
OpenShift Dedicated 4

Monitoring

Monitoring projects in OpenShift Dedicated

Last Updated: 2024-07-22

OpenShift Dedicated 4 Monitoring

Monitoring projects in OpenShift Dedicated

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides information about monitoring projects in OpenShift Dedicated.

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. MONITORING OVERVIEW
1.1. ABOUT OPENSHIFT DEDICATED MONITORING
1.2. UNDERSTANDING THE MONITORING STACK

1.2.1. Default monitoring targets
1.2.2. Components for monitoring user-defined projects
1.2.3. Monitoring targets for user-defined projects

1.3. GLOSSARY OF COMMON TERMS FOR OPENSHIFT DEDICATED MONITORING

CHAPTER 2. ACCESSING MONITORING FOR USER-DEFINED PROJECTS

CHAPTER 3. CONFIGURING THE MONITORING STACK
3.1. MAINTENANCE AND SUPPORT FOR MONITORING

3.1.1. Support considerations for monitoring
3.1.2. Support version matrix for monitoring components

3.2. CONFIGURING THE MONITORING STACK
3.3. CONFIGURABLE MONITORING COMPONENTS
3.4. USING NODE SELECTORS TO MOVE MONITORING COMPONENTS

3.4.1. How node selectors work with other constraints
3.4.2. Moving monitoring components to different nodes

3.5. ASSIGNING TOLERATIONS TO MONITORING COMPONENTS
3.6. MANAGING CPU AND MEMORY RESOURCES FOR MONITORING COMPONENTS

3.6.1. About specifying limits and requests for monitoring components
3.6.2. Specifying limits and requests for monitoring components

3.7. CONFIGURING PERSISTENT STORAGE
3.7.1. Persistent storage prerequisites
3.7.2. Configuring a persistent volume claim
3.7.3. Modifying the retention time and size for Prometheus metrics data
3.7.4. Modifying the retention time for Thanos Ruler metrics data

3.8. CONFIGURING REMOTE WRITE STORAGE
3.8.1. Supported remote write authentication settings
3.8.2. Example remote write authentication settings

3.9. ADDING CLUSTER ID LABELS TO METRICS
3.9.1. Creating cluster ID labels for metrics

3.10. CONTROLLING THE IMPACT OF UNBOUND METRICS ATTRIBUTES IN USER-DEFINED PROJECTS
3.10.1. Setting scrape sample and label limits for user-defined projects

CHAPTER 4. CONFIGURING EXTERNAL ALERTMANAGER INSTANCES

CHAPTER 5. CONFIGURING SECRETS FOR ALERTMANAGER
5.1. ADDING A SECRET TO THE ALERTMANAGER CONFIGURATION
5.2. ATTACHING ADDITIONAL LABELS TO YOUR TIME SERIES AND ALERTS

CHAPTER 6. USING POD TOPOLOGY SPREAD CONSTRAINTS FOR MONITORING
6.1. CONFIGURING POD TOPOLOGY SPREAD CONSTRAINTS
6.2. SETTING LOG LEVELS FOR MONITORING COMPONENTS
6.3. ENABLING THE QUERY LOG FILE FOR PROMETHEUS

CHAPTER 7. DISABLING MONITORING FOR USER-DEFINED PROJECTS
7.1. DISABLING MONITORING FOR USER-DEFINED PROJECTS
7.2. EXCLUDING A USER-DEFINED PROJECT FROM MONITORING

CHAPTER 8. ENABLING ALERT ROUTING FOR USER-DEFINED PROJECTS
8.1. UNDERSTANDING ALERT ROUTING FOR USER-DEFINED PROJECTS

6
6
6
7
8
8
9

12

13
13
13
13
14
16
17
17
17
19

20
20
21
23
23
24
25
27
28
30
31
37
37
39
39

42

44
44
45

48
48
49
51

53
53
53

54
54

Table of Contents

1

. .

. .

. .

. .

. .

8.2. ENABLING A SEPARATE ALERTMANAGER INSTANCE FOR USER-DEFINED ALERT ROUTING
8.3. GRANTING USERS PERMISSION TO CONFIGURE ALERT ROUTING FOR USER-DEFINED PROJECTS

CHAPTER 9. MANAGING METRICS
9.1. UNDERSTANDING METRICS
9.2. SETTING UP METRICS COLLECTION FOR USER-DEFINED PROJECTS

9.2.1. Deploying a sample service
9.2.2. Specifying how a service is monitored
9.2.3. Example service endpoint authentication settings

9.2.3.1. Sample YAML authentication with a bearer token
9.2.3.2. Sample YAML for Basic authentication
9.2.3.3. Sample YAML authentication with OAuth 2.0

9.3. QUERYING METRICS
9.3.1. Querying metrics for all projects as a cluster administrator
9.3.2. Querying metrics for user-defined projects as a developer

9.4. GETTING DETAILED INFORMATION ABOUT A METRICS TARGET

CHAPTER 10. MANAGING ALERTS
10.1. ACCESSING THE ALERTING UI IN THE ADMINISTRATOR AND DEVELOPER PERSPECTIVES
10.2. SEARCHING AND FILTERING ALERTS, SILENCES, AND ALERTING RULES

Understanding alert filters
Understanding silence filters
Understanding alerting rule filters
Searching and filtering alerts, silences, and alerting rules in the Developer perspective

10.3. GETTING INFORMATION ABOUT ALERTS, SILENCES, AND ALERTING RULES
10.4. MANAGING SILENCES

10.4.1. Silencing alerts
10.4.2. Editing silences
10.4.3. Expiring silences

10.5. MANAGING ALERTING RULES FOR USER-DEFINED PROJECTS
10.5.1. Optimizing alerting for user-defined projects
10.5.2. About creating alerting rules for user-defined projects
10.5.3. Creating alerting rules for user-defined projects
10.5.4. Accessing alerting rules for user-defined projects
10.5.5. Listing alerting rules for all projects in a single view
10.5.6. Removing alerting rules for user-defined projects

10.6. SENDING NOTIFICATIONS TO EXTERNAL SYSTEMS
10.6.1. Configuring different alert receivers for default platform alerts and user-defined alerts
10.6.2. Creating alert routing for user-defined projects

10.7. APPLYING A CUSTOM CONFIGURATION TO ALERTMANAGER FOR USER-DEFINED ALERT ROUTING

CHAPTER 11. REVIEWING MONITORING DASHBOARDS
11.1. REVIEWING MONITORING DASHBOARDS AS A CLUSTER ADMINISTRATOR
11.2. REVIEWING MONITORING DASHBOARDS AS A DEVELOPER

CHAPTER 12. ACCESSING MONITORING APIS BY USING THE CLI
12.1. ABOUT ACCESSING MONITORING WEB SERVICE APIS
12.2. ACCESSING A MONITORING WEB SERVICE API
12.3. QUERYING METRICS BY USING THE FEDERATION ENDPOINT FOR PROMETHEUS
12.4. ACCESSING METRICS FROM OUTSIDE THE CLUSTER FOR CUSTOM APPLICATIONS
12.5. ADDITIONAL RESOURCES

CHAPTER 13. TROUBLESHOOTING MONITORING ISSUES

54
55

57
57
57
57
59
60
60
61

62
63
63
65
67

69
69
70
70
70
71
72
72
74
74
76
77
78
78
78
79
80
81
81
81

82
82

83

85
86
87

88
88
89
89
91

92

93

OpenShift Dedicated 4 Monitoring

2

. .

13.1. DETERMINING WHY USER-DEFINED PROJECT METRICS ARE UNAVAILABLE
13.2. DETERMINING WHY PROMETHEUS IS CONSUMING A LOT OF DISK SPACE
13.3. RESOLVING THE KUBEPERSISTENTVOLUMEFILLINGUP ALERT FIRING FOR PROMETHEUS

CHAPTER 14. CONFIG MAP REFERENCE FOR THE CLUSTER MONITORING OPERATOR
14.1. CLUSTER MONITORING OPERATOR CONFIGURATION REFERENCE
14.2. ADDITIONALALERTMANAGERCONFIG

14.2.1. Description
14.2.2. Required

14.3. ALERTMANAGERMAINCONFIG
14.3.1. Description

14.4. ALERTMANAGERUSERWORKLOADCONFIG
14.4.1. Description

14.5. CLUSTERMONITORINGCONFIGURATION
14.5.1. Description

14.6. KUBESTATEMETRICSCONFIG
14.6.1. Description

14.7. METRICSSERVERCONFIG
14.7.1. Description

14.8. MONITORINGPLUGINCONFIG
14.8.1. Description

14.9. NODEEXPORTERCOLLECTORBUDDYINFOCONFIG
14.9.1. Description

14.10. NODEEXPORTERCOLLECTORCONFIG
14.10.1. Description

14.11. NODEEXPORTERCOLLECTORCPUFREQCONFIG
14.11.1. Description

14.12. NODEEXPORTERCOLLECTORKSMDCONFIG
14.12.1. Description

14.13. NODEEXPORTERCOLLECTORMOUNTSTATSCONFIG
14.13.1. Description

14.14. NODEEXPORTERCOLLECTORNETCLASSCONFIG
14.14.1. Description

14.15. NODEEXPORTERCOLLECTORNETDEVCONFIG
14.15.1. Description

14.16. NODEEXPORTERCOLLECTORPROCESSESCONFIG
14.16.1. Description

14.17. NODEEXPORTERCOLLECTORSYSTEMDCONFIG
14.17.1. Description

14.18. NODEEXPORTERCOLLECTORTCPSTATCONFIG
14.18.1. Description

14.19. NODEEXPORTERCONFIG
14.19.1. Description

14.20. OPENSHIFTSTATEMETRICSCONFIG
14.20.1. Description

14.21. PROMETHEUSK8SCONFIG
14.21.1. Description

14.22. PROMETHEUSOPERATORCONFIG
14.22.1. Description

14.23. PROMETHEUSOPERATORADMISSIONWEBHOOKCONFIG
14.23.1. Description

14.24. PROMETHEUSRESTRICTEDCONFIG
14.24.1. Description

93
95
97

99
99
99
99
99

100
100
101
101

103
103
104
104
105
105
105
105
106
106
106
106
107
107
108
108
108
108
108
108
109
109
109
110
110
110
111
111
111
111

112
112
112
112
115
115
116
116
116
116

Table of Contents

3

14.25. REMOTEWRITESPEC
14.25.1. Description
14.25.2. Required

14.26. TLSCONFIG
14.26.1. Description
14.26.2. Required

14.27. TELEMETERCLIENTCONFIG
14.27.1. Description
14.27.2. Required

14.28. THANOSQUERIERCONFIG
14.28.1. Description

14.29. THANOSRULERCONFIG
14.29.1. Description

14.30. USERWORKLOADCONFIGURATION
14.30.1. Description

119
119
119
121
121
121
122
122
122
122
122
123
123
124
124

OpenShift Dedicated 4 Monitoring

4

Table of Contents

5

CHAPTER 1. MONITORING OVERVIEW

1.1. ABOUT OPENSHIFT DEDICATED MONITORING

In OpenShift Dedicated, you can monitor your own projects in isolation from Red Hat Site Reliability
Engineering (SRE) platform metrics. You can monitor your own projects without the need for an
additional monitoring solution.

1.2. UNDERSTANDING THE MONITORING STACK

The OpenShift Dedicated monitoring stack is based on the Prometheus open source project and its
wider ecosystem. The monitoring stack includes the following:

Default platform monitoring components. A set of platform monitoring components are
installed in the openshift-monitoring project by default during a OpenShift Dedicated
installation. Red Hat Site Reliability Engineers (SRE) use these components to monitor core
cluster components including Kubernetes services. This includes critical metrics, such as CPU
and memory, collected from all of the workloads in every namespace.
These components are illustrated in the Installed by default section in the following diagram.

Components for monitoring user-defined projects. A set of user-defined project monitoring
components are installed in the openshift-user-workload-monitoring project by default during
a OpenShift Dedicated installation. You can use these components to monitor services and
pods in user-defined projects. These components are illustrated in the User section in the
following diagram.

OpenShift Dedicated 4 Monitoring

6

https://prometheus.io/

1.2.1. Default monitoring targets

The following are examples of targets monitored by Red Hat Site Reliability Engineers (SRE) in your
OpenShift Dedicated cluster:

CoreDNS

etcd

HAProxy

Image registry

Kubelets

Kubernetes API server

Kubernetes controller manager

Kubernetes scheduler

OpenShift API server

CHAPTER 1. MONITORING OVERVIEW

7

OpenShift Controller Manager

Operator Lifecycle Manager (OLM)

NOTE

The exact list of targets can vary depending on your cluster capabilities and installed
components.

Additional resources

Getting detailed information about a metrics target

1.2.2. Components for monitoring user-defined projects

OpenShift Dedicated includes an optional enhancement to the monitoring stack that enables you to
monitor services and pods in user-defined projects. This feature includes the following components:

Table 1.1. Components for monitoring user-defined projects

Component Description

Prometheus Operator The Prometheus Operator (PO) in the openshift-
user-workload-monitoring project creates,
configures, and manages Prometheus and Thanos
Ruler instances in the same project.

Prometheus Prometheus is the monitoring system through which
monitoring is provided for user-defined projects.
Prometheus sends alerts to Alertmanager for
processing.

Thanos Ruler The Thanos Ruler is a rule evaluation engine for
Prometheus that is deployed as a separate process.
In OpenShift Dedicated , Thanos Ruler provides rule
and alerting evaluation for the monitoring of user-
defined projects.

Alertmanager The Alertmanager service handles alerts received
from Prometheus and Thanos Ruler. Alertmanager is
also responsible for sending user-defined alerts to
external notification systems. Deploying this service
is optional.

All of these components are monitored by the stack and are automatically updated when OpenShift
Dedicated is updated.

1.2.3. Monitoring targets for user-defined projects

Monitoring is enabled by default for OpenShift Dedicated user-defined projects. You can monitor:

Metrics provided through service endpoints in user-defined projects.

OpenShift Dedicated 4 Monitoring

8

Pods running in user-defined projects.

1.3. GLOSSARY OF COMMON TERMS FOR OPENSHIFT DEDICATED
MONITORING

This glossary defines common terms that are used in OpenShift Dedicated architecture.

Alertmanager

Alertmanager handles alerts received from Prometheus. Alertmanager is also responsible for sending
the alerts to external notification systems.

Alerting rules

Alerting rules contain a set of conditions that outline a particular state within a cluster. Alerts are
triggered when those conditions are true. An alerting rule can be assigned a severity that defines how
the alerts are routed.

Cluster Monitoring Operator

The Cluster Monitoring Operator (CMO) is a central component of the monitoring stack. It deploys
and manages Prometheus instances such as, the Thanos Querier, the Telemeter Client, and metrics
targets to ensure that they are up to date. The CMO is deployed by the Cluster Version Operator
(CVO).

Cluster Version Operator

The Cluster Version Operator (CVO) manages the lifecycle of cluster Operators, many of which are
installed in OpenShift Dedicated by default.

config map

A config map provides a way to inject configuration data into pods. You can reference the data
stored in a config map in a volume of type ConfigMap. Applications running in a pod can use this
data.

Container

A container is a lightweight and executable image that includes software and all its dependencies.
Containers virtualize the operating system. As a result, you can run containers anywhere from a data
center to a public or private cloud as well as a developer’s laptop.

custom resource (CR)

A CR is an extension of the Kubernetes API. You can create custom resources.

etcd

etcd is the key-value store for OpenShift Dedicated, which stores the state of all resource objects.

Fluentd

Fluentd is a log collector that resides on each OpenShift Dedicated node. It gathers application,
infrastructure, and audit logs and forwards them to different outputs.

NOTE

Fluentd is deprecated and is planned to be removed in a future release. Red Hat
provides bug fixes and support for this feature during the current release lifecycle, but
this feature no longer receives enhancements. As an alternative to Fluentd, you can
use Vector instead.

Kubelets

Runs on nodes and reads the container manifests. Ensures that the defined containers have started
and are running.

CHAPTER 1. MONITORING OVERVIEW

9

Kubernetes API server

Kubernetes API server validates and configures data for the API objects.

Kubernetes controller manager

Kubernetes controller manager governs the state of the cluster.

Kubernetes scheduler

Kubernetes scheduler allocates pods to nodes.

labels

Labels are key-value pairs that you can use to organize and select subsets of objects such as a pod.

Metrics Server

The Metrics Server monitoring component collects resource metrics and exposes them in the
metrics.k8s.io Metrics API service for use by other tools and APIs, which frees the core platform
Prometheus stack from handling this functionality.

node

A worker machine in the OpenShift Dedicated cluster. A node is either a virtual machine (VM) or a
physical machine.

Operator

The preferred method of packaging, deploying, and managing a Kubernetes application in an
OpenShift Dedicated cluster. An Operator takes human operational knowledge and encodes it into
software that is packaged and shared with customers.

Operator Lifecycle Manager (OLM)

OLM helps you install, update, and manage the lifecycle of Kubernetes native applications. OLM is an
open source toolkit designed to manage Operators in an effective, automated, and scalable way.

Persistent storage

Stores the data even after the device is shut down. Kubernetes uses persistent volumes to store the
application data.

Persistent volume claim (PVC)

You can use a PVC to mount a PersistentVolume into a Pod. You can access the storage without
knowing the details of the cloud environment.

pod

The pod is the smallest logical unit in Kubernetes. A pod is comprised of one or more containers to
run in a worker node.

Prometheus

Prometheus is the monitoring system on which the OpenShift Dedicated monitoring stack is based.
Prometheus is a time-series database and a rule evaluation engine for metrics. Prometheus sends
alerts to Alertmanager for processing.

Prometheus Operator

The Prometheus Operator (PO) in the openshift-monitoring project creates, configures, and
manages platform Prometheus and Alertmanager instances. It also automatically generates
monitoring target configurations based on Kubernetes label queries.

Silences

A silence can be applied to an alert to prevent notifications from being sent when the conditions for
an alert are true. You can mute an alert after the initial notification, while you work on resolving the
underlying issue.

storage

OpenShift Dedicated supports many types of storage on AWS and GCP. You can manage container
storage for persistent and non-persistent data in an OpenShift Dedicated cluster.

OpenShift Dedicated 4 Monitoring

10

Thanos Ruler

The Thanos Ruler is a rule evaluation engine for Prometheus that is deployed as a separate process.
In OpenShift Dedicated, Thanos Ruler provides rule and alerting evaluation for the monitoring of
user-defined projects.

Vector

Vector is a log collector that deploys to each OpenShift Dedicated node. It collects log data from
each node, transforms the data, and forwards it to configured outputs.

web console

A user interface (UI) to manage OpenShift Dedicated.

CHAPTER 1. MONITORING OVERVIEW

11

CHAPTER 2. ACCESSING MONITORING FOR USER-DEFINED
PROJECTS

When you install a OpenShift Dedicated cluster, monitoring for user-defined projects is enabled by
default. With monitoring for user-defined projects enabled, you can monitor your own OpenShift
Dedicated projects without the need for an additional monitoring solution.

The dedicated-admin user has default permissions to configure and access monitoring for user-
defined projects.

NOTE

Custom Prometheus instances and the Prometheus Operator installed through Operator
Lifecycle Manager (OLM) can cause issues with user-defined project monitoring if it is
enabled. Custom Prometheus instances are not supported.

Optionally, you can disable monitoring for user-defined projects during or after a cluster installation.

OpenShift Dedicated 4 Monitoring

12

CHAPTER 3. CONFIGURING THE MONITORING STACK
This section explains what configuration is supported, shows how to configure the monitoring stack for
user-defined projects, and demonstrates several common configuration scenarios.

IMPORTANT

Not all configuration parameters for the monitoring stack are exposed. Only the
parameters and fields listed in the Config map reference for the Cluster Monitoring
Operator are supported for configuration.

3.1. MAINTENANCE AND SUPPORT FOR MONITORING

Not all configuration options for the monitoring stack are exposed. The only supported way of
configuring OpenShift Dedicated monitoring is by configuring the Cluster Monitoring Operator (CMO)
using the options described in the Config map reference for the Cluster Monitoring Operator . Do not
use other configurations, as they are unsupported.

Configuration paradigms might change across Prometheus releases, and such cases can only be
handled gracefully if all configuration possibilities are controlled. If you use configurations other than
those described in the Config map reference for the Cluster Monitoring Operator , your changes will
disappear because the CMO automatically reconciles any differences and resets any unsupported
changes back to the originally defined state by default and by design.

IMPORTANT

Installing another Prometheus instance is not supported by the Red Hat Site Reliability
Engineers (SRE).

3.1.1. Support considerations for monitoring

NOTE

Backward compatibility for metrics, recording rules, or alerting rules is not guaranteed.

The following modifications are explicitly not supported:

Installing custom Prometheus instances on OpenShift Dedicated. A custom instance is a
Prometheus custom resource (CR) managed by the Prometheus Operator.

Modifying the default platform monitoring components. You should not modify any of the
components defined in the cluster-monitoring-config config map. Red Hat SRE uses these
components to monitor the core cluster components and Kubernetes services.

3.1.2. Support version matrix for monitoring components

The following matrix contains information about versions of monitoring components for OpenShift
Dedicated 4.12 and later releases:

Table 3.1. OpenShift Dedicated and component versions

CHAPTER 3. CONFIGURING THE MONITORING STACK

13

OpenShi
ft
Dedicat
ed

Prometh
eus
Operato
r

Prometh
eus

Metrics
Server

Alertma
nager

kube-
state-
metrics
agent

monitori
ng-
plugin

node-
exporte
r agent

Thanos

4.16 0.73.2 2.52.0 0.7.1 0.26.0 2.12.0 1.0.0 1.8.0 0.35.0

4.15 0.70.0 2.48.0 0.6.4 0.26.0 2.10.1 1.0.0 1.7.0 0.32.5

4.14 0.67.1 2.46.0 N/A 0.25.0 2.9.2 1.0.0 1.6.1 0.30.2

4.13 0.63.0 2.42.0 N/A 0.25.0 2.8.1 N/A 1.5.0 0.30.2

4.12 0.60.1 2.39.1 N/A 0.24.0 2.6.0 N/A 1.4.0 0.28.1

NOTE

The openshift-state-metrics agent and Telemeter Client are OpenShift-specific
components. Therefore, their versions correspond with the versions of OpenShift
Dedicated.

3.2. CONFIGURING THE MONITORING STACK

In OpenShift Dedicated, you can configure the stack that monitors workloads for user-defined projects
by using the user-workload-monitoring-config ConfigMap object. Config maps configure the Cluster
Monitoring Operator (CMO), which in turn configures the components of the stack.

Prerequisites

You have access to the cluster as a user with the dedicated-admin role.

The user-workload-monitoring-config ConfigMap object exists. This object is created by
default when the cluster is created.

You have installed the OpenShift CLI (oc).

Procedure

1. Edit the ConfigMap object.

a. Edit the user-workload-monitoring-config ConfigMap object in the openshift-user-
workload-monitoring project:

b. Add your configuration under data/config.yaml as a key-value pair
<component_name>: <component_configuration>:

$ oc -n openshift-user-workload-monitoring edit configmap user-workload-monitoring-
config

apiVersion: v1
kind: ConfigMap

OpenShift Dedicated 4 Monitoring

14

1

2

3

4

Substitute <component> and <configuration_for_the_component> accordingly.

The following example ConfigMap object configures a data retention period and minimum
container resource requests for Prometheus. This relates to the Prometheus instance that
monitors user-defined projects only:

Defines the Prometheus component and the subsequent lines define its configuration.

Configures a twenty-four hour data retention period for the Prometheus instance that
monitors user-defined projects.

