
Red Hat Advanced Cluster Management
for Kubernetes 2.10

GitOps

GitOps

Last Updated: 2024-06-28

Red Hat Advanced Cluster Management for Kubernetes 2.10 GitOps

GitOps

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Read more to learn how to use integrated GitOps and Argo CD.

. .

Table of Contents

CHAPTER 1. GITOPS OVERVIEW
1.1. GITOPS CONSOLE

1.1.1. Querying Argo CD applications
1.2. REGISTERING MANAGED CLUSTERS TO OPENSHIFT GITOPS OPERATOR

1.2.1. Prerequisites
1.2.2. Registering managed clusters to GitOps
1.2.3. GitOps token
1.2.4. Additional resources

1.3. CONFIGURING APPLICATION PLACEMENT TOLERATIONS FOR GITOPS
1.4. DEPLOYING ARGO CD WITH PUSH AND PULL MODEL

1.4.1. Prerequisites
1.4.2. Architecture

1.4.2.1. Architecture Push model
1.4.2.2. Architecture Pull model

1.4.3. Creating the ApplicationSet custom resource
1.4.4. MulticlusterApplicationSetReport
1.4.5. Additional resources

1.5. MANAGING POLICY DEFINITIONS WITH OPENSHIFT CONTAINER PLATFORM GITOPS (ARGO CD)
1.5.1. Integrating the Policy Generator with OpenShift Container Platform GitOps (Argo CD)
1.5.2. Additional resources

1.6. GENERATING A POLICY TO INSTALL GITOPS OPERATOR
1.6.1. Generating a policy that installs OpenShift Container Platform GitOps
1.6.2. Using policy dependencies with OperatorGroups
1.6.3. Additional resources

1.7. CREATING A CUSTOMIZED SERVICE ACCOUNT FOR ARGO CD PUSH MODEL
1.7.1. Creating a managed service account
1.7.2. Creating a cluster permission
1.7.3. Using a managed service account in the GitOpsCluster resource
1.7.4. Creating an Argo CD application
1.7.5. Using policy to create managed service accounts and cluster permissions

3
3
3
4
4
4
5
6
6
6
7
8
8
9
9
11

12
12
14
15
15
16
18
18
18
19
19
21
22
22

Table of Contents

1

Red Hat Advanced Cluster Management for Kubernetes 2.10 GitOps

2

CHAPTER 1. GITOPS OVERVIEW
Red Hat OpenShift Container Platform GitOps and Argo CD is integrated with Red Hat Advanced
Cluster Management for Kubernetes, with advanced features compared to the original Application
Lifecycle Channel and Subscription model.

GitOps integration with Argo CD development is active, as well as the large community that contributes
feature enhancements and updates to Argo CD. By utilizing the OpenShift Container Platform GitOps
Operator, you can use the latest advancements in Argo CD development and receive support from the
GitOps Operator subscription.

See the following topics to learn more about Red Hat Advanced Cluster Management for Kubernetes
integration with OpenShift Container Platform GitOps and Argo CD:

GitOps console

Registering managed clusters to OpenShift GitOps operator

Configuring application placement tolerations for GitOps

Deploying Argo CD with the Push and Pull model

Generating a policy to install GitOps Operator

Managing policy definitions with OpenShift Container Platform GitOps (Argo CD)

1.1. GITOPS CONSOLE

Learn more about integrated OpenShift Container Platform GitOps console features. Create and view
applications, such as ApplicationSet, and Argo CD types. An ApplicationSet represents Argo
applications that are generated from the controller.

For an Argo CD ApplicationSet to be created, you need to enable Automatically sync when
cluster state changes from the Sync policy.

For Flux with the kustomization controller, find Kubernetes resources with the label
kustomize.toolkit.fluxcd.io/name=<app_name>.

For Flux with the helm controller, find Kubernetes resources with the label
helm.toolkit.fluxcd.io/name=<app_name>.

You need GitOps cluster resources and the GitOps operator installed to create an
ApplicationSet. Without these prerequisites, you will see no Argo server options in the console
to create an ApplicationSet.

Important: Available actions are based on your assigned role. Learn about access requirements from the
Role-based access control documentation.

Click Launch resource in Search to search for related resources.

Use Search to find application resources by the component kind for each resource. To search
for resources, use the following values:

1.1.1. Querying Argo CD applications

When you search for an Argo CD application, you are directed to the Applications page. Complete the

CHAPTER 1. GITOPS OVERVIEW

3

../../html-single/access_control#role-based-access-control

When you search for an Argo CD application, you are directed to the Applications page. Complete the
following steps to access the Argo CD application from the Search page:

1. Log in to your Red Hat Advanced Cluster Management hub cluster.

2. From the console header, select the Search icon.

3. Filter your query with the following values: kind:application and apigroup:argoproj.io.

4. Select an application to view. The Application page displays an overview of information for the
application.

For more information about search, see Searching in the console introduction .

1.2. REGISTERING MANAGED CLUSTERS TO OPENSHIFT GITOPS
OPERATOR

To configure GitOps with the Push model, you can register a set of one or more Red Hat Advanced
Cluster Management for Kubernetes managed clusters to an instance of Red Hat OpenShift Container
Platform GitOps operator. After registering, you can deploy applications to those clusters. Set up a
continuous GitOps environment to automate application consistency across clusters in development,
staging, and production environments.

1.2.1. Prerequisites

1. You need to install the Red Hat OpenShift GitOps operator on your Red Hat Advanced Cluster
Management for Kubernetes.

2. Import one or more managed clusters.

1.2.2. Registering managed clusters to GitOps

Complete the following steps to register managed clusters to GitOps:

1. Create managed cluster set bindings and add managed clusters to those managed cluster set
bind. See the example for managed cluster sets in the multicloud-integrations
managedclusterset.
See the Creating a ManagedClusterSet documentation for more information.

2. Create a managed cluster set binding to the namespace where Red Hat OpenShift GitOps is
deployed. For an example of binding the managed cluster to the openshift-gitops namespace,
see the multicloud-integrations managed clusterset binding example. In the Additional
resources section, see Creating a ManagedClusterSetBinding resource for more general
information about creating a ManagedClusterSetBinding. See Filtering ManagedClusters from
ManagedClusterSets for placement information.

