
OpenShift sandboxed containers 1.6

User guide

Deploying sandboxed containers in OpenShift Container Platform

Last Updated: 2024-09-23

OpenShift sandboxed containers 1.6 User guide

Deploying sandboxed containers in OpenShift Container Platform

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Deploying OpenShift sandboxed containers in OpenShift Container Platform on bare metal, public
cloud, and IBM platforms.

. .

. .

. .

. .

Table of Contents

PREFACE
PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

CHAPTER 1. ABOUT OPENSHIFT SANDBOXED CONTAINERS
1.1. FEATURES
1.2. COMPATIBILITY WITH OPENSHIFT CONTAINER PLATFORM
1.3. NODE ELIGIBILITY CHECKS
1.4. COMMON TERMS
1.5. OPENSHIFT SANDBOXED CONTAINERS OPERATOR
1.6. OPENSHIFT VIRTUALIZATION
1.7. STORAGE CONSIDERATIONS

1.7.1. Block volume support
1.8. FIPS COMPLIANCE

CHAPTER 2. DEPLOYING WORKLOADS ON BARE METAL
2.1. PREPARING YOUR ENVIRONMENT

2.1.1. Resource requirements
2.1.2. Installing the OpenShift sandboxed containers Operator

2.1.2.1. Installing the Operator by using the web console
2.1.2.2. Installing the Operator by using the CLI
2.1.2.3. Additional resources

2.1.3. Creating the NodeFeatureDiscovery CR
2.2. DEPLOYING WORKLOADS BY USING THE WEB CONSOLE

2.2.1. Creating a KataConfig custom resource
2.2.2. Configuring workload objects

2.3. DEPLOYING WORKLOADS BY USING THE COMMAND LINE
2.3.1. Optional: Provisioning local block volumes by using the Local Storage Operator
2.3.2. Optional: Deploying nodes on a block device
2.3.3. Creating a KataConfig custom resource
2.3.4. Optional: Modifying pod overhead
2.3.5. Configuring workload objects

CHAPTER 3. DEPLOYING WORKLOADS ON PUBLIC CLOUD
3.1. DEPLOYING WORKLOADS ON AWS

3.1.1. Preparing your environment
3.1.1.1. Resource requirements
3.1.1.2. Enabling ports for AWS
3.1.1.3. Installing the OpenShift sandboxed containers Operator

3.1.1.3.1. Installing the Operator by using the web console
3.1.1.3.2. Installing the Operator by using the CLI
3.1.1.3.3. Additional resources

3.1.2. Deploying workloads by using the web console
3.1.2.1. Creating a secret
3.1.2.2. Creating a config map
3.1.2.3. Creating a KataConfig custom resource

3.1.2.3.1. Optional: Verifying the pod VM image
3.1.2.4. Optional: Modifying the number of peer pod VMs per node
3.1.2.5. Configuring workload objects

3.1.3. Deploying workloads by using the command line
3.1.3.1. Creating a secret
3.1.3.2. Creating a config map
3.1.3.3. Creating a KataConfig custom resource

5
5

6
6
7
8
9

10
10
10
10
11

13
13
13
15
15
16
17
18
19
19
21
22
22
24
25
27
27

29
29
29
29
31
32
32
32
34
34
34
35
37
39
40
40
42
42
43
45

Table of Contents

1

. .

. .

. .

3.1.3.3.1. Optional: Verifying the pod VM image
3.1.3.4. Optional: Modifying the number of peer pod VMs per node
3.1.3.5. Configuring workload objects

3.2. DEPLOYING WORKLOADS ON AZURE
3.2.1. Preparing your environment

3.2.1.1. Resource requirements
3.2.1.2. Installing the OpenShift sandboxed containers Operator

3.2.1.2.1. Installing the Operator by using the web console
3.2.1.2.2. Installing the Operator by using the CLI
3.2.1.2.3. Additional resources

3.2.2. Deploying workloads by using the web console
3.2.2.1. Creating a secret
3.2.2.2. Creating a config map
3.2.2.3. Creating an SSH key secret
3.2.2.4. Creating a KataConfig custom resource

3.2.2.4.1. Optional: Verifying the pod VM image
3.2.2.5. Optional: Modifying the number of peer pod VMs per node
3.2.2.6. Configuring workload objects

3.2.3. Deploying workloads by using the command line
3.2.3.1. Creating a secret
3.2.3.2. Creating a config map
3.2.3.3. Creating an SSH key secret
3.2.3.4. Creating a KataConfig custom resource

3.2.3.4.1. Optional: Verifying the pod VM image
3.2.3.5. Optional: Modifying the number of peer pod VMs per node
3.2.3.6. Configuring workload objects

CHAPTER 4. DEPLOYING WORKLOADS ON IBM
4.1. PREPARING YOUR ENVIRONMENT

4.1.1. Resource requirements
4.1.2. Installing the OpenShift sandboxed containers Operator

4.1.2.1. Installing the Operator by using the web console
4.1.2.2. Installing the Operator by using the CLI
4.1.2.3. Additional resources

4.2. DEPLOYING WORKLOADS BY USING THE COMMAND LINE
4.2.1. Configuring a libvirt volume
4.2.2. Creating a KVM guest image
4.2.3. Building a peer pod VM image
4.2.4. Creating a secret
4.2.5. Creating a config map
4.2.6. Creating an SSH key secret
4.2.7. Creating a KataConfig custom resource
4.2.8. Optional: Modifying the number of peer pod VMs per node
4.2.9. Configuring workload objects

CHAPTER 5. MONITORING
5.1. ABOUT METRICS
5.2. VIEWING METRICS

CHAPTER 6. UNINSTALLING
6.1. UNINSTALLING BY USING THE WEB CONSOLE

6.1.1. Deleting workload pods
6.1.2. Deleting the KataConfig CR
6.1.3. Uninstalling the Operator

46
47
47
49
49
49
51
51
52
53
53
53
55
57
57
59
60
60
62
62
63
65
65
67
68
68

70
70
71
72
72
73
74
74
75
76
77
79
80
80
81

83
83

85
85
85

87
87
87
87
88

OpenShift sandboxed containers 1.6 User guide

2

. .

. .

. .

6.1.4. Deleting the KataConfig CRD
6.2. UNINSTALLING BY USING THE CLI

6.2.1. Deleting workload pods
6.2.2. Deleting the KataConfig CR
6.2.3. Uninstalling the Operator
6.2.4. Deleting the KataConfig CRD

CHAPTER 7. UPGRADING
7.1. UPGRADING RESOURCES
7.2. UPGRADING THE OPERATOR

CHAPTER 8. TROUBLESHOOTING
8.1. COLLECTING DATA FOR RED HAT SUPPORT

Using the must-gather tool
8.2. COLLECTING LOG DATA

8.2.1. Enabling debug logs for CRI-O runtime
8.2.2. Viewing debug logs for components
Additional resources

APPENDIX A. KATACONFIG STATUS MESSAGES

89
89
90
90
91

92

93
93
93

94
94
94
95
95
96
97

98

Table of Contents

3

OpenShift sandboxed containers 1.6 User guide

4

PREFACE

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
You can provide feedback or report an error by submitting the Create Issue form in Jira. The Jira issue
will be created in the Red Hat Hybrid Cloud Infrastructure Jira project, where you can track the progress
of your feedback.

1. Ensure that you are logged in to Jira. If you do not have a Jira account, you must create a Red
Hat Jira account.

2. Launch the Create Issue form.

3. Complete the Summary, Description, and Reporter fields.
In the Description field, include the documentation URL, chapter or section number, and a
detailed description of the issue.

4. Click Create.

PREFACE

5

https://issues.redhat.com
https://issues.redhat.com/secure/CreateIssueDetails!init.jspa?pid=12341520&summary=Documentation+feedback&issuetype=1&description=Details:%0A%0ADocumentation+URL:%0A%0A&priority=10200&labels=hcidocs-feedback&components=12393342

CHAPTER 1. ABOUT OPENSHIFT SANDBOXED CONTAINERS
OpenShift sandboxed containers for OpenShift Container Platform integrates Kata Containers as an
optional runtime, providing enhanced security and isolation by running containerized applications in
lightweight virtual machines. This integration provides a more secure runtime environment for sensitive
workloads without significant changes to existing OpenShift workflows. This runtime supports
containers in dedicated virtual machines (VMs), providing improved workload isolation.

1.1. FEATURES

OpenShift sandboxed containers provides the following features:

Run privileged or untrusted workloads

You can safely run workloads that require specific privileges, without the risk of compromising cluster
nodes by running privileged containers. Workloads that require special privileges include the
following:

Workloads that require special capabilities from the kernel, beyond the default ones granted
by standard container runtimes such as CRI-O, for example to access low-level networking
features.

Workloads that need elevated root privileges, for example to access a specific physical
device. With OpenShift sandboxed containers, it is possible to pass only a specific device
through to the virtual machines (VM), ensuring that the workload cannot access or
misconfigure the rest of the system.

Workloads for installing or using set-uid root binaries. These binaries grant special privileges
and, as such, can present a security risk. With OpenShift sandboxed containers, additional
privileges are restricted to the virtual machines, and grant no special access to the cluster
nodes.
Some workloads require privileges specifically for configuring the cluster nodes. Such
workloads should still use privileged containers, because running on a virtual machine would
prevent them from functioning.

Ensure isolation for sensitive workloads

The OpenShift sandboxed containers for Red Hat OpenShift Container Platform integrates Kata
Containers as an optional runtime, providing enhanced security and isolation by running
containerized applications in lightweight virtual machines. This integration provides a more secure
runtime environment for sensitive workloads without significant changes to existing OpenShift
workflows. This runtime supports containers in dedicated virtual machines (VMs), providing improved
workload isolation.

Ensure kernel isolation for each workload

You can run workloads that require custom kernel tuning (such as sysctl, scheduler changes, or
cache tuning) and the creation of custom kernel modules (such as out of tree or special arguments).

Share the same workload across tenants

You can run workloads that support many users (tenants) from different organizations sharing the
same OpenShift Container Platform cluster. The system also supports running third-party workloads
from multiple vendors, such as container network functions (CNFs) and enterprise applications.
Third-party CNFs, for example, may not want their custom settings interfering with packet tuning or
with sysctl variables set by other applications. Running inside a completely isolated kernel is helpful
in preventing "noisy neighbor" configuration problems.

Ensure proper isolation and sandboxing for testing software

You can run containerized workloads with known vulnerabilities or handle issues in an existing

OpenShift sandboxed containers 1.6 User guide

6

You can run containerized workloads with known vulnerabilities or handle issues in an existing
application. This isolation enables administrators to give developers administrative control over pods,
which is useful when the developer wants to test or validate configurations beyond those an
administrator would typically grant. Administrators can, for example, safely and securely delegate
kernel packet filtering (eBPF) to developers. eBPF requires CAP_ADMIN or CAP_BPF privileges,
and is therefore not allowed under a standard CRI-O configuration, as this would grant access to
every process on the Container Host worker node. Similarly, administrators can grant access to
intrusive tools such as SystemTap, or support the loading of custom kernel modules during their
development.

Ensure default resource containment through VM boundaries

By default, OpenShift sandboxed containers manages resources such as CPU, memory, storage, and
networking in a robust and secure way. Since OpenShift sandboxed containers deploys on VMs,
additional layers of isolation and security give a finer-grained access control to the resource. For
example, an errant container will not be able to assign more memory than is available to the VM.
Conversely, a container that needs dedicated access to a network card or to a disk can take complete
control over that device without getting any access to other devices.

1.2. COMPATIBILITY WITH OPENSHIFT CONTAINER PLATFORM

The required functionality for the OpenShift Container Platform platform is supported by two main
components:

Kata Runtime: This includes Red Hat Enterprise Linux CoreOS (RHCOS) and updates with every
OpenShift Container Platform release.

OpenShift sandboxed containers Operator: Install the Operator using either the web console or
OpenShift CLI (oc).

The OpenShift sandboxed containers Operator is a Rolling Stream Operator, which means the latest
version is the only supported version. It works with all currently supported versions of the OpenShift
Container Platform. For more information, see OpenShift Container Platform Life Cycle Policy for
additional details.

The Operator depends on the features that come with the RHCOS host and the environment it runs in.

NOTE

You must install Red Hat Enterprise Linux CoreOS (RHCOS) on the worker nodes. RHEL
nodes are not supported.

The following compatibility matrix between OpenShift sandboxed containers and OpenShift Container
Platform releases identifies compatible features and environments.

Table 1.1. Supported architectures

Architecture OpenShift Container Platform version

x86_64 4.8 or later

s390x 4.14 or later

There are two ways to deploy Kata containers runtime:

CHAPTER 1. ABOUT OPENSHIFT SANDBOXED CONTAINERS

7

https://access.redhat.com/support/policy/updates/openshift/
https://access.redhat.com/support/policy/updates/openshift_operators#rolling-stream
https://access.redhat.com/support/policy/updates/openshift/

bare metal

Peer pods

Peer pods technology began with OpenShift sandboxed containers 1.5 / OpenShift Container Platform
4.14, allowing the deployment of OpenShift sandboxed containers in public clouds.

Table 1.2. Feature availability by OpenShift version

Feature Deployment method OpenShift Container
Platform 4.15

OpenShift Container
Platform 4.16

Confidential

Containers[1]

bare metal No No

Peer pods Developer Preview Developer Preview

GPU support[2] bare metal No No

Peer pods Developer Preview Developer Preview

1. Confidential Containers are only supported on AMD SEV-SNP.

2. GPU functionality is not available on s390x.

Table 1.3. Supported platforms for OpenShift sandboxed containers

Platform Peer pods GPU Confidential containers

AWS Cloud Computing
Services

Yes Developer Preview No

Microsoft Azure Cloud
Computing Services

Yes Developer Preview Developer Preview

Additional resources

Developer Preview Support Scope

Deploying workloads on AWS

Deploying workloads on Azure

Deploying workloads on bare metal

1.3. NODE ELIGIBILITY CHECKS

Before you deploy OpenShift sandboxed containers, you can check whether the nodes in your bare-
metal cluster can run OpenShift sandboxed containers. The most common reason for node ineligibility is
lack of virtualization support. If you run sandboxed workloads on ineligible nodes, you will experience
errors.

OpenShift sandboxed containers 1.6 User guide

8

https://access.redhat.com/support/offerings/devpreview
https://docs.redhat.com/en/documentation/openshift_sandboxed_containers/1.6/html/user_guide/deploying-public-cloud#deploying-workloads-aws
https://docs.redhat.com/en/documentation/openshift_sandboxed_containers/1.6/html/user_guide/deploying-public-cloud#deploying-workloads-azure
https://docs.redhat.com/en/documentation/openshift_sandboxed_containers/1.6/html/user_guide/deploying-bare-metal

High-level workflow

1. Install the Node Feature Discovery Operator.

2. Create the NodeFeatureDiscovery custom resource (CR).

3. Enable node eligibility checks when you create the Kataconfig CR. You can run node eligibility
checks on all worker nodes or on selected nodes.

Additional resources

Installing the Node Feature Discovery Operator

1.4. COMMON TERMS

The following terms are used throughout the documentation.

Sandbox

A sandbox is an isolated environment where programs can run. In a sandbox, you can run untested or
untrusted programs without risking harm to the host machine or the operating system.
In the context of OpenShift sandboxed containers, sandboxing is achieved by running workloads in a
different kernel using virtualization, providing enhanced control over the interactions between
multiple workloads that run on the same host.

Pod

A pod is a construct that is inherited from Kubernetes and OpenShift Container Platform. It
represents resources where containers can be deployed. Containers run inside of pods, and pods are
used to specify resources that can be shared between multiple containers.
In the context of OpenShift sandboxed containers, a pod is implemented as a virtual machine. Several
containers can run in the same pod on the same virtual machine.

OpenShift sandboxed containers Operator

An Operator is a software component that automates operations, which are actions that a human
operator could do on the system.
The OpenShift sandboxed containers Operator is tasked with managing the lifecycle of sandboxed
containers on a cluster. You can use the OpenShift sandboxed containers Operator to perform tasks
such as the installation and removal of sandboxed containers, software updates, and status
monitoring.

Kata Containers

Kata Containers is a core upstream project that is used to build OpenShift sandboxed containers.
OpenShift sandboxed containers integrate Kata Containers with OpenShift Container Platform.

KataConfig

KataConfig objects represent configurations of sandboxed containers. They store information about
the state of the cluster, such as the nodes on which the software is deployed.

Runtime class

A RuntimeClass object describes which runtime can be used to run a given workload. A runtime class
that is named kata is installed and deployed by the OpenShift sandboxed containers Operator. The
runtime class contains information about the runtime that describes resources that the runtime
needs to operate, such as the pod overhead.

Peer pod

CHAPTER 1. ABOUT OPENSHIFT SANDBOXED CONTAINERS

9

https://docs.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/specialized_hardware_and_driver_enablement/index#about-node-feature-discovery-operator_node-feature-discovery-operator
https://kubernetes.io/docs/concepts/scheduling-eviction/pod-overhead/

A peer pod in OpenShift sandboxed containers extends the concept of a standard pod. Unlike a
standard sandboxed container, where the virtual machine is created on the worker node itself, in a
peer pod, the virtual machine is created through a remote hypervisor using any supported hypervisor
or cloud provider API. The peer pod acts as a regular pod on the worker node, with its corresponding
VM running elsewhere. The remote location of the VM is transparent to the user and is specified by
the runtime class in the pod specification. The peer pod design circumvents the need for nested
virtualization.

1.5. OPENSHIFT SANDBOXED CONTAINERS OPERATOR

The OpenShift sandboxed containers Operator encapsulates all of the components from Kata
containers. It manages installation, lifecycle, and configuration tasks.

The OpenShift sandboxed containers Operator is packaged in the Operator bundle format as two
container images:

The bundle image contains metadata and is required to make the operator OLM-ready.

The second container image contains the actual controller that monitors and manages the
KataConfig resource.

The OpenShift sandboxed containers Operator is based on the Red Hat Enterprise Linux CoreOS
(RHCOS) extensions concept. RHCOS extensions are a mechanism to install optional OpenShift
Container Platform software. The OpenShift sandboxed containers Operator uses this mechanism to
deploy sandboxed containers on a cluster.

The sandboxed containers RHCOS extension contains RPMs for Kata, QEMU, and its dependencies. You
can enable them by using the MachineConfig resources that the Machine Config Operator provides.

Additional resources

Adding extensions to RHCOS

1.6. OPENSHIFT VIRTUALIZATION

You can deploy OpenShift sandboxed containers on clusters with OpenShift Virtualization.

To run OpenShift Virtualization and OpenShift sandboxed containers at the same time, your virtual
machines must be live migratable so that they do not block node reboots. See About live migration in
the OpenShift Virtualization documentation for details.

1.7. STORAGE CONSIDERATIONS

1.7.1. Block volume support

OpenShift Container Platform can statically provision raw block volumes. These volumes do not have a
file system, and can provide performance benefits for applications that either write to the disk directly
or implement their own storage service.

You can use a local block device as persistent volume (PV) storage with OpenShift sandboxed
containers. This block device can be provisioned using the Local Storage Operator (LSO).

The Local Storage Operator is not installed in OpenShift Container Platform by default. See Installing
the Local Storage Operator for installation instructions.

OpenShift sandboxed containers 1.6 User guide

10

https://docs.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/operators/operator_sdk/index#osdk-working-bundle-images.html
https://docs.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/post_installation_configuration/index#rhcos-add-extensions_post-install-machine-configuration-tasks
https://docs.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/virtualization/index#virt-about-live-migration
https://docs.openshift.com/container-platform/4.15/storage/persistent_storage/persistent_storage_local/persistent-storage-local.html#local-storage-install_persistent-storage-local

1

2

Raw block volumes for OpenShift sandboxed containers are provisioned by specifying volumeMode:
Block in the PV specification.

Block volume example

volumeMode must be set to Block to indicate that this PV is a raw block volume.

Replace this value with your actual local disks filepath to the LocalVolume resource by-id. PVs are
created for these local disks when the provisioner is deployed successfully. You must also use this
path to label the node that uses the block device when deploying OpenShift sandboxed containers.

1.8. FIPS COMPLIANCE

OpenShift Container Platform is designed for Federal Information Processing Standards (FIPS) 140-2
and 140-3. When running Red Hat Enterprise Linux (RHEL) or Red Hat Enterprise Linux CoreOS
(RHCOS) booted in FIPS mode, OpenShift Container Platform core components use the RHEL
cryptographic libraries that have been submitted to NIST for FIPS 140-2/140-3 Validation on only the
x86_64, ppc64le, and s390x architectures.

For more information about the NIST validation program, see Cryptographic Module Validation
Program. For the latest NIST status for the individual versions of RHEL cryptographic libraries that have
been submitted for validation, see Compliance Activities and Government Standards .

OpenShift sandboxed containers can be used on FIPS enabled clusters.

When running in FIPS mode, OpenShift sandboxed containers components, VMs, and VM images are
adapted to comply with FIPS.

