
Red Hat 3scale API Management 2.14

Installing Red Hat 3scale API Management

Install and configure 3scale API Management.

Last Updated: 2024-07-04

Red Hat 3scale API Management 2.14 Installing Red Hat 3scale API
Management

Install and configure 3scale API Management.

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide provides the information to install and configure 3scale API Management.

. .

. .

. .

. .

Table of Contents

PREFACE

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

CHAPTER 1. REGISTRY SERVICE ACCOUNTS FOR 3SCALE
1.1. CREATING A REGISTRY SERVICE ACCOUNT
1.2. CONFIGURING CONTAINER REGISTRY AUTHENTICATION
1.3. MODIFYING A REGISTRY SERVICE ACCOUNT
1.4. ADDITIONAL RESOURCES

CHAPTER 2. INSTALLING 3SCALE API MANAGEMENT ON OPENSHIFT
2.1. SYSTEM REQUIREMENTS FOR INSTALLING 3SCALE API MANAGEMENT ON OPENSHIFT

2.1.1. Environment requirements
2.1.2. Hardware requirements

2.2. INSTALLING THE 3SCALE API MANAGEMENT OPERATOR ON OPENSHIFT
2.2.1. Creating a new OpenShift project
2.2.2. Installing and configuring the 3scale API Management operator using the OLM

2.2.2.1. Restrictions in disconnected environments
2.2.3. Upgrading the 3scale API Management operator using the OLM

2.2.3.1. Configuring automated application of micro releases
2.3. INSTALLING THE APICAST OPERATOR ON OPENSHIFT
2.4. DEPLOYING 3SCALE API MANAGEMENT USING THE OPERATOR

2.4.1. Deploying the APIManager custom resource
2.4.2. Getting the Admin Portal URL
2.4.3. Getting the APIManager Admin Portal and Master Admin Portal credentials
2.4.4. External databases for 3scale API Management using the operator

2.5. DEPLOYMENT CONFIGURATION OPTIONS FOR 3SCALE API MANAGEMENT ON OPENSHIFT USING
THE OPERATOR

2.5.1. Configuring proxy parameters for embedded APIcast
2.5.2. Injecting custom environments with the 3scale API Management operator
2.5.3. Injecting custom policies with the 3scale API Management operator
2.5.4. Configuring OpenTracing with the 3scale API Management operator
2.5.5. Enabling TLS at the pod level with the 3scale API Management operator
2.5.6. Proof of concept for evaluation deployment

2.5.6.1. Default deployment configuration
2.5.6.2. Evaluation installation

2.5.7. External databases installation
2.5.7.1. Backend Redis secret
2.5.7.2. System Redis secret
2.5.7.3. System database secret
2.5.7.4. Zync database secret
2.5.7.5. APIManager custom resources to deploy 3scale API Management

2.5.8. Enabling pod affinity in the 3scale API Management operator
2.5.8.1. Customizing node affinity and tolerations at component level

2.5.9. Multiple clusters in multiple availability zones
2.5.9.1. Prerequisites for multiple clusters installations
2.5.9.2. Active-passive clusters on the same region with shared databases
2.5.9.3. Configuring and installing shared databases
2.5.9.4. Manual failover shared databases
2.5.9.5. Active-passive clusters on different regions with synced databases
2.5.9.6. Configuring and installing synced databases
2.5.9.7. Manual failover synced databases

5

6

7
7
7
8
9

10
10
10
11

12
12
13
14
15
16
17
17
18
19

20
20

21
22
24
26
28
29
31
31
31
32
32
33
33
34
35
35
35
37
37
38
39
40
41
41

42

Table of Contents

1

. .

2.5.10. Amazon Simple Storage Service 3scale API Management fileStorage installation
2.5.10.1. Amazon S3 bucket creation
2.5.10.2. Create an OpenShift secret
2.5.10.3. Manual mode with STS

2.5.11. PostgreSQL installation
2.5.12. Configuring SMTP variables (optional)
2.5.13. Customizing compute resource requirements at component level

2.5.13.1. Default APIManager components compute resources
2.5.13.1.1. CPU and memory units

2.5.14. Customizing node affinity and tolerations at component level
2.5.15. Pod priority of 3scale API Management components
2.5.16. Setting custom labels
2.5.17. Setting backend client to skip certificate verification
2.5.18. Setting custom annotations
2.5.19. Reconciliation

2.5.19.1. Resources
2.5.19.2. Backend replicas
2.5.19.3. APIcast replicas
2.5.19.4. System replicas
2.5.19.5. Zync replicas

2.5.20. Setting the APICAST_SERVICE_CACHE_SIZE environment variable
2.6. INSTALLING 3SCALE API MANAGEMENT WITH THE OPERATOR USING ORACLE AS THE SYSTEM
DATABASE

2.6.1. Preparing the Oracle Database
2.6.2. Building a custom system container image
2.6.3. Installing 3scale API Management with Oracle using the operator

2.7. TROUBLESHOOTING COMMON 3SCALE API MANAGEMENT INSTALLATION ISSUES
2.7.1. Previous deployment leaving dirty persistent volume claims
2.7.2. Wrong or missing credentials of the authenticated image registry
2.7.3. Incorrectly pulling from the Docker registry
2.7.4. Permission issues for MySQL when persistent volumes are mounted locally
2.7.5. Unable to upload logo or images
2.7.6. Test calls not working on OpenShift
2.7.7. APIcast on a different project from 3scale API Management failing to deploy

2.8. ADDITIONAL RESOURCES

CHAPTER 3. INSTALLING APICAST
3.1. APICAST DEPLOYMENT OPTIONS
3.2. APICAST ENVIRONMENTS
3.3. CONFIGURING THE INTEGRATION SETTINGS
3.4. CONFIGURING YOUR PRODUCT

3.4.1. Declaring the API backend
3.4.2. Configuring the authentication settings
3.4.3. Configuring the API test call
3.4.4. Deploying APIcast on Podman

3.4.4.1. Installing the Podman container environment
3.4.4.2. Running the Podman environment

3.4.4.2.1. Testing APIcast with Podman
3.4.4.3. The podman command options
3.4.4.4. Additional resources

3.5. DEPLOYING AN APICAST GATEWAY SELF-MANAGED SOLUTION USING THE OPERATOR
3.5.1. APICast deployment and configuration options

3.5.1.1. Providing a 3scale API Management system endpoint

42
43
44
46
47
48
50
51
51
52
53
54
55
56
56
57
57
57
58
58
59

60
60
62
63
64
64
65
66
67
67
68
68
69

70
70
70
71
71
71
72
73
74
74
75
75
75
76
76
76
76

Red Hat 3scale API Management 2.14 Installing Red Hat 3scale API Management

2

. .

. .

3.5.1.1.1. Verifying the APIcast gateway is running and available
3.5.1.1.2. Exposing APIcast externally via a Kubernetes Ingress

3.5.1.2. Providing a configuration secret
3.5.1.2.1. Verifying APIcast gateway is running and available

3.5.1.3. Injecting custom environments with the APIcast operator
3.5.1.4. Injecting custom policies with the APIcast operator
3.5.1.5. Configuring OpenTracing with the APIcast operator
3.5.1.6. Setting the APICAST_SERVICE_CACHE_SIZE environment variable

3.6. ADDITIONAL RESOURCES

CHAPTER 4. EXTERNAL REDIS DATABASE CONFIGURATION FOR HIGH AVAILABILITY SUPPORT IN
3SCALE API MANAGEMENT

4.1. SETTING UP REDIS FOR ZERO DOWNTIME
4.2. CONFIGURING BACK-END COMPONENTS FOR 3SCALE API MANAGEMENT

4.2.1. Creating backend-redis and system-redis secrets
4.2.2. Deploying a fresh installation of 3scale API Management for HA
4.2.3. Migrating a non-HA deployment of 3scale API Management to HA

4.2.3.1. Using Redis Enterprise
4.2.3.2. Using Redis Sentinel

4.3. REDIS DATABASE SHARDING AND REPLICATION
4.4. ADDITIONAL INFORMATION

CHAPTER 5. CONFIGURING AN EXTERNAL MYSQL DATABASE
5.1. EXTERNAL MYSQL DATABASE LIMITATIONS
5.2. EXTERNALIZING THE MYSQL DATABASE
5.3. ROLLING BACK
5.4. ADDITIONAL INFORMATION

77
78
79
80
80
82
83
85
85

86
86
87
87
87
88
89
89
90
91

93
93
94
97
97

Table of Contents

3

Red Hat 3scale API Management 2.14 Installing Red Hat 3scale API Management

4

PREFACE
This guide will help you to install and configure 3scale.

PREFACE

5

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
We appreciate your feedback on our documentation.

To propose improvements, open a Jira issue and describe your suggested changes. Provide as much
detail as possible to enable us to address your request quickly.

Prerequisite

You have a Red Hat Customer Portal account. This account enables you to log in to the Red Hat
Jira Software instance. If you do not have an account, you will be prompted to create one.

Procedure

1. Click the following link: Create issue.

2. In the Summary text box, enter a brief description of the issue.

3. In the Description text box, provide the following information:

The URL of the page where you found the issue.

A detailed description of the issue.
You can leave the information in any other fields at their default values.

4. Click Create to submit the Jira issue to the documentation team.

Thank you for taking the time to provide feedback.

Red Hat 3scale API Management 2.14 Installing Red Hat 3scale API Management

6

https://issues.redhat.com/secure/CreateIssueDetails!init.jspa?pid=12318224&issuetype=1&components=12327352&priority=3&description=URL where issue was found%3A%C2%A0%0A%0ADescription of issue%3A%C2%A0&12368953

CHAPTER 1. REGISTRY SERVICE ACCOUNTS FOR 3SCALE
To use container images from registry.redhat.io in a shared environment with Red Hat 3scale API
Management 2.14, you must use a Registry Service Account instead of an individual user’s Customer
Portal credentials.

IMPORTANT

Before deploying 3scale on OpenShift via the operator, follow the steps outlined in this
chapter, as the deployment uses registry authentication.

To create and modify a registry service account, perform the steps outlined in the following sections:

Creating a registry service account

Configuring container registry authentication

Modifying a registry service account

1.1. CREATING A REGISTRY SERVICE ACCOUNT

To create a registry service account, follow the procedure below.

Procedure

1. Navigate to the Registry Service Accounts page and log in.

2. Click New Service Account.

3. Fill in the form on the Create a New Registry Service Account page.

a. Add a name for the service account .
Note: You will see a fixed-length, randomly generated numerical string before the form
field.

b. Enter a Description.

c. Click Create.

4. Navigate back to your Service Accounts.

5. Click the Service Account you created.

6. Make a note of the username, including the prefix string, for example 12345678|username, and
your password. This username and password will be used to log in to registry.redhat.io.

NOTE

There are tabs available on the Token Information page that show you how to use the
authentication token. For example, the Token Information tab shows the username in the
format 12345678|username and the password string below it.

1.2. CONFIGURING CONTAINER REGISTRY AUTHENTICATION

CHAPTER 1. REGISTRY SERVICE ACCOUNTS FOR 3SCALE

7

https://access.redhat.com/terms-based-registry

As a 3scale administrator, configure authentication with registry.redhat.io before you deploy 3scale on
OpenShift.

Prerequisites

A Red Hat OpenShift Container Platform (OCP) account with administrator credentials.

OpenShift oc client tool is installed. For more details, see the OpenShift CLI documentation.

Procedure

1. Log into your OpenShift cluster as administrator:

2. Open the project in which you want to deploy 3scale:

3. Create a docker-registry secret using your Red Hat Customer Portal account, replacing
threescale-registry-auth with the secret to create:

You will see the following output:

4. Link the secret to your service account to use the secret for pulling images. The service account
name must match the name that the OpenShift pod uses. This example uses the default service
account:

5. Link the secret to the builder service account to use the secret for pushing and pulling build
images:

Additional resources

Red Hat container image authentication

Red Hat registry service accounts

1.3. MODIFYING A REGISTRY SERVICE ACCOUNT

You can edit or delete service accounts from the Registry Service Account page, by using the pop-up

$ oc login -u <admin_username>

$ oc project your-openshift-project

$ oc create secret docker-registry threescale-registry-auth \
 --docker-server=registry.redhat.io \
 --docker-username="customer_portal_username" \
 --docker-password="customer_portal_password" \
 --docker-email="email_address"

secret/threescale-registry-auth created

$ oc secrets link default threescale-registry-auth --for=pull

$ oc secrets link builder threescale-registry-auth

Red Hat 3scale API Management 2.14 Installing Red Hat 3scale API Management

8

https://docs.openshift.com/container-platform/4.12/cli_reference/openshift_cli/getting-started-cli.html
https://access.redhat.com/RegistryAuthentication
https://access.redhat.com/terms-based-registry/

You can edit or delete service accounts from the Registry Service Account page, by using the pop-up
menu to the right of each authentication token in the table.

WARNING

The regeneration or removal of service accounts will impact systems that are using
the token to authenticate and retrieve content from registry.redhat.io.

A description for each function is as follows:

Regenerate token: Allows an authorized user to reset the password associated with the Service
Account.
Note: You cannot modify the username for the Service Account.

Update Description: Allows an authorized user to update the description for the Service
Account.

Delete Account: Allows an authorized user to remove the Service Account.

1.4. ADDITIONAL RESOURCES

Red Hat Container Registry Authentication

Authentication enabled Red Hat registry



CHAPTER 1. REGISTRY SERVICE ACCOUNTS FOR 3SCALE

9

https://access.redhat.com/RegistryAuthentication
https://docs.openshift.com/container-platform/4.1/registry/registry-options.html#registry-authentication-enabled-registry-overview_registry-options

CHAPTER 2. INSTALLING 3SCALE API MANAGEMENT ON
OPENSHIFT

This section walks you through steps to deploy Red Hat 3scale API Management 2.14 on OpenShift.

The 3scale solution for on-premises deployment is composed of:

Two application programming interface (API) gateways: embedded APIcast.

One 3scale Admin Portal and Developer Portal with persistent storage.

NOTE

When deploying 3scale, you must first configure registry authentication to the
Red Hat container registry. See Configuring container registry authentication.

The 3scale Istio Adapter is available as an optional adapter that allows labeling a
service running within the Red Hat OpenShift Service Mesh, and integrate that
service with 3scale. Refer to 3scale adapter documentation for more information.

Prerequisites

You must configure 3scale servers for UTC (Coordinated Universal Time).

Create user credentials using the step in Creating a registry service account .

To install 3scale on OpenShift, perform the steps outlined in the following sections:

System requirements for installing 3scale API Management on OpenShift

Deploying 3scale API Management using the operator

External databases for 3scale API Management using the operator

Deployment configuration options for 3scale API Management on OpenShift using the operator

Installing 3scale API Management with the operator using Oracle as the system database

Troubleshooting common 3scale API Management installation issues

2.1. SYSTEM REQUIREMENTS FOR INSTALLING 3SCALE API
MANAGEMENT ON OPENSHIFT

This section lists the system requirements for installing Red Hat 3scale API Management on OpenShift.

2.1.1. Environment requirements

3scale requires an environment specified in supported configurations.

NOTE

Red Hat 3scale API Management 2.14 Installing Red Hat 3scale API Management

10

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/service_mesh/index#threescale-adapter-1
https://access.redhat.com/articles/2798521

NOTE

The requirements for persistent volumes vary between different deployment types. When
deploying with external databases, persistent volumes are not necessary. For some
deployment types, an Amazon S3 bucket can serve as a substitute for persistent volumes.
If you use local file system storage, consider the specific deployment type and its
associated requirements for persistent volumes.

Persistent volumes

4 RWO (ReadWriteOnce) persistent volumes for Redis, MySQL, and System-searchd
persistence.

1 RWX (ReadWriteMany) persistent volume for Developer Portal content and System-app
Assets.

Configure the RWX persistent volume to be group writable. For a list of persistent volume types that
support the required access modes, see the OpenShift documentation.

NOTE

Network File System (NFS) is supported on 3scale for the RWX volume only.

For IBM Power (ppc64le) and IBM Z (s390x), provision local storage using the following:

Storage

NFS

If you are using an Amazon Simple Storage Service (Amazon S3) bucket for content management
system (CMS) storage:

Persistent volumes

3 RWO (ReadWriteOnce) persistent volumes for Redis and MySQL persistence.

Storage

1 Amazon S3 bucket

NFS

2.1.2. Hardware requirements

Hardware requirements depend on your usage needs. Red Hat recommends that you test and configure
your environment to meet your specific requirements. The following are the recommendations when
configuring your environment for 3scale on OpenShift:

Compute optimized nodes for deployments on cloud environments (AWS c4.2xlarge or Azure
Standard_F8).

Very large installations may require a separate node (AWS M4 series or Azure Av2 series) for
Redis if memory requirements exceed your current node’s available RAM.

Separate nodes between routing and compute tasks.

CHAPTER 2. INSTALLING 3SCALE API MANAGEMENT ON OPENSHIFT

11

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/storage/index#persistent-volumes_understanding-persistent-storage

Dedicated computing nodes for 3scale specific tasks.

Additional resources

Understanding persistent storage

2.2. INSTALLING THE 3SCALE API MANAGEMENT OPERATOR ON
OPENSHIFT

NOTE

3scale supports the last two general availability (GA) releases of OpenShift Container
Platform (OCP). For more information, see the Red Hat 3scale API Management
Supported Configurations page.

This documentation shows you how to:

Create a new project.

Deploy a Red Hat 3scale API Management instance.

Install the 3scale operator through Operator Lifecycle Manager (OLM).

Deploy the custom resources once the operator has been deployed.

Prerequisites

Access to a supported version of an OpenShift Container Platform 4 cluster using an account
with administrator privileges.

For more information about supported configurations, see the Red Hat 3scale API
Management Supported Configurations page.

WARNING

Deploy the 3scale operator and custom resource definitions (CRDs) in a separate
newly created, empty project. If you deploy them in an existing project containing
infrastructure, it could alter or delete existing elements.

To install the 3scale operator on OpenShift, perform the steps outlined in the following sections:

Creating a new OpenShift project

Installing and configuring the 3scale API Management operator using the OLM

2.2.1. Creating a new OpenShift project

This procedure explains how to create a new OpenShift project named 3scale-project. Replace this
project name with your own.



Red Hat 3scale API Management 2.14 Installing Red Hat 3scale API Management

12

https://docs.openshift.com/container-platform/4.12/storage/understanding-persistent-storage.html
https://access.redhat.com/articles/2798521
https://access.redhat.com/articles/2798521

Procedure

To create a new OpenShift project:

Indicate a valid name using alphanumeric characters and dashes. As an example, run the
command below to create 3scale-project:

$ oc new-project 3scale-project

This creates the new OpenShift project where the operator, the APIManager custom resource (CR), and
the Capabilities custom resources will be installed. The operator manages the custom resources
through OLM in that project.

2.2.2. Installing and configuring the 3scale API Management operator using the OLM

Use Operator Lifecycle Manager (OLM) to install the 3scale operator on an OpenShift Container
Platform (OCP) 4.12 (or above) cluster through the OperatorHub in the OCP console. You can install
the 3scale operator using the following installation modes:

Cluster-wide in which the operator is available in all namespaces on the cluster.

A specific namespace on the cluster

NOTE

If you are using the OpenShift Container Platform on a restricted network or a
disconnected cluster, the Operator Lifecycle Manager can no longer use the
OperatorHub. Follow the instructions for setting up and using the OLM in the guide titled
Using Operator Lifecycle Manager on restricted networks .

Prerequisites

You must install and deploy the 3scale operator in the project that you defined in Creating a
new OpenShift project.

Procedure

1. In the OpenShift Container Platform console, log in using an account with administrator
privileges.

2. Click Operators > OperatorHub.

3. In the Filter by keyword box, type 3scale operator to find Red Hat Integration - 3scale .

4. Click Red Hat Integration - 3scale . Information about the operator is displayed.

5. Read the information about the operator and click Install. The Install Operator page opens.

6. On the Install Operator page, select the desired channel to update in the Update channel
section.

7. In the Installation mode section, select where to install the operator.

a. All namespaces on the cluster (default) - The operator will be available in all namespaces
on the cluster.

b. A specific namespace on the cluster - The operator will only be available in the specific

CHAPTER 2. INSTALLING 3SCALE API MANAGEMENT ON OPENSHIFT

13

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/operators/index#olm-restricted-networks
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.14/html-single/installing_red_hat_3scale_api_management/index#creating-a-new-openshift-project

b. A specific namespace on the cluster - The operator will only be available in the specific
single namespace on the cluster that you have selected.

8. Click Install.

9. After the installation is complete, the system displays a confirmation message indicating that
the operator is ready for use.

10. Verify that the 3scale operator ClusterServiceVersion (CSV) is correctly installed. Also check if
it reports that the installation of the operator has been successful:

Click Operators > Installed Operators.

Click on the Red Hat Integration - 3scale operator.

In the Details tab, scroll down to the Conditions section, where the Succeeded condition
should read InstallSucceeded under the Reason column.

Besides the indicated procedure, create a list of the allowed domains you intend to use in the 3scale
Developer Portal while using OCP on restricted networks. Consider the following examples:

Any link you intend to add to the Developer Portal.

