
OpenShift sandboxed containers 1.7

User guide

Deploying sandboxed containers in OpenShift Container Platform

Last Updated: 2024-09-25

OpenShift sandboxed containers 1.7 User guide

Deploying sandboxed containers in OpenShift Container Platform

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Deploying OpenShift sandboxed containers in OpenShift Container Platform on bare metal, public
cloud, and IBM platforms.

. .

. .

. .

. .

Table of Contents

PREFACE
PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

CHAPTER 1. ABOUT OPENSHIFT SANDBOXED CONTAINERS
1.1. FEATURES
1.2. COMPATIBILITY WITH OPENSHIFT CONTAINER PLATFORM
1.3. NODE ELIGIBILITY CHECKS
1.4. COMMON TERMS
1.5. OPENSHIFT SANDBOXED CONTAINERS OPERATOR
1.6. ABOUT CONFIDENTIAL CONTAINERS
1.7. OPENSHIFT VIRTUALIZATION
1.8. STORAGE CONSIDERATIONS

1.8.1. Block volume support
1.9. FIPS COMPLIANCE

CHAPTER 2. DEPLOYING ON BARE METAL
2.1. OPENSHIFT SANDBOXED CONTAINERS RESOURCE REQUIREMENTS
2.2. DEPLOYING OPENSHIFT SANDBOXED CONTAINERS BY USING THE WEB CONSOLE

2.2.1. Installing the OpenShift sandboxed containers Operator
2.2.2. Creating the KataConfig custom resource

Additional resources
2.2.3. Configuring workload objects

2.3. DEPLOYING OPENSHIFT SANDBOXED CONTAINERS BY USING THE COMMAND LINE
2.3.1. Installing the OpenShift sandboxed containers Operator
2.3.2. Optional configurations

2.3.2.1. Provisioning local block volumes
2.3.2.2. Enabling nodes to use a local block device
2.3.2.3. Creating a NodeFeatureDiscovery custom resource

2.3.3. Creating the KataConfig custom resource
2.3.4. Modifying pod overhead
2.3.5. Configuring workload objects

CHAPTER 3. DEPLOYING ON AWS
3.1. PEER POD RESOURCE REQUIREMENTS
3.2. DEPLOYING OPENSHIFT SANDBOXED CONTAINERS BY USING THE WEB CONSOLE

3.2.1. Installing the OpenShift sandboxed containers Operator
3.2.2. Enabling ports for AWS
3.2.3. Creating the peer pods secret
3.2.4. Creating the peer pods config map
3.2.5. Creating the KataConfig custom resource

Additional resources
Verifying the pod VM image

3.2.6. Configuring workload objects
3.3. DEPLOYING OPENSHIFT SANDBOXED CONTAINERS BY USING THE COMMAND LINE

3.3.1. Installing the OpenShift sandboxed containers Operator
3.3.2. Modifying the number of peer pod VMs per node
3.3.3. Enabling ports for AWS
3.3.4. Creating the peer pods secret
3.3.5. Creating the peer pods config map
3.3.6. Creating the KataConfig custom resource

Verifying the pod VM image
3.3.7. Configuring workload objects

5
5

6
6
7
8
9

10
11
11
11
11

12

13
13
15
15
16
18
18
19
19

20
21
23
23
25
26
27

29
29
30
30
31
32
33
35
36
36
37
39
39
40
41

42
42
44
46
46

Table of Contents

1

. .

. .

CHAPTER 4. DEPLOYING ON AZURE
4.1. PEER POD RESOURCE REQUIREMENTS
4.2. DEPLOYING OPENSHIFT SANDBOXED CONTAINERS BY USING THE WEB CONSOLE

4.2.1. Installing the OpenShift sandboxed containers Operator
4.2.2. Creating the peer pods secret
4.2.3. Creating the peer pods config map
4.2.4. Creating the Azure secret
4.2.5. Creating the KataConfig custom resource

Additional resources
Verifying the pod VM image

4.2.6. Configuring workload objects
4.3. DEPLOYING OPENSHIFT SANDBOXED CONTAINERS BY USING THE COMMAND LINE

4.3.1. Installing the OpenShift sandboxed containers Operator
4.3.2. Modifying the number of peer pod VMs per node
4.3.3. Creating the peer pods secret
4.3.4. Creating the peer pods config map
4.3.5. Creating the Azure secret
4.3.6. Creating the KataConfig custom resource

Verifying the pod VM image
4.3.7. Configuring workload objects

4.4. DEPLOYING CONFIDENTIAL CONTAINERS ON AZURE
4.4.1. Installing the Confidential compute attestation Operator
4.4.2. Creating the route for Trustee
4.4.3. Enabling the Confidential Containers feature gate
4.4.4. Updating the peer pods config map
4.4.5. Deleting the KataConfig custom resource
4.4.6. Re-creating the KataConfig custom resource
4.4.7. Creating the Trustee authentication secret
4.4.8. Creating the Trustee config map
4.4.9. Configuring attestation policies
4.4.10. Creating the KbsConfig custom resource
4.4.11. Verifying the attestation process

CHAPTER 5. DEPLOYING ON IBM Z AND IBM LINUXONE
5.1. PEER POD RESOURCE REQUIREMENTS
5.2. DEPLOYING OPENSHIFT SANDBOXED CONTAINERS ON IBM Z AND IBM LINUXONE

5.2.1. Installing the OpenShift sandboxed containers Operator
5.2.2. Modifying the number of peer pod VMs per node
5.2.3. Configuring the libvirt volume
5.2.4. Creating a custom peer pod VM image
5.2.5. Creating the peer pods secret
5.2.6. Creating the peer pods config map
5.2.7. Creating the peer pod VM image config map
5.2.8. Creating the KVM host secret
5.2.9. Creating the KataConfig custom resource
5.2.10. Configuring workload objects

5.3. DEPLOYING CONFIDENTIAL CONTAINERS ON IBM Z AND IBM LINUXONE
5.3.1. Installing the Confidential compute attestation Operator
5.3.2. Creating the route for Trustee
5.3.3. Enabling the Confidential Containers feature gate
5.3.4. Updating the peer pods config map
5.3.5. Deleting the KataConfig custom resource
5.3.6. Updating the peer pods secret

49
49
50
50
51

53
54
55
57
57
57
59
59
61
61

62
64
64
66
66
68
69
70
71
71
73
74
75
76
77
80
82

84
84
85
86
87
88
89
89
91
91

92
93
95
96
97
98
99
99

100
100

OpenShift sandboxed containers 1.7 User guide

2

. .

. .

. .

. .

. .

5.3.7. Re-creating the KataConfig custom resource
5.3.8. Creating the Trustee authentication secret
5.3.9. Creating the Trustee config map
5.3.10. Obtaining the IBM Secure Execution header
5.3.11. Configuring the IBM Secure Execution certificates and keys
5.3.12. Configuring attestation policies
5.3.13. Creating the KbsConfig custom resource
5.3.14. Verifying the attestation process

CHAPTER 6. MONITORING
6.1. ABOUT METRICS
6.2. VIEWING METRICS

CHAPTER 7. UNINSTALLING
7.1. UNINSTALLING OPENSHIFT SANDBOXED CONTAINERS

7.1.1. Uninstalling OpenShift sandboxed containers by using the web console
7.1.1.1. Deleting workload pods
7.1.1.2. Deleting the KataConfig custom resource
7.1.1.3. Uninstalling the OpenShift sandboxed containers Operator
7.1.1.4. Deleting the KataConfig CRD

7.1.2. Uninstalling OpenShift sandboxed containers by using the CLI
7.1.2.1. Deleting workload pods
7.1.2.2. Deleting the KataConfig custom resource
7.1.2.3. Uninstalling the OpenShift sandboxed containers Operator
7.1.2.4. Deleting the KataConfig CRD

7.2. REMOVING THE CONFIDENTIAL CONTAINERS ENVIRONMENT
7.2.1. Removing the Confidential Containers environment by using the web console

7.2.1.1. Deleting the KbsConfig custom resource
7.2.1.2. Uninstalling the Confidential compute attestation Operator
7.2.1.3. Deleting the KbsConfig CRD

7.2.2. Removing the Confidential Containers environment by using the CLI
7.2.2.1. Deleting the KbsConfig custom resource
7.2.2.2. Uninstalling the Confidential compute attestation Operator
7.2.2.3. Deleting the KbsConfig CRD

CHAPTER 8. UPGRADING
8.1. UPGRADING RESOURCES
8.2. UPGRADING THE OPERATOR

CHAPTER 9. TROUBLESHOOTING
9.1. COLLECTING DATA FOR RED HAT SUPPORT

Using the must-gather tool
9.2. COLLECTING LOG DATA

9.2.1. Enabling debug logs for CRI-O runtime
9.2.2. Viewing debug logs for components
Additional resources

APPENDIX A. KATACONFIG STATUS MESSAGES

101
103
103
104
106
109

111
113

115
115
115

117
117
117
117
117
118
119
119
119

120
121
121
122
122
122
123
123
124
124
124
125

126
126
126

127
127
127
128
128
129
130

131

Table of Contents

3

OpenShift sandboxed containers 1.7 User guide

4

PREFACE

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
You can provide feedback or report an error by submitting the Create Issue form in Jira. The Jira issue
will be created in the Red Hat Hybrid Cloud Infrastructure Jira project, where you can track the progress
of your feedback.

1. Ensure that you are logged in to Jira. If you do not have a Jira account, you must create a Red
Hat Jira account.

2. Launch the Create Issue form.

3. Complete the Summary, Description, and Reporter fields.
In the Description field, include the documentation URL, chapter or section number, and a
detailed description of the issue.

4. Click Create.

PREFACE

5

https://issues.redhat.com
https://issues.redhat.com/secure/CreateIssueDetails!init.jspa?pid=12341520&summary=Documentation+feedback&issuetype=1&description=Details:%0A%0ADocumentation+URL:%0A%0A&priority=10200&labels=hcidocs-feedback&components=12393342

CHAPTER 1. ABOUT OPENSHIFT SANDBOXED CONTAINERS
OpenShift sandboxed containers for OpenShift Container Platform integrates Kata Containers as an
optional runtime, providing enhanced security and isolation by running containerized applications in
lightweight virtual machines. This integration provides a more secure runtime environment for sensitive
workloads without significant changes to existing OpenShift workflows. This runtime supports
containers in dedicated virtual machines (VMs), providing improved workload isolation.

1.1. FEATURES

OpenShift sandboxed containers provides the following features:

Run privileged or untrusted workloads

You can safely run workloads that require specific privileges, without the risk of compromising cluster
nodes by running privileged containers. Workloads that require special privileges include the
following:

Workloads that require special capabilities from the kernel, beyond the default ones granted
by standard container runtimes such as CRI-O, for example to access low-level networking
features.

Workloads that need elevated root privileges, for example to access a specific physical
device. With OpenShift sandboxed containers, it is possible to pass only a specific device
through to the virtual machines (VM), ensuring that the workload cannot access or
misconfigure the rest of the system.

Workloads for installing or using set-uid root binaries. These binaries grant special privileges
and, as such, can present a security risk. With OpenShift sandboxed containers, additional
privileges are restricted to the virtual machines, and grant no special access to the cluster
nodes.
Some workloads require privileges specifically for configuring the cluster nodes. Such
workloads should still use privileged containers, because running on a virtual machine would
prevent them from functioning.

Ensure isolation for sensitive workloads

The OpenShift sandboxed containers for Red Hat OpenShift Container Platform integrates Kata
Containers as an optional runtime, providing enhanced security and isolation by running
containerized applications in lightweight virtual machines. This integration provides a more secure
runtime environment for sensitive workloads without significant changes to existing OpenShift
workflows. This runtime supports containers in dedicated virtual machines (VMs), providing improved
workload isolation.

Ensure kernel isolation for each workload

You can run workloads that require custom kernel tuning (such as sysctl, scheduler changes, or
cache tuning) and the creation of custom kernel modules (such as out of tree or special arguments).

Share the same workload across tenants

You can run workloads that support many users (tenants) from different organizations sharing the
same OpenShift Container Platform cluster. The system also supports running third-party workloads
from multiple vendors, such as container network functions (CNFs) and enterprise applications.
Third-party CNFs, for example, may not want their custom settings interfering with packet tuning or
with sysctl variables set by other applications. Running inside a completely isolated kernel is helpful
in preventing "noisy neighbor" configuration problems.

Ensure proper isolation and sandboxing for testing software

You can run containerized workloads with known vulnerabilities or handle issues in an existing

OpenShift sandboxed containers 1.7 User guide

6

You can run containerized workloads with known vulnerabilities or handle issues in an existing
application. This isolation enables administrators to give developers administrative control over pods,
which is useful when the developer wants to test or validate configurations beyond those an
administrator would typically grant. Administrators can, for example, safely and securely delegate
kernel packet filtering (eBPF) to developers. eBPF requires CAP_ADMIN or CAP_BPF privileges,
and is therefore not allowed under a standard CRI-O configuration, as this would grant access to
every process on the Container Host worker node. Similarly, administrators can grant access to
intrusive tools such as SystemTap, or support the loading of custom kernel modules during their
development.

Ensure default resource containment through VM boundaries

By default, OpenShift sandboxed containers manages resources such as CPU, memory, storage, and
networking in a robust and secure way. Since OpenShift sandboxed containers deploys on VMs,
additional layers of isolation and security give a finer-grained access control to the resource. For
example, an errant container will not be able to assign more memory than is available to the VM.
Conversely, a container that needs dedicated access to a network card or to a disk can take complete
control over that device without getting any access to other devices.

1.2. COMPATIBILITY WITH OPENSHIFT CONTAINER PLATFORM

The required functionality for the OpenShift Container Platform platform is supported by two main
components:

Kata runtime: This includes Red Hat Enterprise Linux CoreOS (RHCOS) and updates with every
OpenShift Container Platform release.

OpenShift sandboxed containers Operator: Install the Operator using either the web console or
OpenShift CLI (oc).

The OpenShift sandboxed containers Operator is a Rolling Stream Operator, which means the latest
version is the only supported version. It works with all currently supported versions of OpenShift
Container Platform. For more information, see OpenShift Container Platform Life Cycle Policy for
additional details.

The Operator depends on the features that come with the RHCOS host and the environment it runs in.

NOTE

You must install Red Hat Enterprise Linux CoreOS (RHCOS) on the worker nodes. RHEL
nodes are not supported.

The following compatibility matrix for OpenShift sandboxed containers and OpenShift Container
Platform releases identifies compatible features and environments.

Table 1.1. Supported architectures

Architecture OpenShift Container Platform version

x86_64 4.8 or later

s390x 4.14 or later

There are two ways to deploy Kata containers runtime:

CHAPTER 1. ABOUT OPENSHIFT SANDBOXED CONTAINERS

7

https://access.redhat.com/support/policy/updates/openshift/
https://access.redhat.com/support/policy/updates/openshift_operators#rolling-stream
https://access.redhat.com/support/policy/updates/openshift/

Bare metal

Peer pods

Peer pods technology for the deployment of OpenShift sandboxed containers in public clouds was
available as Developer Preview in OpenShift sandboxed containers 1.5 and OpenShift Container
Platform 4.14.

With the release of OpenShift sandboxed containers 1.7, the Operator requires OpenShift Container
Platform version 4.15 or later.

Table 1.2. Feature availability by OpenShift version

Feature Deployment method OpenShift Container
Platform 4.15

OpenShift Container
Platform 4.16

Confidential Containers Bare metal

Peer pods Technology Preview Technology Preview [1]

GPU support [2] Bare metal

Peer pods Developer Preview Developer Preview

1. Technology Preview of Confidential Containers has been available since OpenShift sandboxed
containers 1.7.0.

2. GPU functionality is not available on IBM Z.

Table 1.3. Supported cloud platforms for OpenShift sandboxed containers

Platform GPU Confidential Containers

AWS Cloud Computing Services Developer Preview

Microsoft Azure Cloud Computing
Services

Developer Preview Technology Preview [1]

1. Technology Preview of Confidential Containers has been available since OpenShift sandboxed
containers 1.7.0.

Additional resources

Developer Preview Support Scope

Technology Preview Features - Scope of Support

1.3. NODE ELIGIBILITY CHECKS

You can verify that your bare-metal cluster nodes support OpenShift sandboxed containers by running

OpenShift sandboxed containers 1.7 User guide

8

https://access.redhat.com/support/offerings/devpreview
https://access.redhat.com/support/offerings/techpreview

You can verify that your bare-metal cluster nodes support OpenShift sandboxed containers by running
a node eligibility check. The most common reason for node ineligibility is lack of virtualization support. If
you run sandboxed workloads on ineligible nodes, you will experience errors.

High-level workflow

1. Install the Node Feature Discovery Operator.

2. Create the NodeFeatureDiscovery custom resource (CR).

3. Enable node eligibility checks when you create the Kataconfig CR. You can run node eligibility
checks on all worker nodes or on selected nodes.

Additional resources

Installing the Node Feature Discovery Operator

1.4. COMMON TERMS

The following terms are used throughout the documentation.

Sandbox

A sandbox is an isolated environment where programs can run. In a sandbox, you can run untested or
untrusted programs without risking harm to the host machine or the operating system.
In the context of OpenShift sandboxed containers, sandboxing is achieved by running workloads in a
different kernel using virtualization, providing enhanced control over the interactions between
multiple workloads that run on the same host.

Pod

A pod is a construct that is inherited from Kubernetes and OpenShift Container Platform. It
represents resources where containers can be deployed. Containers run inside of pods, and pods are
used to specify resources that can be shared between multiple containers.
In the context of OpenShift sandboxed containers, a pod is implemented as a virtual machine. Several
containers can run in the same pod on the same virtual machine.

OpenShift sandboxed containers Operator

The OpenShift sandboxed containers Operator manages the lifecycle of sandboxed containers on a
cluster. You can use the OpenShift sandboxed containers Operator to perform tasks such as the
installation and removal of sandboxed containers, software updates, and status monitoring.

Kata Containers

Kata Containers is a core upstream project that is used to build OpenShift sandboxed containers.
OpenShift sandboxed containers integrate Kata Containers with OpenShift Container Platform.

KataConfig

KataConfig objects represent configurations of sandboxed containers. They store information about
the state of the cluster, such as the nodes on which the software is deployed.

Runtime class

A RuntimeClass object describes which runtime can be used to run a given workload. A runtime class
that is named kata is installed and deployed by the OpenShift sandboxed containers Operator. The
runtime class contains information about the runtime that describes resources that the runtime
needs to operate, such as the pod overhead.

Peer pod

CHAPTER 1. ABOUT OPENSHIFT SANDBOXED CONTAINERS

9

https://docs.redhat.com/documentation/en-us/openshift_container_platform/4.16/html-single/specialized_hardware_and_driver_enablement/index#about-node-feature-discovery-operator_node-feature-discovery-operator
https://kubernetes.io/docs/concepts/scheduling-eviction/pod-overhead/

A peer pod in OpenShift sandboxed containers extends the concept of a standard pod. Unlike a
standard sandboxed container, where the virtual machine is created on the worker node itself, in a
peer pod, the virtual machine is created through a remote hypervisor using any supported hypervisor
or cloud provider API. The peer pod acts as a regular pod on the worker node, with its corresponding
VM running elsewhere. The remote location of the VM is transparent to the user and is specified by
the runtime class in the pod specification. The peer pod design circumvents the need for nested
virtualization.

IBM Secure Execution

IBM Secure Execution for Linux is an advanced security feature introduced with IBM z15® and
LinuxONE III. This feature extends the protection provided by pervasive encryption. IBM Secure
Execution safeguards data at rest, in transit, and in use. It enables secure deployment of workloads
and ensures data protection throughout its lifecycle. For more information, see Introducing IBM
Secure Execution for Linux.

Confidential Containers

Confidential Containers protects containers and data by verifying that your workload is running in a
Trusted Execution Environment (TEE). You can deploy this feature to safeguard the privacy of big
data analytics and machine learning inferences.
Trustee is a component of Confidential Containers. Trustee is an attestation service that verifies the
trustworthiness of the location where you plan to run your workload or where you plan to send
confidential information. Trustee includes components deployed on a trusted side and used to verify
whether the remote workload is running in a Trusted Execution Environment (TEE). Trustee is
flexible and can be deployed in several different configurations to support a wide variety of
applications and hardware platforms.

Confidential compute attestation Operator

The Confidential compute attestation Operator manages the installation, lifecycle, and configuration
of Confidential Containers.

1.5. OPENSHIFT SANDBOXED CONTAINERS OPERATOR

The OpenShift sandboxed containers Operator encapsulates all of the components from Kata
containers. It manages installation, lifecycle, and configuration tasks.

The OpenShift sandboxed containers Operator is packaged in the Operator bundle format as two
container images:

The bundle image contains metadata and is required to make the operator OLM-ready.

The second container image contains the actual controller that monitors and manages the
KataConfig resource.

The OpenShift sandboxed containers Operator is based on the Red Hat Enterprise Linux CoreOS
(RHCOS) extensions concept. RHCOS extensions are a mechanism to install optional OpenShift
Container Platform software. The OpenShift sandboxed containers Operator uses this mechanism to
deploy sandboxed containers on a cluster.

The sandboxed containers RHCOS extension contains RPMs for Kata, QEMU, and its dependencies. You
can enable them by using the MachineConfig resources that the Machine Config Operator provides.

Additional resources

Adding extensions to RHCOS

OpenShift sandboxed containers 1.7 User guide

10

https://www.ibm.com/docs/en/linux-on-systems?topic=management-secure-execution
https://docs.redhat.com/documentation/en-us/openshift_container_platform/4.16/html-single/operators/operator_sdk/index#osdk-working-bundle-images.html
https://docs.redhat.com/documentation/en-us/openshift_container_platform/4.16/html-single/post_installation_configuration/index#rhcos-add-extensions_post-install-machine-configuration-tasks

1.6. ABOUT CONFIDENTIAL CONTAINERS

Confidential Containers provides a confidential computing environment to protect containers and data
by leveraging Trusted Execution Environments (TEE).

IMPORTANT

Confidential Containers on Microsoft Azure Cloud Computing Services, IBM Z®, and
IBM® LinuxONE is a Technology Preview feature only. Technology Preview features are
not supported with Red Hat production service level agreements (SLAs) and might not
be functionally complete. Red Hat does not recommend using them in production. These
features provide early access to upcoming product features, enabling customers to test
functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

For more information, see Exploring the OpenShift confidential containers solution .

1.7. OPENSHIFT VIRTUALIZATION

You can deploy OpenShift sandboxed containers on clusters with OpenShift Virtualization.

To run OpenShift Virtualization and OpenShift sandboxed containers at the same time, your virtual
machines must be live migratable so that they do not block node reboots. See About live migration in
the OpenShift Virtualization documentation for details.

1.8. STORAGE CONSIDERATIONS

1.8.1. Block volume support

OpenShift Container Platform can statically provision raw block volumes. These volumes do not have a
file system, and can provide performance benefits for applications that either write to the disk directly
or implement their own storage service.

You can use a local block device as persistent volume (PV) storage with OpenShift sandboxed
containers. This block device can be provisioned by using the Local Storage Operator (LSO).

The Local Storage Operator is not installed in OpenShift Container Platform by default. See Installing
the Local Storage Operator for installation instructions.

You can provision raw block volumes for OpenShift sandboxed containers by specifying volumeMode:
Block in the PV specification.

Block volume example

apiVersion: "local.storage.openshift.io/v1"
kind: "LocalVolume"
metadata:
 name: "local-disks"
 namespace: "openshift-local-storage"
spec:
 nodeSelector:
 nodeSelectorTerms:

CHAPTER 1. ABOUT OPENSHIFT SANDBOXED CONTAINERS

11

https://en.wikipedia.org/wiki/Trusted_execution_environment
https://access.redhat.com/support/offerings/techpreview/
https://www.redhat.com/en/blog/exploring-openshift-confidential-containers-solution
https://docs.redhat.com/documentation/en-us/openshift_container_platform/4.16/html-single/virtualization/index#virt-about-live-migration
https://docs.openshift.com/container-platform/4.16/storage/persistent_storage/persistent_storage_local/persistent-storage-local.html#local-storage-install_persistent-storage-local

1

2

Set volumeMode to Block to indicate that this PV is a raw block volume.

Replace this value with the filepath to your LocalVolume resource by-id. PVs are created for these
local disks when the provisioner is deployed successfully. You must also use this path to label the
node that uses the block device when deploying OpenShift sandboxed containers.

1.9. FIPS COMPLIANCE

OpenShift Container Platform is designed for Federal Information Processing Standards (FIPS) 140-2
and 140-3. When running Red Hat Enterprise Linux (RHEL) or Red Hat Enterprise Linux CoreOS
(RHCOS) booted in FIPS mode, OpenShift Container Platform core components use the RHEL
cryptographic libraries that have been submitted to NIST for FIPS 140-2/140-3 Validation on only the
x86_64, ppc64le, and s390x architectures.

For more information about the NIST validation program, see Cryptographic Module Validation
Program. For the latest NIST status for the individual versions of RHEL cryptographic libraries that have
been submitted for validation, see Compliance Activities and Government Standards .

OpenShift sandboxed containers can be used on FIPS enabled clusters.

When running in FIPS mode, OpenShift sandboxed containers components, VMs, and VM images are
adapted to comply with FIPS.

NOTE

FIPS compliance for OpenShift sandboxed containers only applies to the kata runtime
class. The peer pod runtime class, kata-remote, is not yet fully supported and has not
been tested for FIPS compliance.

FIPS compliance is one of the most critical components required in highly secure environments, to
ensure that only supported cryptographic technologies are allowed on nodes.

IMPORTANT

The use of FIPS Validated / Modules in Process cryptographic libraries is only supported
on OpenShift Container Platform deployments on the x86_64 architecture.

To understand Red Hat’s view of OpenShift Container Platform compliance frameworks, refer to the
Risk Management and Regulatory Readiness chapter of the OpenShift Security Guide Book .

 - matchExpressions:
 - key: kubernetes.io/hostname
 operator: In
 values:
 - worker-0
 storageClassDevices:
 - storageClassName: "local-sc"
 forceWipeDevicesAndDestroyAllData: false
 volumeMode: Block 1
 devicePaths:
 - /path/to/device 2

OpenShift sandboxed containers 1.7 User guide

12

https://csrc.nist.gov/Projects/cryptographic-module-validation-program/validated-modules
https://access.redhat.com/articles/2918071#fips-140-2-and-fips-140-3-2
https://access.redhat.com/articles/5059881

CHAPTER 2. DEPLOYING ON BARE METAL
You can deploy OpenShift sandboxed containers on an on-premise bare-metal cluster with Red Hat
Enterprise Linux CoreOS (RHCOS) installed on the worker nodes.

NOTE

RHEL nodes are not supported.

Nested virtualization is not supported.

You can use any installation method including user-provisioned, installer-provisioned, or Assisted
Installer to deploy your cluster.

You can also install OpenShift sandboxed containers on Amazon Web Services (AWS) bare-metal
instances. Bare-metal instances offered by other cloud providers are not supported.

Cluster requirements

You have installed Red Hat OpenShift Container Platform 4.14 or later on the cluster where you
are installing the OpenShift sandboxed containers Operator.

Your cluster has at least one worker node.

2.1. OPENSHIFT SANDBOXED CONTAINERS RESOURCE
REQUIREMENTS

You must ensure that your cluster has sufficient resources.

OpenShift sandboxed containers lets users run workloads on their OpenShift Container Platform
clusters inside a sandboxed runtime (Kata). Each pod is represented by a virtual machine (VM). Each VM
runs in a QEMU process and hosts a kata-agent process that acts as a supervisor for managing
container workloads, and the processes running in those containers. Two additional processes add more
overhead:

containerd-shim-kata-v2 is used to communicate with the pod.

virtiofsd handles host file system access on behalf of the guest.

Each VM is configured with a default amount of memory. Additional memory is hot-plugged into the VM
for containers that explicitly request memory.

A container running without a memory resource consumes free memory until the total memory used by
the VM reaches the default allocation. The guest and its I/O buffers also consume memory.

If a container is given a specific amount of memory, then that memory is hot-plugged into the VM
before the container starts.

When a memory limit is specified, the workload is terminated if it consumes more memory than the limit.
If no memory limit is specified, the kernel running on the VM might run out of memory. If the kernel runs
out of memory, it might terminate other processes on the VM.

Default memory sizes

The following table lists some the default values for resource allocation.

CHAPTER 2. DEPLOYING ON BARE METAL

13

https://docs.redhat.com/documentation/en-us/openshift_container_platform/4.16/html-single/installing/index#installing-bare-metal
https://docs.redhat.com/documentation/en-us/openshift_container_platform/4.16/html-single/installing/index#deploying-installer-provisioned-clusters-on-bare-metal
https://access.redhat.com/documentation/en-us/assisted_installer_for_openshift_container_platform

Resource Value

Memory allocated by default to a virtual machine 2Gi

Guest Linux kernel memory usage at boot ~110Mi

Memory used by the QEMU process (excluding VM
memory)

~30Mi

Memory used by the virtiofsd process (excluding
VM I/O buffers)

~10Mi

Memory used by the containerd-shim-kata-v2
process

~20Mi

File buffer cache data after running dnf install on
Fedora

~300Mi* [1]

File buffers appear and are accounted for in multiple locations:

In the guest where it appears as file buffer cache.