NOTE

FIPS compliance for OpenShift sandboxed containers only applies to the kata runtime
class. The peer pod runtime class, kata-remote, is not yet fully supported and has not
been tested for FIPS compliance.

apiVersion: "local.storage.openshift.io/v1"
kind: "LocalVolume"
metadata:
 name: "local-disks"
 namespace: "openshift-local-storage"
spec:
 nodeSelector:
 nodeSelectorTerms:
 - matchExpressions:
 - key: kubernetes.io/hostname
 operator: In
 values:
 - worker-0
 storageClassDevices:
 - storageClassName: "local-sc"
 forceWipeDevicesAndDestroyAllData: false
 volumeMode: Block 1
 devicePaths:
 - /path/to/device 2

CHAPTER 1. ABOUT OPENSHIFT SANDBOXED CONTAINERS

11

https://csrc.nist.gov/Projects/cryptographic-module-validation-program/validated-modules
https://access.redhat.com/articles/2918071#fips-140-2-and-fips-140-3-2

FIPS compliance is one of the most critical components required in highly secure environments, to
ensure that only supported cryptographic technologies are allowed on nodes.

IMPORTANT

The use of FIPS Validated / Modules in Process cryptographic libraries is only supported
on OpenShift Container Platform deployments on the x86_64 architecture.

To understand Red Hat’s view of OpenShift Container Platform compliance frameworks, refer to the
Risk Management and Regulatory Readiness chapter of the OpenShift Security Guide Book .

OpenShift sandboxed containers 1.6 User guide

12

https://access.redhat.com/articles/5059881

CHAPTER 2. DEPLOYING WORKLOADS ON BARE METAL
You can deploy OpenShift sandboxed containers workloads on on-premise bare-metal servers with Red
Hat Enterprise Linux CoreOS (RHCOS) installed on the worker nodes.

NOTE

RHEL nodes are not supported.

Nested virtualization is not supported.

You can use any installation method including user-provisioned, installer-provisioned, or Assisted
Installer to deploy your cluster.

You can also install OpenShift sandboxed containers on Amazon Web Services (AWS) bare-metal
instances. Bare-metal instances offered by other cloud providers are not supported.

Deployment workflow

You deploy OpenShift sandboxed containers workloads by performing the following steps:

1. Prepare your environment.

2. Create a KataConfig custom resource.

3. Configure your workload objects to use the kata runtime class.

2.1. PREPARING YOUR ENVIRONMENT

Perform the following steps to prepare your environment:

1. Ensure that your cluster has sufficient resources.

2. Install the OpenShift sandboxed containers Operator.

3. Optional: Configure node eligibility checks to ensure that your worker nodes support OpenShift
sandboxed containers:

a. Install the Node Feature Discovery (NFD) Operator. See the NFD Operator documentation
for details.

b. Create a NodeFeatureDiscovery custom resource (CR) to define the node configuration
parameters that the NFD Operator checks.

2.1.1. Resource requirements

OpenShift sandboxed containers lets users run workloads on their OpenShift Container Platform
clusters inside a sandboxed runtime (Kata). Each pod is represented by a virtual machine (VM). Each VM
runs in a QEMU process and hosts a kata-agent process that acts as a supervisor for managing
container workloads, and the processes running in those containers. Two additional processes add more
overhead:

containerd-shim-kata-v2 is used to communicate with the pod.

virtiofsd handles host file system access on behalf of the guest.

Each VM is configured with a default amount of memory. Additional memory is hot-plugged into the VM

CHAPTER 2. DEPLOYING WORKLOADS ON BARE METAL

13

https://docs.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/installing/index#installing-bare-metal
https://docs.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/installing/index#deploying-installer-provisioned-clusters-on-bare-metal
https://access.redhat.com/documentation/en-us/assisted_installer_for_openshift_container_platform
https://docs.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/specialized_hardware_and_driver_enablement/index#about-node-feature-discovery-operator_node-feature-discovery-operator

Each VM is configured with a default amount of memory. Additional memory is hot-plugged into the VM
for containers that explicitly request memory.

A container running without a memory resource consumes free memory until the total memory used by
the VM reaches the default allocation. The guest and its I/O buffers also consume memory.

If a container is given a specific amount of memory, then that memory is hot-plugged into the VM
before the container starts.

When a memory limit is specified, the workload is terminated if it consumes more memory than the limit.
If no memory limit is specified, the kernel running on the VM might run out of memory. If the kernel runs
out of memory, it might terminate other processes on the VM.

Default memory sizes

The following table lists some the default values for resource allocation.

Resource Value

Memory allocated by default to a virtual machine 2Gi

Guest Linux kernel memory usage at boot ~110Mi

Memory used by the QEMU process (excluding VM
memory)

~30Mi

Memory used by the virtiofsd process (excluding
VM I/O buffers)

~10Mi

Memory used by the containerd-shim-kata-v2
process

~20Mi

File buffer cache data after running dnf install on
Fedora

~300Mi* [1]

File buffers appear and are accounted for in multiple locations:

In the guest where it appears as file buffer cache.

In the virtiofsd daemon that maps allowed user-space file I/O operations.

In the QEMU process as guest memory.

NOTE

Total memory usage is properly accounted for by the memory utilization metrics, which
only count that memory once.

Pod overhead describes the amount of system resources that a pod on a node uses. You can get the
current pod overhead for the Kata runtime by using oc describe runtimeclass kata as shown below.

Example

OpenShift sandboxed containers 1.6 User guide

14

https://kubernetes.io/docs/concepts/scheduling-eviction/pod-overhead/

Example output

You can change the pod overhead by changing the spec.overhead field for a RuntimeClass. For
example, if the configuration that you run for your containers consumes more than 350Mi of memory for
the QEMU process and guest kernel data, you can alter the RuntimeClass overhead to suit your needs.

NOTE

The specified default overhead values are supported by Red Hat. Changing default
overhead values is not supported and can result in technical issues.

When performing any kind of file system I/O in the guest, file buffers are allocated in the guest kernel.
The file buffers are also mapped in the QEMU process on the host, as well as in the virtiofsd process.

For example, if you use 300Mi of file buffer cache in the guest, both QEMU and virtiofsd appear to use
300Mi additional memory. However, the same memory is used in all three cases. Therefore, the total
memory usage is only 300Mi, mapped in three different places. This is correctly accounted for when
reporting the memory utilization metrics.

2.1.2. Installing the OpenShift sandboxed containers Operator

You can install the OpenShift sandboxed containers Operator by using the OpenShift Container
Platform web console or command line interface (CLI).

2.1.2.1. Installing the Operator by using the web console

You can install the OpenShift sandboxed containers Operator by using the Red Hat OpenShift
Container Platform web console.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

Procedure

1. In the OpenShift Container Platform web console, navigate to Operators → OperatorHub.

2. In the Filter by keyword field, type OpenShift sandboxed containers.

3. Select the OpenShift sandboxed containers Operator tile and click Install.

4. On the Install Operator page, select stable from the list of available Update Channel options.

5. Verify that Operator recommended Namespace is selected for Installed Namespace. This

$ oc describe runtimeclass kata

kind: RuntimeClass
apiVersion: node.k8s.io/v1
metadata:
 name: kata
overhead:
 podFixed:
 memory: "500Mi"
 cpu: "500m"

CHAPTER 2. DEPLOYING WORKLOADS ON BARE METAL

15

5. Verify that Operator recommended Namespace is selected for Installed Namespace. This
installs the Operator in the mandatory openshift-sandboxed-containers-operator namespace.
If this namespace does not yet exist, it is automatically created.

NOTE

Attempting to install the OpenShift sandboxed containers Operator in a
namespace other than openshift-sandboxed-containers-operator causes the
installation to fail.

6. Verify that Automatic is selected for Approval Strategy. Automatic is the default value, and
enables automatic updates to OpenShift sandboxed containers when a new z-stream release is
available.

7. Click Install.

The OpenShift sandboxed containers Operator is now installed on your cluster.

Verification

1. Navigate to Operators → Installed Operators.

2. Verify that the OpenShift sandboxed containers Operator is displayed.

Additional resources

Using Operator Lifecycle Manager on restricted networks .

Configuring proxy support in Operator Lifecycle Manager for disconnected environments.

2.1.2.2. Installing the Operator by using the CLI

You can install the OpenShift sandboxed containers Operator by using the CLI.

Prerequisites

You have installed the OpenShift CLI (oc).

You have access to the cluster as a user with the cluster-admin role.

Procedure

1. Create a Namespace.yaml manifest file:

2. Create the namespace by running the following command:

3. Create an OperatorGroup.yaml manifest file:

apiVersion: v1
kind: Namespace
metadata:
 name: openshift-sandboxed-containers-operator

$ oc create -f Namespace.yaml

OpenShift sandboxed containers 1.6 User guide

16

https://docs.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/operators/index#olm-restricted-networks
https://docs.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/operators/index#olm-configuring-proxy-support.html

4. Create the operator group by running the following command:

5. Create a Subscription.yaml manifest file:

6. Create the subscription by running the following command:

The OpenShift sandboxed containers Operator is now installed on your cluster.

Verification

Ensure that the Operator is correctly installed by running the following command:

Example output

2.1.2.3. Additional resources

Using Operator Lifecycle Manager on restricted networks

Configuring proxy support in Operator Lifecycle Manager for disconnected environments

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: openshift-sandboxed-containers-operator
 namespace: openshift-sandboxed-containers-operator
spec:
 targetNamespaces:
 - openshift-sandboxed-containers-operator

$ oc create -f OperatorGroup.yaml

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: openshift-sandboxed-containers-operator
 namespace: openshift-sandboxed-containers-operator
spec:
 channel: stable
 installPlanApproval: Automatic
 name: sandboxed-containers-operator
 source: redhat-operators
 sourceNamespace: openshift-marketplace
 startingCSV: sandboxed-containers-operator.v1.6.0

$ oc create -f Subscription.yaml

$ oc get csv -n openshift-sandboxed-containers-operator

NAME DISPLAY VERSION REPLACES
PHASE
openshift-sandboxed-containers openshift-sandboxed-containers-operator 1.6.0 1.5.3
Succeeded

CHAPTER 2. DEPLOYING WORKLOADS ON BARE METAL

17

https://docs.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/operators/index#olm-restricted-networks
https://docs.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/operators/index#olm-configuring-proxy-support

2.1.3. Creating the NodeFeatureDiscovery CR

You create a NodeFeatureDiscovery custom resource (CR) to define the configuration parameters
that the Node Feature Discovery (NFD) Operator checks to determine that the worker nodes can
support OpenShift sandboxed containers.

NOTE

To install the kata runtime on only selected worker nodes that you know are eligible,
apply the feature.node.kubernetes.io/runtime.kata=true label to the selected nodes
and set checkNodeEligibility: true in the KataConfig CR.

To install the kata runtime on all worker nodes, set checkNodeEligibility: false in the
KataConfig CR.

In both these scenarios, you do not need to create the NodeFeatureDiscovery CR. You
should only apply the feature.node.kubernetes.io/runtime.kata=true label manually if
you are sure that the node is eligible to run OpenShift sandboxed containers.

The following procedure applies the feature.node.kubernetes.io/runtime.kata=true label to all eligible
nodes and configures the KataConfig resource to check for node eligibility.

Prerequisites

You have installed the NFD Operator.

Procedure

1. Create an nfd.yaml manifest file according to the following example:

2. Create the NodeFeatureDiscovery CR:

The NodeFeatureDiscovery CR applies the feature.node.kubernetes.io/runtime.kata=true
label to all qualifying worker nodes.

apiVersion: nfd.openshift.io/v1
kind: NodeFeatureDiscovery
metadata:
 name: nfd-kata
 namespace: openshift-nfd
spec:
 workerConfig:
 configData: |
 sources:
 custom:
 - name: "feature.node.kubernetes.io/runtime.kata"
 matchOn:
 - cpuId: ["SSE4", "VMX"]
 loadedKMod: ["kvm", "kvm_intel"]
 - cpuId: ["SSE4", "SVM"]
 loadedKMod: ["kvm", "kvm_amd"]
...

$ oc create -f nfd.yaml

OpenShift sandboxed containers 1.6 User guide

18

1. Create a kata-config.yaml manifest file according to the following example:

2. Create the KataConfig CR:

Verification

Verify that qualifying nodes in the cluster have the correct label applied:

Example output

2.2. DEPLOYING WORKLOADS BY USING THE WEB CONSOLE

You can deploy OpenShift sandboxed containers workloads by using the web console.

2.2.1. Creating a KataConfig custom resource

You must create a KataConfig custom resource (CR) to install kata as a RuntimeClass on your worker
nodes.

The kata runtime class is installed on all worker nodes by default. If you want to install kata only on
specific nodes, you can add labels to those nodes and then define the label in the KataConfig CR.

OpenShift sandboxed containers installs kata as a secondary, optional runtime on the cluster and not as
the primary runtime.

IMPORTANT

apiVersion: kataconfiguration.openshift.io/v1
kind: KataConfig
metadata:
 name: example-kataconfig
spec:
 checkNodeEligibility: true

$ oc create -f kata-config.yaml

$ oc get nodes --selector='feature.node.kubernetes.io/runtime.kata=true'

NAME STATUS ROLES AGE VERSION
compute-3.example.com Ready worker 4h38m v1.25.0
compute-2.example.com Ready worker 4h35m v1.25.0

CHAPTER 2. DEPLOYING WORKLOADS ON BARE METAL

19

IMPORTANT

Creating the KataConfig CR automatically reboots the worker nodes. The reboot can
take from 10 to more than 60 minutes. The following factors might increase the reboot
time:

A larger OpenShift Container Platform deployment with a greater number of
worker nodes.

Activation of the BIOS and Diagnostics utility.

Deployment on a hard disk drive rather than an SSD.

Deployment on physical nodes such as bare metal, rather than on virtual nodes.

A slow CPU and network.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

Optional: You have installed the Node Feature Discovery Operator if you want to enable node
eligibility checks.

Procedure

1. In the OpenShift Container Platform web console, navigate to Operators → Installed
Operators.

2. Select the OpenShift sandboxed containers Operator.

3. On the KataConfig tab, click Create KataConfig.

4. Enter the following details:

Name: Optional: The default name is example-kataconfig.

Labels: Optional: Enter any relevant, identifying attributes to the KataConfig resource.
Each label represents a key-value pair.

checkNodeEligibility: Optional: Select to use the Node Feature Discovery Operator (NFD)
to detect node eligibility.

kataConfigPoolSelector. Optional: To install kata on selected nodes, add a match
expression for the labels on the selected nodes:

a. Expand the kataConfigPoolSelector area.

b. In the kataConfigPoolSelector area, expand matchExpressions. This is a list of label
selector requirements.

c. Click Add matchExpressions.

d. In the Key field, enter the label key the selector applies to.

e. In the Operator field, enter the key’s relationship to the label values. Valid operators
are In, NotIn, Exists, and DoesNotExist.

OpenShift sandboxed containers 1.6 User guide

20

f. Expand the Values area and then click Add value.

g. In the Value field, enter true or false for key label value.

logLevel: Define the level of log data retrieved for nodes with the kata runtime class.

5. Click Create. The KataConfig CR is created and installs the kata runtime class on the worker
nodes.
Wait for the kata installation to complete and the worker nodes to reboot before verifying the
installation.

Verification

1. On the KataConfig tab, click the KataConfig CR to view its details.

2. Click the YAML tab to view the status stanza.
The status stanza contains the conditions and kataNodes keys. The value of
status.kataNodes is an array of nodes, each of which lists nodes in a particular state of kata
installation. A message appears each time there is an update.

3. Click Reload to refresh the YAML.
When all workers in the status.kataNodes array display the values installed and
conditions.InProgress: False with no specified reason, the kata is installed on the cluster.

See KataConfig status messages for details.

2.2.2. Configuring workload objects

You deploy an OpenShift sandboxed containers workload by configuring kata as the runtime class for
the following pod-templated objects:

Pod objects

ReplicaSet objects

ReplicationController objects

StatefulSet objects

Deployment objects

DeploymentConfig objects

IMPORTANT

Do not deploy workloads in the openshift-sandboxed-containers-operator namespace.
Create a dedicated namespace for these resources.

Prerequisites

You have created a secret object for your provider.

You have created a config map for your provider.

You have created a KataConfig custom resource (CR).

CHAPTER 2. DEPLOYING WORKLOADS ON BARE METAL

21

Procedure

1. In the OpenShift Container Platform web console, navigate to Workloads → workload type, for
example, Pods.

2. On the workload type page, click an object to view its details.

3. Click the YAML tab.

4. Add spec.runtimeClassName: kata to the manifest of each pod-templated workload object as
in the following example:

OpenShift Container Platform creates the workload object and begins scheduling it.

Verification

Inspect the spec.runtimeClassName field of a pod-templated object. If the value is kata, then
the workload is running on OpenShift sandboxed containers, using peer pods.

2.3. DEPLOYING WORKLOADS BY USING THE COMMAND LINE

You can deploy OpenShift sandboxed containers workloads by using the command line.

2.3.1. Optional: Provisioning local block volumes by using the Local Storage
Operator

Local block volumes for OpenShift sandboxed containers can be provisioned using the Local Storage
Operator (LSO). The local volume provisioner looks for any block volume devices at the paths specified
in the defined resource.

Prerequisites

The Local Storage Operator is installed.

You have a local disk that meets the following conditions:

It is attached to a node.

It is not mounted.

It does not contain partitions.

Procedure

1. Create the local volume resource. This resource must define the nodes and paths to the local
volumes.

NOTE

apiVersion: v1
kind: <object>
...
spec:
 runtimeClassName: kata
...

OpenShift sandboxed containers 1.6 User guide

22

1

2

3

4

5

6

NOTE

Do not use different storage class names for the same device. Doing so will
create multiple persistent volumes (PVs).

Example: Block

The namespace where the Local Storage Operator is installed.

Optional: A node selector containing a list of nodes where the local storage volumes are
attached. This example uses the node hostnames, obtained from oc get node. If a value is
not defined, then the Local Storage Operator will attempt to find matching disks on all
available nodes.

The name of the storage class to use when creating persistent volume objects.

This setting defines whether or not to call wipefs, which removes partition table signatures
(magic strings) making the disk ready to use for Local Storage Operator provisioning. No
other data besides signatures is erased. The default is "false" (wipefs is not invoked).
Setting forceWipeDevicesAndDestroyAllData to "true" can be useful in scenarios where
previous data can remain on disks that need to be re-used. In these scenarios, setting this
field to true eliminates the need for administrators to erase the disks manually.

The path containing a list of local storage devices to choose from. You must use this path
when deploying sandboxed container nodes on a block device.

Replace this value with your actual local disks filepath to the LocalVolume resource by-id,
such as /dev/disk/by-id/wwn. PVs are created for these local disks when the provisioner is
deployed successfully.

2. Create the local volume resource in your OpenShift Container Platform cluster. Specify the file
you just created:

apiVersion: "local.storage.openshift.io/v1"
kind: "LocalVolume"
metadata:
 name: "local-disks"
 namespace: "openshift-local-storage" 1
spec:
 nodeSelector: 2
 nodeSelectorTerms:
 - matchExpressions:
 - key: kubernetes.io/hostname
 operator: In
 values:
 - ip-10-0-136-143
 - ip-10-0-140-255
 - ip-10-0-144-180
 storageClassDevices:
 - storageClassName: "local-sc" 3
 forceWipeDevicesAndDestroyAllData: false 4
 volumeMode: Block
 devicePaths: 5
 - /path/to/device 6

CHAPTER 2. DEPLOYING WORKLOADS ON BARE METAL

23

3. Verify that the provisioner was created and that the corresponding daemon sets were created:

Example output

Note the desired and current number of daemon set processes. A desired count of 0 indicates
that the label selectors were invalid.

4. Verify that the persistent volumes were created:

Example output

IMPORTANT

Editing the LocalVolume object does not change existing persistent volumes because
doing so might result in a destructive operation.

2.3.2. Optional: Deploying nodes on a block device

$ oc create -f <local-volume>.yaml

$ oc get all -n openshift-local-storage

NAME READY STATUS RESTARTS AGE
pod/diskmaker-manager-9wzms 1/1 Running 0 5m43s
pod/diskmaker-manager-jgvjp 1/1 Running 0 5m43s
pod/diskmaker-manager-tbdsj 1/1 Running 0 5m43s
pod/local-storage-operator-7db4bd9f79-t6k87 1/1 Running 0 14m

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
AGE
service/local-storage-operator-metrics ClusterIP 172.30.135.36 <none>
8383/TCP,8686/TCP 14m

NAME DESIRED CURRENT READY UP-TO-DATE AVAILABLE
NODE SELECTOR AGE
daemonset.apps/diskmaker-manager 3 3 3 3 3 <none>
5m43s

NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/local-storage-operator 1/1 1 1 14m

NAME DESIRED CURRENT READY AGE
replicaset.apps/local-storage-operator-7db4bd9f79 1 1 1 14m

$ oc get pv

NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS CLAIM
STORAGECLASS REASON AGE
local-pv-1cec77cf 100Gi RWO Delete Available local-sc 88m
local-pv-2ef7cd2a 100Gi RWO Delete Available local-sc
82m
local-pv-3fa1c73 100Gi RWO Delete Available local-sc 48m

OpenShift sandboxed containers 1.6 User guide

24

If you provisioned local block volumes for OpenShift sandboxed containers, you can choose to deploy
nodes on any block device at the paths specified in the defined volume resource.

Prerequisites

You provisioned a block device using the Local Storage Operator

Procedure

Run the following command for each node you want to deploy using a block device:

+ The /path/to/device must be the same path you defined when creating the local storage resource.

