
OpenShift Enterprise 3.2

Developer Guide

OpenShift Enterprise 3.2 Developer Reference

Last Updated: 2018-08-10

OpenShift Enterprise 3.2 Developer Guide

OpenShift Enterprise 3.2 Developer Reference

Legal Notice

Copyright © 2018 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United
States and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related
to or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

These topics help developers set up and configure a workstation to develop and deploy
applications in an OpenShift Enterprise cloud environment with a command-line interface (CLI).
This guide provide s detailed instructions and examples to help developers: Monitor and browse
projects with the web console Configure and utilize the CLI Generate configurations using
templates Manage builds and webhooks Define and trigger deployments Integrate external
services (databases, SaaS endpoints)

. .

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. OVERVIEW

CHAPTER 2. APPLICATION LIFE CYCLE EXAMPLES
2.1. OVERVIEW
2.2. DEVELOPING ON OPENSHIFT ENTERPRISE
2.3. DEVELOPING THEN DEPLOYING ON OPENSHIFT ENTERPRISE

CHAPTER 3. AUTHENTICATION
3.1. WEB CONSOLE AUTHENTICATION
3.2. CLI AUTHENTICATION

CHAPTER 4. PROJECTS
4.1. OVERVIEW
4.2. CREATING A PROJECT
4.3. VIEWING PROJECTS
4.4. CHECKING PROJECT STATUS
4.5. FILTERING BY LABELS
4.6. DELETING A PROJECT

CHAPTER 5. CREATING NEW APPLICATIONS
5.1. OVERVIEW
5.2. CREATING AN APPLICATION USING THE CLI

5.2.1. Creating an Application From Source Code
5.2.2. Creating an Application From an Image
5.2.3. Creating an Application From a Template
5.2.4. Further Modifying Application Creation

5.2.4.1. Specifying Environment Variables
5.2.4.2. Specifying Labels
5.2.4.3. Viewing the Output Without Creation
5.2.4.4. Creating Objects With Different Names
5.2.4.5. Creating Objects in a Different Project
5.2.4.6. Creating Multiple Objects
5.2.4.7. Grouping Images and Source in a Single Pod
5.2.4.8. Useful Edits

5.3. CREATING AN APPLICATION USING THE WEB CONSOLE

CHAPTER 6. MIGRATING APPLICATIONS
6.1. OVERVIEW
6.2. MIGRATING DATABASE APPLICATIONS

6.2.1. Overview
6.2.2. Supported Databases
6.2.3. MySQL
6.2.4. PostgreSQL
6.2.5. MongoDB

6.3. MIGRATING WEB FRAMEWORK APPLICATIONS
6.3.1. Overview
6.3.2. Python
6.3.3. Ruby
6.3.4. PHP
6.3.5. Perl
6.3.6. Node.js
6.3.7. JBoss EAP
6.3.8. JBoss WS (Tomcat)

10

11
11
11
12

13
13
13

15
15
15
15
16
16
17

19
19
19
19

20
21
21
22
22
22
23
23
23
23
24
24

28
28
28
29
29
29
31
33
35
35
35
36
37
37
38
39
40

Table of Contents

1

. .

. .

. .

6.3.9. JBoss AS (Wildfly 10)
6.3.10. Supported JBoss/XPaas Versions

6.4. QUICKSTART EXAMPLES
6.4.1. Overview
6.4.2. Workflow

6.5. CONTINUOUS INTEGRATION AND DEPLOYMENT (CI/CD)
6.5.1. Overview
6.5.2. Jenkins

6.6. WEBHOOKS AND ACTION HOOKS
6.6.1. Overview
6.6.2. Webhooks
6.6.3. Action Hooks

6.7. S2I TOOL
6.7.1. Overview
6.7.2. Creating a Container Image

6.8. SUPPORT GUIDE
6.8.1. Overview
6.8.2. Supported Databases
6.8.3. Supported Languages
6.8.4. Supported Frameworks
6.8.5. Supported Markers
6.8.6. Supported Environment Variables

CHAPTER 7. APPLICATION TUTORIALS
7.1. OVERVIEW
7.2. QUICKSTART TEMPLATES

7.2.1. Overview
7.2.2. Web Framework Quickstart Templates

7.3. RUBY ON RAILS
7.3.1. Overview
7.3.2. Local Workstation Setup

7.3.2.1. Setting Up the Database
7.3.3. Writing Your Application

7.3.3.1. Creating a Welcome Page
7.3.3.2. Configuring the Application for OpenShift Enterprise
7.3.3.3. Storing Your Application in Git

7.3.4. Deploying Your Application to OpenShift Enterprise
7.3.4.1. Creating the Database Service
7.3.4.2. Creating the Frontend Service
7.3.4.3. Creating a Route for Your Application

CHAPTER 8. OPENING A REMOTE SHELL TO CONTAINERS
8.1. OVERVIEW
8.2. START A SECURE SHELL SESSION
8.3. SECURE SHELL SESSION HELP

CHAPTER 9. TEMPLATES
9.1. OVERVIEW
9.2. UPLOADING A TEMPLATE
9.3. CREATING FROM TEMPLATES USING THE WEB CONSOLE
9.4. CREATING FROM TEMPLATES USING THE CLI

9.4.1. Labels
9.4.2. Parameters
9.4.3. Generating a List of Objects

40
41
42
42
42
43
43
43
44
44
44
45
45
45
45
46
46
46
46
46
47
48

50
50
50
50
50
51
51
51
51
52
53
53
54
55
55
56
57

58
58
58
58

59
59
59
59
61
62
62
63

OpenShift Enterprise 3.2 Developer Guide

2

. .

. .

9.5. MODIFYING AN UPLOADED TEMPLATE
9.6. USING THE INSTANT APP AND QUICKSTART TEMPLATES
9.7. WRITING TEMPLATES

9.7.1. Description
9.7.2. Labels
9.7.3. Parameters
9.7.4. Object List
9.7.5. Creating a Template from Existing Objects

CHAPTER 10. SERVICE ACCOUNTS
10.1. OVERVIEW
10.2. USER NAMES AND GROUPS
10.3. DEFAULT SERVICE ACCOUNTS AND ROLES
10.4. MANAGING SERVICE ACCOUNTS
10.5. MANAGING SERVICE ACCOUNT CREDENTIALS
10.6. MANAGING ALLOWED SECRETS
10.7. USING A SERVICE ACCOUNT’S CREDENTIALS INSIDE A CONTAINER
10.8. USING A SERVICE ACCOUNT’S CREDENTIALS EXTERNALLY

CHAPTER 11. BUILDS
11.1. OVERVIEW
11.2. DEFINING A BUILDCONFIG
11.3. SOURCE-TO-IMAGE STRATEGY OPTIONS

11.3.1. Force Pull
11.3.2. Incremental Builds
11.3.3. Overriding Builder Image Scripts
11.3.4. Environment Variables

11.3.4.1. Environment Files
11.3.4.2. BuildConfig Environment

11.4. DOCKER STRATEGY OPTIONS
11.4.1. FROM Image
11.4.2. Dockerfile Path
11.4.3. No Cache
11.4.4. Force Pull
11.4.5. Environment Variables

11.5. CUSTOM STRATEGY OPTIONS
11.5.1. FROM Image
11.5.2. Exposing the Docker Socket
11.5.3. Secrets
11.5.4. Force Pull
11.5.5. Environment Variables

11.6. BUILD INPUTS
11.7. GIT REPOSITORY SOURCE OPTIONS

11.7.1. Using a Proxy for Git Cloning
11.7.2. Using Private Repositories for Builds

11.7.2.1. Basic Authentication
11.7.2.2. SSH Key Based Authentication
11.7.2.3. Other

11.8. DOCKERFILE SOURCE
11.9. BINARY SOURCE
11.10. IMAGE SOURCE
11.11. USING SECRETS DURING A BUILD

11.11.1. Defining Secrets in the BuildConfig

64
64
64
64
65
65
66
67

68
68
68
68
69
69
69
70
71

73
73
73
74
74
75
75
76
76
76
77
77
77
77
77
78
78
78
78
79
79
79
80
81
81
82
82
83
84
85
85
86
87
87

Table of Contents

3

. .

. .

11.11.2. Source-to-Image Strategy
11.11.3. Docker Strategy
11.11.4. Custom Strategy

11.12. STARTING A BUILD
11.13. CANCELING A BUILD
11.14. DELETING A BUILDCONFIG
11.15. VIEWING BUILD DETAILS
11.16. ACCESSING BUILD LOGS
11.17. SETTING MAXIMUM DURATION
11.18. BUILD TRIGGERS

11.18.1. Webhook Triggers
11.18.2. Image Change Triggers
11.18.3. Configuration Change Triggers

11.19. BUILD HOOKS
11.19.1. Using the Command Line

11.20. USING DOCKER CREDENTIALS FOR PUSHING AND PULLING IMAGES
11.21. BUILD RUN POLICY

11.21.1. Serial Run Policy
11.21.2. SerialLatestOnly Run Policy
11.21.3. Parallel Run Policy

11.22. BUILD OUTPUT
11.22.1. Output Image Environment Variables
11.22.2. Output Image Labels

11.23. USING EXTERNAL ARTIFACTS DURING A BUILD
11.24. BUILD RESOURCES
11.25. TROUBLESHOOTING

CHAPTER 12. MANAGING IMAGES
12.1. OVERVIEW
12.2. TAGGING IMAGES

12.2.1. Adding Tags to Image Streams
12.2.2. Removing Tags from Image Streams
12.2.3. Referencing Images in Image Streams

12.3. IMAGE PULL POLICY
12.4. ACCESSING THE INTERNAL REGISTRY
12.5. USING IMAGE PULL SECRETS

12.5.1. Allowing Pods to Reference Images Across Projects
12.5.2. Allowing Pods to Reference Images from Other Secured Registries

12.6. IMPORTING TAG AND IMAGE METADATA
12.6.1. Importing Images from Insecure Registries
12.6.2. Importing Images from Private Registries
12.6.3. Importing Images Across Projects
12.6.4. Creating an Image Stream by Manually Pushing an Image

CHAPTER 13. QUOTAS AND LIMIT RANGES
13.1. OVERVIEW
13.2. QUOTAS

13.2.1. Viewing Quotas
13.2.2. Resources Managed by Quota
13.2.3. Quota Scopes
13.2.4. Quota Enforcement
13.2.5. Requests vs Limits

13.3. LIMIT RANGES

88
89
89
89
90
90
91
91
92
92
92
94
96
96
97
98
99
99

100
100
101
101
102
102
103
104

105
105
105
105
106
106
109
109
110
110
111
111
113
114
115
115

117
117
117
117

120
121
122
122
123

OpenShift Enterprise 3.2 Developer Guide

4

. .

. .

. .

. .

13.3.1. Viewing Limit Ranges
13.3.2. Container Limits
13.3.3. Pod Limits

13.4. COMPUTE RESOURCES
13.4.1. CPU Requests
13.4.2. Viewing Compute Resources
13.4.3. CPU Limits
13.4.4. Memory Requests
13.4.5. Memory Limits
13.4.6. Quality of Service Tiers
13.4.7. Specifying Compute Resources via CLI

13.5. PROJECT RESOURCE LIMITS

CHAPTER 14. DEPLOYMENTS
14.1. OVERVIEW
14.2. CREATING A DEPLOYMENT CONFIGURATION
14.3. STARTING A DEPLOYMENT
14.4. VIEWING A DEPLOYMENT
14.5. CANCELING A DEPLOYMENT
14.6. RETRYING A DEPLOYMENT
14.7. ROLLING BACK A DEPLOYMENT
14.8. EXECUTING COMMANDS INSIDE A CONTAINER
14.9. VIEWING DEPLOYMENT LOGS
14.10. TRIGGERS

14.10.1. Configuration Change Trigger
14.10.2. Image Change Trigger

14.11. STRATEGIES
14.11.1. Rolling Strategy
14.11.2. Recreate Strategy
14.11.3. Custom Strategy

14.12. LIFECYCLE HOOKS
14.12.1. Pod-based Lifecycle Hook

14.13. DEPLOYMENT RESOURCES
14.14. MANUAL SCALING
14.15. ASSIGNING PODS TO SPECIFIC NODES
14.16. RUNNING A POD WITH A DIFFERENT SERVICE ACCOUNT

CHAPTER 15. ROUTES
15.1. OVERVIEW
15.2. CREATING ROUTES

CHAPTER 16. INTEGRATING EXTERNAL SERVICES
16.1. OVERVIEW
16.2. EXTERNAL MYSQL DATABASE
16.3. EXTERNAL SAAS PROVIDER

CHAPTER 17. SECRETS
17.1. OVERVIEW
17.2. PROPERTIES OF SECRETS

17.2.1. Secrets and the Pod Lifecycle
17.3. CREATING AND USING SECRETS

17.3.1. Creating Secrets
17.3.2. Secrets in Volumes and Environment Variables
17.3.3. Image Pull Secrets

123
125
126
127
127
128
128
128
129
129
130
130

131
131
131
132
132
133
133
133
134
134
135
135
135
136
136
137
138
139
140
141
141
142
142

144
144
144

147
147
147
149

153
153
153
153
154
154
154
154

Table of Contents

5

. .

. .

. .

. .

. .

. .

. .

17.3.4. Source Clone Secrets
17.4. RESTRICTIONS

17.4.1. Secret Data Keys
17.5. EXAMPLES
17.6. TROUBLESHOOTING

CHAPTER 18. CONFIGMAPS
18.1. OVERVIEW
18.2. CREATING CONFIGMAPS

18.2.1. Creating from Directories
18.2.2. Creating from Files
18.2.3. Creating from Literal Values

18.3. USE CASES: CONSUMING CONFIGMAPS IN PODS
18.3.1. Consuming in Environment Variables
18.3.2. Setting Command-line Arguments
18.3.3. Consuming in Volumes

18.4. EXAMPLE: CONFIGURING REDIS
18.5. RESTRICTIONS

CHAPTER 19. USING DAEMONSETS
19.1. OVERVIEW
19.2. CREATING DAEMONSETS

CHAPTER 20. POD AUTOSCALING
20.1. OVERVIEW
20.2. REQUIREMENTS FOR USING HORIZONTAL POD AUTOSCALERS
20.3. SUPPORTED METRICS
20.4. AUTOSCALING
20.5. CREATING A HORIZONTAL POD AUTOSCALER
20.6. VIEWING A HORIZONTAL POD AUTOSCALER

CHAPTER 21. MANAGING VOLUMES
21.1. OVERVIEW
21.2. GENERAL CLI USAGE
21.3. ADDING VOLUMES
21.4. UPDATING VOLUMES
21.5. REMOVING VOLUMES
21.6. LISTING VOLUMES

CHAPTER 22. USING PERSISTENT VOLUMES
22.1. OVERVIEW
22.2. REQUESTING STORAGE
22.3. VOLUME AND CLAIM BINDING
22.4. CLAIMS AS VOLUMES IN PODS
22.5. VOLUME AND CLAIM PRE-BINDING

CHAPTER 23. EXECUTING REMOTE COMMANDS
23.1. OVERVIEW
23.2. BASIC USAGE
23.3. PROTOCOL

CHAPTER 24. COPYING FILES TO OR FROM A CONTAINER
24.1. OVERVIEW
24.2. BASIC USAGE
24.3. BACKING UP AND RESTORING DATABASES

154
155
155
155
156

158
158
158
159
160
161
162
162
163
164
165
167

168
168
168

171
171
171
171
171
171

172

174
174
174
175
176
177
178

179
179
179
179
180
180

183
183
183
183

185
185
185
185

OpenShift Enterprise 3.2 Developer Guide

6

. .

. .

. .

. .

. .

. .

. .

. .

24.4. REQUIREMENTS
24.5. SPECIFYING THE COPY SOURCE
24.6. SPECIFYING THE COPY DESTINATION
24.7. DELETING FILES AT THE DESTINATION

CHAPTER 25. PORT FORWARDING
25.1. OVERVIEW
25.2. BASIC USAGE
25.3. PROTOCOL

CHAPTER 26. SHARED MEMORY
26.1. OVERVIEW
26.2. POSIX SHARED MEMORY

CHAPTER 27. APPLICATION HEALTH
27.1. OVERVIEW
27.2. CONTAINER HEALTH CHECKS USING PROBES

CHAPTER 28. EVENTS
28.1. OVERVIEW
28.2. VIEWING EVENTS WITH THE CLI
28.3. VIEWING EVENTS IN THE CONSOLE
28.4. COMPREHENSIVE LIST OF EVENTS

CHAPTER 29. DOWNWARD API
29.1. OVERVIEW
29.2. SELECTING FIELDS
29.3. USING ENVIRONMENT VARIABLES
29.4. USING THE VOLUME PLUG-IN

CHAPTER 30. MANAGING ENVIRONMENT VARIABLES
30.1. SETTING AND UNSETTING ENVIRONMENT VARIABLES
30.2. LIST ENVIRONMENT VARIABLES
30.3. SET ENVIRONMENT VARIABLES

30.3.1. Automatically Added Environment Variables
30.4. UNSET ENVIRONMENT VARIABLES

CHAPTER 31. JOBS
31.1. OVERVIEW
31.2. CREATING A JOB
31.3. SCALING A JOB
31.4. SETTING MAXIMUM DURATION

CHAPTER 32. REVISION HISTORY: DEVELOPER GUIDE
32.1. MON APR 03 2017
32.2. TUE MAR 14 2017
32.3. TUE FEB 21 2017
32.4. MON JAN 30 2017
32.5. MON JAN 16 2017
32.6. MON JAN 09 2017
32.7. TUE OCT 11 2016
32.8. TUE OCT 04 2016
32.9. TUE SEP 13 2016
32.10. TUE SEP 06 2016
32.11. MON AUG 29 2016

186
186
187
187

188
188
188
188

190
190
190

192
192
192

194
194
194
194
194

197
197
197
197
198

201
201
201
201
202
202

203
203
203
204
204

205
205
205
205
205
205
205
206
206
206
206
206

Table of Contents

7

32.12. MON AUG 08 2016
32.13. MON AUG 01 2016
32.14. WED JUL 27 2016
32.15. THU JUL 14 2016
32.16. TUE JUN 14 2016
32.17. FRI JUN 10 2016
32.18. MON MAY 30 2016
32.19. THU MAY 12 2016

207
207
207
208
208
208
208
209

OpenShift Enterprise 3.2 Developer Guide

8

Table of Contents

9

CHAPTER 1. OVERVIEW
This guide helps developers set up and configure a workstation to develop and deploy applications in
an OpenShift Enterprise cloud environment with a command-line interface (CLI). This guide provides
detailed instructions and examples to help developers:

Monitor and browse projects with the web console.

Configure and utilize the CLI.

Generate configurations using templates.

Manage builds and webhooks.

Define and trigger deployments.

Integrate external services (databases, SaaS endpoints).

OpenShift Enterprise 3.2 Developer Guide

10

CHAPTER 2. APPLICATION LIFE CYCLE EXAMPLES

2.1. OVERVIEW

As a PaaS, OpenShift Enterprise is designed for building and deploying applications. Depending on how
much you want to involve OpenShift Enterprise in the development process, you can choose to
develop on OpenShift Enterprise and use it to continuously develop an application, or you can deploy a
fully developed application onto an OpenShift Enterprise instance.

2.2. DEVELOPING ON OPENSHIFT ENTERPRISE

You can develop your application on OpenShift Enterprise directly. Use the following process if you
plan to use OpenShift Enterprise as a method to build and deploy your application:

Initial Planning

What does your application do?

What programming language will it be developed in?

Access to OpenShift Enterprise

OpenShift Enterprise should be installed by this point, either by yourself or an
administrator within your organization.

Develop

Using your editor/IDE of choice, create a basic skeleton of an application. It should be
developed enough to tell OpenShift Enterprise what kind of application it is .

Push the code to your Git repository.

Generate

Create a basic application using the new-app command. OpenShift Enterprise generates
build and deployment configurations.

Manage

Start developing your application code.

Ensure your application builds successfully.

Continue to locally develop and polish your code.

Push your code to a Git repository.

Is any extra configuration needed? Explore the Developer Guide for more options.

CHAPTER 2. APPLICATION LIFE CYCLE EXAMPLES

11

Verify

You can verify your application in a number of ways. You can push your changes to your
application’s Git repository, and use OpenShift Enterprise to rebuild and redeploy your
application. Alternatively, you can hot deploy using rsync to synchronize your code
changes into a running pod.

2.3. DEVELOPING THEN DEPLOYING ON OPENSHIFT ENTERPRISE

Another possible application life cycle is to develop locally, then use OpenShift Enterprise to deploy
your fully developed application. Use the following process if you plan to have application code
already, then want to build and deploy onto an OpenShift Enterprise installation when completed:

Initial Planning

What does your application do?

What programming language will it be developed in?

Develop

Develop your application code using your editor/IDE of choice.

Build and test your application code locally.

Push your code to a Git repository.

Access to OpenShift Enterprise

OpenShift Enterprise should be installed by this point, either by yourself or an
administrator within your organization.

Generate

Create a basic application using the new-app command. OpenShift Enterprise generates
build and deployment configurations.

Verify

Ensure that the application that you have built and deployed in the above Generate step is
successfully running on OpenShift Enterprise.

Manage

Continue to develop your application code until you are happy with the results.

Rebuild your application in OpenShift Enterprise to accept any newly pushed code.

Is any extra configuration needed? Explore the Developer Guide for more options.

OpenShift Enterprise 3.2 Developer Guide

12

CHAPTER 3. AUTHENTICATION

3.1. WEB CONSOLE AUTHENTICATION

When accessing the web console from a browser at <master_public_addr>:8443, you are
automatically redirected to a login page.

Review the browser versions and operating systems that can be used to access the web console.

You can provide your login credentials on this page to obtain a token to make API calls. After logging
in, you can navigate your projects using the web console.

3.2. CLI AUTHENTICATION

You can authenticate from the command line using the CLI command oc login. You can get started
with the CLI by running this command without any options:

$ oc login

The command’s interactive flow helps you establish a session to an OpenShift Enterprise server with
the provided credentials. If any information required to successfully log in to an OpenShift Enterprise
server is not provided, the command prompts for user input as required. The configuration is
automatically saved and is then used for every subsequent command.

All configuration options for the oc login command, listed in the oc login --help command
output, are optional. The following example shows usage with some common options:

$ oc login [-u=<username>] \
 [-p=<password>] \
 [-s=<server>] \
 [-n=<project>] \
 [--certificate-authority=</path/to/file.crt>|--insecure-skip-tls-verify]

The following table describes these common options:

Table 3.1. Common CLI Configuration Options

Option Syntax Description

-s, --
server $ oc login -s=

<server>

Specifies the host name of the OpenShift Enterprise server. If a
server is provided through this flag, the command does not ask for
it interactively. This flag can also be used if you already have a CLI
configuration file and want to log in and switch to another server.

-u, --
usernam
e and -p,
--
passwor
d

$ oc login -u=
<username> -p=
<password>

Allows you to specify the credentials to log in to the OpenShift
Enterprise server. If user name or password are provided through
these flags, the command does not ask for it interactively. These
flags can also be used if you already have a configuration file with
a session token established and want to log in and switch to
another user name.

CHAPTER 3. AUTHENTICATION

13

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#architecture-infrastructure-components-web-console
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#architecture-infrastructure-components-web-console
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#architecture-infrastructure-components-web-console
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/cli_reference/#cli-reference-get-started-cli
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/cli_reference/#cli-configuration-files

-n, --
namespa
ce

$ oc login -u=
<username> -p=
<password> -n=
<project>

A global CLI option which, when used with oc login, allows you
to specify the project to switch to when logging in as a given user.

--
certifi
cate-
authori
ty

$ oc login --
certificate-
authority=
<path/to/file.
crt>

Correctly and securely authenticates with an OpenShift
Enterprise server that uses HTTPS. The path to a certificate
authority file must be provided.

--
insecur
e-skip-
tls-
verify

$ oc login --
insecure-skip-
tls-verify

Allows interaction with an HTTPS server bypassing the server
certificate checks; however, note that it is not secure. If you try to
oc login to a HTTPS server that does not provide a valid
certificate, and this or the --certificate-authority flags
were not provided, oc login will prompt for user input to
confirm (y/N kind of input) about connecting insecurely.

Option Syntax Description

CLI configuration files allow you to easily manage multiple CLI profiles.

NOTE

If you have access to administrator credentials but are no longer logged in as the default
system user system:admin, you can log back in as this user at any time as long as the
credentials are still present in your CLI configuration file . The following command logs in
and switches to the default project:

$ oc login -u system:admin -n default

OpenShift Enterprise 3.2 Developer Guide

14

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/cli_reference/#cli-reference-manage-cli-profiles
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#users
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/cli_reference/#cli-configuration-files

CHAPTER 4. PROJECTS

4.1. OVERVIEW

A project allows a community of users to organize and manage their content in isolation from other
communities.

4.2. CREATING A PROJECT

If allowed by your cluster administrator, you can create a new project using the CLI or the web console.

To create a new project using the CLI:

$ oc new-project <project_name> \
 --description="<description>" --display-name="<display_name>"

For example:

$ oc new-project hello-openshift \
 --description="This is an example project to demonstrate OpenShift v3"
\
 --display-name="Hello OpenShift"

NOTE

The number of projects you are allowed to create may be limited by the system
administrator. Once your limit is reached, you may need to delete an existing project in
order to create a new one.

4.3. VIEWING PROJECTS

When viewing projects, you are restricted to seeing only the projects you have access to view based on
the authorization policy.

To view a list of projects:

$ oc get projects

You can change from the current project to a different project for CLI operations. The specified project
is then used in all subsequent operations that manipulate project-scoped content:

$ oc project <project_name>

You can also use the web console to view and change between projects. After authenticating and
logging in, you are presented with a list of projects that you have access to:

CHAPTER 4. PROJECTS

15

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#architecture-core-concepts-projects-and-users
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/cluster_administration/#selfprovisioning-projects
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/cli_reference/#cli-reference-index
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#architecture-infrastructure-components-web-console
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/cluster_administration/#limit-projects-per-user
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#architecture-additional-concepts-authorization
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#architecture-infrastructure-components-web-console

If you use the CLI to create a new project , you can then refresh the page in the browser to see the new
project.

Selecting a project brings you to the project overview for that project.

4.4. CHECKING PROJECT STATUS

The oc status command provides a high-level overview of the current project, with its components
and their relationships. This command takes no argument:

$ oc status

4.5. FILTERING BY LABELS

You can filter the contents of a project page in the web console by using the labels of a resource. You
can pick from a suggested label name and values, or type in your own. Multiple filters can be added.
When multiple filters are applied, resources must match all of the filters to remain visible.

To filter by labels:

1. Select a label type:

2. Select one of the following:

exists Verify that the label name exists, but ignore its value.

in Verify that the label name exists and is equal to one of the selected values.

OpenShift Enterprise 3.2 Developer Guide

16

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/cli_reference/#cli-reference-get-started-cli
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#project-overviews
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#architecture-infrastructure-components-web-console
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#labels

not in Verify that the label name does not exist, or is not equal to any of the selected
values.

a. If you selected in or not in, select a set of values then select Filter:

3. After adding filters, you can stop filtering by selecting Clear all filters or by clicking individual
filters to remove them:

4.6. DELETING A PROJECT

When you delete a project, the server updates the project status to Terminating from Active. The
server then clears all content from a project that is Terminating before finally removing the project.
While a project is in Terminating status, a user cannot add new content to the project. Projects can be
deleted from the CLI or the web console.

To delete a project using the CLI:

CHAPTER 4. PROJECTS

17

$ oc delete project <project_name>

OpenShift Enterprise 3.2 Developer Guide

18

CHAPTER 5. CREATING NEW APPLICATIONS

5.1. OVERVIEW

You can create a new OpenShift Enterprise application from source code, images, or templates by
using either the OpenShift CLI or web console.

5.2. CREATING AN APPLICATION USING THE CLI

5.2.1. Creating an Application From Source Code

The new-app command allows you to create applications using source code in a local or remote Git
repository.

To create an application using a Git repository in a local directory:

$ oc new-app /path/to/source/code

NOTE

If using a local Git repository, the repository must have an origin remote that points to a
URL accessible by the OpenShift Enterprise cluster.

You can use a subdirectory of your source code repository by specifying a --context-dir flag. To
create an application using a remote Git repository and a context subdirectory:

$ oc new-app https://github.com/openshift/sti-ruby.git \
 --context-dir=2.0/test/puma-test-app

Also, when specifying a remote URL, you can specify a Git branch to use by appending #
<branch_name> to the end of the URL:

$ oc new-app https://github.com/openshift/ruby-hello-world.git#beta4

Using new-app results in a build configuration, which creates a new application image from your
source code. It also constructs a deployment configuration to deploy the new image, and a service to
provide load-balanced access to the deployment running your image.

OpenShift Enterprise automatically detects whether the Docker or Sourcebuild strategy is being
used, and in the case of Source builds, detects an appropriate language builder image .

Build Strategy Detection

If a Dockerfile is in the repository when creating a new application, OpenShift Enterprise generates a
Docker build strategy. Otherwise, it generates a Source strategy.

You can specify a strategy by setting the --strategy flag to either source or docker.

$ oc new-app /home/user/code/myapp --strategy=docker

Language Detection

CHAPTER 5. CREATING NEW APPLICATIONS

19

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#image-streams
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#deployments-and-deployment-configurations
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#services
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#builds
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#docker-build
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#source-build

If creating a Source build, new-app attempts to determine the language builder to use by the
presence of certain files in the root of the repository:

Table 5.1. Languages Detected by new-app

Language Files

ruby Rakefile, Gemfile, config.ru

jee pom.xml

nodejs app.json, package.json

php index.php, composer.json

python requirements.txt, setup.py

perl index.pl, cpanfile

After a language is detected, new-app searches the OpenShift Enterprise server for image stream
tags that have a supports annotation matching the detected language, or an image stream that
matches the name of the detected language. If a match is not found, new-app searches the Docker
Hub registry for an image that matches the detected language based on name.

You can override the image the builder uses for a particular source repository by specifying the image
(either an image stream or container specification) and the repository, with a ~ as a separator.

For example, to use the myproject/my-ruby image stream with the source in a remote repository:

$ oc new-app myproject/my-ruby~https://github.com/openshift/ruby-hello-
world.git

To use the openshift/ruby-20-centos7:latest container image stream with the source in a local
repository:

$ oc new-app openshift/ruby-20-centos7:latest~/home/user/code/my-ruby-app

5.2.2. Creating an Application From an Image

You can deploy an application from an existing image. Images can come from image streams in the
OpenShift Enterprise server, images in a specific registry or Docker Hub registry, or images in the
local Docker server.

The new-app command attempts to determine the type of image specified in the arguments passed to
it. However, you can explicitly tell new-app whether the image is a Docker image (using the --
docker-image argument) or an image stream (using the -i|--image argument).

NOTE

If you specify an image from your local Docker repository, you must ensure that the
same image is available to the OpenShift Enterprise cluster nodes.

OpenShift Enterprise 3.2 Developer Guide

20

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#image-streams
https://registry.hub.docker.com
https://registry.hub.docker.com

For example, to create an application from the DockerHub MySQL image:

$ oc new-app mysql

To create an application using an image in a private registry, specify the full Docker image
specification:

$ oc new-app myregistry:5000/example/myimage

NOTE

If the registry containing the image is not secured with SSL , cluster administrators must
ensure that the Docker daemon on the OpenShift Enterprise node hosts is run with the
--insecure-registry flag pointing to that registry. You must also tell new-app that
the image comes from an insecure registry with the --insecure-registry=true
flag.

You can create an application from an existing image stream and tag (optional) for the image stream:

$ oc new-app my-stream:v1

5.2.3. Creating an Application From a Template

You can create an application from a previously stored template or from a template file, by specifying
the name of the template as an argument. For example, you can store a sample application template
and use it to create an application.

To create an application from a stored template:

$ oc create -f examples/sample-app/application-template-stibuild.json
$ oc new-app ruby-helloworld-sample

To directly use a template in your local file system, without first storing it in OpenShift Enterprise, use
the -f|--file argument:

$ oc new-app -f examples/sample-app/application-template-stibuild.json

Template Parameters

When creating an application based on a template, use the -p|--param argument to set parameter
values defined by the template:

$ oc new-app ruby-helloworld-sample \
 -p ADMIN_USERNAME=admin,ADMIN_PASSWORD=mypassword

5.2.4. Further Modifying Application Creation

The new-app command generates OpenShift Enterprise objects that will build, deploy, and run the
application being created. Normally, these objects are created in the current project using names
derived from the input source repositories or the input images. However, new-app allows you to
modify this behavior.

CHAPTER 5. CREATING NEW APPLICATIONS

21

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/installation_and_configuration/#securing-the-registry
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#image-streams
https://github.com/openshift/origin/tree/master/examples/sample-app

The set of objects created by new-app depends on the artifacts passed as input: source repositories,
images, or templates.

Table 5.2. new-app Output Objects

Object Description

BuildConfig A BuildConfig is created for each source repository specified in the command line.
The BuildConfig specifies the strategy to use, the source location, and the build
output location.

ImageStreams For BuildConfig, two ImageStreams are usually created: one to represent the
input image (the builder image in the case of Source builds or FROM image in case of
Docker builds), and another one to represent the output image. If a container image
was specified as input to new-app, then an image stream is created for that image as
well.

DeploymentCo
nfig

A DeploymentConfig is created either to deploy the output of a build, or a
specified image. The new-app command creates EmptyDir volumes for all Docker
volumes that are specified in containers included in the resulting
DeploymentConfig.

Service The new-app command attempts to detect exposed ports in input images. It uses the
lowest numeric exposed port to generate a service that exposes that port. In order to
expose a different port, after new-app has completed, simply use the oc expose
command to generate additional services.

Other Other objects can be generated when instantiating templates.

5.2.4.1. Specifying Environment Variables

When generating applications from a source or an image, you can use the -e|--env argument to pass
environment variables to the application container at run time:

$ oc new-app openshift/postgresql-92-centos7 \
 -e POSTGRESQL_USER=user \
 -e POSTGRESQL_DATABASE=db \
 -e POSTGRESQL_PASSWORD=password

5.2.4.2. Specifying Labels

When generating applications from source, images, or templates, you can use the -l|--label
argument to add labels to the created objects. Labels make it easy to collectively select, configure, and
delete objects associated with the application.

$ oc new-app https://github.com/openshift/ruby-hello-world -l name=hello-
world

5.2.4.3. Viewing the Output Without Creation

To see a dry-run of what new-app will create, you can use the -o|--output argument with a yaml or

OpenShift Enterprise 3.2 Developer Guide

22

json value. You can then use the output to preview the objects that will be created, or redirect it to a
file that you can edit. Once you are satisfied, you can use oc create to create the OpenShift
Enterprise objects.

To output new-app artifacts to a file, edit them, then create them:

$ oc new-app https://github.com/openshift/ruby-hello-world \
 -o yaml > myapp.yaml
$ vi myapp.yaml
$ oc create -f myapp.yaml

5.2.4.4. Creating Objects With Different Names

Objects created by new-app are normally named after the source repository, or the image used to
generate them. You can set the name of the objects produced by adding a --name flag to the
command:

$ oc new-app https://github.com/openshift/ruby-hello-world --name=myapp

5.2.4.5. Creating Objects in a Different Project

Normally, new-app creates objects in the current project. However, you can create objects in a
different project that you have access to using the -n|--namespace argument:

$ oc new-app https://github.com/openshift/ruby-hello-world -n myproject

5.2.4.6. Creating Multiple Objects

The new-app command allows creating multiple applications specifying multiple parameters to new-
app. Labels specified in the command line apply to all objects created by the single command.
Environment variables apply to all components created from source or images.

To create an application from a source repository and a Docker Hub image:

$ oc new-app https://github.com/openshift/ruby-hello-world mysql

NOTE

If a source code repository and a builder image are specified as separate arguments,
new-app uses the builder image as the builder for the source code repository. If this is
not the intent, simply specify a specific builder image for the source using the ~
separator.

5.2.4.7. Grouping Images and Source in a Single Pod

The new-app command allows deploying multiple images together in a single pod. In order to specify
which images to group together, use the + separator. The --group command line argument can also
be used to specify the images that should be grouped together. To group the image built from a source
repository with other images, specify its builder image in the group:

$ oc new-app ruby+mysql

CHAPTER 5. CREATING NEW APPLICATIONS

23

1

2

To deploy an image built from source and an external image together:

$ oc new-app \
 ruby~https://github.com/openshift/ruby-hello-world \
 mysql \
 --group=ruby+mysql

5.2.4.8. Useful Edits

Following are some specific examples of useful edits to make in the myapp.yaml file.

NOTE

These examples presume myapp.yaml was created as a result of the oc new-app …​
-o yaml command.

Example 5.1. Deploy to Selected Nodes

apiVersion: v1
items:
- apiVersion: v1

 kind: Project 1
 metadata:
 name: myapp
 annotations:

 openshift.io/node-selector: region=west 2
- apiVersion: v1
 kind: ImageStream
 ...
kind: List
metadata: {}

In myapp.yaml, the section that defines the myapp project has both kind: Project and
metadata.name: myapp. If this section is missing, you should add it at the second level, as a
new item of the list items, peer to the kind: ImageStream definitions.

Add this node selector annotation to the myapp project to cause its pods to be deployed only
on nodes that have the label region=west.

5.3. CREATING AN APPLICATION USING THE WEB CONSOLE

1. While in the desired project, click Add to Project :

OpenShift Enterprise 3.2 Developer Guide

24

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/cluster_administration/#using-node-selectors

1

2. Select either a builder image from the list of images in your project, or from the global library:

NOTE

Only image stream tags that have the builder tag listed in their annotations
appear in this list, as demonstrated here:

kind: "ImageStream"
apiVersion: "v1"
metadata:
 name: "ruby"
 creationTimestamp: null
spec:
 dockerImageRepository:
"registry.access.redhat.com/openshift3/ruby-20-rhel7"
 tags:
 -
 name: "2.0"
 annotations:
 description: "Build and run Ruby 2.0 applications"
 iconClass: "icon-ruby"

 tags: "builder,ruby" 1
 supports: "ruby:2.0,ruby"
 version: "2.0"

Including builder here ensures this ImageStreamTag appears in the web console as a
builder.

3. Modify the settings in the new application screen to configure the objects to support your
application:

CHAPTER 5. CREATING NEW APPLICATIONS

25

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#image-streams

The builder image name and description.

OpenShift Enterprise 3.2 Developer Guide

26

The application name used for the generated OpenShift Enterprise objects.

The Git repository URL, reference, and context directory for your source code.

Routing configuration section for making this application publicly accessible.

Deployment configuration section for customizing deployment triggers and image
environment variables.

Build configuration section for customizing build triggers.

Replica scaling section for configuring the number of running instances of the application.

The labels to assign to all items generated for the application. You can add and edit labels
for all objects here.

NOTE

To see all of the configuration options, click the "Show advanced build and
deployment options" link.

CHAPTER 5. CREATING NEW APPLICATIONS

27

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#labels

CHAPTER 6. MIGRATING APPLICATIONS

6.1. OVERVIEW

This topic covers the migration procedure of OpenShift version 2 (v2) applications to OpenShift
version 3 (v3).

NOTE

This topic uses some terminology that is specific to OpenShift v2. Comparing OpenShift
Enterprise 2 and OpenShift Enterprise 3 provides insight on the differences between the
two versions and the language used.