Single sign-on (SSO) integrations through third party SSO providers such as GitHub.

Billing.

Webhooks that trigger an external URL.

2.2.2.1. Restrictions in disconnected environments

The following list outlines current restrictions in a disconnected environment for 3scale 2.14:

The GitHub login to the Developer Portal is not available.

Support links are not operational.

Links to external documentation are not operational.

The validator for the OpenAPI Specification (OAS) in the Developer Portal is not operational,
affecting links to external services.

In the product Overview page in ActiveDocs, links to OAS are not operational.

It is also necessary to check the option Skip swagger validations when you create a new
ActiveDocs specification.

Additional resources

OpenShift Container Platform documentation

Using Operator Lifecycle Manager on restricted networks

Mirroring images for a disconnected installation

Red Hat 3scale API Management Supported Configurations

Red Hat 3scale API Management 2.14 Installing Red Hat 3scale API Management

14

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/operators/index#olm-installing-operators-from-operatorhub_olm-adding-operators-to-a-cluster
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/operators/index#olm-restricted-networks
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/installing/index#installing-mirroring-installation-images
https://access.redhat.com/articles/2798521

2.2.3. Upgrading the 3scale API Management operator using the OLM

To upgrade the 3scale operator from a single namespace to a cluster-wide installation in all namespaces
on an operator-based deployment, you must remove the 3scale operator from the namespace and then
reinstall the operator on the cluster.

Cluster administrators can delete installed operators from a selected namespace by using the web
console. Uninstalling the operator does not uninstall an existing 3scale instance.

After the 3scale operator is uninstalled from the namespace, you can use OLM to install the operator in
the cluster-wide mode.

Prerequisites

3scale administrator permissions or an OpenShift role that has delete permissions for the
namespace.

Procedure

1. In the OpenShift Container Platform console, log in using an account with administrator
privileges.

2. Click Operators > OperatorHub. The installed Operators page is displayed.

3. Enter 3scale into the Filter by name to find the operator and click on it.

4. On the Operator Details page, select Uninstall Operator from the Actions drop-down menu to
remove it from a specific namespace.

5. An Uninstall Operator? dialog box is displayed, reminding you that:

Removing the operator will not remove any of its custom resource definitions or managed
resources. If your operator has deployed applications on the cluster or configured off-cluster
resources, these will continue to run and need to be cleaned up manually.
This action removes the operator as well as the Operator deployments and pods, if any. Any
operands and resources managed by the operator, including CRDs and CRs, are not
removed. The web console enables dashboards and navigation items for some operators. To
remove these after uninstalling the operator, you might need to manually delete the operator
CRDs.

6. Select Uninstall. This operator stops running and no longer receives updates.

7. In the OpenShift Container Platform console click Operators > OperatorHub.

8. In the Filter by keyword box, type 3scale operator to find Red Hat Integration - 3scale .

9. Click Red Hat Integration - 3scale . Information about the operator is displayed.

10. Click Install. The Install Operator page opens.

11. On the Install Operator page, select the desired channel to update in the Update channel
section.

12. In the Installation mode section, select All namespaces on the cluster (default). The operator
will be available in all namespaces on the cluster.

13. Click Subscribe. The 3scale operator details page is displayed and you can see the Subscription

CHAPTER 2. INSTALLING 3SCALE API MANAGEMENT ON OPENSHIFT

15

13. Click Subscribe. The 3scale operator details page is displayed and you can see the Subscription
Overview.

14. Confirm that the subscription Upgrade Status is displayed as Up to date.

15. Verify that the 3scale operator ClusterServiceVersion (CSV) is displayed.

Additional Resources

Installing the 3scale API Management operator on OpenShift

2.2.3.1. Configuring automated application of micro releases

WARNING

If you are using an external Oracle database, set the 3scale update strategy to
Manual. With an external Oracle database, the database and the
.spec.system.image are updated manually. The Automatic setting would not
update the .spec.system.image. See the Migrating 3scale guide to update an
operator-based installation with an external Oracle database.

To get automatic updates, the 3scale operator must have its approval strategy set to Automatic. This
allows it to apply micro release updates automatically. The following describes the differences between
Automatic and Manual settings, and outlines the steps in a procedure to change from one to the other.

Automatic and manual:

During installation, the Automatic setting is the selected option by default. Installation of new
updates occur as they become available. You can change this during the install or at any time
afterwards.

If you select the Manual option during installation or at any time afterwards, you will receive
updates when they are available. Next, you must approve the Install Plan and apply it yourself.

Procedure

1. Click Operators > Installed Operators.

2. Click Red Hat Integration - 3scale from the list of Installed Operators.

3. Click the Subscription tab. Under the Subscription Details heading, you will see the subheading
Approval.

4. Click the link below Approval. The link is set to Automatic by default. A modal with the heading
Change Update Approval Strategy will pop up.

5. Choose the option of your preference: Automatic (default) or Manual, and then click Save.

Additional resources



Red Hat 3scale API Management 2.14 Installing Red Hat 3scale API Management

16

https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.14/html-single/installing_red_hat_3scale_api_management/index#installing-threescale-operator-on-openshift
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.14/html-single/migrating_red_hat_3scale_api_management/index#upgrading-operator-installation-with-oracle-database

Installing Operators in your namespace

2.3. INSTALLING THE APICAST OPERATOR ON OPENSHIFT

This guide provides steps for installing the APIcast operator through the OpenShift Container Platform
(OCP) console.

Prerequisites

OCP 4.x or later with administrator privileges.

Procedure

1. Create new project operator-test in Projects > Create Project.

2. Click Operators > OperatorHub.

3. In the Filter by keyword box, type apicast operator to find Red Hat Integration - 3scale APIcast
gateway.

4. Click Red Hat Integration - 3scale APIcast gateway . Information about the APIcast operator is
displayed.

5. Click Install. The Create Operator Subscription page opens.

6. Click Install to accept all of the default selections on the Create Operator Subscription page.

NOTE

You can select different operator versions and installation modes, such as
cluster-wide or namespace-specific options. There can only be one cluster-wide
installation per cluster.

a. The subscription Upgrade Status is shown as Up to date.

7. Click Operators > Installed Operators to verify that the APIcast operator
ClusterServiceVersion (CSV) status displays to InstallSucceeded in the operator-test project.

2.4. DEPLOYING 3SCALE API MANAGEMENT USING THE OPERATOR

This section takes you through installing and deploying the 3scale solution via the 3scale operator, using
the APIManager custom resource (CR).

NOTE

Wildcard routes have been removed since 3scale 2.6.

This functionality is handled by Zync in the background.

When API providers are created, updated, or deleted, routes automatically reflect
those changes.

Prerequisites

CHAPTER 2. INSTALLING 3SCALE API MANAGEMENT ON OPENSHIFT

17

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/operators/index#olm-installing-operators-in-namespace
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.6/html-single/release_notes/index#removed_features

Configuring container registry authentication

To make sure you receive automatic updates of micro releases for 3scale, you must have
enabled the automatic approval functionality in the 3scale operator. Automatic is the default
approval setting. To change this at any time based on your specific needs, use the steps for
Configuring automated application of micro releases .

Deploying 3scale API Management using the operator first requires that you follow the steps in
Installing the 3scale API Management operator on OpenShift .

OpenShift Container Platform 4.x.

A user account with administrator privileges in the OpenShift cluster.

For more information about supported configurations, see the Red Hat 3scale API
Management Supported Configurations page.

Follow these procedures to deploy 3scale using the operator:

Deploying the APIManager custom resource

Getting the Admin Portal URL

Getting the APIManager Admin Portal and Master Admin Portal credentials

External databases for 3scale API Management using the operator

2.4.1. Deploying the APIManager custom resource

NOTE

If you decide to use Amazon Simple Storage Service (Amazon S3), see Amazon Simple
Storage Service 3scale API Management fileStorage installation.

The operator watches for APIManager CRs and deploys your required 3scale solution as specified in the
APIManager CR.

Procedure

1. Click Operators > Installed Operators.

a. From the list of Installed Operators, click Red Hat Integration - 3scale .

2. Click the API Manager tab.

3. Click Create APIManager.

4. Clear the sample content and add the following YAML definitions to the editor, then click
Create.

Before 3scale 2.8, you could configure the automatic addition of replicas by setting the
highAvailability field to true. From 3scale 2.8, the addition of replicas is controlled through
the replicas field in the APIManager CR as shown in the following example.

NOTE

Red Hat 3scale API Management 2.14 Installing Red Hat 3scale API Management

18

https://access.redhat.com/articles/2798521

NOTE

The value of the wildcardDomain parameter must be a valid domain name
that resolves to the address of your OpenShift Container Platform (OCP)
router. For example, apps.mycluster.example.com.

APIManager CR with minimum requirements:

APIManager CR with replicas configured:

2.4.2. Getting the Admin Portal URL

When you deploy 3scale using the operator, a default tenant is created with a fixed URL: 3scale-
admin.${wildcardDomain}.

The 3scale Dashboard shows the new portal URL of the tenant. As an example, if the <wildCardDomain>
is 3scale-project.example.com, the Admin Portal URL is: https://3scale-admin.3scale-
project.example.com.

apiVersion: apps.3scale.net/v1alpha1
kind: APIManager
metadata:
 name: apimanager-sample
spec:
 wildcardDomain: example.com

apiVersion: apps.3scale.net/v1alpha1
kind: APIManager
metadata:
 name: apimanager-sample
spec:
 system:
 appSpec:
 replicas: 1
 sidekiqSpec:
 replicas: 1
 zync:
 appSpec:
 replicas: 1
 queSpec:
 replicas: 1
 backend:
 cronSpec:
 replicas: 1
 listenerSpec:
 replicas: 1
 workerSpec:
 replicas: 1
 apicast:
 productionSpec:
 replicas: 1
 stagingSpec:
 replicas: 1
 wildcardDomain: example.com

CHAPTER 2. INSTALLING 3SCALE API MANAGEMENT ON OPENSHIFT

19

The wildcardDomain is the <wildCardDomain> parameter you provided during the installation. Open
this unique URL in a browser using the this command:

$ xdg-open https://3scale-admin.3scale-project.example.com

Optionally, you can create new tenants on the MASTER portal URL: master.${wildcardDomain}.

2.4.3. Getting the APIManager Admin Portal and Master Admin Portal credentials

To log in to either the 3scale Admin Portal or Master Admin Portal after the operator-based
deployment, you need the credentials for each separate portal. To get these credentials:

1. Run the following commands to get the Admin Portal credentials:

a. Log in as the Admin Portal administrator to verify these credentials are working.

2. Run the following commands to get the Master Admin Portal credentials:

a. Log in as the Master Admin Portal administrator to verify these credentials are working.

Additional resources

Reference documentation.

Optionally, you can create new tenants on the MASTER portal URL: master.${wildcardDomain}.

2.4.4. External databases for 3scale API Management using the operator

IMPORTANT

When you externalize databases from a Red Hat 3scale API Management deployment,
this means to provide isolation from the application and resilience against service
disruptions at the database level. The resilience to service disruptions depends on the
service level agreements (SLAs) provided by the infrastructure or platform provider
where you host the databases. This is not offered by 3scale. For more details on
externalizing of databases offered by your chosen deployment, see the associated
documentation.

When you use an external databases for 3scale using the operator, the aim is to provide uninterrupted
uptime if, for example, one or more databases were to fail.

If you use external databases in your 3scale operator-based deployment, note the following:

Configure and deploy 3scale critical databases externally. Critical databases include the system
database, system redis, and backend redis components. Ensure that you deploy and configure
these components in a way that makes them highly available.

Specify the connection endpoints to those components for 3scale by creating their

$ oc get secret system-seed -o json | jq -r .data.ADMIN_USER | base64 -d
$ oc get secret system-seed -o json | jq -r .data.ADMIN_PASSWORD | base64 -d

$ oc get secret system-seed -o json | jq -r .data.MASTER_USER | base64 -d
$ oc get secret system-seed -o json | jq -r .data.MASTER_PASSWORD | base64 -d

Red Hat 3scale API Management 2.14 Installing Red Hat 3scale API Management

20

https://github.com/3scale/3scale-operator/blob/3scale-2.14-stable/doc/apimanager-reference.md

Specify the connection endpoints to those components for 3scale by creating their
corresponding Kubernetes secrets before deploying 3scale.

See External databases installation for more information.

See Enabling Pod Disruption Budgets for more information about non-database
deployment configurations.

In the APIManager CR, set the .spec.externalComponents attribute to specify that system
database, system redis, and backend redis are external:

Additionally, if you want the zync database to be highly available to avoid zync potentially losing queue
jobs data on restart, note the following:

Deploy and configure the zync database externally. Make sure you deploy and configure the
database in a way that it is highly available.

Specify the connection endpoint to the zync database for 3scale by creating its corresponding
Kubernetes secret before deploying 3scale.

See Zync database secret.

Configure 3scale by setting the .spec.externalComponents.zync.database attribute in the
APIManager CR to true to specify that the zync database is an external database.

2.5. DEPLOYMENT CONFIGURATION OPTIONS FOR 3SCALE API
MANAGEMENT ON OPENSHIFT USING THE OPERATOR

IMPORTANT

Links contained in this note to external website(s) are provided for convenience only. Red
Hat has not reviewed the links and is not responsible for the content or its availability. The
inclusion of any link to an external website does not imply endorsement by Red Hat of the
website or their entities, products or services. You agree that Red Hat is not responsible
or liable for any loss or expenses that may result due to your use of (or reliance on) the
external site or content.

This section provides information about the deployment configuration options for Red Hat 3scale API
Management on OpenShift using the operator.

Prerequisites

Configuring container registry authentication

Deploying 3scale API Management using the operator first requires that you follow the steps in
Installing the 3scale API Management operator on OpenShift

externalComponents:
 backend:
 redis: true
 system:
 database: true
 redis: true
 zync:
 database: true

CHAPTER 2. INSTALLING 3SCALE API MANAGEMENT ON OPENSHIFT

21

https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.14/html-single/installing_red_hat_3scale_api_management/index#external-databases-installation
https://github.com/3scale/3scale-operator/blob/3scale-2.14-stable/doc/operator-user-guide.md#enabling-pod-disruption-budgets

OpenShift Container Platform 4.x

A user account with administrator privileges in the OpenShift cluster.

2.5.1. Configuring proxy parameters for embedded APIcast

As a 3scale administrator, you can configure proxy parameters for embedded APIcast staging and
production. This section provides reference information for specifying proxy parameters in an
APIManager custom resource (CR). In other words, you are using the 3scale operator, an APIManager
CR to deploy 3scale on OpenShift.

You can specify these parameters when you deploy an APIManager CR for the first time or you can
update a deployed APIManager CR and the operator will reconcile the update. See Deploying the
APIManager custom resource.

There are four proxy-related configuration parameters for embedded APIcast:

allProxy

httpProxy

httpsProxy

noProxy

allProxy

The allProxy parameter specifies an HTTP or HTTPS proxy to be used for connecting to services when
a request does not specify a protocol-specific proxy.

After you set up a proxy, configure APIcast by setting the allProxy parameter to the address of the
proxy. Authentication is not supported for the proxy. In other words, APIcast does not send
authenticated requests to the proxy.

The value of the allProxy parameter is a string, there is no default, and the parameter is not required.
Use this format to set the spec.apicast.productionSpec.allProxy parameter or the
spec.apicast.stagingSpec.allProxy parameter:

<scheme>://<host>:<port>

For example:

httpProxy

The httpProxy parameter specifies an HTTP proxy to be used for connecting to HTTP services.

apiVersion: apps.3scale.net/v1alpha1
kind: APIManager
metadata:
 name: example-apimanager
spec:
 apicast:
 productionSpec:
 allProxy: http://forward-proxy:80
 stagingSpec:
 allProxy: http://forward-proxy:81

Red Hat 3scale API Management 2.14 Installing Red Hat 3scale API Management

22

After you set up a proxy, configure APIcast by setting the httpProxy parameter to the address of the
proxy. Authentication is not supported for the proxy. In other words, APIcast does not send
authenticated requests to the proxy.

The value of the httpProxy parameter is a string, there is no default, and the parameter is not required.
Use this format to set the spec.apicast.productionSpec.httpProxy parameter or the
spec.apicast.stagingSpec.httpProxy parameter:

http://<host>:<port>

For example:

httpsProxy

The httpsProxy parameter specifies an HTTPS proxy to be used for connecting to services.

After you set up a proxy, configure APIcast by setting the httpsProxy parameter to the address of the
proxy. Authentication is not supported for the proxy. In other words, APIcast does not send
authenticated requests to the proxy.

The value of the httpsProxy parameter is a string, there is no default, and the parameter is not required.
Use this format to set the spec.apicast.productionSpec.httpsProxy parameter or the
spec.apicast.stagingSpec.httpsProxy parameter:

https://<host>:<port>

For example:

noProxy

The noProxy parameter specifies a comma-separated list of hostnames and domain names. When a
request contains one of these names, APIcast does not proxy the request.

If you need to stop access to the proxy, for example during maintenance operations, set the noProxy

apiVersion: apps.3scale.net/v1alpha1
kind: APIManager
metadata:
 name: example-apimanager
spec:
 apicast:
 productionSpec:
 httpProxy: http://forward-proxy:80
 stagingSpec:
 httpProxy: http://forward-proxy:81

apiVersion: apps.3scale.net/v1alpha1
kind: APIManager
metadata:
 name: example-apimanager
spec:
 apicast:
 productionSpec:
 httpsProxy: https://forward-proxy:80
 stagingSpec:
 httpsProxy: https://forward-proxy:81

CHAPTER 2. INSTALLING 3SCALE API MANAGEMENT ON OPENSHIFT

23

If you need to stop access to the proxy, for example during maintenance operations, set the noProxy
parameter to an asterisk (*). This matches all hosts specified in all requests and effectively disables any
proxies.

The value of the noProxy parameter is a string, there is no default, and the parameter is not required.
Specify a comma-separated string to set the spec.apicast.productionSpec.noProxy parameter or the
spec.apicast.stagingSpec.noProxy parameter. For example:

Additional resources

Custom resource definition for APIcast staging configuration in an APIManager custom
resource

Custom resource definition for APIcast production configuration in an APIManager custom
resource

2.5.2. Injecting custom environments with the 3scale API Management operator

In a 3scale installation that uses embedded APIcast, you can use the 3scale operator to inject custom
environments. Embedded APIcast is also referred to as managed or hosted APIcast. A custom
environment defines behavior that APIcast applies to all upstream APIs that the gateway serves. To
create a custom environment, define a global configuration in Lua code.

You can inject a custom environment before or after 3scale installation. After injecting a custom
environment and after 3scale installation, you can remove a custom environment. The 3scale operator
reconciles the changes.

Prerequisites

The 3scale operator is installed.

Procedure

1. Write Lua code that defines the custom environment that you want to inject. For example, the
following env1.lua file shows a custom logging policy that the 3scale operator loads for all
services.

apiVersion: apps.3scale.net/v1alpha1
kind: APIManager
metadata:
 name: example-apimanager
spec:
 apicast:
 productionSpec:
 noProxy: theStore,company.com,big.red.com
 stagingSpec:
 noProxy: foo,bar.com,.extra.dot.com

local cjson = require('cjson')
local PolicyChain = require('apicast.policy_chain')
local policy_chain = context.policy_chain

local logging_policy_config = cjson.decode([[
{
 "enable_access_logs": false,

Red Hat 3scale API Management 2.14 Installing Red Hat 3scale API Management

24

https://github.com/3scale/3scale-operator/blob/master/doc/apimanager-reference.md#ApicastStagingSpec
https://github.com/3scale/3scale-operator/blob/master/doc/apimanager-reference.md#apicastproductionspec

2. Create a secret from the Lua file that defines the custom environment. For example:

A secret can contain multiple custom environments. Specify the –from-file option for each file
that defines a custom environment. The operator loads each custom environment.

3. Define an APIManager custom resource (CR) that references the secret you just created. The
following example shows only content relative to referencing the secret that defines the custom
environment.

An APIManager CR can reference multiple secrets that define custom environments. The
operator loads each custom environment.

4. Create the APIManager CR that adds the custom environment. For example:

Next steps

You cannot update the content of a secret that defines a custom environment. If you need to update the
custom environment you can do either of the following:

The recommended option is to create a secret with a different name and update the
APIManager CR field, customEnvironments[].secretRef.name. The operator triggers a rolling
update and loads the updated custom environment.

Alternatively, you can update the existing secret, redeploy APIcast by setting
spec.apicast.productionSpec.replicas or spec.apicast.stagingSpec.replicas to 0, and then

 "custom_logging": "\"{{request}}\" to service {{service.id}} and {{service.name}}"
}
]])

policy_chain:insert(PolicyChain.load_policy('logging', 'builtin', logging_policy_config), 1)

return {
 policy_chain = policy_chain,
 port = { metrics = 9421 },
}

$ oc create secret generic custom-env-1 --from-file=./env1.lua

apiVersion: apps.3scale.net/v1alpha1
kind: APIManager
metadata:
 name: apimanager-apicast-custom-environment
spec:
 wildcardDomain: <desired-domain>
 apicast:
 productionSpec:
 customEnvironments:
 - secretRef:
 name: custom-env-1
 stagingSpec:
 customEnvironments:
 - secretRef:
 name: custom-env-1

$ oc apply -f apimanager.yaml

CHAPTER 2. INSTALLING 3SCALE API MANAGEMENT ON OPENSHIFT

25

redeploy APIcast again by setting spec.apicast.productionSpec.replicas or
spec.apicast.stagingSpec.replicas back to its previous value.