+ .Example output

2.3.3. Creating a KataConfig custom resource

You must create a KataConfig custom resource (CR) to install kata as a runtime class on your worker
nodes.

Creating the KataConfig CR triggers the OpenShift sandboxed containers Operator to do the
following:

Install the required RHCOS extensions, such as QEMU and kata-containers, on your RHCOS
node.

Ensure that the CRI-O runtime is configured with the correct runtime handlers.

Create a RuntimeClass CR named kata with a default configuration. This enables users to
configure workloads to use kata as the runtime by referencing the CR in the
RuntimeClassName field. This CR also specifies the resource overhead for the runtime.

OpenShift sandboxed containers installs kata as a secondary, optional runtime on the cluster and not as
the primary runtime.

IMPORTANT

Creating the KataConfig CR automatically reboots the worker nodes. The reboot can
take from 10 to more than 60 minutes. Factors that impede reboot time are as follows:

A larger OpenShift Container Platform deployment with a greater number of
worker nodes.

Activation of the BIOS and Diagnostics utility.

Deployment on a hard disk drive rather than an SSD.

Deployment on physical nodes such as bare metal, rather than on virtual nodes.

A slow CPU and network.

$ oc debug node/worker-0 -- chcon -vt container_file_t /host/path/to/device

system_u:object_r:container_file_t:s0 /host/path/to/device

CHAPTER 2. DEPLOYING WORKLOADS ON BARE METAL

25

https://github.com/cri-o/cri-o

1

1

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

Optional: You have installed the Node Feature Discovery Operator if you want to enable node
eligibility checks.

Procedure

1. Create a cluster-kataconfig.yaml manifest file according to the following example:

Optional: Set`checkNodeEligibility` to true to run node eligibility checks.

2. Optional: To install kata on selected nodes, specify the node labels according to the following
example:

Specify the labels of the selected nodes.

3. Create the KataConfig CR:

The new KataConfig CR is created and installs kata as a runtime class on the worker nodes.

Wait for the kata installation to complete and the worker nodes to reboot before verifying the
installation.

Verification

Monitor the installation progress by running the following command:

When the status of all workers under kataNodes is installed and the condition InProgress is
False without specifying a reason, the kata is installed on the cluster.

apiVersion: kataconfiguration.openshift.io/v1
kind: KataConfig
metadata:
 name: cluster-kataconfig
spec:
 checkNodeEligibility: false 1
 logLevel: info

apiVersion: kataconfiguration.openshift.io/v1
kind: KataConfig
metadata:
 name: cluster-kataconfig
spec:
 kataConfigPoolSelector:
 matchLabels:
 <label_key>: '<label_value>' 1
...

$ oc create -f cluster-kataconfig.yaml

$ watch "oc describe kataconfig | sed -n /^Status:/,/^Events/p"

OpenShift sandboxed containers 1.6 User guide

26

See KataConfig status messages for details.

2.3.4. Optional: Modifying pod overhead

Pod overhead describes the amount of system resources that a pod on a node uses. You can modify the
pod overhead by changing the spec.overhead field for a RuntimeClass custom resource. For example,
if the configuration that you run for your containers consumes more than 350Mi of memory for the
QEMU process and guest kernel data, you can alter the RuntimeClass overhead to suit your needs.

When performing any kind of file system I/O in the guest, file buffers are allocated in the guest kernel.
The file buffers are also mapped in the QEMU process on the host, as well as in the virtiofsd process.

For example, if you use 300Mi of file buffer cache in the guest, both QEMU and virtiofsd appear to use
300Mi additional memory. However, the same memory is being used in all three cases. Therefore, the
total memory usage is only 300Mi, mapped in three different places. This is correctly accounted for
when reporting the memory utilization metrics.

NOTE

The default values are supported by Red Hat. Changing default overhead values is not
supported and can result in technical issues.

Procedure

1. Obtain the RuntimeClass object by running the following command:

2. Update the overhead.podFixed.memory and cpu values and save as RuntimeClass.yaml:

2.3.5. Configuring workload objects

You deploy an OpenShift sandboxed containers workload by configuring kata as the runtime class for
the following pod-templated objects:

Pod objects

ReplicaSet objects

ReplicationController objects

StatefulSet objects

Deployment objects

$ oc describe runtimeclass kata

kind: RuntimeClass
apiVersion: node.k8s.io/v1
metadata:
 name: kata
overhead:
 podFixed:
 memory: "500Mi"
 cpu: "500m"

CHAPTER 2. DEPLOYING WORKLOADS ON BARE METAL

27

https://kubernetes.io/docs/concepts/scheduling-eviction/pod-overhead/

DeploymentConfig objects

IMPORTANT

Do not deploy workloads in the openshift-sandboxed-containers-operator namespace.
Create a dedicated namespace for these resources.

Prerequisites

You have created a secret object for your provider.

You have created a config map for your provider.

You have created a KataConfig custom resource (CR).

Procedure

1. Add spec.runtimeClassName: kata to the manifest of each pod-templated workload object as
in the following example:

OpenShift Container Platform creates the workload object and begins scheduling it.

Verification

Inspect the spec.runtimeClassName field of a pod-templated object. If the value is kata, then
the workload is running on OpenShift sandboxed containers, using peer pods.

apiVersion: v1
kind: <object>
...
spec:
 runtimeClassName: kata
...

OpenShift sandboxed containers 1.6 User guide

28

CHAPTER 3. DEPLOYING WORKLOADS ON PUBLIC CLOUD
You can deploy OpenShift sandboxed containers workloads on AWS Cloud Computing Services and
Microsoft Azure Cloud Computing Services.

Cluster requirements

You have installed Red Hat OpenShift Container Platform 4.13 or later.

Your cluster has at least one worker node.

3.1. DEPLOYING WORKLOADS ON AWS

You can deploy OpenShift sandboxed containers workloads on AWS Cloud Computing Services by
using the OpenShift Container Platform web console or the command line interface (CLI).

Deployment workflow

1. Enable ports.

2. Create a secret for AWS.

3. Create a config map for AWS.

4. Create a KataConfig custom resource.

5. Optional: Modify the peer pod VM limit per node.

6. Configure your workload objects to use the kata-remote runtime class.

3.1.1. Preparing your environment

Perform the following steps to prepare your environment:

1. Ensure that your cluster has sufficient resources.

2. Install the OpenShift sandboxed containers Operator.

3. Enable ports 15150 and 9000 to allow internal communication with peer pods.

3.1.1.1. Resource requirements

Peer pod virtual machines (VMs) require resources in two locations:

The worker node. The worker node stores metadata, Kata shim resources (containerd-shim-
kata-v2), remote-hypervisor resources (cloud-api-adaptor), and the tunnel setup between the
worker nodes and the peer pod VM.

The cloud instance. This is the actual peer pod VM running in the cloud.

The CPU and memory resources used in the Kubernetes worker node are handled by the pod overhead
included in the RuntimeClass (kata-remote) definition used for creating peer pods.

The total number of peer pod VMs running in the cloud is defined as Kubernetes Node extended

CHAPTER 3. DEPLOYING WORKLOADS ON PUBLIC CLOUD

29

https://kubernetes.io/docs/concepts/scheduling-eviction/pod-overhead/

1

The total number of peer pod VMs running in the cloud is defined as Kubernetes Node extended
resources. This limit is per node and is set by the limit attribute in the peerpodConfig custom resource
(CR).

The peerpodConfig CR, named peerpodconfig-openshift, is created when you create the kataConfig
CR and enable peer pods, and is located in the openshift-sandboxed-containers-operator namespace.

The following peerpodConfig CR example displays the default spec values:

The default limit is 10 VMs per node.

The extended resource is named kata.peerpods.io/vm, and enables the Kubernetes scheduler to handle
capacity tracking and accounting.

You can edit the limit per node based on the requirements for your environment. See "Modifying the VM
limit per node in peer pods" for more information.

A mutating webhook adds the extended resource kata.peerpods.io/vm to the pod specification. It also
removes any resource-specific entries from the pod specification, if present. This enables the
Kubernetes scheduler to account for these extended resources, ensuring the peer pod is only scheduled
when resources are available.

The mutating webhook modifies a Kubernetes pod as follows:

The mutating webhook checks the pod for the expected RuntimeClassName value, specified
in the TARGET_RUNTIME_CLASS environment variable. If the value in the pod specification
does not match the value in the TARGET_RUNTIME_CLASS, the webhook exits without
modifying the pod.

If the RuntimeClassName values match, the webhook makes the following changes to the pod
spec:

1. The webhook removes every resource specification from the resources field of all
containers and init containers in the pod.

2. The webhook adds the extended resource (kata.peerpods.io/vm) to the spec by modifying
the resources field of the first container in the pod. The extended resource
kata.peerpods.io/vm is used by the Kubernetes scheduler for accounting purposes.

NOTE

apiVersion: confidentialcontainers.org/v1alpha1
kind: PeerPodConfig
metadata:
 name: peerpodconfig-openshift
 namespace: openshift-sandboxed-containers-operator
spec:
 cloudSecretName: peer-pods-secret
 configMapName: peer-pods-cm
 limit: "10" 1
 nodeSelector:
 node-role.kubernetes.io/kata-oc: ""

OpenShift sandboxed containers 1.6 User guide

30

https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/

NOTE

The mutating webhook excludes specific system namespaces in OpenShift Container
Platform from mutation. If a peer pod is created in those system namespaces, then
resource accounting using Kubernetes extended resources does not work unless the pod
spec includes the extended resource.

As a best practice, define a cluster-wide policy to only allow peer pod creation in specific
namespaces.

3.1.1.2. Enabling ports for AWS

You must enable ports 15150 and 9000 to allow internal communication with peer pods running on AWS.

Prerequisites

You have installed the OpenShift sandboxed containers Operator.

You have installed the AWS command line tool.

You have access to the cluster as a user with the cluster-admin role.

Procedure

1. Log in to your OpenShift Container Platform cluster and retrieve the instance ID:

2. Retrieve the AWS region:

3. Retrieve the security group IDs and store them in an array:

4. For each security group ID, authorize the peer pods shim to access kata-agent communication,
and set up the peer pods tunnel:

The ports are now enabled.

$ INSTANCE_ID=$(oc get nodes -l 'node-role.kubernetes.io/worker' -o
jsonpath='{.items[0].spec.providerID}' | sed 's#[^]*/##g')

$ AWS_REGION=$(oc get infrastructure/cluster -o
jsonpath='{.status.platformStatus.aws.region}')

$ AWS_SG_IDS=($(aws ec2 describe-instances --instance-ids ${INSTANCE_ID} --query
'Reservations[*].Instances[*].SecurityGroups[*].GroupId' --output text --region
$AWS_REGION))

$ for AWS_SG_ID in "${AWS_SG_IDS[@]}"; do

 aws ec2 authorize-security-group-ingress --group-id $AWS_SG_ID --protocol tcp --port
15150 --source-group $AWS_SG_ID --region $AWS_REGION

 aws ec2 authorize-security-group-ingress --group-id $AWS_SG_ID --protocol tcp --port
9000 --source-group $AWS_SG_ID --region $AWS_REGION

done

CHAPTER 3. DEPLOYING WORKLOADS ON PUBLIC CLOUD

31

3.1.1.3. Installing the OpenShift sandboxed containers Operator

You can install the OpenShift sandboxed containers Operator by using the OpenShift Container
Platform web console or command line interface (CLI).

3.1.1.3.1. Installing the Operator by using the web console

You can install the OpenShift sandboxed containers Operator by using the Red Hat OpenShift
Container Platform web console.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

Procedure

1. In the OpenShift Container Platform web console, navigate to Operators → OperatorHub.

2. In the Filter by keyword field, type OpenShift sandboxed containers.

3. Select the OpenShift sandboxed containers Operator tile and click Install.

4. On the Install Operator page, select stable from the list of available Update Channel options.

5. Verify that Operator recommended Namespace is selected for Installed Namespace. This
installs the Operator in the mandatory openshift-sandboxed-containers-operator namespace.
If this namespace does not yet exist, it is automatically created.

NOTE

Attempting to install the OpenShift sandboxed containers Operator in a
namespace other than openshift-sandboxed-containers-operator causes the
installation to fail.

6. Verify that Automatic is selected for Approval Strategy. Automatic is the default value, and
enables automatic updates to OpenShift sandboxed containers when a new z-stream release is
available.

7. Click Install.

The OpenShift sandboxed containers Operator is now installed on your cluster.

Verification

1. Navigate to Operators → Installed Operators.

2. Verify that the OpenShift sandboxed containers Operator is displayed.

Additional resources

Using Operator Lifecycle Manager on restricted networks .

Configuring proxy support in Operator Lifecycle Manager for disconnected environments.

3.1.1.3.2. Installing the Operator by using the CLI

OpenShift sandboxed containers 1.6 User guide

32

https://docs.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/operators/index#olm-restricted-networks
https://docs.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/operators/index#olm-configuring-proxy-support.html

You can install the OpenShift sandboxed containers Operator by using the CLI.

Prerequisites

You have installed the OpenShift CLI (oc).

You have access to the cluster as a user with the cluster-admin role.

Procedure

1. Create a Namespace.yaml manifest file:

2. Create the namespace by running the following command:

3. Create an OperatorGroup.yaml manifest file:

4. Create the operator group by running the following command:

5. Create a Subscription.yaml manifest file:

6. Create the subscription by running the following command:

apiVersion: v1
kind: Namespace
metadata:
 name: openshift-sandboxed-containers-operator

$ oc create -f Namespace.yaml

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: openshift-sandboxed-containers-operator
 namespace: openshift-sandboxed-containers-operator
spec:
 targetNamespaces:
 - openshift-sandboxed-containers-operator

$ oc create -f OperatorGroup.yaml

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: openshift-sandboxed-containers-operator
 namespace: openshift-sandboxed-containers-operator
spec:
 channel: stable
 installPlanApproval: Automatic
 name: sandboxed-containers-operator
 source: redhat-operators
 sourceNamespace: openshift-marketplace
 startingCSV: sandboxed-containers-operator.v1.6.0

CHAPTER 3. DEPLOYING WORKLOADS ON PUBLIC CLOUD

33

The OpenShift sandboxed containers Operator is now installed on your cluster.

Verification

Ensure that the Operator is correctly installed by running the following command:

Example output

3.1.1.3.3. Additional resources

Using Operator Lifecycle Manager on restricted networks

Configuring proxy support in Operator Lifecycle Manager for disconnected environments

3.1.2. Deploying workloads by using the web console

You can deploy OpenShift sandboxed containers workloads by using the web console.

3.1.2.1. Creating a secret

You must create a Secret object on your OpenShift Container Platform cluster. The secret stores cloud
provider credentials for creating the pod virtual machine (VM) image and peer pod instances. By
default, the OpenShift sandboxed containers Operator creates the secret based on the credentials used
to create the cluster. However, you can manually create a secret that uses different credentials.

Prerequisites

AWS_ACCESS_KEY_ID

AWS_SECRET_ACCESS_KEY
You can generate these values in the AWS console.

Procedure

1. In the OpenShift Container Platform web console, navigate to Operators → Installed
Operators.

2. Click the OpenShift sandboxed containers Operator tile.

3. Click the Import icon (+) on the top right corner.

4. In the Import YAML window, paste the following YAML manifest:

$ oc create -f Subscription.yaml

$ oc get csv -n openshift-sandboxed-containers-operator

NAME DISPLAY VERSION REPLACES
PHASE
openshift-sandboxed-containers openshift-sandboxed-containers-operator 1.6.0 1.5.3
Succeeded

apiVersion: v1

OpenShift sandboxed containers 1.6 User guide

34

https://docs.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/operators/index#olm-restricted-networks
https://docs.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/operators/index#olm-configuring-proxy-support

1

2

Specify the AWS_ACCESS_KEY_ID value.

Specify the AWS_SECRET_ACCESS_KEY value.

5. Click Save to apply the changes.

NOTE

If you update the peer pods secret, you must restart the peerpodconfig-ctrl-caa-
daemon DaemonSet to apply the changes.

After you update the secret, click Save to apply the changes. Then restart the cloud-api-
adaptor pods by running the following command:

Restarting a daemon set recreates peer pods. It does not update existing pods.

Verification

Navigate to Workloads → Secrets to view the secret.

3.1.2.2. Creating a config map

You must create a config map on your OpenShift Container Platform cluster for your cloud provider.

You must set the Amazon Machine Image (AMI) ID. You can retrieve this value before you create the
config map.

Procedure

1. Obtain the following values from your AWS instance:

a. Retrieve and record the instance ID:

This is used to retrieve other values for the secret object.

b. Retrieve and record the AWS region:

kind: Secret
metadata:
 name: peer-pods-secret
 namespace: openshift-sandboxed-containers-operator
type: Opaque
stringData:
 AWS_ACCESS_KEY_ID: "<aws_access_key>" 1
 AWS_SECRET_ACCESS_KEY: "<aws_secret_access_key>" 2

$ oc set env ds/peerpodconfig-ctrl-caa-daemon -n openshift-sandboxed-containers-
operator REBOOT="$(date)"

$ INSTANCE_ID=$(oc get nodes -l 'node-role.kubernetes.io/worker' -o
jsonpath='{.items[0].spec.providerID}' | sed 's#[^]*/##g')

CHAPTER 3. DEPLOYING WORKLOADS ON PUBLIC CLOUD

35

1

2

c. Retrieve and record the AWS subnet ID:

d. Retrieve and record the AWS VPC ID:

e. Retrieve and record the AWS security group IDs:

2. In the OpenShift Container Platform web console, navigate to Operators → Installed
Operators.

3. Select the OpenShift sandboxed containers Operator from the list of operators.

4. Click the Import icon (+) in the top right corner.

5. In the Import YAML window, paste the following YAML manifest:

Defines the default instance type that is used when a type is not defined in the workload.

Lists all of the instance types you can specify when creating the pod. This allows you to
define smaller instance types for workloads that need less memory and fewer CPUs or

$ AWS_REGION=$(oc get infrastructure/cluster -o
jsonpath='{.status.platformStatus.aws.region}') && echo "AWS_REGION:
\"$AWS_REGION\""

$ AWS_SUBNET_ID=$(aws ec2 describe-instances --instance-ids ${INSTANCE_ID} --
query 'Reservations[*].Instances[*].SubnetId' --region ${AWS_REGION} --output text) &&
echo "AWS_SUBNET_ID: \"$AWS_SUBNET_ID\""

$ AWS_VPC_ID=$(aws ec2 describe-instances --instance-ids ${INSTANCE_ID} --query
'Reservations[*].Instances[*].VpcId' --region ${AWS_REGION} --output text) && echo
"AWS_VPC_ID: \"$AWS_VPC_ID\""

$ AWS_SG_IDS=$(aws ec2 describe-instances --instance-ids ${INSTANCE_ID} --query
'Reservations[*].Instances[*].SecurityGroups[*].GroupId' --region ${AWS_REGION} --
output text)
&& echo "AWS_SG_IDS: \"$AWS_SG_IDS\""

apiVersion: v1
kind: ConfigMap
metadata:
 name: peer-pods-cm
 namespace: openshift-sandboxed-containers-operator
data:
 CLOUD_PROVIDER: "aws"
 VXLAN_PORT: "9000"
 PODVM_INSTANCE_TYPE: "t3.medium" 1
 PODVM_INSTANCE_TYPES: "t2.small,t2.medium,t3.large" 2
 PROXY_TIMEOUT: "5m"
 DISABLECVM: "true"
 PODVM_AMI_ID: "<podvm_ami_id>" 3
 AWS_REGION: "<aws_region>" 4
 AWS_SUBNET_ID: "<aws_subnet_id>" 5
 AWS_VPC_ID: "<aws_vpc_id>" 6
 AWS_SG_IDS: "<aws_sg_ids>" 7

OpenShift sandboxed containers 1.6 User guide

36

3

4

5

6

7

define smaller instance types for workloads that need less memory and fewer CPUs or
larger instance types for larger workloads.

Optional: By default, this value is populated when you run the KataConfig CR, using an AMI
ID based on your cluster credentials. If you create your own AMI, specify the correct AMI ID.

Specify the AWS_REGION value you retrieved.

Specify the AWS_SUBNET_ID value you retrieved.

Specify the AWS_VPC_ID value you retrieved.

Specify the AWS_SG_IDS value you retrieved.

6. Click Save to apply the changes.
A config map is created for your cloud provider.

NOTE

If you update the peer pods config map, you must restart the peerpodconfig-ctrl-caa-
daemon daemonset to apply the changes.

After you update the config map, click Save to apply the changes. Then restart the
cloud-api-adaptor pods by running the following command:

Restarting the daemonset recreates the peer pods. It does not update the existing pods.

Verification

Navigate to Workloads → ConfigMaps to view the new config map.

3.1.2.3. Creating a KataConfig custom resource

You must create a KataConfig custom resource (CR) to install kata-remote as a RuntimeClass on your
worker nodes.

The kata-remote runtime class is installed on all worker nodes by default. If you want to install kata-
remote only on specific nodes, you can add labels to those nodes and then define the label in the
KataConfig CR.

OpenShift sandboxed containers installs kata-remote as a secondary, optional runtime on the cluster
and not as the primary runtime.

