
Red Hat Advanced Cluster Management
for Kubernetes 2.11

Governance

Governance

Last Updated: 2024-10-18

Red Hat Advanced Cluster Management for Kubernetes 2.11 Governance

Governance

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Read more to learn about the governance policy framework, which helps harden cluster security by
using policies.

. .

. .

Table of Contents

CHAPTER 1. SECURITY OVERVIEW
1.1. CERTIFICATES INTRODUCTION
1.2. CERTIFICATES

1.2.1. Red Hat Advanced Cluster Management hub cluster certificates
1.2.2. Red Hat Advanced Cluster Management managed certificates

1.2.2.1. Managed cluster certificates
1.2.3. Additional resources
1.2.4. Managing certificates

1.2.4.1. Refreshing a Red Hat Advanced Cluster Management webhook certificate
1.2.4.2. Replacing certificates for alertmanager route
1.2.4.3. Rotating the gatekeeper webhook certificate
1.2.4.4. Verifying certificate rotation
1.2.4.5. Listing hub cluster managed certificates
1.2.4.6. Additional resources

CHAPTER 2. GOVERNANCE
2.1. GOVERNANCE ARCHITECTURE

2.1.1. Governance architecture components
2.1.2. Additional resources

2.2. POLICY OVERVIEW
2.2.1. Prerequisites
2.2.2. Policy YAML structure
2.2.3. Policy YAML table
2.2.4. Policy sample file
2.2.5. Additional resources

2.3. POLICY CONTROLLERS INTRODUCTION
2.3.1. Kubernetes configuration policy controller

2.3.1.1. Configuration policy sample
2.3.1.2. Configuration policy YAML table
2.3.1.3. Additional resources

2.3.2. Certificate policy controller
2.3.2.1. Certificate policy controller YAML structure

2.3.2.1.1. Certificate policy controller YAML table
2.3.2.2. Certificate policy sample
2.3.2.3. Additional resources

2.3.3. Policy set controller
2.3.3.1. Policy set YAML structure
2.3.3.2. Policy set table
2.3.3.3. Policy set sample
2.3.3.4. Additional resources

2.3.4. Operator policy controller
2.3.4.1. Prerequisites
2.3.4.2. Operator policy YAML table
2.3.4.3. Additional resources

2.4. POLICY CONTROLLER ADVANCED CONFIGURATION
2.4.1. Configure the concurrency of the governance framework
2.4.2. Configure the concurrency of the configuration policy controller
2.4.3. Configure the rate of requests to the API server
2.4.4. Configure debug log
2.4.5. Governance metric

2.4.5.1. Metric: policy_governance_info

6
6
6
6
8
8
8
8
9
9

10
10
10
11

12
12
14
14
15
15
16
17

20
21
21
21
22
23
28
28
29
29
32
32
32
33
33
34
34
34
35
35
39
39
39
40
41
41

42
42

Table of Contents

1

2.4.5.2. Metric: config_policies_evaluation_duration_seconds
2.4.6. Verify configuration changes
2.4.7. Additional resources

2.5. POLICY COMPLIANCE HISTORY (TECHNOLOGY PREVIEW)
2.5.1. Prerequisites
2.5.2. Enable the compliance history API
2.5.3. Set the compliance history API URL

2.5.3.1. Enable on all managed clusters
2.5.3.2. Enable a single managed cluster

2.5.4. Additional resource
2.6. SUPPORTED POLICIES

2.6.1. Table of sample configuration policies
2.6.2. Namespace policy

2.6.2.1. Namespace policy YAML structure
2.6.2.2. Namespace policy YAML table
2.6.2.3. Namespace policy sample

2.6.3. Pod policy
2.6.3.1. Pod policy YAML structure
2.6.3.2. Pod policy table
2.6.3.3. Pod policy sample

2.6.4. Memory usage policy
2.6.4.1. Memory usage policy YAML structure
2.6.4.2. Memory usage policy table
2.6.4.3. Memory usage policy sample

2.6.5. Pod security policy (Deprecated)
2.6.5.1. Pod security policy YAML structure
2.6.5.2. Pod security policy table
2.6.5.3. Pod security policy sample

2.6.6. Role policy
2.6.6.1. Role policy YAML structure
2.6.6.2. Role policy table
2.6.6.3. Role policy sample

2.6.7. Role binding policy
2.6.7.1. Role binding policy YAML structure
2.6.7.2. Role binding policy table
2.6.7.3. Role binding policy sample

2.6.8. Security Context Constraints policy
2.6.8.1. SCC policy YAML structure
2.6.8.2. SCC policy table
2.6.8.3. SCC policy sample

2.6.9. ETCD encryption policy
2.6.9.1. ETCD encryption policy YAML structure
2.6.9.2. ETCD encryption policy table
2.6.9.3. ETCD encryption policy sample

2.6.10. Compliance Operator policy
2.6.10.1. Compliance Operator policy overview
2.6.10.2. Compliance operator resources
2.6.10.3. Additional resources

2.6.11. E8 scan policy
2.6.11.1. E8 scan policy resources

2.6.12. OpenShift CIS scan policy
2.6.12.1. OpenShift CIS resources

2.6.13. Image vulnerability policy

43
43
44
44
44
44
47
47
47
49
49
49
51
51
52
52
53
53
54
54
54
55
56
56
56
57
58
58
59
59
60
60
60
61
61

62
62
62
63
64
64
65
65
66
66
66
67
68
68
68
70
70
72

Red Hat Advanced Cluster Management for Kubernetes 2.11 Governance

2

2.6.13.1. Image vulnerability policy YAML structure
2.6.13.2. Image vulnerability policy sample

2.6.14. Red Hat OpenShift Platform Plus policy set
2.6.14.1. Prerequisites
2.6.14.2. OpenShift Platform Plus policy set components
2.6.14.3. Additional resources