Defines a minimum resource request of 200 millicores for the Prometheus container.

Defines a minimum pod resource request of 2 GiB of memory for the Prometheus
container.

2. Save the file to apply the changes to the ConfigMap object.

metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 <component>:
 <configuration_for_the_component>

apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 prometheus: 1
 retention: 24h 2
 resources:
 requests:
 cpu: 200m 3
 memory: 2Gi 4

CHAPTER 3. CONFIGURING THE MONITORING STACK

15

WARNING

Different configuration changes to the ConfigMap object result in different
outcomes:

The pods are not redeployed. Therefore, there is no service outage.

The affected pods are redeployed:

For single-node clusters, this results in temporary service outage.

For multi-node clusters, because of high-availability, the affected
pods are gradually rolled out and the monitoring stack remains
available.

Configuring and resizing a persistent volume always results in a
service outage, regardless of high availability.

Each procedure that requires a change in the config map includes its
expected outcome.

Additional resources

Configuration reference for the user-workload-monitoring-config config map

3.3. CONFIGURABLE MONITORING COMPONENTS

This table shows the monitoring components you can configure and the keys used to specify the
components in the user-workload-monitoring-config ConfigMap objects.

WARNING

Do not modify the monitoring components in the cluster-monitoring-config
ConfigMap object. Red Hat Site Reliability Engineers (SRE) use these components
to monitor the core cluster components and Kubernetes services.

Table 3.2. Configurable monitoring components

Component user-workload-monitoring-config config map key

Alertmanager alertmanager

Prometheus Operator prometheusOperator

OpenShift Dedicated 4 Monitoring

16

Prometheus prometheus

Thanos Ruler thanosRuler

Component user-workload-monitoring-config config map key

3.4. USING NODE SELECTORS TO MOVE MONITORING
COMPONENTS

By using the nodeSelector constraint with labeled nodes, you can move any of the monitoring stack
components to specific nodes. By doing so, you can control the placement and distribution of the
monitoring components across a cluster.

By controlling placement and distribution of monitoring components, you can optimize system resource
use, improve performance, and segregate workloads based on specific requirements or policies.

3.4.1. How node selectors work with other constraints

If you move monitoring components by using node selector constraints, be aware that other constraints
to control pod scheduling might exist for a cluster:

Topology spread constraints might be in place to control pod placement.

Hard anti-affinity rules are in place for Prometheus, Thanos Querier, Alertmanager, and other
monitoring components to ensure that multiple pods for these components are always spread
across different nodes and are therefore always highly available.

When scheduling pods onto nodes, the pod scheduler tries to satisfy all existing constraints when
determining pod placement. That is, all constraints compound when the pod scheduler determines which
pods will be placed on which nodes.

Therefore, if you configure a node selector constraint but existing constraints cannot all be satisfied, the
pod scheduler cannot match all constraints and will not schedule a pod for placement onto a node.

To maintain resilience and high availability for monitoring components, ensure that enough nodes are
available and match all constraints when you configure a node selector constraint to move a component.

Additional resources

Using pod topology spread constraints for monitoring

Kubernetes documentation about node selectors

3.4.2. Moving monitoring components to different nodes

You can move any of the components that monitor workloads for user-defined projects to specific
worker nodes. It is not permitted to move components to control plane or infrastructure nodes.

Prerequisites

You have access to the cluster as a user with the dedicated-admin role.

The user-workload-monitoring-config ConfigMap object exists. This object is created by

CHAPTER 3. CONFIGURING THE MONITORING STACK

17

https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#nodeselector

1

2

3

The user-workload-monitoring-config ConfigMap object exists. This object is created by
default when the cluster is created.

You have installed the OpenShift CLI (oc).

Procedure

1. If you have not done so yet, add a label to the nodes on which you want to run the monitoring
components:

2. Edit the ConfigMap object:

a. Edit the user-workload-monitoring-config ConfigMap object in the openshift-user-
workload-monitoring project:

b. Specify the node labels for the nodeSelector constraint for the component under
data/config.yaml:

Substitute <component> with the appropriate monitoring stack component name.

Substitute <node-label-1> with the label you added to the node.

Optional: Specify additional labels. If you specify additional labels, the pods for the
component are only scheduled on the nodes that contain all of the specified labels.

NOTE

If monitoring components remain in a Pending state after configuring the
nodeSelector constraint, check the pod events for errors relating to taints
and tolerations.

3. Save the file to apply the changes. The components specified in the new configuration are
automatically moved to the new nodes, and the pods affected by the new configuration are
redeployed.

$ oc label nodes <node-name> <node-label>

$ oc -n openshift-user-workload-monitoring edit configmap user-workload-monitoring-
config

apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 <component>: 1
 nodeSelector:
 <node-label-1> 2
 <node-label-2> 3
 <...>

OpenShift Dedicated 4 Monitoring

18

Additional resources

See the Kubernetes documentation for details on the nodeSelector constraint

3.5. ASSIGNING TOLERATIONS TO MONITORING COMPONENTS

You can assign tolerations to the components that monitor user-defined projects, to enable moving
them to tainted worker nodes. Scheduling is not permitted on control plane or infrastructure nodes.

Prerequisites

You have access to the cluster as a user with the dedicated-admin role.

The user-workload-monitoring-config ConfigMap object exists in the openshift-user-
workload-monitoring namespace. This object is created by default when the cluster is created.

You have installed the OpenShift CLI (oc).

Procedure

1. Edit the ConfigMap object:

a. Edit the user-workload-monitoring-config ConfigMap object in the openshift-user-
workload-monitoring project:

b. Specify tolerations for the component:

Substitute <component> and <toleration_specification> accordingly.

For example, oc adm taint nodes node1 key1=value1:NoSchedule adds a taint to node1
with the key key1 and the value value1. This prevents monitoring components from
deploying pods on node1 unless a toleration is configured for that taint. The following
example configures the thanosRuler component to tolerate the example taint:

$ oc -n openshift-user-workload-monitoring edit configmap user-workload-monitoring-
config

apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 <component>:
 tolerations:
 <toleration_specification>

apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |

CHAPTER 3. CONFIGURING THE MONITORING STACK

19

https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#nodeselector

2. Save the file to apply the changes. The pods affected by the new configuration are
automatically redeployed.

Additional resources

See the Kubernetes documentation on taints and tolerations

3.6. MANAGING CPU AND MEMORY RESOURCES FOR MONITORING
COMPONENTS

You can ensure that the containers that run monitoring components have enough CPU and memory
resources by specifying values for resource limits and requests for those components.

You can configure these limits and requests for core platform monitoring components in the openshift-
monitoring namespace and for the components that monitor user-defined projects in the openshift-
user-workload-monitoring namespace.

3.6.1. About specifying limits and requests for monitoring components

You can configure resource limits and request settings for core platform monitoring components and
for the components that monitor user-defined projects, including the following components:

Alertmanager (for core platform monitoring and for user-defined projects)

kube-state-metrics

monitoring-plugin

node-exporter

openshift-state-metrics

Prometheus (for core platform monitoring and for user-defined projects)

Metrics Server

Prometheus Operator and its admission webhook service

Telemeter Client

Thanos Querier

Thanos Ruler

By defining resource limits, you limit a container’s resource usage, which prevents the container from
exceeding the specified maximum values for CPU and memory resources.

By defining resource requests, you specify that a container can be scheduled only on a node that has

 thanosRuler:
 tolerations:
 - key: "key1"
 operator: "Equal"
 value: "value1"
 effect: "NoSchedule"

OpenShift Dedicated 4 Monitoring

20

https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/

By defining resource requests, you specify that a container can be scheduled only on a node that has
enough CPU and memory resources available to match the requested resources.

3.6.2. Specifying limits and requests for monitoring components

To configure CPU and memory resources, specify values for resource limits and requests in the
appropriate ConfigMap object for the namespace in which the monitoring component is located:

The cluster-monitoring-config config map in the openshift-monitoring namespace for core
platform monitoring

The user-workload-monitoring-config config map in the openshift-user-workload-
monitoring namespace for components that monitor user-defined projects

Prerequisites

If you are configuring core platform monitoring components:

You have access to the cluster as a user with the cluster-admin cluster role.

You have created a ConfigMap object named cluster-monitoring-config.

If you are configuring components that monitor user-defined projects:

You have access to the cluster as a user with the cluster-admin cluster role, or as a user
with the user-workload-monitoring-config-edit role in the openshift-user-workload-
monitoring project.

You have installed the OpenShift CLI (oc).

Procedure

1. To configure core platform monitoring components, edit the cluster-monitoring-config config
map object in the openshift-monitoring namespace:

2. Add values to define resource limits and requests for each core platform monitoring component
you want to configure.

IMPORTANT

Make sure that the value set for a limit is always higher than the value set for a
request. Otherwise, an error will occur, and the container will not run.

Example

$ oc -n openshift-monitoring edit configmap cluster-monitoring-config

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 alertmanagerMain:

CHAPTER 3. CONFIGURING THE MONITORING STACK

21

 resources:
 limits:
 cpu: 500m
 memory: 1Gi
 requests:
 cpu: 200m
 memory: 500Mi
 prometheusK8s:
 resources:
 limits:
 cpu: 500m
 memory: 3Gi
 requests:
 cpu: 200m
 memory: 500Mi
 prometheusOperator:
 resources:
 limits:
 cpu: 500m
 memory: 1Gi
 requests:
 cpu: 200m
 memory: 500Mi
 metricsServer:
 resources:
 requests:
 cpu: 10m
 memory: 50Mi
 limits:
 cpu: 50m
 memory: 500Mi
 kubeStateMetrics:
 resources:
 limits:
 cpu: 500m
 memory: 1Gi
 requests:
 cpu: 200m
 memory: 500Mi
 telemeterClient:
 resources:
 limits:
 cpu: 500m
 memory: 1Gi
 requests:
 cpu: 200m
 memory: 500Mi
 openshiftStateMetrics:
 resources:
 limits:
 cpu: 500m
 memory: 1Gi
 requests:
 cpu: 200m
 memory: 500Mi
 thanosQuerier:

OpenShift Dedicated 4 Monitoring

22

3. Save the file to apply the changes. The pods affected by the new configuration are
automatically redeployed.

Additional resources

Kubernetes requests and limits documentation

3.7. CONFIGURING PERSISTENT STORAGE

Run cluster monitoring with persistent storage to gain the following benefits:

Protect your metrics and alerting data from data loss by storing them in a persistent volume
(PV). As a result, they can survive pods being restarted or recreated.

Avoid getting duplicate notifications and losing silences for alerts when the Alertmanager pods
are restarted.

For production environments, it is highly recommended to configure persistent storage.

3.7.1. Persistent storage prerequisites

Use the block type of storage.

 resources:
 limits:
 cpu: 500m
 memory: 1Gi
 requests:
 cpu: 200m
 memory: 500Mi
 nodeExporter:
 resources:
 limits:
 cpu: 50m
 memory: 150Mi
 requests:
 cpu: 20m
 memory: 50Mi
 monitoringPlugin:
 resources:
 limits:
 cpu: 500m
 memory: 1Gi
 requests:
 cpu: 200m
 memory: 500Mi
 prometheusOperatorAdmissionWebhook:
 resources:
 limits:
 cpu: 50m
 memory: 100Mi
 requests:
 cpu: 20m
 memory: 50Mi

CHAPTER 3. CONFIGURING THE MONITORING STACK

23

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/#requests-and-limits

1

2

3

3.7.2. Configuring a persistent volume claim

To use a persistent volume (PV) for monitoring components, you must configure a persistent volume
claim (PVC).

Prerequisites

You have access to the cluster as a user with the dedicated-admin role.

The user-workload-monitoring-config ConfigMap object exists. This object is created by
default when the cluster is created.

You have installed the OpenShift CLI (oc).

Procedure

1. Edit the ConfigMap object:

a. Edit the user-workload-monitoring-config ConfigMap object in the openshift-user-
workload-monitoring project:

b. Add your PVC configuration for the component under data/config.yaml:

Specify the component for user-defined monitoring for which you want to configure
the PVC.

Specify an existing storage class. If a storage class is not specified, the default storage
class is used.

Specify the amount of required storage.

See the Kubernetes documentation on PersistentVolumeClaims for information on how to
specify volumeClaimTemplate.

The following example configures a PVC that claims persistent storage for Thanos Ruler:

$ oc -n openshift-user-workload-monitoring edit configmap user-workload-monitoring-
config

apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 <component>: 1
 volumeClaimTemplate:
 spec:
 storageClassName: <storage_class> 2
 resources:
 requests:
 storage: <amount_of_storage> 3

OpenShift Dedicated 4 Monitoring

24

https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims

NOTE

Storage requirements for the thanosRuler component depend on the
number of rules that are evaluated and how many samples each rule
generates.

2. Save the file to apply the changes. The pods affected by the new configuration are
automatically redeployed and the new storage configuration is applied.

WARNING

When you update the config map with a PVC configuration, the affected
StatefulSet object is recreated, resulting in a temporary service outage.

3.7.3. Modifying the retention time and size for Prometheus metrics data

By default, Prometheus retains metrics data for the following durations:

Core platform monitoring: 15 days

Monitoring for user-defined projects: 24 hours

You can modify the retention time for the Prometheus instance that monitors user-defined projects, to
change how soon the data is deleted. You can also set the maximum amount of disk space the retained
metrics data uses. If the data reaches this size limit, Prometheus deletes the oldest data first until the
disk space used is again below the limit.

Note the following behaviors of these data retention settings:

The size-based retention policy applies to all data block directories in the /prometheus
directory, including persistent blocks, write-ahead log (WAL) data, and m-mapped chunks.

Data in the /wal and /head_chunks directories counts toward the retention size limit, but
Prometheus never purges data from these directories based on size- or time-based retention
policies. Thus, if you set a retention size limit lower than the maximum size set for the /wal and

apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 thanosRuler:
 volumeClaimTemplate:
 spec:
 storageClassName: my-storage-class
 resources:
 requests:
 storage: 10Gi

CHAPTER 3. CONFIGURING THE MONITORING STACK

25

/head_chunks directories, you have configured the system not to retain any data blocks in the
/prometheus data directories.

The size-based retention policy is applied only when Prometheus cuts a new data block, which
occurs every two hours after the WAL contains at least three hours of data.

If you do not explicitly define values for either retention or retentionSize, retention time
defaults to 15 days for core platform monitoring and 24 hours for user-defined project
monitoring. Retention size is not set.

If you define values for both retention and retentionSize, both values apply. If any data blocks
exceed the defined retention time or the defined size limit, Prometheus purges these data
blocks.

If you define a value for retentionSize and do not define retention, only the retentionSize value
applies.

If you do not define a value for retentionSize and only define a value for retention, only the
retention value applies.

If you set the retentionSize or retention value to 0, the default settings apply. The default
settings set retention time to 15 days for core platform monitoring and 24 hours for user-
defined project monitoring. By default, retention size is not set.

NOTE

Data compaction occurs every two hours. Therefore, a persistent volume (PV) might fill
up before compaction, potentially exceeding the retentionSize limit. In such cases, the
KubePersistentVolumeFillingUp alert fires until the space on a PV is lower than the
retentionSize limit.

Prerequisites

You have access to the cluster as a user with the dedicated-admin role.

The user-workload-monitoring-config ConfigMap object exists. This object is created by
default when the cluster is created.

You have installed the OpenShift CLI (oc).

Procedure

1. Edit the ConfigMap object:

a. Edit the user-workload-monitoring-config ConfigMap object in the openshift-user-
workload-monitoring project:

b. Add the retention time and size configuration under data/config.yaml:

$ oc -n openshift-user-workload-monitoring edit configmap user-workload-monitoring-
config

apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config

OpenShift Dedicated 4 Monitoring

26

1

2

The retention time: a number directly followed by ms (milliseconds), s (seconds), m
(minutes), h (hours), d (days), w (weeks), or y (years). You can also combine time
values for specific times, such as 1h30m15s.

The retention size: a number directly followed by B (bytes), KB (kilobytes), MB
(megabytes), GB (gigabytes), TB (terabytes), PB (petabytes), or EB (exabytes).

The following example sets the retention time to 24 hours and the retention size to 10
gigabytes for the Prometheus instance that monitors user-defined projects:

2. Save the file to apply the changes. The pods affected by the new configuration are
automatically redeployed.

3.7.4. Modifying the retention time for Thanos Ruler metrics data

By default, for user-defined projects, Thanos Ruler automatically retains metrics data for 24 hours. You
can modify the retention time to change how long this data is retained by specifying a time value in the
user-workload-monitoring-config config map in the openshift-user-workload-monitoring
namespace.

Prerequisites

You have access to the cluster as a user with the dedicated-admin role.

The user-workload-monitoring-config ConfigMap object exists. This object is created by
default when the cluster is created.

You have installed the OpenShift CLI (oc).

Procedure

1. Edit the user-workload-monitoring-config ConfigMap object in the openshift-user-
workload-monitoring project:

 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 prometheus:
 retention: <time_specification> 1
 retentionSize: <size_specification> 2

apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 prometheus:
 retention: 24h
 retentionSize: 10GB

$ oc -n openshift-user-workload-monitoring edit configmap user-workload-monitoring-config

CHAPTER 3. CONFIGURING THE MONITORING STACK

27

1

2. Add the retention time configuration under data/config.yaml:

Specify the retention time in the following format: a number directly followed by ms
(milliseconds), s (seconds), m (minutes), h (hours), d (days), w (weeks), or y (years). You
can also combine time values for specific times, such as 1h30m15s. The default is 24h.

The following example sets the retention time to 10 days for Thanos Ruler data:

3. Save the file to apply the changes. The pods affected by the new configuration are
automatically redeployed.

Additional resources

Understanding persistent storage

3.8. CONFIGURING REMOTE WRITE STORAGE

You can configure remote write storage to enable Prometheus to send ingested metrics to remote
systems for long-term storage. Doing so has no impact on how or for how long Prometheus stores
metrics.

Prerequisites

You have access to the cluster as a user with the dedicated-admin role.

The user-workload-monitoring-config ConfigMap object exists. This object is created by
default when the cluster is created.

You have installed the OpenShift CLI (oc).

You have set up a remote write compatible endpoint (such as Thanos) and know the endpoint
URL. See the Prometheus remote endpoints and storage documentation for information about
endpoints that are compatible with the remote write feature.

IMPORTANT

apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 thanosRuler:
 retention: <time_specification> 1

apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 thanosRuler:
 retention: 10d

OpenShift Dedicated 4 Monitoring

28

https://docs.redhat.com/en/documentation/openshift_dedicated/4/html-single/storage/#understanding-persistent-storage
https://prometheus.io/docs/operating/integrations/#remote-endpoints-and-storage

1

2

IMPORTANT

Red Hat only provides information for configuring remote write senders and does
not offer guidance on configuring receiver endpoints. Customers are responsible
for setting up their own endpoints that are remote-write compatible. Issues with
endpoint receiver configurations are not included in Red Hat production support.

You have set up authentication credentials in a Secret object for the remote write endpoint.
You must create the secret in the openshift-user-workload-monitoring namespace.

WARNING

To reduce security risks, use HTTPS and authentication to send metrics to
an endpoint.

Procedure

1. Edit the ConfigMap object:

a. Edit the user-workload-monitoring-config ConfigMap object in the openshift-user-
workload-monitoring project:

b. Add a remoteWrite: section under data/config.yaml/prometheus.

c. Add an endpoint URL and authentication credentials in this section:

The URL of the remote write endpoint.

The authentication method and credentials for the endpoint. Currently supported
authentication methods are AWS Signature Version 4, authentication using HTTP an
Authorization request header, basic authentication, OAuth 2.0, and TLS client. See
Supported remote write authentication settings below for sample configurations of
supported authentication methods.

$ oc -n openshift-user-workload-monitoring edit configmap user-workload-monitoring-
config

apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 prometheus:
 remoteWrite:
 - url: "https://remote-write-endpoint.example.com" 1
 <endpoint_authentication_credentials> 2

CHAPTER 3. CONFIGURING THE MONITORING STACK

29

1

d. Add write relabel configuration values after the authentication credentials:

The write relabel configuration settings.

For <your_write_relabel_configs> substitute a list of write relabel configurations for
metrics that you want to send to the remote endpoint.

The following sample shows how to forward a single metric called my_metric:

See the Prometheus relabel_config documentation for information about write relabel
configuration options.

2. Save the file to apply the changes. The new configuration is applied automatically.

3.8.1. Supported remote write authentication settings

You can use different methods to authenticate with a remote write endpoint. Currently supported
authentication methods are AWS Signature Version 4, basic authentication, authorization, OAuth 2.0,
and TLS client. The following table provides details about supported authentication methods for use
with remote write.

Authentication method Config map field Description

apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 prometheus:
 remoteWrite:
 - url: "https://remote-write-endpoint.example.com"
 <endpoint_authentication_credentials>
 <your_write_relabel_configs> 1

apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 prometheus:
 remoteWrite:
 - url: "https://remote-write-endpoint.example.com"
 writeRelabelConfigs:
 - sourceLabels: [__name__]
 regex: 'my_metric'
 action: keep

OpenShift Dedicated 4 Monitoring

30

https://prometheus.io/docs/prometheus/latest/configuration/configuration/#relabel_config

AWS Signature Version 4 sigv4 This method uses AWS Signature
Version 4 authentication to sign
requests. You cannot use this
method simultaneously with
authorization, OAuth 2.0, or Basic
authentication.

Basic authentication basicAuth Basic authentication sets the
authorization header on every
remote write request with the
configured username and
password.

authorization authorization Authorization sets the
Authorization header on every
remote write request using the
configured token.

OAuth 2.0 oauth2 An OAuth 2.0 configuration uses
the client credentials grant type.
Prometheus fetches an access
token from tokenUrl with the
specified client ID and client
secret to access the remote write
endpoint. You cannot use this
method simultaneously with
authorization, AWS Signature
Version 4, or Basic authentication.

TLS client tlsConfig A TLS client configuration
specifies the CA certificate, the
client certificate, and the client
key file information used to
authenticate with the remote
write endpoint server using TLS.
The sample configuration
assumes that you have already
created a CA certificate file, a
client certificate file, and a client
key file.

Authentication method Config map field Description

3.8.2. Example remote write authentication settings

The following samples show different authentication settings you can use to connect to a remote write
endpoint. Each sample also shows how to configure a corresponding Secret object that contains
authentication credentials and other relevant settings. Each sample configures authentication for use
with monitoring user-defined projects in the openshift-user-workload-monitoring namespace.

Example 3.1. Sample YAML for AWS Signature Version 4 authentication

CHAPTER 3. CONFIGURING THE MONITORING STACK

31

1

2

1

2 4

3

5

6

7

The following shows the settings for a sigv4 secret named sigv4-credentials in the openshift-user-
workload-monitoring namespace.

The AWS API access key.

The AWS API secret key.

The following shows sample AWS Signature Version 4 remote write authentication settings that use
a Secret object named sigv4-credentials in the openshift-user-workload-monitoring namespace:

The AWS region.

The name of the Secret object containing the AWS API access credentials.

The key that contains the AWS API access key in the specified Secret object.

The key that contains the AWS API secret key in the specified Secret object.

The name of the AWS profile that is being used to authenticate.