To migrate OpenShift v2 applications to OpenShift Enterprise v3, all cartridges in the v2 application
must be recorded as each v2 cartridge is equivalent with a corresponding image or template in
OpenShift Enterprise v3 and they must be migrated individually. For each cartridge, all dependencies
or required packages also must be recorded, as they must be included in the v3 images.

The general migration procedure is:

1. Back up the v2 application.

Web cartridge: The source code can be backed up to a Git repository such as by pushing to
a repository on GitHub.

Database cartridge: The database can be backed up using a dump command (mongodump,
mysqldump, pg_dump) to back up the database.

Web and database cartridges: rhc client tool provides snapshot ability to back up multiple
cartridges:

$ rhc snapshot save <app_name>

The snapshot is a tar file that can be unzipped, and its content is application source code
and the database dump.

2. If the application has a database cartridge, create a v3 database application, sync the database
dump to the pod of the new v3 database application, then restore the v2 database in the v3
database application with database restore commands.

3. For a web framework application, edit the application source code to make it v3 compatible.
Then, add any dependencies or packages required in appropriate files in the Git repository.
Convert v2 environment variables to corresponding v3 environment variables.

4. Create a v3 application from source (your Git repository) or from a quickstart with your Git
URL. Also, add the database service parameters to the new application to link the database
application to the web application.

5. In v2, there is an integrated Git environment and your applications automatically rebuild and
restart whenever a change is pushed to your v2 Git repository. In v3, in order to have a build
automatically triggered by source code changes pushed to your public Git repository, you
must set up a webhook after the initial build in v3 is completed.

6.2. MIGRATING DATABASE APPLICATIONS

OpenShift Enterprise 3.2 Developer Guide

28

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/release_notes/#release-notes-v2-vs-v3

6.2.1. Overview

This topic reviews how to migrate MySQL, PostgreSQL, and MongoDB database applications from
OpenShift version 2 (v2) to OpenShift version 3 (v3).

6.2.2. Supported Databases

v2 v3

MongoDB: 2.4 MongoDB: 2.4, 2.6

MySQL: 5.5 MySQL: 5.5, 5.6

PostgreSQL: 9.2 PostgreSQL: 9.2, 9.4

6.2.3. MySQL

1. Export all databases to a dump file and copy it to a local machine (into the current directory):

$ rhc ssh <v2_application_name>
$ mysqldump --skip-lock-tables -h $OPENSHIFT_MYSQL_DB_HOST -P
${OPENSHIFT_MYSQL_DB_PORT:-3306} -u ${OPENSHIFT_MYSQL_DB_USERNAME:-
'admin'} \
 --password="$OPENSHIFT_MYSQL_DB_PASSWORD" --all-databases > ~/app-
root/data/all.sql
$ exit

2. Download dbdump to your local machine:

$ mkdir mysqldumpdir
$ rhc scp -a <v2_application_name> download mysqldumpdir app-
root/data/all.sql

3. Create a v3 mysql-persistent pod from template:

$ oc new-app mysql-persistent -p \
 MYSQL_USER=<your_V2_mysql_username> -p \
 MYSQL_PASSWORD=<your_v2_mysql_password> -p MYSQL_DATABASE=
<your_v2_database_name>

4. Check to see if the pod is ready to use:

$ oc get pods

5. When the pod is up and running, copy database archive files to your v3 MySQL pod:

$ oc rsync /local/mysqldumpdir <mysql_pod_name>:/var/lib/mysql/data

6. Restore the database in the v3 running pod:

CHAPTER 6. MIGRATING APPLICATIONS

29

$ oc rsh <mysql_pod>
$ cd /var/lib/mysql/data/mysqldumpdir

In v3, to restore databases you need to access MySQL as root user.

In v2, the $OPENSHIFT_MYSQL_DB_USERNAME had full privileges on all databases. In v3, you
must grant privileges to $MYSQL_USER for each database.

$ mysql -u root
$ source all.sql

Grant all privileges on <dbname> to <your_v2_username>@localhost, then flush
privileges.

7. Remove the dump directory from the pod:

$ cd ../; rm -rf /var/lib/mysql/data/mysqldumpdir

Supported MySQL Environment Variables

v2 v3

OPENSHIFT_MYSQL_DB_HOST [service_name]_SERVICE_HOST

OPENSHIFT_MYSQL_DB_PORT [service_name]_SERVICE_PORT

OPENSHIFT_MYSQL_DB_USERNAME MYSQL_USER

OPENSHIFT_MYSQL_DB_PASSWORD MYSQL_PASSWORD

OPENSHIFT_MYSQL_DB_URL

OPENSHIFT_MYSQL_DB_LOG_DIR

OPENSHIFT_MYSQL_VERSION

OPENSHIFT_MYSQL_DIR

OPENSHIFT_MYSQL_DB_SOCKET

OPENSHIFT_MYSQL_IDENT

OPENSHIFT_MYSQL_AIO MYSQL_AIO

OPENSHIFT_MYSQL_MAX_ALLOWED_PACKET MYSQL_MAX_ALLOWED_PACKET

OPENSHIFT_MYSQL_TABLE_OPEN_CACHE MYSQL_TABLE_OPEN_CACHE

OPENSHIFT_MYSQL_SORT_BUFFER_SIZE MYSQL_SORT_BUFFER_SIZE

OpenShift Enterprise 3.2 Developer Guide

30

OPENSHIFT_MYSQL_LOWER_CASE_TABLE_NAM
ES

MYSQL_LOWER_CASE_TABLE_NAMES

OPENSHIFT_MYSQL_MAX_CONNECTIONS MYSQL_MAX_CONNECTIONS

OPENSHIFT_MYSQL_FT_MIN_WORD_LEN MYSQL_FT_MIN_WORD_LEN

OPENSHIFT_MYSQL_FT_MAX_WORD_LEN MYSQL_FT_MAX_WORD_LEN

OPENSHIFT_MYSQL_DEFAULT_STORAGE_ENGI
NE

OPENSHIFT_MYSQL_TIMEZONE

 MYSQL_DATABASE

 MYSQL_ROOT_PASSWORD

 MYSQL_MASTER_USER

 MYSQL_MASTER_PASSWORD

v2 v3

6.2.4. PostgreSQL

1. Back up the v2 PostgreSQL database from the gear:

$ rhc ssh -a <v2-application_name>
$ mkdir ~/app-root/data/tmp
$ pg_dump <database_name> | gzip > ~/app-
root/data/tmp/<database_name>.gz

2. Extract the backup file back to your local machine:

$ rhc scp -a <v2_application_name> download <local_dest> app-
root/data/tmp/<db-name>.gz
$ gzip -d <database-name>.gz

NOTE

Save the backup file to a separate folder for step 4.

3. Create the PostgreSQL service using the v2 application database name, user name and
password to create the new service:

CHAPTER 6. MIGRATING APPLICATIONS

31

$ oc new-app postgresql-persistent -p POSTGRESQL_DATABASE=dbname -p
POSTGRESQL_PASSWORD=password -p POSTGRESQL_USER=username

4. Check to see if the pod is ready to use:

$ oc get pods

5. When the pod is up and running, sync the backup directory to pod:

$ oc rsync /local/path/to/dir
<postgresql_pod_name>:/var/lib/pgsql/data

6. Remotely access the pod:

$ oc rsh <pod_name>

7. Restore the database:

psql dbname < /var/lib/pgsql/data/<database_backup_file>

8. Remove all backup files that are no longer needed:

$ rm /var/lib/pgsql/data/<database-backup-file>

Supported PostgreSQL Environment Variables

v2 v3

OPENSHIFT_POSTGRESQL_DB_HOST [service_name]_SERVICE_HOST

OPENSHIFT_POSTGRESQL_DB_PORT [service_name]_SERVICE_PORT

OPENSHIFT_POSTGRESQL_DB_USERNAME POSTGRESQL_USER

OPENSHIFT_POSTGRESQL_DB_PASSWORD POSTGRESQL_PASSWORD

OPENSHIFT_POSTGRESQL_DB_LOG_DIR

OPENSHIFT_POSTGRESQL_DB_PID

OPENSHIFT_POSTGRESQL_DB_SOCKET_DIR

OPENSHIFT_POSTGRESQL_DB_URL

OPENSHIFT_POSTGRESQL_VERSION

OPENSHIFT_POSTGRESQL_SHARED_BUFFERS

OpenShift Enterprise 3.2 Developer Guide

32

OPENSHIFT_POSTGRESQL_MAX_CONNECTIONS

OPENSHIFT_POSTGRESQL_MAX_PREPARED_TR
ANSACTIONS

OPENSHIFT_POSTGRESQL_DATESTYLE

OPENSHIFT_POSTGRESQL_LOCALE

OPENSHIFT_POSTGRESQL_CONFIG

OPENSHIFT_POSTGRESQL_SSL_ENABLED

 POSTGRESQL_DATABASE

 POSTGRESQL_ADMIN_PASSWORD

v2 v3

6.2.5. MongoDB

NOTE

For OpenShift v3: MongoDB shell version 3.2.6

For OpenShift v2: MongoDB shell version 2.4.9

1. Remotely access the v2 application via the ssh command:

$ rhc ssh <v2_application_name>

2. Run mongodump, specifying a single database with -d <database_name> -c
<collections>. Without those options, dump all databases. Each database is dumped in its
own directory:

$ mongodump -h $OPENSHIFT_MONGODB_DB_HOST -o app-root/repo/mydbdump
-u 'admin' -p $OPENSHIFT_MONGODB_DB_PASSWORD
$ cd app-root/repo/mydbdump/<database_name>; tar -cvzf dbname.tar.gz
$ exit

3. Download dbdump to a local machine in the mongodump directory:

$ mkdir mongodump
$ rhc scp -a <v2 appname> download mongodump \
 app-root/repo/mydbdump/<dbname>/dbname.tar.gz

4. Start a MongoDB pod in v3. Because the latest image (3.2.6) does not include mongo-tools, to
use mongorestore or mongoimport commands you need to edit the default mongodb-
persistent template to specify the image tag that contains the mongo-tools,

CHAPTER 6. MIGRATING APPLICATIONS

33

“mongodb:2.4”. For that reason, the following oc export command and edit are necessary:

$ oc export template mongodb-persistent -n openshift -o json >
mongodb-24persistent.json

Edit L80 of mongodb-24persistent.json; replace mongodb:latest with mongodb:2.4.

$ oc new-app --template=mongodb-persistent -n <project-name-that-
template-was-created-in> \
 MONGODB_USER=user_from_v2_app -p \
 MONGODB_PASSWORD=password_from_v2_db -p \
 MONGODB_DATABASE=v2_dbname -p \
 MONGODB_ADMIN_PASSWORD=password_from_v2_db
$ oc get pods

5. When the mongodb pod is up and running, copy the database archive files to the v3 MongoDB
pod:

$ oc rsync local/path/to/mongodump
<mongodb_pod_name>:/var/lib/mongodb/data
$ oc rsh <mongodb_pod>

6. In the MongoDB pod, complete the following for each database you want to restore:

$ cd /var/lib/mongodb/data/mongodump
$ tar -xzvf dbname.tar.gz
$ mongorestore -u $MONGODB_USER -p $MONGODB_PASSWORD -d dbname -v
/var/lib/mongodb/data/mongodump

7. Check if the database is restored:

$ mongo admin -u $MONGODB_USER -p $MONGODB_ADMIN_PASSWORD
$ use dbname
$ show collections
$ exit

8. Remove the mongodump directory from the pod:

$ rm -rf /var/lib/mongodb/data/mongodump

Supported MongoDB Environment Variables

v2 v3

OPENSHIFT_MONGODB_DB_HOST [service_name]_SERVICE_HOST

OPENSHIFT_MONGODB_DB_PORT [service_name]_SERVICE_PORT

OPENSHIFT_MONGODB_DB_USERNAME MONGODB_USER

OPENSHIFT_MONGODB_DB_PASSWORD MONGODB_PASSWORD

OpenShift Enterprise 3.2 Developer Guide

34

OPENSHIFT_MONGODB_DB_URL

OPENSHIFT_MONGODB_DB_LOG_DIR

 MONGODB_DATABASE

 MONGODB_ADMIN_PASSWORD

 MONGODB_NOPREALLOC

 MONGODB_SMALLFILES

 MONGODB_QUIET

 MONGODB_REPLICA_NAME

 MONGODB_KEYFILE_VALUE

v2 v3

6.3. MIGRATING WEB FRAMEWORK APPLICATIONS

6.3.1. Overview

This topic reviews how to migrate Python, Ruby, PHP, Perl, Node.js, JBoss EAP, JBoss WS (Tomcat),
and Wildfly 10 (JBoss AS) web framework applications from OpenShift version 2 (v2) to OpenShift
version 3 (v3).

6.3.2. Python

1. Set up a new GitHub repository and add it as a remote branch to the current, local v2 Git
repository:

$ git remote add <remote-name> https://github.com/<github-id>/<repo-
name>.git

2. Push the local v2 source code to the new repository:

$ git push -u <remote-name> master

3. Ensure that all important files such as setup.py, wsgi.py, requirements.txt, and etc are pushed
to new repository.

Ensure all required packages for your application are included in requirements.txt.

S2I-python does not support mod_wsgi anymore. However, gunicorn is supported and it is
an alternative for mod_wsgi. So, add gunicorn package to requirements.txt.

4. Use the oc command to launch a new Python application from the builder image and source
code:

CHAPTER 6. MIGRATING APPLICATIONS

35

$ oc new-app --strategy=source
python:3.3~https://github.com/<github-id>/<repo-name> --name=<app-
name> -e
<ENV_VAR_NAME>=<env_var_value>

Supported Python Versions

v2 v3

Python: 2.6, 2.7, 3.3 Python: 2.7, 3.3, 3.4

Django Django-psql-example (quickstart)

6.3.3. Ruby

1. Set up a new GitHub repository and add it as a remote branch to the current, local v2 Git
repository:

$ git remote add <remote-name> https://github.com/<github-id>/<repo-
name>.git

2. Push the local v2 source code to the new repository:

$ git push -u <remote-name> master

3. If you do not have a Gemfile and are running a simple rack application, copy this Gemfile into
the root of your source:

https://github.com/openshift/ruby-ex/blob/master/Gemfile

NOTE

The latest version of the rack gem that supports Ruby 2.0 is 1.6.4, so the
Gemfile needs to be modified to gem 'rack', “1.6.4”.

For Ruby 2.2 or later, use the rack gem 2.0 or later.

4. Use the oc command to launch a new Ruby application from the builder image and source
code:

$ oc new-app --strategy=source
ruby:2.0~https://github.com/<github-id>/<repo-name>.git

Supported Ruby Versions

v2 v3

Ruby: 1.8, 1.9, 2.0 Ruby: 2.0, 2.2

OpenShift Enterprise 3.2 Developer Guide

36

Ruby on Rails: 3, 4 Rails-postgresql-example (quickstart)

Sinatra

v2 v3

6.3.4. PHP

1. Set up a new GitHub repository and add it as a remote branch to the current, local v2 Git
repository:

$ git remote add <remote-name> https://github.com/<github-id>/<repo-
name>

2. Push the local v2 source code to the new repository:

$ git push -u <remote-name> master

3. Use the oc command to launch a new PHP application from the builder image and source code:

$ oc new-app https://github.com/<github-id>/<repo-name>.git
--name=<app-name> -e <ENV_VAR_NAME>=<env_var_value>

Supported PHP Versions

v2 v3

PHP: 5.3, 5.4 PHP:5.5, 5.6

PHP 5.4 with Zend Server 6.1

CodeIgniter 2

HHVM

Laravel 5.0

 cakephp-mysql-example (quickstart)

6.3.5. Perl

1. Set up a new GitHub repository and add it as a remote branch to the current, local v2 Git
repository:

$ git remote add <remote-name> https://github.com/<github-id>/<repo-
name>

CHAPTER 6. MIGRATING APPLICATIONS

37

2. Push the local v2 source code to the new repository:

$ git push -u <remote-name> master

3. Edit the local Git repository and push changes upstream to make it v3 compatible:

a. In v2, CPAN modules reside in .openshift/cpan.txt. In v3, the s2i builder looks for a file
named cpanfile in the root directory of the source.

$ cd <local-git-repository>
$ mv .openshift/cpan.txt cpanfile

Edit cpanfile, as it has a slightly different format:

format of cpanfile format of cpan.txt

requires ‘cpan::mod’; cpan::mod

requires ‘Dancer’; Dancer

requires ‘YAML’; YAML

b. Remove .openshift directory

NOTE

In v3, action_hooks and cron tasks are not supported in the same way. See
Action Hooks for more information.

4. Use the oc command to launch a new Perl application from the builder image and source code:

$ oc new-app https://github.com/<github-id>/<repo-name>.git

Supported Perl Versions

v2 v3

Perl: 5.10 Perl: 5.16, 5.20

 Dancer-mysql-example (quickstart)

6.3.6. Node.js

1. Set up a new GitHub repository and add it as a remote branch to the current, local Git
repository:

$ git remote add <remote-name> https://github.com/<github-id>/<repo-
name>

OpenShift Enterprise 3.2 Developer Guide

38

2. Push the local v2 source code to the new repository:

$ git push -u <remote-name> master

3. Edit the local Git repository and push changes upstream to make it v3 compatible:

a. Remove the .openshift directory.

NOTE

In v3, action_hooks and cron tasks are not supported in the same way. See
Action Hooks for more information.

b. Edit server.js.

L116 server.js: 'self.app = express();'

L25 server.js: self.ipaddress = '0.0.0.0';

L26 server.js: self.port = 8080;

NOTE

Lines(L) are from the base V2 cartridge server.js.

4. Use the oc command to launch a new Node.js application from the builder image and source
code:

$ oc new-app https://github.com/<github-id>/<repo-name>.git
--name=<app-name> -e <ENV_VAR_NAME>=<env_var_value>

Supported Node.js Versions

v2 v3

Node.js 0.10 Nodejs: 0.10

 Nodejs-mongodb-example (quickstart)

6.3.7. JBoss EAP

1. Set up a new GitHub repository and add it as a remote branch to the current, local Git
repository:

$ git remote add <remote-name> https://github.com/<github-id>/<repo-
name>

2. Push the local v2 source code to the new repository:

$ git push -u <remote-name> master

CHAPTER 6. MIGRATING APPLICATIONS

39

3. If the repository includes pre-built .war files, they need to reside in the deployments directory
off the root directory of the repository.

4. Create the new application using the JBoss EAP 6 builder image (jboss-eap64-openshift) and
the source code repository from GitHub:

$ oc new-app --strategy=source jboss-eap64-
openshift~https://github.com/<github-id>/<repo-name>.git

6.3.8. JBoss WS (Tomcat)

1. Set up a new GitHub repository and add it as a remote branch to the current, local Git
repository:

$ git remote add <remote-name> https://github.com/<github-id>/<repo-
name>

2. Push the local v2 source code to the new repository:

$ git push -u <remote-name> master

3. If the repository includes pre-built .war files, they need to reside in the deployments directory
off the root directory of the repository.

4. Create the new application using the JBoss Web Server 3 (Tomcat 7) builder image (jboss-
webserver30-tomcat7) and the source code repository from GitHub:

$ oc new-app --strategy=source
jboss-webserver30-tomcat7-openshift~https://github.com/<github-
id>/<repo-name>.git
--name=<app-name> -e <ENV_VAR_NAME>=<env_var_value>

6.3.9. JBoss AS (Wildfly 10)

1. Set up a new GitHub repository and add it as a remote branch to the current, local Git
repository:

$ git remote add <remote-name> https://github.com/<github-id>/<repo-
name>

2. Push the local v2 source code to the new repository:

$ git push -u <remote-name> master

3. Edit the local Git repository and push the changes upstream to make it v3 compatible:

a. Remove .openshift directory.

NOTE

In v3, action_hooks and cron tasks are not supported in the same way. See
Action Hooks for more information.

OpenShift Enterprise 3.2 Developer Guide

40

b. Add the deployments directory to the root of the source repository. Move the .war files to
‘deployments’ directory.

4. Use the the oc command to launch a new Wildfly application from the builder image and source
code:

$ oc new-app https://github.com/<github-id>/<repo-name>.git
 --image-stream=”openshift/wildfly:10.0" --name=<app-name> -e
 <ENV_VAR_NAME>=<env_var_value>

NOTE

The argument --name is optional to specify the name of your application. The
argument -e is optional to add environment variables that are needed for build
and deployment processes, such as OPENSHIFT_PYTHON_DIR.

6.3.10. Supported JBoss/XPaas Versions

v2 v3

JBoss App Server 7

Tomcat 6 (JBoss EWS 1.0) jboss-webserver30-tomcat7-openshift: 1.1

Tomcat 7 (JBoss EWS 2.0)

Vert.x 2.1

WildFly App Server 10

WildFly App Server 8.2.1.Final

WildFly App Server 9

CapeDwarf

JBoss Data Virtualization 6

JBoss Enterprise App Platform 6 jboss-eap64-openshift: 1.2, 1.3

JBoss Unified Push Server 1.0.0.Beta1, Beta2

JBoss BPM Suite

JBoss BRMS

 jboss-eap70-openshift: 1.3-Beta

CHAPTER 6. MIGRATING APPLICATIONS

41

 eap64-https-s2i

 eap64-mongodb-persistent-s2i

 eap64-mysql-persistent-s2i

 eap64-psql-persistent-s2i

v2 v3

6.4. QUICKSTART EXAMPLES

6.4.1. Overview

Although there is no clear-cut migration path for v2 quickstart to v3 quickstart, the following
quickstarts are currently available in v3. If you have an application with a database, rather than using
oc new-app to create your application, then oc new-app again to start a separate database service
and linking the two with common environment variables, you can use one of the following to
instantiate the linked application and database at once, from your GitHub repository containing your
source code. You can list all available templates with oc get templates -n openshift:

CakePHP MySQL https://github.com/openshift/cakephp-ex

template: cakephp-mysql-example

Node.js MongoDB https://github.com/openshift/nodejs-ex

template: nodejs-mongodb-example

Django PosgreSQL https://github.com/openshift/django-ex

template: django-psql-example

Dancer MySQL https://github.com/openshift/dancer-ex

template: dancer-mysql-example

Rails PostgreSQL https://github.com/openshift/rails-ex

template: rails-postgresql-example

6.4.2. Workflow

Run a git clone of one of the above template URLs locally. Add and commit your application source
code and push a GitHub repository, then start a v3 quickstart application from one of the templates
listed above:

1. Create a GitHub repository for your application.

2. Clone a quickstart template and add your GitHub repository as a remote:

$ git clone <one-of-the-template-URLs-listed-above>
$ cd <your local git repository>

OpenShift Enterprise 3.2 Developer Guide

42

https://github.com/openshift/cakephp-ex
https://github.com/openshift/nodejs-ex
https://github.com/openshift/django-ex
https://github.com/openshift/dancer-ex
https://github.com/openshift/rails-ex

1

$ git remote add upstream <https://github.com/<git-id>/<quickstart-
repo>.git>
$ git push -u upstream master

3. Commit and push your source code to GitHub:

$ cd <your local repository>
$ git commit -am “added code for my app”
$ git push origin master

4. Create a new application in v3:

$ oc new-app --template=<template> \
-p SOURCE_REPOSITORY_URL=<https://github.com/<git-
id>/<quickstart_repo>.git> \
-p DATABASE_USER=<your_db_user> \
-p DATABASE_NAME=<your_db_name> \
-p DATABASE_PASSWORD=<your_db_password> \

-p DATABASE_ADMIN_PASSWORD=<your_db_admin_password> 1

Only applicable for MongoDB.

You should now have 2 pods running, a web framework pod, and a database pod. The web
framework pod environment should match the database pod environment. You can list the
environment variables with oc set env pod/<pod_name> --list:

DATABASE_NAME is now <DB_SERVICE>_DATABASE

DATABASE_USER is now <DB_SERVICE>_USER

DATABASE_PASSWORD is now <DB_SERVICE>_PASSWORD

DATABASE_ADMIN_PASSWORD is now MONGODB_ADMIN_PASSWORD (only applicable for
MongoDB)
If no SOURCE_REPOSITORY_URL is specified, the template will use the template URL
(https://github.com/openshift/<quickstart>-ex) listed above as the source repository,
and a hello-welcome application will be started.

5. If you are migrating a database, export databases to a dump file and restore the database in
the new v3 database pod. Refer to the steps outlined in Database Applications, skipping the oc
new-app step as the database pod is already up and running.

6.5. CONTINUOUS INTEGRATION AND DEPLOYMENT (CI/CD)

6.5.1. Overview

This topic reviews the differences in continuous integration and deployment (CI/CD) applications
between OpenShift version 2 (v2) and OpenShift version 3 (v3) and how to migrate these applications
into the v3 environment.

6.5.2. Jenkins

The Jenkins applications in OpenShift version 2 (v2) and OpenShift version 3 (v3) are configured

CHAPTER 6. MIGRATING APPLICATIONS

43

https://github.com/openshift/<quickstart>-ex

differently due to fundamental differences in architecture. For example, in v2, the application uses an
integrated Git repository that is hosted in the gear to store the source code. In v3, the source code is
located in a public or private Git repository that is hosted outside of the pod.

Furthermore, in OpenShift v3, Jenkins jobs can not only be triggered by source code changes, but also
by changes in ImageStream, which are changes on the images that are used to build the application
along with its source code. As a result, it is highly recommended that you migrate the Jenkins
application manually by creating a new Jenkins application in v3, and then re-creating jobs with the
configurations that are suitable to OpenShift v3 environment.

Consult these resources for more information on how to create a Jenkins application, configure jobs,
and use Jenkins plug-ins properly:

https://github.com/openshift/origin/blob/master/examples/jenkins/README.md

https://github.com/openshift/jenkins-plugin/blob/master/README.md

https://github.com/openshift/origin/blob/master/examples/sample-app/README.md

6.6. WEBHOOKS AND ACTION HOOKS

6.6.1. Overview

This topic reviews the differences in webhooks and action hooks between OpenShift version 2 (v2) and
OpenShift version 3 (v3) and how to migrate these applications into the v3 environment.

6.6.2. Webhooks

1. After creating a BuildConfig` from a GitHub repository, run:

$ oc describe bc/<name-of-your-BuildConfig>

This will output a webhook GitHub URL that looks like:

<https://api.dev-preview-
int.openshift.com:443/oapi/v1/namespaces/nsname/buildconfigs/bcname/
webhooks/secret/github>.

2. Cut and paste this URL into GitHub, from the GitHub web console.

3. In your GitHub repository, select Add Webhook from Settings → Webhooks & Services .

4. Paste the URL output (similar to above) into the Payload URL field.

You should see a message from GitHub stating that your webhook was successfully configured.

Now, whenever you push a change to your GitHub repository, a new build will automatically start, and
upon a successful build a new deployment will start.

NOTE

If you delete or recreate your application, you will have to update the Payload URL field
in GitHub with the new BuildConfig webhook url.

OpenShift Enterprise 3.2 Developer Guide

44

https://github.com/openshift/origin/blob/master/examples/jenkins/README.md
https://github.com/openshift/jenkins-plugin/blob/master/README.md
https://github.com/openshift/origin/blob/master/examples/sample-app/README.md

6.6.3. Action Hooks

In OpenShift version 2 (v2), there are build, deploy, post_deploy, and pre_build scripts or action_hooks
that are located in the .openshift/action_hooks directory. While there is no one-to-one mapping of
function for these in v3, the S2I tool in v3 does have the option of adding customizable scripts, either in
a designated URL or in the .s2i/bin directory of your source repository.

OpenShift version 3 (v3) also offers a post-build hook for running basic testing of an image after it is
built and before it is pushed to the registry. Deployment hooks are configured in the deployment
configuration.

In v2, action_hooks are commonly used to set up environment variables. In v2, any environment
variables should be passed with:

$ oc new-app <source-url> -e ENV_VAR=env_var

or:

$ oc new-app <template-name> -p ENV_VAR=env_var

Also, environment variables can be added or changed using:

$ oc set env dc/<name-of-dc>
ENV_VAR1=env_var1 ENV_VAR2=env_var2’

6.7. S2I TOOL

6.7.1. Overview

The Source-to-Image (S2I) tool injects application source code into a container image and the final
product is a new and ready-to-run container image that incorporates the builder image and built
source code. The S2I tool can be installed on your local machine without OpenShift Enterprise from the
repository.

The S2I tool is a very powerful tool to test and verify your application and images locally before using
them on OpenShift Enterprise.

6.7.2. Creating a Container Image

1. Identify the builder image that is needed for the application. Red Hat offers multiple builder
images for different languages including Python, Ruby, Perl, PHP, and Node.js . Other images
are available from the community space.

2. S2I can build images from source code in a local file system or from a Git repository. To build a
new container image from the builder image and the source code:

$ s2i build <source-location> <builder-image-name> <output-image-
name>

NOTE

<source-location> can either be a Git repository URL or a directory to
source code in a local file system.

CHAPTER 6. MIGRATING APPLICATIONS

45

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/creating_images/#s2i-scripts
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/using_images/#using-images-s2i-images-index
https://github.com/openshift/source-to-image#installation
https://github.com/sclorg?query=s2i
https://github.com/openshift-s2i

3. Test the built image with the Docker daemon:

$ docker run -d --name <new-name> -p <port-number>:<port-number>
<output-image-name>
$ curl localhost:<port-number>

4. Push the new image to the OpenShift registry.

5. Create a new application from the image in the OpenShift registry using the oc command:

$ oc new-app <image-name>

6.8. SUPPORT GUIDE

6.8.1. Overview

This topic reviews supported languages, frameworks, databases, and markers for OpenShift version 2
(v2) and OpenShift version 3 (v3).

6.8.2. Supported Databases

See the Supported Databases section of the Database Applications topic.

6.8.3. Supported Languages

PHP

Python

Perl

Node.js

Ruby

JBoss/xPaaS

6.8.4. Supported Frameworks

Table 6.1. Supported Frameworks

v2 v3

Jenkins Server jenkins-persistent

Drupal 7

Ghost 0.7.5

WordPress 4

OpenShift Enterprise 3.2 Developer Guide

46

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/installation_and_configuration/#access-pushing-and-pulling-images

Ceylon

Go

MEAN

v2 v3

6.8.5. Supported Markers

Table 6.2. Python

v2 v3

pip_install If your repository contains requirements.txt, then
pip is invoked by default. Otherwise, pip is not used.

Table 6.3. Ruby

v2 v3

disable_asset_compilation This can be done by setting
DISABLE_ASSET_COMPILATION environment
variable to true on the buildconfig strategy
definition.

Table 6.4. Perl

v2 v3

enable_cpan_tests This can be done by setting ENABLE_CPAN_TEST
environment variable to true on the build
configuration.

Table 6.5. PHP

v2 v3

use_composer composer is always used if the source repository
includes a composer.json in the root directory.

Table 6.6. Node.js

v2 v3

NODEJS_VERSION N/A

CHAPTER 6. MIGRATING APPLICATIONS

47

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/using_images/#configuration

use_npm npm is always used to start the application, unless
DEV_MODE is set to true, in which case nodemon is
used instead.

v2 v3

Table 6.7. JBoss EAP, JBoss WS, WildFly

v2 v3

enable_debugging This option is controlled via the ENABLE_JPDA
environment variable set on the deployment
configuration by setting it to any non-empty value.

skip_maven_build If pom.xml is present, maven will be run.

java7 N/A

java8 JavaEE is using JDK8.

Table 6.8. Jenkins

v2 v3

enable_debugging N/A

Table 6.9. All

v2 v3

force_clean_build There is a similar concept in v3, as noCache field in
buildconfig forces the container build to rerun each
layer. In the S2I build, the incremental flag is false
by default, which indicates a clean build.

hot_deploy Ruby, Python, Perl, PHP, Node.js

enable_public_server_status N/A

disable_auto_scaling Autoscaling is off by default and it can be turn on via
pod auto-scaling.

6.8.6. Supported Environment Variables

MySQL

MongoDB

OpenShift Enterprise 3.2 Developer Guide

48

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/using_images/#ruby-hot-deploy
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/using_images/#python-hot-deploy
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/using_images/#perl-hot-deploy
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/using_images/#php-hot-deploy
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/using_images/#nodejs-hot-deploying

PostgreSQL

CHAPTER 6. MIGRATING APPLICATIONS

49

CHAPTER 7. APPLICATION TUTORIALS

7.1. OVERVIEW

This topic group includes information on how to get your application up and running in OpenShift
Enterprise and covers different languages and their frameworks.

7.2. QUICKSTART TEMPLATES

7.2.1. Overview

A quickstart is a basic example of an application running on OpenShift Enterprise. Quickstarts come in
a variety of languages and frameworks, and are defined in a template, which is constructed from a set
of services, build configurations, and deployment configurations. This template references the
necessary images and source repositories to build and deploy the application.

To explore a quickstart, create an application from a template. Your administrator may have already
installed these templates in your OpenShift Enterprise cluster, in which case you can simply select it
from the web console. See the template documentation for more information on how to upload, create
from, and modify a template.

Quickstarts refer to a source repository that contains the application source code. To customize the
quickstart, fork the repository and, when creating an application from the template, substitute the
default source repository name with your forked repository. This results in builds that are performed
using your source code instead of the provided example source. You can then update the code in your
source repository and launch a new build to see the changes reflected in the deployed application.

7.2.2. Web Framework Quickstart Templates

These quickstarts provide a basic application of the indicated framework and language:

CakePHP: a PHP web framework (includes a MySQL database)

Template definition

Source repository

Dancer: a Perl web framework (includes a MySQL database)

Template definition

Source repository

Django: a Python web framework (includes a PostgreSQL database)

Template definition

Source repository

NodeJS: a NodeJS web application (includes a MongoDB database)

Template definition

Source repository

OpenShift Enterprise 3.2 Developer Guide

50

https://github.com/openshift/origin/tree/master/examples/quickstarts/cakephp-mysql.json
https://github.com/openshift/cakephp-ex
https://github.com/openshift/origin/tree/master/examples/quickstarts/dancer-mysql.json
https://github.com/openshift/dancer-ex
https://github.com/openshift/origin/tree/master/examples/quickstarts/django-postgresql.json
https://github.com/openshift/django-ex
https://github.com/openshift/origin/tree/master/examples/quickstarts/nodejs-mongodb.json
https://github.com/openshift/nodejs-ex

Rails: a Ruby web framework (includes a PostgreSQL database)

Template definition

Source repository

7.3. RUBY ON RAILS

7.3.1. Overview

Ruby on Rails is a popular web framework written in Ruby. This guide covers using Rails 4 on
OpenShift Enterprise.

WARNING

We strongly advise going through the whole tutorial to have an overview of all the
steps necessary to run your application on the OpenShift Enterprise. If you
experience a problem try reading through the entire tutorial and then going back
to your issue. It can also be useful to review your previous steps to ensure that all
the steps were executed correctly.

For this guide you will need:

Basic Ruby/Rails knowledge

Locally installed version of Ruby 2.0.0+, Rubygems, Bundler

Basic Git knowledge

Running instance of OpenShift Enterprise v3

7.3.2. Local Workstation Setup

First make sure that an instance of OpenShift Enterprise is running and is available. For more info on
how to get OpenShift Enterprise up and running check the installation methods. Also make sure that
your oc CLI client is installed and the command is accessible from your command shell, so you can use
it to log in using your email address and password.

7.3.2.1. Setting Up the Database

Rails applications are almost always used with a database. For the local development we chose the
PostgreSQL database. To install it type:

$ sudo yum install -y postgresql postgresql-server postgresql-devel

Next you need to initialize the database with:

$ sudo postgresql-setup initdb



CHAPTER 7. APPLICATION TUTORIALS

51

https://github.com/openshift/origin/tree/master/examples/quickstarts/rails-postgresql.json
https://github.com/openshift/rails-ex
https://github.com/openshift/mysql/tree/master/5.5
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/installation_and_configuration/#install-config-install-index
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/cli_reference/#cli-reference-get-started-cli
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/cli_reference/#basic-setup-and-login

This command will create the /var/lib/pgsql/data directory, in which the data will be stored.

Start the database by typing:

$ sudo systemctl start postgresql.service

When the database is running, create your rails user:

$ sudo -u postgres createuser -s rails

Note that the user we created has no password.

7.3.3. Writing Your Application

If you are starting your Rails application from scratch, you need to install the Rails gem first.

$ gem install rails
Successfully installed rails-4.2.0
1 gem installed

After you install the Rails gem create a new application, with PostgreSQL as your database:

$ rails new rails-app --database=postgresql

Then change into your new application directory.

$ cd rails-app

If you already have an application, make sure the pg (postgresql) gem is present in your Gemfile. If
not edit your Gemfile by adding the gem:

gem 'pg'

To generate a new Gemfile.lock with all your dependencies run:

$ bundle install

In addition to using the postgresql database with the pg gem, you’ll also need to ensure the
config/database.yml is using the postgresql adapter.

Make sure you updated default section in the config/database.yml file, so it looks like this:

default: &default
 adapter: postgresql
 encoding: unicode
 pool: 5
 host: localhost
 username: rails
 password:

Create your application’s development and test databases by using this rake command:

OpenShift Enterprise 3.2 Developer Guide

52

$ rake db:create

This will create development and test database in your PostgreSQL server.

7.3.3.1. Creating a Welcome Page

Since Rails 4 no longer serves a static public/index.html page in production, we need to create a
new root page.

In order to have a custom welcome page we need to do following steps:

Create a controller with an index action

Create a view page for the welcome controller index action

Create a route that will serve applications root page with the created controller and view

Rails offers a generator that will do all this necessary steps for you.

$ rails generate controller welcome index

All the necessary files have been created, now we just need to edit line 2 in config/routes.rb file to
look like:

root 'welcome#index'

Run the rails server to verify the page is available.

$ rails server

You should see your page by visiting http://localhost:3000 in your browser. If you don’t see the page,
check the logs that are output to your server to debug.

7.3.3.2. Configuring the Application for OpenShift Enterprise

In order to have your application communicating with the PostgreSQL database service that will be
running in OpenShift Enterprise, you will need to edit the default section in your
config/database.yml to use environment variables, which you will define later, upon the database
service creation.

The default section in your edited config/database.yml together with pre-defined variables
should look like:

<% user = ENV.key?("POSTGRESQL_ADMIN_PASSWORD") ? "root" :
ENV["POSTGRESQL_USER"] %>
<% password = ENV.key?("POSTGRESQL_ADMIN_PASSWORD") ?
ENV["POSTGRESQL_ADMIN_PASSWORD"] : ENV["POSTGRESQL_PASSWORD"] %>
<% db_service = ENV.fetch("DATABASE_SERVICE_NAME","").upcase %>

default: &default
 adapter: postgresql
 encoding: unicode
 # For details on connection pooling, see rails configuration guide
 # http://guides.rubyonrails.org/configuring.html#database-pooling

CHAPTER 7. APPLICATION TUTORIALS

53

http://localhost:3000
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/using_images/#postgresql-environment-variables

 pool: <%= ENV["POSTGRESQL_MAX_CONNECTIONS"] || 5 %>
 username: <%= user %>
 password: <%= password %>
 host: <%= ENV["#{db_service}_SERVICE_HOST"] %>
 port: <%= ENV["#{db_service}_SERVICE_PORT"] %>
 database: <%= ENV["POSTGRESQL_DATABASE"] %>

For an example of how the final file should look, see Ruby on Rails example application
config/database.yml.