2.5.3. Injecting custom policies with the 3scale API Management operator

In a 3scale installation that uses embedded APIcast, you can use the 3scale operator to inject custom
policies. Embedded APIcast is also referred to as managed or hosted APIcast. Injecting a custom policy
adds the policy code to APIcast. You can then use either of the following to add the custom policy to an
API product’s policy chain:

3scale API

Product custom resource (CR)

To use the 3scale Admin Portal to add the custom policy to a product’s policy chain, you must also
register the custom policy’s schema with a CustomPolicyDefinition CR. Custom policy registration is a
requirement only when you want to use the Admin Portal to configure a product’s policy chain.

You can inject a custom policy as part of or after 3scale installation. After injecting a custom policy and
after 3scale installation, you can remove a custom policy by removing its specification from the
APIManager CR. The 3scale operator reconciles the changes.

Prerequisites

You are installing or you previously installed the 3scale operator.

You have defined a custom policy as described in Write your own policy . That is, you have already
created, for example, the my-policy.lua, apicast-policy.json, and init.lua files that define a
custom policy,

Procedure

1. Create a secret from the files that define one custom policy. For example:

If you have more than one custom policy, create a secret for each custom policy. A secret can
contain only one custom policy.

2. Use the 3scale operator to monitor secret changes. Add the
apimanager.apps.3scale.net/watched-by=apimanager label to begin the 3scale operator
secret changes monitoring:

NOTE

$ oc create secret generic my-first-custom-policy-secret \
 --from-file=./apicast-policy.json \
 --from-file=./init.lua \
 --from-file=./my-first-custom-policy.lua

$ oc label secret my-first-custom-policy-secret apimanager.apps.3scale.net/watched-
by=apimanager

Red Hat 3scale API Management 2.14 Installing Red Hat 3scale API Management

26

https://github.com/3scale/APIcast/blob/3scale-2.14-stable/doc/policies.md#write-your-own-policy

NOTE

By default, changes to the secret are not tracked by the 3scale operator. With
the label in place, the 3scale operator automatically updates the APIcast
deployment whenever you make changes to the secret. This happens in both
staging and production environments where the secret is in use. The 3scale
operator will not take ownership of the secret in any way.

3. Define an APIManager CR that references each secret that contains a custom policy. You can
specify the same secret for APIcast staging and APIcast production. The following example
shows only content relative to referencing secrets that contain custom policies.

An APIManager CR can reference multiple secrets that define different custom policies. The
operator loads each custom policy.

4. Create the APIManager CR that references the secrets that contain the custom policies. For
example:

Next steps

When you apply the apimanager.apps.3scale.net/watched-by=apimanager label, the 3scale operator
begins monitoring changes in the secret. Now, you can modify the custom policy within the secret, and
the operator will initiate a rolling update, loading the updated custom environment.

Alternatively, you can update the existing secret, redeploy APIcast by setting
spec.apicast.productionSpec.replicas or spec.apicast.stagingSpec.replicas to 0, and then
redeploy APIcast again by setting spec.apicast.productionSpec.replicas or

apiVersion: apps.3scale.net/v1alpha1
kind: APIManager
metadata:
 name: apimanager-apicast-custom-policy
spec:
 apicast:
 stagingSpec:
 customPolicies:
 - name: my-first-custom-policy
 version: "0.1"
 secretRef:
 name: my-first-custom-policy-secret
 - name: my-second-custom-policy
 version: "0.1"
 secretRef:
 name: my-second-custom-policy-secret
 productionSpec:
 customPolicies:
 - name: my-first-custom-policy
 version: "0.1"
 secretRef:
 name: my-first-custom-policy-secret
 - name: my-second-custom-policy
 version: "0.1"
 secretRef:
 name: my-second-custom-policy-secret

$ oc apply -f apimanager.yaml

CHAPTER 2. INSTALLING 3SCALE API MANAGEMENT ON OPENSHIFT

27

spec.apicast.stagingSpec.replicas back to its previous value.

2.5.4. Configuring OpenTracing with the 3scale API Management operator

In a 3scale installation that uses embedded APIcast, you can use the 3scale operator to configure
OpenTracing. You can configure OpenTracing in the staging or production environments or both
environments. By enabling OpenTracing, you get more insight and better observability on the APIcast
instance.

Prerequisites

The 3scale operator is installed or you are in the process of installing it.

Procedure

1. Define a secret that contains your OpenTracing configuration details in stringData.config. This
is the only valid value for the attribute that contains your OpenTracing configuration details. Any
other specification prevents APIcast from receiving your OpenTracing configuration details. The
following example shows a valid secret definition:

2. Create the secret. For example, if you saved the previous secret definition in the myjaeger.yaml
file, you would run the following command:

apiVersion: v1
kind: Secret
metadata:
 name: myjaeger
stringData:
 config: |-
 {
 "service_name": "apicast",
 "disabled": false,
 "sampler": {
 "type": "const",
 "param": 1
 },
 "reporter": {
 "queueSize": 100,
 "bufferFlushInterval": 10,
 "logSpans": false,
 "localAgentHostPort": "jaeger-all-in-one-inmemory-agent:6831"
 },
 "headers": {
 "jaegerDebugHeader": "debug-id",
 "jaegerBaggageHeader": "baggage",
 "TraceContextHeaderName": "uber-trace-id",
 "traceBaggageHeaderPrefix": "testctx-"
 },
 "baggage_restrictions": {
 "denyBaggageOnInitializationFailure": false,
 "hostPort": "127.0.0.1:5778",
 "refreshInterval": 60
 }
 }
type: Opaque

Red Hat 3scale API Management 2.14 Installing Red Hat 3scale API Management

28

3. Define an APIManager custom resource (CR) that specifies OpenTracing attributes. In the CR
definition, set the openTracing.tracingConfigSecretRef.name attribute to the name of the
secret that contains your OpenTracing configuration details. The following example shows only
content relative to configuring OpenTracing:

4. Create the APIManager CR that configures OpenTracing. For example, if you saved the
APIManager CR in the apimanager1.yaml file, you would run the following command:

Next steps

Depending on how OpenTracing is installed, you should see the traces in the Jaeger service user
interface.

Additional resource

APIManager custom resource definition

2.5.5. Enabling TLS at the pod level with the 3scale API Management operator

3scale deploys two APIcast instances, one for production and the other for staging. TLS can be enabled
for only production or only staging, or for both instances.

Prerequisites

A valid certificate for enabling TLS.

Procedure

1. Create a secret from your valid certificate, for example:

$ oc create -f myjaeger.yaml

apiVersion: apps.3scale.net/v1alpha1
kind: APIManager
metadata:
 name: apimanager1
spec:
 apicast:
 stagingSpec:
 ...
 openTracing:
 enabled: true
 tracingLibrary: jaeger
 tracingConfigSecretRef:
 name: myjaeger
 productionSpec:
 ...
 openTracing:
 enabled: true
 tracingLibrary: jaeger
 tracingConfigSecretRef:
 name: myjaeger

$ oc apply -f apimanager1.yaml

CHAPTER 2. INSTALLING 3SCALE API MANAGEMENT ON OPENSHIFT

29

https://github.com/3scale/3scale-operator/blob/3scale-2.14-stable/doc/apimanager-reference.md

The configuration exposes secret references in the APIManager custom resource (CR). You
create the secret and then reference the name of the secret in the APIManager CR as follows:

Production: The APIManager CR exposes the certificate in the
.spec.apicast.productionSpec.httpsCertificateSecretRef field.

Staging: The APIManager CR exposes the certificate in the
.spec.apicast.stagingSpec.httpsCertificateSecretRef field.
Optionally, you can configure the following:

httpsPort indicates which port APIcast should start listening on for HTTPS connections. If
this clashes with the HTTP port APIcast uses this port for HTTPS only.

httpsVerifyDepth defines the maximum length of the client certificate chain.

NOTE

Provide a valid certificate and reference from the APIManager CR. If the
configuration can access httpsPort but not httpsCertificateSecretRef,
APIcast uses an embedded self-signed certificate. This is not recommended.

2. Click Operators > Installed Operators.

3. From the list of Installed Operators, click 3scale Operator.

4. Click the API Manager tab.

5. Click Create APIManager.

6. Add the following YAML definitions to the editor.

a. If enabling for production, configure the following YAML definitions:

b. If enabling for staging, configure the following YAML defintions:

7. Click Create.

$ oc create secret tls mycertsecret --cert=server.crt --key=server.key

spec:
 apicast:
 productionSpec:
 httpsPort: 8443
 httpsVerifyDepth: 1
 httpsCertificateSecretRef:
 name: mycertsecret

spec:
 apicast:
 stagingSpec:
 httpsPort: 8443
 httpsVerifyDepth: 1
 httpsCertificateSecretRef:
 name: mycertsecret

Red Hat 3scale API Management 2.14 Installing Red Hat 3scale API Management

30

2.5.6. Proof of concept for evaluation deployment

The following sections describe the configuration options applicable to the proof of concept for an
evaluation deployment of 3scale. This deployment uses internal databases as default.

IMPORTANT

The configuration for external databases is the standard deployment option for
production environments.

2.5.6.1. Default deployment configuration

Containers will have Kubernetes resource limits and requests .

This ensures a minimum performance level.

It limits resources to allow external services and allocation of solutions.

Deployment of internal databases.

File storage will be based on Persistence Volumes (PV).

One will require read, write, execute (RWX) access mode.

OpenShift configured to provide them upon request.

Deploy MySQL as the internal relational database.

The default configuration option is suitable for proof of concept (PoC) or evaluation by a customer.

One, many, or all of the default configuration options can be overridden with specific field values in the
APIManager custom resource (CR). The 3scale operator allows all available combinations. For example,
the 3scale operator allows deployment of 3scale in evaluation mode and external databases mode.

2.5.6.2. Evaluation installation

For and evaluation installation, containers will not have kubernetes resource limits and requests
specified. For example:

Small memory footprint

Fast startup

Runnable on laptop

Suitable for presale/sales demos

apiVersion: apps.3scale.net/v1alpha1
kind: APIManager
metadata:
 name: example-apimanager
spec:
 wildcardDomain: lvh.me
 resourceRequirementsEnabled: false

CHAPTER 2. INSTALLING 3SCALE API MANAGEMENT ON OPENSHIFT

31

https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/

Additional resources

APIManager

2.5.7. External databases installation

IMPORTANT

When you externalize databases from a Red Hat 3scale API Management deployment,
this means to provide isolation from the application and resilience against service
disruptions at the database level. The resilience to service disruptions depends on the
service level agreements (SLAs) provided by the infrastructure or platform provider
where you host the databases. This is not offered by 3scale. For more details on
externalizing of databases offered by your chosen deployment, see the associated
documentation.

An external databases installation is suitable for production where you want to provide uninterrupted
uptime or where you plan to reuse your own databases.

IMPORTANT

When enabling the 3scale external databases installation mode, you can configure one or
more of the following databases as external to 3scale:

backend-redis

system-redis

system-database (mysql, postgresql, or oracle)

zync-database

Before creating an APIManager CR to deploy 3scale, you must provide the following connection settings
for the external databases by using OpenShift secrets.

Additional resources

Red Hat 3scale API Management Supported Configurations

2.5.7.1. Backend Redis secret

Deploy two external Redis instances and fill in the connection settings as shown in the following
example:

apiVersion: v1
kind: Secret
metadata:
 name: backend-redis
stringData:
 REDIS_STORAGE_URL: "redis://backend-redis-storage"
 REDIS_STORAGE_SENTINEL_HOSTS: "redis://sentinel-0.example.com:26379,redis://sentinel-
1.example.com:26379, redis://sentinel-2.example.com:26379"
 REDIS_STORAGE_SENTINEL_ROLE: "master"
 REDIS_QUEUES_URL: "redis://backend-redis-queues"

Red Hat 3scale API Management 2.14 Installing Red Hat 3scale API Management

32

https://github.com/3scale/3scale-operator/tree/3scale-2.14-stable/doc/apimanager-reference.md#apimanager
https://access.redhat.com/articles/2798521

The Secret name must be backend-redis.

2.5.7.2. System Redis secret

Deploy two external Redis instances and fill in the connection settings as shown in the following
example:

The Secret name must be system-redis.

2.5.7.3. System database secret

NOTE

The Secret name must be system-database.

When you are deploying 3scale, you have three alternatives for your system database. Configure
different attributes and values for each alternative’s related secret.

MySQL

PostgreSQL

Oracle Database

To deploy a MySQL, PostgreSQL, or an Oracle Database system database secret, fill in the connection
settings as shown in the following examples:

MySQL system database secret

IMPORTANT

 REDIS_QUEUES_SENTINEL_HOSTS: "redis://sentinel-0.example.com:26379,redis://sentinel-
1.example.com:26379, redis://sentinel-2.example.com:26379"
 REDIS_QUEUES_SENTINEL_ROLE: "master"
type: Opaque

apiVersion: v1
kind: Secret
metadata:
 name: system-redis
stringData:
 URL: "redis://system-redis"
 SENTINEL_HOSTS: "redis://sentinel-0.example.com:26379,redis://sentinel-1.example.com:26379,
redis://sentinel-2.example.com:26379"
 SENTINEL_ROLE: "master"
 NAMESPACE: ""
type: Opaque

apiVersion: v1
kind: Secret
metadata:
 name: system-database
stringData:
 URL: "mysql2://{DB_USER}:{DB_PASSWORD}@{DB_HOST}:{DB_PORT}/{DB_NAME}"
type: Opaque

CHAPTER 2. INSTALLING 3SCALE API MANAGEMENT ON OPENSHIFT

33

IMPORTANT

If you use MySQL 8.0 with 3scale 2.12, you must set the authentication plugin to
mysql_native_password. Add the following to the MySQL configuration file:

[mysqld]
default_authentication_plugin=mysql_native_password

PostgreSQL system database secret

Oracle system database secret

NOTE

{DB_USER} and {DB_PASSWORD} are the username and password of the
regular non-system user.

{DB_NAME} is the Oracle Database service name.

ORACLE_SYSTEM_PASSWORD is optional, see Configure a database user.

2.5.7.4. Zync database secret

In a zync database setup, when the spec.externalComponents.zync.database field is set to true, you
must create a secret named zync before you deploy 3scale. In this secret, set the DATABASE_URL and
DATABASE_PASSWORD fields to the values that point to your external zync database, for example:

apiVersion: v1
kind: Secret
metadata:
 name: system-database
stringData:
 URL: "postgresql://{DB_USER}:{DB_PASSWORD}@{DB_HOST}:{DB_PORT}/{DB_NAME}"
type: Opaque

apiVersion: v1
kind: Secret
metadata:
 name: system-database
stringData:
 URL: "oracle-enhanced://{DB_USER}:{DB_PASSWORD}@{DB_HOST}:{DB_PORT}/{DB_NAME}"
 ORACLE_SYSTEM_PASSWORD: "{SYSTEM_PASSWORD}"
type: Opaque

apiVersion: v1
kind: Secret
metadata:
 name: zync
stringData:
 DATABASE_URL: postgresql://<zync-db-user>:<zync-db-password>@<zync-db-host>:<zync-db-
port>/zync_production
 ZYNC_DATABASE_PASSWORD: <zync-db-password>
type: Opaque

Red Hat 3scale API Management 2.14 Installing Red Hat 3scale API Management

34

https://docs.oracle.com/cd/E11882_01/network.112/e41945/glossary.htm#BGBGIHFG

The zync database must be in high-availability mode.

2.5.7.5. APIManager custom resources to deploy 3scale API Management

NOTE

When you enable external components, you must create a secret for each
external component (backend-redis, system-redis, system-database, zync)
before you deploy 3scale.

For an external system-database, choose only one type of database to
externalize.

Configuration of the APIManager custom resource (CR) depends on whether or not your choice of
database is external to your 3scale deployment.

If backend-redis, system-redis, or system-database is external to 3scale, populate the APIManager
CR externalComponents object as shown in the following example:

Additional resources

Backend redis secret

System database secret

APIManager ExternalComponentsSpec

Zync secret

2.5.8. Enabling pod affinity in the 3scale API Management operator

You can enable pod affinities in the 3scale operator for every component. This ensures distribution of
pod replicas from each deploymentConfig across different nodes of the cluster, so they will be evenly
balanced across different availability zones (AZ).

2.5.8.1. Customizing node affinity and tolerations at component level

Customize kubernetes affinity and tolerations in your 3scale solution through the APIManager CR
attributes. You can then customize to schedule different 3scale components onto kubernetes nodes.

For example, to set a custom node affinity for backend-listener and custom tolerations for system-
memcached, do the following:

Custom affinity and tolerations

apiVersion: apps.3scale.net/v1alpha1
kind: APIManager
metadata:
 name: example-apimanager
spec:
 wildcardDomain: lvh.me
 externalComponents:
 system:
 database: true

CHAPTER 2. INSTALLING 3SCALE API MANAGEMENT ON OPENSHIFT

35

https://github.com/3scale/3scale-operator/tree/3scale-2.14-stable/doc/apimanager-reference.md#backend-redis
https://github.com/3scale/3scale-operator/tree/3scale-2.14-stable/doc/apimanager-reference.md#system-database
https://github.com/3scale/3scale-operator/blob/3scale-2.14-stable/doc/apimanager-reference.md#externalcomponentsspec
https://github.com/3scale/3scale-operator/blob/3scale-2.14-stable/doc/apimanager-reference.md#zync
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/

Add the following affinity block to apicastProductionSpec or to any non-database deploymentConfig.
This adds a soft podAntiAffinity configuration using
preferredDuringSchedulingIgnoredDuringExecution. The scheduler will try to run this set of apicast-
production pods in different hosts from different AZs. If it is not possible, then allow them to run
elsewhere:

Soft podAntiAffinity

apiVersion: apps.3scale.net/v1alpha1
kind: APIManager
metadata:
 name: example-apimanager
spec:
 backend:
 listenerSpec:
 affinity:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: "kubernetes.io/hostname"
 operator: In
 values:
 - ip-10-96-1-105
 - key: "beta.kubernetes.io/arch"
 operator: In
 values:
 - amd64
 system:
 memcachedTolerations:
 - key: key1
 value: value1
 operator: Equal
 effect: NoSchedule
 - key: key2
 value: value2
 operator: Equal
 effect: NoSchedule

affinity:
 podAntiAffinity:
 preferredDuringSchedulingIgnoredDuringExecution:
 - weight: 100
 podAffinityTerm:
 labelSelector:
 matchLabels:
 deploymentConfig: apicast-production
 topologyKey: kubernetes.io/hostname
 - weight: 99
 podAffinityTerm:
 labelSelector:
 matchLabels:
 deploymentConfig: apicast-production
 topologyKey: topology.kubernetes.io/zone

Red Hat 3scale API Management 2.14 Installing Red Hat 3scale API Management

36

In the following example, a hard podAntiAffinity configuration is set using
requiredDuringSchedulingIgnoredDuringExecution. Conditions must be met to schedule a pod onto
a node. A risk exists, for example, that you will not be able to schedule new pods on a cluster with low
free resources:

Hard podAntiAffinity

Additional resources

APIManager CDR reference

2.5.9. Multiple clusters in multiple availability zones

NOTE

In case of failure, bringing a passive cluster into active mode disrupts the provision of the
service until the procedure finishes. Due to this disruption, be sure to have a maintenance
window.

This documentation focuses on deployment using Amazon Web Services (AWS). The
same configuration options apply to other public cloud vendors where the provider’s
managed database services offer, for example, support for multiple availability zones and
multiple regions.

When you want to install 3scale on several OpenShift clusters and high availability (HA) zones, there are
options available which you can refer to here.

In multiple cluster installation options, clusters work in an active/passive configuration, with the failover
procedure involving a few manual steps.

2.5.9.1. Prerequisites for multiple clusters installations

Use the following in 3scale installations that involve using several OpenShift clusters:

Use pod affinities with both kubernetes.io/hostname and topology.kubernetes.io/zone rules
in the APIManager custom resource (CR).

Use pod disruption budgets in the APIManager CR.

A 3scale installation over multiple clusters must use the same shared wildcardDomain attribute

affinity:
 podAntiAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 - weight: 100
 podAffinityTerm:
 labelSelector:
 matchLabels:
 deploymentConfig: apicast-production
 topologyKey: kubernetes.io/hostname
 - weight: 99
 podAffinityTerm:
 labelSelector:
 matchLabels:
 deploymentConfig: apicast-production
 topologyKey: topology.kubernetes.io/zone

CHAPTER 2. INSTALLING 3SCALE API MANAGEMENT ON OPENSHIFT

37

https://github.com/3scale/3scale-operator/blob/3scale-2.14-stable/doc/apimanager-reference.md

A 3scale installation over multiple clusters must use the same shared wildcardDomain attribute
specifications in the APIManager CR. The use of a different domain for each cluster is not
allowed in this installation mode, as the information stored in the database would be conflicting.