3. In the namespace that is used in managed cluster set binding, create a Placement custom
resource to select a set of managed clusters to register to an OpenShift Container Platform
GitOps operator instance. Use the multicloud-integration placement example as a template.
See Using ManagedClusterSets with Placement for placement information.
Notes:

Only OpenShift Container Platform clusters are registered to an Red Hat OpenShift
Container Platform GitOps operator instance, not other Kubernetes clusters.

In some unstable network scenarios, the managed clusters might be temporarily placed in

Red Hat Advanced Cluster Management for Kubernetes 2.10 GitOps

4

../../html-single/observability#searching-in-the-console-intro
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.13/html/cicd/gitops
https://github.com/open-cluster-management-io/multicloud-integrations/blob/main/examples/managedclustersetbinding.yaml
../../html-single/clusters#creating-a-managedclusterset
https://github.com/stolostron/multicloud-integrations/blob/main/examples/managedclustersetbinding.yaml
../../html-single/clusters

1

In some unstable network scenarios, the managed clusters might be temporarily placed in
unavailable or unreachable state. See Configuring placement tolerations for Red Hat
Advanced Cluster Management and OpenShift GitOps for more details.

4. Create a GitOpsCluster custom resource to register the set of managed clusters from the
placement decision to the specified instance of OpenShift GitOps. This enables the OpenShift
GitOps instance to deploy applications to any of those Red Hat Advanced Cluster Management
managed clusters. Use the multicloud-integrations GitOps cluster example.
Note: The referenced Placement resource must be in the same namespace as the
GitOpsCluster resource. See the following example:

The placementRef.name value is all-openshift-clusters, and is specified as target
clusters for the GitOps instance that is installed in argoNamespace: openshift-gitops.
The argoServer.cluster specification requires the local-cluster value.

5. Save your changes. You can now follow the GitOps workflow to manage your applications.

1.2.3. GitOps token

When you integrate with the GitOps operator for every managed cluster that is bound to the GitOps
namespace through the placement and ManagedClusterSetBinding custom resources, a secret with a
token to access the ManagedCluster is created in the namespace. This is required for the GitOps
controller to sync resources to the managed cluster. When a user is given administrator access to a
GitOps namespace to perform application lifecycle operations, the user also gains access to this secret
and admin level to the managed cluster.

If this is not desired, instead of binding the user to the namespace-scoped admin role, use a more
restrictive custom role with permissions required to work with application resources that can be created
and used to bound the user. See the following ClusterRole example:

apiVersion: apps.open-cluster-management.io/v1beta1
kind: GitOpsCluster
metadata:
 name: gitops-cluster-sample
 namespace: dev
spec:
 argoServer:
 cluster: local-cluster
 argoNamespace: openshift-gitops
 placementRef:
 kind: Placement
 apiVersion: cluster.open-cluster-management.io/v1beta1
 name: all-openshift-clusters 1

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 name: application-set-admin
rules:
- apiGroups:
 - argoproj.io
 resources:
 - applicationsets
 verbs:

CHAPTER 1. GITOPS OVERVIEW

5

1.2.4. Additional resources

Refer to Configuring application placement tolerations for GitOps for more details.

See the multicloud-integrations managed cluster set example.

Refer to Creating a ManagedClusterSet

See the multicloud-integration placement example.

See Placement overview for placement information.

See the multicloud-integrations GitOps cluster example.

See the multicloud-integrations managed cluster set binding example.

See Creating a ManagedClusterSetBinding resource documentation for more information.

See About GitOps to learn more.

1.3. CONFIGURING APPLICATION PLACEMENT TOLERATIONS FOR
GITOPS

Red Hat Advanced Cluster Management provides a way for you to register managed clusters that
deploy applications to Red Hat OpenShift GitOps.

In some unstable network scenarios, the managed clusters might be temporarily placed in Unavailable
state. If a Placement resource is being used to facilitate the deployment of applications, add the
following tolerations for the Placement resource to continue to include unavailable clusters. The
following example shows a Placement resource with tolerations:

1.4. DEPLOYING ARGO CD WITH PUSH AND PULL MODEL

Using a Push model, The Argo CD server on the hub cluster deploys the application resources on the

 - get
 - list
 - watch
 - update
 - delete
 - deletecollection
 - patch

apiVersion: cluster.open-cluster-management.io/v1beta1
kind: Placement
metadata:
 name: placement
 namespace: ns1
spec:
 tolerations:
 - key: cluster.open-cluster-management.io/unreachable
 operator: Exists
 - key: cluster.open-cluster-management.io/unavailable
 operator: Exists

Red Hat Advanced Cluster Management for Kubernetes 2.10 GitOps

6

https://github.com/open-cluster-management-io/multicloud-integrations/blob/main/examples/managedclustersetbinding.yaml
../../html-single/clusters#creating-a-managedclusterset
https://github.com/stolostron/multicloud-integrations/blob/main/examples/placement.yaml
../../html-single/clusters
https://github.com/stolostron/multicloud-integrations/blob/main/examples/gitopscluster.yaml
https://github.com/stolostron/multicloud-integrations/blob/main/examples/managedclustersetbinding.yaml
../../html-single/clusters#creating-a-managedclustersetbinding
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.13/html-single/cicd/index#understanding-openshift-gitops

Using a Push model, The Argo CD server on the hub cluster deploys the application resources on the
managed clusters. For the Pull model, the application resources are propagated by the Propagation
controller to the managed clusters by using manifestWork.

For both models, the same ApplicationSet CRD is used to deploy the application to the managed
cluster.

Required access: Cluster administrator

Prerequisites

Architecture

Creating the ApplicationSet custom resource

MulticlusterApplicationSetReport

1.4.1. Prerequisites

View the following prerequisites for the Argo CD Pull model:

Important:

If your openshift-gitops-ArgoCD-application-controller service account is not assigned as a
cluster administrator, the GitOps application controller might not deploy resources. The
application status might send an error similar to the following error:

cannot create resource "services" in API group "" in the namespace
"mortgage",deployments.apps is forbidden: User
"system:serviceaccount:openshift-gitops:openshift-gitops-Argo CD-application-controller"

After you install the OpenShift Gitops operator on the managed clusters, you must create the
ClusterRoleBinding cluster administrator privileges on the same managed clusters.