7.3.3.3. Storing Your Application in Git

OpenShift Enterprise requires git, if you don’t have it installed you will need to install it.

Building an application in OpenShift Enterprise usually requires that the source code be stored in a git
repository, so you will need to install git if you do not already have it.

Make sure you are in your Rails application directory by running the ls -1 command. The output of
the command should look like:

$ ls -1
app
bin
config
config.ru
db
Gemfile
Gemfile.lock
lib
log
public
Rakefile
README.rdoc
test
tmp
vendor

Now run these commands in your Rails app directory to initialize and commit your code to git:

$ git init
$ git add .
$ git commit -m "initial commit"

Once your application is committed you need to push it to a remote repository. For this you would need
a GitHub account, in which you create a new repository .

Set the remote that points to your git repository:

$ git remote add origin git@github.com:<namespace/repository-name>.git

After that, push your application to your remote git repository.

$ git push

OpenShift Enterprise 3.2 Developer Guide

54

https://github.com/openshift/rails-ex
https://github.com/openshift/rails-ex/blob/master/config/database.yml
http://git-scm.com/
http://git-scm.com/
https://github.com/join
https://help.github.com/articles/creating-a-new-repository/

7.3.4. Deploying Your Application to OpenShift Enterprise

To deploy your Ruby on Rails application, create a new Project for the application:

$ oc new-project rails-app --description="My Rails application" --display-
name="Rails Application"

After creating the the rails-app project, you will be automatically switched to the new project
namespace.

Deploying your application in OpenShift Enterprise involves three steps:

Creating a database service from OpenShift Enterprise’s PostgreSQL image

Creating a frontend service from OpenShift Enterprise’s Ruby 2.0 builder image and your Ruby
on Rails source code, which we wire with the database service

Creating a route for your application.

7.3.4.1. Creating the Database Service

Your Rails application expects a running database service. For this service use PostgeSQL database
image.

To create the database service you will use the oc new-app command. To this command you will need
to pass some necessary environment variables which will be used inside the database container. These
environment variables are required to set the username, password, and name of the database. You can
change the values of these environment variables to anything you would like. The variables we are
going to be setting are as follows:

POSTGRESQL_DATABASE

POSTGRESQL_USER

POSTGRESQL_PASSWORD

Setting these variables ensures:

A database exists with the specified name

A user exists with the specified name

The user can access the specified database with the specified password

For example:

$ oc new-app postgresql -e POSTGRESQL_DATABASE=db_name -e
POSTGRESQL_USER=username -e POSTGRESQL_PASSWORD=password

To also set the password for the database administrator, append to the previous command with:

-e POSTGRESQL_ADMIN_PASSWORD=admin_pw

To watch the progress of this command:

CHAPTER 7. APPLICATION TUTORIALS

55

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#services
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/using_images/#using-images-db-images-postgresql
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#services
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/using_images/#using-images-s2i-images-ruby
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#services
http://www.postgresql.org/
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/using_images/#using-images-db-images-postgresql
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#services
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/using_images/#postgresql-environment-variables
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/using_images/#postgresql-environment-variables
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/using_images/#postgresql-environment-variables

$ oc get pods --watch

7.3.4.2. Creating the Frontend Service

To bring your application to OpenShift Enterprise, you need to specify a repository in which your
application lives, using once again the oc new-app command, in which you will need to specify
database related environment variables we setup in the Creating the Database Service :

$ oc new-app path/to/source/code --name=rails-app -e
POSTGRESQL_USER=username -e POSTGRESQL_PASSWORD=password -e
POSTGRESQL_DATABASE=db_name -e DATABASE_SERVICE_NAME=postgresql

With this command, OpenShift Enterprise fetches the source code, sets up the Builder image, builds
your application image, and deploys the newly created image together with the specified environment
variables. The application is named rails-app.

You can verify the environment variables have been added by viewing the JSON document of the
rails-app DeploymentConfig:

$ oc get dc rails-app -o json

You should see the following section:

env": [
 {
 "name": "POSTGRESQL_USER",
 "value": "username"
 },
 {
 "name": "POSTGRESQL_PASSWORD",
 "value": "password"
 },
 {
 "name": "POSTGRESQL_DATABASE",
 "value": "db_name"
 },
 {
 "name": "DATABASE_SERVICE_NAME",
 "value": "postgresql"
 }
],

To check the build process, use the build-logs command:

$ oc logs -f build rails-app-1

Once the build is complete, you can look at the running pods in OpenShift Enterprise:

$ oc get pods

You should see a line starting with myapp-(#number)-(some hash) and that is your application running
in OpenShift Enterprise.

OpenShift Enterprise 3.2 Developer Guide

56

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/using_images/#postgresql-environment-variables
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/using_images/#postgresql-environment-variables
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#pods

Before your application will be functional, you need to initialize the database by running the database
migration script. There are two ways you can do this:

Manually from the running frontend container:

First you need to exec into frontend container with rsh command:

$ oc rsh <FRONTEND_POD_ID>

Run the migration from inside the container:

$ RAILS_ENV=production bundle exec rake db:migrate

If you are running your Rails application in a development or test environment you don’t have to
specify the RAILS_ENV environment variable.

By adding pre-deployment lifecycle hooks in your template. For example check the hooks
example in our Rails example application.

7.3.4.3. Creating a Route for Your Application

To expose a service by giving it an externally-reachable hostname like www.example.com use
OpenShift Enterprise route. In your case you need to expose the frontend service by typing:

$ oc expose service rails-app --hostname=www.example.com

WARNING

It’s the user’s responsibility to ensure the hostname they specify resolves into the
IP address of the router. For more information, check the OpenShift Enterprise
documentation on:

Routes

Configuring a Highly-available Routing Service



CHAPTER 7. APPLICATION TUTORIALS

57

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/cli_reference/#troubleshooting-and-debugging-cli-operations
https://github.com/openshift/rails-ex/blob/master/openshift/templates/rails-postgresql.json#L122-L130
https://github.com/openshift/rails-ex
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#routers
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/cluster_administration/#configuring-a-highly-available-routing-service

CHAPTER 8. OPENING A REMOTE SHELL TO CONTAINERS

8.1. OVERVIEW

The oc rsh command allows you to locally access and manage tools that are on the system. The
secure shell (SSH) is the underlying technology and industry standard that provides a secure
connection to the application. Access to applications with the shell environment is protected and
restricted with Security-Enhanced Linux (SELinux) policies.

8.2. START A SECURE SHELL SESSION

Open a remote shell session to a container:

$ oc rsh <pod>

While in the remote shell, you can issue commands as if you are inside the container and perform local
operations like monitoring, debugging, and using CLI commands specific to what is running in the
container.

For example, in a MySQL container, you can count the number of records in the database by invoking
the mysql command, then using the the prompt to type in the SELECT command. You can also use use
commands like ps(1) and ls(1) for validation.

BuildConfigs and DeployConfigs map out how you want things to look and pods (with containers
inside) are created and dismantled as needed. Your changes are not persistent. If you make changes
directly within the container and that container is destroyed and rebuilt, your changes will no longer
exist.

NOTE

oc exec can be used to execute a command remotely. However, the oc rsh command
provides an easier way to keep a remote shell open persistently.

8.3. SECURE SHELL SESSION HELP

For help with usage, options, and to see examples:

$ oc rsh -h

OpenShift Enterprise 3.2 Developer Guide

58

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/using_images/#using-images-db-images-mysql

CHAPTER 9. TEMPLATES

9.1. OVERVIEW

A template describes a set of objects that can be parameterized and processed to produce a list of
objects for creation by OpenShift Enterprise. A template can be processed to create anything you have
permission to create within a project, for example services, build configurations, and deployment
configurations. A template may also define a set of labels to apply to every object defined in the
template.

You can create a list of objects from a template using the CLI or, if a template has been uploaded to
your project or the global template library, using the web console.

9.2. UPLOADING A TEMPLATE

If you have a JSON or YAML file that defines a template, for example as seen in this example, you can
upload the template to projects using the CLI. This saves the template to the project for repeated use
by any user with appropriate access to that project. Instructions on writing your own templates are
provided later in this topic.

To upload a template to your current project’s template library, pass the JSON or YAML file with the
following command:

$ oc create -f <filename>

You can upload a template to a different project using the -n option with the name of the project:

$ oc create -f <filename> -n <project>

The template is now available for selection using the web console or the CLI.

9.3. CREATING FROM TEMPLATES USING THE WEB CONSOLE

To create the objects from an uploaded template using the web console:

1. While in the desired project, click Add to Project :

2. Select a template from the list of templates in your project, or provided by the global template
library:

CHAPTER 9. TEMPLATES

59

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#architecture-core-concepts-templates
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#architecture-core-concepts-index
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#services
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#builds
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#deployments-and-deployment-configurations
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#labels
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#architecture-core-concepts-templates

3. Modify template parameters in the template creation screen:

OpenShift Enterprise 3.2 Developer Guide

60

Template name and description.

Container images included in the template.

Parameters defined by the template. You can edit values for parameters defined in the
template here.

Labels to assign to all items included in the template. You can add and edit labels for
objects.

9.4. CREATING FROM TEMPLATES USING THE CLI

You can use the CLI to process templates and use the configuration that is generated to create

CHAPTER 9. TEMPLATES

61

objects.

9.4.1. Labels

Labels are used to manage and organize generated objects, such as pods. The labels specified in the
template are applied to every object that is generated from the template.

There is also the ability to add labels in the template from the command line.

$ oc process -f <filename> -l name=otherLabel

9.4.2. Parameters

The list of parameters that you can override are listed in the parameters section of the template . You
can list them with the CLI by using the following command and specifying the file to be used:

$ oc process --parameters -f <filename>

Alternatively, if the template is already uploaded:

$ oc process --parameters -n <project> <template_name>

For example, the following shows the output when listing the parameters for one of the Quickstart
templates in the default openshift project:

$ oc process --parameters -n openshift rails-postgresql-example
NAME DESCRIPTION
GENERATOR VALUE
SOURCE_REPOSITORY_URL The URL of the repository with your
application source code
https://github.com/openshift/rails-ex.git
SOURCE_REPOSITORY_REF Set this to a branch name, tag or other ref
of your repository if you are not using the default branch
CONTEXT_DIR Set this to the relative path to your
project if it is not in the root of your repository
APPLICATION_DOMAIN The exposed hostname that will route to the
Rails service
rails-postgresql-example.openshiftapps.com
GITHUB_WEBHOOK_SECRET A secret string used to configure the GitHub
webhook expression
[a-zA-Z0-9]{40}
SECRET_KEY_BASE Your secret key for verifying the integrity
of signed cookies expression
[a-z0-9]{127}
APPLICATION_USER The application user that is used within the
sample application to authorize access on pages
openshift
APPLICATION_PASSWORD The application password that is used within
the sample application to authorize access on pages
secret
DATABASE_SERVICE_NAME Database service name
postgresql
POSTGRESQL_USER database username
expression user[A-Z0-9]{3}

OpenShift Enterprise 3.2 Developer Guide

62

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#labels
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#parameters

POSTGRESQL_PASSWORD database password
expression [a-zA-Z0-9]{8}
POSTGRESQL_DATABASE database name
root
POSTGRESQL_MAX_CONNECTIONS database max connections
10
POSTGRESQL_SHARED_BUFFERS database shared buffers
12MB

The output identifies several parameters that are generated with a regular expression-like generator
when the template is processed.

9.4.3. Generating a List of Objects

Using the CLI, you can process a file defining a template to return the list of objects to standard output:

$ oc process -f <filename>

Alternatively, if the template has already been uploaded to the current project:

$ oc process <template_name>

The process command also takes a list of templates you can process to a list of objects. In that case,
every template will be processed and the resulting list of objects will contain objects from all templates
passed to a process command:

$ cat <first_template> <second_template> | oc process -f -

You can create objects from a template by processing the template and piping the output to oc
create:

$ oc process -f <filename> | oc create -f -

Alternatively, if the template has already been uploaded to the current project:

$ oc process <template> | oc create -f -

You can override any parameter values defined in the file by adding the -v option followed by a
comma-separated list of <name>=<value> pairs. A parameter reference may appear in any text field
inside the template items.

For example, in the following the POSTGRESQL_USER and POSTGRESQL_DATABASE parameters of a
template are overridden to output a configuration with customized environment variables:

Example 9.1. Creating a List of Objects from a Template

$ oc process -f my-rails-postgresql \
 -v POSTGRESQL_USER=bob,POSTGRESQL_DATABASE=mydatabase

The JSON file can either be redirected to a file or applied directly without uploading the template by
piping the processed output to the oc create command:

CHAPTER 9. TEMPLATES

63

$ oc process -f my-rails-postgresql \
 -v POSTGRESQL_USER=bob,POSTGRESQL_DATABASE=mydatabase \
 | oc create -f -

9.5. MODIFYING AN UPLOADED TEMPLATE

You can edit a template that has already been uploaded to your project by using the following
command:

$ oc edit template <template>

9.6. USING THE INSTANT APP AND QUICKSTART TEMPLATES

OpenShift Enterprise provides a number of default Instant App and Quickstart templates to make it
easy to quickly get started creating a new application for different languages. Templates are provided
for Rails (Ruby), Django (Python), Node.js, CakePHP (PHP), and Dancer (Perl). Your cluster
administrator should have created these templates in the default, global openshift project so you have
access to them. You can list the available default Instant App and Quickstart templates with:

$ oc get templates -n openshift

If they are not available, direct your cluster administrator to the Loading the Default Image Streams
and Templates topic.

By default, the templates build using a public source repository on GitHub that contains the necessary
application code. In order to be able to modify the source and build your own version of the application,
you must:

1. Fork the repository referenced by the template’s default SOURCE_REPOSITORY_URL
parameter.

2. Override the value of the SOURCE_REPOSITORY_URL parameter when creating from the
template, specifying your fork instead of the default value.

By doing this, the build configuration created by the template will now point to your fork of the
application code, and you can modify the code and rebuild the application at will. A walkthrough of this
process using the web console is provided in Getting Started for Developers: Web Console .

NOTE

Some of the Instant App and Quickstart templates define a database deployment
configuration. The configuration they define uses ephemeral storage for the database
content. These templates should be used for demonstration purposes only as all
database data will be lost if the database pod restarts for any reason.

9.7. WRITING TEMPLATES

You can define new templates to make it easy to recreate all the objects of your application. The
template will define the objects it creates along with some metadata to guide the creation of those
objects.

9.7.1. Description

OpenShift Enterprise 3.2 Developer Guide

64

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/installation_and_configuration/#install-config-imagestreams-templates
https://github.com
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/getting_started/#getting-started-developers-console
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#deployments-and-deployment-configurations

1

2

3

4

1

The template description covers information that informs users what your template does and helps
them find it when searching in the web console. In addition to general descriptive information, it
includes a set of tags. Useful tags include the name of the language your template is related to (e.g.,
java, php, ruby, etc.). In addition, adding the special tag instant-app causes your template to be
displayed in the list of Instant Apps on the template selection page of the web console.

kind: "Template"
apiVersion: "v1"
metadata:

 name: "cakephp-mysql-example" 1
 annotations:

 description: "An example CakePHP application with a MySQL database" 2

 tags: "instant-app,php,cakephp,mysql" 3

 iconClass: "icon-php" 4

The name of the template as it will appear to users.

A description of the template.

Tags to be associated with the template for searching and grouping.

An icon to be displayed with your template in the web console.

9.7.2. Labels

Templates can include a set of labels. These labels will be added to each object created when the
template is instantiated. Defining a label in this way makes it easy for users to find and manage all the
objects created from a particular template.

kind: "Template"
apiVersion: "v1"
...
labels:

 template: "cakephp-mysql-example" 1

A label that will be applied to all objects created from this template.

9.7.3. Parameters

Parameters allow a value to be supplied by the user or generated when the template is instantiated.
This is useful for generating random passwords or allowing the user to supply a host name or other
user-specific value that is required to customize the template. Parameters can be referenced by
placing values in the form "${PARAMETER_NAME}" in place of any string field in the template.

kind: Template
apiVersion: v1
objects:
 - kind: BuildConfig
 apiVersion: v1
 metadata:
 name: cakephp-mysql-example
 annotations:

CHAPTER 9. TEMPLATES

65

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#labels

1

2

3

4

5

6

7

 description: Defines how to build the application
 spec:
 source:
 type: Git
 git:

 uri: "${SOURCE_REPOSITORY_URL}" 1
 ref: "${SOURCE_REPOSITORY_REF}"
 contextDir: "${CONTEXT_DIR}"
parameters:

 - name: SOURCE_REPOSITORY_URL 2
 description: The URL of the repository with your application source

code 3

 value: https://github.com/openshift/cakephp-ex.git 4

 required: true 5
 - name: GITHUB_WEBHOOK_SECRET
 description: A secret string used to configure the GitHub webhook

 generate: expression 6

 from: "[a-zA-Z0-9]{40}" 7

This value will be replaced with the value of the SOURCE_REPOSITORY_URL parameter when the
template is instantiated.

The name of the parameter. This value is displayed to users and used to reference the parameter
within the template.

A description of the parameter.

A default value for the parameter which will be used if the user does not override the value when
instantiating the template.

Indicates this parameter is required, meaning the user cannot override it with an empty value. If
the parameter does not provide a default or generated value, the user must supply a value.

A parameter which has its value generated via a regular expression-like syntax.

The input to the generator. In this case, the generator will produce a 40 character alphanumeric
value including upper and lowercase characters.

9.7.4. Object List

The main portion of the template is the list of objects which will be created when the template is
instantiated. This can be any valid API object, such as a BuildConfig, DeploymentConfig,
Service, etc. The object will be created exactly as defined here, with any parameter values
substituted in prior to creation. The definition of these objects can reference parameters defined
earlier.

kind: "Template"
apiVersion: "v1"
objects:

 - kind: "Service" 1
 apiVersion: "v1"
 metadata:
 name: "cakephp-mysql-example"
 annotations:

OpenShift Enterprise 3.2 Developer Guide

66

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#parameters
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#architecture-core-concepts-index

1

 description: "Exposes and load balances the application pods"
 spec:
 ports:
 - name: "web"
 port: 8080
 targetPort: 8080
 selector:
 name: "cakephp-mysql-example"

The definition of a Service which will be created by this template.

NOTE

If an object definition’s metadata includes a namespace field, the field will be stripped
out of the definition during template instantiation. This is necessary because all objects
created during instantiation are placed into the target namespace, so it would be invalid
for the object to declare a different namespace.

9.7.5. Creating a Template from Existing Objects

Rather than writing an entire template from scratch, you can also export existing objects from your
project in template form, and then modify the template from there by adding parameters and other
customizations. To export objects in a project in template form, run:

$ oc export all --as-template=<template_name> > <template_filename>

You can also substitute a particular resource type or multiple resources instead of all. Run oc
export -h for more examples.

The object types included in oc export all are:

BuildConfig

Build

DeploymentConfig

ImageStream

Pod

ReplicationController

Route

Service

CHAPTER 9. TEMPLATES

67

CHAPTER 10. SERVICE ACCOUNTS

10.1. OVERVIEW

When a person uses the OpenShift Enterprise CLI or web console, their API token authenticates them
to the OpenShift API. However, when a regular user’s credentials are not available, it is common for
components to make API calls independently. For example:

Replication controllers make API calls to create or delete pods.

Applications inside containers could make API calls for discovery purposes.

External applications could make API calls for monitoring or integration purposes.

Service accounts provide a flexible way to control API access without sharing a regular user’s
credentials.

10.2. USER NAMES AND GROUPS

Every service account has an associated user name that can be granted roles, just like a regular user.
The user name is derived from its project and name:

system:serviceaccount:<project>:<name>

For example, to add the view role to the robot service account in the top-secret project:

$ oc policy add-role-to-user view system:serviceaccount:top-secret:robot

Every service account is also a member of two groups:

system:serviceaccounts

Includes all service accounts in the system.

system:serviceaccounts:<project>

Includes all service accounts in the specified project.

For example, to allow all service accounts in all projects to view resources in the top-secret project:

$ oc policy add-role-to-group view system:serviceaccounts -n top-secret

To allow all service accounts in the managers project to edit resources in the top-secret project:

$ oc policy add-role-to-group edit system:serviceaccounts:managers -n top-
secret

10.3. DEFAULT SERVICE ACCOUNTS AND ROLES

Three service accounts are automatically created in every project:

OpenShift Enterprise 3.2 Developer Guide

68

Service Account Usage

builder Used by build pods. It is given the system:image-builder role, which allows
pushing images to any image stream in the project using the internal Docker
registry.

deployer Used by deployment pods and is given the system:deployer role, which allows
viewing and modifying replication controllers and pods in the project.

default Used to run all other pods unless they specify a different service account.

All service accounts in a project are given the system:image-puller role, which allows pulling images
from any image stream in the project using the internal Docker registry.

10.4. MANAGING SERVICE ACCOUNTS

Service accounts are API objects that exist within each project. They can be created or deleted like any
other API object.

$ oc create serviceaccount robot
serviceaccounts/robot

10.5. MANAGING SERVICE ACCOUNT CREDENTIALS

As soon as a service account is created, two secrets are automatically added to it:

an API token

credentials for the internal Docker registry

These can be seen by describing the service account:

$ oc describe serviceaccount robot
Name: robot
Labels: <none>
Image pull secrets: robot-dockercfg-624cx

Mountable secrets: robot-token-uzkbh
 robot-dockercfg-624cx

Tokens: robot-token-8bhpp
 robot-token-uzkbh

The system ensures that service accounts always have an API token and internal Docker registry
credentials.

The generated API token and Docker registry credentials do not expire, but they can be revoked by
deleting the secret. When the secret is deleted, a new one is automatically generated to take its place.

10.6. MANAGING ALLOWED SECRETS

CHAPTER 10. SERVICE ACCOUNTS

69

In addition to providing API credentials, a pod’s service account determines which secrets the pod is
allowed to use.

Pods use secrets in two ways:

image pull secrets, providing credentials used to pull images for the pod’s containers

mountable secrets, injecting the contents of secrets into containers as files

To allow a secret to be used as an image pull secret by a service account’s pods, run:

$ oc secrets add --for=pull \
 serviceaccount/<serviceaccount-name> \
 secret/<secret-name>

To allow a secret to be mounted by a service account’s pods, run:

$ oc secrets add --for=mount \
 serviceaccount/<serviceaccount-name> \
 secret/<secret-name>

This example creates and adds secrets to a service account:

$ oc secrets new secret-plans plan1.txt plan2.txt
secret/secret-plans

$ oc secrets new-dockercfg my-pull-secret \
 --docker-username=mastermind \
 --docker-password=12345 \
 --docker-email=mastermind@example.com
secret/my-pull-secret

$ oc secrets add serviceaccount/robot secret/secret-plans --for=mount

$ oc secrets add serviceaccount/robot secret/my-pull-secret --for=pull

$ oc describe serviceaccount robot
Name: robot
Labels: <none>
Image pull secrets: robot-dockercfg-624cx
 my-pull-secret

Mountable secrets: robot-token-uzkbh
 robot-dockercfg-624cx
 secret-plans

Tokens: robot-token-8bhpp
 robot-token-uzkbh

10.7. USING A SERVICE ACCOUNT’S CREDENTIALS INSIDE A
CONTAINER

When a pod is created, it specifies a service account (or uses the default service account), and is
allowed to use that service account’s API credentials and referenced secrets.

OpenShift Enterprise 3.2 Developer Guide

70

A file containing an API token for a pod’s service account is automatically mounted at
/var/run/secrets/kubernetes.io/serviceaccount/token.

That token can be used to make API calls as the pod’s service account. This example calls the users/~
API to get information about the user identified by the token:

$ TOKEN="$(cat /var/run/secrets/kubernetes.io/serviceaccount/token)"

$ curl --cacert /var/run/secrets/kubernetes.io/serviceaccount/ca.crt \
 "https://openshift.default.svc.cluster.local/oapi/v1/users/~" \
 -H "Authorization: Bearer $TOKEN"

kind: "User"
apiVersion: "v1"
metadata:
 name: "system:serviceaccount:top-secret:robot"
 selflink: "/oapi/v1/users/system:serviceaccount:top-secret:robot"
 creationTimestamp: null
identities: null
groups:
 - "system:serviceaccounts"
 - "system:serviceaccounts:top-secret"

10.8. USING A SERVICE ACCOUNT’S CREDENTIALS EXTERNALLY

The same token can be distributed to external applications that need to authenticate to the API.

Use the following syntax to to view a service account’s API token:

$ oc describe secret <secret-name>

For example:

$ oc describe secret robot-token-uzkbh -n top-secret
Name: robot-token-uzkbh
Labels: <none>
Annotations: kubernetes.io/service-
account.name=robot,kubernetes.io/service-account.uid=49f19e2e-16c6-11e5-
afdc-3c970e4b7ffe

Type: kubernetes.io/service-account-token

Data

token: eyJhbGciOiJSUzI1NiIsInR5cCI6IkpXVCJ9...

$ oc login --token=eyJhbGciOiJSUzI1NiIsInR5cCI6IkpXVCJ9...
Logged into "https://server:8443" as "system:serviceaccount:top-
secret:robot" using the token provided.

You don't have any projects. You can try to create a new project, by
running

 $ oc new-project <projectname>

CHAPTER 10. SERVICE ACCOUNTS

71

$ oc whoami
system:serviceaccount:top-secret:robot

OpenShift Enterprise 3.2 Developer Guide

72

CHAPTER 11. BUILDS

11.1. OVERVIEW

A build is the process of transforming input parameters into a resulting object. Most often, the process
is used to transform source code into a runnable image.

Build configurations are characterized by a strategy and one or more sources. The strategy determines
the aforementioned process, while the sources provide its input.

There are three build strategies:

Source-To-Image (S2I) (description, options)

Docker (description, options)

Custom (description, options)

And there are four types of build source:

Git

Dockerfile

Image

Binary

It is up to each build strategy to consider or ignore a certain type of source, as well as to determine
how it is to be used.

Binary and Git are mutually exclusive source types. Dockerfile and Image can be used by themselves,
with each other, or together with either Git or Binary. Also, the Binary build source type is unique from
the other options in how it is specified to the system .

11.2. DEFINING A BUILDCONFIG

A build configuration describes a single build definition and a set of triggers for when a new build
should be created.

A build configuration is defined by a BuildConfig, which is a REST object that can be used in a POST
to the API server to create a new instance. The following example BuildConfig results in a new build
every time a container image tag or the source code changes:

Example 11.1. BuildConfig Object Definition

kind: "BuildConfig"
apiVersion: "v1"
metadata:

 name: "ruby-sample-build" 1
spec:

 triggers: 2
 - type: "GitHub"
 github:
 secret: "secret101"

CHAPTER 11. BUILDS

73

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#builds
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#source-build
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#docker-build
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#custom-build

1

2

3

4

5

6

This specification will create a new BuildConfig named ruby-sample-build.

You can specify a list of triggers, which cause a new build to be created.

The source section defines the source of the build. The type determines the primary source
of input, and can be either Git, to point to a code repository location; Dockerfile, to build
from an inline Dockerfile; or Binary, to accept binary payloads. Using multiple sources at
once is possible. Refer to the documentation for each source type for details.

The strategy section describes the build strategy used to execute the build. You can specify
Source, Docker and Custom strategies here. This above example uses the ruby-20-
centos7 container image that Source-To-Image will use for the application build.

After the container image is successfully built, it will be pushed into the repository described
in the output section.

The postCommit section defines an optional build hook.

11.3. SOURCE-TO-IMAGE STRATEGY OPTIONS

The following options are specific to the S2I build strategy.

11.3.1. Force Pull

By default, if the builder image specified in the build configuration is available locally on the node, that
image will be used. However, to override the local image and refresh it from the registry to which the
image stream points, create a BuildConfig with the forcePull flag set to true:

 - type: "Generic"
 generic:
 secret: "secret101"
 - type: "ImageChange"

 source: 3
 type: "Git"
 git:
 uri: "https://github.com/openshift/ruby-hello-world"
 dockerfile: "FROM openshift/ruby-22-centos7\nUSER example"

 strategy: 4
 type: "Source"
 sourceStrategy:
 from:
 kind: "ImageStreamTag"
 name: "ruby-20-centos7:latest"

 output: 5
 to:
 kind: "ImageStreamTag"
 name: "origin-ruby-sample:latest"

 postCommit: 6
 script: "bundle exec rake test"

strategy:
 type: "Source"

OpenShift Enterprise 3.2 Developer Guide

74

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#source-build

1

2

1

2

The builder image being used, where the local version on the node may not be up to date with the
version in the registry to which the image stream points.

This flag causes the local builder image to be ignored and a fresh version to be pulled from the
registry to which the image stream points. Setting forcePull to false results in the default
behavior of honoring the image stored locally.

11.3.2. Incremental Builds

S2I can perform incremental builds, which means it reuses artifacts from previously-built images. To
create an incremental build, create a BuildConfig with the following modification to the strategy
definition:

Specify an image that supports incremental builds. Consult the documentation of the builder
image to determine if it supports this behavior.

This flag controls whether an incremental build is attempted. If the builder image does not
support incremental builds, the build will still succeed, but you will get a log message stating the
incremental build was not successful because of a missing save-artifacts script.

NOTE

See the S2I Requirements topic for information on how to create a builder image
supporting incremental builds.

11.3.3. Overriding Builder Image Scripts

You can override the assemble, run, and save-artifactsS2I scripts provided by the builder image in one
of two ways. Either:

1. Provide an assemble, run, and/or save-artifacts script in the .s2i/bin directory of your
application source repository, or

2. Provide a URL of a directory containing the scripts as part of the strategy definition. For
example:

 sourceStrategy:
 from:
 kind: "ImageStreamTag"

 name: "builder-image:latest" 1

 forcePull: true 2

strategy:
 type: "Source"
 sourceStrategy:
 from:
 kind: "ImageStreamTag"

 name: "incremental-image:latest" 1

 incremental: true 2

strategy:
 type: "Source"

CHAPTER 11. BUILDS

75

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/creating_images/#creating-images-s2i
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/creating_images/#s2i-scripts

1 This path will have run, assemble, and save-artifacts appended to it. If any or all scripts are found
they will be used in place of the same named script(s) provided in the image.

NOTE

Files located at the scripts URL take precedence over files located in .s2i/bin of the
source repository. See the S2I Requirements topic and the S2I documentation for
information on how S2I scripts are used.

11.3.4. Environment Variables

There are two ways to make environment variables available to the source build process and resulting
image: environment files and BuildConfig environment values.

11.3.4.1. Environment Files

Source build enables you to set environment values (one per line) inside your application, by specifying
them in a .s2i/environment file in the source repository. The environment variables specified in this file
are present during the build process and in the final container image. The complete list of supported
environment variables is available in the documentation for each image.

If you provide a .s2i/environment file in your source repository, S2I reads this file during the build. This
allows customization of the build behavior as the assemble script may use these variables.

For example, if you want to disable assets compilation for your Rails application, you can add
DISABLE_ASSET_COMPILATION=true in the .s2i/environment file to cause assets compilation to be
skipped during the build.

In addition to builds, the specified environment variables are also available in the running application
itself. For example, you can add RAILS_ENV=development to the .s2i/environment file to cause the
Rails application to start in development mode instead of production.

11.3.4.2. BuildConfig Environment

You can add environment variables to the sourceStrategy definition of the BuildConfig. The
environment variables defined there are visible during the assemble script execution and will be
defined in the output image, making them also available to the run script and application code.

For example disabling assets compilation for your Rails application:

 sourceStrategy:
 from:
 kind: "ImageStreamTag"
 name: "builder-image:latest"

 scripts: "http://somehost.com/scripts_directory" 1

sourceStrategy:
...
 env:
 - name: "DISABLE_ASSET_COMPILATION"
 value: "true"

OpenShift Enterprise 3.2 Developer Guide

76

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/creating_images/#creating-images-s2i
https://github.com/openshift/source-to-image/blob/master/docs/builder_image.md#sti-scripts
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#source-build
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/using_images/#using-images-index

11.4. DOCKER STRATEGY OPTIONS

The following options are specific to the Docker build strategy.

11.4.1. FROM Image

The FROM instruction of the Dockerfile will be replaced by the from of the BuildConfig:

11.4.2. Dockerfile Path

By default, Docker builds use a Dockerfile (named Dockerfile) located at the root of the context
specified in the BuildConfig.spec.source.contextDir field.

The dockerfilePath field allows the build to use a different path to locate your Dockerfile, relative
to the BuildConfig.spec.source.contextDir field. It can be simply a different file name other
than the default Dockerfile (for example, MyDockerfile), or a path to a Dockerfile in a subdirectory (for
example, dockerfiles/app1/Dockerfile):

11.4.3. No Cache

Docker builds normally reuse cached layers found on the host performing the build. Setting the
noCache option to true forces the build to ignore cached layers and rerun all steps of the Dockerfile:

11.4.4. Force Pull

By default, if the builder image specified in the build configuration is available locally on the node, that
image will be used. However, to override the local image and refresh it from the registry to which the
image stream points, create a BuildConfig with the forcePull flag set to true:

strategy:
 type: Docker
 dockerStrategy:
 from:
 kind: "ImageStreamTag"
 name: "debian:latest"

strategy:
 type: Docker
 dockerStrategy:
 dockerfilePath: dockerfiles/app1/Dockerfile

strategy:
 type: "Docker"
 dockerStrategy:
 noCache: true

strategy:
 type: "Docker"
 dockerStrategy:

 forcePull: true 1

CHAPTER 11. BUILDS

77

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#docker-build

1 This flag causes the local builder image to be ignored, and a fresh version to be pulled from the
registry to which the image stream points. Setting forcePull to false results in the default
behavior of honoring the image stored locally.

11.4.5. Environment Variables

To make environment variables available to the Docker build process and resulting image, you can add
environment variables to the dockerStrategy definition of the BuildConfig.

The environment variables defined there are inserted as a single ENV Dockerfile instruction right after
the FROM instruction, so that it can be referenced later on within the Dockerfile.

The variables are defined during build and stay in the output image, therefore they will be present in
any container that runs that image as well.

For example, defining a custom HTTP proxy to be used during build and runtime:

Cluster administrators can also configure global build settings using Ansible .

11.5. CUSTOM STRATEGY OPTIONS

The following options are specific to the Custom build strategy.

11.5.1. FROM Image

Use the customStrategy.from section to indicate the image to use for the custom build:

11.5.2. Exposing the Docker Socket

In order to allow the running of Docker commands and the building of container images from inside the
container, the build container must be bound to an accessible socket. To do so, set the
exposeDockerSocket option to true:

dockerStrategy:
...
 env:
 - name: "HTTP_PROXY"
 value: "http://myproxy.net:5187/"

strategy:
 type: "Custom"
 customStrategy:
 from:
 kind: "DockerImage"
 name: "openshift/sti-image-builder"

strategy:
 type: "Custom"
 customStrategy:
 exposeDockerSocket: true

OpenShift Enterprise 3.2 Developer Guide

78

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#docker-build
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/installation_and_configuration/#configuring-hosts-for-proxies-using-ansible
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#custom-build

1

2

1

11.5.3. Secrets

In addition to secrets for source and images that can be added to all build types, custom strategies
allow adding an arbitrary list of secrets to the builder pod.

Each secret can be mounted at a specific location:

secretSource is a reference to a secret in the same namespace as the build.

mountPath is the path inside the custom builder where the secret should be mounted.

11.5.4. Force Pull

By default, when setting up the build pod, the build controller checks if the image specified in the build
configuration is available locally on the node. If so, that image will be used. However, to override the
local image and refresh it from the registry to which the image stream points, create a BuildConfig
with the forcePull flag set to true:

This flag causes the local builder image to be ignored, and a fresh version to be pulled from the
registry to which the image stream points. Setting forcePull to false results in the default
behavior of honoring the image stored locally.

11.5.5. Environment Variables

To make environment variables available to the Custom build process, you can add environment
variables to the customStrategy definition of the BuildConfig.

The environment variables defined there are passed to the pod that runs the custom build.

For example, defining a custom HTTP proxy to be used during build:

strategy:
 type: "Custom"
 customStrategy:
 secrets:

 - secretSource: 1
 name: "secret1"

 mountPath: "/tmp/secret1" 2
 - secretSource:
 name: "secret2"
 mountPath: "/tmp/secret2"

strategy:
 type: "Custom"
 customStrategy:

 forcePull: true 1

customStrategy:
...
 env:
 - name: "HTTP_PROXY"
 value: "http://myproxy.net:5187/"

CHAPTER 11. BUILDS

79

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#custom-build

1

2

3

4

Cluster administrators can also configure global build settings using Ansible .

11.6. BUILD INPUTS

There are several ways to provide content for builds to operate on. In order of precedence:

Inline Dockerfile definitions

Content extracted from existing images

Git repositories

Binary inputs

These can be combined into a single build. As the inline Dockerfile takes precedence, it can overwrite
any other file named Dockerfile provided by another input. Binary input and Git repository are
mutually exclusive inputs.

When the build is run, a working directory is constructed and all input content is placed in the working
directory (e.g. the input git repository is cloned into the working directory, files specified from input
images are copied into the working directory using the target path). Next the build process will cd into
the contextDir if one is defined. Then the inline Dockerfile (if any) is written to the current
directory. Last, the content from the current directory will be provided to the build process for
reference by the Dockerfile, assemble script, or custom builder logic. This means any input content
that resides outside the contextDir will be ignored by the build.

Here is an example of a source definition that includes multiple input types and an explanation of how
they are combined. For more details on how each input type is defined, see the specific sections for
each input type.

The repository to be cloned into the working directory for the build

/usr/lib/somefile.jar from myinputimage will be stored in
<workingdir>/app/dir/injected/dir

The working dir for the build will become <original_workingdir>/app/dir

A Dockerfile with this content will be created in <original_workingdir>/app/dir,
overwriting any existing file with that name

source:
 git:

 uri: https://github.com/openshift/ruby-hello-world.git 1
 images:
 - from:
 kind: ImageStreamTag
 name: myinputimage:latest
 namespace: mynamespace
 paths:

 - destinationDir: app/dir/injected/dir 2
 sourcePath: /usr/lib/somefile.jar

 contextDir: "app/dir" 3

 dockerfile: "FROM centos:7\nRUN yum install -y httpd" 4

OpenShift Enterprise 3.2 Developer Guide

80

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/installation_and_configuration/#configuring-hosts-for-proxies-using-ansible

1

2

3

11.7. GIT REPOSITORY SOURCE OPTIONS

When the BuildConfig.spec.source.type is Git, a Git repository is required, and an inline
Dockerfile is optional.

The source code is fetched from the location specified and, if the
BuildConfig.spec.source.dockerfile field is specified, the inline Dockerfile replaces the one in
the contextDir of the Git repository.

The source definition is part of the spec section in the BuildConfig:

The git field contains the URI to the remote Git repository of the source code. Optionally, specify
the ref field to check out a specific Git reference. A valid ref can be a SHA1 tag or a branch
name.

The contextDir field allows you to override the default location inside the source code
repository where the build looks for the application source code. If your application exists inside a
sub-directory, you can override the default location (the root folder) using this field.

If the optional dockerfile field is provided, it should be a string containing a Dockerfile that
overwrites any Dockerfile that may exist in the source repository.

When using the Git repository as a source without specifying the ref field, OpenShift Enterprise
performs a shallow clone (--depth=1 clone). That means only the HEAD (usually the master branch)
is downloaded. This results in repositories downloading faster, including the commit history.