In the virtiofsd daemon that maps allowed user-space file I/O operations.

In the QEMU process as guest memory.

NOTE

Total memory usage is properly accounted for by the memory utilization metrics, which
only count that memory once.

Pod overhead describes the amount of system resources that a pod on a node uses. You can get the
current pod overhead for the Kata runtime by using oc describe runtimeclass kata as shown below.

Example

Example output

You can change the pod overhead by changing the spec.overhead field for a RuntimeClass. For

$ oc describe runtimeclass kata

kind: RuntimeClass
apiVersion: node.k8s.io/v1
metadata:
 name: kata
overhead:
 podFixed:
 memory: "500Mi"
 cpu: "500m"

OpenShift sandboxed containers 1.7 User guide

14

https://kubernetes.io/docs/concepts/scheduling-eviction/pod-overhead/

You can change the pod overhead by changing the spec.overhead field for a RuntimeClass. For
example, if the configuration that you run for your containers consumes more than 350Mi of memory for
the QEMU process and guest kernel data, you can alter the RuntimeClass overhead to suit your needs.

NOTE

The specified default overhead values are supported by Red Hat. Changing default
overhead values is not supported and can result in technical issues.

When performing any kind of file system I/O in the guest, file buffers are allocated in the guest kernel.
The file buffers are also mapped in the QEMU process on the host, as well as in the virtiofsd process.

For example, if you use 300Mi of file buffer cache in the guest, both QEMU and virtiofsd appear to use
300Mi additional memory. However, the same memory is used in all three cases. Therefore, the total
memory usage is only 300Mi, mapped in three different places. This is correctly accounted for when
reporting the memory utilization metrics.

2.2. DEPLOYING OPENSHIFT SANDBOXED CONTAINERS BY USING
THE WEB CONSOLE

You can deploy OpenShift sandboxed containers on bare metal by using the OpenShift Container
Platform web console to perform the following tasks:

1. Install the OpenShift sandboxed containers Operator.

2. Optional: Install the Node Feature Discovery (NFD) Operator to configure node eligibility
checks. For more information, see node eligibility checks and the NFD Operator documentation.

3. Create the KataConfig custom resource.

4. Configure the OpenShift sandboxed containers workload objects.

2.2.1. Installing the OpenShift sandboxed containers Operator

You can install the OpenShift sandboxed containers Operator by using the OpenShift Container
Platform web console.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

Procedure

1. In the web console, navigate to Operators → OperatorHub.

2. In the Filter by keyword field, type OpenShift sandboxed containers.

3. Select the OpenShift sandboxed containers Operator tile and click Install.

4. On the Install Operator page, select stable from the list of available Update Channel options.

5. Verify that Operator recommended Namespace is selected for Installed Namespace. This
installs the Operator in the mandatory openshift-sandboxed-containers-operator namespace.
If this namespace does not yet exist, it is automatically created.

NOTE

CHAPTER 2. DEPLOYING ON BARE METAL

15

https://docs.redhat.com/documentation/en-us/openshift_container_platform/4.16/html-single/specialized_hardware_and_driver_enablement/index#about-node-feature-discovery-operator_node-feature-discovery-operator

NOTE

Attempting to install the OpenShift sandboxed containers Operator in a
namespace other than openshift-sandboxed-containers-operator causes the
installation to fail.

6. Verify that Automatic is selected for Approval Strategy. Automatic is the default value, and
enables automatic updates to OpenShift sandboxed containers when a new z-stream release is
available.

7. Click Install.

8. Navigate to Operators → Installed Operators to verify that the Operator is installed.

Additional resources

Using Operator Lifecycle Manager on restricted networks .

Configuring proxy support in Operator Lifecycle Manager for disconnected environments.

2.2.2. Creating the KataConfig custom resource

You must create the KataConfig custom resource (CR) to install kata as a RuntimeClass on your
worker nodes.

The kata runtime class is installed on all worker nodes by default. If you want to install kata on specific
nodes, you can add labels to those nodes and then define the label in the KataConfig CR.

OpenShift sandboxed containers installs kata as a secondary, optional runtime on the cluster and not as
the primary runtime.

IMPORTANT

Creating the KataConfig CR automatically reboots the worker nodes. The reboot can
take from 10 to more than 60 minutes. The following factors might increase the reboot
time:

A larger OpenShift Container Platform deployment with a greater number of
worker nodes.

Activation of the BIOS and Diagnostics utility.

Deployment on a hard disk drive rather than an SSD.

Deployment on physical nodes such as bare metal, rather than on virtual nodes.

A slow CPU and network.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

Optional: You have installed the Node Feature Discovery Operator if you want to enable node
eligibility checks.

OpenShift sandboxed containers 1.7 User guide

16

https://docs.redhat.com/documentation/en-us/openshift_container_platform/4.16/html-single/operators/index#olm-restricted-networks
https://docs.redhat.com/documentation/en-us/openshift_container_platform/4.16/html-single/operators/index#olm-configuring-proxy-support.html

Procedure

1. In the OpenShift Container Platform web console, navigate to Operators → Installed
Operators.

2. Select the OpenShift sandboxed containers Operator.

3. On the KataConfig tab, click Create KataConfig.

4. Enter the following details:

Name: Optional: The default name is example-kataconfig.

Labels: Optional: Enter any relevant, identifying attributes to the KataConfig resource.
Each label represents a key-value pair.

checkNodeEligibility: Optional: Select to use the Node Feature Discovery Operator (NFD)
to detect node eligibility.

kataConfigPoolSelector. Optional: To install kata on selected nodes, add a match
expression for the labels on the selected nodes:

a. Expand the kataConfigPoolSelector area.

b. In the kataConfigPoolSelector area, expand matchExpressions. This is a list of label
selector requirements.

c. Click Add matchExpressions.

d. In the Key field, enter the label key the selector applies to.

e. In the Operator field, enter the key’s relationship to the label values. Valid operators
are In, NotIn, Exists, and DoesNotExist.

f. Expand the Values area and then click Add value.

g. In the Value field, enter true or false for key label value.

logLevel: Define the level of log data retrieved for nodes with the kata runtime class.

5. Click Create. The KataConfig CR is created and installs the kata runtime class on the worker
nodes.
Wait for the kata installation to complete and the worker nodes to reboot before verifying the
installation.

Verification

1. On the KataConfig tab, click the KataConfig CR to view its details.

2. Click the YAML tab to view the status stanza.
The status stanza contains the conditions and kataNodes keys. The value of
status.kataNodes is an array of nodes, each of which lists nodes in a particular state of kata
installation. A message appears each time there is an update.

3. Click Reload to refresh the YAML.
When all workers in the status.kataNodes array display the values installed and
conditions.InProgress: False with no specified reason, the kata is installed on the cluster.

CHAPTER 2. DEPLOYING ON BARE METAL

17

Additional resources

KataConfig status messages

2.2.3. Configuring workload objects

You must configure OpenShift sandboxed containers workload objects by setting kata as the runtime
class for the following pod-templated objects:

Pod objects

ReplicaSet objects

ReplicationController objects

StatefulSet objects

Deployment objects

DeploymentConfig objects

IMPORTANT

Do not deploy workloads in an Operator namespace. Create a dedicated namespace for
these resources.

Prerequisites

You have created the KataConfig custom resource (CR).

Procedure

1. In the OpenShift Container Platform web console, navigate to Workloads → workload type, for
example, Pods.

2. On the workload type page, click an object to view its details.

3. Click the YAML tab.

4. Add spec.runtimeClassName: kata to the manifest of each pod-templated workload object as
in the following example:

OpenShift Container Platform creates the workload object and begins scheduling it.

Verification

Inspect the spec.runtimeClassName field of a pod-templated object. If the value is kata, then
the workload is running on OpenShift sandboxed containers, using peer pods.

apiVersion: v1
kind: <object>
...
spec:
 runtimeClassName: kata
...

OpenShift sandboxed containers 1.7 User guide

18

2.3. DEPLOYING OPENSHIFT SANDBOXED CONTAINERS BY USING
THE COMMAND LINE

You can deploy OpenShift sandboxed containers on bare metal by using the command line interface
(CLI) to perform the following tasks:

1. Install the OpenShift sandboxed containers Operator.

2. After installing the Operator, you can configure the following options:

Configure a block storage device.

Install the Node Feature Discovery (NFD) Operator to configure node eligibility checks. For
more information, see node eligibility checks and the NFD Operator documentation.

Create a NodeFeatureDiscovery custom resource.

3. Create the KataConfig custom resource.

4. Optional: Modify the pod overhead.

5. Configure the OpenShift sandboxed containers workload objects.

2.3.1. Installing the OpenShift sandboxed containers Operator

You can install the OpenShift sandboxed containers Operator by using the CLI.

Prerequisites

You have installed the OpenShift CLI (oc).

You have access to the cluster as a user with the cluster-admin role.

Procedure

1. Create an osc-namespace.yaml manifest file:

2. Create the namespace by running the following command:

3. Create an osc-operatorgroup.yaml manifest file:

apiVersion: v1
kind: Namespace
metadata:
 name: openshift-sandboxed-containers-operator

$ oc apply -f osc-namespace.yaml

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: sandboxed-containers-operator-group
 namespace: openshift-sandboxed-containers-operator

CHAPTER 2. DEPLOYING ON BARE METAL

19

https://docs.redhat.com/documentation/en-us/openshift_container_platform/4.16/html-single/specialized_hardware_and_driver_enablement/index#about-node-feature-discovery-operator_node-feature-discovery-operator

4. Create the operator group by running the following command:

5. Create an osc-subscription.yaml manifest file:

6. Create the subscription by running the following command:

7. Verify that the Operator is correctly installed by running the following command:

This command can take several minutes to complete.

8. Watch the process by running the following command:

Example output

Additional resources

Using Operator Lifecycle Manager on restricted networks .

Configuring proxy support in Operator Lifecycle Manager for disconnected environments.

2.3.2. Optional configurations

You can configure the following options after you install the OpenShift sandboxed containers Operator.

spec:
 targetNamespaces:
 - openshift-sandboxed-containers-operator

$ oc apply -f osc-operatorgroup.yaml

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: sandboxed-containers-operator
 namespace: openshift-sandboxed-containers-operator
spec:
 channel: stable
 installPlanApproval: Automatic
 name: sandboxed-containers-operator
 source: redhat-operators
 sourceNamespace: openshift-marketplace
 startingCSV: sandboxed-containers-operator.v1.7.0

$ oc apply -f osc-subscription.yaml

$ oc get csv -n openshift-sandboxed-containers-operator

$ watch oc get csv -n openshift-sandboxed-containers-operator

NAME DISPLAY VERSION REPLACES
PHASE
openshift-sandboxed-containers openshift-sandboxed-containers-operator 1.7.0 1.6.0
Succeeded

OpenShift sandboxed containers 1.7 User guide

20

https://docs.redhat.com/documentation/en-us/openshift_container_platform/4.16/html-single/operators/index#olm-restricted-networks
https://docs.redhat.com/documentation/en-us/openshift_container_platform/4.16/html-single/operators/index#olm-configuring-proxy-support.html

2.3.2.1. Provisioning local block volumes

You can use local block volumes with OpenShift sandboxed containers. You must first provision the local
block volumes by using the Local Storage Operator (LSO). Then you must enable the nodes with the
local block volumes to run OpenShift sandboxed containers workloads.

You can provision local block volumes for OpenShift sandboxed containers by using the Local Storage
Operator (LSO). The local volume provisioner looks for any block volume devices at the paths specified
in the defined resource.

Prerequisites

You have installed the Local Storage Operator.

You have a local disk that meets the following conditions:

It is attached to a node.

It is not mounted.

It does not contain partitions.

Procedure

1. Create the local volume resource. This resource must define the nodes and paths to the local
volumes.

NOTE

Do not use different storage class names for the same device. Doing so creates
multiple persistent volumes (PVs).

Example: Block

apiVersion: "local.storage.openshift.io/v1"
kind: "LocalVolume"
metadata:
 name: "local-disks"
 namespace: "openshift-local-storage" 1
spec:
 nodeSelector: 2
 nodeSelectorTerms:
 - matchExpressions:
 - key: kubernetes.io/hostname
 operator: In
 values:
 - ip-10-0-136-143
 - ip-10-0-140-255
 - ip-10-0-144-180
 storageClassDevices:
 - storageClassName: "local-sc" 3
 forceWipeDevicesAndDestroyAllData: false 4

CHAPTER 2. DEPLOYING ON BARE METAL

21

1

2

3

4

5

6

The namespace where the Local Storage Operator is installed.

Optional: A node selector containing a list of nodes where the local storage volumes are
attached. This example uses the node hostnames, obtained from oc get node. If a value is
not defined, then the Local Storage Operator will attempt to find matching disks on all
available nodes.

The name of the storage class to use when creating persistent volume objects.

This setting defines whether or not to call wipefs, which removes partition table signatures
(magic strings) making the disk ready to use for Local Storage Operator provisioning. No
other data besides signatures is erased. The default is "false" (wipefs is not invoked).
Setting forceWipeDevicesAndDestroyAllData to "true" can be useful in scenarios where
previous data can remain on disks that need to be re-used. In these scenarios, setting this
field to true eliminates the need for administrators to erase the disks manually.

The path containing a list of local storage devices to choose from. You must use this path
when enabling a node with a local block device to run OpenShift sandboxed containers
workloads.

Replace this value with the filepath to your LocalVolume resource by-id, such as
/dev/disk/by-id/wwn. PVs are created for these local disks when the provisioner is
deployed successfully.

2. Create the local volume resource in your OpenShift Container Platform cluster. Specify the file
you just created:

3. Verify that the provisioner was created and that the corresponding daemon sets were created:

Example output

 volumeMode: Block
 devicePaths: 5
 - /path/to/device 6

$ oc apply -f <local-volume>.yaml

$ oc get all -n openshift-local-storage

NAME READY STATUS RESTARTS AGE
pod/diskmaker-manager-9wzms 1/1 Running 0 5m43s
pod/diskmaker-manager-jgvjp 1/1 Running 0 5m43s
pod/diskmaker-manager-tbdsj 1/1 Running 0 5m43s
pod/local-storage-operator-7db4bd9f79-t6k87 1/1 Running 0 14m

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
AGE
service/local-storage-operator-metrics ClusterIP 172.30.135.36 <none>
8383/TCP,8686/TCP 14m

NAME DESIRED CURRENT READY UP-TO-DATE AVAILABLE
NODE SELECTOR AGE
daemonset.apps/diskmaker-manager 3 3 3 3 3 <none>
5m43s

OpenShift sandboxed containers 1.7 User guide

22

Note the desired and current number of daemon set processes. A desired count of 0 indicates
that the label selectors were invalid.

4. Verify that the persistent volumes were created:

Example output

IMPORTANT

Editing the LocalVolume object does not change existing persistent volumes because
doing so might result in a destructive operation.

2.3.2.2. Enabling nodes to use a local block device

You can configure nodes with a local block device to run OpenShift sandboxed containers workloads at
the paths specified in the defined volume resource.

Prerequisites

You provisioned a block device using the Local Storage Operator (LSO).

Procedure

Enable each node with a local block device to run OpenShift sandboxed containers workloads
by running the following command:

The /path/to/device must be the same path you defined when creating the local storage
resource.

Example output

2.3.2.3. Creating a NodeFeatureDiscovery custom resource

NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/local-storage-operator 1/1 1 1 14m

NAME DESIRED CURRENT READY AGE
replicaset.apps/local-storage-operator-7db4bd9f79 1 1 1 14m

$ oc get pv

NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS CLAIM
STORAGECLASS REASON AGE
local-pv-1cec77cf 100Gi RWO Delete Available local-sc 88m
local-pv-2ef7cd2a 100Gi RWO Delete Available local-sc
82m
local-pv-3fa1c73 100Gi RWO Delete Available local-sc 48m

$ oc debug node/worker-0 -- chcon -vt container_file_t /host/path/to/device

system_u:object_r:container_file_t:s0 /host/path/to/device

CHAPTER 2. DEPLOYING ON BARE METAL

23

You create a NodeFeatureDiscovery custom resource (CR) to define the configuration parameters
that the Node Feature Discovery (NFD) Operator checks to determine that the worker nodes can
support OpenShift sandboxed containers.

NOTE

To install the kata runtime on only selected worker nodes that you know are eligible,
apply the feature.node.kubernetes.io/runtime.kata=true label to the selected nodes
and set checkNodeEligibility: true in the KataConfig CR.

To install the kata runtime on all worker nodes, set checkNodeEligibility: false in the
KataConfig CR.

In both these scenarios, you do not need to create the NodeFeatureDiscovery CR. You
should only apply the feature.node.kubernetes.io/runtime.kata=true label manually if
you are sure that the node is eligible to run OpenShift sandboxed containers.

The following procedure applies the feature.node.kubernetes.io/runtime.kata=true label to all eligible
nodes and configures the KataConfig resource to check for node eligibility.

Prerequisites

You have installed the NFD Operator.

Procedure

1. Create an nfd.yaml manifest file according to the following example:

2. Create the NodeFeatureDiscovery CR:

The NodeFeatureDiscovery CR applies the feature.node.kubernetes.io/runtime.kata=true
label to all qualifying worker nodes.

1. Create a kata-config.yaml manifest file according to the following example:

apiVersion: nfd.openshift.io/v1
kind: NodeFeatureDiscovery
metadata:
 name: nfd-kata
 namespace: openshift-nfd
spec:
 workerConfig:
 configData: |
 sources:
 custom:
 - name: "feature.node.kubernetes.io/runtime.kata"
 matchOn:
 - cpuId: ["SSE4", "VMX"]
 loadedKMod: ["kvm", "kvm_intel"]
 - cpuId: ["SSE4", "SVM"]
 loadedKMod: ["kvm", "kvm_amd"]
...

$ oc create -f nfd.yaml

OpenShift sandboxed containers 1.7 User guide

24

2. Create the KataConfig CR:

Verification

Verify that qualifying nodes in the cluster have the correct label applied:

Example output

2.3.3. Creating the KataConfig custom resource

You must create the KataConfig custom resource (CR) to install kata as a runtime class on your worker
nodes.

Creating the KataConfig CR triggers the OpenShift sandboxed containers Operator to do the
following: * Install the needed RHCOS extensions, such as QEMU and kata-containers, on your RHCOS
node. * Ensure that the CRI-O runtime is configured with the correct runtime handlers. * Create a
RuntimeClass CR named kata with a default configuration. This enables users to configure workloads
to use kata as the runtime by referencing the CR in the RuntimeClassName field. This CR also
specifies the resource overhead for the runtime.

OpenShift sandboxed containers installs kata as a secondary, optional runtime on the cluster and not as
the primary runtime.

IMPORTANT

Creating the KataConfig CR automatically reboots the worker nodes. The reboot can
take from 10 to more than 60 minutes. Factors that impede reboot time are as follows:

A larger OpenShift Container Platform deployment with a greater number of
worker nodes.

Activation of the BIOS and Diagnostics utility.

Deployment on a hard disk drive rather than an SSD.

Deployment on physical nodes such as bare metal, rather than on virtual nodes.

A slow CPU and network.

apiVersion: kataconfiguration.openshift.io/v1
kind: KataConfig
metadata:
 name: example-kataconfig
spec:
 checkNodeEligibility: true

$ oc create -f kata-config.yaml

$ oc get nodes --selector='feature.node.kubernetes.io/runtime.kata=true'

NAME STATUS ROLES AGE VERSION
compute-3.example.com Ready worker 4h38m v1.25.0
compute-2.example.com Ready worker 4h35m v1.25.0

CHAPTER 2. DEPLOYING ON BARE METAL

25

https://github.com/cri-o/cri-o

1

2

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

Optional: You have installed the Node Feature Discovery Operator if you want to enable node
eligibility checks.

Procedure

1. Create an example-kataconfig.yaml manifest file according to the following example:

Optional: Set`checkNodeEligibility` to true to run node eligibility checks.

Optional: If you have applied node labels to install OpenShift sandboxed containers on
specific nodes, specify the key and value.

2. Create the KataConfig CR by running the following command:

The new KataConfig CR is created and installs kata as a runtime class on the worker nodes.

Wait for the kata installation to complete and the worker nodes to reboot before verifying the
installation.

3. Monitor the installation progress by running the following command:

When the status of all workers under kataNodes is installed and the condition InProgress is
False without specifying a reason, the kata is installed on the cluster.

2.3.4. Modifying pod overhead

Pod overhead describes the amount of system resources that a pod on a node uses. You can modify the
pod overhead by changing the spec.overhead field for a RuntimeClass custom resource. For example,
if the configuration that you run for your containers consumes more than 350Mi of memory for the
QEMU process and guest kernel data, you can alter the RuntimeClass overhead to suit your needs.

When performing any kind of file system I/O in the guest, file buffers are allocated in the guest kernel.
The file buffers are also mapped in the QEMU process on the host, as well as in the virtiofsd process.

For example, if you use 300Mi of file buffer cache in the guest, both QEMU and virtiofsd appear to use

apiVersion: kataconfiguration.openshift.io/v1
kind: KataConfig
metadata:
 name: example-kataconfig
spec:
 checkNodeEligibility: false 1
 logLevel: info
kataConfigPoolSelector:
matchLabels:
<label_key>: '<label_value>' 2

$ oc apply -f example-kataconfig.yaml

$ watch "oc describe kataconfig | sed -n /^Status:/,/^Events/p"

OpenShift sandboxed containers 1.7 User guide

26

https://kubernetes.io/docs/concepts/scheduling-eviction/pod-overhead/

300Mi additional memory. However, the same memory is being used in all three cases. Therefore, the
total memory usage is only 300Mi, mapped in three different places. This is correctly accounted for
when reporting the memory utilization metrics.

NOTE

The default values are supported by Red Hat. Changing default overhead values is not
supported and can result in technical issues.

Procedure

1. Obtain the RuntimeClass object by running the following command:

2. Update the overhead.podFixed.memory and cpu values and save as the file as
runtimeclass.yaml:

3. Apply the changes by running the following command:

2.3.5. Configuring workload objects

You must configure OpenShift sandboxed containers workload objects by setting kata as the runtime
class for the following pod-templated objects:

Pod objects

ReplicaSet objects

ReplicationController objects

StatefulSet objects

Deployment objects

DeploymentConfig objects

IMPORTANT

Do not deploy workloads in an Operator namespace. Create a dedicated namespace for
these resources.

$ oc describe runtimeclass kata

kind: RuntimeClass
apiVersion: node.k8s.io/v1
metadata:
 name: kata
overhead:
 podFixed:
 memory: "500Mi"
 cpu: "500m"

$ oc apply -f runtimeclass.yaml

CHAPTER 2. DEPLOYING ON BARE METAL

27

Prerequisites

You have created the KataConfig custom resource (CR).

Procedure

1. Add spec.runtimeClassName: kata to the manifest of each pod-templated workload object as
in the following example:

OpenShift Container Platform creates the workload object and begins scheduling it.

Verification

Inspect the spec.runtimeClassName field of a pod-templated object. If the value is kata, then
the workload is running on OpenShift sandboxed containers, using peer pods.

apiVersion: v1
kind: <object>
...
spec:
 runtimeClassName: kata
...

OpenShift sandboxed containers 1.7 User guide

28

1

CHAPTER 3. DEPLOYING ON AWS
You can deploy OpenShift sandboxed containers on AWS Cloud Computing Services by using the
OpenShift Container Platform web console or the command line interface (CLI).

Cluster requirements

You have installed Red Hat OpenShift Container Platform 4.14 or later on the cluster where you
are installing the OpenShift sandboxed containers Operator.

Your cluster has at least one worker node.

3.1. PEER POD RESOURCE REQUIREMENTS

You must ensure that your cluster has sufficient resources.

Peer pod virtual machines (VMs) require resources in two locations:

The worker node. The worker node stores metadata, Kata shim resources (containerd-shim-
kata-v2), remote-hypervisor resources (cloud-api-adaptor), and the tunnel setup between the
worker nodes and the peer pod VM.

The cloud instance. This is the actual peer pod VM running in the cloud.

The CPU and memory resources used in the Kubernetes worker node are handled by the pod overhead
included in the RuntimeClass (kata-remote) definition used for creating peer pods.

The total number of peer pod VMs running in the cloud is defined as Kubernetes Node extended
resources. This limit is per node and is set by the limit attribute in the peerpodConfig custom resource
(CR).

The peerpodConfig CR, named peerpodconfig-openshift, is created when you create the kataConfig
CR and enable peer pods, and is located in the openshift-sandboxed-containers-operator namespace.

The following peerpodConfig CR example displays the default spec values:

The default limit is 10 VMs per node.

The extended resource is named kata.peerpods.io/vm, and enables the Kubernetes scheduler to handle
capacity tracking and accounting.

You can edit the limit per node based on the requirements for your environment after you install the

apiVersion: confidentialcontainers.org/v1alpha1
kind: PeerPodConfig
metadata:
 name: peerpodconfig-openshift
 namespace: openshift-sandboxed-containers-operator
spec:
 cloudSecretName: peer-pods-secret
 configMapName: peer-pods-cm
 limit: "10" 1
 nodeSelector:
 node-role.kubernetes.io/kata-oc: ""

CHAPTER 3. DEPLOYING ON AWS

29

https://kubernetes.io/docs/concepts/scheduling-eviction/pod-overhead/

You can edit the limit per node based on the requirements for your environment after you install the
OpenShift sandboxed containers Operator.

A mutating webhook adds the extended resource kata.peerpods.io/vm to the pod specification. It also
removes any resource-specific entries from the pod specification, if present. This enables the
Kubernetes scheduler to account for these extended resources, ensuring the peer pod is only scheduled
when resources are available.

The mutating webhook modifies a Kubernetes pod as follows:

The mutating webhook checks the pod for the expected RuntimeClassName value, specified
in the TARGET_RUNTIME_CLASS environment variable. If the value in the pod specification
does not match the value in the TARGET_RUNTIME_CLASS, the webhook exits without
modifying the pod.

If the RuntimeClassName values match, the webhook makes the following changes to the pod
spec:

1. The webhook removes every resource specification from the resources field of all
containers and init containers in the pod.

2. The webhook adds the extended resource (kata.peerpods.io/vm) to the spec by modifying
the resources field of the first container in the pod. The extended resource
kata.peerpods.io/vm is used by the Kubernetes scheduler for accounting purposes.

NOTE

The mutating webhook excludes specific system namespaces in OpenShift Container
Platform from mutation. If a peer pod is created in those system namespaces, then
resource accounting using Kubernetes extended resources does not work unless the pod
spec includes the extended resource.

As a best practice, define a cluster-wide policy to only allow peer pod creation in specific
namespaces.

3.2. DEPLOYING OPENSHIFT SANDBOXED CONTAINERS BY USING
THE WEB CONSOLE

You can deploy OpenShift sandboxed containers on AWS by using the OpenShift Container Platform
web console to perform the following tasks:

1. Install the OpenShift sandboxed containers Operator.

2. Enable ports 15150 and 9000 to allow internal communication with peer pods.

3. Create the peer pods secret.

4. Create the peer pods config map.

5. Create the KataConfig custom resource.

6. Configure the OpenShift sandboxed containers workload objects.

3.2.1. Installing the OpenShift sandboxed containers Operator

You can install the OpenShift sandboxed containers Operator by using the OpenShift Container

OpenShift sandboxed containers 1.7 User guide

30

https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/

You can install the OpenShift sandboxed containers Operator by using the OpenShift Container
Platform web console.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

Procedure

1. In the web console, navigate to Operators → OperatorHub.

2. In the Filter by keyword field, type OpenShift sandboxed containers.

3. Select the OpenShift sandboxed containers Operator tile and click Install.

4. On the Install Operator page, select stable from the list of available Update Channel options.

5. Verify that Operator recommended Namespace is selected for Installed Namespace. This
installs the Operator in the mandatory openshift-sandboxed-containers-operator namespace.
If this namespace does not yet exist, it is automatically created.

NOTE

Attempting to install the OpenShift sandboxed containers Operator in a
namespace other than openshift-sandboxed-containers-operator causes the
installation to fail.

6. Verify that Automatic is selected for Approval Strategy. Automatic is the default value, and
enables automatic updates to OpenShift sandboxed containers when a new z-stream release is
available.

7. Click Install.

8. Navigate to Operators → Installed Operators to verify that the Operator is installed.

Additional resources

Using Operator Lifecycle Manager on restricted networks .

Configuring proxy support in Operator Lifecycle Manager for disconnected environments.