To add the ClusterRoleBinding cluster administrator privileges to your managed clusters, see
the following example YAML:

If you are not a cluster administrator and need to resolve this issue, complete the following
steps:

1. Create all namespaces on each managed cluster where the Argo CD application will be
deployed.

2. Add the managed-by label to each namespace. If an Argo CD application is deployed to

kind: ClusterRoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 name: argo-admin
subjects:
 - kind: ServiceAccount
 name: openshift-gitops-argocd-application-controller
 namespace: openshift-gitops
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: cluster-admin

CHAPTER 1. GITOPS OVERVIEW

7

2. Add the managed-by label to each namespace. If an Argo CD application is deployed to
multiple namespaces, each namespace should be managed by Argo CD.
See the following example with the managed-by label:

1. You must declare all application destination namespaces in the repository for the
application and include the managed-by label in the namespaces. Refer to Additional
resources to learn how to declare a namespace.

See the following requirements to use the Argo CD Pull model:

The GitOps operator must be installed on the hub cluster and the target managed clusters in
the openshift-gitops namespace.

The required hub cluster OpenShift Container Platform GitOps operator must be version 1.9.0
or later.

The required managed clusters OpenShift Container Platform GitOps operator must be the
same version as the hub cluster.

You need the ApplicationSet controller to propagate the Argo CD application template for a
managed cluster.

Every managed cluster must have a cluster secret in the Argo CD server namespace on the hub
cluster, which is required by the ArgoCD application set controller to propagate the Argo CD
application template for a managed cluster.
To create the cluster secret, create a gitOpsCluster resource that contains a reference to a
placement resource. The placement resource selects all the managed clusters that need to
support the Pull model. When the GitOps cluster controller reconciles, it creates the cluster
secrets for the managed clusters in the Argo CD server namespace.

1.4.2. Architecture

For both Push and Pull model, the Argo CD ApplicationSet controller on the hub cluster reconciles to
create application resources for each target managed cluster. See the following information about
architecture for both models:

1.4.2.1. Architecture Push model

With Push model, OpenShift Container Platform GitOps applies resources directly from a
centralized hub cluster to the managed clusters.

An Argo CD application that is running on the hub cluster communicates with the GitHub
repository and deploys the manifests directly to the managed clusters.

Push model implementation only contains the Argo CD application on the hub cluster, which has
credentials for managed clusters. The Argo CD application on the hub cluster can deploy the
applications to the managed clusters.

Important: With a large number of managed clusters that require resource application, consider

apiVersion: v1
kind: Namespace
metadata:
 name: mortgage2
 labels:
 argocd.argoproj.io/managed-by: openshift-gitops

Red Hat Advanced Cluster Management for Kubernetes 2.10 GitOps

8

Important: With a large number of managed clusters that require resource application, consider
potential strain on the OpenShift Container Platform GitOps controller memory and CPU
usage. To optimize resource management, refer to Configuring resource quota or requests .

By default, the Push model is used to deploy the application unless you add the apps.open-
cluster-management.io/ocm-managed-cluster and apps.open-cluster-management.io/pull-
to-ocm-managed-cluster annotations to the template section of the ApplicationSet.

1.4.2.2. Architecture Pull model

Pull model can provide scalability relief compared to the push model by reducing stress on the
controller in the hub cluster, but with more requests and status reporting required.

With Pull model, OpenShift Container Platform GitOps does not apply resources directly from a
centralized hub cluster to the managed clusters. The Argo CD Application is propagated from
the hub cluster to the managed clusters.

Pull model implementation applies OpenShift Cluster Manager registration, placement, and
manifestWork APIs so that the hub cluster can use the secure communication channel between
the hub cluster and the managed cluster to deploy resources.

Each managed cluster individually communicates with the GitHub repository to deploy the
resource manifests locally, so you must install and configure GitOps operators on each
managed cluster.

An Argo CD server must be running on each target managed cluster. The Argo CD application
resources are replicated on the managed clusters, which are then deployed by the local Argo CD
server. The distributed Argo CD applications on the managed clusters are created with a single
Argo CD ApplicationSet resource on the hub cluster.

The managed cluster is determined by the value of the ocm-managed-cluster annotation.

For successful implementation of Pull model, the Argo CD application controller must ignore
Push model application resources with the argocd.argoproj.io/skip-reconcile annotation in the
template section of the ApplicationSet.

For Pull model, the Argo CD Application controller on the managed cluster reconciles to deploy
the application.

The Pull model Resource sync controller on the hub cluster queries the OpenShift Cluster
Manager search V2 component on each managed cluster periodically to retrieve the resource
list and error messages for each Argo CD application.

The Aggregation controller on the hub cluster creates and updates the
MulticlusterApplicationSetReport from across clusters by using the data from the Resource
sync controller, and the status information from manifestWork.

The status of the deployments is gathered back to the hub cluster, but not all the detailed
information is transmitted. Additional status updates are periodically scraped to provide an
overview. The status feedback is not real-time, and each managed cluster GitOps operator
needs to communicate with the Git repository, which results in multiple requests.

1.4.3. Creating the ApplicationSet custom resource

The Argo CD ApplicationSet resource is used to deploy applications on the managed clusters by using

CHAPTER 1. GITOPS OVERVIEW

9

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.13/html/cicd/gitops#configuring-resource-quota

1

2

The Argo CD ApplicationSet resource is used to deploy applications on the managed clusters by using
the Push or Pull model with a placement resource in the generator field that is used to get a list of
managed clusters.

1. For the Pull model, set the destination for the application to the default local Kubernetes server,
as displayed in the following example. The application is deployed locally by the application
controller on the managed cluster.

2. Add the annotations that are required to override the default Push model, as displayed in the
following example ApplicationSet YAML, which uses the Pull model with template annotations:

The apps.open-cluster-management.io/ocm-managed-cluster is needed for the Pull
model.