A shallow clone is also used when the ref field is specified and set to an existing remote branch name.
However, if you specify the ref field to a specific commit, the system will fallback to a regular Git
clone operation and checkout the commit, because using the --depth=1 option only works with
named branch refs.

To perform a full Git clone of the master for the specified repository, set the ref to master.

11.7.1. Using a Proxy for Git Cloning

If your Git repository can only be accessed using a proxy, you can define the proxy to use in the
source section of the BuildConfig. You can configure both a HTTP and HTTPS proxy to use. Both
fields are optional.

NOTE

Your source URI must use the HTTP or HTTPS protocol for this to work.

source:
 type: "Git"

 git: 1
 uri: "https://github.com/openshift/ruby-hello-world"
 ref: "master"

 contextDir: "app/dir" 2

 dockerfile: "FROM openshift/ruby-22-centos7\nUSER example" 3

source:

CHAPTER 11. BUILDS

81

Cluster administrators can also configure a global proxy for Git cloning using Ansible .

11.7.2. Using Private Repositories for Builds

Supply valid credentials to build an application from a private repository.

Currently two types of authentication are supported: basic username-password and SSH key based
authentication.

11.7.2.1. Basic Authentication

Basic authentication requires either a combination of username and password, or a token to
authenticate against the SCM server. A CA certificate file, or a .gitconfig file can be attached.

A secret is used to store your keys.

1. Create the secret first before using the username and password to access the private
repository:

$ oc secrets new-basicauth basicsecret --username=USERNAME --
password=PASSWORD

a. To create a Basic Authentication Secret with a token:

$ oc secrets new-basicauth basicsecret --password=TOKEN

b. To create a Basic Authentication Secret with a CA certificate file:

$ oc secrets new-basicauth basicsecret --username=USERNAME --
password=PASSWORD --ca-cert=FILENAME

c. To create a Basic Authentication Secret with a .gitconfig file:

$ oc secrets new-basicauth basicsecret --username=USERNAME --
password=PASSWORD --gitconfig=FILENAME

2. Add the secret to the builder service account. Each build is run with
serviceaccount/builder role, so you need to give it access your secret with following
command:

$ oc secrets add serviceaccount/builder secrets/basicsecret

3. Add a sourceSecret field to the source section inside the BuildConfig and set it to the
name of the secret that you created. In this case basicsecret:

 type: Git
 git:
 uri: "https://github.com/openshift/ruby-hello-world"
 httpProxy: http://proxy.example.com
 httpsProxy: https://proxy.example.com

apiVersion: "v1"
kind: "BuildConfig"

OpenShift Enterprise 3.2 Developer Guide

82

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/installation_and_configuration/#configuring-hosts-for-proxies-using-ansible

1 The URL of private repository, accessed by basic authentication, is usually in the http or
https form.

11.7.2.2. SSH Key Based Authentication

SSH Key Based Authentication requires a private SSH key. A .gitconfig file can also be attached.

The repository keys are usually located in the $HOME/.ssh/ directory, and are named id_dsa.pub,
id_ecdsa.pub, id_ed25519.pub, or id_rsa.pub by default. Generate SSH key credentials with the
following command:

$ ssh-keygen -t rsa -C "your_email@example.com"

NOTE

Creating a passphrase for the SSH key prevents OpenShift Enterprise from building.
When prompted for a passphrase, leave it blank.

Two files are created: the public key and a corresponding private key (one of id_dsa, id_ecdsa,
id_ed25519, or id_rsa). With both of these in place, consult your source control management (SCM)
system’s manual on how to upload the public key. The private key will be used to access your private
repository.

A secret is used to store your keys.

1. Create the secret first before using the SSH key to access the private repository:

$ oc secrets new-sshauth sshsecret --ssh-
privatekey=$HOME/.ssh/id_rsa

a. To create a SSH Based Authentication Secret with a .gitconfig file:

$ oc secrets new-sshauth sshsecret --ssh-

metadata:
 name: "sample-build"
spec:
 output:
 to:
 kind: "ImageStreamTag"
 name: "sample-image:latest"
 source:
 git:

 uri: "https://github.com/user/app.git" 1
 sourceSecret:
 name: "basicsecret"
 type: "Git"
 strategy:
 sourceStrategy:
 from:
 kind: "ImageStreamTag"
 name: "python-33-centos7:latest"
 type: "Source"

CHAPTER 11. BUILDS

83

1

$ oc secrets new-sshauth sshsecret --ssh-
privatekey=$HOME/.ssh/id_rsa --gitconfig=FILENAME

2. Add the secret to the builder service account. Each build is run with
serviceaccount/builder role, so you need to give it access your secret with following
command:

$ oc secrets add serviceaccount/builder secrets/sshsecret

3. Add a sourceSecret field into the source section inside the BuildConfig and set it to the
name of the secret that you created. In this case sshsecret:

The URL of private repository, accessed by a private SSH key, is usually in the form
git@example.com:<username>/<repository>.git.

11.7.2.3. Other

If the cloning of your application is dependent on a CA certificate, .gitconfig file, or both, then you
can create a secret that contains them, add it to the builder service account, and then your
BuildConfig.

1. Create desired type of secret:

a. To create a secret from a .gitconfig:

$ oc secrets new mysecret .gitconfig=path/to/.gitconfig

b. To create a secret from a CA certificate:

$ oc secrets new mysecret ca.crt=path/to/certificate

apiVersion: "v1"
kind: "BuildConfig"
metadata:
 name: "sample-build"
spec:
 output:
 to:
 kind: "ImageStreamTag"
 name: "sample-image:latest"
 source:
 git:

 uri: "git@repository.com:user/app.git" 1
 sourceSecret:
 name: "sshsecret"
 type: "Git"
 strategy:
 sourceStrategy:
 from:
 kind: "ImageStreamTag"
 name: "python-33-centos7:latest"
 type: "Source"

OpenShift Enterprise 3.2 Developer Guide

84

1

c. To create a secret from a CA certificate and .gitconfig:

$ oc secrets new mysecret ca.crt=path/to/certificate
.gitconfig=path/to/.gitconfig

NOTE

SSL verification can be turned off, if sslVerify=false is set for the http
section in your .gitconfig file:

[http]
 sslVerify=false

2. Add the secret to the builder service account. Each build is run with the
serviceaccount/builder role, so you need to give it access your secret with following
command:

$ oc secrets add serviceaccount/builder secrets/mysecret

3. Add the secret to the BuildConfig:

source:
 git:
 uri: "https://github.com/openshift/nodejs-ex.git"
 sourceSecret:
 name: "mysecret"

Defining Secrets in the BuildConfig provides more information on this topic.

11.8. DOCKERFILE SOURCE

When the BuildConfig.spec.source.type is Dockerfile, an inline Dockerfile is used as the
build input, and no additional sources can be provided.

This source type is valid when the build strategy type is Docker or Custom.

The source definition is part of the spec section in the BuildConfig:

The dockerfile field contains an inline Dockerfile that will be built.

11.9. BINARY SOURCE

Streaming content in binary format from a local file system to the builder is called a binary type
build. The corresponding value of BuildConfig.spec.source.type is Binary for such builds.

This source type is unique in that it is leveraged solely based on your use of the oc start-build.

source:
 type: "Dockerfile"

 dockerfile: "FROM centos:7\nRUN yum install -y httpd" 1

CHAPTER 11. BUILDS

85

NOTE

Binary type builds require content to be streamed from the local file system, so
automatically triggering a binary type build (e.g. via an image change trigger) is not
possible, because the binary files cannot be provided. Similarly, you cannot launch
binary type builds from the web console.

To utilize binary builds, invoke oc start-build with one of these options:

--from-file: The contents of the file you specify are sent as a binary stream to the builder.
The builder then stores the data in a file with the same name at the top of the build context.

--from-dir and --from-repo: The contents are archived and sent as a binary stream to the
builder. The builder then extracts the contents of the archive within the build context
directory.

In each of the above cases:

If your BuildConfig already has a Binary source type defined, it will effectively be ignored
and replaced by what the client sends.

If your BuildConfig has a Git source type defined, it is dynamically disabled, since Binary
and Git are mutually exclusive, and the data in the binary stream provided to the builder
takes precedence.

When using oc new-build --binary=true, the command ensures that the restrictions associated
with binary builds are enforced. The resulting BuildConfig will have a source type of Binary,
meaning that the only valid way to run a build for this BuildConfig is to use oc start-build with
one of the --from options to provide the requisite binary data.

The dockerfile and contextDir source options have special meaning with binary builds.

dockerfile can be used with any binary build source. If dockerfile is used and the binary stream is
an archive, its contents serve as a replacement Dockerfile to any Dockerfile in the archive. If
dockerfile is used with the --from-file argument, and the file argument is named dockerfile,
the value from dockerfile replaces the value from the binary stream.

In the case of the binary stream encapsulating extracted archive content, the value of the
contextDir field is interpreted as a subdirectory within the archive, and, if valid, the builder changes
into that subdirectory before executing the build.

11.10. IMAGE SOURCE

Additional files can be provided to the build process via images. Input images are referenced in the
same way the From and To image targets are defined. This means both container images and image
stream tags can be referenced. In conjunction with the image, you must provide one or more path pairs
to indicate the path of the files/directories to copy out of the image and the destination to place them
in the build context.

The source path can be any absolute path within the image specified. The destination must be a relative
directory path. At build time, the image will be loaded and the indicated files and directories will be
copied into the context directory of the build process. This is the same directory into which the source
repository content (if any) is cloned. If the source path ends in /. then the content of the directory will
be copied, but the directory itself will not be created at the destination.

OpenShift Enterprise 3.2 Developer Guide

86

1

2

3

4

5

6

Image inputs are specified in the source definition of the BuildConfig:

source:
 git:
 uri: https://github.com/openshift/ruby-hello-world.git

 images: 1

 - from: 2
 kind: ImageStreamTag
 name: myinputimage:latest
 namespace: mynamespace

 paths: 3

 - destinationDir: injected/dir 4

 sourcePath: /usr/lib/somefile.jar 5
 - from:
 kind: ImageStreamTag
 name: myotherinputimage:latest
 namespace: myothernamespace

 pullSecret: mysecret 6
 paths:
 - destinationDir: injected/dir
 sourcePath: /usr/lib/somefile.jar

An array of one or more input images and files.

A reference to the image containing the files to be copied.

An array of source/destination paths.

The directory relative to the build root where the build process can access the file.

The location of the file to be copied out of the referenced image.

An optional secret provided if credentials are needed to access the input image.

NOTE

This feature is not supported for builds using the Custom Strategy.

11.11. USING SECRETS DURING A BUILD

In some scenarios, build operations require credentials to access dependent resources, but it is
undesirable for those credentials to be available in the final application image produced by the build.

For example, when building a NodeJS application, you can set up your private mirror for NodeJS
modules. In order to download modules from that private mirror, you have to supply a custom .npmrc
file for the build that contains a URL, user name, and password. For security reasons, you do not want
to expose your credentials in the application image.

This example describes NodeJS, but you can use the same approach for adding SSL certificates into
the /etc/ssl/certs directory, API keys or tokens, license files, etc.

11.11.1. Defining Secrets in the BuildConfig

CHAPTER 11. BUILDS

87

1. Create the Secret:

$ oc secrets new secret-npmrc .npmrc=~/.npmrc

This creates a new secret named secret-npmrc, which contains the base64 encoded content of
the ~/.npmrc file.

2. Add the secret to the source section in the existing build configuration:

To include the secrets in a new build configuration, run the following command:

$ oc new-build openshift/nodejs-010-
centos7~https://github.com/openshift/nodejs-ex.git --build-secret
secret-npmrc

During the build, the .npmrc file is copied into the directory where the source code is located.
In case of the OpenShift Enterprise S2I builder images, this is the image working directory,
which is set using the WORKDIR instruction in the Dockerfile. If you want to specify another
directory, add a destinationDir to the secret definition:

You can also specify the destination directory when creating a new build configuration:

$ oc new-build openshift/nodejs-010-
centos7~https://github.com/openshift/nodejs-ex.git --build-secret
“secret-npmrc:/etc”

In both cases, the .npmrc file is added to the /etc directory of the build environment. Note that
for a Docker strategy the destination directory must be a relative path.

11.11.2. Source-to-Image Strategy

When using a Source strategy, all defined source secrets are copied to their respective
destinationDir. If you left destinationDir empty, then the secrets are placed in the working
directory of the builder image. The same rule is used when a destinationDir is a relative path; the

source:
 git:
 uri: https://github.com/openshift/nodejs-ex.git
 secrets:
 - secret:
 name: secret-npmrc
 type: Git

source:
 git:
 uri: https://github.com/openshift/nodejs-ex.git
 secrets:
 - secret:
 name: secret-npmrc
 destinationDir: /etc
 type: Git

OpenShift Enterprise 3.2 Developer Guide

88

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#docker-build

secrets are placed in the paths that are relative to the image’s working directory. The
destinationDir must exist or an error will occur. No directory paths are created during the copy
process.

NOTE

Currently, any files with these secrets are world-writable (have 0666 permissions) and
will be truncated to size zero after executing the assemble script. This means that the
secret files will exist in the resulting image, but they will be empty for security reasons.

11.11.3. Docker Strategy

When using a Docker strategy, you can add all defined source secrets into your container image using
the ADD and COPY instructions in your Dockerfile. If you do not specify the destinationDir for a
secret, then the files will be copied into the same directory in which the Dockerfile is located. If you
specify a relative path as destinationDir, then the secrets will be copied into that directory, relative
to your Dockerfile location. This makes the secret files available to the Docker build operation as part
of the context directory used during the build.

NOTE

Users should always remove their secrets from the final application image so that the
secrets are not present in the container running from that image. However, the secrets
will still exist in the image itself in the layer where they were added. This removal should
be part of the Dockerfile itself.

11.11.4. Custom Strategy

When using a Custom strategy, then all the defined source secrets are available inside the builder
container in the /var/run/secrets/openshift.io/build directory. The custom build image is responsible
for using these secrets appropriately. The Custom strategy also allows secrets to be defined as
described in Secrets. There is no technical difference between existing strategy secrets and the source
secrets. However, your builder image might distinguish between them and use them differently, based
on your build use case. The source secrets are always mounted into the
/var/run/secrets/openshift.io/build directory or your builder can parse the $BUILD environment
variable, which includes the full build object.

11.12. STARTING A BUILD

Manually start a new build from an existing build configuration in your current project using the
following command:

$ oc start-build <buildconfig_name>

Re-run a build using the --from-build flag:

$ oc start-build --from-build=<build_name>

Specify the --follow flag to stream the build’s logs in stdout:

$ oc start-build <buildconfig_name> --follow

CHAPTER 11. BUILDS

89

https://docs.docker.com/engine/reference/builder/#add
https://docs.docker.com/engine/reference/builder/#copy

Specify the --env flag to set any desired environment variable for the build:

$ oc start-build <buildconfig_name> --env=<key>=<value>

Rather than relying on a Git source pull or a Dockerfile for a build, you can can also start a build by
directly pushing your source, which could be the contents of a Git or SVN working directory, a set of
prebuilt binary artifacts you want to deploy, or a single file. This can be done by specifying one of the
following options for the start-build command:

Option Description

--from-dir=<directory> Specifies a directory that will be archived and used as a binary input for
the build.

--from-file=<file> Specifies a single file that will be the only file in the build source. The file
is placed in the root of an empty directory with the same file name as the
original file provided.

--from-repo=
<local_source_repo>

Specifies a path to a local repository to use as the binary input for a
build. Add the --commit option to control which branch, tag, or
commit is used for the build.

When passing any of these options directly to the build, the contents are streamed to the build and
override the current build source settings.

NOTE

Builds triggered from binary input will not preserve the source on the server, so rebuilds
triggered by base image changes will use the source specified in the build configuration.

For example, the following command sends the contents of a local Git repository as an archive from the
tag v2 and starts a build:

$ oc start-build hello-world --from-repo=../hello-world --commit=v2

11.13. CANCELING A BUILD

Manually cancel a build using the web console, or with the following CLI command:

$ oc cancel-build <build_name>

11.14. DELETING A BUILDCONFIG

Delete a BuildConfig using the following command:

$ oc delete bc <BuildConfigName>

This will also delete all builds that were instantiated from this BuildConfig. Specify the --
cascade=false flag if you do not want to delete the builds:

OpenShift Enterprise 3.2 Developer Guide

90

1

$ oc delete --cascade=false bc <BuildConfigName>

11.15. VIEWING BUILD DETAILS

You can view build details using the web console or the following CLI command:

$ oc describe build <build_name>

The output of the describe command includes details such as the build source, strategy, and output
destination. If the build uses the Docker or Source strategy, it will also include information about the
source revision used for the build: commit ID, author, committer, and message.

11.16. ACCESSING BUILD LOGS

You can access build logs using the web console or the CLI.

To stream the logs using the build directly:

$ oc logs -f build/<build_name>

To stream the logs of the latest build for a build configuration:

$ oc logs -f bc/<buildconfig_name>

To return the logs of a given version build for a build configuration:

$ oc logs --version=<number> bc/<buildconfig_name>

Log Verbosity

To enable more verbose output, pass the BUILD_LOGLEVEL environment variable as part of the
sourceStrategy or dockerStrategy in a BuildConfig:

Adjust this value to the desired log level.

NOTE

A platform administrator can set verbosity for the entire OpenShift Enterprise instance
by passing the --loglevel option to the openshift start command. If both --
loglevel and BUILD_LOGLEVEL are specified, BUILD_LOGLEVEL takes precedence.

Available log levels for Source builds are as follows:

sourceStrategy:
...
 env:
 - name: "BUILD_LOGLEVEL"

 value: "2" 1

CHAPTER 11. BUILDS

91

Level 0 Produces output from containers running the assemble script and all encountered errors.
This is the default.

Level 1 Produces basic information about the executed process.

Level 2 Produces very detailed information about the executed process.

Level 3 Produces very detailed information about the executed process, and a listing of the archive
contents.

Level 4 Currently produces the same information as level 3.

Level 5 Produces everything mentioned on previous levels and additionally provides docker push
messages.

11.17. SETTING MAXIMUM DURATION

When defining a BuildConfig, you can define its maximum duration by setting the
completionDeadlineSeconds field. It is specified in seconds and is not set by default. When not set,
there is no maximum duration enforced.

The maximum duration is counted from the time when a build pod gets scheduled in the system, and
defines how long it can be active, including the time needed to pull the builder image. After reaching
the specified timeout, the build is terminated by OpenShift Enterprise.

The following example shows the part of a BuildConfig specifying completionDeadlineSeconds
field for 30 minutes:

spec:
 completionDeadlineSeconds: 1800

11.18. BUILD TRIGGERS

When defining a BuildConfig, you can define triggers to control the circumstances in which the
BuildConfig should be run. The following build triggers are available:

Webhook

Image change

Configuration change

11.18.1. Webhook Triggers

Webhook triggers allow you to trigger a new build by sending a request to the OpenShift Enterprise
API endpoint. You can define these triggers using GitHub webhooks or Generic webhooks.

GitHub Webhooks

GitHub webhooks handle the call made by GitHub when a repository is updated. When defining the

OpenShift Enterprise 3.2 Developer Guide

92

https://developer.github.com/webhooks/
https://developer.github.com/webhooks/creating/

trigger, you must specify a secret, which will be part of the URL you supply to GitHub when
configuring the webhook. The secret ensures the uniqueness of the URL, preventing others from
triggering the build. The following example is a trigger definition YAML within the BuildConfig:

NOTE

The secret field in webhook trigger configuration is not the same as secret field you
encounter when configuring webhook in GitHub UI. The former is to make the webhook
URL unique and hard to predict, the latter is an optional string field used to create
HMAC hex digest of the body, which is sent as an X-Hub-Signatureheader.

The payload URL is returned as the GitHub Webhook URL by the describe command (see below), and
is structured as follows:

http://<openshift_api_host:port>/oapi/v1/namespaces/<namespace>/buildconfi
gs/<name>/webhooks/<secret>/github

To configure a GitHub Webhook:

1. Describe the build configuration to get the webhook URL:

$ oc describe bc <name>

2. Copy the webhook URL.

3. Follow the GitHub setup instructions to paste the webhook URL into your GitHub repository
settings.

NOTE

Gogs supports the same webhook payload format as GitHub. Therefore, if you are using
a Gogs server, you can define a GitHub webhook trigger on your BuildConfig and
trigger it via your Gogs server also.

Generic Webhooks

Generic webhooks can be invoked from any system capable of making a web request. As with a GitHub
webhook, you must specify a secret which will be part of the URL, the caller must use to trigger the
build. The secret ensures the uniqueness of the URL, preventing others from triggering the build. The
following is an example trigger definition YAML within the BuildConfig:

To set up the caller, supply the calling system with the URL of the generic webhook endpoint for your
build:

type: "GitHub"
github:
 secret: "secret101"

type: "Generic"
generic:
 secret: "secret101"

CHAPTER 11. BUILDS

93

https://developer.github.com/webhooks/#delivery-headers
https://developer.github.com/webhooks/creating/#setting-up-a-webhook
https://gogs.io

http://<openshift_api_host:port>/oapi/v1/namespaces/<namespace>/buildconfi
gs/<name>/webhooks/<secret>/generic

The endpoint can accept an optional payload with the following format:

Displaying a BuildConfig’s Webhook URLs

Use the following command to display the webhook URLs associated with a build configuration:

$ oc describe bc <name>

If the above command does not display any webhook URLs, then no webhook trigger is defined for that
build configuration.

11.18.2. Image Change Triggers

Image change triggers allow your build to be automatically invoked when a new version of an upstream
image is available. For example, if a build is based on top of a RHEL image, then you can trigger that
build to run any time the RHEL image changes. As a result, the application image is always running on
the latest RHEL base image.

Configuring an image change trigger requires the following actions:

1. Define an ImageStream that points to the upstream image you want to trigger on:

This defines the image stream that is tied to a container image repository located at
<system-registry>/<namespace>/ruby-20-centos7. The <system-registry> is
defined as a service with the name docker-registry running in OpenShift Enterprise.

2. If an image stream is the base image for the build, set the from field in the build strategy to
point to the image stream:

type: "git"
git:
 uri: "<url to git repository>"
 ref: "<optional git reference>"
 commit: "<commit hash identifying a specific git commit>"
 author:
 name: "<author name>"
 email: "<author e-mail>"
 committer:
 name: "<committer name>"
 email: "<committer e-mail>"
 message: "<commit message>"

kind: "ImageStream"
apiVersion: "v1"
metadata:
 name: "ruby-20-centos7"

strategy:
 type: "Source"
 sourceStrategy:

OpenShift Enterprise 3.2 Developer Guide

94

1

2

In this case, the sourceStrategy definition is consuming the latest tag of the image
stream named ruby-20-centos7 located within this namespace.

3. Define a build with one or more triggers that point to image streams:

An image change trigger that monitors the ImageStream and Tag as defined by the
build strategy’s from field. The imageChange object here must be empty.

An image change trigger that monitors an arbitrary image stream. The imageChange
part in this case must include a from field that references the ImageStreamTag to
monitor.

When using an image change trigger for the strategy image stream, the generated build is supplied
with an immutable Docker tag that points to the latest image corresponding to that tag. This new
image reference will be used by the strategy when it executes for the build. For other image change
triggers that do not reference the strategy image stream, a new build will be started, but the build
strategy will not be updated with a unique image reference.

In the example above that has an image change trigger for the strategy, the resulting build will be:

This ensures that the triggered build uses the new image that was just pushed to the repository, and
the build can be re-run any time with the same inputs.

In addition to setting the image field for all Strategy types, for custom builds, the
OPENSHIFT_CUSTOM_BUILD_BASE_IMAGE environment variable is checked. If it does not exist, then
it is created with the immutable image reference. If it does exist then it is updated with the immutable
image reference.

If a build is triggered due to a webhook trigger or manual request, the build that is created uses the
immutableid resolved from the ImageStream referenced by the Strategy. This ensures that builds
are performed using consistent image tags for ease of reproduction.

 from:
 kind: "ImageStreamTag"
 name: "ruby-20-centos7:latest"

type: "imageChange" 1
imageChange: {}

type: "imagechange" 2
imageChange:
 from:
 kind: "ImageStreamTag"
 name: "custom-image:latest"

strategy:
 type: "Source"
 sourceStrategy:
 from:
 kind: "DockerImage"
 name: "172.30.17.3:5001/mynamespace/ruby-20-centos7:immutableid"

CHAPTER 11. BUILDS

95

NOTE

Image streams that point to container images in v1 Docker registries only trigger a build
once when the image stream tag becomes available and not on subsequent image
updates. This is due to the lack of uniquely identifiable images in v1 Docker registries.

11.18.3. Configuration Change Triggers

A configuration change trigger allows a build to be automatically invoked as soon as a new
BuildConfig is created. The following is an example trigger definition YAML within the
BuildConfig:

NOTE

Configuration change triggers currently only work when creating a new BuildConfig.
In a future release, configuration change triggers will also be able to launch a build
whenever a BuildConfig is updated.

11.19. BUILD HOOKS

Build hooks allow behavior to be injected into the build process.

Use the postCommit field to execute commands inside a temporary container that is running the build
output image. The hook is executed immediately after the last layer of the image has been committed
and before the image is pushed to a registry.

The current working directory is set to the image’s WORKDIR, which is the default working directory of
the container image. For most images, this is where the source code is located.

The hook fails if the script or command returns a non-zero exit code or if starting the temporary
container fails. When the hook fails it marks the build as failed and the image is not pushed to a
registry. The reason for failing can be inspected by looking at the build logs.

Build hooks can be used to run unit tests to verify the image before the build is marked complete and
the image is made available in a registry. If all tests pass and the test runner returns with exit code 0,
the build is marked successful. In case of any test failure, the build is marked as failed. In all cases, the
build log will contain the output of the test runner, which can be used to identify failed tests.

The postCommit hook is not only limited to running tests, but can be used for other commands as
well. Since it runs in a temporary container, changes made by the hook do not persist, meaning that the
hook execution cannot affect the final image. This behavior allows for, among other uses, the
installation and usage of test dependencies that are automatically discarded and will be not present in
the final image.

There are different ways to configure the post build hook. All forms in the following examples are
equivalent and execute bundle exec rake test --verbose:

Shell script:

 type: "ConfigChange"

postCommit:
 script: "bundle exec rake test --verbose"

OpenShift Enterprise 3.2 Developer Guide

96

http://docs.docker.com/v1.7/reference/api/hub_registry_spec/#docker-registry-1-0

The script value is a shell script to be run with /bin/sh -ic. Use this when a shell script is
appropriate to execute the build hook. For example, for running unit tests as above. To control
the image entry point, or if the image does not have /bin/sh, use command and/or args.

NOTE

The additional -i flag was introduced to improve the experience working with
CentOS and RHEL images, and may be removed in a future release.

Command as the image entry point:

In this form, command is the command to run, which overrides the image entry point in the
exec form, as documented in the Dockerfile reference. This is needed if the image does not
have /bin/sh, or if you do not want to use a shell. In all other cases, using script might be
more convenient.

Pass arguments to the default entry point:

In this form, args is a list of arguments that are provided to the default entry point of the
image. The image entry point must be able to handle arguments.

Shell script with arguments:

Use this form if you need to pass arguments that would otherwise be hard to quote properly in
the shell script. In the script, $0 will be "/bin/sh" and $1, $2, etc, are the positional
arguments from args.

Command with arguments:

This form is equivalent to appending the arguments to command.

NOTE

Providing both script and command simultaneously creates an invalid build hook.

11.19.1. Using the Command Line

The oc set build-hook command can be used to set the build hook for a build configuration.

postCommit:
 command: ["/bin/bash", "-c", "bundle exec rake test --verbose"]

postCommit:
 args: ["bundle", "exec", "rake", "test", "--verbose"]

postCommit:
 script: "bundle exec rake test $1"
 args: ["--verbose"]

postCommit:
 command: ["bundle", "exec", "rake", "test"]
 args: ["--verbose"]

CHAPTER 11. BUILDS

97

https://docs.docker.com/engine/reference/builder/#entrypoint

1

2

3

To set a command as the post-commit build hook:

$ oc set build-hook bc/mybc --post-commit --command -- bundle exec rake
test --verbose

To set a script as the post-commit build hook:

$ oc set build-hook bc/mybc --post-commit --script="bundle exec rake test
--verbose"

11.20. USING DOCKER CREDENTIALS FOR PUSHING AND PULLING
IMAGES

Supply the .dockercfg file with valid Docker Registry credentials in order to push the output image into
a private Docker Registry or pull the builder image from the private Docker Registry that requires
authentication. For the OpenShift Enterprise Docker Registry, you don’t have to do this because
secrets are generated automatically for you by OpenShift Enterprise.

The .dockercfg JSON file is found in your home directory by default and has the following format:

URL of the registry.

Encrypted password.

Email address for the login.

You can define multiple Docker registry entries in this file. Alternatively, you can also add
authentication entries to this file by running the docker login command. The file will be created if it
does not exist. Kubernetes provides secret objects, which are used to store your configuration and
passwords.

1. Create the secret from your local .dockercfg file:

$ oc secrets new dockerhub ~/.dockercfg

This generates a JSON specification of the secret named dockerhub and creates the object.

2. Once the secret is created, add it to the builder service account. Each build is run with
serviceaccount/builder role, so you need to give it access your secret with following
command:

$ oc secrets add serviceaccount/builder secrets/dockerhub

3. Add a pushSecret field into the output section of the BuildConfig and set it to the name
of the secret that you created, which in the above example is dockerhub:

auths:

 https://index.docker.io/v1/: 1

 auth: "YWRfbGzhcGU6R2labnRib21ifTE=" 2

 email: "user@example.com" 3

OpenShift Enterprise 3.2 Developer Guide

98

4. Pull the builder container image from a private Docker registry by specifying the pullSecret
field, which is part of the build strategy definition:

NOTE

This example uses pullSecret in a Source build, but it is also applicable in Docker and
Custom builds.

11.21. BUILD RUN POLICY

The build run policy describes the order in which the builds created from the build configuration should
run. This can be done by changing the value of the runPolicy field in the spec section of the Build
specification.

It is also possible to change the runPolicy value for existing build configurations.

Changing Parallel to Serial or SerialLatestOnly and triggering a new build from this
configuration will cause the new build to wait until all parallel builds complete as the serial
build can only run alone.

Changing Serial to SerialLatestOnly and triggering a new build will cause cancellation of
all existing builds in queue, except the currently running build and the most recently created
build. The newest build will execute next.

11.21.1. Serial Run Policy

Setting the runPolicy field to Serial will cause all new builds created from the Build configuration
to be run sequentially. That means there will be only one build running at a time and every new build
will wait until the previous build completes. Using this policy will result in consistent and predictable
build output. This is the default runPolicy.

Triggering three builds from the sample-build configuration, using the Serial policy will result in:

NAME TYPE FROM STATUS STARTED
DURATION
sample-build-1 Source Git@e79d887 Running 13 seconds ago 13s

spec:
 output:
 to:
 kind: "DockerImage"
 name: "private.registry.com/org/private-image:latest"
 pushSecret:
 name: "dockerhub"

strategy:
 sourceStrategy:
 from:
 kind: "DockerImage"
 name: "docker.io/user/private_repository"
 pullSecret:
 name: "dockerhub"
 type: "Source"

CHAPTER 11. BUILDS

99

sample-build-2 Source Git New
sample-build-3 Source Git New

When the sample-build-1 build completes, the sample-build-2 build will run:

NAME TYPE FROM STATUS STARTED
DURATION
sample-build-1 Source Git@e79d887 Completed 43 seconds ago 34s
sample-build-2 Source Git@1aa381b Running 2 seconds ago 2s
sample-build-3 Source Git New

11.21.2. SerialLatestOnly Run Policy

Setting the runPolicy field to SerialLatestOnly will cause all new builds created from the Build
configuration to be run sequentially, same as using the Serial run policy. The difference is that when
a currently running build completes, the next build that will run is the latest build created. In other
words, you do not wait for the queued builds to run, as they are skipped. Skipped builds are marked as
Cancelled. This policy can be used for fast, iterative development.

Triggering three builds from the sample-build configuration, using the SerialLatestOnly policy will
result in:

NAME TYPE FROM STATUS STARTED
DURATION
sample-build-1 Source Git@e79d887 Running 13 seconds ago 13s
sample-build-2 Source Git Cancelled
sample-build-3 Source Git New

The sample-build-2 build will be canceled (skipped) and the next build run after sample-build-1
completes will be the sample-build-3 build:

NAME TYPE FROM STATUS STARTED
DURATION
sample-build-1 Source Git@e79d887 Completed 43 seconds ago 34s
sample-build-2 Source Git Cancelled
sample-build-3 Source Git@1aa381b Running 2 seconds ago 2s

11.21.3. Parallel Run Policy

Setting the runPolicy field to Parallel causes all new builds created from the Build configuration
to be run in parallel. This can produce unpredictable results, as the first created build can complete
last, which will replace the pushed container image produced by the last build which completed earlier.

Use the parallel run policy in cases where you do not care about the order in which the builds will
complete.

Triggering three builds from the sample-build configuration, using the Parallel policy will result in
three simultaneous builds:

NAME TYPE FROM STATUS STARTED
DURATION
sample-build-1 Source Git@e79d887 Running 13 seconds ago 13s

OpenShift Enterprise 3.2 Developer Guide

100

sample-build-2 Source Git@a76d881 Running 15 seconds ago 3s
sample-build-3 Source Git@689d111 Running 17 seconds ago 3s

The completion order is not guaranteed:

NAME TYPE FROM STATUS STARTED
DURATION
sample-build-1 Source Git@e79d887 Running 13 seconds ago 13s
sample-build-2 Source Git@a76d881 Running 15 seconds ago 3s
sample-build-3 Source Git@689d111 Completed 17 seconds ago 5s

11.22. BUILD OUTPUT

Docker and Source builds result in the creation of a new container image. The image is then pushed to
the registry specified in the output section of the Build specification.

If the output kind is ImageStreamTag, then the image will be pushed to the integrated OpenShift
Enterprise registry and tagged in the specified image stream. If the output is of type DockerImage,
then the name of the output reference will be used as a Docker push specification. The specification
may contain a registry or will default to DockerHub if no registry is specified. If the output section of
the build specification is empty, then the image will not be pushed at the end of the build.

Example 11.2. Output to an ImageStreamTag

Example 11.3. Output to a Docker Push Specification

11.22.1. Output Image Environment Variables

Docker and Source builds set the following environment variables on output images:

Variable Description

OPENSHIFT_BUILD_NAME Name of the build

OPENSHIFT_BUILD_NAMESPACE Namespace of the build

OPENSHIFT_BUILD_SOURCE The source URL of the build

output:
 to:
 kind: "ImageStreamTag"
 name: "sample-image:latest"

output:
 to:
 kind: "DockerImage"
 name: "my-registry.mycompany.com:5000/myimages/myimage:tag"

CHAPTER 11. BUILDS

101

OPENSHIFT_BUILD_REFERENCE The Git reference used in the build

OPENSHIFT_BUILD_COMMIT Source commit used in the build

Variable Description

11.22.2. Output Image Labels

Docker and Source builds set the following labels on output images:

Label Description

io.openshift.build.commit.author Author of the source commit used in the build

io.openshift.build.commit.date Date of the source commit used in the build

io.openshift.build.commit.id Hash of the source commit used in the build

io.openshift.build.commit.message Message of the source commit used in the build

io.openshift.build.commit.ref Branch or reference specified in the source

io.openshift.build.source-location Source URL for the build

11.23. USING EXTERNAL ARTIFACTS DURING A BUILD

It is not recommended to store binary files in a source repository. Therefore, you may find it necessary
to define a build which pulls additional files (such as Java .jar dependencies) during the build process.
How this is done depends on the build strategy you are using.

For a Source build strategy, you must put appropriate shell commands into the assemble script:

Example 11.4. .s2i/bin/assemble File

Example 11.5. .s2i/bin/run File

#!/bin/sh
APP_VERSION=1.0
wget http://repository.example.com/app/app-$APP_VERSION.jar -O app.jar

#!/bin/sh
exec java -jar app.jar

OpenShift Enterprise 3.2 Developer Guide

102

1

NOTE

For more information on how to control which assemble and run script is used by a
Source build, see Overriding Builder Image Scripts .

For a Docker build strategy, you must modify the Dockerfile and invoke shell commands with the RUN
instruction:

Example 11.6. Excerpt of Dockerfile

FROM jboss/base-jdk:8

ENV APP_VERSION 1.0
RUN wget http://repository.example.com/app/app-$APP_VERSION.jar -O
app.jar

EXPOSE 8080
CMD ["java", "-jar", "app.jar"]

In practice, you may want to use an environment variable for the file location so that the specific file to
be downloaded can be customized using an environment variable defined on the BuildConfig, rather
than updating the assemble script or Dockerfile.

You can choose between different methods of defining environment variables:

Using the .s2i/environment file (only for a Source build strategy)

Setting in BuildConfig

Providing explicitly using oc start-build --env (only for builds that are triggered
manually)

11.24. BUILD RESOURCES

By default, builds are completed by pods using unbound resources, such as memory and CPU. These
resources can be limited by specifying resource limits in a project’s default container limits.

You can also limit resource use by specifying resource limits as part of the build configuration. In the
following example, each of the resources, cpu, and memory parameters are optional:

cpu is in CPU units: 100m represents 0.1 CPU units (100 * 1e-3).

apiVersion: "v1"
kind: "BuildConfig"
metadata:
 name: "sample-build"
spec:
 resources:
 limits:

 cpu: "100m" 1

 memory: "256Mi" 2

CHAPTER 11. BUILDS

103

https://docs.docker.com/engine/reference/builder/#run
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/cli_reference/#build-and-deployment-cli-operations

2

1

memory is in bytes: 256Mi represents 268435456 bytes (256 * 2 ^ 20).

However, if a quota has been defined for your project, one of the following two items is required:

A resources section set with an explicit requests:

The requests object contains the list of resources that correspond to the list of
resources in the quota.

A limit range defined in your project, where the defaults from the LimitRange object apply to
pods created during the build process.

Otherwise, build pod creation will fail, citing a failure to satisfy quota.

11.25. TROUBLESHOOTING

Table 11.1. Troubleshooting Guidance for Builds

Issue Resolution

A build fails with:

requested
access to
the
resource
is denied

You have exceeded one of the image quotas set on your project. Check your current
quota and verify the limits applied and storage in use:

$ oc describe quota

resources:

 requests: 1
 cpu: "100m"
 memory: "256Mi"

OpenShift Enterprise 3.2 Developer Guide

104

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/cluster_administration/#admin-guide-limits

CHAPTER 12. MANAGING IMAGES

12.1. OVERVIEW

An image stream comprises any number of container images identified by tags. It presents a single
virtual view of related images, similar to a Docker image repository.

By watching an image stream, builds and deployments can receive notifications when new images are
added or modified and react by performing a build or deployment, respectively.

There are many ways you can interact with images and set up image streams, depending on where the
images' registries are located, any authentication requirements around those registries, and how you
want your builds and deployments to behave. The following sections cover a range of these topics.

12.2. TAGGING IMAGES

Before working with OpenShift Enterprise image streams and their tags, it will help to first understand
image tags in the context of Docker generally.

Container images can have names added to them that make it more intuitive to determine what they
contain, called a tag. Using a tag to specify the version of what is contained in the image is a common
use case. If you have an image named ruby, you could have a tag named 2.0 for 2.0 version of Ruby,
and another named latest to indicate literally the latest built image in that repository overall.

