and deploy Tekton Hub on a OpenShift Container Platform cluster, a Postgres
database is also installed. Initially, the database is empty. To add the tasks and pipelines available in the
catalog to the database, cluster administrators must refresh the catalog.

Prerequisites

Ensure that you are in the <tekton_hub_repository>/config/ directory.

Procedure

1. In the Tekton Hub UI, click Login -→ Sign In With GitHub.

NOTE

GitHub is used as an example from the publicly available Tekton Hub UI. For
custom installation on your cluster, all Git repository hosting service providers for
which you have provided Client ID and Client Secret are listed.

2. On the home page, click the user profile and copy the token.

3. Call the Catalog Refresh API.

To refresh a catalog with a specific name, run the following command:

The Tekton Hub token copied from UI.

The API pod URL and name of the catalog.

Sample output:

To refresh all catalogs, run the following command:

The Tekton Hub token copied from UI

The API pod URL.

$ oc get tektonhub.operator.tekton.dev
NAME VERSION READY REASON APIURL UIURL
hub v1.7.2 True https://api.route.url/ https://ui.route.url/

$ curl -X POST -H "Authorization: <jwt-token>" \ 1
 <api-url>/catalog/<catalog_name>/refresh 2

[{"id":1,"catalogName":"tekton","status":"queued"}]

$ curl -X POST -H "Authorization: <jwt-token>" \ 1
 <api-url>/catalog/refresh 2

OpenShift Container Platform 4.9 CI/CD

202

https://hub.tekton.dev/

1

1

4. Refresh the page in the browser.

4.7.1.2. Optional: Setting a cron job for refreshing catalog in Tekton Hub

Cluster administrators can optionally set up a cron job to refresh the database after a fixed interval, so
that changes in the catalog appear in the Tekton Hub web console.

NOTE

If resources are added to the catalog or updated, refreshing the catalog displays these
changes in the Tekton Hub UI. However, if a resource is deleted from the catalog,
refreshing the catalog does not remove the resource from the database. The Tekton Hub
UI continues displaying the deleted resource.

Prerequisites

Ensure that you are in the <project_root>/config/ directory, where <project_root> is the top
level directory of the cloned Tekton Hub repository.

Ensure that you have a JSON web token (JWT) token with a scope of refreshing the catalog.

Procedure

1. Create an agent-based JWT token for longer use.

The JWT token.

The agent token with the necessary scopes are returned in the {"token":"<agent_jwt_token>"}
format. Note the returned token and preserve it for the catalog refresh cron job.

2. Edit the 05-catalog-refresh-cj/50-catalog-refresh-secret.yaml file to set the HUB_TOKEN
parameter to the <agent_jwt_token> returned in the previous step.

The <agent_jwt_token> returned in the previous step.

3. Apply the modified YAML files.

4. Optional: By default, the cron job is configured to run every 30 minutes. To change the interval,

$ curl -X PUT --header "Content-Type: application/json" \
 -H "Authorization: <access-token>" \ 1
 --data '{"name":"catalog-refresh-agent","scopes": ["catalog:refresh"]}' \
 <api-route>/system/user/agent

apiVersion: v1
kind: Secret
metadata:
 name: catalog-refresh
type: Opaque
stringData:
 HUB_TOKEN: <hub_token> 1

$ oc apply -f 05-catalog-refresh-cj/ -n openshift-pipelines.

CHAPTER 4. PIPELINES

203

1

4. Optional: By default, the cron job is configured to run every 30 minutes. To change the interval,
modify the value of the schedule parameter in the 05-catalog-refresh-cj/51-catalog-refresh-
cronjob.yaml file.

4.7.1.3. Optional: Adding new users in Tekton Hub configuration

Procedure

1. Depending on the intended scope, cluster administrators can add new users in the config.yaml
file.

The usernames registered with the Git repository hosting service provider.

NOTE

When any user logs in for the first time, they will have only the default scope even
if they are added in the config.yaml. To activate additional scopes, ensure the
user has logged in at least once.

2. Ensure that in the config.yaml file, you have the config-refresh scope.

3. Refresh the configuration.

apiVersion: batch/v1
kind: CronJob
metadata:
 name: catalog-refresh
 labels:
 app: tekton-hub-api
spec:
 schedule: "*/30 * * * *"
 ...

...
scopes:
 - name: agent:create
 users: [<username_1>, <username_2>] 1
 - name: catalog:refresh
 users: [<username_3>, <username_4>]
 - name: config:refresh
 users: [<username_5>, <username_6>]

default:
 scopes:
 - rating:read
 - rating:write
...

$ curl -X POST -H "Authorization: <access-token>" \ 1
 --header "Content-Type: application/json" \
 --data '{"force": true} \
 <api-route>/system/config/refresh

OpenShift Container Platform 4.9 CI/CD

204

1 The JWT token.

4.7.2. Opting out of Tekton Hub in the Developer perspective

Cluster administrators can opt out of displaying Tekton Hub resources, such as tasks and pipelines, in
the Pipeline builder page of the Developer perspective of an OpenShift Container Platform cluster.

Prerequisite

Ensure that the Red Hat OpenShift Pipelines Operator is installed on the cluster, and the oc
command line tool is available.

Procedure

To opt of displaying Tekton Hub resources in the Developer perspective, set the value of the
enable-devconsole-integration field in the TektonConfig custom resource (CR) to false.

By default, the TektonConfig CR does not include the enable-devconsole-integration field,
and the Red Hat OpenShift Pipelines Operator assumes that the value is true.

4.7.3. Additional resources

GitHub repository of Tekton Hub.

Installing OpenShift Pipelines

Red Hat OpenShift Pipelines release notes

4.8. USING PIPELINES AS CODE

IMPORTANT

Pipelines as Code is a Technology Preview feature only. Technology Preview features are
not supported with Red Hat production service level agreements (SLAs) and might not
be functionally complete. Red Hat does not recommend using them in production. These
features provide early access to upcoming product features, enabling customers to test
functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

apiVersion: operator.tekton.dev/v1alpha1
 kind: TektonConfig
 metadata:
 name: config
 spec:
 targetNamespace: openshift-pipelines
 ...
 hub:
 params:
 - name: enable-devconsole-integration
 value: "false"
 ...

CHAPTER 4. PIPELINES

205

https://github.com/tektoncd/hub
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/cicd/#installing-pipelines
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/cicd/#op-release-notes
https://access.redhat.com/support/offerings/techpreview/

With Pipelines as Code, cluster administrators and users with the required privileges can define pipeline
templates as part of source code Git repositories. When triggered by a source code push or a pull
request for the configured Git repository, the feature runs the pipeline and reports the status.

4.8.1. Key features

Pipelines as Code supports the following features:

Pull request status and control on the platform hosting the Git repository.

GitHub Checks API to set the status of a pipeline run, including rechecks.

GitHub pull request and commit events.

Pull request actions in comments, such as /retest.

Git events filtering and a separate pipeline for each event.

Automatic task resolution in Pipelines, including local tasks, Tekton Hub, and remote URLs.

Retrieval of configurations using GitHub blobs and objects API.

Access Control List (ACL) over a GitHub organization, or using a Prow style OWNER file.

The tkn-pac CLI plugin for managing bootstrapping and Pipelines as Code repositories.

Support for GitHub App, GitHub Webhook, Bitbucket Server, and Bitbucket Cloud.

4.8.2. Installing Pipelines as Code on an OpenShift Container Platform

Pipelines as Code is installed by default when you install the Red Hat OpenShift Pipelines Operator. If
you are using Pipelines 1.7 or later versions, skip the procedure for manual installation of Pipelines as
Code.

However, if you want to disable the default installation of Pipelines as Code with the Red Hat OpenShift
Pipelines Operator, set the value of the enablePipelinesAsCode field as false in the TektonConfig
custom resource.

To install Pipelines as Code using the Operator, set the value of the enablePipelinesAsCode field to
true.

Procedure

1. To manually install Pipelines as Code on a OpenShift Container Platform cluster instead of the
default installation with the Red Hat OpenShift Pipelines Operator, run the following command:

NOTE

...
spec:
 addon:
 enablePipelinesAsCode: false
...

$ VERSION=0.5.4
$ oc apply -f https://raw.githubusercontent.com/openshift-pipelines/pipelines-as-
code/release-$VERSION/release-$VERSION.yaml

OpenShift Container Platform 4.9 CI/CD

206

NOTE

For the latest stable version, check the release page. In addition, check the Red
Hat OpenShift Pipelines release notes to ensure that the Pipelines as Code
version is compatible with the Red Hat OpenShift Pipelines version.

This command installs Pipelines as Code in the pipelines-as-code namespace and creates user
roles and the route URL for the Pipelines as Code event listener.

2. Note the route URL for the Pipelines as Code controller created on the cluster:

This URL will be needed later when you configure the Git repository hosting service provider.

3. (Optional) To allow non-administrative users to create repository custom resource definitions
(CRDs) in their respective namespaces, create a RoleBinding object with the name openshift-
pipeline-as-code-clusterrole in the namespace. For example, to allow a user to create a
repository CRD in the user-ci namespace, run the following command:

Alternatively, apply the following YAML file using the oc apply -f <RoleBinding.yaml>
command:

4.8.3. Installing Pipelines as Code CLI

Cluster administrators can use the tkn-pac CLI tool on local machines or as containers for testing. The
tkn-pac CLI tool is installed automatically when you install the tkn CLI for Red Hat OpenShift Pipelines.

You can also install the tkn-pac tkn-pac version 0.23.1 binaries for the supported platforms:

Linux (x86_64, amd64)

Linux on IBM Z and LinuxONE (s390x)

Linux on IBM Power Systems (ppc64le)

Mac

$ echo https://$(oc get route -n pipelines-as-code el-pipelines-as-code-interceptor -o
jsonpath='{.spec.host}')

$ oc adm policy add-role-to-user openshift-pipeline-as-code-clusterrole user -n user-ci

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
 name: openshift-pipeline-as-code-clusterrole
 namespace: user-ci
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: openshift-pipeline-as-code-clusterrole
subjects:
- apiGroup: rbac.authorization.k8s.io
 kind: User
 name: user

CHAPTER 4. PIPELINES

207

https://github.com/openshift-pipelines/pipelines-as-code/releases
https://mirror.openshift.com/pub/openshift-v4/clients/pipeline/0.23.1/tkn-pac-linux-amd64-0.23.1.tar.gz
https://mirror.openshift.com/pub/openshift-v4/clients/pipeline/0.23.1/tkn-pac-linux-s390x-0.23.1.tar.gz
https://mirror.openshift.com/pub/openshift-v4/clients/pipeline/0.23.1/tkn-pac-linux-ppc64le-0.23.1.tar.gz
https://mirror.openshift.com/pub/openshift-v4/clients/pipeline/0.23.1/tkn-pac-macos-amd64-0.23.1.tar.gz

Windows

NOTE

The binaries are compatible with tkn version 0.23.1.

4.8.4. Configuring Pipelines as Code for a Git repository hosting service provider

After installing Pipelines as Code, cluster administrators can configure a Git repository hosting service
provider. Currently, the following services are supported:

Github App

Github Webhook

Bitbucket Server

Bitbucket Cloud

NOTE

GitHub App is the recommended service for using Pipelines as Code.

4.8.4.1. Configuring Pipelines as Code for a GitHub App

GitHub Apps act as a point of integration with Red Hat OpenShift Pipelines and bring the advantage of
Git-based workflows to OpenShift Pipelines. Cluster administrators can configure a single GitHub App
for all cluster users. For GitHub Apps to work with Pipelines as Code, ensure that the webhook of the
GitHub App points to the Pipelines as Code event listener route (or ingress endpoint) that listens for
GitHub events.

4.8.4.1.1. Configuring a GitHub App

Cluster administrators can create a GitHub App by running the following command:

If the tkn pac CLI plugin is not installed, you can create the GitHub App manually.

Procedure

To create and configure a GitHub App manually for Pipelines as Code, perform the following steps:

1. Sign in to your GitHub account.

2. Go to Settings -→ Developer settings -→ GitHub Apps, and click New GitHub App.

3. Provide the following information in the GitHub App form:

GitHub Application Name: OpenShift Pipelines

Homepage URL: OpenShift Console URL

Webhook URL: The Pipelines as Code route or ingress URL. You can find it by executing

$ tkn pac bootstrap github-app

OpenShift Container Platform 4.9 CI/CD

208

https://mirror.openshift.com/pub/openshift-v4/clients/pipeline/0.23.1/tkn-pac-windows-amd64-0.23.1.zip

Webhook URL: The Pipelines as Code route or ingress URL. You can find it by executing
the command echo https://$(oc get route -n pipelines-as-code el-pipelines-as-code-
interceptor -o jsonpath='{.spec.host}').

NOTE

For Pipelines as Code installated by default using the Red Hat OpenShift
Pipelines Operator, use the openshift-pipelines namespace instead of
pipelines-as-code.

Webhook secret: An arbitrary secret. You can generate a secret by executing the command
openssl rand -hex 20.

4. Select the following Repository permissions:

Checks: Read & Write

Contents: Read & Write

Issues: Read & Write

Metadata: Read-only

Pull request: Read & Write

5. Select the following Organization permissions:

Members: Readonly

Plan: Readonly

6. Select the following User permissions:

Commit comment

Issue comment

Pull request

Pull request review

Pull request review comment

Push

7. Click Create GitHub App.

8. On the Details page of the newly created GitHub App, note the App ID displayed at the top.

9. In the Private keys section, click Generate Private key to automatically generate and
download a private key for the GitHub app. Securely store the private key for future reference
and usage.

4.8.4.1.2. Configuring Pipelines as Code to access a GitHub App

To configure Pipelines as Code to access the newly created GitHub App, execute the following
command:

CHAPTER 4. PIPELINES

209

https:

1

2

3

4

+

For Pipelines as Code installated by default using the Red Hat OpenShift Pipelines Operator, use
the openshift-pipelines namespace instead of pipelines-as-code.

The path to the private key you downloaded while configuring the GitHub App.

The App ID of the GitHub App.

The webhook secret provided when you created the GitHub App.

NOTE

Pipelines as Code works automatically with GitHub Enterprise by detecting the header set
from GitHub Enterprise and using it for the GitHub Enterprise API authorization URL.

4.8.5. Pipelines as Code command reference

The tkn-pac CLI tool offers the following capabilities:

Bootstrap Pipelines as Code installation and configuration.

Create a new Pipelines as Code repository.

List all Pipelines as Code repositories.

Describe a Pipelines as Code repository and the associated runs.

Generate a simple pipeline run to get started.

Resolve a pipeline run as if it was executed by Pipelines as Code.

TIP

You can use the commands corresponding to the capabilities for testing and experimentation, so that
you don’t have to make changes to the Git repository containing the application source code.

4.8.5.1. Basic syntax

4.8.5.2. Global options

4.8.5.3. Utility commands

$ oc -n <pipelines-as-code> create secret generic pipelines-as-code-secret \ 1
 --from-literal github-private-key="$(cat <PATH_PRIVATE_KEY>)" \ 2
 --from-literal github-application-id="<APP_ID>" \ 3
 --from-literal webhook.secret="<WEBHOOK_SECRET>" 4

$ tkn pac [command or options] [arguments]

$ tkn pac --help

OpenShift Container Platform 4.9 CI/CD

210

4.8.5.3.1. bootstrap

Table 4.7. Bootstrapping Pipelines as Code installation and configuration

Command Description

tkn pac bootstrap Installs and configures Pipelines as Code for Git
repository hosting service providers, such as GitHub
and GitHub Enterprise.

tkn pac bootstrap --nightly Installs the nightly build of Pipelines as Code.

tkn pac bootstrap --route-url
<public_url_to_ingress_spec>

Overrides the OpenShift route URL.

By default, tkn pac bootstrap detects the
OpenShift route, which is automatically associated
with the Pipelines as Code controller service.

If you do not have an OpenShift Container Platform
cluster, it asks you for the public URL that points to
the ingress endpoint.

tkn pac bootstrap github-app Create a GitHub application and secrets in the
pipelines-as-code namespace.

4.8.5.3.2. repository

Table 4.8. Managing Pipelines as Code repositories

Command Description

tkn pac repo create Creates a new Pipelines as Code repository and a
namespace based on the pipeline run template.

tkn pac repo list Lists all the Pipelines as Code repositories and
displays the last status of the associated runs.

tkn pac repo describe Describes a Pipelines as Code repository and the
associated runs.

4.8.5.3.3. generate

Table 4.9. Generating pipeline runs using Pipelines as Code

Command Description

CHAPTER 4. PIPELINES

211

tkn pac generate Generates a simple pipeline run.

When executed from the directory containing the
source code, it automatically detects current Git
information.

In addition, it uses basic language detection capability
and adds extra tasks depending on the language.

For example, if it detects a setup.py file at the
repository root, the pylint task is automatically added
to the generated pipeline run.

Command Description

4.8.5.3.4. resolve

Table 4.10. Resolving and executing pipeline runs using Pipelines as Code

Command Description

tkn pac resolve Executes a pipeline run as if it is owned by the
Pipelines as Code on service.

tkn pac resolve -f .tekton/pull-request.yaml |
oc apply -f -

Displays the status of a live pipeline run that uses the
template in .tekton/pull-request.yaml.

Combined with a Kubernetes installation running on
your local machine, you can observe the pipeline run
without generating a new commit.

If you run the command from a source code
repository, it attempts to detect the current Git
information and automatically resolve parameters
such as current revision or branch.

tkn pac resolve -f .tekton/pr.yaml -p
revision=main -p repo_name=
<repository_name>

Executes a pipeline run by overriding default
parameter values derived from the Git repository.

The -f option can also accept a directory path and
apply the tkn pac resolve command on all .yaml
or .yml files in that directory. You can also use the -f
flag multiple times in the same command.

You can override the default information gathered
from the Git repository by specifying parameter
values using the -p option. For example, you can use
a Git branch as a revision and a different repository
name.

4.8.6. Customizing Pipelines as Code configuration

To customize Pipelines as Code, cluster administrators can configure the following parameters using the

OpenShift Container Platform 4.9 CI/CD

212

https://hub.tekton.dev/tekton/task/pylint

To customize Pipelines as Code, cluster administrators can configure the following parameters using the
pipelines-as-code config map in the pipelines-as-code namespace:

Table 4.11. Customizing Pipelines as Code configuration

Parameter Description Default

application-name The name of the application. For
example, the name displayed in
the GitHub Checks labels.

"Pipelines as Code CI"

max-keep-days The number of the days for which
the executed pipeline runs are
kept in the pipelines-as-code
namespace.

Note that this configmap setting
does not affect the cleanups of a
user’s pipeline runs, which are
controlled by the annotations on
the pipeline run definition in the
user’s GitHub repository.

secret-auto-create Indicates whether or not a secret
should be automatically created
using the token generated in the
GitHub application. This secret
can then be used with private
repositories.

enabled

remote-tasks When enabled, allows remote
tasks from pipeline run
annotations.

enabled

hub-url The base URL for the Tekton Hub
API.

https://hub.tekton.dev/

4.8.7. Additional resources

Installing OpenShift Pipelines

Installing tkn

Red Hat OpenShift Pipelines release notes

4.9. WORKING WITH RED HAT OPENSHIFT PIPELINES USING THE
DEVELOPER PERSPECTIVE

You can use the Developer perspective of the OpenShift Container Platform web console to create
CI/CD pipelines for your software delivery process.

In the Developer perspective:

CHAPTER 4. PIPELINES

213

https://api.hub.tekton.dev/v1
https://hub.tekton.dev/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/cicd/#installing-pipelines
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/cli_tools/#installing-tkn
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/cicd/#op-release-notes

Use the Add → Pipeline → Pipeline builder option to create customized pipelines for your
application.

Use the Add → From Git option to create pipelines using operator-installed pipeline templates
and resources while creating an application on OpenShift Container Platform.

After you create the pipelines for your application, you can view and visually interact with the deployed
pipelines in the Pipelines view. You can also use the Topology view to interact with the pipelines
created using the From Git option. You must apply custom labels to pipelines created using the
Pipeline builder to see them in the Topology view.

Prerequisites

You have access to an OpenShift Container Platform cluster and have switched to the
Developer perspective.

You have the OpenShift Pipelines Operator installed in your cluster.

You are a cluster administrator or a user with create and edit permissions.

You have created a project.

4.9.1. Constructing Pipelines using the Pipeline builder

In the Developer perspective of the console, you can use the +Add → Pipeline → Pipeline builder
option to:

Configure pipelines using either the Pipeline builder or the YAML view.

Construct a pipeline flow using existing tasks and cluster tasks. When you install the OpenShift
Pipelines Operator, it adds reusable pipeline cluster tasks to your cluster.

Specify the type of resources required for the pipeline run, and if required, add additional
parameters to the pipeline.

Reference these pipeline resources in each of the tasks in the pipeline as input and output
resources.

If required, reference any additional parameters added to the pipeline in the task. The
parameters for a task are prepopulated based on the specifications of the task.

Use the Operator-installed, reusable snippets and samples to create detailed pipelines.

Procedure

1. In the +Add view of the Developer perspective, click the Pipeline tile to see the Pipeline
builder page.

2. Configure the pipeline using either the Pipeline builder view or the YAML view.

NOTE

The Pipeline builder view supports a limited number of fields whereas the YAML
view supports all available fields. Optionally, you can also use the Operator-
installed, reusable snippets and samples to create detailed Pipelines.

Figure 4.1. YAML view

OpenShift Container Platform 4.9 CI/CD

214

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/web_console/#about-developer-perspective_web-console-overview
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/cicd/#installing-pipelines

Figure 4.1. YAML view

3. Configure your pipeline by using Pipeline builder:

a. In the Name field, enter a unique name for the pipeline.

b. In the Tasks section:

i. Click Add task.

ii. Search for a task using the quick search field and select the required task from the
displayed list.

iii. Click Add or Install and add. In this example, use the s2i-nodejs task.

NOTE

The search list contains all the Tekton Hub tasks and tasks available in
the cluster. Also, if a task is already installed it will show Add to add the
task whereas it will show Install and add to install and add the task. It will
show Update and add when you add the same task with an updated
version.

To add sequential tasks to the pipeline:

Click the plus icon to the right or left of the task → click Add task.

Search for a task using the quick search field and select the required task from
the displayed list.

Click Add or Install and add.

Figure 4.2. Pipeline builder

CHAPTER 4. PIPELINES

215

Figure 4.2. Pipeline builder

To add a final task:

Click the Add finally task → Click Add task.

Search for a task using the quick search field and select the required task from
the displayed list.

Click Add or Install and add.

c. In the Resources section, click Add Resources to specify the name and type of resources
for the pipeline run. These resources are then used by the tasks in the pipeline as inputs and
outputs. For this example:

i. Add an input resource. In the Name field, enter Source, and then from the Resource
Type drop-down list, select Git.

ii. Add an output resource. In the Name field, enter Img, and then from the Resource
Type drop-down list, select Image.

NOTE

A red icon appears next to the task if a resource is missing.

d. Optional: The Parameters for a task are pre-populated based on the specifications of the
task. If required, use the Add Parameters link in the Parameters section to add additional
parameters.

e. In the Workspaces section, click Add workspace and enter a unique workspace name in the
Name field. You can add multiple workspaces to the pipeline.

f. In the Tasks section, click the s2i-nodejs task to see the side panel with details for the task.
In the task side panel, specify the resources and parameters for the s2i-nodejs task:

i. If required, in the Parameters section, add more parameters to the default ones, by
using the $(params.<param-name>) syntax.

ii. In the Image section, enter Img as specified in the Resources section.

iii. Select a workspace from the source drop-down under Workspaces section.

g. Add resources, parameters, and workspaces to the openshift-client task.

OpenShift Container Platform 4.9 CI/CD

216

4. Click Create to create and view the pipeline in the Pipeline Details page.

5. Click the Actions drop-down menu then click Start, to see the Start Pipeline page.

6. The Workspaces section lists the workspaces you created earlier. Use the respective drop-
down to specify the volume source for your workspace. You have the following options: Empty
Directory, Config Map, Secret, PersistentVolumeClaim, or VolumeClaimTemplate.

4.9.2. Creating applications with OpenShift Pipelines

To create pipelines along with applications, use the From Git option in the Add view of the Developer
perspective. For more information, see Creating applications using the Developer perspective .

4.9.3. Interacting with pipelines using the Developer perspective

The Pipelines view in the Developer perspective lists all the pipelines in a project, along with the
following details:

The namespace in which the pipeline was created

The last pipeline run

The status of the tasks in the pipeline run

The status of the pipeline run

The creation time of the last pipeline run

Procedure

1. In the Pipelines view of the Developer perspective, select a project from the Project drop-
down list to see the pipelines in that project.

2. Click the required pipeline to see the Pipeline details page.
By default, the Details tab displays a visual representation of all the all the serial tasks, parallel
tasks, finally tasks, and when expressions in the pipeline. The tasks and the finally tasks are
listed in the lower right portion of the page. Click the listed Tasks and Finally tasks to view the
task details.

Figure 4.3. Pipeline details

3. Optional: On the Pipeline details page, click the Metrics tab to see the following information

CHAPTER 4. PIPELINES

217

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/building_applications/#odc-importing-codebase-from-git-to-create-application_odc-creating-applications-using-developer-perspective

3. Optional: On the Pipeline details page, click the Metrics tab to see the following information
about pipelines:

Pipeline Success Ratio

Number of Pipeline Runs

Pipeline Run Duration

Task Run Duration
You can use this information to improve the pipeline workflow and eliminate issues early in
the pipeline lifecycle.

4. Optional: Click the YAML tab to edit the YAML file for the pipeline.

5. Optional: Click the Pipeline Runs tab to see the completed, running, or failed runs for the
pipeline.
The Pipeline Runs tab provides details about the pipeline run, the status of the task, and a link

to debug failed pipeline runs. Use the Options menu to stop a running pipeline, to rerun a
pipeline using the same parameters and resources as that of the previous pipeline execution, or
to delete a pipeline run.

Click the required pipeline run to see the Pipeline Run details page. By default, the Details
tab displays a visual representation of all the serial tasks, parallel tasks, finally tasks, and
when expressions in the pipeline run. The results for successful runs are displayed under the
Pipeline Run results pane at the bottom of the page.

NOTE

The Details section of the Pipeline Run Details page displays a Log Snippet
of the failed pipeline run. Log Snippet provides a general error message and
a snippet of the log. A link to the Logs section provides quick access to the
details about the failed run.

On the Pipeline Run details page, click the Task Runs tab to see the completed, running,
and failed runs for the task.
The Task Runs tab provides information about the task run along with the links to its task

and pod, and also the status and duration of the task run. Use the Options menu to
delete a task run.

Click the required task run to see the Task Run details page. The results for successful runs
are displayed under the Task Run results pane at the bottom of the page.

NOTE

The Details section of the Task Run details page displays a Log Snippet of
the failed task run. Log Snippet provides a general error message and a
snippet of the log. A link to the Logs section provides quick access to the
details about the failed task run.

6. Click the Parameters tab to see the parameters defined in the pipeline. You can also add or edit
additional parameters, as required.

OpenShift Container Platform 4.9 CI/CD

218

7. Click the Resources tab to see the resources defined in the pipeline. You can also add or edit
additional resources, as required.

4.9.4. Using a custom pipeline template for creating and deploying an application
from a Git repository

As a cluster administrator, to create and deploy an application from a Git repository, you can use custom
pipeline templates that override the default pipeline templates provided by Red Hat OpenShift
Pipelines 1.5 and later.