The unique identifier for the Amazon Resource Name (ARN) assigned to your role.

apiVersion: v1
kind: Secret
metadata:
 name: sigv4-credentials
 namespace: openshift-user-workload-monitoring
stringData:
 accessKey: <AWS_access_key> 1
 secretKey: <AWS_secret_key> 2
type: Opaque

apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 prometheus:
 remoteWrite:
 - url: "https://authorization.example.com/api/write"
 sigv4:
 region: <AWS_region> 1
 accessKey:
 name: sigv4-credentials 2
 key: accessKey 3
 secretKey:
 name: sigv4-credentials 4
 key: secretKey 5
 profile: <AWS_profile_name> 6
 roleArn: <AWS_role_arn> 7

OpenShift Dedicated 4 Monitoring

32

1

2

1 3

2

4

Example 3.2. Sample YAML for basic authentication

The following shows sample basic authentication settings for a Secret object named rw-basic-auth
in the openshift-user-workload-monitoring namespace:

The username.

The password.

The following sample shows a basicAuth remote write configuration that uses a Secret object
named rw-basic-auth in the openshift-user-workload-monitoring namespace. It assumes that you
have already set up authentication credentials for the endpoint.

The name of the Secret object that contains the authentication credentials.

The key that contains the username in the specified Secret object.

The key that contains the password in the specified Secret object.

Example 3.3. Sample YAML for authentication with a bearer token using a Secret Object

The following shows bearer token settings for a Secret object named rw-bearer-auth in the
openshift-user-workload-monitoring namespace:

apiVersion: v1
kind: Secret
metadata:
 name: rw-basic-auth
 namespace: openshift-user-workload-monitoring
stringData:
 user: <basic_username> 1
 password: <basic_password> 2
type: Opaque

apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 prometheus:
 remoteWrite:
 - url: "https://basicauth.example.com/api/write"
 basicAuth:
 username:
 name: rw-basic-auth 1
 key: user 2
 password:
 name: rw-basic-auth 3
 key: password 4

CHAPTER 3. CONFIGURING THE MONITORING STACK

33

1

1

2

3

The authentication token.

The following shows sample bearer token config map settings that use a Secret object named rw-
bearer-auth in the openshift-user-workload-monitoring namespace:

The authentication type of the request. The default value is Bearer.

The name of the Secret object that contains the authentication credentials.

The key that contains the authentication token in the specified Secret object.

Example 3.4. Sample YAML for OAuth 2.0 authentication

The following shows sample OAuth 2.0 settings for a Secret object named oauth2-credentials in
the openshift-user-workload-monitoring namespace:

apiVersion: v1
kind: Secret
metadata:
 name: rw-bearer-auth
 namespace: openshift-user-workload-monitoring
stringData:
 token: <authentication_token> 1
type: Opaque

apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 enableUserWorkload: true
 prometheus:
 remoteWrite:
 - url: "https://authorization.example.com/api/write"
 authorization:
 type: Bearer 1
 credentials:
 name: rw-bearer-auth 2
 key: token 3

apiVersion: v1
kind: Secret
metadata:
 name: oauth2-credentials
 namespace: openshift-user-workload-monitoring
stringData:
 id: <oauth2_id> 1
 secret: <oauth2_secret> 2
type: Opaque

OpenShift Dedicated 4 Monitoring

34

1

2

1 3

2 4

5

6

7

The Oauth 2.0 ID.

The OAuth 2.0 secret.

The following shows an oauth2 remote write authentication sample configuration that uses a Secret
object named oauth2-credentials in the openshift-user-workload-monitoring namespace:

The name of the corresponding Secret object. Note that ClientId can alternatively refer to a
ConfigMap object, although clientSecret must refer to a Secret object.

The key that contains the OAuth 2.0 credentials in the specified Secret object.

The URL used to fetch a token with the specified clientId and clientSecret.

The OAuth 2.0 scopes for the authorization request. These scopes limit what data the tokens
can access.

The OAuth 2.0 authorization request parameters required for the authorization server.

Example 3.5. Sample YAML for TLS client authentication

The following shows sample TLS client settings for a tls Secret object named mtls-bundle in the
openshift-user-workload-monitoring namespace.

apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 prometheus:
 remoteWrite:
 - url: "https://test.example.com/api/write"
 oauth2:
 clientId:
 secret:
 name: oauth2-credentials 1
 key: id 2
 clientSecret:
 name: oauth2-credentials 3
 key: secret 4
 tokenUrl: https://example.com/oauth2/token 5
 scopes: 6
 - <scope_1>
 - <scope_2>
 endpointParams: 7
 param1: <parameter_1>
 param2: <parameter_2>

apiVersion: v1
kind: Secret

CHAPTER 3. CONFIGURING THE MONITORING STACK

35

1

2

3

1 3 5

2

4

6

The CA certificate in the Prometheus container with which to validate the server certificate.

The client certificate for authentication with the server.

The client key.

The following sample shows a tlsConfig remote write authentication configuration that uses a TLS
Secret object named mtls-bundle.

The name of the corresponding Secret object that contains the TLS authentication
credentials. Note that ca and cert can alternatively refer to a ConfigMap object, though

keySecret must refer to a Secret object.

The key in the specified Secret object that contains the CA certificate for the endpoint.

The key in the specified Secret object that contains the client certificate for the endpoint.

The key in the specified Secret object that contains the client key secret.

metadata:
 name: mtls-bundle
 namespace: openshift-user-workload-monitoring
data:
 ca.crt: <ca_cert> 1
 client.crt: <client_cert> 2
 client.key: <client_key> 3
type: tls

apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 prometheus:
 remoteWrite:
 - url: "https://remote-write-endpoint.example.com"
 tlsConfig:
 ca:
 secret:
 name: mtls-bundle 1
 key: ca.crt 2
 cert:
 secret:
 name: mtls-bundle 3
 key: client.crt 4
 keySecret:
 name: mtls-bundle 5
 key: client.key 6

OpenShift Dedicated 4 Monitoring

36

Additional resources

See Setting up remote write compatible endpoints for steps to create a remote write
compatible endpoint (such as Thanos).

See Tuning remote write settings for information about how to optimize remote write settings
for different use cases.

3.9. ADDING CLUSTER ID LABELS TO METRICS

If you manage multiple OpenShift Dedicated clusters and use the remote write feature to send metrics
data from these clusters to an external storage location, you can add cluster ID labels to identify the
metrics data coming from different clusters. You can then query these labels to identify the source
cluster for a metric and distinguish that data from similar metrics data sent by other clusters.

This way, if you manage many clusters for multiple customers and send metrics data to a single
centralized storage system, you can use cluster ID labels to query metrics for a particular cluster or
customer.

Creating and using cluster ID labels involves three general steps:

Configuring the write relabel settings for remote write storage.

Adding cluster ID labels to the metrics.

Querying these labels to identify the source cluster or customer for a metric.

3.9.1. Creating cluster ID labels for metrics

You can create cluster ID labels for metrics by editing the settings in the user-workload-monitoring-
config config map in the openshift-user-workload-monitoring namespace.

Prerequisites

You have access to the cluster as a user with the dedicated-admin role.

The user-workload-monitoring-config ConfigMap object exists. This object is created by
default when the cluster is created.

You have installed the OpenShift CLI (oc).

You have configured remote write storage.

Procedure

1. Edit the ConfigMap object:

a. Edit the user-workload-monitoring-config ConfigMap object in the openshift-user-
workload-monitoring project:

b. In the writeRelabelConfigs: section under data/config.yaml/prometheus/remoteWrite,
add cluster ID relabel configuration values:

$ oc -n openshift-user-workload-monitoring edit configmap user-workload-monitoring-
config

CHAPTER 3. CONFIGURING THE MONITORING STACK

37

https://prometheus.io/docs/operating/integrations/#remote-endpoints-and-storage
https://prometheus.io/docs/practices/remote_write/#remote-write-tuning

1

2

1

2

3

Add a list of write relabel configurations for metrics that you want to send to the
remote endpoint.

Substitute the label configuration for the metrics sent to the remote write endpoint.

The following sample shows how to forward a metric with the cluster ID label cluster_id in
user-workload monitoring:

The system initially applies a temporary cluster ID source label named
__tmp_openshift_cluster_id__. This temporary label gets replaced by the cluster ID
label name that you specify.

Specify the name of the cluster ID label for metrics sent to remote write storage. If you
use a label name that already exists for a metric, that value is overwritten with the
name of this cluster ID label. For the label name, do not use
__tmp_openshift_cluster_id__. The final relabeling step removes labels that use this
name.

The replace write relabel action replaces the temporary label with the target label for
outgoing metrics. This action is the default and is applied if no action is specified.

2. Save the file to apply the changes. The new configuration is applied automatically.

apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 prometheus:
 remoteWrite:
 - url: "https://remote-write-endpoint.example.com"
 <endpoint_authentication_credentials>
 writeRelabelConfigs: 1
 - <relabel_config> 2

apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 prometheus:
 remoteWrite:
 - url: "https://remote-write-endpoint.example.com"
 writeRelabelConfigs:
 - sourceLabels:
 - __tmp_openshift_cluster_id__ 1
 targetLabel: cluster_id 2
 action: replace 3

OpenShift Dedicated 4 Monitoring

38

Additional resources

For details about write relabel configuration, see Configuring remote write storage .

3.10. CONTROLLING THE IMPACT OF UNBOUND METRICS
ATTRIBUTES IN USER-DEFINED PROJECTS

Developers can create labels to define attributes for metrics in the form of key-value pairs. The number
of potential key-value pairs corresponds to the number of possible values for an attribute. An attribute
that has an unlimited number of potential values is called an unbound attribute. For example, a
customer_id attribute is unbound because it has an infinite number of possible values.

Every assigned key-value pair has a unique time series. The use of many unbound attributes in labels
can result in an exponential increase in the number of time series created. This can impact Prometheus
performance and can consume a lot of disk space.

A dedicated-admin can use the following measures to control the impact of unbound metrics attributes
in user-defined projects:

Limit the number of samples that can be accepted per target scrape in user-defined projects

Limit the number of scraped labels, the length of label names, and the length of label values

Create alerts that fire when a scrape sample threshold is reached or when the target cannot be
scraped

NOTE

Limiting scrape samples can help prevent the issues caused by adding many unbound
attributes to labels. Developers can also prevent the underlying cause by limiting the
number of unbound attributes that they define for metrics. Using attributes that are
bound to a limited set of possible values reduces the number of potential key-value pair
combinations.

3.10.1. Setting scrape sample and label limits for user-defined projects

You can limit the number of samples that can be accepted per target scrape in user-defined projects.
You can also limit the number of scraped labels, the length of label names, and the length of label
values.

WARNING

If you set sample or label limits, no further sample data is ingested for that target
scrape after the limit is reached.

Prerequisites

You have access to the cluster as a user with the dedicated-admin role.

The user-workload-monitoring-config ConfigMap object exists. This object is created by

CHAPTER 3. CONFIGURING THE MONITORING STACK

39

1

1

2

3

The user-workload-monitoring-config ConfigMap object exists. This object is created by
default when the cluster is created.

You have installed the OpenShift CLI (oc).

Procedure

1. Edit the user-workload-monitoring-config ConfigMap object in the openshift-user-
workload-monitoring project:

2. Add the enforcedSampleLimit configuration to data/config.yaml to limit the number of
samples that can be accepted per target scrape in user-defined projects:

A value is required if this parameter is specified. This enforcedSampleLimit example limits
the number of samples that can be accepted per target scrape in user-defined projects to
50,000.

3. Add the enforcedLabelLimit, enforcedLabelNameLengthLimit, and
enforcedLabelValueLengthLimit configurations to data/config.yaml to limit the number of
scraped labels, the length of label names, and the length of label values in user-defined
projects:

Specifies the maximum number of labels per scrape. The default value is 0, which specifies
no limit.

Specifies the maximum length in characters of a label name. The default value is 0, which
specifies no limit.

Specifies the maximum length in characters of a label value. The default value is 0, which
specifies no limit.

$ oc -n openshift-user-workload-monitoring edit configmap user-workload-monitoring-config

apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 prometheus:
 enforcedSampleLimit: 50000 1

apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 prometheus:
 enforcedLabelLimit: 500 1
 enforcedLabelNameLengthLimit: 50 2
 enforcedLabelValueLengthLimit: 600 3

OpenShift Dedicated 4 Monitoring

40

4. Save the file to apply the changes. The limits are applied automatically.

CHAPTER 3. CONFIGURING THE MONITORING STACK

41

CHAPTER 4. CONFIGURING EXTERNAL ALERTMANAGER
INSTANCES

The OpenShift Dedicated monitoring stack includes a local Alertmanager instance that routes alerts
from Prometheus. You can add external Alertmanager instances to route alerts for user-defined
projects.

If you add the same external Alertmanager configuration for multiple clusters and disable the local
instance for each cluster, you can then manage alert routing for multiple clusters by using a single
external Alertmanager instance.

Prerequisites

You have access to the cluster as a user with the dedicated-admin role.

The user-workload-monitoring-config ConfigMap object exists. This object is created by
default when the cluster is created.

You have installed the OpenShift CLI (oc).

Procedure

1. Edit the ConfigMap object.

a. Edit the user-workload-monitoring-config config map in the openshift-user-workload-
monitoring project:

b. Add a <component>/additionalAlertmanagerConfigs: section under data/config.yaml/.

c. Add the configuration details for additional Alertmanagers in this section:

For <component>, substitute one of two supported external Alertmanager components:
prometheus or thanosRuler.

For <alertmanager_specification>, substitute authentication and other configuration
details for additional Alertmanager instances. Currently supported authentication methods
are bearer token (bearerToken) and client TLS (tlsConfig). The following sample config
map configures an additional Alertmanager using Thanos Ruler with a bearer token and
client TLS authentication:

$ oc -n openshift-user-workload-monitoring edit configmap user-workload-monitoring-
config

apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 <component>:
 additionalAlertmanagerConfigs:
 - <alertmanager_specification>

OpenShift Dedicated 4 Monitoring

42

2. Save the file to apply the changes. The pods affected by the new configuration are
automatically redeployed.

apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 thanosRuler:
 additionalAlertmanagerConfigs:
 - scheme: https
 pathPrefix: /
 timeout: "30s"
 apiVersion: v1
 bearerToken:
 name: alertmanager-bearer-token
 key: token
 tlsConfig:
 key:
 name: alertmanager-tls
 key: tls.key
 cert:
 name: alertmanager-tls
 key: tls.crt
 ca:
 name: alertmanager-tls
 key: tls.ca
 staticConfigs:
 - external-alertmanager1-remote.com
 - external-alertmanager1-remote2.com

CHAPTER 4. CONFIGURING EXTERNAL ALERTMANAGER INSTANCES

43

CHAPTER 5. CONFIGURING SECRETS FOR ALERTMANAGER
The OpenShift Dedicated monitoring stack includes Alertmanager, which routes alerts from Prometheus
to endpoint receivers. If you need to authenticate with a receiver so that Alertmanager can send alerts
to it, you can configure Alertmanager to use a secret that contains authentication credentials for the
receiver.

For example, you can configure Alertmanager to use a secret to authenticate with an endpoint receiver
that requires a certificate issued by a private Certificate Authority (CA). You can also configure
Alertmanager to use a secret to authenticate with a receiver that requires a password file for Basic HTTP
authentication. In either case, authentication details are contained in the Secret object rather than in
the ConfigMap object.

5.1. ADDING A SECRET TO THE ALERTMANAGER CONFIGURATION

You can add secrets to the Alertmanager configuration for user-defined projects by editing the user-
workload-monitoring-config config map in the openshift-user-workload-monitoring project.

After you add a secret to the config map, the secret is mounted as a volume at
/etc/alertmanager/secrets/<secret_name> within the alertmanager container for the Alertmanager
pods.

Prerequisites

You have access to the cluster as a user with the dedicated-admin role.

The user-workload-monitoring-config ConfigMap object exists. This object is created by
default when the cluster is created.

You have created the secret to be configured in Alertmanager in the openshift-user-workload-
monitoring project.

You have installed the OpenShift CLI (oc).

Procedure

1. Edit the ConfigMap object.

a. Edit the user-workload-monitoring-config config map in the openshift-user-workload-
monitoring project:

b. Add a secrets: section under data/config.yaml/alertmanager/secrets with the following
configuration:

$ oc -n openshift-user-workload-monitoring edit configmap user-workload-monitoring-
config

apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 alertmanager:

OpenShift Dedicated 4 Monitoring

44

1

2

This section contains the secrets to be mounted into Alertmanager. The secrets must
be located within the same namespace as the Alertmanager object.

The name of the Secret object that contains authentication credentials for the
receiver. If you add multiple secrets, place each one on a new line.

The following sample config map settings configure Alertmanager to use two Secret
objects named test-secret and test-secret-api-token:

2. Save the file to apply the changes. The new configuration is applied automatically.

5.2. ATTACHING ADDITIONAL LABELS TO YOUR TIME SERIES AND
ALERTS

You can attach custom labels to all time series and alerts leaving Prometheus by using the external
labels feature of Prometheus.

Prerequisites

You have access to the cluster as a user with the dedicated-admin role.

The user-workload-monitoring-config ConfigMap object exists. This object is created by
default when the cluster is created.

You have installed the OpenShift CLI (oc).

Procedure

1. Edit the ConfigMap object:

a. Edit the user-workload-monitoring-config ConfigMap object in the openshift-user-
workload-monitoring project:

 secrets: 1
 - <secret_name_1> 2
 - <secret_name_2>

apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 alertmanager:
 enabled: true
 secrets:
 - test-secret
 - test-api-receiver-token

$ oc -n openshift-user-workload-monitoring edit configmap user-workload-monitoring-
config

CHAPTER 5. CONFIGURING SECRETS FOR ALERTMANAGER

45

1

b. Define a map of labels you want to add for every metric under data/config.yaml:

Substitute <key>: <value> with a map of key-value pairs where <key> is a unique
name for the new label and <value> is its value.

WARNING

Do not use prometheus or prometheus_replica as key names,
because they are reserved and will be overwritten.

Do not use cluster or managed_cluster as key names. Using them
can cause issues where you are unable to see data in the developer
dashboards.

NOTE

In the openshift-user-workload-monitoring project, Prometheus handles
metrics and Thanos Ruler handles alerting and recording rules. Setting
externalLabels for prometheus in the user-workload-monitoring-config
ConfigMap object will only configure external labels for metrics and not for
any rules.

For example, to add metadata about the region and environment to all time series and
alerts related to user-defined projects, use the following example:

c. Save the file to apply the changes. The pods affected by the new configuration are

apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 prometheus:
 externalLabels:
 <key>: <value> 1

apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 prometheus:
 externalLabels:
 region: eu
 environment: prod

OpenShift Dedicated 4 Monitoring

46

c. Save the file to apply the changes. The pods affected by the new configuration are
automatically redeployed.

CHAPTER 5. CONFIGURING SECRETS FOR ALERTMANAGER

47

CHAPTER 6. USING POD TOPOLOGY SPREAD CONSTRAINTS
FOR MONITORING

You can use pod topology spread constraints to control how the pods for user-defined monitoring are
spread across a network topology when OpenShift Dedicated pods are deployed in multiple availability
zones.

Pod topology spread constraints are suitable for controlling pod scheduling within hierarchical
topologies in which nodes are spread across different infrastructure levels, such as regions and zones
within those regions. Additionally, by being able to schedule pods in different zones, you can improve
network latency in certain scenarios.

Additional resources

Kubernetes Pod Topology Spread Constraints documentation

6.1. CONFIGURING POD TOPOLOGY SPREAD CONSTRAINTS

You can configure pod topology spread constraints for all the pods for user-defined monitoring to
control how pod replicas are scheduled to nodes across zones. This ensures that the pods are highly
available and run more efficiently, because workloads are spread across nodes in different data centers
or hierarchical infrastructure zones.

You can configure pod topology spread constraints for monitoring pods by using the user-workload-
monitoring-config config map.

Prerequisites

You have access to the cluster as a user with the dedicated-admin role.

The user-workload-monitoring-config ConfigMap object exists. This object is created by
default when the cluster is created.

You have installed the OpenShift CLI (oc).

Procedure

1. Edit the user-workload-monitoring-config config map in the openshift-user-workload-
monitoring project:

2. Add the following settings under the data/config.yaml field to configure pod topology spread
constraints:

$ oc -n openshift-user-workload-monitoring edit configmap user-workload-monitoring-config

apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 <component>: 1
 topologySpreadConstraints:

OpenShift Dedicated 4 Monitoring

48

https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/

1

2

3

4

5

Specify a name of the component for which you want to set up pod topology spread
constraints.

Specify a numeric value for maxSkew, which defines the degree to which pods are allowed
to be unevenly distributed.

Specify a key of node labels for topologyKey. Nodes that have a label with this key and
identical values are considered to be in the same topology. The scheduler tries to put a
balanced number of pods into each domain.

Specify a value for whenUnsatisfiable. Available options are DoNotSchedule and
ScheduleAnyway. Specify DoNotSchedule if you want the maxSkew value to define the
maximum difference allowed between the number of matching pods in the target topology
and the global minimum. Specify ScheduleAnyway if you want the scheduler to still
schedule the pod but to give higher priority to nodes that might reduce the skew.

Specify labelSelector to find matching pods. Pods that match this label selector are
counted to determine the number of pods in their corresponding topology domain.

Example configuration for Thanos Ruler

3. Save the file to apply the changes. The pods affected by the new configuration are
automatically redeployed.

6.2. SETTING LOG LEVELS FOR MONITORING COMPONENTS

You can configure the log level for Alertmanager, Prometheus Operator, Prometheus, and Thanos
Ruler.

The following log levels can be applied to the relevant component in the user-workload-monitoring-
config ConfigMap objects:

 - maxSkew: <n> 2
 topologyKey: <key> 3
 whenUnsatisfiable: <value> 4
 labelSelector: 5
 <match_option>

apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 thanosRuler:
 topologySpreadConstraints:
 - maxSkew: 1
 topologyKey: monitoring
 whenUnsatisfiable: ScheduleAnyway
 labelSelector:
 matchLabels:
 app.kubernetes.io/name: thanos-ruler

CHAPTER 6. USING POD TOPOLOGY SPREAD CONSTRAINTS FOR MONITORING

49

1

2

debug. Log debug, informational, warning, and error messages.

info. Log informational, warning, and error messages.

warn. Log warning and error messages only.

error. Log error messages only.

The default log level is info.

Prerequisites

You have access to the cluster as a user with the dedicated-admin role.

The user-workload-monitoring-config ConfigMap object exists. This object is created by
default when the cluster is created.

You have installed the OpenShift CLI (oc).

Procedure

1. Edit the ConfigMap object:

a. Edit the user-workload-monitoring-config ConfigMap object in the openshift-user-
workload-monitoring project:

b. Add logLevel: <log_level> for a component under data/config.yaml:

The monitoring stack component for which you are setting a log level. For user
workload monitoring, available component values are alertmanager, prometheus,
prometheusOperator, and thanosRuler.

The log level to apply to the component. The available values are error, warn, info, and
debug. The default value is info.

2. Save the file to apply the changes. The pods affected by the new configuration are
automatically redeployed.

3. Confirm that the log-level has been applied by reviewing the deployment or pod configuration
in the related project. The following example checks the log level in the prometheus-operator
deployment in the openshift-user-workload-monitoring project:

$ oc -n openshift-user-workload-monitoring edit configmap user-workload-monitoring-
config

apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 <component>: 1
 logLevel: <log_level> 2

OpenShift Dedicated 4 Monitoring

50

Example output

4. Check that the pods for the component are running. The following example lists the status of
pods in the openshift-user-workload-monitoring project:

NOTE

If an unrecognized logLevel value is included in the ConfigMap object, the pods
for the component might not restart successfully.

6.3. ENABLING THE QUERY LOG FILE FOR PROMETHEUS

You can configure Prometheus to write all queries that have been run by the engine to a log file.