When interacting directly with images using the docker CLI, the docker tag command can add tags,
which essentially adds an alias to an image that can consist of several parts. Those parts can include:

<registry_server>/<user_name>/<image_name>:<tag>

The <user_name> part in the above could also refer to a project or namespace if the image is being
stored in an OpenShift Enterprise environment with an internal registry.

OpenShift Enterprise provides the oc tag command, which is similar to the docker tag command,
but operates on image streams instead of directly on images.

NOTE

See Red Hat Enterprise Linux 7’s Getting Started with Containers documentation for
more about tagging images directly using the docker CLI.

12.2.1. Adding Tags to Image Streams

Keeping in mind that an image stream in OpenShift Enterprise comprises zero or more container
images identified by tags, you can add tags to an image stream using the oc tag command:

$ oc tag <source> <destination>

For example, to configure the ruby image’s latest tag to always refer to the current image for the tag
2.0:

$ oc tag ruby:latest ruby:2.0

CHAPTER 12. MANAGING IMAGES

105

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#image-streams
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#docker-images
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#projects
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#namespaces
https://access.redhat.com/documentation/en/red-hat-enterprise-linux-atomic-host/version-7/getting-started-with-containers/#creating_docker_images

There are different types of tags available. The default behavior uses a permanent tag, which points to a
specific image in time; even when the source changes, it will not reflect in the destination tag.

A tracking tag means the destination tag’s metadata will be imported during the import. To ensure the
destination tag is updated whenever the source tag changes, use the --alias=true flag:

$ oc tag --alias=true <source> <destination>

You can also add the --scheduled=true flag to have the destination tag be refreshed (i.e., re-
imported) periodically. The period is configured globally at the system level. See Importing Tag and
Image Metadata for more details.

IMPORTANT

Avoid tagging OpenShift Enterprise-managed images (i.e., those built using an
OpenShift Enterprise instance and pushed to its internal registry). There is a known
issue that prevents the registry client from pulling from such a tag.

12.2.2. Removing Tags from Image Streams

You can stop tracking a tag by removing the tag. For example, to stop tracking an existing latest tag:

$ oc tag -d ruby:latest

However, while the above command removes the tag from the image stream definition, it does not
remove it from the image stream status. The image stream definition is user-defined, whereas the
image stream status reflects the information the system has from the specification.

To remove a tag completely from an image stream:

$ oc delete istag/ruby:latest

12.2.3. Referencing Images in Image Streams

Images can be referenced in image streams using the following reference types:

An ImageStreamTag is used to reference or retrieve an image for a given image stream and
tag. It uses the following convention for its name:

<image_stream_name>:<tag>

An ImageStreamImage is used to reference or retrieve an image for a given image stream
and image name. It uses the following convention for its name:

<image_stream_name>@<id>

The <id> is an immutable identifier for a specific image, also called a digest.

A DockerImage is used to reference or retrieve an image for a given external registry. It uses
standard Docker pull specification for its name, e.g.:

openshift/ruby-20-centos7:2.0

OpenShift Enterprise 3.2 Developer Guide

106

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/installation_and_configuration/#master-config-image-config
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/installation_and_configuration/#registry-known-issues

NOTE

When no tag is specified, it is assumed the latest tag will be used.

You can also reference a third-party registry:

registry.access.redhat.com/rhel7:latest

Or an image with a digest:

centos/ruby-22-
centos7@sha256:3a335d7d8a452970c5b4054ad7118ff134b3a6b50a2bb6d0c07c7
46e8986b28e

When viewing example image stream definitions, such as the example CentOS image streams, you may
notice they contain definitions of ImageStreamTag and references to DockerImage, but nothing
related to ImageStreamImage.

This is because the ImageStreamImage objects are automatically created in OpenShift Enterprise
whenever you import or tag an image into the image stream. You should never have to explicitly define
an ImageStreamImage object in any image stream definition that you use to create image streams.

You can view an image’s object definition by retrieving an ImageStreamImage definition using the
image stream name and ID:

$ oc export isimage <image_stream_name>@<id>

NOTE

You can find valid <id> values for a given image stream by running:

$ oc describe is <image_stream_name>

For example, from the ruby image stream asking for the ImageStreamImage with the name and ID of
ruby@3a335d7:

Example 12.1. Definition of an Image Object Retrieved via ImageStreamImage

$ oc export isimage ruby@3a335d7

apiVersion: v1
image:
 dockerImageLayers:
 - name:
sha256:a3ed95caeb02ffe68cdd9fd84406680ae93d633cb16422d00e8a7c22955b46d4
 size: 0
 - name:
sha256:ee1dd2cb6df21971f4af6de0f1d7782b81fb63156801cfde2bb47b4247c23c29
 size: 196634330
 - name:
sha256:a3ed95caeb02ffe68cdd9fd84406680ae93d633cb16422d00e8a7c22955b46d4
 size: 0

CHAPTER 12. MANAGING IMAGES

107

https://github.com/openshift/origin/blob/master/examples/image-streams/image-streams-centos7.json

 - name:
sha256:a3ed95caeb02ffe68cdd9fd84406680ae93d633cb16422d00e8a7c22955b46d4
 size: 0
 - name:
sha256:ca062656bff07f18bff46be00f40cfbb069687ec124ac0aa038fd676cfaea092
 size: 177723024
 - name:
sha256:63d529c59c92843c395befd065de516ee9ed4995549f8218eac6ff088bfa6b6e
 size: 55679776
 dockerImageMetadata:
 Architecture: amd64
 Author: SoftwareCollections.org <sclorg@redhat.com>
 Config:
 Cmd:
 - /bin/sh
 - -c
 - $STI_SCRIPTS_PATH/usage
 Entrypoint:
 - container-entrypoint
 Env:
 - PATH=/opt/app-root/src/bin:/opt/app-
root/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
 - STI_SCRIPTS_URL=image:///usr/libexec/s2i
 - STI_SCRIPTS_PATH=/usr/libexec/s2i
 - HOME=/opt/app-root/src
 - BASH_ENV=/opt/app-root/etc/scl_enable
 - ENV=/opt/app-root/etc/scl_enable
 - PROMPT_COMMAND=. /opt/app-root/etc/scl_enable
 - RUBY_VERSION=2.2
 ExposedPorts:
 8080/tcp: {}
 Image:
d9c3abc5456a9461954ff0de8ae25e0e016aad35700594714d42b687564b1f51
 Labels:
 build-date: 2015-12-23
 io.k8s.description: Platform for building and running Ruby 2.2
applications
 io.k8s.display-name: Ruby 2.2
 io.openshift.builder-base-version: 8d95148
 io.openshift.builder-version:
8847438ba06307f86ac877465eadc835201241df
 io.openshift.expose-services: 8080:http
 io.openshift.s2i.scripts-url: image:///usr/libexec/s2i
 io.openshift.tags: builder,ruby,ruby22
 io.s2i.scripts-url: image:///usr/libexec/s2i
 license: GPLv2
 name: CentOS Base Image
 vendor: CentOS
 User: "1001"
 WorkingDir: /opt/app-root/src
 ContainerConfig: {}
 Created: 2016-01-26T21:07:27Z
 DockerVersion: 1.8.2-el7
 Id: 57b08d979c86f4500dc8cad639c9518744c8dd39447c055a3517dc9c18d6fccd
 Parent:
d9c3abc5456a9461954ff0de8ae25e0e016aad35700594714d42b687564b1f51

OpenShift Enterprise 3.2 Developer Guide

108

 Size: 430037130
 apiVersion: "1.0"
 kind: DockerImage
 dockerImageMetadataVersion: "1.0"
 dockerImageReference: centos/ruby-22-
centos7@sha256:3a335d7d8a452970c5b4054ad7118ff134b3a6b50a2bb6d0c07c746e8
986b28e
 metadata:
 creationTimestamp: 2016-01-29T13:17:45Z
 name:
sha256:3a335d7d8a452970c5b4054ad7118ff134b3a6b50a2bb6d0c07c746e8986b28e
 resourceVersion: "352"
 uid: af2e7a0c-c68a-11e5-8a99-525400f25e34
kind: ImageStreamImage
metadata:
 creationTimestamp: null
 name: ruby@3a335d7
 namespace: openshift
 selflink: /oapi/v1/namespaces/openshift/imagestreamimages/ruby@3a335d7

12.3. IMAGE PULL POLICY

Each container in a pod has a container image. Once you have created an image and pushed it to a
registry, you can then refer to it in the pod.

When OpenShift Enterprise creates containers, it uses the container’s imagePullPolicy to
determine if the image should be pulled prior to starting the container. There are three possible values
for imagePullPolicy:

Always - always pull the image.

IfNotPresent - only pull the image if it does not already exist on the node.

Never - never pull the image.

If a container’s imagePullPolicy parameter is not specified, OpenShift Enterprise sets it based on
the image’s tag:

1. If the tag is latest, OpenShift Enterprise defaults imagePullPolicy to Always.

2. Otherwise, OpenShift Enterprise defaults imagePullPolicy to IfNotPresent.

12.4. ACCESSING THE INTERNAL REGISTRY

You can access OpenShift Enterprise’s internal registry directly to push or pull images. For example,
this could be helpful if you wanted to create an image stream by manually pushing an image , or just to
docker pull an image directly.

The internal registry authenticates using the same tokens as the OpenShift Enterprise API. To perform
a docker login against the internal registry, you can choose any user name and email, but the
password must be a valid OpenShift Enterprise token.

To log into the internal registry:

CHAPTER 12. MANAGING IMAGES

109

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#api-authentication

1. Log in to OpenShift Enterprise:

$ oc login

2. Get your access token:

$ oc whoami -t

3. Log in to the internal registry using the token. You must have docker installed on your system:

$ docker login -u <user_name> -e <email_address> \
 -p <token_value> <registry_server>:<port>

NOTE

Contact your cluster administrator if you do not know the registry IP or host
name and port to use.

In order to pull an image, the authenticated user must have get rights on the requested
imagestreams/layers. In order to push an image, the authenticated user must have update rights
on the requested imagestreams/layers.

By default, all service accounts in a project have rights to pull any image in the same project, and the
builder service account has rights to push any image in the same project.

12.5. USING IMAGE PULL SECRETS

Docker registries can be secured to prevent unauthorized parties from accessing certain images. If you
are using OpenShift Enterprise’s internal registry and are pulling from image streams located in the
same project, then your pod’s service account should already have the correct permissions and no
additional action should be required.

However, for other scenarios, such as referencing images across OpenShift Enterprise projects or
from secured registries, then additional configuration steps are required. The following sections detail
these scenarios and their required steps.

12.5.1. Allowing Pods to Reference Images Across Projects

When using the internal registry, to allow pods in project-a to reference images in project-b, a service
account in project-a must be bound to the system:image-puller role in project-b:

$ oc policy add-role-to-user \
 system:image-puller system:serviceaccount:project-a:default \
 --namespace=project-b

After adding that role, the pods in project-a that reference the default service account will be able to
pull images from project-b.

To allow access for any service account in project-a, use the group:

OpenShift Enterprise 3.2 Developer Guide

110

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#architecture-infrastructure-components-image-registry

$ oc policy add-role-to-group \
 system:image-puller system:serviceaccounts:project-a \
 --namespace=project-b

12.5.2. Allowing Pods to Reference Images from Other Secured Registries

The .dockercfg file (or $HOME/.docker/config.json for newer Docker clients) is a Docker credentials
file that stores your information if you have previously logged into a secured or insecure registry.

To pull a secured container image that is not from OpenShift Enterprise’s internal registry, you must
create a pull secret from your Docker credentials and add it to your service account.

If you already have a .dockercfg file for the secured registry, you can create a secret from that file by
running:

$ oc secrets new <pull_secret_name> .dockercfg=<path/to/.dockercfg>

Or if you have a $HOME/.docker/config.json file:

$ oc secrets new <pull_secret_name> .dockerconfigjson=
<path/to/.docker/config.json>

If you do not already have a Docker credentials file for the secured registry, you can create a secret by
running:

$ oc secrets new-dockercfg <pull_secret_name> \
 --docker-server=<registry_server> --docker-username=<user_name> \
 --docker-password=<password> --docker-email=<email>

To use a secret for pulling images for pods, you must add the secret to your service account. The name
of the service account in this example should match the name of the service account the pod will use;
default is the default service account:

$ oc secrets add serviceaccount/default secrets/<pull_secret_name> --
for=pull

To use a secret for pushing and pulling build images, the secret must be mountable inside of a pod. You
can do this by running:

$ oc secrets add serviceaccount/builder secrets/<pull_secret_name>

12.6. IMPORTING TAG AND IMAGE METADATA

An image stream can be configured to import tag and image metadata from an image repository in an
external Docker image registry. You can do this using a few different methods.

You can manually import tag and image information with the oc import-image command
using the --from option:

$ oc import-image <image_stream_name>[:<tag>] --from=
<docker_image_repo> --confirm

CHAPTER 12. MANAGING IMAGES

111

For example:

$ oc import-image my-ruby --from=docker.io/openshift/ruby-20-centos7
--confirm
The import completed successfully.

Name: my-ruby
Created: Less than a second ago
Labels: <none>
Annotations: openshift.io/image.dockerRepositoryCheck=2016-05-
06T20:59:30Z
Docker Pull Spec: 172.30.94.234:5000/demo-project/my-ruby

Tag Spec Created PullSpec Image
latest docker.io/openshift/ruby-20-centos7 Less than a second ago
docker.io/openshift/ruby-20-centos7@sha256:772c5bf9b2d1e8... <same>

You can also add the --all flag to import all tags for the image instead of just latest.

Like most objects in OpenShift Enterprise, you can also write and save a JSON or YAML
definition to a file then create the object using the CLI. Set the
spec.dockerImageRepository field to the Docker pull spec for the image:

apiVersion: "v1"
kind: "ImageStream"
metadata:
 name: "my-ruby"
spec:
 dockerImageRepository: "docker.io/openshift/ruby-20-centos7"

Then create the object:

$ oc create -f <file>

When you create an image stream that references an image in an external Docker registry, OpenShift
Enterprise communicates with the external registry within a short amount of time to get up to date
information about the image.

After the tag and image metadata is synchronized, the image stream object would look similar to the
following:

apiVersion: v1
kind: ImageStream
metadata:
 name: my-ruby
 namespace: demo-project
 selflink: /oapi/v1/namespaces/demo-project/imagestreams/my-ruby
 uid: 5b9bd745-13d2-11e6-9a86-0ada84b8265d
 resourceVersion: '4699413'
 generation: 2
 creationTimestamp: '2016-05-06T21:34:48Z'
 annotations:
 openshift.io/image.dockerRepositoryCheck: '2016-05-06T21:34:48Z'
spec:

OpenShift Enterprise 3.2 Developer Guide

112

 dockerImageRepository: docker.io/openshift/ruby-20-centos7
 tags:
 -
 name: latest
 annotations: null
 from:
 kind: DockerImage
 name: 'docker.io/openshift/ruby-20-centos7:latest'
 generation: 2
 importPolicy: { }
status:
 dockerImageRepository: '172.30.94.234:5000/demo-project/my-ruby'
 tags:
 -
 tag: latest
 items:
 -
 created: '2016-05-06T21:34:48Z'
 dockerImageReference: 'docker.io/openshift/ruby-20-
centos7@sha256:772c5bf9b2d1e8e80742ed75aab05820419dc4532fa6d7ad8a1efddda54
93dc3'
 image:
'sha256:772c5bf9b2d1e8e80742ed75aab05820419dc4532fa6d7ad8a1efddda5493dc3'
 generation: 2

You can set a tag to query external registries at a scheduled interval to synchronize tag and image
metadata by setting the --scheduled=true flag with the oc tag command as mentioned in Adding
Tags to Image Streams.

Alternatively, you can set importPolicy.scheduled to true in the tag’s definition:

apiVersion: v1
kind: ImageStream
metadata:
 name: ruby
spec:
 tags:
 - from:
 kind: DockerImage
 name: openshift/ruby-20-centos7
 name: latest
 importPolicy:
 scheduled: true

12.6.1. Importing Images from Insecure Registries

An image stream can be configured to import tag and image metadata from insecure image registries,
such as those signed with a self-signed certificate or using plain HTTP instead of HTTPS.

To configure this, add the openshift.io/image.insecureRepository annotation and set it to
true. This setting bypasses certificate validation when connecting to the registry:

kind: ImageStream
apiVersion: v1
metadata:

CHAPTER 12. MANAGING IMAGES

113

1

1

Set the openshift.io/image.insecureRepository annotation to true

IMPORTANT

The above definition only affects importing tag and image metadata. For this image to
be used in the cluster (e.g., to be able to do a docker pull), each node must have
Docker configured with the --insecure-registry flag. See Host Preparation for
information.

Additionally, you can specify a single tag using an insecure repository. To do so, set
importPolicy.insecure in the tag’s definition to true:

Set tag mytag to use insecure connection to that registry.

12.6.2. Importing Images from Private Registries

An image stream can be configured to import tag and image metadata from private image registries,
requiring authentication.

To configure this, you need to create a secret which is used to store your credentials.

Create the secret first, before importing the image from the private repository:

$ oc secrets new-dockercfg <secret_name> \
 --docker-server=<docker_registry_server> \
 --docker-username=<docker_user> \
 --docker-password=<docker_password> \
 --docker-email=<docker_email>

For more options, see:

$ oc secrets new-dockercfg --help

 name: ruby
 annotations:

 openshift.io/image.insecureRepository: "true" 1
 spec:
 dockerImageRepository: my.repo.com:5000/myimage

kind: ImageStream
apiVersion: v1
metadata:
 name: ruby
 tags:
 - from:
 kind: DockerImage
 name: my.repo.com:5000/myimage
 name: mytag
 importPolicy:

 insecure: true 1

OpenShift Enterprise 3.2 Developer Guide

114

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/installation_and_configuration/#host-preparation

After the secret is configured, proceed with creating the new image stream or using the oc import-
image command. During the import process, OpenShift Enterprise will pick up the secrets and provide
them to the remote party.

NOTE

When importing from an insecure registry, the registry URL defined in the secret must
include the :80 port suffix or the secret will not be used when attempting to import
from the registry.

12.6.3. Importing Images Across Projects

An image stream can be configured to import tag and image metadata from the internal registry, but
from a different project. The recommended method for this is to use the oc tag command as shown in
Adding Tags to Image Streams :

$ oc tag <source_project>/<image_stream>:<tag> <new_image_stream>:
<new_tag>

Another method is to import the image from the other project manually using the pull spec:

WARNING

The following method is strongly discouraged and should be used only if the
former using oc tag is insufficient.

1. First, add the necessary policy to access the other project:

$ oc policy add-role-to-group \
 system:image-puller \
 system:serviceaccounts:<destination_project> \
 -n <source_project>

This allows <destination_project> to pull images from <source_project>.

2. With the policy in place, you can import the image manually:

$ oc import-image <new_image_stream> --confirm \
 --from=<docker_registry>/<source_project>/<image_stream>

12.6.4. Creating an Image Stream by Manually Pushing an Image

An image stream can also be automatically created by manually pushing an image to the internal
registry. This is only possible when using an OpenShift Enterprise internal registry.

Before performing this procedure, the following must be satisfied:

The destination project you push to must already exist.



CHAPTER 12. MANAGING IMAGES

115

The user must be authorized to {get, update} "imagestream/layers" in that project.
The system:image-pusher role can be added to a user to provide these permissions. If you are
a project administrator, then you would also have these permissions.

To create an image stream by manually pushing an image:

1. First, log in to the internal registry .

2. Then, tag your image using the appropriate internal registry location. For example, if you had
already pulled the docker.io/centos:centos7 image locally:

$ docker tag docker.io/centos:centos7 172.30.48.125:5000/test/my-
image

3. Finally, push the image to your internal registry. For example:

$ docker push 172.30.48.125:5000/test/my-image
The push refers to a repository [172.30.48.125:5000/test/my-image]
(len: 1)
c8a648134623: Pushed
2bf4902415e3: Pushed
latest: digest:
sha256:be8bc4068b2f60cf274fc216e4caba6aa845fff5fa29139e6e7497bb57e48
d67 size: 6273

4. Verify that the image stream was created:

$ oc get is
NAME DOCKER REPO TAGS UPDATED
my-image 172.30.48.125:5000/test/my-image latest 3 seconds
ago

OpenShift Enterprise 3.2 Developer Guide

116

CHAPTER 13. QUOTAS AND LIMIT RANGES

13.1. OVERVIEW

Using quotas and limit ranges, cluster administrators can set constraints to limit the number of objects
or amount of compute resources that are used in your project. This helps cluster administrators better
manage and allocate resources across all projects, and ensure that no projects are using more than is
appropriate for the cluster size.

As a developer, you can also set requests and limits on compute resources at the pod and container
level.

The following sections help you understand how to check on your quota and limit range settings, what
sorts of things they can constrain, and how you can request or limit compute resources in your own
pods and containers.

13.2. QUOTAS

A resource quota, defined by a ResourceQuota object, provides constraints that limit aggregate
resource consumption per project. It can limit the quantity of objects that can be created in a project
by type, as well as the total amount of compute resources that may be consumed by resources in that
project.

NOTE

Quotas are set by cluster administrators and are scoped to a given project.

13.2.1. Viewing Quotas

You can view usage statistics related to any hard limits defined in a project’s quota by navigating in the
web console to the project’s Settings tab.

You can also use the CLI to view quota details:

1. First, get the list of quotas defined in the project. For example, for a project called
demoproject:

$ oc get quota -n demoproject
NAME AGE
besteffort 11m
compute-resources 2m
object-counts 29m

2. Then, describe the quota you are interested in, for example the object-counts quota:

$ oc describe quota object-counts -n demoproject
Name: object-counts
Namespace: demoproject
Resource Used Hard
-------- ---- ----
configmaps 3 10
persistentvolumeclaims 0 4
replicationcontrollers 3 20
secrets 9 10

CHAPTER 13. QUOTAS AND LIMIT RANGES

117

1

2

3

4

5

1

2

3

4

services 2 10

Full quota definitions can be viewed by running oc export on the object. The following show some
sample quota definitions:

Example 13.1. object-counts.yaml

apiVersion: v1
kind: ResourceQuota
metadata:
 name: object-counts
spec:
 hard:

 configmaps: "10" 1

 persistentvolumeclaims: "4" 2

 replicationcontrollers: "20" 3

 secrets: "10" 4

 services: "10" 5

The total number of ConfigMap objects that can exist in the project.

The total number of persistent volume claims (PVCs) that can exist in the project.

The total number of replication controllers that can exist in the project.

The total number of secrets that can exist in the project.

The total number of services that can exist in the project.

Example 13.2. compute-resources.yaml

apiVersion: v1
kind: ResourceQuota
metadata:
 name: compute-resources
spec:
 hard:

 pods: "4" 1

 requests.cpu: "1" 2

 requests.memory: 1Gi 3

 limits.cpu: "2" 4

 limits.memory: 2Gi 5

The total number of pods in a non-terminal state that can exist in the project.

Across all pods in a non-terminal state, the sum of CPU requests cannot exceed 1 core.

Across all pods in a non-terminal state, the sum of memory requests cannot exceed 1Gi.

Across all pods in a non-terminal state, the sum of CPU limits cannot exceed 2 cores.

OpenShift Enterprise 3.2 Developer Guide

118

5

1

2

1

2

3

4

Across all pods in a non-terminal state, the sum of memory limits cannot exceed 2Gi.

Example 13.3. besteffort.yaml

apiVersion: v1
kind: ResourceQuota
metadata:
 name: besteffort
spec:
 hard:

 pods: "1" 1
 scopes:

 - BestEffort 2

The total number of pods in a non-terminal state with BestEffort quality of service that can
exist in the project.

Restricts the quota to only matching pods that have BestEffort quality of service for either
memory or CPU.

Example 13.4. compute-resources-long-running.yaml

apiVersion: v1
kind: ResourceQuota
metadata:
 name: compute-resources-long-running
spec:
 hard:

 pods: "4" 1

 limits.cpu: "4" 2

 limits.memory: "2Gi" 3
 scopes:

 - NotTerminating 4

The total number of pods in a non-terminal state.

Across all pods in a non-terminal state, the sum of CPU limits cannot exceed this value.

Across all pods in a non-terminal state, the sum of memory limits cannot exceed this value.

Restricts the quota to only matching pods where spec.activeDeadlineSeconds is nil.
For example, this quota would not charge for build or deployer pods.

Example 13.5. compute-resources-time-bound.yaml

apiVersion: v1
kind: ResourceQuota

CHAPTER 13. QUOTAS AND LIMIT RANGES

119

1

2

3

4

metadata:
 name: compute-resources-time-bound
spec:
 hard:

 pods: "2" 1

 limits.cpu: "1" 2

 limits.memory: "1Gi" 3
 scopes:

 - Terminating 4

The total number of pods in a non-terminal state.

Across all pods in a non-terminal state, the sum of CPU limits cannot exceed this value.

Across all pods in a non-terminal state, the sum of memory limits cannot exceed this value.

Restricts the quota to only matching pods where spec.activeDeadlineSeconds >=0. For
example, this quota would charge for build or deployer pods, but not long running pods like a
web server or database.

13.2.2. Resources Managed by Quota

The following describes the set of compute resources and object types that may be managed by a
quota.

NOTE

A pod is in a terminal state if status.phase in (Failed, Succeeded) is true.

Table 13.1. Compute Resources Managed by Quota

Resource Name Description

cpu The sum of CPU requests across all pods in a non-terminal state cannot
exceed this value. cpu and requests.cpu are the same value and can be
used interchangeably.

memory The sum of memory requests across all pods in a non-terminal state cannot
exceed this value. memory and requests.memory are the same value and
can be used interchangeably.

requests.cpu The sum of CPU requests across all pods in a non-terminal state cannot
exceed this value. cpu and requests.cpu are the same value and can be
used interchangeably.

requests.memory The sum of memory requests across all pods in a non-terminal state cannot
exceed this value. memory and requests.memory are the same value and
can be used interchangeably.

OpenShift Enterprise 3.2 Developer Guide

120

requests.storage The sum of storage requests across all persistent volume claims cannot
exceed this value. storage and requests.storage are the same value
and can be used interchangeably.

limits.cpu The sum of CPU limits across all pods in a non-terminal state cannot exceed
this value.

limits.memory The sum of memory limits across all pods in a non-terminal state cannot
exceed this value.

limits.storage The sum of storage limits across all persistent volume claims cannot exceed
this value.

Resource Name Description

Table 13.2. Object Counts Managed by Quota

Resource Name Description

pods The total number of pods in a non-terminal state that can exist in the project.

replicationcontrol
lers

The total number of replication controllers that can exist in the project.

resourcequotas The total number of resource quotas that can exist in the project.

services The total number of services that can exist in the project.

secrets The total number of secrets that can exist in the project.

configmaps The total number of ConfigMap objects that can exist in the project.

persistentvolumecl
aims

The total number of persistent volume claims that can exist in the project.

13.2.3. Quota Scopes

Each quota can have an associated set of scopes. A quota will only measure usage for a resource if it
matches the intersection of enumerated scopes.

Adding a scope to a quota restricts the set of resources to which that quota can apply. Specifying a
resource outside of the allowed set results in a validation error.

Scope Description

Terminating Match pods where spec.activeDeadlineSeconds >= 0.

CHAPTER 13. QUOTAS AND LIMIT RANGES

121

NotTerminating Match pods where spec.activeDeadlineSeconds is nil.

BestEffort Match pods that have best effort quality of service for either cpu or memory.

NotBestEffort Match pods that do not have best effort quality of service for cpu and
memory.

Scope Description

A BestEffort scope restricts a quota to limiting the following resources:

pods

A Terminating, NotTerminating, or NotBestEffort scope restricts a quota to tracking the following
resources:

pods

memory

requests.memory

limits.memory

cpu

requests.cpu

limits.cpu

13.2.4. Quota Enforcement

After a resource quota for a project is first created, the project restricts the ability to create any new
resources that may violate a quota constraint until it has calculated updated usage statistics.

After a quota is created and usage statistics are updated, the project accepts the creation of new
content. When you create or modify resources, your quota usage is incremented immediately upon the
request to create or modify the resource.

When you delete a resource, your quota use is decremented during the next full recalculation of quota
statistics for the project. If project modifications exceed a quota usage limit, the server denies the
action. An appropriate error message is returned explaining the quota constraint violated, and what
your currently observed usage stats are in the system.

13.2.5. Requests vs Limits

When allocating compute resources, each container may specify a request and a limit value each for
CPU and memory. Quotas can restrict any of these values.

If the quota has a value specified for requests.cpu or requests.memory, then it requires that every
incoming container make an explicit request for those resources. If the quota has a value specified for
limits.cpu or limits.memory, then it requires that every incoming container specify an explicit

OpenShift Enterprise 3.2 Developer Guide

122

limit for those resources.

See Compute Resources for more on setting requests and limits in pods and containers.

13.3. LIMIT RANGES

A limit range, defined by a LimitRange object, enumerates compute resource constraints in a project
at the pod and container level, and specifies the amount of resources that a pod or container can
consume.

All resource create and modification requests are evaluated against each LimitRange object in the
project. If the resource violates any of the enumerated constraints, then the resource is rejected. If the
resource does not set an explicit value, and if the constraint supports a default value, then the default
value is applied to the resource.

NOTE

Limit ranges are set by cluster administrators and are scoped to a given project.

13.3.1. Viewing Limit Ranges

You can view any limit ranges defined in a project by navigating in the web console to the project’s
Settings tab.

You can also use the CLI to view limit range details:

1. First, get the list of limit ranges defined in the project. For example, for a project called
demoproject:

$ oc get limits -n demoproject
NAME AGE
resource-limits 6d

2. Then, describe the limit range you are interested in, for example the resource-limits limit
range:

<<<<<<< HEAD
$ oc describe limits resource-limits
Name: resource-limits
Namespace: demoproject
Type Resource Min Max Default Request Default Limit Max
Limit/Request Ratio
---- -------- --- --- --------------- ------------- ------------

Pod cpu 30m 2 - - -
Pod memory 150Mi 1Gi - - -
Container memory 150Mi 1Gi 307Mi 512Mi -
Container cpu 30m 2 60m 1 -
=======
$ oc describe limits resource-limits -n demoproject
Name: resource-limits
Namespace: demoproject
Type Resource Min
Max Default Request Default Limit Max Limit/Request Ratio
---- -------- --- -

CHAPTER 13. QUOTAS AND LIMIT RANGES

123

-- --------------- ------------- -----------------------
Pod cpu 200m 2
- - -
Pod memory 6Mi
1Gi - - -
Container cpu 100m 2
200m 300m 10
Container memory 4Mi
1Gi 100Mi 200Mi -
openshift.io/Image storage -
1Gi - - -
openshift.io/ImageStream openshift.io/image - 12
- - -
openshift.io/ImageStream openshift.io/image-tags - 10
- - -
>>>>>>> 7fb6456... Fix `oc describe limits` example

Full limit range definitions can be viewed by running oc export on the object. The following shows an
example limit range definition:

Example 13.6. Limit Range Object Definition

apiVersion: "v1"
kind: "LimitRange"
metadata:

 name: "resource-limits" 1
spec:
 limits:
 -
 type: "Pod"
 max:

 cpu: "2" 2

 memory: "1Gi" 3
 min:

 cpu: "200m" 4

 memory: "6Mi" 5
 -
 type: "Container"
 max:

 cpu: "2" 6

 memory: "1Gi" 7
 min:

 cpu: "100m" 8

 memory: "4Mi" 9
 default:

 cpu: "300m" 10

 memory: "200Mi" 11
 defaultRequest:

 cpu: "200m" 12

 memory: "100Mi" 13
 maxLimitRequestRatio:

 cpu: "10" 14

OpenShift Enterprise 3.2 Developer Guide

124

1

2

3

4

5

6

7

8

9

10

11

12

13

14

The name of the limit range object.

The maximum amount of CPU that a pod can request on a node across all containers.

The maximum amount of memory that a pod can request on a node across all containers.

The minimum amount of CPU that a pod can request on a node across all containers.

The minimum amount of memory that a pod can request on a node across all containers.

The maximum amount of CPU that a single container in a pod can request.

The maximum amount of memory that a single container in a pod can request.

The minimum amount of CPU that a single container in a pod can request.

The minimum amount of memory that a single container in a pod can request.

The default amount of CPU that a container will be limited to use if not specified.

The default amount of memory that a container will be limited to use if not specified.

The default amount of CPU that a container will request to use if not specified.

The default amount of memory that a container will request to use if not specified.

The maximum amount of CPU burst that a container can make as a ratio of its limit over
request.

13.3.2. Container Limits

Supported Resources:

CPU

Memory

Supported Constraints:

Per container, the following must hold true if specified:

Table 13.3. Container

Constraint Behavior

Min Min[resource] less than or equal to
container.resources.requests[resource] (required) less than
or equal to container/resources.limits[resource] (optional)

If the configuration defines a min CPU, then the request value must be greater
than the CPU value. A limit value does not need to be specified.

CHAPTER 13. QUOTAS AND LIMIT RANGES

125

Max container.resources.limits[resource] (required) less than or
equal to Max[resource]

If the configuration defines a max CPU, then you do not need to define a
request value, but a limit value does need to be set that satisfies the maximum
CPU constraint.

MaxLimitRequestRat
io

MaxLimitRequestRatio[resource] less than or equal to (
container.resources.limits[resource] /
container.resources.requests[resource])

If a configuration defines a maxLimitRequestRatio value, then any new
containers must have both a request and limit value. Additionally, OpenShift
Enterprise calculates a limit to request ratio by dividing the limit by the
request. This value should be a non-negative integer greater than 1.

For example, if a container has cpu: 500 in the limit value, and cpu:
100 in the request value, then its limit to request ratio for cpu is 5. This
ratio must be less than or equal to the maxLimitRequestRatio.

Constraint Behavior

Supported Defaults:

Default[resource]

Defaults container.resources.limit[resource] to specified value if none.

Default Requests[resource]

Defaults container.resources.requests[resource] to specified value if none.

13.3.3. Pod Limits

Supported Resources:

CPU

Memory

Supported Constraints:

Across all containers in a pod, the following must hold true:

Table 13.4. Pod

Constraint Enforced Behavior

Min Min[resource] less than or equal to
container.resources.requests[resource] (required) less than
or equal to container.resources.limits[resource] (optional)

Max container.resources.limits[resource] (required) less than or
equal to Max[resource]

OpenShift Enterprise 3.2 Developer Guide

126

1

2

3

4

MaxLimitRequestRat
io

MaxLimitRequestRatio[resource] less than or equal to (
container.resources.limits[resource] /
container.resources.requests[resource])

Constraint Enforced Behavior

13.4. COMPUTE RESOURCES

Each container running on a node consumes compute resources, which are measurable quantities that
can be requested, allocated, and consumed.

When authoring a pod configuration file, you can optionally specify how much CPU and memory (RAM)
each container needs in order to better schedule pods in the cluster and ensure satisfactory
performance.

CPU is measured in units called millicores. Each node in a cluster inspects the operating system to
determine the amount of CPU cores on the node, then multiplies that value by 1000 to express its total
capacity. For example, if a node has 2 cores, the node’s CPU capacity would be represented as 2000m.
If you wanted to use 1/10 of a single core, it would be represented as 100m.

Memory is measured in bytes. In addition, it may be used with SI suffices (E, P, T, G, M, K) or their
power-of-two-equivalents (Ei, Pi, Ti, Gi, Mi, Ki).

The container requests 100m cpu.

The container requests 200Mi memory.

The container limits 200m cpu.

The container limits 400Mi memory.

13.4.1. CPU Requests

Each container in a pod can specify the amount of CPU it requests on a node. The scheduler uses CPU
requests to find a node with an appropriate fit for a container.

The CPU request represents a minimum amount of CPU that your container may consume, but if there
is no contention for CPU, it can use all available CPU on the node. If there is CPU contention on the

apiVersion: v1
kind: Pod
spec:
 containers:
 - image: openshift/hello-openshift
 name: hello-openshift
 resources:
 requests:

 cpu: 100m 1

 memory: 200Mi 2
 limits:

 cpu: 200m 3

 memory: 400Mi 4

CHAPTER 13. QUOTAS AND LIMIT RANGES

127

node, CPU requests provide a relative weight across all containers on the system for how much CPU
time the container may use.

On the node, CPU requests map to Kernel CFS shares to enforce this behavior.

13.4.2. Viewing Compute Resources

To view compute resources for a pod:

$ oc describe pod ruby-hello-world-tfjxt
Name: ruby-hello-world-tfjxt
Namespace: default
Image(s): ruby-hello-world
Node: /
Labels: run=ruby-hello-world
Status: Pending
Reason:
Message:
IP:
Replication Controllers: ruby-hello-world (1/1 replicas created)
Containers:
 ruby-hello-world:
 Container ID:
 Image ID:
 Image: ruby-hello-world
 QoS Tier:
 cpu: Burstable
 memory: Burstable
 Limits:
 cpu: 200m
 memory: 400Mi
 Requests:
 cpu: 100m
 memory: 200Mi
 State: Waiting
 Ready: False
 Restart Count: 0
 Environment Variables:

13.4.3. CPU Limits

Each container in a pod can specify the amount of CPU it is limited to use on a node. CPU limits control
the maximum amount of CPU that your container may use independent of contention on the node. If a
container attempts to exceed the specified limit, the system will throttle the container. This allows the
container to have a consistent level of service independent of the number of pods scheduled to the
node.

13.4.4. Memory Requests

By default, a container is able to consume as much memory on the node as possible. In order to
improve placement of pods in the cluster, specify the amount of memory required for a container to
run. The scheduler will then take available node memory capacity into account prior to binding your
pod to a node. A container is still able to consume as much memory on the node as possible even when
specifying a request.

OpenShift Enterprise 3.2 Developer Guide

128

13.4.5. Memory Limits

If you specify a memory limit, you can constrain the amount of memory the container can use. For
example, if you specify a limit of 200Mi, a container will be limited to using that amount of memory on
the node. If the container exceeds the specified memory limit, it will be terminated and potentially
restarted dependent upon the container restart policy.

13.4.6. Quality of Service Tiers

A compute resource is classified with a quality of service (QoS) based on the specified request and limit
value.

Quality of Service Description

BestEffort Provided when a request and limit are not specified.

Burstable Provided when a request is specified that is less than an optionally specified
limit.

Guaranteed Provided when a limit is specified that is equal to an optionally specified
request.

A container may have a different quality of service for each compute resource. For example, a
container can have Burstable CPU and Guaranteed memory qualities of service.

The quality of service has different impacts on different resources, depending on whether the resource
is compressible or not. CPU is a compressible resource, whereas memory is an incompressible
resource.

With CPU Resources:

A BestEffort CPU container is able to consume as much CPU as is available on a node but
runs with the lowest priority.

A Burstable CPU container is guaranteed to get the minimum amount of CPU requested,
but it may or may not get additional CPU time. Excess CPU resources are distributed based
on the amount requested across all containers on the node.

A Guaranteed CPU container is guaranteed to get the amount requested and no more,
even if there are additional CPU cycles available. This provides a consistent level of
performance independent of other activity on the node.

With Memory Resources:

A BestEffort memory container is able to consume as much memory as is available on the
node, but there are no guarantees that the scheduler will place that container on a node
with enough memory to meet its needs. In addition, a BestEffort container has the greatest
chance of being killed if there is an out of memory event on the node.