IMPORTANT

$ oc set env ds/peerpodconfig-ctrl-caa-daemon -n openshift-sandboxed-containers-
operator REBOOT="$(date)"

CHAPTER 3. DEPLOYING WORKLOADS ON PUBLIC CLOUD

37

IMPORTANT

Creating the KataConfig CR automatically reboots the worker nodes. The reboot can
take from 10 to more than 60 minutes. The following factors might increase the reboot
time:

A larger OpenShift Container Platform deployment with a greater number of
worker nodes.

Activation of the BIOS and Diagnostics utility.

Deployment on a hard disk drive rather than an SSD.

Deployment on physical nodes such as bare metal, rather than on virtual nodes.

A slow CPU and network.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

Procedure

1. In the OpenShift Container Platform web console, navigate to Operators → Installed
Operators.

2. Select the OpenShift sandboxed containers Operator.

3. On the KataConfig tab, click Create KataConfig.

4. Enter the following details:

Name: Optional: The default name is example-kataconfig.

Labels: Optional: Enter any relevant, identifying attributes to the KataConfig resource.
Each label represents a key-value pair.

enablePeerPods: Select for public cloud, IBM Z®, and IBM® LinuxONE deployments.

kataConfigPoolSelector. Optional: To install kata-remote on selected nodes, add a match
expression for the labels on the selected nodes:

a. Expand the kataConfigPoolSelector area.

b. In the kataConfigPoolSelector area, expand matchExpressions. This is a list of label
selector requirements.

c. Click Add matchExpressions.

d. In the Key field, enter the label key the selector applies to.

e. In the Operator field, enter the key’s relationship to the label values. Valid operators
are In, NotIn, Exists, and DoesNotExist.

f. Expand the Values area and then click Add value.

g. In the Value field, enter true or false for key label value.

logLevel: Define the level of log data retrieved for nodes with the kata-remote runtime

OpenShift sandboxed containers 1.6 User guide

38

logLevel: Define the level of log data retrieved for nodes with the kata-remote runtime
class.

5. Click Create. The KataConfig CR is created and installs the kata-remote runtime class on the
worker nodes.
Wait for the kata-remote installation to complete and the worker nodes to reboot before
verifying the installation.

Verification

1. On the KataConfig tab, click the KataConfig CR to view its details.

2. Click the YAML tab to view the status stanza.
The status stanza contains the conditions and kataNodes keys. The value of
status.kataNodes is an array of nodes, each of which lists nodes in a particular state of kata-
remote installation. A message appears each time there is an update.

3. Click Reload to refresh the YAML.
When all workers in the status.kataNodes array display the values installed and
conditions.InProgress: False with no specified reason, the kata-remote is installed on the
cluster.

See KataConfig status messages for details.

3.1.2.3.1. Optional: Verifying the pod VM image

After kata-remote is installed on your cluster, the OpenShift sandboxed containers Operator creates a
pod VM image, which is used to create peer pods. This process can take a long time because the image
is created on the cloud instance. You can verify that the pod VM image was created successfully by
checking the config map that you created for the cloud provider.

Procedure

1. Navigate to Workloads → ConfigMaps.

2. Click the provider config map to view its details.

3. Click the YAML tab.

4. Check the status stanza of the YAML file.
If the PODVM_AMI_ID parameter is populated, the pod VM image was created successfully.

Troubleshooting

1. Retrieve the events log by running the following command:

2. Retrieve the job log by running the following command:

If you cannot resolve the issue, submit a Red Hat Support case and attach the output of both logs.

$ oc get events -n openshift-sandboxed-containers-operator --field-selector
involvedObject.name=osc-podvm-image-creation

$ oc logs -n openshift-sandboxed-containers-operator jobs/osc-podvm-image-creation

CHAPTER 3. DEPLOYING WORKLOADS ON PUBLIC CLOUD

39

1

3.1.2.4. Optional: Modifying the number of peer pod VMs per node

You can change the limit of peer pod virtual machines (VMs) per node by editing the peerpodConfig
custom resource (CR).

Procedure

1. Check the current limit by running the following command:

2. Modify the limit attribute of the peerpodConfig CR by running the following command:

Replace <value> with the limit you want to define.

3.1.2.5. Configuring workload objects

You deploy an OpenShift sandboxed containers workload by configuring kata-remote as the runtime
class for the following pod-templated objects:

Pod objects

ReplicaSet objects

ReplicationController objects

StatefulSet objects

Deployment objects

DeploymentConfig objects

IMPORTANT

Do not deploy workloads in the openshift-sandboxed-containers-operator namespace.
Create a dedicated namespace for these resources.

You can define whether the workload should be deployed using the default instance type, which you
defined in the config map, by adding an annotation to the YAML file.

If you do not want to define the instance type manually, you can add an annotation to use an automatic
instance type, based on the memory available.

Prerequisites

You have created a secret object for your provider.

You have created a config map for your provider.

$ oc get peerpodconfig peerpodconfig-openshift -n openshift-sandboxed-containers-operator
\
-o jsonpath='{.spec.limit}{"\n"}'

$ oc patch peerpodconfig peerpodconfig-openshift -n openshift-sandboxed-containers-
operator \
--type merge --patch '{"spec":{"limit":"<value>"}}' 1

OpenShift sandboxed containers 1.6 User guide

40

1

You have created a KataConfig custom resource (CR).

Procedure

1. In the OpenShift Container Platform web console, navigate to Workloads → workload type, for
example, Pods.

2. On the workload type page, click an object to view its details.

3. Click the YAML tab.

4. Add spec.runtimeClassName: kata-remote to the manifest of each pod-templated workload
object as in the following example:

5. Add an annotation to the pod-templated object to use a manually defined instance type or an
automatic instance type:

To use a manually defined instance type, add the following annotation:

Specify the instance type that you defined in the config map.

To use an automatic instance type, add the following annotations:

Define the amount of memory available for the workload to use. The workload will run on an
automatic instance type based on the amount of memory available.

6. Click Save to apply the changes.
OpenShift Container Platform creates the workload object and begins scheduling it.

Verification

Inspect the spec.runtimeClassName field of a pod-templated object. If the value is kata-

apiVersion: v1
kind: <object>
...
spec:
 runtimeClassName: kata-remote
...

apiVersion: v1
kind: <object>
metadata:
 annotations:
 io.katacontainers.config.hypervisor.machine_type: t3.medium 1
...

apiVersion: v1
kind: <Pod>
metadata:
 annotations:
 io.katacontainers.config.hypervisor.default_vcpus: <vcpus>
 io.katacontainers.config.hypervisor.default_memory: <memory>
...

CHAPTER 3. DEPLOYING WORKLOADS ON PUBLIC CLOUD

41

1

2

Inspect the spec.runtimeClassName field of a pod-templated object. If the value is kata-
remote, then the workload is running on OpenShift sandboxed containers, using peer pods.

3.1.3. Deploying workloads by using the command line

You can deploy OpenShift sandboxed containers workloads by using the command line.

3.1.3.1. Creating a secret

You must create a Secret object on your OpenShift Container Platform cluster. The secret stores cloud
provider credentials for creating the pod virtual machine (VM) image and peer pod instances. By
default, the OpenShift sandboxed containers Operator creates the secret based on the credentials used
to create the cluster. However, you can manually create a secret that uses different credentials.

Prerequisites

AWS_ACCESS_KEY_ID

AWS_SECRET_ACCESS_KEY
You can generate these values in the AWS console.

Procedure

1. Create a peer-pods-secret.yaml manifest file according to the following example:

Specify the AWS_ACCESS_KEY_ID value.

Specify the AWS_SECRET_ACCESS_KEY value.

2. Create the secret object by applying the manifest:

NOTE

apiVersion: v1
kind: Secret
metadata:
 name: peer-pods-secret
 namespace: openshift-sandboxed-containers-operator
type: Opaque
stringData:
 AWS_ACCESS_KEY_ID: "<aws_access_key>" 1
 AWS_SECRET_ACCESS_KEY: "<aws_secret_access_key>" 2

$ oc apply -f peer-pods-secret.yaml

OpenShift sandboxed containers 1.6 User guide

42

NOTE

If you update the peer pods secret, you must restart the peerpodconfig-ctrl-caa-
daemon DaemonSet to apply the changes.

After you update the secret, apply the manifest. Then restart the cloud-api-adaptor
pods by running the following command:

Restarting a daemon set recreates peer pods. It does not update existing pods.

3.1.3.2. Creating a config map

You must create a config map on your OpenShift Container Platform cluster for your cloud provider.

You must set the Amazon Machine Image (AMI) ID. You can retrieve this value before you create the
config map.

Procedure

1. Obtain the following values from your AWS instance:

a. Retrieve and record the instance ID:

This is used to retrieve other values for the secret object.

b. Retrieve and record the AWS region:

c. Retrieve and record the AWS subnet ID:

d. Retrieve and record the AWS VPC ID:

e. Retrieve and record the AWS security group IDs:

$ oc set env ds/peerpodconfig-ctrl-caa-daemon -n openshift-sandboxed-containers-
operator REBOOT="$(date)"

$ INSTANCE_ID=$(oc get nodes -l 'node-role.kubernetes.io/worker' -o
jsonpath='{.items[0].spec.providerID}' | sed 's#[^]*/##g')

$ AWS_REGION=$(oc get infrastructure/cluster -o
jsonpath='{.status.platformStatus.aws.region}') && echo "AWS_REGION:
\"$AWS_REGION\""

$ AWS_SUBNET_ID=$(aws ec2 describe-instances --instance-ids ${INSTANCE_ID} --
query 'Reservations[*].Instances[*].SubnetId' --region ${AWS_REGION} --output text) &&
echo "AWS_SUBNET_ID: \"$AWS_SUBNET_ID\""

$ AWS_VPC_ID=$(aws ec2 describe-instances --instance-ids ${INSTANCE_ID} --query
'Reservations[*].Instances[*].VpcId' --region ${AWS_REGION} --output text) && echo
"AWS_VPC_ID: \"$AWS_VPC_ID\""

$ AWS_SG_IDS=$(aws ec2 describe-instances --instance-ids ${INSTANCE_ID} --query
'Reservations[*].Instances[*].SecurityGroups[*].GroupId' --region ${AWS_REGION} --
output text)

CHAPTER 3. DEPLOYING WORKLOADS ON PUBLIC CLOUD

43

1

2

3

4

5

6

7

2. Create a peer-pods-cm.yaml manifest according to the following example:

Defines the default instance type that is used when a type is not defined in the workload.

Lists all of the instance types you can specify when creating the pod. This allows you to
define smaller instance types for workloads that need less memory and fewer CPUs or
larger instance types for larger workloads.

Optional: By default, this value is populated when you run the KataConfig CR, using an AMI
ID based on your cluster credentials. If you create your own AMI, specify the correct AMI ID.

Specify the AWS_REGION value you retrieved.

Specify the AWS_SUBNET_ID value you retrieved.

Specify the AWS_VPC_ID value you retrieved.

Specify the AWS_SG_IDS value you retrieved.

3. Apply the manifest to create a config map:

A config map is created for your cloud provider.

NOTE

&& echo "AWS_SG_IDS: \"$AWS_SG_IDS\""

apiVersion: v1
kind: ConfigMap
metadata:
 name: peer-pods-cm
 namespace: openshift-sandboxed-containers-operator
data:
 CLOUD_PROVIDER: "aws"
 VXLAN_PORT: "9000"
 PODVM_INSTANCE_TYPE: "t3.medium" 1
 PODVM_INSTANCE_TYPES: "t2.small,t2.medium,t3.large" 2
 PROXY_TIMEOUT: "5m"
 DISABLECVM: "true"
 PODVM_AMI_ID: "<podvm_ami_id>" 3
 AWS_REGION: "<aws_region>" 4
 AWS_SUBNET_ID: "<aws_subnet_id>" 5
 AWS_VPC_ID: "<aws_vpc_id>" 6
 AWS_SG_IDS: "<aws_sg_ids>" 7

$ oc apply -f peer-pods-cm.yaml

OpenShift sandboxed containers 1.6 User guide

44

NOTE

If you update the peer pods config map, you must restart the peerpodconfig-ctrl-caa-
daemon daemonset to apply the changes.

After you update the config map, apply the manifest. Then restart the cloud-api-adaptor
pods by running the following command:

Restarting the daemonset recreates the peer pods. It does not update the existing pods.

3.1.3.3. Creating a KataConfig custom resource

You must create a KataConfig custom resource (CR) to install kata-remote as a runtime class on your
worker nodes.

Creating the KataConfig CR triggers the OpenShift sandboxed containers Operator to do the
following:

Create a RuntimeClass CR named kata-remote with a default configuration. This enables
users to configure workloads to use kata-remote as the runtime by referencing the CR in the
RuntimeClassName field. This CR also specifies the resource overhead for the runtime.

OpenShift sandboxed containers installs kata-remote as a secondary, optional runtime on the cluster
and not as the primary runtime.

IMPORTANT

Creating the KataConfig CR automatically reboots the worker nodes. The reboot can
take from 10 to more than 60 minutes. Factors that impede reboot time are as follows:

A larger OpenShift Container Platform deployment with a greater number of
worker nodes.

Activation of the BIOS and Diagnostics utility.

Deployment on a hard disk drive rather than an SSD.

Deployment on physical nodes such as bare metal, rather than on virtual nodes.

A slow CPU and network.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

Procedure

1. Create a cluster-kataconfig.yaml manifest file according to the following example:

$ oc set env ds/peerpodconfig-ctrl-caa-daemon -n openshift-sandboxed-containers-
operator REBOOT="$(date)"

apiVersion: kataconfiguration.openshift.io/v1
kind: KataConfig
metadata:

CHAPTER 3. DEPLOYING WORKLOADS ON PUBLIC CLOUD

45

1

2. Optional: To install kata-remote on selected nodes, specify the node labels according to the
following example:

Specify the labels of the selected nodes.

3. Create the KataConfig CR:

The new KataConfig CR is created and installs kata-remote as a runtime class on the worker
nodes.

Wait for the kata-remote installation to complete and the worker nodes to reboot before
verifying the installation.

Verification

Monitor the installation progress by running the following command:

When the status of all workers under kataNodes is installed and the condition InProgress is
False without specifying a reason, the kata-remote is installed on the cluster.

See KataConfig status messages for details.

3.1.3.3.1. Optional: Verifying the pod VM image

After kata-remote is installed on your cluster, the OpenShift sandboxed containers Operator creates a
pod VM image, which is used to create peer pods. This process can take a long time because the image
is created on the cloud instance. You can verify that the pod VM image was created successfully by
checking the config map that you created for the cloud provider.

Procedure

1. Obtain the config map you created for the peer pods:

 name: cluster-kataconfig
spec:
 enablePeerPods: true
 logLevel: info

apiVersion: kataconfiguration.openshift.io/v1
kind: KataConfig
metadata:
 name: cluster-kataconfig
spec:
 kataConfigPoolSelector:
 matchLabels:
 <label_key>: '<label_value>' 1
...

$ oc create -f cluster-kataconfig.yaml

$ watch "oc describe kataconfig | sed -n /^Status:/,/^Events/p"

$ oc get configmap peer-pods-cm -n openshift-sandboxed-containers-operator -o yaml

OpenShift sandboxed containers 1.6 User guide

46

1

2. Check the status stanza of the YAML file.
If the PODVM_AMI_ID parameter is populated, the pod VM image was created successfully.

Troubleshooting

1. Retrieve the events log by running the following command:

2. Retrieve the job log by running the following command:

If you cannot resolve the issue, submit a Red Hat Support case and attach the output of both logs.

3.1.3.4. Optional: Modifying the number of peer pod VMs per node

You can change the limit of peer pod virtual machines (VMs) per node by editing the peerpodConfig
custom resource (CR).

Procedure

1. Check the current limit by running the following command:

2. Modify the limit attribute of the peerpodConfig CR by running the following command:

Replace <value> with the limit you want to define.

3.1.3.5. Configuring workload objects

You deploy an OpenShift sandboxed containers workload by configuring kata-remote as the runtime
class for the following pod-templated objects:

Pod objects

ReplicaSet objects

ReplicationController objects

StatefulSet objects

Deployment objects

DeploymentConfig objects

$ oc get events -n openshift-sandboxed-containers-operator --field-selector
involvedObject.name=osc-podvm-image-creation

$ oc logs -n openshift-sandboxed-containers-operator jobs/osc-podvm-image-creation

$ oc get peerpodconfig peerpodconfig-openshift -n openshift-sandboxed-containers-operator
\
-o jsonpath='{.spec.limit}{"\n"}'

$ oc patch peerpodconfig peerpodconfig-openshift -n openshift-sandboxed-containers-
operator \
--type merge --patch '{"spec":{"limit":"<value>"}}' 1

CHAPTER 3. DEPLOYING WORKLOADS ON PUBLIC CLOUD

47

1

IMPORTANT

Do not deploy workloads in the openshift-sandboxed-containers-operator namespace.
Create a dedicated namespace for these resources.

You can define whether the workload should be deployed using the default instance type, which you
defined in the config map, by adding an annotation to the YAML file.

If you do not want to define the instance type manually, you can add an annotation to use an automatic
instance type, based on the memory available.

Prerequisites

You have created a secret object for your provider.

You have created a config map for your provider.

You have created a KataConfig custom resource (CR).

Procedure

1. Add spec.runtimeClassName: kata-remote to the manifest of each pod-templated workload
object as in the following example:

2. Add an annotation to the pod-templated object to use a manually defined instance type or an
automatic instance type:

To use a manually defined instance type, add the following annotation:

Specify the instance type that you defined in the config map.

To use an automatic instance type, add the following annotations:

apiVersion: v1
kind: <object>
...
spec:
 runtimeClassName: kata-remote
...

apiVersion: v1
kind: <object>
metadata:
 annotations:
 io.katacontainers.config.hypervisor.machine_type: t3.medium 1
...

apiVersion: v1
kind: <Pod>
metadata:
 annotations:
 io.katacontainers.config.hypervisor.default_vcpus: <vcpus>
 io.katacontainers.config.hypervisor.default_memory: <memory>
...

OpenShift sandboxed containers 1.6 User guide

48

Define the amount of memory available for the workload to use. The workload will run on an
automatic instance type based on the amount of memory available.

3. Apply the changes to the workload object by running the following command:

OpenShift Container Platform creates the workload object and begins scheduling it.

Verification

Inspect the spec.runtimeClassName field of a pod-templated object. If the value is kata-
remote, then the workload is running on OpenShift sandboxed containers, using peer pods.

3.2. DEPLOYING WORKLOADS ON AZURE

You can deploy OpenShift sandboxed containers workloads on Microsoft Azure Cloud Computing
Services by using the OpenShift Container Platform web console or the command line interface (CLI).

Deployment workflow

1. Create a secret for your Azure access keys.

2. Create a config map to define Azure instance sizes and other parameters.

3. Create an SSH key secret.

4. Create a KataConfig custom resource.

5. Optional: Modify the peer pod VM limit per node.

6. Configure your workload objects to use the kata-remote runtime class.

3.2.1. Preparing your environment

Perform the following steps to prepare your environment:

1. Ensure that your cluster has sufficient resources.

2. Install the OpenShift sandboxed containers Operator.

3.2.1.1. Resource requirements

Peer pod virtual machines (VMs) require resources in two locations:

The worker node. The worker node stores metadata, Kata shim resources (containerd-shim-
kata-v2), remote-hypervisor resources (cloud-api-adaptor), and the tunnel setup between the
worker nodes and the peer pod VM.

The cloud instance. This is the actual peer pod VM running in the cloud.

The CPU and memory resources used in the Kubernetes worker node are handled by the pod overhead
included in the RuntimeClass (kata-remote) definition used for creating peer pods.

The total number of peer pod VMs running in the cloud is defined as Kubernetes Node extended

$ oc apply -f <object.yaml>

CHAPTER 3. DEPLOYING WORKLOADS ON PUBLIC CLOUD

49

https://kubernetes.io/docs/concepts/scheduling-eviction/pod-overhead/

1

The total number of peer pod VMs running in the cloud is defined as Kubernetes Node extended
resources. This limit is per node and is set by the limit attribute in the peerpodConfig custom resource
(CR).

The peerpodConfig CR, named peerpodconfig-openshift, is created when you create the kataConfig
CR and enable peer pods, and is located in the openshift-sandboxed-containers-operator namespace.

The following peerpodConfig CR example displays the default spec values:

The default limit is 10 VMs per node.

The extended resource is named kata.peerpods.io/vm, and enables the Kubernetes scheduler to handle
capacity tracking and accounting.

You can edit the limit per node based on the requirements for your environment. See "Modifying the VM
limit per node in peer pods" for more information.

A mutating webhook adds the extended resource kata.peerpods.io/vm to the pod specification. It also
removes any resource-specific entries from the pod specification, if present. This enables the
Kubernetes scheduler to account for these extended resources, ensuring the peer pod is only scheduled
when resources are available.

The mutating webhook modifies a Kubernetes pod as follows:

The mutating webhook checks the pod for the expected RuntimeClassName value, specified
in the TARGET_RUNTIME_CLASS environment variable. If the value in the pod specification
does not match the value in the TARGET_RUNTIME_CLASS, the webhook exits without
modifying the pod.

If the RuntimeClassName values match, the webhook makes the following changes to the pod
spec:

1. The webhook removes every resource specification from the resources field of all
containers and init containers in the pod.

