
Red Hat 3scale API Management 2.8

Installing 3scale

Install and configure 3scale API Management.

Last Updated: 2023-01-05

Red Hat 3scale API Management 2.8 Installing 3scale

Install and configure 3scale API Management.

Legal Notice

Copyright © 2023 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide provides the information to install and configure 3scale API Management.

. .

. .

Table of Contents

PREFACE

CHAPTER 1. INSTALLING 3SCALE ON OPENSHIFT
1.1. SYSTEM REQUIREMENTS FOR INSTALLING 3SCALE ON OPENSHIFT

1.1.1. Environment requirements
1.1.1.1. Using local filesystem storage
1.1.1.2. Using Amazon Simple Storage Service (Amazon S3) storage

1.1.2. Hardware requirements
1.2. CONFIGURING NODES AND ENTITLEMENTS

1.2.1. Configuring Amazon Simple Storage Service
1.3. DEPLOYING 3SCALE ON OPENSHIFT USING A TEMPLATE
1.4. CONFIGURING CONTAINER REGISTRY AUTHENTICATION

1.4.1. Creating registry service accounts
1.4.2. Modifying registry service accounts
1.4.3. Importing the 3scale template
1.4.4. Getting the Admin Portal URL
1.4.5. Deploying 3scale with Amazon Simple Storage Service
1.4.6. Deploying 3scale with PostgreSQL
1.4.7. Configuring SMTP variables (optional)

1.5. PARAMETERS OF THE 3SCALE TEMPLATE
1.6. USING APICAST WITH 3SCALE ON OPENSHIFT

1.6.1. Deploying APIcast templates on an existing OpenShift cluster containing 3scale
1.6.2. Connecting APIcast from a different OpenShift cluster
1.6.3. Changing the default behavior for embedded APIcast
1.6.4. Connecting multiple APIcast deployments on a single OpenShift cluster over internal service routes
1.6.5. Connecting APIcast on other deployments

1.7. DEPLOYING 3SCALE USING THE OPERATOR
1.7.1. Deploying the APIManager custom resource
1.7.2. Getting the APIManager Admin Portal and Master Admin Portal credentials
1.7.3. Getting the Admin Portal URL
1.7.4. High availability in 3scale using the operator

1.8. DEPLOYMENT CONFIGURATION OPTIONS FOR 3SCALE ON OPENSHIFT USING THE OPERATOR
1.8.1. Default deployment configuration
1.8.2. Evaluation installation
1.8.3. External databases installation

1.8.3.1. Backend Redis secret
1.8.3.2. System Redis secret
1.8.3.3. System database secret
1.8.3.4. Zync database secret
1.8.3.5. APIManager custom resources to deploy 3scale

1.8.4. Amazon Simple Storage Service 3scale Filestorage installation
1.8.4.1. Amazon S3 secret

1.8.5. PostgreSQL installation
1.8.6. Reconciliation

1.8.6.1. Resources
1.8.6.2. Backend replicas
1.8.6.3. APIcast replicas
1.8.6.4. System replicas
1.8.6.5. Zync replicas

1.9. TROUBLESHOOTING COMMON 3SCALE INSTALLATION ISSUES
1.9.1. Previous deployment leaving dirty persistent volume claims

5

6
6
6
6
7
7
7
8
9
9

10
11

12
13
14
16
17
18
22
22
23
24
24
25
25
26
27
27
28
29
29
29
30
30
31
31
32
32
33
34
34
35
35
35
35
36
36
36
37

Table of Contents

1

. .

. .

. .

. .

. .

1.9.2. Wrong or missing credentials of the authenticated image registry
1.9.3. Incorrectly pulling from the Docker registry
1.9.4. Permission issues for MySQL when persistent volumes are mounted locally
1.9.5. Unable to upload logo or images
1.9.6. Test calls not working on OpenShift
1.9.7. APIcast on a different project from 3scale failing to deploy

CHAPTER 2. INSTALLING APICAST
2.1. APICAST DEPLOYMENT OPTIONS
2.2. APICAST ENVIRONMENTS
2.3. CONFIGURING THE INTEGRATION SETTINGS
2.4. CONFIGURING YOUR SERVICE

2.4.1. Declaring the API backend
2.4.2. Configuring the authentication settings
2.4.3. Configuring the API test call

2.5. INSTALLING THE APICAST OPERATOR
2.6. DEPLOYING AN APICAST GATEWAY SELF-MANAGED SOLUTION USING THE OPERATOR

2.6.1. APICast deployment and configuration options
2.6.1.1. Providing a 3scale system endpoint

2.6.1.1.1. Verifying the APIcast gateway is running and available
2.6.1.1.2. Exposing APIcast externally via a Kubernetes Ingress

2.6.1.2. Providing a configuration secret
2.6.1.2.1. Verifying APIcast gateway is running and available

2.7. WEBSOCKET PROTOCOL SUPPORT FOR APICAST
2.7.1. WebSocket protocol support

2.8. HTTP/2 IN THE APICAST GATEWAY
2.8.1. HTTP/2 protocol support

2.9. ADDITIONAL RESOURCES

CHAPTER 3. RUNNING APICAST ON RED HAT OPENSHIFT
3.1. SETTING UP RED HAT OPENSHIFT

3.1.1. Installing the Docker containerized environment
3.1.2. Starting the OpenShift cluster
3.1.3. Setting up the OpenShift cluster on a remote server (Optional)

3.2. DEPLOYING APICAST USING THE OPENSHIFT TEMPLATE
3.3. CREATING ROUTES VIA THE OPENSHIFT CONSOLE

CHAPTER 4. DEPLOYING APICAST ON THE DOCKER CONTAINERIZED ENVIRONMENT
4.1. INSTALLING THE DOCKER CONTAINERIZED ENVIRONMENT
4.2. RUNNING THE DOCKER CONTAINERIZED ENVIRONMENT GATEWAY

4.2.1. The docker command options
4.2.2. Testing APIcast

4.3. ADDITIONAL RESOURCES

CHAPTER 5. DEPLOYING APICAST ON PODMAN
5.1. INSTALLING THE PODMAN CONTAINER ENVIRONMENT
5.2. RUNNING THE PODMAN ENVIRONMENT

5.2.1. Testing APIcast with Podman
5.3. THE PODMAN COMMAND OPTIONS
5.4. ADDITIONAL RESOURCES

CHAPTER 6. INSTALLING THE 3SCALE OPERATOR ON OPENSHIFT
6.1. CREATING A NEW OPENSHIFT PROJECT
6.2. INSTALLING AND CONFIGURING THE 3SCALE OPERATOR USING THE OLM

37
39
39
40
40
41

42
42
42
43
43
43
44
45
45
46
46
47
47
48
48
50
51
51
51
51
52

53
53
53
54
55
55
56

60
60
61
61

62
62

63
63
63
64
64
64

65
65
66

Red Hat 3scale API Management 2.8 Installing 3scale

2

. .

. .

. .

. .

CHAPTER 7. 3SCALE HIGH AVAILABILITY AND EVALUATION TEMPLATES
7.1. HIGH AVAILABILITY TEMPLATE

7.1.1. Setting RWX_STORAGE_CLASS for high availability
7.2. EVALUATION TEMPLATE

CHAPTER 8. REDIS HIGH AVAILABILITY (HA) SUPPORT FOR 3SCALE
8.1. SETTING UP REDIS FOR ZERO DOWNTIME
8.2. CONFIGURING BACK-END COMPONENTS FOR 3SCALE

8.2.1. Creating backend-redis and system-redis secrets
8.2.2. Deploying a fresh installation of 3scale for HA
8.2.3. Migrating a non-HA deployment of 3scale to HA

8.2.3.1. Using Redis Enterprise
8.2.3.2. Using Redis Sentinel

8.3. REDIS DATABASE SHARDING AND REPLICATION
8.4. ADDITIONAL INFORMATION

CHAPTER 9. CONFIGURING AN EXTERNAL MYSQL DATABASE
9.1. EXTERNAL MYSQL DATABASE LIMITATIONS
9.2. EXTERNALIZING THE MYSQL DATABASE
9.3. ROLLING BACK
9.4. ADDITIONAL INFORMATION

CHAPTER 10. SETTING UP YOUR 3SCALE SYSTEM IMAGE WITH AN ORACLE DATABASE
10.1. PREPARING THE ORACLE DATABASE
10.2. BUILDING THE SYSTEM IMAGE

68
68
69
69

70
70
71
71
71
72
73
73
74
75

76
76
76
80
80

81
81

82

Table of Contents

3

Red Hat 3scale API Management 2.8 Installing 3scale

4

PREFACE
This guide will help you to install and configure 3scale

PREFACE

5

CHAPTER 1. INSTALLING 3SCALE ON OPENSHIFT
This section walks you through steps to deploy Red Hat 3scale API Management 2.8 on OpenShift.

The Red Hat 3scale API Management solution for on-premises deployment is composed of:

Two API gateways: embedded APIcast

One 3scale Admin Portal and Developer Portal with persistent storage

There are two ways to deploy a 3scale solution:

Section 1.3, “Deploying 3scale on OpenShift using a template”

Section 1.7, “Deploying 3scale using the operator”

NOTE

Whether deploying 3scale using the operator or via templates, you must first configure
registry authentication to the Red Hat container registry. See Authenticating with
registry.redhat.io for container images.

Prerequisites

You must configure 3scale servers for UTC (Coordinated Universal Time).

To install 3scale on OpenShift, perform the steps outlined in the following sections:

Section 1.1, “System requirements for installing 3scale on OpenShift”

Section 1.2, “Configuring nodes and entitlements”

Section 1.3, “Deploying 3scale on OpenShift using a template”

Section 1.5, “Parameters of the 3scale template”

Section 1.6, “Using APIcast with 3scale on OpenShift”

Section 1.7, “Deploying 3scale using the operator”

Section 1.9, “Troubleshooting common 3scale installation issues”

1.1. SYSTEM REQUIREMENTS FOR INSTALLING 3SCALE ON
OPENSHIFT

This section lists the requirements for the 3scale - OpenShift template.

1.1.1. Environment requirements

Red Hat 3scale API Management requires an environment specified in supported configurations.

1.1.1.1. Using local filesystem storage

Persistent volumes:

Red Hat 3scale API Management 2.8 Installing 3scale

6

https://access.redhat.com/articles/2798521

3 RWO (ReadWriteOnce) persistent volumes for Redis and MySQL persistence

1 RWX (ReadWriteMany) persistent volume for Developer Portal content and System-app
Assets

Configure the RWX persistent volume to be group writable. For a list of persistent volume types that
support the required access modes, see the OpenShift documentation.

1.1.1.2. Using Amazon Simple Storage Service (Amazon S3) storage

Persistent volumes:

3 RWO (ReadWriteOnce) persistent volumes for Redis and MySQL persistence

Storage:

1 Amazon S3 bucket

1.1.2. Hardware requirements

Hardware requirements depend on your usage needs. Red Hat recommends that you test and configure
your environment to meet your specific requirements. The following are the recommendations when
configuring your environment for 3scale on OpenShift:

Compute optimized nodes for deployments on cloud environments (AWS c4.2xlarge or Azure
Standard_F8).

Very large installations may require a separate node (AWS M4 series or Azure Av2 series) for
Redis if memory requirements exceed your current node’s available RAM.

Separate nodes between routing and compute tasks.

Dedicated computing nodes for 3scale specific tasks.

Set the PUMA_WORKERS variable of the back-end listener to the number of cores in your
compute node.

1.2. CONFIGURING NODES AND ENTITLEMENTS

Before deploying 3scale on OpenShift, you must configure the necessary nodes and the entitlements
for the environment to fetch images from the Red Hat Container Registry . Perform the following steps
to configure the nodes and entitlements:

Procedure

1. Install Red Hat Enterprise Linux (RHEL) on each of your nodes.

2. Register your nodes with Red Hat using the Red Hat Subscription Manager (RHSM), via the
interface or the command line.

3. Attach your nodes to your 3scale subscription using RHSM.

4. Install OpenShift on your nodes, complying with the following requirements:

Use a supported OpenShift version.

CHAPTER 1. INSTALLING 3SCALE ON OPENSHIFT

7

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.1/html-single/storage/index#persistent-volumes_understanding-persistent-storage
https://registry.redhat.io
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Installation_Guide/index.html
https://access.redhat.com/documentation/en-us/red_hat_subscription_management/1/html-single/rhsm/index#reg-gui
https://access.redhat.com/documentation/en-us/red_hat_subscription_management/1/html/using_red_hat_subscription_management/registration_con#register_cli
https://access.redhat.com/documentation/en-us/red_hat_subscription_management/1/html/using_red_hat_subscription_management/manage_systems_con#attach_sub_system_proc
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.1/html-single/installing/index#installing-aws-default
https://access.redhat.com/articles/2798521

Configure persistent storage on a file system that supports multiple writes.

5. Install the OpenShift command line interface .

6. Enable access to the rhel-7-server-3scale-amp-2-rpms repository using the subscription
manager:

sudo subscription-manager repos --enable=rhel-7-server-3scale-amp-2-rpms

7. Install the 3scale template called 3scale-amp-template. This will be saved at
/opt/amp/templates.

sudo yum install 3scale-amp-template

1.2.1. Configuring Amazon Simple Storage Service

IMPORTANT

Skip this section, if you are deploying 3scale with the local filesystem storage.

If you want to use an Amazon Simple Storage Service (Amazon S3) bucket as storage, you must
configure your bucket before you can deploy 3scale on OpenShift.

Perform the following steps to configure your Amazon S3 bucket for 3scale:

1. Create an Identity and Access Management (IAM) policy with the following minimum
permissions:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "s3:ListAllMyBuckets",
 "Resource": "arn:aws:s3:::*"
 },
 {
 "Effect": "Allow",
 "Action": "s3:*",
 "Resource": [
 "arn:aws:s3:::targetBucketName",
 "arn:aws:s3:::targetBucketName/*"
]
 }
]
}

2. Create a CORS configuration with the following rules:

<?xml version="1.0" encoding="UTF-8"?>
<CORSConfiguration xmlns="http://s3.amazonaws.com/doc/2006-03-01/">
<CORSRule>
 <AllowedOrigin>https://*</AllowedOrigin>

Red Hat 3scale API Management 2.8 Installing 3scale

8

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.1/html-single/storage/index#configuring-persistent-storage
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.1/html-single/cli_reference/index#cli-installing-cli_cli-developer-commands
http://docs.aws.amazon.com/AmazonS3/latest/dev/cors.html

 <AllowedMethod>GET</AllowedMethod>
</CORSRule>
</CORSConfiguration>

1.3. DEPLOYING 3SCALE ON OPENSHIFT USING A TEMPLATE

NOTE

OpenShift Container Platform (OCP) 4.x supports deployment of 3scale using the
operator only. See Deploying 3scale using the operator .

Prerequisites

An OpenShift cluster configured as specified in the Configuring nodes and entitlements
section.

A domain that resolves to your OpenShift cluster.

Access to the Red Hat container catalog.

(Optional) An Amazon Simple Storage Service (Amazon S3) bucket for content management
system (CMS) storage outside of the local filesystem.

(Optional) A deployment with PostgreSQL.

This is the same as the default deployment on Openshift, however it uses PostgreSQL as an
internal system database.

(Optional) A working SMTP server for email functionality.

NOTE

Deploying 3scale on OpenShift using a template is based on OpenShift Container
Platform 3.11

Follow these procedures to install 3scale on OpenShift using a .yml template:

Configuring container registry authentication

Creating registry service accounts

Modifying registry service accounts

Importing the 3scale template

Getting the Admin Portal URL

Deploying 3scale with Amazon Simple Storage Service

Deploying 3scale with PostgreSQL

Configuring SMTP variables

1.4. CONFIGURING CONTAINER REGISTRY AUTHENTICATION

CHAPTER 1. INSTALLING 3SCALE ON OPENSHIFT

9

https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.8/html-single/installing_3scale/index#deploying-threescale-using-the-operator
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.8/html-single/installing_3scale/index#configuring-nodes-and-entitlements
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/index#envirornment-requirements
https://registry.redhat.io
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.8/html-single/installing_3scale/index#configuring-container-registry-authentication
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.8/html-single/installing_3scale/index#creating-registry-service-accounts
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.8/html-single/installing_3scale/index#modifying-registry-service-accounts
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.8/html-single/installing_3scale/index#importing-the-threescale-template
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.8/html-single/installing_3scale/index#getting-admin-portal-url-ocp-template
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.8/html-single/installing_3scale/index#deploying-threescale-with-amazon-s3
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.8/html-single/installing_3scale/index#deploying-threescale-with-postgresql
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.8/html-single/installing_3scale/index#configuring-smtp-variables-optional

As a 3scale administrator, configure authentication with registry.redhat.io before you deploy 3scale
container images on OpenShift.

Prerequisites

Cluster administrator access to an OpenShift Container Platform cluster.

OpenShift oc client tool is installed. For more details, see the OpenShift CLI documentation.

Procedure

1. Log into your OpenShift cluster as administrator:

2. Open the project in which you want to deploy 3scale:

3. Create a docker-registry secret using your Red Hat Customer Portal account, replacing
threescale-registry-auth with the secret to create:

You will see the following output:

4. Link the secret to your service account to use the secret for pulling images. The service account
name must match the name that the OpenShift pod uses. This example uses the default service
account:

5. Link the secret to the builder service account to use the secret for pushing and pulling build
images:

Additional resources

For more details on authenticating with Red Hat for container images:

Red Hat container image authentication

Red Hat registry service accounts

1.4.1. Creating registry service accounts

$ oc login -u system:admin

$ oc project myproject

$ oc create secret docker-registry threescale-registry-auth \
 --docker-server=registry.redhat.io \
 --docker-username=CUSTOMER_PORTAL_USERNAME \
 --docker-password=CUSTOMER_PORTAL_PASSWORD \
 --docker-email=EMAIL_ADDRESS

secret/threescale-registry-auth created

$ oc secrets link default threescale-registry-auth --for=pull

$ oc secrets link builder threescale-registry-auth

Red Hat 3scale API Management 2.8 Installing 3scale

10

https://docs.openshift.com/container-platform/4.7/cli_reference/openshift_cli/getting-started-cli.html
https://access.redhat.com/RegistryAuthentication
https://access.redhat.com/terms-based-registry/

To use container images from registry.redhat.io in a shared environment with 3scale 2.8 deployed on
OpenShift, you must use a Registry Service Account instead of an individual user’s Customer Portal
credentials.