IMPORTANT

Because log rotation is not supported, only enable this feature temporarily when you
need to troubleshoot an issue. After you finish troubleshooting, disable query logging by
reverting the changes you made to the ConfigMap object to enable the feature.

Prerequisites

You have access to the cluster as a user with the dedicated-admin role.

The user-workload-monitoring-config ConfigMap object exists. This object is created by
default when the cluster is created.

You have installed the OpenShift CLI (oc).

Procedure

1. Edit the user-workload-monitoring-config ConfigMap object in the openshift-user-
workload-monitoring project:

2. Add queryLogFile: <path> for prometheus under data/config.yaml:

$ oc -n openshift-user-workload-monitoring get deploy prometheus-operator -o yaml | grep
"log-level"

 - --log-level=debug

$ oc -n openshift-user-workload-monitoring get pods

$ oc -n openshift-user-workload-monitoring edit configmap user-workload-monitoring-config

apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:

CHAPTER 6. USING POD TOPOLOGY SPREAD CONSTRAINTS FOR MONITORING

51

1 The full path to the file in which queries will be logged.

3. Save the file to apply the changes. The pods affected by the new configuration are
automatically redeployed.

4. Verify that the pods for the component are running. The following example command lists the
status of pods in the openshift-user-workload-monitoring project:

5. Read the query log:

IMPORTANT

Revert the setting in the config map after you have examined the logged query
information.

 config.yaml: |
 prometheus:
 queryLogFile: <path> 1

$ oc -n openshift-user-workload-monitoring get pods

$ oc -n openshift-user-workload-monitoring exec prometheus-user-workload-0 -- cat <path>

OpenShift Dedicated 4 Monitoring

52

CHAPTER 7. DISABLING MONITORING FOR USER-DEFINED
PROJECTS

Additional resources

As a dedicated-admin, you can disable monitoring for user-defined projects. You can also exclude
individual projects from user workload monitoring.

7.1. DISABLING MONITORING FOR USER-DEFINED PROJECTS

By default, monitoring for user-defined projects is enabled. If you do not want to use the built-in
monitoring stack to monitor user-defined projects, you can disable it.

Prerequisites

You logged in to OpenShift Cluster Manager.

Procedure

1. From the OpenShift Cluster Manager Hybrid Cloud Console, select a cluster.

2. Click the Settings tab.

3. Click the Enable user workload monitoring check box to unselect the option, and then click
Save.
User workload monitoring is disabled. The Prometheus, Prometheus Operator, and Thanos
Ruler components are stopped in the openshift-user-workload-monitoring project.

7.2. EXCLUDING A USER-DEFINED PROJECT FROM MONITORING

Individual user-defined projects can be excluded from user workload monitoring. To do so, add the
openshift.io/user-monitoring label to the project’s namespace with a value of false.

Procedure

1. Add the label to the project namespace:

2. To re-enable monitoring, remove the label from the namespace:

NOTE

If there were any active monitoring targets for the project, it may take a few
minutes for Prometheus to stop scraping them after adding the label.

$ oc label namespace my-project 'openshift.io/user-monitoring=false'

$ oc label namespace my-project 'openshift.io/user-monitoring-'

CHAPTER 7. DISABLING MONITORING FOR USER-DEFINED PROJECTS

53

https://console.redhat.com/openshift

CHAPTER 8. ENABLING ALERT ROUTING FOR USER-DEFINED
PROJECTS

In OpenShift Dedicated, a dedicated-admin can enable alert routing for user-defined projects. This
process consists of two general steps:

Enable alert routing for user-defined projects to use a separate Alertmanager instance.

Grant users permission to configure alert routing for user-defined projects.

After you complete these steps, developers and other users can configure custom alerts and alert
routing for their user-defined projects.

8.1. UNDERSTANDING ALERT ROUTING FOR USER-DEFINED
PROJECTS

As a dedicated-admin, you can enable alert routing for user-defined projects. With this feature, you can
allow users with the alert-routing-edit role to configure alert notification routing and receivers for
user-defined projects. These notifications are routed by an Alertmanager instance dedicated to user-
defined monitoring.

Users can then create and configure user-defined alert routing by creating or editing the
AlertmanagerConfig objects for their user-defined projects without the help of an administrator.

After a user has defined alert routing for a user-defined project, user-defined alert notifications are
routed to the alertmanager-user-workload pods in the openshift-user-workload-monitoring
namespace.

NOTE

The following are limitations of alert routing for user-defined projects:

For user-defined alerting rules, user-defined routing is scoped to the namespace
in which the resource is defined. For example, a routing configuration in
namespace ns1 only applies to PrometheusRules resources in the same
namespace.

When a namespace is excluded from user-defined monitoring,
AlertmanagerConfig resources in the namespace cease to be part of the
Alertmanager configuration.

8.2. ENABLING A SEPARATE ALERTMANAGER INSTANCE FOR USER-
DEFINED ALERT ROUTING

In OpenShift Dedicated, you may want to deploy a dedicated Alertmanager instance for user-defined
projects, which provides user-defined alerts separate from default platform alerts. In these cases, you
can optionally enable a separate instance of Alertmanager to send alerts for user-defined projects only.

Prerequisites

You have access to the cluster as a user with the dedicated-admin role.

The user-workload-monitoring-config ConfigMap object exists. This object is created by

OpenShift Dedicated 4 Monitoring

54

1

2

The user-workload-monitoring-config ConfigMap object exists. This object is created by
default when the cluster is created.

You have installed the OpenShift CLI (oc).

Procedure

1. Edit the user-workload-monitoring-config ConfigMap object:

2. Add enabled: true and enableAlertmanagerConfig: true in the alertmanager section under
data/config.yaml:

Set the enabled value to true to enable a dedicated instance of the Alertmanager for
user-defined projects in a cluster. Set the value to false or omit the key entirely to disable
the Alertmanager for user-defined projects. If you set this value to false or if the key is
omitted, user-defined alerts are routed to the default platform Alertmanager instance.

Set the enableAlertmanagerConfig value to true to enable users to define their own alert
routing configurations with AlertmanagerConfig objects.

3. Save the file to apply the changes. The dedicated instance of Alertmanager for user-defined
projects starts automatically.

Verification

Verify that the alert-manager-user-workload pods are running:

Example output

8.3. GRANTING USERS PERMISSION TO CONFIGURE ALERT ROUTING
FOR USER-DEFINED PROJECTS

$ oc -n openshift-user-workload-monitoring edit configmap user-workload-monitoring-config

apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 alertmanager:
 enabled: true 1
 enableAlertmanagerConfig: true 2

oc -n openshift-user-workload-monitoring get pods

NAME READY STATUS RESTARTS AGE
alertmanager-user-workload-0 6/6 Running 0 38s
alertmanager-user-workload-1 6/6 Running 0 38s
...

CHAPTER 8. ENABLING ALERT ROUTING FOR USER-DEFINED PROJECTS

55

1

You can grant users permission to configure alert routing for user-defined projects.

Prerequisites

You have access to the cluster as a user with the dedicated-admin role.

The user-workload-monitoring-config ConfigMap object exists. This object is created by
default when the cluster is created.

The user account that you are assigning the role to already exists.

You have installed the OpenShift CLI (oc).

Procedure

Assign the alert-routing-edit cluster role to a user in the user-defined project:

For <namespace>, substitute the namespace for the user-defined project, such as ns1.
For <user>, substitute the username for the account to which you want to assign the role.

Additional resources

Creating alert routing for user-defined projects

$ oc -n <namespace> adm policy add-role-to-user alert-routing-edit <user> 1

OpenShift Dedicated 4 Monitoring

56

CHAPTER 9. MANAGING METRICS
You can collect metrics to monitor how cluster components and your own workloads are performing.

9.1. UNDERSTANDING METRICS

In OpenShift Dedicated, cluster components are monitored by scraping metrics exposed through
service endpoints. You can also configure metrics collection for user-defined projects. Metrics enable
you to monitor how cluster components and your own workloads are performing.

You can define the metrics that you want to provide for your own workloads by using Prometheus client
libraries at the application level.

In OpenShift Dedicated, metrics are exposed through an HTTP service endpoint under the /metrics
canonical name. You can list all available metrics for a service by running a curl query against
http://<endpoint>/metrics. For instance, you can expose a route to the prometheus-example-app
example application and then run the following to view all of its available metrics:

Example output

Additional resources

Prometheus client library documentation

9.2. SETTING UP METRICS COLLECTION FOR USER-DEFINED
PROJECTS

You can create a ServiceMonitor resource to scrape metrics from a service endpoint in a user-defined
project. This assumes that your application uses a Prometheus client library to expose metrics to the
/metrics canonical name.

This section describes how to deploy a sample service in a user-defined project and then create a
ServiceMonitor resource that defines how that service should be monitored.

9.2.1. Deploying a sample service

To test monitoring of a service in a user-defined project, you can deploy a sample service.

Procedure

1. Create a YAML file for the service configuration. In this example, it is called prometheus-
example-app.yaml.

$ curl http://<example_app_endpoint>/metrics

HELP http_requests_total Count of all HTTP requests
TYPE http_requests_total counter
http_requests_total{code="200",method="get"} 4
http_requests_total{code="404",method="get"} 2
HELP version Version information about this binary
TYPE version gauge
version{version="v0.1.0"} 1

CHAPTER 9. MANAGING METRICS

57

https://prometheus.io/docs/instrumenting/clientlibs/

2. Add the following deployment and service configuration details to the file:

This configuration deploys a service named prometheus-example-app in the user-defined ns1
project. This service exposes the custom version metric.

3. Apply the configuration to the cluster:

It takes some time to deploy the service.

4. You can check that the pod is running:

apiVersion: v1
kind: Namespace
metadata:
 name: ns1

apiVersion: apps/v1
kind: Deployment
metadata:
 labels:
 app: prometheus-example-app
 name: prometheus-example-app
 namespace: ns1
spec:
 replicas: 1
 selector:
 matchLabels:
 app: prometheus-example-app
 template:
 metadata:
 labels:
 app: prometheus-example-app
 spec:
 containers:
 - image: ghcr.io/rhobs/prometheus-example-app:0.4.2
 imagePullPolicy: IfNotPresent
 name: prometheus-example-app

apiVersion: v1
kind: Service
metadata:
 labels:
 app: prometheus-example-app
 name: prometheus-example-app
 namespace: ns1
spec:
 ports:
 - port: 8080
 protocol: TCP
 targetPort: 8080
 name: web
 selector:
 app: prometheus-example-app
 type: ClusterIP

$ oc apply -f prometheus-example-app.yaml

OpenShift Dedicated 4 Monitoring

58

Example output

9.2.2. Specifying how a service is monitored

To use the metrics exposed by your service, you must configure OpenShift Dedicated monitoring to
scrape metrics from the /metrics endpoint. You can do this using a ServiceMonitor custom resource
definition (CRD) that specifies how a service should be monitored, or a PodMonitor CRD that specifies
how a pod should be monitored. The former requires a Service object, while the latter does not, allowing
Prometheus to directly scrape metrics from the metrics endpoint exposed by a pod.

This procedure shows you how to create a ServiceMonitor resource for a service in a user-defined
project.

Prerequisites

You have access to the cluster as a user with the dedicated-admin role or the monitoring-edit
role.

For this example, you have deployed the prometheus-example-app sample service in the ns1
project.

NOTE

The prometheus-example-app sample service does not support TLS
authentication.

Procedure

1. Create a new YAML configuration file named example-app-service-monitor.yaml.

2. Add a ServiceMonitor resource to the YAML file. The following example creates a service
monitor named prometheus-example-monitor to scrape metrics exposed by the prometheus-
example-app service in the ns1 namespace:

$ oc -n ns1 get pod

NAME READY STATUS RESTARTS AGE
prometheus-example-app-7857545cb7-sbgwq 1/1 Running 0 81m

apiVersion: monitoring.coreos.com/v1
kind: ServiceMonitor
metadata:
 name: prometheus-example-monitor
 namespace: ns1 1
spec:
 endpoints:
 - interval: 30s
 port: web 2
 scheme: http
 selector: 3
 matchLabels:
 app: prometheus-example-app

CHAPTER 9. MANAGING METRICS

59

1

2

3

1

Specify a user-defined namespace where your service runs.

Specify endpoint ports to be scraped by Prometheus.

Configure a selector to match your service based on its metadata labels.

NOTE

A ServiceMonitor resource in a user-defined namespace can only discover
services in the same namespace. That is, the namespaceSelector field of the
ServiceMonitor resource is always ignored.

3. Apply the configuration to the cluster:

It takes some time to deploy the ServiceMonitor resource.

4. Verify that the ServiceMonitor resource is running:

Example output

9.2.3. Example service endpoint authentication settings

You can configure authentication for service endpoints for user-defined project monitoring by using
ServiceMonitor and PodMonitor custom resource definitions (CRDs).

The following samples show different authentication settings for a ServiceMonitor resource. Each
sample shows how to configure a corresponding Secret object that contains authentication credentials
and other relevant settings.

9.2.3.1. Sample YAML authentication with a bearer token

The following sample shows bearer token settings for a Secret object named example-bearer-auth in
the ns1 namespace:

Example bearer token secret

Specify an authentication token.

$ oc apply -f example-app-service-monitor.yaml

$ oc -n <namespace> get servicemonitor

NAME AGE
prometheus-example-monitor 81m

apiVersion: v1
kind: Secret
metadata:
 name: example-bearer-auth
 namespace: ns1
stringData:
 token: <authentication_token> 1

OpenShift Dedicated 4 Monitoring

60

1

2

1

2

The following sample shows bearer token authentication settings for a ServiceMonitor CRD. The
example uses a Secret object named example-bearer-auth:

Example bearer token authentication settings

The key that contains the authentication token in the specified Secret object.

The name of the Secret object that contains the authentication credentials.

IMPORTANT

Do not use bearerTokenFile to configure bearer token. If you use the bearerTokenFile
configuration, the ServiceMonitor resource is rejected.

9.2.3.2. Sample YAML for Basic authentication

The following sample shows Basic authentication settings for a Secret object named example-basic-
auth in the ns1 namespace:

Example Basic authentication secret

Specify a username for authentication.

Specify a password for authentication.

The following sample shows Basic authentication settings for a ServiceMonitor CRD. The example uses
a Secret object named example-basic-auth:

apiVersion: monitoring.coreos.com/v1
kind: ServiceMonitor
metadata:
 name: prometheus-example-monitor
 namespace: ns1
spec:
 endpoints:
 - authorization:
 credentials:
 key: token 1
 name: example-bearer-auth 2
 port: web
 selector:
 matchLabels:
 app: prometheus-example-app

apiVersion: v1
kind: Secret
metadata:
 name: example-basic-auth
 namespace: ns1
stringData:
 user: <basic_username> 1
 password: <basic_password> 2

CHAPTER 9. MANAGING METRICS

61

1

2 4

3

1

2

Example Basic authentication settings

The key that contains the username in the specified Secret object.

The name of the Secret object that contains the Basic authentication.

The key that contains the password in the specified Secret object.

9.2.3.3. Sample YAML authentication with OAuth 2.0

The following sample shows OAuth 2.0 settings for a Secret object named example-oauth2 in the ns1
namespace:

Example OAuth 2.0 secret

Specify an Oauth 2.0 ID.

Specify an Oauth 2.0 secret.

The following sample shows OAuth 2.0 authentication settings for a ServiceMonitor CRD. The example
uses a Secret object named example-oauth2:

Example OAuth 2.0 authentication settings

apiVersion: monitoring.coreos.com/v1
kind: ServiceMonitor
metadata:
 name: prometheus-example-monitor
 namespace: ns1
spec:
 endpoints:
 - basicAuth:
 username:
 key: user 1
 name: example-basic-auth 2
 password:
 key: password 3
 name: example-basic-auth 4
 port: web
 selector:
 matchLabels:
 app: prometheus-example-app

apiVersion: v1
kind: Secret
metadata:
 name: example-oauth2
 namespace: ns1
stringData:
 id: <oauth2_id> 1
 secret: <oauth2_secret> 2

OpenShift Dedicated 4 Monitoring

62

1

2 4

3

5

The key that contains the OAuth 2.0 ID in the specified Secret object.

The name of the Secret object that contains the OAuth 2.0 credentials.

The key that contains the OAuth 2.0 secret in the specified Secret object.

The URL used to fetch a token with the specified clientId and clientSecret.

Additional resources

How to scrape metrics using TLS in a ServiceMonitor configuration in a user-defined project

9.3. QUERYING METRICS

The OpenShift Dedicated monitoring dashboard enables you to run Prometheus Query Language
(PromQL) queries to examine metrics visualized on a plot. This functionality provides information about
the state of a cluster and any user-defined workloads that you are monitoring.

As a dedicated-admin, you can query one or more namespaces at a time for metrics about user-defined
projects.

As a developer, you must specify a project name when querying metrics. You must have the required
privileges to view metrics for the selected project.

9.3.1. Querying metrics for all projects as a cluster administrator

As a dedicated-admin or as a user with view permissions for all projects, you can access metrics for all
default OpenShift Dedicated and user-defined projects in the Metrics UI.

NOTE

apiVersion: monitoring.coreos.com/v1
kind: ServiceMonitor
metadata:
 name: prometheus-example-monitor
 namespace: ns1
spec:
 endpoints:
 - oauth2:
 clientId:
 secret:
 key: id 1
 name: example-oauth2 2
 clientSecret:
 key: secret 3
 name: example-oauth2 4
 tokenUrl: https://example.com/oauth2/token 5
 port: web
 selector:
 matchLabels:
 app: prometheus-example-app

CHAPTER 9. MANAGING METRICS

63

https://access.redhat.com/articles/6675491

NOTE

Only dedicated administrators have access to the third-party UIs provided with
OpenShift Dedicated monitoring.

Prerequisites

You have access to the cluster as a user with the dedicated-admin role or with view permissions
for all projects.

You have installed the OpenShift CLI (oc).

Procedure

1. From the Administrator perspective in the OpenShift Dedicated web console, select Observe
→ Metrics.

2. To add one or more queries, do any of the following:

Option Description

Create a custom query. Add your Prometheus Query Language
(PromQL) query to the Expression field.

As you type a PromQL expression,
autocomplete suggestions appear in a drop-
down list. These suggestions include functions,
metrics, labels, and time tokens. You can use the
keyboard arrows to select one of these
suggested items and then press Enter to add the
item to your expression. You can also move your
mouse pointer over a suggested item to view a
brief description of that item.

Add multiple queries. Select Add query.

Duplicate an existing query.

Select the Options menu next to the
query, then choose Duplicate query.

Disable a query from being run.

Select the Options menu next to the
query and choose Disable query.

3. To run queries that you created, select Run queries. The metrics from the queries are visualized
on the plot. If a query is invalid, the UI shows an error message.

NOTE

OpenShift Dedicated 4 Monitoring

64

NOTE

Queries that operate on large amounts of data might time out or overload the
browser when drawing time series graphs. To avoid this, select Hide graph and
calibrate your query using only the metrics table. Then, after finding a feasible
query, enable the plot to draw the graphs.

NOTE

By default, the query table shows an expanded view that lists every metric and its
current value. You can select ˅ to minimize the expanded view for a query.

4. Optional: The page URL now contains the queries you ran. To use this set of queries again in the
future, save this URL.

5. Explore the visualized metrics. Initially, all metrics from all enabled queries are shown on the plot.
You can select which metrics are shown by doing any of the following:

Option Description

Hide all metrics from a query.

Click the Options menu for the query and
click Hide all series.

Hide a specific metric. Go to the query table and click the colored
square near the metric name.

Zoom into the plot and change the time range. Either:

Visually select the time range by clicking and
dragging on the plot horizontally.

Use the menu in the left upper corner to
select the time range.

Reset the time range. Select Reset zoom.

Display outputs for all queries at a specific point
in time.

Hold the mouse cursor on the plot at that point.
The query outputs will appear in a pop-up box.

Hide the plot. Select Hide graph.

Additional resources

For more information about creating PromQL queries, see the Prometheus query
documentation.

9.3.2. Querying metrics for user-defined projects as a developer

You can access metrics for a user-defined project as a developer or as a user with view permissions for
the project.

CHAPTER 9. MANAGING METRICS

65

https://prometheus.io/docs/prometheus/latest/querying/basics/

In the Developer perspective, the Metrics UI includes some predefined CPU, memory, bandwidth, and
network packet queries for the selected project. You can also run custom Prometheus Query Language
(PromQL) queries for CPU, memory, bandwidth, network packet and application metrics for the project.

NOTE

Developers can only use the Developer perspective and not the Administrator
perspective. As a developer, you can only query metrics for one project at a time.
Developers cannot access the third-party UIs provided with OpenShift Dedicated
monitoring.

Prerequisites

You have access to the cluster as a developer or as a user with view permissions for the project
that you are viewing metrics for.

You have enabled monitoring for user-defined projects.

You have deployed a service in a user-defined project.

You have created a ServiceMonitor custom resource definition (CRD) for the service to define
how the service is monitored.

Procedure

1. From the Developer perspective in the OpenShift Dedicated web console, select Observe →
Metrics.

2. Select the project that you want to view metrics for in the Project: list.

3. Select a query from the Select query list, or create a custom PromQL query based on the
selected query by selecting Show PromQL. The metrics from the queries are visualized on the
plot.

NOTE

In the Developer perspective, you can only run one query at a time.

4. Explore the visualized metrics by doing any of the following:

Option Description

Zoom into the plot and change the time range. Either:

Visually select the time range by clicking and
dragging on the plot horizontally.

Use the menu in the left upper corner to
select the time range.

Reset the time range. Select Reset zoom.

OpenShift Dedicated 4 Monitoring

66

Display outputs for all queries at a specific point
in time.

Hold the mouse cursor on the plot at that point.
The query outputs appear in a pop-up box.

Option Description

Additional resources

For more information about creating PromQL queries, see the Prometheus query
documentation.

9.4. GETTING DETAILED INFORMATION ABOUT A METRICS TARGET

In the Administrator perspective in the OpenShift Dedicated web console, you can use the Metrics
targets page to view, search, and filter the endpoints that are currently targeted for scraping, which
helps you to identify and troubleshoot problems. For example, you can view the current status of
targeted endpoints to see when OpenShift Dedicated Monitoring is not able to scrape metrics from a
targeted component.

The Metrics targets page shows targets for user-defined projects.

Prerequisites

You have access to the cluster as a user with the dedicated-admin role.

Procedure

1. In the Administrator perspective, select Observe → Targets. The Metrics targets page opens
with a list of all service endpoint targets that are being scraped for metrics.
This page shows details about targets for default OpenShift Dedicated and user-defined
projects. This page lists the following information for each target:

Service endpoint URL being scraped

ServiceMonitor component being monitored

The up or down status of the target

Namespace

Last scrape time

Duration of the last scrape

2. Optional: The list of metrics targets can be long. To find a specific target, do any of the
following:

Option Description

CHAPTER 9. MANAGING METRICS

67

https://prometheus.io/docs/prometheus/latest/querying/basics/

Filter the targets by status and source. Select filters in the Filter list.

The following filtering options are available:

Status filters:

Up. The target is currently up and being
actively scraped for metrics.

Down. The target is currently down and
not being scraped for metrics.

Source filters:

Platform. Platform-level targets relate
only to default Red Hat OpenShift
Service on AWS projects. These
projects provide core Red Hat
OpenShift Service on AWS
functionality.

User. User targets relate to user-
defined projects. These projects are
user-created and can be customized.

Search for a target by name or label. Enter a search term in the Text or Label field
next to the search box.

Sort the targets. Click one or more of the Endpoint Status,
Namespace, Last Scrape, and Scrape Duration
column headers.