NOTE

This feature is unavailable in Red Hat OpenShift Pipelines 1.4 and earlier versions.

Prerequisites

Ensure that the Red Hat OpenShift Pipelines 1.5 or later is installed and available in all namespaces.

Procedure

1. Log in to the OpenShift Container Platform web console as a cluster administrator.

2. In the Administrator perspective, use the left navigation panel to go to the Pipelines section.

a. From the Project drop-down, select the openshift project. This ensures that the
subsequent steps are performed in the openshift namespace.

b. From the list of available pipelines, select a pipeline that is appropriate for building and
deploying your application. For example, if your application requires a node.js runtime
environment, select the s2i-nodejs pipeline.

NOTE

Do not edit the default pipeline template. It may become incompatible with
the UI and the back-end.

c. Under the YAML tab of the selected pipeline, click Download and save the YAML file to
your local machine. If your custom configuration file fails, you can use this copy to restore a
working configuration.

3. Disable (delete) the default pipeline templates:

a. Use the left navigation panel to go to Operators → Installed Operators.

b. Click Red Hat OpenShift Pipelines → Tekton Configuration tab → config → YAML tab.

c. To disable (delete) the default pipeline templates in the openshift namespace, set the
pipelineTemplates parameter to false in the TektonConfig custom resource YAML, and
save it.

apiVersion: operator.tekton.dev/v1alpha1
kind: TektonConfig
metadata:
 name: config
spec:

CHAPTER 4. PIPELINES

219

NOTE

If you manually delete the default pipeline templates, the Operator restores
the defaults during an upgrade.

WARNING

As a cluster admin, you can disable the installation of the default
pipeline templates in the Operator configuration. However, such a
configuration deletes all default pipeline templates, not just the one you
want to customize.

4. Create a custom pipeline template:

a. Use the left navigation panel to go to the Pipelines section.

b. From the Create drop-down, select Pipeline.

c. Create the required pipeline in the openshift namespace. Give it a different name than the
default one (for example, custom-nodejs). You can use the downloaded default pipeline
template as a starting point and customize it.

NOTE

Because openshift is the default namespace used by the operator-installed
pipeline templates, you must create the custom pipeline template in the
openshift namespace. When an application uses a pipeline template, the
template is automatically copied to the respective project’s namespace.

d. Under the Details tab of the created pipeline, ensure that the Labels in the custom
template match the labels in the default pipeline. The custom pipeline template must have
the correct labels for the runtime, type, and strategy of the application. For example, the
required labels for a node.js application deployed on OpenShift Container Platform are as
follows:

NOTE

profile: all
targetNamespace: openshift-pipelines
addon:
 params:
 - name: clusterTasks
 value: "true"
 - name: pipelineTemplates
 value: "false"
...



...
pipeline.openshift.io/runtime: nodejs
pipeline.openshift.io/type: openshift
...

OpenShift Container Platform 4.9 CI/CD

220

NOTE

You can use only one pipeline template for each combination of runtime
environment and deployment type.

5. In the Developer perspective, use the +Add → Git Repository → From Git option to select the
kind of application you want to create and deploy. Based on the required runtime and type of
the application, your custom template is automatically selected.

4.9.5. Starting pipelines

After you create a pipeline, you need to start it to execute the included tasks in the defined sequence.
You can start a pipeline from the Pipelines view, the Pipeline Details page, or the Topology view.

Procedure

To start a pipeline using the Pipelines view:

1. In the Pipelines view of the Developer perspective, click the Options menu adjoining a
pipeline, and select Start.

2. The Start Pipeline dialog box displays the Git Resources and the Image Resources based on
the pipeline definition.

NOTE

For pipelines created using the From Git option, the Start Pipeline dialog box
also displays an APP_NAME field in the Parameters section, and all the fields in
the dialog box are prepopulated by the pipeline template.

a. If you have resources in your namespace, the Git Resources and the Image Resources
fields are prepopulated with those resources. If required, use the drop-downs to select or
create the required resources and customize the pipeline run instance.

3. Optional: Modify the Advanced Options to add the credentials that authenticate the specified
private Git server or the image registry.

a. Under Advanced Options, click Show Credentials Options and select Add Secret.

b. In the Create Source Secret section, specify the following:

i. A unique Secret Name for the secret.

ii. In the Designated provider to be authenticated section, specify the provider to be
authenticated in the Access to field, and the base Server URL.

iii. Select the Authentication Type and provide the credentials:

For the Authentication Type Image Registry Credentials, specify the Registry
Server Address that you want to authenticate, and provide your credentials in the
Username, Password, and Email fields.
Select Add Credentials if you want to specify an additional Registry Server
Address.

For the Authentication Type Basic Authentication, specify the values for the

CHAPTER 4. PIPELINES

221

For the Authentication Type Basic Authentication, specify the values for the
UserName and Password or Token fields.

For the Authentication Type SSH Keys, specify the value of the SSH Private Key
field.

NOTE

For basic authentication and SSH authentication, you can use
annotations such as:

tekton.dev/git-0: https://github.com

tekton.dev/git-1: https://gitlab.com.

iv. Select the check mark to add the secret.

You can add multiple secrets based upon the number of resources in your pipeline.

4. Click Start to start the pipeline.

5. The Pipeline Run Details page displays the pipeline being executed. After the pipeline starts,
the tasks and steps within each task are executed. You can:

Hover over the tasks to see the time taken to execute each step.

Click on a task to see the logs for each step in the task.

Click the Logs tab to see the logs relating to the execution sequence of the tasks. You can
also expand the pane and download the logs individually or in bulk, by using the relevant
button.

Click the Events tab to see the stream of events generated by a pipeline run.
You can use the Task Runs, Logs, and Events tabs to assist in debugging a failed pipeline
run or a failed task run.

Figure 4.4. Pipeline run details

OpenShift Container Platform 4.9 CI/CD

222

https://github.com
https://gitlab.com

Figure 4.4. Pipeline run details

6. For pipelines created using the From Git option, you can use the Topology view to interact with
pipelines after you start them:

NOTE

To see the pipelines created using the Pipeline Builder in the Topology view,
customize the pipeline labels to link the pipeline with the application workload.

a. On the left navigation panel, click Topology, and click on the application to see the pipeline
runs listed in the side panel.

b. In the Pipeline Runs section, click Start Last Run to start a new pipeline run with the same
parameters and resources as the previous one. This option is disabled if a pipeline run has
not been initiated.

Figure 4.5. Pipelines in Topology view

CHAPTER 4. PIPELINES

223

Figure 4.5. Pipelines in Topology view

c. In the Topology page, hover to the left of the application to see the status of the pipeline
run for the application.

NOTE

The side panel of the application node in the Topology page displays a Log
Snippet when a pipeline run fails on a specific task run. You can view the Log
Snippet in the Pipeline Runs section, under the Resources tab. Log Snippet
provides a general error message and a snippet of the log. A link to the Logs
section provides quick access to the details about the failed run.

4.9.6. Editing Pipelines

You can edit the Pipelines in your cluster using the Developer perspective of the web console:

Procedure

1. In the Pipelines view of the Developer perspective, select the Pipeline you want to edit to see
the details of the Pipeline. In the Pipeline Details page, click Actions and select Edit Pipeline.

2. On the Pipeline builder page, you can perform the following tasks:

Add additional Tasks, parameters, or resources to the Pipeline.

Click the Task you want to modify to see the Task details in the side panel and modify the
required Task details, such as the display name, parameters, and resources.

Alternatively, to delete the Task, click the Task, and in the side panel, click Actions and
select Remove Task.

3. Click Save to save the modified Pipeline.

4.9.7. Deleting Pipelines

You can delete the Pipelines in your cluster using the Developer perspective of the web console.

Procedure

OpenShift Container Platform 4.9 CI/CD

224

1. In the Pipelines view of the Developer perspective, click the Options menu adjoining a
Pipeline, and select Delete Pipeline.

2. In the Delete Pipeline confirmation prompt, click Delete to confirm the deletion.

4.10. REDUCING RESOURCE CONSUMPTION OF OPENSHIFT
PIPELINES

If you use clusters in multi-tenant environments you must control the consumption of CPU, memory, and
storage resources for each project and Kubernetes object. This helps prevent any one application from
consuming too many resources and affecting other applications.

To define the final resource limits that are set on the resulting pods, Red Hat OpenShift Pipelines use
resource quota limits and limit ranges of the project in which they are executed.

To restrict resource consumption in your project, you can:

Set and manage resource quotas to limit the aggregate resource consumption.

Use limit ranges to restrict resource consumption for specific objects, such as pods, images,
image streams, and persistent volume claims.

4.10.1. Understanding resource consumption in pipelines

Each task consists of a number of required steps to be executed in a particular order defined in the
steps field of the Task resource. Every task runs as a pod, and each step runs as a container within that
pod.

Steps are executed one at a time. The pod that executes the task only requests enough resources to
run a single container image (step) in the task at a time, and thus does not store resources for all the
steps in the task.

The Resources field in the steps spec specifies the limits for resource consumption. By default, the
resource requests for the CPU, memory, and ephemeral storage are set to BestEffort (zero) values or
to the minimums set through limit ranges in that project.

Example configuration of resource requests and limits for a step

When the LimitRange parameter and the minimum values for container resource requests are specified
in the project in which the pipeline and task runs are executed, Red Hat OpenShift Pipelines looks at all
the LimitRange values in the project and uses the minimum values instead of zero.

spec:
 steps:
 - name: <step_name>
 resources:
 requests:
 memory: 2Gi
 cpu: 600m
 limits:
 memory: 4Gi
 cpu: 900m

CHAPTER 4. PIPELINES

225

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/building_applications/#resource-quotas-per-project
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/nodes/#setting-limit-ranges

Example configuration of limit range parameters at a project level

4.10.2. Mitigating extra resource consumption in pipelines

When you have resource limits set on the containers in your pod, OpenShift Container Platform sums up
the resource limits requested as all containers run simultaneously.

To consume the minimum amount of resources needed to execute one step at a time in the invoked
task, Red Hat OpenShift Pipelines requests the maximum CPU, memory, and ephemeral storage as
specified in the step that requires the most amount of resources. This ensures that the resource
requirements of all the steps are met. Requests other than the maximum values are set to zero.

However, this behavior can lead to higher resource usage than required. If you use resource quotas, this
could also lead to unschedulable pods.

For example, consider a task with two steps that uses scripts, and that does not define any resource
limits and requests. The resulting pod has two init containers (one for entrypoint copy, the other for
writing scripts) and two containers, one for each step.

OpenShift Container Platform uses the limit range set up for the project to compute required resource
requests and limits. For this example, set the following limit range in the project:

apiVersion: v1
kind: LimitRange
metadata:
 name: <limit_container_resource>
spec:
 limits:
 - max:
 cpu: "600m"
 memory: "2Gi"
 min:
 cpu: "200m"
 memory: "100Mi"
 default:
 cpu: "500m"
 memory: "800Mi"
 defaultRequest:
 cpu: "100m"
 memory: "100Mi"
 type: Container
...

apiVersion: v1
kind: LimitRange
metadata:
 name: mem-min-max-demo-lr
spec:
 limits:
 - max:
 memory: 1Gi
 min:
 memory: 500Mi
 type: Container

OpenShift Container Platform 4.9 CI/CD

226

In this scenario, each init container uses a request memory of 1Gi (the max limit of the limit range), and
each container uses a request memory of 500Mi. Thus, the total memory request for the pod is 2Gi.

If the same limit range is used with a task of ten steps, the final memory request is 5Gi, which is higher
than what each step actually needs, that is 500Mi (since each step runs after the other).

Thus, to reduce resource consumption of resources, you can:

Reduce the number of steps in a given task by grouping different steps into one bigger step,
using the script feature, and the same image. This reduces the minimum requested resource.

Distribute steps that are relatively independent of each other and can run on their own to
multiple tasks instead of a single task. This lowers the number of steps in each task, making the
request for each task smaller, and the scheduler can then run them when the resources are
available.

4.10.3. Additional resources

Setting compute resource quota for OpenShift Pipelines

Resource quotas per project

Restricting resource consumption using limit ranges

Resource requests and limits in Kubernetes

4.11. SETTING COMPUTE RESOURCE QUOTA FOR OPENSHIFT
PIPELINES

A ResourceQuota object in Red Hat OpenShift Pipelines controls the total resource consumption per
namespace. You can use it to limit the quantity of objects created in a namespace, based on the type of
the object. In addition, you can specify a compute resource quota to restrict the total amount of
compute resources consumed in a namespace.

However, you might want to limit the amount of compute resources consumed by pods resulting from a
pipeline run, rather than setting quotas for the entire namespace. Currently, Red Hat OpenShift
Pipelines does not enable you to directly specify the compute resource quota for a pipeline.

4.11.1. Alternative approaches for limiting compute resource consumption in
OpenShift Pipelines

To attain some degree of control over the usage of compute resources by a pipeline, consider the
following alternative approaches:

Set resource requests and limits for each step in a task.

Example: Set resource requests and limits for each step in a task.

...
spec:
 steps:
 - name: step-with-limts
 resources:
 requests:
 memory: 1Gi

CHAPTER 4. PIPELINES

227

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/cicd/#setting-compute-resource-quota-for-openshift-pipelines
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/building_applications/#quotas-setting-per-project
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/nodes/#nodes-cluster-limit-ranges
https://kubernetes.io/docs/concepts/workloads/pods/init-containers/#resources

Set resource limits by specifying values for the LimitRange object. For more information on
LimitRange, refer to Restrict resource consumption with limit ranges .

Reduce pipeline resource consumption.

Set and manage resource quotas per project .

Ideally, the compute resource quota for a pipeline should be same as the total amount of
compute resources consumed by the concurrently running pods in a pipeline run. However, the
pods running the tasks consume compute resources based on the use case. For example, a
Maven build task might require different compute resources for different applications that it
builds. As a result, you cannot predetermine the compute resource quotas for tasks in a generic
pipeline. For greater predictability and control over usage of compute resources, use
customized pipelines for different applications.

NOTE

When using Red Hat OpenShift Pipelines in a namespace configured with a
ResourceQuota object, the pods resulting from task runs and pipeline runs might fail
with an error, such as: failed quota: <quota name> must specify cpu, memory.

To avoid this error, do any one of the following:

(Recommended) Specify a limit range for the namespace.

Explicitly define requests and limits for all containers.

For more information, refer to the issue and the resolution.

If your use case is not addressed by these approaches, you can implement a workaround by using a
resource quota for a priority class.

4.11.2. Specifying pipelines resource quota using priority class

A PriorityClass object maps priority class names to the integer values that indicates their relative
priorities. Higher values increase the priority of a class. After you create a priority class, you can create
pods that specify the priority class name in their specifications. In addition, you can control a pod’s
consumption of system resources based on the pod’s priority.

Specifying resource quota for a pipeline is similar to setting a resource quota for the subset of pods
created by a pipeline run. The following steps provide an example of the workaround by specifying
resource quota based on priority class.

Procedure

1. Create a priority class for a pipeline.

Example: Priority class for a pipeline

 cpu: 500m
 limits:
 memory: 2Gi
 cpu: 800m
...

OpenShift Container Platform 4.9 CI/CD

228

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/nodes/#nodes-cluster-limit-ranges
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/cicd/#reducing-pipelines-resource-consumption
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/building_applications/#quotas-setting-per-project
https://issues.redhat.com/browse/SRVKP-1801
https://access.redhat.com/solutions/2841971

2. Create a resource quota for a pipeline.

Example: Resource quota for a pipeline

3. Verify the resource quota usage for the pipeline.

Example: Verify resource quota usage for the pipeline

Sample output

Name: pipeline1-rq
Namespace: default
Resource Used Hard
-------- ---- ----
cpu 0 1k
memory 0 200Gi
pods 0 10

Because pods are not running, the quota is unused.

4. Create the pipelines and tasks.

Example: YAML for the pipeline

apiVersion: scheduling.k8s.io/v1
kind: PriorityClass
metadata:
 name: pipeline1-pc
value: 1000000
description: "Priority class for pipeline1"

apiVersion: v1
kind: ResourceQuota
metadata:
 name: pipeline1-rq
spec:
 hard:
 cpu: "1000"
 memory: 200Gi
 pods: "10"
 scopeSelector:
 matchExpressions:
 - operator : In
 scopeName: PriorityClass
 values: ["pipeline1-pc"]

$ oc describe quota

apiVersion: tekton.dev/v1alpha1
kind: Pipeline
metadata:
 name: maven-build
spec:
 workspaces:

CHAPTER 4. PIPELINES

229

Example: YAML for a task in the pipeline

 - name: local-maven-repo
 resources:
 - name: app-git
 type: git
 tasks:
 - name: build
 taskRef:
 name: mvn
 resources:
 inputs:
 - name: source
 resource: app-git
 params:
 - name: GOALS
 value: ["package"]
 workspaces:
 - name: maven-repo
 workspace: local-maven-repo
 - name: int-test
 taskRef:
 name: mvn
 runAfter: ["build"]
 resources:
 inputs:
 - name: source
 resource: app-git
 params:
 - name: GOALS
 value: ["verify"]
 workspaces:
 - name: maven-repo
 workspace: local-maven-repo
 - name: gen-report
 taskRef:
 name: mvn
 runAfter: ["build"]
 resources:
 inputs:
 - name: source
 resource: app-git
 params:
 - name: GOALS
 value: ["site"]
 workspaces:
 - name: maven-repo
 workspace: local-maven-repo

apiVersion: tekton.dev/v1alpha1
kind: Task
metadata:
 name: mvn
spec:
 workspaces:
 - name: maven-repo

OpenShift Container Platform 4.9 CI/CD

230

NOTE

Ensure that all tasks in the pipeline belongs to the same priority class.

5. Create and start the pipeline run.

Example: YAML for a pipeline run

6. After the pods are created, verify the resource quota usage for the pipeline run.

Example: Verify resource quota usage for the pipeline

Sample output

Name: pipeline1-rq
Namespace: default
Resource Used Hard
-------- ---- ----

 inputs:
 params:
 - name: GOALS
 description: The Maven goals to run
 type: array
 default: ["package"]
 resources:
 - name: source
 type: git
 steps:
 - name: mvn
 image: gcr.io/cloud-builders/mvn
 workingDir: /workspace/source
 command: ["/usr/bin/mvn"]
 args:
 - -Dmaven.repo.local=$(workspaces.maven-repo.path)
 - "$(inputs.params.GOALS)"
 priorityClassName: pipeline1-pc

apiVersion: tekton.dev/v1alpha1
kind: PipelineRun
metadata:
 generateName: petclinic-run-
spec:
 pipelineRef:
 name: maven-build
 resources:
 - name: app-git
 resourceSpec:
 type: git
 params:
 - name: url
 value: https://github.com/spring-projects/spring-petclinic

$ oc describe quota

CHAPTER 4. PIPELINES

231

cpu 500m 1k
memory 10Gi 200Gi
pods 1 10

The output indicates that you can manage the combined resource quota for all concurrent
running pods belonging to a priority class, by specifying the resource quota per priority class.

4.11.3. Additional resources

Resource quotas in Kubernetes

Limit ranges in Kubernetes

Resource requests and limits in Kubernetes

4.12. AUTOMATIC PRUNING OF TASK RUN AND PIPELINE RUN

Stale TaskRun and PipelineRun objects and their executed instances occupy physical resources that
can be used for the active runs. To prevent this waste, Red Hat OpenShift Pipelines provides
annotations that cluster administrators can use to automatically prune the unused objects and their
instances in various namespaces.

NOTE

Starting with Red Hat OpenShift Pipelines 1.6, auto-pruning is enabled by
default.

Configuring automatic pruning by specifying annotations affects the entire
namespace. You cannot selectively auto-prune individual task runs and pipeline
runs in a namespace.

4.12.1. Annotations for automatically pruning task runs and pipeline runs

To automatically prune task runs and pipeline runs in a namespace, you can set the following
annotations in the namespace:

operator.tekton.dev/prune.schedule: If the value of this annotation is different from the value
specified in the TektonConfig custom resource definition, a new cron job in that namespace is
created.

operator.tekton.dev/prune.skip: When set to true, the namespace for which it is configured is
not pruned.

operator.tekton.dev/prune.resources: This annotation accepts a comma-separated list of
resources. To prune a single resource such as a pipeline run, set this annotation to
"pipelinerun". To prune multiple resources, such as task run and pipeline run, set this
annotation to "taskrun, pipelinerun".

operator.tekton.dev/prune.keep: Use this annotation to retain a resource without pruning.

operator.tekton.dev/prune.keep-since: Use this annotation to retain resources based on their
age. The value for this annotation must be equal to the age of the resource in minutes. For
example, to retain resources which were created not more than five days ago, set keep-since to
7200.

NOTE

OpenShift Container Platform 4.9 CI/CD

232

https://kubernetes.io/docs/concepts/policy/resource-quotas/
https://kubernetes.io/docs/concepts/policy/limit-range/
https://kubernetes.io/docs/concepts/workloads/pods/init-containers/#resources

NOTE

The keep and keep-since annotations are mutually exclusive. For any resource,
you must configure only one of them.

operator.tekton.dev/prune.strategy: Set the value of this annotation to either keep or keep-
since.

For example, consider the following annotations that retain all task runs and pipeline runs created in the
last five days, and deletes the older resources:

Example of auto-pruning annotations

4.12.2. Additional resources

For information on manual pruning of various objects, see Pruning objects to reclaim resources .

4.13. USING PODS IN A PRIVILEGED SECURITY CONTEXT

The default configuration of OpenShift Pipelines 1.3.x and later versions does not allow you to run pods
with privileged security context, if the pods result from pipeline run or task run. For such pods, the
default service account is pipeline, and the security context constraint (SCC) associated with the
pipelines service account is pipelines-scc. The pipelines-scc SCC is similar to the anyuid SCC, but
with a minor difference as defined in the YAML file for the SCC of pipelines:

Example SecurityContextConstraints object

In addition, the Buildah cluster task, shipped as part of the OpenShift Pipelines, uses vfs as the default
storage driver.

4.13.1. Running pipeline run and task run pods with privileged security context

Procedure

To run a pod (resulting from pipeline run or task run) with the privileged security context, do the
following modifications:

Configure the associated user account or service account to have an explicit SCC. You can
perform the configuration using any of the following methods:

Run the following command:

...
 annotations:
 operator.tekton.dev/prune.resources: "taskrun, pipelinerun"
 operator.tekton.dev/prune.keep-since: 7200
...

apiVersion: security.openshift.io/v1
kind: SecurityContextConstraints
...
fsGroup:
 type: MustRunAs
...

CHAPTER 4. PIPELINES

233

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/building_applications/#prunning-objects

1

2

1

Alternatively, modify the YAML files for RoleBinding, and Role or ClusterRole:

Example RoleBinding object

Substitute with an appropriate service account name.

Substitute with an appropriate cluster role based on the role binding you use.

Example ClusterRole object

Substitute with an appropriate cluster role based on the role binding you use.

NOTE

As a best practice, create a copy of the default YAML files and make changes in
the duplicate file.

If you do not use the vfs storage driver, configure the service account associated with the task
run or the pipeline run to have a privileged SCC, and set the security context as privileged:
true.

$ oc adm policy add-scc-to-user <scc-name> -z <service-account-name>

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
 name: service-account-name 1
 namespace: default
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: pipelines-scc-clusterrole 2
subjects:
- kind: ServiceAccount
 name: pipeline
 namespace: default

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 name: pipelines-scc-clusterrole 1
rules:
- apiGroups:
 - security.openshift.io
 resourceNames:
 - nonroot
 resources:
 - securitycontextconstraints
 verbs:
 - use

OpenShift Container Platform 4.9 CI/CD

234

4.13.2. Running pipeline run and task run by using a custom SCC and a custom
service account

When using the pipelines-scc security context constraint (SCC) associated with the default pipelines
service account, the pipeline run and task run pods may face timeouts. This happens because in the
default pipelines-scc SCC, the fsGroup.type parameter is set to MustRunAs.

NOTE

For more information about pod timeouts, see BZ#1995779.

To avoid pod timeouts, you can create a custom SCC with the fsGroup.type parameter set to
RunAsAny, and associate it with a custom service account.

NOTE

As a best practice, use a custom SCC and a custom service account for pipeline runs and
task runs. This approach allows greater flexibility and does not break the runs when the
defaults are modified during an upgrade.

Procedure

1. Define a custom SCC with the fsGroup.type parameter set to RunAsAny:

Example: Custom SCC

apiVersion: security.openshift.io/v1
kind: SecurityContextConstraints
metadata:
 annotations:
 kubernetes.io/description: my-scc is a close replica of anyuid scc. pipelines-scc has
fsGroup - RunAsAny.
 name: my-scc
allowHostDirVolumePlugin: false
allowHostIPC: false
allowHostNetwork: false
allowHostPID: false
allowHostPorts: false
allowPrivilegeEscalation: true
allowPrivilegedContainer: false
allowedCapabilities: null
defaultAddCapabilities: null
fsGroup:
 type: RunAsAny
groups:
- system:cluster-admins
priority: 10
readOnlyRootFilesystem: false
requiredDropCapabilities:
- MKNOD
runAsUser:
 type: RunAsAny
seLinuxContext:
 type: MustRunAs

CHAPTER 4. PIPELINES

235

https://bugzilla.redhat.com/show_bug.cgi?id=1995779

2. Create the custom SCC:

Example: Create the my-scc SCC

3. Create a custom service account:

Example: Create a fsgroup-runasany service account

4. Associate the custom SCC with the custom service account:

Example: Associate the my-scc SCC with the fsgroup-runasany service account

If you want to use the custom service account for privileged tasks, you can associate the
privileged SCC with the custom service account by running the following command:

Example: Associate the privileged SCC with the fsgroup-runasany service account

5. Use the custom service account in the pipeline run and task run:

Example: Pipeline run YAML with fsgroup-runasany custom service account

Example: Task run YAML with fsgroup-runasany custom service account

supplementalGroups:
 type: RunAsAny
volumes:
- configMap
- downwardAPI
- emptyDir
- persistentVolumeClaim
- projected
- secret

$ oc create -f my-scc.yaml

$ oc create serviceaccount fsgroup-runasany

$ oc adm policy add-scc-to-user my-scc -z fsgroup-runasany

$ oc adm policy add-scc-to-user privileged -z fsgroup-runasany

apiVersion: tekton.dev/v1beta1
kind: PipelineRun
metadata:
 name: <pipeline-run-name>
spec:
 pipelineRef:
 name: <pipeline-cluster-task-name>
 serviceAccountName: 'fsgroup-runasany'

apiVersion: tekton.dev/v1beta1
kind: TaskRun

OpenShift Container Platform 4.9 CI/CD

236

4.13.3. Additional resources

For information on managing SCCs, refer to Managing security context constraints.

4.14. SECURING WEBHOOKS WITH EVENT LISTENERS

As an administrator, you can secure webhooks with event listeners. After creating a namespace, you
enable HTTPS for the Eventlistener resource by adding the operator.tekton.dev/enable-
annotation=enabled label to the namespace. Then, you create a Trigger resource and a secured route
using the re-encrypted TLS termination.

Triggers in Red Hat OpenShift Pipelines support insecure HTTP and secure HTTPS connections to the
Eventlistener resource. HTTPS secures connections within and outside the cluster.

Red Hat OpenShift Pipelines runs a tekton-operator-proxy-webhook pod that watches for the labels
in the namespace. When you add the label to the namespace, the webhook sets the
service.beta.openshift.io/serving-cert-secret-name=<secret_name> annotation on the
EventListener object. This, in turn, creates secrets and the required certificates.