3.2.2. Enabling ports for AWS

You must enable ports 15150 and 9000 to allow internal communication with peer pods running on AWS.

Prerequisites

You have installed the OpenShift sandboxed containers Operator.

You have installed the AWS command line tool.

You have access to the cluster as a user with the cluster-admin role.

Procedure

CHAPTER 3. DEPLOYING ON AWS

31

https://docs.redhat.com/documentation/en-us/openshift_container_platform/4.16/html-single/operators/index#olm-restricted-networks
https://docs.redhat.com/documentation/en-us/openshift_container_platform/4.16/html-single/operators/index#olm-configuring-proxy-support.html

1. Log in to your OpenShift Container Platform cluster and retrieve the instance ID:

2. Retrieve the AWS region:

3. Retrieve the security group IDs and store them in an array:

4. For each security group ID, authorize the peer pods shim to access kata-agent communication,
and set up the peer pods tunnel:

The ports are now enabled.

3.2.3. Creating the peer pods secret

You must create the peer pods secret for OpenShift sandboxed containers.

The secret stores credentials for creating the pod virtual machine (VM) image and peer pod instances.

By default, the OpenShift sandboxed containers Operator creates the secret based on the credentials
used to create the cluster. However, you can manually create a secret that uses different credentials.

Prerequisites

You have the following values generated by using the AWS console:

AWS_ACCESS_KEY_ID

AWS_SECRET_ACCESS_KEY

Procedure

1. In the OpenShift Container Platform web console, navigate to Operators → Installed
Operators.

2. Click the OpenShift sandboxed containers Operator tile.

3. Click the Import icon (+) on the top right corner.

$ INSTANCE_ID=$(oc get nodes -l 'node-role.kubernetes.io/worker' \
 -o jsonpath='{.items[0].spec.providerID}' | sed 's#[^]*/##g')

$ AWS_REGION=$(oc get infrastructure/cluster -o
jsonpath='{.status.platformStatus.aws.region}')

$ AWS_SG_IDS=($(aws ec2 describe-instances --instance-ids ${INSTANCE_ID} \
 --query 'Reservations[*].Instances[*].SecurityGroups[*].GroupId' \
 --output text --region $AWS_REGION))

$ for AWS_SG_ID in "${AWS_SG_IDS[@]}"; do \
 aws ec2 authorize-security-group-ingress --group-id $AWS_SG_ID --protocol tcp --port
15150 --source-group $AWS_SG_ID --region $AWS_REGION \
 aws ec2 authorize-security-group-ingress --group-id $AWS_SG_ID --protocol tcp --port
9000 --source-group $AWS_SG_ID --region $AWS_REGION \
done

OpenShift sandboxed containers 1.7 User guide

32

1

2

4. In the Import YAML window, paste the following YAML manifest:

Specify the AWS_ACCESS_KEY_ID value.

Specify the AWS_SECRET_ACCESS_KEY value.

5. Click Save to apply the changes.

6. Navigate to Workloads → Secrets to verify the peer pods secret.

3.2.4. Creating the peer pods config map

You must create the peer pods config map for OpenShift sandboxed containers.

Prerequisites

You have your Amazon Machine Image (AMI) ID if you are not using the default AMI ID based on
your cluster credentials.

Procedure

1. Obtain the following values from your AWS instance:

a. Retrieve and record the instance ID:

This is used to retrieve other values for the secret object.

b. Retrieve and record the AWS region:

c. Retrieve and record the AWS subnet ID:

d. Retrieve and record the AWS VPC ID:

apiVersion: v1
kind: Secret
metadata:
 name: peer-pods-secret
 namespace: openshift-sandboxed-containers-operator
type: Opaque
stringData:
 AWS_ACCESS_KEY_ID: "<aws_access_key>" 1
 AWS_SECRET_ACCESS_KEY: "<aws_secret_access_key>" 2

$ INSTANCE_ID=$(oc get nodes -l 'node-role.kubernetes.io/worker' -o
jsonpath='{.items[0].spec.providerID}' | sed 's#[^]*/##g')

$ AWS_REGION=$(oc get infrastructure/cluster -o
jsonpath='{.status.platformStatus.aws.region}') && echo "AWS_REGION:
\"$AWS_REGION\""

$ AWS_SUBNET_ID=$(aws ec2 describe-instances --instance-ids ${INSTANCE_ID} --
query 'Reservations[*].Instances[*].SubnetId' --region ${AWS_REGION} --output text) &&
echo "AWS_SUBNET_ID: \"$AWS_SUBNET_ID\""

CHAPTER 3. DEPLOYING ON AWS

33

1

2

3

4

5

6

7

e. Retrieve and record the AWS security group IDs:

2. In the OpenShift Container Platform web console, navigate to Operators → Installed
Operators.

3. Select the OpenShift sandboxed containers Operator from the list of operators.

4. Click the Import icon (+) in the top right corner.

5. In the Import YAML window, paste the following YAML manifest:

Defines the default instance type that is used when a type is not defined in the workload.

Lists all of the instance types you can specify when creating the pod. This allows you to
define smaller instance types for workloads that need less memory and fewer CPUs or
larger instance types for larger workloads.

Optional: By default, this value is populated when you run the KataConfig CR, using an AMI
ID based on your cluster credentials. If you create your own AMI, specify the correct AMI ID.

Specify the AWS_REGION value you retrieved.

Specify the AWS_SUBNET_ID value you retrieved.

Specify the AWS_VPC_ID value you retrieved.

Specify the AWS_SG_IDS value you retrieved.

$ AWS_VPC_ID=$(aws ec2 describe-instances --instance-ids ${INSTANCE_ID} --query
'Reservations[*].Instances[*].VpcId' --region ${AWS_REGION} --output text) && echo
"AWS_VPC_ID: \"$AWS_VPC_ID\""

$ AWS_SG_IDS=$(aws ec2 describe-instances --instance-ids ${INSTANCE_ID} --query
'Reservations[*].Instances[*].SecurityGroups[*].GroupId' --region $AWS_REGION --
output json | jq -r '.[][][]' | paste -sd ",") && echo "AWS_SG_IDS: \"$AWS_SG_IDS\""

apiVersion: v1
kind: ConfigMap
metadata:
 name: peer-pods-cm
 namespace: openshift-sandboxed-containers-operator
data:
 CLOUD_PROVIDER: "aws"
 VXLAN_PORT: "9000"
 PODVM_INSTANCE_TYPE: "t3.medium" 1
 PODVM_INSTANCE_TYPES: "t2.small,t2.medium,t3.large" 2
 PROXY_TIMEOUT: "5m"
 PODVM_AMI_ID: "<podvm_ami_id>" 3
 AWS_REGION: "<aws_region>" 4
 AWS_SUBNET_ID: "<aws_subnet_id>" 5
 AWS_VPC_ID: "<aws_vpc_id>" 6
 AWS_SG_IDS: "<aws_sg_ids>" 7
 DISABLECVM: "true"

OpenShift sandboxed containers 1.7 User guide

34

6. Click Save to apply the changes.

7. Navigate to Workloads → ConfigMaps to view the new config map.

3.2.5. Creating the KataConfig custom resource

You must create the KataConfig custom resource (CR) to install kata-remote as a RuntimeClass on
your worker nodes.

The kata-remote runtime class is installed on all worker nodes by default. If you want to install kata-
remote on specific nodes, you can add labels to those nodes and then define the label in the
KataConfig CR.

OpenShift sandboxed containers installs kata-remote as a secondary, optional runtime on the cluster
and not as the primary runtime.

IMPORTANT

Creating the KataConfig CR automatically reboots the worker nodes. The reboot can
take from 10 to more than 60 minutes. The following factors might increase the reboot
time:

A larger OpenShift Container Platform deployment with a greater number of
worker nodes.

Activation of the BIOS and Diagnostics utility.

Deployment on a hard disk drive rather than an SSD.

Deployment on physical nodes such as bare metal, rather than on virtual nodes.

A slow CPU and network.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

Optional: You have installed the Node Feature Discovery Operator if you want to enable node
eligibility checks.

Procedure

1. In the OpenShift Container Platform web console, navigate to Operators → Installed
Operators.

2. Select the OpenShift sandboxed containers Operator.

3. On the KataConfig tab, click Create KataConfig.

4. Enter the following details:

Name: Optional: The default name is example-kataconfig.

Labels: Optional: Enter any relevant, identifying attributes to the KataConfig resource.

$ oc set env ds/peerpodconfig-ctrl-caa-daemon \
 -n openshift-sandboxed-containers-operator REBOOT="$(date)"

CHAPTER 3. DEPLOYING ON AWS

35

Labels: Optional: Enter any relevant, identifying attributes to the KataConfig resource.
Each label represents a key-value pair.

enablePeerPods: Select for public cloud, IBM Z®, and IBM® LinuxONE deployments.

kataConfigPoolSelector. Optional: To install kata-remote on selected nodes, add a match
expression for the labels on the selected nodes:

a. Expand the kataConfigPoolSelector area.

b. In the kataConfigPoolSelector area, expand matchExpressions. This is a list of label
selector requirements.

c. Click Add matchExpressions.

d. In the Key field, enter the label key the selector applies to.

e. In the Operator field, enter the key’s relationship to the label values. Valid operators
are In, NotIn, Exists, and DoesNotExist.

f. Expand the Values area and then click Add value.

g. In the Value field, enter true or false for key label value.

logLevel: Define the level of log data retrieved for nodes with the kata-remote runtime
class.

5. Click Create. The KataConfig CR is created and installs the kata-remote runtime class on the
worker nodes.
Wait for the kata-remote installation to complete and the worker nodes to reboot before
verifying the installation.

Verification

1. On the KataConfig tab, click the KataConfig CR to view its details.

2. Click the YAML tab to view the status stanza.
The status stanza contains the conditions and kataNodes keys. The value of
status.kataNodes is an array of nodes, each of which lists nodes in a particular state of kata-
remote installation. A message appears each time there is an update.

3. Click Reload to refresh the YAML.
When all workers in the status.kataNodes array display the values installed and
conditions.InProgress: False with no specified reason, the kata-remote is installed on the
cluster.

Additional resources

KataConfig status messages

Verifying the pod VM image
After kata-remote is installed on your cluster, the OpenShift sandboxed containers Operator creates a
pod VM image, which is used to create peer pods. This process can take a long time because the image
is created on the cloud instance. You can verify that the pod VM image was created successfully by
checking the config map that you created for the cloud provider.

Procedure

OpenShift sandboxed containers 1.7 User guide

36

1. Navigate to Workloads → ConfigMaps.

2. Click the provider config map to view its details.

3. Click the YAML tab.

4. Check the status stanza of the YAML file.
If the PODVM_AMI_ID parameter is populated, the pod VM image was created successfully.

Troubleshooting

1. Retrieve the events log by running the following command:

2. Retrieve the job log by running the following command:

If you cannot resolve the issue, submit a Red Hat Support case and attach the output of both logs.

3.2.6. Configuring workload objects

You must configure OpenShift sandboxed containers workload objects by setting kata-remote as the
runtime class for the following pod-templated objects:

Pod objects

ReplicaSet objects

ReplicationController objects

StatefulSet objects

Deployment objects

DeploymentConfig objects

IMPORTANT

Do not deploy workloads in an Operator namespace. Create a dedicated namespace for
these resources.

You can define whether the workload should be deployed using the default instance type, which you
defined in the config map, by adding an annotation to the YAML file.

If you do not want to define the instance type manually, you can add an annotation to use an automatic
instance type, based on the memory available.

Prerequisites

You have created the KataConfig custom resource (CR).

Procedure

$ oc get events -n openshift-sandboxed-containers-operator --field-selector
involvedObject.name=osc-podvm-image-creation

$ oc logs -n openshift-sandboxed-containers-operator jobs/osc-podvm-image-creation

CHAPTER 3. DEPLOYING ON AWS

37

1

Procedure

1. In the OpenShift Container Platform web console, navigate to Workloads → workload type, for
example, Pods.

2. On the workload type page, click an object to view its details.

3. Click the YAML tab.

4. Add spec.runtimeClassName: kata-remote to the manifest of each pod-templated workload
object as in the following example:

5. Add an annotation to the pod-templated object to use a manually defined instance type or an
automatic instance type:

To use a manually defined instance type, add the following annotation:

Specify the instance type that you defined in the config map.

To use an automatic instance type, add the following annotations:

Define the amount of memory available for the workload to use. The workload will run on an
automatic instance type based on the amount of memory available.

6. Click Save to apply the changes.
OpenShift Container Platform creates the workload object and begins scheduling it.

Verification

Inspect the spec.runtimeClassName field of a pod-templated object. If the value is kata-
remote, then the workload is running on OpenShift sandboxed containers, using peer pods.

3.3. DEPLOYING OPENSHIFT SANDBOXED CONTAINERS BY USING

apiVersion: v1
kind: <object>
...
spec:
 runtimeClassName: kata-remote
...

apiVersion: v1
kind: <object>
metadata:
 annotations:
 io.katacontainers.config.hypervisor.machine_type: "t3.medium" 1
...

apiVersion: v1
kind: <Pod>
metadata:
 annotations:
 io.katacontainers.config.hypervisor.default_vcpus: <vcpus>
 io.katacontainers.config.hypervisor.default_memory: <memory>
...

OpenShift sandboxed containers 1.7 User guide

38

3.3. DEPLOYING OPENSHIFT SANDBOXED CONTAINERS BY USING
THE COMMAND LINE

You can deploy OpenShift sandboxed containers on AWS by using the command line interface (CLI) to
perform the following tasks:

1. Install the OpenShift sandboxed containers Operator.

2. Optional: Change the number of virtual machines running on each worker node.

3. Enable ports 15150 and 9000 to allow internal communication with peer pods.

4. Create the peer pods secret.

5. Create the peer pods config map.

6. Create the KataConfig custom resource.

7. Configure the OpenShift sandboxed containers workload objects.

3.3.1. Installing the OpenShift sandboxed containers Operator

You can install the OpenShift sandboxed containers Operator by using the CLI.

Prerequisites

You have installed the OpenShift CLI (oc).

You have access to the cluster as a user with the cluster-admin role.

Procedure

1. Create an osc-namespace.yaml manifest file:

2. Create the namespace by running the following command:

3. Create an osc-operatorgroup.yaml manifest file:

apiVersion: v1
kind: Namespace
metadata:
 name: openshift-sandboxed-containers-operator

$ oc apply -f osc-namespace.yaml

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: sandboxed-containers-operator-group
 namespace: openshift-sandboxed-containers-operator
spec:
 targetNamespaces:
 - openshift-sandboxed-containers-operator

CHAPTER 3. DEPLOYING ON AWS

39

4. Create the operator group by running the following command:

5. Create an osc-subscription.yaml manifest file:

6. Create the subscription by running the following command:

7. Verify that the Operator is correctly installed by running the following command:

This command can take several minutes to complete.

8. Watch the process by running the following command:

Example output

Additional resources

Using Operator Lifecycle Manager on restricted networks .

Configuring proxy support in Operator Lifecycle Manager for disconnected environments.

3.3.2. Modifying the number of peer pod VMs per node

You can change the limit of peer pod virtual machines (VMs) per node by editing the peerpodConfig
custom resource (CR).

Procedure

$ oc apply -f osc-operatorgroup.yaml

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: sandboxed-containers-operator
 namespace: openshift-sandboxed-containers-operator
spec:
 channel: stable
 installPlanApproval: Automatic
 name: sandboxed-containers-operator
 source: redhat-operators
 sourceNamespace: openshift-marketplace
 startingCSV: sandboxed-containers-operator.v1.7.0

$ oc apply -f osc-subscription.yaml

$ oc get csv -n openshift-sandboxed-containers-operator

$ watch oc get csv -n openshift-sandboxed-containers-operator

NAME DISPLAY VERSION REPLACES
PHASE
openshift-sandboxed-containers openshift-sandboxed-containers-operator 1.7.0 1.6.0
Succeeded

OpenShift sandboxed containers 1.7 User guide

40

https://docs.redhat.com/documentation/en-us/openshift_container_platform/4.16/html-single/operators/index#olm-restricted-networks
https://docs.redhat.com/documentation/en-us/openshift_container_platform/4.16/html-single/operators/index#olm-configuring-proxy-support.html

1

1. Check the current limit by running the following command:

2. Modify the limit attribute of the peerpodConfig CR by running the following command:

Replace <value> with the limit you want to define.

3.3.3. Enabling ports for AWS

You must enable ports 15150 and 9000 to allow internal communication with peer pods running on AWS.

Prerequisites

You have installed the OpenShift sandboxed containers Operator.

You have installed the AWS command line tool.

You have access to the cluster as a user with the cluster-admin role.

Procedure

1. Log in to your OpenShift Container Platform cluster and retrieve the instance ID:

2. Retrieve the AWS region:

3. Retrieve the security group IDs and store them in an array:

4. For each security group ID, authorize the peer pods shim to access kata-agent communication,
and set up the peer pods tunnel:

$ oc get peerpodconfig peerpodconfig-openshift -n openshift-sandboxed-containers-operator
\
-o jsonpath='{.spec.limit}{"\n"}'

$ oc patch peerpodconfig peerpodconfig-openshift -n openshift-sandboxed-containers-
operator \
--type merge --patch '{"spec":{"limit":"<value>"}}' 1

$ INSTANCE_ID=$(oc get nodes -l 'node-role.kubernetes.io/worker' \
 -o jsonpath='{.items[0].spec.providerID}' | sed 's#[^]*/##g')

$ AWS_REGION=$(oc get infrastructure/cluster -o
jsonpath='{.status.platformStatus.aws.region}')

$ AWS_SG_IDS=($(aws ec2 describe-instances --instance-ids ${INSTANCE_ID} \
 --query 'Reservations[*].Instances[*].SecurityGroups[*].GroupId' \
 --output text --region $AWS_REGION))

$ for AWS_SG_ID in "${AWS_SG_IDS[@]}"; do \
 aws ec2 authorize-security-group-ingress --group-id $AWS_SG_ID --protocol tcp --port
15150 --source-group $AWS_SG_ID --region $AWS_REGION \

CHAPTER 3. DEPLOYING ON AWS

41

1

2

The ports are now enabled.

3.3.4. Creating the peer pods secret

You must create the peer pods secret for OpenShift sandboxed containers.

The secret stores credentials for creating the pod virtual machine (VM) image and peer pod instances.

By default, the OpenShift sandboxed containers Operator creates the secret based on the credentials
used to create the cluster. However, you can manually create a secret that uses different credentials.

Prerequisites

You have the following values generated by using the AWS console:

AWS_ACCESS_KEY_ID

AWS_SECRET_ACCESS_KEY

Procedure

1. Create a peer-pods-secret.yaml manifest file according to the following example:

Specify the AWS_ACCESS_KEY_ID value.

Specify the AWS_SECRET_ACCESS_KEY value.

2. Create the secret by running the following command:

3. Optional: To update an existing peer pods config map, restart the peerpodconfig-ctrl-caa-
daemon daemon set by running the following command:

3.3.5. Creating the peer pods config map

 aws ec2 authorize-security-group-ingress --group-id $AWS_SG_ID --protocol tcp --port
9000 --source-group $AWS_SG_ID --region $AWS_REGION \
done

apiVersion: v1
kind: Secret
metadata:
 name: peer-pods-secret
 namespace: openshift-sandboxed-containers-operator
type: Opaque
stringData:
 AWS_ACCESS_KEY_ID: "<aws_access_key>" 1
 AWS_SECRET_ACCESS_KEY: "<aws_secret_access_key>" 2

$ oc apply -f peer-pods-secret.yaml

$ oc set env ds/peerpodconfig-ctrl-caa-daemon \
 -n openshift-sandboxed-containers-operator REBOOT="$(date)"

OpenShift sandboxed containers 1.7 User guide

42

You must create the peer pods config map for OpenShift sandboxed containers.

Prerequisites

You have your Amazon Machine Image (AMI) ID if you are not using the default AMI ID based on
your cluster credentials.

Procedure

1. Obtain the following values from your AWS instance:

a. Retrieve and record the instance ID:

This is used to retrieve other values for the secret object.

b. Retrieve and record the AWS region:

c. Retrieve and record the AWS subnet ID:

d. Retrieve and record the AWS VPC ID:

e. Retrieve and record the AWS security group IDs:

2. Create a peer-pods-cm.yaml manifest file according to the following example:

$ INSTANCE_ID=$(oc get nodes -l 'node-role.kubernetes.io/worker' -o
jsonpath='{.items[0].spec.providerID}' | sed 's#[^]*/##g')

$ AWS_REGION=$(oc get infrastructure/cluster -o
jsonpath='{.status.platformStatus.aws.region}') && echo "AWS_REGION:
\"$AWS_REGION\""

$ AWS_SUBNET_ID=$(aws ec2 describe-instances --instance-ids ${INSTANCE_ID} --
query 'Reservations[*].Instances[*].SubnetId' --region ${AWS_REGION} --output text) &&
echo "AWS_SUBNET_ID: \"$AWS_SUBNET_ID\""

$ AWS_VPC_ID=$(aws ec2 describe-instances --instance-ids ${INSTANCE_ID} --query
'Reservations[*].Instances[*].VpcId' --region ${AWS_REGION} --output text) && echo
"AWS_VPC_ID: \"$AWS_VPC_ID\""

$ AWS_SG_IDS=$(aws ec2 describe-instances --instance-ids ${INSTANCE_ID} --query
'Reservations[*].Instances[*].SecurityGroups[*].GroupId' --region $AWS_REGION --
output json | jq -r '.[][][]' | paste -sd ",") && echo "AWS_SG_IDS: \"$AWS_SG_IDS\""

apiVersion: v1
kind: ConfigMap
metadata:
 name: peer-pods-cm
 namespace: openshift-sandboxed-containers-operator
data:
 CLOUD_PROVIDER: "aws"
 VXLAN_PORT: "9000"
 PODVM_INSTANCE_TYPE: "t3.medium" 1
 PODVM_INSTANCE_TYPES: "t2.small,t2.medium,t3.large" 2

CHAPTER 3. DEPLOYING ON AWS

43

1

2

3

4

5

6

7

Defines the default instance type that is used when a type is not defined in the workload.

Lists all of the instance types you can specify when creating the pod. This allows you to
define smaller instance types for workloads that need less memory and fewer CPUs or
larger instance types for larger workloads.

Optional: By default, this value is populated when you run the KataConfig CR, using an AMI
ID based on your cluster credentials. If you create your own AMI, specify the correct AMI ID.

Specify the AWS_REGION value you retrieved.

Specify the AWS_SUBNET_ID value you retrieved.

Specify the AWS_VPC_ID value you retrieved.

Specify the AWS_SG_IDS value you retrieved.

3. Create the config map by running the following command:

4. Optional: To update an existing peer pods config map, restart the peerpodconfig-ctrl-caa-
daemon daemon set by running the following command:

3.3.6. Creating the KataConfig custom resource

You must create the KataConfig custom resource (CR) to install kata-remote as a runtime class on
your worker nodes.

Creating the KataConfig CR triggers the OpenShift sandboxed containers Operator to do the
following: * Create a RuntimeClass CR named kata-remote with a default configuration. This enables
users to configure workloads to use kata-remote as the runtime by referencing the CR in the
RuntimeClassName field. This CR also specifies the resource overhead for the runtime.

OpenShift sandboxed containers installs kata-remote as a secondary, optional runtime on the cluster
and not as the primary runtime.

IMPORTANT

 PROXY_TIMEOUT: "5m"
 PODVM_AMI_ID: "<podvm_ami_id>" 3
 AWS_REGION: "<aws_region>" 4
 AWS_SUBNET_ID: "<aws_subnet_id>" 5
 AWS_VPC_ID: "<aws_vpc_id>" 6
 AWS_SG_IDS: "<aws_sg_ids>" 7
 DISABLECVM: "true"

$ oc apply -f peer-pods-cm.yaml

$ oc set env ds/peerpodconfig-ctrl-caa-daemon \
 -n openshift-sandboxed-containers-operator REBOOT="$(date)"

OpenShift sandboxed containers 1.7 User guide

44

1

IMPORTANT

Creating the KataConfig CR automatically reboots the worker nodes. The reboot can
take from 10 to more than 60 minutes. Factors that impede reboot time are as follows:

A larger OpenShift Container Platform deployment with a greater number of
worker nodes.

Activation of the BIOS and Diagnostics utility.

Deployment on a hard disk drive rather than an SSD.

Deployment on physical nodes such as bare metal, rather than on virtual nodes.

A slow CPU and network.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

Procedure

1. Create an example-kataconfig.yaml manifest file according to the following example:

Optional: If you have applied node labels to install kata-remote on specific nodes, specify
the key and value, for example, osc: 'true'.

2. Create the KataConfig CR by running the following command:

The new KataConfig CR is created and installs kata-remote as a runtime class on the worker
nodes.

Wait for the kata-remote installation to complete and the worker nodes to reboot before
verifying the installation.

3. Monitor the installation progress by running the following command:

When the status of all workers under kataNodes is installed and the condition InProgress is
False without specifying a reason, the kata-remote is installed on the cluster.

apiVersion: kataconfiguration.openshift.io/v1
kind: KataConfig
metadata:
 name: example-kataconfig
spec:
 enablePeerPods: true
 logLevel: info
kataConfigPoolSelector:
matchLabels:
<label_key>: '<label_value>' 1

$ oc apply -f example-kataconfig.yaml

$ watch "oc describe kataconfig | sed -n /^Status:/,/^Events/p"

CHAPTER 3. DEPLOYING ON AWS

45

4. Verify the daemon set by running the following command:

5. Verify the runtime classes by running the following command:

Example output

Verifying the pod VM image
After kata-remote is installed on your cluster, the OpenShift sandboxed containers Operator creates a
pod VM image, which is used to create peer pods. This process can take a long time because the image
is created on the cloud instance. You can verify that the pod VM image was created successfully by
checking the config map that you created for the cloud provider.

Procedure

1. Obtain the config map you created for the peer pods:

2. Check the status stanza of the YAML file.
If the PODVM_AMI_ID parameter is populated, the pod VM image was created successfully.

Troubleshooting

1. Retrieve the events log by running the following command:

2. Retrieve the job log by running the following command:

If you cannot resolve the issue, submit a Red Hat Support case and attach the output of both logs.

3.3.7. Configuring workload objects

You must configure OpenShift sandboxed containers workload objects by setting kata-remote as the
runtime class for the following pod-templated objects:

Pod objects

ReplicaSet objects

ReplicationController objects

$ oc get -n openshift-sandboxed-containers-operator ds/peerpodconfig-ctrl-caa-daemon

$ oc get runtimeclass

NAME HANDLER AGE
kata kata 152m
kata-remote kata-remote 152m

$ oc get configmap peer-pods-cm -n openshift-sandboxed-containers-operator -o yaml

$ oc get events -n openshift-sandboxed-containers-operator --field-selector
involvedObject.name=osc-podvm-image-creation

$ oc logs -n openshift-sandboxed-containers-operator jobs/osc-podvm-image-creation

OpenShift sandboxed containers 1.7 User guide

46

1

StatefulSet objects

Deployment objects

DeploymentConfig objects

IMPORTANT

Do not deploy workloads in an Operator namespace. Create a dedicated namespace for
these resources.

You can define whether the workload should be deployed using the default instance type, which you
defined in the config map, by adding an annotation to the YAML file.

If you do not want to define the instance type manually, you can add an annotation to use an automatic
instance type, based on the memory available.

Prerequisites

You have created the KataConfig custom resource (CR).

Procedure

1. Add spec.runtimeClassName: kata-remote to the manifest of each pod-templated workload
object as in the following example:

2. Add an annotation to the pod-templated object to use a manually defined instance type or an
automatic instance type:

To use a manually defined instance type, add the following annotation:

Specify the instance type that you defined in the config map.

To use an automatic instance type, add the following annotations:

apiVersion: v1
kind: <object>
...
spec:
 runtimeClassName: kata-remote
...

apiVersion: v1
kind: <object>
metadata:
 annotations:
 io.katacontainers.config.hypervisor.machine_type: "t3.medium" 1
...

apiVersion: v1
kind: <Pod>
metadata:
 annotations:

CHAPTER 3. DEPLOYING ON AWS

47

Define the amount of memory available for the workload to use. The workload will run on an
automatic instance type based on the amount of memory available.

3. Apply the changes to the workload object by running the following command:

OpenShift Container Platform creates the workload object and begins scheduling it.

Verification

Inspect the spec.runtimeClassName field of a pod-templated object. If the value is kata-
remote, then the workload is running on OpenShift sandboxed containers, using peer pods.

 io.katacontainers.config.hypervisor.default_vcpus: <vcpus>
 io.katacontainers.config.hypervisor.default_memory: <memory>
...

$ oc apply -f <object.yaml>

OpenShift sandboxed containers 1.7 User guide

48

1

CHAPTER 4. DEPLOYING ON AZURE
You can deploy OpenShift sandboxed containers and Confidential Containers on Microsoft Azure Cloud
Computing Services.