Option Description

3. Click the URL in the Endpoint column for a target to navigate to its Target details page. This
page provides information about the target, including the following:

The endpoint URL being scraped for metrics

The current Up or Down status of the target

A link to the namespace

A link to the ServiceMonitor details

Labels attached to the target

The most recent time that the target was scraped for metrics

OpenShift Dedicated 4 Monitoring

68

CHAPTER 10. MANAGING ALERTS
In OpenShift Dedicated 4, the Alerting UI enables you to manage alerts, silences, and alerting rules.

Alerting rules. Alerting rules contain a set of conditions that outline a particular state within a
cluster. Alerts are triggered when those conditions are true. An alerting rule can be assigned a
severity that defines how the alerts are routed.

Alerts. An alert is fired when the conditions defined in an alerting rule are true. Alerts provide a
notification that a set of circumstances are apparent within an OpenShift Dedicated cluster.

Silences. A silence can be applied to an alert to prevent notifications from being sent when the
conditions for an alert are true. You can mute an alert after the initial notification, while you work
on resolving the underlying issue.

NOTE

The alerts, silences, and alerting rules that are available in the Alerting UI relate to the
projects that you have access to. For example, if you are logged in as a user with the
cluster-admin role, you can access all alerts, silences, and alerting rules.

If you are a non-administrator user, you can create and silence alerts if you are assigned
the following user roles:

The cluster-monitoring-view cluster role, which allows you to access
Alertmanager

The monitoring-alertmanager-edit role, which permits you to create and silence
alerts in the Administrator perspective in the web console

The monitoring-rules-edit cluster role, which permits you to create and silence
alerts in the Developer perspective in the web console

10.1. ACCESSING THE ALERTING UI IN THE ADMINISTRATOR AND
DEVELOPER PERSPECTIVES

The Alerting UI is accessible through the Administrator perspective and the Developer perspective of
the OpenShift Dedicated web console.

In the Administrator perspective, go to Observe → Alerting. The three main pages in the
Alerting UI in this perspective are the Alerts, Silences, and Alerting rules pages.

In the Developer perspective, go to Observe → <project_name> → Alerts. In this perspective,
alerts, silences, and alerting rules are all managed from the Alerts page. The results shown in
the Alerts page are specific to the selected project.

NOTE

In the Developer perspective, you can select from core OpenShift Dedicated and user-
defined projects that you have access to in the Project: <project_name> list. However,
alerts, silences, and alerting rules relating to core OpenShift Dedicated projects are not
displayed if you are not logged in as a cluster administrator.

10.2. SEARCHING AND FILTERING ALERTS, SILENCES, AND ALERTING

CHAPTER 10. MANAGING ALERTS

69

10.2. SEARCHING AND FILTERING ALERTS, SILENCES, AND ALERTING
RULES

You can filter the alerts, silences, and alerting rules that are displayed in the Alerting UI. This section
provides a description of each of the available filtering options.

Understanding alert filters
In the Administrator perspective, the Alerts page in the Alerting UI provides details about alerts
relating to default OpenShift Dedicated and user-defined projects. The page includes a summary of
severity, state, and source for each alert. The time at which an alert went into its current state is also
shown.

You can filter by alert state, severity, and source. By default, only Platform alerts that are Firing are
displayed. The following describes each alert filtering option:

State filters:

Firing. The alert is firing because the alert condition is true and the optional for duration
has passed. The alert continues to fire while the condition remains true.

Pending. The alert is active but is waiting for the duration that is specified in the alerting
rule before it fires.

Silenced. The alert is now silenced for a defined time period. Silences temporarily mute
alerts based on a set of label selectors that you define. Notifications are not sent for alerts
that match all the listed values or regular expressions.

Severity filters:

Critical. The condition that triggered the alert could have a critical impact. The alert
requires immediate attention when fired and is typically paged to an individual or to a critical
response team.

Warning. The alert provides a warning notification about something that might require
attention to prevent a problem from occurring. Warnings are typically routed to a ticketing
system for non-immediate review.

Info. The alert is provided for informational purposes only.

None. The alert has no defined severity.

You can also create custom severity definitions for alerts relating to user-defined projects.

Source filters:

Platform. Platform-level alerts relate only to default OpenShift Dedicated projects. These
projects provide core OpenShift Dedicated functionality.

User. User alerts relate to user-defined projects. These alerts are user-created and are
customizable. User-defined workload monitoring can be enabled postinstallation to provide
observability into your own workloads.

Understanding silence filters
In the Administrator perspective, the Silences page in the Alerting UI provides details about silences
applied to alerts in default OpenShift Dedicated and user-defined projects. The page includes a
summary of the state of each silence and the time at which a silence ends.

OpenShift Dedicated 4 Monitoring

70

You can filter by silence state. By default, only Active and Pending silences are displayed. The following
describes each silence state filter option:

State filters:

Active. The silence is active and the alert will be muted until the silence is expired.

Pending. The silence has been scheduled and it is not yet active.

Expired. The silence has expired and notifications will be sent if the conditions for an alert
are true.

Understanding alerting rule filters
In the Administrator perspective, the Alerting rules page in the Alerting UI provides details about
alerting rules relating to default OpenShift Dedicated and user-defined projects. The page includes a
summary of the state, severity, and source for each alerting rule.

You can filter alerting rules by alert state, severity, and source. By default, only Platform alerting rules
are displayed. The following describes each alerting rule filtering option:

Alert state filters:

Firing. The alert is firing because the alert condition is true and the optional for duration
has passed. The alert continues to fire while the condition remains true.

Pending. The alert is active but is waiting for the duration that is specified in the alerting
rule before it fires.

Silenced. The alert is now silenced for a defined time period. Silences temporarily mute
alerts based on a set of label selectors that you define. Notifications are not sent for alerts
that match all the listed values or regular expressions.

Not Firing. The alert is not firing.

Severity filters:

Critical. The conditions defined in the alerting rule could have a critical impact. When true,
these conditions require immediate attention. Alerts relating to the rule are typically paged
to an individual or to a critical response team.

Warning. The conditions defined in the alerting rule might require attention to prevent a
problem from occurring. Alerts relating to the rule are typically routed to a ticketing system
for non-immediate review.

Info. The alerting rule provides informational alerts only.

None. The alerting rule has no defined severity.

You can also create custom severity definitions for alerting rules relating to user-defined
projects.

Source filters:

Platform. Platform-level alerting rules relate only to default OpenShift Dedicated projects.
These projects provide core OpenShift Dedicated functionality.

User. User-defined workload alerting rules relate to user-defined projects. These alerting

CHAPTER 10. MANAGING ALERTS

71

User. User-defined workload alerting rules relate to user-defined projects. These alerting
rules are user-created and are customizable. User-defined workload monitoring can be
enabled postinstallation to provide observability into your own workloads.

Searching and filtering alerts, silences, and alerting rules in the Developer perspective
In the Developer perspective, the Alerts page in the Alerting UI provides a combined view of alerts and
silences relating to the selected project. A link to the governing alerting rule is provided for each
displayed alert.

In this view, you can filter by alert state and severity. By default, all alerts in the selected project are
displayed if you have permission to access the project. These filters are the same as those described for
the Administrator perspective.

10.3. GETTING INFORMATION ABOUT ALERTS, SILENCES, AND
ALERTING RULES

The Alerting UI provides detailed information about alerts and their governing alerting rules and silences.

Prerequisites

You have access to the cluster as a developer or as a user with view permissions for the project
that you are viewing alerts for.

Procedure

To obtain information about alerts in the Administrator perspective:

1. Open the OpenShift Dedicated web console and go to the Observe → Alerting → Alerts page.

2. Optional: Search for alerts by name by using the Name field in the search list.

3. Optional: Filter alerts by state, severity, and source by selecting filters in the Filter list.

4. Optional: Sort the alerts by clicking one or more of the Name, Severity, State, and Source
column headers.

5. Click the name of an alert to view its Alert details page. The page includes a graph that
illustrates alert time series data. It also provides the following information about the alert:

A description of the alert

Messages associated with the alert

Labels attached to the alert

A link to its governing alerting rule

Silences for the alert, if any exist

To obtain information about silences in the Administrator perspective:

1. Go to the Observe → Alerting → Silences page.

2. Optional: Filter the silences by name using the Search by name field.

3. Optional: Filter silences by state by selecting filters in the Filter list. By default, Active and
Pending filters are applied.

OpenShift Dedicated 4 Monitoring

72

4. Optional: Sort the silences by clicking one or more of the Name, Firing alerts, State, and
Creator column headers.

5. Select the name of a silence to view its Silence details page. The page includes the following
details:

Alert specification

Start time

End time

Silence state

Number and list of firing alerts

To obtain information about alerting rules in the Administrator perspective:

1. Go to the Observe → Alerting → Alerting rules page.

2. Optional: Filter alerting rules by state, severity, and source by selecting filters in the Filter list.

3. Optional: Sort the alerting rules by clicking one or more of the Name, Severity, Alert state, and
Source column headers.

4. Select the name of an alerting rule to view its Alerting rule details page. The page provides the
following details about the alerting rule:

Alerting rule name, severity, and description.

The expression that defines the condition for firing the alert.

The time for which the condition should be true for an alert to fire.

A graph for each alert governed by the alerting rule, showing the value with which the alert is
firing.

A table of all alerts governed by the alerting rule.

To obtain information about alerts, silences, and alerting rules in the Developer perspective:

1. Go to the Observe → <project_name> → Alerts page.

2. View details for an alert, silence, or an alerting rule:

Alert details can be viewed by clicking a greater than symbol (>) next to an alert name and
then selecting the alert from the list.

Silence details can be viewed by clicking a silence in the Silenced by section of the Alert
details page. The Silence details page includes the following information:

Alert specification

Start time

End time

Silence state

CHAPTER 10. MANAGING ALERTS

73

Number and list of firing alerts

Alerting rule details can be viewed by clicking the menu next to an alert in the Alerts
page and then clicking View Alerting Rule.

NOTE

Only alerts, silences, and alerting rules relating to the selected project are displayed in the
Developer perspective.

Additional resources

See the Cluster Monitoring Operator runbooks to help diagnose and resolve issues that trigger
specific OpenShift Dedicated monitoring alerts.

10.4. MANAGING SILENCES

You can create a silence for an alert in the OpenShift Dedicated web console in both the Administrator
and Developer perspectives. After you create a silence, you will not receive notifications about an alert
when the alert fires.

Creating silences is useful in scenarios where you have received an initial alert notification, and you do
not want to receive further notifications during the time in which you resolve the underlying issue
causing the alert to fire.

When creating a silence, you must specify whether it becomes active immediately or at a later time. You
must also set a duration period after which the silence expires.

After you create silences, you can view, edit, and expire them.

NOTE

When you create silences, they are replicated across Alertmanager pods. However, if you
do not configure persistent storage for Alertmanager, silences might be lost. This can
happen, for example, if all Alertmanager pods restart at the same time.

Additional resources

Configuring persistent storage

10.4.1. Silencing alerts

You can silence a specific alert or silence alerts that match a specification that you define.

Prerequisites

If you are a cluster administrator, you have access to the cluster as a user with the dedicated-
admin role.

If you are a non-administrator user, you have access to the cluster as a user with the following
user roles:

The cluster-monitoring-view cluster role, which allows you to access Alertmanager.
The monitoring-alertmanager-edit role, which permits you to create and silence alerts in

OpenShift Dedicated 4 Monitoring

74

https://github.com/openshift/runbooks/tree/master/alerts/cluster-monitoring-operator

The monitoring-alertmanager-edit role, which permits you to create and silence alerts in
the Administrator perspective in the web console.

The monitoring-rules-edit cluster role, which permits you to create and silence alerts in the
Developer perspective in the web console.

Procedure

To silence a specific alert in the Administrator perspective:

1. Go to Observe → Alerting → Alerts in the OpenShift Dedicated web console.

2. For the alert that you want to silence, click and select Silence alert to open the Silence
alert page with a default configuration for the chosen alert.

3. Optional: Change the default configuration details for the silence.

NOTE

You must add a comment before saving a silence.

4. To save the silence, click Silence.

To silence a specific alert in the Developer perspective:

1. Go to Observe → <project_name> → Alerts in the OpenShift Dedicated web console.

2. If necessary, expand the details for the alert by selecting a greater than symbol (>) next to the
alert name.

3. Click the alert message in the expanded view to open the Alert details page for the alert.

4. Click Silence alert to open the Silence alert page with a default configuration for the alert.

5. Optional: Change the default configuration details for the silence.

NOTE

You must add a comment before saving a silence.

6. To save the silence, click Silence.

To silence a set of alerts by creating a silence configuration in the Administrator perspective:

1. Go to Observe → Alerting → Silences in the OpenShift Dedicated web console.

2. Click Create silence.

3. On the Create silence page, set the schedule, duration, and label details for an alert.

NOTE

You must add a comment before saving a silence.

CHAPTER 10. MANAGING ALERTS

75

4. To create silences for alerts that match the labels that you entered, click Silence.

To silence a set of alerts by creating a silence configuration in the Developer perspective:

1. Go to Observe → <project_name> → Silences in the OpenShift Dedicated web console.

2. Click Create silence.

3. On the Create silence page, set the duration and label details for an alert.

NOTE

You must add a comment before saving a silence.

4. To create silences for alerts that match the labels that you entered, click Silence.

10.4.2. Editing silences

You can edit a silence, which expires the existing silence and creates a new one with the changed
configuration.

Prerequisites

If you are a cluster administrator, you have access to the cluster as a user with the dedicated-
admin role.

If you are a non-administrator user, you have access to the cluster as a user with the following
user roles:

The cluster-monitoring-view cluster role, which allows you to access Alertmanager.

The monitoring-alertmanager-edit role, which permits you to create and silence alerts in
the Administrator perspective in the web console.

The monitoring-rules-edit cluster role, which permits you to create and silence alerts in the
Developer perspective in the web console.

Procedure

To edit a silence in the Administrator perspective:

1. Go to Observe → Alerting → Silences.

2. For the silence you want to modify, click and select Edit silence.
Alternatively, you can click Actions and select Edit silence on the Silence details page for a
silence.

3. On the Edit silence page, make changes and click Silence. Doing so expires the existing silence
and creates one with the updated configuration.

To edit a silence in the Developer perspective:

1. Go to Observe → <project_name> → Silences.

OpenShift Dedicated 4 Monitoring

76

2. For the silence you want to modify, click and select Edit silence.
Alternatively, you can click Actions and select Edit silence on the Silence details page for a
silence.

3. On the Edit silence page, make changes and click Silence. Doing so expires the existing silence
and creates one with the updated configuration.

10.4.3. Expiring silences

You can expire a single silence or multiple silences. Expiring a silence deactivates it permanently.

NOTE

You cannot delete expired, silenced alerts. Expired silences older than 120 hours are
garbage collected.

Prerequisites

If you are a cluster administrator, you have access to the cluster as a user with the dedicated-
admin role.

If you are a non-administrator user, you have access to the cluster as a user with the following
user roles:

The cluster-monitoring-view cluster role, which allows you to access Alertmanager.

The monitoring-alertmanager-edit role, which permits you to create and silence alerts in
the Administrator perspective in the web console.

The monitoring-rules-edit cluster role, which permits you to create and silence alerts in the
Developer perspective in the web console.

Procedure

To expire a silence or silences in the Administrator perspective:

1. Go to Observe → Alerting → Silences.

2. For the silence or silences you want to expire, select the checkbox in the corresponding row.

3. Click Expire 1 silence to expire a single selected silence or Expire <n> silences to expire multiple
selected silences, where <n> is the number of silences you selected.
Alternatively, to expire a single silence you can click Actions and select Expire silence on the
Silence details page for a silence.

To expire a silence in the Developer perspective:

1. Go to Observe → <project_name> → Silences.

2. For the silence or silences you want to expire, select the checkbox in the corresponding row.

3. Click Expire 1 silence to expire a single selected silence or Expire <n> silences to expire multiple
selected silences, where <n> is the number of silences you selected.
Alternatively, to expire a single silence you can click Actions and select Expire silence on the
Silence details page for a silence.

CHAPTER 10. MANAGING ALERTS

77

10.5. MANAGING ALERTING RULES FOR USER-DEFINED PROJECTS

OpenShift Dedicated monitoring ships with a set of default alerting rules. As a cluster administrator, you
can view the default alerting rules.

In OpenShift Dedicated 4, you can create, view, edit, and remove alerting rules in user-defined projects.

IMPORTANT

Managing alerting rules for user-defined projects is only available in OpenShift
Dedicated version 4.11 and later.

Alerting rule considerations

The default alerting rules are used specifically for the OpenShift Dedicated cluster.

Some alerting rules intentionally have identical names. They send alerts about the same event
with different thresholds, different severity, or both.

Inhibition rules prevent notifications for lower severity alerts that are firing when a higher
severity alert is also firing.

10.5.1. Optimizing alerting for user-defined projects

You can optimize alerting for your own projects by considering the following recommendations when
creating alerting rules:

Minimize the number of alerting rules that you create for your project. Create alerting rules
that notify you of conditions that impact you. It is more difficult to notice relevant alerts if you
generate many alerts for conditions that do not impact you.

Create alerting rules for symptoms instead of causes. Create alerting rules that notify you of
conditions regardless of the underlying cause. The cause can then be investigated. You will
need many more alerting rules if each relates only to a specific cause. Some causes are then
likely to be missed.

Plan before you write your alerting rules. Determine what symptoms are important to you and
what actions you want to take if they occur. Then build an alerting rule for each symptom.

Provide clear alert messaging. State the symptom and recommended actions in the alert
message.

Include severity levels in your alerting rules. The severity of an alert depends on how you need
to react if the reported symptom occurs. For example, a critical alert should be triggered if a
symptom requires immediate attention by an individual or a critical response team.

Additional resources

See the Prometheus alerting documentation for further guidelines on optimizing alerts

10.5.2. About creating alerting rules for user-defined projects

If you create alerting rules for a user-defined project, consider the following key behaviors and
important limitations when you define the new rules:

A user-defined alerting rule can include metrics exposed by its own project in addition to the

OpenShift Dedicated 4 Monitoring

78

https://prometheus.io/docs/practices/alerting/

A user-defined alerting rule can include metrics exposed by its own project in addition to the
default metrics from core platform monitoring. You cannot include metrics from another user-
defined project.
For example, an alerting rule for the ns1 user-defined project can use metrics exposed by the
ns1 project in addition to core platform metrics, such as CPU and memory metrics. However,
the rule cannot include metrics from a different ns2 user-defined project.

To reduce latency and to minimize the load on core platform monitoring components, you can
add the openshift.io/prometheus-rule-evaluation-scope: leaf-prometheus label to a rule.
This label forces only the Prometheus instance deployed in the openshift-user-workload-
monitoring project to evaluate the alerting rule and prevents the Thanos Ruler instance from
doing so.

IMPORTANT

If an alerting rule has this label, your alerting rule can use only those metrics
exposed by your user-defined project. Alerting rules you create based on default
platform metrics might not trigger alerts.

10.5.3. Creating alerting rules for user-defined projects

You can create alerting rules for user-defined projects. Those alerting rules will trigger alerts based on
the values of the chosen metrics.

NOTE

When you create an alerting rule, a project label is enforced on it even if a rule
with the same name exists in another project.

To help users understand the impact and cause of the alert, ensure that your
alerting rule contains an alert message and severity value.

Prerequisites

You have enabled monitoring for user-defined projects.

You are logged in as a user that has the monitoring-rules-edit cluster role for the project where
you want to create an alerting rule.

You have installed the OpenShift CLI (oc).

Procedure

1. Create a YAML file for alerting rules. In this example, it is called example-app-alerting-
rule.yaml.

2. Add an alerting rule configuration to the YAML file. The following example creates a new
alerting rule named example-alert. The alerting rule fires an alert when the version metric
exposed by the sample service becomes 0:

apiVersion: monitoring.coreos.com/v1
kind: PrometheusRule
metadata:
 name: example-alert
 namespace: ns1

CHAPTER 10. MANAGING ALERTS

79

1

2

3

4

5

The name of the alerting rule you want to create.

The duration for which the condition should be true before an alert is fired.

The PromQL query expression that defines the new rule.

The severity that alerting rule assigns to the alert.

The message associated with the alert.

3. Apply the configuration file to the cluster:

Additional resources

See Monitoring overview for details about OpenShift Dedicated 4 monitoring architecture.

10.5.4. Accessing alerting rules for user-defined projects

To list alerting rules for a user-defined project, you must have been assigned the monitoring-rules-
view cluster role for the project.

Prerequisites

You have enabled monitoring for user-defined projects.

You are logged in as a user that has the monitoring-rules-view cluster role for your project.

You have installed the OpenShift CLI (oc).

Procedure

1. To list alerting rules in <project>:

2. To list the configuration of an alerting rule, run the following:

spec:
 groups:
 - name: example
 rules:
 - alert: VersionAlert 1
 for: 1m 2
 expr: version{job="prometheus-example-app"} == 0 3
 labels:
 severity: warning 4
 annotations:
 message: This is an example alert. 5

$ oc apply -f example-app-alerting-rule.yaml

$ oc -n <project> get prometheusrule

$ oc -n <project> get prometheusrule <rule> -o yaml

OpenShift Dedicated 4 Monitoring

80

10.5.5. Listing alerting rules for all projects in a single view

As a dedicated-admin, you can list alerting rules for core OpenShift Dedicated and user-defined
projects together in a single view.

Prerequisites

You have access to the cluster as a user with the dedicated-admin role.

You have installed the OpenShift CLI (oc).

Procedure

1. In the Administrator perspective, navigate to Observe → Alerting → Alerting rules.

2. Select the Platform and User sources in the Filter drop-down menu.

NOTE

The Platform source is selected by default.

10.5.6. Removing alerting rules for user-defined projects

You can remove alerting rules for user-defined projects.

Prerequisites

You have enabled monitoring for user-defined projects.

You are logged in as a user that has the monitoring-rules-edit cluster role for the project where
you want to create an alerting rule.

You have installed the OpenShift CLI (oc).

Procedure

To remove rule <foo> in <namespace>, run the following:

Additional resources

See the Alertmanager documentation

10.6. SENDING NOTIFICATIONS TO EXTERNAL SYSTEMS

In OpenShift Dedicated 4, firing alerts can be viewed in the Alerting UI. Alerts are not configured by
default to be sent to any notification systems. You can configure OpenShift Dedicated to send alerts to
the following receiver types:

PagerDuty

Webhook

$ oc -n <namespace> delete prometheusrule <foo>

CHAPTER 10. MANAGING ALERTS

81

https://prometheus.io/docs/alerting/alertmanager/

Email

Slack

Microsoft Teams

Routing alerts to receivers enables you to send timely notifications to the appropriate teams when
failures occur. For example, critical alerts require immediate attention and are typically paged to an
individual or a critical response team. Alerts that provide non-critical warning notifications might instead
be routed to a ticketing system for non-immediate review.

Checking that alerting is operational by using the watchdog alert

OpenShift Dedicated monitoring includes a watchdog alert that fires continuously. Alertmanager
repeatedly sends watchdog alert notifications to configured notification providers. The provider is
usually configured to notify an administrator when it stops receiving the watchdog alert. This mechanism
helps you quickly identify any communication issues between Alertmanager and the notification
provider.

10.6.1. Configuring different alert receivers for default platform alerts and user-
defined alerts

You can configure different alert receivers for default platform alerts and user-defined alerts to ensure
the following results:

All default platform alerts are sent to a receiver owned by the team in charge of these alerts.

All user-defined alerts are sent to another receiver so that the team can focus only on platform
alerts.