In addition, you can mount the created secret into the Eventlistener pod to secure the request.

4.14.1. Providing secure connection with OpenShift routes

To create a route with the re-encrypted TLS termination, run:

Alternatively, you can create a re-encrypted TLS termination YAML file to create a secure route.

Example re-encrypt TLS termination YAML to create a secure route

metadata:
 name: <task-run-name>
spec:
 taskRef:
 name: <cluster-task-name>
 serviceAccountName: 'fsgroup-runasany'

service.beta.openshift.io/serving-cert-secret-name=<secret_name>

$ oc create route reencrypt --service=<svc-name> --cert=tls.crt --key=tls.key --ca-cert=ca.crt --
hostname=<hostname>

apiVersion: route.openshift.io/v1
kind: Route
metadata:
 name: route-passthrough-secured 1
spec:
 host: <hostname>
 to:
 kind: Service
 name: frontend 2
 tls:
 termination: reencrypt 3
 key: [as in edge termination]

CHAPTER 4. PIPELINES

237

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/authentication_and_authorization/#managing-security-context-constraints

1 2

3

4

The name of the object, which is limited to only 63 characters.

The termination field is set to reencrypt. This is the only required TLS field.

This is required for re-encryption. The destinationCACertificate field specifies a CA certificate to
validate the endpoint certificate, thus securing the connection from the router to the destination
pods. You can omit this field in either of the following scenarios:

The service uses a service signing certificate.

The administrator specifies a default CA certificate for the router, and the service has a
certificate signed by that CA.

You can run the oc create route reencrypt --help command to display more options.

4.14.2. Creating a sample EventListener resource using a secure HTTPS connection

This section uses the pipelines-tutorial example to demonstrate creation of a sample EventListener
resource using a secure HTTPS connection.

Procedure

1. Create the TriggerBinding resource from the YAML file available in the pipelines-tutorial
repository:

2. Create the TriggerTemplate resource from the YAML file available in the pipelines-tutorial
repository:

3. Create the Trigger resource directly from the pipelines-tutorial repository:

4. Create an EventListener resource using a secure HTTPS connection:

a. Add a label to enable the secure HTTPS connection to the Eventlistener resource:

b. Create the EventListener resource from the YAML file available in the pipelines-tutorial

 certificate: [as in edge termination]
 caCertificate: [as in edge termination]
 destinationCACertificate: |- 4
 -----BEGIN CERTIFICATE-----
 [...]
 -----END CERTIFICATE-----

$ oc create -f https://raw.githubusercontent.com/openshift/pipelines-
tutorial/master/03_triggers/01_binding.yaml

$ oc create -f https://raw.githubusercontent.com/openshift/pipelines-
tutorial/master/03_triggers/02_template.yaml

$ oc create -f https://raw.githubusercontent.com/openshift/pipelines-
tutorial/master/03_triggers/03_trigger.yaml

$ oc label namespace <ns-name> operator.tekton.dev/enable-annotation=enabled

OpenShift Container Platform 4.9 CI/CD

238

https://github.com/openshift/pipelines-tutorial

1

2

b. Create the EventListener resource from the YAML file available in the pipelines-tutorial
repository:

c. Create a route with the re-encrypted TLS termination:

4.15. AUTHENTICATING PIPELINES USING GIT SECRET

A Git secret consists of credentials to securely interact with a Git repository, and is often used to
automate authentication. In Red Hat OpenShift Pipelines, you can use Git secrets to authenticate
pipeline runs and task runs that interact with a Git repository during execution.

A pipeline run or a task run gains access to the secrets through the associated service account. Pipelines
support the use of Git secrets as annotations (key-value pairs) for basic authentication and SSH-based
authentication.

4.15.1. Credential selection

A pipeline run or task run might require multiple authentications to access different Git repositories.
Annotate each secret with the domains where Pipelines can use its credentials.

A credential annotation key for Git secrets must begin with tekton.dev/git-, and its value is the URL of
the host for which you want Pipelines to use that credential.

In the following example, Pipelines uses a basic-auth secret, which relies on a username and password,
to access repositories at github.com and gitlab.com.

Example: Multiple credentials for basic authentication

Username for the repository

Password or personal access token for the repository

You can also use an ssh-auth secret (private key) to access a Git repository.

Example: Private key for SSH based authentication

$ oc create -f https://raw.githubusercontent.com/openshift/pipelines-
tutorial/master/03_triggers/04_event_listener.yaml

$ oc create route reencrypt --service=<svc-name> --cert=tls.crt --key=tls.key --ca-
cert=ca.crt --hostname=<hostname>

apiVersion: v1
kind: Secret
metadata:
 annotations:
 tekton.dev/git-0: github.com
 tekton.dev/git-1: gitlab.com
type: kubernetes.io/basic-auth
stringData:
 username: 1
 password: 2

CHAPTER 4. PIPELINES

239

1

1

2

3

Name of the file containing the SSH private key string.

4.15.2. Configuring basic authentication for Git

For a pipeline to retrieve resources from password-protected repositories, you must configure the basic
authentication for that pipeline.

To configure basic authentication for a pipeline, update the secret.yaml, serviceaccount.yaml, and
run.yaml files with the credentials from the Git secret for the specified repository. When you complete
this process, Pipelines can use that information to retrieve the specified pipeline resources.

NOTE

For GitHub, authentication using plain password is deprecated. Instead, use a personal
access token.

Procedure

1. In the secret.yaml file, specify the username and password or GitHub personal access token to
access the target Git repository.

Name of the secret. In this example, basic-user-pass.

Username for the Git repository.

Password for the Git repository.

2. In the serviceaccount.yaml file, associate the secret with the appropriate service account.

apiVersion: v1
kind: Secret
metadata:
 annotations:
 tekton.dev/git-0: https://github.com
type: kubernetes.io/ssh-auth
stringData:
 ssh-privatekey: 1

apiVersion: v1
kind: Secret
metadata:
 name: basic-user-pass 1
 annotations:
 tekton.dev/git-0: https://github.com
type: kubernetes.io/basic-auth
stringData:
 username: 2
 password: 3

apiVersion: v1
kind: ServiceAccount
metadata:

OpenShift Container Platform 4.9 CI/CD

240

https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/creating-a-personal-access-token
https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/creating-a-personal-access-token

1

2

1

2

3

1

2

3

Name of the service account. In this example, build-bot.

Name of the secret. In this example, basic-user-pass.

3. In the run.yaml file, associate the service account with a task run or a pipeline run.

Associate the service account with a task run:

Name of the task run. In this example, build-push-task-run-2.

Name of the service account. In this example, build-bot.

Name of the task. In this example, build-push.

Associate the service account with a PipelineRun resource:

Name of the pipeline run. In this example, demo-pipeline.

Name of the service account. In this example, build-bot.

Name of the pipeline. In this example, demo-pipeline.

4. Apply the changes.

4.15.3. Configuring SSH authentication for Git

For a pipeline to retrieve resources from repositories configured with SSH keys, you must configure the

 name: build-bot 1
secrets:
 - name: basic-user-pass 2

apiVersion: tekton.dev/v1beta1
kind: TaskRun
metadata:
 name: build-push-task-run-2 1
spec:
 serviceAccountName: build-bot 2
 taskRef:
 name: build-push 3

apiVersion: tekton.dev/v1beta1
kind: PipelineRun
metadata:
 name: demo-pipeline 1
 namespace: default
spec:
 serviceAccountName: build-bot 2
 pipelineRef:
 name: demo-pipeline 3

$ oc apply --filename secret.yaml,serviceaccount.yaml,run.yaml

CHAPTER 4. PIPELINES

241

1

2

3

For a pipeline to retrieve resources from repositories configured with SSH keys, you must configure the
SSH-based authentication for that pipeline.

To configure SSH-based authentication for a pipeline, update the secret.yaml, serviceaccount.yaml,
and run.yaml files with the credentials from the SSH private key for the specified repository. When you
complete this process, Pipelines can use that information to retrieve the specified pipeline resources.

NOTE

Consider using SSH-based authentication rather than basic authentication.

Procedure

1. Generate an SSH private key, or copy an existing private key, which is usually available in the
~/.ssh/id_rsa file.

2. In the secret.yaml file, set the value of ssh-privatekey to the name of the SSH private key file,
and set the value of known_hosts to the name of the known hosts file.

Name of the secret containing the SSH private key. In this example, ssh-key.

Name of the file containing the SSH private key string.

Name of the file containing a list of known hosts.

CAUTION

If you omit the private key, Pipelines accepts the public key of any server.

3. Optional: To specify a custom SSH port, add :<port number> to the end of the annotation
value. For example, tekton.dev/git-0: github.com:2222.

4. In the serviceaccount.yaml file, associate the ssh-key secret with the build-bot service
account.

apiVersion: v1
kind: Secret
metadata:
 name: ssh-key 1
 annotations:
 tekton.dev/git-0: github.com
type: kubernetes.io/ssh-auth
stringData:
 ssh-privatekey: 2
 known_hosts: 3

apiVersion: v1
kind: ServiceAccount
metadata:
 name: build-bot 1
secrets:
 - name: ssh-key 2

OpenShift Container Platform 4.9 CI/CD

242

https://docs.github.com/en/authentication/connecting-to-github-with-ssh/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent

1

2

1

2

3

1

2

3

Name of the service account. In this example, build-bot.

Name of the secret containing the SSH private key. In this example, ssh-key.

5. In the run.yaml file, associate the service account with a task run or a pipeline run.

Associate the service account with a task run:

Name of the task run. In this example, build-push-task-run-2.

Name of the service account. In this example, build-bot.

Name of the task. In this example, build-push.

Associate the service account with a pipeline run:

Name of the pipeline run. In this example, demo-pipeline.

Name of the service account. In this example, build-bot.

Name of the pipeline. In this example, demo-pipeline.

6. Apply the changes.

4.15.4. Using SSH authentication in git type tasks

When invoking Git commands, you can use SSH authentication directly in the steps of a task. SSH
authentication ignores the $HOME variable and only uses the user’s home directory specified in the
/etc/passwd file. So each step in a task must symlink the /tekton/home/.ssh directory to the home
directory of the associated user.

apiVersion: tekton.dev/v1beta1
kind: TaskRun
metadata:
 name: build-push-task-run-2 1
spec:
 serviceAccountName: build-bot 2
 taskRef:
 name: build-push 3

apiVersion: tekton.dev/v1beta1
kind: PipelineRun
metadata:
 name: demo-pipeline 1
 namespace: default
spec:
 serviceAccountName: build-bot 2
 pipelineRef:
 name: demo-pipeline 3

$ oc apply --filename secret.yaml,serviceaccount.yaml,run.yaml

CHAPTER 4. PIPELINES

243

However, explicit symlinks are not necessary when you use a pipeline resource of the git type, or the git-
clone task available in the Tekton catalog.

As an example of using SSH authentication in git type tasks, refer to authenticating-git-commands.yaml.

4.15.5. Using secrets as a non-root user

You might need to use secrets as a non-root user in certain scenarios, such as:

The users and groups that the containers use to execute runs are randomized by the platform.

The steps in a task define a non-root security context.

A task specifies a global non-root security context, which applies to all steps in a task.

In such scenarios, consider the following aspects of executing task runs and pipeline runs as a non-root
user:

SSH authentication for Git requires the user to have a valid home directory configured in the
/etc/passwd directory. Specifying a UID that has no valid home directory results in
authentication failure.

SSH authentication ignores the $HOME environment variable. So you must or symlink the
appropriate secret files from the $HOME directory defined by Pipelines (/tekton/home), to the
non-root user’s valid home directory.

In addition, to configure SSH authentication in a non-root security context, refer to the example for
authenticating git commands.

4.15.6. Limiting secret access to specific steps

By default, the secrets for Pipelines are stored in the $HOME/tekton/home directory, and are available
for all the steps in a task.

To limit a secret to specific steps, use the secret definition to specify a volume, and mount the volume in
specific steps.

4.16. USING TEKTON CHAINS FOR OPENSHIFT PIPELINES SUPPLY
CHAIN SECURITY

IMPORTANT

Tekton Chains is a Technology Preview feature only. Technology Preview features are not
supported with Red Hat production service level agreements (SLAs) and might not be
functionally complete. Red Hat does not recommend using them in production. These
features provide early access to upcoming product features, enabling customers to test
functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

Tekton Chains is a Kubernetes Custom Resource Definition (CRD) controller. You can use it to manage
the supply chain security of the tasks and pipelines created using Red Hat OpenShift Pipelines.

By default, Tekton Chains observes all task run executions in your OpenShift Container Platform cluster.

OpenShift Container Platform 4.9 CI/CD

244

https://github.com/tektoncd/pipeline/blob/main/examples/v1beta1/taskruns/authenticating-git-commands.yaml
https://github.com/tektoncd/pipeline/blob/main/examples/v1beta1/taskruns/authenticating-git-commands.yaml
https://access.redhat.com/support/offerings/techpreview/

1

By default, Tekton Chains observes all task run executions in your OpenShift Container Platform cluster.
When the task runs complete, Tekton Chains takes a snapshot of the task runs. It then converts the
snapshot to one or more standard payload formats, and finally signs and stores all artifacts.

To capture information about task runs, Tekton Chains uses the Result and PipelineResource objects.
When the objects are unavailable, Tekton Chains the URLs and qualified digests of the OCI images.

NOTE

The PipelineResource object is deprecated and will be removed in a future release; for
manual use, the Results object is recommended.

4.16.1. Key features

You can sign task runs, task run results, and OCI registry images with cryptographic key types
and services such as cosign.

You can use attestation formats such as in-toto.

You can securely store signatures and signed artifacts using OCI repository as a storage
backend.

4.16.2. Installing Tekton Chains using the Red Hat OpenShift Pipelines Operator

Cluster administrators can use the TektonChain custom resource (CR) to install and manage Tekton
Chains.

NOTE

Tekton Chains is an optional component of Red Hat OpenShift Pipelines. Currently, you
cannot install it using the TektonConfig CR.

Prerequisites

Ensure that the Red Hat OpenShift Pipelines Operator is installed in the openshift-pipelines
namespace on your cluster.

Procedure

1. Create the TektonChain CR for your OpenShift Container Platform cluster.

2. Apply the TektonChain CR.

Substitute with the file name of the TektonChain CR.

apiVersion: operator.tekton.dev/v1alpha1
kind: TektonChain
metadata:
 name: chain
spec:
 targetNamespace: openshift-pipelines

$ oc apply -f TektonChain.yaml 1

CHAPTER 4. PIPELINES

245

1

3. Check the status of the installation.

4.16.3. Configuring Tekton Chains

Tekton Chains uses a ConfigMap object named chains-config in the openshift-pipelines namespace
for configuration.

To configure Tekton Chains, use the following example:

Example: Configuring Tekton Chains

Use a combination of supported key-value pairs in the JSON payload.

4.16.3.1. Supported keys for Tekton Chains configuration

Cluster administrators can use various supported keys and values to configure specifications about task
runs, OCI images, and storage.

4.16.3.1.1. Supported keys for task run

Table 4.12. Chains configuration: Supported keys for task run

Supported keys Description Supported values Default values

artifacts.taskrun.for
mat

The format to store task
run payloads.

tekton, in-toto tekton

artifacts.taskrun.stor
age

The storage backend for
task run signatures. You
can specify multiple
backends as a comma-
separated list, such as
“tekton,oci”. To
disable this artifact,
provide an empty string
“”.

tekton, oci tekton

artifacts.taskrun.sig
ner

The signature backend
to sign task run
payloads.

x509 x509

4.16.3.1.2. Supported keys for OCI

Table 4.13. Chains configuration: Supported keys for OCI

$ oc get tektonchains.operator.tekton.dev

$ oc patch configmap chains-config -n openshift-pipelines -p='{"data":{"artifacts.oci.storage": "",
"artifacts.taskrun.format":"tekton", "artifacts.taskrun.storage": "tekton"}}' 1

OpenShift Container Platform 4.9 CI/CD

246

Supported keys Description Supported values Default values

artifacts.oci.format The format to store OCI
payloads.

simplesigning simplesigning

artifacts.oci.storage The storage backend to
for OCI signatures. You
can specify multiple
backends as a comma-
separated list, such as
“oci,tekton”. To
disable the OCI artifact,
provide an empty string
“”.

tekton, oci oci

artifacts.oci.signer The signature backend
to sign OCI payloads.

x509, cosign x509

4.16.3.1.3. Supported keys for storage

Table 4.14. Chains configuration: Supported keys for storage

Supported keys Description Supported values Default values

artifacts.oci.reposito
ry

The OCI repository to
store OCI signatures.

Currently, Chains
support only the internal
OpenShift OCI registry;
other popular options
such as Quay is not
supported.

4.16.4. Signing secrets in Tekton Chains

Cluster administrators can generate a key pair and use Tekton Chains to sign artifacts using a
Kubernetes secret. For Tekton Chains to work, a private key and a password for encrypted keys must
exist as part of the signing-secrets Kubernetes secret, in the openshift-pipelines namespace.

Currently, Tekton Chains supports the x509 and cosign signature schemes.

NOTE

Use only one of the supported signature schemes.

4.16.4.1. Signing using x509

To use the x509 signing scheme with Tekton Chains, store the x509.pem private key of the ed25519 or
ecdsa type in the signing-secrets Kubernetes secret. Ensure that the key is stored as an unencrypted
PKCS8 PEM file (BEGIN PRIVATE KEY).

4.16.4.2. Signing using cosign

CHAPTER 4. PIPELINES

247

https://quay.io/

1

2

To use the cosign signing scheme with Tekton Chains:

1. Install cosign.

2. Generate the cosign.key and cosign.pub key pairs.

Cosign prompts you for a password, and creates a Kubernetes secret.

3. Store the encrypted cosign.key private key and the cosign.password decryption password in
the signing-secrets Kubernetes secret. Ensure that the private key is stored as an encrypted
PEM file of the ENCRYPTED COSIGN PRIVATE KEY type.

4.16.4.3. Troubleshooting signing

If the signing secrets are already populated, you might get the following error:

To resolve the error:

1. Delete the secrets:

2. Recreate the key pairs and store them in the secrets using your preferred signing scheme.

4.16.5. Authenticating to an OCI registry

Before pushing signatures to an OCI registry, cluster administrators must configure Tekton Chains to
authenticate with the registry. The Tekton Chains controller uses the same service account under which
the task runs execute. To set up a service account with the necessary credentials for pushing signatures
to an OCI registry, perform the following steps:

Procedure

1. Set the namespace and name of the Kubernetes service account.

The namespace associated with the service account.

The name of the service account.

2. Create a Kubernetes secret.

$ cosign generate-key-pair k8s://openshift-pipelines/signing-secrets

Error from server (AlreadyExists): secrets "signing-secrets" already exists

$ oc delete secret signing-secrets -n openshift-pipelines

$ export NAMESPACE=<namespace> 1
$ export SERVICE_ACCOUNT_NAME=<service_account> 2

$ oc create secret registry-credentials \
 --from-file=.dockerconfigjson \ 1
 --type=kubernetes.io/dockerconfigjson \
 -n $NAMESPACE

OpenShift Container Platform 4.9 CI/CD

248

https://docs.sigstore.dev/cosign/installation/

1

1

Substitute with the path to your Docker config file. Default path is ~/.docker/config.json.

3. Give the service account access to the secret.

If you patch the default pipeline service account that Red Hat OpenShift Pipelines assigns to
all task runs, the Red Hat OpenShift Pipelines Operator will override the service account. As a
best practice, you can perform the following steps:

a. Create a separate service account to assign to user’s task runs.

b. Associate the service account to the task runs by setting the value of the
serviceaccountname field in the task run template.

Substitute with the name of the newly created service account.

4.16.5.1. Creating and verifying task run signatures without any additional authentication

To verify signatures of task runs using Tekton Chains with any additional authentication, perform the
following tasks:

Create an encrypted x509 key pair and save it as a Kubernetes secret.

Configure the Tekton Chains backend storage.

Create a task run, sign it, and store the signature and the payload as annotations on the task run
itself.

Retrieve the signature and payload from the signed task run.

Verify the signature of the task run.

Prerequisites

Ensure that the following are installed on the cluster:

Red Hat OpenShift Pipelines Operator

Tekton Chains

$ oc patch serviceaccount $SERVICE_ACCOUNT_NAME \
 -p "{\"imagePullSecrets\": [{\"name\": \"registry-credentials\"}]}" -n $NAMESPACE

$ oc create serviceaccount <service_account_name>

apiVersion: tekton.dev/v1beta1
kind: TaskRun
metadata:
name: build-push-task-run-2
spec:
serviceAccountName: build-bot 1
taskRef:
 name: build-push
...

CHAPTER 4. PIPELINES

249

1

Cosign

Procedure

1. Create an encrypted x509 key pair and save it as a Kubernetes secret:

Provide a password when prompted. Cosign stores the resulting private key as part of the
signing-secrets Kubernetes secret in the openshift-pipelines namespace.

2. In the Tekton Chains configuration, disable the OCI storage, and set the task run storage and
format to tekton.

3. Restart the Tekton Chains controller to ensure that the modified configuration is applied.

$ oc delete po -n openshift-pipelines -l app=tekton-chains-controller

4. Create a task run.

Substitute with the URI or file path pointing to your task run.

5. Check the status of the steps, and wait till the process finishes.

6. Retrieve the signature and payload from the object stored as base64 encoded annotations:

7. Verify the signature.

$ cosign generate-key-pair k8s://openshift-pipelines/signing-secrets

$ oc patch configmap chains-config -n openshift-pipelines -p='{"data":{"artifacts.oci.storage":
"", "artifacts.taskrun.format":"tekton", "artifacts.taskrun.storage": "tekton"}}'

$ oc create -f
https://raw.githubusercontent.com/tektoncd/chains/main/examples/taskruns/task-output-
image.yaml 1
taskrun.tekton.dev/build-push-run-output-image-qbjvh created

$ tkn tr describe --last
[...truncated output...]
NAME STATUS
· create-dir-builtimage-9467f Completed
· git-source-sourcerepo-p2sk8 Completed
· build-and-push Completed
· echo Completed
· image-digest-exporter-xlkn7 Completed

$ export TASKRUN_UID=$(tkn tr describe --last -o jsonpath='{.metadata.uid}')
$ tkn tr describe --last -o jsonpath="{.metadata.annotations.chains\.tekton\.dev/signature-
taskrun-$TASKRUN_UID}" > signature
$ tkn tr describe --last -o jsonpath="{.metadata.annotations.chains\.tekton\.dev/payload-
taskrun-$TASKRUN_UID}" | base64 -d > payload

OpenShift Container Platform 4.9 CI/CD

250

https://docs.sigstore.dev/cosign/installation/

4.16.6. Using Tekton Chains to sign and verify image and provenance

Cluster administrators can use Tekton Chains to sign and verify images and provenances, by performing
the following tasks:

Create an encrypted x509 key pair and save it as a Kubernetes secret.

Set up authentication for the OCI registry to store images, image signatures, and signed image
attestations.

Configure Tekton Chains to generate and sign provenance.

Create an image with Kaniko in a task run.

Verify the signed image and the signed provenance.

Prerequisites

Ensure that the following are installed on the cluster:

Red Hat OpenShift Pipelines Operator

Tekton Chains

Cosign

Rekor

jq

Procedure

1. Create an encrypted x509 key pair and save it as a Kubernetes secret:

Provide a password when prompted. Cosign stores the resulting private key as part of the
signing-secrets Kubernetes secret in the openshift-pipelines namespace, and writes the
public key to the cosign.pub local file.

2. Configure authentication for the image registry.

a. To configure the Tekton Chains controller for pushing signature to an OCI registry, use the
credentials associated with the service account of the task run. For detailed information,
see the "Authenticating to an OCI registry" section.

b. To configure authentication for a Kaniko task that builds and pushes image to the registry,
create a Kubernetes secret of the docker config.json file containing the required
credentials.

$ cosign verify-blob --key k8s://openshift-pipelines/signing-secrets --signature ./signature
./payload
Verified OK

$ cosign generate-key-pair k8s://openshift-pipelines/signing-secrets

$ oc create secret generic <docker_config_secret_name> \ 1
 --from-file <path_to_config.json> 2

CHAPTER 4. PIPELINES

251

https://docs.sigstore.dev/cosign/installation/
https://docs.sigstore.dev/rekor/installation/
https://stedolan.github.io/jq/

1

2

1

1

2

Substitute with the name of the docker config secret.

Substitute with the path to docker config.json file.

3. Configure Tekton Chains by setting the artifacts.taskrun.format, artifacts.taskrun.storage,
and transparency.enabled parameters in the chains-config object:

4. Start the Kaniko task.

a. Apply the Kaniko task to the cluster.

Substitute with the URI or file path to your Kaniko task.

b. Set the appropriate environment variables.

Substitute with the URL of the registry where you want to push the image.

Substitute with the name of the secret in the docker config.json file.

c. Start the Kaniko task.

Observe the logs of this task until all steps are complete. On successful authentication, the
final image will be pushed to $REGISTRY/kaniko-chains.

5. Wait for a minute to allow Tekton Chains to generate the provenance and sign it, and then check
the availability of the chains.tekton.dev/signed=true annotation on the task run.

$ oc patch configmap chains-config -n openshift-pipelines -p='{"data":
{"artifacts.taskrun.format": "in-toto"}}'

$ oc patch configmap chains-config -n openshift-pipelines -p='{"data":
{"artifacts.taskrun.storage": "oci"}}'

$ oc patch configmap chains-config -n openshift-pipelines -p='{"data":
{"transparency.enabled": "true"}}'

$ oc apply -f examples/kaniko/kaniko.yaml 1

$ export REGISTRY=<url_of_registry> 1

$ export DOCKERCONFIG_SECRET_NAME=
<name_of_the_secret_in_docker_config_json> 2

$ tkn task start --param IMAGE=$REGISTRY/kaniko-chains --use-param-defaults --
workspace name=source,emptyDir="" --workspace
name=dockerconfig,secret=$DOCKERCONFIG_SECRET_NAME kaniko-chains

$ oc get tr <task_run_name> \ 1
-o json | jq -r .metadata.annotations

{

OpenShift Container Platform 4.9 CI/CD

252

1

1

2

3

Substitute with the name of the task run.

6. Verify the image and the attestation.

7. Find the provenance for the image in Rekor.

a. Get the digest of the $REGISTRY/kaniko-chains image. You can search for it ing the task
run, or pull the image to extract the digest.

b. Search Rekor to find all entries that match the sha256 digest of the image.

Substitute with the sha256 digest of the image.

The first matching universally unique identifier (UUID).

The second matching UUID.

The search result displays UUIDs of the matching entries. One of those UUIDs holds the
attestation.

c. Check the attestation.

4.16.7. Additional resources

Installing OpenShift Pipelines

4.17. VIEWING PIPELINE LOGS USING THE OPENSHIFT LOGGING
OPERATOR

The logs generated by pipeline runs, task runs, and event listeners are stored in their respective pods. It
is useful to review and analyze logs for troubleshooting and audits.

However, retaining the pods indefinitely leads to unnecessary resource consumption and cluttered
namespaces.

To eliminate any dependency on the pods for viewing pipeline logs, you can use the OpenShift

 "chains.tekton.dev/signed": "true",
 ...
}

$ cosign verify --key cosign.pub $REGISTRY/kaniko-chains

$ cosign verify-attestation --key cosign.pub $REGISTRY/kaniko-chains

$ rekor-cli search --sha <image_digest> 1

<uuid_1> 2
<uuid_2> 3
...