You must manually deploy the secrets containing credentials, such as tokens and passwords, in
all clusters with the same values. The 3scale operator creates them with secure random values
on every cluster. In this case, you need to have the same credentials in both clusters. You will
find the list of secrets and how to configure them in the 3scale operator documentation. The
following is the list of secrets you must mirror in both clusters:

backend-internal-api

system-app

system-events-hook

system-master-apicast

system-seed
You must manually deploy secrets with the database connection strings for backend-redis,
system-redis, system-database and zync. See External databases installation.

Databases shared among clusters must use the same values on all clusters.

If each cluster have their own databases, they must use different values on each cluster.

2.5.9.2. Active-passive clusters on the same region with shared databases

This setup consists of having two or more clusters in the same region and deploying 3scale in active-
passive mode. One cluster is active, receiving traffic. The others are in standby mode without receiving
traffic, therefore passive, but prepared to assume the active role in case there is a failure in the active
cluster.

In this installation option, only a single region is in use and databases will be shared among all clusters.

Red Hat 3scale API Management 2.14 Installing Red Hat 3scale API Management

38

2.5.9.3. Configuring and installing shared databases

Procedure

1. Create two or more OpenShift clusters in the same region using different availability zones
(AZs). A minimum of three zones is recommended.

2. Create all required AWS ElastiCache (EC) instances with Amazon Relational Database Service
(RDS) Multi-AZ enabled:

a. One AWS EC for Backend Redis database

b. One AWS EC for System Redis database

3. Create all required AWS RDS instances with Amazon RDS Multi-AZ enabled:

a. One AWS RDS for the System database

b. One AWS RDS for Zync database

4. Configure a AWS S3 bucket for the system assets.

5. Create a custom domain in AWS Route53 or your DNS provider and point it to the OpenShift
router of the active cluster. This must coincide with the wildcardDomain attribute from
APIManager custom resource (CR).

CHAPTER 2. INSTALLING 3SCALE API MANAGEMENT ON OPENSHIFT

39

6. Install 3scale in the passive cluster. The APIManager CR should be identical to the one used in
the previous step. When all pods are running, change the APIManager to deploy 0 replicas for all
the backend, system, zync and APIcast pods.

a. Set replicas to 0 to avoid consuming jobs from active database. Deployment will fail due to
pod dependencies if each replica is set to 0 at first. For example, pods checking that others
are running. First deploy as normal, then set replicas to 0 as shown in the APIManager spec
example:

2.5.9.4. Manual failover shared databases

Procedure

1. In the active cluster, scale down the replicas of the backend, system, zync, and APIcast pods to
0.

a. This becomes the new passive cluster, so you ensure that the new passive cluster will not
consume jobs from active databases. Downtime starts here.

2. In the passive cluster, edit the APIManager to scale up the replicas of the backend, system, zync,
and APIcast pods that were set to 0, so it will become the active cluster.

3. In the new active cluster, recreate the OpenShift routes created by zync.

a. Run the zync:resync:domains command from the system-master container of the
system-app pod:

4. Point the custom domain created in AWS Route53 to the OpenShift router of the new active
cluster.

spec:
 apicast:
 stagingSpec:
 replicas: 0
 productionSpec:
 replicas: 0
 backend:
 listenerSpec:
 replicas: 0
 workerSpec:
 replicas: 0
 cronSpec:
 replicas: 0
 zync:
 appSpec:
 replicas: 0
 queSpec:
 replicas: 0
 system:
 appSpec:
 replicas: 0
 sidekiqSpec:
 replicas: 0

bundle exec rake zync:resync:domains

Red Hat 3scale API Management 2.14 Installing Red Hat 3scale API Management

40

a. The old passive cluster will start to receive traffic, and becomes the new active cluster.

2.5.9.5. Active-passive clusters on different regions with synced databases

This setup consists of having two or more clusters in different regions and deploying 3scale in active-
passive mode. One cluster is active, receiving traffic, the others are in standby mode without receiving
traffic, therefore passive, but prepared to assume the active role in case there is a failure in the active
cluster.

To ensure good database access latency, each cluster has its own database instances. The databases
from the active 3scale installation are replicated to the read-replica databases of the 3scale passive
installations so the data is available and up to date in all regions for a possible failover.

2.5.9.6. Configuring and installing synced databases

Procedure

1. Create two or more OpenShift clusters in different regions using different availability zones. A
minimum of three zones is recommended.

2. Create all required AWS ElastiCache instances with Amazon RDS Multi-AZ enabled on every
region:

a. Two AWS EC for Backend Redis database: one per region.

CHAPTER 2. INSTALLING 3SCALE API MANAGEMENT ON OPENSHIFT

41

a. Two AWS EC for Backend Redis database: one per region.

b. Two AWS EC for System Redis database: one per region.

c. Use the cross-region replication with the Global Datastore feature enabled, so the
databases from passive regions are read-replicas from the master databases at the active
region.

3. Create all required AWS RDS instances with Amazon RDS Multi-AZ enabled on every region:

a. Two AWS RDS for the System database.

b. Two AWS RDS for Zync database.

c. Use cross-region replication, so the databases from passive regions are read-replicas from
the master databases at the active region.

4. Configure a AWS S3 bucket for the system assets on every region using cross-region
replication.

5. Create a custom domain in AWS Route53 or your DNS provider and point it to the OpenShift
Router of the active cluster. This must coincide with the wildcardDomain attribute from
APIManager CR.

6. Install 3scale in the passive cluster. The APIManager CR should be identical to the one used in
the previous step. When all pods are running, change the APIManager to deploy 0 replicas for all
the backend, system, zync, and APIcast pods.

a. Set replicas to 0 to avoid consuming jobs from active database. Deployment will fail due to
pod dependencies if each replica is set to 0 at first. For example, pods checking that others
are running. First deploy as normal, then set replicas to 0.

2.5.9.7. Manual failover synced databases

Procedure

1. Do steps 1, 2 and 3 from Manual Failover shared databases.

a. Every cluster has its own independent databases: read-replicas from the master at the
active region.

b. You must manually execute a failover on every database to select the new master on the
passive region, which then becomes the active region.

2. Manual failovers of the databases to execute are:

a. AWS RDS: System and Zync.

b. AWS ElastiCaches: Backend and System.

3. Do step 4 from Manual Failover shared databases.

2.5.10. Amazon Simple Storage Service 3scale API Management fileStorage
installation

Before creating APIManager custom resource (CR) to deploy 3scale, provide connection settings for
the Amazon Simple Storage Service (Amazon S3) service by using an OpenShift secret.

Red Hat 3scale API Management 2.14 Installing Red Hat 3scale API Management

42

1

2

IMPORTANT

Skip this section if you are deploying 3scale with the local filesystem storage.

The name you choose for a secret can be any name as long as it is not an existing
secret name and it will be referenced in the APIManager CR.

If AWS_REGION is not provided for S3 compatible storage, use default or the
deployment will fail.

Disclaimer: Links contained herein to external website(s) are provided for
convenience only. Red Hat has not reviewed the links and is not responsible for the
content or its availability. The inclusion of any link to an external website does not
imply endorsement by Red Hat of the website or their entities, products or
services. You agree that Red Hat is not responsible or liable for any loss or
expenses that may result due to your use of (or reliance on) the external site or
content.

2.5.10.1. Amazon S3 bucket creation

Prerequisites

You must have an Amazon Web Services (AWS) account.

Procedure

1. Create a bucket for storing the system assets.

2. Disable the public access blocker of S3 when using the Logo feature of the Developer Portal.

3. Create an Identity and Access Management (IAM) policy with the following minimum
permissions:

Replace <target_bucket_name> with your own value.

Replace <target_bucket_name> with your own value.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "s3:ListAllMyBuckets",
 "Resource": "arn:aws:s3:::*"
 },
 {
 "Effect": "Allow",
 "Action": "s3:*",
 "Resource": [
 "arn:aws:s3:::<target_bucket_name>", 1
 "arn:aws:s3:::<target_bucket_name>/*" 2
]
 }
]
}

CHAPTER 2. INSTALLING 3SCALE API MANAGEMENT ON OPENSHIFT

43

https://portal.aws.amazon.com/billing/signup?nc2=h_ct&src=header_signup&redirect_url=https%3A%2F%2Faws.amazon.com%2Fregistration-confirmation#/start/email

4. Create a CORS configuration with the following rules:

<?xml version="1.0" encoding="UTF-8"?>
<CORSConfiguration xmlns="http://s3.amazonaws.com/doc/2006-03-01/">
<CORSRule>
 <AllowedOrigin>https://*</AllowedOrigin>
 <AllowedMethod>GET</AllowedMethod>
</CORSRule>
</CORSConfiguration>

2.5.10.2. Create an OpenShift secret

The following examples show 3scale fileStorage using Amazon S3 instead of persistent volume claim
(PVC).

NOTE

AN AWS S3 compatible provider can be configured in the S3 secret with
AWS_HOSTNAME, AWS_PATH_STYLE, and AWS_PROTOCOL optional keys. See the
fileStorage S3 credentials secret fields table for more details.

In the following example, Secret name can be anything, as it is be referenced in the APIManager CR.

Lastly, create the APIManager CR to deploy 3scale.

Check APIManager SystemS3Spec.

The following table shows the fileStorage Amazon S3 credentials secret field requirements for Identity
and Access Management (IAM) and Security Token Service (STS) settings:

apiVersion: v1
kind: Secret
metadata:
 creationTimestamp: null
 name: aws-auth
stringData:
 AWS_ACCESS_KEY_ID: <ID_123456>
 AWS_SECRET_ACCESS_KEY: <ID_98765544>
 AWS_BUCKET: <mybucket.example.com>
 AWS_REGION: eu-west-1
type: Opaque

apiVersion: apps.3scale.net/v1alpha1
kind: APIManager
metadata:
 name: <example_apimanager>
 namespace: <3scale_test>
spec:
 wildcardDomain: lvh.me
 system:
 fileStorage:
 simpleStorageService:
 configurationSecretRef:
 name: aws-auth

Red Hat 3scale API Management 2.14 Installing Red Hat 3scale API Management

44

http://docs.aws.amazon.com/AmazonS3/latest/dev/cors.html
https://github.com/3scale/3scale-operator/tree/3scale-2.14-stable/doc/apimanager-reference.md#systems3spec

The S3 authentication method using Secure Token Service (STS) is for short-term, limited-
privilege security credentials.

S3 Identity and Access Management (IAM) is for long-term privilege security credentials.

Table 2.1. fileStorage S3 credentials secret fields

Field Description Required for IAM Required for STS

AWS_ACCESS_KEY_ID AWS Access Key ID to
use in S3 Storage for
system’s fileStorage

Yes No

AWS_SECRET_ACCESS
_KEY

AWS Access Key Secret
to use in S3 Storage for
system’s fileStorage

Yes No

AWS_BUCKET The S3 bucket to be
used as system’s
fileStorage for assets

Yes Yes

AWS_REGION The region of the S3
bucket to be used as
system’s fileStorage
for assets

Yes Yes

AWS_HOSTNAME Default: Amazon
endpoints - An AWS S3
compatible provider
endpoint hostname

No No

AWS_PROTOCOL Default: HTTPS An
AWS S3 compatible
provider endpoint
protocol

No No

AWS_PATH_STYLE Default: false When set
to true, the bucket
name is always left in
the request URI and
never moved to the host
as a sub-domain

No No

AWS_ROLE_ARN ARN of the Role which
has a policy attached to
authenticate using AWS
STS

No Yes

CHAPTER 2. INSTALLING 3SCALE API MANAGEMENT ON OPENSHIFT

45

AWS_WEB_IDENTITY_T
OKEN_FILE

Path to mounted token
file location. For
example:
/var/run/secrets/ope
nshift/serviceaccoun
t/token

No Yes

Field Description Required for IAM Required for STS

2.5.10.3. Manual mode with STS

STS authentication mode must be enabled from the APIManager CR. You can define your audience,
however, the default value is openshift.

Prerequisites

Configure OpenShift to use temporary credentials for different components with AWS Security
Token Service (STS). For further detail see Using manual mode with Amazon Web Services
Secure Token Service.

The secret generated by the cloud credential tooling looks different from the IAM secret. There are two
new fields AWS_ROLE_ARN and AWS_WEB_IDENTITY_TOKEN_FILE instead of
AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY.

STS secret example

apiVersion: apps.3scale.net/v1alpha1
kind: APIManager
metadata:
 name: <apimanager_sample>
 namespace: <3scale_test>
spec:
 wildcardDomain: lvh.me
 system:
 fileStorage:
 simpleStorageService:
 configurationSecretRef:
 name: s3-credentials
 sts:
 enabled: true
 audience: openshift

kind: Secret
apiVersion: v1
metadata:
 name: s3-credentials
 namespace: 3scale
data:
 AWS_ROLE_ARN: arn:aws:iam::ID:role/ROLE
 AWS_WEB_IDENTITY_TOKEN_FILE: /var/run/secrets/openshift/serviceaccount/token

Red Hat 3scale API Management 2.14 Installing Red Hat 3scale API Management

46

https://docs.openshift.com/container-platform/4.12/authentication/managing_cloud_provider_credentials/cco-mode-sts.html

With STS, the 3scale operator adds the projected volume to request the token. The following pods have
a projected volume:

system-app

system-app hook pre

system-sidekiq

Pod example for STS

Additional resources

APIManager SystemS3Spec

S3 secret reference

Using manual mode with Amazon Web Services Secure Token Service

Short lived Credentials with AWS Security Token Service

2.5.11. PostgreSQL installation

A MySQL internal relational database is the default deployment. This deployment configuration can be
overridden to use PostgreSQL instead.

 AWS_BUCKET: <mybucket.example.com>
 AWS_REGION: eu-west-1
type: Opaque

apiVersion: v1
kind: Pod
metadata:
 name: system-sidekiq-1-zncrz
 namespace: 3scale-test
spec:
 containers:

 volumeMounts:
 - mountPath: /var/run/secrets/openshift/serviceaccount
 name: s3-credentials
 readOnly: true

 volumes:
 - name: s3-credentials
 projected:
 defaultMode: 420
 sources:
 - serviceAccountToken:
 audience: openshift
 expirationSeconds: 3600
 path: token

apiVersion: apps.3scale.net/v1alpha1
kind: APIManager

CHAPTER 2. INSTALLING 3SCALE API MANAGEMENT ON OPENSHIFT

47

https://github.com/3scale/3scale-operator/tree/3scale-2.14-stable/doc/apimanager-reference.md#systems3spec
https://github.com/3scale/3scale-operator/blob/3scale-2.14-stable/doc/apimanager-reference.md#fileStorage-S3-credentials-secret
https://docs.openshift.com/container-platform/4.12/authentication/managing_cloud_provider_credentials/cco-mode-sts.html
https://github.com/openshift/cloud-credential-operator/blob/release-4.12/docs/sts.md

Additional resources

APIManager DatabaseSpec

2.5.12. Configuring SMTP variables (optional)

3scale uses email to send notifications and invite new users . If you intend to use these features, you
must provide your own SMTP server and configure SMTP variables in the system-smtp secret.

Perform the following steps to configure the SMTP variables in the system-smtp secret.

Procedure

1. If you are not already logged in, log in to OpenShift:

2. Using the oc patch command, specify the secret type where system-smtp is the name of the
secret, followed by the -p option, and write the new values in JSON for the following variables:

Table 2.2. system-smtp

Field Description Default value

address This is the address (hostname
or IP) of the remote mail server
to use. If this is set to a value
different than "", system will
use the mail server to send
mails related to events that
happen in the API
management solution.

""

port This is the port of the remote
mail server to use.

""

domain Use domain if the mail server
requires a HELO domain.

""

metadata:
 name: example-apimanager
spec:
 wildcardDomain: lvh.me
 system:
 database:
 postgresql: {}

oc login

Red Hat 3scale API Management 2.14 Installing Red Hat 3scale API Management

48

https://github.com/3scale/3scale-operator/blob/3scale-2.14-stable/doc/apimanager-reference.md#DatabaseSpec
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.14/html-single/admin_portal_guide/index#notifications
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.14/html-single/admin_portal_guide/index#inviting-users-managing-rights

authentication Use if the mail server requires
authentication. Set the
authentication types: plain to
send the password in the clear,
login to send password
Base64 encoded, or
cram_md5 to combine a
challenge/response
mechanism based on the
HMAC-MD5 algorithm.

""

username Use username if the mail
server requires authentication
and the authentication type
requires it.

""

password Use password if the mail
server requires authentication
and the authentication type
requires it.

""

openssl.verify.mode When using TLS, you can set
how OpenSSL checks the
certificate. This is useful if you
need to validate a self-signed
and/or a wildcard certificate.
You can use the name of an
OpenSSL verify constant:
none or peer.

""

from_address from address value for the no-
reply mail.

""

Field Description Default value

Examples

3. After you have set the secret variables, redeploy the system-app and system-sidekiq pods:

4. Check the status of the rollout to ensure it has finished:

$ oc patch secret system-smtp -p '{"stringData":{"address":"<your_address>"}}'
$ oc patch secret system-smtp -p '{"stringData":{"username":"<your_username>"}}'
$ oc patch secret system-smtp -p '{"stringData":{"password":"<your_password>"}}'

$ oc rollout latest dc/system-app
$ oc rollout latest dc/system-sidekiq

$ oc rollout status dc/system-app
$ oc rollout status dc/system-sidekiq

CHAPTER 2. INSTALLING 3SCALE API MANAGEMENT ON OPENSHIFT

49

2.5.13. Customizing compute resource requirements at component level

Customize Kubernetes Compute Resource Requirements in your 3scale solution through the
APIManager custom resource (CR) attributes. Do this to customize compute resource requirements,
which is CPU and memory, assigned to a specific APIManager component.

The following example outlines how to customize compute resource requirements for the system-
master’s system-provider container, for the backend-listener and for the zync-database:

Additional resources

apiVersion: apps.3scale.net/v1alpha1
kind: APIManager
metadata:
 name: example-apimanager
spec:
 backend:
 listenerSpec:
 resources:
 requests:
 memory: "150Mi"
 cpu: "300m"
 limits:
 memory: "500Mi"
 cpu: "1000m"
 system:
 appSpec:
 developerContainerResources:
 limits:
 cpu: 1500m
 memory: 1400Mi
 requests:
 cpu: 150m
 memory: 600Mi
 masterContainerResources:
 limits:
 cpu: 1500m
 memory: 1400Mi
 requests:
 cpu: 150m
 memory: 600Mi
 providerContainerResources:
 limits:
 cpu: 1500m
 memory: 1400Mi
 requests:
 cpu: 150m
 memory: 600Mi
 zync:
 databaseResources:
 requests:
 memory: "111Mi"
 cpu: "222m"
 limits:
 memory: "333Mi"
 cpu: "444m"

Red Hat 3scale API Management 2.14 Installing Red Hat 3scale API Management

50

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers

Additional resources

APIManager CRD reference

2.5.13.1. Default APIManager components compute resources

When you configure the APIManager spec.resourceRequirementsEnabled attribute as true, the
default compute resources are set for the APIManager components.

The specific compute resources default values that are set for the APIManager components are shown
in the following table.

2.5.13.1.1. CPU and memory units

The following list explains the units you will find mentioned in the compute resources default values
table. For more information on CPU and memory units, see Managing Resources for Containers.

Resource units explanation

m - milliCPU or millicore

Mi - mebibytes

Gi - gibibyte

G - gigabyte

Table 2.3. Compute resources default values

Component CPU requests CPU limits Memory requests Memory limits

system-app’s
system-master

50m 1000m 600Mi 800Mi

system-app’s
system-provider

50m 1000m 600Mi 800Mi

system-app’s
system-developer

50m 1000m 600Mi 800Mi

system-sidekiq 100m 1000m 500Mi 2Gi

system-searchd 80m 1000m 250Mi 512Mi

system-redis 150m 500m 256Mi 32Gi

system-mysql 250m No limit 512Mi 2Gi

system-postgresql 250m No limit 512Mi 2Gi

backend-listener 500m 1000m 550Mi 700Mi

CHAPTER 2. INSTALLING 3SCALE API MANAGEMENT ON OPENSHIFT

51

https://github.com/3scale/3scale-operator/blob/3scale-2.14-stable/doc/apimanager-reference.md
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers

backend-worker 150m 1000m 50Mi 300Mi

backend-cron 50m 150m 40Mi 80Mi

backend-redis 1000m 2000m 1024Mi 32Gi

apicast-production 500m 1000m 64Mi 128Mi

apicast-staging 50m 100m 64Mi 128Mi

zync 150m 1 250M 512Mi

zync-que 250m 1 250M 512Mi

zync-database 50m 250m 250M 2G

Component CPU requests CPU limits Memory requests Memory limits

2.5.14. Customizing node affinity and tolerations at component level

Customize Kubernetes Affinity and Tolerations in your Red Hat 3scale API Management solution
through the APIManager CR attributes to customize where and how the different 3scale components of
an installation are scheduled onto Kubernetes Nodes.