The argocd.argoproj.io/skip-reconcile is needed to ignore the Push model resources.

apiVersion: argoproj.io/v1alpha1
kind: `ApplicationSet`
metadata:
 name: guestbook-allclusters-app-set
 namespace: openshift-gitops
spec:
 generators:
 - clusterDecisionResource:
 configMapRef: ocm-placement-generator
 labelSelector:
 matchLabels:
 cluster.open-cluster-management.io/placement: aws-app-placement
 requeueAfterSeconds: 30
 template:
 metadata:
 annotations:
 apps.open-cluster-management.io/ocm-managed-cluster: '{{name}}' 1
 apps.open-cluster-management.io/ocm-managed-cluster-app-namespace: openshift-
gitops
 argocd.argoproj.io/skip-reconcile: "true" 2
 labels:
 apps.open-cluster-management.io/pull-to-ocm-managed-cluster: "true" 3
 name: '{{name}}-guestbook-app'
 spec:
 destination:
 namespace: guestbook
 server: https://kubernetes.default.svc
 project: default
 sources: [
 {
 repoURL: https://github.com/argoproj/argocd-example-apps.git
 targetRevision: main
 path: guestbook
 }
]
 syncPolicy:
 automated: {}
 syncOptions:
 - CreateNamespace=true

Red Hat Advanced Cluster Management for Kubernetes 2.10 GitOps

10

3 The apps.open-cluster-management.io/pull-to-ocm-managed-cluster: "true" is also
needed for the Pull model.

1.4.4. MulticlusterApplicationSetReport

For the Pull model, the MulticlusterApplicationSetReport aggregates application status from
across your managed clusters.

The report includes the list of resources and the overall status of the application from each
managed cluster.

A separate report resource is created for each Argo CD ApplicationSet resource. The report is
created in the same namespace as the ApplicationSet.

The report includes the following items:

1. A list of resources for the Argo CD application

2. The overall sync and health status for each Argo CD application

3. An error message for each cluster where the overall status is out of sync or unhealthy

4. A summary status all the states of your managed clusters

The Resource sync controller and the Aggregation controller both run every 10 seconds to
create the report.

The two controllers, along with the Propagation controller, run in separate containers in the
same multicluster-integrations pod, as shown in the following example output:

NAMESPACE NAME READY STATUS
open-cluster-management multicluster-integrations-7c46498d9-fqbq4 3/3 Running

The following is an example MulticlusterApplicationSetReport YAML file for the guestbook
application:

apiVersion: apps.open-cluster-management.io/v1alpha1
kind: MulticlusterApplicationSetReport
metadata:
 labels:
 apps.open-cluster-management.io/hosting-applicationset: openshift-gitops.guestbook-allclusters-
app-set
 name: guestbook-allclusters-app-set
 namespace: openshift-gitops
statuses:
 clusterConditions:
 - cluster: cluster1
 conditions:
 - message: 'Failed sync attempt: one or more objects failed to apply, reason: services is forbidden:
User "system:serviceaccount:openshift-gitops:openshift-gitops-Argo CD-application-controller" cannot
create resource "services" in API group "" in the namespace "guestbook",deployments.apps is
forbidden: User <name> cannot create resource "deployments" in API group "apps" in the
namespace "guestboo...'
 type: SyncError
 healthStatus: Missing

CHAPTER 1. GITOPS OVERVIEW

11

Note: If a resource fails to deploy, the resource is not included in the resource list. See error messages
for information.

1.4.5. Additional resources

See Configuring an OpenShift cluster by deploying an application with cluster configurations in
the OpenShift Container Platform documentation.

See Setting up an Argo CD instance in the OpenShift Container Platform documentation.

1.5. MANAGING POLICY DEFINITIONS WITH OPENSHIFT CONTAINER
PLATFORM GITOPS (ARGO CD)

Deprecated: PlacementRule

Based on Argo CD, you can use OpenShift Container Platform GitOps to manage policy definitions. To
allow this workflow, you must grant OpenShift Container Platform GitOps access for you to create
policies on the Red Hat Advanced Cluster Management hub cluster. Complete the following steps to
create a ClusterRole resource for OpenShift Container Platform GitOps, with access to create, read,
update, and delete policies and placements:

1. Create a ClusterRole from the console. Your ClusterRole might resemble the following
example:

 syncStatus: OutOfSync
 - cluster: pcluster1
 healthStatus: Progressing
 syncStatus: Synced
 - cluster: pcluster2
 healthStatus: Progressing
 syncStatus: Synced
 summary:
 clusters: "3"
 healthy: "0"
 inProgress: "2"
 notHealthy: "3"
 notSynced: "1"
 synced: "2"

kind: ClusterRole
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 name: openshift-gitops-policy-admin
rules:
 - verbs:
 - get
 - list
 - watch
 - create
 - update
 - patch
 - delete
 apiGroups:
 - policy.open-cluster-management.io
 resources:

Red Hat Advanced Cluster Management for Kubernetes 2.10 GitOps

12

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.13/html/cicd/gitops#configuring-an-openshift-cluster-by-deploying-an-application-with-cluster-configurations
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.13/html/cicd/gitops#setting-up-argocd-instance

2. Create a ClusterRoleBinding object to grant the OpenShift Container Platform GitOps service
account access to the openshift-gitops-policy-admin ClusterRole object. Your
ClusterRoleBinding might resemble the following example:

When a Red Hat Advanced Cluster Management policy definition is deployed with OpenShift Container
Platform GitOps, a copy of the policy is created in each managed cluster namespace. These copies are
called replicated policies. To prevent OpenShift Container Platform GitOps from repeatedly deleting
this replicated policy or show that the ArgoCD Application is out of sync, the
argocd.argoproj.io/compare-options: IgnoreExtraneous annotation is automatically set on each
replicated policy by the Red Hat Advanced Cluster Management policy framework.

There are labels and annotations used by Argo CD to track objects. For replicated policies to not show

 - policies
 - policysets
 - placementbindings
 - verbs:
 - get
 - list
 - watch
 - create
 - update
 - patch
 - delete
 apiGroups:
 - apps.open-cluster-management.io
 resources:
 - placementrules
 - verbs:
 - get
 - list
 - watch
 - create
 - update
 - patch
 - delete
 apiGroups:
 - cluster.open-cluster-management.io
 resources:
 - placements
 - placements/status
 - placementdecisions
 - placementdecisions/status

kind: ClusterRoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 name: openshift-gitops-policy-admin
subjects:
 - kind: ServiceAccount
 name: openshift-gitops-argocd-application-controller
 namespace: openshift-gitops
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: openshift-gitops-policy-admin

CHAPTER 1. GITOPS OVERVIEW

13

There are labels and annotations used by Argo CD to track objects. For replicated policies to not show
up at all in Argo CD, you can set spec.copyPolicyMetadata to false on the Red Hat Advanced Cluster
Management policy definition to disable the Argo CD tracking labels and annotations from being copied
to the replicated policy.