$ rekor-cli get --uuid <uuid> --format json | jq -r .Attestation | base64 --decode | jq

CHAPTER 4. PIPELINES

253

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/cicd/#installing-pipelines

Elasticsearch Operator and the OpenShift Logging Operator. These Operators help you to view pipeline
logs by using the Elasticsearch Kibana stack, even after you have deleted the pods that contained the
logs.

4.17.1. Prerequisites

Before trying to view pipeline logs in a Kibana dashboard, ensure the following:

The steps are performed by a cluster administrator.

Logs for pipeline runs and task runs are available.

The OpenShift Elasticsearch Operator and the OpenShift Logging Operator are installed.

4.17.2. Viewing pipeline logs in Kibana

To view pipeline logs in the Kibana web console:

Procedure

1. Log in to OpenShift Container Platform web console as a cluster administrator.

2. In the top right of the menu bar, click the grid icon → Observability → Logging. The Kibana
web console is displayed.

3. Create an index pattern:

a. On the left navigation panel of the Kibana web console, click Management.

b. Click Create index pattern.

c. Under Step 1 of 2: Define index pattern → Index pattern, enter a * pattern and click Next
Step.

d. Under Step 2 of 2: Configure settings → Time filter field name, select @timestamp from
the drop-down menu, and click Create index pattern.

4. Add a filter:

a. On the left navigation panel of the Kibana web console, click Discover.

b. Click Add a filter + → Edit Query DSL.

NOTE

For each of the example filters that follows, edit the query and click
Save.

The filters are applied one after another.

i. Filter the containers related to pipelines:

Example query to filter pipelines containers

{

OpenShift Container Platform 4.9 CI/CD

254

https://www.elastic.co/guide/en/kibana/6.8/connect-to-elasticsearch.html

ii. Filter all containers that are not place-tools container. As an illustration of using the
graphical drop-down menus instead of editing the query DSL, consider the following
approach:

Figure 4.6. Example of filtering using the drop-down fields

iii. Filter pipelinerun in labels for highlighting:

Example query to filter pipelinerun in labels for highlighting

iv. Filter pipeline in labels for highlighting:

Example query to filter pipeline in labels for highlighting

 "query": {
 "match": {
 "kubernetes.flat_labels": {
 "query": "app_kubernetes_io/managed-by=tekton-pipelines",
 "type": "phrase"
 }
 }
 }
}

{
 "query": {
 "match": {
 "kubernetes.flat_labels": {
 "query": "tekton_dev/pipelineRun=",
 "type": "phrase"
 }
 }
 }
}

{

CHAPTER 4. PIPELINES

255

c. From the Available fields list, select the following fields:

kubernetes.flat_labels

message
Ensure that the selected fields are displayed under the Selected fields list.

d. The logs are displayed under the message field.

Figure 4.7. Filtered messages

4.17.3. Additional resources

Installing OpenShift Logging

Viewing logs for a resource

Viewing cluster logs by using Kibana

 "query": {
 "match": {
 "kubernetes.flat_labels": {
 "query": "tekton_dev/pipeline=",
 "type": "phrase"
 }
 }
 }
}

OpenShift Container Platform 4.9 CI/CD

256

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/logging/#installing-logging
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/logging/#viewing-logs-for-a-specific-resource
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/logging/#viewing-cluster-logs-in-kibana

CHAPTER 5. GITOPS

5.1. RED HAT OPENSHIFT GITOPS RELEASE NOTES

Red Hat OpenShift GitOps is a declarative way to implement continuous deployment for cloud native
applications. Red Hat OpenShift GitOps ensures consistency in applications when you deploy them to
different clusters in different environments, such as: development, staging, and production. Red Hat
OpenShift GitOps helps you automate the following tasks:

Ensure that the clusters have similar states for configuration, monitoring, and storage

Recover or recreate clusters from a known state

Apply or revert configuration changes to multiple OpenShift Container Platform clusters

Associate templated configuration with different environments

Promote applications across clusters, from staging to production

For an overview of Red Hat OpenShift GitOps, see Understanding OpenShift GitOps .

5.1.1. Compatibility and support matrix

Some features in this release are currently in Technology Preview. These experimental features are not
intended for production use.

In the table, features are marked with the following statuses:

TP: Technology Preview

GA: General Availability

NA: Not Applicable

OpenShi
ft
GitOps

Component Versions OpenShi
ft
Versions

Version kam Helm Kustomi
ze

Argo
CD

Applicat
ionSet

Dex RH SSO

1.6.0 0.0.46
TP

3.8.1 GA 4.4.1 GA 2.4.5 GA GA and
included
in
ArgoCD
compon
ent

2.30.3
GA

7.5.1 GA 4.8-4.11

1.5.0 0.0.42
TP

3.8.0 GA 4.4.1 GA 2.3.3 GA 0.4.1 TP 2.30.3
GA

7.5.1 GA 4.8-4.11

1.4.0 0.0.41
TP

3.7.1 GA 4.2.0 GA 2.2.2 GA 0.2.0 TP 2.30.0
GA

7.4.0
GA

4.7-4.10

CHAPTER 5. GITOPS

257

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/cicd/#understanding-openshift-gitops
https://access.redhat.com/support/offerings/techpreview

1.3.0 0.0.40
TP

3.6.0 GA 4.2.0 GA 2.1.2 GA 0.2.0 TP 2.28.0
GA

7.4.0
GA

4.7-4.9,
4.6 with
limited
GA
support

1.2.0 0.0.38
TP

3.5.0 GA 3.9.4 GA 2.0.5 GA 0.1.0 TP NA 7.4.0
GA

4.8

1.1.0 0.0.32
TP

3.5.0 GA 3.9.4 GA 2.0.0
GA

NA NA NA 4.7

OpenShi
ft
GitOps

Component Versions OpenShi
ft
Versions

"kam" is an abbreviation for Red Hat OpenShift GitOps Application Manager (kam).

"RH SSO" is an abbreviation for Red Hat SSO.

5.1.1.1. Technology Preview features

The features mentioned in the following table are currently in Technology Preview (TP). These
experimental features are not intended for production use.

Table 5.1. Technology Preview tracker

Feature TP in OCP
versions

GA in OCP
versions

Argo CD applications in non-control plane namespaces 4.8, 4.9, 4.10,
4.11, 4.12

NA

The Red Hat OpenShift GitOps Environments page in
the Developer perspective of the OpenShift Container Platform web
console

4.7, 4.8, 4.9,
4.10, 4.11, 4.12

NA

Argo CD Notifications controller 4.8, 4.9, 4.10,
4.11, 4.12

NA

5.1.2. Making open source more inclusive

Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

5.1.3. Release notes for Red Hat OpenShift GitOps 1.6.7

Red Hat OpenShift GitOps 1.6.7 is now available on OpenShift Container Platform 4.8, 4.9, 4.10, and

OpenShift Container Platform 4.9 CI/CD

258

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

Red Hat OpenShift GitOps 1.6.7 is now available on OpenShift Container Platform 4.8, 4.9, 4.10, and
4.11.

5.1.3.1. Fixed issues

The following issue has been resolved in the current release:

Before this update, all versions of the Argo CD Operator, starting with v0.5.0 were vulnerable to
an information disclosure flaw. As a result, unauthorized users could enumerate application
names by inspecting API error messages and use the discovered application names as the
starting point of another attack. For example, the attacker might use their knowledge of an
application name to convince an administrator to grant higher privileges. This update fixes the
CVE-2022-41354 error. GITOPS-2635, CVE-2022-41354

5.1.4. Release notes for Red Hat OpenShift GitOps 1.6.6

Red Hat OpenShift GitOps 1.6.6 is now available on OpenShift Container Platform 4.8, 4.9, 4.10, and
4.11.

5.1.4.1. Fixed issues

The following issue has been resolved in the current release:

Before this update, all versions of the Argo CD Operator, starting with v0.5.0 were vulnerable to
an information disclosure flaw. As a result, unauthorized users could enumerate application
names by inspecting API error messages and use the discovered application names as the
starting point of another attack. For example, the attacker might use their knowledge of an
application name to convince an administrator to grant higher privileges. This update fixes the
CVE-2022-41354 error. GITOPS-2635, CVE-2022-41354

5.1.5. Release notes for Red Hat OpenShift GitOps 1.6.4

Red Hat OpenShift GitOps 1.6.4 is now available on OpenShift Container Platform 4.8, 4.9, 4.10, and
4.11.

5.1.5.1. Fixed issues

Before this update, all versions of Argo CD v1.8.2 and later were vulnerable to an improper
authorization bug. As a result, Argo CD would accept tokens for audiences who might not be
intended to access the cluster. This issue is now fixed. CVE-2023-22482

5.1.6. Release notes for Red Hat OpenShift GitOps 1.6.2

Red Hat OpenShift GitOps 1.6.2 is now available on OpenShift Container Platform 4.8, 4.9, 4.10 and 4.11.

5.1.6.1. New features

This release removes the DISABLE_DEX environment variable from the openshift-gitops-
operator CSV file. As a result, this environment variable is no longer set when you perform a
fresh installation of Red Hat OpenShift GitOps. GITOPS-2360

5.1.6.2. Fixed issues

The following issues have been resolved in the current release:

CHAPTER 5. GITOPS

259

https://issues.redhat.com/browse/GITOPS-2635
https://access.redhat.com/security/cve/CVE-2022-41354
https://issues.redhat.com/browse/GITOPS-2635
https://access.redhat.com/security/cve/CVE-2022-41354
https://bugzilla.redhat.com/show_bug.cgi?id=2160492
https://issues.redhat.com/browse/GITOPS-2360

Before this update, the subscription health check was marked degraded for missing InstallPlan
when more than 5 Operators were installed in a project. This update fixes the issue. GITOPS-
2018

Before this update, the Red Hat OpenShift GitOps Operator would spam the cluster with a
deprecation notice warning whenever it detected that an Argo CD instance used deprecated
fields. This update fixes this issue and shows only one warning event for each instance that
detects a field. GITOPS-2230

From OpenShift Container Platform 4.12, it is optional to install the console. This fix updates the
Red Hat OpenShift GitOps Operator to prevent errors with the Operator if the console is not
installed. GITOPS-2352

5.1.7. Release notes for Red Hat OpenShift GitOps 1.6.1

Red Hat OpenShift GitOps 1.6.1 is now available on OpenShift Container Platform 4.8, 4.9, 4.10, and 4.11.

5.1.7.1. Fixed issues

The following issues have been resolved in the current release:

Before this update, the application controllers in a large set of applications were restarted
multiple times due to the unresponsiveness of liveness probes. This update fixes the issue by
removing the liveness probe in the application controller StatefulSet object. GITOPS-2153

Before this update, the RHSSO certificate could not be validated when it is set up with a
certificate that was not signed by certificate authorities. This update fixes the issue and now you
can provide a custom certificate that will be used in verifying the Keycloak’s TLS certificate
when communicating with it. You can add the rootCA to the Argo CD custom resource
.spec.keycloak.rootCA field. The Operator reconciles this change and updates the oidc.config
field in the argocd-cm ConfigMap with the PEM-encoded root certificate. GITOPS-2214

NOTE

Restart the Argo CD server pod after updating the .spec.keycloak.rootCA field.

For example:

apiVersion: argoproj.io/v1alpha1
kind: ArgoCD
metadata:
 name: example-argocd
 labels:
 example: basic
spec:
 sso:
 provider: keycloak
 keycloak:
 rootCA: |
 ---- BEGIN CERTIFICATE ----
 This is a dummy certificate
 Please place this section with appropriate rootCA
 ---- END CERTIFICATE ----

OpenShift Container Platform 4.9 CI/CD

260

https://issues.redhat.com/browse/GITOPS-2018
https://issues.redhat.com/browse/GITOPS-2230
https://issues.redhat.com/browse/GITOPS-2352
https://issues.redhat.com/browse/GITOPS-2153
https://issues.redhat.com/browse/GITOPS-2214

Before this update, a terminating namespace that was managed by Argo CD would block the
creation of roles and other configuration of other managed namespaces. This update fixes this
issue. GITOPS-2277

Before this update, the Dex pods failed to start with CreateContainerConfigError when an
SCC of anyuid was assigned to the Dex ServiceAccount resource. This update fixes this issue
by assigning a default user id to the Dex container. GITOPS-2235

5.1.8. Release notes for Red Hat OpenShift GitOps 1.6.0

Red Hat OpenShift GitOps 1.6.0 is now available on OpenShift Container Platform 4.8, 4.9, 4.10, and
4.11.

5.1.8.1. New features

The current release adds the following improvements:

Previously, the Argo CD ApplicationSet controller was a technology preview (TP) feature. With
this update, it is a general availability (GA) feature. GITOPS-1958

With this update, the latest releases of the Red Hat OpenShift GitOps are available in latest and
version-based channels. To get these upgrades, update the channel parameter in the
Subscription object YAML file: change its value from stable to latest or a version-based
channel such as gitops-1.6. GITOPS-1791

With this update, the parameters of the spec.sso field that control the keycloak configurations
are moved to .spec.sso.keycloak. The parameters of the .spec.dex field are added to
.spec.sso.dex. Start using .spec.sso.provider to enable or disable Dex. The .spec.dex
parameters are deprecated and planned to be removed in version 1.9, along with the
DISABLE_DEX and .spec.sso fields for keycloak configuration. GITOPS-1983

With this update, the Argo CD Notifications controller is an optional workload that can be
enabled or disabled by using the .spec.notifications.enabled parameter in the Argo CD custom
resource definition. The Argo CD Notifications controller is a Technical Preview feature.
GITOPS-1917

IMPORTANT

Argo CD Notifications controller is a Technology Preview feature only. Technology
Preview features are not supported with Red Hat production service level agreements
(SLAs) and might not be functionally complete. Red Hat does not recommend using
them in production. These features provide early access to upcoming product features,
enabling customers to test functionality and provide feedback during the development
process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

With this update, resource exclusions for Tekton pipeline runs and task runs are added by
default. Argo CD prunes these resources by default. These resource exclusions are added to
new Argo CD instances created in OpenShift Container Platform. If the instances are created

 server:
 route:
 enabled: true

CHAPTER 5. GITOPS

261

https://issues.redhat.com/browse/GITOPS-2277
https://issues.redhat.com/browse/GITOPS-2235
https://issues.redhat.com/browse/GITOPS-1958
https://issues.redhat.com/browse/GITOPS-1791
https://issues.redhat.com/browse/GITOPS-1983
https://issues.redhat.com/browse/GITOPS-1917
https://access.redhat.com/support/offerings/techpreview/

from the CLI, the resources are not added. GITOPS-1876

With this update, you can select the tracking method that Argo CD uses by setting the
resourceTrackingMethod parameter in the Argo CD Operand’s custom resource definition.
GITOPS-1862

With this update, you can add entries to the argocd-cm configMap using the extraConfig field
of Red Hat OpenShift GitOps Argo CD custom resource. The specified entries are reconciled to
the live config-cm configMap without validations. GITOPS-1964

With this update, on OpenShift Container Platform 4.11, the Red Hat OpenShift GitOps
Environments page in the Developer perspective shows history of the successful deployments
of the application environments, along with links to the revision for each deployment. GITOPS-
1269

With this update, you can manage resources with Argo CD that are also being used as template
resources or "source" by an Operator. GITOPS-982

With this update, the Operator configures Argo CD workloads with the correct permissions to
satisfy Pod Security admission, which was enabled in Kubernetes 1.24. GITOPS-2026

With this update, Config Management Plugins 2.0 is supported. You can use the Argo CD
custom resource to specify sidebar containers for the repo server. GITOPS-776

With this update, all communication between the Argo CD components and the Redis cache is
secured using TLS encryption. GITOPS-720

This release of Red Hat OpenShift GitOps adds support for IBM Z and IBM Power on OpenShift
Container Platform 4.10. Installations in restricted environments are not supported on IBM Z and
IBM Power.

5.1.8.2. Fixed issues

The following issues have been resolved in the current release:

Before this update, the system:serviceaccount:argocd:gitops-argocd-application-
controller controller did not create a "prometheusrules" resource in the
monitoring.coreos.com API group in the namespace webapps-dev. This update fixes this
issue, and Red Hat OpenShift GitOps can manage all resources from the
monitoring.coreos.com API group. GITOPS-1638

Before this update, while reconciling cluster permissions, if a secret belonged to a cluster config
instance it was deleted. This update fixes this issue. Now, the namespaces field from the secret
is deleted instead of the secret. GITOPS-1777

Before this update, if you installed the HA variant of Argo CD through the Operator, the
Operator created the Redis StatefulSet object with podAffinity rules instead of
podAntiAffinity rules. This update fixes this issue. Now, the Operator creates the Redis
StatefulSet with podAntiAffinity rules. GITOPS-1645

Before this update, Argo CD ApplicationSet had too many ssh zombie processes. This update
fixes this issue: it adds tini, an init daemon that creates processes and reaps zombies processes,
to the ApplicationSet controller. This ensures that a SIGTERM signal is correctly passed to the
running process, preventing it from being a zombie process. GITOPS-2108

5.1.8.3. Known issues

OpenShift Container Platform 4.9 CI/CD

262

https://issues.redhat.com/browse/GITOPS-1876
https://issues.redhat.com/browse/GITOPS-1862
https://issues.redhat.com/browse/GITOPS-1964
https://issues.redhat.com/browse/GITOPS-1269
https://issues.redhat.com/browse/GITOPS-982
https://issues.redhat.com/browse/GITOPS-2026
https://issues.redhat.com/browse/GITOPS-766
https://issues.redhat.com/browse/GITOPS-720
https://issues.redhat.com/browse/GITOPS-1638
https://issues.redhat.com/browse/GITOPS-1777
https://issues.redhat.com/browse/GITOPS-1645
https://issues.redhat.com/browse/GITOPS-2108

Red Hat OpenShift GitOps Operator can make use of RHSSO (KeyCloak) through OIDC in
addition to Dex. However, with a recent security fix applied, the certificate of RHSSO cannot be
validated in some scenarios. GITOPS-2214
As a workaround, disable TLS validation for the OIDC (Keycloak/RHSSO) endpoint in the
ArgoCD specification.

5.1.9. Release notes for Red Hat OpenShift GitOps 1.5.9

Red Hat OpenShift GitOps 1.5.9 is now available on OpenShift Container Platform 4.8, 4.9, 4.10, and
4.11.

5.1.9.1. Fixed issues

Before this update, all versions of Argo CD v1.8.2 and later were vulnerable to an improper
authorization bug. As a result, Argo CD would accept tokens for users who might not be
authorized to access the cluster. This issue is now fixed. CVE-2023-22482

5.1.10. Release notes for Red Hat OpenShift GitOps 1.5.7

Red Hat OpenShift GitOps 1.5.7 is now available on OpenShift Container Platform 4.8, 4.9, 4.10, and 4.11.

5.1.10.1. Fixed issues

The following issues have been resolved in the current release:

From OpenShift Container Platform 4.12, it is optional to install the console. This fix updates the
Red Hat OpenShift GitOps Operator to prevent errors with the Operator if the console is not
installed. GITOPS-2353

5.1.11. Release notes for Red Hat OpenShift GitOps 1.5.6

Red Hat OpenShift GitOps 1.5.6 is now available on OpenShift Container Platform 4.8, 4.9, 4.10, and
4.11.

5.1.11.1. Fixed issues

The following issues have been resolved in the current release:

Before this update, the application controllers in a large set of applications were restarted
multiple times due to the unresponsiveness of liveness probes. This update fixes the issue by
removing the liveness probe in the application controller StatefulSet object. GITOPS-2153

Before this update, the RHSSO certificate could not be validated when it was set up with a
certificate that was not signed by certificate authorities. This update fixes the issue and now you
can provide a custom certificate that will be used in verifying the Keycloak’s TLS certificate
when communicating with it. You can add the rootCA to the Argo CD custom resource
.spec.keycloak.rootCA field. The Operator reconciles this change and updates the oidc.config
field in the argocd-cm ConfigMap with the PEM-encoded root certificate. GITOPS-2214

NOTE

spec:
 extraConfig:
 oidc.tls.insecure.skip.verify: "true"
...

CHAPTER 5. GITOPS

263

https://issues.redhat.com/browse/GITOPS-2214
https://bugzilla.redhat.com/show_bug.cgi?id=2160492
https://issues.redhat.com/browse/GITOPS-2353
https://issues.redhat.com/browse/GITOPS-2153
https://issues.redhat.com/browse/GITOPS-2214

NOTE

Restart the Argo CD server pod after updating the .spec.keycloak.rootCA field.

For example:

Before this update, a terminating namespace that was managed by Argo CD would block the
creation of roles and other configuration of other managed namespaces. This update fixes this
issue. GITOPS-2278

Before this update, the Dex pods failed to start with CreateContainerConfigError when an
SCC of anyuid was assigned to the Dex ServiceAccount resource. This update fixes this issue
by assigning a default user id to the Dex container. GITOPS-2235

5.1.12. Release notes for Red Hat OpenShift GitOps 1.5.5

Red Hat OpenShift GitOps 1.5.5 is now available on OpenShift Container Platform 4.8, 4.9, 4.10, and 4.11.

5.1.12.1. New features

The current release adds the following improvements:

With this update, the bundled Argo CD has been updated to version 2.3.7.

5.1.12.2. Fixed issues

The following issues have been resolved in the current release:

Before this update, the redis-ha-haproxy pods of an ArgoCD instance failed when more
restrictive SCCs were present in the cluster. This update fixes the issue by updating the security
context in workloads. GITOPS-2034

5.1.12.3. Known issues

Red Hat OpenShift GitOps Operator can use RHSSO (KeyCloak) with OIDC and Dex. However,

apiVersion: argoproj.io/v1alpha1
kind: ArgoCD
metadata:
 name: example-argocd
 labels:
 example: basic
spec:
 sso:
 provider: keycloak
 keycloak:
 rootCA: |
 ---- BEGIN CERTIFICATE ----
 This is a dummy certificate
 Please place this section with appropriate rootCA
 ---- END CERTIFICATE ----
 server:
 route:
 enabled: true

OpenShift Container Platform 4.9 CI/CD

264

https://issues.redhat.com/browse/GITOPS-2278
https://issues.redhat.com/browse/GITOPS-2235
https://issues.redhat.com/browse/GITOPS-2034

Red Hat OpenShift GitOps Operator can use RHSSO (KeyCloak) with OIDC and Dex. However,
with a recent security fix applied, the Operator cannot validate the RHSSO certificate in some
scenarios. GITOPS-2214
As a workaround, disable TLS validation for the OIDC (Keycloak/RHSSO) endpoint in the
ArgoCD specification.

5.1.13. Release notes for Red Hat OpenShift GitOps 1.5.4

Red Hat OpenShift GitOps 1.5.4 is now available on OpenShift Container Platform 4.8, 4.9, 4.10, and
4.11.

5.1.13.1. Fixed issues

The following issues have been resolved in the current release:

Before this update, the Red Hat OpenShift GitOps was using an older version of the REDIS 5
image tag. This update fixes the issue and upgrades the rhel8/redis-5 image tag. GITOPS-2037

5.1.14. Release notes for Red Hat OpenShift GitOps 1.5.3

Red Hat OpenShift GitOps 1.5.3 is now available on OpenShift Container Platform 4.8, 4.9, 4.10, and 4.11.

5.1.14.1. Fixed issues

The following issues have been resolved in the current release:

Before this update, all unpatched versions of Argo CD v1.0.0 and later were vulnerable to a
cross-site scripting bug. As a result, an unauthorized user was able to inject a javascript link in
the UI. This issue is now fixed. CVE-2022-31035

Before this update, all versions of Argo CD v0.11.0 and later were vulnerable to multiple attacks
when SSO login was initiated from the Argo CD CLI or the UI. This issue is now fixed. CVE-
2022-31034

Before this update, all unpatched versions of Argo CD v1.0.0 and later were vulnerable to a
cross-site scripting bug. As a result, an unauthorized users was able to inject JavaScript links in
the UI. This issue is now fixed. CVE-2022-31016

Before this update, all unpatched versions of Argo CD v1.3.0 and later were vulnerable to a
symlink-following bug. As a result, an unauthorized user with repository write access was able to
leak sensitive YAML files from Argo CD’s repo-server. This issue is now fixed. CVE-2022-31036

5.1.15. Release notes for Red Hat OpenShift GitOps 1.5.2

Red Hat OpenShift GitOps 1.5.2 is now available on OpenShift Container Platform 4.8, 4.9, 4.10, and 4.11.

apiVersion: argoproj.io/v1alpha1
kind: ArgoCD
metadata:
 name: example-argocd
spec:
 extraConfig:
 "admin.enabled": "true"
...

CHAPTER 5. GITOPS

265

https://issues.redhat.com/browse/GITOPS-2214
https://issues.redhat.com/browse/GITOPS-2037
https://bugzilla.redhat.com/show_bug.cgi?id=2096278
https://bugzilla.redhat.com/show_bug.cgi?id=2096282
https://bugzilla.redhat.com/show_bug.cgi?id=2096283
https://bugzilla.redhat.com/show_bug.cgi?id=2096291

5.1.15.1. Fixed issues

The following issues have been resolved in the current release:

Before this update, images referenced by the redhat-operator-index were missing. This issue is
now fixed. GITOPS-2036

5.1.16. Release notes for Red Hat OpenShift GitOps 1.5.1

Red Hat OpenShift GitOps 1.5.1 is now available on OpenShift Container Platform 4.8, 4.9, 4.10, and 4.11.

5.1.16.1. Fixed issues

The following issues have been resolved in the current release:

Before this update, if Argo CD’s anonymous access was enabled, an unauthenticated user was
able to craft a JWT token and get full access to the Argo CD instance. This issue is now fixed .
CVE-2022-29165

Before this update, an unauthenticated user was able to display error messages on the login
screen while SSO was enabled. This issue is now fixed. CVE-2022-24905

Before this update, all unpatched versions of Argo CD v0.7.0 and later were vulnerable to a
symlink-following bug. As a result, an unauthorized user with repository write access was able to
leak sensitive files from Argo CD’s repo-server. This issue is now fixed. CVE-2022-24904

5.1.17. Release notes for Red Hat OpenShift GitOps 1.5.0

Red Hat OpenShift GitOps 1.5.0 is now available on OpenShift Container Platform 4.8, 4.9, 4.10, and
4.11.

5.1.17.1. New features

The current release adds the following improvements:

This enhancement upgrades Argo CD to version 2.3.3. GITOPS-1708

This enhancement upgrades Dex to version 2.30.3. GITOPS-1850

This enhancement upgrades Helm to version 3.8.0. GITOPS-1709

This enhancement upgrades Kustomize to version 4.4.1. GITOPS-1710

This enhancement upgrades Application Set to version 0.4.1.

With this update, a new channel named latest is added. This channel provides the latest release
of the Red Hat OpenShift GitOps. For GitOps v1.5.0, the Operator is pushed to gitops-1.5,
latest channel, and the existing stable channel. From GitOps v1.6, all of the latest releases will
be pushed only to the latest channel and not the stable channel. GITOPS-1791

With this update, the new CSV adds the olm.skipRange: '>=1.0.0 <1.5.0' annotation. As a
result, all of the previous release versions are skipped. The Operator upgrades to v1.5.0 directly.
GITOPS-1787

With this update, the Operator updates the Red Hat Single Sign-On (RH-SSO) to version v7.5.1,
including the following enhancements:

OpenShift Container Platform 4.9 CI/CD

266

https://issues.redhat.com/browse/GITOPS-2036
https://bugzilla.redhat.com/show_bug.cgi?id=2081686
https://bugzilla.redhat.com/show_bug.cgi?id=2081689
https://bugzilla.redhat.com/show_bug.cgi?id=2081686
https://issues.redhat.com/browse/GITOPS-1708
https://issues.redhat.com/browse/GITOPS-1850
https://issues.redhat.com/browse/GITOPS-1709
https://issues.redhat.com/browse/GITOPS-1710
https://issues.redhat.com/browse/GITOPS-1791
https://issues.redhat.com/browse/GITOPS-1787

You can log in to Argo CD using the OpenShift Container Platform credentials including the
kube:admin credential.