Cluster requirements

You have installed Red Hat OpenShift Container Platform 4.14 or later on the cluster where you
are installing the OpenShift sandboxed containers Operator.

Your cluster has at least one worker node.

4.1. PEER POD RESOURCE REQUIREMENTS

You must ensure that your cluster has sufficient resources.

Peer pod virtual machines (VMs) require resources in two locations:

The worker node. The worker node stores metadata, Kata shim resources (containerd-shim-
kata-v2), remote-hypervisor resources (cloud-api-adaptor), and the tunnel setup between the
worker nodes and the peer pod VM.

The cloud instance. This is the actual peer pod VM running in the cloud.

The CPU and memory resources used in the Kubernetes worker node are handled by the pod overhead
included in the RuntimeClass (kata-remote) definition used for creating peer pods.

The total number of peer pod VMs running in the cloud is defined as Kubernetes Node extended
resources. This limit is per node and is set by the limit attribute in the peerpodConfig custom resource
(CR).

The peerpodConfig CR, named peerpodconfig-openshift, is created when you create the kataConfig
CR and enable peer pods, and is located in the openshift-sandboxed-containers-operator namespace.

The following peerpodConfig CR example displays the default spec values:

The default limit is 10 VMs per node.

The extended resource is named kata.peerpods.io/vm, and enables the Kubernetes scheduler to handle
capacity tracking and accounting.

You can edit the limit per node based on the requirements for your environment after you install the

apiVersion: confidentialcontainers.org/v1alpha1
kind: PeerPodConfig
metadata:
 name: peerpodconfig-openshift
 namespace: openshift-sandboxed-containers-operator
spec:
 cloudSecretName: peer-pods-secret
 configMapName: peer-pods-cm
 limit: "10" 1
 nodeSelector:
 node-role.kubernetes.io/kata-oc: ""

CHAPTER 4. DEPLOYING ON AZURE

49

https://kubernetes.io/docs/concepts/scheduling-eviction/pod-overhead/

You can edit the limit per node based on the requirements for your environment after you install the
OpenShift sandboxed containers Operator.

A mutating webhook adds the extended resource kata.peerpods.io/vm to the pod specification. It also
removes any resource-specific entries from the pod specification, if present. This enables the
Kubernetes scheduler to account for these extended resources, ensuring the peer pod is only scheduled
when resources are available.

The mutating webhook modifies a Kubernetes pod as follows:

The mutating webhook checks the pod for the expected RuntimeClassName value, specified
in the TARGET_RUNTIME_CLASS environment variable. If the value in the pod specification
does not match the value in the TARGET_RUNTIME_CLASS, the webhook exits without
modifying the pod.

If the RuntimeClassName values match, the webhook makes the following changes to the pod
spec:

1. The webhook removes every resource specification from the resources field of all
containers and init containers in the pod.

2. The webhook adds the extended resource (kata.peerpods.io/vm) to the spec by modifying
the resources field of the first container in the pod. The extended resource
kata.peerpods.io/vm is used by the Kubernetes scheduler for accounting purposes.

NOTE

The mutating webhook excludes specific system namespaces in OpenShift Container
Platform from mutation. If a peer pod is created in those system namespaces, then
resource accounting using Kubernetes extended resources does not work unless the pod
spec includes the extended resource.

As a best practice, define a cluster-wide policy to only allow peer pod creation in specific
namespaces.

4.2. DEPLOYING OPENSHIFT SANDBOXED CONTAINERS BY USING
THE WEB CONSOLE

You can deploy OpenShift sandboxed containers on Azure by using the OpenShift Container Platform
web console to perform the following tasks:

1. Install the OpenShift sandboxed containers Operator.

2. Create the peer pods secret.

3. Create the peer pods config map.

4. Create the Azure secret.

5. Create the KataConfig custom resource.

6. Configure the OpenShift sandboxed containers workload objects.

4.2.1. Installing the OpenShift sandboxed containers Operator

You can install the OpenShift sandboxed containers Operator by using the OpenShift Container

OpenShift sandboxed containers 1.7 User guide

50

https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/

You can install the OpenShift sandboxed containers Operator by using the OpenShift Container
Platform web console.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

Procedure

1. In the web console, navigate to Operators → OperatorHub.

2. In the Filter by keyword field, type OpenShift sandboxed containers.

3. Select the OpenShift sandboxed containers Operator tile and click Install.

4. On the Install Operator page, select stable from the list of available Update Channel options.

5. Verify that Operator recommended Namespace is selected for Installed Namespace. This
installs the Operator in the mandatory openshift-sandboxed-containers-operator namespace.
If this namespace does not yet exist, it is automatically created.

NOTE

Attempting to install the OpenShift sandboxed containers Operator in a
namespace other than openshift-sandboxed-containers-operator causes the
installation to fail.

6. Verify that Automatic is selected for Approval Strategy. Automatic is the default value, and
enables automatic updates to OpenShift sandboxed containers when a new z-stream release is
available.

7. Click Install.

8. Navigate to Operators → Installed Operators to verify that the Operator is installed.

Additional resources

Using Operator Lifecycle Manager on restricted networks .

Configuring proxy support in Operator Lifecycle Manager for disconnected environments.

4.2.2. Creating the peer pods secret

You must create the peer pods secret for OpenShift sandboxed containers.

The secret stores credentials for creating the pod virtual machine (VM) image and peer pod instances.

By default, the OpenShift sandboxed containers Operator creates the secret based on the credentials
used to create the cluster. However, you can manually create a secret that uses different credentials.

Prerequisites

You have installed and configured the Azure CLI tool.

Procedure

CHAPTER 4. DEPLOYING ON AZURE

51

https://docs.redhat.com/documentation/en-us/openshift_container_platform/4.16/html-single/operators/index#olm-restricted-networks
https://docs.redhat.com/documentation/en-us/openshift_container_platform/4.16/html-single/operators/index#olm-configuring-proxy-support.html

1

2

3

4

1. Retrieve the Azure subscription ID by running the following command:

2. Generate the RBAC content by running the following command:

Example output

3. Record the RBAC output to use in the secret object.

4. In the OpenShift Container Platform web console, navigate to Operators → Installed
Operators.

5. Click the OpenShift sandboxed containers Operator tile.

6. Click the Import icon (+) on the top right corner.

7. In the Import YAML window, paste the following YAML manifest:

Specify the AZURE_CLIENT_ID value.

Specify the AZURE_CLIENT_SECRET value.

Specify the AZURE_TENANT_ID value.

Specify the AZURE_SUBSCRIPTION_ID value.

8. Click Save to apply the changes.

9. Navigate to Workloads → Secrets to verify the peer pods secret.

$ AZURE_SUBSCRIPTION_ID=$(az account list --query "[?isDefault].id" \
 -o tsv) && echo "AZURE_SUBSCRIPTION_ID: \"$AZURE_SUBSCRIPTION_ID\""

$ az ad sp create-for-rbac --role Contributor --scopes
/subscriptions/$AZURE_SUBSCRIPTION_ID \
 --query "{ client_id: appId, client_secret: password, tenant_id: tenant }"

{
 "client_id": `AZURE_CLIENT_ID`,
 "client_secret": `AZURE_CLIENT_SECRET`,
 "tenant_id": `AZURE_TENANT_ID`
}

apiVersion: v1
kind: Secret
metadata:
 name: peer-pods-secret
 namespace: openshift-sandboxed-containers-operator
type: Opaque
stringData:
 AZURE_CLIENT_ID: "<azure_client_id>" 1
 AZURE_CLIENT_SECRET: "<azure_client_secret>" 2
 AZURE_TENANT_ID: "<azure_tenant_id>" 3
 AZURE_SUBSCRIPTION_ID: "<azure_subscription_id>" 4

OpenShift sandboxed containers 1.7 User guide

52

4.2.3. Creating the peer pods config map

You must create the peer pods config map for OpenShift sandboxed containers.

Procedure

1. Obtain the following values from your Azure instance:

a. Retrieve and record the Azure resource group:

b. Retrieve and record the Azure VNet name:

This value is used to retrieve the Azure subnet ID.

c. Retrieve and record the Azure subnet ID:

d. Retrieve and record the Azure network security group (NSG) ID:

e. Retrieve and record the Azure region:

2. In the OpenShift Container Platform web console, navigate to Operators → Installed
Operators.

3. Select the OpenShift sandboxed containers Operator from the list of operators.

4. Click the Import icon (+) in the top right corner.

5. In the Import YAML window, paste the following YAML manifest:

$ AZURE_RESOURCE_GROUP=$(oc get infrastructure/cluster -o
jsonpath='{.status.platformStatus.azure.resourceGroupName}') && echo
"AZURE_RESOURCE_GROUP: \"$AZURE_RESOURCE_GROUP\""

$ AZURE_VNET_NAME=$(az network vnet list --resource-group
${AZURE_RESOURCE_GROUP} --query "[].{Name:name}" --output tsv)

$ AZURE_SUBNET_ID=$(az network vnet subnet list --resource-group
${AZURE_RESOURCE_GROUP} --vnet-name $AZURE_VNET_NAME --query "[].{Id:id}
| [? contains(Id, 'worker')]" --output tsv) && echo "AZURE_SUBNET_ID:
\"$AZURE_SUBNET_ID\""

$ AZURE_NSG_ID=$(az network nsg list --resource-group
${AZURE_RESOURCE_GROUP} --query "[].{Id:id}" --output tsv) && echo
"AZURE_NSG_ID: \"$AZURE_NSG_ID\""

$ AZURE_REGION=$(az group show --resource-group
${AZURE_RESOURCE_GROUP} --query "{Location:location}" --output tsv) && echo
"AZURE_REGION: \"$AZURE_REGION\""

apiVersion: v1
kind: ConfigMap
metadata:
 name: peer-pods-cm
 namespace: openshift-sandboxed-containers-operator

CHAPTER 4. DEPLOYING ON AZURE

53

1

2

3

4

5

6

7

This value is the default if an instance size is not defined in the workload.

Lists all of the instance sizes you can specify when creating the pod. This allows you to
define smaller instance sizes for workloads that need less memory and fewer CPUs or
larger instance sizes for larger workloads.

Specify the AZURE_SUBNET_ID value that you retrieved.

Specify the AZURE_NSG_ID value that you retrieved.

Optional: By default, this value is populated when you run the KataConfig CR, using an
Azure image ID based on your cluster credentials. If you create your own Azure image,
specify the correct image ID.

Specify the AZURE_REGION value you retrieved.

Specify the AZURE_RESOURCE_GROUP value you retrieved.

6. Click Save to apply the changes.

7. Navigate to Workloads → ConfigMaps to view the new config map.

4.2.4. Creating the Azure secret

You must create the secret for Azure.

Procedure

1. Log in to your OpenShift Container Platform cluster.

2. Generate an SSH key pair by running the following command:

3. In the OpenShift Container Platform web console, navigate to Workloads → Secrets.

data:
 CLOUD_PROVIDER: "azure"
 VXLAN_PORT: "9000"
 AZURE_INSTANCE_SIZE: "Standard_B2als_v2" 1
 AZURE_INSTANCE_SIZES:
"Standard_B2als_v2,Standard_D2as_v5,Standard_D4as_v5,Standard_D2ads_v5" 2
 AZURE_SUBNET_ID: "<azure_subnet_id>" 3
 AZURE_NSG_ID: "<azure_nsg_id>" 4
 PROXY_TIMEOUT: "5m"
 AZURE_IMAGE_ID: "<azure_image_id>" 5
 AZURE_REGION: "<azure_region>" 6
 AZURE_RESOURCE_GROUP: "<azure_resource_group>" 7
 DISABLECVM: "true"

$ oc set env ds/peerpodconfig-ctrl-caa-daemon \
 -n openshift-sandboxed-containers-operator REBOOT="$(date)"

$ ssh-keygen -f ./id_rsa -N ""

OpenShift sandboxed containers 1.7 User guide

54

4. On the Secrets page, verify that you are in the openshift-sandboxed-containers-operator
project.

5. Click Create and select Key/value secret.

6. In the Secret name field, enter ssh-key-secret.

7. In the Key field, enter id_rsa.pub.

8. In the Value field, paste your public SSH key.

9. Click Create.

10. Delete the SSH keys you created:

4.2.5. Creating the KataConfig custom resource

You must create the KataConfig custom resource (CR) to install kata-remote as a RuntimeClass on
your worker nodes.

The kata-remote runtime class is installed on all worker nodes by default. If you want to install kata-
remote on specific nodes, you can add labels to those nodes and then define the label in the
KataConfig CR.

OpenShift sandboxed containers installs kata-remote as a secondary, optional runtime on the cluster
and not as the primary runtime.

IMPORTANT

Creating the KataConfig CR automatically reboots the worker nodes. The reboot can
take from 10 to more than 60 minutes. The following factors might increase the reboot
time:

A larger OpenShift Container Platform deployment with a greater number of
worker nodes.

Activation of the BIOS and Diagnostics utility.

Deployment on a hard disk drive rather than an SSD.

Deployment on physical nodes such as bare metal, rather than on virtual nodes.

A slow CPU and network.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

Optional: You have installed the Node Feature Discovery Operator if you want to enable node
eligibility checks.

Procedure

1. In the OpenShift Container Platform web console, navigate to Operators → Installed

$ shred --remove id_rsa.pub id_rsa

CHAPTER 4. DEPLOYING ON AZURE

55

1. In the OpenShift Container Platform web console, navigate to Operators → Installed
Operators.

2. Select the OpenShift sandboxed containers Operator.

3. On the KataConfig tab, click Create KataConfig.

4. Enter the following details:

Name: Optional: The default name is example-kataconfig.

Labels: Optional: Enter any relevant, identifying attributes to the KataConfig resource.
Each label represents a key-value pair.

enablePeerPods: Select for public cloud, IBM Z®, and IBM® LinuxONE deployments.

kataConfigPoolSelector. Optional: To install kata-remote on selected nodes, add a match
expression for the labels on the selected nodes:

a. Expand the kataConfigPoolSelector area.

b. In the kataConfigPoolSelector area, expand matchExpressions. This is a list of label
selector requirements.

c. Click Add matchExpressions.

d. In the Key field, enter the label key the selector applies to.

e. In the Operator field, enter the key’s relationship to the label values. Valid operators
are In, NotIn, Exists, and DoesNotExist.

f. Expand the Values area and then click Add value.

g. In the Value field, enter true or false for key label value.

logLevel: Define the level of log data retrieved for nodes with the kata-remote runtime
class.

5. Click Create. The KataConfig CR is created and installs the kata-remote runtime class on the
worker nodes.
Wait for the kata-remote installation to complete and the worker nodes to reboot before
verifying the installation.

Verification

1. On the KataConfig tab, click the KataConfig CR to view its details.

2. Click the YAML tab to view the status stanza.
The status stanza contains the conditions and kataNodes keys. The value of
status.kataNodes is an array of nodes, each of which lists nodes in a particular state of kata-
remote installation. A message appears each time there is an update.

3. Click Reload to refresh the YAML.
When all workers in the status.kataNodes array display the values installed and
conditions.InProgress: False with no specified reason, the kata-remote is installed on the
cluster.

OpenShift sandboxed containers 1.7 User guide

56

Additional resources

KataConfig status messages

Verifying the pod VM image
After kata-remote is installed on your cluster, the OpenShift sandboxed containers Operator creates a
pod VM image, which is used to create peer pods. This process can take a long time because the image
is created on the cloud instance. You can verify that the pod VM image was created successfully by
checking the config map that you created for the cloud provider.

Procedure

1. Navigate to Workloads → ConfigMaps.

2. Click the provider config map to view its details.

3. Click the YAML tab.

4. Check the status stanza of the YAML file.
If the AZURE_IMAGE_ID parameter is populated, the pod VM image was created successfully.

Troubleshooting

1. Retrieve the events log by running the following command:

2. Retrieve the job log by running the following command:

If you cannot resolve the issue, submit a Red Hat Support case and attach the output of both logs.

4.2.6. Configuring workload objects

You must configure OpenShift sandboxed containers workload objects by setting kata-remote as the
runtime class for the following pod-templated objects:

Pod objects

ReplicaSet objects

ReplicationController objects

StatefulSet objects

Deployment objects

DeploymentConfig objects

IMPORTANT

Do not deploy workloads in an Operator namespace. Create a dedicated namespace for
these resources.

$ oc get events -n openshift-sandboxed-containers-operator --field-selector
involvedObject.name=osc-podvm-image-creation

$ oc logs -n openshift-sandboxed-containers-operator jobs/osc-podvm-image-creation

CHAPTER 4. DEPLOYING ON AZURE

57

1

You can define whether the workload should be deployed using the default instance size, which you
defined in the config map, by adding an annotation to the YAML file.

If you do not want to define the instance size manually, you can add an annotation to use an automatic
instance size, based on the memory available.

Prerequisites

You have created the KataConfig custom resource (CR).

Procedure

1. In the OpenShift Container Platform web console, navigate to Workloads → workload type, for
example, Pods.

2. On the workload type page, click an object to view its details.

3. Click the YAML tab.

4. Add spec.runtimeClassName: kata-remote to the manifest of each pod-templated workload
object as in the following example:

5. Add an annotation to the pod-templated object to use a manually defined instance size or an
automatic instance size:

To use a manually defined instance size, add the following annotation:

Specify the instance size that you defined in the config map.

To use an automatic instance size, add the following annotations:

Define the amount of memory available for the workload to use. The workload will run on an

apiVersion: v1
kind: <object>
...
spec:
 runtimeClassName: kata-remote
...

apiVersion: v1
kind: <object>
metadata:
 annotations:
 io.katacontainers.config.hypervisor.machine_type: "Standard_B2als_v2" 1
...

apiVersion: v1
kind: <Pod>
metadata:
 annotations:
 io.katacontainers.config.hypervisor.default_vcpus: <vcpus>
 io.katacontainers.config.hypervisor.default_memory: <memory>
...

OpenShift sandboxed containers 1.7 User guide

58

Define the amount of memory available for the workload to use. The workload will run on an
automatic instance size based on the amount of memory available.

6. Click Save to apply the changes.
OpenShift Container Platform creates the workload object and begins scheduling it.

Verification

Inspect the spec.runtimeClassName field of a pod-templated object. If the value is kata-
remote, then the workload is running on OpenShift sandboxed containers, using peer pods.

4.3. DEPLOYING OPENSHIFT SANDBOXED CONTAINERS BY USING
THE COMMAND LINE

You can deploy OpenShift sandboxed containers on Azure by using the command line interface (CLI) to
perform the following tasks:

1. Install the OpenShift sandboxed containers Operator.

2. Optional: Change the number of virtual machines running on each worker node.

3. Create the peer pods secret.

4. Create the peer pods config map.

5. Create the Azure secret.

6. Create the KataConfig custom resource.

7. Configure the OpenShift sandboxed containers workload objects.

4.3.1. Installing the OpenShift sandboxed containers Operator

You can install the OpenShift sandboxed containers Operator by using the CLI.

Prerequisites

You have installed the OpenShift CLI (oc).

You have access to the cluster as a user with the cluster-admin role.

Procedure

1. Create an osc-namespace.yaml manifest file:

2. Create the namespace by running the following command:

apiVersion: v1
kind: Namespace
metadata:
 name: openshift-sandboxed-containers-operator

$ oc apply -f osc-namespace.yaml

CHAPTER 4. DEPLOYING ON AZURE

59

3. Create an osc-operatorgroup.yaml manifest file:

4. Create the operator group by running the following command:

5. Create an osc-subscription.yaml manifest file:

6. Create the subscription by running the following command:

7. Verify that the Operator is correctly installed by running the following command:

This command can take several minutes to complete.

8. Watch the process by running the following command:

Example output

Additional resources

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: sandboxed-containers-operator-group
 namespace: openshift-sandboxed-containers-operator
spec:
 targetNamespaces:
 - openshift-sandboxed-containers-operator

$ oc apply -f osc-operatorgroup.yaml

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: sandboxed-containers-operator
 namespace: openshift-sandboxed-containers-operator
spec:
 channel: stable
 installPlanApproval: Automatic
 name: sandboxed-containers-operator
 source: redhat-operators
 sourceNamespace: openshift-marketplace
 startingCSV: sandboxed-containers-operator.v1.7.0

$ oc apply -f osc-subscription.yaml

$ oc get csv -n openshift-sandboxed-containers-operator

$ watch oc get csv -n openshift-sandboxed-containers-operator

NAME DISPLAY VERSION REPLACES
PHASE
openshift-sandboxed-containers openshift-sandboxed-containers-operator 1.7.0 1.6.0
Succeeded

OpenShift sandboxed containers 1.7 User guide

60

1

Using Operator Lifecycle Manager on restricted networks .

Configuring proxy support in Operator Lifecycle Manager for disconnected environments.

4.3.2. Modifying the number of peer pod VMs per node

You can change the limit of peer pod virtual machines (VMs) per node by editing the peerpodConfig
custom resource (CR).

Procedure

1. Check the current limit by running the following command:

2. Modify the limit attribute of the peerpodConfig CR by running the following command:

Replace <value> with the limit you want to define.

4.3.3. Creating the peer pods secret

You must create the peer pods secret for OpenShift sandboxed containers.

The secret stores credentials for creating the pod virtual machine (VM) image and peer pod instances.

By default, the OpenShift sandboxed containers Operator creates the secret based on the credentials
used to create the cluster. However, you can manually create a secret that uses different credentials.

Prerequisites

You have installed and configured the Azure CLI tool.

Procedure

1. Retrieve the Azure subscription ID by running the following command:

2. Generate the RBAC content by running the following command:

Example output

$ oc get peerpodconfig peerpodconfig-openshift -n openshift-sandboxed-containers-operator
\
-o jsonpath='{.spec.limit}{"\n"}'

$ oc patch peerpodconfig peerpodconfig-openshift -n openshift-sandboxed-containers-
operator \
--type merge --patch '{"spec":{"limit":"<value>"}}' 1

$ AZURE_SUBSCRIPTION_ID=$(az account list --query "[?isDefault].id" \
 -o tsv) && echo "AZURE_SUBSCRIPTION_ID: \"$AZURE_SUBSCRIPTION_ID\""

$ az ad sp create-for-rbac --role Contributor --scopes
/subscriptions/$AZURE_SUBSCRIPTION_ID \
 --query "{ client_id: appId, client_secret: password, tenant_id: tenant }"

CHAPTER 4. DEPLOYING ON AZURE

61

https://docs.redhat.com/documentation/en-us/openshift_container_platform/4.16/html-single/operators/index#olm-restricted-networks
https://docs.redhat.com/documentation/en-us/openshift_container_platform/4.16/html-single/operators/index#olm-configuring-proxy-support.html

1

2

3

4

3. Record the RBAC output to use in the secret object.

4. Create a peer-pods-secret.yaml manifest file according to the following example:

Specify the AZURE_CLIENT_ID value.

Specify the AZURE_CLIENT_SECRET value.

Specify the AZURE_TENANT_ID value.

Specify the AZURE_SUBSCRIPTION_ID value.

5. Create the secret by running the following command:

6. Optional: To update an existing peer pods config map, restart the peerpodconfig-ctrl-caa-
daemon daemon set by running the following command:

4.3.4. Creating the peer pods config map

You must create the peer pods config map for OpenShift sandboxed containers.

Procedure

1. Obtain the following values from your Azure instance:

a. Retrieve and record the Azure resource group:

{
 "client_id": `AZURE_CLIENT_ID`,
 "client_secret": `AZURE_CLIENT_SECRET`,
 "tenant_id": `AZURE_TENANT_ID`
}

apiVersion: v1
kind: Secret
metadata:
 name: peer-pods-secret
 namespace: openshift-sandboxed-containers-operator
type: Opaque
stringData:
 AZURE_CLIENT_ID: "<azure_client_id>" 1
 AZURE_CLIENT_SECRET: "<azure_client_secret>" 2
 AZURE_TENANT_ID: "<azure_tenant_id>" 3
 AZURE_SUBSCRIPTION_ID: "<azure_subscription_id>" 4

$ oc apply -f peer-pods-secret.yaml

$ oc set env ds/peerpodconfig-ctrl-caa-daemon \
 -n openshift-sandboxed-containers-operator REBOOT="$(date)"

$ AZURE_RESOURCE_GROUP=$(oc get infrastructure/cluster -o
jsonpath='{.status.platformStatus.azure.resourceGroupName}') && echo
"AZURE_RESOURCE_GROUP: \"$AZURE_RESOURCE_GROUP\""

OpenShift sandboxed containers 1.7 User guide

62

1

2

b. Retrieve and record the Azure VNet name:

This value is used to retrieve the Azure subnet ID.

c. Retrieve and record the Azure subnet ID:

d. Retrieve and record the Azure network security group (NSG) ID:

e. Retrieve and record the Azure region:

2. Create a peer-pods-cm.yaml manifest file according to the following example:

This value is the default if an instance size is not defined in the workload.

Lists all of the instance sizes you can specify when creating the pod. This allows you to
define smaller instance sizes for workloads that need less memory and fewer CPUs or
larger instance sizes for larger workloads.

$ AZURE_VNET_NAME=$(az network vnet list --resource-group
${AZURE_RESOURCE_GROUP} --query "[].{Name:name}" --output tsv)

$ AZURE_SUBNET_ID=$(az network vnet subnet list --resource-group
${AZURE_RESOURCE_GROUP} --vnet-name $AZURE_VNET_NAME --query "[].{Id:id}
| [? contains(Id, 'worker')]" --output tsv) && echo "AZURE_SUBNET_ID:
\"$AZURE_SUBNET_ID\""

$ AZURE_NSG_ID=$(az network nsg list --resource-group
${AZURE_RESOURCE_GROUP} --query "[].{Id:id}" --output tsv) && echo
"AZURE_NSG_ID: \"$AZURE_NSG_ID\""

$ AZURE_REGION=$(az group show --resource-group
${AZURE_RESOURCE_GROUP} --query "{Location:location}" --output tsv) && echo
"AZURE_REGION: \"$AZURE_REGION\""

apiVersion: v1
kind: ConfigMap
metadata:
 name: peer-pods-cm
 namespace: openshift-sandboxed-containers-operator
data:
 CLOUD_PROVIDER: "azure"
 VXLAN_PORT: "9000"
 AZURE_INSTANCE_SIZE: "Standard_B2als_v2" 1
 AZURE_INSTANCE_SIZES:
"Standard_B2als_v2,Standard_D2as_v5,Standard_D4as_v5,Standard_D2ads_v5" 2
 AZURE_SUBNET_ID: "<azure_subnet_id>" 3
 AZURE_NSG_ID: "<azure_nsg_id>" 4
 PROXY_TIMEOUT: "5m"
 AZURE_IMAGE_ID: "<azure_image_id>" 5
 AZURE_REGION: "<azure_region>" 6
 AZURE_RESOURCE_GROUP: "<azure_resource_group>" 7
 DISABLECVM: "true"

CHAPTER 4. DEPLOYING ON AZURE

63

3

4

5

6

7

Specify the AZURE_SUBNET_ID value that you retrieved.

Specify the AZURE_NSG_ID value that you retrieved.

Optional: By default, this value is populated when you run the KataConfig CR, using an
Azure image ID based on your cluster credentials. If you create your own Azure image,
specify the correct image ID.

Specify the AZURE_REGION value you retrieved.

Specify the AZURE_RESOURCE_GROUP value you retrieved.

3. Create the config map by running the following command:

4. Optional: To update an existing peer pods config map, restart the peerpodconfig-ctrl-caa-
daemon daemon set by running the following command:

4.3.5. Creating the Azure secret

You must create the secret for Azure.

Procedure

1. Log in to your OpenShift Container Platform cluster.

2. Generate an SSH key pair by running the following command:

3. Create the Secret object by running the following command:

4. Delete the SSH keys you created:

4.3.6. Creating the KataConfig custom resource

You must create the KataConfig custom resource (CR) to install kata-remote as a runtime class on
your worker nodes.

Creating the KataConfig CR triggers the OpenShift sandboxed containers Operator to do the
following: * Create a RuntimeClass CR named kata-remote with a default configuration. This enables
users to configure workloads to use kata-remote as the runtime by referencing the CR in the

$ oc apply -f peer-pods-cm.yaml

$ oc set env ds/peerpodconfig-ctrl-caa-daemon \
 -n openshift-sandboxed-containers-operator REBOOT="$(date)"

$ ssh-keygen -f ./id_rsa -N ""

$ oc create secret generic ssh-key-secret \
 -n openshift-sandboxed-containers-operator \
 --from-file=id_rsa.pub=./id_rsa.pub

$ shred --remove id_rsa.pub id_rsa

OpenShift sandboxed containers 1.7 User guide

64

1

RuntimeClassName field. This CR also specifies the resource overhead for the runtime.

OpenShift sandboxed containers installs kata-remote as a secondary, optional runtime on the cluster
and not as the primary runtime.