1.5.1. Integrating the Policy Generator with OpenShift Container Platform GitOps
(Argo CD)

Based on Argo CD, you can use OpenShift Container Platform GitOps to generate policies by using the
Policy Generator through GitOps. Since the Policy Generator does not come preinstalled in the
OpenShift Container Platform GitOps container image, some customization must take place. In order to
follow along, you must have the OpenShift Container Platform GitOps Operator installed on the Red
Hat Advanced Cluster Management hub cluster and be sure to log in to the hub cluster.

For OpenShift Container Platform GitOps to have access to the Policy Generator when you run
Kustomize, an Init Container is required to copy the Policy Generator binary from the Red Hat Advanced
Cluster Management Application Subscription container image to the OpenShift Container Platform
GitOps container. Additionally, OpenShift Container Platform GitOps must be configured to provide the
--enable-alpha-plugins flag when it runs Kustomize. Complete the following steps:

1. Start editing the OpenShift Container Platform GitOps argocd object with the following
command:

2. Modify the OpenShift Container Platform GitOps argocd object to contain the following
additional YAML content. When a new major version of Red Hat Advanced Cluster Management
is released and you want to update the Policy Generator to a newer version, you need to update
the registry.redhat.io/rhacm2/multicluster-operators-subscription-rhel9 image used by the
Init Container to a newer tag. View the following example and replace <version> with 2.10 or
your desired Red Hat Advanced Cluster Management version:

oc -n openshift-gitops edit argocd openshift-gitops

apiVersion: argoproj.io/v1beta1
kind: ArgoCD
metadata:
 name: openshift-gitops
 namespace: openshift-gitops
spec:
 kustomizeBuildOptions: --enable-alpha-plugins
 repo:
 env:
 - name: KUSTOMIZE_PLUGIN_HOME
 value: /etc/kustomize/plugin
 initContainers:
 - args:
 - -c
 - cp /policy-generator/PolicyGenerator-not-fips-compliant /policy-generator-
tmp/PolicyGenerator
 command:
 - /bin/bash
 image: registry.redhat.io/rhacm2/multicluster-operators-subscription-rhel9:v<version>
 name: policy-generator-install
 volumeMounts:
 - mountPath: /policy-generator-tmp
 name: policy-generator

Red Hat Advanced Cluster Management for Kubernetes 2.10 GitOps

14

Note: Alternatively, you can create a ConfigurationPolicy resource that contains the ArgoCD
manifest and template the version to match the version set in the MulticlusterHub:

If you want to enable the processing of Helm charts inside of a Kustomize directory before
generating policies, set the environment variable POLICY_GEN_ENABLE_HELM to "true" in
the spec.repo.env field:

3. Now that OpenShift Container Platform GitOps can use the Policy Generator, OpenShift
Container Platform GitOps must be granted access to create policies on the Red Hat Advanced
Cluster Management hub cluster. Create the ClusterRole resource called openshift-gitops-
policy-admin, with access to create, read, update, and delete policies and placements. Refer to
the ealier ClusterRole resource example.

4. Create a ClusterRoleBinding object to grant the OpenShift Container Platform GitOps service
account access to the openshift-gitops-policy-admin ClusterRole. Your ClusterRoleBinding
might resemble the following resource:

1.5.2. Additional resources

Refer to Argo CD documentation.

1.6. GENERATING A POLICY TO INSTALL GITOPS OPERATOR

A common use of Red Hat Advanced Cluster Management policies is to install an Operator on one or
more managed Red Hat OpenShift Container Platform clusters. Continue reading to learn how to
generate policies by using the Policy Generator, and to install the OpenShift Container Platform GitOps
Operator with a generated policy:

 volumeMounts:
 - mountPath: /etc/kustomize/plugin/policy.open-cluster-management.io/v1/policygenerator
 name: policy-generator
 volumes:
 - emptyDir: {}
 name: policy-generator

image: '{{ (index (lookup "apps/v1" "Deployment" "open-cluster-management" "multicluster-
operators-hub-subscription").spec.template.spec.containers 0).image }}'

env:
- name: POLICY_GEN_ENABLE_HELM
 value: "true"

kind: ClusterRoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 name: openshift-gitops-policy-admin
subjects:
 - kind: ServiceAccount
 name: openshift-gitops-argocd-application-controller
 namespace: openshift-gitops
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: openshift-gitops-policy-admin

CHAPTER 1. GITOPS OVERVIEW

15

https://argoproj.github.io/argo-cd/

1.6.1. Generating a policy that installs OpenShift Container Platform GitOps

You can generate a policy that installs OpenShift Container Platform GitOps by using the Policy
Generator. The OpenShift Container Platform GitOps operator offers the all namespaces installation
mode, which you can view in the following example. Create a Subscription manifest file called
openshift-gitops-subscription.yaml, similar to the following example:

To pin to a specific version of the operator, add the following parameter and value: spec.startingCSV:
openshift-gitops-operator.v<version>. Replace <version> with your preferred version.

A PolicyGenerator configuration file is required. Use the configuration file named policy-generator-
config.yaml to generate a policy to install OpenShift Container Platform GitOps on all OpenShift
Container Platform managed clusters. See the following example:

The last required file is kustomization.yaml, which requires the following configuration:

The generated policy might resemble the following file with PlacementRule(Deprecated):

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: openshift-gitops-operator
 namespace: openshift-operators
spec:
 channel: stable
 name: openshift-gitops-operator
 source: redhat-operators
 sourceNamespace: openshift-marketplace

apiVersion: policy.open-cluster-management.io/v1
kind: PolicyGenerator
metadata:
 name: install-openshift-gitops
policyDefaults:
 namespace: policies
 placement:
 clusterSelectors:
 vendor: "OpenShift"
 remediationAction: enforce
policies:
 - name: install-openshift-gitops
 manifests:
 - path: openshift-gitops-subscription.yaml

generators:
 - policy-generator-config.yaml

apiVersion: apps.open-cluster-management.io/v1
kind: PlacementRule
metadata:
 name: placement-install-openshift-gitops
 namespace: policies
spec:
 clusterConditions:
 - status: "True"