NOTE

It is a requirement for 3scale 2.8 that you follow the steps outlined below before
deploying either on OpenShift using a template or via the operator, as both options use
registry authentication.

Procedure

1. Navigate to the Registry Service Accounts page and log in.

2. Click New Service Account.

3. Fill in the form on the Create a New Registry Service Account page.

a. Add a name for the service account .
Note: You will see a fixed-length, randomly generated number string before the form field.

4. Enter a Description.

5. Click Create.

6. Navigate back to your Service Accounts.

7. Click the Service Account you created.

8. Make a note of the username, including the prefix string, for example 12345678|username, and
your password.

a. This username and password will be used to log in to registry.redhat.io.

NOTE

There are tabs available on the Token Information page that show you how to use the
authentication token. For example, the Token Information tab shows the username in the
format 12345678|username and the password string below it.

1.4.2. Modifying registry service accounts

Service accounts can be modified or deleted. This can done from the Registry Service Account page
using the pop-up menu to the right of each authentication token in the table.

WARNING

The regeneration or removal of service accounts will impact systems that are using
the token to authenticate and retrieve content from registry.redhat.io.

CHAPTER 1. INSTALLING 3SCALE ON OPENSHIFT

11

https://access.redhat.com/terms-based-registry

A description for each function is as follows:

Regenerate token: Allows an authorized user to reset the password associated with the Service
Account.
Note: The username for the Service Account cannot be changed.

Update Description: Allows an authorized user to update the description for the Service
Account.

Delete Account: Allows an authorized user to remove the Service Account.

Additional resources

Red Hat Container Registry Authentication

Authentication enabled Red Hat registry

1.4.3. Importing the 3scale template

NOTE

Wildcard routes have been removed as of 3scale 2.6.

This functionality is handled by Zync in the background.

When API providers are created, updated, or deleted, routes automatically reflect
those changes.

Perform the following steps to import the 3scale template into your OpenShift cluster:

Procedure

1. From a terminal session log in to OpenShift as the cluster administrator:

oc login

2. Select your project, or create a new project:

oc project <project_name>

oc new-project <project_name>

3. Enter the oc new-app command:

a. Specify the --file option with the path to the amp.yml file you downloaded as part of
Configuring nodes and entitlements.

b. Specify the --param option with the WILDCARD_DOMAIN parameter set to the domain of
your OpenShift cluster:

oc new-app --file /opt/amp/templates/amp.yml --param WILDCARD_DOMAIN=
<WILDCARD_DOMAIN>

The terminal shows the master and tenant URLs and credentials for your newly created

Red Hat 3scale API Management 2.8 Installing 3scale

12

https://access.redhat.com/RegistryAuthentication
https://docs.openshift.com/container-platform/4.1/registry/registry-options.html#registry-authentication-enabled-registry-overview_registry-options
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.6/html-single/release_notes/index#removed_features
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.8/html-single/installing_3scale/index#configuring-nodes-and-entitlements

The terminal shows the master and tenant URLs and credentials for your newly created
3scale Admin Portal. This output should include the following information:

master admin username

master password

master token information

tenant username

tenant password

tenant token information

4. Log in to https://user-admin.3scale-project.example.com as admin/xXxXyz123.

* With parameters:

 * ADMIN_PASSWORD=xXxXyz123 # generated
 * ADMIN_USERNAME=admin
 * TENANT_NAME=user

 * MASTER_NAME=master
 * MASTER_USER=master
 * MASTER_PASSWORD=xXxXyz123 # generated

--> Success
Access your application via route 'user-admin.3scale-project.example.com'
Access your application via route 'master-admin.3scale-project.example.com'
Access your application via route 'backend-user.3scale-project.example.com'
Access your application via route 'user.3scale-project.example.com'
Access your application via route 'api-user-apicast-staging.3scale-project.example.com'
Access your application via route 'api-user-apicast-production.3scale-project.example.com'

5. Make a note of these details for future reference.

6. The 3scale deployment on OpenShift has been successful when the following command returns:

oc wait --for=condition=available --timeout=-1s $(oc get dc --output=name)

NOTE

When the 3scale deployment on OpenShift has been successful, your login
credentials will work.

1.4.4. Getting the Admin Portal URL

When you deploy 3scale using the template, a default tenant is created, with a fixed URL: 3scale-
admin.${wildcardDomain}

The 3scale Dashboard shows the new portal URL of the tenant. As an example, if the <wildCardDomain>
is 3scale-project.example.com, the Admin Portal URL is: https://3scale-admin.3scale-
project.example.com.

CHAPTER 1. INSTALLING 3SCALE ON OPENSHIFT

13

https://user-admin.3scale-project.example.com
https://3scale-admin.3scale-project.example.com

The wildcardDomain is the <wildCardDomain> parameter you provided during installation. Open this
unique URL in a browser using the this command:

xdg-open https://3scale-admin.3scale-project.example.com

Optionally, you can create new tenants on the MASTER portal URL: `master.${wildcardDomain}

1.4.5. Deploying 3scale with Amazon Simple Storage Service

Deploying 3scale with Amazon Simple Storage Service (Amazon S3) is an optional procedure. Deploy
3scale with Amazon S3 using the following steps:

Procedure

1. Download amp-s3.yml.

2. Log in to OpenShift from a terminal session :

oc login

3. Select your project, or create a new project:

oc project <project_name>

OR

oc new-project <project_name>

1. Enter the oc new-app command:

Specify the --file option with the path to the amp-s3.yml file.

Specify the --param options with the following values:

WILDCARD_DOMAIN: the parameter set to the domain of your OpenShift cluster.

AWS_BUCKET: with your target bucket name.

AWS_ACCESS_KEY_ID: with your AWS credentials ID.

AWS_SECRET_ACCESS_KEY: with your AWS credentials KEY.

AWS_REGION: with the AWS: region of your bucket.

AWS_HOSTNAME: Default: Amazon endpoints - AWS S3 compatible provider endpoint
hostname.

AWS_PROTOCOL: Default: HTTPS - AWS S3 compatible provider endpoint protocol.

AWS_PATH_STYLE: Default: false - When set to true, the bucket name is always left in
the request URI and never moved to the host as a sub-domain.

Optionally, specify the --param option with the TENANT_NAME parameter to set a custom
name for the Admin Portal. If omitted, this defaults to 3scale

Red Hat 3scale API Management 2.8 Installing 3scale

14

https://github.com/3scale/3scale-amp-openshift-templates/blob/2.8.0.GA/amp/amp-s3.yml

oc new-app --file /path/to/amp-s3.yml \
 --param WILDCARD_DOMAIN=<a-domain-that-resolves-to-your-ocp-cluster.com> \
 --param TENANT_NAME=3scale \
 --param AWS_ACCESS_KEY_ID=<your-aws-access-key-id> \
 --param AWS_SECRET_ACCESS_KEY=<your-aws-access-key-secret> \
 --param AWS_BUCKET=<your-target-bucket-name> \
 --param AWS_REGION=<your-aws-bucket-region> \
 --param FILE_UPLOAD_STORAGE=s3

The terminal shows the master and tenant URLs, as well as credentials for your newly
created 3scale Admin Portal. This output should include the following information:

master admin username

master password

master token information

tenant username

tenant password

tenant token information

2. Log in to https://user-admin.3scale-project.example.com as admin/xXxXyz123.

...

* With parameters:
 * ADMIN_PASSWORD=xXxXyz123 # generated
 * ADMIN_USERNAME=admin
 * TENANT_NAME=user
 ...

 * MASTER_NAME=master
 * MASTER_USER=master
 * MASTER_PASSWORD=xXxXyz123 # generated
 ...

--> Success
Access your application via route 'user-admin.3scale-project.example.com'
Access your application via route 'master-admin.3scale-project.example.com'
Access your application via route 'backend-user.3scale-project.example.com'
Access your application via route 'user.3scale-project.example.com'
Access your application via route 'api-user-apicast-staging.3scale-project.example.com'
Access your application via route 'api-user-apicast-production.3scale-project.example.com'
Access your application via route 'apicast-wildcard.3scale-project.example.com'

...

3. Make a note of these details for future reference.

4. The 3scale deployment on OpenShift has been successful when the following command returns:

oc wait --for=condition=available --timeout=-1s $(oc get dc --output=name)

CHAPTER 1. INSTALLING 3SCALE ON OPENSHIFT

15

https://user-admin.3scale-project.example.com

NOTE

When the 3scale deployment on OpenShift has been successful, your login
credentials will work.

1.4.6. Deploying 3scale with PostgreSQL

Deploying 3scale with PostgreSQL is an optional procedure. Deploy 3scale with PostgreSQL using the
following steps:

Procedure

1. Download amp-postgresql.yml.

2. Log in to OpenShift from a terminal session :

oc login

3. Select your project, or create a new project:

oc project <project_name>

OR

oc new-project <project_name>

1. Enter the oc new-app command:

Specify the --file option with the path to the amp-postgresql.yml file.

Specify the --param options with the following values:

WILDCARD_DOMAIN: the parameter set to the domain of your OpenShift cluster.

Optionally, specify the --param option with the TENANT_NAME parameter to set a custom
name for the Admin Portal. If omitted, this defaults to 3scale

oc new-app --file /path/to/amp-postgresql.yml \
 --param WILDCARD_DOMAIN=<a-domain-that-resolves-to-your-ocp-cluster.com> \
 --param TENANT_NAME=3scale \

The terminal shows the master and tenant URLs, as well as the credentials for your newly
created 3scale Admin Portal. This output should include the following information:

master admin username

master password

master token information

tenant username

tenant password

tenant token information

Red Hat 3scale API Management 2.8 Installing 3scale

16

https://github.com/3scale/3scale-amp-openshift-templates/blob/2.8.0.GA/amp/amp-postgresql.yml

2. Log in to https://user-admin.3scale-project.example.com as admin/xXxXyz123.

...

* With parameters:
 * ADMIN_PASSWORD=xXxXyz123 # generated
 * ADMIN_USERNAME=admin
 * TENANT_NAME=user
 ...

 * MASTER_NAME=master
 * MASTER_USER=master
 * MASTER_PASSWORD=xXxXyz123 # generated
 ...

--> Success
Access your application via route 'user-admin.3scale-project.example.com'
Access your application via route 'master-admin.3scale-project.example.com'
Access your application via route 'backend-user.3scale-project.example.com'
Access your application via route 'user.3scale-project.example.com'
Access your application via route 'api-user-apicast-staging.3scale-project.example.com'
Access your application via route 'api-user-apicast-production.3scale-project.example.com'
Access your application via route 'apicast-wildcard.3scale-project.example.com'

...

3. Make a note of these details for future reference.

4. The 3scale deployment on OpenShift has been successful when the following command returns:

oc wait --for=condition=available --timeout=-1s $(oc get dc --output=name)

NOTE

When the 3scale deployment on OpenShift has been successful, your login and
credentials will work.

1.4.7. Configuring SMTP variables (optional)

OpenShift uses email to send notifications and invite new users . If you intend to use these features, you
must provide your own SMTP server and configure SMTP variables in the system-smtp secret.

Perform the following steps to configure the SMTP variables in the system-smtp secret:

Procedure

1. If you are not already logged in, log in to OpenShift:

oc login

a. Using the oc patch command, specify the secret type where system-smtp is the name of
the secret, followed by the -p option, and write the new values in JSON for the following
variables:

CHAPTER 1. INSTALLING 3SCALE ON OPENSHIFT

17

https://user-admin.3scale-project.example.com
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.8/html-single/admin_portal_guide/index#notifications
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.8/html-single/admin_portal_guide/index#inviting-users-managing-rights

Variable Description

address Allows you to specify a remote mail server as a
relay

username Specify your mail server username

password Specify your mail server password

domain Specify a HELO domain

port Specify the port on which the mail server is
listening for new connections

authentication Specify the authentication type of your mail
server. Allowed values: plain (sends the
password in the clear), login (send password
Base64 encoded), or cram_md5 (exchange
information and a cryptographic Message
Digest 5 algorithm to hash important
information)

openssl.verify.mode Specify how OpenSSL checks certificates
when using TLS. Allowed values: none or
peer.

Example

oc patch secret system-smtp -p '{"stringData":{"address":"<your_address>"}}'
oc patch secret system-smtp -p '{"stringData":{"username":"<your_username>"}}'
oc patch secret system-smtp -p '{"stringData":{"password":"<your_password>"}}'

2. After you have set the secret variables, redeploy the system-app and system-sidekiq pods:

3. Check the status of the rollout to ensure it has finished:

oc rollout status dc/system-app
oc rollout status dc/system-sidekiq

1.5. PARAMETERS OF THE 3SCALE TEMPLATE

Template parameters configure environment variables of the 3scale (amp.yml) template during and
after deployment.

oc rollout latest dc/system-app
oc rollout latest dc/system-sidekiq

Red Hat 3scale API Management 2.8 Installing 3scale

18

Name Description Default Value Required?

APP_LABEL Used for object app
labels

3scale-api-
management

yes

ZYNC_DATABASE_PAS
SWORD

Password for the
PostgreSQL connection
user. Generated
randomly if not
provided.

N/A yes

ZYNC_SECRET_KEY_BA
SE

Secret key base for
Zync. Generated
randomly if not
provided.

N/A yes

ZYNC_AUTHENTICATI
ON_TOKEN

Authentication token for
Zync. Generated
randomly if not
provided.

N/A yes

AMP_RELEASE 3scale release tag. 2.8.0 yes

ADMIN_PASSWORD A randomly generated
3scale administrator
account password.

N/A yes

ADMIN_USERNAME 3scale administrator
account username.

admin yes

APICAST_ACCESS_TO
KEN

Read Only Access Token
that APIcast will use to
download its
configuration.

N/A yes

ADMIN_ACCESS_TOKE
N

Admin Access Token
with all scopes and write
permissions for API
access.

N/A no

WILDCARD_DOMAIN Root domain for the
wildcard routes. For
example, a root domain
example.com will
generate 3scale-
admin.example.com.

N/A yes

CHAPTER 1. INSTALLING 3SCALE ON OPENSHIFT

19

TENANT_NAME Tenant name under the
root that Admin Portal
will be available with -
admin suffix.

3scale yes

MYSQL_USER Username for MySQL
user that will be used for
accessing the database.

mysql yes

MYSQL_PASSWORD Password for the
MySQL user.

N/A yes

MYSQL_DATABASE Name of the MySQL
database accessed.

system yes

MYSQL_ROOT_PASSW
ORD

Password for Root user. N/A yes

SYSTEM_BACKEND_US
ERNAME

Internal 3scale API
username for internal
3scale api auth.

3scale_api_user yes

SYSTEM_BACKEND_PA
SSWORD

Internal 3scale API
password for internal
3scale api auth.

N/A yes

REDIS_IMAGE Redis image to use registry.redhat.io/rhs
cl/redis-5-rhel7:5.0

yes

MYSQL_IMAGE Mysql image to use registry.redhat.io/rhs
cl/mysql-57-rhel7:5.7

yes

MEMCACHED_IMAGE Memcached image to
use

registry.redhat.io/3s
cale-
amp2/memcached-
rhel7:3scale2.8

yes

POSTGRESQL_IMAGE Postgresql image to use registry.redhat.io/rhs
cl/postgresql-10-
rhel7

yes

AMP_SYSTEM_IMAGE 3scale System image to
use

registry.redhat.io/3s
cale-amp2/system-
rhel7:3scale2.8

yes

AMP_BACKEND_IMAGE 3scale Backend image
to use

registry.redhat.io/3s
cale-amp2/backend-
rhel7:3scale2.8

yes

Name Description Default Value Required?

Red Hat 3scale API Management 2.8 Installing 3scale

20

AMP_APICAST_IMAGE 3scale APIcast image to
use

registry.redhat.io/3s
cale-amp2/apicast-
gateway-
rhel8:3scale2.8

yes

AMP_ZYNC_IMAGE 3scale Zync image to
use

registry.redhat.io/3s
cale-amp2/zync-
rhel7:3scale2.8

yes

SYSTEM_BACKEND_SH
ARED_SECRET

Shared secret to import
events from backend to
system.

N/A yes

SYSTEM_APP_SECRET
_KEY_BASE

System application
secret key base

N/A yes

APICAST_MANAGEME
NT_API

Scope of the APIcast
Management API. Can
be disabled, status or
debug. At least status
required for health
checks.

status no

APICAST_OPENSSL_VE
RIFY

Turn on/off the
OpenSSL peer
verification when
downloading the
configuration. Can be
set to true/false.

false no

APICAST_RESPONSE_
CODES

Enable logging response
codes in APIcast.

true no

APICAST_REGISTRY_U
RL

A URL which resolves to
the location of APIcast
policies

http://apicast-
staging:8090/policie
s

yes

MASTER_USER Master administrator
account username

master yes

MASTER_NAME The subdomain value for
the master Admin
Portal, will be appended
with the -master suffix

master yes

Name Description Default Value Required?

CHAPTER 1. INSTALLING 3SCALE ON OPENSHIFT

21

http://apicast-staging:8090/policies

MASTER_PASSWORD A randomly generated
master administrator
password

N/A yes

MASTER_ACCESS_TOK
EN

A token with master
level permissions for API
calls

N/A yes

IMAGESTREAM_TAG_I
MPORT_INSECURE

Set to true if the server
may bypass certificate
verification or connect
directly over HTTP
during image import.

false yes

Name Description Default Value Required?

1.6. USING APICAST WITH 3SCALE ON OPENSHIFT

APIcast is available with API Manager for 3scale hosted, and in on-premises installations in OpenShift
Container Platform. The configuration procedures are different for both.

This section explains how to deploy APIcast with API Manager on OpenShift.

Deploying APIcast templates on an existing OpenShift cluster containing 3scale

Connecting APIcast from a different OpenShift cluster

Changing the default behavior for embedded APIcast

Connecting multiple APIcast deployments on a single OpenShift cluster over internal service
routes

Connecting APIcast on other deployments

1.6.1. Deploying APIcast templates on an existing OpenShift cluster containing
3scale

3scale OpenShift templates contain two embedded APIcast by default. If you require more API
gateways, or require separate APIcast deployments, you can deploy additional APIcast templates on
your OpenShift cluster.