IMPORTANT

Creating the KataConfig CR automatically reboots the worker nodes. The reboot can
take from 10 to more than 60 minutes. Factors that impede reboot time are as follows:

A larger OpenShift Container Platform deployment with a greater number of
worker nodes.

Activation of the BIOS and Diagnostics utility.

Deployment on a hard disk drive rather than an SSD.

Deployment on physical nodes such as bare metal, rather than on virtual nodes.

A slow CPU and network.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

Procedure

1. Create an example-kataconfig.yaml manifest file according to the following example:

Optional: If you have applied node labels to install kata-remote on specific nodes, specify
the key and value, for example, osc: 'true'.

2. Create the KataConfig CR by running the following command:

The new KataConfig CR is created and installs kata-remote as a runtime class on the worker
nodes.

Wait for the kata-remote installation to complete and the worker nodes to reboot before
verifying the installation.

3. Monitor the installation progress by running the following command:

apiVersion: kataconfiguration.openshift.io/v1
kind: KataConfig
metadata:
 name: example-kataconfig
spec:
 enablePeerPods: true
 logLevel: info
kataConfigPoolSelector:
matchLabels:
<label_key>: '<label_value>' 1

$ oc apply -f example-kataconfig.yaml

CHAPTER 4. DEPLOYING ON AZURE

65

When the status of all workers under kataNodes is installed and the condition InProgress is
False without specifying a reason, the kata-remote is installed on the cluster.

4. Verify the daemon set by running the following command:

5. Verify the runtime classes by running the following command:

Example output

Verifying the pod VM image
After kata-remote is installed on your cluster, the OpenShift sandboxed containers Operator creates a
pod VM image, which is used to create peer pods. This process can take a long time because the image
is created on the cloud instance. You can verify that the pod VM image was created successfully by
checking the config map that you created for the cloud provider.

Procedure

1. Obtain the config map you created for the peer pods:

2. Check the status stanza of the YAML file.
If the AZURE_IMAGE_ID parameter is populated, the pod VM image was created successfully.

Troubleshooting

1. Retrieve the events log by running the following command:

2. Retrieve the job log by running the following command:

If you cannot resolve the issue, submit a Red Hat Support case and attach the output of both logs.

4.3.7. Configuring workload objects

You must configure OpenShift sandboxed containers workload objects by setting kata-remote as the
runtime class for the following pod-templated objects:

$ watch "oc describe kataconfig | sed -n /^Status:/,/^Events/p"

$ oc get -n openshift-sandboxed-containers-operator ds/peerpodconfig-ctrl-caa-daemon

$ oc get runtimeclass

NAME HANDLER AGE
kata kata 152m
kata-remote kata-remote 152m

$ oc get configmap peer-pods-cm -n openshift-sandboxed-containers-operator -o yaml

$ oc get events -n openshift-sandboxed-containers-operator --field-selector
involvedObject.name=osc-podvm-image-creation

$ oc logs -n openshift-sandboxed-containers-operator jobs/osc-podvm-image-creation

OpenShift sandboxed containers 1.7 User guide

66

1

Pod objects

ReplicaSet objects

ReplicationController objects

StatefulSet objects

Deployment objects

DeploymentConfig objects

IMPORTANT

Do not deploy workloads in an Operator namespace. Create a dedicated namespace for
these resources.

You can define whether the workload should be deployed using the default instance size, which you
defined in the config map, by adding an annotation to the YAML file.

If you do not want to define the instance size manually, you can add an annotation to use an automatic
instance size, based on the memory available.

Prerequisites

You have created the KataConfig custom resource (CR).

Procedure

1. Add spec.runtimeClassName: kata-remote to the manifest of each pod-templated workload
object as in the following example:

2. Add an annotation to the pod-templated object to use a manually defined instance size or an
automatic instance size:

To use a manually defined instance size, add the following annotation:

Specify the instance size that you defined in the config map.

To use an automatic instance size, add the following annotations:

apiVersion: v1
kind: <object>
...
spec:
 runtimeClassName: kata-remote
...

apiVersion: v1
kind: <object>
metadata:
 annotations:
 io.katacontainers.config.hypervisor.machine_type: "Standard_B2als_v2" 1
...

CHAPTER 4. DEPLOYING ON AZURE

67

Define the amount of memory available for the workload to use. The workload will run on an
automatic instance size based on the amount of memory available.

3. Apply the changes to the workload object by running the following command:

OpenShift Container Platform creates the workload object and begins scheduling it.

Verification

Inspect the spec.runtimeClassName field of a pod-templated object. If the value is kata-
remote, then the workload is running on OpenShift sandboxed containers, using peer pods.

4.4. DEPLOYING CONFIDENTIAL CONTAINERS ON AZURE

You can deploy Confidential Containers on Microsoft Azure Cloud Computing Services after you deploy
OpenShift sandboxed containers.

IMPORTANT

Confidential Containers on Azure is a Technology Preview feature only. Technology
Preview features are not supported with Red Hat production service level agreements
(SLAs) and might not be functionally complete. Red Hat does not recommend using
them in production. These features provide early access to upcoming product features,
enabling customers to test functionality and provide feedback during the development
process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

Cluster requirements

You have installed Red Hat OpenShift Container Platform 4.15 or later on the cluster where you
are installing the Confidential compute attestation Operator.

You deploy Confidential Containers by performing the following steps:

1. Install the Confidential compute attestation Operator.

2. Create the route for Trustee.

3. Enable the Confidential Containers feature gate.

4. Update the peer pods config map.

5. Delete the KataConfig custom resource (CR).

apiVersion: v1
kind: <Pod>
metadata:
 annotations:
 io.katacontainers.config.hypervisor.default_vcpus: <vcpus>
 io.katacontainers.config.hypervisor.default_memory: <memory>
...

$ oc apply -f <object.yaml>

OpenShift sandboxed containers 1.7 User guide

68

https://access.redhat.com/support/offerings/techpreview/

6. Re-create the KataConfig CR.

7. Create the Trustee authentication secret.

8. Create the Trustee config map.

9. Configure attestation policies:

a. Create reference values.

b. Create secrets for attested clients.

c. Create the resource access policy.

d. Optional: Create an attestation policy that overrides the default policy.

e. If your TEE is Intel Trust Domain Extensions, configure the Provisioning Certificate Caching
Service.

10. Create the KbsConfig CR.

11. Verify the attestation process.

4.4.1. Installing the Confidential compute attestation Operator

You can install the Confidential compute attestation Operator on Azure by using the CLI.

Prerequisites

You have installed the OpenShift CLI (oc).

You have access to the cluster as a user with the cluster-admin role.

Procedure

1. Create a trustee-namespace.yaml manifest file:

2. Create the trustee-operator-system namespace by running the following command:

3. Create a trustee-operatorgroup.yaml manifest file:

apiVersion: v1
kind: Namespace
metadata:
 name: trustee-operator-system

$ oc apply -f trustee-namespace.yaml

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: trustee-operator-group
 namespace: trustee-operator-system

CHAPTER 4. DEPLOYING ON AZURE

69

4. Create the operator group by running the following command:

5. Create a trustee-subscription.yaml manifest file:

6. Create the subscription by running the following command:

7. Verify that the Operator is correctly installed by running the following command:

This command can take several minutes to complete.

8. Watch the process by running the following command:

Example output

4.4.2. Creating the route for Trustee

You can create a secure route with edge TLS termination for Trustee. External ingress traffic reaches
the router pods as HTTPS and passes on to the Trustee pods as HTTP.

Prerequisites

You have enabled the Confidential Containers feature gate.

You have installed the Confidential compute attestation Operator.

spec:
 targetNamespaces:
 - trustee-operator-system

$ oc apply -f trustee-operatorgroup.yaml

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: trustee-operator
 namespace: trustee-operator-system
spec:
 channel: stable
 installPlanApproval: Automatic
 name: trustee-operator
 source: redhat-operators
 sourceNamespace: openshift-marketplace
 startingCSV: trustee-operator.v0.1.0

$ oc apply -f trustee-subscription.yaml

$ oc get csv -n trustee-operator-system

$ watch oc get csv -n trustee-operator-system

NAME DISPLAY PHASE
trustee-operator.v0.1.0 Trustee Operator 0.1.0 Succeeded

OpenShift sandboxed containers 1.7 User guide

70

Procedure

1. Create an edge route by running the following command:

NOTE

Note: Currently, only a route with a valid CA-signed certificate is supported. You
cannot use a route with self-signed certificate.

2. Set the TRUSTEE_HOST variable by running the following command:

3. Verify the route by running the following command:

Example output

Record this value for the peer pods config map.

4.4.3. Enabling the Confidential Containers feature gate

You must enable the Confidential Containers feature gate.

Procedure

1. Create a cc-feature-gate.yaml manifest file:

2. Create the config map by running the following command:

4.4.4. Updating the peer pods config map

You must update the peer pods config map for Confidential Containers.

$ oc create route edge --service=kbs-service --port kbs-port \
 -n trustee-operator-system

$ TRUSTEE_HOST=$(oc get route -n trustee-operator-system kbs-service \
 -o jsonpath={.spec.host})

$ echo $TRUSTEE_HOST

kbs-service-trustee-operator-system.apps.memvjias.eastus.aroapp.io

apiVersion: v1
kind: ConfigMap
metadata:
 name: osc-feature-gates
 namespace: openshift-sandboxed-containers-operator
data:
 confidential: "true"

$ oc apply -f cc-feature-gate.yaml

CHAPTER 4. DEPLOYING ON AZURE

71

Procedure

1. Obtain the following values from your Azure instance:

a. Retrieve and record the Azure resource group:

b. Retrieve and record the Azure VNet name:

This value is used to retrieve the Azure subnet ID.

c. Retrieve and record the Azure subnet ID:

d. Retrieve and record the Azure network security group (NSG) ID:

e. Retrieve and record the Azure region:

2. Create a peer-pods-cm.yaml manifest file according to the following example:

$ AZURE_RESOURCE_GROUP=$(oc get infrastructure/cluster -o
jsonpath='{.status.platformStatus.azure.resourceGroupName}') && echo
"AZURE_RESOURCE_GROUP: \"$AZURE_RESOURCE_GROUP\""

$ AZURE_VNET_NAME=$(az network vnet list --resource-group
${AZURE_RESOURCE_GROUP} --query "[].{Name:name}" --output tsv)

$ AZURE_SUBNET_ID=$(az network vnet subnet list --resource-group
${AZURE_RESOURCE_GROUP} --vnet-name $AZURE_VNET_NAME --query "[].{Id:id}
| [? contains(Id, 'worker')]" --output tsv) && echo "AZURE_SUBNET_ID:
\"$AZURE_SUBNET_ID\""

$ AZURE_NSG_ID=$(az network nsg list --resource-group
${AZURE_RESOURCE_GROUP} --query "[].{Id:id}" --output tsv) && echo
"AZURE_NSG_ID: \"$AZURE_NSG_ID\""

$ AZURE_REGION=$(az group show --resource-group
${AZURE_RESOURCE_GROUP} --query "{Location:location}" --output tsv) && echo
"AZURE_REGION: \"$AZURE_REGION\""

apiVersion: v1
kind: ConfigMap
metadata:
 name: peer-pods-cm
 namespace: openshift-sandboxed-containers-operator
data:
 CLOUD_PROVIDER: "azure"
 VXLAN_PORT: "9000"
 AZURE_INSTANCE_SIZE: "Standard_DC2as_v5" 1
 AZURE_INSTANCE_SIZES:
"Standard_DC2as_v5,Standard_DC4as_v5,Standard_DC8as_v5,Standard_DC16as_v5" 2
 AZURE_SUBNET_ID: "<azure_subnet_id>" 3
 AZURE_NSG_ID: "<azure_nsg_id>" 4
 PROXY_TIMEOUT: "5m"
 AZURE_IMAGE_ID: "<azure_image_id>" 5
 AZURE_REGION: "<azure_region>" 6

OpenShift sandboxed containers 1.7 User guide

72

1

2

3

4

5

6

7

8

This value is the default if an instance size is not defined in the workload.

Lists all of the instance sizes you can specify when creating the pod. This allows you to
define smaller instance sizes for workloads that need less memory and fewer CPUs or
larger instance sizes for larger workloads.

Specify the AZURE_SUBNET_ID value that you retrieved.

Specify the AZURE_NSG_ID value that you retrieved.

Optional: By default, this value is populated when you run the KataConfig CR, using an
Azure image ID based on your cluster credentials. If you create your own Azure image,
specify the correct image ID.

Specify the AZURE_REGION value you retrieved.

Specify the AZURE_RESOURCE_GROUP value you retrieved.

Specify the host name of the Trustee route.

3. Create the config map by running the following command:

4. Restart the peerpodconfig-ctrl-caa-daemon daemon set by running the following command:

4.4.5. Deleting the KataConfig custom resource

You can delete the KataConfig custom resource (CR) by using the command line.

Deleting the KataConfig CR removes the runtime and its related resources from your cluster.

IMPORTANT

Deleting the KataConfig CR automatically reboots the worker nodes. The reboot can
take from 10 to more than 60 minutes. Factors that impede reboot time are as follows:

A larger OpenShift Container Platform deployment with a greater number of
worker nodes.

Activation of the BIOS and Diagnostics utility.

Deployment on a hard drive rather than an SSD.

Deployment on physical nodes such as bare metal, rather than on virtual nodes.

A slow CPU and network.

 AZURE_RESOURCE_GROUP: "<azure_resource_group>" 7
 DISABLECVM: "false"
 AA_KBC_PARAMS: "cc_kbc::https://${TRUSTEE_HOST}" 8

$ oc apply -f peer-pods-cm.yaml

$ oc set env ds/peerpodconfig-ctrl-caa-daemon \
 -n openshift-sandboxed-containers-operator REBOOT="$(date)"

CHAPTER 4. DEPLOYING ON AZURE

73

Prerequisites

You have installed the OpenShift CLI (oc).

You have access to the cluster as a user with the cluster-admin role.

Procedure

1. Delete the KataConfig CR by running the following command:

The OpenShift sandboxed containers Operator removes all resources that were initially created
to enable the runtime on your cluster.

IMPORTANT

When you delete the KataConfig CR, the CLI stops responding until all worker
nodes reboot. You must for the deletion process to complete before performing
the verification.

2. Verify that the custom resource was deleted by running the following command:

Example output

4.4.6. Re-creating the KataConfig custom resource

You must re-create the KataConfig custom resource (CR) for Confidential Containers.

IMPORTANT

Creating the KataConfig CR automatically reboots the worker nodes. The reboot can
take from 10 to more than 60 minutes. Factors that impede reboot time are as follows:

A larger OpenShift Container Platform deployment with a greater number of
worker nodes.

Activation of the BIOS and Diagnostics utility.

Deployment on a hard disk drive rather than an SSD.

Deployment on physical nodes such as bare metal, rather than on virtual nodes.

A slow CPU and network.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

$ oc delete kataconfig example-kataconfig

$ oc get kataconfig example-kataconfig

No example-kataconfig instances exist

OpenShift sandboxed containers 1.7 User guide

74

1

Procedure

1. Create an example-kataconfig.yaml manifest file according to the following example:

Optional: If you have applied node labels to install kata-remote on specific nodes, specify
the key and value, for example, cc: 'true'.

2. Create the KataConfig CR by running the following command:

The new KataConfig CR is created and installs kata-remote as a runtime class on the worker
nodes.

Wait for the kata-remote installation to complete and the worker nodes to reboot before
verifying the installation.

3. Monitor the installation progress by running the following command:

When the status of all workers under kataNodes is installed and the condition InProgress is
False without specifying a reason, the kata-remote is installed on the cluster.

4. Verify the daemon set by running the following command:

5. Verify the runtime classes by running the following command:

Example output

4.4.7. Creating the Trustee authentication secret

You must create the authentication secret for Trustee.

apiVersion: kataconfiguration.openshift.io/v1
kind: KataConfig
metadata:
 name: example-kataconfig
spec:
 enablePeerPods: true
 logLevel: info
kataConfigPoolSelector:
matchLabels:
<label_key>: '<label_value>' 1

$ oc apply -f example-kataconfig.yaml

$ watch "oc describe kataconfig | sed -n /^Status:/,/^Events/p"

$ oc get -n openshift-sandboxed-containers-operator ds/peerpodconfig-ctrl-caa-daemon

$ oc get runtimeclass

NAME HANDLER AGE
kata kata 152m
kata-remote kata-remote 152m

CHAPTER 4. DEPLOYING ON AZURE

75

Prerequisites

You have installed the OpenShift CLI (oc).

You have access to the cluster as a user with the cluster-admin role.

Procedure

1. Create a private key by running the following command:

2. Create a public key by running the following command:

3. Create a secret by running the following command:

4. Verify the secret by running the following command:

4.4.8. Creating the Trustee config map

You must create the config map to configure the Trustee server.

Prerequisites

You have created a route for Trustee.

Procedure

1. Create a kbs-config-cm.yaml manifest file:

$ openssl genpkey -algorithm ed25519 > privateKey

$ openssl pkey -in privateKey -pubout -out publicKey

$ oc create secret generic kbs-auth-public-key --from-file=publicKey -n trustee-operator-
system

$ oc get secret -n trustee-operator-system

apiVersion: v1
kind: ConfigMap
metadata:
 name: kbs-config-cm
 namespace: trustee-operator-system
data:
 kbs-config.json: |
 {
 "insecure_http" : true,
 "sockets": ["0.0.0.0:8080"],
 "auth_public_key": "/etc/auth-secret/publicKey",
 "attestation_token_config": {
 "attestation_token_type": "CoCo"
 },
 "repository_config": {
 "type": "LocalFs",

OpenShift sandboxed containers 1.7 User guide

76

2. Create the config map by running the following command:

4.4.9. Configuring attestation policies

You can configure the following attestation policy settings:

Reference values

You can configure reference values for the Reference Value Provider Service (RVPS) by specifying
the trusted digests of your hardware platform.
The client collects measurements from the running software, the Trusted Execution Environment
(TEE) hardware and firmware and it submits a quote with the claims to the Attestation Server. These
measurements must match the trusted digests registered to the Trustee. This process ensures that
the confidential VM (CVM) is running the expected software stack and has not been tampered with.

Secrets for clients

You must create one or more secrets to share with attested clients.

Resource access policy

You must configure a policy for the Trustee policy engine to determine which resources to access.
Do not confuse the Trustee policy engine with the Attestation Service policy engine, which
determines the validity of TEE evidence.

Attestation policy

Optional: You can overwrite the default attestation policy by creating your own attestation policy.

Provisioning Certificate Caching Service for TDX

If your TEE is Intel Trust Domain Extensions (TDX), you must configure the Provisioning Certificate
Caching Service (PCCS). The PCCS retrieves Provisioning Certification Key (PCK) certificates and
caches them in a local database.

IMPORTANT

 "dir_path": "/opt/confidential-containers/kbs/repository"
 },
 "as_config": {
 "work_dir": "/opt/confidential-containers/attestation-service",
 "policy_engine": "opa",
 "attestation_token_broker": "Simple",
 "attestation_token_config": {
 "duration_min": 5
 },
 "rvps_config": {
 "store_type": "LocalJson",
 "store_config": {
 "file_path": "/opt/confidential-containers/rvps/reference-values/reference-values.json"
 }
 }
 },
 "policy_engine_config": {
 "policy_path": "/opt/confidential-containers/opa/policy.rego"
 }
 }

$ oc apply -f kbs-config-cm.yaml

CHAPTER 4. DEPLOYING ON AZURE

77

1

1

IMPORTANT

Do not use the public Intel PCCS service. Use a local caching service on-premise or on
the public cloud.

Procedure

1. Create an rvps-configmap.yaml manifest file:

Specify the trusted digests for your hardware platform if required. Otherwise, leave it
empty.

2. Create the RVPS config map by running the following command:

3. Create one or more secrets to share with attested clients according to the following example:

In this example, the kbsres1 secret has two entries (key1, key2), which the Trustee clients
retrieve. You can add more secrets according to your requirements.

4. Create a resourcepolicy-configmap.yaml manifest file:

The name of the resource policy, policy.rego, must match the resource policy defined in
the Trustee config map.

apiVersion: v1
kind: ConfigMap
metadata:
 name: rvps-reference-values
 namespace: trustee-operator-system
data:
 reference-values.json: |
 [1
]

$ oc apply -f rvps-configmap.yaml

$ oc create secret generic kbsres1 --from-literal key1=<res1val1> \
 --from-literal key2=<res1val2> -n trustee-operator-system

apiVersion: v1
kind: ConfigMap
metadata:
 name: resource-policy
 namespace: trustee-operator-system
data:
 policy.rego: | 1
 package policy 2
 default allow = false
 allow {
 input["tee"] != "sample"
 }

OpenShift sandboxed containers 1.7 User guide

78

2 The resource policy follows the Open Policy Agent specification. This example allows the
retrieval of all resources when the TEE is not the sample attester.

5. Create the resource policy config map by running the following command:

6. Optional: Create an attestation-policy.yaml manifest file according to the following example:

$ oc apply -f resourcepolicy-configmap.yaml

apiVersion: v1
kind: ConfigMap
metadata:
 name: attestation-policy
 namespace: trustee-operator-system
data:
 default.rego: |
 package policy 1
 import future.keywords.every

 default allow = false

 allow {
 every k, v in input {
 judge_field(k, v)
 }
 }

 judge_field(input_key, input_value) {
 has_key(data.reference, input_key)
 reference_value := data.reference[input_key]
 match_value(reference_value, input_value)
 }

 judge_field(input_key, input_value) {
 not has_key(data.reference, input_key)
 }

 match_value(reference_value, input_value) {
 not is_array(reference_value)
 input_value == reference_value
 }

 match_value(reference_value, input_value) {
 is_array(reference_value)
 array_include(reference_value, input_value)
 }

 array_include(reference_value_array, input_value) {
 reference_value_array == []
 }

 array_include(reference_value_array, input_value) {
 reference_value_array != []
 some i
 reference_value_array[i] == input_value

CHAPTER 4. DEPLOYING ON AZURE

79

https://www.openpolicyagent.org/docs/latest/policy-language/

1

1

The attestation policy follows the Open Policy Agent specification. In this example, the
attestation policy compares the claims provided in the attestation report to the reference
values registered in the RVPS database. The attestation process is successful only if all the
values match.

7. Create the attestation policy config map by running the following command:

8. If your TEE is Intel TDX, create a tdx-config.yaml manifest file:

Specify the PCCS URL, for example, https://localhost:8081/sgx/certification/v4/.

9. Create the TDX config map by running the following command:

4.4.10. Creating the KbsConfig custom resource

You must create the KbsConfig custom resource (CR) to launch Trustee.

Then, you check the Trustee pods and pod logs to verify the configuration.

Procedure

1. Create a kbsconfig-cr.yaml manifest file:

 }

 has_key(m, k) {
 _ = m[k]
 }

$ oc apply -f attestation-policy.yaml

apiVersion: v1
kind: ConfigMap
metadata:
 name: tdx-config
 namespace: trustee-operator-system
data:
 sgx_default_qcnl.conf: | \
 {
 "collateral_service": "https://api.trustedservices.intel.com/sgx/certification/v4/",
 "pccs_url": "<pccs_url>" 1
 }

$ oc apply -f tdx-config.yaml

apiVersion: confidentialcontainers.org/v1alpha1
kind: KbsConfig
metadata:
 labels:
 app.kubernetes.io/name: kbsconfig
 app.kubernetes.io/instance: kbsconfig
 app.kubernetes.io/part-of: trustee-operator

OpenShift sandboxed containers 1.7 User guide

80

https://www.openpolicyagent.org/docs/latest/policy-language/
https://localhost:8081/sgx/certification/v4/

2. Create the KbsConfig CR by running the following command:

Verification

1. Set the default project by running the following command:

2. Check the pods by running the following command:

Example output

3. Set the POD_NAME environmental variable by running the following command:

4. Check the pod logs by running the following command:

Example output

 app.kubernetes.io/managed-by: kustomize
 app.kubernetes.io/created-by: trustee-operator
 name: kbsconfig
 namespace: trustee-operator-system
spec:
 kbsConfigMapName: kbs-config-cm
 kbsAuthSecretName: kbs-auth-public-key
 kbsDeploymentType: AllInOneDeployment
 kbsRvpsRefValuesConfigMapName: rvps-reference-values
 kbsSecretResources: ["kbsres1"]
 kbsResourcePolicyConfigMapName: resource-policy

$ oc apply -f kbsconfig-cr.yaml

$ oc project trustee-operator-system

$ oc get pods -n trustee-operator-system

NAME READY STATUS RESTARTS AGE
trustee-deployment-8585f98449-9bbgl 1/1 Running 0 22m
trustee-operator-controller-manager-5fbd44cd97-55dlh 2/2 Running 0 59m

$ POD_NAME=$(oc get pods -l app=kbs -o jsonpath='{.items[0].metadata.name}' -n trustee-
operator-system)

$ oc logs -n trustee-operator-system $POD_NAME

[2024-05-30T13:44:24Z INFO kbs] Using config file /etc/kbs-config/kbs-config.json
[2024-05-30T13:44:24Z WARN attestation_service::rvps] No RVPS address provided and
will launch a built-in rvps
[2024-05-30T13:44:24Z INFO attestation_service::token::simple] No Token Signer key in
config file, create an ephemeral key and without CA pubkey cert
[2024-05-30T13:44:24Z INFO api_server] Starting HTTPS server at [0.0.0.0:8080]
[2024-05-30T13:44:24Z INFO actix_server::builder] starting 12 workers
[2024-05-30T13:44:24Z INFO actix_server::server] Tokio runtime found; starting in existing
Tokio runtime

CHAPTER 4. DEPLOYING ON AZURE

81

4.4.11. Verifying the attestation process

You can verify the attestation process by creating a test pod and retrieving its secret.

IMPORTANT

This procedure is an example to verify that attestation is working. Do not write sensitive
data to standard I/O because the data can be captured by using a memory dump. Only
data written to memory is encrypted.

By default, an agent side policy embedded in the pod VM image disables the exec and log APIs for a
Confidential Containers pod. This policy ensures that sensitive data is not written to standard I/O.

In a test scenario, you can override the restriction at runtime by adding a policy annotation to the pod.
For Technology Preview, runtime policy annotations are not verified by remote attestation.

Prerequisites

You have created a route if the Trustee server and the test pod are not running in the same
cluster.

Procedure

1. Create a verification-pod.yaml manifest file:

apiVersion: v1
kind: Pod
metadata:
 name: ocp-cc-pod
 labels:
 app: ocp-cc-pod
 annotations:
 io.katacontainers.config.agent.policy:
cGFja2FnZSBhZ2VudF9wb2xpY3kKCmRlZmF1bHQgQWRkQVJQTmVpZ2hib3JzUmVxdWVz
dCA6PSB0cnVlCmRlZmF1bHQgQWRkU3dhcFJlcXVlc3QgOj0gdHJ1ZQpkZWZhdWx0IENsb3
NlU3RkaW5SZXF1ZXN0IDo9IHRydWUKZGVmYXVsdCBDb3B5RmlsZVJlcXVlc3QgOj0gdHJ1
ZQpkZWZhdWx0IENyZWF0ZUNvbnRhaW5lclJlcXVlc3QgOj0gdHJ1ZQpkZWZhdWx0IENyZW
F0ZVNhbmRib3hSZXF1ZXN0IDo9IHRydWUKZGVmYXVsdCBEZXN0cm95U2FuZGJveFJlcX
Vlc3QgOj0gdHJ1ZQpkZWZhdWx0IEV4ZWNQcm9jZXNzUmVxdWVzdCA6PSB0cnVlCmRlZm
F1bHQgR2V0TWV0cmljc1JlcXVlc3QgOj0gdHJ1ZQpkZWZhdWx0IEdldE9PTUV2ZW50UmVxd
WVzdCA6PSB0cnVlCmRlZmF1bHQgR3Vlc3REZXRhaWxzUmVxdWVzdCA6PSB0cnVlCmRlZ
mF1bHQgTGlzdEludGVyZmFjZXNSZXF1ZXN0IDo9IHRydWUKZGVmYXVsdCBMaXN0Um91
dGVzUmVxdWVzdCA6PSB0cnVlCmRlZmF1bHQgTWVtSG90cGx1Z0J5UHJvYmVSZXF1ZXN
0IDo9IHRydWUKZGVmYXVsdCBPbmxpbmVDUFVNZW1SZXF1ZXN0IDo9IHRydWUKZGVm
YXVsdCBQYXVzZUNvbnRhaW5lclJlcXVlc3QgOj0gdHJ1ZQpkZWZhdWx0IFB1bGxJbWFnZVJl
cXVlc3QgOj0gdHJ1ZQpkZWZhdWx0IFJlYWRTdHJlYW1SZXF1ZXN0IDo9IHRydWUKZGVmY
XVsdCBSZW1vdmVDb250YWluZXJSZXF1ZXN0IDo9IHRydWUKZGVmYXVsdCBSZW1vdmV
TdGFsZVZpcnRpb2ZzU2hhcmVNb3VudHNSZXF1ZXN0IDo9IHRydWUKZGVmYXVsdCBSZX
NlZWRSYW5kb21EZXZSZXF1ZXN0IDo9IHRydWUKZGVmYXVsdCBSZXN1bWVDb250YWlu
ZXJSZXF1ZXN0IDo9IHRydWUKZGVmYXVsdCBTZXRHdWVzdERhdGVUaW1lUmVxdWVzd
CA6PSB0cnVlCmRlZmF1bHQgU2V0UG9saWN5UmVxdWVzdCA6PSB0cnVlCmRlZmF1bHQ
gU2lnbmFsUHJvY2Vzc1JlcXVlc3QgOj0gdHJ1ZQpkZWZhdWx0IFN0YXJ0Q29udGFpbmVyUm
VxdWVzdCA6PSB0cnVlCmRlZmF1bHQgU3RhcnRUcmFjaW5nUmVxdWVzdCA6PSB0cnVlCm
RlZmF1bHQgU3RhdHNDb250YWluZXJSZXF1ZXN0IDo9IHRydWUKZGVmYXVsdCBTdG9w
VHJhY2luZ1JlcXVlc3QgOj0gdHJ1ZQpkZWZhdWx0IFR0eVdpblJlc2l6ZVJlcXVlc3QgOj0gdHJ1Z

OpenShift sandboxed containers 1.7 User guide

82

1 This pod annotation overrides the policy that prevents sensitive data from being written to
standard I/O.

2. Create the pod by running the following command:

3. Connect to the Bash shell of the ocp-cc-pod by running the following command:

4. Fetch the pod secret by running the following command:

Example output

The Trustee server returns the secret only if the attestation is successful.