You can achieve this by using the openshift_io_alert_source="platform" label that is added by the
Cluster Monitoring Operator to all platform alerts:

Use the openshift_io_alert_source="platform" matcher to match default platform alerts.

Use the openshift_io_alert_source!="platform" or 'openshift_io_alert_source=""' matcher
to match user-defined alerts.

NOTE

This configuration does not apply if you have enabled a separate instance of
Alertmanager dedicated to user-defined alerts.

10.6.2. Creating alert routing for user-defined projects

If you are a non-administrator user who has been given the alert-routing-edit cluster role, you can
create or edit alert routing for user-defined projects.

Prerequisites

Alert routing has been enabled for user-defined projects.

You are logged in as a user that has the alert-routing-edit cluster role for the project for which
you want to create alert routing.

You have installed the OpenShift CLI (oc).

OpenShift Dedicated 4 Monitoring

82

Procedure

1. Create a YAML file for alert routing. The example in this procedure uses a file called example-
app-alert-routing.yaml.

2. Add an AlertmanagerConfig YAML definition to the file. For example:

NOTE

For user-defined alerting rules, user-defined routing is scoped to the namespace
in which the resource is defined. For example, a routing configuration defined in
the AlertmanagerConfig object for namespace ns1 only applies to
PrometheusRules resources in the same namespace.

3. Save the file.

4. Apply the resource to the cluster:

The configuration is automatically applied to the Alertmanager pods.

10.7. APPLYING A CUSTOM CONFIGURATION TO ALERTMANAGER
FOR USER-DEFINED ALERT ROUTING

If you have enabled a separate instance of Alertmanager dedicated to user-defined alert routing, you
can overwrite the configuration for this instance of Alertmanager by editing the alertmanager-user-
workload secret in the openshift-user-workload-monitoring namespace.

Prerequisites

You have access to the cluster as a user with the dedicated-admin role.

You have installed the OpenShift CLI (oc).

Procedure

1. Print the currently active Alertmanager configuration into the file alertmanager.yaml:

apiVersion: monitoring.coreos.com/v1beta1
kind: AlertmanagerConfig
metadata:
 name: example-routing
 namespace: ns1
spec:
 route:
 receiver: default
 groupBy: [job]
 receivers:
 - name: default
 webhookConfigs:
 - url: https://example.org/post

$ oc apply -f example-app-alert-routing.yaml

CHAPTER 10. MANAGING ALERTS

83

1

2

2. Edit the configuration in alertmanager.yaml:

Specifies which alerts match the route. This example shows all alerts that have the
service="prometheus-example-monitor" label.

Specifies the receiver to use for the alerts group.

3. Apply the new configuration in the file:

Additional resources

See the PagerDuty official site for more information on PagerDuty.

See the PagerDuty Prometheus Integration Guide to learn how to retrieve the service_key.

See Alertmanager configuration for configuring alerting through different alert receivers.

$ oc -n openshift-user-workload-monitoring get secret alertmanager-user-workload --
template='{{ index .data "alertmanager.yaml" }}' | base64 --decode > alertmanager.yaml

route:
 receiver: Default
 group_by:
 - name: Default
 routes:
 - matchers:
 - "service = prometheus-example-monitor" 1
 receiver: <receiver> 2
receivers:
- name: Default
- name: <receiver>
<receiver_configuration>

$ oc -n openshift-user-workload-monitoring create secret generic alertmanager-user-
workload --from-file=alertmanager.yaml --dry-run=client -o=yaml | oc -n openshift-user-
workload-monitoring replace secret --filename=-

OpenShift Dedicated 4 Monitoring

84

https://www.pagerduty.com/
https://www.pagerduty.com/docs/guides/prometheus-integration-guide/
https://prometheus.io/docs/alerting/configuration/

CHAPTER 11. REVIEWING MONITORING DASHBOARDS
OpenShift Dedicated provides monitoring dashboards that help you understand the state of user-
defined projects.

Use the Administrator perspective to access dashboards for the core OpenShift Dedicated
components, including the following items:

API performance

etcd

Kubernetes compute resources

Kubernetes network resources

Prometheus

USE method dashboards relating to cluster and node performance

Node performance metrics

Figure 11.1. Example dashboard in the Administrator perspective

Use the Developer perspective to access Kubernetes compute resources dashboards that provide the
following application metrics for a selected project:

CPU usage

Memory usage

Bandwidth information

CHAPTER 11. REVIEWING MONITORING DASHBOARDS

85

Packet rate information

Figure 11.2. Example dashboard in the Developer perspective

NOTE

In the Developer perspective, you can view dashboards for only one project at a time.

11.1. REVIEWING MONITORING DASHBOARDS AS A CLUSTER
ADMINISTRATOR

In the Administrator perspective, you can view dashboards relating to core OpenShift Dedicated
cluster components.

Prerequisites

You have access to the cluster as a user with the dedicated-admin role.

Procedure

1. In the Administrator perspective in the OpenShift Dedicated web console, navigate to
Observe → Dashboards.

2. Choose a dashboard in the Dashboard list. Some dashboards, such as etcd and Prometheus
dashboards, produce additional sub-menus when selected.

3. Optional: Select a time range for the graphs in the Time Range list.

Select a pre-defined time period.

OpenShift Dedicated 4 Monitoring

86

Set a custom time range by selecting Custom time range in the Time Range list.

a. Input or select the From and To dates and times.

b. Click Save to save the custom time range.

4. Optional: Select a Refresh Interval.

5. Hover over each of the graphs within a dashboard to display detailed information about specific
items.

11.2. REVIEWING MONITORING DASHBOARDS AS A DEVELOPER

In the Developer perspective, you can view dashboards relating to a selected project. You must have
access to monitor a project to view dashboard information for it.

Prerequisites

You have access to the cluster as a developer or as a user.

You have view permissions for the project that you are viewing the dashboard for.

Procedure

1. In the Developer perspective in the OpenShift Dedicated web console, navigate to Observe →
Dashboard.

2. Select a project from the Project: drop-down list.

3. Select a dashboard from the Dashboard drop-down list to see the filtered metrics.

NOTE

All dashboards produce additional sub-menus when selected, except
Kubernetes / Compute Resources / Namespace (Pods).

4. Optional: Select a time range for the graphs in the Time Range list.

Select a pre-defined time period.

Set a custom time range by selecting Custom time range in the Time Range list.

a. Input or select the From and To dates and times.

b. Click Save to save the custom time range.

5. Optional: Select a Refresh Interval.

6. Hover over each of the graphs within a dashboard to display detailed information about specific
items.

CHAPTER 11. REVIEWING MONITORING DASHBOARDS

87

CHAPTER 12. ACCESSING MONITORING APIS BY USING THE
CLI

In OpenShift Dedicated 4, you can access web service APIs for some monitoring components from the
command line interface (CLI).

IMPORTANT

In certain situations, accessing API endpoints can degrade the performance and
scalability of your cluster, especially if you use endpoints to retrieve, send, or query large
amounts of metrics data.

To avoid these issues, follow these recommendations:

Avoid querying endpoints frequently. Limit queries to a maximum of one every
30 seconds.

Do not try to retrieve all metrics data via the /federate endpoint for Prometheus.
Query it only when you want to retrieve a limited, aggregated data set. For
example, retrieving fewer than 1,000 samples for each request helps minimize
the risk of performance degradation.

12.1. ABOUT ACCESSING MONITORING WEB SERVICE APIS

You can directly access web service API endpoints from the command line for the following monitoring
stack components:

Prometheus

Alertmanager

Thanos Ruler

Thanos Querier

NOTE

To access Thanos Ruler and Thanos Querier service APIs, the requesting account must
have get permission on the namespaces resource, which can be granted by binding the
cluster-monitoring-view cluster role to the account.

When you access web service API endpoints for monitoring components, be aware of the following
limitations:

You can only use Bearer Token authentication to access API endpoints.

You can only access endpoints in the /api path for a route. If you try to access an API endpoint
in a web browser, an Application is not available error occurs. To access monitoring features in
a web browser, use the OpenShift Dedicated web console to review monitoring dashboards.

Additional resources

Reviewing monitoring dashboards

OpenShift Dedicated 4 Monitoring

88

12.2. ACCESSING A MONITORING WEB SERVICE API

The following example shows how to query the service API receivers for the Alertmanager service used
in core platform monitoring. You can use a similar method to access the prometheus-k8s service for
core platform Prometheus and the thanos-ruler service for Thanos Ruler.

Prerequisites

You are logged in to an account that is bound against the monitoring-alertmanager-edit role in
the openshift-monitoring namespace.

You are logged in to an account that has permission to get the Alertmanager API route.

NOTE

If your account does not have permission to get the Alertmanager API route, a
cluster administrator can provide the URL for the route.

Procedure

1. Extract an authentication token by running the following command:

2. Extract the alertmanager-main API route URL by running the following command:

3. Query the service API receivers for Alertmanager by running the following command:

12.3. QUERYING METRICS BY USING THE FEDERATION ENDPOINT
FOR PROMETHEUS

You can use the federation endpoint for Prometheus to scrape platform and user-defined metrics from
a network location outside the cluster. To do so, access the Prometheus /federate endpoint for the
cluster via an OpenShift Dedicated route.

IMPORTANT

$ TOKEN=$(oc whoami -t)

$ HOST=$(oc -n openshift-monitoring get route alertmanager-main -ojsonpath={.spec.host})

$ curl -H "Authorization: Bearer $TOKEN" -k "https://$HOST/api/v2/receivers"

CHAPTER 12. ACCESSING MONITORING APIS BY USING THE CLI

89

IMPORTANT

A delay in retrieving metrics data occurs when you use federation. This delay can affect
the accuracy and timeliness of the scraped metrics.

Using the federation endpoint can also degrade the performance and scalability of your
cluster, especially if you use the federation endpoint to retrieve large amounts of metrics
data. To avoid these issues, follow these recommendations:

Do not try to retrieve all metrics data via the federation endpoint for
Prometheus. Query it only when you want to retrieve a limited, aggregated data
set. For example, retrieving fewer than 1,000 samples for each request helps
minimize the risk of performance degradation.

Avoid frequent querying of the federation endpoint for Prometheus. Limit
queries to a maximum of one every 30 seconds.

If you need to forward large amounts of data outside the cluster, use remote write
instead. For more information, see the Configuring remote write storage section.

Prerequisites

You have installed the OpenShift CLI (oc).

You have access to the cluster as a user with the cluster-monitoring-view cluster role or have
obtained a bearer token with get permission on the namespaces resource.

NOTE

You can only use bearer token authentication to access the Prometheus
federation endpoint.

You are logged in to an account that has permission to get the Prometheus federation route.

NOTE

If your account does not have permission to get the Prometheus federation
route, a cluster administrator can provide the URL for the route.

Procedure

1. Retrieve the bearer token by running the following the command:

2. Get the Prometheus federation route URL by running the following command:

3. Query metrics from the /federate route. The following example command queries up metrics:

$ TOKEN=$(oc whoami -t)

$ HOST=$(oc -n openshift-monitoring get route prometheus-k8s-federate -ojsonpath=
{.spec.host})

$ curl -G -k -H "Authorization: Bearer $TOKEN" https://$HOST/federate --data-urlencode
'match[]=up'

OpenShift Dedicated 4 Monitoring

90

Example output

12.4. ACCESSING METRICS FROM OUTSIDE THE CLUSTER FOR
CUSTOM APPLICATIONS

You can query Prometheus metrics from outside the cluster when monitoring your own services with
user-defined projects. Access this data from outside the cluster by using the thanos-querier route.

This access only supports using a Bearer Token for authentication.

Prerequisites

You have deployed your own service, following the "Enabling monitoring for user-defined
projects" procedure.

You are logged in to an account with the cluster-monitoring-view cluster role, which provides
permission to access the Thanos Querier API.

You are logged in to an account that has permission to get the Thanos Querier API route.

NOTE

If your account does not have permission to get the Thanos Querier API route, a
cluster administrator can provide the URL for the route.

Procedure

1. Extract an authentication token to connect to Prometheus by running the following command:

2. Extract the thanos-querier API route URL by running the following command:

3. Set the namespace to the namespace in which your service is running by using the following
command:

TYPE up untyped
up{apiserver="kube-
apiserver",endpoint="https",instance="10.0.143.148:6443",job="apiserver",namespace="default
",service="kubernetes",prometheus="openshift-
monitoring/k8s",prometheus_replica="prometheus-k8s-0"} 1 1657035322214
up{apiserver="kube-
apiserver",endpoint="https",instance="10.0.148.166:6443",job="apiserver",namespace="default
",service="kubernetes",prometheus="openshift-
monitoring/k8s",prometheus_replica="prometheus-k8s-0"} 1 1657035338597
up{apiserver="kube-
apiserver",endpoint="https",instance="10.0.173.16:6443",job="apiserver",namespace="default",
service="kubernetes",prometheus="openshift-
monitoring/k8s",prometheus_replica="prometheus-k8s-0"} 1 1657035343834
...

$ TOKEN=$(oc whoami -t)

$ HOST=$(oc -n openshift-monitoring get route thanos-querier -ojsonpath={.spec.host})

CHAPTER 12. ACCESSING MONITORING APIS BY USING THE CLI

91

4. Query the metrics of your own services in the command line by running the following command:

The output shows the status for each application pod that Prometheus is scraping:

Example output

12.5. ADDITIONAL RESOURCES

Configuring remote write storage

Managing metrics

Managing alerts

$ NAMESPACE=ns1

$ curl -H "Authorization: Bearer $TOKEN" -k "https://$HOST/api/v1/query?" --data-urlencode
"query=up{namespace='$NAMESPACE'}"

{"status":"success","data":{"resultType":"vector","result":[{"metric":
{"__name__":"up","endpoint":"web","instance":"10.129.0.46:8080","job":"prometheus-
example-app","namespace":"ns1","pod":"prometheus-example-app-68d47c4fb6-
jztp2","service":"prometheus-example-app"},"value":[1591881154.748,"1"]}]}}

OpenShift Dedicated 4 Monitoring

92

CHAPTER 13. TROUBLESHOOTING MONITORING ISSUES
Find troubleshooting steps for common issues with user-defined project monitoring.

13.1. DETERMINING WHY USER-DEFINED PROJECT METRICS ARE
UNAVAILABLE

If metrics are not displaying when monitoring user-defined projects, follow these steps to troubleshoot
the issue.

Procedure

1. Query the metric name and verify that the project is correct:

a. From the Developer perspective in the web console, select Observe → Metrics.

b. Select the project that you want to view metrics for in the Project: list.

c. Choose a query from the Select query list, or run a custom PromQL query by selecting
Show PromQL.
The metrics are displayed in a chart.

Queries must be done on a per-project basis. The metrics that are shown relate to the
project that you have selected.

2. Verify that the pod that you want metrics from is actively serving metrics. Run the following oc
exec command into a pod to target the podIP, port, and /metrics.

NOTE

You must run the command on a pod that has curl installed.

The following example output shows a result with a valid version metric.

Example output

An invalid output indicates that there is a problem with the corresponding application.

3. If you are using a PodMonitor CRD, verify that the PodMonitor CRD is configured to point to
the correct pods using label matching. For more information, see the Prometheus Operator
documentation.

4. If you are using a ServiceMonitor CRD, and if the /metrics endpoint of the pod is showing
metric data, follow these steps to verify the configuration:

$ oc exec <sample_pod> -n <sample_namespace> -- curl <target_pod_IP>:<port>/metrics

 % Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed
HELP version Version information about this binary-- --:--:-- --:--:-- 0
TYPE version gauge
version{version="v0.1.0"} 1
100 102 100 102 0 0 51000 0 --:--:-- --:--:-- --:--:-- 51000

CHAPTER 13. TROUBLESHOOTING MONITORING ISSUES

93

1

2

a. Verify that the service is pointed to the correct /metrics endpoint. The service labels in this
output must match the services monitor labels and the /metrics endpoint defined by the
service in the subsequent steps.

Example output

Specifies that this is a service API.

Specifies the labels that are being used for this service.

b. Query the serviceIP, port, and /metrics endpoints to see if the same metrics from the curl
command you ran on the pod previously:

i. Run the following command to find the service IP:

ii. Query the /metrics endpoint:

Valid metrics are returned in the following example.

Example output

c. Use label matching to verify that the ServiceMonitor object is configured to point to the

$ oc get service

apiVersion: v1
kind: Service 1
metadata:
 labels: 2
 app: prometheus-example-app
 name: prometheus-example-app
 namespace: ns1
spec:
 ports:
 - port: 8080
 protocol: TCP
 targetPort: 8080
 name: web
 selector:
 app: prometheus-example-app
 type: ClusterIP

$ oc get service -n <target_namespace>

$ oc exec <sample_pod> -n <sample_namespace> -- curl <service_IP>:
<port>/metrics

% Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed
100 102 100 102 0 0 51000 0 --:--:-- --:--:-- --:--:-- 99k
HELP version Version information about this binary
TYPE version gauge
version{version="v0.1.0"} 1

OpenShift Dedicated 4 Monitoring

94

desired service. To do this, compare the Service object from the oc get service output to
the ServiceMonitor object from the oc get servicemonitor output. The labels must match
for the metrics to be displayed.
For example, from the previous steps, notice how the Service object has the app:
prometheus-example-app label and the ServiceMonitor object has the same app:
prometheus-example-app match label.

5. If everything looks valid and the metrics are still unavailable, please contact the support team
for further help.

13.2. DETERMINING WHY PROMETHEUS IS CONSUMING A LOT OF
DISK SPACE

Developers can create labels to define attributes for metrics in the form of key-value pairs. The number
of potential key-value pairs corresponds to the number of possible values for an attribute. An attribute
that has an unlimited number of potential values is called an unbound attribute. For example, a
customer_id attribute is unbound because it has an infinite number of possible values.

Every assigned key-value pair has a unique time series. The use of many unbound attributes in labels
can result in an exponential increase in the number of time series created. This can impact Prometheus
performance and can consume a lot of disk space.

You can use the following measures when Prometheus consumes a lot of disk:

Check the time series database (TSDB) status using the Prometheus HTTP API for more
information about which labels are creating the most time series data. Doing so requires cluster
administrator privileges.

Check the number of scrape samples that are being collected.

Reduce the number of unique time series that are created by reducing the number of
unbound attributes that are assigned to user-defined metrics.

NOTE

Using attributes that are bound to a limited set of possible values reduces the
number of potential key-value pair combinations.

Enforce limits on the number of samples that can be scraped across user-defined projects.
This requires cluster administrator privileges.

Prerequisites

You have access to the cluster as a user with the dedicated-admin role.

You have installed the OpenShift CLI (oc).

Procedure

1. In the Administrator perspective, navigate to Observe → Metrics.

2. Enter a Prometheus Query Language (PromQL) query in the Expression field. The following
example queries help to identify high cardinality metrics that might result in high disk space
consumption:

CHAPTER 13. TROUBLESHOOTING MONITORING ISSUES

95

By running the following query, you can identify the ten jobs that have the highest number
of scrape samples:

By running the following query, you can pinpoint time series churn by identifying the ten
jobs that have created the most time series data in the last hour:

3. Investigate the number of unbound label values assigned to metrics with higher than expected
scrape sample counts:

If the metrics relate to a user-defined project, review the metrics key-value pairs
assigned to your workload. These are implemented through Prometheus client libraries at
the application level. Try to limit the number of unbound attributes referenced in your labels.

If the metrics relate to a core OpenShift Dedicated project, create a Red Hat support
case on the Red Hat Customer Portal .

4. Review the TSDB status using the Prometheus HTTP API by following these steps when logged
in as a dedicated-admin:

a. Get the Prometheus API route URL by running the following command:

b. Extract an authentication token by running the following command:

c. Query the TSDB status for Prometheus by running the following command:

Example output

Additional resources

Accessing monitoring APIs by using the CLI

Setting a scrape sample limit for user-defined projects

Submitting a support case

13.3. RESOLVING THE KUBEPERSISTENTVOLUMEFILLINGUP ALERT

topk(10, max by(namespace, job) (topk by(namespace, job) (1,
scrape_samples_post_metric_relabeling)))

topk(10, sum by(namespace, job) (sum_over_time(scrape_series_added[1h])))

$ HOST=$(oc -n openshift-monitoring get route prometheus-k8s -ojsonpath={.spec.host})

$ TOKEN=$(oc whoami -t)

$ curl -H "Authorization: Bearer $TOKEN" -k "https://$HOST/api/v1/status/tsdb"

"status": "success","data":{"headStats":{"numSeries":507473,
"numLabelPairs":19832,"chunkCount":946298,"minTime":1712253600010,
"maxTime":1712257935346},"seriesCountByMetricName":
[{"name":"etcd_request_duration_seconds_bucket","value":51840},
{"name":"apiserver_request_sli_duration_seconds_bucket","value":47718},
...

OpenShift Dedicated 4 Monitoring

96

https://access.redhat.com/
https://docs.redhat.com/en/documentation/openshift_dedicated/4/html-single/support/#support-submitting-a-case_getting-support

1 2

13.3. RESOLVING THE KUBEPERSISTENTVOLUMEFILLINGUP ALERT
FIRING FOR PROMETHEUS

As a cluster administrator, you can resolve the KubePersistentVolumeFillingUp alert being triggered
for Prometheus.

The critical alert fires when a persistent volume (PV) claimed by a prometheus-k8s-* pod in the
openshift-monitoring project has less than 3% total space remaining. This can cause Prometheus to
function abnormally.

NOTE

There are two KubePersistentVolumeFillingUp alerts:

Critical alert: The alert with the severity="critical" label is triggered when the
mounted PV has less than 3% total space remaining.

Warning alert: The alert with the severity="warning" label is triggered when the
mounted PV has less than 15% total space remaining and is expected to fill up
within four days.

To address this issue, you can remove Prometheus time-series database (TSDB) blocks to create more
space for the PV.

Prerequisites

You have access to the cluster as a user with the dedicated-admin role.

You have installed the OpenShift CLI (oc).

Procedure

1. List the size of all TSDB blocks, sorted from oldest to newest, by running the following
command:

Replace <prometheus_k8s_pod_name> with the pod mentioned in the
KubePersistentVolumeFillingUp alert description.

Example output

$ oc debug <prometheus_k8s_pod_name> -n openshift-monitoring \ 1
-c prometheus --image=$(oc get po -n openshift-monitoring <prometheus_k8s_pod_name> \
2

-o jsonpath='{.spec.containers[?(@.name=="prometheus")].image}') \
-- sh -c 'cd /prometheus/;du -hs $(ls -dt */ | grep -Eo "[0-9|A-Z]{26}")'

308M 01HVKMPKQWZYWS8WVDAYQHNMW6
52M 01HVK64DTDA81799TBR9QDECEZ
102M 01HVK64DS7TRZRWF2756KHST5X
140M 01HVJS59K11FBVAPVY57K88Z11
90M 01HVH2A5Z58SKT810EM6B9AT50
152M 01HV8ZDVQMX41MKCN84S32RRZ1
354M 01HV6Q2N26BK63G4RYTST71FBF

CHAPTER 13. TROUBLESHOOTING MONITORING ISSUES

97

1 2

2. Identify which and how many blocks could be removed, then remove the blocks. The following
example command removes the three oldest Prometheus TSDB blocks from the prometheus-
k8s-0 pod:

3. Verify the usage of the mounted PV and ensure there is enough space available by running the
following command:

Replace <prometheus_k8s_pod_name> with the pod mentioned in the
KubePersistentVolumeFillingUp alert description.