2. The webhook adds the extended resource (kata.peerpods.io/vm) to the spec by modifying
the resources field of the first container in the pod. The extended resource
kata.peerpods.io/vm is used by the Kubernetes scheduler for accounting purposes.

NOTE

apiVersion: confidentialcontainers.org/v1alpha1
kind: PeerPodConfig
metadata:
 name: peerpodconfig-openshift
 namespace: openshift-sandboxed-containers-operator
spec:
 cloudSecretName: peer-pods-secret
 configMapName: peer-pods-cm
 limit: "10" 1
 nodeSelector:
 node-role.kubernetes.io/kata-oc: ""

OpenShift sandboxed containers 1.6 User guide

50

https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/

NOTE

The mutating webhook excludes specific system namespaces in OpenShift Container
Platform from mutation. If a peer pod is created in those system namespaces, then
resource accounting using Kubernetes extended resources does not work unless the pod
spec includes the extended resource.

As a best practice, define a cluster-wide policy to only allow peer pod creation in specific
namespaces.

3.2.1.2. Installing the OpenShift sandboxed containers Operator

You can install the OpenShift sandboxed containers Operator by using the OpenShift Container
Platform web console or command line interface (CLI).

3.2.1.2.1. Installing the Operator by using the web console

You can install the OpenShift sandboxed containers Operator by using the Red Hat OpenShift
Container Platform web console.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

Procedure

1. In the OpenShift Container Platform web console, navigate to Operators → OperatorHub.

2. In the Filter by keyword field, type OpenShift sandboxed containers.

3. Select the OpenShift sandboxed containers Operator tile and click Install.

4. On the Install Operator page, select stable from the list of available Update Channel options.

5. Verify that Operator recommended Namespace is selected for Installed Namespace. This
installs the Operator in the mandatory openshift-sandboxed-containers-operator namespace.
If this namespace does not yet exist, it is automatically created.

NOTE

Attempting to install the OpenShift sandboxed containers Operator in a
namespace other than openshift-sandboxed-containers-operator causes the
installation to fail.

6. Verify that Automatic is selected for Approval Strategy. Automatic is the default value, and
enables automatic updates to OpenShift sandboxed containers when a new z-stream release is
available.

7. Click Install.

The OpenShift sandboxed containers Operator is now installed on your cluster.

Verification

1. Navigate to Operators → Installed Operators.

CHAPTER 3. DEPLOYING WORKLOADS ON PUBLIC CLOUD

51

2. Verify that the OpenShift sandboxed containers Operator is displayed.

Additional resources

Using Operator Lifecycle Manager on restricted networks .

Configuring proxy support in Operator Lifecycle Manager for disconnected environments.

3.2.1.2.2. Installing the Operator by using the CLI

You can install the OpenShift sandboxed containers Operator by using the CLI.

Prerequisites

You have installed the OpenShift CLI (oc).

You have access to the cluster as a user with the cluster-admin role.

Procedure

1. Create a Namespace.yaml manifest file:

2. Create the namespace by running the following command:

3. Create an OperatorGroup.yaml manifest file:

4. Create the operator group by running the following command:

5. Create a Subscription.yaml manifest file:

apiVersion: v1
kind: Namespace
metadata:
 name: openshift-sandboxed-containers-operator

$ oc create -f Namespace.yaml

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: openshift-sandboxed-containers-operator
 namespace: openshift-sandboxed-containers-operator
spec:
 targetNamespaces:
 - openshift-sandboxed-containers-operator

$ oc create -f OperatorGroup.yaml

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: openshift-sandboxed-containers-operator
 namespace: openshift-sandboxed-containers-operator
spec:

OpenShift sandboxed containers 1.6 User guide

52

https://docs.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/operators/index#olm-restricted-networks
https://docs.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/operators/index#olm-configuring-proxy-support.html

6. Create the subscription by running the following command:

The OpenShift sandboxed containers Operator is now installed on your cluster.

Verification

Ensure that the Operator is correctly installed by running the following command:

Example output

3.2.1.2.3. Additional resources

Using Operator Lifecycle Manager on restricted networks

Configuring proxy support in Operator Lifecycle Manager for disconnected environments

3.2.2. Deploying workloads by using the web console

You can deploy OpenShift sandboxed containers workloads by using the web console.

3.2.2.1. Creating a secret

You must create a Secret object on your OpenShift Container Platform cluster. The secret stores cloud
provider credentials for creating the pod virtual machine (VM) image and peer pod instances. By
default, the OpenShift sandboxed containers Operator creates the secret based on the credentials used
to create the cluster. However, you can manually create a secret that uses different credentials.

Prerequisites

You have installed and configured the Azure CLI tool.

Procedure

1. Retrieve the Azure subscription ID:

 channel: stable
 installPlanApproval: Automatic
 name: sandboxed-containers-operator
 source: redhat-operators
 sourceNamespace: openshift-marketplace
 startingCSV: sandboxed-containers-operator.v1.6.0

$ oc create -f Subscription.yaml

$ oc get csv -n openshift-sandboxed-containers-operator

NAME DISPLAY VERSION REPLACES
PHASE
openshift-sandboxed-containers openshift-sandboxed-containers-operator 1.6.0 1.5.3
Succeeded

$ AZURE_SUBSCRIPTION_ID=$(az account list --query "[?isDefault].id" -o tsv) && echo
"AZURE_SUBSCRIPTION_ID: \"$AZURE_SUBSCRIPTION_ID\""

CHAPTER 3. DEPLOYING WORKLOADS ON PUBLIC CLOUD

53

https://docs.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/operators/index#olm-restricted-networks
https://docs.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/operators/index#olm-configuring-proxy-support

1

2

3

4

2. Generate the RBAC content. This generates the client ID, client secret, and the tenant ID:

Example output:

3. Record the RBAC output to use in the secret object.

4. In the OpenShift Container Platform web console, navigate to Operators → Installed
Operators.

5. Click the OpenShift sandboxed containers Operator tile.

6. Click the Import icon (+) on the top right corner.

7. In the Import YAML window, paste the following YAML manifest:

Specify the AZURE_CLIENT_ID value.

Specify the AZURE_CLIENT_SECRET value.

Specify the AZURE_TENANT_ID value.

Specify the AZURE_SUBSCRIPTION_ID value.

8. Click Save to apply the changes.

NOTE

$ az ad sp create-for-rbac --role Contributor --scopes
/subscriptions/$AZURE_SUBSCRIPTION_ID --query "{ client_id: appId, client_secret:
password, tenant_id: tenant }

{
 "client_id": `AZURE_CLIENT_ID`,
 "client_secret": `AZURE_CLIENT_SECRET`,
 "tenant_id": `AZURE_TENANT_ID`
}

apiVersion: v1
kind: Secret
metadata:
 name: peer-pods-secret
 namespace: openshift-sandboxed-containers-operator
type: Opaque
stringData:
 AZURE_CLIENT_ID: "<azure_client_id>" 1
 AZURE_CLIENT_SECRET: "<azure_client_secret>" 2
 AZURE_TENANT_ID: "<azure_tenant_id>" 3
 AZURE_SUBSCRIPTION_ID: "<azure_subscription_id>" 4

OpenShift sandboxed containers 1.6 User guide

54

NOTE

If you update the peer pods secret, you must restart the peerpodconfig-ctrl-caa-
daemon DaemonSet to apply the changes.

After you update the secret, click Save to apply the changes. Then restart the cloud-api-
adaptor pods by running the following command:

Restarting a daemon set recreates peer pods. It does not update existing pods.

Verification

Navigate to Workloads → Secrets to view the secret.

3.2.2.2. Creating a config map

You must create a config map on your OpenShift Container Platform cluster for your cloud provider.

Procedure

1. Obtain the following values from your Azure instance:

a. Retrieve and record the Azure VNet name:

This value is used to retrieve the Azure subnet ID.

b. Retrieve and record the Azure subnet ID:

c. Retrieve and record the Azure network security group (NSG) ID:

d. Retrieve and record the Azure resource group:

e. Retrieve and record the Azure region:

$ oc set env ds/peerpodconfig-ctrl-caa-daemon -n openshift-sandboxed-containers-
operator REBOOT="$(date)"

$ AZURE_VNET_NAME=$(az network vnet list --resource-group
${AZURE_RESOURCE_GROUP} --query "[].{Name:name}" --output tsv)

$ AZURE_SUBNET_ID=$(az network vnet subnet list --resource-group
${AZURE_RESOURCE_GROUP} --vnet-name $AZURE_VNET_NAME --query "[].{Id:id}
| [? contains(Id, 'worker')]" --output tsv) && echo "AZURE_SUBNET_ID:
\"$AZURE_SUBNET_ID\""

$ AZURE_NSG_ID=$(az network nsg list --resource-group
${AZURE_RESOURCE_GROUP} --query "[].{Id:id}" --output tsv) && echo
"AZURE_NSG_ID: \"$AZURE_NSG_ID\""

$ AZURE_RESOURCE_GROUP=$(oc get infrastructure/cluster -o
jsonpath='{.status.platformStatus.azure.resourceGroupName}') && echo
"AZURE_RESOURCE_GROUP: \"$AZURE_RESOURCE_GROUP\""

CHAPTER 3. DEPLOYING WORKLOADS ON PUBLIC CLOUD

55

1

2

3

4

5

6

7

2. In the OpenShift Container Platform web console, navigate to Operators → Installed
Operators.

3. Select the OpenShift sandboxed containers Operator from the list of operators.

4. Click the Import icon (+) in the top right corner.

5. In the Import YAML window, paste the following YAML manifest:

Defines the default instance size that is used when a type is not defined in the workload.

Lists all of the instance sizes you can specify when creating the pod. This allows you to
define smaller instance sizes for workloads that need less memory and fewer CPUs or
larger instance sizes for larger workloads.

Specify the AZURE_SUBNET_ID value that you retrieved.

Specify the AZURE_NSG_ID value that you retrieved.

Optional: By default, this value is populated when you run the KataConfig CR, using an
Azure image ID based on your cluster credentials. If you create your own Azure image,
specify the correct image ID.

Specify the AZURE_REGION value you retrieved.

Specify the AZURE_RESOURCE_GROUP value you retrieved.

6. Click Save to apply the changes.
A config map is created for your cloud provider.

NOTE

$ AZURE_REGION=$(az group show --resource-group
${AZURE_RESOURCE_GROUP} --query "{Location:location}" --output tsv) && echo
"AZURE_REGION: \"$AZURE_REGION\""

apiVersion: v1
kind: ConfigMap
metadata:
 name: peer-pods-cm
 namespace: openshift-sandboxed-containers-operator
data:
 CLOUD_PROVIDER: "azure"
 VXLAN_PORT: "9000"
 AZURE_INSTANCE_SIZE: "Standard_B2als_v2" 1
 AZURE_INSTANCE_SIZES:
"Standard_B2als_v2,Standard_D2as_v5,Standard_D4as_v5,Standard_D2ads_v5" 2
 AZURE_SUBNET_ID: "<azure_subnet_id>" 3
 AZURE_NSG_ID: "<azure_nsg_id>" 4
 PROXY_TIMEOUT: "5m"
 DISABLECVM: "true"
 AZURE_IMAGE_ID: "<azure_image_id>" 5
 AZURE_REGION: "<azure_region>" 6
 AZURE_RESOURCE_GROUP: "<azure_resource_group>" 7

OpenShift sandboxed containers 1.6 User guide

56

NOTE

If you update the peer pods config map, you must restart the peerpodconfig-ctrl-caa-
daemon daemonset to apply the changes.

After you update the config map, click Save to apply the changes. Then restart the
cloud-api-adaptor pods by running the following command:

Restarting the daemonset recreates the peer pods. It does not update the existing pods.

Verification

Navigate to Workloads → ConfigMaps to view the new config map.

3.2.2.3. Creating an SSH key secret

You must create an SSH key secret object for Azure.

Procedure

1. Log in to your OpenShift Container Platform cluster.

2. Generate an SSH key pair by running the following command:

3. In the OpenShift Container Platform web console, navigate to Workloads → Secrets.

4. On the Secrets page, verify that you are in the openshift-sandboxed-containers-operator
project.

5. Click Create and select Key/value secret.

6. In the Secret name field, enter ssh-key-secret.

7. In the Key field, enter id_rsa.pub.

8. In the Value field, paste your public SSH key.

9. Click Create.
The SSH key secret is created.

10. Delete the SSH keys you created:

3.2.2.4. Creating a KataConfig custom resource

You must create a KataConfig custom resource (CR) to install kata-remote as a RuntimeClass on your
worker nodes.

The kata-remote runtime class is installed on all worker nodes by default. If you want to install kata-

$ oc set env ds/peerpodconfig-ctrl-caa-daemon -n openshift-sandboxed-containers-
operator REBOOT="$(date)"

$ ssh-keygen -f ./id_rsa -N ""

$ shred -remove id_rsa.pub id_rsa

CHAPTER 3. DEPLOYING WORKLOADS ON PUBLIC CLOUD

57

The kata-remote runtime class is installed on all worker nodes by default. If you want to install kata-
remote only on specific nodes, you can add labels to those nodes and then define the label in the
KataConfig CR.

OpenShift sandboxed containers installs kata-remote as a secondary, optional runtime on the cluster
and not as the primary runtime.

IMPORTANT

Creating the KataConfig CR automatically reboots the worker nodes. The reboot can
take from 10 to more than 60 minutes. The following factors might increase the reboot
time:

A larger OpenShift Container Platform deployment with a greater number of
worker nodes.

Activation of the BIOS and Diagnostics utility.

Deployment on a hard disk drive rather than an SSD.

Deployment on physical nodes such as bare metal, rather than on virtual nodes.

A slow CPU and network.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

Procedure

1. In the OpenShift Container Platform web console, navigate to Operators → Installed
Operators.

2. Select the OpenShift sandboxed containers Operator.

3. On the KataConfig tab, click Create KataConfig.

4. Enter the following details:

Name: Optional: The default name is example-kataconfig.

Labels: Optional: Enter any relevant, identifying attributes to the KataConfig resource.
Each label represents a key-value pair.

enablePeerPods: Select for public cloud, IBM Z®, and IBM® LinuxONE deployments.

kataConfigPoolSelector. Optional: To install kata-remote on selected nodes, add a match
expression for the labels on the selected nodes:

a. Expand the kataConfigPoolSelector area.

b. In the kataConfigPoolSelector area, expand matchExpressions. This is a list of label
selector requirements.

c. Click Add matchExpressions.

d. In the Key field, enter the label key the selector applies to.

e. In the Operator field, enter the key’s relationship to the label values. Valid operators

OpenShift sandboxed containers 1.6 User guide

58

e. In the Operator field, enter the key’s relationship to the label values. Valid operators
are In, NotIn, Exists, and DoesNotExist.

f. Expand the Values area and then click Add value.

g. In the Value field, enter true or false for key label value.

logLevel: Define the level of log data retrieved for nodes with the kata-remote runtime
class.

5. Click Create. The KataConfig CR is created and installs the kata-remote runtime class on the
worker nodes.
Wait for the kata-remote installation to complete and the worker nodes to reboot before
verifying the installation.

Verification

1. On the KataConfig tab, click the KataConfig CR to view its details.

2. Click the YAML tab to view the status stanza.
The status stanza contains the conditions and kataNodes keys. The value of
status.kataNodes is an array of nodes, each of which lists nodes in a particular state of kata-
remote installation. A message appears each time there is an update.

3. Click Reload to refresh the YAML.
When all workers in the status.kataNodes array display the values installed and
conditions.InProgress: False with no specified reason, the kata-remote is installed on the
cluster.

See KataConfig status messages for details.

3.2.2.4.1. Optional: Verifying the pod VM image

After kata-remote is installed on your cluster, the OpenShift sandboxed containers Operator creates a
pod VM image, which is used to create peer pods. This process can take a long time because the image
is created on the cloud instance. You can verify that the pod VM image was created successfully by
checking the config map that you created for the cloud provider.

Procedure

1. Navigate to Workloads → ConfigMaps.

2. Click the provider config map to view its details.

3. Click the YAML tab.

4. Check the status stanza of the YAML file.
If the AZURE_IMAGE_ID parameter is populated, the pod VM image was created successfully.

Troubleshooting

1. Retrieve the events log by running the following command:

$ oc get events -n openshift-sandboxed-containers-operator --field-selector
involvedObject.name=osc-podvm-image-creation

CHAPTER 3. DEPLOYING WORKLOADS ON PUBLIC CLOUD

59

1

2. Retrieve the job log by running the following command:

If you cannot resolve the issue, submit a Red Hat Support case and attach the output of both logs.

3.2.2.5. Optional: Modifying the number of peer pod VMs per node

You can change the limit of peer pod virtual machines (VMs) per node by editing the peerpodConfig
custom resource (CR).

Procedure

1. Check the current limit by running the following command:

2. Modify the limit attribute of the peerpodConfig CR by running the following command:

Replace <value> with the limit you want to define.

3.2.2.6. Configuring workload objects

You deploy an OpenShift sandboxed containers workload by configuring kata-remote as the runtime
class for the following pod-templated objects:

Pod objects

ReplicaSet objects

ReplicationController objects

StatefulSet objects

Deployment objects

DeploymentConfig objects

IMPORTANT

Do not deploy workloads in the openshift-sandboxed-containers-operator namespace.
Create a dedicated namespace for these resources.

You can define whether the workload should be deployed using the default instance size, which you
defined in the config map, by adding an annotation to the YAML file.

If you do not want to define the instance size manually, you can add an annotation to use an automatic

$ oc logs -n openshift-sandboxed-containers-operator jobs/osc-podvm-image-creation

$ oc get peerpodconfig peerpodconfig-openshift -n openshift-sandboxed-containers-operator
\
-o jsonpath='{.spec.limit}{"\n"}'

$ oc patch peerpodconfig peerpodconfig-openshift -n openshift-sandboxed-containers-
operator \
--type merge --patch '{"spec":{"limit":"<value>"}}' 1

OpenShift sandboxed containers 1.6 User guide

60

1

If you do not want to define the instance size manually, you can add an annotation to use an automatic
instance size, based on the memory available.

Prerequisites

You have created a secret object for your provider.

You have created a config map for your provider.

You have created a KataConfig custom resource (CR).

Procedure

1. In the OpenShift Container Platform web console, navigate to Workloads → workload type, for
example, Pods.

2. On the workload type page, click an object to view its details.

3. Click the YAML tab.

4. Add spec.runtimeClassName: kata-remote to the manifest of each pod-templated workload
object as in the following example:

5. Add an annotation to the pod-templated object to use a manually defined instance size or an
automatic instance size:

To use a manually defined instance size, add the following annotation:

Specify the instance size that you defined in the config map.

To use an automatic instance size, add the following annotations:

Define the amount of memory available for the workload to use. The workload will run on an

apiVersion: v1
kind: <object>
...
spec:
 runtimeClassName: kata-remote
...

apiVersion: v1
kind: <object>
metadata:
 annotations:
 io.katacontainers.config.hypervisor.machine_type: Standard_B2als_v2 1
...

apiVersion: v1
kind: <Pod>
metadata:
 annotations:
 io.katacontainers.config.hypervisor.default_vcpus: <vcpus>
 io.katacontainers.config.hypervisor.default_memory: <memory>
...

CHAPTER 3. DEPLOYING WORKLOADS ON PUBLIC CLOUD

61

Define the amount of memory available for the workload to use. The workload will run on an
automatic instance size based on the amount of memory available.

6. Click Save to apply the changes.
OpenShift Container Platform creates the workload object and begins scheduling it.

Verification

Inspect the spec.runtimeClassName field of a pod-templated object. If the value is kata-
remote, then the workload is running on OpenShift sandboxed containers, using peer pods.

3.2.3. Deploying workloads by using the command line

You can deploy OpenShift sandboxed containers workloads by using the command line.

3.2.3.1. Creating a secret

You must create a Secret object on your OpenShift Container Platform cluster. The secret stores cloud
provider credentials for creating the pod virtual machine (VM) image and peer pod instances. By
default, the OpenShift sandboxed containers Operator creates the secret based on the credentials used
to create the cluster. However, you can manually create a secret that uses different credentials.

Prerequisites

You have installed and configured the Azure CLI tool.

Procedure

1. Retrieve the Azure subscription ID:

2. Generate the RBAC content. This generates the client ID, client secret, and the tenant ID:

Example output:

3. Record the RBAC output to use in the secret object.

4. Create a peer-pods-secret.yaml manifest file according to the following example:

$ AZURE_SUBSCRIPTION_ID=$(az account list --query "[?isDefault].id" -o tsv) && echo
"AZURE_SUBSCRIPTION_ID: \"$AZURE_SUBSCRIPTION_ID\""

$ az ad sp create-for-rbac --role Contributor --scopes
/subscriptions/$AZURE_SUBSCRIPTION_ID --query "{ client_id: appId, client_secret:
password, tenant_id: tenant }

{
 "client_id": `AZURE_CLIENT_ID`,
 "client_secret": `AZURE_CLIENT_SECRET`,
 "tenant_id": `AZURE_TENANT_ID`
}

apiVersion: v1
kind: Secret
metadata:

OpenShift sandboxed containers 1.6 User guide

62

1

2

3

4

Specify the AZURE_CLIENT_ID value.

Specify the AZURE_CLIENT_SECRET value.

Specify the AZURE_TENANT_ID value.