QpkZWZhdWx0IFVwZGF0ZUNvbnRhaW5lclJlcXVlc3QgOj0gdHJ1ZQpkZWZhdWx0IFVwZGF
0ZUVwaGVtZXJhbE1vdW50c1JlcXVlc3QgOj0gdHJ1ZQpkZWZhdWx0IFVwZGF0ZUludGVyZ
mFjZVJlcXVlc3QgOj0gdHJ1ZQpkZWZhdWx0IFVwZGF0ZVJvdXRlc1JlcXVlc3QgOj0gdHJ1ZQ
pkZWZhdWx0IFdhaXRQcm9jZXNzUmVxdWVzdCA6PSB0cnVlCmRlZmF1bHQgV3JpdGVTdH
JlYW1SZXF1ZXN0IDo9IHRydWUK 1
spec:
 runtimeClassName: kata-remote
 containers:
 - name: skr-openshift
 image: registry.access.redhat.com/ubi9/ubi:9.3
 command:
 - sleep
 - "36000"
 securityContext:
 privileged: false
 seccompProfile:
 type: RuntimeDefault

$ oc create -f verification-pod.yaml

$ oc exec -it ocp-cc-pod -- bash

$ curl http://127.0.0.1:8006/cdh/resource/default/kbsres1/key1

res1val1

CHAPTER 4. DEPLOYING ON AZURE

83

CHAPTER 5. DEPLOYING ON IBM Z AND IBM LINUXONE
You can deploy OpenShift sandboxed containers or Confidential Containers on IBM Z® and
IBM® LinuxONE.

IMPORTANT

OpenShift sandboxed containers on IBM Z® and IBM® LinuxONE is a Technology Preview
feature only. Technology Preview features are not supported with Red Hat production
service level agreements (SLAs) and might not be functionally complete. Red Hat does
not recommend using them in production. These features provide early access to
upcoming product features, enabling customers to test functionality and provide
feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

Cluster requirements

You have installed Red Hat OpenShift Container Platform 4.14 or later on the cluster where you
are installing the OpenShift sandboxed containers Operator.

Your cluster has at least one worker node.

5.1. PEER POD RESOURCE REQUIREMENTS

You must ensure that your cluster has sufficient resources.

Peer pod virtual machines (VMs) require resources in two locations:

The worker node. The worker node stores metadata, Kata shim resources (containerd-shim-
kata-v2), remote-hypervisor resources (cloud-api-adaptor), and the tunnel setup between the
worker nodes and the peer pod VM.

The libvirt virtual machine instance. This is the actual peer pod VM running in the LPAR (KVM
host).

The CPU and memory resources used in the Kubernetes worker node are handled by the pod overhead
included in the RuntimeClass (kata-remote) definition used for creating peer pods.

The total number of peer pod VMs running in the cloud is defined as Kubernetes Node extended
resources. This limit is per node and is set by the limit attribute in the peerpodConfig custom resource
(CR).

The peerpodConfig CR, named peerpodconfig-openshift, is created when you create the kataConfig
CR and enable peer pods, and is located in the openshift-sandboxed-containers-operator namespace.

The following peerpodConfig CR example displays the default spec values:

apiVersion: confidentialcontainers.org/v1alpha1
kind: PeerPodConfig
metadata:
 name: peerpodconfig-openshift
 namespace: openshift-sandboxed-containers-operator
spec:

OpenShift sandboxed containers 1.7 User guide

84

https://access.redhat.com/support/offerings/techpreview/
https://kubernetes.io/docs/concepts/scheduling-eviction/pod-overhead/

1 The default limit is 10 VMs per node.

The extended resource is named kata.peerpods.io/vm, and enables the Kubernetes scheduler to handle
capacity tracking and accounting.

You can edit the limit per node based on the requirements for your environment after you install the
OpenShift sandboxed containers Operator.

A mutating webhook adds the extended resource kata.peerpods.io/vm to the pod specification. It also
removes any resource-specific entries from the pod specification, if present. This enables the
Kubernetes scheduler to account for these extended resources, ensuring the peer pod is only scheduled
when resources are available.

The mutating webhook modifies a Kubernetes pod as follows:

The mutating webhook checks the pod for the expected RuntimeClassName value, specified
in the TARGET_RUNTIME_CLASS environment variable. If the value in the pod specification
does not match the value in the TARGET_RUNTIME_CLASS, the webhook exits without
modifying the pod.

If the RuntimeClassName values match, the webhook makes the following changes to the pod
spec:

1. The webhook removes every resource specification from the resources field of all
containers and init containers in the pod.

2. The webhook adds the extended resource (kata.peerpods.io/vm) to the spec by modifying
the resources field of the first container in the pod. The extended resource
kata.peerpods.io/vm is used by the Kubernetes scheduler for accounting purposes.

NOTE

The mutating webhook excludes specific system namespaces in OpenShift Container
Platform from mutation. If a peer pod is created in those system namespaces, then
resource accounting using Kubernetes extended resources does not work unless the pod
spec includes the extended resource.

As a best practice, define a cluster-wide policy to only allow peer pod creation in specific
namespaces.

5.2. DEPLOYING OPENSHIFT SANDBOXED CONTAINERS ON IBM Z
AND IBM LINUXONE

You can deploy OpenShift sandboxed containers on IBM Z® and IBM® LinuxONE by using the command
line interface (CLI) to perform the following tasks:

1. Install the OpenShift sandboxed containers Operator.

2. Optional: Change the number of virtual machines running on each worker node.

 cloudSecretName: peer-pods-secret
 configMapName: peer-pods-cm
 limit: "10" 1
 nodeSelector:
 node-role.kubernetes.io/kata-oc: ""

CHAPTER 5. DEPLOYING ON IBM Z AND IBM LINUXONE

85

https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/

3. Configure the libvirt volume.

4. Optional: Create a custom peer pod VM image.

5. Create the peer pods secret.

6. Create the peer pods config map.

7. Create the peer pod VM image config map.

8. Create the KVM host secret.

9. Create the KataConfig custom resource.

10. Configure the OpenShift sandboxed containers workload objects.

5.2.1. Installing the OpenShift sandboxed containers Operator

You can install the OpenShift sandboxed containers Operator by using the CLI.

Prerequisites

You have installed the OpenShift CLI (oc).

You have access to the cluster as a user with the cluster-admin role.

Procedure

1. Create an osc-namespace.yaml manifest file:

2. Create the namespace by running the following command:

3. Create an osc-operatorgroup.yaml manifest file:

4. Create the operator group by running the following command:

apiVersion: v1
kind: Namespace
metadata:
 name: openshift-sandboxed-containers-operator

$ oc apply -f osc-namespace.yaml

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: sandboxed-containers-operator-group
 namespace: openshift-sandboxed-containers-operator
spec:
 targetNamespaces:
 - openshift-sandboxed-containers-operator

$ oc apply -f osc-operatorgroup.yaml

OpenShift sandboxed containers 1.7 User guide

86

5. Create an osc-subscription.yaml manifest file:

6. Create the subscription by running the following command:

7. Verify that the Operator is correctly installed by running the following command:

This command can take several minutes to complete.

8. Watch the process by running the following command:

Example output

Additional resources

Using Operator Lifecycle Manager on restricted networks .

Configuring proxy support in Operator Lifecycle Manager for disconnected environments.

5.2.2. Modifying the number of peer pod VMs per node

You can change the limit of peer pod virtual machines (VMs) per node by editing the peerpodConfig
custom resource (CR).

Procedure

1. Check the current limit by running the following command:

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: sandboxed-containers-operator
 namespace: openshift-sandboxed-containers-operator
spec:
 channel: stable
 installPlanApproval: Automatic
 name: sandboxed-containers-operator
 source: redhat-operators
 sourceNamespace: openshift-marketplace
 startingCSV: sandboxed-containers-operator.v1.7.0

$ oc apply -f osc-subscription.yaml

$ oc get csv -n openshift-sandboxed-containers-operator

$ watch oc get csv -n openshift-sandboxed-containers-operator

NAME DISPLAY VERSION REPLACES
PHASE
openshift-sandboxed-containers openshift-sandboxed-containers-operator 1.7.0 1.6.0
Succeeded

CHAPTER 5. DEPLOYING ON IBM Z AND IBM LINUXONE

87

https://docs.redhat.com/documentation/en-us/openshift_container_platform/4.16/html-single/operators/index#olm-restricted-networks
https://docs.redhat.com/documentation/en-us/openshift_container_platform/4.16/html-single/operators/index#olm-configuring-proxy-support.html

1

1

2. Modify the limit attribute of the peerpodConfig CR by running the following command:

Replace <value> with the limit you want to define.

5.2.3. Configuring the libvirt volume

You must configure the libvirt volume on your KVM host. Peer pods use the libvirt provider of the Cloud
API Adaptor to create and manage virtual machines.

Prerequisites

You have installed the OpenShift sandboxed containers Operator on your OpenShift Container
Platform cluster by using the OpenShift Container Platform web console or the command line.

You have administrator privileges for your KVM host.

You have installed podman on your KVM host.

You have installed virt-customize on your KVM host.

Procedure

1. Log in to the KVM host.

2. Set the name of the libvirt pool by running the following command:

You need the LIBVIRT_POOL value to create the secret for the libvirt provider.

3. Set the name of the libvirt pool by running the following command:

You need the LIBVIRT_VOL_NAME value to create the secret for the libvirt provider.

4. Set the path of the default storage pool location, by running the following command:

To ensure libvirt has read and write access permissions, use a subdirectory of the libvirt
storage directory. The default is /var/lib/libvirt/images/.

5. Create a libvirt pool by running the following command:

$ oc get peerpodconfig peerpodconfig-openshift -n openshift-sandboxed-containers-operator
\
-o jsonpath='{.spec.limit}{"\n"}'

$ oc patch peerpodconfig peerpodconfig-openshift -n openshift-sandboxed-containers-
operator \
--type merge --patch '{"spec":{"limit":"<value>"}}' 1

$ export LIBVIRT_POOL=<libvirt_pool>

$ export LIBVIRT_VOL_NAME=<libvirt_volume>

$ export LIBVIRT_POOL_DIRECTORY=<target_directory> 1

OpenShift sandboxed containers 1.7 User guide

88

1

2

6. Start the libvirt pool by running the following command:

7. Create a libvirt volume for the pool by running the following command:

5.2.4. Creating a custom peer pod VM image

You can create a custom peer pod virtual machine (VM) image instead of using the default Operator-
built image.

You build an Open Container Initiative (OCI) container with the peer pod QCOW2 image. Later, you add
the container registry URL and the image path to the peer pod VM image config map.

Procedure

1. Create a Dockerfile.podvm-oci file:

2. Build a container with the pod VM QCOW2 image by running the following command:

Specify the QCOW2 image source on the host.

Optional: Specify the path of the QCOW2 image if you do not use the default,
/image/podvm.qcow2.

5.2.5. Creating the peer pods secret

You must create the peer pods secret for OpenShift sandboxed containers.

The secret stores credentials for creating the pod virtual machine (VM) image and peer pod instances.

$ virsh pool-define-as $LIBVIRT_POOL --type dir --target "$LIBVIRT_POOL_DIRECTORY"

$ virsh pool-start $LIBVIRT_POOL

$ virsh -c qemu:///system \
 vol-create-as --pool $LIBVIRT_POOL \
 --name $LIBVIRT_VOL_NAME \
 --capacity 20G \
 --allocation 2G \
 --prealloc-metadata \
 --format qcow2

FROM scratch

ARG PODVM_IMAGE_SRC
ENV PODVM_IMAGE_PATH="/image/podvm.qcow2"

COPY $PODVM_IMAGE_SRC $PODVM_IMAGE_PATH

$ docker build -t podvm-libvirt \
 --build-arg PODVM_IMAGE_SRC=<podvm_image_source> \ 1
 --build-arg PODVM_IMAGE_PATH=<podvm_image_path> \ 2
 -f Dockerfile.podvm-oci .

CHAPTER 5. DEPLOYING ON IBM Z AND IBM LINUXONE

89

1

2

3

4

By default, the OpenShift sandboxed containers Operator creates the secret based on the credentials
used to create the cluster. However, you can manually create a secret that uses different credentials.

Prerequisites

LIBVIRT_POOL. Use the value you set when you configured libvirt on the KVM host.

LIBVIRT_VOL_NAME. Use the value you set when you configured libvirt on the KVM host.

LIBVIRT_URI. This value is the default gateway IP address of the libvirt network. Check your
libvirt network setup to obtain this value.

NOTE

If libvirt uses the default bridge virtual network, you can obtain the LIBVIRT_URI
by running the following commands:

REDHAT_OFFLINE_TOKEN. You have generated this token to download the RHEL image at
Red Hat API Tokens .

Procedure

1. Create a peer-pods-secret.yaml manifest file according to the following example:

Specify the libvirt URI.

Specify the libvirt pool.

Specify the libvirt volume name.

Specify the Red Hat offline token, which is required for the Operator-built image.

$ virtint=$(bridge_line=$(virsh net-info default | grep Bridge); echo
"${bridge_line//Bridge:/}" | tr -d [:blank:])

$ LIBVIRT_URI=$(ip -4 addr show $virtint | grep -oP '(?<=inet\s)\d+(\.\d+){3}')

$ LIBVIRT_GATEWAY_URI="qemu+ssh://root@${LIBVIRT_URI}/system?
no_verify=1"

apiVersion: v1
kind: Secret
metadata:
 name: peer-pods-secret
 namespace: openshift-sandboxed-containers-operator
type: Opaque
stringData:
 CLOUD_PROVIDER: "libvirt"
 LIBVIRT_URI: "<libvirt_gateway_uri>" 1
 LIBVIRT_POOL: "<libvirt_pool>" 2
 LIBVIRT_VOL_NAME: "<libvirt_volume>" 3
 REDHAT_OFFLINE_TOKEN: "<rh_offline_token>" 4

OpenShift sandboxed containers 1.7 User guide

90

https://access.redhat.com/management/api

2. Create the secret by running the following command:

3. Optional: To update an existing peer pods config map, restart the peerpodconfig-ctrl-caa-
daemon daemon set by running the following command:

5.2.6. Creating the peer pods config map

You must create the peer pods config map for OpenShift sandboxed containers.

Procedure

1. Create a peer-pods-cm.yaml manifest file according to the following example:

2. Create the config map by running the following command:

3. Optional: To update an existing peer pods config map, restart the peerpodconfig-ctrl-caa-
daemon daemon set by running the following command:

5.2.7. Creating the peer pod VM image config map

You must create the config map for the peer pod VM image.

Procedure

1. Create a libvirt-podvm-image-cm.yaml manifest according to the following example:

$ oc apply -f peer-pods-secret.yaml

$ oc set env ds/peerpodconfig-ctrl-caa-daemon \
 -n openshift-sandboxed-containers-operator REBOOT="$(date)"

apiVersion: v1
kind: ConfigMap
metadata:
 name: peer-pods-cm
 namespace: openshift-sandboxed-containers-operator
data:
 CLOUD_PROVIDER: "libvirt"
 DISABLECVM: "true"

$ oc apply -f peer-pods-cm.yaml

$ oc set env ds/peerpodconfig-ctrl-caa-daemon \
 -n openshift-sandboxed-containers-operator REBOOT="$(date)"

apiVersion: v1
kind: ConfigMap
metadata:
 name: libvirt-podvm-image-cm
 namespace: openshift-sandboxed-containers-operator
data:
 PODVM_DISTRO: "rhel"
 CAA_SRC: "https://github.com/confidential-containers/cloud-api-adaptor"

CHAPTER 5. DEPLOYING ON IBM Z AND IBM LINUXONE

91

1

2

3

4

5

Specify the latest version of the Cloud API Adaptor source.

Specify your RHEL activation key.

Optional: Specify the following values if you created a container image:

image_repo_url: Container registry URL.

image_tag: Image tag.

image_path: Image path. Default: /image/podvm.qcow2.

SE_BOOT: "true" enables IBM Secure Execution for an Operator-built image. Set to false
if you created a container image.

Specify the RHEL image operating system version. IBM Z® Secure Execution supports
RHEL 9.4 and later versions.

2. Create the config map by running the following command:

The libvirt pod VM image config map is created for your libvirt provider.

5.2.8. Creating the KVM host secret

You must create the secret for your KVM host.

Procedure

1. Log in to your OpenShift Container Platform cluster.

2. Generate an SSH key pair by running the following command:

3. Copy the public SSH key to your KVM host:

4. Create the Secret object by running the following command:

 CAA_REF: "<cloud_api_adaptor_version>" 1
 DOWNLOAD_SOURCES: "no"
 CONFIDENTIAL_COMPUTE_ENABLED: "yes"
 UPDATE_PEERPODS_CM: "yes"
 ORG_ID: "<rhel_organization_id>"
 ACTIVATION_KEY: "<rhel_activation_key>" 2
 IMAGE_NAME: "<podvm_libvirt_image>"
 PODVM_IMAGE_URI: "oci::<image_repo_url>:<image_tag>::<image_path>" 3
 SE_BOOT: "true" 4
 BASE_OS_VERSION: "<rhel_image_os_version>" 5

$ oc apply -f libvirt-podvm-image-cm.yaml

$ ssh-keygen -f ./id_rsa -N ""

$ ssh-copy-id -i ./id_rsa.pub <KVM_HOST_IP>

OpenShift sandboxed containers 1.7 User guide

92

5. Delete the SSH keys you created:

5.2.9. Creating the KataConfig custom resource

You must create the KataConfig custom resource (CR) to install kata-remote as a runtime class on
your worker nodes.

Creating the KataConfig CR triggers the OpenShift sandboxed containers Operator to do the
following: * Create a RuntimeClass CR named kata-remote with a default configuration. This enables
users to configure workloads to use kata-remote as the runtime by referencing the CR in the
RuntimeClassName field. This CR also specifies the resource overhead for the runtime.

OpenShift sandboxed containers installs kata-remote as a secondary, optional runtime on the cluster
and not as the primary runtime.

IMPORTANT

Creating the KataConfig CR automatically reboots the worker nodes. The reboot can
take from 10 to more than 60 minutes. Factors that impede reboot time are as follows:

A larger OpenShift Container Platform deployment with a greater number of
worker nodes.

Activation of the BIOS and Diagnostics utility.

Deployment on a hard disk drive rather than an SSD.

Deployment on physical nodes such as bare metal, rather than on virtual nodes.

A slow CPU and network.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

Procedure

1. Create an example-kataconfig.yaml manifest file according to the following example:

$ oc create secret generic ssh-key-secret \
 -n openshift-sandboxed-containers-operator \
 --from-file=id_rsa.pub=./id_rsa.pub

$ shred --remove id_rsa.pub id_rsa

apiVersion: kataconfiguration.openshift.io/v1
kind: KataConfig
metadata:
 name: example-kataconfig
spec:
 enablePeerPods: true
 logLevel: info

CHAPTER 5. DEPLOYING ON IBM Z AND IBM LINUXONE

93

1 Optional: If you have applied node labels to install kata-remote on specific nodes, specify
the key and value, for example, osc: 'true'.

2. Create the KataConfig CR by running the following command:

The new KataConfig CR is created and installs kata-remote as a runtime class on the worker
nodes.

Wait for the kata-remote installation to complete and the worker nodes to reboot before
verifying the installation.

3. Monitor the installation progress by running the following command:

When the status of all workers under kataNodes is installed and the condition InProgress is
False without specifying a reason, the kata-remote is installed on the cluster.

4. Verify that you have built the peer pod image and uploaded it to the libvirt volume by running
the following command:

Example output

5. Monitor the kata-oc machine config pool progress to ensure that it is in the UPDATED state,
when UPDATEDMACHINECOUNT equals MACHINECOUNT, by running the following
command:

6. Verify the daemon set by running the following command:

kataConfigPoolSelector:
matchLabels:
<label_key>: '<label_value>' 1

$ oc apply -f example-kataconfig.yaml

$ watch "oc describe kataconfig | sed -n /^Status:/,/^Events/p"

$ oc describe configmap peer-pods-cm -n openshift-sandboxed-containers-operator

Name: peer-pods-cm
Namespace: openshift-sandboxed-containers-operator
Labels: <none>
Annotations: <none>

Data
====
CLOUD_PROVIDER: libvirt

BinaryData
====
Events: <none>

$ watch oc get mcp/kata-oc

$ oc get -n openshift-sandboxed-containers-operator ds/peerpodconfig-ctrl-caa-daemon

OpenShift sandboxed containers 1.7 User guide

94

7. Verify the runtime classes by running the following command:

Example output

5.2.10. Configuring workload objects

You must configure OpenShift sandboxed containers workload objects by setting kata-remote as the
runtime class for the following pod-templated objects:

Pod objects

ReplicaSet objects

ReplicationController objects

StatefulSet objects

Deployment objects

DeploymentConfig objects

IMPORTANT

Do not deploy workloads in an Operator namespace. Create a dedicated namespace for
these resources.

Prerequisites

You have created the KataConfig custom resource (CR).

Procedure

1. Add spec.runtimeClassName: kata-remote to the manifest of each pod-templated workload
object as in the following example:

OpenShift Container Platform creates the workload object and begins scheduling it.

Verification

Inspect the spec.runtimeClassName field of a pod-templated object. If the value is kata-
remote, then the workload is running on OpenShift sandboxed containers, using peer pods.

$ oc get runtimeclass

NAME HANDLER AGE
kata kata 152m
kata-remote kata-remote 152m

apiVersion: v1
kind: <object>
...
spec:
 runtimeClassName: kata-remote
...

CHAPTER 5. DEPLOYING ON IBM Z AND IBM LINUXONE

95

5.3. DEPLOYING CONFIDENTIAL CONTAINERS ON IBM Z AND
IBM LINUXONE

You can deploy Confidential Containers on IBM Z® and IBM® LinuxONE after you deploy OpenShift
sandboxed containers.

IMPORTANT

Confidential Containers on IBM Z® and IBM® LinuxONE is a Technology Preview feature
only. Technology Preview features are not supported with Red Hat production service
level agreements (SLAs) and might not be functionally complete. Red Hat does not
recommend using them in production. These features provide early access to upcoming
product features, enabling customers to test functionality and provide feedback during
the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

Cluster requirements

You have installed Red Hat OpenShift Container Platform 4.15 or later on the cluster where you
are installing the Confidential compute attestation Operator.

You deploy Confidential Containers by performing the following steps:

1. Install the Confidential compute attestation Operator.

2. Create the route for Trustee.

3. Enable the Confidential Containers feature gate.

4. Update the peer pods config map.

5. Delete the KataConfig custom resource (CR).

6. Update the peer pods secret.

7. Re-create the KataConfig CR.

8. Create the Trustee authentication secret.

9. Create the Trustee config map.

10. Obtain the IBM Secure Execution (SE) header.

11. Configure the SE certificates and keys.

12. Configure attestation policies:

a. Create reference values.

b. Create secrets for attested clients.

c. Create the resource access policy.

13. Create the attestation policy for SE.

OpenShift sandboxed containers 1.7 User guide

96

https://access.redhat.com/support/offerings/techpreview/

14. Create the KbsConfig CR.

15. Verify the attestation process.

5.3.1. Installing the Confidential compute attestation Operator

You can install the Confidential compute attestation Operator on a cluster with an x86-64 architecture
by using the CLI.

Prerequisites

You have installed the OpenShift CLI (oc).

You have access to the cluster as a user with the cluster-admin role.

Procedure

1. Create a trustee-namespace.yaml manifest file:

2. Create the trustee-operator-system namespace by running the following command:

3. Create a trustee-operatorgroup.yaml manifest file:

4. Create the operator group by running the following command:

5. Create a trustee-subscription.yaml manifest file:

apiVersion: v1
kind: Namespace
metadata:
 name: trustee-operator-system

$ oc apply -f trustee-namespace.yaml

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: trustee-operator-group
 namespace: trustee-operator-system
spec:
 targetNamespaces:
 - trustee-operator-system

$ oc apply -f trustee-operatorgroup.yaml

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: trustee-operator
 namespace: trustee-operator-system
spec:
 channel: stable
 installPlanApproval: Automatic
 name: trustee-operator

CHAPTER 5. DEPLOYING ON IBM Z AND IBM LINUXONE

97

6. Create the subscription by running the following command:

7. Verify that the Operator is correctly installed by running the following command:

This command can take several minutes to complete.

8. Watch the process by running the following command:

Example output

5.3.2. Creating the route for Trustee

You can create a secure route with edge TLS termination for Trustee. External ingress traffic reaches
the router pods as HTTPS and passes on to the Trustee pods as HTTP.

Prerequisites

You have enabled the Confidential Containers feature gate.

You have installed the Confidential compute attestation Operator.

Procedure

1. Create an edge route by running the following command:

NOTE

Note: Currently, only a route with a valid CA-signed certificate is supported. You
cannot use a route with self-signed certificate.

2. Set the TRUSTEE_HOST variable by running the following command:

3. Verify the route by running the following command:

 source: redhat-operators
 sourceNamespace: openshift-marketplace
 startingCSV: trustee-operator.v0.1.0

$ oc apply -f trustee-subscription.yaml

$ oc get csv -n trustee-operator-system

$ watch oc get csv -n trustee-operator-system

NAME DISPLAY PHASE
trustee-operator.v0.1.0 Trustee Operator 0.1.0 Succeeded

$ oc create route edge --service=kbs-service --port kbs-port \
 -n trustee-operator-system

$ TRUSTEE_HOST=$(oc get route -n trustee-operator-system kbs-service \
 -o jsonpath={.spec.host})

OpenShift sandboxed containers 1.7 User guide

98

Example output

5.3.3. Enabling the Confidential Containers feature gate

You must enable the Confidential Containers feature gate.

Procedure

1. Create a cc-feature-gate.yaml manifest file:

2. Create the config map by running the following command:

5.3.4. Updating the peer pods config map

You must update the peer pods config map for Confidential Containers.

Procedure

1. Create a peer-pods-cm.yaml manifest file according to the following example:

2. Create the config map by running the following command:

3. Restart the peerpodconfig-ctrl-caa-daemon daemon set by running the following command:

$ echo $TRUSTEE_HOST

kbs-service-trustee-operator-system.apps.memvjias.eastus.aroapp.io

apiVersion: v1
kind: ConfigMap
metadata:
 name: osc-feature-gates
 namespace: openshift-sandboxed-containers-operator
data:
 confidential: "true"

$ oc apply -f cc-feature-gate.yaml

apiVersion: v1
kind: ConfigMap
metadata:
 name: peer-pods-cm
 namespace: openshift-sandboxed-containers-operator
data:
 CLOUD_PROVIDER: "libvirt"
 DISABLECVM: "false"

$ oc apply -f peer-pods-cm.yaml

$ oc set env ds/peerpodconfig-ctrl-caa-daemon \
 -n openshift-sandboxed-containers-operator REBOOT="$(date)"

CHAPTER 5. DEPLOYING ON IBM Z AND IBM LINUXONE

99

5.3.5. Deleting the KataConfig custom resource

You can delete the KataConfig custom resource (CR) by using the command line.

Prerequisites

You have installed the OpenShift CLI (oc).

You have access to the cluster as a user with the cluster-admin role.