Red Hat Advanced Cluster Management for Kubernetes 2.10 GitOps

16

 type: ManagedClusterConditionAvailable
 clusterSelector:
 matchExpressions:
 - key: vendor
 operator: In
 values:
 - OpenShift

apiVersion: policy.open-cluster-management.io/v1
kind: PlacementBinding
metadata:
 name: binding-install-openshift-gitops
 namespace: policies
placementRef:
 apiGroup: apps.open-cluster-management.io
 kind: PlacementRule
 name: placement-install-openshift-gitops
subjects:
 - apiGroup: policy.open-cluster-management.io
 kind: Policy
 name: install-openshift-gitops

apiVersion: policy.open-cluster-management.io/v1
kind: Policy
metadata:
 annotations:
 policy.open-cluster-management.io/categories: CM Configuration Management
 policy.open-cluster-management.io/controls: CM-2 Baseline Configuration
 policy.open-cluster-management.io/standards: NIST SP 800-53
 policy.open-cluster-management.io/description:
 name: install-openshift-gitops
 namespace: policies
spec:
 disabled: false
 policy-templates:
 - objectDefinition:
 apiVersion: policy.open-cluster-management.io/v1
 kind: ConfigurationPolicy
 metadata:
 name: install-openshift-gitops
 spec:
 object-templates:
 - complianceType: musthave
 objectDefinition:
 apiVersion: operators.coreos.com/v1alpha1
 kind: Subscription
 metadata:
 name: openshift-gitops-operator
 namespace: openshift-operators
 spec:
 channel: stable
 name: openshift-gitops-operator
 source: redhat-operators
 sourceNamespace: openshift-marketplace
 remediationAction: enforce
 severity: low

CHAPTER 1. GITOPS OVERVIEW

17

Generated policies from manifests in the OpenShift Container Platform documentation is supported.
Any configuration guidance from the OpenShift Container Platform documentation can be applied using
the Policy Generator.

1.6.2. Using policy dependencies with OperatorGroups

When you install an operator with an OperatorGroup manifest, the OperatorGroup must exist on the
cluster before the Subscription is created. Use the policy dependency feature along with the Policy
Generator to ensure that the OperatorGroup policy is compliant before you enforce the Subscription
policy.

Set up policy dependencies by listing the manifests in the order that you want. For example, you might
want to create the namespace policy first, create the OperatorGroup next, and create the
Subscription last.

Enable the policyDefaults.orderManifests parameter and disable
policyDefaults.consolidateManifests in the Policy Generator configuration manifest to automatically
set up dependencies between the manifests.

1.6.3. Additional resources

See Generating a policy that installs the Compliance Operator .

See Deploying policies by using GitOps for more details.

See Understanding OpenShift GitOps and the Operator documentation for more details.

See Adding Operators to a cluster - Installing from OperatorHub using the CLI

See the Compliance Operator documentation for more details.

See all namespaces installation mode.

See namespaced installation mode.

See Using Init Containers to perform tasks before a pod is deployed .

See Argo CD.

View the following examples of YAML input that OpenShift Container Platform supports:

Post-installation cluster tasks

Configuring the audit log policy

About forwarding logs to third-party systems

1.7. CREATING A CUSTOMIZED SERVICE ACCOUNT FOR ARGO CD
PUSH MODEL

Create a service account on a managed cluster by creating a managedserviceaccount resource on the
hub cluster. Use the clusterpermission resource to grant specific permissions to the service account.

Creating a customzied service account for use with the Argo CD push model includes the following
benefits:

Red Hat Advanced Cluster Management for Kubernetes 2.10 GitOps

18

../../html-single/governance#policy-gen-install-operator
../../html-single/gitops#gitops-deploy-policies
https://access.redhat.com/documentation/en-us/red_hat_openshift_gitops/1.11/html/understanding_openshift_gitops/index
https://cloud.redhat.com/learn/topics/operators
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.13/html/operators/administrator-tasks#olm-installing-operator-from-operatorhub-using-cli_olm-adding-operators-to-a-cluster
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.13/html/security_and_compliance/compliance-operator
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.13/html/operators/administrator-tasks#olm-installing-operators-from-operatorhub_olm-adding-operators-to-a-cluster
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.13/html/operators/administrator-tasks#olm-installing-operators-from-operatorhub_olm-adding-operators-to-a-cluster
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.13/html/nodes/working-with-containers#nodes-containers-init
https://argoproj.github.io/argo-cd/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.13/html/post-installation_configuration/post-install-cluster-tasks
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.13/html/security_and_compliance/audit-log-policy-config
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.13/html/logging/log-collection-and-forwarding#cluster-logging-collector-log-forwarding-about_log-forwarding

An Application manager add-on runs on each managed cluster. By default, the Argo CD
controller uses the service account Application manager to push these resources to the
managed cluster.

The Application manager service account has a large set of permissions because the application
subscription add-on uses the Application manager service to deploy applications on the
managed cluster. Do not use the Application manager service account if you want a limited set
of permissions.

You can specify a different service account that you want the Argo CD push model to use. When
the Argo CD controller pushes resources from the centralized hub cluster to the managed
cluster, you can use a different service account than the default Application manager. By using a
different service account, you can control the permissions that are granted to this service
account.

The service account must exist on the managed cluster. To facilitate the creation of the service
account with the associated permissions, use the managedserviceaccount resource and the
new clusterpermission resource on the centralized hub cluster.

After completing all the following procedures, you can grant cluster permissions to your managed
service account. Having the cluster permissions, your managed service account has the necessary
permissions to deploy your application resources on the managed clusters. Complete the following
procedures:

1. Section 1.7.1, “Creating a managed service account”

2. Section 1.7.2, “Creating a cluster permission”

3. Section 1.7.3, “Using a managed service account in the GitOpsCluster resource”

4. Section 1.7.4, “Creating an Argo CD application”

5. Section 1.7.5, “Using policy to create managed service accounts and cluster permissions”

1.7.1. Creating a managed service account

The managedserviceaccount custom resource on the hub provides a convenient way to create
serviceaccounts on the managed clusters. When a managedserviceccount custom resource is
created in the <managed_cluster> namespace on the hub cluster, a serviceccount is created on the
managed cluster.

To create a managed service account, see Enabling managedserviceaccount add-ons.

1.7.2. Creating a cluster permission

When the service account is created, it does not have any permission associated to it. To grant
permissions to the new service account, use the clusterpermission resource. The clusterpermission
resource is created in the managed cluster namespace on the hub. It provides a convenient way to
create roles, cluster roles resources on the managed clusters, and bind them to a service account
through a rolebinding or clusterrolebinding resource.