The following example sets a custom node affinity for the backend. It also sets listener and custom
tolerations for the system-memcached:

apiVersion: apps.3scale.net/v1alpha1
kind: APIManager
metadata:
 name: example-apimanager
spec:
 backend:
 listenerSpec:
 affinity:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: "kubernetes.io/hostname"
 operator: In
 values:
 - ip-10-96-1-105
 - key: "beta.kubernetes.io/arch"
 operator: In
 values:
 - amd64
 system:
 memcachedTolerations:
 - key: key1
 value: value1

Red Hat 3scale API Management 2.14 Installing Red Hat 3scale API Management

52

https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/

Additional resources

APIManager CRD reference

2.5.15. Pod priority of 3scale API Management components

As a 3scale administrator, you can set up the pod priority for various 3scale installed components by
modifying the APIManager custom resource (CR). Use the optional priorityClassName available in the
following components:

apicast-production

apicast-staging

backend-cron

backend-listener

backend-worker

backend-redis

system-app

system-sidekiq

system-searchd

system-memcache

system-mysql

system-postgresql

system-redis

zync

zync-database

zync-que

For example:

 operator: Equal
 effect: NoSchedule
 - key: key2
 value: value2
 operator: Equal
 effect: NoSchedule

apiVersion: apps.3scale.net/v1alpha1
kind: APIManager
metadata:
 name: example-apimanager
spec:

CHAPTER 2. INSTALLING 3SCALE API MANAGEMENT ON OPENSHIFT

53

https://github.com/3scale/3scale-operator/blob/3scale-2.14-stable/doc/apimanager-reference.md
https://kubernetes.io/docs/concepts/scheduling-eviction/pod-priority-preemption/

2.5.16. Setting custom labels

You can customize labels through the APIManager CR labels attribute for each DeploymentConfig (DC)
that are applied to their respective pods.

NOTE

If you remove a label defined in a Custom Resource (CR), it is not automatically removed
from the associated DeploymentConfig (DC). You must manually remove the label from
the DC.

Example for apicast-staging and backend-listener:

 wildcardDomain: api.vmogilev01.0nno.s1.devshift.org
 resourceRequirementsEnabled: false
 apicast:
 stagingSpec:
 priorityClassName: openshift-user-critical
 productionSpec:
 priorityClassName: openshift-user-critical
 backend:
 listenerSpec:
 priorityClassName: openshift-user-critical
 cronSpec:
 priorityClassName: openshift-user-critical
 workerSpec:
 priorityClassName: openshift-user-critical
 redisPriorityClassName: openshift-user-critical
 system:
 appSpec:
 priorityClassName: openshift-user-critical
 sidekiqSpec:
 priorityClassName: openshift-user-critical
 searchdSpec:
 priorityClassName: openshift-user-critical
 searchdSpec:
 priorityClassName: openshift-user-critical
 memcachedPriorityClassName: openshift-user-critical
 redisPriorityClassName: openshift-user-critical
 database:
 postgresql:
 priorityClassName: openshift-user-critical
 zync:
 appSpec:
 priorityClassName: openshift-user-critical
 queSpec:
 priorityClassName: openshift-user-critical
 databasePriorityClassName: openshift-user-critical

apiVersion: apps.3scale.net/v1alpha1
 kind: APIManager
 metadata:
 name: example-apimanager
 spec:

Red Hat 3scale API Management 2.14 Installing Red Hat 3scale API Management

54

Additional resources

APIManager CRD reference

2.5.17. Setting backend client to skip certificate verification

When a controller processes an object, it generates a new backend client for making API calls. By default,
this client is set up to confirm the server’s certificate chain. However, during development and testing,
you might need the client to skip certificate verification when processing an object. To achieve this, add
the annotation "insecure_skip_verify": "true" to the following objects:

ActiveDoc

Application

Backend

CustomPolicyDefinition

DeveloperAccount

DeveloperUser

OpenAPI - backend and product

Product

ProxyConfigPromote

Tenant

OpenAPI CR example:

 wildcardDomain: example.com
 resourceRequirementsEnabled: false
 backend:
 listenerSpec:
 labels:
 backendLabel1: sample-label1
 backendLabel2: sample-label2
 apicast:
 stagingSpec:
 labels:
 apicastStagingLabel1: sample-label1
 apicastStagingLabel2: sample-label2

apiVersion: capabilities.3scale.net/v1beta1
kind: OpenAPI
metadata:
 name: ownertest
 namespace: threescale
 annotations:
 "insecure_skip_verify": "true"
spec:
 openapiRef:
 secretRef:

CHAPTER 2. INSTALLING 3SCALE API MANAGEMENT ON OPENSHIFT

55

https://github.com/3scale/3scale-operator/blob/3scale-2.14-stable/doc/apimanager-reference.md

2.5.18. Setting custom annotations

In 3scale, the components' pods have annotations. These are key/value pairs used for configurations.
You can change these annotations for any 3scale component using the APIManager CR.

NOTE

If you remove an annotation defined in a custom resource (CR), it is not automatically
removed from the associated DeploymentConfig (DC). You must manually remove the
annotation from the DC.

APIManager annotations for apicast-staging and backend-listener

Additional resources

APIManager CRD reference

2.5.19. Reconciliation

Once 3scale has been installed, the 3scale operator enables updating a given set of parameters from
the custom resource (CR) to modify system configuration options. Modifications are made by hot
swapping, that is, without stopping or shutting down the system.

When a reconciliation event happens in the 3scale operator and the APIcast operator, there are two
possible scenarios:

When there is no deploymentconfig and the CR has replicas, the deploymentconfig value will
match those replicas. If the CR does not contain replicas, the deploymentconfig replica value
will be set to 1.

When there is a deploymentconfig and the CR has replicas, the deploymentconfig value will
match those replicas, even if it is 0. If the CR does not contain replicas, the deploymentconfig
value stays the same.

Not all the parameters of the APIManager CR definitions (CRDs) are reconcilable.

 name: myopenapi
 namespace: threescale
 productSystemName: testProduct

apiVersion: apps.3scale.net/v1alpha1
kind: APIManager
metadata:
 name: example-apimanager
spec:
 wildcardDomain: example.com
 apicast:
 stagingSpec:
 annotations:
 anno-sample1: anno1
 backend:
 listenerSpec:
 annotations:
 anno-sample2: anno2

Red Hat 3scale API Management 2.14 Installing Red Hat 3scale API Management

56

https://github.com/3scale/3scale-operator/blob/master/doc/apimanager-reference.md#apimanager-crd-reference

The following is a list of reconcilable parameters:

Resources

Backend replicas

APIcast replicas

System replicas

Zync replicas

2.5.19.1. Resources

Resource limits and requests for all 3scale components.

2.5.19.2. Backend replicas

Backend components pod count.

NOTE

When the replica field is not set, the operator does not reconcile replicas. This allows third
party controllers to manage replicas, like HorizontalPodAutoscaler controllers. It also
allows update them manually on the deployment object.

2.5.19.3. APIcast replicas

APIcast staging and production components pod count.

apiVersion: apps.3scale.net/v1alpha1
kind: APIManager
metadata:
 name: example-apimanager
spec:
 resourceRequirementsEnabled: true/false

apiVersion: apps.3scale.net/v1alpha1
kind: APIManager
metadata:
 name: example-apimanager
spec:
 backend:
 listenerSpec:
 replicas: X
 workerSpec:
 replicas: Y
 cronSpec:
 replicas: Z

apiVersion: apps.3scale.net/v1alpha1
kind: APIManager
metadata:
 name: example-apimanager

CHAPTER 2. INSTALLING 3SCALE API MANAGEMENT ON OPENSHIFT

57

NOTE

When the replica field is not set, the operator does not reconcile replicas. This allows third
party controllers to manage replicas, like HorizontalPodAutoscaler controllers. It also
allows update them manually on the deployment object.

2.5.19.4. System replicas

System app and system sidekiq components pod count.

NOTE

When the replica field is not set, the operator does not reconcile replicas. This allows third
party controllers to manage replicas, like HorizontalPodAutoscaler controllers. It also
allows update them manually on the deployment object.

2.5.19.5. Zync replicas

Zync app and que components pod count.

NOTE

spec:
 apicast:
 productionSpec:
 replicas: X
 stagingSpec:
 replicas: Z

apiVersion: apps.3scale.net/v1alpha1
kind: APIManager
metadata:
 name: example-apimanager
spec:
 system:
 appSpec:
 replicas: X
 sidekiqSpec:
 replicas: Z

apiVersion: apps.3scale.net/v1alpha1
kind: APIManager
metadata:
 name: example-apimanager
spec:
 zync:
 appSpec:
 replicas: X
 queSpec:
 replicas: Z

Red Hat 3scale API Management 2.14 Installing Red Hat 3scale API Management

58

NOTE

When the replica field is not set, the operator does not reconcile replicas. This allows third
party controllers to manage replicas, like HorizontalPodAutoscaler controllers. It also
allows update them manually on the deployment object.

2.5.20. Setting the APICAST_SERVICE_CACHE_SIZE environment variable

You can specify the number of services that APIcast stores in the internal cache by adding an optional
field in the APIManager custom resource definition (CRD).

Prerequisites

You have installed the APIcast operator, or you are in the process of installing it.

Procedure

Add the serviceCacheSize optional fields in both the production and staging sections of the
spec:

apicast:
 productionSpec:
 serviceCacheSize: 20
 stagingSpec:
 serviceCacheSize: 10

Verification

1. Type the following commands to check the deployment:

$ oc get dc/apicast-staging -o yaml

$ oc get dc/apicast-production -o yaml

2. Verify inclusion of the environment variables:

apicast-staging
- name: APICAST_SERVICE_CACHE_SIZE
 value: '10'

apicast-production
- name: APICAST_SERVICE_CACHE_SIZE
 value: '20'

NOTE

You can specify the number of services that APIcast stores in the internal cache by
adding an optional field in the APIManager custom resource definition (CRD). When the
replica field is not set, the operator does not reconcile replicas. This allows third party
controllers to manage replicas, like HorizontalPodAutoscaler controllers. It also allows
update them manually on the deployment object.

CHAPTER 2. INSTALLING 3SCALE API MANAGEMENT ON OPENSHIFT

59

Additional resource

APIcast custom resource definition

2.6. INSTALLING 3SCALE API MANAGEMENT WITH THE OPERATOR
USING ORACLE AS THE SYSTEM DATABASE

As a Red Hat 3scale API Management administrator, you can install the 3scale with the operator using
the Oracle Database. By default, 3scale 2.14 has a component called system that stores configuration
data in a MySQL database. You can override the default database and store your information in an
external Oracle Database.

NOTE

The Oracle Database is not supported with OpenShift Container Platform (OCP)
versions 4.2 and 4.3 when you are performing an operator-only installation of
3scale. For more information, refer to the Red Hat 3scale API Management
Supported Configurations page.

In this documentation myregistry.example.com is used as an example of the
registry URL. Replace it with your registry URL.

Disclaimer: Links contained herein to external website(s) are provided for
convenience only. Red Hat has not reviewed the links and is not responsible for the
content or its availability. The inclusion of any link to an external website does not
imply endorsement by Red Hat of the website or their entities, products or
services. You agree that Red Hat is not responsible or liable for any loss or
expenses that may result due to your use of (or reliance on) the external site or
content.

Prerequisites

A container registry to push container images, accessible by the OCP cluster where 3scale
installed.

An installation of the 3scale operator.

Do not install the APIManager CR, as it will be created in the following procedure.

A Registry service account for 3scale .

A supported version of the Oracle Database accessible from your OpenShift cluster.

Access to the Oracle Database SYSTEM user for installation procedures.

To install 3scale with the operator using Oracle as the system database, use the following steps:

Preparing the Oracle Database

Building a custom system container image

Installing 3scale API Management with Oracle using the operator

2.6.1. Preparing the Oracle Database

As a 3scale administrator, you must fully prepare the Oracle Database for your 3scale installation when

Red Hat 3scale API Management 2.14 Installing Red Hat 3scale API Management

60

https://github.com/3scale/apicast-operator/blob/master/doc/apicast-crd-reference.md
https://access.redhat.com/articles/2798521
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.14/html-single/installing_red_hat_3scale_api_management/index#installing-threescale-operator-on-openshift
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.14/html-single/installing_red_hat_3scale_api_management/index#registry-service-accounts-threescale-on-openshift
https://access.redhat.com/articles/2798521

As a 3scale administrator, you must fully prepare the Oracle Database for your 3scale installation when
you decide to use it for the System component.

Procedure

1. Create a new database.

2. Apply the following settings:

3. Configure a database user
There are two options for setting up Oracle Database integration in 3scale: with or without
providing the Oracle SYSTEM user password.

3scale uses the SYSTEM user only for the initial setup, which consist in creating a regular user
and granting it the required privileges. The following SQL commands will set up a regular user
with proper permissions. ({DB_USER} and {DB_PASSWORD} are placeholders that need to be
replaced with actual values):

a. Using the SYSTEM user:

Provide the SYSTEM user password in ORACLE_SYSTEM_PASSWORD field of the
system-database secret.

The regular user does not need to exist before the installation. It will be created by the
3scale initialization script.

Provide the desired username and password for the regular user in the connection
string, for example, oracle-enhanced://{DB_USER}:{DB_PASSWORD}@{DB_HOST}:
{DB_PORT}/{DB_NAME} in the URL field of the system-database secret.

The password for the regular Oracle Database non-system user must be unique and not
match the SYSTEM user password.

If the user with the specified username already exists, the 3scale initialization script will
attempt to update the password using the following command:

Your database configuration might prevent this command from completing successfully
if the parameters PASSWORD_REUSE_TIME and PASSWORD_REUSE_MAX are set
in a way that restricts reusing the same password.

b. Manual setup of the regular database user:

You do not need to provide the ORACLE_SYSTEM_PASSWORD in the system-
database secret.

ALTER SYSTEM SET max_string_size=extended SCOPE=SPFILE;

CREATE USER {DB_USER} IDENTIFIED BY {DB_PASSWORD};
GRANT unlimited tablespace TO {DB_USER};
GRANT create session TO {DB_USER};
GRANT create table TO {DB_USER};
GRANT create view TO {DB_USER};
GRANT create sequence TO {DB_USER};
GRANT create trigger TO {DB_USER};
GRANT create procedure TO {DB_USER};

ALTER USER {DB_USER} IDENTIFIED BY {DB_PASSWORD}

CHAPTER 2. INSTALLING 3SCALE API MANAGEMENT ON OPENSHIFT

61

You do not need to provide the ORACLE_SYSTEM_PASSWORD in the system-
database secret.

The regular database user (not SYSTEM) specified in the connection string in the URL
field of the system-database secret needs to exist prior to the 3scale installation.

The regular user used for the installation must have all the privileges listed above.

Additional resources

For information on creating a new database, see the Oracle Database 19c documentation.

2.6.2. Building a custom system container image

Procedure

1. Download 3scale OpenShift templates from the GitHub repository and extract the archive:

2. From the Instant Client Downloads page, download:

A client: It can be either basic-lite or basic.

The ODBC driver .

The SDK for Oracle Database 19c.

For 3scale, use Instant Client Downloads for Linux x86-64 (64-bit)

For ppc64le and 3scale, use Oracle Instant Client Downloads for Linux on Power Little
Endian (64-bit)

3. Check the table for the following Oracle software component versions:

Oracle Instant Client Package: Basic or Basic Light

Oracle Instant Client Package: SDK

Oracle Instant Client Package: ODBC

Table 2.4. Oracle 19c example packages for 3scale

Oracle 19c package name Compressed file name

Basic instantclient-basic-linux.x64-
19.8.0.0.0dbru.zip

Basic Light instantclient-basiclite-linux.x64-
19.8.0.0.0dbru.zip

SDK instantclient-sdk-linux.x64-19.8.0.0.0dbru.zip

ODBC instantclient-odbc-linux.x64-
19.8.0.0.0dbru.zip

tar -xzf 3scale-2.14.0-GA.tar.gz

Red Hat 3scale API Management 2.14 Installing Red Hat 3scale API Management

62

https://docs.oracle.com/en/database/oracle/oracle-database/19/index.html
https://github.com/3scale/system-oracle/archive/refs/tags/3scale-2.14.0-GA.tar.gz
https://www.oracle.com/database/technologies/instant-client/linux-x86-64-downloads.html
https://www.oracle.com/database/technologies/instant-client/linux-power-le-64-downloads.html

Table 2.5. Oracle 19c example packages for ppc64le and 3scale

Oracle 19c package name Compressed file name

Basic instantclient-basic-linux.leppc64.c64-
19.3.0.0.0dbru.zip

Basic Light instantclient-basiclite-linux.leppc64.c64-
19.3.0.0.0dbru.zip

SDK instantclient-sdk-linux.leppc64.c64-
19.3.0.0.0dbru.zip

ODBC instantclient-odbc-linux.leppc64.c64-
19.3.0.0.0dbru.zip

NOTE

If the client packages versions downloaded and stored locally do not match with
the ones 3scale expects, 3scale will automatically download and use the
appropriate ones in the following steps.

4. Place your Oracle Database Instant Client Package files into the system-oracle-3scale-2.13.0-
GA/oracle-client-files directory.

5. Login to your registry.redhat.io account using the credentials you created in Creating a
Registry Service Account.

$ docker login registry.redhat.io

6. Build the custom system Oracle-based image. The image tag must be a fixed image tag as in
the following example:

$ docker build . --tag myregistry.example.com/system-oracle:2.14.0-1

7. Push the system Oracle-based image to a container registry accessible by the OCP cluster. This
container registry is where your 3scale solution is going to be installed:

$ docker push myregistry.example.com/system-oracle:2.14.0-1

2.6.3. Installing 3scale API Management with Oracle using the operator

Procedure

1. Set up the Oracle Database URL connection string and Oracle Database system password by
creating the system-database secret with the corresponding fields. See, External databases
installation for the Oracle Database.

2. Install your 3scale solution by creating an APIManager CR. Follow the instructions in Deploying
3scale API Management using the operator.

The APIManager CR must specify the .spec.system.image field set to the system’s

CHAPTER 2. INSTALLING 3SCALE API MANAGEMENT ON OPENSHIFT

63

https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.14/html-single/installing_red_hat_3scale_api_management/index#creating-a-registry-service-account
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.14/html-single/installing_red_hat_3scale_api_management/index#external-databases-installation
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.14/html-single/installing_red_hat_3scale_api_management/index#deploying-threescale-using-the-operator

The APIManager CR must specify the .spec.system.image field set to the system’s
Oracle-based image you previous built:

apiVersion: apps.3scale.net/v1alpha1
kind: APIManager
metadata:
 name: example-apimanager
spec:
 imagePullSecrets:
 - name: threescale-registry-auth
 - name: custom-registry-auth
 system:
 image: "myregistry.example.com/system-oracle:2.14.0-1"
 externalComponents:
 system:
 database: true

2.7. TROUBLESHOOTING COMMON 3SCALE API MANAGEMENT
INSTALLATION ISSUES

This section contains a list of common installation issues and provides guidance for their resolution.

Previous deployment leaving dirty persistent volume claims

Wrong or missing credentials of the authenticated image registry

Incorrectly pulling from the Docker registry

Permission issues for MySQL when persistent volumes are mounted locally

Unable to upload logo or images

Test calls not working on OpenShift

APIcast on a different project from 3scale API Management failing to deploy

2.7.1. Previous deployment leaving dirty persistent volume claims

Problem

A previous deployment attempt leaves a dirty Persistent Volume Claim (PVC) causing the MySQL
container to fail to start.

Cause

Deleting a project in OpenShift does not clean the PVCs associated with it.

Solution

Procedure

1. Find the PVC containing the erroneous MySQL data with the oc get pvc command:

oc get pvc
NAME STATUS VOLUME CAPACITY ACCESSMODES AGE
backend-redis-storage Bound vol003 100Gi RWO,RWX 4d

Red Hat 3scale API Management 2.14 Installing Red Hat 3scale API Management

64

2. Stop the deployment of the system-mysql pod by clicking cancel deployment in the
OpenShift Container Platform (OCP) console.

3. Delete everything under the MySQL path to clean the volume.

4. Start a new system-mysql deployment.

2.7.2. Wrong or missing credentials of the authenticated image registry

Problem

Pods are not starting. ImageStreams show the following error:

! error: Import failed (InternalError): ...unauthorized: Please login to the Red Hat Registry

Cause

While installing 3scale on OpenShift 4.x, OpenShift fails to start pods because ImageStreams cannot
pull the images they reference. This happens because the pods cannot authenticate against the
registries they point to.

Solution

Procedure

1. Type the following command to verify the configuration of your container registry
authentication:

If your secret exists, you will see the following output in the terminal:

threescale-registry-auth kubernetes.io/dockerconfigjson 1 4m9s

However, if you do not see the output, you must do the following:

2. Use the credentials you previously set up while Creating a registry service account to create
your secret.

3. Use the steps in Configuring registry authentication in OpenShift , replacing <your-registry-
service-account-username> and <your-registry-service-account-password> in the oc
create secret command provided.