Perform the following steps to deploy additional API gateways on your OpenShift cluster:

Procedure

1. Create an access token with the following configurations:

Scoped to Account Management API

Having read-only access

2. Log in to your APIcast cluster:

Red Hat 3scale API Management 2.8 Installing 3scale

22

https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.8/html-single/installing_3scale/index#deploying-apicast-templates-on-existing-cluster
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.8/html-single/installing_3scale/index#connecting-apicast-from-different-openshift-cluster
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.8/html-single/installing_3scale/index#changing-default-behavior-embedded-apicast
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.8/html-single/installing_3scale/index#connecting-multiple-apicast-deployments-on-single-cluster
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.8/html-single/installing_3scale/index#connecting-apicast-on-other-deployments
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.8/html-single/admin_portal_guide/index#tokens

oc login

3. Create a secret that allows APIcast to communicate with 3scale. Specify the create secret and
apicast-configuration-url-secret parameters with the access token, tenant name, and wildcard
domain of your 3scale deployment:

oc create secret generic apicast-configuration-url-secret --from-
literal=password=https://<ACCESS_TOKEN>@<TENANT_NAME>-admin.
<WILDCARD_DOMAIN>

NOTE

TENANT_NAME is the name under the root that the Admin Portal will be
available with. The default value for TENANT_NAME is 3scale. If you used a
custom value in your 3scale deployment, you must use that value here.

4. Import the APIcast template using the oc new-app command, specifying the --file option with
the apicast.yml file:

oc new-app --file /opt/amp/templates/apicast.yml

NOTE

First install the APIcast template as described in Configuring nodes and
entitlements.

1.6.2. Connecting APIcast from a different OpenShift cluster

If you deploy APIcast on a different OpenShift cluster, outside your 3scale cluster, you must connect
through the public route:

Procedure

1. Create an access token with the following configurations:

Scoped to Account Management API

Having read-only access

2. Log in to your APIcast cluster:

oc login

3. Create a secret that allows APIcast to communicate with 3scale. Specify the create secret and
apicast-configuration-url-secret parameters with the access token, tenant name, and wildcard
domain of your 3scale deployment:

oc create secret generic apicast-configuration-url-secret --from-
literal=password=https://<ACCESS_TOKEN>@<TENANT_NAME>-admin.
<WILDCARD_DOMAIN>

NOTE

CHAPTER 1. INSTALLING 3SCALE ON OPENSHIFT

23

https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.8/html-single/installing_3scale/index#configuring-nodes-and-entitlements
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.8/html-single/admin_portal_guide/index#access_tokens

NOTE

TENANT_NAME is the name under the root that the Admin Portal will be
available with. The default value for TENANT_NAME is 3scale. If you used a
custom value in your 3scale deployment, you must use that value.

4. Deploy APIcast on a different OpenShift cluster using the oc new-app command. Specify the --
file option and the to path to your apicast.yml file:

oc new-app --file /path/to/file/apicast.yml

1.6.3. Changing the default behavior for embedded APIcast

In external APIcast deployments, you can modify default behavior by changing the template parameters
in the APIcast OpenShift template.

In embedded APIcast deployments, 3scale and APIcast are deployed from a single template. You must
modify environment variables after deployment if you wish to change the default behavior for the
embedded APIcast deployments.

1.6.4. Connecting multiple APIcast deployments on a single OpenShift cluster over
internal service routes

If you deploy multiple APIcast gateways into the same OpenShift cluster, you can configure them to
connect using internal routes through the backend listener service instead of the default external route
configuration.

You must have an OpenShift Software-Defined Networking (SDN) plugin installed to connect over
internal service routes. How you connect depends on which SDN you have installed:

ovs-subnet

If you are using the ovs-subnet OpenShift SDN plugin, perform the following steps to connect over
internal routes:

Procedure

1. If not already logged in, log in to your OpenShift cluster:

oc login

2. Enter the following command to display the backend-listener route URL:

oc get route backend

3. Enter the oc new-app command with the path to apicast.yml:

oc new-app -f apicast.yml

ovs-multitenant

If you are using the ovs-multitenant OpenShift SDN plugin, perform the following steps to connect
over internal routes:

Red Hat 3scale API Management 2.8 Installing 3scale

24

https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.8/html-single/installing_3scale/index#template-paramaters-of-the-threescale-tempalte

Procedure

1. If not already logged in, log in to your OpenShift cluster:

oc login

2. As administrator, specify the oadm command with the pod-network and join-projects options
to set up communication between both projects:

oadm pod-network join-projects --to=<3SCALE_PROJECT> <APICAST_PROJECT>

3. Enter the following command to display the backend-listener route URL:

oc get route backend

4. Enter the oc new-app command with the path to apicast.yml:

oc new-app -f apicast.yml

Additional resources

For information on OpenShift SDN and project network isolation, see Openshift SDN.

1.6.5. Connecting APIcast on other deployments

If you deploy APIcast on Docker, you can connect APIcast to 3scale deployed on OpenShift by setting
the THREESCALE_PORTAL_ENDPOINT parameter to the URL and access token of your 3scale
Admin Portal deployed on OpenShift. You do not need to set the BACKEND_ENDPOINT_OVERRIDE
parameter in this case.

Additional resources

For more details, see Deploying APIcast on the Docker containerized environment .

1.7. DEPLOYING 3SCALE USING THE OPERATOR

This section takes you through installing and deploying the 3scale solution via the 3scale operator, using
the APIManager custom resource.

NOTE

Wildcard routes have been removed since 3scale 2.6.

This functionality is handled by Zync in the background.

When API providers are created, updated, or deleted, routes automatically reflect
those changes.

Prerequisites

Authenticating with registry.redhat.io for container images

Deploying 3scale using the operator first requires that you follow the steps in Installing the
3scale Operator on OpenShift

CHAPTER 1. INSTALLING 3SCALE ON OPENSHIFT

25

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.1/html-single/networking/index#openshift-sdn
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.8/html-single/installing_3scale/index#deploying-apicast-on-the-docker-containerized-environment
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.6/html-single/release_notes/index#removed_features

OpenShift Container Platform 4

A user account with administrator privileges in the OpenShift cluster.

Note: OCP 4 supports deployment of 3scale using the operator only.

For more information about supported configurations, see the Red Hat 3scale API
Management Supported Configurations page.

Follow these procedures to deploy 3scale using the operator:

Deploying the APIManager custom resource

Getting the APIManager Admin Portal and Master Admin Portal credentials

Getting the Admin Portal URL

High availability in 3scale using the operator

1.7.1. Deploying the APIManager custom resource

Deploying the APIManager custom resource will make the operator begin processing and will deploy a
3scale solution from it.

Procedure

1. Click Catalog > Installed Operators.

a. From the list of Installed Operators, click 3scale Operator .

2. Click the API Manager tab.

3. Click Create APIManager.

4. Clear the sample content and add the following YAML definitions to the editor, then click
Create.

Before 3scale 2.8, you could configure the automatic addition of replicas by setting the
highAvailability field to true. From 3scale 2.8, the addition of replicas is controlled through
the replicas field in the APIManager CR as shown in the following example.

NOTE

The wildcardDomain parameter can be any desired name you wish to give
that resolves to an IP address, which is a valid DNS domain.

APIManager CR with minimum requirements:

APIManager CR with replicas configured:

apiVersion: apps.3scale.net/v1alpha1
kind: APIManager
metadata:
 name: apimanager-sample
spec:
 wildcardDomain: example.com

Red Hat 3scale API Management 2.8 Installing 3scale

26

https://access.redhat.com/articles/2798521

1.7.2. Getting the APIManager Admin Portal and Master Admin Portal credentials

To log in to either the 3scale Admin Portal or Master Admin Portal after the operator-based
deployment, you need the credentials for each separate portal. To get these credentials:

1. Run the following commands to get the Admin Portal credentials:

a. Log in as the Admin Portal administrator to verify these credentials are working.

2. Run the following commands to get the Master Admin Portal credentials:

a. Log in as the Master Admin Portal administrator to verify these credentials are working.

Additional resources

For more information about the APIManager fields, refer to the Reference documentation.

1.7.3. Getting the Admin Portal URL

apiVersion: apps.3scale.net/v1alpha1
kind: APIManager
metadata:
 name: apimanager-sample
spec:
 wildcardDomain: apimanager-sample
 system:
 appSpec:
 replicas: 1
 sidekiqSpec:
 replicas: 1
 zync:
 appSpec:
 replicas: 1
 queSpec:
 replicas: 1
 backend:
 cronSpec:
 replicas: 1
 listenerSpec:
 replicas: 1
 workerSpec:
 replicas: 1
 apicast:
 productionSpec:
 replicas: 1
 stagingSpec:
 replicas: 1
 wildcardDomain: example.com

oc get secret system-seed -o json | jq -r .data.ADMIN_USER | base64 -d
oc get secret system-seed -o json | jq -r .data.ADMIN_PASSWORD | base64 -d

oc get secret system-seed -o json | jq -r .data.MASTER_USER | base64 -d
oc get secret system-seed -o json | jq -r .data.MASTER_PASSWORD | base64 -d

CHAPTER 1. INSTALLING 3SCALE ON OPENSHIFT

27

https://github.com/3scale/3scale-operator/blob/3scale-2.8-stable-prod/doc/apimanager-reference.md

When you deploy 3scale using the operator, a default tenant is created, with a fixed URL: 3scale-
admin.${wildcardDomain}

The 3scale Dashboard shows the new portal URL of the tenant. As an example, if the <wildCardDomain>
is 3scale-project.example.com, the Admin Portal URL is: https://3scale-admin.3scale-
project.example.com.

The wildcardDomain is the <wildCardDomain> parameter you provided during installation. Open this
unique URL in a browser using the this command:

xdg-open https://3scale-admin.3scale-project.example.com

Optionally, you can create new tenants on the MASTER portal URL: master.${wildcardDomain}

1.7.4. High availability in 3scale using the operator

High availability (HA) in 3scale using the operator aims to provide uninterrupted uptime if, for example,
if one or more databases were to fail.

NOTE

.spec.highAvailability.enabled is only for external databases.

If you want HA in your 3scale operator-based deployment, note the following:

Deploy and configure 3scale critical databases externally, specifically system database, system
redis, and backend redis. Make sure you deploy and configure those databases in a way they are
highly available.

Specify the connection endpoints to those databases for 3scale by pre-creating their
corresponding Kubernetes Secrets.

See External databases installation for more information.

See Enabling Pod Disruption Budgets for more information about non-database
deployment configurations.

Set the .spec.highAvailability.enabled attribute to true when deploying the APIManager CR
to enable external database mode for the critical databases: system database, system redis,
and backend redis.

Additionally, if you want the zync database to be highly available to avoid zync potentially losing queue
jobs data on restart, note the following:

Deploy and configure the zync database externally. Make sure you deploy and configure the
database in a way that it is highly available.

Specify the connection endpoint to the zync database for 3scale by pre-creating its
corresponding Kubernetes Secrets.

See Zync database secret for more information.

Deploy 3scale setting the spec.highAvailability.externalZyncDatabaseEnabled attribute
to true to specify zync database as an external database.

Red Hat 3scale API Management 2.8 Installing 3scale

28

https://github.com/3scale/3scale-operator/blob/3scale-2.8-stable-prod/doc/operator-user-guide.md#enabling-pod-disruption-budgets

1.8. DEPLOYMENT CONFIGURATION OPTIONS FOR 3SCALE ON
OPENSHIFT USING THE OPERATOR

This section provides information about the deployment configuration options for Red Hat 3scale API
Management on OpenShift using the operator.

Prerequisites

Authenticating with registry.redhat.io for container images

Deploying 3scale using the operator first requires that you follow the steps in Installing the
3scale Operator on OpenShift

OpenShift Container Platform 4.x

A user account with administrator privileges in the OpenShift cluster.

1.8.1. Default deployment configuration

By default, the following deployment configuration options will be applied:

Containers will have Kubernetes resource limits and requests .

This ensures a minimum performance level.

It limits resources to allow external services and allocation of solutions.

Deployment of internal databases.

File storage will be based on Persistence Volumes (PV).

One will require read, write, execute (RWX) access mode.

OpenShift configured to provide them upon request.

Deploy MySQL as the internal relational database.

The default configuration option is suitable for proof of concept (PoC) or evaluation by a customer.

One, many, or all of the default configuration options can be overriden with specific field values in the
APIManager custom resource. The 3scale operator allows all available combinations whereas templates
allow fixed deployment profiles. For example, the 3scale operator allows deployment of 3scale in
evaluation mode and external databases mode. Templates do not allow this specific deployment
configuration. Templates are only available for the most common configuration options.

1.8.2. Evaluation installation

For and evaluation installtion, containers will not have kubernetes resource limits and requests specified.
For example:

Small memory footprint

Fast startup

Runnable on laptop

CHAPTER 1. INSTALLING 3SCALE ON OPENSHIFT

29

https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/

Suitable for presale/sales demos

apiVersion: apps.3scale.net/v1alpha1
kind: APIManager
metadata:
 name: example-apimanager
spec:
 wildcardDomain: lvh.me
 resourceRequirementsEnabled: false

Check APIManager custom resource for reference.

1.8.3. External databases installation

An external databases installation is suitable for production use where high availability (HA) is a
requirement or where you plan to reuse your own databases.

IMPORTANT

When enabling the 3scale external databases installation mode, all of the following
databases are externalized:

backend-redis

system-redis

system-database (mysql, postgresql, or oracle)

3scale 2.8 and above has been tested is supported with the following database versions:

Database Version

Redis 5.0

MySQL 5.7

PostgreSQL 10.6

Before creating APIManager custom resource to deploy 3scale, you must provide the following
connection settings for the external databases using OpenShift secrets.

1.8.3.1. Backend Redis secret

Deploy two external Redis instances and fill in the connection settings as shown in the following
example:

apiVersion: v1
kind: Secret
metadata:
 name: backend-redis
stringData:
 REDIS_STORAGE_URL: "redis://backend-redis-storage"

Red Hat 3scale API Management 2.8 Installing 3scale

30

https://github.com/3scale/3scale-operator/tree/3scale-2.8-stable-prod/doc/apimanager-reference.md#3scale-api-management-installation-functionality

 REDIS_STORAGE_SENTINEL_HOSTS: "redis://sentinel-0.example.com:26379,redis://sentinel-
1.example.com:26379, redis://sentinel-2.example.com:26379"
 REDIS_STORAGE_SENTINEL_ROLE: "master"
 REDIS_QUEUES_URL: "redis://backend-redis-queues"
 REDIS_QUEUES_SENTINEL_HOSTS: "redis://sentinel-0.example.com:26379,redis://sentinel-
1.example.com:26379, redis://sentinel-2.example.com:26379"
 REDIS_QUEUES_SENTINEL_ROLE: "master"
type: Opaque

The Secret name must be backend-redis.

1.8.3.2. System Redis secret

Deploy two external Redis instances and fill in the connection settings as shown in the following
example:

apiVersion: v1
kind: Secret
metadata:
 name: system-redis
stringData:
 URL: "redis://system-redis"
 SENTINEL_HOSTS: "redis://sentinel-0.example.com:26379,redis://sentinel-1.example.com:26379,
redis://sentinel-2.example.com:26379"
 SENTINEL_ROLE: "master"
 NAMESPACE: ""
 MESSAGE_BUS_URL: "redis://system-redis-messagebus"
 MESSAGE_BUS_SENTINEL_HOSTS: "redis://sentinel-0.example.com:26379,redis://sentinel-
1.example.com:26379, redis://sentinel-2.example.com:26379"
 MESSAGE_BUS_SENTINEL_ROLE: "master"
 MESSAGE_BUS_NAMESPACE: ""
type: Opaque

The Secret name must be system-redis.

1.8.3.3. System database secret

NOTE

The Secret name must be system-database.

When you are deploying 3scale, you have three alternatives for your system database. Configure
different attributes and values for each alternative’s related secret.

MySQL

PostgreSQL

Oracle Database

To deploy a MySQL, PostgreSQL, or an Oracle Database system database secret, fill in the connection
settings as shown in the following examples:

MySQL system database secret

CHAPTER 1. INSTALLING 3SCALE ON OPENSHIFT

31

apiVersion: v1
kind: Secret
metadata:
 name: system-database
stringData:
 URL: "mysql2://{DB_USER}:{DB_PASSWORD}@{DB_HOST}:{DB_PORT}/{DB_NAME}"
type: Opaque

PostgreSQL system database secret

apiVersion: v1
kind: Secret
metadata:
 name: system-database
stringData:
 URL: "postgresql://{DB_USER}:{DB_PASSWORD}@{DB_HOST}:{DB_PORT}/{DB_NAME}"
type: Opaque

Oracle system database secret

apiVersion: v1
kind: Secret
metadata:
 name: system-database
stringData:
 URL: "oracle-enhanced://{DB_USER}:{DB_PASSWORD}@{DB_HOST}:{DB_PORT}/{DB_NAME}"
 ORACLE_SYSTEM_PASSWORD: "{SYSTEM_PASSWORD}"
type: Opaque

1.8.3.4. Zync database secret

In a zync database setup, when HighAvailability is enabled, and if the externalZyncDatabaseEnabled
field is also enabled, the user has to pre-create a secret named zync. Then set zync with the
DATABASE_URL and DATABASE_PASSWORD fields with the values pointing to your externally
database. The external database must be in high-availability mode. See the following example:

apiVersion: v1
kind: Secret
metadata:
 name: zync
stringData:
 DATABASE_URL: postgresql://<zync-db-user>:<zync-db-password>@<zync-db-host>:<zync-db-
port>/zync_production
 ZYNC_DATABASE_PASSWORD: <zync-db-password>
type: Opaque

1.8.3.5. APIManager custom resources to deploy 3scale

NOTE

Red Hat 3scale API Management 2.8 Installing 3scale

32

NOTE

When you enable highAvailability, you must pre-create the backend-redis,
system-redis, and system-database secrets.

When you enable highAvailability and the externalZyncDatabaseEnabled
fields together, you must pre-create the zync database secret.

Choose only one type of database to externalize in the case of system-
database.

Configuration of the APIManager custom resource will depend on whether or not your choice of
database is external to your 3scale deployment.