The RH-SSO supports and configures Argo CD instances for Role-based Access Control
(RBAC) using OpenShift Container Platform groups.

The RH-SSO supports the HTTP_Proxy environment variables. You can use the RH-SSO
as an SSO for Argo CD running behind a proxy.
GITOPS-1330

With this update, a new .host URL field is added to the .status field of the Argo CD operand.
When a route or ingress is enabled with the priority given to route, the new URL field displays
the route. If no URL is provided from the route or ingress, the .host field is not displayed.
When the route or ingress is configured, but the corresponding controller is not set up properly
and is not in the Ready state or does not propagate its URL, the value of the .status.host field
in the operand is indicated as Pending instead of displaying the URL. This affects the overall
status of the operand by making it Pending instead of Available. GITOPS-654

5.1.17.2. Fixed issues

The following issues have been resolved in the current release:

Before this update, RBAC rules specific to AppProjects would not allow the use of commas for
the subject field of the role, thus preventing bindings to the LDAP account. This update fixes
the issue and you can now specify complex role bindings in AppProject specific RBAC rules.
GITOPS-1771

Before this update, when a DeploymentConfig resource was scaled to 0, Argo CD displayed it
in a progressing state with a health status message as "replication controller is waiting for
pods to run". This update fixes the edge case and the health check now reports the correct
health status of the DeploymentConfig resource. GITOPS-1738

Before this update, the TLS certificate in the argocd-tls-certs-cm configuration map was
deleted by the Red Hat OpenShift GitOps unless the certificate was configured in the ArgoCD
CR specification tls.initialCerts field. This issue is fixed now. GITOPS-1725

Before this update, when creating a namespace with the managed-by label, it created a lot of
RoleBinding resources on the new namespace. This update fixes the issue and now Red Hat
OpenShift GitOps removes the irrelevant Role and RoleBinding resources created by the
previous versions. GITOPS-1550

Before this update, when creating a namespace with the managed-by label, a lot of
RoleBinding resources on the new namespace were created. This update fixes the issue and
Red Hat OpenShift GitOps removes the irrelevant Role and RoleBinding resources created by
the previous versions. GITOPS-1548

5.1.17.3. Known issues

Argo CD .status.host field is not updated when an Ingress resource is in use instead of a Route
resource on OpenShift Container Platform clusters. GITOPS-1920

5.1.18. Release notes for Red Hat OpenShift GitOps 1.4.13

Red Hat OpenShift GitOps 1.4.13 is now available on OpenShift Container Platform 4.7, 4.8, 4.9, and
4.10.

CHAPTER 5. GITOPS

267

https://issues.redhat.com/browse/GITOPS-1330
https://issues.redhat.com/browse/GITOPS-654
https://issues.redhat.com/browse/GITOPS-1771
https://issues.redhat.com/browse/GITOPS-1738
https://issues.redhat.com/browse/GITOPS-1725
https://issues.redhat.com/browse/GITOPS-1550
https://issues.redhat.com/browse/GITOPS-1548
https://issues.redhat.com/browse/GITOPS-1920

5.1.18.1. Fixed issues

The following issues have been resolved in the current release:

From OpenShift Container Platform 4.12, it is optional to install the console. This fix updates the
Red Hat OpenShift GitOps Operator to prevent errors with the Operator if the console is not
installed. GITOPS-2354

5.1.19. Release notes for Red Hat OpenShift GitOps 1.4.12

Red Hat OpenShift GitOps 1.4.12 is now available on OpenShift Container Platform 4.7, 4.8, 4.9, and
4.10.

5.1.19.1. Fixed issues

The following issues have been resolved in the current release:

Before this update, in a large set of applications the application controllers were restarted
multiple times due to the unresponsiveness of liveness probes. This update fixes the issue by
removing the liveness probe in the application controller StatefulSet object. GITOPS-2153

Before this update, the RHSSO certificate could not be validated when it was set up with a
certificate that was not signed by certificate authorities. This update fixes the issue and now you
can provide a custom certificate that will be used in verifying the Keycloak’s TLS certificate
when communicating with it. You can add the rootCA to the Argo CD custom resource
.spec.keycloak.rootCA field. The Operator reconciles this change and updates the oidc.config
field in the argocd-cm ConfigMap with the PEM-encoded root certificate. GITOPS-2214

NOTE

Restart the Argo CD server pod after updating the .spec.keycloak.rootCA field.

For example:

Before this update, a terminating namespace that was managed by Argo CD would block the

apiVersion: argoproj.io/v1alpha1
kind: ArgoCD
metadata:
 name: example-argocd
 labels:
 example: basic
spec:
 sso:
 provider: keycloak
 keycloak:
 rootCA: |
 ---- BEGIN CERTIFICATE ----
 This is a dummy certificate
 Please place this section with appropriate rootCA
 ---- END CERTIFICATE ----
 server:
 route:
 enabled: true

OpenShift Container Platform 4.9 CI/CD

268

https://issues.redhat.com/browse/GITOPS-2354
https://issues.redhat.com/browse/GITOPS-2153
https://issues.redhat.com/browse/GITOPS-2214

Before this update, a terminating namespace that was managed by Argo CD would block the
creation of roles and other configuration of other managed namespaces. This update fixes this
issue. GITOPS-2276

Before this update, the Dex pods failed to start with CreateContainerConfigError when an
SCC of anyuid was assigned to the Dex ServiceAccount resource. This update fixes this issue
by assigning a default user id to the Dex container. GITOPS-2235

5.1.20. Release notes for Red Hat OpenShift GitOps 1.4.11

Red Hat OpenShift GitOps 1.4.11 is now available on OpenShift Container Platform 4.7, 4.8, 4.9, and 4.10.

5.1.20.1. New features

The current release adds the following improvements:

With this update, the bundled Argo CD has been updated to version 2.2.12.

5.1.20.2. Fixed issues

The following issues have been resolved in the current release:

Before this update, the redis-ha-haproxy pods of an ArgoCD instance failed when more
restrictive SCCs were present in the cluster. This update fixes the issue by updating the security
context in workloads. GITOPS-2034

5.1.20.3. Known issues

Red Hat OpenShift GitOps Operator can use RHSSO (KeyCloak) with OIDC and Dex. However,
with a recent security fix applied, the Operator cannot validate the RHSSO certificate in some
scenarios. GITOPS-2214
As a workaround, disable TLS validation for the OIDC (Keycloak/RHSSO) endpoint in the
ArgoCD specification.

5.1.21. Release notes for Red Hat OpenShift GitOps 1.4.6

Red Hat OpenShift GitOps 1.4.6 is now available on OpenShift Container Platform 4.7, 4.8, 4.9, and 4.10.

5.1.21.1. Fixed issues

The following issue has been resolved in the current release:

The base images are updated to the latest version to avoid OpenSSL flaw link: (CVE-2022-
0778).

NOTE

apiVersion: argoproj.io/v1alpha1
kind: ArgoCD
metadata:
 name: example-argocd
spec:
 extraConfig:
 "admin.enabled": "true"
...

CHAPTER 5. GITOPS

269

https://issues.redhat.com/browse/GITOPS-2276
https://issues.redhat.com/browse/GITOPS-2235
https://issues.redhat.com/browse/GITOPS-2034
https://issues.redhat.com/browse/GITOPS-2214
https://access.redhat.com/security/cve/CVE-2022-0778

NOTE

To install the current release of Red Hat OpenShift GitOps 1.4 and receive further
updates during its product life cycle, switch to the GitOps-1.4 channel.

5.1.22. Release notes for Red Hat OpenShift GitOps 1.4.5

Red Hat OpenShift GitOps 1.4.5 is now available on OpenShift Container Platform 4.7, 4.8, 4.9, and 4.10.

5.1.22.1. Fixed issues

WARNING

You should directly upgrade to Red Hat OpenShift GitOps v1.4.5 from Red Hat
OpenShift GitOps v1.4.3. Do not use Red Hat OpenShift GitOps v1.4.4 in a
production environment. Major issues that affected Red Hat OpenShift GitOps
v1.4.4 are fixed in Red Hat OpenShift GitOps 1.4.5.

The following issue has been resolved in the current release:

Before this update, Argo CD pods were stuck in the ErrImagePullBackOff state. The following
error message was shown:

reason: ErrImagePull
 message: >-
 rpc error: code = Unknown desc = reading manifest
 sha256:ff4ad30752cf0d321cd6c2c6fd4490b716607ea2960558347440f2f370a586a8
 in registry.redhat.io/openshift-gitops-1/argocd-rhel8: StatusCode:
 404, <HTML><HEAD><TITLE>Error</TITLE></HEAD><BODY>

This issue is now fixed. GITOPS-1848

5.1.23. Release notes for Red Hat OpenShift GitOps 1.4.3

Red Hat OpenShift GitOps 1.4.3 is now available on OpenShift Container Platform 4.7, 4.8, 4.9, and 4.10.

5.1.23.1. Fixed issues

The following issue has been resolved in the current release:

Before this update, the TLS certificate in the argocd-tls-certs-cm configuration map was
deleted by the Red Hat OpenShift GitOps unless the certificate was configured in the ArgoCD
CR specification tls.initialCerts field. This update fixes this issue. GITOPS-1725

5.1.24. Release notes for Red Hat OpenShift GitOps 1.4.2

Red Hat OpenShift GitOps 1.4.2 is now available on OpenShift Container Platform 4.7, 4.8, 4.9, and 4.10.



OpenShift Container Platform 4.9 CI/CD

270

https://issues.redhat.com/browse/GITOPS-1848
https://issues.redhat.com/browse/GITOPS-1725

5.1.24.1. Fixed issues

The following issue has been resolved in the current release:

Before this update, the Route resources got stuck in Progressing Health status if more than
one Ingress were attached to the route. This update fixes the health check and reports the
correct health status of the Route resources. GITOPS-1751

5.1.25. Release notes for Red Hat OpenShift GitOps 1.4.1

Red Hat OpenShift GitOps 1.4.1 is now available on OpenShift Container Platform 4.7, 4.8, 4.9, and 4.10.

5.1.25.1. Fixed issues

The following issue has been resolved in the current release:

Red Hat OpenShift GitOps Operator v1.4.0 introduced a regression which removes the
description fields from spec for the following CRDs:

argoproj.io_applications.yaml

argoproj.io_appprojects.yaml

argoproj.io_argocds.yaml
Before this update, when you created an AppProject resource using the oc create
command, the resource failed to synchronize due to the missing description fields. This
update restores the missing description fields in the preceding CRDs. GITOPS-1721

5.1.26. Release notes for Red Hat OpenShift GitOps 1.4.0

Red Hat OpenShift GitOps 1.4.0 is now available on OpenShift Container Platform 4.7, 4.8, 4.9, and
4.10.

5.1.26.1. New features

The current release adds the following improvements.

This enhancement upgrades Red Hat OpenShift GitOps Application Manager (kam) to version
0.0.41. GITOPS-1669

This enhancement upgrades Argo CD to version 2.2.2. GITOPS-1532

This enhancement upgrades Helm to version 3.7.1. GITOPS-1530

This enhancement adds the health status of the DeploymentConfig, Route, and OLM Operator
items to the Argo CD Dashboard and OpenShift Container Platform web console. This
information helps you monitor the overall health status of your application. GITOPS-655,
GITOPS-915, GITOPS-916, GITOPS-1110

With this update, you can to specify the number of desired replicas for the argocd-server and
argocd-repo-server components by setting the .spec.server.replicas and
.spec.repo.replicas attributes in the Argo CD custom resource, respectively. If you configure
the horizontal pod autoscaler (HPA) for the argocd-server components, it takes precedence
over the Argo CD custom resource attributes. GITOPS-1245

As an administrative user, when you give Argo CD access to a namespace by using the

CHAPTER 5. GITOPS

271

https://issues.redhat.com/browse/GITOPS-1751
https://issues.redhat.com/browse/GITOPS-1721
https://issues.redhat.com/browse/GITOPS-1669
https://issues.redhat.com/browse/GITOPS-1532
https://issues.redhat.com/browse/GITOPS-1530
https://issues.redhat.com/browse/GITOPS-655
https://issues.redhat.com/browse/GITOPS-915
https://issues.redhat.com/browse/GITOPS-916
https://issues.redhat.com/browse/GITOPS-1110
https://issues.redhat.com/browse/GITOPS-1245

argocd.argoproj.io/managed-by label, it assumes namespace-admin privileges. These
privileges are an issue for administrators who provide namespaces to non-administrators, such
as development teams, because the privileges enable non-administrators to modify objects
such as network policies.
With this update, administrators can configure a common cluster role for all the managed
namespaces. In role bindings for the Argo CD application controller, the Operator refers to the
CONTROLLER_CLUSTER_ROLE environment variable. In role bindings for the Argo CD
server, the Operator refers to the SERVER_CLUSTER_ROLE environment variable. If these
environment variables contain custom roles, the Operator doesn’t create the default admin role.
Instead, it uses the existing custom role for all managed namespaces. GITOPS-1290

With this update, the Environments page in the OpenShift Container Platform Developer
perspective displays a broken heart icon to indicate degraded resources, excluding ones whose
status is Progressing, Missing, and Unknown. The console displays a yellow yield sign icon to
indicate out-of-sync resources. GITOPS-1307

5.1.26.2. Fixed issues

The following issues have been resolved in the current release:

Before this update, when the Route to the Red Hat OpenShift GitOps Application Manager
(kam) was accessed without specifying a path in the URL, a default page without any helpful
information was displayed to the user. This update fixes the issue so that the default page
displays download links for kam. GITOPS-923

Before this update, setting a resource quota in the namespace of the Argo CD custom resource
might cause the setup of the Red Hat SSO (RH SSO) instance to fail. This update fixes this
issue by setting a minimum resource request for the RH SSO deployment pods. GITOPS-1297

Before this update, if you changed the log level for the argocd-repo-server workload, the
Operator didn’t reconcile this setting. The workaround was to delete the deployment resource
so that the Operator recreated it with the new log level. With this update, the log level is
correctly reconciled for existing argocd-repo-server workloads. GITOPS-1387

Before this update, if the Operator managed an Argo CD instance that lacked the .data field in
the argocd-secret Secret, the Operator on that instance crashed. This update fixes the issue so
that the Operator doesn’t crash when the .data field is missing. Instead, the secret regenerates
and the gitops-operator-controller-manager resource is redeployed. GITOPS-1402

Before this update, the gitopsservice service was annotated as an internal object. This update
removes the annotation so you can update or delete the default Argo CD instance and run
GitOps workloads on infrastructure nodes by using the UI. GITOPS-1429

5.1.26.3. Known issues

These are the known issues in the current release:

If you migrate from the Dex authentication provider to the Keycloak provider, you might
experience login issues with Keycloak.
To prevent this issue, when migrating, uninstall Dex by removing the .spec.dex section from the
Argo CD custom resource. Allow a few minutes for Dex to uninstall completely. Then, install
Keycloak by adding .spec.sso.provider: keycloak to the Argo CD custom resource.

As a workaround, uninstall Keycloak by removing .spec.sso.provider: keycloak. Then, re-install
it. GITOPS-1450, GITOPS-1331

OpenShift Container Platform 4.9 CI/CD

272

https://issues.redhat.com/browse/GITOPS-1290
https://issues.redhat.com/browse/GITOPS-1307
https://issues.redhat.com/browse/GITOPS-923
https://issues.redhat.com/browse/GITOPS-1297
https://issues.redhat.com/browse/GITOPS-1387
https://issues.redhat.com/browse/GITOPS-1402
https://issues.redhat.com/browse/GITOPS-1429
https://issues.redhat.com/browse/GITOPS-1450
https://issues.redhat.com/browse/GITOPS-1331

5.1.27. Release notes for Red Hat OpenShift GitOps 1.3.7

Red Hat OpenShift GitOps 1.3.7 is now available on OpenShift Container Platform 4.7, 4.8, 4.9, and 4.6
with limited GA support.

5.1.27.1. Fixed issues

The following issue has been resolved in the current release:

Before this update, a flaw was found in OpenSSL. This update fixes the issue by updating the
base images to the latest version to avoid the OpenSSL flaw. (CVE-2022-0778).

NOTE

To install the current release of Red Hat OpenShift GitOps 1.3 and receive further
updates during its product life cycle, switch to the GitOps-1.3 channel.

5.1.28. Release notes for Red Hat OpenShift GitOps 1.3.6

Red Hat OpenShift GitOps 1.3.6 is now available on OpenShift Container Platform 4.7, 4.8, 4.9, and 4.6
with limited GA support.

5.1.28.1. Fixed issues

The following issues have been resolved in the current release:

In Red Hat OpenShift GitOps, improper access control allows admin privilege escalation (CVE-
2022-1025). This update fixes the issue.

A path traversal flaw allows leaking of out-of-bound files (CVE-2022-24731). This update fixes
the issue.

A path traversal flaw and improper access control allows leaking of out-of-bound files (CVE-
2022-24730). This update fixes the issue.

5.1.29. Release notes for Red Hat OpenShift GitOps 1.3.2

Red Hat OpenShift GitOps 1.3.2 is now available on OpenShift Container Platform 4.7, 4.8, 4.9, and 4.6
with limited GA support.

5.1.29.1. New features

In addition to the fixes and stability improvements, the following sections highlight what is new in Red
Hat OpenShift GitOps 1.3.2:

Upgraded Argo CD to version 2.1.8

Upgraded Dex to version 2.30.0

5.1.29.2. Fixed issues

The following issues have been resolved in the current release:

Previously, in the OperatorHub UI under the Infrastructure Features section, when you filtered

CHAPTER 5. GITOPS

273

https://access.redhat.com/security/cve/CVE-2022-0778
https://access.redhat.com/security/cve/CVE-2022-1025
https://access.redhat.com/security/cve/CVE-2022-24731
https://access.redhat.com/security/cve/CVE-2022-24730

by Disconnected the Red Hat OpenShift GitOps Operator did not show in the search results,
as the Operator did not have the related annotation set in its CSV file. With this update, the
Disconnected Cluster annotation has been added to the Red Hat OpenShift GitOps Operator
as an infrastructure feature. GITOPS-1539

When using an Namespace-scoped Argo CD instance, for example, an Argo CD instance that is
not scoped to All Namepsaces in a cluster, Red Hat OpenShift GitOps dynamically maintains a
list of managed namespaces. These namespaces include the argocd.argoproj.io/managed-by
label. This list of namespaces is stored in a cache in Argo CD → Settings → Clusters → "in-
cluster" → NAMESPACES. Before this update, if you deleted one of these namespaces, the
Operator ignored that, and the namespace remained in the list. This behavior broke the
CONNECTION STATE in that cluster configuration, and all sync attempts resulted in errors.
For example:

This bug is fixed. GITOPS-1521

With this update, the Red Hat OpenShift GitOps Operator has been annotated with the Deep
Insights capability level. GITOPS-1519

Previously, the Argo CD Operator managed the resource.exclusion field by itself but ignored
the resource.inclusion field. This prevented the resource.inclusion field configured in the
Argo CD CR to generate in the argocd-cm configuration map. This bug is fixed. GITOPS-1518

5.1.30. Release notes for Red Hat OpenShift GitOps 1.3.1

Red Hat OpenShift GitOps 1.3.1 is now available on OpenShift Container Platform 4.7, 4.8, 4.9, and 4.6
with limited GA support.

5.1.30.1. Fixed issues

If you upgrade to v1.3.0, the Operator does not return an ordered slice of environment variables.
As a result, the reconciler fails causing the frequent recreation of Argo CD pods in OpenShift
Container Platform clusters running behind a proxy. This update fixes the issue so that Argo CD
pods are not recreated. GITOPS-1489

5.1.31. Release notes for Red Hat OpenShift GitOps 1.3

Red Hat OpenShift GitOps 1.3 is now available on OpenShift Container Platform 4.7, 4.8, 4.9, and 4.6
with limited GA support.

5.1.31.1. New features

In addition to the fixes and stability improvements, the following sections highlight what is new in Red
Hat OpenShift GitOps 1.3.0:

For a fresh install of v1.3.0, Dex is automatically configured. You can log into the default Argo
CD instance in the openshift-gitops namespace using the OpenShift or kubeadmin
credentials. As an admin you can disable the Dex installation after the Operator is installed which
will remove the Dex deployment from the openshift-gitops namespace.

The default Argo CD instance installed by the Operator as well as accompanying controllers can
now run on the infrastructure nodes of the cluster by setting a simple configuration toggle.

Argo service account does not have <random_verb> on <random_resource_type> in
namespace <the_namespace_you_deleted>.

OpenShift Container Platform 4.9 CI/CD

274

https://issues.redhat.com/browse/GITOPS-1539
https://issues.redhat.com/browse/GITOPS-1521
https://issues.redhat.com/browse/GITOPS-1519
https://issues.redhat.com/browse/GITOPS-1518
https://issues.redhat.com/browse/GITOPS-1489

Internal communications in Argo CD can now be secured using the TLS and the OpenShift
cluster certificates. The Argo CD routes can now leverage the OpenShift cluster certificates in
addition to using external certificate managers such as the cert-manager.

Use the improved Environments page in the Developer perspective of the console 4.9 to gain
insights into the GitOps environments.

You can now access custom health checks in Argo CD for DeploymentConfig resources, Route
resources, and Operators installed using OLM.

The GitOps Operator now conforms to the naming conventions recommended by the latest
Operator-SDK:

The prefix gitops-operator- is added to all resources

Service account is renamed to gitops-operator-controller-manager

5.1.31.2. Fixed issues

The following issues were resolved in the current release:

Previously, if you set up a new namespace to be managed by a new instance of Argo CD, it would
immediately be Out Of Sync due to the new roles and bindings that the Operator creates to
manage that new namespace. This behavior is fixed. GITOPS-1384

5.1.31.3. Known issues

While migrating from the Dex authentication provider to the Keycloak provider, you may
experience login issues with Keycloak. GITOPS-1450
To prevent the above issue, when migrating, uninstall Dex by removing the .spec.dex section
found in the Argo CD custom resource. Allow a few minutes for Dex to uninstall completely, and
then proceed to install Keycloak by adding .spec.sso.provider: keycloak to the Argo CD
custom resource.

As a workaround, uninstall Keycloak by removing .spec.sso.provider: keycloak and then re-
install.

5.1.32. Release notes for Red Hat OpenShift GitOps 1.2.2

Red Hat OpenShift GitOps 1.2.2 is now available on OpenShift Container Platform 4.8.

5.1.32.1. Fixed issues

The following issue was resolved in the current release:

All versions of Argo CD are vulnerable to a path traversal bug that allows to pass arbitrary values
to be consumed by Helm charts. This update fixes the CVE-2022-24348 gitops error, path
traversal and dereference of symlinks when passing Helm value files. GITOPS-1756

5.1.33. Release notes for Red Hat OpenShift GitOps 1.2.1

Red Hat OpenShift GitOps 1.2.1 is now available on OpenShift Container Platform 4.8.

5.1.33.1. Support matrix

Some features in this release are currently in Technology Preview. These experimental features are not

CHAPTER 5. GITOPS

275

https://issues.redhat.com/browse/GITOPS-1384
https://issues.redhat.com/browse/GITOPS-1450
https://issues.redhat.com/browse/GITOPS-1756

Some features in this release are currently in Technology Preview. These experimental features are not
intended for production use.

Technology Preview Features Support Scope

In the table below, features are marked with the following statuses:

TP: Technology Preview

GA: General Availability

Note the following scope of support on the Red Hat Customer Portal for these features:

Table 5.2. Support matrix

Feature Red Hat OpenShift GitOps 1.2.1

Argo CD GA

Argo CD ApplicationSet TP

Red Hat OpenShift GitOps Application Manager
(kam)

TP

5.1.33.2. Fixed issues

The following issues were resolved in the current release:

Previously, huge memory spikes were observed on the application controller on startup. The flag
--kubectl-parallelism-limit for the application controller is now set to 10 by default, however
this value can be overridden by specifying a number for .spec.controller.kubeParallelismLimit
in the Argo CD CR specification. GITOPS-1255

The latest Triggers APIs caused Kubernetes build failure due to duplicate entries in the
kustomization.yaml when using the kam bootstrap command. The Pipelines and Tekton
triggers components have now been updated to v0.24.2 and v0.14.2, respectively, to address
this issue. GITOPS-1273

Persisting RBAC roles and bindings are now automatically removed from the target namespace
when the Argo CD instance from the source namespace is deleted. GITOPS-1228

Previously, when deploying an Argo CD instance into a namespace, the Argo CD instance would
change the "managed-by" label to be its own namespace. This fix would make namespaces
unlabelled while also making sure the required RBAC roles and bindings are created and deleted
for the namespace. GITOPS-1247

Previously, the default resource request limits on Argo CD workloads, specifically for the repo-
server and application controller, were found to be very restrictive. The existing resource quota
has now been removed and the default memory limit has been increased to 1024M in the repo
server. Please note that this change will only affect new installations; existing Argo CD instance
workloads will not be affected. GITOPS-1274

5.1.34. Release notes for Red Hat OpenShift GitOps 1.2

OpenShift Container Platform 4.9 CI/CD

276

https://access.redhat.com/support/offerings/techpreview
https://issues.redhat.com/browse/GITOPS-1255
https://issues.redhat.com/browse/GITOPS-1273
https://issues.redhat.com/browse/GITOPS-1228
https://issues.redhat.com/browse/GITOPS-1247
https://issues.redhat.com/browse/GITOPS-1274

Red Hat OpenShift GitOps 1.2 is now available on OpenShift Container Platform 4.8.

5.1.34.1. Support matrix

Some features in this release are currently in Technology Preview. These experimental features are not
intended for production use.

Technology Preview Features Support Scope

In the table below, features are marked with the following statuses:

TP: Technology Preview

GA: General Availability

Note the following scope of support on the Red Hat Customer Portal for these features:

Table 5.3. Support matrix

Feature Red Hat OpenShift GitOps 1.2

Argo CD GA

Argo CD ApplicationSet TP

Red Hat OpenShift GitOps Application Manager
(kam)

TP

5.1.34.2. New features

In addition to the fixes and stability improvements, the following sections highlight what is new in Red
Hat OpenShift GitOps 1.2:

If you do not have read or write access to the openshift-gitops namespace, you can now use the
DISABLE_DEFAULT_ARGOCD_INSTANCE environment variable in the GitOps Operator and
set the value to TRUE to prevent the default Argo CD instance from starting in the openshift-
gitops namespace.

Resource requests and limits are now configured in Argo CD workloads. Resource quota is
enabled in the openshift-gitops namespace. As a result, out-of-band workloads deployed
manually in the openshift-gitops namespace must be configured with resource requests and
limits and the resource quota may need to be increased.