A Burstable memory container is scheduled on the node to get the amount of memory
requested, but it may consume more. If there is an out of memory event on the node,
Burstable containers are killed after BestEffort containers when attempting to recover
memory.

CHAPTER 13. QUOTAS AND LIMIT RANGES

129

A Guaranteed memory container gets the amount of memory requested, but no more. In
the event of an out of memory event, it will only be killed if there are no more BestEffort or
Burstable containers on the system.

13.4.7. Specifying Compute Resources via CLI

To specify compute resources via the CLI:

$ oc run ruby-hello-world --image=ruby-hello-world --
limits=cpu=200m,memory=400Mi --requests=cpu=100m,memory=200Mi

13.5. PROJECT RESOURCE LIMITS

Resource limits can be set per-project by cluster administrators. Developers do not have the ability to
create, edit, or delete these limits, but can view them for projects they have access to.

OpenShift Enterprise 3.2 Developer Guide

130

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/cluster_administration/#admin-guide-limits
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/cluster_administration/#viewing-limits

CHAPTER 14. DEPLOYMENTS

14.1. OVERVIEW

A deployment in OpenShift Enterprise is a replication controller based on a user defined template
called a deployment configuration. Deployments are created manually or in response to triggered
events.

The deployment system provides:

A deployment configuration, which is a template for deployments.

Triggers that drive automated deployments in response to events.

User-customizable strategies to transition from the previous deployment to the new
deployment.

Rollbacks to a previous deployment.

Manual replication scaling.

The deployment configuration contains a version number that is incremented each time a new
deployment is created from that configuration. In addition, the cause of the last deployment is added
to the configuration.

14.2. CREATING A DEPLOYMENT CONFIGURATION

A deployment configuration consists of the following key parts:

A replication controller template which describes the application to be deployed.

The default replica count for the deployment.

A deployment strategy which will be used to execute the deployment.

A set of triggers which cause deployments to be created automatically.

Deployment configurations are deploymentConfig OpenShift Enterprise API resources which can be
managed with the oc command like any other resource. The following is an example of a
deploymentConfig resource:

kind: "DeploymentConfig"
apiVersion: "v1"
metadata:
 name: "frontend"
spec:

 template: 1
 metadata:
 labels:
 name: "frontend"
 spec:
 containers:
 - name: "helloworld"
 image: "openshift/origin-ruby-sample"
 ports:

CHAPTER 14. DEPLOYMENTS

131

1

2

3

4

5

The replication controller template named frontend describes a simple Ruby application.

There will be 5 replicas of frontend by default.

A configuration change trigger causes a new deployment to be created any time the replication
controller template changes.

An image change trigger trigger causes a new deployment to be created each time a new version
of the origin-ruby-sample:latest image repository is available.

The Rolling strategy is the default and may be omitted.

14.3. STARTING A DEPLOYMENT

You can start a new deployment manually using the web console, or from the CLI:

$ oc deploy <deployment_config> --latest

NOTE

If there’s already a deployment in progress, the command will display a message and a
new deployment will not be started.

14.4. VIEWING A DEPLOYMENT

To get basic information about recent deployments:

$ oc deploy <deployment_config>

This will show details about the latest and recent deployments, including any currently running
deployment.

For more detailed information about a deployment configuration and the latest deployment:

 - containerPort: 8080
 protocol: "TCP"

 replicas: 5 2
 selector:
 name: "frontend"
 triggers:

 - type: "ConfigChange" 3

 - type: "ImageChange" 4
 imageChangeParams:
 automatic: true
 containerNames:
 - "helloworld"
 from:
 kind: "ImageStreamTag"
 name: "origin-ruby-sample:latest"

 strategy: 5
 type: "Rolling"

OpenShift Enterprise 3.2 Developer Guide

132

$ oc describe dc <deployment_config>

NOTE

The web console shows deployments in the Browse tab.

14.5. CANCELING A DEPLOYMENT

To cancel a running or stuck deployment:

$ oc deploy <deployment_config> --cancel

WARNING

The cancellation is a best-effort operation, and may take some time to complete.
It’s possible the deployment will partially or totally complete before the
cancellation is effective.

14.6. RETRYING A DEPLOYMENT

To retry the last failed deployment:

$ oc deploy <deployment_config> --retry

If the last deployment didn’t fail, the command will display a message and the deployment will not be
retried.

NOTE

Retrying a deployment restarts the deployment and does not create a new deployment
version. The restarted deployment will have the same configuration it had when it failed.

14.7. ROLLING BACK A DEPLOYMENT

Rollbacks revert an application back to a previous deployment and can be performed using the REST
API, the CLI, or the web console.

To rollback to the last successful deployment:

$ oc rollback <deployment_config>

The deployment configuration’s template will be reverted to match the deployment specified in the
rollback command, and a new deployment will be started.

Image change triggers on the deployment configuration are disabled as part of the rollback to prevent
unwanted deployments soon after the rollback is complete. To re-enable the image change triggers:



CHAPTER 14. DEPLOYMENTS

133

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#project-overviews

$ oc deploy <deployment_config> --enable-triggers

To roll back to a specific version:

$ oc rollback <deployment_config> --to-version=1

To see what the rollback would look like without performing the rollback:

$ oc rollback <deployment_config> --dry-run

14.8. EXECUTING COMMANDS INSIDE A CONTAINER

You can add a command to a container, which modifies the container’s startup behavior by overruling
the image’s ENTRYPOINT. This is different from a lifecycle hook, which instead can be run once per
deployment at a specified time.

Add the command parameters to the spec field of the deployment configuration. You can also add an
args field, which modifies the command (or the ENTRYPOINT if command does not exist).

...
spec:
 containers:
 -
 name: <container_name>
 image: 'image'
 command:
 - '<command>'
 args:
 - '<argument_1>'
 - '<argument_2>'
 - '<argument_3>'
...

For example, to execute the java command with the '-jar' and '/opt/app-root/springboots2idemo.jar'
arguments:

...
spec:
 containers:
 -
 name: example-spring-boot
 image: 'image'
 command:
 - java
 args:
 - '-jar'
 - /opt/app-root/springboots2idemo.jar
...

14.9. VIEWING DEPLOYMENT LOGS

To view the logs of the latest deployment for a given deployment configuration:

OpenShift Enterprise 3.2 Developer Guide

134

$ oc logs dc/<deployment_config> [--follow]

Logs can be retrieved either while the deployment is running or if it has failed. If the deployment was
successful, there will be no logs to view.

You can also view logs from older deployments:

$ oc logs --version=1 dc/<deployment_config>

This command returns the logs from the first deployment of the provided deployment configuration, if
and only if that deployment exists (i.e., it has failed and has not been manually deleted or pruned).

14.10. TRIGGERS

A deployment configuration can contain triggers, which drive the creation of new deployments in
response to events, only inside OpenShift Enterprise at the moment.

WARNING

If no triggers are defined on a deployment configuration, deployments must be
started manually.

14.10.1. Configuration Change Trigger

The ConfigChange trigger results in a new deployment whenever new changes are detected in the
pod template of the deployment configuration.

NOTE

If only a ConfigChange trigger is defined on a deployment configuration, the first
deployment is automatically created soon after the deployment configuration itself is
created.

Example 14.1. A ConfigChange Trigger

14.10.2. Image Change Trigger

The ImageChange trigger results in a new deployment whenever the value of an image stream tag
changes, either by a build or because it was imported.

Example 14.2. An ImageChange Trigger



triggers:
 - type: "ConfigChange"

triggers:

CHAPTER 14. DEPLOYMENTS

135

1 If the imageChangeParams.automatic field is set to false, the trigger is disabled.

With the above example, when the latest tag value of the origin-ruby-sample image stream
changes and the new image value differs from the current image specified in the deployment
configuration’s helloworld container, a new deployment is created using the new image for the
helloworld container.

NOTE

If an ImageChange trigger is defined on a deployment configuration (with a
ConfigChange trigger or with automatic=true) and the ImageStreamTag pointed
by the ImageChange trigger does not exist yet, then the first deployment automatically
starts as soon as an image is imported or pushed by a build to the ImageStreamTag.

14.11. STRATEGIES

A deployment strategy determines the deployment process, and is defined by the deployment
configuration. Each application has different requirements for availability (and other considerations)
during deployments. OpenShift Enterprise provides strategies to support a variety of deployment
scenarios.

A deployment strategy uses readiness checks to determine if a new pod is ready for use. If a readiness
check fails, the deployment is stopped.

The Rolling strategy is the default strategy used if no strategy is specified on a deployment
configuration.

14.11.1. Rolling Strategy

The rolling strategy performs a rolling update and supports lifecycle hooks for injecting code into the
deployment process.

The rolling deployment strategy waits for pods to pass their readiness check before scaling down old
components, and does not allow pods that do not pass their readiness check within a configurable
timeout.

The following is an example of the Rolling strategy:

 - type: "ImageChange"
 imageChangeParams:

 automatic: true 1
 from:
 kind: "ImageStreamTag"
 name: "origin-ruby-sample:latest"
 containerNames:
 - "helloworld"

strategy:
 type: Rolling
 rollingParams:

 timeoutSeconds: 120 1

 maxSurge: "20%" 2

OpenShift Enterprise 3.2 Developer Guide

136

1

2

3

4

How long to wait for a scaling event before giving up. Optional; the default is 120.

maxSurge is optional and defaults to 25%; see below.

maxUnavailable is optional and defaults to 25%; see below.

pre and post are both lifecycle hooks.

The Rolling strategy will:

1. Execute any pre lifecycle hook.

2. Scale up the new deployment based on the surge configuration.

3. Scale down the old deployment based on the max unavailable configuration.

4. Repeat this scaling until the new deployment has reached the desired replica count and the old
deployment has been scaled to zero.

5. Execute any post lifecycle hook.

IMPORTANT

When scaling down, the Rolling strategy waits for pods to become ready so it can decide
whether further scaling would affect availability. If scaled up pods never become ready,
the deployment will eventually time out and result in a deployment failure.

IMPORTANT

When executing the post lifecycle hook, all failures will be ignored regardless of the
failure policy specified on the hook.

The maxUnavailable parameter is the maximum number of pods that can be unavailable during the
update. The maxSurge parameter is the maximum number of pods that can be scheduled above the
original number of pods. Both parameters can be set to either a percentage (e.g., 10%) or an absolute
value (e.g., 2). The default value for both is 25%.

These parameters allow the deployment to be tuned for availability and speed. For example:

maxUnavailable=0 and maxSurge=20% ensures full capacity is maintained during the
update and rapid scale up.

maxUnavailable=10% and maxSurge=0 performs an update using no extra capacity (an in-
place update).

maxUnavailable=10% and maxSurge=10% scales up and down quickly with some potential
for capacity loss.

14.11.2. Recreate Strategy

 maxUnavailable: "10%" 3

 pre: {} 4
 post: {}

CHAPTER 14. DEPLOYMENTS

137

1

2

The Recreate strategy has basic rollout behavior and supports lifecycle hooks for injecting code into
the deployment process.

The following is an example of the Recreate strategy:

recreateParams are optional.

pre, mid, and post are both lifecycle hooks.

The Recreate strategy will:

1. Execute any "pre" lifecycle hook.

2. Scale down the previous deployment to zero.

3. Execute any "mid" lifecycle hook.

4. Scale up the new deployment.

5. Execute any "post" lifecycle hook.

IMPORTANT

During scale up, if the replica count of the deployment is greater than one, the first
replica of the deployment will be validated for readiness before fully scaling up the
deployment. If the validation of the first replica fails, the deployment will be considered a
failure.

14.11.3. Custom Strategy

The Custom strategy allows you to provide your own deployment behavior.

The following is an example of the Custom strategy:

In the above example, the organization/strategy container image provides the deployment behavior.
The optional command array overrides any CMD directive specified in the image’s Dockerfile. The
optional environment variables provided are added to the execution environment of the strategy
process.

strategy:
 type: Recreate

 recreateParams: 1

 pre: {} 2
 mid: {}
 post: {}

strategy:
 type: Custom
 customParams:
 image: organization/strategy
 command: ["command", "arg1"]
 environment:
 - name: ENV_1
 value: VALUE_1

OpenShift Enterprise 3.2 Developer Guide

138

1

Additionally, OpenShift Enterprise provides the following environment variables to the strategy
process:

Environment Variable Description

OPENSHIFT_DEPLOYMENT_N
AME

The name of the new deployment (a replication controller).

OPENSHIFT_DEPLOYMENT_N
AMESPACE

The namespace of the new deployment.

The replica count of the new deployment will initially be zero. The responsibility of the strategy is to
make the new deployment active using the logic that best serves the needs of the user.

14.12. LIFECYCLE HOOKS

The Recreate and Rolling strategies support lifecycle hooks, which allow behavior to be injected into
the deployment process at predefined points within the strategy:

The following is an example of a "pre" lifecycle hook:

execNewPod is a pod-based lifecycle hook .

Every hook has a failurePolicy, which defines the action the strategy should take when a hook
failure is encountered:

Abort The deployment should be considered a failure if the hook fails.

Retry The hook execution should be retried until it succeeds.

Ignore Any hook failure should be ignored and the deployment should proceed.

WARNING

Some hook points for a strategy might support only a subset of failure policy
values. For example, the Recreate and Rolling strategies do not currently support
the Abort policy for a "post" deployment lifecycle hook. Consult the
documentation for a given strategy for details on any restrictions regarding
lifecycle hooks.

pre:
 failurePolicy: Abort

 execNewPod: {} 1



CHAPTER 14. DEPLOYMENTS

139

1

2

3

4

Hooks have a type-specific field that describes how to execute the hook. Currently pod-based hooks
are the only supported hook type, specified by the execNewPod field.

14.12.1. Pod-based Lifecycle Hook

Pod-based lifecycle hooks execute hook code in a new pod derived from the template in a deployment
configuration.

The following simplified example deployment configuration uses the Rolling strategy. Triggers and
some other minor details are omitted for brevity:

The helloworld name refers to spec.template.spec.containers[0].name.

This command overrides any ENTRYPOINT defined by the openshift/origin-ruby-sample
image.

env is an optional set of environment variables for the hook container.

volumes is an optional set of volume references for the hook container.

In this example, the "pre" hook will be executed in a new pod using the openshift/origin-ruby-sample
image from the helloworld container. The hook pod will have the following properties:

The hook command will be /usr/bin/command arg1 arg2.

kind: DeploymentConfig
apiVersion: v1
metadata:
 name: frontend
spec:
 template:
 metadata:
 labels:
 name: frontend
 spec:
 containers:
 - name: helloworld
 image: openshift/origin-ruby-sample
 replicas: 5
 selector:
 name: frontend
 strategy:
 type: Rolling
 rollingParams:
 pre:
 failurePolicy: Abort
 execNewPod:

 containerName: helloworld 1

 command: ["/usr/bin/command", "arg1", "arg2"] 2

 env: 3
 - name: CUSTOM_VAR1
 value: custom_value1
 volumes:

 - data 4

OpenShift Enterprise 3.2 Developer Guide

140

1

2

1

The hook container will have the CUSTOM_VAR1=custom_value1 environment variable.

The hook failure policy is Abort, meaning the deployment will fail if the hook fails.

The hook pod will inherit the data volume from the deployment configuration pod.

14.13. DEPLOYMENT RESOURCES

A deployment is completed by a pod that consumes resources (memory and CPU) on a node. By
default, pods consume unbounded node resources. However, if a project specifies default container
limits, then pods consume resources up to those limits.

You can also limit resource use by specifying resource limits as part of the deployment strategy.
Deployment resources can be used with the Recreate, Rolling, or Custom deployment strategies.

In the following example, each of resources, cpu, and memory is optional:

cpu is in CPU units: 100m represents 0.1 CPU units (100 * 1e-3).

memory is in bytes: 256Mi represents 268435456 bytes (256 * 2 ^ 20).

However, if a quota has been defined for your project, one of the following two items is required:

A resources section set with an explicit requests:

The requests object contains the list of resources that correspond to the list of
resources in the quota.

A limit range defined in your project, where the defaults from the LimitRange object apply to
pods created during the deployment process.

Otherwise, deploy pod creation will fail, citing a failure to satisfy quota.

14.14. MANUAL SCALING

In addition to rollbacks, you can exercise fine-grained control over the number of replicas from the
web console, or by using the oc scale command. For example, the following command sets the
replicas in the deployment configuration frontend to 3.

$ oc scale dc frontend --replicas=3

type: "Recreate"
resources:
 limits:

 cpu: "100m" 1

 memory: "256Mi" 2

 type: "Recreate"
 resources:

 requests: 1
 cpu: "100m"
 memory: "256Mi"

CHAPTER 14. DEPLOYMENTS

141

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/cluster_administration/#admin-guide-limits

The number of replicas eventually propagates to the desired and current state of the deployment
configured by the deployment configuration frontend.

14.15. ASSIGNING PODS TO SPECIFIC NODES

You can use node selectors in conjunction with labeled nodes to control pod placement.

NOTE

OpenShift Enterprise administrators can assign labels during an advanced installation ,
or added to a node after installation .

Cluster administrators can set the default node selector for your project in order to restrict pod
placement to specific nodes. As an OpenShift developer, you can set a node selector on a pod
configuration to restrict nodes even further.

To add a node selector when creating a pod, edit the pod configuration, and add the nodeSelector
value. This can be added to a single pod configuration, or in a pod template:

apiVersion: v1
kind: Pod
spec:
 nodeSelector:
 disktype: ssd
...

Pods created when the node selector is in place are assigned to nodes with the specified labels.

The labels specified here are used in conjunction with the labels added by a cluster administrator . For
example, if a project has the type=user-node and region=east labels added to a project by the
cluster administrator, and you add the above disktype: ssd label to a pod, the pod will only ever be
scheduled on nodes that have all three labels.

NOTE

Labels can only be set to one value, so setting a node selector of region=west in a pod
configuration that has region=east as the administrator-set default, results in a pod
that will never be scheduled.

14.16. RUNNING A POD WITH A DIFFERENT SERVICE ACCOUNT

You can run a pod with a service account other than the default:

1. Edit the deployment configuration:

$ oc edit dc/<deployment_config>

2. Add the serviceAccount and serviceAccountName parameters to the spec field, and
specify the service account you want to use:

spec:
 securityContext: {}

OpenShift Enterprise 3.2 Developer Guide

142

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/installation_and_configuration/#configuring-node-host-labels
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/cluster_administration/#updating-labels-on-nodes
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/cluster_administration/#using-node-selectors
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/cluster_administration/#using-node-selectors

 serviceAccount: <service_account>
 serviceAccountName: <service_account>

CHAPTER 14. DEPLOYMENTS

143

CHAPTER 15. ROUTES

15.1. OVERVIEW

An OpenShift Enterprise route exposes a service at a host name, like www.example.com, so that
external clients can reach it by name.

DNS resolution for a host name is handled separately from routing; your administrator may have
configured a cloud domain that will always correctly resolve to the OpenShift Enterprise router, or if
using an unrelated host name you may need to modify its DNS records independently to resolve to the
router.

15.2. CREATING ROUTES

You can create unsecured and secured routes routes using the web console or the CLI.

Using the web console, you can navigate to the Browse → Routes page, then click Create Route to
define and create a route in your project:

Figure 15.1. Creating a Route Using the Web Console

Using the CLI, the following example creates an unsecured route:

$ oc expose svc/frontend --hostname=www.example.com

The new route inherits the name from the service unless you specify one using the --name option.

Example 15.1. YAML Definition of the Unsecured Route Created Above

apiVersion: v1
kind: Route

OpenShift Enterprise 3.2 Developer Guide

144

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#architecture-core-concepts-routes
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#services

Unsecured routes are the default configuration, and are therefore the simplest to set up. However,
secured routes offer security for connections to remain private. To create a secured HTTPS route
encrypted with a key and certificate (PEM-format files which you must generate and sign separately),
you can use the create route command and optionally provide certificates and a key.

NOTE

TLS is the replacement of SSL for HTTPS and other encrypted protocols.

$ oc create route edge --service=frontend \
 --cert=${MASTER_CONFIG_DIR}/ca.crt \
 --key=${MASTER_CONFIG_DIR}/ca.key \
 --ca-cert=${MASTER_CONFIG_DIR}/ca.crt \
 --hostname=www.example.com

Example 15.2. YAML Definition of the Secured Route Created Above

metadata:
 name: frontend
spec:
 host: www.example.com
 to:
 kind: Service
 name: frontend

apiVersion: v1
kind: Route
metadata:
 name: frontend
spec:
 host: www.example.com
 to:
 kind: Service
 name: frontend
 tls:
 termination: edge
 key: |-
 -----BEGIN PRIVATE KEY-----
 [...]
 -----END PRIVATE KEY-----
 certificate: |-
 -----BEGIN CERTIFICATE-----
 [...]
 -----END CERTIFICATE-----
 caCertificate: |-
 -----BEGIN CERTIFICATE-----
 [...]
 -----END CERTIFICATE-----

CHAPTER 15. ROUTES

145

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#secured-routes
https://en.wikipedia.org/wiki/Transport_Layer_Security

Currently, password protected key files are not supported. HAProxy prompts for a password upon
starting and does not have a way to automate this process. To remove a passphrase from a keyfile, you
can run:

openssl rsa -in <passwordProtectedKey.key> -out <new.key>

You can create a secured route without specifying a key and certificate, in which case the router’s
default certificate will be used for TLS termination.

NOTE

TLS termination in OpenShift Enterprise relies on SNI for serving custom certificates.
Any non-SNI traffic received on port 443 is handled with TLS termination and a default
certificate, which may not match the requested host name, resulting in validation errors.

Further information on all types of TLS termination as well as path-based routing are available in the
Architecture section.

OpenShift Enterprise 3.2 Developer Guide

146

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/installation_and_configuration/#using-wildcard-certificates
https://en.wikipedia.org/wiki/Server_Name_Indication
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#secured-routes
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#path-based-routes
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#architecture-core-concepts-routes

CHAPTER 16. INTEGRATING EXTERNAL SERVICES

16.1. OVERVIEW

Many OpenShift Enterprise applications use external resources, such as external databases, or an
external SaaS endpoint. These external resources can be modeled as native OpenShift Enterprise
services, so that applications can work with them as they would any other internal service.

16.2. EXTERNAL MYSQL DATABASE

One of the most common types of external services is an external database. To support an external
database, an application needs:

1. An endpoint to communicate with.

2. A set of credentials and coordinates, including:

a. A user name

b. A passphrase

c. A database name

The solution for integrating with an external database includes:

A Service object to represent the SaaS provider as an OpenShift Enterprise service.

One or more Endpoints for the service.

Environment variables in the appropriate pods containing the credentials.

The following steps outline a scenario for integrating with an external MySQL database:

1. Create an OpenShift Enterprise service to represent your external database. This is similar to
creating an internal service; the difference is in the service’s Selector field.
Internal OpenShift Enterprise services use the Selector field to associate pods with services
using labels. The EndpointsController system component synchronizes the endpoints for
services that specify selectors with the pods that match the selector. The service proxy and
OpenShift Enterprise router load-balance requests to the service amongst the service’s
endpoints.

Services that represent an external resource do not require associated pods. Instead, leave
the Selector field unset. This represents the external service, making the
EndpointsController ignore the service and allows you to specify endpoints manually:

 kind: "Service"
 apiVersion: "v1"
 metadata:
 name: "external-mysql-service"
 spec:
 ports:
 -
 name: "mysql"
 protocol: "TCP"
 port: 3306

CHAPTER 16. INTEGRATING EXTERNAL SERVICES

147

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#services
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#labels
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#service-proxy
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#routers

1

1

2

3

4

 targetPort: 3306
 nodePort: 0

 selector: {} 1

The selector field to leave blank.

2. Next, create the required endpoints for the service. This gives the service proxy and router the
location to send traffic directed to the service:

 kind: "Endpoints"
 apiVersion: "v1"
 metadata:

 name: "external-mysql-service" 1

 subsets: 2
 -
 addresses:
 -

 ip: "10.0.0.0" 3
 ports:
 -

 port: 3306 4
 name: "mysql"

The name of the Service instance, as defined in the previous step.

Traffic to the service will be load-balanced between the supplied Endpoints if more than
one is supplied.

Endpoints IPs cannot be loopback (127.0.0.0/8), link-local (169.254.0.0/16), or link-local
multicast (224.0.0.0/24).

The port and name definition must match the port and name value in the service
defined in the previous step.

3. Now that the service and endpoints are defined, give the appropriate pods access to the
credentials to use the service by setting environment variables in the appropriate containers:

 kind: "DeploymentConfig"
 apiVersion: "v1"
 metadata:
 name: "my-app-deployment"

 spec: 1
 strategy:
 type: "Rolling"
 rollingParams:
 updatePeriodSeconds: 1
 intervalSeconds: 1
 timeoutSeconds: 120
 replicas: 2
 selector:
 name: "frontend"
 template:
 metadata:

OpenShift Enterprise 3.2 Developer Guide

148

http://kubernetes.io/docs/user-guide/services/#services-without-selectors

1

2

3

4

 labels:
 name: "frontend"
 spec:
 containers:
 -
 name: "helloworld"
 image: "origin-ruby-sample"
 ports:
 -
 containerPort: 3306
 protocol: "TCP"
 env:
 -
 name: "MYSQL_USER"

 value: "${MYSQL_USER}" 2
 -
 name: "MYSQL_PASSWORD"

 value: "${MYSQL_PASSWORD}" 3
 -
 name: "MYSQL_DATABASE"

 value: "${MYSQL_DATABASE}" 4

Other fields on the DeploymentConfig are omitted

The user name to use with the service.

The passphrase to use with the service.

The database name.

External Database Environment Variables

Using an external service in your application is similar to using an internal service. Your application will
be assigned environment variables for the service and the additional environment variables with the
credentials described in the previous step. For example, a MySQL container receives the following
environment variables:

EXTERNAL_MYSQL_SERVICE_SERVICE_HOST=<ip_address>

EXTERNAL_MYSQL_SERVICE_SERVICE_PORT=<port_number>

MYSQL_USERNAME=<mysql_username>

MYSQL_PASSWORD=<mysql_password>

MYSQL_DATABASE_NAME=<mysql_database>

The application is responsible for reading the coordinates and credentials for the service from the
environment and establishing a connection with the database via the service.

16.3. EXTERNAL SAAS PROVIDER

A common type of external service is an external SaaS endpoint. To support an external SaaS provider,
an application needs:

CHAPTER 16. INTEGRATING EXTERNAL SERVICES

149

1

1. An endpoint to communicate with

2. A set of credentials, such as:

a. An API key

b. A user name

c. A passphrase

The following steps outline a scenario for integrating with an external SaaS provider:

1. Create an OpenShift Enterprise service to represent the external service. This is similar to
creating an internal service; however the difference is in the service’s Selector field.
Internal OpenShift Enterprise services use the Selector field to associate pods with services
using labels. A system component called EndpointsController synchronizes the endpoints
for services that specify selectors with the pods that match the selector. The service proxy
and OpenShift Enterprise router load-balance requests to the service amongst the service’s
endpoints.

Services that represents an external resource do not require that pods be associated with it.
Instead, leave the Selector field unset. This makes the EndpointsController ignore the
service and allows you to specify endpoints manually:

 kind: "Service"
 apiVersion: "v1"
 metadata:
 name: "example-external-service"
 spec:
 ports:
 -
 name: "mysql"
 protocol: "TCP"
 port: 3306
 targetPort: 3306
 nodePort: 0

 selector: {} 1

The selector field to leave blank.

2. Next, create endpoints for the service containing the information about where to send traffic
directed to the service proxy and the router:

kind: "Endpoints"
apiVersion: "v1"
metadata:

 name: "example-external-service" 1

subsets: 2
- addresses:
 - ip: "10.10.1.1"
 ports:
 - name: "mysql"
 port: 3306

OpenShift Enterprise 3.2 Developer Guide

150

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#services
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#labels
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#service-proxy
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#routers

1 1

2 2

3

4

1 The name of the Service instance.

Traffic to the service is load-balanced between the subsets supplied here.

1. Now that the service and endpoints are defined, give pods the credentials to use the
service by setting environment variables in the appropriate containers:

 kind: "DeploymentConfig"
 apiVersion: "v1"
 metadata:
 name: "my-app-deployment"

 spec: 1
 strategy:
 type: "Rolling"
 rollingParams:
 updatePeriodSeconds: 1
 intervalSeconds: 1
 timeoutSeconds: 120
 replicas: 1
 selector:
 name: "frontend"
 template:
 metadata:
 labels:
 name: "frontend"
 spec:
 containers:
 -
 name: "helloworld"
 image: "openshift/openshift/origin-ruby-sample"
 ports:
 -
 containerPort: 3306
 protocol: "TCP"
 env:
 -

 name: "SAAS_API_KEY" 2
 value: "<SaaS service API key>"
 -

 name: "SAAS_USERNAME" 3
 value: "<SaaS service user>"
 -

 name: "SAAS_PASSPHRASE" 4
 value: "<SaaS service passphrase>"

Other fields on the DeploymentConfig are omitted.

SAAS_API_KEY: The API key to use with the service.

SAAS_USERNAME: The user name to use with the service.

SAAS_PASSPHRASE: The passphrase to use with the service.

CHAPTER 16. INTEGRATING EXTERNAL SERVICES

151

External SaaS Provider Environment Variables

Similarly, when using an internal service, your application is assigned environment variables for the
service and the additional environment variables with the credentials described in the above steps. In
the above example, the container receives the following environment variables:

EXAMPLE_EXTERNAL_SERVICE_SERVICE_HOST=<ip_address>

EXAMPLE_EXTERNAL_SERVICE_SERVICE_PORT=<port_number>

SAAS_API_KEY=<saas_api_key>

SAAS_USERNAME=<saas_username>

SAAS_PASSPHRASE=<saas_passphrase>

The application reads the coordinates and credentials for the service from the environment and
establishes a connection with the service.

OpenShift Enterprise 3.2 Developer Guide

152

1

CHAPTER 17. SECRETS

17.1. OVERVIEW

The Secret object type provides a mechanism to hold sensitive information such as passwords,
OpenShift Enterprise client config files, dockercfg files, private source repository credentials, etc.
Secrets decouple sensitive content from the pods that use it and can be mounted into containers using
a volume plug-in or used by the system to perform actions on behalf of a pod. This topic discusses
important properties of secrets and provides an overview on how developers can use them.

Example 17.1. YAML Secret Object Definition

The allowable format for the keys in the data field must meet the guidelines in the
DNS_SUBDOMAIN value in the Kubernetes identifiers glossary.

17.2. PROPERTIES OF SECRETS

Key properties include:

Secret data can be referenced independently from its definition.

Secret data never comes to rest on the node. Volumes are backed by temporary file-storage
facilities (tmpfs).

Secret data can be shared within a namespace.

17.2.1. Secrets and the Pod Lifecycle

A secret must be created before the pods that depend on it.

Containers read the secret from the files. If a secret is expected to be stored in an environment
variable, then you must modify the image to populate the environment variable from the file before
running the main program.

Once a pod is created, its secret volumes do not change, even if the secret resource is modified. To
change the secret used, the original pod must be deleted, and a new pod (perhaps with an identical
PodSpec) must be created. An exception to this is when a node is rebooted and the secret data must
be re-read from the API server. Updating a secret follows the same workflow as deploying a new
container image. The kubectl rollingupdate command can be used.

apiVersion: v1
kind: Secret
metadata:
 name: test-secret
 namespace: my-namespace

data: 1
 username: "dmFsdWUtMQ0K"
 password: "dmFsdWUtMg0KDQo="

CHAPTER 17. SECRETS

153

https://github.com/GoogleCloudPlatform/kubernetes/blob/v1.0.0/docs/design/identifiers.md
https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/user-guide/kubectl/kubectl_rolling-update.md

The resourceVersion value in a secret is not specified when it is referenced. Therefore, if a secret is
updated at the same time as pods are starting, then the version of the secret will be used for the pod
will not be defined.

NOTE

Currently, it is not possible to check the resource version of a secret object that was
used when a pod was created. It is planned that pods will report this information, so that
a controller could restart ones using a old resourceVersion. In the interim, do not
update the data of existing secrets, but create new ones with distinct names.

17.3. CREATING AND USING SECRETS

When creating secrets:

Create a secret object with secret data

Create a pod with a volume of type secret and a container to mount the volume

Update the pod’s service account to allow the reference to the secret.

17.3.1. Creating Secrets

To create a secret object, use the following command, where the JSON file is a predefined secret:

$ oc create -f secret.json

17.3.2. Secrets in Volumes and Environment Variables

See examples of YAML files with secret data.

After you create a secret , you can:

1. Create the pod to reference your secret:

$ oc create -f <your_yaml_file>.yaml

2. Get the logs:

$ oc logs secret-example-pod

3. Delete the pod:

$ oc delete pod secret-example-pod

17.3.3. Image Pull Secrets

See Using Image Pull Secrets for more information.

17.3.4. Source Clone Secrets

See Using Private Repositories for Builds for more information.

OpenShift Enterprise 3.2 Developer Guide

154

1

2

3

4

17.4. RESTRICTIONS

To use a secret, a pod needs to reference the secret. A secret can be used with a pod in two ways:
either as files in a volume mounted on one or more of its containers, or used by kubelet when pulling
images for the pod.

Volume type secrets write data into the container as a file using the volume mechanism.
imagePullSecrets use service accounts for the automatic injection of the secret into all pods in a
namespaces.

When a template contains a secret definition, the only way for the template to use the provided secret
is to ensure that the secret volume sources are validated and that the specified object reference
actually points to an object of type Secret. Therefore, a secret needs to be created before any pods
that depend on it. The most effective way to ensure this is to have it get injected automatically through
the use of a service account.

Secret API objects reside in a namespace. They can only be referenced by pods in that same
namespace.

Individual secrets are limited to 1MB in size. This is to discourage the creation of large secrets that
would exhaust apiserver and kubelet memory. However, creation of a number of smaller secrets could
also exhaust memory.

17.4.1. Secret Data Keys

Secret keys must be in a DNS subdomain.

17.5. EXAMPLES

Example 17.2. YAML Secret That Will Create Four Files

File contains decoded values.

File contains decoded values.

File contains the provided string.

File contains the provided data.

apiVersion: v1
kind: Secret
metadata:
 name: test-secret
data:

 username: dmFsdWUtMQ0K 1

 password: dmFsdWUtMQ0KDQo= 2
stringData:

 hostname: myapp.mydomain.com 3

 secret.properties: |- 4
 property1=valueA
 property2=valueB

CHAPTER 17. SECRETS

155

Example 17.3. YAML of a Pod Populating Files in a Volume with Secret Data

Example 17.4. YAML of a Pod Populating Environment Variables with Secret Data

17.6. TROUBLESHOOTING

Table 17.1. Troubleshooting Guidance for Secrets

apiVersion: v1
kind: Pod
metadata:
 name: secret-example-pod
spec:
 containers:
 - name: secret-test-container
 image: busybox
 command: ["/bin/sh", "-c", "cat /etc/secret-volume/*"]
 volumeMounts:
 # name must match the volume name below
 - name: secret-volume
 mountPath: /etc/secret-volume
 readOnly: true
 volumes:
 - name: secret-volume
 secret:
 secretName: test-secret
 restartPolicy: Never

apiVersion: v1
kind: Pod
metadata:
 name: secret-example-pod
spec:
 containers:
 - name: secret-test-container
 image: busybox
 command: ["/bin/sh", "-c", "export"]
 env:
 - name: TEST_SECRET_USERNAME_ENV_VAR
 valueFrom:
 secretKeyRef:
 name: test-secret
 key: username
 restartPolicy: Never

OpenShift Enterprise 3.2 Developer Guide

156

Issue Resolution

A service
certificate
generation fails
with (service’s
service.alph
a.openshift.
io/serving-
cert-
generation-
error annotation
contains):

secret/ssl
-key
references
serviceUID
62ad25ca-
d703-11e6-
9d6f-
0e9c0057b6
08, which
does not
match
77b6dd80-
d716-11e6-
9d6f-
0e9c0057b6
0

The service that generated the ceritiface no longer exists (has different
serviceUID). You must force certificates regeneration by removing the old secret,
and clearing following annotations on the service
service.alpha.openshift.io/serving-cert-generation-error,
service.alpha.openshift.io/serving-cert-generation-error-
num:

$ oc delete secret <secret_name>
$ oc annotate service <service_name>
service.alpha.openshift.io/serving-cert-generation-
error-
$ oc annotate service <service_name>
service.alpha.openshift.io/serving-cert-generation-
error-num-

NOTE

The command removing annotation has a - after the annotation name
to be removed.

CHAPTER 17. SECRETS

157

1

CHAPTER 18. CONFIGMAPS

18.1. OVERVIEW

Many applications require configuration using some combination of configuration files, command line
arguments, and environment variables. These configuration artifacts should be decoupled from image
content in order to keep containerized applications portable.

The ConfigMap object provides mechanisms to inject containers with configuration data while
keeping containers agnostic of OpenShift Enterprise. A ConfigMap can be used to store fine-grained
information like individual properties or coarse-grained information like entire configuration files or
JSON blobs.

The ConfigMap API object holds key-value pairs of configuration data that can be consumed in pods
or used to store configuration data for system components such as controllers. ConfigMap is similar
to secrets, but designed to more conveniently support working with strings that do not contain
sensitive information.

For example:

Example 18.1. ConfigMap Object Definition

Contains the configuration data.

Configuration data can be consumed in pods in a variety of ways. A ConfigMap can be used to:

1. Populate the value of environment variables.

2. Set command-line arguments in a container.

3. Populate configuration files in a volume.

Both users and system components may store configuration data in a ConfigMap.

18.2. CREATING CONFIGMAPS

You can use the following command to create a ConfigMap easily from directories, specific files, or
literal values:

kind: ConfigMap
apiVersion: v1
metadata:
 creationTimestamp: 2016-02-18T19:14:38Z
 name: example-config
 namespace: default

data: 1
 example.property.1: hello
 example.property.2: world
 example.property.file: |-
 property.1=value-1
 property.2=value-2
 property.3=value-3

OpenShift Enterprise 3.2 Developer Guide

158

$ oc create configmap <configmap_name> [options]

The following sections cover the different ways you can create a ConfigMap.

18.2.1. Creating from Directories

Consider a directory with some files that already contain the data with which you want to populate a
ConfigMap:

$ ls example-files
game.properties
ui.properties

$ cat example-files/game.properties
enemies=aliens
lives=3
enemies.cheat=true
enemies.cheat.level=noGoodRotten
secret.code.passphrase=UUDDLRLRBABAS
secret.code.allowed=true
secret.code.lives=30

$ cat example-files/ui.properties
color.good=purple
color.bad=yellow
allow.textmode=true
how.nice.to.look=fairlyNice

You can use the following command to create a ConfigMap holding the content of each file in this
directory:

$ oc create configmap game-config \
 --from-file=example-files/

When the --from-file option points to a directory, each file directly in that directory is used to
populate a key in the ConfigMap, where the name of the key is the file name, and the value of the key
is the content of the file.

For example, the above command creates the following ConfigMap:

$ oc describe configmaps game-config
Name: game-config
Namespace: default
Labels: <none>
Annotations: <none>

Data

game.properties: 121 bytes
ui.properties: 83 bytes

CHAPTER 18. CONFIGMAPS

159

You can see the two keys in the map are created from the file names in the directory specified in the
command. Because the content of those keys may be large, the output of oc describe only shows
the names of the keys and their sizes.