If your backend Redis, system Redis, and system database will be external to 3scale, the APIManager
custom resource must have highAvailability set to true. See the following example:

apiVersion: apps.3scale.net/v1alpha1
kind: APIManager
metadata:
 name: example-apimanager
spec:
 wildcardDomain: lvh.me
 highAvailability:
 enabled: true

If your zync database will be external, the APIManager custom resource must have highAvailability set
to true and externalZyncDatabaseEnabled must also be set to true. See the following example:

apiVersion: apps.3scale.net/v1alpha1
kind: APIManager
metadata:
 name: example-apimanager
spec:
 wildcardDomain: lvh.me
 highAvailability:
 enabled: true
 externalZyncDatabaseEnabled: true

Additional resources

Backend redis secret

System database secret

APIManager HighAvailabilitySpec

Zync secret

1.8.4. Amazon Simple Storage Service 3scale Filestorage installation

The following examples show 3scale FileStorage using Amazon Simple Storage Service (Amazon S3)
instead of persistent volume claim (PVC).

Before creating APIManager custom resource to deploy 3scale, connection settings for the S3 service

CHAPTER 1. INSTALLING 3SCALE ON OPENSHIFT

33

https://github.com/3scale/3scale-operator/tree/3scale-2.8-stable-prod/doc/apimanager-reference.md#backend-redis
https://github.com/3scale/3scale-operator/tree/3scale-2.8-stable-prod/doc/apimanager-reference.md#system-database
https://github.com/3scale/3scale-operator/blob/3scale-2.8-stable-prod/doc/apimanager-reference.md#HighAvailabilitySpec
https://github.com/3scale/3scale-operator/blob/3scale-2.8-stable-prod/doc/apimanager-reference.md#zync

Before creating APIManager custom resource to deploy 3scale, connection settings for the S3 service
needs to be provided using an openshift secret.

1.8.4.1. Amazon S3 secret

In the following example, Secret name can be anyone, as it will be referenced in the APIManager custom
resource.

kind: Secret
metadata:
 creationTimestamp: null
 name: aws-auth
stringData:
 AWS_ACCESS_KEY_ID: 123456
 AWS_SECRET_ACCESS_KEY: 98765544
 AWS_BUCKET: mybucket.example.com
 AWS_REGION: eu-west-1
type: Opaque

Lastly, create the APIManager custom resource to deploy 3scale.

apiVersion: apps.3scale.net/v1alpha1
kind: APIManager
metadata:
 name: example-apimanager
 spec:
 wildcardDomain: lvh.me
 system:
 fileStorage:
 simpleStorageService:
 configurationSecretRef:
 name: aws-auth

NOTE

Amazon S3 region and Amazon S3 bucket settings are provided directly in the
APIManager custom resource. The Amazon S3 secret name is provided directly in the
APIManager custom resource.

Check APIManager SystemS3Spec for reference.

1.8.5. PostgreSQL installation

A MySQL internal relational database is the default deployment. This deployment configuration can be
overriden to use PostgreSQL instead.

apiVersion: apps.3scale.net/v1alpha1
kind: APIManager
metadata:
 name: example-apimanager
spec:
 wildcardDomain: lvh.me

Red Hat 3scale API Management 2.8 Installing 3scale

34

https://github.com/3scale/3scale-operator/tree/3scale-2.8-stable-prod/doc/apimanager-reference.md#systems3spec

 system:
 database:
 postgresql: {}

Check APIManager DatabaseSpec for reference.

1.8.6. Reconciliation

Once 3scale has been installed, the 3scale operator enables updating a given set of parameters from
the custom resource to modify system configuration options. Modifications are made by hot swapping,
that is, without stopping or shutting down the system.

Not all the parameters of the APIManager custom resource definitions (CRDs) are reconcilable.

The following is a list of reconcilable parameters:

Section 1.8.6.1, “Resources”

Section 1.8.6.2, “Backend replicas”

Section 1.8.6.3, “APIcast replicas”

Section 1.8.6.4, “System replicas”

1.8.6.1. Resources

Resource limits and requests for all 3scale components.

apiVersion: apps.3scale.net/v1alpha1
kind: APIManager
metadata:
 name: example-apimanager
spec:
 ResourceRequirementsEnabled: true/false

1.8.6.2. Backend replicas

Backend components pod count.

apiVersion: apps.3scale.net/v1alpha1
kind: APIManager
metadata:
 name: example-apimanager
spec:
 backend:
 listenerSpec:
 replicas: X
 workerSpec:
 replicas: Y
 cronSpec:
 replicas: Z

1.8.6.3. APIcast replicas

CHAPTER 1. INSTALLING 3SCALE ON OPENSHIFT

35

https://github.com/3scale/3scale-operator/blob/3scale-2.8-stable-prod/doc/apimanager-reference.md#DatabaseSpec

APIcast staging and production components pod count.

apiVersion: apps.3scale.net/v1alpha1
kind: APIManager
metadata:
 name: example-apimanager
spec:
 apicast:
 productionSpec:
 replicas: X
 stagingSpec:
 replicas: Z

1.8.6.4. System replicas

System app and system sidekiq components pod count

apiVersion: apps.3scale.net/v1alpha1
kind: APIManager
metadata:
 name: example-apimanager
spec:
 system:
 appSpec:
 replicas: X
 sidekiqSpec:
 replicas: Z

1.8.6.5. Zync replicas

Zync app and que components pod count

apiVersion: apps.3scale.net/v1alpha1
kind: APIManager
metadata:
 name: example-apimanager
spec:
 zync:
 appSpec:
 replicas: X
 queSpec:
 replicas: Z

1.9. TROUBLESHOOTING COMMON 3SCALE INSTALLATION ISSUES

This section contains a list of common installation issues and provides guidance for their resolution.

Previous deployment leaving dirty persistent volume claims

Wrong or missing credentials of the authenticated image registry

Incorrectly pulling from the Docker registry

Red Hat 3scale API Management 2.8 Installing 3scale

36

https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.8/html-single/installing_3scale/index#previous-deployment-leaves-dirty-persistent-volume-claims
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.8/html-single/installing_3scale/index#wrong-or-missing-credentials-of-the-authenticated-image-registry
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.8/html-single/installing_3scale/index#incorrectly-pulling-from-the-docker-registry

Permission issues for MySQL when persistent volumes are mounted locally

Unable to upload logo or images

Test calls not working on OpenShift

APIcast on a different project from 3scale failing to deploy

1.9.1. Previous deployment leaving dirty persistent volume claims

Problem

A previous deployment attempt leaves a dirty Persistent Volume Claim (PVC) causing the MySQL
container to fail to start.

Cause

Deleting a project in OpenShift does not clean the PVCs associated with it.

Solution

Procedure

1. Find the PVC containing the erroneous MySQL data with the oc get pvc command:

2. Stop the deployment of the system-mysql pod by clicking cancel deployment in the OpenShift
UI.

3. Delete everything under the MySQL path to clean the volume.

4. Start a new system-mysql deployment.

1.9.2. Wrong or missing credentials of the authenticated image registry

Problem

Pods are not starting. ImageStreams show the following error:

! error: Import failed (InternalError): ...unauthorized: Please login to the Red Hat Registry

Cause

While installing 3scale on OpenShift 4.x, OpenShift fails to start pods because ImageStreams cannot
pull the images they reference. This happens because the pods cannot authenticate against the
registries they point to.

Solution

oc get pvc
NAME STATUS VOLUME CAPACITY ACCESSMODES AGE
backend-redis-storage Bound vol003 100Gi RWO,RWX 4d
mysql-storage Bound vol006 100Gi RWO,RWX 4d
system-redis-storage Bound vol008 100Gi RWO,RWX 4d
system-storage Bound vol004 100Gi RWO,RWX 4d

CHAPTER 1. INSTALLING 3SCALE ON OPENSHIFT

37

https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.8/html-single/installing_3scale/index#permissions-issues-for-mysql-when-persistent-volumes-are-mounted-locally
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.8/html-single/installing_3scale/index#unable-to-upload-logo-or-images
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.8/html-single/installing_3scale/index#create-secure-routes-on-openshift
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.8/html-single/installing_3scale/index#apicast-on-a-different-project-from-threescale-fails-to-deploy

Procedure

1. Type the following command to verify the configuration of your container registry
authentication:

If your secret exists, you will see the following output in the terminal:

threescale-registry-auth kubernetes.io/dockerconfigjson 1 4m9s

However, if you do not see the output, you must do the following:

2. Use the credentials you previously set up while Creating a registry service account to create
your secret.

3. Use the steps in Configuring registry authentication in OpenShift , replacing <your-registry-
service-account-username> and <your-registry-service-account-password> in the oc
create secret command provided.

4. Generate the threescale-registry-auth secret in the same namespace as the APIManager
resource. You must run the following inside the <project-name>:

oc project <project-name>
oc create secret docker-registry threescale-registry-auth \
 --docker-server=registry.redhat.io \
 --docker-username="<your-registry-service-account-username>" \
 --docker-password="<your-registry-service-account-password>"
 --docker-email="<email-address>"

5. Delete and recreate the APIManager resource:

$ oc delete -f apimanager.yaml
apimanager.apps.3scale.net "example-apimanager" deleted

$ oc create -f apimanager.yaml
apimanager.apps.3scale.net/example-apimanager created

Verification

1. Type the following command to confirm that deployments have a status of Starting or Ready.
The pods then begin to spawn:

$ oc describe apimanager
(...)
Status:
 Deployments:
 Ready:
 apicast-staging
 system-memcache
 system-mysql
 system-redis
 zync
 zync-database
 zync-que

$ oc get secret

Red Hat 3scale API Management 2.8 Installing 3scale

38

https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.8/html-single/installing_3scale/index#creating-registry-service-accounts
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.8/html-single/installing_3scale/index#configuring-registry-authentication-in-openshift

 Starting:
 apicast-production
 backend-cron
 backend-worker
 system-sidekiq
 system-sphinx
 Stopped:
 backend-listener
 backend-redis
 system-app

2. Type the following command to see the status of each pod:

$ oc get pods
NAME READY STATUS RESTARTS AGE
3scale-operator-66cc6d857b-sxhgm 1/1 Running 0 17h
apicast-production-1-deploy 1/1 Running 0 17m
apicast-production-1-pxkqm 0/1 Pending 0 17m
apicast-staging-1-dbwcw 1/1 Running 0 17m
apicast-staging-1-deploy 0/1 Completed 0 17m
backend-cron-1-deploy 1/1 Running 0 17m

1.9.3. Incorrectly pulling from the Docker registry

Problem

The following error occurs during installation:

Cause

OpenShift searches for and pulls container images by issuing the docker command. This command
refers to the docker.io Docker registry instead of the registry.redhat.io Red Hat container registry.

This occurs when the system contains an unexpected version of the Docker containerized environment.

Solution

Procedure

Use the appropriate version of the Docker containerized environment.

1.9.4. Permission issues for MySQL when persistent volumes are mounted locally

Problem

The system-msql pod crashes and does not deploy causing other systems dependant on it to fail
deployment. The pod log displays the following error:

svc/system-redis - 1EX.AMP.LE.IP:6379
 dc/system-redis deploys docker.io/rhscl/redis-32-rhel7:3.2-5.3
 deployment #1 failed 13 minutes ago: config change

[ERROR] Cannot start server : on unix socket: Permission denied
[ERROR] Do you already have another mysqld server running on socket: /var/lib/mysql/mysql.sock ?
[ERROR] Aborting

CHAPTER 1. INSTALLING 3SCALE ON OPENSHIFT

39

http://rhelblog.redhat.com/2015/04/15/understanding-the-changes-to-docker-search-and-docker-pull-in-red-hat-enterprise-linux-7-1/

Cause

The MySQL process is started with inappropriate user permissions.

Solution

Procedure

1. The directories used for the persistent volumes MUST have the write permissions for the root
group. Having read-write permissions for the root user is not enough as the MySQL service runs
as a different user in the root group. Execute the following command as the root user:

chmod -R g+w /path/for/pvs

2. Execute the following command to prevent SElinux from blocking access:

chcon -Rt svirt_sandbox_file_t /path/for/pvs

1.9.5. Unable to upload logo or images

Problem

Unable to upload a logo - system-app logs display the following error:

Errno::EACCES (Permission denied @ dir_s_mkdir - /opt/system/public//system/provider-name/2

Cause

Persistent volumes are not writable by OpenShift.

Solution

Procedure

Ensure your persistent volume is writable by OpenShift. It should be owned by root group and be group
writable.

1.9.6. Test calls not working on OpenShift

Problem

Test calls do not work after creation of a new service and routes on OpenShift. Direct calls via curl also
fail, stating: service not available.

Cause

3scale requires HTTPS routes by default, and OpenShift routes are not secured.

Solution

Procedure

Ensure the secure route checkbox is clicked in your OpenShift router settings.

Red Hat 3scale API Management 2.8 Installing 3scale

40

1.9.7. APIcast on a different project from 3scale failing to deploy

Problem

APIcast deploy fails (pod does not turn blue). You see the following error in the logs:

update acceptor rejected apicast-3: pods for deployment "apicast-3" took longer than 600 seconds to
become ready

You see the following error in the pod:

Error synching pod, skipping: failed to "StartContainer" for "apicast" with RunContainerError:
"GenerateRunContainerOptions: secrets \"apicast-configuration-url-secret\" not found"

Cause

The secret was not properly set up.

Solution

Procedure

When creating a secret with APIcast v3, specify apicast-configuration-url-secret:

oc create secret generic apicast-configuration-url-secret --from-
literal=password=https://<ACCESS_TOKEN>@<TENANT_NAME>-admin.<WILDCARD_DOMAIN>

CHAPTER 1. INSTALLING 3SCALE ON OPENSHIFT

41

CHAPTER 2. INSTALLING APICAST
APIcast is an NGINX based API gateway used to integrate your internal and external API services with
the Red Hat 3scale API Management Platform. APIcast does load balancing by using round-robin.

In this guide you will learn about deployment options, environments provided, and how to get started.

Prerequisites

APIcast is not a standalone API gateway. It needs connection to 3scale API Manager.

You will need a working 3scale On-Premises instance.

To install APIcast, perform the steps outlined in the following sections:

Section 2.1, “APIcast deployment options”

Section 2.2, “APIcast environments”

Section 2.3, “Configuring the integration settings”

Section 2.4, “Configuring your service”

Section 2.5, “Installing the APIcast operator”

Section 2.6, “Deploying an APIcast gateway self-managed solution using the operator”

Section 2.7, “WebSocket protocol support for APIcast”

Section 2.8, “HTTP/2 in the APIcast gateway”

2.1. APICAST DEPLOYMENT OPTIONS

You can use hosted or self-managed APIcast. In both cases, APIcast must be connected to the rest of
the 3scale API Management platform:

Embedded APIcast: Two APIcast gateways (staging and production) come by default with the
3scale API Management installation. They come pre-configured and ready to use out-of-the-
box.

Self-managed APIcast: You can deploy APIcast wherever you want. Here are a few
recommended options to deploy APIcast:

Deploying APIcast on the Docker containerized environment : Download a ready to use
Docker-formatted container image, which includes all of the dependencies to run APIcast in
a Docker-formatted container.

Running APIcast on Red Hat OpenShift : Run APIcast on a supported version of OpenShift.
You can connect self-managed APIcasts to a 3scale On-premises installation or to a 3scale
Hosted (SaaS) account.

2.2. APICAST ENVIRONMENTS

By default, when you create a 3scale account, you get embedded APIcast in two different environments:

Staging: Intended to be used only while configuring and testing your API integration. When you

Red Hat 3scale API Management 2.8 Installing 3scale

42

https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.8/html-single/installing_3scale/index#install-threescale-on-openshift-guide
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.8/html-single/installing_3scale/index#deploying-apicast-on-the-docker-containerized-environment
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.8/html-single/installing_3scale/index#running-apicast-on-red-hat-openshift
https://access.redhat.com/articles/2798521

have confirmed that your setup is working as expected, then you can choose to deploy it to the
production environment. The OpenShift template sets the parameters of the Staging APIcast in
a way that the configuration is reloaded on each API call
(APICAST_CONFIGURATION_LOADER: lazy, APICAST_CONFIGURATION_CACHE: 0). It is
useful to test the changes in APIcast configuration quickly.

Production: This environment is intended for production use. The following parameters are set
for the Production APIcast in the OpenShift template: APICAST_CONFIGURATION_LOADER:
boot, APICAST_CONFIGURATION_CACHE: 300. This means that the configuration will be
fully loaded when APIcast is started, and will be cached for 300 seconds (5 minutes). After 5
minutes the configuration will be reloaded. This means that when you promote the configuration
to production, it may take up to 5 minutes to be applied, unless you trigger a new deployment of
APIcast.

2.3. CONFIGURING THE INTEGRATION SETTINGS

Go to [your_API_name] > Integration > Configuration.

On the Configuration page you will see the Integration settings.

By default, you find these values:

Deployment Option: embedded APIcast.

Authentication mode: API key.

You can change these settings by clicking on edit integration settings in the upper-right corner.

2.4. CONFIGURING YOUR SERVICE

You must declare your API back-end in the Private Base URL field, which is the endpoint host of your
API back-end. APIcast will redirect all traffic to your API back-end after all authentication, authorization,
rate limits and statistics have been processed.

This section will guide you through configuring your service:

Declaring the API backend

Configuring the authentication settings

Configuring the API test call

2.4.1. Declaring the API backend

Typically, the Private Base URL of your API will be something like https://api-
backend.yourdomain.com:443, on the domain that you manage (yourdomain.com). For instance, if
you were integrating with the Twitter API the Private Base URL would be https://api.twitter.com/.

In this example, you will use the Echo API hosted by 3scale, a simple API that accepts any path and
returns information about the request (path, request parameters, headers, etc.). Its Private Base URL is
https://echo-api.3scale.net:443.