Procedure

1. Delete the KataConfig CR by running the following command:

2. Verify that the custom resource was deleted by running the following command:

Example output

5.3.6. Updating the peer pods secret

You must update the peer pods secret for Confidential Containers.

The secret stores credentials for creating the pod virtual machine (VM) image and peer pod instances.

By default, the OpenShift sandboxed containers Operator creates the secret based on the credentials
used to create the cluster. However, you can manually create a secret that uses different credentials.

Prerequisites

REDHAT_OFFLINE_TOKEN. You have generated this token to download the RHEL image at
Red Hat API Tokens .

HKD_CRT. The Host Key Document (HKD) certificate enables secure execution on IBM Z®. For
more information, see Obtaining a host key document from Resource Link in the IBM
documentation.

Procedure

1. Create a peer-pods-secret.yaml manifest file according to the following example:

$ oc delete kataconfig example-kataconfig

$ oc get kataconfig example-kataconfig

No example-kataconfig instances exist

apiVersion: v1
kind: Secret
metadata:
 name: peer-pods-secret
 namespace: openshift-sandboxed-containers-operator
type: Opaque

OpenShift sandboxed containers 1.7 User guide

100

https://access.redhat.com/management/api
https://www.ibm.com/docs/en/linux-on-systems?topic=linux-obtain-host-key-document

1

2

Specify the Red Hat offline token, which is required for the Operator-built image.

Specify the HKD certificate value to enable IBM Secure Execution for the Operator-built
image.

2. Create the secret by running the following command:

3. Restart the peerpodconfig-ctrl-caa-daemon daemon set by running the following command:

5.3.7. Re-creating the KataConfig custom resource

You must re-create the KataConfig custom resource (CR) for Confidential Containers.

IMPORTANT

Creating the KataConfig CR automatically reboots the worker nodes. The reboot can
take from 10 to more than 60 minutes. Factors that impede reboot time are as follows:

A larger OpenShift Container Platform deployment with a greater number of
worker nodes.

Activation of the BIOS and Diagnostics utility.

Deployment on a hard disk drive rather than an SSD.

Deployment on physical nodes such as bare metal, rather than on virtual nodes.

A slow CPU and network.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

Procedure

1. Create an example-kataconfig.yaml manifest file according to the following example:

stringData:
 REDHAT_OFFLINE_TOKEN: "<rh_offline_token>" 1
 HKD_CRT: "<hkd_crt_value>" 2

$ oc apply -f peer-pods-secret.yaml

$ oc set env ds/peerpodconfig-ctrl-caa-daemon \
 -n openshift-sandboxed-containers-operator REBOOT="$(date)"

apiVersion: kataconfiguration.openshift.io/v1
kind: KataConfig
metadata:
 name: example-kataconfig
spec:
 enablePeerPods: true
 logLevel: info

CHAPTER 5. DEPLOYING ON IBM Z AND IBM LINUXONE

101

1

1

2

Optional: If you have applied node labels to install kata-remote on specific nodes, specify
the key and value, for example, cc: 'true'.

2. Create the KataConfig CR by running the following command:

The new KataConfig CR is created and installs kata-remote as a runtime class on the worker
nodes.

Wait for the kata-remote installation to complete and the worker nodes to reboot before
verifying the installation.

3. Monitor the installation progress by running the following command:

When the status of all workers under kataNodes is installed and the condition InProgress is
False without specifying a reason, the kata-remote is installed on the cluster.

4. Verify that you have built the peer pod image and uploaded it to the libvirt volume by running
the following command:

Example output

Enables the Confidential VM during IBM Secure Execution for the Operator-built image.

Contains a value if you have built the peer pod image and uploaded it to the libvirt volume.

5. Monitor the kata-oc machine config pool progress to ensure that it is in the UPDATED state,
when UPDATEDMACHINECOUNT equals MACHINECOUNT, by running the following
command:

kataConfigPoolSelector:
matchLabels:
<label_key>: '<label_value>' 1

$ oc apply -f example-kataconfig.yaml

$ watch "oc describe kataconfig | sed -n /^Status:/,/^Events/p"

$ oc describe configmap peer-pods-cm -n openshift-sandboxed-containers-operator

Name: peer-pods-cm
Namespace: openshift-sandboxed-containers-operator
Labels: <none>
Annotations: <none>

Data
====
CLOUD_PROVIDER: libvirt
DISABLECVM: false 1
LIBVIRT_IMAGE_ID: fa-pp-vol 2

BinaryData
====
Events: <none>

OpenShift sandboxed containers 1.7 User guide

102

6. Verify the daemon set by running the following command:

7. Verify the runtime classes by running the following command:

Example output

5.3.8. Creating the Trustee authentication secret

You must create the authentication secret for Trustee.

Prerequisites

You have installed the OpenShift CLI (oc).

You have access to the cluster as a user with the cluster-admin role.

Procedure

1. Create a private key by running the following command:

2. Create a public key by running the following command:

3. Create a secret by running the following command:

4. Verify the secret by running the following command:

5.3.9. Creating the Trustee config map

You must create the config map to configure the Trustee server.

Prerequisites

$ watch oc get mcp/kata-oc

$ oc get -n openshift-sandboxed-containers-operator ds/peerpodconfig-ctrl-caa-daemon

$ oc get runtimeclass

NAME HANDLER AGE
kata kata 152m
kata-remote kata-remote 152m

$ openssl genpkey -algorithm ed25519 > privateKey

$ openssl pkey -in privateKey -pubout -out publicKey

$ oc create secret generic kbs-auth-public-key --from-file=publicKey -n trustee-operator-
system

$ oc get secret -n trustee-operator-system

CHAPTER 5. DEPLOYING ON IBM Z AND IBM LINUXONE

103

You have created a route for Trustee.

Procedure

1. Create a kbs-config-cm.yaml manifest file:

2. Create the config map by running the following command:

5.3.10. Obtaining the IBM Secure Execution header

You must obtain the IBM Secure Execution (SE) header.

Prerequisites

You have a network block storage device to store the SE header temporarily.

apiVersion: v1
kind: ConfigMap
metadata:
 name: kbs-config-cm
 namespace: trustee-operator-system
data:
 kbs-config.json: |
 {
 "insecure_http" : true,
 "sockets": ["0.0.0.0:8080"],
 "auth_public_key": "/etc/auth-secret/publicKey",
 "attestation_token_config": {
 "attestation_token_type": "CoCo"
 },
 "repository_config": {
 "type": "LocalFs",
 "dir_path": "/opt/confidential-containers/kbs/repository"
 },
 "as_config": {
 "work_dir": "/opt/confidential-containers/attestation-service",
 "policy_engine": "opa",
 "attestation_token_broker": "Simple",
 "attestation_token_config": {
 "duration_min": 5
 },
 "rvps_config": {
 "store_type": "LocalJson",
 "store_config": {
 "file_path": "/opt/confidential-containers/rvps/reference-values/reference-values.json"
 }
 }
 },
 "policy_engine_config": {
 "policy_path": "/opt/confidential-containers/opa/policy.rego"
 }
 }

$ oc apply -f kbs-config-cm.yaml

OpenShift sandboxed containers 1.7 User guide

104

Procedure

1. Create a temporary folder for the SE header by running the following command:

2. Download the pvextract-hdr tool from IBM s390 Linux repository by running the following
command:

3. Make the tool executable by running the following command:

4. Set the $IMAGE_OUTPUT_DIR variable by running the following command:

5. Set the $IMAGE variable by running the following command:

6. Enable the nbd kernel module by running the following command:

7. Connect the SE image as a network block device (NBD) by running the following command:

8. Create a mount directory for the SE image by running the following command:

9. Pause the process by running the following command:

10. List your block devices by running the following command:

Example output

$ mkdir -p /tmp/ibmse/hdr

$ wget https://github.com/ibm-s390-linux/s390-tools/raw/v2.33.1/rust/pvattest/tools/pvextract-
hdr -O /tmp/pvextract-hdr

$ chmod +x /tmp/pvextract-hdr

$ export IMAGE=$IMAGE_OUTPUT_DIR/se-podvm-commit-short-id.qcow2

$ export IMAGE=/root/rooo/se-podvm-d1fb986-dirty-s390x.qcow2

$ modprobe nbd

$ qemu-nbd --connect=/dev/nbd0 $IMAGE

$ mkdir -p /mnt/se-image/

$ sleep 1

$ lsblk

nbd0 43:0 0 100G 0 disk
├─nbd0p1 43:1 0 255M 0 part
├─nbd0p2 43:2 0 6G 0 part
│ └─luks-e23e15fa-9c2a-45a5-9275-aae9d8e709c3 253:2 0 6G 0 crypt
└─nbd0p3 43:3 0 12.4G 0 part
nbd1 43:32 0 20G 0 disk

CHAPTER 5. DEPLOYING ON IBM Z AND IBM LINUXONE

105

https://github.com/ibm-s390-linux/s390-tools/blob/v2.33.1/rust/pvattest/tools/pvextract-hdr

11. Mount the SE image directory on an available NBD partition and extract the SE header by
running the following command:

Example output

The following error is displayed if the NBD is unavailable:

12. Unmount the SE image directory by running the following command:

13. Disconnect the network block storage device by running the following command:

5.3.11. Configuring the IBM Secure Execution certificates and keys

You must configure the IBM Secure Execution (SE) certificates and keys for your worker nodes.

Prerequisites

You have the IP address of the bastion node.

You have the internal IP addresses of the worker nodes.

Procedure

1. Obtain the attestation policy fields by performing the following steps:

a. Download the se_parse_hdr.py script from the OpenShift Trustee repository by running
the following command:

├─nbd1p1 43:33 0 255M 0 part
├─nbd1p2 43:34 0 6G 0 part
│ └─luks-5a540f7c-c0cb-419b-95e0-487670d91525 253:3 0 6G 0 crypt
└─nbd1p3 43:35 0 86.9G 0 part
nbd2 43:64 0 0B 0 disk
nbd3 43:96 0 0B 0 disk
nbd4 43:128 0 0B 0 disk
nbd5 43:160 0 0B 0 disk
nbd6 43:192 0 0B 0 disk
nbd7 43:224 0 0B 0 disk
nbd8 43:256 0 0B 0 disk
nbd9 43:288 0 0B 0 disk
nbd10 43:320 0 0B 0 disk

$ mount /dev/<nbdXp1> /mnt/se-image/ /tmp/pvextract-hdr \
 -o /tmp/ibmse/hdr/hdr.bin /mnt/se-image/se.img

SE header found at offset 0x014000
SE header written to '/tmp/ibmse/hdr/hdr.bin' (640 bytes)

mount: /mnt/se-image: can't read superblock on /dev/nbd0p1

$ umount /mnt/se-image/

$ qemu-nbd --disconnect /dev/nbd0

OpenShift sandboxed containers 1.7 User guide

106

b. Create a temporary directory for the SE Host Key Document (HKD) certificate by running
the following command:

c. Copy your Host Key Document (HKD) certificate to the temporary directory by running the
following command:

NOTE

The HKD certificate must be the same certificate that you downloaded when
you created the peer pods secret.

d. Obtain the attestation policy fields by running the se_parse_hdr.py script:

Example output

Record these values for the SE attestation policy config map.

2. Obtain the certificates and certificate revocation lists (CRLs) by performing the following steps:

a. Create a temporary directory for certificates by running the following command:

b. Download the ibm-z-host-key-signing-gen2.crt certificate by running the following
command:

c. Download the DigiCertCA.crt certificate by running the following command:

d. Create a temporary directory for the CRLs by running the following command:

$ wget https://github.com/openshift/trustee/raw/main/attestation-
service/verifier/src/se/se_parse_hdr.py -O /tmp/se_parse_hdr.py

$ mkdir /tmp/ibmse/hkds/

$ cp ~/path/to/<hkd_cert.crt> /tmp/ibmse/hkds/<hkd_cert.crt>

$ python3 /tmp/se_parse_hdr.py /tmp/ibmse/hdr/hdr.bin /tmp/ibmse/hkds/<hkd_cert.crt>

...
 ==
 se.image_phkh: xxx
 se.version: 256
 se.tag: xxx
 se.attestation_phkh: xxx

$ mkdir /tmp/ibmse/certs

$ wget https://www.ibm.com/support/resourcelink/api/content/public/ibm-z-host-key-
signing-gen2.crt -O /tmp/ibmse/certs/ibm-z-host-key-signing-gen2.crt

$ wget https://www.ibm.com/support/resourcelink/api/content/public/DigiCertCA.crt -O
/tmp/ibmse/certs/DigiCertCA.crt

CHAPTER 5. DEPLOYING ON IBM Z AND IBM LINUXONE

107

1

e. Download the DigiCertTrustedRootG4.crl file by running the following command:

f. Download the DigiCertTrustedG4CodeSigningRSA4096SHA3842021CA1.crl file by
running the following command:

3. Generate the RSA keys:

a. Generate an RSA key pair by running the following command:

Specify the RSA key password.

b. Create a temporary directory for the RSA keys by running the following command:

c. Create an encrypt_key.pub key by running the following command:

d. Create an encrypt_key.pem key by running the following command:

4. Verify the structure of the /tmp/ibmse directory by running the following command:

Example output

$ mkdir /tmp/ibmse/crls

$ wget http://crl3.digicert.com/DigiCertTrustedRootG4.crl -O
/tmp/ibmse/crls/DigiCertTrustedRootG4.crl

$ wget
http://crl3.digicert.com/DigiCertTrustedG4CodeSigningRSA4096SHA3842021CA1.crl -O
/tmp/ibmse/crls/DigiCertTrustedG4CodeSigningRSA4096SHA3842021CA1.crl

$ openssl genrsa -aes256 -passout pass:<password> -out /tmp/encrypt_key-psw.pem
4096 1

$ mkdir /tmp/ibmse/rsa

$ openssl rsa -in /tmp/encrypt_key-psw.pem -passin pass:<password> -pubout -out
/tmp/ibmse/rsa/encrypt_key.pub

$ openssl rsa -in /tmp/encrypt_key-psw.pem -passin pass:<password> -out
/tmp/ibmse/rsa/encrypt_key.pem

$ tree /tmp/ibmse

/tmp/ibmse
├── certs
│ ├── ibm-z-host-key-signing-gen2.crt
| └── DigiCertCA.crt
├── crls
│ └── ibm-z-host-key-gen2.crl
│ └── DigiCertTrustedRootG4.crl
│ └── DigiCertTrustedG4CodeSigningRSA4096SHA3842021CA1.crl
├── hdr

OpenShift sandboxed containers 1.7 User guide

108

1

1

5. Copy these files to the OpenShift Container Platform worker nodes by performing the following
steps:

a. Create a compressed file from the /tmp/ibmse directory by running the following
command:

b. Copy the .tar.gz file to the bastion node in your cluster by running the following command:

Specify the IP address of the bastion node.

c. Connect to the bastion node over SSH by running the following command:

d. Copy the .tar.gz file to each worker node by running the following command:

Specify the IP address of the worker node.

e. Extract the .tar.gz on each worker node by running the following command:

f. Update the ibmse folder permissions by running the following command:

5.3.12. Configuring attestation policies

You can configure the following attestation policy settings:

Reference values

You can configure reference values for the Reference Value Provider Service (RVPS) by specifying
the trusted digests of your hardware platform.
The client collects measurements from the running software, the Trusted Execution Environment
(TEE) hardware and firmware and it submits a quote with the claims to the Attestation Server. These
measurements must match the trusted digests registered to the Trustee. This process ensures that
the confidential VM (CVM) is running the expected software stack and has not been tampered with.

│ └── hdr.bin
├── hkds
│ └── <hkd_cert.crt>
└── rsa
 ├── encrypt_key.pem
 └── encrypt_key.pub

$ tar -czf ibmse.tar.gz -C /tmp/ibmse

$ scp /tmp/ibmse.tar.gz root@<ocp_bastion_ip>:/tmp 1

$ ssh root@<ocp_bastion_ip>

$ scp /tmp/ibmse.tar.gz core@<worker_node_ip>:/tmp 1

$ ssh core@<worker_node_ip> 'sudo mkdir -p /opt/confidential-containers/ && sudo tar -
xzf /tmp/ibmse.tar.gz -C /opt/confidential-containers/'

$ ssh core@<worker_node_ip> 'sudo chmod -R 755 /opt/confidential-containers/ibmse/'

CHAPTER 5. DEPLOYING ON IBM Z AND IBM LINUXONE

109

1

Secrets for clients

You must create one or more secrets to share with attested clients.

Resource access policy

You must configure a policy for the Trustee policy engine to determine which resources to access.
Do not confuse the Trustee policy engine with the Attestation Service policy engine, which
determines the validity of TEE evidence.

Attestation policy

You must create an attestation policy for IBM Secure Execution.

Procedure

1. Create an rvps-configmap.yaml manifest file:

Leave this value empty.

2. Create the RVPS config map by running the following command:

3. Create one or more secrets to share with attested clients according to the following example:

In this example, the kbsres1 secret has two entries (key1, key2), which the Trustee clients
retrieve. You can add more secrets according to your requirements.

4. Create a resourcepolicy-configmap.yaml manifest file:

apiVersion: v1
kind: ConfigMap
metadata:
 name: rvps-reference-values
 namespace: trustee-operator-system
data:
 reference-values.json: |
 [1
]

$ oc apply -f rvps-configmap.yaml

$ oc create secret generic kbsres1 --from-literal key1=<res1val1> \
 --from-literal key2=<res1val2> -n trustee-operator-system

apiVersion: v1
kind: ConfigMap
metadata:
 name: resource-policy
 namespace: trustee-operator-system
data:
 policy.rego: | 1
 package policy 2
 path := split(data["resource-path"], "/")
 default allow = false
 allow {

OpenShift sandboxed containers 1.7 User guide

110

1

2

1

2

The name of the resource policy, policy.rego, must match the resource policy defined in
the Trustee config map.

The resource policy follows the Open Policy Agent specification. This example allows the
retrieval of all resources when the TEE is not the sample attester.

5. Create the resource policy config map by running the following command:

6. Create an attestation-policy.yaml manifest file:

Do not modify the policy name.

Specify the attestation policy fields you obtained by running the se_parse_hdr.py script.

7. Create the attestation policy config map by running the following command:

5.3.13. Creating the KbsConfig custom resource

You must create the KbsConfig custom resource (CR) to launch Trustee.

Then, you check the Trustee pods and pod logs to verify the configuration.

Procedure

1. Create a kbsconfig-cr.yaml manifest file:

 count(path) == 3
 input["tee"] == "se"
 }

$ oc apply -f resourcepolicy-configmap.yaml

apiVersion: v1
kind: ConfigMap
metadata:
 name: attestation-policy
 namespace: trustee-operator-system
data:
 default.rego: | 1
 package policy
 import rego.v1
 default allow = false
 converted_version := sprintf("%v", [input["se.version"]])
 allow if {
 input["se.attestation_phkh"] == "<se.attestation_phkh>" 2
 input["se.image_phkh"] == "<se.image_phkh>"
 input["se.tag"] == "<se.tag>" 3
 input["se.user_data"] == "00"
 converted_version == "256"
 }

$ oc apply -f attestation-policy.yaml

CHAPTER 5. DEPLOYING ON IBM Z AND IBM LINUXONE

111

https://www.openpolicyagent.org/docs/latest/policy-language/

2. Create the KbsConfig CR by running the following command:

Verification

1. Set the default project by running the following command:

2. Check the pods by running the following command:

Example output

3. Set the POD_NAME environmental variable by running the following command:

4. Check the pod logs by running the following command:

apiVersion: confidentialcontainers.org/v1alpha1
kind: KbsConfig
metadata:
 labels:
 app.kubernetes.io/name: kbsconfig
 app.kubernetes.io/instance: kbsconfig
 app.kubernetes.io/part-of: trustee-operator
 app.kubernetes.io/managed-by: kustomize
 app.kubernetes.io/created-by: trustee-operator
 name: kbsconfig
 namespace: trustee-operator-system
spec:
 kbsConfigMapName: kbs-config-cm
 kbsAuthSecretName: kbs-auth-public-key
 kbsDeploymentType: AllInOneDeployment
 kbsRvpsRefValuesConfigMapName: rvps-reference-values
 kbsSecretResources: ["kbsres1"]
 kbsResourcePolicyConfigMapName: resource-policy
 kbsAttestationPolicyConfigMapName: attestation-policy
 kbsServiceType: NodePort
 ibmSEConfigSpec:
 certStorePvc: ibmse-pvc

$ oc apply -f kbsconfig-cr.yaml

$ oc project trustee-operator-system

$ oc get pods -n trustee-operator-system

NAME READY STATUS RESTARTS AGE
trustee-deployment-8585f98449-9bbgl 1/1 Running 0 22m
trustee-operator-controller-manager-5fbd44cd97-55dlh 2/2 Running 0 59m

$ POD_NAME=$(oc get pods -l app=kbs -o jsonpath='{.items[0].metadata.name}' -n trustee-
operator-system)

$ oc logs -n trustee-operator-system $POD_NAME

OpenShift sandboxed containers 1.7 User guide

112

Example output

5. Verify that the kbs-service is exposed on a node port by running the following command:

Example output

The kbs-service URL is `https://<worker_node_ip>:<node_port>`, for example,
`https://172.16.0.56:31862`.

5.3.14. Verifying the attestation process

You can verify the attestation process by creating a test pod and retrieving its secret. The pod image
deploys the KBS client, a tool for testing the Key Broker Service and basic attestation flows.

IMPORTANT

This procedure is an example to verify that attestation is working. Do not write sensitive
data to standard I/O because the data can be captured by using a memory dump. Only
data written to memory is encrypted.

Prerequisites

You have created a route if the Trustee server and the test pod are not running in the same
cluster.

Procedure

1. Create a verification-pod.yaml manifest file:

[2024-05-30T13:44:24Z INFO kbs] Using config file /etc/kbs-config/kbs-config.json
[2024-05-30T13:44:24Z WARN attestation_service::rvps] No RVPS address provided and
will launch a built-in rvps
[2024-05-30T13:44:24Z INFO attestation_service::token::simple] No Token Signer key in
config file, create an ephemeral key and without CA pubkey cert
[2024-05-30T13:44:24Z INFO api_server] Starting HTTPS server at [0.0.0.0:8080]
[2024-05-30T13:44:24Z INFO actix_server::builder] starting 12 workers
[2024-05-30T13:44:24Z INFO actix_server::server] Tokio runtime found; starting in existing
Tokio runtime

$ oc get svc kbs-service -n trustee-operator-system

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
kbs-service NodePort 198.51.100.54 <none> 8080:31862/TCP 23h

apiVersion: v1
kind: Pod
metadata:
 name: kbs-client
spec:
 containers:
 - name: kbs-client
 image: quay.io/confidential-containers/kbs-client:latest
 imagePullPolicy: IfNotPresent

CHAPTER 5. DEPLOYING ON IBM Z AND IBM LINUXONE

113

2. Create the pod by running the following command:

3. Copy the https.crt file to the kbs-client pod by running the following command:

4. Fetch the pod secret by running the following command:

Example output

The Trustee server returns the secret only if the attestation is successful.

 command:
 - sleep
 - "360000"
 env:
 - name: RUST_LOG
 value: none

$ oc create -f verification-pod.yaml

$ oc cp https.crt kbs-client:/

$ oc exec -it kbs-client -- kbs-client --cert-file https.crt \
 --url https://kbs-service:8080 get-resource \
 --path default/kbsres1/key1

res1val1

OpenShift sandboxed containers 1.7 User guide

114

CHAPTER 6. MONITORING
You can use the OpenShift Container Platform web console to monitor metrics related to the health
status of your sandboxed workloads and nodes.

OpenShift sandboxed containers has a pre-configured dashboard available in the OpenShift Container
Platform web console. Administrators can also access and query raw metrics through Prometheus.

6.1. ABOUT METRICS

OpenShift sandboxed containers metrics enable administrators to monitor how their sandboxed
containers are running. You can query for these metrics in Metrics UI In the OpenShift Container
Platform web console.

OpenShift sandboxed containers metrics are collected for the following categories:

Kata agent metrics

Kata agent metrics display information about the kata agent process running in the VM embedded in
your sandboxed containers. These metrics include data from /proc/<pid>/[io, stat, status].

Kata guest operating system metrics

Kata guest operating system metrics display data from the guest operating system running in your
sandboxed containers. These metrics include data from /proc/[stats, diskstats, meminfo, vmstats]
and /proc/net/dev.

Hypervisor metrics

Hypervisor metrics display data regarding the hypervisor running the VM embedded in your
sandboxed containers. These metrics mainly include data from /proc/<pid>/[io, stat, status].

Kata monitor metrics

Kata monitor is the process that gathers metric data and makes it available to Prometheus. The kata
monitor metrics display detailed information about the resource usage of the kata-monitor process
itself. These metrics also include counters from Prometheus data collection.

Kata containerd shim v2 metrics

Kata containerd shim v2 metrics display detailed information about the kata shim process. These
metrics include data from /proc/<pid>/[io, stat, status] and detailed resource usage metrics.

6.2. VIEWING METRICS

You can access the metrics for OpenShift sandboxed containers in the Metrics page In the OpenShift
Container Platform web console.

Prerequisites

You have access to the cluster as a user with the cluster-admin role or with view permissions
for all projects.

Procedure

1. In the OpenShift Container Platform web console, navigate to Observe → Metrics.

2. In the input field, enter the query for the metric you want to observe.
All kata-related metrics begin with kata. Typing kata displays a list of all available kata metrics.

CHAPTER 6. MONITORING

115

The metrics from your query are visualized on the page.

Additional resources

Querying metrics.

Gathering data about your cluster .

OpenShift sandboxed containers 1.7 User guide

116

https://docs.redhat.com/documentation/en-us/openshift_container_platform/4.16/html-single/monitoring/index#querying-metrics.html
https://docs.redhat.com/documentation/en-us/openshift_container_platform/4.16/html-single/support/index#gathering-cluster-data.html

CHAPTER 7. UNINSTALLING
You can uninstall OpenShift sandboxed containers and remove the Confidential Containers
environment.

7.1. UNINSTALLING OPENSHIFT SANDBOXED CONTAINERS

You can uninstall OpenShift sandboxed containers by using the OpenShift Container Platform web
console or the command line.

You uninstall OpenShift sandboxed containers by performing the following tasks:

1. Delete the workload pods.

2. Delete the KataConfig custom resource.

3. Uninstall the OpenShift sandboxed containers Operator.

4. Delete the KataConfig custom resource definition.

7.1.1. Uninstalling OpenShift sandboxed containers by using the web console

You can uninstall OpenShift sandboxed containers by using the OpenShift Container Platform web
console.

7.1.1.1. Deleting workload pods

You can delete the OpenShift sandboxed containers workload pods by using the OpenShift Container
Platform web console.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

You have a list of pods that use the OpenShift sandboxed containers runtime class.

Procedure

1. In the OpenShift Container Platform web console, navigate to Workloads → Pods.

2. Enter the name of the pod that you want to delete in the Search by name field.

3. Click the pod name to open it.

4. On the Details page, check that kata or kata-remote is displayed for Runtime class.

5. Click the Options menu and select Delete Pod.

6. Click Delete.

7.1.1.2. Deleting the KataConfig custom resource

You can delete the KataConfig custom resource (CR) by using the web console.

Deleting the KataConfig CR removes and uninstalls the kata runtime and its related resources from

CHAPTER 7. UNINSTALLING

117

Deleting the KataConfig CR removes and uninstalls the kata runtime and its related resources from
your cluster.

IMPORTANT

Deleting the KataConfig CR automatically reboots the worker nodes. The reboot can
take from 10 to more than 60 minutes. Factors that impede reboot time are as follows:

A larger OpenShift Container Platform deployment with a greater number of
worker nodes.

Activation of the BIOS and Diagnostics utility.

Deployment on a hard drive rather than an SSD.

Deployment on physical nodes such as bare metal, rather than on virtual nodes.

A slow CPU and network.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

You have deleted all running pods that use kata as the runtimeClass.

Procedure

1. In the OpenShift Container Platform web console, navigate to Operators → Installed
Operators.

2. Enter OpenShift sandboxed containers Operator in the Search by name field.

3. Click the Operator to open it and then click the KataConfig tab.

4. Click the Options menu and select Delete KataConfig.

5. Click Delete in the confirmation window.

Wait for the kata runtime and resources to uninstall and for the worker nodes to reboot before
continuing to the next step.

7.1.1.3. Uninstalling the OpenShift sandboxed containers Operator

You can uninstall the OpenShift sandboxed containers Operator by using OpenShift Container Platform
web console.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

You have deleted the KataConfig custom resource.

Procedure

OpenShift sandboxed containers 1.7 User guide

118

1. Navigate to Operators → Installed Operators.

2. Enter OpenShift sandboxed containers Operator in the Search by name field.

3. On the right side of the Operator Details page, select Uninstall Operator from the Actions list.
An Uninstall Operator? dialog box is displayed.