4. Generate the threescale-registry-auth secret in the same namespace as the APIManager
resource. You must run the following inside the <project-name>:

$ oc project <project-name>
$ oc create secret docker-registry threescale-registry-auth \
 --docker-server=registry.redhat.io \

mysql-storage Bound vol006 100Gi RWO,RWX 4d
system-redis-storage Bound vol008 100Gi RWO,RWX 4d
system-storage Bound vol004 100Gi RWO,RWX 4d

$ oc get secret

CHAPTER 2. INSTALLING 3SCALE API MANAGEMENT ON OPENSHIFT

65

https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.14/html-single/installing_red_hat_3scale_api_management/index#creating-registry-service-accounts
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.14/html-single/installing_red_hat_3scale_api_management/index#configuring-registry-authentication-in-openshift

 --docker-username="<your-registry-service-account-username>" \
 --docker-password="<your-registry-service-account-password>"
 --docker-email="<email-address>"

5. Delete and recreate the APIManager resource:

$ oc delete -f apimanager.yaml
apimanager.apps.3scale.net "example-apimanager" deleted

$ oc create -f apimanager.yaml
apimanager.apps.3scale.net/example-apimanager created

Verification

1. Type the following command to confirm that deployments have a status of Starting or Ready.
The pods then begin to spawn:

$ oc describe apimanager
(...)
Status:
 Deployments:
 Ready:
 apicast-staging
 system-memcache
 system-mysql
 system-redis
 zync
 zync-database
 zync-que
 Starting:
 apicast-production
 backend-cron
 backend-worker
 system-sidekiq
 system-searchd
 Stopped:
 backend-listener
 backend-redis
 system-app

2. Type the following command to see the status of each pod:

$ oc get pods
NAME READY STATUS RESTARTS AGE
3scale-operator-66cc6d857b-sxhgm 1/1 Running 0 17h
apicast-production-1-deploy 1/1 Running 0 17m
apicast-production-1-pxkqm 0/1 Pending 0 17m
apicast-staging-1-dbwcw 1/1 Running 0 17m
apicast-staging-1-deploy 0/1 Completed 0 17m
backend-cron-1-deploy 1/1 Running 0 17m

2.7.3. Incorrectly pulling from the Docker registry

Problem

Red Hat 3scale API Management 2.14 Installing Red Hat 3scale API Management

66

The following error occurs during installation:

Cause

OpenShift searches for and pulls container images by issuing the docker command. This command
refers to the docker.io Docker registry instead of the registry.redhat.io Red Hat Ecosystem Catalog.

This occurs when the system contains an unexpected version of the Docker containerized environment.

Solution

Procedure

Use the appropriate version of the Docker containerized environment.

2.7.4. Permission issues for MySQL when persistent volumes are mounted locally

Problem

The system-msql pod crashes and does not deploy causing other systems dependant on it to fail
deployment. The pod log displays the following error:

Cause

The MySQL process is started with inappropriate user permissions.

Solution

Procedure

1. The directories used for the persistent volumes MUST have the write permissions for the root
group. Having read-write permissions for the root user is not enough as the MySQL service runs
as a different user in the root group. Execute the following command as the root user:

$ chmod -R g+w /path/for/pvs

2. Execute the following command to prevent SElinux from blocking access:

$ chcon -Rt svirt_sandbox_file_t /path/for/pvs

2.7.5. Unable to upload logo or images

Problem

Unable to upload a logo - system-app logs display the following error:

svc/system-redis - 1EX.AMP.LE.IP:6379
 dc/system-redis deploys docker.io/rhscl/redis-32-rhel7:3.2-5.3
 deployment #1 failed 13 minutes ago: config change

[ERROR] Cannot start server : on unix socket: Permission denied
[ERROR] Do you already have another mysqld server running on socket: /var/lib/mysql/mysql.sock ?
[ERROR] Aborting

CHAPTER 2. INSTALLING 3SCALE API MANAGEMENT ON OPENSHIFT

67

http://rhelblog.redhat.com/2015/04/15/understanding-the-changes-to-docker-search-and-docker-pull-in-red-hat-enterprise-linux-7-1/

Errno::EACCES (Permission denied @ dir_s_mkdir - /opt/system/public//system/provider-name/2

Cause

Persistent volumes are not writable by OpenShift.

Solution

Procedure

Ensure your persistent volume is writable by OpenShift. It should be owned by root group and be group
writable.

2.7.6. Test calls not working on OpenShift

Problem

Test calls do not work after creation of a new service and routes on OpenShift. Direct calls via curl also
fail, stating: service not available.

Cause

3scale requires HTTPS routes by default, and OpenShift routes are not secured.

Solution

Procedure

Ensure the secure route checkbox is clicked in your OpenShift router settings.

2.7.7. APIcast on a different project from 3scale API Management failing to deploy

Problem

APIcast deploy fails (pod does not turn blue). You see the following error in the logs:

update acceptor rejected apicast-3: pods for deployment "apicast-3" took longer than 600 seconds to
become ready

You see the following error in the pod:

Error synching pod, skipping: failed to "StartContainer" for "apicast" with RunContainerError:
"GenerateRunContainerOptions: secrets \"apicast-configuration-url-secret\" not found"

Cause

The secret was not properly set up.

Solution

Procedure

When creating a secret with APIcast v3, specify apicast-configuration-url-secret:

$ oc create secret generic apicast-configuration-url-secret --from-
literal=password=https://<ACCESS_TOKEN>@<TENANT_NAME>-admin.<WILDCARD_DOMAIN>

Red Hat 3scale API Management 2.14 Installing Red Hat 3scale API Management

68

2.8. ADDITIONAL RESOURCES

External Components Specification

System database

CHAPTER 2. INSTALLING 3SCALE API MANAGEMENT ON OPENSHIFT

69

https://github.com/3scale/3scale-operator/blob/3scale-2.14-stable/doc/apimanager-reference.md#ExternalComponentsSpec
https://github.com/3scale/3scale-operator/blob/3scale-2.14-stable/doc/apimanager-reference.md#system-database

CHAPTER 3. INSTALLING APICAST
APIcast is an NGINX based API gateway used to integrate your internal and external API services with
the Red Hat 3scale API Management Platform. APIcast does load balancing by using round-robin.

In this guide you will learn about deployment options, environments provided, and how to get started.

Prerequisites

APIcast is not a standalone API gateway. It needs connection to 3scale API Manager.

A working 3scale On-Premises instance.

To install APIcast, perform the steps outlined in the following sections:

APIcast deployment options

APIcast environments

Configuring the integration settings

Configuring your product

Deploying an APIcast gateway self-managed solution using the operator

3.1. APICAST DEPLOYMENT OPTIONS

You can use hosted or self-managed APIcast. In both cases, APIcast must be connected to the rest of
the 3scale API Management platform:

Embedded APIcast: A 3scale API Management installation includes two default APIcast
gateways, staging and production. These gateways come preconfigured and ready for
immediate use.

Self-managed APIcast: You can deploy APIcast wherever you want. Here is one of the
recommended option to deploy APIcast:

Running APIcast on Red Hat OpenShift: Run APIcast on a supported version of OpenShift.
You can connect self-managed APIcasts to a 3scale On-premises installation or to a 3scale
Hosted (SaaS) account. For this, deploy an APIcast gateway self-managed solution using
the operator.

3.2. APICAST ENVIRONMENTS

By default, when you create a 3scale account, you get embedded APIcast in two different environments:

Staging: Intended to be used only while configuring and testing your API integration. When you
have confirmed that your setup is working as expected, then you can choose to deploy it to the
production environment.

Production: This environment is intended for production use. The following parameters are set
for the Production APIcast in the OpenShift template: APICAST_CONFIGURATION_LOADER:
boot, APICAST_CONFIGURATION_CACHE: 300. This means that the configuration will be
fully loaded when APIcast is started, and will be cached for 300 seconds (5 minutes). After 5

Red Hat 3scale API Management 2.14 Installing Red Hat 3scale API Management

70

https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.14/html-single/installing_red_hat_3scale_api_management/index#install-threescale-on-openshift-guide
https://access.redhat.com/articles/2798521
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.14/html-single/installing_red_hat_3scale_api_management/index#deploying-apicast-gateway-self-managed-operator

minutes the configuration will be reloaded. This means that when you promote the configuration
to production, it may take up to 5 minutes to be applied, unless you trigger a new deployment of
APIcast.

3.3. CONFIGURING THE INTEGRATION SETTINGS

As a 3scale administrator, configure the integration settings for the environment you require 3scale to
run in.

Prerequisites

A 3scale account with administrator privileges.

Procedure

1. Navigate to [Your_product_name] > Integration > Settings.

2. Under Deployment, the default options are as follows:

Deployment Option: APIcast 3scale managed

Authentication mode: API key.

3. Change to your preferred option.

4. To save your changes, click Update Product.

3.4. CONFIGURING YOUR PRODUCT

You must declare your API back-end in the Private Base URL field, which is the endpoint host of your
API back-end. APIcast will redirect all traffic to your API back-end after all authentication, authorization,
rate limits and statistics have been processed.

This section will guide you through configuring your product:

Declaring the API backend

Configuring the authentication settings

Configuring the API test call

3.4.1. Declaring the API backend

Typically, the Private Base URL of your API will be something like https://api-
backend.yourdomain.com:443, on the domain that you manage (yourdomain.com). For instance, if
you were integrating with the Twitter API the Private Base URL would be https://api.twitter.com/.

In this example, you will use the Echo API hosted by 3scale, a simple API that accepts any path and
returns information about the request (path, request parameters, headers, etc.). Its Private Base URL is
https://echo-api.3scale.net:443.

Procedure

Test your private (unmanaged) API is working. For example, for the Echo API you can make the
following call with curl command:

CHAPTER 3. INSTALLING APICAST

71

https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.14/html-single/installing_red_hat_3scale_api_management/index#declaring-api-backend
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.14/html-single/installing_red_hat_3scale_api_management/index#configuring-the-authentication-settings
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.14/html-single/installing_red_hat_3scale_api_management/index#configuring-api-test-call
https://api-backend.yourdomain.com:443
https://api.twitter.com/
https://echo-api.3scale.net:443

$ curl "https://echo-api.3scale.net:443"

You will get the following response:

{
 "method": "GET",
 "path": "/",
 "args": "",
 "body": "",
 "headers": {
 "HTTP_VERSION": "HTTP/1.1",
 "HTTP_HOST": "echo-api.3scale.net",
 "HTTP_ACCEPT": "*/*",
 "HTTP_USER_AGENT": "curl/7.51.0",
 "HTTP_X_FORWARDED_FOR": "2.139.235.79, 10.0.103.58",
 "HTTP_X_FORWARDED_HOST": "echo-api.3scale.net",
 "HTTP_X_FORWARDED_PORT": "443",
 "HTTP_X_FORWARDED_PROTO": "https",
 "HTTP_FORWARDED": "for=10.0.103.58;host=echo-api.3scale.net;proto=https"
 },
 "uuid": "ee626b70-e928-4cb1-a1a4-348b8e361733"
 }

3.4.2. Configuring the authentication settings

You can configure authentication settings for your API in the AUTHENTICATION section under
[Your_product_name] > Integration > Settings.

Table 3.1. Optional authentication fields

Field Description

Auth user key Set the user key associated with the credentials
location.

Credentials location Define whether credentials are passed as HTTP
headers, query parameters or as HTTP basic
authentication.

Host Header Define a custom Host request header. This is
required if your API backend only accepts traffic
from a specific host.

Secret Token Used to block direct developer requests to your API
backend. Set the value of the header here, and
ensure your backend only allows calls with this secret
header.

Furthermore, you can configure the GATEWAY RESPONSE error codes under [Your_product_name]
> Integration > Settings. Define the Response Code, Content-type, and Response Body for the errors:
Authentication failed, Authentication missing, and No match.

Red Hat 3scale API Management 2.14 Installing Red Hat 3scale API Management

72

Table 3.2. Response codes and default response body

Response code Response body

403 Authentication failed

403 Authentication parameters missing

404 No Mapping Rule matched

429 Usage limit exceeded

3.4.3. Configuring the API test call

Configuring the API involves testing the backends with a product and promoting the APIcast
configuration to staging and production environments to make tests based on request calls.

For each product, requests get redirected to their corresponding backend according to the path. This
path is configured when you add the backend to the product. For example, if you have two backends
added to a product, each backend has its own path.

Prerequisites

One or more backends added to a product .

A mapping rule for each backend added to a product.

An application plan to define the access policies.

An application that subscribes to the application plan.

Procedure

1. Promote an APIcast configuration to Staging, by navigating to [Your_product_name] >
Integration > Configuration.

2. Under APIcast Configuration , you will see the mapping rules for each backend added to the
product. Click Promote v.[n] to Staging APIcast.

v.[n] indicates the version number to be promoted.

3. Once promoted to staging, you can promote to Production. Under Staging APIcast, click
Promote v.[n] to Production APIcast.

v.[n] indicates the version number to be promoted.

4. To test requests to your API in the command line, use the command provided in Example curl for
testing.

The curl command example is based on the first mapping rule in the product.

When testing requests to your API, you can modify the mapping rules by adding methods and metrics.

Every time you modify the configuration and before making calls to your API, make sure you promote to

CHAPTER 3. INSTALLING APICAST

73

https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.14/html-single/getting_started/index#creating-backends-for-your-products_configuring-your-api
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.14/html-single/getting_started/index#defining-mapping-rules_configuring-your-api
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.14/html-single/getting_started/index#creating-threescale-application-plans-for-products_configuring-your-api
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.14/html-single/getting_started/index#creating-applications-for-default-account-test-api-calls_configuring-your-api
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.14/html-single/admin_portal_guide/index#designating-methods-and-adding-metrics-for-capturing-usage-details_methods-and-metrics-for-products-and-backends

the Staging and Production environments. When there are pending changes to be promoted to the
Staging environment, you will see an exclamation mark in the Admin Portal, next to the Integration
menu item.

3scale Hosted APIcast gateway does the validation of the credentials and applies the rate limits that you
defined for the application plan of your API. If you make a call without credentials, or with invalid
credentials, you will see the error message, Authentication failed.

3.4.4. Deploying APIcast on Podman

This is a step-by-step guide for deploying APIcast on a Pod Manager (Podman) container environment
to be used as a Red Hat 3scale API Management API gateway.

NOTE

When deploying APIcast on a Podman container environment, the supported versions of
Red Hat Enterprise Linux (RHEL) and Podman are as follows:

RHEL 8.x/9.x

Podman 4.2.0/4.1.1

Prerequisites

You must configure APIcast in your 3scale Admin Portal as per Chapter 3, Installing APIcast .

Access to the Red Hat Ecosystem Catalog .

To create a registry service account, see Creating and modifying registry service accounts .

To deploy APIcast on the Podman container environment, perform the steps outlined in the following
sections:

Section 3.4.4.1, “Installing the Podman container environment”

Section 3.4.4.2, “Running the Podman environment”

3.4.4.1. Installing the Podman container environment

This guide covers the steps to set up the Podman container environment on RHEL 8.x. Docker is not
included in RHEL 8.x, therefore, use Podman for working with containers.

For more details about Podman with RHEL 8.x, see the Container command-line reference .

Procedure

Install the Podman container environment package:

$ sudo dnf install podman

Additional resources

For other operating systems, refer to the following Podman documentation:

Podman Installation Instructions

Red Hat 3scale API Management 2.14 Installing Red Hat 3scale API Management

74

https://registry.redhat.io
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.14/html-single/installing_red_hat_3scale_api_management/index#creating-a-registry-service-account
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/building_running_and_managing_containers/index#container-command-line-reference_building-running-and-managing-containers
https://podman.io/getting-started/installation

3.4.4.2. Running the Podman environment

To run the Podman container environment, follow the procedure below.

Procedure

1. Download a ready to use Podman container image from the Red Hat registry:

$ podman pull registry.redhat.io/3scale-amp2/apicast-gateway-rhel8:3scale2.14

2. Run APIcast in a Podman:

$ podman run --name apicast --rm -p 8080:8080 -e
THREESCALE_PORTAL_ENDPOINT=https://<access_token>@<domain>-admin.3scale.net
registry.redhat.io/3scale-amp2/apicast-gateway-rhel8:3scale2.14

Here, <access_token> is the Access Token for the 3scale Account Management API. You can
use the Provider Key instead of the access token. <domain>-admin.3scale.net is the URL of
your 3scale Admin Portal.

This command runs a Podman container engine called "apicast" on port 8080 and fetches the JSON
configuration file from your 3scale Admin Portal. For other configuration options, see Installing APIcast .

3.4.4.2.1. Testing APIcast with Podman

The preceding steps ensure that your Podman container engine is running with your own configuration
file and the Podman container image from the 3scale registry. You can test calls through APIcast on
port 8080 and provide the correct authentication credentials, which you can get from your 3scale
account.

Test calls will not only verify that APIcast is running correctly but also that authentication and reporting
is being handled successfully.

NOTE

Ensure that the host you use for the calls is the same as the one configured in the Public
Base URL field on the Integration page.

3.4.4.3. The podman command options

You can use the following option examples with the podman command:

-d: Runs the container in detached mode and prints the container ID. When it is not specified,
the container runs in the foreground mode and you can stop it using CTRL + c. When started in
the detached mode, you can reattach to the container with the podman attach command, for
example, podman attach apicast.

ps and -a: Podman ps is used to list creating and running containers. Adding -a to the ps
command will show all containers, both running and stopped, for example, podman ps -a.

inspect and -l: Inspect a running container. For example, use inspect to see the ID that was
assigned to the container. Use -l to get the details for the latest container, for example, podman
inspect -l | grep Id\":.

CHAPTER 3. INSTALLING APICAST

75

https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.14/html-single/installing_red_hat_3scale_api_management/index#installing-apicast

3.4.4.4. Additional resources

Red Hat 3scale API Management Supported Configurations

Basic Setup and Use of Podman

3.5. DEPLOYING AN APICAST GATEWAY SELF-MANAGED SOLUTION
USING THE OPERATOR

This guide provides steps for deploying an APIcast gateway self-managed solution using the APIcast
operator via the Openshift Container Platform console.

The default settings are for production environment when you deploy APIcast. You can always adjust
these settings for deploying a staging environment. For example, use the following oc command:

$ oc patch apicast/{apicast_name} --type=merge -p '{"spec":
{"deploymentEnvironment":"staging","configurationLoadMode":"lazy"}}'

For more information, see the: APIcast Custom Resource reference

Prerequisites

OpenShift Container Platform (OCP) 4.x or later with administrator privileges.

* You followed the steps in Installing the APIcast operator on OpenShift .

Procedure

1. Log in to the OCP console using an account with administrator privileges.

2. Click Operators > Installed Operators.

3. Click the APIcast Operator from the list of Installed Operators.

4. Click APIcast > Create APIcast.

3.5.1. APICast deployment and configuration options

You can deploy and configure an APIcast gateway self-managed solution using two approaches:

Providing a 3scale API Management system endpoint

Providing a configuration secret

See also:

Injecting custom environments with the APIcast operator

Injecting custom policies with the APIcast operator

Configuring OpenTracing with the APIcast operator

Setting the APICAST_SERVICE_CACHE_SIZE

3.5.1.1. Providing a 3scale API Management system endpoint

Red Hat 3scale API Management 2.14 Installing Red Hat 3scale API Management

76

https://access.redhat.com/articles/2798521
https://podman.io/getting-started/
https://github.com/3scale/apicast-operator/blob/master/doc/apicast-crd-reference.md
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.14/html-single/installing_red_hat_3scale_api_management/index#installing-the-apicast-operator-on-openshift
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.14/html-single/installing_red_hat_3scale_api_management/index#providing-3cale-porta-endpoint
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.14/html-single/installing_red_hat_3scale_api_management/index#providing-configuration-secret
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.14/html-single/installing_red_hat_3scale_api_management/index#injecting-custom-environments-with-the-apicast-operator
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.14/html-single/installing_red_hat_3scale_api_management/index#injecting-custom-policies-with-the-apicast-operator
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.14/html-single/installing_red_hat_3scale_api_management/index#configuring-opentracing-with-the-apicast-operator
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.14/html-single/installing_red_hat_3scale_api_management/index#setting-apicast-service-cache-size

Procedure

1. Create an OpenShift secret that contains 3scale System Admin Portal endpoint information:

${SOME_SECRET_NAME} is the name of the secret and can be any name you want as long
as it does not conflict with an existing secret.

${MY_3SCALE_URL} is the URI that includes your 3scale access token and 3scale System
portal endpoint. For more details, see THREESCALE_PORTAL_ENDPOINT

Example

For more information about the contents of the secret see the Admin portal configuration
secret reference.

2. Create the OpenShift object for APIcast

The spec.adminPortalCredentialsRef.name must be the name of the existing OpenShift
secret that contains the 3scale system Admin Portal endpoint information.