Procedure

Test your private (unmanaged) API is working. For example, for the Echo API you can make the

CHAPTER 2. INSTALLING APICAST

43

https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.8/html-single/installing_3scale/index#declaring-api-backend
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.8/html-single/installing_3scale/index#configuring-the-authentication-settings
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.8/html-single/installing_3scale/index#configuring-api-test-call
https://api-backend.yourdomain.com:443
https://api.twitter.com/
https://echo-api.3scale.net:443

Test your private (unmanaged) API is working. For example, for the Echo API you can make the
following call with curl command:

curl "https://echo-api.3scale.net:443"

You will get the following response:

{
 "method": "GET",
 "path": "/",
 "args": "",
 "body": "",
 "headers": {
 "HTTP_VERSION": "HTTP/1.1",
 "HTTP_HOST": "echo-api.3scale.net",
 "HTTP_ACCEPT": "*/*",
 "HTTP_USER_AGENT": "curl/7.51.0",
 "HTTP_X_FORWARDED_FOR": "2.139.235.79, 10.0.103.58",
 "HTTP_X_FORWARDED_HOST": "echo-api.3scale.net",
 "HTTP_X_FORWARDED_PORT": "443",
 "HTTP_X_FORWARDED_PROTO": "https",
 "HTTP_FORWARDED": "for=10.0.103.58;host=echo-api.3scale.net;proto=https"
 },
 "uuid": "ee626b70-e928-4cb1-a1a4-348b8e361733"
 }

2.4.2. Configuring the authentication settings

You can configure authentication settings for your API in the AUTHENTICATION SETTINGS section.

The following fields are all optional:

Field Description

Host Header Define a custom Host request header. This is
required if your API backend only accepts traffic
from a specific host.

Secret Token Used to block direct developer requests to your API
backend. Set the value of the header here, and
ensure your backend only allows calls with this secret
header.

Credentials location Define whether credentials are passed as HTTP
headers, query parameters or as HTTP basic
authentication.

Auth user key Set the user key associated with the credentials
location

Red Hat 3scale API Management 2.8 Installing 3scale

44

Errors Define the response code, content type, and
response body, for the following errors:
authentication failed, authentication missing, no
match.

Field Description

2.4.3. Configuring the API test call

Procedure

1. Configure the test call for the hosted staging environment.

2. Enter a path existing in your API in the API test GET request field (for example,
/v1/word/good.json).

3. Save the settings by clicking on the Update Product button in the bottom right part of the
page.

a. This will deploy the APIcast configuration to the 3scale Hosted staging environment. If
everything is configured correctly, the vertical line on the left should turn green.

NOTE

If you are using one of the Self-managed deployment options, save the
configuration from the GUI and make sure it is pointing to your deployed API
gateway by adding the correct host in the staging or production public base
URL field. Before making any calls to your production gateway, do not forget
to click on the Promote v.x to Production button.

4. Find the sample curl at the bottom of the staging section and run it from the console:

curl "https://XXX.staging.apicast.io:443/v1/word/good.json?user_key=YOUR_USER_KEY"

NOTE

You should get the same response as above, however, this time the request will
go through the 3scale hosted APIcast instance. Note: You should make sure you
have an application with valid credentials for the service. If you are using the
default API service created on sign up to 3scale, you should already have an
application. Otherwise, if you see USER_KEY or APP_ID and APP_KEY values in
the test curl, you need to create an application for this service first.

Now you have your API integrated with 3scale.

3scale Hosted APIcast gateway does the validation of the credentials and applies the rate limits that you
defined for the application plan of the application. If you try to make a call without credentials, or with
invalid credentials, you will see an error message.

2.5. INSTALLING THE APICAST OPERATOR

This guide provides steps for installing the APIcast operator through the OpenShift Container Platform

CHAPTER 2. INSTALLING APICAST

45

This guide provides steps for installing the APIcast operator through the OpenShift Container Platform
(OCP) console.

Procedure

1. Log in to the OCP console using an account with administrator privileges.

2. Create new project operator-test in Projects > Create Project.

3. Click Operators > Installed Operators

4. Type apicast in the Filter by keyword box to find the APIcast operator. Do not use the
community version.

5. Click the APIcast operator. You will see information about the APIcast operator.

6. Click Install. The Create Operator Subscription page opens.

7. Click Subscribe to accept all of the default selections on the Create Operator Subscription page.

a. The subscription upgrade status is shown as Up to date.

8. Click Operators > Installed Operators to verify that the APIcast operator
ClusterServiceVersion (CSV) status displays to InstallSucceeded in the operator-test project.

2.6. DEPLOYING AN APICAST GATEWAY SELF-MANAGED SOLUTION
USING THE OPERATOR

This guide provides steps for deploying an APIcast gateway self-managed solution using the APIcast
operator via the Openshift Container Platform console.

Prerequisites

OpenShift Container Platform (OCP) 4.x or later with administrator privileges.

You must first follow the steps in Installing the APIcast operator .

Procedure

1. Log in to the OCP console using an account with administrator privileges.

2. Click Operators > Installed Operators.

3. Click the APIcast Operator from the list of Installed Operators.

4. Click the APIcast > Create APIcast.

2.6.1. APICast deployment and configuration options

You can deploy and configure an APIcast gateway self-managed solution using two approaches:

Providing a 3scale system endpoint

Providing a configuration secret

Red Hat 3scale API Management 2.8 Installing 3scale

46

https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.8/html-single/installing_3scale/index#installing-the-apicast-operator
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.8/html-single/installing_3scale/index#providing-3cale-porta-endpoint
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.8/html-single/installing_3scale/index#providing-configuration-secret

2.6.1.1. Providing a 3scale system endpoint

Procedure

1. Create an OpenShift secret that contains 3scale System Admin Portal endpoint information:

oc create secret generic ${SOME_SECRET_NAME} --from-
literal=AdminPortalURL=${MY_3SCALE_URL}

${SOME_SECRET_NAME} is the name of the secret and can be any name you want as long
as it does not conflict with an existing secret.

${MY_3SCALE_URL} is the URI that includes your 3scale access token and 3scale System
portal endpoint. For more details, see THREESCALE_PORTAL_ENDPOINT

Example

oc create secret generic 3scaleportal --from-literal=AdminPortalURL=https://access-
token@account-admin.3scale.net

For more information about the contents of the secret see the Admin portal configuration
secret reference.

2. Create the OpenShift object for APIcast

apiVersion: apps.3scale.net/v1alpha1
kind: APIcast
metadata:
 name: example-apicast
spec:
 adminPortalCredentialsRef:
 name: SOME_SECRET_NAME

The spec.adminPortalCredentialsRef.name must be the name of the existing OpenShift
secret that contains the 3scale system Admin Portal endpoint information.

3. Verify the APIcast pod is running and ready, by confirming that the readyReplicas field of the
OpenShift Deployment associated with the APIcast object is 1. Alternatively, wait until the field
is set with:

$ echo $(oc get deployment apicast-example-apicast -o jsonpath='{.status.readyReplicas}')
1

2.6.1.1.1. Verifying the APIcast gateway is running and available

Procedure

1. Ensure the OpenShift Service APIcast is exposed to your local machine, and perform a test
request. Do this by port-forwarding the APIcast OpenShift Service to localhost:8080:

oc port-forward svc/apicast-example-apicast 8080

2. Make a request to a configured 3scale service to verify a successful HTTP response. Use the

CHAPTER 2. INSTALLING APICAST

47

https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.8/html-single/administering_the_api_gateway/index#threescale-portal-endpoint
https://github.com/3scale/apicast-operator/blob/3scale-2.8-stable/doc/apicast-crd-reference.md#AdminPortalSecret

2. Make a request to a configured 3scale service to verify a successful HTTP response. Use the
domain name configured in Staging Public Base URL or Production Public Base URL
settings of your service. For example:

$ curl 127.0.0.1:8080/test -H "Host: myhost.com"

2.6.1.1.2. Exposing APIcast externally via a Kubernetes Ingress

To expose APIcast externally via a Kubernetes Ingress, set and configure the exposedHost section.
When the host field in the exposedHost section is set, this creates a Kubernetes Ingress object. The
Kubernetes Ingress object can then be used by a previously installed and existing Kubernetes Ingress
Controller to make APIcast accessible externally.

To learn what Ingress Controllers are available to make APIcast externally accessible and how they are
configured see the Kubernetes Ingress Controllers documentation .

The following example to expose APIcast with the hostname myhostname.com:

apiVersion: apps.3scale.net/v1alpha1
kind: APIcast
metadata:
 name: example-apicast
spec:
 ...
 exposedHost:
 host: "myhostname.com"
 ...

The example creates a Kubernetes Ingress object on the port 80 using HTTP. When the APIcast
deployment is in an OpenShift environment, the OpenShift default Ingress Controller will create a Route
object using the Ingress object APIcast creates which allows external access to the APIcast installation.

You may also configure TLS for the exposedHost section. Details about the available fields in the
following table:

Table 2.1. APIcastExposedHost reference table

json/yaml field Type Required Default value Description

host string Yes N/A Domain name
being routed to
the gateway

tls []extensions.Ingres
sTLS

No N/A Array of ingress
TLS objects. See
more on TLS.

2.6.1.2. Providing a configuration secret

Procedure

1. Create a secret with the configuration file:

Red Hat 3scale API Management 2.8 Installing 3scale

48

https://kubernetes.io/docs/concepts/services-networking/ingress-controllers
https://kubernetes.io/docs/concepts/services-networking/ingress/#tls

$ curl
https://raw.githubusercontent.com/3scale/APIcast/master/examples/configuration/echo.json -
o $PWD/config.json

oc create secret generic apicast-echo-api-conf-secret --from-file=$PWD/config.json

The configuration file must be called config.json. This is an APIcast CRD reference
requirement.

For more information about the contents of the secret see the Admin portal configuration
secret reference.

2. Create an APIcast custom resource:

$ cat my-echo-apicast.yaml
apiVersion: apps.3scale.net/v1alpha1
kind: APIcast
metadata:
 name: my-echo-apicast
spec:
 exposedHost:
 host: YOUR DOMAIN
 embeddedConfigurationSecretRef:
 name: apicast-echo-api-conf-secret

$ oc apply -f my-echo-apicast.yaml

a. The following is an example of an embedded configuration secret:

apiVersion: v1
kind: Secret
metadata:
 name: SOME_SECRET_NAME
type: Opaque
stringData:
 config.json: |
 {
 "services": [
 {
 "proxy": {
 "policy_chain": [
 { "name": "apicast.policy.upstream",
 "configuration": {
 "rules": [{
 "regex": "/",
 "url": "http://echo-api.3scale.net"
 }]
 }
 }
]
 }
 }
]
 }

CHAPTER 2. INSTALLING APICAST

49

https://github.com/3scale/apicast-operator/blob/3scale-2.8-stable/doc/apicast-crd-reference.md#embeddedconfsecret
https://github.com/3scale/apicast-operator/blob/3scale-2.8-stable/doc/apicast-crd-reference.md#embeddedconfsecret
https://github.com/3scale/apicast-operator/blob/3scale-2.8-stable/doc/apicast-crd-reference.md

3. Set the following content when creating the APIcast object:

apiVersion: apps.3scale.net/v1alpha1
kind: APIcast
metadata:
 name: example-apicast
spec:
 embeddedConfigurationSecretRef:
 name: SOME_SECRET_NAME

The spec.embeddedConfigurationSecretRef.name must be the name of the existing
OpenShift secret that contains the configuration of the gateway.

4. Verify the APIcast pod is running and ready, by confirming that the readyReplicas field of the
OpenShift Deployment associated with the APIcast object is 1. Alternatively, wait until the field
is set with:

$ echo $(oc get deployment apicast-example-apicast -o jsonpath='{.status.readyReplicas}')
1

2.6.1.2.1. Verifying APIcast gateway is running and available

Procedure

1. Ensure the OpenShift Service APIcast is exposed to your local machine, and perform a test
request. Do this by port-forwarding the APIcast OpenShift Service to localhost:8080:

oc port-forward svc/apicast-example-apicast 8080

2. Make a request to a configured 3scale Service to verify a successful HTTP response. Use the
domain name configured in Staging Public Base URL or Production Public Base URL
settings of your service. For example:

$ curl 127.0.0.1:8080/test -H "Host: localhost"
{
 "method": "GET",
 "path": "/test",
 "args": "",
 "body": "",
 "headers": {
 "HTTP_VERSION": "HTTP/1.1",
 "HTTP_HOST": "echo-api.3scale.net",
 "HTTP_ACCEPT": "*/*",
 "HTTP_USER_AGENT": "curl/7.65.3",
 "HTTP_X_REAL_IP": "127.0.0.1",
 "HTTP_X_FORWARDED_FOR": ...
 "HTTP_X_FORWARDED_HOST": "echo-api.3scale.net",
 "HTTP_X_FORWARDED_PORT": "80",
 "HTTP_X_FORWARDED_PROTO": "http",
 "HTTP_FORWARDED": "for=10.0.101.216;host=echo-api.3scale.net;proto=http"
 },
 "uuid": "603ba118-8f2e-4991-98c0-a9edd061f0f0"

Red Hat 3scale API Management 2.8 Installing 3scale

50

2.7. WEBSOCKET PROTOCOL SUPPORT FOR APICAST

Red Hat 3scale API Management provides support in the APIcast gateway for WebSocket protocol
connections to backend APIs.

The following list are points to consider in if you are planning to implement WebSocket protocols:

The WebSocket protocol does not support JSON Web Token (JWT).

The WebSocket standard does not allow extra-headers.

The WebSocket protocol is not part of the HTTP/2 standard.

2.7.1. WebSocket protocol support

The APIcast configuration policy chain is as follows:

"policy_chain": [
 { "name": "apicast.policy.websocket" },
 { "name": "apicast.policy.apicast" }
],

The API backend can be defined as http[s]` or ws[s].

2.8. HTTP/2 IN THE APICAST GATEWAY

Red Hat 3scale API Management provides APIcast gateway support for HTTP/2 and Remote Procedure
Calls (gRPC) connections. The HTTP/2 protocol controls enables data communication between APIcast
and the API backend.

NOTE

You cannot use api_key authorization. Use JSON Web Token (JWT) or Headers
instead.

gRPC endpoint terminates Transport Layer Security (TLS).

The gRPC policy (HTTP/2) must be above the APIcast policy in the policy chain.

2.8.1. HTTP/2 protocol support

With HTTP/2 termination, APICast enabled HTTP/2 and backends can be HTTP/1.1 plaintext or TLS.

In HTTP/2 endpoints, where the policy is used, there are some constraints:

The endpoint needs to listen on TLS in case this policy does not work expected.

gRPC full flow will only work if the TLS policy is enabled.

The APIcast configuration policy chain is as follows:

"policy_chain": [
 { "name": "apicast.policy.grpc" },
 { "name": "apicast.policy.apicast" }

CHAPTER 2. INSTALLING APICAST

51

],

2.9. ADDITIONAL RESOURCES

To get information about the latest released and supported version of APIcast, see the articles:

Red Hat 3scale API Management Supported Configurations

Red Hat 3scale API Management - Component Details .

Red Hat 3scale API Management 2.8 Installing 3scale

52

https://access.redhat.com/articles/2798521
https://access.redhat.com/articles/2787991

CHAPTER 3. RUNNING APICAST ON RED HAT OPENSHIFT
This tutorial describes how to deploy the APIcast API Gateway on Red Hat OpenShift.

Prerequisites

You must configure APIcast in your Red Hat 3scale API Management Admin Portal as per
Chapter 2, Installing APIcast .

Make sure Self-managed Gateway is selected as the deployment option in the integration
settings.

You should have both staging and production environment configured to proceed.

To run APIcast on Red Hat OpenShift, perform the steps outlined in the following sections:

Section 3.1, “Setting up Red Hat OpenShift”

Section 3.2, “Deploying APIcast using the OpenShift template”

Section 3.3, “Creating routes via the OpenShift console”

3.1. SETTING UP RED HAT OPENSHIFT

If you already have a running OpenShift cluster, you can skip this section. Otherwise, continue reading.

For production deployments you can follow the instructions for OpenShift installation.

In this tutorial the OpenShift cluster will be installed using:

Red Hat Enterprise Linux (RHEL) 7

Docker containerized environment v1.10.3

OpenShift Origin command line interface (CLI) - v1.3.1

Use the following section to set up Red Hat OpenShift:

Installing the Docker containerized environment

Starting the OpenShift cluster

Setting up the OpenShift cluster on a remote server (Optional)

3.1.1. Installing the Docker containerized environment

Docker-formatted container images provided by Red Hat are released as part of the Extras channel in
RHEL. To enable additional repositories, you can use either the Subscription Manager, or yum config
manager. See the RHEL product documentation for details.

For a RHEL 7 deployed on a AWS EC2 instance you will use the following the instructions:

Procedure

1. List all repositories:

CHAPTER 3. RUNNING APICAST ON RED HAT OPENSHIFT

53

https://docs.openshift.com/container-platform/3.11/install/running_install.html
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.8/html-single/installing_3scale/index#installing-the-docker-containerized-environment
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.8/html-single/installing_3scale/index#starting-openshift-cluster
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.8/html-single/installing_3scale/index#setting-up-openshift-cluster-on-remote-server
https://access.redhat.com/solutions/392003
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/sec-Configuring_Yum_and_Yum_Repositories.html#sec-Managing_Yum_Repositories

sudo yum repolist all

2. Find and enable the *-extras repository:

sudo yum-config-manager --enable rhui-REGION-rhel-server-extras

3. Install Docker-formatted container images:

sudo yum install docker docker-registry

4. Add an insecure registry of 172.30.0.0/16 by adding or uncommenting the following line in
/etc/sysconfig/docker file:

INSECURE_REGISTRY='--insecure-registry 172.30.0.0/16'

5. Start the Docker service:

sudo systemctl start docker

6. Verify that the container service is running with the following command:

sudo systemctl status docker

3.1.2. Starting the OpenShift cluster

To start the OpenShift cluster, do the following:

Procedure

1. Download the latest stable release of the client tools (openshift-origin-client-tools-VERSION-
linux-64bit.tar.gz) from OpenShift releases page, and place the Linux oc binary extracted from
the archive in your PATH.

NOTE

The docker command runs as the root user, so you will need to run any oc or
docker commands with root privileges.

2. Open a terminal with a user that has permission to run docker commands and run:

oc cluster up

At the bottom of the output you will find information about the deployed cluster:

 -- Server Information ...
 OpenShift server started.
 The server is accessible via web console at:
 https://172.30.0.112:8443

 You are logged in as:
 User: developer
 Password: developer

Red Hat 3scale API Management 2.8 Installing 3scale

54

https://github.com/openshift/origin/releases

 To login as administrator:
 oc login -u system:admin

3. Note the IP address that is assigned to your OpenShift server. You will refer to it in the tutorial
as OPENSHIFT-SERVER-IP.