Argo CD authentication is now integrated with Red Hat SSO and it is automatically configured
with OpenShift 4 Identity Provider on the cluster. This feature is disabled by default. To enable
Red Hat SSO, add SSO configuration in ArgoCD CR as shown below. Currently,keycloak is the
only supported provider.

apiVersion: argoproj.io/v1alpha1
kind: ArgoCD
metadata:
 name: example-argocd
 labels:
 example: basic

CHAPTER 5. GITOPS

277

https://access.redhat.com/support/offerings/techpreview

You can now define hostnames using route labels to support router sharding. Support for
setting labels on the server (argocd server), grafana, and prometheus routes is now available.
To set labels on a route, add labels under the route configuration for a server in the ArgoCD
CR.

Example ArgoCD CR YAML to set labels on argocd server

The GitOps Operator now automatically grants permissions to Argo CD instances to manage
resources in target namespaces by applying labels. Users can label the target namespace with
the label argocd.argoproj.io/managed-by: <source-namespace>, where the source-
namespace is the namespace where the argocd instance is deployed.

5.1.34.3. Fixed issues

The following issues were resolved in the current release:

Previously, if a user created additional instances of Argo CD managed by the default cluster
instance in the openshift-gitops namespace, the application responsible for the new Argo CD
instance would get stuck in an OutOfSync status. This issue has now been resolved by adding an
owner reference to the cluster secret. GITOPS-1025

5.1.34.4. Known issues

These are the known issues in Red Hat OpenShift GitOps 1.2:

When an Argo CD instance is deleted from the source namespace, the
argocd.argoproj.io/managed-by labels in the target namespaces are not removed. GITOPS-
1228

Resource quota has been enabled in the openshift-gitops namespace in Red Hat OpenShift
GitOps 1.2. This can affect out-of-band workloads deployed manually and workloads deployed
by the default Argo CD instance in the openshift-gitops namespace. When you upgrade from

spec:
 sso:
 provider: keycloak
 server:
 route:
 enabled: true

apiVersion: argoproj.io/v1alpha1
kind: ArgoCD
metadata:
 name: example-argocd
 labels:
 example: basic
spec:
 server:
 route:
 enabled: true
 labels:
 key1: value1
 key2: value2

OpenShift Container Platform 4.9 CI/CD

278

https://issues.redhat.com/browse/GITOPS-1025
https://issues.redhat.com/browse/GITOPS-1228

Red Hat OpenShift GitOps v1.1.2 to v1.2 such workloads must be configured with resource
requests and limits. If there are any additional workloads, the resource quota in the openshift-
gitops namespace must be increased.
Current Resource Quota for openshift-gitops namespace.

Resource Requests Limits

CPU 6688m 13750m

Memory 4544Mi 9070Mi

You can use the below command to update the CPU limits.

You can use the below command to update the CPU requests.

You can replace the path in the above commands from cpu to memory to update the memory.

5.1.35. Release notes for Red Hat OpenShift GitOps 1.1

Red Hat OpenShift GitOps 1.1 is now available on OpenShift Container Platform 4.7.

5.1.35.1. Support matrix

Some features in this release are currently in Technology Preview. These experimental features are not
intended for production use.

Technology Preview Features Support Scope

In the table below, features are marked with the following statuses:

TP: Technology Preview

GA: General Availability

Note the following scope of support on the Red Hat Customer Portal for these features:

Table 5.4. Support matrix

Feature Red Hat OpenShift GitOps 1.1

Argo CD GA

Argo CD ApplicationSet TP

$ oc patch resourcequota openshift-gitops-compute-resources -n openshift-gitops --
type='json' -p='[{"op": "replace", "path": "/spec/hard/limits.cpu", "value":"9000m"}]'

$ oc patch resourcequota openshift-gitops-compute-resources -n openshift-gitops --
type='json' -p='[{"op": "replace", "path": "/spec/hard/cpu", "value":"7000m"}]

CHAPTER 5. GITOPS

279

https://access.redhat.com/support/offerings/techpreview

Red Hat OpenShift GitOps Application Manager
(kam)

TP

Feature Red Hat OpenShift GitOps 1.1

5.1.35.2. New features

In addition to the fixes and stability improvements, the following sections highlight what is new in Red
Hat OpenShift GitOps 1.1:

The ApplicationSet feature is now added (Technology Preview). The ApplicationSet feature
enables both automation and greater flexibility when managing Argo CD applications across a
large number of clusters and within monorepos. It also makes self-service usage possible on
multitenant Kubernetes clusters.

Argo CD is now integrated with cluster logging stack and with the OpenShift Container
Platform Monitoring and Alerting features.

Argo CD auth is now integrated with OpenShift Container Platform.

Argo CD applications controller now supports horizontal scaling.

Argo CD Redis servers now support high availability (HA).

5.1.35.3. Fixed issues

The following issues were resolved in the current release:

Previously, Red Hat OpenShift GitOps did not work as expected in a proxy server setup with
active global proxy settings. This issue is fixed and now Argo CD is configured by the Red Hat
OpenShift GitOps Operator using fully qualified domain names (FQDN) for the pods to enable
communication between components. GITOPS-703

The Red Hat OpenShift GitOps backend relies on the ?ref= query parameter in the Red Hat
OpenShift GitOps URL to make API calls. Previously, this parameter was not read from the URL,
causing the backend to always consider the default reference. This issue is fixed and the Red
Hat OpenShift GitOps backend now extracts the reference query parameter from the Red Hat
OpenShift GitOps URL and only uses the default reference when there is no input reference
provided. GITOPS-817

Previously, the Red Hat OpenShift GitOps backend failed to find the valid GitLab repository.
This was because the Red Hat OpenShift GitOps backend checked for main as the branch
reference, instead of master in the GitLab repository. This issue is fixed now. GITOPS-768

The Environments page in the Developer perspective of the OpenShift Container Platform
web console now shows the list of applications and the number of environments. This page also
displays an Argo CD link that directs you to the Argo CD Applications page that lists all the
applications. The Argo CD Applications page has LABELS (for example,
app.kubernetes.io/name=appName) that help you filter only the applications of your choice.
GITOPS-544

5.1.35.4. Known issues

These are the known issues in Red Hat OpenShift GitOps 1.1:

OpenShift Container Platform 4.9 CI/CD

280

https://issues.redhat.com/browse/GITOPS-703
https://issues.redhat.com/browse/GITOPS-817
https://issues.redhat.com/browse/GITOPS-768
https://issues.redhat.com/browse/GITOPS-544

Red Hat OpenShift GitOps does not support Helm v2 and ksonnet.

The Red Hat SSO (RH SSO) Operator is not supported in disconnected clusters. As a result, the
Red Hat OpenShift GitOps Operator and RH SSO integration is not supported in disconnected
clusters.

When you delete an Argo CD application from the OpenShift Container Platform web console,
the Argo CD application gets deleted in the user interface, but the deployments are still present
in the cluster. As a workaround, delete the Argo CD application from the Argo CD console.
GITOPS-830

5.1.35.5. Breaking Change

5.1.35.5.1. Upgrading from Red Hat OpenShift GitOps v1.0.1

When you upgrade from Red Hat OpenShift GitOps v1.0.1 to v1.1, the Red Hat OpenShift GitOps
Operator renames the default Argo CD instance created in the openshift-gitops namespace from
argocd-cluster to openshift-gitops.

This is a breaking change and needs the following steps to be performed manually, before the upgrade:

1. Go to the OpenShift Container Platform web console and copy the content of the argocd-
cm.yml config map file in the openshift-gitops namespace to a local file. The content may look
like the following example:

Example argocd config map YAML

kind: ConfigMap
apiVersion: v1
metadata:
selfLink: /api/v1/namespaces/openshift-gitops/configmaps/argocd-cm
resourceVersion: '112532'
name: argocd-cm
uid: f5226fbc-883d-47db-8b53-b5e363f007af
creationTimestamp: '2021-04-16T19:24:08Z'
managedFields:
...
namespace: openshift-gitops
labels:
 app.kubernetes.io/managed-by: argocd-cluster
 app.kubernetes.io/name: argocd-cm
 app.kubernetes.io/part-of: argocd
data: "" 1
admin.enabled: 'true'
statusbadge.enabled: 'false'
resource.exclusions: |
 - apiGroups:
 - tekton.dev
 clusters:
 - '*'
 kinds:
 - TaskRun
 - PipelineRun
ga.trackingid: ''
repositories: |

CHAPTER 5. GITOPS

281

https://issues.redhat.com/browse/GITOPS-830

1

2

Restore only the data section of the content in the argocd-cm.yml config map file
manually.

Replace the URL value in the config map entry with the new instance name openshift-
gitops.

2. Delete the default argocd-cluster instance.

3. Edit the new argocd-cm.yml config map file to restore the entire data section manually.

4. Replace the URL value in the config map entry with the new instance name openshift-gitops.
For example, in the preceding example, replace the URL value with the following URL value:

5. Login to the Argo CD cluster and verify that the previous configurations are present.

5.2. UNDERSTANDING OPENSHIFT GITOPS

5.2.1. About GitOps

GitOps is a declarative way to implement continuous deployment for cloud native applications. You can
use GitOps to create repeatable processes for managing OpenShift Container Platform clusters and
applications across multi-cluster Kubernetes environments. GitOps handles and automates complex
deployments at a fast pace, saving time during deployment and release cycles.

The GitOps workflow pushes an application through development, testing, staging, and production.
GitOps either deploys a new application or updates an existing one, so you only need to update the
repository; GitOps automates everything else.

GitOps is a set of practices that use Git pull requests to manage infrastructure and application
configurations. In GitOps, the Git repository is the only source of truth for system and application
configuration. This Git repository contains a declarative description of the infrastructure you need in
your specified environment and contains an automated process to make your environment match the
described state. Also, it contains the entire state of the system so that the trail of changes to the system
state are visible and auditable. By using GitOps, you resolve the issues of infrastructure and application
configuration sprawl.

 - type: git
 url: https://github.com/user-name/argocd-example-apps
ga.anonymizeusers: 'false'
help.chatUrl: ''
url: >-
 https://argocd-cluster-server-openshift-gitops.apps.dev-svc-4.7-
041614.devcluster.openshift.com "" 2
help.chatText: ''
kustomize.buildOptions: ''
resource.inclusions: ''
repository.credentials: ''
users.anonymous.enabled: 'false'
configManagementPlugins: ''
application.instanceLabelKey: ''

url: >-
 https://openshift-gitops-server-openshift-gitops.apps.dev-svc-4.7-
041614.devcluster.openshift.com

OpenShift Container Platform 4.9 CI/CD

282

GitOps defines infrastructure and application definitions as code. Then, it uses this code to manage
multiple workspaces and clusters to simplify the creation of infrastructure and application
configurations. By following the principles of the code, you can store the configuration of clusters and
applications in Git repositories, and then follow the Git workflow to apply these repositories to your
chosen clusters. You can apply the core principles of developing and maintaining software in a Git
repository to the creation and management of your cluster and application configuration files.

5.2.2. About Red Hat OpenShift GitOps

Red Hat OpenShift GitOps ensures consistency in applications when you deploy them to different
clusters in different environments, such as: development, staging, and production. Red Hat OpenShift
GitOps organizes the deployment process around the configuration repositories and makes them the
central element. It always has at least two repositories:

1. Application repository with the source code

2. Environment configuration repository that defines the desired state of the application

These repositories contain a declarative description of the infrastructure you need in your specified
environment. They also contain an automated process to make your environment match the described
state.

Red Hat OpenShift GitOps uses Argo CD to maintain cluster resources. Argo CD is an open-source
declarative tool for the continuous integration and continuous deployment (CI/CD) of applications. Red
Hat OpenShift GitOps implements Argo CD as a controller so that it continuously monitors application
definitions and configurations defined in a Git repository. Then, Argo CD compares the specified state
of these configurations with their live state on the cluster.

Argo CD reports any configurations that deviate from their specified state. These reports allow
administrators to automatically or manually resync configurations to the defined state. Therefore, Argo
CD enables you to deliver global custom resources, like the resources that are used to configure
OpenShift Container Platform clusters.

5.2.2.1. Key features

Red Hat OpenShift GitOps helps you automate the following tasks:

Ensure that the clusters have similar states for configuration, monitoring, and storage

Apply or revert configuration changes to multiple OpenShift Container Platform clusters

Associate templated configuration with different environments

Promote applications across clusters, from staging to production

5.3. INSTALLING RED HAT OPENSHIFT GITOPS

Red Hat OpenShift GitOps uses Argo CD to manage specific cluster-scoped resources, including
cluster Operators, optional Operator Lifecycle Manager (OLM) Operators, and user management.

This guide explains how to install the Red Hat OpenShift GitOps Operator to an OpenShift Container
Platform cluster and log in to the Argo CD instance.

5.3.1. Installing Red Hat OpenShift GitOps Operator in web console

CHAPTER 5. GITOPS

283

Prerequisites

Access to the OpenShift Container Platform web console.

An account with the cluster-admin role.

You are logged in to the OpenShift Container Platform cluster as an administrator.

WARNING

If you have already installed the Community version of the Argo CD Operator,
remove the Argo CD Community Operator before you install the Red Hat
OpenShift GitOps Operator.

Procedure

1. Open the Administrator perspective of the web console and navigate to Operators →
OperatorHub in the menu on the left.

2. Search for OpenShift GitOps, click the Red Hat OpenShift GitOps tile, and then click Install.
Red Hat OpenShift GitOps will be installed in all namespaces of the cluster.

After the Red Hat OpenShift GitOps Operator is installed, it automatically sets up a ready-to-use Argo
CD instance that is available in the openshift-gitops namespace, and an Argo CD icon is displayed in
the console toolbar. You can create subsequent Argo CD instances for your applications under your
projects.

5.3.2. Installing Red Hat OpenShift GitOps Operator using CLI

You can install Red Hat OpenShift GitOps Operator from the OperatorHub using the CLI.

Procedure

1. Create a Subscription object YAML file to subscribe a namespace to the Red Hat OpenShift
GitOps, for example, sub.yaml:

Example Subscription



apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: openshift-gitops-operator
 namespace: openshift-operators
spec:
 channel: latest 1
 installPlanApproval: Automatic
 name: openshift-gitops-operator 2
 source: redhat-operators 3
 sourceNamespace: openshift-marketplace 4

OpenShift Container Platform 4.9 CI/CD

284

1

2

3

4

Specify the channel name from where you want to subscribe the Operator.

Specify the name of the Operator to subscribe to.

Specify the name of the CatalogSource that provides the Operator.

The namespace of the CatalogSource. Use openshift-marketplace for the default
OperatorHub CatalogSources.

2. Apply the Subscription to the cluster:

3. After the installation is complete, ensure that all the pods in the openshift-gitops namespace
are running:

Example output

5.3.3. Logging in to the Argo CD instance by using the Argo CD admin account

Red Hat OpenShift GitOps Operator automatically creates a ready-to-use Argo CD instance that is
available in the openshift-gitops namespace.

Prerequisites

You have installed the Red Hat OpenShift GitOps Operator in your cluster.

Procedure

1. In the Administrator perspective of the web console, navigate to Operators → Installed
Operators to verify that the Red Hat OpenShift GitOps Operator is installed.

2. Navigate to the menu → OpenShift GitOps → Cluster Argo CD. The login page of the
Argo CD UI is displayed in a new window.

3. Obtain the password for the Argo CD instance:

a. In the left panel of the console, use the perspective switcher to switch to the Developer
perspective.

b. Use the Project drop-down list and select the openshift-gitops project.

$ oc apply -f openshift-gitops-sub.yaml

$ oc get pods -n openshift-gitops

NAME READY STATUS RESTARTS AGE
cluster-b5798d6f9-zr576 1/1 Running 0 65m
kam-69866d7c48-8nsjv 1/1 Running 0 65m
openshift-gitops-application-controller-0 1/1 Running 0 53m
openshift-gitops-applicationset-controller-6447b8dfdd-5ckgh 1/1 Running 0 65m
openshift-gitops-redis-74bd8d7d96-49bjf 1/1 Running 0 65m
openshift-gitops-repo-server-c999f75d5-l4rsg 1/1 Running 0 65m
openshift-gitops-server-5785f7668b-wj57t 1/1 Running 0 53m

CHAPTER 5. GITOPS

285

c. Use the left navigation panel to navigate to the Secrets page.

d. Select the openshift-gitops-cluster instance to display the password.

e. Copy the password.

NOTE

To login with your OpenShift Container Platform credentials, select the LOG
IN VIA OPENSHIFT option in the Argo CD user interface.

4. Use this password and admin as the username to log in to the Argo CD UI in the new window.

NOTE

You cannot create two Argo CD CRs in the same namespace.

5.4. UNINSTALLING OPENSHIFT GITOPS

Uninstalling the Red Hat OpenShift GitOps Operator is a two-step process:

1. Delete the Argo CD instances that were added under the default namespace of the Red Hat
OpenShift GitOps Operator.

2. Uninstall the Red Hat OpenShift GitOps Operator.

Uninstalling only the Operator will not remove the Argo CD instances created.

5.4.1. Deleting the Argo CD instances

Delete the Argo CD instances added to the namespace of the GitOps Operator.

Procedure

1. In the Terminal type the following command:

NOTE

You cannot delete an Argo CD cluster from the web console UI.

After the command runs successfully all the Argo CD instances will be deleted from the openshift-
gitops namespace.

Delete any other Argo CD instances from other namespaces using the same command:

5.4.2. Uninstalling the GitOps Operator

$ oc delete gitopsservice cluster -n openshift-gitops

$ oc delete gitopsservice cluster -n <namespace>

OpenShift Container Platform 4.9 CI/CD

286

Procedure

1. From the Operators → OperatorHub page, use the Filter by keyword box to search for Red
Hat OpenShift GitOps Operator tile.

2. Click the Red Hat OpenShift GitOps Operator tile. The Operator tile indicates it is installed.

3. In the Red Hat OpenShift GitOps Operator descriptor page, click Uninstall.

Additional resources

You can learn more about uninstalling Operators on OpenShift Container Platform in the
Deleting Operators from a cluster section.

5.5. CONFIGURING AN OPENSHIFT CLUSTER BY DEPLOYING AN
APPLICATION WITH CLUSTER CONFIGURATIONS

With Red Hat OpenShift GitOps, you can configure Argo CD to recursively sync the content of a Git
directory with an application that contains custom configurations for your cluster.

Prerequisites

You have logged in to the product-title cluster as an administrator.

You have installed the gitops-title Operator in your cluster.

You have logged into Argo CD instance.

5.5.1. Using an Argo CD instance to manage cluster-scoped resources

To manage cluster-scoped resources, update the existing Subscription object for the gitops-title
Operator and add the namespace of the Argo CD instance to the
ARGOCD_CLUSTER_CONFIG_NAMESPACES environment variable in the spec section.

Procedure

1. In the Administrator perspective of the web console, navigate to Operators → Installed
Operators → Red Hat OpenShift GitOps → Subscription.

2. Click the Actions drop-down menu then click Edit Subscription.

3. On the openshift-gitops-operator Subscription details page, under the YAML tab, edit the
Subscription YAML file by adding the namespace of the Argo CD instance to the
ARGOCD_CLUSTER_CONFIG_NAMESPACES environment variable in the spec section:

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: openshift-gitops-operator
 namespace: openshift-operators
...
spec:
 config:
 env:

CHAPTER 5. GITOPS

287

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/operators/#olm-deleting-operators-from-a-cluster

4. To verify that the Argo instance is configured with a cluster role to manage cluster-scoped
resources, perform the following steps:

a. Navigate to User Management → Roles and from the Filter drop-down menu select
Cluster-wide Roles.

b. Search for the argocd-application-controller by using the Search by name field.
The Roles page displays the created cluster role.

TIP

Alternatively, in the OpenShift CLI, run the following command:

The output yes verifies that the Argo instance is configured with a cluster role to manage
cluster-scoped resources. Else, check your configurations and take necessary steps as
required.

5.5.2. Default permissions of an Argocd instance

By default Argo CD instance has the following permissions:

Argo CD instance has the admin privileges to manage resources only in the namespace where it
is deployed. For instance, an Argo CD instance deployed in the foo namespace has the admin
privileges to manage resources only for that namespace.

Argo CD has the following cluster-scoped permissions because Argo CD requires cluster-wide
read privileges on resources to function appropriately:

NOTE

 - name: ARGOCD_CLUSTER_CONFIG_NAMESPACES
 value: openshift-gitops, <list of namespaces of cluster-scoped Argo CD instances>
...

oc auth can-i create oauth -n openshift-gitops --as system:serviceaccount:openshift-
gitops:openshift-gitops-argocd-application-controller

- verbs:
 - get
 - list
 - watch
 apiGroups:
 - '*'
 resources:
 - '*'
 - verbs:
 - get
 - list
 nonResourceURLs:
 - '*'

OpenShift Container Platform 4.9 CI/CD

288

NOTE

You can edit the cluster roles used by the argocd-server and argocd-
application-controller components where Argo CD is running such that the
write privileges are limited to only the namespaces and resources that you wish
Argo CD to manage.

5.5.3. Running the Argo CD instance at the cluster-level

The default Argo CD instance and the accompanying controllers, installed by the Red Hat OpenShift
GitOps Operator, can now run on the infrastructure nodes of the cluster by setting a simple
configuration toggle.

Procedure

1. Label the existing nodes:

2. Optional: If required, you can also apply taints and isolate the workloads on infrastructure nodes
and prevent other workloads from scheduling on these nodes:

3. Add the runOnInfra toggle in the GitOpsService custom resource:

4. Optional: If taints have been added to the nodes, then add tolerations to the GitOpsService
custom resource, for example:

5. Verify that the workloads in the openshift-gitops namespace are now scheduled on the
infrastructure nodes by viewing Pods → Pod details for any pod in the console UI.

NOTE

$ oc edit clusterrole argocd-server
$ oc edit clusterrole argocd-application-controller

$ oc label node <node-name> node-role.kubernetes.io/infra=""

$ oc adm taint nodes -l node-role.kubernetes.io/infra \
infra=reserved:NoSchedule infra=reserved:NoExecute

apiVersion: pipelines.openshift.io/v1alpha1
kind: GitopsService
metadata:
 name: cluster
spec:
 runOnInfra: true

 spec:
 runOnInfra: true
 tolerations:
 - effect: NoSchedule
 key: infra
 value: reserved
 - effect: NoExecute
 key: infra
 value: reserved

CHAPTER 5. GITOPS

289

NOTE

Any nodeSelectors and tolerations manually added to the default Argo CD custom
resource are overwritten by the toggle and tolerations in the GitOpsService custom
resource.

5.5.4. Creating an application by using the Argo CD dashboard

Argo CD provides a dashboard which allows you to create applications.

This sample workflow walks you through the process of configuring Argo CD to recursively sync the
content of the cluster directory to the cluster-configs application. The directory defines the
OpenShift Container Platform web console cluster configurations that add a link to the Red Hat

Developer Blog - Kubernetes under the menu in the web console, and defines a namespace
spring-petclinic on the cluster.

Procedure

1. In the Argo CD dashboard, click NEW APP to add a new Argo CD application.

2. For this workflow, create a cluster-configs application with the following configurations:

Application Name

cluster-configs

Project

default

Sync Policy

Manual

Repository URL

https://github.com/redhat-developer/openshift-gitops-getting-started

Revision

HEAD

Path

cluster

Destination

https://kubernetes.default.svc

Namespace

spring-petclinic

Directory Recurse

checked

3. Click CREATE to create your application.

4. Open the Administrator perspective of the web console and navigate to Administration →
Namespaces in the menu on the left.

5. Search for and select the namespace, then enter argocd.argoproj.io/managed-by=openshift-
gitops in the Label field so that the Argo CD instance in the openshift-gitops namespace can
manage your namespace.

OpenShift Container Platform 4.9 CI/CD

290

https://github.com/redhat-developer/openshift-gitops-getting-started
https://kubernetes.default.svc

5.5.5. Creating an application by using the oc tool

You can create Argo CD applications in your terminal by using the oc tool.

Procedure

1. Download the sample application:

2. Create the application:

3. Run the oc get command to review the created application:

4. Add a label to the namespace your application is deployed in so that the Argo CD instance in the
openshift-gitops namespace can manage it:

5.5.6. Synchronizing your application with your Git repository

Procedure

1. In the Argo CD dashboard, notice that the cluster-configs Argo CD application has the statuses
Missing and OutOfSync. Because the application was configured with a manual sync policy,
Argo CD does not sync it automatically.

2. Click SYNC on the cluster-configs tile, review the changes, and then click SYNCHRONIZE.
Argo CD will detect any changes in the Git repository automatically. If the configurations are
changed, Argo CD will change the status of the cluster-configs to OutOfSync. You can modify
the synchronization policy for Argo CD to automatically apply changes from your Git repository
to the cluster.

3. Notice that the cluster-configs Argo CD application now has the statuses Healthy and Synced.
Click the cluster-configs tile to check the details of the synchronized resources and their status
on the cluster.

4. Navigate to the OpenShift Container Platform web console and click to verify that a link
to the Red Hat Developer Blog - Kubernetes is now present there.

5. Navigate to the Project page and search for the spring-petclinic namespace to verify that it
has been added to the cluster.
Your cluster configurations have been successfully synchronized to the cluster.

5.5.7. In-built permissions for cluster configuration

By default, the Argo CD instance has permissions to manage specific cluster-scoped resources such as
cluster Operators, optional OLM Operators and user management.

$ git clone git@github.com:redhat-developer/openshift-gitops-getting-started.git

$ oc create -f openshift-gitops-getting-started/argo/cluster.yaml

$ oc get application -n openshift-gitops

$ oc label namespace spring-petclinic argocd.argoproj.io/managed-by=openshift-gitops

CHAPTER 5. GITOPS

291

https://github.com/redhat-developer/openshift-gitops-getting-started

NOTE

Argo CD does not have cluster-admin permissions.

Permissions for the Argo CD instance:

Resources Descriptions

Resource Groups Configure the user or administrator

operators.coreos.com Optional Operators managed by OLM

user.openshift.io , rbac.authorization.k8s.io Groups, Users and their permissions

config.openshift.io Control plane Operators managed by CVO used to
configure cluster-wide build configuration, registry
configuration and scheduler policies

storage.k8s.io Storage

console.openshift.io Console customization

5.5.8. Adding permissions for cluster configuration

You can grant permissions for an Argo CD instance to manage cluster configuration. Create a cluster
role with additional permissions and then create a new cluster role binding to associate the cluster role
with a service account.

Procedure

1. Log in to the OpenShift Container Platform web console as an admin.

2. In the web console, select User Management → Roles → Create Role. Use the following
ClusterRole YAML template to add rules to specify the additional permissions.

3. Click Create to add the cluster role.

4. Now create the cluster role binding. In the web console, select User Management → Role
Bindings → Create Binding.

5. Select All Projects from the Project drop-down.

6. Click Create binding.

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 name: secrets-cluster-role
rules:
- apiGroups: [""]
 resources: ["secrets"]
 verbs: ["*"]

OpenShift Container Platform 4.9 CI/CD

292

7. Select Binding type as Cluster-wide role binding (ClusterRoleBinding).

8. Enter a unique value for the RoleBinding name.

9. Select the newly created cluster role or an existing cluster role from the drop down list.

10. Select the Subject as ServiceAccount and the provide the Subject namespace and name.

a. Subject namespace: openshift-gitops

b. Subject name: openshift-gitops-argocd-application-controller

11. Click Create. The YAML file for the ClusterRoleBinding object is as follows:

5.5.9. Installing OLM Operators using Red Hat OpenShift GitOps

Red Hat OpenShift GitOps with cluster configurations manages specific cluster-scoped resources and
takes care of installing cluster Operators or any namespace-scoped OLM Operators.