4. Click Uninstall to remove the Operator, Operator deployments, and pods.

5. Navigate to Administration → Namespaces.

6. Enter openshift-sandboxed-containers-operator in the Search by name field.

7. Click the Options menu and select Delete Namespace.

8. In the confirmation dialog, enter openshift-sandboxed-containers-operator and click Delete.

7.1.1.4. Deleting the KataConfig CRD

You can delete the KataConfig custom resource definition (CRD) by using the OpenShift Container
Platform web console.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

You have deleted the KataConfig custom resource.

You have uninstalled the OpenShift sandboxed containers Operator.

Procedure

1. In the web console, navigate to Administration → CustomResourceDefinitions.

2. Enter the KataConfig name in the Search by name field.

3. Click the Options menu and select Delete CustomResourceDefinition.

4. Click Delete in the confirmation window.

7.1.2. Uninstalling OpenShift sandboxed containers by using the CLI

You can uninstall OpenShift sandboxed containers by using the command-line interface (CLI).

7.1.2.1. Deleting workload pods

You can delete the OpenShift sandboxed containers workload pods by using the CLI.

Prerequisites

You have the JSON processor (jq) utility installed.

Procedure

CHAPTER 7. UNINSTALLING

119

1

1. Search for the pods by running the following command:

Specify kata for bare metal deployments. Specify kata-remote for AWS, Azure, IBM Z®,
and IBM® LinuxONE.

2. Delete each pod by running the following command:

7.1.2.2. Deleting the KataConfig custom resource

You can delete the KataConfig custom resource (CR) by using the command line.

Deleting the KataConfig CR removes the runtime and its related resources from your cluster.

IMPORTANT

Deleting the KataConfig CR automatically reboots the worker nodes. The reboot can
take from 10 to more than 60 minutes. Factors that impede reboot time are as follows:

A larger OpenShift Container Platform deployment with a greater number of
worker nodes.

Activation of the BIOS and Diagnostics utility.

Deployment on a hard drive rather than an SSD.

Deployment on physical nodes such as bare metal, rather than on virtual nodes.

A slow CPU and network.

Prerequisites

You have installed the OpenShift CLI (oc).

You have access to the cluster as a user with the cluster-admin role.

Procedure

1. Delete the KataConfig CR by running the following command:

The OpenShift sandboxed containers Operator removes all resources that were initially created
to enable the runtime on your cluster.

IMPORTANT

$ oc get pods -A -o json | jq -r '.items[] | \
 select(.spec.runtimeClassName == "<runtime>").metadata.name' 1

$ oc delete pod <pod>

$ oc delete kataconfig example-kataconfig

OpenShift sandboxed containers 1.7 User guide

120

IMPORTANT

When you delete the KataConfig CR, the CLI stops responding until all worker
nodes reboot. You must for the deletion process to complete before performing
the verification.

2. Verify that the custom resource was deleted by running the following command:

Example output

7.1.2.3. Uninstalling the OpenShift sandboxed containers Operator

You can uninstall the OpenShift sandboxed containers Operator by using the command line.

Prerequisites

You have installed the OpenShift CLI (oc).

You have access to the cluster as a user with the cluster-admin role.

You have deleted the OpenShift sandboxed containers workload pods.

You have deleted KataConfig custom resource.

Procedure

1. Delete the subscription by running the following command:

2. Delete the namespace by running the following command:

7.1.2.4. Deleting the KataConfig CRD

You can delete the KataConfig custom resource definition (CRD) by using the command line.

Prerequisites

You have installed the OpenShift CLI (oc).

You have access to the cluster as a user with the cluster-admin role.

You have deleted the KataConfig custom resource.

You have uninstalled the OpenShift sandboxed containers Operator.

Procedure

$ oc get kataconfig example-kataconfig

No example-kataconfig instances exist

$ oc delete subscription sandboxed-containers-operator -n openshift-sandboxed-containers-
operator

$ oc delete namespace openshift-sandboxed-containers-operator

CHAPTER 7. UNINSTALLING

121

Procedure

1. Delete the KataConfig CRD by running the following command:

2. Verify that the CRD was deleted by running the following command:

Example output

7.2. REMOVING THE CONFIDENTIAL CONTAINERS ENVIRONMENT

You can remove the Confidential Containers environment by using the OpenShift Container Platform
web console or the command line.

You remove the Confidential Containers environment by performing the following tasks:

1. Delete the KbsConfig custom resource.

2. Uninstall the Confidential compute attestation Operator.

3. Delete the KbsConfig custom resource definition.

7.2.1. Removing the Confidential Containers environment by using the web console

You can remove the Confidential Containers environment by using the OpenShift Container Platform
web console.

7.2.1.1. Deleting the KbsConfig custom resource

You can delete the KbsConfig custom resource (CR) by using the web console.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

You have uninstalled OpenShift sandboxed containers.

Procedure

1. In the OpenShift Container Platform web console, navigate to Operators → Installed
Operators.

2. Enter Confidential compute attestation in the Search by name field.

3. Click the Operator to open it and then click the KbsConfig tab.

4. Click the Options menu and select Delete KbsConfig.

$ oc delete crd kataconfigs.kataconfiguration.openshift.io

$ oc get crd kataconfigs.kataconfiguration.openshift.io

Unknown CRD kataconfigs.kataconfiguration.openshift.io

OpenShift sandboxed containers 1.7 User guide

122

5. Click Delete in the confirmation window.

7.2.1.2. Uninstalling the Confidential compute attestation Operator

You can uninstall the Confidential compute attestation Operator by using OpenShift Container
Platform web console.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

You have deleted the KbsConfig custom resource.

Procedure

1. Navigate to Operators → Installed Operators.

2. Enter Confidential compute attestation in the Search by name field.

3. On the right side of the Operator Details page, select Uninstall Operator from the Actions list.
An Uninstall Operator? dialog box is displayed.

4. Click Uninstall to remove the Operator, Operator deployments, and pods.

5. Navigate to Administration → Namespaces.

6. Enter trustee-operator-system in the Search by name field.

7. Click the Options menu and select Delete Namespace.

8. In the confirmation dialog, enter trustee-operator-system and click Delete.

7.2.1.3. Deleting the KbsConfig CRD

You can delete the KbsConfig custom resource definition (CRD) by using the OpenShift Container
Platform web console.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

You have deleted the KbsConfig custom resource.

You have uninstalled the Confidential compute attestation Operator.

Procedure

1. In the web console, navigate to Administration → CustomResourceDefinitions.

2. Enter the KbsConfig name in the Search by name field.

3. Click the Options menu and select Delete CustomResourceDefinition.

4. Click Delete in the confirmation window.

CHAPTER 7. UNINSTALLING

123

7.2.2. Removing the Confidential Containers environment by using the CLI

You can remove the Confidential Containers environment by using the command-line interface (CLI).

7.2.2.1. Deleting the KbsConfig custom resource

You can delete the KbsConfig custom resource (CR) by using the command line.

Prerequisites

You have installed the OpenShift CLI (oc).

You have access to the cluster as a user with the cluster-admin role.

You have uninstalled OpenShift sandboxed containers.

Procedure

1. Delete the KbsConfig CR by running the following command:

2. Verify that the custom resource was deleted by running the following command:

Example output

7.2.2.2. Uninstalling the Confidential compute attestation Operator

You can uninstall the Confidential compute attestation Operator by using the command line.

Prerequisites

You have installed the OpenShift CLI (oc).

You have access to the cluster as a user with the cluster-admin role.

You have deleted the KbsConfig custom resource.

Procedure

1. Delete the subscription by running the following command:

2. Delete the namespace by running the following command:

$ oc delete kbsconfig kbsconfig

$ oc get kbsconfig kbsconfig

No kbsconfig instances exist

$ oc delete subscription trustee-operator -n trustee-operator-system

$ oc delete namespace trustee-operator-system

OpenShift sandboxed containers 1.7 User guide

124

7.2.2.3. Deleting the KbsConfig CRD

You can delete the KbsConfig custom resource definition (CRD) by using the command line.

Prerequisites

You have installed the OpenShift CLI (oc).

You have access to the cluster as a user with the cluster-admin role.

You have deleted the KbsConfig custom resource.

You have uninstalled the Confidential compute attestation Operator.

Procedure

1. Delete the KbsConfig CRD by running the following command:

2. Verify that the CRD was deleted by running the following command:

Example output

$ oc delete crd kbsconfigs.confidentialcontainers.org

$ oc get crd kbsconfigs.confidentialcontainers.org

Unknown CRD kbsconfigs.confidentialcontainers.org

CHAPTER 7. UNINSTALLING

125

CHAPTER 8. UPGRADING
The upgrade of the OpenShift sandboxed containers components consists of the following three steps:

1. Upgrade OpenShift Container Platform to update the Kata runtime and its dependencies.

2. Upgrade the OpenShift sandboxed containers Operator to update the Operator subscription.

You can upgrade OpenShift Container Platform before or after the OpenShift sandboxed containers
Operator upgrade, with the one exception noted below. Always apply the KataConfig patch
immediately after upgrading OpenShift sandboxed containers Operator.

8.1. UPGRADING RESOURCES

The OpenShift sandboxed containers resources are deployed onto the cluster using Red Hat Enterprise
Linux CoreOS (RHCOS) extensions.

The RHCOS extension sandboxed containers contains the required components to run OpenShift
sandboxed containers, such as the Kata containers runtime, the hypervisor QEMU, and other
dependencies. You upgrade the extension by upgrading the cluster to a new release of OpenShift
Container Platform.

For more information about upgrading OpenShift Container Platform, see Updating Clusters.

8.2. UPGRADING THE OPERATOR

Use Operator Lifecycle Manager (OLM) to upgrade the OpenShift sandboxed containers Operator
either manually or automatically. Selecting between manual or automatic upgrade during the initial
deployment determines the future upgrade mode. For manual upgrades, the OpenShift Container
Platform web console shows the available updates that can be installed by the cluster administrator.

For more information about upgrading the OpenShift sandboxed containers Operator in Operator
Lifecycle Manager (OLM), see Updating installed Operators.

OpenShift sandboxed containers 1.7 User guide

126

https://docs.redhat.com/documentation/en-us/openshift_container_platform/4.16/html-single/updating/index
https://docs.redhat.com/documentation/en-us/openshift_container_platform/4.16/html-single/operators/index#olm-upgrading-operators

CHAPTER 9. TROUBLESHOOTING
When troubleshooting OpenShift sandboxed containers, you can open a support case and provide
debugging information using the must-gather tool.

If you are a cluster administrator, you can also review logs on your own, enabling a more detailed level of
logs.

9.1. COLLECTING DATA FOR RED HAT SUPPORT

When opening a support case, it is helpful to provide debugging information about your cluster to Red
Hat Support.

The must-gather tool enables you to collect diagnostic information about your OpenShift Container
Platform cluster, including virtual machines and other data related to OpenShift sandboxed containers.

For prompt support, supply diagnostic information for both OpenShift Container Platform and
OpenShift sandboxed containers.

Using the must-gather tool
The oc adm must-gather CLI command collects the information from your cluster that is most likely
needed for debugging issues, including:

Resource definitions

Service logs

By default, the oc adm must-gather command uses the default plugin image and writes into ./must-
gather.local.

Alternatively, you can collect specific information by running the command with the appropriate
arguments as described in the following sections:

To collect data related to one or more specific features, use the --image argument with an
image, as listed in a following section.
For example:

To collect the audit logs, use the -- /usr/bin/gather_audit_logs argument, as described in a
following section.
For example:

NOTE

Audit logs are not collected as part of the default set of information to reduce
the size of the files.

When you run oc adm must-gather, a new pod with a random name is created in a new project on the
cluster. The data is collected on that pod and saved in a new directory that starts with must-
gather.local. This directory is created in the current working directory.

$ oc adm must-gather --image=registry.redhat.io/openshift-sandboxed-containers/osc-must-
gather-rhel9:1.7.0

$ oc adm must-gather -- /usr/bin/gather_audit_logs

CHAPTER 9. TROUBLESHOOTING

127

For example:

Optionally, you can run the oc adm must-gather command in a specific namespace by using the --run-
namespace option.

For example:

9.2. COLLECTING LOG DATA

The following features and objects are associated with OpenShift sandboxed containers:

All namespaces and their child objects that belong to OpenShift sandboxed containers
resources

All OpenShift sandboxed containers custom resource definitions (CRDs)

You can collect the following component logs for each pod running with the kata runtime:

Kata agent logs

Kata runtime logs

QEMU logs

Audit logs

CRI-O logs

9.2.1. Enabling debug logs for CRI-O runtime

You can enable debug logs by updating the logLevel field in the KataConfig CR. This changes the log
level in the CRI-O runtime for the worker nodes running OpenShift sandboxed containers.

Prerequisites

You have installed the OpenShift CLI (oc).

You have access to the cluster as a user with the cluster-admin role.

Procedure

1. Change the logLevel field in your existing KataConfig CR to debug:

2. Monitor the kata-oc machine config pool until the value of UPDATED is True, indicating that all

NAMESPACE NAME READY STATUS RESTARTS AGE
...
openshift-must-gather-5drcj must-gather-bklx4 2/2 Running 0 72s
openshift-must-gather-5drcj must-gather-s8sdh 2/2 Running 0 72s
...

$ oc adm must-gather --run-namespace <namespace> --image=registry.redhat.io/openshift-
sandboxed-containers/osc-must-gather-rhel9:1.7.0

$ oc patch kataconfig <kataconfig> --type merge --patch '{"spec":{"logLevel":"debug"}}'

OpenShift sandboxed containers 1.7 User guide

128

2. Monitor the kata-oc machine config pool until the value of UPDATED is True, indicating that all
worker nodes are updated:

Example output

Verification

1. Start a debug session with a node in the machine config pool:

2. Change the root directory to /host:

3. Verify the changes in the crio.conf file:

Example output

9.2.2. Viewing debug logs for components

Cluster administrators can use the debug logs to troubleshoot issues. The logs for each node are
printed to the node journal.

You can review the logs for the following OpenShift sandboxed containers components:

Kata agent

Kata runtime (containerd-shim-kata-v2)

virtiofsd

QEMU only generates warning and error logs. These warnings and errors print to the node journal in
both the Kata runtime logs and the CRI-O logs with an extra qemuPid field.

Example of QEMU logs

$ oc get mcp kata-oc

NAME CONFIG UPDATED UPDATING DEGRADED MACHINECOUNT
READYMACHINECOUNT UPDATEDMACHINECOUNT DEGRADEDMACHINECOUNT
AGE
kata-oc rendered-kata-oc-169 False True False 3 1 1
0 9h

$ oc debug node/<node_name>

chroot /host

crio config | egrep 'log_level

log_level = "debug"

Mar 11 11:57:28 openshift-worker-0 kata[2241647]: time="2023-03-11T11:57:28.587116986Z"
level=info msg="Start logging QEMU (qemuPid=2241693)" name=containerd-shim-v2 pid=2241647
sandbox=d1d4d68efc35e5ccb4331af73da459c13f46269b512774aa6bde7da34db48987
source=virtcontainers/hypervisor subsystem=qemu

CHAPTER 9. TROUBLESHOOTING

129

The Kata runtime prints Start logging QEMU when QEMU starts, and Stop Logging QEMU when
QEMU stops. The error appears in between these two log messages with the qemuPid field. The actual
error message from QEMU appears in red.

The console of the QEMU guest is printed to the node journal as well. You can view the guest console
logs together with the Kata agent logs.

Prerequisites

You have installed the OpenShift CLI (oc).

You have access to the cluster as a user with the cluster-admin role.

Procedure

To review the Kata agent logs and guest console logs, run the following command:

To review the Kata runtime logs, run the following command:

To review the virtiofsd logs, run the following command:

To review the QEMU logs, run the following command:

Additional resources

Gathering data about your cluster in the OpenShift Container Platform documentation

Mar 11 11:57:28 openshift-worker-0 kata[2241647]: time="2023-03-11T11:57:28.607339014Z"
level=error msg="qemu-kvm: -machine q35,accel=kvm,kernel_irqchip=split,foo: Expected '=' after
parameter 'foo'" name=containerd-shim-v2 pid=2241647 qemuPid=2241693
sandbox=d1d4d68efc35e5ccb4331af73da459c13f46269b512774aa6bde7da34db48987
source=virtcontainers/hypervisor subsystem=qemu

Mar 11 11:57:28 openshift-worker-0 kata[2241647]: time="2023-03-11T11:57:28.60890737Z"
level=info msg="Stop logging QEMU (qemuPid=2241693)" name=containerd-shim-v2 pid=2241647
sandbox=d1d4d68efc35e5ccb4331af73da459c13f46269b512774aa6bde7da34db48987
source=virtcontainers/hypervisor subsystem=qemu

$ oc debug node/<nodename> -- journalctl -D /host/var/log/journal -t kata -g “reading guest
console”

$ oc debug node/<nodename> -- journalctl -D /host/var/log/journal -t kata

$ oc debug node/<nodename> -- journalctl -D /host/var/log/journal -t virtiofsd

$ oc debug node/<nodename> -- journalctl -D /host/var/log/journal -t kata -g "qemuPid=\d+"

OpenShift sandboxed containers 1.7 User guide

130

https://docs.redhat.com/documentation/en-us/openshift_container_platform/4.16/html-single/support/index#support_gathering_data_gathering-cluster-data

APPENDIX A. KATACONFIG STATUS MESSAGES
The following table displays the status messages for the KataConfig custom resource (CR) for a cluster
with two worker nodes.

Table A.1. KataConfig status messages

Status Description

Initial installation

When a KataConfig CR is created and starts
installing kata-remote on both workers, the
following status is displayed for a few seconds.

Installing

Within a few seconds the status changes.

Installing (Worker-1 installation starting)

For a short period of time, the status changes,
signifying that one node has initiated the installation
of kata-remote, while the other is in a waiting state.
This is because only one node can be unavailable at
any given time. The nodeCount remains at 2
because both nodes will eventually receive kata-
remote, but the readyNodeCount is currently 0 as
neither of them has reached that state yet.

Installing (Worker-1 installed, worker-0 installation
started)

After some time, worker-1 will complete its
installation, causing a change in the status. The
readyNodeCount is updated to 1, indicating that
worker-1 is now prepared to execute kata-remote
workloads. You cannot schedule or run kata-remote
workloads until the runtime class is created at the
end of the installation process.

 conditions:
 message: Performing initial installation of
kata-remote on cluster
 reason: Installing
 status: 'True'
 type: InProgress
 kataNodes:
 nodeCount: 0
 readyNodeCount: 0

 kataNodes:
 nodeCount: 2
 readyNodeCount: 0
 waitingToInstall:
 - worker-0
 - worker-1

 kataNodes:
 installing:
 - worker-1
 nodeCount: 2
 readyNodeCount: 0
 waitingToInstall:
 - worker-0

 kataNodes:
 installed:
 - worker-1
 installing:
 - worker-0
 nodeCount: 2
 readyNodeCount: 1

APPENDIX A. KATACONFIG STATUS MESSAGES

131

Installed

When installed, both workers are listed as installed,
and the InProgress condition transitions to False
without specifying a reason, indicating the successful
installation of kata-remote on the cluster.

Status Description

Status Description

Initial uninstall

If kata-remote is installed on both workers, and you
delete the KataConfig to remove kata-remote
from the cluster, both workers briefly enter a waiting
state for a few seconds.

Uninstalling

After a few seconds, one of the workers starts
uninstalling.

Uninstalling

Worker-1 finishes and worker-0 starts uninstalling.

 conditions:
 message: ""
 reason: ""
 status: 'False'
 type: InProgress
 kataNodes:
 installed:
 - worker-0
 - worker-1
 nodeCount: 2
 readyNodeCount: 2

 conditions:
 message: Removing kata-remote from
cluster
 reason: Uninstalling
 status: 'True'
 type: InProgress
 kataNodes:
 nodeCount: 0
 readyNodeCount: 0
 waitingToUninstall:
 - worker-0
 - worker-1

 kataNodes:
 nodeCount: 0
 readyNodeCount: 0
 uninstalling:
 - worker-1
 waitingToUninstall:
 - worker-0

 kataNodes:
 nodeCount: 0
 readyNodeCount: 0
 uninstalling:
 - worker-0

OpenShift sandboxed containers 1.7 User guide

132

NOTE

The reason field can also report the following causes:

Failed: This is reported if the node cannot finish its transition. The status reports
True and the message is Node <node_name> Degraded:
<error_message_from_the_node>.

BlockedByExistingKataPods: This is reported if there are pods running on a
cluster that use the kata-remote runtime while kata-remote is being uninstalled.
The status field is False and the message is Existing pods using "kata-
remote" RuntimeClass found. Please delete the pods manually for
KataConfig deletion to proceed. There could also be a technical error message
reported like Failed to list kata pods: <error_message> if communication with
the cluster control plane fails.

APPENDIX A. KATACONFIG STATUS MESSAGES

133

	Table of Contents
	PREFACE
	PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

	CHAPTER 1. ABOUT OPENSHIFT SANDBOXED CONTAINERS
	1.1. FEATURES
	1.2. COMPATIBILITY WITH OPENSHIFT CONTAINER PLATFORM
	1.3. NODE ELIGIBILITY CHECKS
	1.4. COMMON TERMS
	1.5. OPENSHIFT SANDBOXED CONTAINERS OPERATOR
	1.6. ABOUT CONFIDENTIAL CONTAINERS
	1.7. OPENSHIFT VIRTUALIZATION
	1.8. STORAGE CONSIDERATIONS
	1.8.1. Block volume support

	1.9. FIPS COMPLIANCE

	CHAPTER 2. DEPLOYING ON BARE METAL
	2.1. OPENSHIFT SANDBOXED CONTAINERS RESOURCE REQUIREMENTS
	2.2. DEPLOYING OPENSHIFT SANDBOXED CONTAINERS BY USING THE WEB CONSOLE
	2.2.1. Installing the OpenShift sandboxed containers Operator
	2.2.2. Creating the KataConfig custom resource
	Additional resources

	2.2.3. Configuring workload objects

	2.3. DEPLOYING OPENSHIFT SANDBOXED CONTAINERS BY USING THE COMMAND LINE
	2.3.1. Installing the OpenShift sandboxed containers Operator
	2.3.2. Optional configurations
	2.3.2.1. Provisioning local block volumes
	2.3.2.2. Enabling nodes to use a local block device
	2.3.2.3. Creating a NodeFeatureDiscovery custom resource

	2.3.3. Creating the KataConfig custom resource
	2.3.4. Modifying pod overhead
	2.3.5. Configuring workload objects

	CHAPTER 3. DEPLOYING ON AWS
	3.1. PEER POD RESOURCE REQUIREMENTS
	3.2. DEPLOYING OPENSHIFT SANDBOXED CONTAINERS BY USING THE WEB CONSOLE
	3.2.1. Installing the OpenShift sandboxed containers Operator
	3.2.2. Enabling ports for AWS
	3.2.3. Creating the peer pods secret
	3.2.4. Creating the peer pods config map
	3.2.5. Creating the KataConfig custom resource
	Additional resources
	Verifying the pod VM image

	3.2.6. Configuring workload objects

	3.3. DEPLOYING OPENSHIFT SANDBOXED CONTAINERS BY USING THE COMMAND LINE
	3.3.1. Installing the OpenShift sandboxed containers Operator
	3.3.2. Modifying the number of peer pod VMs per node
	3.3.3. Enabling ports for AWS
	3.3.4. Creating the peer pods secret
	3.3.5. Creating the peer pods config map
	3.3.6. Creating the KataConfig custom resource
	Verifying the pod VM image

	3.3.7. Configuring workload objects

	CHAPTER 4. DEPLOYING ON AZURE
	4.1. PEER POD RESOURCE REQUIREMENTS
	4.2. DEPLOYING OPENSHIFT SANDBOXED CONTAINERS BY USING THE WEB CONSOLE
	4.2.1. Installing the OpenShift sandboxed containers Operator
	4.2.2. Creating the peer pods secret
	4.2.3. Creating the peer pods config map
	4.2.4. Creating the Azure secret
	4.2.5. Creating the KataConfig custom resource
	Additional resources
	Verifying the pod VM image

	4.2.6. Configuring workload objects

	4.3. DEPLOYING OPENSHIFT SANDBOXED CONTAINERS BY USING THE COMMAND LINE
	4.3.1. Installing the OpenShift sandboxed containers Operator
	4.3.2. Modifying the number of peer pod VMs per node
	4.3.3. Creating the peer pods secret
	4.3.4. Creating the peer pods config map
	4.3.5. Creating the Azure secret
	4.3.6. Creating the KataConfig custom resource
	Verifying the pod VM image

	4.3.7. Configuring workload objects

	4.4. DEPLOYING CONFIDENTIAL CONTAINERS ON AZURE
	4.4.1. Installing the Confidential compute attestation Operator
	4.4.2. Creating the route for Trustee
	4.4.3. Enabling the Confidential Containers feature gate
	4.4.4. Updating the peer pods config map
	4.4.5. Deleting the KataConfig custom resource
	4.4.6. Re-creating the KataConfig custom resource
	4.4.7. Creating the Trustee authentication secret
	4.4.8. Creating the Trustee config map
	4.4.9. Configuring attestation policies
	4.4.10. Creating the KbsConfig custom resource
	4.4.11. Verifying the attestation process

	CHAPTER 5. DEPLOYING ON IBM Z AND IBM LINUXONE
	5.1. PEER POD RESOURCE REQUIREMENTS
	5.2. DEPLOYING OPENSHIFT SANDBOXED CONTAINERS ON IBM Z AND IBM LINUXONE
	5.2.1. Installing the OpenShift sandboxed containers Operator
	5.2.2. Modifying the number of peer pod VMs per node
	5.2.3. Configuring the libvirt volume
	5.2.4. Creating a custom peer pod VM image
	5.2.5. Creating the peer pods secret
	5.2.6. Creating the peer pods config map
	5.2.7. Creating the peer pod VM image config map
	5.2.8. Creating the KVM host secret
	5.2.9. Creating the KataConfig custom resource
	5.2.10. Configuring workload objects

	5.3. DEPLOYING CONFIDENTIAL CONTAINERS ON IBM Z AND IBM LINUXONE
	5.3.1. Installing the Confidential compute attestation Operator
	5.3.2. Creating the route for Trustee
	5.3.3. Enabling the Confidential Containers feature gate
	5.3.4. Updating the peer pods config map
	5.3.5. Deleting the KataConfig custom resource
	5.3.6. Updating the peer pods secret
	5.3.7. Re-creating the KataConfig custom resource
	5.3.8. Creating the Trustee authentication secret
	5.3.9. Creating the Trustee config map
	5.3.10. Obtaining the IBM Secure Execution header
	5.3.11. Configuring the IBM Secure Execution certificates and keys
	5.3.12. Configuring attestation policies
	5.3.13. Creating the KbsConfig custom resource
	5.3.14. Verifying the attestation process

	CHAPTER 6. MONITORING
	6.1. ABOUT METRICS
	6.2. VIEWING METRICS

	CHAPTER 7. UNINSTALLING
	7.1. UNINSTALLING OPENSHIFT SANDBOXED CONTAINERS
	7.1.1. Uninstalling OpenShift sandboxed containers by using the web console
	7.1.1.1. Deleting workload pods
	7.1.1.2. Deleting the KataConfig custom resource
	7.1.1.3. Uninstalling the OpenShift sandboxed containers Operator
	7.1.1.4. Deleting the KataConfig CRD

	7.1.2. Uninstalling OpenShift sandboxed containers by using the CLI
	7.1.2.1. Deleting workload pods
	7.1.2.2. Deleting the KataConfig custom resource
	7.1.2.3. Uninstalling the OpenShift sandboxed containers Operator
	7.1.2.4. Deleting the KataConfig CRD

	7.2. REMOVING THE CONFIDENTIAL CONTAINERS ENVIRONMENT
	7.2.1. Removing the Confidential Containers environment by using the web console
	7.2.1.1. Deleting the KbsConfig custom resource
	7.2.1.2. Uninstalling the Confidential compute attestation Operator
	7.2.1.3. Deleting the KbsConfig CRD

	7.2.2. Removing the Confidential Containers environment by using the CLI
	7.2.2.1. Deleting the KbsConfig custom resource
	7.2.2.2. Uninstalling the Confidential compute attestation Operator
	7.2.2.3. Deleting the KbsConfig CRD

	CHAPTER 8. UPGRADING
	8.1. UPGRADING RESOURCES
	8.2. UPGRADING THE OPERATOR

	CHAPTER 9. TROUBLESHOOTING
	9.1. COLLECTING DATA FOR RED HAT SUPPORT
	Using the must-gather tool

	9.2. COLLECTING LOG DATA
	9.2.1. Enabling debug logs for CRI-O runtime
	9.2.2. Viewing debug logs for components
	Additional resources

	APPENDIX A. KATACONFIG STATUS MESSAGES