3. Verify the APIcast pod is running and ready, by confirming that the readyReplicas field of the
OpenShift Deployment associated with the APIcast object is 1. Alternatively, wait until the field
is set with:

3.5.1.1.1. Verifying the APIcast gateway is running and available

Procedure

1. Ensure the OpenShift Service APIcast is exposed to your local machine, and perform a test
request. Do this by port-forwarding the APIcast OpenShift Service to localhost:8080:

2. Make a request to a configured 3scale service to verify a successful HTTP response. Use the
domain name configured in Staging Public Base URL or Production Public Base URL
settings of your service. For example:

$ oc create secret generic ${SOME_SECRET_NAME} --from-
literal=AdminPortalURL=${MY_3SCALE_URL}

$ oc create secret generic 3scaleportal --from-literal=AdminPortalURL=https://access-
token@account-admin.3scale.net

apiVersion: apps.3scale.net/v1alpha1
kind: APIcast
metadata:
 name: example-apicast
spec:
 adminPortalCredentialsRef:
 name: SOME_SECRET_NAME

$ echo $(oc get deployment apicast-example-apicast -o jsonpath='{.status.readyReplicas}')
1

$ oc port-forward svc/apicast-example-apicast 8080

CHAPTER 3. INSTALLING APICAST

77

https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.14/html-single/administering_the_api_gateway/index#threescale-portal-endpoint
https://github.com/3scale/apicast-operator/blob/3scale-2.14-stable/doc/apicast-crd-reference.md#AdminPortalSecret

3.5.1.1.2. Exposing APIcast externally via a Kubernetes Ingress

To expose APIcast externally via a Kubernetes Ingress, set and configure the exposedHost section.
When the host field in the exposedHost section is set, this creates a Kubernetes Ingress object. The
Kubernetes Ingress object can then be used by a previously installed and existing Kubernetes Ingress
Controller to make APIcast accessible externally.

To learn what Ingress Controllers are available to make APIcast externally accessible and how they are
configured see the Kubernetes Ingress Controllers documentation .

The following example to expose APIcast with the hostname myhostname.com:

The example creates a Kubernetes Ingress object on the port 80 using HTTP. When the APIcast
deployment is in an OpenShift environment, the OpenShift default Ingress Controller will create a Route
object using the Ingress object APIcast creates which allows external access to the APIcast installation.

You may also configure TLS for the exposedHost section. Details about the available fields in the
following table:

Table 3.3. APIcastExposedHost reference table

json/yaml field Type Required Default value Description

$ curl 127.0.0.1:8080/test -H "Host: localhost"
{
 "method": "GET",
 "path": "/test",
 "args": "",
 "body": "",
 "headers": {
 "HTTP_VERSION": "HTTP/1.1",
 "HTTP_HOST": "echo-api.3scale.net",
 "HTTP_ACCEPT": "*/*",
 "HTTP_USER_AGENT": "curl/7.65.3",
 "HTTP_X_REAL_IP": "127.0.0.1",
 "HTTP_X_FORWARDED_FOR": ...
 "HTTP_X_FORWARDED_HOST": "echo-api.3scale.net",
 "HTTP_X_FORWARDED_PORT": "80",
 "HTTP_X_FORWARDED_PROTO": "http",
 "HTTP_FORWARDED": "for=10.0.101.216;host=echo-api.3scale.net;proto=http"
 },
 "uuid": "603ba118-8f2e-4991-98c0-a9edd061f0f0"

apiVersion: apps.3scale.net/v1alpha1
kind: APIcast
metadata:
 name: example-apicast
spec:
 ...
 exposedHost:
 host: "myhostname.com"
 ...

Red Hat 3scale API Management 2.14 Installing Red Hat 3scale API Management

78

https://kubernetes.io/docs/concepts/services-networking/ingress-controllers

host string Yes N/A Domain name
being routed to
the gateway

tls []networkv1.Ingress
TLS

No N/A Array of ingress
TLS objects. See
more on TLS.

json/yaml field Type Required Default value Description

3.5.1.2. Providing a configuration secret

Procedure

1. Create a secret with the configuration file:

The configuration file must be called config.json. This is an APIcast CRD reference
requirement.

For more information about the contents of the secret see the Admin portal configuration
secret reference.

2. Create an APIcast custom resource:

a. The following is an example of an embedded configuration secret:

$ curl
https://raw.githubusercontent.com/3scale/APIcast/master/examples/configuration/echo.json -
o $PWD/config.json

$ oc create secret generic apicast-echo-api-conf-secret --from-file=$PWD/config.json

$ cat my-echo-apicast.yaml
apiVersion: apps.3scale.net/v1alpha1
kind: APIcast
metadata:
 name: my-echo-apicast
spec:
 exposedHost:
 host: YOUR DOMAIN
 embeddedConfigurationSecretRef:
 name: apicast-echo-api-conf-secret

$ oc apply -f my-echo-apicast.yaml

apiVersion: v1
kind: Secret
metadata:
 name: SOME_SECRET_NAME
type: Opaque

CHAPTER 3. INSTALLING APICAST

79

https://kubernetes.io/docs/concepts/services-networking/ingress/#tls
https://github.com/3scale/apicast-operator/blob/3scale-2.14-stable/doc/apicast-crd-reference.md#embeddedconfsecret
https://github.com/3scale/apicast-operator/blob/3scale-2.14-stable/doc/apicast-crd-reference.md#embeddedconfsecret
https://github.com/3scale/apicast-operator/blob/3scale-2.14-stable/doc/apicast-crd-reference.md

3. Set the following content when creating the APIcast object:

The spec.embeddedConfigurationSecretRef.name must be the name of the existing
OpenShift secret that contains the configuration of the gateway.

4. Verify the APIcast pod is running and ready, by confirming that the readyReplicas field of the
OpenShift Deployment associated with the APIcast object is 1. Alternatively, wait until the field
is set with:

3.5.1.2.1. Verifying APIcast gateway is running and available

Procedure

1. Ensure the OpenShift Service APIcast is exposed to your local machine, and perform a test
request. Do this by port-forwarding the APIcast OpenShift Service to localhost:8080:

a. Next: Make a request to a configured 3scale service and verify a successful HTTP response .

3.5.1.3. Injecting custom environments with the APIcast operator

In a 3scale installation that uses self-managed APIcast, you can use the APIcast operator to inject

stringData:
 config.json: |
 {
 "services": [
 {
 "proxy": {
 "policy_chain": [
 { "name": "apicast.policy.upstream",
 "configuration": {
 "rules": [{
 "regex": "/",
 "url": "http://echo-api.3scale.net"
 }]
 }
 }
]
 }
 }
]
 }

apiVersion: apps.3scale.net/v1alpha1
kind: APIcast
metadata:
 name: example-apicast
spec:
 embeddedConfigurationSecretRef:
 name: SOME_SECRET_NAME

$ echo $(oc get deployment apicast-example-apicast -o jsonpath='{.status.readyReplicas}')
1

$ oc port-forward svc/apicast-example-apicast 8080

Red Hat 3scale API Management 2.14 Installing Red Hat 3scale API Management

80

In a 3scale installation that uses self-managed APIcast, you can use the APIcast operator to inject
custom environments. A custom environment defines behavior that APIcast applies to all upstream APIs
that the gateway serves. To create a custom environment, define a global configuration in Lua code.

You can inject a custom environment as part of or after APIcast installation. After injecting a custom
environment, you can remove it and the APIcast operator reconciles the changes.

Prerequisites

The APIcast operator is installed.

Procedure

1. Write Lua code that defines the custom environment that you want to inject. For example, the
following env1.lua file shows a custom logging policy that the APIcast operator loads for all
services.

2. Create a secret from the Lua file that defines the custom environment. For example:

A secret can contain multiple custom environments. Specify the –from-file option for each file
that defines a custom environment. The operator loads each custom environment.

3. Define an APIcast custom resource that references the secret you just created. The following
example shows only content relative to referencing the secret that defines the custom
environment.

local cjson = require('cjson')
local PolicyChain = require('apicast.policy_chain')
local policy_chain = context.policy_chain

local logging_policy_config = cjson.decode([[
{
 "enable_access_logs": false,
 "custom_logging": "\"{{request}}\" to service {{service.id}} and {{service.name}}"
}
]])

policy_chain:insert(PolicyChain.load_policy('logging', 'builtin', logging_policy_config), 1)

return {
 policy_chain = policy_chain,
 port = { metrics = 9421 },
}

$ oc create secret generic custom-env-1 --from-file=./env1.lua

apiVersion: apps.3scale.net/v1alpha1
kind: APIcast
metadata:
 name: apicast1
spec:
 customEnvironments:
 - secretRef:
 name: custom-env-1

CHAPTER 3. INSTALLING APICAST

81

An APIcast custom resource can reference multiple secrets that define custom environments.
The operator loads each custom environment.

4. Create the APIcast custom resource that adds the custom environment. For example, if you
saved the APIcast custom resource in the apicast.yaml file, run the following command:

Next steps

If you update your custom environment be sure to re-create its secret so the secret contains the
update. The APIcast operator watches for updates and automatically redeploys when it finds an update.

3.5.1.4. Injecting custom policies with the APIcast operator

In a 3scale installation that uses self-managed APIcast, you can use the APIcast operator to inject
custom policies. Injecting a custom policy adds the policy code to APIcast. You can then use either of
the following to add the custom policy to an API product’s policy chain:

3scale API

Product custom resource

To use the 3scale Admin Portal to add the custom policy to a product’s policy chain, you must also
register the custom policy’s schema with a CustomPolicyDefinition custom resource. Custom policy
registration is a requirement only when you want to use the Admin Portal to configure a product’s policy
chain.

You can inject a custom policy as part of or after APIcast installation. After injecting a custom policy, you
can remove it and the APIcast operator reconciles the changes.

Prerequisites

The APIcast operator is installed or you are in the process of installing it.

You have defined a custom policy as described in Write your own policy . That is, you have already
created, for example, the my-first-custom-policy.lua, apicast-policy.json, and init.lua files
that define a custom policy,

Procedure

1. Create a secret from the files that define one custom policy. For example:

If you have more than one custom policy, create a secret for each custom policy. A secret can
contain only one custom policy.

2. Define an APIcast custom resource that references the secret you just created. The following
example shows only content relative to referencing the secret that defines the custom policy.

$ oc apply -f apicast.yaml

$ oc create secret generic my-first-custom-policy-secret \
 --from-file=./apicast-policy.json \
 --from-file=./init.lua \
 --from-file=./my-first-custom-policy.lua

apiVersion: apps.3scale.net/v1alpha1

Red Hat 3scale API Management 2.14 Installing Red Hat 3scale API Management

82

https://github.com/3scale/APIcast/blob/master/doc/policies.md#write-your-own-policy

An APIcast custom resource can reference multiple secrets that define custom policies. The
operator loads each custom policy.

3. Create the APIcast custom resource that adds the custom policy. For example, if you saved the
APIcast custom resource in the apicast.yaml file, run the following command:

Next steps

If you update your custom policy be sure to re-create its secret so the secret contains the update. The
APIcast operator watches for updates and automatically redeploys when it finds an update.

Additional resources

APIcast custom resource definition

3.5.1.5. Configuring OpenTracing with the APIcast operator

In a 3scale installation that uses self-managed APIcast, you can use the APIcast operator to configure
OpenTracing. By enabling OpenTracing, you get more insight and better observability on the APIcast
instance.

Prerequisites

The APIcast operator is installed or you are in the process of installing it.

Procedure

1. Define a secret that contains your OpenTracing configuration details in stringData.config. This
is the only valid value for the attribute that contains your OpenTracing configuration details. Any
other specification prevents APIcast from receiving your OpenTracing configuration details. The
folowing example shows a valid secret definition:

kind: APIcast
metadata:
 name: apicast1
spec:
 customPolicies:
 - name: my-first-custom-policy
 version: "0.1"
 secretRef:
 name: my-first-custom-policy-secret

$ oc apply -f apicast.yaml

apiVersion: v1
kind: Secret
metadata:
 name: myjaeger
stringData:
 config: |-
 {
 "service_name": "apicast",
 "disabled": false,
 "sampler": {
 "type": "const",

CHAPTER 3. INSTALLING APICAST

83

https://github.com/3scale/apicast-operator/blob/master/doc/apicast-crd-reference.md

2. Create the secret. For example, if you saved the previous secret definition in the myjaeger.yaml
file, you would run the following command:

3. Define an APIcast custom resource that specifies the OpenTracing attributes. In the CR
definition, set the spec.tracingConfigSecretRef.name attribute to the name of the secret that
contains your OpenTracing configuration details. The following example shows only content
relative to configuring OpenTracing.

4. Create the APIcast custom resource that configures OpenTracing. For example, if you saved
the APIcast custom resource in the apicast1.yaml file, you would run the following command:

$ oc apply -f apicast1.yaml

Next steps

Depending on how OpenTracing is installed, you should see the traces in the Jaeger service user
interface.

 "param": 1
 },
 "reporter": {
 "queueSize": 100,
 "bufferFlushInterval": 10,
 "logSpans": false,
 "localAgentHostPort": "jaeger-all-in-one-inmemory-agent:6831"
 },
 "headers": {
 "jaegerDebugHeader": "debug-id",
 "jaegerBaggageHeader": "baggage",
 "TraceContextHeaderName": "uber-trace-id",
 "traceBaggageHeaderPrefix": "testctx-"
 },
 "baggage_restrictions": {
 "denyBaggageOnInitializationFailure": false,
 "hostPort": "127.0.0.1:5778",
 "refreshInterval": 60
 }
 }
type: Opaque

$ oc create -f myjaeger.yaml

apiVersion: apps.3scale.net/v1alpha1
kind: APIcast
metadata:
 name: apicast1
spec:
 ...
 openTracing:
 enabled: true
 tracingConfigSecretRef:
 name: myjaeger
 tracingLibrary: jaeger
...

Red Hat 3scale API Management 2.14 Installing Red Hat 3scale API Management

84

Additional resource

APIcast custom resource definition

3.5.1.6. Setting the APICAST_SERVICE_CACHE_SIZE environment variable

You can specify the number of services that APIcast stores in the internal cache by adding an optional
field in the APIcast custom resource (CR).

Prerequisites

You have installed the APIcast operator, or you are in the process of installing it.

Procedure

Add the serviceCacheSize optional field in the spec:

spec:
 // ...
 serviceCacheSize: 42

Verification

1. Type the following command to check the deployment:

$ oc get deployment/apicast-example-apicast -o yaml

2. Verify inclusion of the environment variable:

...
- name: APICAST_SERVICE_CACHE_SIZE
 value: '42'
...

Additional resource

APIcast custom resource definition

3.6. ADDITIONAL RESOURCES

To get information about the latest released and supported version of APIcast, see the articles:

Red Hat 3scale API Management Supported Configurations

Red Hat 3scale API Management - Component Details .

CHAPTER 3. INSTALLING APICAST

85

https://github.com/3scale/apicast-operator/blob/master/doc/apicast-crd-reference.md
https://github.com/3scale/apicast-operator/blob/master/doc/apicast-crd-reference.md
https://access.redhat.com/articles/2798521
https://access.redhat.com/articles/2787991

CHAPTER 4. EXTERNAL REDIS DATABASE CONFIGURATION
FOR HIGH AVAILABILITY SUPPORT IN 3SCALE API

MANAGEMENT

IMPORTANT

Red Hat supports 3scale configurations that use an external Redis database. However,
does not officially support setting up Redis for zero downtime, configuring back-end
components for 3scale, or Redis database replication and sharding. The content is for
reference only. Additionally, Redis cluster mode is not supported in 3scale.

High availability (HA) is provided for most components by the OpenShift Container Platform (OCP).

NOTE

When you externalize databases from a Red Hat 3scale API Management deployment,
this means to provide isolation from the application and resilience against service
disruptions at the database level. The resilience to service disruptions depends on the
service level agreements (SLAs) provided by the infrastructure or platform provider
where you host the databases. This is not offered by 3scale. For more details on
externalizing of databases offered by your chosen deployment, see the associated
documentation.

The database components for HA in Red Hat 3scale API Management include:

backend-redis: used for statistics storage and temporary job storage.

system-redis: provides temporary storage for background jobs for 3scale and is also used as a
message bus for Ruby processes of system-app pods.

Both backend-redis and system-redis work with supported Redis high availability variants for Redis
Sentinel and Redis Enterprise.

If the Redis pod comes to a stop, or if the OpenShift Container Platform stops it, a new pod is
automatically created. Persistent storage will restore the data so the pod continues to work. In these
scenarios, there will be a small amount of downtime while the new pod starts. This is due to a limitation in
Redis that does not support a multi-master setup. You can reduce downtime by preinstalling the Redis
images onto all nodes that have Redis deployed to them. This will speed up the pod restart time.

Set up Redis for zero downtime and configure back-end components for 3scale:

Setting up Redis for zero downtime

Configuring back-end components for 3scale API Management

Redis database sharding and replication

Prerequisites

A 3scale account with an administrator role.

4.1. SETTING UP REDIS FOR ZERO DOWNTIME

Red Hat 3scale API Management 2.14 Installing Red Hat 3scale API Management

86

As a 3scale administrator, configure Redis outside of OCP if you require zero downtime. There are
several ways to set it up using the configuration options of 3scale pods:

Set up your own self-managed Redis

Use Redis Sentinel: Reference Redis Sentinel Documentation

Redis provided as a service:
For example by:

Amazon ElastiCache

Redis Labs

NOTE

Red Hat does not provide support for the above mentioned services. The mention of any
such services does not imply endorsement by Red Hat of the products or services. You
agree that Red Hat is not responsible or liable for any loss or expenses that may result
due to your use of (or reliance on) any external content.

4.2. CONFIGURING BACK-END COMPONENTS FOR 3SCALE API
MANAGEMENT

As a 3scale administrator, configure Redis HA (failover) for the back-end component environment
variables in the following deployment configurations: backend-cron, backend-listener, and backend-
worker. These configurations are necessary for Redis HA in 3scale.

NOTE

If you want to use Redis with sentinels, you must provide sentinel configuration in either
backend-redis, system-redis, or both secrets.

4.2.1. Creating backend-redis and system-redis secrets

Follow these steps to create backend-redis and system-redis secrets accordingly:

Deploying a fresh installation of 3scale API Management for HA

Migrating a non-HA deployment of 3scale API Management to HA

4.2.2. Deploying a fresh installation of 3scale API Management for HA

Procedure

1. Create the backend-redis and system-redis secrets with the fields below:

backend-redis

REDIS_QUEUES_SENTINEL_HOSTS
REDIS_QUEUES_SENTINEL_ROLE
REDIS_QUEUES_URL

CHAPTER 4. EXTERNAL REDIS DATABASE CONFIGURATION FOR HIGH AVAILABILITY SUPPORT IN 3SCALE API MANAGEMENT

87

https://redis.io/topics/sentinel
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.14/html-single/installing_red_hat_3scale_api_management/index#deploying-a-fresh-installation
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.14/html-single/installing_red_hat_3scale_api_management/index#upgrading-from-a-previous-version

REDIS_STORAGE_SENTINEL_HOSTS
REDIS_STORAGE_SENTINEL_ROLE
REDIS_STORAGE_URL

system-redis

NAMESPACE
SENTINEL_HOSTS
SENTINEL_ROLE
URL

When configuring for Redis with sentinels, the corresponding URL fields in backend-redis
and system-redis refer to the Redis group in the format redis://[:redis-password@]redis-
group[/db], where [x] denotes optional element x and redis-password, redis-group, and
db are variables to be replaced accordingly:

Example

redis://:redispwd@mymaster/5

The SENTINEL_HOSTS fields are comma-separated lists of sentinel connection strings in
the following format:

redis://:sentinel-password@sentinel-hostname-or-ip:port

For each element of the list, [x] denotes optional element x and sentinel-password,
sentinel-hostname-or-ip, and port are variables to be replaced accordingly:

Example

:sentinelpwd@123.45.67.009:2711,:sentinelpwd@other-sentinel:2722

The SENTINEL_ROLE fields are either master or slave.

2. Deploy 3scale as indicated in Deploying 3scale API Management using the operator .

a. Ignore the errors due to backend-redis and system-redis already present.

4.2.3. Migrating a non-HA deployment of 3scale API Management to HA

1. Edit the backend-redis and system-redis secrets with all fields as shown in Deploying a fresh
installation of 3scale API Management for HA.

2. Make sure the following backend-redis environment variables are defined for the back-end
pods.

name: BACKEND_REDIS_SENTINEL_HOSTS
 valueFrom:
 secretKeyRef:
 key: REDIS_STORAGE_SENTINEL_HOSTS
 name: backend-redis
name: BACKEND_REDIS_SENTINEL_ROLE
 valueFrom:

Red Hat 3scale API Management 2.14 Installing Red Hat 3scale API Management

88

https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.14/html-single/installing_red_hat_3scale_api_management/index#deploying-threescale-using-the-operator
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.14/html-single/installing_red_hat_3scale_api_management/index#deploying-a-fresh-installation

 secretKeyRef:
 key: REDIS_STORAGE_SENTINEL_ROLE
 name: backend-redis

3. Make sure the following system-redis environment variables are defined for the system-
(app|sidekiq) pods.

name: REDIS_SENTINEL_HOSTS
 valueFrom:
 secretKeyRef:
 key: SENTINEL_HOSTS
 name: system-redis
name: REDIS_SENTINEL_ROLE
 valueFrom:
 secretKeyRef:
 key: SENTINEL_ROLE
 name: system-redis

4. Proceed with instructions to continue Upgrading 3scale using templates.

4.2.3.1. Using Redis Enterprise

1. Use Redis Enterprise deployed in OpenShift, with three different redis-enterprise instances:

a. Edit system-redis secret:

i. Set the system redis database in system-redis to URL.

b. Set the back-end database in backend-redis to REDIS_QUEUES_URL.

c. Set the third database to REDIS_STORAGE_URL for backend-redis.