Consider a case where as a cluster administrator, you have to install an OLM Operator such as Tekton.
You use the OpenShift Container Platform web console to manually install a Tekton Operator or the
OpenShift CLI to manually install a Tekton subscription and Tekton Operator group on your cluster.

Red Hat OpenShift GitOps places your Kubernetes resources in your Git repository. As a cluster
administrator, use Red Hat OpenShift GitOps to manage and automate the installation of other OLM
Operators without any manual procedures. For example, after you place the Tekton subscription in your
Git repository by using Red Hat OpenShift GitOps, the Red Hat OpenShift GitOps automatically takes
this Tekton subscription from your Git repository and installs the Tekton Operator on your cluster.

5.5.9.1. Installing cluster-scoped Operators

Operator Lifecycle Manager (OLM) uses a default global-operators Operator group in the openshift-
operators namespace for cluster-scoped Operators. Hence you do not have to manage the
OperatorGroup resource in your Gitops repository. However, for namespace-scoped Operators, you
must manage the OperatorGroup resource in that namespace.

To install cluster-scoped Operators, create and place the Subscription resource of the required
Operator in your Git repository.

Example: Grafana Operator subscription

kind: ClusterRoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 name: cluster-role-binding
subjects:
 - kind: ServiceAccount
 name: openshift-gitops-argocd-application-controller
 namespace: openshift-gitops
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: admin

apiVersion: operators.coreos.com/v1alpha1

CHAPTER 5. GITOPS

293

5.5.9.2. Installing namepace-scoped Operators

To install namespace-scoped Operators, create and place the Subscription and OperatorGroup
resources of the required Operator in your Git repository.

Example: Ansible Automation Platform Resource Operator

IMPORTANT

kind: Subscription
metadata:
 name: grafana
spec:
 channel: v4
 installPlanApproval: Automatic
 name: grafana-operator
 source: redhat-operators
 sourceNamespace: openshift-marketplace

...
apiVersion: v1
kind: Namespace
metadata:
 labels:
 openshift.io/cluster-monitoring: "true"
 name: ansible-automation-platform
...
apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: ansible-automation-platform-operator
 namespace: ansible-automation-platform
spec:
 targetNamespaces:
 - ansible-automation-platform
...
apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: ansible-automation-platform
 namespace: ansible-automation-platform
spec:
 channel: patch-me
 installPlanApproval: Automatic
 name: ansible-automation-platform-operator
 source: redhat-operators
 sourceNamespace: openshift-marketplace
...

OpenShift Container Platform 4.9 CI/CD

294

IMPORTANT

When deploying multiple Operators using Red Hat OpenShift GitOps, you must create
only a single Operator group in the corresponding namespace. If more than one Operator
group exists in a single namespace, any CSV created in that namespace transition to a
failure state with the TooManyOperatorGroups reason. After the number of Operator
groups in their corresponding namespaces reaches one, all the previous failure state
CSVs transition to pending state. You must manually approve the pending install plan to
complete the Operator installation.

5.6. DEPLOYING A SPRING BOOT APPLICATION WITH ARGO CD

With Argo CD, you can deploy your applications to the OpenShift cluster either by using the Argo CD
dashboard or by using the oc tool.

Prerequisites

Red Hat OpenShift GitOps is installed in your cluster.

Logged into Argo CD instance.

5.6.1. Creating an application by using the Argo CD dashboard

Argo CD provides a dashboard which allows you to create applications.

This sample workflow walks you through the process of configuring Argo CD to recursively sync the
content of the cluster directory to the cluster-configs application. The directory defines the
OpenShift Container Platform web console cluster configurations that add a link to the Red Hat

Developer Blog - Kubernetes under the menu in the web console, and defines a namespace
spring-petclinic on the cluster.

Procedure

1. In the Argo CD dashboard, click NEW APP to add a new Argo CD application.

2. For this workflow, create a cluster-configs application with the following configurations:

Application Name

cluster-configs

Project

default

Sync Policy

Manual

Repository URL

https://github.com/redhat-developer/openshift-gitops-getting-started

Revision

HEAD

Path

cluster

Destination

CHAPTER 5. GITOPS

295

https://github.com/redhat-developer/openshift-gitops-getting-started

https://kubernetes.default.svc

Namespace

spring-petclinic

Directory Recurse

checked

3. For this workflow, create a spring-petclinic application with the following configurations:

Application Name

spring-petclinic

Project

default

Sync Policy

Automatic

Repository URL

https://github.com/redhat-developer/openshift-gitops-getting-started

Revision

HEAD

Path

app

Destination

https://kubernetes.default.svc

Namespace

spring-petclinic

4. Click CREATE to create your application.

5. Open the Administrator perspective of the web console and navigate to Administration →
Namespaces in the menu on the left.

6. Search for and select the namespace, then enter argocd.argoproj.io/managed-by=openshift-
gitops in the Label field so that the Argo CD instance in the openshift-gitops namespace can
manage your namespace.

5.6.2. Creating an application by using the oc tool

You can create Argo CD applications in your terminal by using the oc tool.

Procedure

1. Download the sample application:

2. Create the application:

$ git clone git@github.com:redhat-developer/openshift-gitops-getting-started.git

$ oc create -f openshift-gitops-getting-started/argo/app.yaml

OpenShift Container Platform 4.9 CI/CD

296

https://kubernetes.default.svc
https://github.com/redhat-developer/openshift-gitops-getting-started
https://kubernetes.default.svc
https://github.com/redhat-developer/openshift-gitops-getting-started

3. Run the oc get command to review the created application:

4. Add a label to the namespace your application is deployed in so that the Argo CD instance in the
openshift-gitops namespace can manage it:

5.6.3. Verifying Argo CD self-healing behavior

Argo CD constantly monitors the state of deployed applications, detects differences between the
specified manifests in Git and live changes in the cluster, and then automatically corrects them. This
behavior is referred to as self-healing.

You can test and observe the self-healing behavior in Argo CD.

Prerequisites

The sample app-spring-petclinic application is deployed and configured.

Procedure

1. In the Argo CD dashboard, verify that your application has the Synced status.

2. Click the app-spring-petclinic tile in the Argo CD dashboard to view the application resources
that are deployed to the cluster.

3. In the OpenShift Container Platform web console, navigate to the Developer perspective.

4. Modify the Spring PetClinic deployment and commit the changes to the app/ directory of the
Git repository. Argo CD will automatically deploy the changes to the cluster.

a. Fork the OpenShift GitOps getting started repository .

b. In the deployment.yaml file, change the failureThreshold value to 5.

c. In the deployment cluster, run the following command to verify the changed value of the
failureThreshold field:

5. Test the self-healing behavior by modifying the deployment on the cluster and scaling it up to
two pods while watching the application in the OpenShift Container Platform web console.

a. Run the following command to modify the deployment:

$ oc create -f openshift-gitops-getting-started/argo/cluster.yaml

$ oc get application -n openshift-gitops

$ oc label namespace spring-petclinic argocd.argoproj.io/managed-by=openshift-gitops

$ oc label namespace spring-petclinic argocd.argoproj.io/managed-by=openshift-gitops

$ oc edit deployment spring-petclinic -n spring-petclinic

$ oc scale deployment spring-petclinic --replicas 2 -n spring-petclinic

CHAPTER 5. GITOPS

297

https://github.com/redhat-developer/openshift-gitops-getting-started

b. In the OpenShift Container Platform web console, notice that the deployment scales up to
two pods and immediately scales down again to one pod. Argo CD detected a difference
from the Git repository and auto-healed the application on the OpenShift Container
Platform cluster.

6. In the Argo CD dashboard, click the app-spring-petclinic tile → APP DETAILS → EVENTS.
The EVENTS tab displays the following events: Argo CD detecting out of sync deployment
resources on the cluster and then resyncing the Git repository to correct it.

5.7. ARGO CD OPERATOR

The ArgoCD custom resource is a Kubernetes Custom Resource (CRD) that describes the desired state
for a given Argo CD cluster that allows you to configure the components which make up an Argo CD
cluster.

5.7.1. Argo CD CLI tool

The Argo CD CLI tool is a tool used to configure Argo CD through the command line. Red Hat
OpenShift GitOps does not support this binary. Use the OpenShift Console to configure the Argo CD.

5.7.2. Argo CD custom resource properties

The Argo CD Custom Resource consists of the following properties:

Name Description Default Properties

ApplicationInstance
LabelKey

The metadata.label
key name where Argo
CD injects the app name
as a tracking label.

app.kubernetes.io/in
stance

OpenShift Container Platform 4.9 CI/CD

298

ApplicationSet ApplicationSet
controller configuration
options.

<Object>
<Image> - The
container
image for the
ApplicationS
et controller.
This overrides
the
ARGOCD_AP
PLICATIONS
ET_IMAGE
environment
variable.

<Version> - The
tag to use with
the
ApplicationS
et container
image.

<Resources> -
The container
compute
resources.

<LogLevel> -
The log level
used by the
Argo CD
Application
Controller
component.
Valid options
are debug,
info, error,
and warn.

<LogFormat> -
The log format
used by the
Argo CD
Application
Controller
component.
Valid options
are text or
json.

<PrallelismLimit
> - The kubectl
parallelism limit
to set for the
controller (--
kubectl-
parallelism-
limit flag).

ConfigManagementP
lugins

Add a configuration
management plugin.

<empty>

Controller <Object>

CHAPTER 5. GITOPS

299

Argo CD Application
Controller options.

<Processors.Op
eration> - The
number of
operation
processors.

<Processors.Sta
tus> - The
number of
status
processors.

<Resources> -
The container
compute
resources.

<LogLevel> -
The log level
used by the
Argo CD
Application
Controller
component.
Valid options
are debug,
info, error,
and warn.

<AppSync> -
AppSync is
used to control
the sync
frequency of
Argo CD
applications

<Sharding.enabl
ed> - Enable
sharding on the
Argo CD
Application
Controller
component.
This property is
used to
manage a large
number of
clusters to
relieve memory
pressure on the
controller
component.

<Sharding.replic
as> - The
number of
replicas that
will be used to
support
sharding of the
Argo CD
Application
Controller.

<Env> -

OpenShift Container Platform 4.9 CI/CD

300

Environment to
set for the
application
controller
workloads.

DisableAdmin Disables the built-in
admin user.

false

GATrackingID Use a Google Analytics
tracking ID.

<empty>

GAAnonymizeusers Enable hashed
usernames sent to
google analytics.

false

HA High availablity options. <Object>
<Enabled> -
Toggle high
availability
support
globally for
Argo CD.

<RedisProxyIma
ge> - The Redis
HAProxy
container
image. This
overrides the
ARGOCD_RE
DIS_HA_PRO
XY_IMAGE
environment
variable.

<RedisProxyVer
sion> - The tag
to use for the
Redis HAProxy
container
image.

HelpChatURL URL for getting chat
help (this will typically be
your Slack channel for
support).

https://mycorp.slack.
com/argo-cd

HelpChatText The text that appears in
a text box for getting
chat help.

Chat now!

CHAPTER 5. GITOPS

301

https://mycorp.slack.com/argo-cd

Image The container image for
all Argo CD
components. This
overrides the
ARGOCD_IMAGE
environment variable.

argoproj/argocd

Ingress Ingress configuration
options.

<Object>

InitialRepositories Initial Git repositories to
configure Argo CD to
use upon creation of the
cluster.

<empty>

Notifications Notifications controller
configuration options.

<Object>
<Enabled> -
The toggle to
start the
notifications-
controller.

<Image> - The
container
image for all
Argo CD
components.
This overrides
the
ARGOCD_IM
AGE
environment
variable.

<Version> - The
tag to use with
the
Notifications
container
image.

<Resources> -
The container
compute
resources.

<LogLevel> -
The log level
used by the
Argo CD
Application
Controller
component.
Valid options
are debug,
info, error,
and warn.

OpenShift Container Platform 4.9 CI/CD

302

RepositoryCredentia
ls

Git repository credential
templates to configure
Argo CD to use upon
creation of the cluster.

<empty>

InitialSSHKnownHos
ts

Initial SSH Known Hosts
for Argo CD to use upon
creation of the cluster.

<default_Argo_CD_K
nown_Hosts>

KustomizeBuildOpti
ons

The build options and
parameters to use with
kustomize build.

<empty>

OIDCConfig The OIDC configuration
as an alternative to Dex.

<empty>

NodePlacement Add the nodeSelector
and the tolerations.

<empty>

Prometheus Prometheus
configuration options.

<Object>
<Enabled> -
Toggle
Prometheus
support
globally for
Argo CD.

<Host> - The
hostname to
use for Ingress
or Route
resources.

<Ingress> -
Toggles Ingress
for
Prometheus.

<Route> -
Route
configuration
options.

<Size> - The
replica count
for the
Prometheus
StatefulSet.

CHAPTER 5. GITOPS

303

RBAC RBAC configuration
options.

<Object>
<DefaultPolicy>
- The
policy.defaul
t property in
the argocd-
rbac-cm
config map.
The name of
the default role
which Argo CD
will fall back to,
when
authorizing API
requests.

<Policy> - The
policy.csv
property in the
argocd-rbac-
cm config map.
CSV data
containing
user-defined
RBAC policies
and role
definitions.

<Scopes> - The
scopes
property in the
argocd-rbac-
cm config map.
Controls which
OIDC scopes
to examine
during RBAC
enforcement
(in addition to
sub scope).

OpenShift Container Platform 4.9 CI/CD

304

Redis Redis configuration
options.

<Object>
<AutoTLS> -
Use the
provider to
create the
Redis server’s
TLS certificate
(one of:
openshift).
Currently only
available for
OpenShift
Container
Platform.

<DisableTLSVeri
fication> -
Define whether
the Redis
server should
be accessed
using strict TLS
validation.

<Image> - The
container
image for
Redis. This
overrides the
ARGOCD_RE
DIS_IMAGE
environment
variable.

<Resources> -
The container
compute
resources.

<Version> - The
tag to use with
the Redis
container
image.

ResourceCustomizat
ions

Customize resource
behavior.

<empty>

ResourceExclusions Completely ignore
entire classes of
resource group.

<empty>

ResourceInclusions The configuration to
configure which
resource group/kinds
are applied.

<empty>

Server Argo CD Server
configuration options.

<Object>
<Autoscale> -

CHAPTER 5. GITOPS

305

Server
autoscale
configuration
options.

<ExtraComman
dArgs> - List of
arguments
added to the
existing
arguments set
by the
Operator.

<GRPC> -
GRPC
configuration
options.

<Host> - The
hostname used
for Ingress or
Route
resources.

<Ingress> -
Ingress
configuration
for the Argo
CD server
component.

<Insecure> -
Toggles the
insecure flag
for Argo CD
server.

<Resources> -
The container
compute
resources.

<Replicas> -
The number of
replicas for the
Argo CD
server. Must be
greater than or
equal to 0. If
Autoscale is
enabled,
Replicas is
ignored.

<Route> -
Route
configuration
options.

<Service.Type>
- The
ServiceType
used for the
service
resource.

OpenShift Container Platform 4.9 CI/CD

306

<LogLevel> -
The log level to
be used by the
Argo CD
Server
component.
Valid options
are debug,
info, error,
and warn.

<LogFormat> -
The log format
used by the
Argo CD
Application
Controller
component.
Valid options
are text or
json.

<Env> -
Environment to
set for the
server
workloads.

CHAPTER 5. GITOPS

307

SSO Single Sign-on options. <Object>
<Image> - The
container
image for
Keycloak. This
overrides the
ARGOCD_KE
YCLOAK_IM
AGE
environment
variable.

<Keycloak> -
Configuration
options for
Keycloak SSO
provider.

<Dex> -
Configuration
options for Dex
SSO provider.

<Provider> -
The name of
the provider
used to
configure
Single Sign-on.
For now the
supported
options are Dex
and Keycloak.

<Resources> -
The container
compute
resources.

<VerifyTLS> -
Whether to
enforce strict
TLS checking
when
communicating
with Keycloak
service.

<Version> - The
tag to use with
the Keycloak
container
image.

StatusBadgeEnabled Enable application
status badge.

true

OpenShift Container Platform 4.9 CI/CD

308

TLS TLS configuration
options.

<Object>
<CA.ConfigMap
Name> - The
name of the
ConfigMap
which contains
the CA
certificate.

<CA.SecretNam
e> - The name
of the secret
which contains
the CA
Certificate and
Key.

<InitialCerts> -
Initial set of
certificates in
the argocd-
tls-certs-cm
config map for
connecting Git
repositories via
HTTPS.

UserAnonyousEnabl
ed

Enable anonymous user
access.

true

Version The tag to use with the
container image for all
Argo CD components.

Latest Argo CD version

Banner Add a UI banner
message.

<Object>
<Banner.Conten
t> - The banner
message
content
(required if a
banner is
displayed).

<Banner.URL.Se
cretName> -
The banner
message link
URL (optional).

5.7.3. Repo server properties

The following properties are available for configuring the Repo server component:

Name Default Description

Resources <empty> The container compute resources.

CHAPTER 5. GITOPS

309

MountSAToken false Whether the ServiceAccount
token should be mounted to the
repo-server pod.

ServiceAccount "" The name of the
ServiceAccount to use with the
repo-server pod.

VerifyTLS false Whether to enforce strict TLS
checking on all components when
communicating with repo server.

AutoTLS "" Provider to use for setting up TLS
the repo-server’s gRPC TLS
certificate (one of: openshift).
Currently only available for
OpenShift.

Image argoproj/argocd The container image for Argo CD
Repo server. This overrides the
ARGOCD_REPOSERVER_IM
AGE environment variable.

Version same as .spec.Version The tag to use with the Argo CD
Repo server.

LogLevel info The log level used by the Argo CD
Repo server. Valid options are
debug, info, error, and warn.

LogFormat text The log format to be used by the
Argo CD Repo server. Valid
options are text or json.

ExecTimeout 180 Execution timeout in seconds for
rendering tools (e.g. Helm,
Kustomize).

Env <empty> Environment to set for the
repository server workloads.

Replicas <empty> The number of replicas for the
Argo CD Repo server. Must be
greater than or equal to 0.

5.7.4. Enabling notifications with Argo CD instance

To enable or disable the Argo CD notifications controller , set a parameter in the Argo CD custom
resource. By default, notifications are disabled. To enable notifications, set the enabled parameter to
true in the .yaml file:

OpenShift Container Platform 4.9 CI/CD

310

https://argo-cd.readthedocs.io/en/stable/operator-manual/notifications/

Procedure

1. Set the enabled parameter to true:

5.8. MONITORING HEALTH INFORMATION FOR APPLICATION
RESOURCES AND DEPLOYMENTS

The environment details page displays the health status of the application resources, such as routes,
synchronization status, deployment configuration and deployment history.

5.8.1. Checking health information

The Red Hat OpenShift GitOps Operator will install the GitOps backend service in the openshift-gitops
namespace.

Prerequisites

The Red Hat OpenShift GitOps Operator is installed from OperatorHub.

Argo CD applications are in sync.

Procedure

1. Click Environments under the Developer perspective. The Environments page shows the list
of applications along with their Environment status.

2. Hover over the icons under the Environment status column to see the synchronization status
of all the environments.

3. Click on the application name from the list to view the details of a specific application.

4. If the application is out of sync or degraded applications the respecting icons are displayed
under the Resources. Hover over the icons to see the health status and the sync status. The
icons are:

a. For degraded, the broken heart icon is displayed.

b. For out of sync, the yellow yield icon is displayed.

5.9. CONFIGURING SSO FOR ARGO CD USING DEX

After the Red Hat OpenShift GitOps Operator is installed, Argo CD automatically creates a user with
admin permissions. To manage multiple users, cluster administrators can use Argo CD to configure
Single Sign-On (SSO).

apiVersion: argoproj.io/v1alpha1
kind: ArgoCD
metadata:
 name: example-argocd
spec:
 notifications:
 enabled: true

CHAPTER 5. GITOPS

311

1

2

3

5.9.1. Enabling the Dex OpenShift OAuth Connector

Dex uses the users and groups defined within OpenShift by checking the OAuth server provided by the
platform. The following example shows the properties of Dex along with example configurations:

The openShiftOAuth property triggers the Operator to automatically configure the built-in
OpenShift OAuth server when the value is set to true.

The groups property allows users of the specified group(s) to log in.

The RBAC policy property assigns the admin role in the Argo CD cluster to users in the OpenShift
cluster-admins group.

5.9.1.1. Mapping users to specific roles

Argo CD cannot map users to specific roles if they have a direct ClusterRoleBinding role. You can
manually change the role as role:admin on SSO through OpenShift.

Procedure

1. Create a group named cluster-admins.

2. Add the user to the group.

3. Apply the cluster-admin ClusterRole to the group:

5.9.2. Disabling Dex

Dex is installed by default for all the Argo CD instances created by the Operator. You can disable Dex.

apiVersion: argoproj.io/v1alpha1
kind: ArgoCD
metadata:
 name: example-argocd
 labels:
 example: openshift-oauth
spec:
 dex:
 openShiftOAuth: true 1
 groups: 2
 - default
 rbac: 3
 defaultPolicy: 'role:readonly'
 policy: |
 g, cluster-admins, role:admin
 scopes: '[groups]'

$ oc adm groups new cluster-admins

$ oc adm groups add-users cluster-admins USER

$ oc adm policy add-cluster-role-to-group cluster-admin cluster-admins

OpenShift Container Platform 4.9 CI/CD

312

Procedure

Set the environmental variable DISABLE_DEX to true in the YAML resource of the Operator:

5.10. CONFIGURING SSO FOR ARGO CD USING KEYCLOAK

After the Red Hat OpenShift GitOps Operator is installed, Argo CD automatically creates a user with
admin permissions. To manage multiple users, cluster administrators can use Argo CD to configure
Single Sign-On (SSO).

Prerequisites

Red Hat SSO is installed on the cluster.

Argo CD is installed on the cluster.

5.10.1. Configuring a new client in Keycloak

Dex is installed by default for all the Argo CD instances created by the Operator. However, you can
delete the Dex configuration and add Keycloak instead to log in to Argo CD using your OpenShift
credentials. Keycloak acts as an identity broker between Argo CD and OpenShift.

Procedure

To configure Keycloak, follow these steps:

1. Delete the Dex configuration by removing the following section from the Argo CD Custom
Resource (CR), and save the CR:

2. Configure Keycloak by editing the Argo CD CR, and updating the value for the provider
parameter as keycloak. For example:

 spec:
 config:
 env:
 - name: DISABLE_DEX
 value: "true"

dex:
 openShiftOAuth: true
 resources:
 limits:
 cpu:
 memory:
 requests:
 cpu:
 memory:

apiVersion: argoproj.io/v1alpha1
kind: ArgoCD
metadata:
 name: example-argocd
 labels:
 example: basic
spec:

CHAPTER 5. GITOPS

313

NOTE

The Keycloak instance takes 2-3 minutes to install and run.

5.10.2. Logging in to Keycloak

Log in to the Keycloak console to manage identities or roles and define the permissions assigned to the
various roles.

Prerequisites

The default configuration of Dex is removed.

Your Argo CD CR must be configured to use the Keycloak SSO provider.

Procedure

1. Get the Keycloak route URL for login:

2. Get the Keycloak pod name that stores the user name and password as environment variables:

a. Get the Keycloak user name:

b. Get the Keycloak password:

3. On the login page, click LOG IN VIA KEYCLOAK.

NOTE

 sso:
 provider: keycloak
 server:
 route:
 enabled: true

$ oc -n argocd get route keycloak

NAME HOST/PORT PATH SERVICES PORT
TERMINATION WILDCARD
keycloak keycloak-default.apps.ci-ln-******.origin-ci-int-aws.dev.**.com keycloak <all>
reencrypt None

$ oc -n argocd get pods

NAME READY STATUS RESTARTS AGE
keycloak-1-2sjcl 1/1 Running 0 45m

$ oc -n argocd exec keycloak-1-2sjcl -- "env" | grep SSO_ADMIN_USERNAME

SSO_ADMIN_USERNAME=Cqid54Ih

$ oc -n argocd exec keycloak-1-2sjcl -- "env" | grep SSO_ADMIN_PASSWORD

SSO_ADMIN_PASSWORD=GVXxHifH

OpenShift Container Platform 4.9 CI/CD

314

NOTE

You only see the option LOGIN VIA KEYCLOAK after the Keycloak instance is
ready.

4. Click Login with OpenShift.

NOTE

Login using kubeadmin is not supported.

5. Enter the OpenShift credentials to log in.

6. Optional: By default, any user logged in to Argo CD has read-only access. You can manage the
user level access by updating the argocd-rbac-cm config map:

5.10.3. Uninstalling Keycloak

You can delete the Keycloak resources and their relevant configurations by removing the SSO field
from the Argo CD Custom Resource (CR) file. After you remove the SSO field, the values in the file look
similar to the following:

NOTE

A Keycloak application created by using this method is currently not persistent. Additional
configurations created in the Argo CD Keycloak realm are deleted when the server
restarts.

5.11. CONFIGURING ARGO CD RBAC

By default, if you are logged into Argo CD using RHSSO, you are a read-only user. You can change and
manage the user level access.

5.11.1. Configuring user level access

To manage and modify the user level access, configure the RBAC section in Argo CD custom resource.

Procedure

policy.csv:
<name>, <email>, role:admin

 apiVersion: argoproj.io/v1alpha1
 kind: ArgoCD
 metadata:
 name: example-argocd
 labels:
 example: basic
 spec:
 server:
 route:
 enabled: true

CHAPTER 5. GITOPS

315

Edit the argocd Custom Resource:

Output

Add the policy configuration to the rbac section and add the name, email and the role of the
user:

NOTE

Currently, RHSSO cannot read the group information of Red Hat OpenShift GitOps
users. Therefore, configure the RBAC at the user level.

5.11.2. Modifying RHSSO resource requests/limits

By default, the RHSSO container is created with resource requests and limitations. You can change and
manage the resource requests.

Resource Requests Limits

CPU 500 1000m

Memory 512 Mi 1024 Mi

Procedure

Modify the default resource requirements patching the Argo CD CR:

NOTE

$ oc edit argocd [argocd-instance-name] -n [namespace]

metadata
...
...
 rbac:
 policy: 'g, rbacsystem:cluster-admins, role:admin'
 scopes: '[groups]'

metadata
...
...
rbac:
 policy: <name>, <email>, role:<admin>
 scopes: '[groups]'

$ oc -n openshift-gitops patch argocd openshift-gitops --type='json' -p='[{"op": "add", "path":
"/spec/sso", "value": {"provider": "keycloak", "resources": {"requests": {"cpu": "512m", "memory":
"512Mi"}, "limits": {"cpu": "1024m", "memory": "1024Mi"}} }}]'

OpenShift Container Platform 4.9 CI/CD

316

NOTE

RHSSO created by the Red Hat OpenShift GitOps only persists the changes that are
made by the operator. If the RHSSO restarts, any additional configuration created by the
Admin in RHSSO is deleted.

5.12. RUNNING GITOPS CONTROL PLANE WORKLOADS ON
INFRASTRUCTURE NODES

You can use infrastructure nodes to prevent additional billing cost against subscription counts.

You can use the OpenShift Container Platform to run certain workloads on infrastructure nodes
installed by the Red Hat OpenShift GitOps Operator. This comprises the workloads that are installed by
the Red Hat OpenShift GitOps Operator by default in the openshift-gitops namespace, including the
default Argo CD instance in that namespace.