Specify the AZURE_SUBSCRIPTION_ID value.

5. Create the secret object by applying the manifest:

NOTE

If you update the peer pods secret, you must restart the peerpodconfig-ctrl-caa-
daemon DaemonSet to apply the changes.

After you update the secret, apply the manifest. Then restart the cloud-api-adaptor
pods by running the following command:

Restarting a daemon set recreates peer pods. It does not update existing pods.

3.2.3.2. Creating a config map

You must create a config map on your OpenShift Container Platform cluster for your cloud provider.

Procedure

1. Obtain the following values from your Azure instance:

a. Retrieve and record the Azure VNet name:

This value is used to retrieve the Azure subnet ID.

b. Retrieve and record the Azure subnet ID:

 name: peer-pods-secret
 namespace: openshift-sandboxed-containers-operator
type: Opaque
stringData:
 AZURE_CLIENT_ID: "<azure_client_id>" 1
 AZURE_CLIENT_SECRET: "<azure_client_secret>" 2
 AZURE_TENANT_ID: "<azure_tenant_id>" 3
 AZURE_SUBSCRIPTION_ID: "<azure_subscription_id>" 4

$ oc apply -f peer-pods-secret.yaml

$ oc set env ds/peerpodconfig-ctrl-caa-daemon -n openshift-sandboxed-containers-
operator REBOOT="$(date)"

$ AZURE_VNET_NAME=$(az network vnet list --resource-group
${AZURE_RESOURCE_GROUP} --query "[].{Name:name}" --output tsv)

$ AZURE_SUBNET_ID=$(az network vnet subnet list --resource-group
${AZURE_RESOURCE_GROUP} --vnet-name $AZURE_VNET_NAME --query "[].{Id:id}

CHAPTER 3. DEPLOYING WORKLOADS ON PUBLIC CLOUD

63

1

2

3

4

5

c. Retrieve and record the Azure network security group (NSG) ID:

d. Retrieve and record the Azure resource group:

e. Retrieve and record the Azure region:

2. Create a peer-pods-cm.yaml manifest according to the following example:

Defines the default instance size that is used when a type is not defined in the workload.

Lists all of the instance sizes you can specify when creating the pod. This allows you to
define smaller instance sizes for workloads that need less memory and fewer CPUs or
larger instance sizes for larger workloads.

Specify the AZURE_SUBNET_ID value that you retrieved.

Specify the AZURE_NSG_ID value that you retrieved.

Optional: By default, this value is populated when you run the KataConfig CR, using an

| [? contains(Id, 'worker')]" --output tsv) && echo "AZURE_SUBNET_ID:
\"$AZURE_SUBNET_ID\""

$ AZURE_NSG_ID=$(az network nsg list --resource-group
${AZURE_RESOURCE_GROUP} --query "[].{Id:id}" --output tsv) && echo
"AZURE_NSG_ID: \"$AZURE_NSG_ID\""

$ AZURE_RESOURCE_GROUP=$(oc get infrastructure/cluster -o
jsonpath='{.status.platformStatus.azure.resourceGroupName}') && echo
"AZURE_RESOURCE_GROUP: \"$AZURE_RESOURCE_GROUP\""

$ AZURE_REGION=$(az group show --resource-group
${AZURE_RESOURCE_GROUP} --query "{Location:location}" --output tsv) && echo
"AZURE_REGION: \"$AZURE_REGION\""

apiVersion: v1
kind: ConfigMap
metadata:
 name: peer-pods-cm
 namespace: openshift-sandboxed-containers-operator
data:
 CLOUD_PROVIDER: "azure"
 VXLAN_PORT: "9000"
 AZURE_INSTANCE_SIZE: "Standard_B2als_v2" 1
 AZURE_INSTANCE_SIZES:
"Standard_B2als_v2,Standard_D2as_v5,Standard_D4as_v5,Standard_D2ads_v5" 2
 AZURE_SUBNET_ID: "<azure_subnet_id>" 3
 AZURE_NSG_ID: "<azure_nsg_id>" 4
 PROXY_TIMEOUT: "5m"
 DISABLECVM: "true"
 AZURE_IMAGE_ID: "<azure_image_id>" 5
 AZURE_REGION: "<azure_region>" 6
 AZURE_RESOURCE_GROUP: "<azure_resource_group>" 7

OpenShift sandboxed containers 1.6 User guide

64

6

7

Specify the AZURE_REGION value you retrieved.

Specify the AZURE_RESOURCE_GROUP value you retrieved.

3. Apply the manifest to create a config map:

A config map is created for your cloud provider.

NOTE

If you update the peer pods config map, you must restart the peerpodconfig-ctrl-caa-
daemon daemonset to apply the changes.

After you update the config map, apply the manifest. Then restart the cloud-api-adaptor
pods by running the following command:

Restarting the daemonset recreates the peer pods. It does not update the existing pods.

3.2.3.3. Creating an SSH key secret

You must create an SSH key secret object for Azure.

Procedure

1. Log in to your OpenShift Container Platform cluster.

2. Generate an SSH key pair by running the following command:

3. Create the Secret object by running the following command:

The SSH key secret is created.

4. Delete the SSH keys you created:

3.2.3.4. Creating a KataConfig custom resource

You must create a KataConfig custom resource (CR) to install kata-remote as a runtime class on your
worker nodes.

$ oc apply -f peer-pods-cm.yaml

$ oc set env ds/peerpodconfig-ctrl-caa-daemon -n openshift-sandboxed-containers-
operator REBOOT="$(date)"

$ ssh-keygen -f ./id_rsa -N ""

$ oc create secret generic ssh-key-secret \
 -n openshift-sandboxed-containers-operator \
 --from-file=id_rsa.pub=./id_rsa.pub \
 --from-file=id_rsa=./id_rsa

$ shred -remove id_rsa.pub id_rsa

CHAPTER 3. DEPLOYING WORKLOADS ON PUBLIC CLOUD

65

Creating the KataConfig CR triggers the OpenShift sandboxed containers Operator to do the
following:

Create a RuntimeClass CR named kata-remote with a default configuration. This enables
users to configure workloads to use kata-remote as the runtime by referencing the CR in the
RuntimeClassName field. This CR also specifies the resource overhead for the runtime.

OpenShift sandboxed containers installs kata-remote as a secondary, optional runtime on the cluster
and not as the primary runtime.

IMPORTANT

Creating the KataConfig CR automatically reboots the worker nodes. The reboot can
take from 10 to more than 60 minutes. Factors that impede reboot time are as follows:

A larger OpenShift Container Platform deployment with a greater number of
worker nodes.

Activation of the BIOS and Diagnostics utility.

Deployment on a hard disk drive rather than an SSD.

Deployment on physical nodes such as bare metal, rather than on virtual nodes.

A slow CPU and network.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

Procedure

1. Create a cluster-kataconfig.yaml manifest file according to the following example:

2. Optional: To install kata-remote on selected nodes, specify the node labels according to the
following example:

apiVersion: kataconfiguration.openshift.io/v1
kind: KataConfig
metadata:
 name: cluster-kataconfig
spec:
 enablePeerPods: true
 logLevel: info

apiVersion: kataconfiguration.openshift.io/v1
kind: KataConfig
metadata:
 name: cluster-kataconfig
spec:
 kataConfigPoolSelector:
 matchLabels:
 <label_key>: '<label_value>' 1
...

OpenShift sandboxed containers 1.6 User guide

66

1 Specify the labels of the selected nodes.

3. Create the KataConfig CR:

The new KataConfig CR is created and installs kata-remote as a runtime class on the worker
nodes.

Wait for the kata-remote installation to complete and the worker nodes to reboot before
verifying the installation.

Verification

Monitor the installation progress by running the following command:

When the status of all workers under kataNodes is installed and the condition InProgress is
False without specifying a reason, the kata-remote is installed on the cluster.

See KataConfig status messages for details.

3.2.3.4.1. Optional: Verifying the pod VM image

After kata-remote is installed on your cluster, the OpenShift sandboxed containers Operator creates a
pod VM image, which is used to create peer pods. This process can take a long time because the image
is created on the cloud instance. You can verify that the pod VM image was created successfully by
checking the config map that you created for the cloud provider.

Procedure

1. Obtain the config map you created for the peer pods:

2. Check the status stanza of the YAML file.
If the AZURE_IMAGE_ID parameter is populated, the pod VM image was created successfully.

Troubleshooting

1. Retrieve the events log by running the following command:

2. Retrieve the job log by running the following command:

If you cannot resolve the issue, submit a Red Hat Support case and attach the output of both logs.

$ oc create -f cluster-kataconfig.yaml

$ watch "oc describe kataconfig | sed -n /^Status:/,/^Events/p"

$ oc get configmap peer-pods-cm -n openshift-sandboxed-containers-operator -o yaml

$ oc get events -n openshift-sandboxed-containers-operator --field-selector
involvedObject.name=osc-podvm-image-creation

$ oc logs -n openshift-sandboxed-containers-operator jobs/osc-podvm-image-creation

CHAPTER 3. DEPLOYING WORKLOADS ON PUBLIC CLOUD

67

1

3.2.3.5. Optional: Modifying the number of peer pod VMs per node

You can change the limit of peer pod virtual machines (VMs) per node by editing the peerpodConfig
custom resource (CR).

Procedure

1. Check the current limit by running the following command:

2. Modify the limit attribute of the peerpodConfig CR by running the following command:

Replace <value> with the limit you want to define.

3.2.3.6. Configuring workload objects

You deploy an OpenShift sandboxed containers workload by configuring kata-remote as the runtime
class for the following pod-templated objects:

Pod objects

ReplicaSet objects

ReplicationController objects

StatefulSet objects

Deployment objects

DeploymentConfig objects

IMPORTANT

Do not deploy workloads in the openshift-sandboxed-containers-operator namespace.
Create a dedicated namespace for these resources.

You can define whether the workload should be deployed using the default instance size, which you
defined in the config map, by adding an annotation to the YAML file.

If you do not want to define the instance size manually, you can add an annotation to use an automatic
instance size, based on the memory available.

Prerequisites

You have created a secret object for your provider.

You have created a config map for your provider.

$ oc get peerpodconfig peerpodconfig-openshift -n openshift-sandboxed-containers-operator
\
-o jsonpath='{.spec.limit}{"\n"}'

$ oc patch peerpodconfig peerpodconfig-openshift -n openshift-sandboxed-containers-
operator \
--type merge --patch '{"spec":{"limit":"<value>"}}' 1

OpenShift sandboxed containers 1.6 User guide

68

1

You have created a KataConfig custom resource (CR).

Procedure

1. Add spec.runtimeClassName: kata-remote to the manifest of each pod-templated workload
object as in the following example:

2. Add an annotation to the pod-templated object to use a manually defined instance size or an
automatic instance size:

To use a manually defined instance size, add the following annotation:

Specify the instance size that you defined in the config map.

To use an automatic instance size, add the following annotations:

Define the amount of memory available for the workload to use. The workload will run on an
automatic instance size based on the amount of memory available.

3. Apply the changes to the workload object by running the following command:

OpenShift Container Platform creates the workload object and begins scheduling it.

Verification

Inspect the spec.runtimeClassName field of a pod-templated object. If the value is kata-
remote, then the workload is running on OpenShift sandboxed containers, using peer pods.

apiVersion: v1
kind: <object>
...
spec:
 runtimeClassName: kata-remote
...

apiVersion: v1
kind: <object>
metadata:
 annotations:
 io.katacontainers.config.hypervisor.machine_type: Standard_B2als_v2 1
...

apiVersion: v1
kind: <Pod>
metadata:
 annotations:
 io.katacontainers.config.hypervisor.default_vcpus: <vcpus>
 io.katacontainers.config.hypervisor.default_memory: <memory>
...

$ oc apply -f <object.yaml>

CHAPTER 3. DEPLOYING WORKLOADS ON PUBLIC CLOUD

69

CHAPTER 4. DEPLOYING WORKLOADS ON IBM
You can deploy OpenShift sandboxed containers workloads on IBM Z® and IBM® LinuxONE.

IMPORTANT

Deploying OpenShift sandboxed containers workloads on IBM Z® and IBM® LinuxONE is
a Technology Preview feature only. Technology Preview features are not supported with
Red Hat production service level agreements (SLAs) and might not be functionally
complete. Red Hat does not recommend using them in production. These features
provide early access to upcoming product features, enabling customers to test
functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

Cluster prerequisites

You have installed Red Hat OpenShift Container Platform 4.14 or later.

Your cluster has three control nodes and two worker nodes.

Deployment flow

While this document refers only to IBM Z®, all procedures also apply to IBM® LinuxONE.

You deploy OpenShift sandboxed containers workloads by performing the following steps:

1. Configure a libvirt volume on your KVM host.

2. Create a KVM guest image and upload it to the libvirt volume.

3. Create a peer pod VM image and upload it to the libvirt volume.

4. Create a secret for the libvirt provider.

5. Create a config map for the libvirt provider.

6. Create an SSH key secret for your KVM host.

7. Create a KataConfig CR.

8. Optional: Modify the peer pod VM limit per node.

9. Configure your workload objects to use the kata-remote runtime class.

NOTE

Cluster nodes and peer pods must be in the same IBM Z® KVM host logical
partition (LPAR).

Cluster nodes and peer pods must be connected to the same subnet.

4.1. PREPARING YOUR ENVIRONMENT

Perform the following steps to prepare your environment:

OpenShift sandboxed containers 1.6 User guide

70

https://access.redhat.com/support/offerings/techpreview/

1

1. Ensure that your cluster has sufficient resources.

2. Install the OpenShift sandboxed containers Operator.

4.1.1. Resource requirements

Peer pod virtual machines (VMs) require resources in two locations:

The worker node. The worker node stores metadata, Kata shim resources (containerd-shim-
kata-v2), remote-hypervisor resources (cloud-api-adaptor), and the tunnel setup between the
worker nodes and the peer pod VM.

The cloud instance. This is the actual peer pod VM running in the cloud.

The CPU and memory resources used in the Kubernetes worker node are handled by the pod overhead
included in the RuntimeClass (kata-remote) definition used for creating peer pods.

The total number of peer pod VMs running in the cloud is defined as Kubernetes Node extended
resources. This limit is per node and is set by the limit attribute in the peerpodConfig custom resource
(CR).

The peerpodConfig CR, named peerpodconfig-openshift, is created when you create the kataConfig
CR and enable peer pods, and is located in the openshift-sandboxed-containers-operator namespace.

The following peerpodConfig CR example displays the default spec values:

The default limit is 10 VMs per node.

The extended resource is named kata.peerpods.io/vm, and enables the Kubernetes scheduler to handle
capacity tracking and accounting.

You can edit the limit per node based on the requirements for your environment. See "Modifying the VM
limit per node in peer pods" for more information.

A mutating webhook adds the extended resource kata.peerpods.io/vm to the pod specification. It also
removes any resource-specific entries from the pod specification, if present. This enables the
Kubernetes scheduler to account for these extended resources, ensuring the peer pod is only scheduled
when resources are available.

The mutating webhook modifies a Kubernetes pod as follows:

The mutating webhook checks the pod for the expected RuntimeClassName value, specified
in the TARGET_RUNTIME_CLASS environment variable. If the value in the pod specification

apiVersion: confidentialcontainers.org/v1alpha1
kind: PeerPodConfig
metadata:
 name: peerpodconfig-openshift
 namespace: openshift-sandboxed-containers-operator
spec:
 cloudSecretName: peer-pods-secret
 configMapName: peer-pods-cm
 limit: "10" 1
 nodeSelector:
 node-role.kubernetes.io/kata-oc: ""

CHAPTER 4. DEPLOYING WORKLOADS ON IBM

71

https://kubernetes.io/docs/concepts/scheduling-eviction/pod-overhead/
https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/

does not match the value in the TARGET_RUNTIME_CLASS, the webhook exits without
modifying the pod.

If the RuntimeClassName values match, the webhook makes the following changes to the pod
spec:

1. The webhook removes every resource specification from the resources field of all
containers and init containers in the pod.

2. The webhook adds the extended resource (kata.peerpods.io/vm) to the spec by modifying
the resources field of the first container in the pod. The extended resource
kata.peerpods.io/vm is used by the Kubernetes scheduler for accounting purposes.

NOTE

The mutating webhook excludes specific system namespaces in OpenShift Container
Platform from mutation. If a peer pod is created in those system namespaces, then
resource accounting using Kubernetes extended resources does not work unless the pod
spec includes the extended resource.

As a best practice, define a cluster-wide policy to only allow peer pod creation in specific
namespaces.

4.1.2. Installing the OpenShift sandboxed containers Operator

You can install the OpenShift sandboxed containers Operator by using the OpenShift Container
Platform web console or command line interface (CLI).

4.1.2.1. Installing the Operator by using the web console

You can install the OpenShift sandboxed containers Operator by using the Red Hat OpenShift
Container Platform web console.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

Procedure

1. In the OpenShift Container Platform web console, navigate to Operators → OperatorHub.

2. In the Filter by keyword field, type OpenShift sandboxed containers.

3. Select the OpenShift sandboxed containers Operator tile and click Install.

4. On the Install Operator page, select stable from the list of available Update Channel options.

5. Verify that Operator recommended Namespace is selected for Installed Namespace. This
installs the Operator in the mandatory openshift-sandboxed-containers-operator namespace.
If this namespace does not yet exist, it is automatically created.

NOTE

OpenShift sandboxed containers 1.6 User guide

72

NOTE

Attempting to install the OpenShift sandboxed containers Operator in a
namespace other than openshift-sandboxed-containers-operator causes the
installation to fail.

6. Verify that Automatic is selected for Approval Strategy. Automatic is the default value, and
enables automatic updates to OpenShift sandboxed containers when a new z-stream release is
available.

7. Click Install.

The OpenShift sandboxed containers Operator is now installed on your cluster.

Verification

1. Navigate to Operators → Installed Operators.

2. Verify that the OpenShift sandboxed containers Operator is displayed.

Additional resources

Using Operator Lifecycle Manager on restricted networks .

Configuring proxy support in Operator Lifecycle Manager for disconnected environments.

4.1.2.2. Installing the Operator by using the CLI

You can install the OpenShift sandboxed containers Operator by using the CLI.

Prerequisites

You have installed the OpenShift CLI (oc).

You have access to the cluster as a user with the cluster-admin role.

Procedure

1. Create a Namespace.yaml manifest file:

2. Create the namespace by running the following command:

3. Create an OperatorGroup.yaml manifest file:

apiVersion: v1
kind: Namespace
metadata:
 name: openshift-sandboxed-containers-operator

$ oc create -f Namespace.yaml

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:

CHAPTER 4. DEPLOYING WORKLOADS ON IBM

73

https://docs.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/operators/index#olm-restricted-networks
https://docs.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/operators/index#olm-configuring-proxy-support.html

4. Create the operator group by running the following command:

5. Create a Subscription.yaml manifest file:

6. Create the subscription by running the following command:

The OpenShift sandboxed containers Operator is now installed on your cluster.

Verification

Ensure that the Operator is correctly installed by running the following command:

Example output

4.1.2.3. Additional resources

Using Operator Lifecycle Manager on restricted networks

Configuring proxy support in Operator Lifecycle Manager for disconnected environments

4.2. DEPLOYING WORKLOADS BY USING THE COMMAND LINE

 name: openshift-sandboxed-containers-operator
 namespace: openshift-sandboxed-containers-operator
spec:
 targetNamespaces:
 - openshift-sandboxed-containers-operator

$ oc create -f OperatorGroup.yaml

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: openshift-sandboxed-containers-operator
 namespace: openshift-sandboxed-containers-operator
spec:
 channel: stable
 installPlanApproval: Automatic
 name: sandboxed-containers-operator
 source: redhat-operators
 sourceNamespace: openshift-marketplace
 startingCSV: sandboxed-containers-operator.v1.6.0

$ oc create -f Subscription.yaml

$ oc get csv -n openshift-sandboxed-containers-operator

NAME DISPLAY VERSION REPLACES
PHASE
openshift-sandboxed-containers openshift-sandboxed-containers-operator 1.6.0 1.5.3
Succeeded

OpenShift sandboxed containers 1.6 User guide

74

https://docs.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/operators/index#olm-restricted-networks
https://docs.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/operators/index#olm-configuring-proxy-support

1

You can deploy OpenShift sandboxed containers workloads by using the command line.

4.2.1. Configuring a libvirt volume

You must configure a libvirt volume on your KVM host. Peer pods use the libvirt provider of the Cloud
API Adaptor to create and manage virtual machines.

Prerequisites

You have installed the OpenShift sandboxed containers Operator on your OpenShift Container
Platform cluster by using the OpenShift Container Platform web console or the command line.

You have administrator privileges for your KVM host.

You have installed podman on your KVM host.

You have installed virt-customize on your KVM host.

Procedure

1. Log in to the KVM host.

2. Set the name of the libvirt pool by running the following command:

You need the LIBVIRT_POOL value to create the secret for the libvirt provider.

3. Set the name of the libvirt pool by running the following command:

You need the LIBVIRT_VOL_NAME value to create the secret for the libvirt provider.

4. Set the path of the default storage pool location, by running the following command:

To ensure libvirt has read and write access permissions, use a subdirectory of the libvirt
storage directory. The default is /var/lib/libvirt/images/.