1. To grant the <managed-sa-sample> service account permission to the sample mortgage
application that is deployed to the mortgage namespace on <managed cluster>, create a
YAML with the following content:

apiVersion: rbac.open-cluster-management.io/v1alpha1

CHAPTER 1. GITOPS OVERVIEW

19

../../html-single/clusters#managed-serviceaccount-addon

2. Save the YAML file in a file called, cluster-permission.yaml.

3. Run oc apply -f cluster-permission.yaml.

kind: ClusterPermission
metadata:
 name: <clusterpermission-msa-subject-sample>
 namespace: <managed cluster>
spec:
 roles:
 - namespace: default
 rules:
 - apiGroups: ["apps"]
 resources: ["deployments"]
 verbs: ["get", "list", "create", "update", "delete", "patch"]
 - apiGroups: [""]
 resources: ["configmaps", "secrets", "pods", "podtemplates", "persistentvolumeclaims",
"persistentvolumes"]
 verbs: ["get", "update", "list", "create", "delete", "patch"]
 - apiGroups: ["storage.k8s.io"]
 resources: ["*"]
 verbs: ["list"]
 - namespace: mortgage
 rules:
 - apiGroups: ["apps"]
 resources: ["deployments"]
 verbs: ["get", "list", "create", "update", "delete", "patch"]
 - apiGroups: [""]
 resources: ["configmaps", "secrets", "pods", "services", "namespace"]
 verbs: ["get", "update", "list", "create", "delete", "patch"]
 clusterRole:
 rules:
 - apiGroups: ["*"]
 resources: ["*"]
 verbs: ["get", "list"]
 roleBindings:
 - namespace: default
 roleRef:
 kind: Role
 subject:
 apiGroup: authentication.open-cluster-management.io
 kind: ManagedServiceAccount
 name: <managed-sa-sample>
 - namespace: mortgage
 roleRef:
 kind: Role
 subject:
 apiGroup: authentication.open-cluster-management.io
 kind: ManagedServiceAccount
 name: <managed-sa-sample>
 clusterRoleBinding:
 subject:
 apiGroup: authentication.open-cluster-management.io
 kind: ManagedServiceAccount
 name: <managed-sa-sample>

Red Hat Advanced Cluster Management for Kubernetes 2.10 GitOps

20

4. The sample <clusterpermission> creates a role called <clusterpermission-msa-subject-
sample> in the mortgage namespace. If one does not already exist, create a namespace
mortgage.

5. Review the resources that are created on the <managed cluster>.

After you create the sample, <clusterpermission>, the following resources are created in the sample
managed cluster:

One role called <clusterpermission-msa-subject-sample> in the default namespace.

One roleBinding called <clusterpermission-msa-subject-sample> in the default namespace
for binding the role to the managed service account.

One role called <clusterpermission-msa-subject-sample> in the mortgage namespace.

One roleBinding called <clusterpermission-msa-subject-sample> in the mortgage
namespace for binding the role to the managed service account.

One clusterRole called <clusterpermission-msa-subject-sample>.

One clusterRoleBinding called <clusterpermission-msa-subject-sample> for binding the
clusterRole to the managed service account.

1.7.3. Using a managed service account in the GitOpsCluster resource

The GitOpsCluster resource uses placement to import selected managed clusters into the Argo CD,
including the creation of the Argo CD cluster secrets which contains information used to access the
clusters. By default, the Argo CD cluster secret uses the application manager service account to access
the managed clusters.

1. To update the GitOpsCluster resource to use the managed service account , add the
managedServiceAccountRef property with the name of the managed service account.

2. To create a GitOpsCluster custom resource, save the following YAML as a Gitops.YAML:

3. Save the YAML file in a file called, gitops.yaml.

4. Run oc apply -f gitops.yaml.

5. Go to the openshift-gitops namespace and verify that there is a new Argo CD cluster secret

apiVersion: apps.open-cluster-management.io/v1beta1
metadata:
 name: argo-acm-importer
 namespace: openshift-gitops
spec:
 managedServiceAccountRef: <managed-sa-sample>
 argoServer:
 cluster: notused
 argoNamespace: openshift-gitops
 placementRef:
 kind: Placement
 apiVersion: cluster.open-cluster-management.io/v1beta1
 name: all-openshift-clusters
 namespace: openshift-gitops

CHAPTER 1. GITOPS OVERVIEW

21

5. Go to the openshift-gitops namespace and verify that there is a new Argo CD cluster secret
with the name <managed cluster-managed-sa-sample-cluster-secret>:

1.7.4. Creating an Argo CD application

Deploy an Argo CD application from the Argo CD console by using the pushing model. The Argo CD
application is deployed with the managed service account, <managed-sa-sample>.

1. Log into the Argo CD console.

2. Click Create a new application.

3. Choose the cluster URL.

4. Go to your Argo CD application and verify that it has the given permissions, like roles and cluster
roles, that you propagated to <managed cluster>.

1.7.5. Using policy to create managed service accounts and cluster permissions

When the GitOpsCluster resource is updated with the `managedServiceAccountRef`, each managed
cluster in the placement of this GitOpsCluster needs to have the service account. If you have several
managed clusters, it becomes tedious for you to create the managed service account and cluster
permission for each managed cluster. You can simply this process by using a policy to create the
managed service account and cluster permission for all your managed clusters

When you apply the managedServiceAccount and clusterPermission resources to the hub cluster,
the placement of this policy is bound to the local cluster. Replicate those resources to the managed
cluster namespace for all of the managed clusters in the placement of the GitOpsCluster resource.

Using a policy to create the managedServiceAccount and clusterPermission resources include the
following attributes:

Updating the managedServiceAccount and clusterPermission object templates in the policy
results in updates to all of the managedServiceAccount and clusterPermission resources in
all of the managed clusters.

Updating directly to the managedServiceAccount and clusterPermission resources becomes
reverted back to the original state because it is enforced by the policy.

If the placement decision for the GitOpsCluster placement changes, the policy manages the
creation and deletion of the resources in the managed cluster namespaces.