The following example output shows the mounted PV claimed by the prometheus-k8s-0 pod
that has 63% of space remaining:

Example output

156M 01HV664H9J9Z1FTZD73RD1563E
216M 01HTHXB60A7F239HN7S2TENPNS
104M 01HTHMGRXGS0WXA3WATRXHR36B

$ oc debug prometheus-k8s-0 -n openshift-monitoring \
-c prometheus --image=$(oc get po -n openshift-monitoring prometheus-k8s-0 \
-o jsonpath='{.spec.containers[?(@.name=="prometheus")].image}') \
-- sh -c 'ls -latr /prometheus/ | egrep -o "[0-9|A-Z]{26}" | head -3 | \
while read BLOCK; do rm -r /prometheus/$BLOCK; done'

$ oc debug <prometheus_k8s_pod_name> -n openshift-monitoring \ 1
--image=$(oc get po -n openshift-monitoring <prometheus_k8s_pod_name> \ 2
-o jsonpath='{.spec.containers[?(@.name=="prometheus")].image}') -- df -h /prometheus/

Starting pod/prometheus-k8s-0-debug-j82w4 ...
Filesystem Size Used Avail Use% Mounted on
/dev/nvme0n1p4 40G 15G 40G 37% /prometheus

Removing debug pod ...

OpenShift Dedicated 4 Monitoring

98

CHAPTER 14. CONFIG MAP REFERENCE FOR THE CLUSTER
MONITORING OPERATOR

14.1. CLUSTER MONITORING OPERATOR CONFIGURATION
REFERENCE

Parts of OpenShift Dedicated cluster monitoring are configurable. The API is accessible by setting
parameters defined in various config maps.

To configure monitoring components, edit the ConfigMap object named cluster-monitoring-
config in the openshift-monitoring namespace. These configurations are defined by
ClusterMonitoringConfiguration.

To configure monitoring components that monitor user-defined projects, edit the ConfigMap
object named user-workload-monitoring-config in the openshift-user-workload-monitoring
namespace. These configurations are defined by UserWorkloadConfiguration.

The configuration file is always defined under the config.yaml key in the config map data.

IMPORTANT

Not all configuration parameters for the monitoring stack are exposed. Only the
parameters and fields listed in this reference are supported for configuration. For
more information about supported configurations, see Maintenance and support
for monitoring.

Configuring cluster monitoring is optional.

If a configuration does not exist or is empty, default values are used.

If the configuration is invalid YAML data, the Cluster Monitoring Operator stops
reconciling the resources and reports Degraded=True in the status conditions of
the Operator.

14.2. ADDITIONALALERTMANAGERCONFIG

14.2.1. Description

The AdditionalAlertmanagerConfig resource defines settings for how a component communicates
with additional Alertmanager instances.

14.2.2. Required

apiVersion

Appears in: PrometheusK8sConfig, PrometheusRestrictedConfig, ThanosRulerConfig

Property Type Description

CHAPTER 14. CONFIG MAP REFERENCE FOR THE CLUSTER MONITORING OPERATOR

99

apiVersion string Defines the API version of
Alertmanager. Possible values are
v1 or v2. The default is v2.

bearerToken *v1.SecretKeySelector Defines the secret key reference
containing the bearer token to
use when authenticating to
Alertmanager.

pathPrefix string Defines the path prefix to add in
front of the push endpoint path.

scheme string Defines the URL scheme to use
when communicating with
Alertmanager instances. Possible
values are http or https. The
default value is http.

staticConfigs []string A list of statically configured
Alertmanager endpoints in the
form of <hosts>:<port>.

timeout *string Defines the timeout value used
when sending alerts.

tlsConfig TLSConfig Defines the TLS settings to use
for Alertmanager connections.

Property Type Description

14.3. ALERTMANAGERMAINCONFIG

14.3.1. Description

The AlertmanagerMainConfig resource defines settings for the Alertmanager component in the
openshift-monitoring namespace.

Appears in: ClusterMonitoringConfiguration

Property Type Description

enabled *bool A Boolean flag that enables or
disables the main Alertmanager
instance in the openshift-
monitoring namespace. The
default value is true.

OpenShift Dedicated 4 Monitoring

100

enableUserAlertmanagerConfig bool A Boolean flag that enables or
disables user-defined
namespaces to be selected for
AlertmanagerConfig lookups.
This setting only applies if the user
workload monitoring instance of
Alertmanager is not enabled. The
default value is false.

logLevel string Defines the log level setting for
Alertmanager. The possible values
are: error, warn, info, debug.
The default value is info.

nodeSelector map[string]string Defines the nodes on which the
Pods are scheduled.

resources *v1.ResourceRequirements Defines resource requests and
limits for the Alertmanager
container.

secrets []string Defines a list of secrets to be
mounted into Alertmanager. The
secrets must reside within the
same namespace as the
Alertmanager object. They are
added as volumes named secret-
<secret-name> and mounted at
/etc/alertmanager/secrets/<s
ecret-name> in the
alertmanager container of the
Alertmanager pods.

tolerations []v1.Toleration Defines tolerations for the pods.

topologySpreadConstraints []v1.TopologySpreadConstraint Defines a pod’s topology spread
constraints.

volumeClaimTemplate *monv1.EmbeddedPersistentVolu
meClaim

Defines persistent storage for
Alertmanager. Use this setting to
configure the persistent volume
claim, including storage class,
volume size, and name.

Property Type Description

14.4. ALERTMANAGERUSERWORKLOADCONFIG

14.4.1. Description

The AlertmanagerUserWorkloadConfig resource defines the settings for the Alertmanager instance

CHAPTER 14. CONFIG MAP REFERENCE FOR THE CLUSTER MONITORING OPERATOR

101

The AlertmanagerUserWorkloadConfig resource defines the settings for the Alertmanager instance
used for user-defined projects.

Appears in: UserWorkloadConfiguration

Property Type Description

enabled bool A Boolean flag that enables or
disables a dedicated instance of
Alertmanager for user-defined
alerts in the openshift-user-
workload-monitoring
namespace. The default value is
false.

enableAlertmanagerConfig bool A Boolean flag to enable or
disable user-defined namespaces
to be selected for
AlertmanagerConfig lookup.
The default value is false.

logLevel string Defines the log level setting for
Alertmanager for user workload
monitoring. The possible values
are error, warn, info, and
debug. The default value is info.

resources *v1.ResourceRequirements Defines resource requests and
limits for the Alertmanager
container.

secrets []string Defines a list of secrets to be
mounted into Alertmanager. The
secrets must be located within
the same namespace as the
Alertmanager object. They are
added as volumes named secret-
<secret-name> and mounted at
/etc/alertmanager/secrets/<s
ecret-name> in the
alertmanager container of the
Alertmanager pods.

nodeSelector map[string]string Defines the nodes on which the
pods are scheduled.

tolerations []v1.Toleration Defines tolerations for the pods.

topologySpreadConstraints []v1.TopologySpreadConstraint Defines a pod’s topology spread
constraints.

OpenShift Dedicated 4 Monitoring

102

volumeClaimTemplate *monv1.EmbeddedPersistentVolu
meClaim

Defines persistent storage for
Alertmanager. Use this setting to
configure the persistent volume
claim, including storage class,
volume size and name.

Property Type Description

14.5. CLUSTERMONITORINGCONFIGURATION

14.5.1. Description

The ClusterMonitoringConfiguration resource defines settings that customize the default platform
monitoring stack through the cluster-monitoring-config config map in the openshift-monitoring
namespace.

Property Type Description

alertmanagerMain *AlertmanagerMainConfig AlertmanagerMainConfig
defines settings for the
Alertmanager component in the
openshift-monitoring
namespace.

enableUserWorkload *bool UserWorkloadEnabled is a
Boolean flag that enables
monitoring for user-defined
projects.

kubeStateMetrics *KubeStateMetricsConfig KubeStateMetricsConfig
defines settings for the kube-
state-metrics agent.

metricsServer *MetricsServerConfig MetricsServer defines settings
for the Metrics Server
component.

prometheusK8s *PrometheusK8sConfig PrometheusK8sConfig
defines settings for the
Prometheus component.

prometheusOperator *PrometheusOperatorConfig PrometheusOperatorConfig
defines settings for the
Prometheus Operator
component.

CHAPTER 14. CONFIG MAP REFERENCE FOR THE CLUSTER MONITORING OPERATOR

103

prometheusOperatorAdmissionW
ebhook

*PrometheusOperatorAdmission
WebhookConfig

PrometheusOperatorAdmiss
ionWebhookConfig defines
settings for the admission
webhook component of
Prometheus Operator.

openshiftStateMetrics *OpenShiftStateMetricsConfig OpenShiftMetricsConfig
defines settings for the
openshift-state-metrics agent.

telemeterClient *TelemeterClientConfig TelemeterClientConfig defines
settings for the Telemeter Client
component.

thanosQuerier *ThanosQuerierConfig ThanosQuerierConfig defines
settings for the Thanos Querier
component.

nodeExporter NodeExporterConfig NodeExporterConfig defines
settings for the node-exporter
agent.

monitoringPlugin *MonitoringPluginConfig MonitoringPluginConfig
defines settings for the
monitoring console-plugin
component.

Property Type Description

14.6. KUBESTATEMETRICSCONFIG

14.6.1. Description

The KubeStateMetricsConfig resource defines settings for the kube-state-metrics agent.

Appears in: ClusterMonitoringConfiguration

Property Type Description

nodeSelector map[string]string Defines the nodes on which the
pods are scheduled.

resources *v1.ResourceRequirements Defines resource requests and
limits for the KubeStateMetrics
container.

tolerations []v1.Toleration Defines tolerations for the pods.

OpenShift Dedicated 4 Monitoring

104

topologySpreadConstraints []v1.TopologySpreadConstraint Defines a pod’s topology spread
constraints.

Property Type Description

14.7. METRICSSERVERCONFIG

14.7.1. Description

The MetricsServerConfig resource defines settings for the Metrics Server component.

Appears in: ClusterMonitoringConfiguration

Property Type Description

audit *Audit Defines the audit configuration
used by the Metrics Server
instance. Possible profile values
are Metadata, Request,
RequestResponse, and None.
The default value is Metadata.

nodeSelector map[string]string Defines the nodes on which the
pods are scheduled.

tolerations []v1.Toleration Defines tolerations for the pods.

resources *v1.ResourceRequirements Defines resource requests and
limits for the Metrics Server
container.

topologySpreadConstraints []v1.TopologySpreadConstraint Defines a pod’s topology spread
constraints.

14.8. MONITORINGPLUGINCONFIG

14.8.1. Description

The MonitoringPluginConfig resource defines settings for the web console plugin component in the
openshift-monitoring namespace.

Appears in: ClusterMonitoringConfiguration

Property Type Description

nodeSelector map[string]string Defines the nodes on which the
pods are scheduled.

CHAPTER 14. CONFIG MAP REFERENCE FOR THE CLUSTER MONITORING OPERATOR

105

resources *v1.ResourceRequirements Defines resource requests and
limits for the console-plugin
container.

tolerations []v1.Toleration Defines tolerations for the pods.

topologySpreadConstraints []v1.TopologySpreadConstraint Defines a pod’s topology spread
constraints.

Property Type Description

14.9. NODEEXPORTERCOLLECTORBUDDYINFOCONFIG

14.9.1. Description

The NodeExporterCollectorBuddyInfoConfig resource works as an on/off switch for the buddyinfo
collector of the node-exporter agent. By default, the buddyinfo collector is disabled.

Appears in: NodeExporterCollectorConfig

Property Type Description

enabled bool A Boolean flag that enables or
disables the buddyinfo collector.

14.10. NODEEXPORTERCOLLECTORCONFIG

14.10.1. Description

The NodeExporterCollectorConfig resource defines settings for individual collectors of the node-
exporter agent.

Appears in: NodeExporterConfig

Property Type Description

cpufreq NodeExporterCollectorCpufreqC
onfig

Defines the configuration of the
cpufreq collector, which collects
CPU frequency statistics.
Disabled by default.

tcpstat NodeExporterCollectorTcpStatC
onfig

Defines the configuration of the
tcpstat collector, which collects
TCP connection statistics.
Disabled by default.

OpenShift Dedicated 4 Monitoring

106

netdev NodeExporterCollectorNetDevCo
nfig

Defines the configuration of the
netdev collector, which collects
network devices statistics.
Enabled by default.

netclass NodeExporterCollectorNetClassC
onfig

Defines the configuration of the
netclass collector, which
collects information about
network devices. Enabled by
default.

buddyinfo NodeExporterCollectorBuddyInfo
Config

Defines the configuration of the
buddyinfo collector, which
collects statistics about memory
fragmentation from the
node_buddyinfo_blocks
metric. This metric collects data
from /proc/buddyinfo. Disabled
by default.

mountstats NodeExporterCollectorMountSta
tsConfig

Defines the configuration of the
mountstats collector, which
collects statistics about NFS
volume I/O activities. Disabled by
default.

ksmd NodeExporterCollectorKSMDCon
fig

Defines the configuration of the
ksmd collector, which collects
statistics from the kernel same-
page merger daemon. Disabled by
default.

processes NodeExporterCollectorProcesses
Config

Defines the configuration of the
processes collector, which
collects statistics from processes
and threads running in the system.
Disabled by default.

systemd NodeExporterCollectorSystemdC
onfig

Defines the configuration of the
systemd collector, which
collects statistics on the systemd
daemon and its managed services.
Disabled by default.

Property Type Description

14.11. NODEEXPORTERCOLLECTORCPUFREQCONFIG

14.11.1. Description

CHAPTER 14. CONFIG MAP REFERENCE FOR THE CLUSTER MONITORING OPERATOR

107

Use the NodeExporterCollectorCpufreqConfig resource to enable or disable the cpufreq collector of
the node-exporter agent. By default, the cpufreq collector is disabled. Under certain circumstances,
enabling the cpufreq collector increases CPU usage on machines with many cores. If you enable this
collector and have machines with many cores, monitor your systems closely for excessive CPU usage.

Appears in: NodeExporterCollectorConfig

Property Type Description

enabled bool A Boolean flag that enables or
disables the cpufreq collector.

14.12. NODEEXPORTERCOLLECTORKSMDCONFIG

14.12.1. Description

Use the NodeExporterCollectorKSMDConfig resource to enable or disable the ksmd collector of the
node-exporter agent. By default, the ksmd collector is disabled.

Appears in: NodeExporterCollectorConfig

Property Type Description

enabled bool A Boolean flag that enables or
disables the ksmd collector.

14.13. NODEEXPORTERCOLLECTORMOUNTSTATSCONFIG

14.13.1. Description

Use the NodeExporterCollectorMountStatsConfig resource to enable or disable the mountstats
collector of the node-exporter agent. By default, the mountstats collector is disabled. If you enable the
collector, the following metrics become available: node_mountstats_nfs_read_bytes_total,
node_mountstats_nfs_write_bytes_total, and node_mountstats_nfs_operations_requests_total.
Be aware that these metrics can have a high cardinality. If you enable this collector, closely monitor any
increases in memory usage for the prometheus-k8s pods.

Appears in: NodeExporterCollectorConfig

Property Type Description

enabled bool A Boolean flag that enables or
disables the mountstats
collector.

14.14. NODEEXPORTERCOLLECTORNETCLASSCONFIG

14.14.1. Description

OpenShift Dedicated 4 Monitoring

108

Use the NodeExporterCollectorNetClassConfig resource to enable or disable the netclass collector
of the node-exporter agent. By default, the netclass collector is enabled. If you disable this collector,
these metrics become unavailable: node_network_info, node_network_address_assign_type,
node_network_carrier, node_network_carrier_changes_total,
node_network_carrier_up_changes_total, node_network_carrier_down_changes_total,
node_network_device_id, node_network_dormant, node_network_flags, node_network_iface_id,
node_network_iface_link, node_network_iface_link_mode, node_network_mtu_bytes,
node_network_name_assign_type, node_network_net_dev_group, node_network_speed_bytes,
node_network_transmit_queue_length, and node_network_protocol_type.

Appears in: NodeExporterCollectorConfig

Property Type Description

enabled bool A Boolean flag that enables or
disables the netclass collector.

useNetlink bool A Boolean flag that activates the
netlink implementation of the
netclass collector. The default
value is true, which activates the
netlink mode. This
implementation improves the
performance of the netclass
collector.

14.15. NODEEXPORTERCOLLECTORNETDEVCONFIG

14.15.1. Description

Use the NodeExporterCollectorNetDevConfig resource to enable or disable the netdev collector of
the node-exporter agent. By default, the netdev collector is enabled. If disabled, these metrics become
unavailable: node_network_receive_bytes_total, node_network_receive_compressed_total,
node_network_receive_drop_total, node_network_receive_errs_total,
node_network_receive_fifo_total, node_network_receive_frame_total,
node_network_receive_multicast_total, node_network_receive_nohandler_total,
node_network_receive_packets_total, node_network_transmit_bytes_total,
node_network_transmit_carrier_total, node_network_transmit_colls_total,
node_network_transmit_compressed_total, node_network_transmit_drop_total,
node_network_transmit_errs_total, node_network_transmit_fifo_total, and
node_network_transmit_packets_total.

Appears in: NodeExporterCollectorConfig

Property Type Description

enabled bool A Boolean flag that enables or
disables the netdev collector.

14.16. NODEEXPORTERCOLLECTORPROCESSESCONFIG

CHAPTER 14. CONFIG MAP REFERENCE FOR THE CLUSTER MONITORING OPERATOR

109

14.16.1. Description

Use the NodeExporterCollectorProcessesConfig resource to enable or disable the processes
collector of the node-exporter agent. If the collector is enabled, the following metrics become available:
node_processes_max_processes, node_processes_pids, node_processes_state,
node_processes_threads, node_processes_threads_state. The metric node_processes_state and
node_processes_threads_state can have up to five series each, depending on the state of the
processes and threads. The possible states of a process or a thread are: D
(UNINTERRUPTABLE_SLEEP), R (RUNNING & RUNNABLE), S (INTERRUPTABLE_SLEEP), T
(STOPPED), or Z (ZOMBIE). By default, the processes collector is disabled.

Appears in: NodeExporterCollectorConfig

Property Type Description

enabled bool A Boolean flag that enables or
disables the processes
collector.

14.17. NODEEXPORTERCOLLECTORSYSTEMDCONFIG

14.17.1. Description

Use the NodeExporterCollectorSystemdConfig resource to enable or disable the systemd collector
of the node-exporter agent. By default, the systemd collector is disabled. If enabled, the following
metrics become available: node_systemd_system_running, node_systemd_units,
node_systemd_version. If the unit uses a socket, it also generates the following metrics:
node_systemd_socket_accepted_connections_total,
node_systemd_socket_current_connections, node_systemd_socket_refused_connections_total.
You can use the units parameter to select the systemd units to be included by the systemd collector.
The selected units are used to generate the node_systemd_unit_state metric, which shows the state of
each systemd unit. However, this metric’s cardinality might be high (at least five series per unit per
node). If you enable this collector with a long list of selected units, closely monitor the prometheus-k8s
deployment for excessive memory usage. Note that the node_systemd_timer_last_trigger_seconds
metric is only shown if you have configured the value of the units parameter as logrotate.timer.

Appears in: NodeExporterCollectorConfig

Property Type Description

enabled bool A Boolean flag that enables or
disables the systemd collector.

units []string A list of regular expression
(regex) patterns that match
systemd units to be included by
the systemd collector. By
default, the list is empty, so the
collector exposes no metrics for
systemd units.

OpenShift Dedicated 4 Monitoring

110

14.18. NODEEXPORTERCOLLECTORTCPSTATCONFIG

14.18.1. Description

The NodeExporterCollectorTcpStatConfig resource works as an on/off switch for the tcpstat
collector of the node-exporter agent. By default, the tcpstat collector is disabled.

Appears in: NodeExporterCollectorConfig

Property Type Description

enabled bool A Boolean flag that enables or
disables the tcpstat collector.

14.19. NODEEXPORTERCONFIG

14.19.1. Description

The NodeExporterConfig resource defines settings for the node-exporter agent.

Appears in: ClusterMonitoringConfiguration

Property Type Description

collectors NodeExporterCollectorConfig Defines which collectors are
enabled and their additional
configuration parameters.

maxProcs uint32 The target number of CPUs on
which the node-exporter’s
process will run. The default value
is 0, which means that node-
exporter runs on all CPUs. If a
kernel deadlock occurs or if
performance degrades when
reading from sysfs concurrently,
you can change this value to 1,
which limits node-exporter to
running on one CPU. For nodes
with a high CPU count, you can
set the limit to a low number,
which saves resources by
preventing Go routines from
being scheduled to run on all
CPUs. However, I/O performance
degrades if the maxProcs value
is set too low and there are many
metrics to collect.

CHAPTER 14. CONFIG MAP REFERENCE FOR THE CLUSTER MONITORING OPERATOR

111

ignoredNetworkDevices *[]string A list of network devices, defined
as regular expressions, that you
want to exclude from the relevant
collector configuration such as
netdev and netclass. If no list is
specified, the Cluster Monitoring
Operator uses a predefined list of
devices to be excluded to
minimize the impact on memory
usage. If the list is empty, no
devices are excluded. If you
modify this setting, monitor the
prometheus-k8s deployment
closely for excessive memory
usage.

resources *v1.ResourceRequirements Defines resource requests and
limits for the NodeExporter
container.

Property Type Description

14.20. OPENSHIFTSTATEMETRICSCONFIG

14.20.1. Description

The OpenShiftStateMetricsConfig resource defines settings for the openshift-state-metrics agent.

Appears in: ClusterMonitoringConfiguration

Property Type Description

nodeSelector map[string]string Defines the nodes on which the
pods are scheduled.

resources *v1.ResourceRequirements Defines resource requests and
limits for the
OpenShiftStateMetrics
container.

tolerations []v1.Toleration Defines tolerations for the pods.

topologySpreadConstraints []v1.TopologySpreadConstraint Defines the pod’s topology spread
constraints.

14.21. PROMETHEUSK8SCONFIG

14.21.1. Description

OpenShift Dedicated 4 Monitoring

112

The PrometheusK8sConfig resource defines settings for the Prometheus component.

Appears in: ClusterMonitoringConfiguration

Property Type Description

additionalAlertmanagerConfigs []AdditionalAlertmanagerConfig Configures additional
Alertmanager instances that
receive alerts from the
Prometheus component. By
default, no additional
Alertmanager instances are
configured.

enforcedBodySizeLimit string Enforces a body size limit for
Prometheus scraped metrics. If a
scraped target’s body response is
larger than the limit, the scrape
will fail. The following values are
valid: an empty value to specify
no limit, a numeric value in
Prometheus size format (such as
64MB), or the string automatic,
which indicates that the limit will
be automatically calculated based
on cluster capacity. The default
value is empty, which indicates no
limit.

externalLabels map[string]string Defines labels to be added to any
time series or alerts when
communicating with external
systems such as federation,
remote storage, and
Alertmanager. By default, no
labels are added.

logLevel string Defines the log level setting for
Prometheus. The possible values
are: error, warn, info, and
debug. The default value is info.

nodeSelector map[string]string Defines the nodes on which the
pods are scheduled.