5. Create a libvirt pool by running the following command:

6. Start the libvirt pool by running the following command:

7. Create a libvirt volume for the pool by running the following command:

$ export LIBVIRT_POOL=<libvirt_pool>

$ export LIBVIRT_VOL_NAME=<libvirt_volume>

$ export LIBVIRT_POOL_DIRECTORY=<target_directory> 1

$ virsh pool-define-as $LIBVIRT_POOL --type dir --target "$LIBVIRT_POOL_DIRECTORY"

$ virsh pool-start $LIBVIRT_POOL

$ virsh -c qemu:///system \
 vol-create-as --pool $LIBVIRT_POOL \

CHAPTER 4. DEPLOYING WORKLOADS ON IBM

75

1

1

4.2.2. Creating a KVM guest image

You must create a KVM guest image and upload it to the libvirt volume.

Prerequisites

IBM z15 or later, or IBM® LinuxONE III or later.

At least one LPAR running on RHEL 9 or later with KVM.

Procedure

1. Log in to your OpenShift Container Platform cluster.

2. If you have a RHEL subscription, set the subscription environment variables for Red Hat
Subscription Management:

Set the organization ID by running the following command:

Set the activation key by running the following command:

3. If you do not have a RHEL subscription, set the subscription values for RHEL:

Set the organization ID by running the following command:

Specify your RHEL organization ID.

Set the activation key by running the following command:

Specify your RHEL activation key.

4. Log in to your IBM Z® system.

5. Download the s390x RHEL KVM guest image from the Red Hat Customer Portal to your libvirt
storage directory to grant libvirt correct access.
The default directory is /var/lib/libvirt/images. This image is used to generate the peer pod VM
image, which includes the relevant binaries.

 --name $LIBVIRT_VOL_NAME \
 --capacity 20G \
 --allocation 2G \
 --prealloc-metadata \
 --format qcow2

$ export ORG_ID=$(cat ~/.rh_subscription/orgid)

$ export ACTIVATION_KEY=$(cat ~/.rh_subscription/activation_key)

$ export ORG_ID=<RHEL_ORGID_VALUE> 1

$ export ACTIVATION_KEY=<RHEL_ACTIVATION_KEY> 1

OpenShift sandboxed containers 1.6 User guide

76

https://access.redhat.com/downloads/content/433/ver=/rhel---9

1

6. Set the IMAGE_URL for the downloaded image by running the following command:

Specify the path of the KVM guest image.

7. Register the guest KVM image by running the following command:

8. Customize the guest KVM image by running the following command:

9. Set the checksum of the image by running the following command:

4.2.3. Building a peer pod VM image

You must build a peer pod virtual machine (VM) image and upload it to your libvirt volume.

Procedure

1. Log in to your OpenShift Container Platform cluster.

2. Clone the cloud-api-adaptor repository by running the following command:

3. Change into the podvm directory by running the following command:

4. Create a builder image from which the final QCOW2 image is generated.

If you have a subscribed RHEL system, run the following command:

If you have an unsubscribed RHEL system, run the following command:

$ export IMAGE_URL=<path/to/image> 1

$ export REGISTER_CMD="subscription-manager register --org=${ORG_ID} \
 --activationkey=${ACTIVATION_KEY}"

$ virt-customize -v -x -a ${IMAGE_URL} --run-command "${REGISTER_CMD}"

$ export IMAGE_CHECKSUM=$(sha256sum ${IMAGE_URL} | awk '{ print $1 }')

$ git clone --single-branch https://github.com/confidential-containers/cloud-api-adaptor.git

$ cd cloud-api-adaptor && git checkout 8577093

$ podman build -t podvm_builder_rhel_s390x \
 --build-arg ARCH="s390x" \
 --build-arg GO_VERSION="1.21.3" \
 --build-arg PROTOC_VERSION="25.1" \
 --build-arg PACKER_VERSION="v1.9.4" \
 --build-arg RUST_VERSION="1.72.0" \
 --build-arg YQ_VERSION="v4.35.1" \
 --build-arg
YQ_CHECKSUM="sha256:4e6324d08630e7df733894a11830412a43703682d65a76f1fc9
25aac08268a45" \
 -f podvm/Dockerfile.podvm_builder.rhel .

CHAPTER 4. DEPLOYING WORKLOADS ON IBM

77

https://github.com/confidential-containers/cloud-api-adaptor

1

5. Generate an intermediate image package with the required binaries for running peer pods by
running the following command:

This process takes a significant length of time.

6. Extract the binaries and build the peer pod QCOW2 image by running the following command:

7. Create an image directory environment variable by running the following command:

Specify a directory for the image.

8. Create the image directory by running the following command:

9. Save the extracted peer pod QCOW2 image by running the following command:

10. Upload the peer pod QCOW2 image to your libvirt volume:

$ podman build -t podvm_builder_rhel_s390x \
 --build-arg ORG_ID=$ORG_ID \
 --build-arg ACTIVATION_KEY=$ACTIVATION_KEY \
 --build-arg ARCH="s390x" \
 --build-arg GO_VERSION="1.21.3" \
 --build-arg PROTOC_VERSION="25.1" \
 --build-arg PACKER_VERSION="v1.9.4" \
 --build-arg RUST_VERSION="1.72.0" \
 --build-arg YQ_VERSION="v4.35.1" \
 --build-arg
YQ_CHECKSUM="sha256:4e6324d08630e7df733894a11830412a43703682d65a76f1fc9
25aac08268a45" \
 -f podvm/Dockerfile.podvm_builder.rhel .

$ podman build -t podvm_binaries_rhel_s390x \
 --build-arg BUILDER_IMG="podvm_builder_rhel_s390x:latest" \
 --build-arg ARCH=s390x \
 -f podvm/Dockerfile.podvm_binaries.rhel .

$ podman build -t podvm_rhel_s390x \
 --build-arg ARCH=s390x \
 --build-arg CLOUD_PROVIDER=libvirt \
 --build-arg BUILDER_IMG="localhost/podvm_builder_rhel_s390x:latest" \
 --build-arg BINARIES_IMG="localhost/podvm_binaries_rhel_s390x:latest" \
 -v ${IMAGE_URL}:/tmp/rhel.qcow2:Z \
 --build-arg IMAGE_URL="/tmp/rhel.qcow2" \
 --build-arg IMAGE_CHECKSUM=${IMAGE_CHECKSUM} \
 -f podvm/Dockerfile.podvm.rhel .

$ export IMAGE_OUTPUT_DIR=<image_output_directory> 1

$ mkdir -p $IMAGE_OUTPUT_DIR

$ podman save podvm_rhel_s390x | tar -xO --no-wildcards-match-slash '*.tar' | tar -x -C
${IMAGE_OUTPUT_DIR}

OpenShift sandboxed containers 1.6 User guide

78

1

2

3

4.2.4. Creating a secret

You must create a Secret object on your OpenShift Container Platform cluster.

Prerequisites

LIBVIRT_POOL. Use the value you set when you configured libvirt on the KVM host.

LIBVIRT_VOL_NAME. Use the value you set when you configured libvirt on the KVM host.

LIBVIRT_URI. This value is the default gateway IP address of the libvirt network. Check your
libvirt network setup to obtain this value.

NOTE

If libvirt uses the default bridge virtual network, you can obtain the LIBVIRT_URI
by running the following commands:

Procedure

1. Create a peer-pods-secret.yaml manifest file according to the following example:

Specify the libvirt URI.

Specify the libvirt pool.

Specify the libvirt volume name.

2. Create the secret object by applying the manifest:

$ virsh -c qemu:///system vol-upload \
 --vol $LIBVIRT_VOL_NAME \
 $IMAGE_OUTPUT_DIR/podvm-*.qcow2 \
 --pool $LIBVIRT_POOL --sparse

$ virtint=$(bridge_line=$(virsh net-info default | grep Bridge); echo
"${bridge_line//Bridge:/}" | tr -d [:blank:])

$ LIBVIRT_URI=$(ip -4 addr show $virtint | grep -oP '(?<=inet\s)\d+(\.\d+){3}')

apiVersion: v1
kind: Secret
metadata:
 name: peer-pods-secret
 namespace: openshift-sandboxed-containers-operator
type: Opaque
stringData:
 CLOUD_PROVIDER: "libvirt"
 LIBVIRT_URI: "<libvirt_gateway_uri>" 1
 LIBVIRT_POOL: "<libvirt_pool>" 2
 LIBVIRT_VOL_NAME: "<libvirt_volume>" 3

CHAPTER 4. DEPLOYING WORKLOADS ON IBM

79

NOTE

If you update the peer pods secret, you must restart the peerpodconfig-ctrl-caa-
daemon DaemonSet to apply the changes.

After you update the secret, apply the manifest. Then restart the cloud-api-adaptor
pods by running the following command:

Restarting a daemon set recreates peer pods. It does not update existing pods.

4.2.5. Creating a config map

You must create a config map on your OpenShift Container Platform cluster for your libvirt provider.

Procedure

1. Create a peer-pods-cm.yaml manifest according to the following example:

2. Apply the manifest to create a config map:

A config map is created for your libvirt provider.

NOTE

If you update the peer pods config map, you must restart the peerpodconfig-ctrl-caa-
daemon daemonset to apply the changes.

After you update the config map, apply the manifest. Then restart the cloud-api-adaptor
pods by running the following command:

Restarting the daemonset recreates the peer pods. It does not update the existing pods.

4.2.6. Creating an SSH key secret

$ oc apply -f peer-pods-secret.yaml

$ oc set env ds/peerpodconfig-ctrl-caa-daemon -n openshift-sandboxed-containers-
operator REBOOT="$(date)"

apiVersion: v1
kind: ConfigMap
metadata:
 name: peer-pods-cm
 namespace: openshift-sandboxed-containers-operator
data:
 CLOUD_PROVIDER: "libvirt"
 PROXY_TIMEOUT: "15m"

$ oc apply -f peer-pods-cm.yaml

$ oc set env ds/peerpodconfig-ctrl-caa-daemon -n openshift-sandboxed-containers-
operator REBOOT="$(date)"

OpenShift sandboxed containers 1.6 User guide

80

You must create an SSH key secret object for your KVM host.

Procedure

1. Log in to your OpenShift Container Platform cluster.

2. Generate an SSH key pair by running the following command:

3. Copy the public SSH key to your KVM host:

4. Create the Secret object by running the following command:

The SSH key secret is created.

5. Delete the SSH keys you created:

4.2.7. Creating a KataConfig custom resource

You must create a KataConfig custom resource (CR) to install kata-remote as a runtime class on your
worker nodes.

Creating the KataConfig CR triggers the OpenShift sandboxed containers Operator to do the
following:

Create a RuntimeClass CR named kata-remote with a default configuration. This enables
users to configure workloads to use kata-remote as the runtime by referencing the CR in the
RuntimeClassName field. This CR also specifies the resource overhead for the runtime.

OpenShift sandboxed containers installs kata-remote as a secondary, optional runtime on the cluster
and not as the primary runtime.

IMPORTANT

$ ssh-keygen -f ./id_rsa -N ""

$ ssh-copy-id -i ./id_rsa.pub <KVM_HOST_IP>

$ oc create secret generic ssh-key-secret \
 -n openshift-sandboxed-containers-operator \
 --from-file=id_rsa.pub=./id_rsa.pub \
 --from-file=id_rsa=./id_rsa

$ shred -remove id_rsa.pub id_rsa

CHAPTER 4. DEPLOYING WORKLOADS ON IBM

81

1

IMPORTANT

Creating the KataConfig CR automatically reboots the worker nodes. The reboot can
take from 10 to more than 60 minutes. Factors that impede reboot time are as follows:

A larger OpenShift Container Platform deployment with a greater number of
worker nodes.

Activation of the BIOS and Diagnostics utility.

Deployment on a hard disk drive rather than an SSD.

Deployment on physical nodes such as bare metal, rather than on virtual nodes.

A slow CPU and network.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

Procedure

1. Create a cluster-kataconfig.yaml manifest file according to the following example:

2. Optional: To install kata-remote on selected nodes, specify the node labels according to the
following example:

Specify the labels of the selected nodes.

3. Create the KataConfig CR:

The new KataConfig CR is created and installs kata-remote as a runtime class on the worker
nodes.

apiVersion: kataconfiguration.openshift.io/v1
kind: KataConfig
metadata:
 name: cluster-kataconfig
spec:
 enablePeerPods: true
 logLevel: info

apiVersion: kataconfiguration.openshift.io/v1
kind: KataConfig
metadata:
 name: cluster-kataconfig
spec:
 kataConfigPoolSelector:
 matchLabels:
 <label_key>: '<label_value>' 1
...

$ oc create -f cluster-kataconfig.yaml

OpenShift sandboxed containers 1.6 User guide

82

1

Wait for the kata-remote installation to complete and the worker nodes to reboot before
verifying the installation.

Verification

Monitor the installation progress by running the following command:

When the status of all workers under kataNodes is installed and the condition InProgress is
False without specifying a reason, the kata-remote is installed on the cluster.

See KataConfig status messages for details.

4.2.8. Optional: Modifying the number of peer pod VMs per node

You can change the limit of peer pod virtual machines (VMs) per node by editing the peerpodConfig
custom resource (CR).

Procedure

1. Check the current limit by running the following command:

2. Modify the limit attribute of the peerpodConfig CR by running the following command:

Replace <value> with the limit you want to define.

4.2.9. Configuring workload objects

You deploy an OpenShift sandboxed containers workload by configuring kata-remote as the runtime
class for the following pod-templated objects:

Pod objects

ReplicaSet objects

ReplicationController objects

StatefulSet objects

Deployment objects

DeploymentConfig objects

IMPORTANT

$ watch "oc describe kataconfig | sed -n /^Status:/,/^Events/p"

$ oc get peerpodconfig peerpodconfig-openshift -n openshift-sandboxed-containers-operator
\
-o jsonpath='{.spec.limit}{"\n"}'

$ oc patch peerpodconfig peerpodconfig-openshift -n openshift-sandboxed-containers-
operator \
--type merge --patch '{"spec":{"limit":"<value>"}}' 1

CHAPTER 4. DEPLOYING WORKLOADS ON IBM

83

IMPORTANT

Do not deploy workloads in the openshift-sandboxed-containers-operator namespace.
Create a dedicated namespace for these resources.

Prerequisites

You have created a secret object for your provider.

You have created a config map for your provider.

You have created a KataConfig custom resource (CR).

Procedure

1. Add spec.runtimeClassName: kata-remote to the manifest of each pod-templated workload
object as in the following example:

OpenShift Container Platform creates the workload object and begins scheduling it.

Verification

Inspect the spec.runtimeClassName field of a pod-templated object. If the value is kata-
remote, then the workload is running on OpenShift sandboxed containers, using peer pods.

apiVersion: v1
kind: <object>
...
spec:
 runtimeClassName: kata-remote
...

OpenShift sandboxed containers 1.6 User guide

84

CHAPTER 5. MONITORING
You can use the OpenShift Container Platform web console to monitor metrics related to the health
status of your sandboxed workloads and nodes.

OpenShift sandboxed containers has a pre-configured dashboard available in the OpenShift Container
Platform web console. Administrators can also access and query raw metrics through Prometheus.

5.1. ABOUT METRICS

OpenShift sandboxed containers metrics enable administrators to monitor how their sandboxed
containers are running. You can query for these metrics in Metrics UI In the OpenShift Container
Platform web console.

OpenShift sandboxed containers metrics are collected for the following categories:

Kata agent metrics

Kata agent metrics display information about the kata agent process running in the VM embedded in
your sandboxed containers. These metrics include data from /proc/<pid>/[io, stat, status].

Kata guest operating system metrics

Kata guest operating system metrics display data from the guest operating system running in your
sandboxed containers. These metrics include data from /proc/[stats, diskstats, meminfo, vmstats]
and /proc/net/dev.

Hypervisor metrics

Hypervisor metrics display data regarding the hypervisor running the VM embedded in your
sandboxed containers. These metrics mainly include data from /proc/<pid>/[io, stat, status].

Kata monitor metrics

Kata monitor is the process that gathers metric data and makes it available to Prometheus. The kata
monitor metrics display detailed information about the resource usage of the kata-monitor process
itself. These metrics also include counters from Prometheus data collection.

Kata containerd shim v2 metrics

Kata containerd shim v2 metrics display detailed information about the kata shim process. These
metrics include data from /proc/<pid>/[io, stat, status] and detailed resource usage metrics.

5.2. VIEWING METRICS

You can access the metrics for OpenShift sandboxed containers in the Metrics page In the OpenShift
Container Platform web console.

Prerequisites

You have access to the cluster as a user with the cluster-admin role or with view permissions
for all projects.

Procedure

1. In the OpenShift Container Platform web console, navigate to Observe → Metrics.

2. In the input field, enter the query for the metric you want to observe.
All kata-related metrics begin with kata. Typing kata displays a list of all available kata metrics.

CHAPTER 5. MONITORING

85

The metrics from your query are visualized on the page.

Additional resources

Querying metrics.

Gathering data about your cluster .

OpenShift sandboxed containers 1.6 User guide

86

https://docs.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/monitoring/index#querying-metrics.html
https://docs.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/support/index#gathering-cluster-data.html

CHAPTER 6. UNINSTALLING
You can uninstall OpenShift sandboxed containers by using the OpenShift Container Platform web
console or the command line.

Uninstall workflow

1. Delete workload pods.

2. Delete the KataConfig custom resource.

3. Uninstall the OpenShift sandboxed containers Operator.

4. Delete the KataConfig custom resource definition.

6.1. UNINSTALLING BY USING THE WEB CONSOLE

You can uninstall OpenShift sandboxed containers by using the OpenShift Container Platform web
console.

6.1.1. Deleting workload pods

You can delete the OpenShift sandboxed containers workload pods by using the OpenShift Container
Platform web console.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

You have a list of pods that use the OpenShift sandboxed containers runtime class.

Procedure

1. In the OpenShift Container Platform web console, navigate to Workloads → Pods.

2. Enter the name of the pod that you want to delete in the Search by name field.

3. Click the pod name to open it.

4. On the Details page, check that kata or kata-remote is displayed for Runtime class.

5. Click the Options menu and select Delete Pod.

6. Click Delete.

6.1.2. Deleting the KataConfig CR

You can delete the KataConfig custom resource (CR) by using the web console. Deleting the
KataConfig CR removes and uninstalls the kata runtime and its related resources from your cluster.

IMPORTANT

CHAPTER 6. UNINSTALLING

87

IMPORTANT

Deleting the KataConfig CR automatically reboots the worker nodes. The reboot can
take from 10 to more than 60 minutes. Factors that impede reboot time are as follows:

A larger OpenShift Container Platform deployment with a greater number of
worker nodes.

Activation of the BIOS and Diagnostics utility.

Deployment on a hard drive rather than an SSD.

Deployment on physical nodes such as bare metal, rather than on virtual nodes.

A slow CPU and network.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

You have deleted all running pods that use kata as the runtimeClass.

Procedure

1. In the OpenShift Container Platform web console, navigate to Operators → Installed
Operators.

2. Search for the OpenShift sandboxed containers Operator using the Search by name field.

3. Click the Operator to open it, and then select the KataConfig tab.

4. Click the Options menu for the KataConfig resource, and then select Delete
KataConfig.

5. Click Delete in the confirmation window.

Wait for the kata runtime and resources to uninstall and for the worker nodes to reboot before
continuing to the next step.

6.1.3. Uninstalling the Operator

You can uninstall the OpenShift sandboxed containers Operator by using OpenShift Container Platform
web console. Uninstalling the Operator removes the catalog subscription, Operator group, and cluster
service version (CSV) for that Operator. Then, you delete the openshift-sandboxed-containers-
operator namespace.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

Procedure

1. In the OpenShift Container Platform web console, navigate to Operators → Installed
Operators.

OpenShift sandboxed containers 1.6 User guide

88

2. Enter the OpenShift sandboxed containers Operator name in the Search by name field.

3. Click the Options menu for the Operator and select Uninstall Operator.

4. Click Uninstall in the confirmation window.

5. Enter the openshift-sandboxed-containers-operator name in the Search by name field.

6. Click the Options menu for the namespace and select Delete Namespace.

NOTE

If the Delete Namespace option is not available, you do not have permission to
delete the namespace.

7. In the Delete Namespace window, enter openshift-sandboxed-containers-operator and click
Delete.

8. Click Delete.

6.1.4. Deleting the KataConfig CRD

You can delete the KataConfig custom resource definition (CRD) by using the OpenShift Container
Platform web console.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

You deleted the KataConfig CR.

You uninstalled the OpenShift sandboxed containers Operator.

Procedure

1. In the web console, navigate to Administration → CustomResourceDefinitions.

2. Enter the KataConfig name in the Search by name field.

3. Click the Options menu for the KataConfig CRD, and select Delete
CustomResourceDefinition.

4. Click Delete in the confirmation window.

5. Wait for the KataConfig CRD to disappear from the list. This can take several minutes.

6.2. UNINSTALLING BY USING THE CLI

You can uninstall OpenShift sandboxed containers by using the command-line interface (CLI).

CHAPTER 6. UNINSTALLING

89

1

6.2.1. Deleting workload pods

You can delete the OpenShift sandboxed containers workload pods by using the CLI.

Prerequisites

You have the JSON processor (jq) utility installed.