4.2.3.2. Using Redis Sentinel

NOTE

You can optionally apply Redis Sentinels to any of the databases. However, Red Hat
recommends that you apply Redis Sentinels to all of them for HA.

1. Backend redis for statistics: update backend-redis secret and provide values for:

REDIS_STORAGE_URL

REDIS_STORAGE_SENTINEL_ROLE

REDIS_STORAGE_SENTINEL_HOSTS
Set REDIS_STORAGE_SENTINEL_ROLE to a comma-separated list of sentinels hosts
and ports, for example: :sentinelpwd@123.45.67.009:2711,:sentinelpwd@other-
sentinel:2722

2. Backend redis for queue: update backend-redis secret and provide values for:

REDIS_QUEUES_URL

REDIS_QUEUES_SENTINEL_ROLE

CHAPTER 4. EXTERNAL REDIS DATABASE CONFIGURATION FOR HIGH AVAILABILITY SUPPORT IN 3SCALE API MANAGEMENT

89

https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.14/html-single/migrating_red_hat_3scale_api_management/index#upgrading-3scale

REDIS_QUEUES_SENTINEL_HOSTS
Set REDIS_QUEUES_SENTINEL_ROLE to a comma-separated list of sentinels hosts and
ports, for example: :sentinelpwd@123.45.67.009:2711,:sentinelpwd@other-
sentinel:2722

3. Use Redis Sentinel, with these Redis databases:

4. System redis for data: update system-redis secret and provide values for:

NOTE

Edit system-redis secret: URL

SENTINEL_ROLE

NAMESPACE

URL

SENTINEL_HOSTS
Set SENTINEL_HOSTS to a comma-separated list of sentinels hosts and ports, for
example: :sentinelpwd@123.45.67.009:2711,:sentinelpwd@other-sentinel:2722

Notes

The system-app and system-sidekiq components connect directly to back-end Redis for
retrieving statistics.

As of 3scale 2.7, these system components can also connect to back-end Redis (storage)
when using sentinels.

The system-app and system-sidekiq components uses only backend-redis storage, not
backend-redis queues.

Changes made to the system components support backend-redis storage with sentinels.

4.3. REDIS DATABASE SHARDING AND REPLICATION

Sharding, sometimes referred to as partitioning, separates large databases in to smaller databases called
shards. With replication, your database is set up with copies of the same dataset hosted on separate
machines.

Sharding

Sharding facilitates adding more leader instances, which is also useful when you have so much data that
it does not fit in a single database, or when the CPU load is close to 100%.

With Redis HA for 3scale, the following two reasons are why sharding is important:

Spliting and scaling large volumes of data and adjusting the number of shards for a particular
index to help avoid bottlenecks.

Distributing operations across different node, therefore increasing performance, for example,
when multiple machines are working on the same query.

The three main solutions for Redis database sharding with cluster mode disabled are:

Red Hat 3scale API Management 2.14 Installing Red Hat 3scale API Management

90

Amazon ElastiCache

Standard Redis via Redis sentinels

Redis Enterprise

Replication

Redis database replication ensures redundancy by having your dataset replicated across different
machines. Using replication allows you to keep Redis working when the leader goes down. Data is then
pulled from a single instance, the leader, ensuring high availability.

With Redis HA for 3scale, database replication ensures high availability replicas of a primary shard. The
principles of operation involve:

When the primary shard fails, the replica shard will automatically be promoted to the new
primary shard.

Upon recovery of the original primary shard, it automatically becomes the replica shard of the
new primary shard.

The three main solutions for Redis database replication are:

Redis Enterprise

Amazon ElastiCache

Standard Redis via Redis sentinels

Sharding with twemproxy

For Amazon ElastiCache and Standard Redis, sharding involves splitting data up based on keys. You
need a proxy component that given a particular key knows which shard to find, for example twemproxy.
Also known as nutcracker, twemproxy is a lightweight proxy solution for Redis protocols that finds
shards based on specific keys or server maps assigned to them. Adding sharding capabilities to your
Amazon ElastiCache or Standard Redis instance with twemproxy, has the following advantages:

The capability of sharding data automatically across multiple servers.

Support of multiple hashing modes and consistent hashing and distribution.

The capability to run in multiple instances, which allows clients to connect to the first available
proxy server.

Reduce the number of connections to the caching servers on the backend.

NOTE

Redis Enterprise uses its own proxy, so it does not need twemproxy.

Additional resources

Redis Sentinel Documentation.

twemproxy.

4.4. ADDITIONAL INFORMATION

CHAPTER 4. EXTERNAL REDIS DATABASE CONFIGURATION FOR HIGH AVAILABILITY SUPPORT IN 3SCALE API MANAGEMENT

91

https://redis.io/topics/sentinel
https://github.com/twitter/twemproxy

For more information about 3scale and Redis database support, see Red Hat 3scale API
Management Supported Configurations.

For more information about Amazon ElastiCache for Redis, see the official Amazon ElastiCache
Documentation.

For more information about Redis Enterprise, see the latest Documentation.

Red Hat 3scale API Management 2.14 Installing Red Hat 3scale API Management

92

https://access.redhat.com/articles/2798521#3scale-api-management-27-2
https://docs.aws.amazon.com/elasticache/index.html
https://docs.redislabs.com/latest/

CHAPTER 5. CONFIGURING AN EXTERNAL MYSQL
DATABASE

IMPORTANT

When you externalize databases from a Red Hat 3scale API Management deployment,
this means to provide isolation from the application and resilience against service
disruptions at the database level. The resilience to service disruptions depends on the
service level agreements (SLAs) provided by the infrastructure or platform provider
where you host the databases. This is not offered by 3scale. For more details on
externalizing of databases offered by your chosen deployment, see the associated
documentation.

Red Hat supports 3scale configurations that use an external MySQL database. However,
the database itself is not within the scope of support.

This guide provides information for externalizing the MySQL database. This is useful where there are
several infrastructure issues, such as network or filesystem, using the default system-mysql pod.

Prerequisites

Access to an OpenShift Container Platform 4.x cluster using an account with administrator
privileges.

A 3scale instance installation on the OpenShift cluster. See Installing 3scale API Management
on OpenShift.

To configure an external MySQL database, perform the steps outlined in the following sections:

Section 5.1, “External MySQL database limitations”

Section 5.2, “Externalizing the MySQL database”

Section 5.3, “Rolling back”

5.1. EXTERNAL MYSQL DATABASE LIMITATIONS

There are limitations with the process of externalizing your MySQL database:

3scale On-premises versions

It has only been tested and verified on the 2.5 On-premises and 2.6 On-premises versions from 3scale.

MySQL database user

The URL must be in the following format:

<database_scheme>://<admin_user>:<admin_password>@<database_host>/<database_name>

An <admin_user> must be an existing user in the external database with full permissions on the
<database_name> logical database. The <database_name> must be an already existing logical
database in the external database.

MySQL host

Use the IP address from the external MySQL database instead of the hostname or it will not resolve. For

CHAPTER 5. CONFIGURING AN EXTERNAL MYSQL DATABASE

93

Use the IP address from the external MySQL database instead of the hostname or it will not resolve. For
example, use 1.1.1.1 instead of mysql.mydomain.com.

5.2. EXTERNALIZING THE MYSQL DATABASE

Use the following steps to fully externalize the MySQL database.

WARNING

This will cause downtime in the environment while the process is ongoing.

Procedure

1. Login to the OpenShift node where your 3scale On-premises instance is hosted and change to
its project:

$ oc login -u <user> <url>
$ oc project <3scale-project>

Replace <user>, <url>, and <3scale-project> with your own credentials and the project name.

2. Follow the steps below in the order shown to scale down all the pods. This will avoid loss of data.

Stop 3scale On-premises

From the OpenShift web console or from the command line interface (CLI), scale down all the
deployment configurations to zero replicas in the following order:

apicast-wildcard-router and zync for versions before 3scale 2.6 or zync-que and zync for
3scale 2.6 and above.

apicast-staging and apicast-production.

system-sidekiq, backend-cron, and system-searchd.

3scale 2.3 includes system-resque.

system-app.

backend-listener and backend-worker.

backend-redis, system-memcache, system-mysql, system-redis, and zync-database.
The following example shows how to perform this in the CLI for apicast-wildcard-router
and zync:

$ oc scale dc/apicast-wildcard-router --replicas=0
$ oc scale dc/zync --replicas=0

NOTE



Red Hat 3scale API Management 2.14 Installing Red Hat 3scale API Management

94

NOTE

The deployment configuration for each step can be scaled down at the same
time. For example, you could scale down apicast-wildcard-router and zync
together. However, it is better to wait for the pods from each step to
terminate before scaling down the ones that follow. The 3scale instance will
be completely inaccessible until it is fully started again.

3. To confirm that no pods are running on the 3scale project use the following command:

$ oc get pods -n <3scale_namespace>

The command should return No resources found.

4. Scale up the database level pods again using the following command:

$ oc scale dc/{backend-redis,system-memcache,system-mysql,system-redis,zync-database}
--replicas=1

5. Ensure that you are able to login to the external MySQL database through the system-mysql
pod before proceeding with the next steps:

$ oc rsh system-mysql-<system_mysql_pod_id>
mysql -u root -p -h <host>

<system_mysql_pod_id>: The identifier of the system-mysql pod.

The user should always be root. For more information see External MySQL database
limitations.

a. The CLI will now display mysql>. Type exit, then press return. Type exit again at the
next prompt to go back to the OpenShift node console.

6. Perform a full MySQL dump using the following command:

$ oc rsh system-mysql-<system_mysql_pod_id> /bin/bash -c "mysqldump -u root --single-
transaction --routines --triggers --all-databases" > system-mysql-dump.sql

Replace <system_mysql_pod_id> with your unique system-mysql pod ID .

Validate that the file system-mysql-dump.sql contains a valid MySQL level dump as in the
following example:

$ head -n 10 system-mysql-dump.sql
-- MySQL dump 10.13 Distrib 8.0, for Linux (x86_64)
--
-- Host: localhost Database:
-- --
-- Server version 8.0

/*!40101 SET @OLD_CHARACTER_SET_CLIENT=@@CHARACTER_SET_CLIENT */;
/*!40101 SET
@OLD_CHARACTER_SET_RESULTS=@@CHARACTER_SET_RESULTS */;

CHAPTER 5. CONFIGURING AN EXTERNAL MYSQL DATABASE

95

https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.14/html-single/installing_red_hat_3scale_api_management/index#external-mysql-database-limitations

/*!40101 SET @OLD_COLLATION_CONNECTION=@@COLLATION_CONNECTION
*/;
/*!40101 SET NAMES utf8 */;

7. Scale down the system-mysql pod and leave it with 0 (zero) replicas:

$ oc scale dc/system-mysql --replicas=0

8. Find the base64 equivalent of the URL mysql2://root:<password>@<host>/system, replacing
<password> and <host> accordingly:

$ echo "mysql2://root:<password>@<host>/system" | base64

9. Create a default 'user'@'%' on the remote MySQL database. It only needs to have SELECT
privileges. Also find its base64 equivalents:

$ echo "user" | base64
$ echo "<password>" | base64

Replace <password> with the password for 'user'@'%'.

10. Perform a backup and edit the OpenShift secret system-database:

$ oc get secret system-database -o yaml > system-database-orig.bkp.yml
$ oc edit secret system-database

URL: Replace it with the value from [step-8].

DB_USER and DB_PASSWORD: Use the values from the previous step for both.

11. Send system-mysql-dump.sql to the remote database server and import the dump into it. Use
the command to import it:

12. Use the command below to send system-mysql-dump.sql to the remote database server and
import the dump into the server:

mysql -u root -p < system-mysql-dump.sql

13. Ensure that a new database called system was created:

mysql -u root -p -se "SHOW DATABASES"

14. Use the following instructions to Start 3scale On-premises , which scales up all the pods in the
correct order.

Start 3scale On-premises

backend-redis, system-memcache, system-mysql, system-redis, and zync-database.

backend-listener and backend-worker.

system-app.

system-sidekiq, backend-cron, and system-searchd

3scale 2.3 includes system-resque.

Red Hat 3scale API Management 2.14 Installing Red Hat 3scale API Management

96

3scale 2.3 includes system-resque.

apicast-staging and apicast-production.

apicast-wildcard-router and zync for versions before 3scale 2.6 or zync-que and zync for
3scale 2.6 and above.
The following example shows how to perform this in the CLI for backend-redis, system-
memcache, system-mysql, system-redis, and zync-database:

$ oc scale dc/backend-redis --replicas=1
$ oc scale dc/system-memcache --replicas=1
$ oc scale dc/system-mysql --replicas=1
$ oc scale dc/system-redis --replicas=1
$ oc scale dc/zync-database --replicas=1

The system-app pod should now be up and running without any issues.

15. After validation, scale back up the other pods in the order shown.

16. Backup the system-mysql DeploymentConfig object. You may delete after a few days once
you are sure everything is running properly. Deleting system-mysql DeploymentConfig avoids
any future confusion if this procedure is done again in the future.

5.3. ROLLING BACK

Perform a rollback procedure if the system-app pod is not fully back online and the root cause for it
could not be determined or addressed after following step 14.

1. Edit the secret system-database using the original values from system-database-
orig.bkp.yml. See [step-10]:

Replace URL, DB_USER, and DB_PASSWORD with their original values.

2. Scale down all the pods and then scale them back up again, including system-mysql. The
system-app pod and the other pods to be started after it should be up and running again. Run
the following command to confirm all pods are back up and running:

5.4. ADDITIONAL INFORMATION

For more information about 3scale and MySQL database support, see Red Hat 3scale API
Management Supported Configurations.

$ oc edit secret system-database

$ oc get pods -n <3scale-project>

CHAPTER 5. CONFIGURING AN EXTERNAL MYSQL DATABASE

97

https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.14/html-single/installing_red_hat_3scale_api_management/index#scaling-up-pods
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.14/html-single/installing_red_hat_3scale_api_management/index#scaling-up-pods
https://access.redhat.com/articles/2798521#3scale-api-management-27-2

	Table of Contents
	PREFACE
	PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
	CHAPTER 1. REGISTRY SERVICE ACCOUNTS FOR 3SCALE
	1.1. CREATING A REGISTRY SERVICE ACCOUNT
	1.2. CONFIGURING CONTAINER REGISTRY AUTHENTICATION
	1.3. MODIFYING A REGISTRY SERVICE ACCOUNT
	1.4. ADDITIONAL RESOURCES

	CHAPTER 2. INSTALLING 3SCALE API MANAGEMENT ON OPENSHIFT
	2.1. SYSTEM REQUIREMENTS FOR INSTALLING 3SCALE API MANAGEMENT ON OPENSHIFT
	2.1.1. Environment requirements
	2.1.2. Hardware requirements

	2.2. INSTALLING THE 3SCALE API MANAGEMENT OPERATOR ON OPENSHIFT
	2.2.1. Creating a new OpenShift project
	2.2.2. Installing and configuring the 3scale API Management operator using the OLM
	2.2.2.1. Restrictions in disconnected environments

	2.2.3. Upgrading the 3scale API Management operator using the OLM
	2.2.3.1. Configuring automated application of micro releases

	2.3. INSTALLING THE APICAST OPERATOR ON OPENSHIFT
	2.4. DEPLOYING 3SCALE API MANAGEMENT USING THE OPERATOR
	2.4.1. Deploying the APIManager custom resource
	2.4.2. Getting the Admin Portal URL
	2.4.3. Getting the APIManager Admin Portal and Master Admin Portal credentials
	2.4.4. External databases for 3scale API Management using the operator

	2.5. DEPLOYMENT CONFIGURATION OPTIONS FOR 3SCALE API MANAGEMENT ON OPENSHIFT USING THE OPERATOR
	2.5.1. Configuring proxy parameters for embedded APIcast
	2.5.2. Injecting custom environments with the 3scale API Management operator
	2.5.3. Injecting custom policies with the 3scale API Management operator
	2.5.4. Configuring OpenTracing with the 3scale API Management operator
	2.5.5. Enabling TLS at the pod level with the 3scale API Management operator
	2.5.6. Proof of concept for evaluation deployment
	2.5.6.1. Default deployment configuration
	2.5.6.2. Evaluation installation

	2.5.7. External databases installation
	2.5.7.1. Backend Redis secret
	2.5.7.2. System Redis secret
	2.5.7.3. System database secret
	2.5.7.4. Zync database secret
	2.5.7.5. APIManager custom resources to deploy 3scale API Management

	2.5.8. Enabling pod affinity in the 3scale API Management operator
	2.5.8.1. Customizing node affinity and tolerations at component level

	2.5.9. Multiple clusters in multiple availability zones
	2.5.9.1. Prerequisites for multiple clusters installations
	2.5.9.2. Active-passive clusters on the same region with shared databases
	2.5.9.3. Configuring and installing shared databases
	2.5.9.4. Manual failover shared databases
	2.5.9.5. Active-passive clusters on different regions with synced databases
	2.5.9.6. Configuring and installing synced databases
	2.5.9.7. Manual failover synced databases

	2.5.10. Amazon Simple Storage Service 3scale API Management fileStorage installation
	2.5.10.1. Amazon S3 bucket creation
	2.5.10.2. Create an OpenShift secret
	2.5.10.3. Manual mode with STS

	2.5.11. PostgreSQL installation
	2.5.12. Configuring SMTP variables (optional)
	2.5.13. Customizing compute resource requirements at component level
	2.5.13.1. Default APIManager components compute resources

	2.5.14. Customizing node affinity and tolerations at component level
	2.5.15. Pod priority of 3scale API Management components
	2.5.16. Setting custom labels
	2.5.17. Setting backend client to skip certificate verification
	2.5.18. Setting custom annotations
	2.5.19. Reconciliation
	2.5.19.1. Resources
	2.5.19.2. Backend replicas
	2.5.19.3. APIcast replicas
	2.5.19.4. System replicas
	2.5.19.5. Zync replicas

	2.5.20. Setting the APICAST_SERVICE_CACHE_SIZE environment variable

	2.6. INSTALLING 3SCALE API MANAGEMENT WITH THE OPERATOR USING ORACLE AS THE SYSTEM DATABASE
	2.6.1. Preparing the Oracle Database
	2.6.2. Building a custom system container image
	2.6.3. Installing 3scale API Management with Oracle using the operator

	2.7. TROUBLESHOOTING COMMON 3SCALE API MANAGEMENT INSTALLATION ISSUES
	2.7.1. Previous deployment leaving dirty persistent volume claims
	2.7.2. Wrong or missing credentials of the authenticated image registry
	2.7.3. Incorrectly pulling from the Docker registry
	2.7.4. Permission issues for MySQL when persistent volumes are mounted locally
	2.7.5. Unable to upload logo or images
	2.7.6. Test calls not working on OpenShift
	2.7.7. APIcast on a different project from 3scale API Management failing to deploy

	2.8. ADDITIONAL RESOURCES

	CHAPTER 3. INSTALLING APICAST
	3.1. APICAST DEPLOYMENT OPTIONS
	3.2. APICAST ENVIRONMENTS
	3.3. CONFIGURING THE INTEGRATION SETTINGS
	3.4. CONFIGURING YOUR PRODUCT
	3.4.1. Declaring the API backend
	3.4.2. Configuring the authentication settings
	3.4.3. Configuring the API test call
	3.4.4. Deploying APIcast on Podman
	3.4.4.1. Installing the Podman container environment
	3.4.4.2. Running the Podman environment
	3.4.4.3. The podman command options
	3.4.4.4. Additional resources

	3.5. DEPLOYING AN APICAST GATEWAY SELF-MANAGED SOLUTION USING THE OPERATOR
	3.5.1. APICast deployment and configuration options
	3.5.1.1. Providing a 3scale API Management system endpoint
	3.5.1.2. Providing a configuration secret
	3.5.1.3. Injecting custom environments with the APIcast operator
	3.5.1.4. Injecting custom policies with the APIcast operator
	3.5.1.5. Configuring OpenTracing with the APIcast operator
	3.5.1.6. Setting the APICAST_SERVICE_CACHE_SIZE environment variable

	3.6. ADDITIONAL RESOURCES

	CHAPTER 4. EXTERNAL REDIS DATABASE CONFIGURATION FOR HIGH AVAILABILITY SUPPORT IN 3SCALE API MANAGEMENT
	4.1. SETTING UP REDIS FOR ZERO DOWNTIME
	4.2. CONFIGURING BACK-END COMPONENTS FOR 3SCALE API MANAGEMENT
	4.2.1. Creating backend-redis and system-redis secrets
	4.2.2. Deploying a fresh installation of 3scale API Management for HA
	4.2.3. Migrating a non-HA deployment of 3scale API Management to HA
	4.2.3.1. Using Redis Enterprise
	4.2.3.2. Using Redis Sentinel

	4.3. REDIS DATABASE SHARDING AND REPLICATION
	4.4. ADDITIONAL INFORMATION

	CHAPTER 5. CONFIGURING AN EXTERNAL MYSQL DATABASE
	5.1. EXTERNAL MYSQL DATABASE LIMITATIONS
	5.2. EXTERNALIZING THE MYSQL DATABASE
	5.3. ROLLING BACK
	5.4. ADDITIONAL INFORMATION