3.1.3. Setting up the OpenShift cluster on a remote server (Optional)

If you are deploying the OpenShift cluster on a remote server, you will need to explicitly specify a public
hostname and a routing suffix on starting the cluster, so that you will be able to access the OpenShift
web console remotely.

For example, if you are deploying on an AWS EC2 instance, you should specify the following options:

oc cluster up --public-hostname=ec2-54-321-67-89.compute-1.amazonaws.com --routing-
suffix=54.321.67.89.xip.io

where ec2-54-321-67-89.compute-1.amazonaws.com is the Public Domain, and 54.321.67.89 is the IP
of the instance. You will then be able to access the OpenShift web console at https://ec2-54-321-67-
89.compute-1.amazonaws.com:8443.

3.2. DEPLOYING APICAST USING THE OPENSHIFT TEMPLATE

NOTE

You can only deploy APIcast on OpenShift Container Platform (OCP) 3.11 when
using templates.

Operator-based installations are only supported on OCP version 4.1 and 4.2.

For more information about supported configurations, see the Red Hat 3scale
API Management Supported Configurations page.

Use the following to deploy APIcast unsing the OpenShift template:

Procedure

1. By default you are logged in as developer and can proceed to the next step.
Otherwise login into OpenShift using the oc login command from the OpenShift Client tools
you downloaded and installed in the previous step. The default login credentials are username =
"developer" and password = "developer":

oc login https://OPENSHIFT-SERVER-IP:8443

You should see Login successful. in the output.

2. Create your project. This example sets the display name as gateway

oc new-project "3scalegateway" --display-name="gateway" --description="3scale gateway
demo"

The response should look like this:

CHAPTER 3. RUNNING APICAST ON RED HAT OPENSHIFT

55

https://ec2-54-321-67-89.compute-1.amazonaws.com:8443
https://access.redhat.com/articles/4922561

Now using project "3scalegateway" on server "https://172.30.0.112:8443"

Ignore the suggested next steps in the text output at the command prompt and proceed to the
next step below.

3. Create a new secret to reference your project by replacing <access_token> and <domain>
with your own credentials. See below for more information about the <access_token> and
<domain>.

oc create secret generic apicast-configuration-url-secret --from-
literal=password=https://<access_token>@<admin_portal_domain> --
type=kubernetes.io/basic-auth

Here <access_token> is an Access Token for the 3scale account, and <domain>-
admin.3scale.net is the URL of your 3scale Admin Portal.

The response should look like this:

secret/apicast-configuration-url-secret

4. Create an application for your APIcast gateway from the template, and start the deployment:

oc new-app -f https://raw.githubusercontent.com/3scale/3scale-amp-openshift-
templates/2.8.0.GA/apicast-gateway/apicast.yml

You should see the following messages at the bottom of the output:

 --> Creating resources with label app=3scale-gateway ...
 deploymentconfig "apicast" created
 service "apicast" created
 --> Success
 Run 'oc status' to view your app.

3.3. CREATING ROUTES VIA THE OPENSHIFT CONSOLE

To create routes via the OpenShift console, do the following:

Procedure

1. Open the web console for your OpenShift cluster in your browser:
https://OPENSHIFT-SERVER-IP:8443/console/

Use the value specified in --public-hostname instead of OPENSHIFT-SERVER-IP if you
started OpenShift cluster on a remote server.

You will see the login screen for OpenShift.

NOTE

Red Hat 3scale API Management 2.8 Installing 3scale

56

https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.8/html-single/admin_portal_guide/index#creating-access-tokens
https://openshift-server-ip:8443/console/

NOTE

You may receive a warning about an untrusted website. This is expected, as you
are trying to access the web console through secure protocol, without having
configured a valid certificate. While you should avoid this in production
environment, for this test setup you can go ahead and create an exception for
this address.

2. Log in using the developer credentials created or obtained in the Setting up Red Hat OpenShift
section.
You will see a list of projects, including the gateway project you created from the command line
above.

If you do not see your gateway project, you probably created it with a different user and will
need to assign the policy role to to this user.

3. Click on the gateway link and you will see the Overview tab.
OpenShift downloaded the code for APIcast and started the deployment. You may see the
message Deployment #1 running when the deployment is in progress.

When the build completes, the user interface (UI) will refresh and show two instances of APIcast
(2 pods) that have been started by OpenShift, as defined in the template.

CHAPTER 3. RUNNING APICAST ON RED HAT OPENSHIFT

57

https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.8/html-single/installing_3scale/index#setting-up-red-hat-openshift

Each APIcast instance, upon starting, downloads the required configuration from 3scale using
the settings you provided on the Integration page of your 3scale Admin Portal.

OpenShift will maintain two APIcast instances and monitor the health of both; any unhealthy
APIcast instance will automatically be replaced with a new one.

4. To allow your APIcast instances to receive traffic, you need to create a route. Start by clicking on
Create Route.

Enter the same host you set in 3scale above in the section Public Base URL (without the http://
and without the port) , e.g. gateway.openshift.demo, then click the Create button.

Red Hat 3scale API Management 2.8 Installing 3scale

58

For every 3scale product you define, you must create a new route.

CHAPTER 3. RUNNING APICAST ON RED HAT OPENSHIFT

59

CHAPTER 4. DEPLOYING APICAST ON THE DOCKER
CONTAINERIZED ENVIRONMENT

This is a step-by-step guide to deploy APIcast inside a Docker container engine that is ready to be used
as a Red Hat 3scale API Management API gateway.

NOTE

When deploying APIcast on the Docker containerized environment, the supported
versions of Red Hat Enterprise Linux (RHEL) and Docker are as follows:

RHEL 7.7

Docker 1.13.1

Prerequisites

You must configure APIcast in your 3scale Admin Portal as per Chapter 2, Installing APIcast .

Access to the Red Hat container catalog.

To create a registry service account, see Section 1.4.1, “Creating registry service accounts” .

To deploy APIcast on the docker containerized environment, perform the steps outlined in the following
sections:

Section 4.1, “Installing the Docker containerized environment”

Section 4.2, “Running the Docker containerized environment gateway”

4.1. INSTALLING THE DOCKER CONTAINERIZED ENVIRONMENT

This guide covers the steps to set up the Docker containerized environment on RHEL 7.x.

The Docker container engine provided by Red Hat is released as part of the Extras channel in RHEL. To
enable additional repositories, you can use either the Subscription Manager or the yum-config-manager
option. For details, see the RHEL product documentation .

To deploy RHEL 7.x on an Amazon Web Services (AWS), Amazon Elastic Compute Cloud (Amazon EC2)
instance, take the following steps:

Procedure

1. List all repositories: sudo yum repolist all.

2. Find the *-extras repository.

3. Enable the extras repository: sudo yum-config-manager --enable rhui-REGION-rhel-server-
extras.

4. Install the Docker containerized environment package: sudo yum install docker.

Additional resources

For other operating systems, refer to the following Docker documentation:

Red Hat 3scale API Management 2.8 Installing 3scale

60

https://registry.redhat.io
https://access.redhat.com/solutions/392003
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/sec-Configuring_Yum_and_Yum_Repositories.html#sec-Managing_Yum_Repositories

Installing the Docker containerized environment on Linux distributions

Installing the Docker containerized environment on Mac

Installing the Docker containerized environment on Windows

4.2. RUNNING THE DOCKER CONTAINERIZED ENVIRONMENT
GATEWAY

To run the docker containerized environment gateway, do the following:

Procedure

1. Start the Docker daemon:
sudo systemctl start docker.service.

2. Check if the Docker daemon is running:
sudo systemctl status docker.service.

You can download a ready to use Docker container engine image from the Red Hat registry:

sudo docker pull registry.redhat.io/3scale-amp2/apicast-gateway-rhel8:3scale2.8

3. Run APIcast in a Docker container engine:
sudo docker run --name apicast --rm -p 8080:8080 -e
THREESCALE_PORTAL_ENDPOINT=https://<access_token>@<domain>-
admin.3scale.net registry.redhat.io/3scale-amp2/apicast-gateway-rhel8:3scale2.8

Here, <access_token> is the Access Token for the 3scale Account Management API. You can
use the Provider Key instead of the access token. <domain>-admin.3scale.net is the URL of
your 3scale Admin Portal.

This command runs a Docker container engine called "apicast" on port 8080 and fetches the JSON
configuration file from your 3scale Admin Portal. For other configuration options, see Installing APIcast .

4.2.1. The docker command options

You can use the following options with the docker run command:

--rm: Automatically removes the container when it exits.

-d or --detach: Runs the container in the background and prints the container ID. When it is not
specified, the container runs in the foreground mode and you can stop it using CTRL + c. When
started in the detached mode, you can reattach to the container with the docker attach
command, for example, docker attach apicast.

-p or --publish: Publishes a container’s port to the host. The value should have the format
<host port="">:<container port="">, so -p 80:8080 will bind port 8080 of the container to port
80 of the host machine. For example, the Management API uses port 8090, so you may want to
publish this port by adding -p 8090:8090 to the docker run command.

-e or --env: Sets environment variables.

-v or --volume: Mounts a volume. The value is typically represented as <host path="">:
<container path="">[:<options>]. <options> is an optional attribute; you can set it to :ro to

CHAPTER 4. DEPLOYING APICAST ON THE DOCKER CONTAINERIZED ENVIRONMENT

61

https://docs.docker.com/engine/installation/linux/
https://docs.docker.com/docker-for-mac/
https://docs.docker.com/docker-for-windows/
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.8/html-single/installing_3scale/index#installing-apicast

specify that the volume will be read only (by default, it is mounted in read-write mode).
Example: -v /host/path:/container/path:ro.

4.2.2. Testing APIcast

The preceding steps ensure that your Docker container engine is running with your own configuration
file and the Docker container image from the 3scale registry. You can test calls through APIcast on port
8080 and provide the correct authentication credentials, which you can get from your 3scale account.

Test calls will not only verify that APIcast is running correctly but also that authentication and reporting
is being handled successfully.

NOTE

Ensure that the host you use for the calls is the same as the one configured in the Public
Base URL field on the Integration page.

Additional resources

For more information on available options, see Docker run reference.

4.3. ADDITIONAL RESOURCES

For more information about tested and supported configuration, see Red Hat 3scale API
Management Supported Configurations

Red Hat 3scale API Management 2.8 Installing 3scale

62

https://docs.docker.com/engine/reference/run/
https://access.redhat.com/articles/2798521

CHAPTER 5. DEPLOYING APICAST ON PODMAN
This is a step-by-step guide for deploying APIcast on a Pod Manager (Podman) container environment
to be used as a Red Hat 3scale API Management API gateway.

NOTE

When deploying APIcast on a Podman container environment, the supported versions of
Red Hat Enterprise Linux (RHEL) and Podman are as follows:

RHEL 8.x

Podman 1.4.2

Prerequisites

You must configure APIcast in your 3scale Admin Portal as per Chapter 2, Installing APIcast .

Access to the Red Hat container catalog.

To create a registry service account, see Section 1.4.1, “Creating registry service accounts” .

To deploy APIcast on the Podman container environment, perform the steps outlined in the following
sections:

Section 5.1, “Installing the Podman container environment”

Section 5.2, “Running the Podman environment”

5.1. INSTALLING THE PODMAN CONTAINER ENVIRONMENT

This guide covers the steps to set up the Podman container environment on RHEL 8.x. Docker is not
included in RHEL 8.x, therefore, use Podman for working with containers.

For more details about Podman with RHEL 8.x, see the Container command-line reference .

Procedure

Install the Podman container environment package:
sudo dnf install podman

Additional resources

For other operating systems, refer to the following Podman documentation:

Podman Installation Instructions

5.2. RUNNING THE PODMAN ENVIRONMENT

To run the Podman container environment, follow the procedure below.

Procedure

1. Download a ready to use Podman container image from the Red Hat registry:
podman pull registry.redhat.io/3scale-amp2/apicast-gateway-rhel8:3scale2.8

CHAPTER 5. DEPLOYING APICAST ON PODMAN

63

https://registry.redhat.io
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/building_running_and_managing_containers/index#container-command-line-reference_building-running-and-managing-containers
https://podman.io/getting-started/installation

2. Run APIcast in a Podman:
podman run --name apicast --rm -p 8080:8080 -e
THREESCALE_PORTAL_ENDPOINT=https://<access_token>@<domain>-
admin.3scale.net registry.redhat.io/3scale-amp2/apicast-gateway-rhel8:3scale2.8

Here, <access_token> is the Access Token for the 3scale Account Management API. You can
use the Provider Key instead of the access token. <domain>-admin.3scale.net is the URL of
your 3scale Admin Portal.

This command runs a Podman container engine called "apicast" on port 8080 and fetches the JSON
configuration file from your 3scale Admin Portal. For other configuration options, see Installing APIcast .

5.2.1. Testing APIcast with Podman

The preceding steps ensure that your Podman container engine is running with your own configuration
file and the Podman container image from the 3scale registry. You can test calls through APIcast on
port 8080 and provide the correct authentication credentials, which you can get from your 3scale
account.

Test calls will not only verify that APIcast is running correctly but also that authentication and reporting
is being handled successfully.

NOTE

Ensure that the host you use for the calls is the same as the one configured in the Public
Base URL field on the Integration page.

5.3. THE PODMAN COMMAND OPTIONS

You can use the following option examples with the podman command:

-d: Runs the container in detached mode and prints the container ID. When it is not specified,
the container runs in the foreground mode and you can stop it using CTRL + c. When started in
the detached mode, you can reattach to the container with the podman attach command, for
example, podman attach apicast.

ps and -a: Podman ps is used to list creating and running containers. Adding -a to the ps
command will show all containers, both running and stopped, for example, podman ps -a.

inspect and -l: Inspect a running container. For example, use inspect to see the ID that was
assigned to the container. Use -l to get the details for the latest container, for example, podman
inspect -l | grep Id\":.

5.4. ADDITIONAL RESOURCES

For more information about tested and supported configurations, see Red Hat 3scale API
Management Supported Configurations.

For information about getting started with Podman, see Basic Setup and Use of Podman .

Red Hat 3scale API Management 2.8 Installing 3scale

64

https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.8/html-single/installing_3scale/index#installing-apicast
https://access.redhat.com/articles/2798521
https://podman.io/getting-started/

CHAPTER 6. INSTALLING THE 3SCALE OPERATOR ON
OPENSHIFT

NOTE

3scale supports the last two general availability (GA) releases of OpenShift Container
Platform (OCP). For more information, see the Red Hat 3scale API Management
Supported Configurations page.

This documentation shows you how to:

Create a new project.

Deploy a Red Hat 3scale API Management instance.

Create the threescale-registry-auth secret in the project.

Install the 3scale operator through Operator Lifecycle Manager (OLM).

Deploy the custom resources once the operator has been deployed.

Prerequisites

Access to a supported version of an OpenShift Container Platform 4 cluster using an account
with administrator privileges.

For more information about supported configurations, see the Red Hat 3scale API
Management Supported Configurations page.

WARNING

Deploy the 3scale operator and custom resource definitions (CRDs) in a separate
newly created, empty project. If you deploy them in an existing project containing
infrastructure, it could alter or delete existing elements.

To install the 3scale operator on OpenShift, perform the steps outlined in the following sections:

Section 6.1, “Creating a new OpenShift project”

Section 6.2, “Installing and configuring the 3scale operator using the OLM”

6.1. CREATING A NEW OPENSHIFT PROJECT

This procedure explains how to create a new OpenShift project named 3scale-project. Replace this
project name with your own.

Procedure

To create a new OpenShift project:



CHAPTER 6. INSTALLING THE 3SCALE OPERATOR ON OPENSHIFT

65

https://access.redhat.com/articles/2798521
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.8/html-single/installing_3scale/index#configuring-container-registry-authentication
https://access.redhat.com/articles/2798521

Indicate a valid name using alphanumeric characters and dashes. As an example, run the
command below to create 3scale-project:

oc new-project 3scale-project

This creates the new OpenShift project where the operator, the APIManager custom resource (CR), and
the Capabilities custom resources will be installed. The operator manages the custom resources
through OLM in that project.

6.2. INSTALLING AND CONFIGURING THE 3SCALE OPERATOR USING
THE OLM

Use OLM to install the 3scale Operator on an OpenShift Container Platform 4.1 cluster by using
OperatorHub in the OpenShift Container Platform console.

NOTE

You must install and deploy the 3scale operator in the project that you defined in
Creating a new OpenShift project .

Procedure

1. In the OpenShift Container Platform console, log in using an account with administrator
privileges.

2. The menu structure depends on the version of OpenShift you are using:

For OCP 4.1, click Catalog > OperatorHub.

For OCP 4.2, click Operators > OperatorHub

3. In the Filter by keyword box, type 3scale operator to find the 3scale operator.

4. Click the 3scale operator. Information about the Operator is displayed.

5. Read the information about the operator and click Install. The Create Operator Subscription
page opens.

6. On the Create Operator Subscription page, accept all of the default selections and click
Subscribe.

NOTE

The operator will only be available in the specific single namespace on the cluster
that you have selected.

The 3scale-operator details page is displayed, where you can see the Subscription Overview.

7. Confirm that the subscription upgrade status is shown as Up to date.

8. Verify that the 3scale operator ClusterServiceVersion (CSV) is displayed, and the Status of the
operator ultimately resolves to InstallSucceeded in the project you defined in Creating a new
OpenShift project:

Red Hat 3scale API Management 2.8 Installing 3scale

66

https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.8/html-single/installing_3scale/index#creating-a-new-openshift-project
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.8/html-single/installing_3scale/index#creating-a-new-openshift-project

For OCP 4.1, click Catalog > Installed Operators.

For OCP 4.2, click Operators > Installed Operators. In this case, successful installation will
register the APIManager CRD, and the CRDs related to the Capabilities functionality of the
operator in the OpenShift API server .

9. After successful installation, query the resource types defined by the CRDs via oc get.

a. For example, to verify that the APIManager CRD has been correctly registered, execute the
following command:

oc get apimanagers

10. You should see the following output:

No resources found.

Additional resources

For troubleshooting information, see the OpenShift Container Platform documentation.

For more information about supported configurations, see the Red Hat 3scale API Management
Supported Configurations page.