If you want to see the values of the keys, you can oc get the object with the -o option:

$ oc get configmaps game-config -o yaml

apiVersion: v1
data:
 game.properties: |-
 enemies=aliens
 lives=3
 enemies.cheat=true
 enemies.cheat.level=noGoodRotten
 secret.code.passphrase=UUDDLRLRBABAS
 secret.code.allowed=true
 secret.code.lives=30
 ui.properties: |
 color.good=purple
 color.bad=yellow
 allow.textmode=true
 how.nice.to.look=fairlyNice
kind: ConfigMap
metadata:
 creationTimestamp: 2016-02-18T18:34:05Z
 name: game-config
 namespace: default
 resourceVersion: "407"-
 selflink: /api/v1/namespaces/default/configmaps/game-config
 uid: 30944725-d66e-11e5-8cd0-68f728db1985

18.2.2. Creating from Files

You can also pass the --from-file option with a specific file, and pass it multiple times to the CLI.
The following yields equivalent results to the Creating from Directories example:

1. Create the ConfigMap specifying a specific file:

$ oc create configmap game-config-2 \
 --from-file=example-files/game.properties \
 --from-file=example-files/ui.properties

2. Verify the results:

$ oc get configmaps game-config-2 -o yaml

apiVersion: v1
data:
 game.properties: |-
 enemies=aliens
 lives=3
 enemies.cheat=true
 enemies.cheat.level=noGoodRotten
 secret.code.passphrase=UUDDLRLRBABAS

OpenShift Enterprise 3.2 Developer Guide

160

 secret.code.allowed=true
 secret.code.lives=30
 ui.properties: |
 color.good=purple
 color.bad=yellow
 allow.textmode=true
 how.nice.to.look=fairlyNice
kind: ConfigMap
metadata:
 creationTimestamp: 2016-02-18T18:52:05Z
 name: game-config-2
 namespace: default
 resourceVersion: "516"
 selflink: /api/v1/namespaces/default/configmaps/game-config-2
 uid: b4952dc3-d670-11e5-8cd0-68f728db1985

You can also set the key to use for an individual file with the --from-file option by passing an
expression of key=value. For example:

1. Create the ConfigMap specifying a key-value pair:

$ oc create configmap game-config-3 \
 --from-file=game-special-key=example-files/game.properties

2. Verify the results:

$ oc get configmaps game-config-3 -o yaml

apiVersion: v1
data:
 game-special-key: |-
 enemies=aliens
 lives=3
 enemies.cheat=true
 enemies.cheat.level=noGoodRotten
 secret.code.passphrase=UUDDLRLRBABAS
 secret.code.allowed=true
 secret.code.lives=30
kind: ConfigMap
metadata:
 creationTimestamp: 2016-02-18T18:54:22Z
 name: game-config-3
 namespace: default
 resourceVersion: "530"
 selflink: /api/v1/namespaces/default/configmaps/game-config-3
 uid: 05f8da22-d671-11e5-8cd0-68f728db1985

18.2.3. Creating from Literal Values

You can also supply literal values for a ConfigMap. The --from-literal option takes a key=value
syntax that allows literal values to be supplied directly on the command line:

1. Create the ConfigMap specifying a literal value:

$ oc create configmap special-config \

CHAPTER 18. CONFIGMAPS

161

$ oc create configmap special-config \
 --from-literal=special.how=very \
 --from-literal=special.type=charm

2. Verify the results:

$ oc get configmaps special-config -o yaml

apiVersion: v1
data:
 special.how: very
 special.type: charm
kind: ConfigMap
metadata:
 creationTimestamp: 2016-02-18T19:14:38Z
 name: special-config
 namespace: default
 resourceVersion: "651"
 selflink: /api/v1/namespaces/default/configmaps/special-config
 uid: dadce046-d673-11e5-8cd0-68f728db1985

18.3. USE CASES: CONSUMING CONFIGMAPS IN PODS

The following sections describe some uses cases when consuming ConfigMap objects in pods.

18.3.1. Consuming in Environment Variables

A ConfigMap can be used to populate the value of command line arguments. For example, consider
the following ConfigMap:

You can consume the keys of this ConfigMap in a pod using configMapKeyRef sections:

apiVersion: v1
kind: ConfigMap
metadata:
 name: special-config
 namespace: default
data:
 special.how: very
 special.type: charm

apiVersion: v1
kind: Pod
metadata:
 name: dapi-test-pod
spec:
 containers:
 - name: test-container
 image: gcr.io/google_containers/busybox
 command: ["/bin/sh", "-c", "env"]
 env:
 - name: SPECIAL_LEVEL_KEY
 valueFrom:
 configMapKeyRef:

OpenShift Enterprise 3.2 Developer Guide

162

When this pod is run, its output will include the following lines:

SPECIAL_LEVEL_KEY=very
SPECIAL_TYPE_KEY=charm

18.3.2. Setting Command-line Arguments

A ConfigMap can also be used to set the value of the command or arguments in a container. This is
accomplished using the Kubernetes substitution syntax $(VAR_NAME). Consider the following
ConfigMap:

To inject values into the command line, you must consume the keys you want to use as environment
variables, as in the Consuming in Environment Variables use case. Then you can refer to them in a
container’s command using the $(VAR_NAME) syntax.

 name: special-config
 key: special.how
 - name: SPECIAL_TYPE_KEY
 valueFrom:
 configMapKeyRef:
 name: special-config
 key: special.type
 restartPolicy: Never

apiVersion: v1
kind: ConfigMap
metadata:
 name: special-config
 namespace: default
data:
 special.how: very
 special.type: charm

apiVersion: v1
kind: Pod
metadata:
 name: dapi-test-pod
spec:
 containers:
 - name: test-container
 image: gcr.io/google_containers/busybox
 command: ["/bin/sh", "-c", "echo $(SPECIAL_LEVEL_KEY)
$(SPECIAL_TYPE_KEY)"]
 env:
 - name: SPECIAL_LEVEL_KEY
 valueFrom:
 configMapKeyRef:
 name: special-config
 key: special.how
 - name: SPECIAL_TYPE_KEY
 valueFrom:
 configMapKeyRef:

CHAPTER 18. CONFIGMAPS

163

When this pod is run, the output from the test-container container will be:

very charm

18.3.3. Consuming in Volumes

A ConfigMap can also be consumed in volumes. Returning again to the following example
ConfigMap:

You have a couple different options for consuming this ConfigMap in a volume. The most basic way is
to populate the volume with files where the key is the file name and the content of the file is the value
of the key:

When this pod is run, the output will be:

very

You can also control the paths within the volume where ConfigMap keys are projected:

 name: special-config
 key: special.type
 restartPolicy: Never

apiVersion: v1
kind: ConfigMap
metadata:
 name: special-config
 namespace: default
data:
 special.how: very
 special.type: charm

apiVersion: v1
kind: Pod
metadata:
 name: dapi-test-pod
spec:
 containers:
 - name: test-container
 image: gcr.io/google_containers/busybox
 command: ["/bin/sh", "cat", "/etc/config/special.how"]
 volumeMounts:
 - name: config-volume
 mountPath: /etc/config
 volumes:
 - name: config-volume
 configMap:
 name: special-config
 restartPolicy: Never

apiVersion: v1
kind: Pod
metadata:

OpenShift Enterprise 3.2 Developer Guide

164

When this pod is run, the output will be:

very

18.4. EXAMPLE: CONFIGURING REDIS

For a real-world example, you can configure Redis using a ConfigMap. To inject Redis with the
recommended configuration for using Redis as a cache, the Redis configuration file should contain the
following:

maxmemory 2mb
maxmemory-policy allkeys-lru

If your configuration file is located at example-files/redis/redis-config , create a ConfigMap with it:

1. Create the ConfigMap specifying the configuration file:

$ oc create configmap example-redis-config \
 --from-file=example-files/redis/redis-config

2. Verify the results:

$ oc get configmap example-redis-config -o yaml

apiVersion: v1
data:
 redis-config: |
 maxmemory 2mb
 maxmemory-policy allkeys-lru
kind: ConfigMap
metadata:
 creationTimestamp: 2016-04-06T05:53:07Z
 name: example-redis-config
 namespace: default
 resourceVersion: "2985"
 selflink: /api/v1/namespaces/default/configmaps/example-redis-

 name: dapi-test-pod
spec:
 containers:
 - name: test-container
 image: gcr.io/google_containers/busybox
 command: ["/bin/sh", "cat", "/etc/config/path/to/special-key"]
 volumeMounts:
 - name: config-volume
 mountPath: /etc/config
 volumes:
 - name: config-volume
 configMap:
 name: special-config
 items:
 - key: special.how
 path: path/to/special-key
 restartPolicy: Never

CHAPTER 18. CONFIGMAPS

165

config
 uid: d65739c1-fbbb-11e5-8a72-68f728db1985

Now, create a pod that uses this ConfigMap:

1. Create a pod definition like the following and save it to a file, for example redis-pod.yaml:

2. Create the pod:

$ oc create -f redis-pod.yaml

The newly-created pod has a ConfigMap volume that places the redis-config key of the example-
redis-config ConfigMap into a file called redis.conf. This volume is mounted into the /redis-master
directory in the Redis container, placing our configuration file at /redis-master/redis.conf , which is
where the image looks for the Redis configuration file for the master.

If you oc exec into this pod and run the redis-cli tool, you can check that the configuration was
applied correctly:

$ oc exec -it redis redis-cli
127.0.0.1:6379> CONFIG GET maxmemory
1) "maxmemory"
2) "2097152"

apiVersion: v1
kind: Pod
metadata:
 name: redis
spec:
 containers:
 - name: redis
 image: kubernetes/redis:v1
 env:
 - name: MASTER
 value: "true"
 ports:
 - containerPort: 6379
 resources:
 limits:
 cpu: "0.1"
 volumeMounts:
 - mountPath: /redis-master-data
 name: data
 - mountPath: /redis-master
 name: config
 volumes:
 - name: data
 emptyDir: {}
 - name: config
 configMap:
 name: example-redis-config
 items:
 - key: redis-config
 path: redis.conf

OpenShift Enterprise 3.2 Developer Guide

166

127.0.0.1:6379> CONFIG GET maxmemory-policy
1) "maxmemory-policy"
2) "allkeys-lru"

18.5. RESTRICTIONS

A ConfigMap must be created before they are consumed in pods. Controllers can be written to
tolerate missing configuration data; consult individual components configured via ConfigMap on a
case-by-case basis.

ConfigMap objects reside in a project. They can only be referenced by pods in the same project.

The Kubelet only supports use of a ConfigMap for pods it gets from the API server. This includes any
pods created using the CLI, or indirectly from a replication controller. It does not include pods created
using the OpenShift Enterprise node’s --manifest-url flag, its --config flag, or its REST API
(these are not common ways to create pods).

CHAPTER 18. CONFIGMAPS

167

CHAPTER 19. USING DAEMONSETS

19.1. OVERVIEW

A daemonset can be used to run replicas of a pod on specific or all nodes in an OpenShift Enterprise
cluster.

Use daemonsets to create shared storage, run a logging pod on every node in your cluster, or deploy a
monitoring agent on every node.

For more information on daemonsets, see the Kubernetes documentation.

IMPORTANT

Daemonset scheduling is incompatible with project’s default node selector. If you fail to
disable it, the daemonset gets restricted by merging with the default node selector. This
results in frequent pod recreates on the nodes that got unselected by the merged node
selector, which in turn puts unwanted load on the cluster.

Therefore,

Before you start using daemonsets, disable the default project-wide node
selector in your namespace, by setting the namespace annotation
openshift.io/node-selector to an empty string:

oc patch namespace myproject -p \
 '{"metadata": {"annotations": {"openshift.io/node-
selector": ""}}}'

If you are creating a new project, overwrite the default node selector using oc
adm new-project --node-selector="".

19.2. CREATING DAEMONSETS

IMPORTANT

Before creating daemonsets, ensure you have been given the required role by your
OpenShift Enterprise administrator.

When creating daemonsets, the nodeSelector field is used to indicate the nodes on which the
daemonset should deploy replicas.

1. Define the daemonset yaml file:

apiVersion: extensions/v1beta1
kind: DaemonSet
metadata:
 name: hello-daemonset
spec:
 selector:
 matchLabels:

 name: hello-daemonset 1
 template:

OpenShift Enterprise 3.2 Developer Guide

168

http://kubernetes.io/docs/admin/daemons/
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/cluster_administration/#using-node-selectors
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/cluster_administration/#admin-guide-granting-users-daemonset-permissions

1

2

3

 metadata:
 labels:

 name: hello-daemonset 2
 spec:

 nodeSelector: 3
 type: infra
 containers:
 - image: openshift/hello-openshift
 imagePullPolicy: Always
 name: registry
 ports:
 - containerPort: 80
 protocol: TCP
 resources: {}
 terminationMessagePath: /dev/termination-log
 serviceAccount: default
 terminationGracePeriodSeconds: 10

The label selector that determines which pods belong to the daemonset.

The pod template’s label selector. Must match the label selector above.

The node selector that determines on which nodes pod replicas should be deployed.

2. Create the daemonset object:

oc create -f daemonset.yaml

3. To verify that the pods were created, and that each node has a pod replica:

a. Find the daemonset pods:

$ oc get pods
hello-daemonset-cx6md 1/1 Running 0 2m
hello-daemonset-e3md9 1/1 Running 0 2m

b. View the pods to verify the pod has been placed onto the node:

$ oc describe pod/hello-daemonset-cx6md|grep Node
Node: openshift-node01.hostname.com/10.14.20.134
$ oc describe pod/hello-daemonset-e3md9|grep Node
Node: openshift-node02.hostname.com/10.14.20.137

CHAPTER 19. USING DAEMONSETS

169

IMPORTANT

If you update a DaemonSet’s pod template, the existing pod replicas are not
affected.

If you delete a DaemonSet and then create a new DaemonSet with a different
template but the same label selector, it recognizes any existing pod replicas as
having matching labels and thus does not update them or create new replicas
despite a mismatch in the pod template.

If you change node labels, the DaemonSet adds pods to nodes that match the
new labels and deletes pods from nodes that do not match the new labels.

To update a DaemonSet, force new pod replicas to be created by deleting the old
replicas or nodes.

OpenShift Enterprise 3.2 Developer Guide

170

CHAPTER 20. POD AUTOSCALING

20.1. OVERVIEW

A horizontal pod autoscaler, defined by a HorizontalPodAutoscaler object, specifies how the
system should automatically increase or decrease the scale of a replication controller or deployment
configuration, based on metrics collected from the pods that belong to that replication controller or
deployment configuration.

NOTE

Horizontal pod autoscaling is supported starting in OpenShift Enterprise 3.1.1.

20.2. REQUIREMENTS FOR USING HORIZONTAL POD AUTOSCALERS

In order to use horizontal pod autoscalers, your cluster administrator must have properly configured
cluster metrics.

20.3. SUPPORTED METRICS

The following metrics are supported by horizontal pod autoscalers:

Table 20.1. Metrics

Metric Description

CPU Utilization Percentage of the requested CPU

20.4. AUTOSCALING

You can create a horizontal pod autoscaler with the oc autoscale command and specify the
minimum and maximum number of pods you want to run, as well as the CPU utilization your pods
should target.

After a horizontal pod autoscaler is created, it begins attempting to query Heapster for metrics on the
pods. It may take one to two minutes before Heapster obtains the initial metrics.

After metrics are available in Heapster, the horizontal pod autoscaler computes the ratio of the
current metric utilization with the desired metric utilization, and scales up or down accordingly. The
scaling will occur at a regular interval, but it may take one to two minutes before metrics make their
way into Heapster.

For replication controllers, this scaling corresponds directly to the replicas of the replication
controller. For deployment configurations, scaling corresponds directly to the replica count of the
deployment configuration. Note that autoscaling applies only to the latest deployment in the
Complete phase.

20.5. CREATING A HORIZONTAL POD AUTOSCALER

Use the oc autoscale command and specify at least the maximum number of pods you want to run
at any given time. You can optionally specify the minimum number of pods and the average CPU

CHAPTER 20. POD AUTOSCALING

171

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/installation_and_configuration/#install-config-cluster-metrics

1

2

3

4

5

6

7

utilization your pods should target, otherwise those are given default values from the OpenShift
Enterprise server.

For example:

$ oc autoscale dc/frontend --min 1 --max 10 --cpu-percent=80
deploymentconfig "frontend" autoscaled

The above example creates a horizontal pod autoscaler with the following definition:

Example 20.1. Horizontal Pod Autoscaler Object Definition

The name of this horizontal pod autoscaler object

The kind of object to scale

The name of the object to scale

The API version of the object to scale

The minimum number of replicas to which to scale down

The maximum number of replicas to which to scale up

The percentage of the requested CPU that each pod should ideally be using

20.6. VIEWING A HORIZONTAL POD AUTOSCALER

To view the status of a horizontal pod autoscaler:

$ oc get hpa/frontend
NAME REFERENCE TARGET
CURRENT MINPODS MAXPODS AGE
frontend DeploymentConfig/default/frontend/scale 80% 79%
1 10 8d

$ oc describe hpa/frontend

apiVersion: extensions/v1beta1
kind: HorizontalPodAutoscaler
metadata:

 name: frontend 1
spec:
 scaleRef:

 kind: DeploymentConfig 2

 name: frontend 3

 apiVersion: v1 4
 subresource: scale

 minReplicas: 1 5

 maxReplicas: 10 6
 cpuUtilization:

 targetPercentage: 80 7

OpenShift Enterprise 3.2 Developer Guide

172

Name: frontend
Namespace: default
Labels: <none>
CreationTimestamp: Mon, 26 Oct 2015 21:13:47 -0400
Reference: DeploymentConfig/default/frontend/scale
Target CPU utilization: 80%
Current CPU utilization: 79%
Min pods: 1
Max pods: 10

CHAPTER 20. POD AUTOSCALING

173

CHAPTER 21. MANAGING VOLUMES

21.1. OVERVIEW

Containers are not persistent by default; on restart, their contents are cleared. Volumes are mounted
file systems available to pods and their containers which may be backed by a number of host-local or
network attached storage endpoints.

To ensure that the file system on the volume contains no errors and, if errors are present, to repair
them when possible, OpenShift Enterprise invokes the fsck utility prior to the mount utility. This
occurs when either adding a volume or updating an existing volume.

The simplest volume type is EmptyDir, which is a temporary directory on a single machine.
Administrators may also allow you to request a persistent volume that is automatically attached to
your pods.

NOTE

EmptyDir volume storage may be restricted by a quota based on the pod’s FSGroup, if
enabled by your cluster administrator.

You can use the CLI command oc volume to add, update, or remove volumes and volume mounts for
any object that has a pod template like replication controllers or deployment configurations. You can
also list volumes in pods or any object that has a pod template.

21.2. GENERAL CLI USAGE

The oc volume command uses the following general syntax:

$ oc volume <object_selection> <operation> <mandatory_parameters>
<optional_parameters>

This topic uses the form <object_type>/<name> for <object_selection> in later examples.
However, you can choose one of the following options:

Table 21.1. Object Selection

Syntax Description Example

<object_type> <name> Selects <name> of type
<object_type>.

deploymentConfig
registry

<object_type>/<name> Selects <name> of type
<object_type>.

deploymentConfig/regist
ry

<object_type>--
selector=<object_label_
selector>

Selects resources of type
<object_type> that matched
the given label selector.

deploymentConfig--
selector="name=registry
"

<object_type> --all Selects all resources of type
<object_type>.

deploymentConfig --all

OpenShift Enterprise 3.2 Developer Guide

174

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#pods
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#replication-controllers
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#deployments-and-deployment-configurations

-f or --
filename=<file_name>

File name, directory, or URL to
file to use to edit the resource.

-f registry-
deployment-config.json

Syntax Description Example

The <operation> can be one of --add, --remove, or --list.

Any <mandatory_parameters> or <optional_parameters> are specific to the selected
operation and are discussed in later sections.

21.3. ADDING VOLUMES

To add a volume, a volume mount, or both to pod templates:

$ oc volume <object_type>/<name> --add [options]

Table 21.2. Supported Options for Adding Volumes

Option Description Default

--name Name of the volume. Automatically generated, if not
specified.

-t, --type Name of the volume source.
Supported values: emptyDir,
hostPath, secret,
configmap, or
persistentVolumeClaim.

emptyDir

-c, --containers Select containers by name. It can
also take wildcard '*' that
matches any character.

'*'

-m, --mount-path Mount path inside the selected
containers.

--path Host path. Mandatory parameter
for --type=hostPath.

--secret-name Name of the secret. Mandatory
parameter for --
type=secret.

--claim-name Name of the persistent volume
claim. Mandatory parameter for -
-
type=persistentVolumeCl
aim.

CHAPTER 21. MANAGING VOLUMES

175

--source Details of volume source as a
JSON string. Recommended if the
desired volume source is not
supported by --type. See
available volume sources

-o, --output Display the modified objects
instead of updating them on the
server. Supported values: json,
yaml.

--output-version Output the modified objects with
the given version.

api-version

Option Description Default

Examples

Add a new volume source emptyDir to deployment configuration registry:

$ oc volume dc/registry --add

Add volume v1 with secret $ecret for replication controller r1 and mount inside the containers at
/data:

$ oc volume rc/r1 --add --name=v1 --type=secret --secret-name='$ecret' --
mount-path=/data

Add existing persistent volume v1 with claim name pvc1 to deployment configuration dc.json on disk,
mount the volume on container c1 at /data, and update the deployment configuration on the server:

$ oc volume -f dc.json --add --name=v1 --type=persistentVolumeClaim \
 --claim-name=pvc1 --mount-path=/data --containers=c1

Add volume v1 based on Git repository https://github.com/namespace1/project1 with revision
5125c45f9f563 for all replication controllers:

$ oc volume rc --all --add --name=v1 \
 --source='{"gitRepo": {
 "repository": "https://github.com/namespace1/project1",
 "revision": "5125c45f9f563"
 }}'

21.4. UPDATING VOLUMES

Updating existing volumes or volume mounts is the same as adding volumes, but with the --
overwrite option:

$ oc volume <object_type>/<name> --add --overwrite [options]

Examples

OpenShift Enterprise 3.2 Developer Guide

176

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/rest_api_reference/#v1-volume

Replace existing volume v1 for replication controller r1 with existing persistent volume claim pvc1:

$ oc volume rc/r1 --add --overwrite --name=v1 --type=persistentVolumeClaim
--claim-name=pvc1

Change deployment configuration d1 mount point to /opt for volume v1:

$ oc volume dc/d1 --add --overwrite --name=v1 --mount-path=/opt

21.5. REMOVING VOLUMES

To remove a volume or volume mount from pod templates:

$ oc volume <object_type>/<name> --remove [options]

Table 21.3. Supported Options for Removing Volumes

Option Description Default

--name Name of the volume.

-c, --containers Select containers by name. It can
also take wildcard '*' that
matches any character.

'*'

--confirm Indicate that you want to remove
multiple volumes at once.

-o, --output Display the modified objects
instead of updating them on the
server. Supported values: json,
yaml.

--output-version Output the modified objects with
the given version.

api-version

Some examples:

Remove a volume v1 from deployment config d1:

$ oc volume dc/d1 --remove --name=v1

Unmount volume v1 from container c1 for deployment configuration d1 and remove the volume v1 if it
is not referenced by any containers on d1:

$ oc volume dc/d1 --remove --name=v1 --containers=c1

Remove all volumes for replication controller r1:

$ oc volume rc/r1 --remove --confirm

CHAPTER 21. MANAGING VOLUMES

177

21.6. LISTING VOLUMES

To list volumes or volume mounts for pods or pod templates:

$ oc volume <object_type>/<name> --list [options]

List volume supported options:

Option Description Default

--name Name of the volume.

-c, --containers Select containers by name. It can
also take wildcard '*' that
matches any character.

'*'

Examples

List all volumes for pod p1:

$ oc volume pod/p1 --list

List volume v1 defined on all deployment configurations:

$ oc volume dc --all --name=v1

OpenShift Enterprise 3.2 Developer Guide

178

CHAPTER 22. USING PERSISTENT VOLUMES

22.1. OVERVIEW

A PersistentVolume object is a storage resource in an OpenShift Enterprise cluster. Storage is
provisioned by your cluster administrator by creating PersistentVolume objects from sources such
as GCE Persistent Disk, AWS Elastic Block Store (EBS), and NFS mounts.

NOTE

The Installation and Configuration Guide provides instructions for cluster administrators
on provisioning an OpenShift Enterprise cluster with persistent storage using NFS,
GlusterFS, Ceph RBD, OpenStack Cinder, AWS EBS , GCE Persistent Disk, iSCSI, and
Fibre Channel .

Storage can be made available to you by laying claims to the resource. You can make a request for
storage resources using a PersistentVolumeClaim object; the claim is paired with a volume that
generally matches your request.

22.2. REQUESTING STORAGE

You can request storage by creating PersistentVolumeClaim objects in your projects:

Persistent Volume Claim Object Definition

22.3. VOLUME AND CLAIM BINDING

A PersistentVolume is a specific resource. A PersistentVolumeClaim is a request for a resource
with specific attributes, such as storage size. In between the two is a process that matches a claim to
an available volume and binds them together. This allows the claim to be used as a volume in a pod.
OpenShift Enterprise finds the volume backing the claim and mounts it into the pod.

You can tell whether a claim or volume is bound by querying using the CLI:

$ oc get pvc
NAME LABELS STATUS VOLUME
claim1 map[] Bound pv0001

$ oc get pv
NAME LABELS CAPACITY ACCESSMODES

apiVersion: "v1"
kind: "PersistentVolumeClaim"
metadata:
 name: "claim1"
spec:
 accessModes:
 - "ReadWriteOnce"
 resources:
 requests:
 storage: "1Gi"
 volumeName: "pv0001"

CHAPTER 22. USING PERSISTENT VOLUMES

179

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/installation_and_configuration/#install-config-index
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/installation_and_configuration/#install-config-persistent-storage-persistent-storage-nfs
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/installation_and_configuration/#install-config-persistent-storage-persistent-storage-glusterfs
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/installation_and_configuration/#install-config-persistent-storage-persistent-storage-ceph-rbd
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/installation_and_configuration/#install-config-persistent-storage-persistent-storage-cinder
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/installation_and_configuration/#install-config-persistent-storage-persistent-storage-aws
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/installation_and_configuration/#install-config-persistent-storage-persistent-storage-gce
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/installation_and_configuration/#install-config-persistent-storage-persistent-storage-iscsi
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/installation_and_configuration/#install-config-persistent-storage-persistent-storage-fibre-channel

STATUS CLAIM
pv0001 map[] 5368709120 RWO
Bound yournamespace / claim1

22.4. CLAIMS AS VOLUMES IN PODS

A PersistentVolumeClaim is used by a pod as a volume. OpenShift Enterprise finds the claim with
the given name in the same namespace as the pod, then uses the claim to find the corresponding
volume to mount.

Pod Definition with a Claim

22.5. VOLUME AND CLAIM PRE-BINDING

If you know exactly what PersistentVolume you want your PersistentVolumeClaim to bind to,
you can specify the PV in your PVC using the volumeName field. This method skips the normal
matching and binding process. The PVC will only be able to bind to a PV that has the same name
specified in volumeName. If such a PV with that name exists and is Available, the PV and PVC will be
bound regardless of whether the PV satisfies the PVC’s label selector, access modes, and resource
requests.

Example 22.1. Persistent Volume Claim Object Definition with volumeName

apiVersion: "v1"
kind: "Pod"
metadata:
 name: "mypod"
 labels:
 name: "frontendhttp"
spec:
 containers:
 -
 name: "myfrontend"
 image: openshift/hello-openshift
 ports:
 -
 containerPort: 80
 name: "http-server"
 volumeMounts:
 -
 mountPath: "/var/www/html"
 name: "pvol"
 volumes:
 -
 name: "pvol"
 persistentVolumeClaim:
 claimName: "claim1"

apiVersion: "v1"
kind: "PersistentVolumeClaim"
metadata:
 name: "claim1"
spec:
 accessModes:

OpenShift Enterprise 3.2 Developer Guide

180

IMPORTANT

The ability to set claimRefs is a temporary workaround for the described use cases. A
long-term solution for limiting who can claim a volume is in development.

NOTE

The cluster administrator should first consider configuring selector-label volume
binding before resorting to setting claimRefs on behalf of users.

You may also want your cluster administrator to "reserve" the volume for only your claim so that
nobody else’s claim can bind to it before yours does. In this case, the administrator can specify the PVC
in the PV using the claimRef field. The PV will only be able to bind to a PVC that has the same name
and namespace specified in claimRef. The PVC’s access modes and resource requests must still be
satisfied in order for the PV and PVC to be bound, though the label selector is ignored.

Persistent Volume Object Definition with claimRef

Specifying a volumeName in your PVC does not prevent a different PVC from binding to the specified
PV before yours does. Your claim will remain Pending until the PV is Available.

Specifying a claimRef in a PV does not prevent the specified PVC from being bound to a different PV.
The PVC is free to choose another PV to bind to according to the normal binding process. Therefore, to
avoid these scenarios and ensure your claim gets bound to the volume you want, you must ensure that
both volumeName and claimRef are specified.

You can tell that your setting of volumeName and/or claimRef influenced the matching and binding
process by inspecting a Bound PV and PVC pair for the pv.kubernetes.io/bound-by-
controller annotation. The PVs and PVCs where you set the volumeName and/or claimRef

 - "ReadWriteOnce"
 resources:
 requests:
 storage: "1Gi"
 volumeName: "pv0001"

apiVersion: v1
kind: PersistentVolume
metadata:
 name: pv0001
spec:
 capacity:
 storage: 1Gi
 accessModes:
 - ReadWriteOnce
 nfs:
 path: /tmp
 server: 172.17.0.2
 persistentVolumeReclaimPolicy: Recycle
 claimRef:
 name: claim1
 namespace: default

CHAPTER 22. USING PERSISTENT VOLUMES

181

yourself will have no such annotation, but ordinary PVs and PVCs will have it set to "yes".

When a PV has its claimRef set to some PVC name and namespace, and is reclaimed according to a
Retain or Recycle recycling policy, its claimRef will remain set to the same PVC name and
namespace even if the PVC or the whole namespace no longer exists.

OpenShift Enterprise 3.2 Developer Guide

182

CHAPTER 23. EXECUTING REMOTE COMMANDS

23.1. OVERVIEW

You can use the CLI to execute remote commands in a container. This allows you to run general Linux
commands for routine operations in the container.

IMPORTANT

For security purposes, the oc exec command does not work when accessing privileged
containers. See the CLI operations topic for more information.

23.2. BASIC USAGE

Support for remote container command execution is built into the CLI:

$ oc exec <pod> [-c <container>] <command> [<arg_1> ... <arg_n>]

For example:

$ oc exec mypod date
Thu Apr 9 02:21:53 UTC 2015

23.3. PROTOCOL

Clients initiate the execution of a remote command in a container by issuing a request to the
Kubernetes API server:

/proxy/minions/<node_name>/exec/<namespace>/<pod>/<container>?command=
<command>

In the above URL:

<node_name> is the FQDN of the node.

<namespace> is the namespace of the target pod.

<pod> is the name of the target pod.

<container> is the name of the target container.

<command> is the desired command to be executed.

For example:

/proxy/minions/node123.openshift.com/exec/myns/mypod/mycontainer?
command=date

Additionally, the client can add parameters to the request to indicate if:

the client should send input to the remote container’s command (stdin).

CHAPTER 23. EXECUTING REMOTE COMMANDS

183

https://access.redhat.com/errata/RHSA-2015:1650
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/cli_reference/#troubleshooting-and-debugging-cli-operations
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/cli_reference/#cli-reference-index

the client’s terminal is a TTY.

the remote container’s command should send output from stdout to the client.

the remote container’s command should send output from stderr to the client.

After sending an exec request to the API server, the client upgrades the connection to one that
supports multiplexed streams; the current implementation uses SPDY.

The client creates one stream each for stdin, stdout, and stderr. To distinguish among the streams, the
client sets the streamType header on the stream to one of stdin, stdout, or stderr.

The client closes all streams, the upgraded connection, and the underlying connection when it is
finished with the remote command execution request.

NOTE

Administrators can see the Architecture guide for more information.

OpenShift Enterprise 3.2 Developer Guide

184

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#architecture-additional-concepts-remote-commands

CHAPTER 24. COPYING FILES TO OR FROM A CONTAINER

24.1. OVERVIEW

You can use the CLI to copy local files to or from a remote directory in a container. This is a useful tool
for copying database archives to and from your pods for backup and restore purposes. It can also be
used to copy source code changes into a running pod for development debugging, when the running
pod supports hot reload of source files.

24.2. BASIC USAGE

Support for copying local files to or from a container is built into the CLI:

$ oc rsync <source> <destination> [-c <container>]

For example, to copy a local directory to a pod directory:

$ oc rsync /home/user/source devpod1234:/src

Or to copy a pod directory to a local directory:

$ oc rsync devpod1234:/src /home/user/source

24.3. BACKING UP AND RESTORING DATABASES

Use oc rsync to copy database archives from an existing database container to a new database
container’s persistent volume directory.

NOTE

MySQL is used in the example below. Replace mysql|MYSQL with pgsql|PGSQL or
mongodb|MONGODB and refer to the migration guide to find the exact commands for
each of our supported database images. The example assumes an existing database
container.

1. Back up the existing database from a running database pod:

$ oc rsh <existing db container>
mkdir /var/lib/mysql/data/db_archive_dir
mysqldump --skip-lock-tables -h ${MYSQL_SERVICE_HOST} -P
${MYSQL_SERVICE_PORT:-3306} \
 -u ${MYSQL_USER} --password="$MYSQL_PASSWORD" --all-databases >
/var/lib/mysql/data/db_archive_dir/all.sql
exit

2. Remote sync the archive file to your local machine:

$ oc rsync <existing db container with db
archive>:/var/lib/mysql/data/db_archive_dir /tmp/.

CHAPTER 24. COPYING FILES TO OR FROM A CONTAINER

185

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/cli_reference/#cli-reference-index

1

3. Start a second MySQL pod into which to load the database archive file created above. The
MySQL pod must have a unique DATABASE_SERVICE_NAME.

$ oc new-app mysql-persistent \
 -p MYSQL_USER=<archived mysql username> \
 -p MYSQL_PASSWORD=<archived mysql password> \
 -p MYSQL_DATABASE=<archived database name> \

 -p DATABASE_SERVICE_NAME='mysql2' 1
$ oc rsync /tmp/db_archive_dir new_dbpod1234:/var/lib/mysql/data
$ oc rsh new_dbpod1234

mysql is the default. In this example, mysql2 is created.

4. Use the appropriate commands to restore the database in the new database container from
the copied database archive directory:

MySQL

$ cd /var/lib/mysql/data/db_archive_dir
$ mysql -u root
$ source all.sql
$ GRANT ALL PRIVILEGES ON <dbname>.* TO '<your
username>'@'localhost'; FLUSH PRIVILEGES;
$ cd ../; rm -rf /var/lib/mysql/data/db_backup_dir

You now have two MySQL database pods running in your project with the archived database.

24.4. REQUIREMENTS

The oc rsync command uses the local rsync command if present on the client’s machine. This
requires that the remote container also have the rsync command.

If rsync is not found locally or in the remote container, then a tar archive will be created locally and
sent to the container where tar will be used to extract the files. If tar is not available in the remote
container, then the copy will fail.

The tar copy method does not provide the same functionality as rsync. For example, rsync creates
the destination directory if it does not exist and will only send files that are different between the
source and the destination.

NOTE

In Windows, the cwRsync client should be installed and added to the PATH for use with
the oc rsync command.

24.5. SPECIFYING THE COPY SOURCE

The source argument of the oc rsync command must point to either a local directory or a pod
directory. Individual files are not currently supported.

When specifying a pod directory the directory name must be prefixed with the pod name:

OpenShift Enterprise 3.2 Developer Guide

186

<pod name>:<dir>

Just as with UNIX rsync, if the directory name ends in a path separator (/), only the contents of the
directory are copied to the destination. Otherwise, the directory itself is copied to the destination with
all its contents.

24.6. SPECIFYING THE COPY DESTINATION

The destination argument of the oc rsync command must point to a directory. If the directory does
not exist, but rsync is used for copy, the directory is created for you.

24.7. DELETING FILES AT THE DESTINATION

The --delete flag may be used to delete any files in the remote directory that are not in the local
directory.

CHAPTER 24. COPYING FILES TO OR FROM A CONTAINER

187

CHAPTER 25. PORT FORWARDING

25.1. OVERVIEW

You can use the CLI to forward one or more local ports to a pod. This allows you to listen on a given or
random port locally, and have data forwarded to and from given ports in the pod.

25.2. BASIC USAGE

Support for port forwarding is built into the CLI:

$ oc port-forward <pod> [<local_port>:]<remote_port> [...[<local_port_n>:]
<remote_port_n>]

The CLI listens on each local port specified by the user, forwarding via the protocol described below.

Ports may be specified using the following formats:

5000 The client listens on port 5000 locally and forwards to 5000 in the pod.

6000:5000 The client listens on port 6000 locally and forwards to 5000 in the pod.

:5000 or
0:5000

The client selects a free local port and forwards to 5000 in the pod.

For example, to listen on ports 5000 and 6000 locally and forward data to and from ports 5000 and
6000 in the pod, run:

$ oc port-forward <pod> 5000 6000

To listen on port 8888 locally and forward to 5000 in the pod, run:

$ oc port-forward <pod> 8888:5000

To listen on a free port locally and forward to 5000 in the pod, run:

$ oc port-forward <pod> :5000

Or, alternatively:

$ oc port-forward <pod> 0:5000

25.3. PROTOCOL

Clients initiate port forwarding to a pod by issuing a request to the Kubernetes API server:

/proxy/minions/<node_name>/portForward/<namespace>/<pod>

OpenShift Enterprise 3.2 Developer Guide

188

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/cli_reference/#cli-reference-index

In the above URL:

<node_name> is the FQDN of the node.

<namespace> is the namespace of the target pod.

<pod> is the name of the target pod.

For example:

/proxy/minions/node123.openshift.com/portForward/myns/mypod

After sending a port forward request to the API server, the client upgrades the connection to one that
supports multiplexed streams; the current implementation uses SPDY.

The client creates a stream with the port header containing the target port in the pod. All data written
to the stream is delivered via the Kubelet to the target pod and port. Similarly, all data sent from the
pod for that forwarded connection is delivered back to the same stream in the client.

The client closes all streams, the upgraded connection, and the underlying connection when it is
finished with the port forwarding request.

NOTE

Administrators can see the Architecture guide for more information.

CHAPTER 25. PORT FORWARDING

189

http://www.chromium.org/spdy
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#architecture-additional-concepts-port-forwarding

1

2

3

CHAPTER 26. SHARED MEMORY

26.1. OVERVIEW

There are two types of shared memory objects in Linux: System V and POSIX. The containers in a pod
share the IPC namespace of the pod infrastructure container and so are able to share the System V
shared memory objects. This document describes how they can also share POSIX shared memory
objects.