CHAPTER 14. CONFIG MAP REFERENCE FOR THE CLUSTER MONITORING OPERATOR

113

queryLogFile string Specifies the file to which
PromQL queries are logged. This
setting can be either a filename, in
which case the queries are saved
to an emptyDir volume at
/var/log/prometheus, or a full
path to a location where an
emptyDir volume will be
mounted and the queries saved.
Writing to /dev/stderr,
/dev/stdout or /dev/null is
supported, but writing to any
other /dev/ path is not supported.
Relative paths are also not
supported. By default, PromQL
queries are not logged.

remoteWrite []RemoteWriteSpec Defines the remote write
configuration, including URL,
authentication, and relabeling
settings.

resources *v1.ResourceRequirements Defines resource requests and
limits for the Prometheus
container.

retention string Defines the duration for which
Prometheus retains data. This
definition must be specified using
the following regular expression
pattern: [0-9]+(ms|s|m|h|d|w|y)
(ms = milliseconds, s= seconds,m
= minutes, h = hours, d = days, w =
weeks, y = years). The default
value is 15d.

retentionSize string Defines the maximum amount of
disk space used by data blocks
plus the write-ahead log (WAL).
Supported values are B, KB, KiB,
MB, MiB, GB, GiB, TB, TiB, PB,
PiB, EB, and EiB. By default, no
limit is defined.

tolerations []v1.Toleration Defines tolerations for the pods.

topologySpreadConstraints []v1.TopologySpreadConstraint Defines the pod’s topology spread
constraints.

Property Type Description

OpenShift Dedicated 4 Monitoring

114

collectionProfile CollectionProfile Defines the metrics collection
profile that Prometheus uses to
collect metrics from the platform
components. Supported values
are full or minimal. In the full
profile (default), Prometheus
collects all metrics that are
exposed by the platform
components. In the minimal
profile, Prometheus only collects
metrics necessary for the default
platform alerts, recording rules,
telemetry, and console
dashboards.

volumeClaimTemplate *monv1.EmbeddedPersistentVolu
meClaim

Defines persistent storage for
Prometheus. Use this setting to
configure the persistent volume
claim, including storage class,
volume size and name.

Property Type Description

14.22. PROMETHEUSOPERATORCONFIG

14.22.1. Description

The PrometheusOperatorConfig resource defines settings for the Prometheus Operator component.

Appears in: ClusterMonitoringConfiguration, UserWorkloadConfiguration

Property Type Description

logLevel string Defines the log level settings for
Prometheus Operator. The
possible values are error, warn,
info, and debug. The default
value is info.

nodeSelector map[string]string Defines the nodes on which the
pods are scheduled.

resources *v1.ResourceRequirements Defines resource requests and
limits for the
PrometheusOperator
container.

tolerations []v1.Toleration Defines tolerations for the pods.

CHAPTER 14. CONFIG MAP REFERENCE FOR THE CLUSTER MONITORING OPERATOR

115

topologySpreadConstraints []v1.TopologySpreadConstraint Defines the pod’s topology spread
constraints.

Property Type Description

14.23. PROMETHEUSOPERATORADMISSIONWEBHOOKCONFIG

14.23.1. Description

The PrometheusOperatorAdmissionWebhookConfig resource defines settings for the admission
webhook workload for Prometheus Operator.

Appears in: ClusterMonitoringConfiguration

Property Type Description

resources *v1.ResourceRequirements Defines resource requests and
limits for the prometheus-
operator-admission-
webhook container.

topologySpreadConstraints []v1.TopologySpreadConstraint Defines a pod’s topology spread
constraints.

14.24. PROMETHEUSRESTRICTEDCONFIG

14.24.1. Description

The PrometheusRestrictedConfig resource defines the settings for the Prometheus component that
monitors user-defined projects.

Appears in: UserWorkloadConfiguration

Property Type Description

additionalAlertmanagerConfigs []AdditionalAlertmanagerConfig Configures additional
Alertmanager instances that
receive alerts from the
Prometheus component. By
default, no additional
Alertmanager instances are
configured.

OpenShift Dedicated 4 Monitoring

116

enforcedLabelLimit *uint64 Specifies a per-scrape limit on
the number of labels accepted for
a sample. If the number of labels
exceeds this limit after metric
relabeling, the entire scrape is
treated as failed. The default
value is 0, which means that no
limit is set.

enforcedLabelNameLengthLimit *uint64 Specifies a per-scrape limit on
the length of a label name for a
sample. If the length of a label
name exceeds this limit after
metric relabeling, the entire
scrape is treated as failed. The
default value is 0, which means
that no limit is set.

enforcedLabelValueLengthLimit *uint64 Specifies a per-scrape limit on
the length of a label value for a
sample. If the length of a label
value exceeds this limit after
metric relabeling, the entire
scrape is treated as failed. The
default value is 0, which means
that no limit is set.

enforcedSampleLimit *uint64 Specifies a global limit on the
number of scraped samples that
will be accepted. This setting
overrides the SampleLimit value
set in any user-defined
ServiceMonitor or
PodMonitor object if the value is
greater than
enforcedTargetLimit.
Administrators can use this setting
to keep the overall number of
samples under control. The
default value is 0, which means
that no limit is set.

Property Type Description

CHAPTER 14. CONFIG MAP REFERENCE FOR THE CLUSTER MONITORING OPERATOR

117

enforcedTargetLimit *uint64 Specifies a global limit on the
number of scraped targets. This
setting overrides the
TargetLimit value set in any
user-defined ServiceMonitor or
PodMonitor object if the value is
greater than
enforcedSampleLimit.
Administrators can use this setting
to keep the overall number of
targets under control. The default
value is 0.

externalLabels map[string]string Defines labels to be added to any
time series or alerts when
communicating with external
systems such as federation,
remote storage, and
Alertmanager. By default, no
labels are added.

logLevel string Defines the log level setting for
Prometheus. The possible values
are error, warn, info, and
debug. The default setting is
info.

nodeSelector map[string]string Defines the nodes on which the
pods are scheduled.

queryLogFile string Specifies the file to which
PromQL queries are logged. This
setting can be either a filename, in
which case the queries are saved
to an emptyDir volume at
/var/log/prometheus, or a full
path to a location where an
emptyDir volume will be
mounted and the queries saved.
Writing to /dev/stderr,
/dev/stdout or /dev/null is
supported, but writing to any
other /dev/ path is not supported.
Relative paths are also not
supported. By default, PromQL
queries are not logged.

remoteWrite []RemoteWriteSpec Defines the remote write
configuration, including URL,
authentication, and relabeling
settings.

Property Type Description

OpenShift Dedicated 4 Monitoring

118

resources *v1.ResourceRequirements Defines resource requests and
limits for the Prometheus
container.

retention string Defines the duration for which
Prometheus retains data. This
definition must be specified using
the following regular expression
pattern: [0-9]+(ms|s|m|h|d|w|y)
(ms = milliseconds, s= seconds,m
= minutes, h = hours, d = days, w =
weeks, y = years). The default
value is 15d.

retentionSize string Defines the maximum amount of
disk space used by data blocks
plus the write-ahead log (WAL).
Supported values are B, KB, KiB,
MB, MiB, GB, GiB, TB, TiB, PB,
PiB, EB, and EiB. The default
value is nil.

tolerations []v1.Toleration Defines tolerations for the pods.

topologySpreadConstraints []v1.TopologySpreadConstraint Defines the pod’s topology spread
constraints.

volumeClaimTemplate *monv1.EmbeddedPersistentVolu
meClaim

Defines persistent storage for
Prometheus. Use this setting to
configure the storage class and
size of a volume.

Property Type Description

14.25. REMOTEWRITESPEC

14.25.1. Description

The RemoteWriteSpec resource defines the settings for remote write storage.

14.25.2. Required

url

Appears in: PrometheusK8sConfig, PrometheusRestrictedConfig

Property Type Description

authorization *monv1.SafeAuthorization Defines the authorization settings
for remote write storage.

CHAPTER 14. CONFIG MAP REFERENCE FOR THE CLUSTER MONITORING OPERATOR

119

basicAuth *monv1.BasicAuth Defines Basic authentication
settings for the remote write
endpoint URL.

bearerTokenFile string Defines the file that contains the
bearer token for the remote write
endpoint. However, because you
cannot mount secrets in a pod, in
practice you can only reference
the token of the service account.

headers map[string]string Specifies the custom HTTP
headers to be sent along with
each remote write request.
Headers set by Prometheus
cannot be overwritten.

metadataConfig *monv1.MetadataConfig Defines settings for sending series
metadata to remote write
storage.

name string Defines the name of the remote
write queue. This name is used in
metrics and logging to
differentiate queues. If specified,
this name must be unique.

oauth2 *monv1.OAuth2 Defines OAuth2 authentication
settings for the remote write
endpoint.

proxyUrl string Defines an optional proxy URL.

queueConfig *monv1.QueueConfig Allows tuning configuration for
remote write queue parameters.

remoteTimeout string Defines the timeout value for
requests to the remote write
endpoint.

sendExemplars *bool Enables sending exemplars via
remote write. When enabled, this
setting configures Prometheus to
store a maximum of 100,000
exemplars in memory. This setting
only applies to user-defined
monitoring and is not applicable
to core platform monitoring.

Property Type Description

OpenShift Dedicated 4 Monitoring

120

sigv4 *monv1.Sigv4 Defines AWS Signature Version 4
authentication settings.

tlsConfig *monv1.SafeTLSConfig Defines TLS authentication
settings for the remote write
endpoint.

url string Defines the URL of the remote
write endpoint to which samples
will be sent.

writeRelabelConfigs []monv1.RelabelConfig Defines the list of remote write
relabel configurations.

Property Type Description

14.26. TLSCONFIG

14.26.1. Description

The TLSConfig resource configures the settings for TLS connections.

14.26.2. Required

insecureSkipVerify

Appears in: AdditionalAlertmanagerConfig

Property Type Description

ca *v1.SecretKeySelector Defines the secret key reference
containing the Certificate
Authority (CA) to use for the
remote host.

cert *v1.SecretKeySelector Defines the secret key reference
containing the public certificate
to use for the remote host.

key *v1.SecretKeySelector Defines the secret key reference
containing the private key to use
for the remote host.

serverName string Used to verify the hostname on
the returned certificate.

CHAPTER 14. CONFIG MAP REFERENCE FOR THE CLUSTER MONITORING OPERATOR

121

insecureSkipVerify bool When set to true, disables the
verification of the remote host’s
certificate and name.

Property Type Description

14.27. TELEMETERCLIENTCONFIG

14.27.1. Description

TelemeterClientConfig defines settings for the Telemeter Client component.

14.27.2. Required

nodeSelector

tolerations

Appears in: ClusterMonitoringConfiguration

Property Type Description

nodeSelector map[string]string Defines the nodes on which the
pods are scheduled.

resources *v1.ResourceRequirements Defines resource requests and
limits for the TelemeterClient
container.

tolerations []v1.Toleration Defines tolerations for the pods.

topologySpreadConstraints []v1.TopologySpreadConstraint Defines the pod’s topology spread
constraints.

14.28. THANOSQUERIERCONFIG

14.28.1. Description

The ThanosQuerierConfig resource defines settings for the Thanos Querier component.

Appears in: ClusterMonitoringConfiguration

Property Type Description

enableRequestLogging bool A Boolean flag that enables or
disables request logging. The
default value is false.

OpenShift Dedicated 4 Monitoring

122

logLevel string Defines the log level setting for
Thanos Querier. The possible
values are error, warn, info, and
debug. The default value is info.

enableCORS bool A Boolean flag that enables
setting CORS headers. The
headers allow access from any
origin. The default value is false.

nodeSelector map[string]string Defines the nodes on which the
pods are scheduled.

resources *v1.ResourceRequirements Defines resource requests and
limits for the Thanos Querier
container.

tolerations []v1.Toleration Defines tolerations for the pods.

topologySpreadConstraints []v1.TopologySpreadConstraint Defines the pod’s topology spread
constraints.

Property Type Description

14.29. THANOSRULERCONFIG

14.29.1. Description

The ThanosRulerConfig resource defines configuration for the Thanos Ruler instance for user-defined
projects.

Appears in: UserWorkloadConfiguration

Property Type Description

additionalAlertmanagerConfigs []AdditionalAlertmanagerConfig Configures how the Thanos Ruler
component communicates with
additional Alertmanager
instances. The default value is nil.

logLevel string Defines the log level setting for
Thanos Ruler. The possible values
are error, warn, info, and
debug. The default value is info.

nodeSelector map[string]string Defines the nodes on which the
Pods are scheduled.

CHAPTER 14. CONFIG MAP REFERENCE FOR THE CLUSTER MONITORING OPERATOR

123

resources *v1.ResourceRequirements Defines resource requests and
limits for the Alertmanager
container.

retention string Defines the duration for which
Prometheus retains data. This
definition must be specified using
the following regular expression
pattern: [0-9]+(ms|s|m|h|d|w|y)
(ms = milliseconds, s= seconds,m
= minutes, h = hours, d = days, w =
weeks, y = years). The default
value is 15d.

tolerations []v1.Toleration Defines tolerations for the pods.

topologySpreadConstraints []v1.TopologySpreadConstraint Defines the pod’s topology spread
constraints.

volumeClaimTemplate *monv1.EmbeddedPersistentVolu
meClaim

Defines persistent storage for
Thanos Ruler. Use this setting to
configure the storage class and
size of a volume.

Property Type Description

14.30. USERWORKLOADCONFIGURATION

14.30.1. Description

The UserWorkloadConfiguration resource defines the settings responsible for user-defined projects
in the user-workload-monitoring-config config map in the openshift-user-workload-monitoring
namespace. You can only enable UserWorkloadConfiguration after you have set
enableUserWorkload to true in the cluster-monitoring-config config map under the openshift-
monitoring namespace.

Property Type Description

alertmanager *AlertmanagerUserWorkloadConf
ig

Defines the settings for the
Alertmanager component in user
workload monitoring.

prometheus *PrometheusRestrictedConfig Defines the settings for the
Prometheus component in user
workload monitoring.

OpenShift Dedicated 4 Monitoring

124

prometheusOperator *PrometheusOperatorConfig Defines the settings for the
Prometheus Operator
component in user workload
monitoring.

thanosRuler *ThanosRulerConfig Defines the settings for the
Thanos Ruler component in user
workload monitoring.

Property Type Description

CHAPTER 14. CONFIG MAP REFERENCE FOR THE CLUSTER MONITORING OPERATOR

125

	Table of Contents
	CHAPTER 1. MONITORING OVERVIEW
	1.1. ABOUT OPENSHIFT DEDICATED MONITORING
	1.2. UNDERSTANDING THE MONITORING STACK
	1.2.1. Default monitoring targets
	1.2.2. Components for monitoring user-defined projects
	1.2.3. Monitoring targets for user-defined projects

	1.3. GLOSSARY OF COMMON TERMS FOR OPENSHIFT DEDICATED MONITORING

	CHAPTER 2. ACCESSING MONITORING FOR USER-DEFINED PROJECTS
	CHAPTER 3. CONFIGURING THE MONITORING STACK
	3.1. MAINTENANCE AND SUPPORT FOR MONITORING
	3.1.1. Support considerations for monitoring
	3.1.2. Support version matrix for monitoring components

	3.2. CONFIGURING THE MONITORING STACK
	3.3. CONFIGURABLE MONITORING COMPONENTS
	3.4. USING NODE SELECTORS TO MOVE MONITORING COMPONENTS
	3.4.1. How node selectors work with other constraints
	3.4.2. Moving monitoring components to different nodes

	3.5. ASSIGNING TOLERATIONS TO MONITORING COMPONENTS
	3.6. MANAGING CPU AND MEMORY RESOURCES FOR MONITORING COMPONENTS
	3.6.1. About specifying limits and requests for monitoring components
	3.6.2. Specifying limits and requests for monitoring components

	3.7. CONFIGURING PERSISTENT STORAGE
	3.7.1. Persistent storage prerequisites
	3.7.2. Configuring a persistent volume claim
	3.7.3. Modifying the retention time and size for Prometheus metrics data
	3.7.4. Modifying the retention time for Thanos Ruler metrics data

	3.8. CONFIGURING REMOTE WRITE STORAGE
	3.8.1. Supported remote write authentication settings
	3.8.2. Example remote write authentication settings

	3.9. ADDING CLUSTER ID LABELS TO METRICS
	3.9.1. Creating cluster ID labels for metrics

	3.10. CONTROLLING THE IMPACT OF UNBOUND METRICS ATTRIBUTES IN USER-DEFINED PROJECTS
	3.10.1. Setting scrape sample and label limits for user-defined projects

	CHAPTER 4. CONFIGURING EXTERNAL ALERTMANAGER INSTANCES
	CHAPTER 5. CONFIGURING SECRETS FOR ALERTMANAGER
	5.1. ADDING A SECRET TO THE ALERTMANAGER CONFIGURATION
	5.2. ATTACHING ADDITIONAL LABELS TO YOUR TIME SERIES AND ALERTS

	CHAPTER 6. USING POD TOPOLOGY SPREAD CONSTRAINTS FOR MONITORING
	6.1. CONFIGURING POD TOPOLOGY SPREAD CONSTRAINTS
	6.2. SETTING LOG LEVELS FOR MONITORING COMPONENTS
	6.3. ENABLING THE QUERY LOG FILE FOR PROMETHEUS

	CHAPTER 7. DISABLING MONITORING FOR USER-DEFINED PROJECTS
	7.1. DISABLING MONITORING FOR USER-DEFINED PROJECTS
	7.2. EXCLUDING A USER-DEFINED PROJECT FROM MONITORING

	CHAPTER 8. ENABLING ALERT ROUTING FOR USER-DEFINED PROJECTS
	8.1. UNDERSTANDING ALERT ROUTING FOR USER-DEFINED PROJECTS
	8.2. ENABLING A SEPARATE ALERTMANAGER INSTANCE FOR USER-DEFINED ALERT ROUTING
	8.3. GRANTING USERS PERMISSION TO CONFIGURE ALERT ROUTING FOR USER-DEFINED PROJECTS

	CHAPTER 9. MANAGING METRICS
	9.1. UNDERSTANDING METRICS
	9.2. SETTING UP METRICS COLLECTION FOR USER-DEFINED PROJECTS
	9.2.1. Deploying a sample service
	9.2.2. Specifying how a service is monitored
	9.2.3. Example service endpoint authentication settings
	9.2.3.1. Sample YAML authentication with a bearer token
	9.2.3.2. Sample YAML for Basic authentication
	9.2.3.3. Sample YAML authentication with OAuth 2.0

	9.3. QUERYING METRICS
	9.3.1. Querying metrics for all projects as a cluster administrator
	9.3.2. Querying metrics for user-defined projects as a developer

	9.4. GETTING DETAILED INFORMATION ABOUT A METRICS TARGET

	CHAPTER 10. MANAGING ALERTS
	10.1. ACCESSING THE ALERTING UI IN THE ADMINISTRATOR AND DEVELOPER PERSPECTIVES
	10.2. SEARCHING AND FILTERING ALERTS, SILENCES, AND ALERTING RULES
	Understanding alert filters
	Understanding silence filters
	Understanding alerting rule filters
	Searching and filtering alerts, silences, and alerting rules in the Developer perspective

	10.3. GETTING INFORMATION ABOUT ALERTS, SILENCES, AND ALERTING RULES
	10.4. MANAGING SILENCES
	10.4.1. Silencing alerts
	10.4.2. Editing silences
	10.4.3. Expiring silences

	10.5. MANAGING ALERTING RULES FOR USER-DEFINED PROJECTS
	10.5.1. Optimizing alerting for user-defined projects
	10.5.2. About creating alerting rules for user-defined projects
	10.5.3. Creating alerting rules for user-defined projects
	10.5.4. Accessing alerting rules for user-defined projects
	10.5.5. Listing alerting rules for all projects in a single view
	10.5.6. Removing alerting rules for user-defined projects

	10.6. SENDING NOTIFICATIONS TO EXTERNAL SYSTEMS
	10.6.1. Configuring different alert receivers for default platform alerts and user-defined alerts
	10.6.2. Creating alert routing for user-defined projects

	10.7. APPLYING A CUSTOM CONFIGURATION TO ALERTMANAGER FOR USER-DEFINED ALERT ROUTING

	CHAPTER 11. REVIEWING MONITORING DASHBOARDS
	11.1. REVIEWING MONITORING DASHBOARDS AS A CLUSTER ADMINISTRATOR
	11.2. REVIEWING MONITORING DASHBOARDS AS A DEVELOPER

	CHAPTER 12. ACCESSING MONITORING APIS BY USING THE CLI
	12.1. ABOUT ACCESSING MONITORING WEB SERVICE APIS
	12.2. ACCESSING A MONITORING WEB SERVICE API
	12.3. QUERYING METRICS BY USING THE FEDERATION ENDPOINT FOR PROMETHEUS
	12.4. ACCESSING METRICS FROM OUTSIDE THE CLUSTER FOR CUSTOM APPLICATIONS
	12.5. ADDITIONAL RESOURCES

	CHAPTER 13. TROUBLESHOOTING MONITORING ISSUES
	13.1. DETERMINING WHY USER-DEFINED PROJECT METRICS ARE UNAVAILABLE
	13.2. DETERMINING WHY PROMETHEUS IS CONSUMING A LOT OF DISK SPACE
	13.3. RESOLVING THE KUBEPERSISTENTVOLUMEFILLINGUP ALERT FIRING FOR PROMETHEUS

	CHAPTER 14. CONFIG MAP REFERENCE FOR THE CLUSTER MONITORING OPERATOR
	14.1. CLUSTER MONITORING OPERATOR CONFIGURATION REFERENCE
	14.2. ADDITIONALALERTMANAGERCONFIG
	14.2.1. Description
	14.2.2. Required

	14.3. ALERTMANAGERMAINCONFIG
	14.3.1. Description

	14.4. ALERTMANAGERUSERWORKLOADCONFIG
	14.4.1. Description

	14.5. CLUSTERMONITORINGCONFIGURATION
	14.5.1. Description

	14.6. KUBESTATEMETRICSCONFIG
	14.6.1. Description

	14.7. METRICSSERVERCONFIG
	14.7.1. Description

	14.8. MONITORINGPLUGINCONFIG
	14.8.1. Description

	14.9. NODEEXPORTERCOLLECTORBUDDYINFOCONFIG
	14.9.1. Description

	14.10. NODEEXPORTERCOLLECTORCONFIG
	14.10.1. Description

	14.11. NODEEXPORTERCOLLECTORCPUFREQCONFIG
	14.11.1. Description

	14.12. NODEEXPORTERCOLLECTORKSMDCONFIG
	14.12.1. Description

	14.13. NODEEXPORTERCOLLECTORMOUNTSTATSCONFIG
	14.13.1. Description

	14.14. NODEEXPORTERCOLLECTORNETCLASSCONFIG
	14.14.1. Description

	14.15. NODEEXPORTERCOLLECTORNETDEVCONFIG
	14.15.1. Description

	14.16. NODEEXPORTERCOLLECTORPROCESSESCONFIG
	14.16.1. Description

	14.17. NODEEXPORTERCOLLECTORSYSTEMDCONFIG
	14.17.1. Description

	14.18. NODEEXPORTERCOLLECTORTCPSTATCONFIG
	14.18.1. Description

	14.19. NODEEXPORTERCONFIG
	14.19.1. Description

	14.20. OPENSHIFTSTATEMETRICSCONFIG
	14.20.1. Description

	14.21. PROMETHEUSK8SCONFIG
	14.21.1. Description

	14.22. PROMETHEUSOPERATORCONFIG
	14.22.1. Description

	14.23. PROMETHEUSOPERATORADMISSIONWEBHOOKCONFIG
	14.23.1. Description

	14.24. PROMETHEUSRESTRICTEDCONFIG
	14.24.1. Description

	14.25. REMOTEWRITESPEC
	14.25.1. Description
	14.25.2. Required

	14.26. TLSCONFIG
	14.26.1. Description
	14.26.2. Required

	14.27. TELEMETERCLIENTCONFIG
	14.27.1. Description
	14.27.2. Required

	14.28. THANOSQUERIERCONFIG
	14.28.1. Description

	14.29. THANOSRULERCONFIG
	14.29.1. Description

	14.30. USERWORKLOADCONFIGURATION
	14.30.1. Description