CHAPTER 6. INSTALLING THE 3SCALE OPERATOR ON OPENSHIFT

67

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.1/html/applications/operators#olm-installing-operators-from-operatorhub_olm-adding-operators-to-a-cluster
https://access.redhat.com/articles/2798521

CHAPTER 7. 3SCALE HIGH AVAILABILITY AND EVALUATION
TEMPLATES

This document describes the templates for High Availability and Evaluation used by Red Hat 3scale API
Management 2.8 installation.

Prerequisites

You need to have an available OpenShift cluster to deploy elements of the High Availability and
Evaluation templates.

IMPORTANT

The 3scale High Availability and Evaluation templates are a Technology Preview feature
only. Technology Preview features are not supported with Red Hat production service
level agreements (SLAs) and might not be functionally complete. Red Hat does not
recommend using them in production. These features provide early access to upcoming
product features, enabling customers to test functionality and provide feedback during
the development process. For more information about the support scope of Red Hat
Technology Preview features, see Technology Preview Features Support Scope .

To deploy High Availability and Evaluation templates, perform the steps outlined in the following
sections:

Section 7.1, “High Availability template”

Section 7.2, “Evaluation template”

7.1. HIGH AVAILABILITY TEMPLATE

The High Availability (HA) template allows you to have a HA setting for critical databases.

Prerequisites

Before deploying the HA template, you must deploy and configure the external databases, and
configure them in a HA configuration with a load-balanced endpoint.

Using the HA template

For HA, the template named amp-ha-tech-preview.yml allows you to deploy critical databases
externally to OpenShift. This excludes:

Memcached

Sphinx

Zync

Differences between the standard amp.yml template and amp-ha-tech-preview.yml include:

Removal of the following elements:

backend-redis and its related components

system-redis and its related components

Red Hat 3scale API Management 2.8 Installing 3scale

68

https://access.redhat.com/support/offerings/techpreview/

system-mysql and its related components

Redis and MySQL related ConfigMaps

MYSQL_IMAGE, REDIS_IMAGE, MYSQL_USER, MYSQL_ROOT_PASSWORD parameters

By default, increased from 1 to 2 the number of replicas for non-database DeploymentConfig
object types.

Addition of the following mandatory parameters, allowing you the control of the location of
external databases:

BACKEND_REDIS_STORAGE_ENDPOINT

BACKEND_REDIS_QUEUES_ENDPOINT

SYSTEM_REDIS_URL

APICAST_STAGING_REDIS_URL

APICAST_PRODUCTION_REDIS_URL

SYSTEM_DATABASE_URL

With amp-ha-tech-preview.yml, you need to configure database connections (excluding system-
memcache, zync-database and system-sphinx that do not contain permanent data) out of the cluster
via the newly added mandatory parameters. The endpoints require database load-balanced connection
strings, including authentication information. Also, for the non-database deployments, the number of
pod replicas is increased to 2 by default to have redundancy at application-level.

7.1.1. Setting RWX_STORAGE_CLASS for high availability

ReadWriteMany (RWX) PersistentVolumeClaims (PVCs) uses the storage class
RWX_STORAGE_CLASS.

required: false

value: null

Set this to null to signal OpenShift that you want the storage class to be auto-discovered (no
value).

If you set this to an empty string or no default value, it signals OpenShift that you want the
string storage empty. This is an invalid setting.

7.2. EVALUATION TEMPLATE

For evaluation purposes, there is a template named amp-eval-tech-preview.yml that deploys a 3scale
environment without resource requests nor limits.

The only functional difference compared to the standard amp.yml template is that the resource limits
and requests have been removed. This means that in this version the minimum hardware requirements
have been removed on the pods at CPU and Memory level. This template is intended only for
evaluation, testing, and development purposes as it tries to deploy the components in a best-effort way
with the given hardware resources.

CHAPTER 7. 3SCALE HIGH AVAILABILITY AND EVALUATION TEMPLATES

69

CHAPTER 8. REDIS HIGH AVAILABILITY (HA) SUPPORT FOR
3SCALE

IMPORTANT

Red Hat does not officially support setting up Redis for zero downtime, configuring back-
end components for 3scale, or Redis database replication and sharding. The content is
for reference only. Additionally, Redis cluster mode is not supported in 3scale.

High availability (HA) is provided for most components by the OpenShift Container Platform (OCP).
For more information see OpenShift Container Platform 3.11 Chapter 30. High Availability .

The database components for HA in Red Hat 3scale API Management include:

backend-redis: used for statistics storage and temporary job storage.

system-redis: provides temporary storage for background jobs for 3scale and is also used as a
message bus for Ruby processes of system-app pods.

Both backend-redis and system-redis work with supported Redis high availability variants for Redis
Sentinel and Redis Enterprise.

If the Redis pod comes to a stop, or if the OpenShift Container Platform stops it, a new pod is
automatically created. Persistent storage will restore the data so the pod continues to work. In these
scenarios, there will be a small amount of downtime while the new pod starts. This is due to a limitation in
Redis that does not support a multi-master setup. You can reduce downtime by preinstalling the Redis
images onto all nodes that have Redis deployed to them. This will speed up the pod restart time.

Set up Redis for zero downtime and configure back-end components for 3scale:

Setting up Redis for zero downtime

Configuring back-end components for 3scale

Redis database sharding and replication

Prerequisites

A 3scale account with an administrator role.

8.1. SETTING UP REDIS FOR ZERO DOWNTIME

As a 3scale administrator, configure Redis outside of OCP if you require zero downtime. There are
several ways to set it up using the configuration options of 3scale pods:

Set up your own self-managed Redis

Use Redis Sentinel: Reference Redis Sentinel Documentation

Redis provided as a service:
For example by:

Amazon ElastiCache

Red Hat 3scale API Management 2.8 Installing 3scale

70

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html/cluster_administration/admin-guide-high-availability
https://redis.io/topics/sentinel

Redis Labs

NOTE

Red Hat does not provide support for the above mentioned services. The mention of any
such services does not imply endorsement by Red Hat of the products or services. You
agree that Red Hat is not responsible or liable for any loss or expenses that may result
due to your use of (or reliance on) any external content.

8.2. CONFIGURING BACK-END COMPONENTS FOR 3SCALE

As a 3scale administrator, configure Redis HA (failover) for the back-end component environment
variables in the following deployment configurations: backend-cron, backend-listener, and backend-
worker. These configurations are necessary for Redis HA in 3scale.

NOTE

If you want to use Redis with sentinels, you must create the system-redis secret with all
fields in order to configure the Redis you want to point to before deploying 3scale. The
fields are not provided as parameters in the back end as of 3scale.

8.2.1. Creating backend-redis and system-redis secrets

Follow these steps to create backend-redis and system-redis secrets accordingly:

Deploying a fresh installation of 3scale for HA

Migrating a non-HA deployment of 3scale to HA

8.2.2. Deploying a fresh installation of 3scale for HA

1. Create the backend-redis and system-redis secrets with the fields below:

backend-redis

REDIS_QUEUES_SENTINEL_HOSTS
REDIS_QUEUES_SENTINEL_ROLE
REDIS_QUEUES_URL
REDIS_STORAGE_SENTINEL_HOSTS
REDIS_STORAGE_SENTINEL_ROLE
REDIS_STORAGE_URL

system-redis

MESSAGE_BUS_NAMESPACE
MESSAGE_BUS_SENTINEL_HOSTS
MESSAGE_BUS_SENTINEL_ROLE
MESSAGE_BUS_URL
NAMESPACE
SENTINEL_HOSTS
SENTINEL_ROLE
URL

CHAPTER 8. REDIS HIGH AVAILABILITY (HA) SUPPORT FOR 3SCALE

71

https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.8/html-single/installing_3scale/index#deploying-a-fresh-installation
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.8/html-single/installing_3scale/index#upgrading-from-a-previous-version

When configuring for Redis with sentinels, the corresponding URL fields in backend-redis
and system-redis refer to the Redis group in the format redis://[:redis-password@]redis-
group[/db]`, where [x] denotes optional element x and redis-password, redis-group, and
db are variables to be replaced accordingly:

Example

redis://:redispwd@mymaster/5

The SENTINEL_HOSTS fields are comma-separated lists of sentinel connection strings in
the following format:

redis://:sentinel-password@sentinel-hostname-or-ip:port

For each element of the list, [x] denotes optional element x and sentinel-password,
sentinel-hostname-or-ip, and port are variables to be replaced accordingly:

Example

:sentinelpwd@123.45.67.009:2711,:sentinelpwd@other-sentinel:2722

The SENTINEL_ROLE fields are either master or slave.

2. Deploy 3scale as indicated in Deploying 3scale on OpenShift using a template , using the latest
version of the templates.

a. Ignore the errors due to backend-redis and system-redis already present.

8.2.3. Migrating a non-HA deployment of 3scale to HA

1. Edit the backend-redis and system-redis secrets with all fields as shown in Deploying a fresh
installation of 3scale for HA.

2. Make sure the following backend-redis environment variables are defined for the back-end
pods.

name: BACKEND_REDIS_SENTINEL_HOSTS
 valueFrom:
 secretKeyRef:
 key: REDIS_STORAGE_SENTINEL_HOSTS
 name: backend-redis
name: BACKEND_REDIS_SENTINEL_ROLE
 valueFrom:
 secretKeyRef:
 key: REDIS_STORAGE_SENTINEL_ROLE
 name: backend-redis

3. Make sure the following system-redis environment variables are defined for the system-
(app|sidekiq|sphinx) pods.

name: REDIS_SENTINEL_HOSTS
 valueFrom:
 secretKeyRef:
 key: SENTINEL_HOSTS

Red Hat 3scale API Management 2.8 Installing 3scale

72

https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.8/html-single/installing_3scale/index#deploying-threescale-on-openshift-using-template
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.8/html-single/installing_3scale/index#deploying-a-fresh-installation

 name: system-redis
name: REDIS_SENTINEL_ROLE
 valueFrom:
 secretKeyRef:
 key: SENTINEL_ROLE
 name: system-redis
name: MESSAGE_BUS_REDIS_SENTINEL_HOSTS
 valueFrom:
 secretKeyRef:
 key: MESSAGE_BUS_SENTINEL_HOSTS
 name: system-redis
name: MESSAGE_BUS_REDIS_SENTINEL_ROLE
 valueFrom:
 secretKeyRef:
 key: MESSAGE_BUS_SENTINEL_ROLE
 name: system-redis

4. Proceed with instructions to continue Upgrading 3scale 2.7 to 2.8 using templates .

8.2.3.1. Using Redis Enterprise

1. Use Redis Enterprise deployed in OpenShift, with three different redis-enterprise instances:

a. Edit system-redis secret:

i. Set distinct values to MESSAGE_BUS_NAMESPACE and NAMESPACE.

ii. Set URL and MESSAGE_BUS_URL to the same database.

b. Set the back-end database in backend-redis to REDIS_QUEUES_URL.

c. Set the third database to REDIS_STORAGE_URL for backend-redis.

8.2.3.2. Using Redis Sentinel

1. Use Redis Sentinel, with three or four different Redis databases:

a. Edit system-redis secret:

i. Set distinct values to MESSAGE_BUS_NAMESPACE and NAMESPACE.

ii. Set URL and MESSAGE_BUS_URL to the proper Redis group, for example:
redis://:redispwd@mymaster/5

iii. Set SENTINEL_HOSTS and MESSAGE_BUS_SENTINEL_HOSTS to a comma-
separated list of sentinels hosts and ports, for example:
:sentinelpwd@123.45.67.009:2711,:sentinelpwd@other-sentinel:2722

iv. Set SENTINEL_ROLE and MESSAGE_BUS_SENTINEL_ROLE to master

2. Set the backend-redis secret for back-end with the values:

REDIS_QUEUES_URL

REDIS_QUEUES_SENTINEL_ROLE

REDIS_QUEUES_SENTINEL_HOSTS

CHAPTER 8. REDIS HIGH AVAILABILITY (HA) SUPPORT FOR 3SCALE

73

https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.8/html-single/migrating_3scale/index#upgrade-template

3. Set the variables in the third database as follows:

REDIS_STORAGE_URL

REDIS_STORAGE_SENTINEL_ROLE

REDIS_STORAGE_SENTINEL_HOSTS

Notes

The system-app and system-sidekiq components connect directly to back-end Redis for
retrieving statistics.

As of 3scale 2.7, these system components can also connect to back-end Redis (storage)
when using sentinels.

The system-app and system-sidekiq components uses only backend-redis storage, not
backend-redis queues.

Changes made to the system components support backend-redis storage with sentinels.

8.3. REDIS DATABASE SHARDING AND REPLICATION

Sharding, sometimes referred to as partitioning, separates large databases in to smaller databases called
shards. With replication, your database is set up with copies of the same dataset hosted on separate
machines.

Sharding

Sharding facilitates adding more leader instances, which is also useful when you have so much data that
it does not fit in a single database, or when the CPU load is close to 100%.

With Redis HA for 3scale, the following two reasons are why sharding is important:

Spliting and scaling large volumes of data and adjusting the number of shards for a particular
index to help avoid bottlenecks.

Distributing operations across different node, therefore increasing performance, for example,
when multiple machines are working on the same query.

The three main solutions for Redis database sharding with cluster mode disabled are:

Amazon ElastiCache

Standard Redis via Redis sentinels

Redis Enterprise

Replication

Redis database replication ensures redundancy by having your dataset replicated across different
machines. Using replication allows you to keep Redis working when the leader goes down. Data is then
pulled from a single instance, the leader, ensuring high availability.

With Redis HA for 3scale, database replication ensures high availability replicas of a primary shard. The
principles of operation involve:

When the primary shard fails, the replica shard will automatically be promoted to the new

Red Hat 3scale API Management 2.8 Installing 3scale

74

When the primary shard fails, the replica shard will automatically be promoted to the new
primary shard.

Upon recovery of the original primary shard, it automatically becomes the replica shard of the
new primary shard.

The three main solutions for Redis database replication are:

Redis Enterprise

Amazon ElastiCache

Standard Redis via Redis sentinels

Sharding with twemproxy

For Amazon ElastiCache and Standard Redis, sharding involves splitting data up based on keys. You
need a proxy component that given a particular key knows which shard to find, for example twemproxy.
Also known as nutcracker, twemproxy is a lightweight proxy solution for Redis protocols that finds
shards based on specific keys or server maps assigned to them. Adding sharding capabilities to your
Amazon ElastiCache or Standard Redis instance with twemproxy, has the following advantages:

The capability of sharding data automatically across multiple servers.

Support of multiple hashing modes and consistent hashing and distribution.

The capability to run in multiple instances, which allows clients to connect to the first available
proxy server.

Reduce the number of connections to the caching servers on the backend.

NOTE

Redis Enterprise uses its own proxy, so it does not need twemproxy.

Additional resources

Redis Sentinel Documentation.

twemproxy.

8.4. ADDITIONAL INFORMATION

For more information about 3scale and Redis database support, see Red Hat 3scale API
Management Supported Configurations.

For more information about Amazon ElastiCache for Redis, see the official Amazon ElastiCache
Documentation.

For more information about Redis Enterprise, see the latest Documentation.

CHAPTER 8. REDIS HIGH AVAILABILITY (HA) SUPPORT FOR 3SCALE

75

https://redis.io/topics/sentinel
https://github.com/twitter/twemproxy
https://access.redhat.com/articles/2798521#3scale-api-management-27-2
https://docs.aws.amazon.com/elasticache/index.html
https://docs.redislabs.com/latest/

CHAPTER 9. CONFIGURING AN EXTERNAL MYSQL
DATABASE

This guide provides information for externalizing the MySQL database for Chapter 7, 3scale High
Availability and Evaluation templates. This can be done by using the default amp.yml file. This is useful
where there are several infrastructure issues, such as network or filesystem, using the default system-
mysql pod.

The difference between this approach and the one in Chapter 7, 3scale High Availability and Evaluation
templates is that this provides a way for externalizing a MySQL database in case Red Hat 3scale API
Management was initially using the default amp.yml template.

NOTE

Red Hat supports 3scale configurations that use an external MySQL database. However,
the database itself is not within the scope of support.

Prerequisites

Access to an OpenShift Container Platform 3.11 cluster using an account with administrator
privileges.

A 3scale instance installation on the OpenShift cluster. See Chapter 1, Installing 3scale on
OpenShift.

To configure an external MySQL database for High Availability (HA), perform the steps outlined in the
following sections:

Section 9.1, “External MySQL database limitations”

Section 9.2, “Externalizing the MySQL database”

Section 9.3, “Rolling back”

9.1. EXTERNAL MYSQL DATABASE LIMITATIONS

There are limitations with the process of externalizing your MySQL database:

3scale On-premises versions

It has only been tested and verified on the 2.5 On-premises and 2.6 On-premises versions from 3scale.

MySQL database user

With the mysql2:// formatted URL, you must use 'root'@'%' or the connection to the database will fail.
Using any combination of username and password is not supported since 3scale uses 'root'@'%'.

MySQL host

Use the IP address from the external MySQL database instead of the hostname or it will not resolve. For
example, use 1.1.1.1 instead of mysql.mydomain.com.

9.2. EXTERNALIZING THE MYSQL DATABASE

Use the following steps to fully externalize the MySQL database.

Red Hat 3scale API Management 2.8 Installing 3scale

76

WARNING

This will cause downtime in the environment while the process is ongoing.

Procedure

1. Login to the OpenShift node where your 3scale On-premises instance is hosted and change to
its project:

oc login -u <user> <url>
oc project <3scale-project>

Replace <user>, <url>, and <3scale-project> with your own credentials and the project name.

2. Follow the steps below in the order shown to scale down all the pods. This will avoid loss of data.

Stop 3scale On-premises

From the OpenShift web console or from the command line interface (CLI), scale down all the
deployment configurations to zero replicas in the following order:

apicast-wildcard-router and zync for versions before 3scale 2.6 or zync-que and zync for
3scale 2.6 and above.

apicast-staging and apicast-production.

system-sidekiq, backend-cron, and system-sphinx.

3scale 2.3 includes system-resque.

system-app.

backend-listener and backend-worker.

backend-redis, system-memcache, system-mysql, system-redis, and zync-database.
The following example shows how to perform this in the CLI for apicast-wildcard-router
and zync:

oc scale dc/apicast-wildcard-router --replicas=0
oc scale dc/zync --replicas=0

NOTE

The deployment configuration for each step can be scaled down at the same
time. For example, you could scale down apicast-wildcard-router and zync
together. However, it is better to wait for the pods from each step to
terminate before scaling down the ones that follow. The 3scale instance will
be completely inaccessible until it is fully started again.