26.2. POSIX SHARED MEMORY

POSIX shared memory requires that a tmpfs be mounted at /dev/shm. The containers in a pod do not
share their mount namespaces so we use volumes to provide the same /dev/shm into each container
in a pod. The following example shows how to set up POSIX shared memory between two containers.

shared-memory.yaml

specifies the tmpfs volume dshm.

enables POSIX shared memory for hello-container1 via dshm.

enables POSIX shared memory for hello-container2 via dshm.

apiVersion: v1
id: hello-openshift
kind: Pod
metadata:
 name: hello-openshift
 labels:
 name: hello-openshift
spec:

 volumes: 1
 - name: dshm
 emptyDir:
 medium: Memory
 containers:
 - image: kubernetes/pause
 name: hello-container1
 ports:
 - containerPort: 8080
 hostPort: 6061

 volumeMounts: 2
 - mountPath: /dev/shm
 name: dshm
 - image: kubernetes/pause
 name: hello-container2
 ports:
 - containerPort: 8081
 hostPort: 6062

 volumeMounts: 3
 - mountPath: /dev/shm
 name: dshm

OpenShift Enterprise 3.2 Developer Guide

190

Create the pod using the shared-memory.yaml file:

$ oc create -f shared-memory.yaml

CHAPTER 26. SHARED MEMORY

191

CHAPTER 27. APPLICATION HEALTH

27.1. OVERVIEW

In software systems, components can become unhealthy due to transient issues (such as temporary
connectivity loss), configuration errors, or problems with external dependencies. OpenShift Enterprise
applications have a number of options to detect and handle unhealthy containers.

27.2. CONTAINER HEALTH CHECKS USING PROBES

A probe is a Kubernetes action that periodically performs diagnostics on a running container.
Currently, two types of probes exist, each serving a different purpose:

Liveness Probe A liveness probe checks if the container in which it is configured is still running. If the
liveness probe fails, the kubelet kills the container, which will be subjected to its restart
policy. Set a liveness check by configuring the
template.spec.containers.livenessprobe stanza of a pod configuration.

Readiness Probe A readiness probe determines if a container is ready to service requests. If the
readiness probe fails a container, the endpoints controller ensures the container has
its IP address removed from the endpoints of all services. A readiness probe can be
used to signal to the endpoints controller that even though a container is running, it
should not receive any traffic from a proxy. Set a readiness check by configuring the
template.spec.containers.readinessprobe stanza of a pod
configuration.

The exact timing of a probe is controlled by two fields, both expressed in units of seconds:

Field Description

initialDelaySeconds How long to wait after the container starts to begin
the probe.

timeoutSeconds How long to wait for the probe to finish (default: 1).
If this time is exceeded, OpenShift Enterprise
considers the probe to have failed.

Both probes can be configured in three ways:

HTTP Checks

The kubelet uses a web hook to determine the healthiness of the container. The check is deemed
successful if the HTTP response code is between 200 and 399. The following is an example of a
readiness check using the HTTP checks method:

Example 27.1. Readiness HTTP check

...
readinessProbe:
 httpGet:

OpenShift Enterprise 3.2 Developer Guide

192

 path: /healthz
 port: 8080
 initialDelaySeconds: 15
 timeoutSeconds: 1
...

A HTTP check is ideal for applications that return HTTP status codes when completely initialized.

Container Execution Checks

The kubelet executes a command inside the container. Exiting the check with status 0 is considered a
success. The following is an example of a liveness check using the container execution method:

Example 27.2. Liveness Container Execution Check

...
livenessProbe:
 exec:
 command:
 - cat
 - /tmp/health
 initialDelaySeconds: 15
 timeoutSeconds: 1
...

TCP Socket Checks

The kubelet attempts to open a socket to the container. The container is only considered healthy if the
check can establish a connection. The following is an example of a liveness check using the TCP socket
check method:

Example 27.3. Liveness TCP Socket Check

...
livenessProbe:
 tcpSocket:
 port: 8080
 initialDelaySeconds: 15
 timeoutSeconds: 1
...

A TCP socket check is ideal for applications that do not start listening until initialization is complete.

For more information on health checks, see the Kubernetes documentation.

CHAPTER 27. APPLICATION HEALTH

193

http://kubernetes.io/docs/user-guide/walkthrough/k8s201/#health-checking

CHAPTER 28. EVENTS

28.1. OVERVIEW

Events in OpenShift Enterprise are modeled based on events that happen to API objects in an
OpenShift Enterprise cluster. Events allow OpenShift Enterprise to record information about real-
world events in a resource-agnostic manner. They also allow developers and administrators to
consume information about system components in a unified way.

28.2. VIEWING EVENTS WITH THE CLI

You can get a list of events in a given project using the following command:

$ oc get events [-n <project>]

28.3. VIEWING EVENTS IN THE CONSOLE

You can see events in your project from the web console from the Browse → Events page. Many other
objects, such as pods and deployments, have their own Events tab as well, which shows events related
to that object.

28.4. COMPREHENSIVE LIST OF EVENTS

This section describes the events of OpenShift Enterprise.

Table 28.1. Configuration Events

Name Description

FailedValida
tion

Failed pod configuration validation.

Table 28.2. Container Events

Name Description

BackOff Back-off restarting failed the container.

Created Container created.

Failed Pull/Create/Start failed.

Killing Killing the container.

Started Container started.

Table 28.3. Health Events

OpenShift Enterprise 3.2 Developer Guide

194

Name Description

Unhealthy Container is unhealthy.

Table 28.4. Image Events

Name Description

BackOff Back off Ctr Start, image pull.

ErrImageNeve
rPull

The image’s NeverPull Policy is violated.

Failed Failed to pull the image.

InspectFaile
d

Failed to inspect the image.

Pulled Successfully pulled the image or the container image is already present on the
machine.

Pulling Pulling the image.

Table 28.5. Image Manager Events

Name Description

FreeDiskSpac
eFailed

Free disk space failed.

InvalidDiskC
apacity

Invalid disk capacity.

Table 28.6. Node Events

Name Description

FailedMount Volume mount failed.

HostNetworkN
otSupported

Host network not supported.

HostPortConf
lict

Host/port conflict.

Insufficient
FreeCPU

Insufficient free CPU.

CHAPTER 28. EVENTS

195

Insufficient
FreeMemory

Insufficient free memory.

KubeletSetup
Failed

Kubelet setup failed.

NilShaper Undefined shaper.

NodeNotReady Node is not ready.

NodeNotSched
ulable

Node is not schedulable.

NodeReady Node is ready.

NodeSchedula
ble

Node is schedulable.

NodeSelector
Mismatching

Node selector mismatch.

OutOfDisk Out of disk.

Rebooted Node rebooted.

Starting Starting kubelet.

Name Description

Table 28.7. Pod Worker Events

Name Description

FailedSync Pod sync failed.

Table 28.8. System Events

Name Description

SystemOOM There is an OOM (out of memory) situation on the cluster.

OpenShift Enterprise 3.2 Developer Guide

196

CHAPTER 29. DOWNWARD API

29.1. OVERVIEW

It is common for containers to consume information about API objects. The downward API is a
mechanism that allows containers to do this without coupling to OpenShift Enterprise. Containers can
consume information from the downward API using environment variables or a volume plug-in.

29.2. SELECTING FIELDS

Fields within the pod are selected using the FieldRef API type. FieldRef has two fields:

Field Description

fieldPath The path of the field to select, relative to the pod.

apiVersion The API version to interpret the fieldPath
selector within.

Currently, these are the valid selectors in the v1 API:

Selector Description

metadata.name The pod’s name. This is supported in both
environment variables and volumes.

metadata.namespace The pod’s namespace.This is supported in both
environment variables and volumes.

metadata.labels The pod’s labels. This is only supported in volumes
and not in environment variables.

metadata.annotations The pod’s annotations. This is only supported in
volumes and not in environment variables.

status.podIP The pod’s IP. This is only supported in environment
variables and not volumes.

The apiVersion field, if not specified, defaults to the API version of the enclosing pod template.

In the future, more information, such as resource limits for pods and information about services, will be
available using the downward API.

29.3. USING ENVIRONMENT VARIABLES

One mechanism for consuming the downward API is using a container’s environment variables. The
EnvVar type’s valueFrom field (of type EnvVarSource) is used to specify that the variable’s value
should come from a FieldRef source instead of the literal value specified by the value field. In the

CHAPTER 29. DOWNWARD API

197

future, additional sources may be supported; currently the source’s fieldRef field is used to select a
field from the downward API.

Only constant attributes of the pod can be consumed this way, as environment variables cannot be
updated once a process is started in a way that allows the process to be notified that the value of a
variable has changed. The fields supported using environment variables are:

Pod name

Pod namespace

For example:

1. Create a pod.json file:

2. Create the pod from the pod.json file:

$ oc create -f pod.json

3. Check the container’s logs:

$ oc logs -p dapi-env-test-pod

You should see MY_POD_NAME and MY_POD_NAMESPACE in the logs.

29.4. USING THE VOLUME PLUG-IN

Another mechanism for consuming the downward API is using a volume plug-in. The downward API
volume plug-in creates a volume with configured fields projected into files. The metadata field of the
VolumeSource API object is used to configure this volume. The plug-in supports the following fields:

Pod name

Pod namespace

apiVersion: v1
kind: Pod
metadata:
 name: dapi-env-test-pod
spec:
 containers:
 - name: env-test-container
 image: gcr.io/google_containers/busybox
 command: ["/bin/sh", "-c", "env"]
 env:
 - name: MY_POD_NAME
 valueFrom:
 fieldRef:
 fieldPath: metadata.name
 - name: MY_POD_NAMESPACE
 valueFrom:
 fieldRef:
 fieldPath: metadata.namespace
 restartPolicy: Never

OpenShift Enterprise 3.2 Developer Guide

198

1

2

3

4

Pod annotations

Pod labels

Example 29.1. Downward API Volume Plug-in Configuration

The metadata field of the volume source configures the downward API volume.

The items field holds a list of fields to project into the volume.

The name of the file to project the field into.

The selector of the field to project.

For example:

1. Create a volume-pod.json file:

spec:
 volumes:
 - name: podinfo

 metadata: 1

 items: 2

 - name: "labels" 3
 fieldRef:

 fieldPath: metadata.labels 4

kind: Pod
apiVersion: v1
metadata:
 labels:
 zone: us-east-coast
 cluster: downward-api-test-cluster1
 rack: rack-123
 name: dapi-volume-test-pod
 annotations:
 annotation1: 345
 annotation2: 456
spec:
 containers:
 - name: volume-test-container
 image: gcr.io/google_containers/busybox
 command: ["sh", "-c", "cat /etc/labels /etc/annotations"]
 volumeMounts:
 - name: podinfo
 mountPath: /etc
 readOnly: false
 volumes:
 - name: podinfo
 metadata:
 items:
 - name: "labels"
 fieldRef:

CHAPTER 29. DOWNWARD API

199

2. Create the pod from the volume-pod.json file:

$ oc create -f volume-pod.json

3. Check the container’s logs and verify the presence of the configured fields:

$ oc logs -p dapi-volume-test-pod
cluster=downward-api-test-cluster1
rack=rack-123
zone=us-east-coast
annotation1=345
annotation2=456
kubernetes.io/config.source=api

 fieldPath: metadata.labels
 - name: "annotations"
 fieldRef:
 fieldPath: metadata.annotations
 restartPolicy: Never

OpenShift Enterprise 3.2 Developer Guide

200

CHAPTER 30. MANAGING ENVIRONMENT VARIABLES

30.1. SETTING AND UNSETTING ENVIRONMENT VARIABLES

OpenShift Enterprise provides the oc set env command to set or unset environment variables for
objects that have a pod template, such as replication controllers or deployment configurations. It can
also list environment variables in pods or any object that has a pod template. This command can also
be used on BuildConfig objects.

30.2. LIST ENVIRONMENT VARIABLES

To list environment variables in pods or pod templates:

$ oc set env <object-selection> --list [<common-options>]

This example lists all environment variables for pod p1:

$ oc set env pod/p1 --list

30.3. SET ENVIRONMENT VARIABLES

To set environment variables in the pod templates:

$ oc set env <object-selection> KEY_1=VAL_1 ... KEY_N=VAL_N [<set-env-
options>] [<common-options>]

Set environment options:

Option Description

-e, --env=<KEY>=<VAL> Set given key value pairs of environment variables.

--overwrite Confirm updating existing environment variables.

In the following example, both commands modify environment variable STORAGE in the deployment
config registry. The first adds, with value /data. The second updates, with value /opt.

$ oc set env dc/registry STORAGE=/data
$ oc set env dc/registry --overwrite STORAGE=/opt

The following example finds environment variables in the current shell whose names begin with
RAILS_ and adds them to the replication controller r1 on the server:

$ env | grep RAILS_ | oc set env rc/r1 -e -

The following example does not modify the replication controller defined in file rc.json. Instead, it
writes a YAML object with updated environment STORAGE=/local to new file rc.yaml.

$ oc set env -f rc.json STORAGE=/opt -o yaml > rc.yaml

CHAPTER 30. MANAGING ENVIRONMENT VARIABLES

201

30.3.1. Automatically Added Environment Variables

Table 30.1. Automatically Added Environment Variables

Variable Name

<SVCNAME>_SERVICE_HOST

<SVCNAME>_SERVICE_PORT

Example Usage

The service KUBERNETES which exposes TCP port 53 and has been allocated cluster IP address
10.0.0.11 produces the following environment variables:

KUBERNETES_SERVICE_PORT=53
MYSQL_DATABASE=root
KUBERNETES_PORT_53_TCP=tcp://10.0.0.11:53
KUBERNETES_SERVICE_HOST=10.0.0.11

NOTE

Use the oc rsh command to SSH into your container and run oc set env to list all
available variables.

30.4. UNSET ENVIRONMENT VARIABLES

To unset environment variables in the pod templates:

$ oc set env <object-selection> KEY_1- ... KEY_N- [<common-options>]

IMPORTANT

The trailing hyphen (-, U+2D) is required.

This example removes environment variables ENV1 and ENV2 from deployment config d1:

$ oc set env dc/d1 ENV1- ENV2-

This removes environment variable ENV from all replication controllers:

$ oc set env rc --all ENV-

This removes environment variable ENV from container c1 for replication controller r1:

$ oc set env rc r1 --containers='c1' ENV-

OpenShift Enterprise 3.2 Developer Guide

202

CHAPTER 31. JOBS

31.1. OVERVIEW

A job, in contrast to a replication controller, runs a pod with any number of replicas to completion. A
job tracks the overall progress of a task and updates its status with information about active,
succeeded, and failed pods. Deleting a job will clean up any pod replicas it created. Jobs are part of the
Kubernetes API, which can be managed with oc commands like other object types.

See the Kubernetes documentation for more information about jobs.

31.2. CREATING A JOB

A job configuration consists of the following key parts:

A pod template, which describes the application the pod will create.

An optional parallelism parameter, which specifies how many pod replicas running in
parallel should execute a job. If not specified, this defaults to the value in the completions
parameter.

An optional completions parameter, specifying how many concurrently running pods should
execute a job. If not specified, this value defaults to one.

The following is an example of a job resource:

1. Label selector of the pod to run. It uses the generalized label selectors .

2. Optional value for how many pod replicas a job should run in parallel; defaults to
completions.

apiVersion: extensions/v1beta1
kind: Job
metadata:
 name: pi
spec:

 selector: 1
 matchLabels:
 app: pi

 parallelism: 1 2

 completions: 1 3

 template: 4
 metadata:
 name: pi
 labels:
 app: pi
 spec:
 containers:
 - name: pi
 image: perl
 command: ["perl", "-Mbignum=bpi", "-wle", "print bpi(2000)"]
 restartPolicy: Never

CHAPTER 31. JOBS

203

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#replication-controllers
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/cli_reference/#object-types
http://kubernetes.io/docs/user-guide/jobs/
https://github.com/kubernetes/kubernetes/blob/master/docs/user-guide/labels.md#label-selectors

3. Optional value for how many successful pod completions are needed to mark a job completed;
defaults to one.

4. Template for the pod the controller creates.

31.3. SCALING A JOB

A job can be scaled up or down by using the oc scale command with the --replicas option, which,
in the case of jobs, modifies the spec.parallelism parameter. This will result in modifying the
number of pod replicas running in parallel, executing a job.

The following command uses the example job above, and sets the parallelism parameter to three:

$ oc scale job pi --replicas=3

NOTE

Scaling replication controllers also uses the oc scale command with the --replicas
option, but instead changes the replicas parameter of a replication controller
configuration.

31.4. SETTING MAXIMUM DURATION

When defining a Job, you can define its maximum duration by setting the activeDeadlineSeconds
field. It is specified in seconds and is not set by default. When not set, there is no maximum duration
enforced.

The maximum duration is counted from the time when a first pod gets scheduled in the system, and
defines how long a job can be active. It tracks overall time of an execution and is irrelevant to the
number of completions (number of pod replicas needed to execute a task). After reaching the specified
timeout, the job is terminated by OpenShift Enterprise.

The following example shows the part of a Job specifying activeDeadlineSeconds field for 30
minutes:

 spec:
 activeDeadlineSeconds: 1800

OpenShift Enterprise 3.2 Developer Guide

204

CHAPTER 32. REVISION HISTORY: DEVELOPER GUIDE

32.1. MON APR 03 2017

Affected Topic Description of Change

Quotas and Limit
Ranges

Removed "m" as a valid suffix for memory in the Compute Resources section.

32.2. TUE MAR 14 2017

Affected Topic Description of Change

Secrets Added an example YAML file of a secret that will create four files.

32.3. TUE FEB 21 2017

Affected Topic Description of Change

Secrets Corrected an example YAML file and added missing steps.

32.4. MON JAN 30 2017

Affected Topic Description of Change

Managing Environment
Variables

Removed redundant information and CLI reference material; rearranged
sections to match user process.

Builds Updated the example Dockerfile path to point to a file, not a directory.

32.5. MON JAN 16 2017

Affected Topic Description of Change

Managing Images Added information about the supports annotation on image streams.

32.6. MON JAN 09 2017

Affected Topic Description of Change

Templates Updated the oc export all command example.

CHAPTER 32. REVISION HISTORY: DEVELOPER GUIDE

205

Builds Added the FROM Image section.

Affected Topic Description of Change

32.7. TUE OCT 11 2016

Affected Topic Description of Change

Copying Files to or from
a Container

Added a procedure outlining how oc rsync can be used to copy database
archives from an existing database container to a new database container’s
persistent volume directory.

32.8. TUE OCT 04 2016

Affected Topic Description of Change

Builds Added information on shallow cloning.

32.9. TUE SEP 13 2016

Affected Topic Description of Change

Using Daemonsets New topic on using daemonsets as a developer.

32.10. TUE SEP 06 2016

Affected Topic Description of Change

Deployments Added a new Running a Pod with a Different Service Account section.

Migrating Applications
→ Migrating Database
Applications

Fixed the formatting of some commands.

Events Added a comprehensive list of events.

32.11. MON AUG 29 2016

Affected Topic Description of Change

OpenShift Enterprise 3.2 Developer Guide

206

Migrating Applications Added a new set of topics reviewing the migration procedure of OpenShift
version 2 (v2) applications to OpenShift version 3 (v3), including:

Migrating Database Applications

Migrating Web Framework Applications

QuickStart Examples

Continuous Integration and Deployment (CI/CD)

Webhooks and Action Hooks

S2I Tool

Support Guide

Affected Topic Description of Change

32.12. MON AUG 08 2016

Affected Topic Description of Change

Using Persistent
Volumes

Added a spec.volumeName field to the Requesting Storage example.

32.13. MON AUG 01 2016

Affected Topic Description of Change

Integrating External
Services

Corrected the endpoints example within the External MySQL Database section.

32.14. WED JUL 27 2016

Affected Topic Description of Change

Builds Added Build Resources section.

Downward API Added support details in the Selecting Fields section.

Application Health Removed High-level Application Health Checks section.

Creating New
Applications

Added the Useful Edits section with instructions on how to deploy an application
to selected nodes.

CHAPTER 32. REVISION HISTORY: DEVELOPER GUIDE

207

32.15. THU JUL 14 2016

Affected Topic Description of Change

Builds Fixed build configuration example in the Other section.

Managing Images Updated the oc secrets new --help command to be oc secrets
new-dockercfg --help.

Deployments Clarified operational conditions around config-change and image-change
triggers.

Added the mid lifecycle-hook in the Recreate Strategy section.

Secrets Added clarifying details to the Restrictions section.

Managing Volumes Added configmap to the list of supported values for the --type option of the
oc volume command.

Port Forwarding Updated outdated syntax instances of oc port-forward -p.

Downward API Added status.podIP as a valid selector in the v1 API.

Managing Environment
Variables

Added information about automatically added environment variables.

32.16. TUE JUN 14 2016

Affected Topic Description of Change

Quotas and Limit
Ranges

Added a section on project resource limits.

32.17. FRI JUN 10 2016

Affected Topic Description of Change

Opening a Remote Shell
to Containers

Added a new topic on opening a remote shell to containers.

32.18. MON MAY 30 2016

Affected Topic Description of Change

OpenShift Enterprise 3.2 Developer Guide

208

Templates Fixed oc process example in the Parameters section.

Copying Files to or from
a Container

Added use cases for the oc rsync command to the Overview.

Builds Updated the examples in the Defining a BuildConfig, Git Repository Source
Options, and Using a Proxy for Git Cloning sections to use https for GitHub
access.

Affected Topic Description of Change

32.19. THU MAY 12 2016

OpenShift Enterprise 3.2 initial release.

Affected Topic Description of Change

Builds Added information about binary builds to the Binary Source section.

Clarified how to avoid copying the base directory when including extra files in the
image source.

Added a Troubleshooting Guidance table.

Added a Using Secrets During a Build section.

Added a Build Hooks section.

Added an Image Source section.

Added a Deleting a BuildConfig section.

Jobs Added a Setting Maximum Duration section, which includes job deadline
information.

Resource Quota Moved the topic from Developer Guide to Cluster Administration, as it involves
cluster administration tasks, and renamed it to Setting Quotas.

ConfigMaps New topic for the new ConfigMap object.

Managing Images New topic aggregating many related tasks regarding images and image streams.
Includes many sections previously found in the Builds and Image Streams and
Image Pull Secrets topics, as well as updated and enhanced details throughout.

Added an Important box to Adding Tags to Image Streams advising against
tagging internally managed images.

CHAPTER 32. REVISION HISTORY: DEVELOPER GUIDE

209

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/cluster_administration/#admin-guide-quota
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#architecture-core-concepts-builds-and-image-streams

Added a Creating an Image Stream by Manually Pushing an Image section.

Added an Importing Images from Private Registries section.

Quotas and Limit
Ranges

Consolidated and re-used developer-relevant information about quotas and limit
ranges from related Cluster Administrator topics into what was previously the
"Compute Resources" topic, and renamed it to Quotas and Limit Ranges.

Service Accounts Updated to use the oc create serviceaccount command.

Application Life Cycle
Examples

Added images to the Application Life Cycle Examples topic.

Managing Volumes Added a Note indicating that EmptyDir volume storage may be restricted by a
quota based on the pods FSGroup, if enabled by your cluster administrator.

Application Life Cycle
Examples

Added the Application Life Cycle Examples topic to the Developer Guide, which
outlines example workflows for building applications.

Projects Added a Note box about project creation limits.

Pod Autoscaling Updated to include oc autoscale usage.

Affected Topic Description of Change

OpenShift Enterprise 3.2 Developer Guide

210

	Table of Contents
	CHAPTER 1. OVERVIEW
	CHAPTER 2. APPLICATION LIFE CYCLE EXAMPLES
	2.1. OVERVIEW
	2.2. DEVELOPING ON OPENSHIFT ENTERPRISE
	2.3. DEVELOPING THEN DEPLOYING ON OPENSHIFT ENTERPRISE

	CHAPTER 3. AUTHENTICATION
	3.1. WEB CONSOLE AUTHENTICATION
	3.2. CLI AUTHENTICATION

	CHAPTER 4. PROJECTS
	4.1. OVERVIEW
	4.2. CREATING A PROJECT
	4.3. VIEWING PROJECTS
	4.4. CHECKING PROJECT STATUS
	4.5. FILTERING BY LABELS
	4.6. DELETING A PROJECT

	CHAPTER 5. CREATING NEW APPLICATIONS
	5.1. OVERVIEW
	5.2. CREATING AN APPLICATION USING THE CLI
	5.2.1. Creating an Application From Source Code
	5.2.2. Creating an Application From an Image
	5.2.3. Creating an Application From a Template
	5.2.4. Further Modifying Application Creation
	5.2.4.1. Specifying Environment Variables
	5.2.4.2. Specifying Labels
	5.2.4.3. Viewing the Output Without Creation
	5.2.4.4. Creating Objects With Different Names
	5.2.4.5. Creating Objects in a Different Project
	5.2.4.6. Creating Multiple Objects
	5.2.4.7. Grouping Images and Source in a Single Pod
	5.2.4.8. Useful Edits

	5.3. CREATING AN APPLICATION USING THE WEB CONSOLE

	CHAPTER 6. MIGRATING APPLICATIONS
	6.1. OVERVIEW
	6.2. MIGRATING DATABASE APPLICATIONS
	6.2.1. Overview
	6.2.2. Supported Databases
	6.2.3. MySQL
	6.2.4. PostgreSQL
	6.2.5. MongoDB

	6.3. MIGRATING WEB FRAMEWORK APPLICATIONS
	6.3.1. Overview
	6.3.2. Python
	6.3.3. Ruby
	6.3.4. PHP
	6.3.5. Perl
	6.3.6. Node.js
	6.3.7. JBoss EAP
	6.3.8. JBoss WS (Tomcat)
	6.3.9. JBoss AS (Wildfly 10)
	6.3.10. Supported JBoss/XPaas Versions

	6.4. QUICKSTART EXAMPLES
	6.4.1. Overview
	6.4.2. Workflow

	6.5. CONTINUOUS INTEGRATION AND DEPLOYMENT (CI/CD)
	6.5.1. Overview
	6.5.2. Jenkins

	6.6. WEBHOOKS AND ACTION HOOKS
	6.6.1. Overview
	6.6.2. Webhooks
	6.6.3. Action Hooks

	6.7. S2I TOOL
	6.7.1. Overview
	6.7.2. Creating a Container Image

	6.8. SUPPORT GUIDE
	6.8.1. Overview
	6.8.2. Supported Databases
	6.8.3. Supported Languages
	6.8.4. Supported Frameworks
	6.8.5. Supported Markers
	6.8.6. Supported Environment Variables

	CHAPTER 7. APPLICATION TUTORIALS
	7.1. OVERVIEW
	7.2. QUICKSTART TEMPLATES
	7.2.1. Overview
	7.2.2. Web Framework Quickstart Templates

	7.3. RUBY ON RAILS
	7.3.1. Overview
	7.3.2. Local Workstation Setup
	7.3.2.1. Setting Up the Database

	7.3.3. Writing Your Application
	7.3.3.1. Creating a Welcome Page
	7.3.3.2. Configuring the Application for OpenShift Enterprise
	7.3.3.3. Storing Your Application in Git

	7.3.4. Deploying Your Application to OpenShift Enterprise
	7.3.4.1. Creating the Database Service
	7.3.4.2. Creating the Frontend Service
	7.3.4.3. Creating a Route for Your Application

	CHAPTER 8. OPENING A REMOTE SHELL TO CONTAINERS
	8.1. OVERVIEW
	8.2. START A SECURE SHELL SESSION
	8.3. SECURE SHELL SESSION HELP

	CHAPTER 9. TEMPLATES
	9.1. OVERVIEW
	9.2. UPLOADING A TEMPLATE
	9.3. CREATING FROM TEMPLATES USING THE WEB CONSOLE
	9.4. CREATING FROM TEMPLATES USING THE CLI
	9.4.1. Labels
	9.4.2. Parameters
	9.4.3. Generating a List of Objects

	9.5. MODIFYING AN UPLOADED TEMPLATE
	9.6. USING THE INSTANT APP AND QUICKSTART TEMPLATES
	9.7. WRITING TEMPLATES
	9.7.1. Description
	9.7.2. Labels
	9.7.3. Parameters
	9.7.4. Object List
	9.7.5. Creating a Template from Existing Objects

	CHAPTER 10. SERVICE ACCOUNTS
	10.1. OVERVIEW
	10.2. USER NAMES AND GROUPS
	10.3. DEFAULT SERVICE ACCOUNTS AND ROLES
	10.4. MANAGING SERVICE ACCOUNTS
	10.5. MANAGING SERVICE ACCOUNT CREDENTIALS
	10.6. MANAGING ALLOWED SECRETS
	10.7. USING A SERVICE ACCOUNT’S CREDENTIALS INSIDE A CONTAINER
	10.8. USING A SERVICE ACCOUNT’S CREDENTIALS EXTERNALLY

	CHAPTER 11. BUILDS
	11.1. OVERVIEW
	11.2. DEFINING A BUILDCONFIG
	11.3. SOURCE-TO-IMAGE STRATEGY OPTIONS
	11.3.1. Force Pull
	11.3.2. Incremental Builds
	11.3.3. Overriding Builder Image Scripts
	11.3.4. Environment Variables
	11.3.4.1. Environment Files
	11.3.4.2. BuildConfig Environment

	11.4. DOCKER STRATEGY OPTIONS
	11.4.1. FROM Image
	11.4.2. Dockerfile Path
	11.4.3. No Cache
	11.4.4. Force Pull
	11.4.5. Environment Variables

	11.5. CUSTOM STRATEGY OPTIONS
	11.5.1. FROM Image
	11.5.2. Exposing the Docker Socket
	11.5.3. Secrets
	11.5.4. Force Pull
	11.5.5. Environment Variables

	11.6. BUILD INPUTS
	11.7. GIT REPOSITORY SOURCE OPTIONS
	11.7.1. Using a Proxy for Git Cloning
	11.7.2. Using Private Repositories for Builds
	11.7.2.1. Basic Authentication
	11.7.2.2. SSH Key Based Authentication
	11.7.2.3. Other

	11.8. DOCKERFILE SOURCE
	11.9. BINARY SOURCE
	11.10. IMAGE SOURCE
	11.11. USING SECRETS DURING A BUILD
	11.11.1. Defining Secrets in the BuildConfig
	11.11.2. Source-to-Image Strategy
	11.11.3. Docker Strategy
	11.11.4. Custom Strategy

	11.12. STARTING A BUILD
	11.13. CANCELING A BUILD
	11.14. DELETING A BUILDCONFIG
	11.15. VIEWING BUILD DETAILS
	11.16. ACCESSING BUILD LOGS
	11.17. SETTING MAXIMUM DURATION
	11.18. BUILD TRIGGERS
	11.18.1. Webhook Triggers
	11.18.2. Image Change Triggers
	11.18.3. Configuration Change Triggers

	11.19. BUILD HOOKS
	11.19.1. Using the Command Line

	11.20. USING DOCKER CREDENTIALS FOR PUSHING AND PULLING IMAGES
	11.21. BUILD RUN POLICY
	11.21.1. Serial Run Policy
	11.21.2. SerialLatestOnly Run Policy
	11.21.3. Parallel Run Policy

	11.22. BUILD OUTPUT
	11.22.1. Output Image Environment Variables
	11.22.2. Output Image Labels

	11.23. USING EXTERNAL ARTIFACTS DURING A BUILD
	11.24. BUILD RESOURCES
	11.25. TROUBLESHOOTING

	CHAPTER 12. MANAGING IMAGES
	12.1. OVERVIEW
	12.2. TAGGING IMAGES
	12.2.1. Adding Tags to Image Streams
	12.2.2. Removing Tags from Image Streams
	12.2.3. Referencing Images in Image Streams

	12.3. IMAGE PULL POLICY
	12.4. ACCESSING THE INTERNAL REGISTRY
	12.5. USING IMAGE PULL SECRETS
	12.5.1. Allowing Pods to Reference Images Across Projects
	12.5.2. Allowing Pods to Reference Images from Other Secured Registries

	12.6. IMPORTING TAG AND IMAGE METADATA
	12.6.1. Importing Images from Insecure Registries
	12.6.2. Importing Images from Private Registries
	12.6.3. Importing Images Across Projects
	12.6.4. Creating an Image Stream by Manually Pushing an Image

	CHAPTER 13. QUOTAS AND LIMIT RANGES
	13.1. OVERVIEW
	13.2. QUOTAS
	13.2.1. Viewing Quotas
	13.2.2. Resources Managed by Quota
	13.2.3. Quota Scopes
	13.2.4. Quota Enforcement
	13.2.5. Requests vs Limits

	13.3. LIMIT RANGES
	13.3.1. Viewing Limit Ranges
	13.3.2. Container Limits
	13.3.3. Pod Limits

	13.4. COMPUTE RESOURCES
	13.4.1. CPU Requests
	13.4.2. Viewing Compute Resources
	13.4.3. CPU Limits
	13.4.4. Memory Requests
	13.4.5. Memory Limits
	13.4.6. Quality of Service Tiers
	13.4.7. Specifying Compute Resources via CLI

	13.5. PROJECT RESOURCE LIMITS

	CHAPTER 14. DEPLOYMENTS
	14.1. OVERVIEW
	14.2. CREATING A DEPLOYMENT CONFIGURATION
	14.3. STARTING A DEPLOYMENT
	14.4. VIEWING A DEPLOYMENT
	14.5. CANCELING A DEPLOYMENT
	14.6. RETRYING A DEPLOYMENT
	14.7. ROLLING BACK A DEPLOYMENT
	14.8. EXECUTING COMMANDS INSIDE A CONTAINER
	14.9. VIEWING DEPLOYMENT LOGS
	14.10. TRIGGERS
	14.10.1. Configuration Change Trigger
	14.10.2. Image Change Trigger

	14.11. STRATEGIES
	14.11.1. Rolling Strategy
	14.11.2. Recreate Strategy
	14.11.3. Custom Strategy

	14.12. LIFECYCLE HOOKS
	14.12.1. Pod-based Lifecycle Hook

	14.13. DEPLOYMENT RESOURCES
	14.14. MANUAL SCALING
	14.15. ASSIGNING PODS TO SPECIFIC NODES
	14.16. RUNNING A POD WITH A DIFFERENT SERVICE ACCOUNT

	CHAPTER 15. ROUTES
	15.1. OVERVIEW
	15.2. CREATING ROUTES

	CHAPTER 16. INTEGRATING EXTERNAL SERVICES
	16.1. OVERVIEW
	16.2. EXTERNAL MYSQL DATABASE
	16.3. EXTERNAL SAAS PROVIDER

	CHAPTER 17. SECRETS
	17.1. OVERVIEW
	17.2. PROPERTIES OF SECRETS
	17.2.1. Secrets and the Pod Lifecycle

	17.3. CREATING AND USING SECRETS
	17.3.1. Creating Secrets
	17.3.2. Secrets in Volumes and Environment Variables
	17.3.3. Image Pull Secrets
	17.3.4. Source Clone Secrets

	17.4. RESTRICTIONS
	17.4.1. Secret Data Keys

	17.5. EXAMPLES
	17.6. TROUBLESHOOTING

	CHAPTER 18. CONFIGMAPS
	18.1. OVERVIEW
	18.2. CREATING CONFIGMAPS
	18.2.1. Creating from Directories
	18.2.2. Creating from Files
	18.2.3. Creating from Literal Values

	18.3. USE CASES: CONSUMING CONFIGMAPS IN PODS
	18.3.1. Consuming in Environment Variables
	18.3.2. Setting Command-line Arguments
	18.3.3. Consuming in Volumes

	18.4. EXAMPLE: CONFIGURING REDIS
	18.5. RESTRICTIONS

	CHAPTER 19. USING DAEMONSETS
	19.1. OVERVIEW
	19.2. CREATING DAEMONSETS

	CHAPTER 20. POD AUTOSCALING
	20.1. OVERVIEW
	20.2. REQUIREMENTS FOR USING HORIZONTAL POD AUTOSCALERS
	20.3. SUPPORTED METRICS
	20.4. AUTOSCALING
	20.5. CREATING A HORIZONTAL POD AUTOSCALER
	20.6. VIEWING A HORIZONTAL POD AUTOSCALER

	CHAPTER 21. MANAGING VOLUMES
	21.1. OVERVIEW
	21.2. GENERAL CLI USAGE
	21.3. ADDING VOLUMES
	21.4. UPDATING VOLUMES
	21.5. REMOVING VOLUMES
	21.6. LISTING VOLUMES

	CHAPTER 22. USING PERSISTENT VOLUMES
	22.1. OVERVIEW
	22.2. REQUESTING STORAGE
	22.3. VOLUME AND CLAIM BINDING
	22.4. CLAIMS AS VOLUMES IN PODS
	22.5. VOLUME AND CLAIM PRE-BINDING

	CHAPTER 23. EXECUTING REMOTE COMMANDS
	23.1. OVERVIEW
	23.2. BASIC USAGE
	23.3. PROTOCOL

	CHAPTER 24. COPYING FILES TO OR FROM A CONTAINER
	24.1. OVERVIEW
	24.2. BASIC USAGE
	24.3. BACKING UP AND RESTORING DATABASES
	24.4. REQUIREMENTS
	24.5. SPECIFYING THE COPY SOURCE
	24.6. SPECIFYING THE COPY DESTINATION
	24.7. DELETING FILES AT THE DESTINATION

	CHAPTER 25. PORT FORWARDING
	25.1. OVERVIEW
	25.2. BASIC USAGE
	25.3. PROTOCOL

	CHAPTER 26. SHARED MEMORY
	26.1. OVERVIEW
	26.2. POSIX SHARED MEMORY

	CHAPTER 27. APPLICATION HEALTH
	27.1. OVERVIEW
	27.2. CONTAINER HEALTH CHECKS USING PROBES

	CHAPTER 28. EVENTS
	28.1. OVERVIEW
	28.2. VIEWING EVENTS WITH THE CLI
	28.3. VIEWING EVENTS IN THE CONSOLE
	28.4. COMPREHENSIVE LIST OF EVENTS

	CHAPTER 29. DOWNWARD API
	29.1. OVERVIEW
	29.2. SELECTING FIELDS
	29.3. USING ENVIRONMENT VARIABLES
	29.4. USING THE VOLUME PLUG-IN

	CHAPTER 30. MANAGING ENVIRONMENT VARIABLES
	30.1. SETTING AND UNSETTING ENVIRONMENT VARIABLES
	30.2. LIST ENVIRONMENT VARIABLES
	30.3. SET ENVIRONMENT VARIABLES
	30.3.1. Automatically Added Environment Variables

	30.4. UNSET ENVIRONMENT VARIABLES

	CHAPTER 31. JOBS
	31.1. OVERVIEW
	31.2. CREATING A JOB
	31.3. SCALING A JOB
	31.4. SETTING MAXIMUM DURATION

	CHAPTER 32. REVISION HISTORY: DEVELOPER GUIDE
	32.1. MON APR 03 2017
	32.2. TUE MAR 14 2017
	32.3. TUE FEB 21 2017
	32.4. MON JAN 30 2017
	32.5. MON JAN 16 2017
	32.6. MON JAN 09 2017
	32.7. TUE OCT 11 2016
	32.8. TUE OCT 04 2016
	32.9. TUE SEP 13 2016
	32.10. TUE SEP 06 2016
	32.11. MON AUG 29 2016
	32.12. MON AUG 08 2016
	32.13. MON AUG 01 2016
	32.14. WED JUL 27 2016
	32.15. THU JUL 14 2016
	32.16. TUE JUN 14 2016
	32.17. FRI JUN 10 2016
	32.18. MON MAY 30 2016
	32.19. THU MAY 12 2016