Procedure

1. Search for the pods by running the following command:

Specify kata for bare metal deployments. Specify kata-remote for public cloud, IBM Z®,
and IBM® LinuxONE deployments.

2. Delete each pod by running the following command:

6.2.2. Deleting the KataConfig CR

You can delete the KataConfig custom resource (CR) by using the command line.

Deleting the KataConfig CR removes the runtime and its related resources from your cluster.

IMPORTANT

Deleting the KataConfig CR automatically reboots the worker nodes. The reboot can
take from 10 to more than 60 minutes. Factors that impede reboot time are as follows:

A larger OpenShift Container Platform deployment with a greater number of
worker nodes.

Activation of the BIOS and Diagnostics utility.

Deployment on a hard drive rather than an SSD.

Deployment on physical nodes such as bare metal, rather than on virtual nodes.

A slow CPU and network.

Prerequisites

You have installed the OpenShift CLI (oc).

You have access to the cluster as a user with the cluster-admin role.

Procedure

Delete the KataConfig CR by running the following command:

$ oc get pods -A -o json | jq -r '.items[] | \
 select(.spec.runtimeClassName == "<runtime>").metadata.name' 1

$ oc delete pod <pod>

OpenShift sandboxed containers 1.6 User guide

90

The OpenShift sandboxed containers Operator removes all resources that were initially created
to enable the runtime on your cluster.

VERIFICATION

When you delete the KataConfig CR, the CLI stops responding until all worker nodes
reboot. You must for the deletion process to complete before performing the
verification.

To verify that the KataConfig custom resource is deleted, run the following command:

Example output

6.2.3. Uninstalling the Operator

You can uninstall the OpenShift sandboxed containers Operator by using the CLI. You uninstall the
Operator by deleting the Operator subscription, Operator group, cluster service version (CSV), and
namespace.

Prerequisites

You have installed the OpenShift CLI (oc).

You have installed the command-line JSON processor (jq).

You have access to the cluster as a user with the cluster-admin role.

Procedure

1. Obtain the cluster service version (CSV) name for OpenShift sandboxed containers from the
subscription by running the following command:

2. Delete the Operatorsubscription from Operator Lifecyle Manager (OLM) by running the
following command:

3. Delete the CSV name for OpenShift sandboxed containers by running the following command:

4. Obtain the Operator group name by running the following command:

$ oc delete kataconfig <kataconfig>

$ oc get kataconfig <kataconfig>

No KataConfig instances exist

CSV_NAME=$(oc get csv -n openshift-sandboxed-containers-operator -o=custom-
columns=:metadata.name)

$ oc delete subscription sandboxed-containers-operator -n openshift-sandboxed-containers-
operator

$ oc delete csv ${CSV_NAME} -n openshift-sandboxed-containers-operator

CHAPTER 6. UNINSTALLING

91

5. Delete the Operator group name by running the following command:

6. Delete the Operator namespace by running the following command:

6.2.4. Deleting the KataConfig CRD

You can delete the KataConfig custom resource definition (CRD) by using the command line.

Prerequisites

You have installed the OpenShift CLI (oc).

You have access to the cluster as a user with the cluster-admin role.

You deleted the KataConfig CR.

You uninstalled the OpenShift sandboxed containers Operator.

Procedure

1. Delete the KataConfig CRD by running the following command:

Verification

To verify that the KataConfig CRD is deleted, run the following command:

Example output

$ OG_NAME=$(oc get operatorgroup -n openshift-sandboxed-containers-operator -
o=jsonpath={..name})

$ oc delete operatorgroup ${OG_NAME} -n openshift-sandboxed-containers-operator

$ oc delete namespace openshift-sandboxed-containers-operator

$ oc delete crd kataconfigs.kataconfiguration.openshift.io

$ oc get crd kataconfigs.kataconfiguration.openshift.io

Unknown CR KataConfig

OpenShift sandboxed containers 1.6 User guide

92

CHAPTER 7. UPGRADING
The upgrade of the OpenShift sandboxed containers components consists of the following three steps:

1. Upgrade OpenShift Container Platform to update the Kata runtime and its dependencies.

2. Upgrade the OpenShift sandboxed containers Operator to update the Operator subscription.

You can upgrade OpenShift Container Platform before or after the OpenShift sandboxed containers
Operator upgrade, with the one exception noted below. Always apply the KataConfig patch
immediately after upgrading OpenShift sandboxed containers Operator.

7.1. UPGRADING RESOURCES

The OpenShift sandboxed containers resources are deployed onto the cluster using Red Hat Enterprise
Linux CoreOS (RHCOS) extensions.

The RHCOS extension sandboxed containers contains the required components to run OpenShift
sandboxed containers, such as the Kata containers runtime, the hypervisor QEMU, and other
dependencies. You upgrade the extension by upgrading the cluster to a new release of OpenShift
Container Platform.

For more information about upgrading OpenShift Container Platform, see Updating Clusters.

7.2. UPGRADING THE OPERATOR

Use Operator Lifecycle Manager (OLM) to upgrade the OpenShift sandboxed containers Operator
either manually or automatically. Selecting between manual or automatic upgrade during the initial
deployment determines the future upgrade mode. For manual upgrades, the OpenShift Container
Platform web console shows the available updates that can be installed by the cluster administrator.

For more information about upgrading the OpenShift sandboxed containers Operator in Operator
Lifecycle Manager (OLM), see Updating installed Operators.

CHAPTER 7. UPGRADING

93

https://docs.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/updating/index
https://docs.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/operators/index#olm-upgrading-operators

CHAPTER 8. TROUBLESHOOTING
When troubleshooting OpenShift sandboxed containers, you can open a support case and provide
debugging information using the must-gather tool.

If you are a cluster administrator, you can also review logs on your own, enabling a more detailed level of
logs.

8.1. COLLECTING DATA FOR RED HAT SUPPORT

When opening a support case, it is helpful to provide debugging information about your cluster to Red
Hat Support.

The must-gather tool enables you to collect diagnostic information about your OpenShift Container
Platform cluster, including virtual machines and other data related to OpenShift sandboxed containers.

For prompt support, supply diagnostic information for both OpenShift Container Platform and
OpenShift sandboxed containers.

Using the must-gather tool
The oc adm must-gather CLI command collects the information from your cluster that is most likely
needed for debugging issues, including:

Resource definitions

Service logs

By default, the oc adm must-gather command uses the default plugin image and writes into ./must-
gather.local.

Alternatively, you can collect specific information by running the command with the appropriate
arguments as described in the following sections:

To collect data related to one or more specific features, use the --image argument with an
image, as listed in a following section.
For example:

To collect the audit logs, use the -- /usr/bin/gather_audit_logs argument, as described in a
following section.
For example:

NOTE

Audit logs are not collected as part of the default set of information to reduce
the size of the files.

When you run oc adm must-gather, a new pod with a random name is created in a new project on the
cluster. The data is collected on that pod and saved in a new directory that starts with must-
gather.local. This directory is created in the current working directory.

$ oc adm must-gather --image=registry.redhat.io/openshift-sandboxed-containers/osc-must-
gather-rhel9:1.6.0

$ oc adm must-gather -- /usr/bin/gather_audit_logs

OpenShift sandboxed containers 1.6 User guide

94

For example:

Optionally, you can run the oc adm must-gather command in a specific namespace by using the --run-
namespace option.

For example:

8.2. COLLECTING LOG DATA

The following features and objects are associated with OpenShift sandboxed containers:

All namespaces and their child objects that belong to OpenShift sandboxed containers
resources

All OpenShift sandboxed containers custom resource definitions (CRDs)

You can collect the following component logs for each pod running with the kata runtime:

Kata agent logs

Kata runtime logs

QEMU logs

Audit logs

CRI-O logs

8.2.1. Enabling debug logs for CRI-O runtime

You can enable debug logs by updating the logLevel field in the KataConfig CR. This changes the log
level in the CRI-O runtime for the worker nodes running OpenShift sandboxed containers.

Prerequisites

You have installed the OpenShift CLI (oc).

You have access to the cluster as a user with the cluster-admin role.

Procedure

1. Change the logLevel field in your existing KataConfig CR to debug:

2. Monitor the kata-oc machine config pool until the value of UPDATED is True, indicating that all

NAMESPACE NAME READY STATUS RESTARTS AGE
...
openshift-must-gather-5drcj must-gather-bklx4 2/2 Running 0 72s
openshift-must-gather-5drcj must-gather-s8sdh 2/2 Running 0 72s
...

$ oc adm must-gather --run-namespace <namespace> --image=registry.redhat.io/openshift-
sandboxed-containers/osc-must-gather-rhel9:1.6.0

$ oc patch kataconfig <kataconfig> --type merge --patch '{"spec":{"logLevel":"debug"}}'

CHAPTER 8. TROUBLESHOOTING

95

2. Monitor the kata-oc machine config pool until the value of UPDATED is True, indicating that all
worker nodes are updated:

Example output

Verification

1. Start a debug session with a node in the machine config pool:

2. Change the root directory to /host:

3. Verify the changes in the crio.conf file:

Example output

8.2.2. Viewing debug logs for components

Cluster administrators can use the debug logs to troubleshoot issues. The logs for each node are
printed to the node journal.

You can review the logs for the following OpenShift sandboxed containers components:

Kata agent

Kata runtime (containerd-shim-kata-v2)

virtiofsd

QEMU only generates warning and error logs. These warnings and errors print to the node journal in
both the Kata runtime logs and the CRI-O logs with an extra qemuPid field.

Example of QEMU logs

$ oc get mcp kata-oc

NAME CONFIG UPDATED UPDATING DEGRADED MACHINECOUNT
READYMACHINECOUNT UPDATEDMACHINECOUNT DEGRADEDMACHINECOUNT
AGE
kata-oc rendered-kata-oc-169 False True False 3 1 1
0 9h

$ oc debug node/<node_name>

chroot /host

crio config | egrep 'log_level

log_level = "debug"

Mar 11 11:57:28 openshift-worker-0 kata[2241647]: time="2023-03-11T11:57:28.587116986Z"
level=info msg="Start logging QEMU (qemuPid=2241693)" name=containerd-shim-v2 pid=2241647
sandbox=d1d4d68efc35e5ccb4331af73da459c13f46269b512774aa6bde7da34db48987
source=virtcontainers/hypervisor subsystem=qemu

OpenShift sandboxed containers 1.6 User guide

96

The Kata runtime prints Start logging QEMU when QEMU starts, and Stop Logging QEMU when
QEMU stops. The error appears in between these two log messages with the qemuPid field. The actual
error message from QEMU appears in red.

The console of the QEMU guest is printed to the node journal as well. You can view the guest console
logs together with the Kata agent logs.

Prerequisites

You have installed the OpenShift CLI (oc).

You have access to the cluster as a user with the cluster-admin role.

Procedure

To review the Kata agent logs and guest console logs, run the following command:

To review the Kata runtime logs, run the following command:

To review the virtiofsd logs, run the following command:

To review the QEMU logs, run the following command:

Additional resources

Gathering data about your cluster in the OpenShift Container Platform documentation

Mar 11 11:57:28 openshift-worker-0 kata[2241647]: time="2023-03-11T11:57:28.607339014Z"
level=error msg="qemu-kvm: -machine q35,accel=kvm,kernel_irqchip=split,foo: Expected '=' after
parameter 'foo'" name=containerd-shim-v2 pid=2241647 qemuPid=2241693
sandbox=d1d4d68efc35e5ccb4331af73da459c13f46269b512774aa6bde7da34db48987
source=virtcontainers/hypervisor subsystem=qemu

Mar 11 11:57:28 openshift-worker-0 kata[2241647]: time="2023-03-11T11:57:28.60890737Z"
level=info msg="Stop logging QEMU (qemuPid=2241693)" name=containerd-shim-v2 pid=2241647
sandbox=d1d4d68efc35e5ccb4331af73da459c13f46269b512774aa6bde7da34db48987
source=virtcontainers/hypervisor subsystem=qemu

$ oc debug node/<nodename> -- journalctl -D /host/var/log/journal -t kata -g “reading guest
console”

$ oc debug node/<nodename> -- journalctl -D /host/var/log/journal -t kata

$ oc debug node/<nodename> -- journalctl -D /host/var/log/journal -t virtiofsd

$ oc debug node/<nodename> -- journalctl -D /host/var/log/journal -t kata -g "qemuPid=\d+"

CHAPTER 8. TROUBLESHOOTING

97

https://docs.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/support/index#support_gathering_data_gathering-cluster-data

APPENDIX A. KATACONFIG STATUS MESSAGES
The following table displays the status messages for the KataConfig custom resource (CR) for a cluster
with two worker nodes.

Table A.1. KataConfig status messages

Status Description

Initial installation

When a KataConfig CR is created and starts
installing kata on both workers, the following status
is displayed for a few seconds.

Installing

Within a few seconds the status changes.

Installing (Worker-1 installation starting)

For a short period of time, the status changes,
signifying that one node has initiated the installation
of kata, while the other is in a waiting state. This is
because only one node can be unavailable at any
given time. The nodeCount remains at 2 because
both nodes will eventually receive kata, but the
readyNodeCount is currently 0 as neither of them
has reached that state yet.

Installing (Worker-1 installed, worker-0 installation
started)

After some time, worker-1 will complete its
installation, causing a change in the status. The
readyNodeCount is updated to 1, indicating that
worker-1 is now prepared to execute kata
workloads. You cannot schedule or run kata
workloads until the runtime class is created at the
end of the installation process.

 conditions:
 message: Performing initial installation of
kata on cluster
 reason: Installing
 status: 'True'
 type: InProgress
 kataNodes:
 nodeCount: 0
 readyNodeCount: 0

 kataNodes:
 nodeCount: 2
 readyNodeCount: 0
 waitingToInstall:
 - worker-0
 - worker-1

 kataNodes:
 installing:
 - worker-1
 nodeCount: 2
 readyNodeCount: 0
 waitingToInstall:
 - worker-0

 kataNodes:
 installed:
 - worker-1
 installing:
 - worker-0
 nodeCount: 2
 readyNodeCount: 1

OpenShift sandboxed containers 1.6 User guide

98

Installed

When installed, both workers are listed as installed,
and the InProgress condition transitions to False
without specifying a reason, indicating the successful
installation of kata on the cluster.

Status Description

Status Description

Initial uninstall

If kata is installed on both workers, and you delete
the KataConfig to remove kata from the cluster,
both workers briefly enter a waiting state for a few
seconds.

Uninstalling

After a few seconds, one of the workers starts
uninstalling.

Uninstalling

Worker-1 finishes and worker-0 starts uninstalling.

NOTE

 conditions:
 message: ""
 reason: ""
 status: 'False'
 type: InProgress
 kataNodes:
 installed:
 - worker-0
 - worker-1
 nodeCount: 2
 readyNodeCount: 2

 conditions:
 message: Removing kata from cluster
 reason: Uninstalling
 status: 'True'
 type: InProgress
 kataNodes:
 nodeCount: 0
 readyNodeCount: 0
 waitingToUninstall:
 - worker-0
 - worker-1

 kataNodes:
 nodeCount: 0
 readyNodeCount: 0
 uninstalling:
 - worker-1
 waitingToUninstall:
 - worker-0

 kataNodes:
 nodeCount: 0
 readyNodeCount: 0
 uninstalling:
 - worker-0

APPENDIX A. KATACONFIG STATUS MESSAGES

99

NOTE

The reason field can also report the following causes:

Failed: This is reported if the node cannot finish its transition. The status reports
True and the message is Node <node_name> Degraded:
<error_message_from_the_node>.

BlockedByExistingKataPods: This is reported if there are pods running on a
cluster that use the kata runtime while kata is being uninstalled. The status field
is False and the message is Existing pods using "kata" RuntimeClass found.
Please delete the pods manually for KataConfig deletion to proceed. There
could also be a technical error message reported like Failed to list kata pods:
<error_message> if communication with the cluster control plane fails.

OpenShift sandboxed containers 1.6 User guide

100

	Table of Contents
	PREFACE
	PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

	CHAPTER 1. ABOUT OPENSHIFT SANDBOXED CONTAINERS
	1.1. FEATURES
	1.2. COMPATIBILITY WITH OPENSHIFT CONTAINER PLATFORM
	1.3. NODE ELIGIBILITY CHECKS
	1.4. COMMON TERMS
	1.5. OPENSHIFT SANDBOXED CONTAINERS OPERATOR
	1.6. OPENSHIFT VIRTUALIZATION
	1.7. STORAGE CONSIDERATIONS
	1.7.1. Block volume support

	1.8. FIPS COMPLIANCE

	CHAPTER 2. DEPLOYING WORKLOADS ON BARE METAL
	2.1. PREPARING YOUR ENVIRONMENT
	2.1.1. Resource requirements
	2.1.2. Installing the OpenShift sandboxed containers Operator
	2.1.2.1. Installing the Operator by using the web console
	2.1.2.2. Installing the Operator by using the CLI
	2.1.2.3. Additional resources

	2.1.3. Creating the NodeFeatureDiscovery CR

	2.2. DEPLOYING WORKLOADS BY USING THE WEB CONSOLE
	2.2.1. Creating a KataConfig custom resource
	2.2.2. Configuring workload objects

	2.3. DEPLOYING WORKLOADS BY USING THE COMMAND LINE
	2.3.1. Optional: Provisioning local block volumes by using the Local Storage Operator
	2.3.2. Optional: Deploying nodes on a block device
	2.3.3. Creating a KataConfig custom resource
	2.3.4. Optional: Modifying pod overhead
	2.3.5. Configuring workload objects

	CHAPTER 3. DEPLOYING WORKLOADS ON PUBLIC CLOUD
	3.1. DEPLOYING WORKLOADS ON AWS
	3.1.1. Preparing your environment
	3.1.1.1. Resource requirements
	3.1.1.2. Enabling ports for AWS
	3.1.1.3. Installing the OpenShift sandboxed containers Operator

	3.1.2. Deploying workloads by using the web console
	3.1.2.1. Creating a secret
	3.1.2.2. Creating a config map
	3.1.2.3. Creating a KataConfig custom resource
	3.1.2.4. Optional: Modifying the number of peer pod VMs per node
	3.1.2.5. Configuring workload objects

	3.1.3. Deploying workloads by using the command line
	3.1.3.1. Creating a secret
	3.1.3.2. Creating a config map
	3.1.3.3. Creating a KataConfig custom resource
	3.1.3.4. Optional: Modifying the number of peer pod VMs per node
	3.1.3.5. Configuring workload objects

	3.2. DEPLOYING WORKLOADS ON AZURE
	3.2.1. Preparing your environment
	3.2.1.1. Resource requirements
	3.2.1.2. Installing the OpenShift sandboxed containers Operator

	3.2.2. Deploying workloads by using the web console
	3.2.2.1. Creating a secret
	3.2.2.2. Creating a config map
	3.2.2.3. Creating an SSH key secret
	3.2.2.4. Creating a KataConfig custom resource
	3.2.2.5. Optional: Modifying the number of peer pod VMs per node
	3.2.2.6. Configuring workload objects

	3.2.3. Deploying workloads by using the command line
	3.2.3.1. Creating a secret
	3.2.3.2. Creating a config map
	3.2.3.3. Creating an SSH key secret
	3.2.3.4. Creating a KataConfig custom resource
	3.2.3.5. Optional: Modifying the number of peer pod VMs per node
	3.2.3.6. Configuring workload objects

	CHAPTER 4. DEPLOYING WORKLOADS ON IBM
	4.1. PREPARING YOUR ENVIRONMENT
	4.1.1. Resource requirements
	4.1.2. Installing the OpenShift sandboxed containers Operator
	4.1.2.1. Installing the Operator by using the web console
	4.1.2.2. Installing the Operator by using the CLI
	4.1.2.3. Additional resources

	4.2. DEPLOYING WORKLOADS BY USING THE COMMAND LINE
	4.2.1. Configuring a libvirt volume
	4.2.2. Creating a KVM guest image
	4.2.3. Building a peer pod VM image
	4.2.4. Creating a secret
	4.2.5. Creating a config map
	4.2.6. Creating an SSH key secret
	4.2.7. Creating a KataConfig custom resource
	4.2.8. Optional: Modifying the number of peer pod VMs per node
	4.2.9. Configuring workload objects

	CHAPTER 5. MONITORING
	5.1. ABOUT METRICS
	5.2. VIEWING METRICS

	CHAPTER 6. UNINSTALLING
	6.1. UNINSTALLING BY USING THE WEB CONSOLE
	6.1.1. Deleting workload pods
	6.1.2. Deleting the KataConfig CR
	6.1.3. Uninstalling the Operator
	6.1.4. Deleting the KataConfig CRD

	6.2. UNINSTALLING BY USING THE CLI
	6.2.1. Deleting workload pods
	6.2.2. Deleting the KataConfig CR
	6.2.3. Uninstalling the Operator
	6.2.4. Deleting the KataConfig CRD

	CHAPTER 7. UPGRADING
	7.1. UPGRADING RESOURCES
	7.2. UPGRADING THE OPERATOR

	CHAPTER 8. TROUBLESHOOTING
	8.1. COLLECTING DATA FOR RED HAT SUPPORT
	Using the must-gather tool

	8.2. COLLECTING LOG DATA
	8.2.1. Enabling debug logs for CRI-O runtime
	8.2.2. Viewing debug logs for components
	Additional resources

	APPENDIX A. KATACONFIG STATUS MESSAGES