NOTE

Any other Argo CD instances installed to user namespaces are not eligible to run on
Infrastructure nodes.

5.12.1. Moving GitOps workloads to infrastructure nodes

You can move the default workloads installed by the Red Hat OpenShift GitOps to the infrastructure
nodes. The workloads that can be moved are:

kam deployment

cluster deployment (backend service)

openshift-gitops-applicationset-controller deployment

openshift-gitops-dex-server deployment

openshift-gitops-redis deployment

openshift-gitops-redis-ha-haproxy deployment

openshift-gitops-repo-sever deployment

openshift-gitops-server deployment

openshift-gitops-application-controller statefulset

openshift-gitops-redis-server statefulset

Procedure

1. Label existing nodes as infrastructure by running the following command:

2. Edit the GitOpsService Custom Resource (CR) to add the infrastructure node selector:

$ oc label node <node-name> node-role.kubernetes.io/infra=

$ oc edit gitopsservice -n openshift-gitops

CHAPTER 5. GITOPS

317

3. In the GitOpsService CR file, add runOnInfra field to the spec section and set it to true. This
field moves the workloads in openshift-gitops namespace to the infrastructure nodes:

4. Optional: Apply taints and isolate the workloads on infrastructure nodes and prevent other
workloads from scheduling on these nodes.

5. Optional: If you apply taints to the nodes, you can add tolerations in the GitOpsService CR:

To verify that the workloads are scheduled on infrastructure nodes in the Red Hat OpenShift GitOps
namespace, click any of the pod names and ensure that the Node selector and Tolerations have been
added.

NOTE

Any manually added Node selectors and Tolerations in the default Argo CD CR will be
overwritten by the toggle and the tolerations in the GitOpsService CR.

5.13. SIZING REQUIREMENTS FOR GITOPS OPERATOR

The sizing requirements page displays the sizing requirements for installing Red Hat OpenShift GitOps
on OpenShift Container Platform. It also provides the sizing details for the default ArgoCD instance that
is instantiated by the GitOps Operator.

5.13.1. Sizing requirements for GitOps

Red Hat OpenShift GitOps is a declarative way to implement continuous deployment for cloud-native
applications. Through GitOps, you can define and configure the CPU and memory requirements of your
application.

Every time you install the Red Hat OpenShift GitOps Operator, the resources on the namespace are
installed within the defined limits. If the default installation does not set any limits or requests, the
Operator fails within the namespace with quotas. Without enough resources, the cluster cannot

apiVersion: pipelines.openshift.io/v1alpha1
kind: GitopsService
metadata:
 name: cluster
spec:
 runOnInfra: true

$ oc adm taint nodes -l node-role.kubernetes.io/infra
infra=reserved:NoSchedule infra=reserved:NoExecute

spec:
 runOnInfra: true
 tolerations:
 - effect: NoSchedule
 key: infra
 value: reserved
 - effect: NoExecute
 key: infra
 value: reserved

OpenShift Container Platform 4.9 CI/CD

318

schedule ArgoCD related pods. The following table details the resource requests and limits for the
default workloads:

Workload CPU requests CPU limits Memory requests Memory limits

argocd-
application-
controller

1 2 1024M 2048M

applicationset-
controller

1 2 512M 1024M

argocd-server 0.125 0.5 128M 256M

argocd-repo-
server

0.5 1 256M 1024M

argocd-redis 0.25 0.5 128M 256M

argocd-dex 0.25 0.5 128M 256M

HAProxy 0.25 0.5 128M 256M

Optionally, you can also use the ArgoCD custom resource with the oc command to see the specifics and
modify them:

oc edit argocd <name of argo cd> -n namespace

CHAPTER 5. GITOPS

319

	Table of Contents
	CHAPTER 1. OPENSHIFT CONTAINER PLATFORM CI/CD OVERVIEW
	1.1. OPENSHIFT BUILDS
	1.2. OPENSHIFT PIPELINES
	1.3. OPENSHIFT GITOPS
	1.4. JENKINS

	CHAPTER 2. BUILDS
	2.1. UNDERSTANDING IMAGE BUILDS
	2.1.1. Builds
	2.1.1.1. Docker build
	2.1.1.2. Source-to-image build
	2.1.1.3. Custom build
	2.1.1.4. Pipeline build

	2.2. UNDERSTANDING BUILD CONFIGURATIONS
	2.2.1. BuildConfigs

	2.3. CREATING BUILD INPUTS
	2.3.1. Build inputs
	2.3.2. Dockerfile source
	2.3.3. Image source
	2.3.4. Git source
	2.3.4.1. Using a proxy
	2.3.4.2. Source Clone Secrets

	2.3.5. Binary (local) source
	2.3.6. Input secrets and config maps
	2.3.6.1. What is a secret?
	2.3.6.2. Creating secrets
	2.3.6.3. Using secrets
	2.3.6.4. Adding input secrets and config maps
	2.3.6.5. Source-to-image strategy
	2.3.6.6. Docker strategy
	2.3.6.7. Custom strategy

	2.3.7. External artifacts
	2.3.8. Using docker credentials for private registries
	2.3.9. Build environments
	2.3.9.1. Using build fields as environment variables
	2.3.9.2. Using secrets as environment variables

	2.3.10. Service serving certificate secrets
	2.3.11. Secrets restrictions

	2.4. MANAGING BUILD OUTPUT
	2.4.1. Build output
	2.4.2. Output image environment variables
	2.4.3. Output image labels

	2.5. USING BUILD STRATEGIES
	2.5.1. Docker build
	2.5.1.1. Replacing Dockerfile FROM image
	2.5.1.2. Using Dockerfile path
	2.5.1.3. Using docker environment variables
	2.5.1.4. Adding docker build arguments
	2.5.1.5. Squashing layers with docker builds
	2.5.1.6. Using build volumes

	2.5.2. Source-to-image build
	2.5.2.1. Performing source-to-image incremental builds
	2.5.2.2. Overriding source-to-image builder image scripts
	2.5.2.3. Source-to-image environment variables
	2.5.2.4. Ignoring source-to-image source files
	2.5.2.5. Creating images from source code with source-to-image
	2.5.2.6. Using build volumes

	2.5.3. Custom build
	2.5.3.1. Using FROM image for custom builds
	2.5.3.2. Using secrets in custom builds
	2.5.3.3. Using environment variables for custom builds
	2.5.3.4. Using custom builder images

	2.5.4. Pipeline build
	2.5.4.1. Understanding OpenShift Container Platform pipelines
	2.5.4.2. Providing the Jenkins file for pipeline builds
	2.5.4.3. Using environment variables for pipeline builds
	2.5.4.4. Pipeline build tutorial

	2.5.5. Adding secrets with web console
	2.5.6. Enabling pulling and pushing

	2.6. CUSTOM IMAGE BUILDS WITH BUILDAH
	2.6.1. Prerequisites
	2.6.2. Creating custom build artifacts
	2.6.3. Build custom builder image
	2.6.4. Use custom builder image

	2.7. PERFORMING AND CONFIGURING BASIC BUILDS
	2.7.1. Starting a build
	2.7.1.1. Re-running a build
	2.7.1.2. Streaming build logs
	2.7.1.3. Setting environment variables when starting a build
	2.7.1.4. Starting a build with source

	2.7.2. Canceling a build
	2.7.2.1. Canceling multiple builds
	2.7.2.2. Canceling all builds
	2.7.2.3. Canceling all builds in a given state

	2.7.3. Editing a BuildConfig
	2.7.4. Deleting a BuildConfig
	2.7.5. Viewing build details
	2.7.6. Accessing build logs
	2.7.6.1. Accessing BuildConfig logs
	2.7.6.2. Accessing BuildConfig logs for a given version build
	2.7.6.3. Enabling log verbosity

	2.8. TRIGGERING AND MODIFYING BUILDS
	2.8.1. Build triggers
	2.8.1.1. Webhook triggers
	2.8.1.2. Using image change triggers
	2.8.1.3. Identifying the image change trigger of a build
	2.8.1.4. Configuration change triggers

	2.8.2. Build hooks
	2.8.2.1. Configuring post commit build hooks
	2.8.2.2. Using the CLI to set post commit build hooks

	2.9. PERFORMING ADVANCED BUILDS
	2.9.1. Setting build resources
	2.9.2. Setting maximum duration
	2.9.3. Assigning builds to specific nodes
	2.9.4. Chained builds
	2.9.5. Pruning builds
	2.9.6. Build run policy

	2.10. USING RED HAT SUBSCRIPTIONS IN BUILDS
	2.10.1. Creating an image stream tag for the Red Hat Universal Base Image
	2.10.2. Adding subscription entitlements as a build secret
	2.10.3. Running builds with Subscription Manager
	2.10.3.1. Docker builds using Subscription Manager

	2.10.4. Running builds with Red Hat Satellite subscriptions
	2.10.4.1. Adding Red Hat Satellite configurations to builds
	2.10.4.2. Docker builds using Red Hat Satellite subscriptions

	2.10.5. Additional resources

	2.11. SECURING BUILDS BY STRATEGY
	2.11.1. Disabling access to a build strategy globally
	2.11.2. Restricting build strategies to users globally
	2.11.3. Restricting build strategies to a user within a project

	2.12. BUILD CONFIGURATION RESOURCES
	2.12.1. Build controller configuration parameters
	2.12.2. Configuring build settings

	2.13. TROUBLESHOOTING BUILDS
	2.13.1. Resolving denial for access to resources
	2.13.2. Service certificate generation failure

	2.14. SETTING UP ADDITIONAL TRUSTED CERTIFICATE AUTHORITIES FOR BUILDS
	2.14.1. Adding certificate authorities to the cluster
	2.14.2. Additional resources

	CHAPTER 3. MIGRATING FROM JENKINS TO TEKTON
	3.1. MIGRATING FROM JENKINS TO TEKTON
	3.1.1. Comparison of Jenkins and Tekton concepts
	3.1.1.1. Jenkins terminology
	3.1.1.2. Tekton terminology
	3.1.1.3. Mapping of concepts

	3.1.2. Migrating a sample pipeline from Jenkins to Tekton
	3.1.2.1. Jenkins pipeline
	3.1.2.2. Tekton pipeline

	3.1.3. Migrating from Jenkins plugins to Tekton Hub tasks
	3.1.4. Extending Tekton capabilities using custom tasks and scripts
	3.1.5. Comparison of Jenkins and Tekton execution models
	3.1.6. Examples of common use cases
	3.1.6.1. Running a maven pipeline in Jenkins and Tekton
	3.1.6.2. Extending the core capabilities of Jenkins and Tekton by using plugins
	3.1.6.3. Sharing reusable code in Jenkins and Tekton

	3.1.7. Additional resources

	CHAPTER 4. PIPELINES
	4.1. RED HAT OPENSHIFT PIPELINES RELEASE NOTES
	4.1.1. Compatibility and support matrix
	4.1.2. Making open source more inclusive
	4.1.3. Release notes for Red Hat OpenShift Pipelines General Availability 1.7
	4.1.3.1. New features
	4.1.3.2. Deprecated features
	4.1.3.3. Known issues
	4.1.3.4. Fixed issues
	4.1.3.5. Release notes for Red Hat OpenShift Pipelines General Availability 1.7.1
	4.1.3.6. Release notes for Red Hat OpenShift Pipelines General Availability 1.7.2
	4.1.3.7. Release notes for Red Hat OpenShift Pipelines General Availability 1.7.3

	4.1.4. Release notes for Red Hat OpenShift Pipelines General Availability 1.6
	4.1.4.1. New features
	4.1.4.2. Deprecated features
	4.1.4.3. Known issues
	4.1.4.4. Fixed issues
	4.1.4.5. Release notes for Red Hat OpenShift Pipelines General Availability 1.6.1
	4.1.4.6. Release notes for Red Hat OpenShift Pipelines General Availability 1.6.2
	4.1.4.7. Release notes for Red Hat OpenShift Pipelines General Availability 1.6.3
	4.1.4.8. Release notes for Red Hat OpenShift Pipelines General Availability 1.6.4

	4.1.5. Release notes for Red Hat OpenShift Pipelines General Availability 1.5
	4.1.5.1. Compatibility and support matrix
	4.1.5.2. New features
	4.1.5.3. Deprecated features
	4.1.5.4. Known issues
	4.1.5.5. Fixed issues

	4.1.6. Release notes for Red Hat OpenShift Pipelines General Availability 1.4
	4.1.6.1. Compatibility and support matrix
	4.1.6.2. New features
	4.1.6.3. Deprecated features
	4.1.6.4. Known issues
	4.1.6.5. Fixed issues

	4.1.7. Release notes for Red Hat OpenShift Pipelines Technology Preview 1.3
	4.1.7.1. New features
	4.1.7.2. Deprecated features
	4.1.7.3. Known issues
	4.1.7.4. Fixed issues

	4.1.8. Release notes for Red Hat OpenShift Pipelines Technology Preview 1.2
	4.1.8.1. New features
	4.1.8.2. Deprecated features
	4.1.8.3. Known issues
	4.1.8.4. Fixed issues

	4.1.9. Release notes for Red Hat OpenShift Pipelines Technology Preview 1.1
	4.1.9.1. New features
	4.1.9.2. Deprecated features
	4.1.9.3. Known issues
	4.1.9.4. Fixed issues

	4.1.10. Release notes for Red Hat OpenShift Pipelines Technology Preview 1.0
	4.1.10.1. New features
	4.1.10.2. Deprecated features
	4.1.10.3. Known issues
	4.1.10.4. Fixed issues

	4.2. UNDERSTANDING OPENSHIFT PIPELINES
	4.2.1. Key features
	4.2.2. OpenShift Pipeline Concepts
	4.2.2.1. Tasks
	4.2.2.2. When expression
	4.2.2.3. Finally tasks
	4.2.2.4. TaskRun
	4.2.2.5. Pipelines
	4.2.2.6. PipelineRun
	4.2.2.7. Workspaces
	4.2.2.8. Triggers

	4.2.3. Additional resources

	4.3. INSTALLING OPENSHIFT PIPELINES
	Prerequisites
	4.3.1. Installing the Red Hat OpenShift Pipelines Operator in web console
	4.3.2. Installing the OpenShift Pipelines Operator using the CLI
	4.3.3. Red Hat OpenShift Pipelines Operator in a restricted environment
	4.3.4. Disabling the automatic creation of RBAC resources
	4.3.5. Additional resources

	4.4. UNINSTALLING OPENSHIFT PIPELINES
	4.4.1. Deleting the Red Hat OpenShift Pipelines components and Custom Resources
	4.4.2. Uninstalling the Red Hat OpenShift Pipelines Operator

	4.5. CREATING CI/CD SOLUTIONS FOR APPLICATIONS USING OPENSHIFT PIPELINES
	4.5.1. Prerequisites
	4.5.2. Creating a project and checking your pipeline service account
	4.5.3. Creating pipeline tasks
	4.5.4. Assembling a pipeline
	4.5.5. Mirroring images to run pipelines in a restricted environment
	4.5.6. Running a pipeline
	4.5.7. Adding triggers to a pipeline
	4.5.8. Configuring event listeners to serve multiple namespaces
	4.5.9. Creating webhooks
	4.5.10. Triggering a pipeline run
	4.5.11. Enabling monitoring of event listeners for Triggers for user-defined projects
	4.5.12. Additional resources

	4.6. MANAGING NON-VERSIONED AND VERSIONED CLUSTER TASKS
	4.6.1. Differences between non-versioned and versioned cluster tasks
	4.6.2. Advantages and disadvantages of non-versioned and versioned cluster tasks
	4.6.3. Disabling non-versioned and versioned cluster tasks

	4.7. USING TEKTON HUB WITH OPENSHIFT PIPELINES
	4.7.1. Installing and deploying Tekton Hub on a OpenShift Container Platform cluster
	4.7.1.1. Manually refreshing the catalog in Tekton Hub
	4.7.1.2. Optional: Setting a cron job for refreshing catalog in Tekton Hub
	4.7.1.3. Optional: Adding new users in Tekton Hub configuration

	4.7.2. Opting out of Tekton Hub in the Developer perspective
	4.7.3. Additional resources

	4.8. USING PIPELINES AS CODE
	4.8.1. Key features
	4.8.2. Installing Pipelines as Code on an OpenShift Container Platform
	4.8.3. Installing Pipelines as Code CLI
	4.8.4. Configuring Pipelines as Code for a Git repository hosting service provider
	4.8.4.1. Configuring Pipelines as Code for a GitHub App

	4.8.5. Pipelines as Code command reference
	4.8.5.1. Basic syntax
	4.8.5.2. Global options
	4.8.5.3. Utility commands

	4.8.6. Customizing Pipelines as Code configuration
	4.8.7. Additional resources

	4.9. WORKING WITH RED HAT OPENSHIFT PIPELINES USING THE DEVELOPER PERSPECTIVE
	Prerequisites
	4.9.1. Constructing Pipelines using the Pipeline builder
	4.9.2. Creating applications with OpenShift Pipelines
	4.9.3. Interacting with pipelines using the Developer perspective
	4.9.4. Using a custom pipeline template for creating and deploying an application from a Git repository
	4.9.5. Starting pipelines
	4.9.6. Editing Pipelines
	4.9.7. Deleting Pipelines

	4.10. REDUCING RESOURCE CONSUMPTION OF OPENSHIFT PIPELINES
	4.10.1. Understanding resource consumption in pipelines
	4.10.2. Mitigating extra resource consumption in pipelines
	4.10.3. Additional resources

	4.11. SETTING COMPUTE RESOURCE QUOTA FOR OPENSHIFT PIPELINES
	4.11.1. Alternative approaches for limiting compute resource consumption in OpenShift Pipelines
	4.11.2. Specifying pipelines resource quota using priority class
	4.11.3. Additional resources

	4.12. AUTOMATIC PRUNING OF TASK RUN AND PIPELINE RUN
	4.12.1. Annotations for automatically pruning task runs and pipeline runs
	4.12.2. Additional resources

	4.13. USING PODS IN A PRIVILEGED SECURITY CONTEXT
	4.13.1. Running pipeline run and task run pods with privileged security context
	4.13.2. Running pipeline run and task run by using a custom SCC and a custom service account
	4.13.3. Additional resources

	4.14. SECURING WEBHOOKS WITH EVENT LISTENERS
	4.14.1. Providing secure connection with OpenShift routes
	4.14.2. Creating a sample EventListener resource using a secure HTTPS connection

	4.15. AUTHENTICATING PIPELINES USING GIT SECRET
	4.15.1. Credential selection
	4.15.2. Configuring basic authentication for Git
	4.15.3. Configuring SSH authentication for Git
	4.15.4. Using SSH authentication in git type tasks
	4.15.5. Using secrets as a non-root user
	4.15.6. Limiting secret access to specific steps

	4.16. USING TEKTON CHAINS FOR OPENSHIFT PIPELINES SUPPLY CHAIN SECURITY
	4.16.1. Key features
	4.16.2. Installing Tekton Chains using the Red Hat OpenShift Pipelines Operator
	4.16.3. Configuring Tekton Chains
	4.16.3.1. Supported keys for Tekton Chains configuration

	4.16.4. Signing secrets in Tekton Chains
	4.16.4.1. Signing using x509
	4.16.4.2. Signing using cosign
	4.16.4.3. Troubleshooting signing

	4.16.5. Authenticating to an OCI registry
	4.16.5.1. Creating and verifying task run signatures without any additional authentication

	4.16.6. Using Tekton Chains to sign and verify image and provenance
	4.16.7. Additional resources

	4.17. VIEWING PIPELINE LOGS USING THE OPENSHIFT LOGGING OPERATOR
	4.17.1. Prerequisites
	4.17.2. Viewing pipeline logs in Kibana
	4.17.3. Additional resources

	CHAPTER 5. GITOPS
	5.1. RED HAT OPENSHIFT GITOPS RELEASE NOTES
	5.1.1. Compatibility and support matrix
	5.1.1.1. Technology Preview features

	5.1.2. Making open source more inclusive
	5.1.3. Release notes for Red Hat OpenShift GitOps 1.6.7
	5.1.3.1. Fixed issues

	5.1.4. Release notes for Red Hat OpenShift GitOps 1.6.6
	5.1.4.1. Fixed issues

	5.1.5. Release notes for Red Hat OpenShift GitOps 1.6.4
	5.1.5.1. Fixed issues

	5.1.6. Release notes for Red Hat OpenShift GitOps 1.6.2
	5.1.6.1. New features
	5.1.6.2. Fixed issues

	5.1.7. Release notes for Red Hat OpenShift GitOps 1.6.1
	5.1.7.1. Fixed issues

	5.1.8. Release notes for Red Hat OpenShift GitOps 1.6.0
	5.1.8.1. New features
	5.1.8.2. Fixed issues
	5.1.8.3. Known issues

	5.1.9. Release notes for Red Hat OpenShift GitOps 1.5.9
	5.1.9.1. Fixed issues

	5.1.10. Release notes for Red Hat OpenShift GitOps 1.5.7
	5.1.10.1. Fixed issues

	5.1.11. Release notes for Red Hat OpenShift GitOps 1.5.6
	5.1.11.1. Fixed issues

	5.1.12. Release notes for Red Hat OpenShift GitOps 1.5.5
	5.1.12.1. New features
	5.1.12.2. Fixed issues
	5.1.12.3. Known issues

	5.1.13. Release notes for Red Hat OpenShift GitOps 1.5.4
	5.1.13.1. Fixed issues

	5.1.14. Release notes for Red Hat OpenShift GitOps 1.5.3
	5.1.14.1. Fixed issues

	5.1.15. Release notes for Red Hat OpenShift GitOps 1.5.2
	5.1.15.1. Fixed issues

	5.1.16. Release notes for Red Hat OpenShift GitOps 1.5.1
	5.1.16.1. Fixed issues

	5.1.17. Release notes for Red Hat OpenShift GitOps 1.5.0
	5.1.17.1. New features
	5.1.17.2. Fixed issues
	5.1.17.3. Known issues

	5.1.18. Release notes for Red Hat OpenShift GitOps 1.4.13
	5.1.18.1. Fixed issues

	5.1.19. Release notes for Red Hat OpenShift GitOps 1.4.12
	5.1.19.1. Fixed issues

	5.1.20. Release notes for Red Hat OpenShift GitOps 1.4.11
	5.1.20.1. New features
	5.1.20.2. Fixed issues
	5.1.20.3. Known issues

	5.1.21. Release notes for Red Hat OpenShift GitOps 1.4.6
	5.1.21.1. Fixed issues

	5.1.22. Release notes for Red Hat OpenShift GitOps 1.4.5
	5.1.22.1. Fixed issues

	5.1.23. Release notes for Red Hat OpenShift GitOps 1.4.3
	5.1.23.1. Fixed issues

	5.1.24. Release notes for Red Hat OpenShift GitOps 1.4.2
	5.1.24.1. Fixed issues

	5.1.25. Release notes for Red Hat OpenShift GitOps 1.4.1
	5.1.25.1. Fixed issues

	5.1.26. Release notes for Red Hat OpenShift GitOps 1.4.0
	5.1.26.1. New features
	5.1.26.2. Fixed issues
	5.1.26.3. Known issues

	5.1.27. Release notes for Red Hat OpenShift GitOps 1.3.7
	5.1.27.1. Fixed issues

	5.1.28. Release notes for Red Hat OpenShift GitOps 1.3.6
	5.1.28.1. Fixed issues

	5.1.29. Release notes for Red Hat OpenShift GitOps 1.3.2
	5.1.29.1. New features
	5.1.29.2. Fixed issues

	5.1.30. Release notes for Red Hat OpenShift GitOps 1.3.1
	5.1.30.1. Fixed issues

	5.1.31. Release notes for Red Hat OpenShift GitOps 1.3
	5.1.31.1. New features
	5.1.31.2. Fixed issues
	5.1.31.3. Known issues

	5.1.32. Release notes for Red Hat OpenShift GitOps 1.2.2
	5.1.32.1. Fixed issues

	5.1.33. Release notes for Red Hat OpenShift GitOps 1.2.1
	5.1.33.1. Support matrix
	5.1.33.2. Fixed issues

	5.1.34. Release notes for Red Hat OpenShift GitOps 1.2
	5.1.34.1. Support matrix
	5.1.34.2. New features
	5.1.34.3. Fixed issues
	5.1.34.4. Known issues

	5.1.35. Release notes for Red Hat OpenShift GitOps 1.1
	5.1.35.1. Support matrix
	5.1.35.2. New features
	5.1.35.3. Fixed issues
	5.1.35.4. Known issues
	5.1.35.5. Breaking Change

	5.2. UNDERSTANDING OPENSHIFT GITOPS
	5.2.1. About GitOps
	5.2.2. About Red Hat OpenShift GitOps
	5.2.2.1. Key features

	5.3. INSTALLING RED HAT OPENSHIFT GITOPS
	5.3.1. Installing Red Hat OpenShift GitOps Operator in web console
	5.3.2. Installing Red Hat OpenShift GitOps Operator using CLI
	5.3.3. Logging in to the Argo CD instance by using the Argo CD admin account

	5.4. UNINSTALLING OPENSHIFT GITOPS
	5.4.1. Deleting the Argo CD instances
	5.4.2. Uninstalling the GitOps Operator

	5.5. CONFIGURING AN OPENSHIFT CLUSTER BY DEPLOYING AN APPLICATION WITH CLUSTER CONFIGURATIONS
	5.5.1. Using an Argo CD instance to manage cluster-scoped resources
	5.5.2. Default permissions of an Argocd instance
	5.5.3. Running the Argo CD instance at the cluster-level
	5.5.4. Creating an application by using the Argo CD dashboard
	5.5.5. Creating an application by using the oc tool
	5.5.6. Synchronizing your application with your Git repository
	5.5.7. In-built permissions for cluster configuration
	5.5.8. Adding permissions for cluster configuration
	5.5.9. Installing OLM Operators using Red Hat OpenShift GitOps
	5.5.9.1. Installing cluster-scoped Operators
	5.5.9.2. Installing namepace-scoped Operators

	5.6. DEPLOYING A SPRING BOOT APPLICATION WITH ARGO CD
	5.6.1. Creating an application by using the Argo CD dashboard
	5.6.2. Creating an application by using the oc tool
	5.6.3. Verifying Argo CD self-healing behavior

	5.7. ARGO CD OPERATOR
	5.7.1. Argo CD CLI tool
	5.7.2. Argo CD custom resource properties
	5.7.3. Repo server properties
	5.7.4. Enabling notifications with Argo CD instance

	5.8. MONITORING HEALTH INFORMATION FOR APPLICATION RESOURCES AND DEPLOYMENTS
	5.8.1. Checking health information

	5.9. CONFIGURING SSO FOR ARGO CD USING DEX
	5.9.1. Enabling the Dex OpenShift OAuth Connector
	5.9.1.1. Mapping users to specific roles

	5.9.2. Disabling Dex

	5.10. CONFIGURING SSO FOR ARGO CD USING KEYCLOAK
	5.10.1. Configuring a new client in Keycloak
	5.10.2. Logging in to Keycloak
	5.10.3. Uninstalling Keycloak

	5.11. CONFIGURING ARGO CD RBAC
	5.11.1. Configuring user level access
	5.11.2. Modifying RHSSO resource requests/limits

	5.12. RUNNING GITOPS CONTROL PLANE WORKLOADS ON INFRASTRUCTURE NODES
	5.12.1. Moving GitOps workloads to infrastructure nodes

	5.13. SIZING REQUIREMENTS FOR GITOPS OPERATOR
	5.13.1. Sizing requirements for GitOps