3. To confirm that no pods are running on the 3scale project use the following command:



CHAPTER 9. CONFIGURING AN EXTERNAL MYSQL DATABASE

77

oc get pod

The command should return No resources found.

4. Scale up the database level pods again using the following command:

oc scale dc/{backend-redis,system-memcache,system-mysql,system-redis,zync-database} --
replicas=1

5. Ensure that you are able to login to the external MySQL database through the system-mysql
pod before proceeding with the next steps:

oc rsh system-mysql-<system_mysql_pod_id>
mysql -u root -p -h <host>

<system_mysql_pod_id>: The identifier of the system-mysql pod.

The user should always be root. For more information see External MySQL database
limitations.

a. The CLI will now display mysql>. Type exit, then press return. Type exit again at the
next prompt to go back to the OpenShift node console.

6. Perform a full MySQL dump using the following command:

oc rsh system-mysql-<system_mysql_pod_id> /bin/bash -c "mysqldump -u root --single-
transaction --routines --triggers --all-databases" > system-mysql-dump.sql

Replace <system_mysql_pod_id> with your unique system-mysql pod ID .

Validate that the file system-mysql-dump.sql contains a valid MySQL level dump as in the
following example:

$ head -n 10 system-mysql-dump.sql
-- MySQL dump 10.13 Distrib 5.7.24, for Linux (x86_64)
--
-- Host: localhost Database:
-- --
-- Server version 5.7.24

/*!40101 SET @OLD_CHARACTER_SET_CLIENT=@@CHARACTER_SET_CLIENT */;
/*!40101 SET
@OLD_CHARACTER_SET_RESULTS=@@CHARACTER_SET_RESULTS */;
/*!40101 SET @OLD_COLLATION_CONNECTION=@@COLLATION_CONNECTION
*/;
/*!40101 SET NAMES utf8 */;

7. Scale down the system-mysql pod and leave it with 0 (zero) replicas:

oc scale dc/system-mysql --replicas=0

8. Find the base64 equivalent of the URL mysql2://root:<password>@<host>/system, replacing
<password> and <host> accordingly:

Red Hat 3scale API Management 2.8 Installing 3scale

78

https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.8/html-single/installing_3scale/index#external-mysql-database-limitations

echo "mysql2://root:<password>@<host>/system" | base64

9. Create a default 'user'@'%' on the remote MySQL database. It only needs to have SELECT
privileges. Also find its base64 equivalents:

echo "user" | base64
echo "<password>" | base64

Replace <password> with the password for 'user'@'%'.

10. Perform a backup and edit the OpenShift secret system-database:

oc get secret system-database -o yaml > system-database-orig.bkp.yml
oc edit secret system-database

URL: Replace it with the value from [step-8].

DB_USER and DB_PASSWORD: Use the values from the previous step for both.

11. Send system-mysql-dump.sql to the remote database server and import the dump into it. Use
the command to import it:

12. Use the command below to send system-mysql-dump.sql to the remote database server and
import the dump into the server:

mysql -u root -p < system-mysql-dump.sql

13. Ensure that a new database called system was created:

mysql -u root -p -se "SHOW DATABASES"

14. Use the following instructions to Start 3scale On-premises , which scales up all the pods in the
correct order.

Start 3scale On-premises

backend-redis, system-memcache, system-mysql, system-redis, and zync-database.

backend-listener and backend-worker.

system-app.

system-sidekiq, backend-cron, and system-sphinx

3scale 2.3 includes system-resque.

apicast-staging and apicast-production.

apicast-wildcard-router and zync for versions before 3scale 2.6 or zync-que and zync for
3scale 2.6 and above.
The following example shows how to perform this in the CLI for backend-redis, system-
memcache, system-mysql, system-redis, and zync-database:

oc scale dc/backend-redis --replicas=1

CHAPTER 9. CONFIGURING AN EXTERNAL MYSQL DATABASE

79

oc scale dc/system-memcache --replicas=1
oc scale dc/system-mysql --replicas=1
oc scale dc/system-redis --replicas=1
oc scale dc/zync-database --replicas=1

The system-app pod should now be up and running without any issues.

15. After validation, scale back up the other pods in the order shown.

16. Backup the system-mysql DeploymentConfig object. You may delete after a few days once
you are sure everything is running properly. Deleting system-mysql DeploymentConfig avoids
any future confusion if this procedure is done again in the future.

9.3. ROLLING BACK

Perform a rollback procedure if the system-app pod is not fully back online and the root cause for it
could not be determined or addressed after following step 14.

1. Edit the secret system-database using the original values from system-database-
orig.bkp.yml. See [step-10]:

oc edit secret system-database

Replace URL, DB_USER, and DB_PASSWORD with their original values.

2. Scale down all the pods and then scale them back up again, including system-mysql. The
system-app pod and the other pods to be started after it should be up and running again. Run
the following command to confirm all pods are back up and running:

oc get pods -n <3scale-project>

9.4. ADDITIONAL INFORMATION

For more information about 3scale and MySQL database support, see Red Hat 3scale API
Management Supported Configurations.

Red Hat 3scale API Management 2.8 Installing 3scale

80

https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.8/html-single/installing_3scale/index#scaling-up-pods
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.8/html-single/installing_3scale/index#scaling-up-pods
https://access.redhat.com/articles/2798521#3scale-api-management-27-2

CHAPTER 10. SETTING UP YOUR 3SCALE SYSTEM IMAGE
WITH AN ORACLE DATABASE

NOTE

The Oracle Database is only supported with OpenShift Container Platform
(OCP) 3.11 when you are performing a template-based installation of 3scale.

The Oracle Database is not supported with OCP version 4.2 and 4.3 when you are
performing an operator-only installation of 3scale.

For more information about supported configurations, see the Red Hat 3scale
API Management Supported Configurations page.

This section explains how a Red Hat 3scale API Management administrator sets up the 3scale system
image with an Oracle Database. By default, 3scale 2.8 has a component called system that stores
configuration data in a MySQL database. You can override the default database and store your
information in an external Oracle Database. Follow the steps in this chapter to build a custom system
container image with your own Oracle Database client binaries and deploy 3scale to OpenShift.

Prerequisites

A supported version of the following Oracle software components:

Oracle Instant Client Package: Basic or Basic Light

Oracle Instant Client Package: SDK

Oracle Instant Client Package: ODBC

Example packages

instantclient-basiclite-linux.x64-12.2.0.1.0.zip or instantclient-basic-linux.x64-12.2.0.1.0.zip

instantclient-sdk-linux.x64-12.2.0.1.0.zip

instantclient-odbc-linux.x64-12.2.0.1.0-2.zip

To set up your 3scale system image with and Oracle Database, perform the steps outlined in the
following sections:

Section 10.1, “Preparing the Oracle Database”

Section 10.2, “Building the system image”

10.1. PREPARING THE ORACLE DATABASE

This section provides steps for preparing your Oracle Database.

Prerequisites

A supported version of Oracle Database accessible from your OpenShift cluster

Access to the Oracle Database system user for installation procedures

CHAPTER 10. SETTING UP YOUR 3SCALE SYSTEM IMAGE WITH AN ORACLE DATABASE

81

https://access.redhat.com/articles/2798521
https://access.redhat.com/articles/2798521
https://access.redhat.com/articles/2798521

The 3scale 2.8 amp.yml template

Procedure

1. Create a new database.
The following settings are required for the Oracle Database to work with 3scale:

ALTER SYSTEM SET max_string_size=extended SCOPE=SPFILE;
ALTER SYSTEM SET compatible='12.2.0.1' SCOPE=SPFILE;

2. Collect the database details.
Get the following information that will be needed for 3scale configuration:

Oracle Database URL

Oracle Database service name

Oracle Database system password
The DATABASE_URL parameter must follow this format: oracle-
enhanced://${user}:${password}@${host}:${port}/${database}

Example

DATABASE_URL="oracle-enhanced://user:password@my-oracle-
database.com:1521/threescalepdb"

Additional resources

For information on creating a new database in Oracle Database, see the Oracle documentation.

10.2. BUILDING THE SYSTEM IMAGE

This section provides steps to build the system image.

Prerequisites

You should have already carried out the steps in Preparing the Oracle Database.

Procedure

1. Clone the 3scale API Management OpenShift Templates GitHub repository. Use the following
command:

$ git clone --branch 2.8.0.GA https://github.com/3scale/3scale-amp-openshift-templates.git

2. Place your Oracle Database Instant Client Package files into the 3scale-amp-openshift-
templates/amp/system-oracle/oracle-client-files directory.

3. Download the 3scale 2.8 amp.yml template.

4. Run the oc new-app command with the -f option and specify the build.yml OpenShift
template:

Red Hat 3scale API Management 2.8 Installing 3scale

82

https://docs.oracle.com/cd/E11882_01/network.112/e41945/glossary.htm#BGBGIHFG
https://docs.oracle.com/en/database/
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.8/html-single/installing_3scale/index#preparing-the-oracle-database
https://github.com/3scale/3scale-amp-openshift-templates/tree/2.8.0.GA

$ oc new-app -f build.yml

5. Run the oc new-app command with the -f option to indicate the amp.yml OpenShift template,
and the -p option to specify the WILDCARD_DOMAIN parameter with the domain of your
OpenShift cluster:

$ oc new-app -f amp.yml -p WILDCARD_DOMAIN=mydomain.com

6. Enter the following oc patch commands, replacing SYSTEM_PASSWORD with the Oracle
Database system password you set up in Preparing the Oracle Database:

$ oc patch dc/system-app -p '[{"op": "add", "path":
"/spec/strategy/rollingParams/pre/execNewPod/env/-", "value": {"name":
"ORACLE_SYSTEM_PASSWORD", "value": "SYSTEM_PASSWORD"}}]' --type=json

$ oc patch dc/system-app -p '{"spec": {"strategy": {"rollingParams": {"post":{"execNewPod":
{"env": [{"name": "ORACLE_SYSTEM_PASSWORD", "value":
"SYSTEM_PASSWORD"}]}}}}}}'

7. Enter the following command, replacing DATABASE_URL to point to your Oracle Database,
specified in Preparing the Oracle Database:

$ oc patch secret/system-database -p '{"stringData": {"URL": "DATABASE_URL"}}'

8. Link the pull secret to the builder with the following command:

$ oc secrets link builder threescale-registry-auth

9. Enter the oc start-build command to build the new system image:

$ oc start-build 3scale-amp-system-oracle --from-dir=.

For more information about 3scale and Oracle Database support, see Red Hat 3scale API
Management Supported Configurations.

CHAPTER 10. SETTING UP YOUR 3SCALE SYSTEM IMAGE WITH AN ORACLE DATABASE

83

https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.8/html-single/installing_3scale/index#preparing-the-oracle-database
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.8/html-single/installing_3scale/index#preparing-the-oracle-database
https://access.redhat.com/articles/2798521#3scale-api-management-28-2

	Table of Contents
	PREFACE
	CHAPTER 1. INSTALLING 3SCALE ON OPENSHIFT
	1.1. SYSTEM REQUIREMENTS FOR INSTALLING 3SCALE ON OPENSHIFT
	1.1.1. Environment requirements
	1.1.1.1. Using local filesystem storage
	1.1.1.2. Using Amazon Simple Storage Service (Amazon S3) storage

	1.1.2. Hardware requirements

	1.2. CONFIGURING NODES AND ENTITLEMENTS
	1.2.1. Configuring Amazon Simple Storage Service

	1.3. DEPLOYING 3SCALE ON OPENSHIFT USING A TEMPLATE
	1.4. CONFIGURING CONTAINER REGISTRY AUTHENTICATION
	1.4.1. Creating registry service accounts
	1.4.2. Modifying registry service accounts
	1.4.3. Importing the 3scale template
	1.4.4. Getting the Admin Portal URL
	1.4.5. Deploying 3scale with Amazon Simple Storage Service
	1.4.6. Deploying 3scale with PostgreSQL
	1.4.7. Configuring SMTP variables (optional)

	1.5. PARAMETERS OF THE 3SCALE TEMPLATE
	1.6. USING APICAST WITH 3SCALE ON OPENSHIFT
	1.6.1. Deploying APIcast templates on an existing OpenShift cluster containing 3scale
	1.6.2. Connecting APIcast from a different OpenShift cluster
	1.6.3. Changing the default behavior for embedded APIcast
	1.6.4. Connecting multiple APIcast deployments on a single OpenShift cluster over internal service routes
	1.6.5. Connecting APIcast on other deployments

	1.7. DEPLOYING 3SCALE USING THE OPERATOR
	1.7.1. Deploying the APIManager custom resource
	1.7.2. Getting the APIManager Admin Portal and Master Admin Portal credentials
	1.7.3. Getting the Admin Portal URL
	1.7.4. High availability in 3scale using the operator

	1.8. DEPLOYMENT CONFIGURATION OPTIONS FOR 3SCALE ON OPENSHIFT USING THE OPERATOR
	1.8.1. Default deployment configuration
	1.8.2. Evaluation installation
	1.8.3. External databases installation
	1.8.3.1. Backend Redis secret
	1.8.3.2. System Redis secret
	1.8.3.3. System database secret
	1.8.3.4. Zync database secret
	1.8.3.5. APIManager custom resources to deploy 3scale

	1.8.4. Amazon Simple Storage Service 3scale Filestorage installation
	1.8.4.1. Amazon S3 secret

	1.8.5. PostgreSQL installation
	1.8.6. Reconciliation
	1.8.6.1. Resources
	1.8.6.2. Backend replicas
	1.8.6.3. APIcast replicas
	1.8.6.4. System replicas
	1.8.6.5. Zync replicas

	1.9. TROUBLESHOOTING COMMON 3SCALE INSTALLATION ISSUES
	1.9.1. Previous deployment leaving dirty persistent volume claims
	1.9.2. Wrong or missing credentials of the authenticated image registry
	1.9.3. Incorrectly pulling from the Docker registry
	1.9.4. Permission issues for MySQL when persistent volumes are mounted locally
	1.9.5. Unable to upload logo or images
	1.9.6. Test calls not working on OpenShift
	1.9.7. APIcast on a different project from 3scale failing to deploy

	CHAPTER 2. INSTALLING APICAST
	2.1. APICAST DEPLOYMENT OPTIONS
	2.2. APICAST ENVIRONMENTS
	2.3. CONFIGURING THE INTEGRATION SETTINGS
	2.4. CONFIGURING YOUR SERVICE
	2.4.1. Declaring the API backend
	2.4.2. Configuring the authentication settings
	2.4.3. Configuring the API test call

	2.5. INSTALLING THE APICAST OPERATOR
	2.6. DEPLOYING AN APICAST GATEWAY SELF-MANAGED SOLUTION USING THE OPERATOR
	2.6.1. APICast deployment and configuration options
	2.6.1.1. Providing a 3scale system endpoint
	2.6.1.2. Providing a configuration secret

	2.7. WEBSOCKET PROTOCOL SUPPORT FOR APICAST
	2.7.1. WebSocket protocol support

	2.8. HTTP/2 IN THE APICAST GATEWAY
	2.8.1. HTTP/2 protocol support

	2.9. ADDITIONAL RESOURCES

	CHAPTER 3. RUNNING APICAST ON RED HAT OPENSHIFT
	3.1. SETTING UP RED HAT OPENSHIFT
	3.1.1. Installing the Docker containerized environment
	3.1.2. Starting the OpenShift cluster
	3.1.3. Setting up the OpenShift cluster on a remote server (Optional)

	3.2. DEPLOYING APICAST USING THE OPENSHIFT TEMPLATE
	3.3. CREATING ROUTES VIA THE OPENSHIFT CONSOLE

	CHAPTER 4. DEPLOYING APICAST ON THE DOCKER CONTAINERIZED ENVIRONMENT
	4.1. INSTALLING THE DOCKER CONTAINERIZED ENVIRONMENT
	4.2. RUNNING THE DOCKER CONTAINERIZED ENVIRONMENT GATEWAY
	4.2.1. The docker command options
	4.2.2. Testing APIcast

	4.3. ADDITIONAL RESOURCES

	CHAPTER 5. DEPLOYING APICAST ON PODMAN
	5.1. INSTALLING THE PODMAN CONTAINER ENVIRONMENT
	5.2. RUNNING THE PODMAN ENVIRONMENT
	5.2.1. Testing APIcast with Podman

	5.3. THE PODMAN COMMAND OPTIONS
	5.4. ADDITIONAL RESOURCES

	CHAPTER 6. INSTALLING THE 3SCALE OPERATOR ON OPENSHIFT
	6.1. CREATING A NEW OPENSHIFT PROJECT
	6.2. INSTALLING AND CONFIGURING THE 3SCALE OPERATOR USING THE OLM

	CHAPTER 7. 3SCALE HIGH AVAILABILITY AND EVALUATION TEMPLATES
	7.1. HIGH AVAILABILITY TEMPLATE
	7.1.1. Setting RWX_STORAGE_CLASS for high availability

	7.2. EVALUATION TEMPLATE

	CHAPTER 8. REDIS HIGH AVAILABILITY (HA) SUPPORT FOR 3SCALE
	8.1. SETTING UP REDIS FOR ZERO DOWNTIME
	8.2. CONFIGURING BACK-END COMPONENTS FOR 3SCALE
	8.2.1. Creating backend-redis and system-redis secrets
	8.2.2. Deploying a fresh installation of 3scale for HA
	8.2.3. Migrating a non-HA deployment of 3scale to HA
	8.2.3.1. Using Redis Enterprise
	8.2.3.2. Using Redis Sentinel

	8.3. REDIS DATABASE SHARDING AND REPLICATION
	8.4. ADDITIONAL INFORMATION

	CHAPTER 9. CONFIGURING AN EXTERNAL MYSQL DATABASE
	9.1. EXTERNAL MYSQL DATABASE LIMITATIONS
	9.2. EXTERNALIZING THE MYSQL DATABASE
	9.3. ROLLING BACK
	9.4. ADDITIONAL INFORMATION

	CHAPTER 10. SETTING UP YOUR 3SCALE SYSTEM IMAGE WITH AN ORACLE DATABASE
	10.1. PREPARING THE ORACLE DATABASE
	10.2. BUILDING THE SYSTEM IMAGE