1. To create a policy for a YAML to create a managed service account and cluster permission,
create a YAML with the following content:

% oc get secrets -n openshift-gitops <managed cluster-managed-sa-sample-cluster-secret>
NAME TYPE DATA AGE
<managed cluster-managed-sa-sample-cluster-secret> Opaque 3 4m2s

apiVersion: policy.open-cluster-management.io/v1
kind: Policy
metadata:
 name: policy-gitops
 namespace: openshift-gitops
 annotations:

Red Hat Advanced Cluster Management for Kubernetes 2.10 GitOps

22

 policy.open-cluster-management.io/standards: NIST-CSF
 policy.open-cluster-management.io/categories: PR.PT Protective Technology
 policy.open-cluster-management.io/controls: PR.PT-3 Least Functionality
spec:
 remediationAction: enforce
 disabled: false
 policy-templates:

 - objectDefinition:
 apiVersion: policy.open-cluster-management.io/v1
 kind: ConfigurationPolicy
 metadata:
 name: policy-gitops-sub
 spec:
 pruneObjectBehavior: None
 remediationAction: enforce
 severity: low
 object-templates-raw: |
 {{ range $placedec := (lookup "cluster.open-cluster-management.io/v1beta1"
"PlacementDecision" "openshift-gitops" "" "cluster.open-cluster-
management.io/placement=aws-app-placement").items }}
 {{ range $clustdec := $placedec.status.decisions }}
 - complianceType: musthave
 objectDefinition:
 apiVersion: authentication.open-cluster-management.io/v1alpha1
 kind: ManagedServiceAccount
 metadata:
 name: <managed-sa-sample>
 namespace: {{ $clustdec.clusterName }}
 spec:
 rotation: {}
 - complianceType: musthave
 objectDefinition:
 apiVersion: rbac.open-cluster-management.io/v1alpha1
 kind: ClusterPermission
 metadata:
 name: <clusterpermission-msa-subject-sample>
 namespace: {{ $clustdec.clusterName }}
 spec:
 roles:
 - namespace: default
 rules:
 - apiGroups: ["apps"]
 resources: ["deployments"]
 verbs: ["get", "list", "create", "update", "delete"]
 - apiGroups: [""]
 resources: ["configmaps", "secrets", "pods", "podtemplates",
"persistentvolumeclaims", "persistentvolumes"]
 verbs: ["get", "update", "list", "create", "delete"]
 - apiGroups: ["storage.k8s.io"]
 resources: ["*"]
 verbs: ["list"]
 - namespace: mortgage
 rules:
 - apiGroups: ["apps"]
 resources: ["deployments"]

CHAPTER 1. GITOPS OVERVIEW

23

 verbs: ["get", "list", "create", "update", "delete"]
 - apiGroups: [""]
 resources: ["configmaps", "secrets", "pods", "services", "namespace"]
 verbs: ["get", "update", "list", "create", "delete"]
 clusterRole:
 rules:
 - apiGroups: ["*"]
 resources: ["*"]
 verbs: ["get", "list"]
 roleBindings:
 - namespace: default
 roleRef:
 kind: Role
 subject:
 apiGroup: authentication.open-cluster-management.io
 kind: ManagedServiceAccount
 name: <managed-sa-sample>
 - namespace: mortgage
 roleRef:
 kind: Role
 subject:
 apiGroup: authentication.open-cluster-management.io
 kind: ManagedServiceAccount
 name: <managed-sa-sample>
 clusterRoleBinding:
 subject:
 apiGroup: authentication.open-cluster-management.io
 kind: ManagedServiceAccount
 name: <managed-sa-sample>
 {{ end }}
 {{ end }}

apiVersion: policy.open-cluster-management.io/v1
kind: PlacementBinding
metadata:
 name: binding-policy-gitops
 namespace: openshift-gitops
placementRef:
 name: lc-app-placement
 kind: Placement
 apiGroup: cluster.open-cluster-management.io
subjects:
 - name: policy-gitops
 kind: Policy
 apiGroup: policy.open-cluster-management.io

apiVersion: cluster.open-cluster-management.io/v1beta1
kind: Placement
metadata:
 name: lc-app-placement
 namespace: openshift-gitops
spec:
 numberOfClusters: 1
 predicates:
 - requiredClusterSelector:

Red Hat Advanced Cluster Management for Kubernetes 2.10 GitOps

24

1. Save the YAML file in a file called, policy.yaml.

2. Run oc apply -f policy.yaml.

3. In the object template of the policy, it iterates through the placement decision of the
GitOpsCluster associated placement and applies the following managedServiceAccount
and clusterPermission templates:

 labelSelector:
 matchLabels:
 name: local-cluster

CHAPTER 1. GITOPS OVERVIEW

25

	Table of Contents
	CHAPTER 1. GITOPS OVERVIEW
	1.1. GITOPS CONSOLE
	1.1.1. Querying Argo CD applications

	1.2. REGISTERING MANAGED CLUSTERS TO OPENSHIFT GITOPS OPERATOR
	1.2.1. Prerequisites
	1.2.2. Registering managed clusters to GitOps
	1.2.3. GitOps token
	1.2.4. Additional resources

	1.3. CONFIGURING APPLICATION PLACEMENT TOLERATIONS FOR GITOPS
	1.4. DEPLOYING ARGO CD WITH PUSH AND PULL MODEL
	1.4.1. Prerequisites
	1.4.2. Architecture
	1.4.2.1. Architecture Push model
	1.4.2.2. Architecture Pull model

	1.4.3. Creating the ApplicationSet custom resource
	1.4.4. MulticlusterApplicationSetReport
	1.4.5. Additional resources

	1.5. MANAGING POLICY DEFINITIONS WITH OPENSHIFT CONTAINER PLATFORM GITOPS (ARGO CD)
	1.5.1. Integrating the Policy Generator with OpenShift Container Platform GitOps (Argo CD)
	1.5.2. Additional resources

	1.6. GENERATING A POLICY TO INSTALL GITOPS OPERATOR
	1.6.1. Generating a policy that installs OpenShift Container Platform GitOps
	1.6.2. Using policy dependencies with OperatorGroups
	1.6.3. Additional resources

	1.7. CREATING A CUSTOMIZED SERVICE ACCOUNT FOR ARGO CD PUSH MODEL
	1.7.1. Creating a managed service account
	1.7.2. Creating a cluster permission
	1.7.3. Using a managed service account in the GitOpsCluster resource
	1.7.4. Creating an Argo CD application
	1.7.5. Using policy to create managed service accounts and cluster permissions