2.7. MANAGE GOVERNANCE DASHBOARD
2.7.1. Governance page
2.7.2. Governance automation configuration
2.7.3. Additional resources
2.7.4. Configuring Ansible Automation Platform for governance

2.7.4.1. Prerequisites
2.7.4.2. Creating a policy violation automation from the console
2.7.4.3. Creating a policy violation automation from the CLI

2.8. TEMPLATE PROCESSING
2.8.1. Comparison of hub cluster and managed cluster templates
2.8.2. Template functions

2.8.2.1. Template function descriptions
2.8.2.1.1. fromSecret
2.8.2.1.2. fromConfigmap
2.8.2.1.3. fromClusterClaim
2.8.2.1.4. lookup
2.8.2.1.5. base64enc
2.8.2.1.6. base64dec
2.8.2.1.7. indent
2.8.2.1.8. autoindent
2.8.2.1.9. toInt
2.8.2.1.10. toBool
2.8.2.1.11. protect
2.8.2.1.12. toLiteral
2.8.2.1.13. copySecretData
2.8.2.1.14. copyConfigMapData

2.8.2.2. Sprig open source
2.8.2.3. Additional resources

2.8.3. Advanced template processing in configuration policies
2.8.3.1. Special annotation for reprocessing
2.8.3.2. Object template processing
2.8.3.3. Bypass template processing
2.8.3.4. Additional resources

2.9. MANAGING SECURITY POLICIES
2.9.1. Creating a security policy

2.9.1.1. Creating a security policy from the command line interface
2.9.1.1.1. Viewing your security policy from the CLI

2.9.1.2. Creating a cluster security policy from the console
2.9.1.2.1. Viewing your security policy from the console

2.9.1.3. Creating policy sets from the CLI
2.9.1.4. Creating policy sets from the console

2.9.2. Updating security policies
2.9.2.1. Adding a policy to a policy set from the CLI
2.9.2.2. Adding a policy to a policy set from the console
2.9.2.3. Disabling security policies

2.9.3. Deleting a security policy
2.9.3.1. Deleting policy sets from the console

72
73
73
74
74
75
75
75
76
77
77
77
77
78
79
80
82
82
83
84
85
86
87
87
88
88
89
90
90
91
91
91

92
92
92
93
93
95
95
96
96
96
97
97
99
99
99
99

100
100
100
100
101

Table of Contents

3

. .

. .

2.9.4. Cleaning up resources that are created by policies
2.9.5. Additional resources
2.9.6. Managing configuration policies

2.9.6.1. Creating a configuration policy
2.9.6.1.1. Creating a configuration policy from the CLI
2.9.6.1.2. Viewing your configuration policy from the CLI
2.9.6.1.3. Creating a configuration policy from the console
2.9.6.1.4. Viewing your configuration policy from the console

2.9.6.2. Updating configuration policies
2.9.6.2.1. Disabling configuration policies

2.9.6.3. Deleting a configuration policy
2.9.6.4. Additional resources

2.9.7. Managing operator policies in disconnected environments
2.9.8. Installing Red Hat OpenShift Platform Plus by using a policy set

2.9.8.1. Prerequisites
2.9.8.2. Applying Red Hat OpenShift Platform Plus policy set
2.9.8.3. Additional resources

2.9.9. Installing an operator by using the OperatorPolicy resource
2.9.9.1. Creating an OperatorPolicy resource to install Quay
2.9.9.2. Additional resources

2.10. POLICY DEPENDENCIES
2.11. SECURE THE HUB CLUSTER

CHAPTER 3. GATEKEEPER OPERATOR OVERVIEW
3.1. GENERAL SUPPORT
3.2. OPERATOR CHANNELS
3.3. CONFIGURING THE GATEKEEPER OPERATOR

3.3.1. Prerequisites
3.3.2. Gatekeeper custom resource sample
3.3.3. Configuring auditFromCache for sync details

3.4. MANAGING THE GATEKEEPER OPERATOR INSTALLATION POLICIES
3.4.1. Installing Gatekeeper using a Gatekeeper operator policy
3.4.2. Creating a Gatekeeper policy from the console

3.4.2.1. Viewing the Gatekeeper operator policy
3.4.3. Upgrading Gatekeeper and the Gatekeeper operator
3.4.4. Disabling Gatekeeper operator policy
3.4.5. Deleting Gatekeeper operator policy
3.4.6. Uninstalling Gatekeeper constraints, Gatekeeper instance, and Gatekeeper operator policy

3.4.6.1. Removing Gatekeeper constraints
3.4.6.2. Removing Gatekeeper instance
3.4.6.3. Removing Gatekeeper operator

3.4.7. Additional resources
3.5. INTEGRATING GATEKEEPER CONSTRAINTS AND CONSTRAINT TEMPLATES

3.5.1. Additional resources

CHAPTER 4. INTEGRATING POLICY GENERATOR
4.1. POLICY GENERATOR

4.1.1. Policy Generator capabilities
4.1.2. Policy Generator configuration structure
4.1.3. Policy Generator configuration reference table
4.1.4. Additional resources

4.2. GENERATING A POLICY THAT INSTALLS THE COMPLIANCE OPERATOR

101
101
101
102
102
102
103
103
103
103
104
104
104
105
105
107
107
108
108
108
108
110

111
111
111

112
112
112
113
114
115
115
115
115
115
115
116
116
116
117
117
117
119

120
120
120
120
123
134
134

Red Hat Advanced Cluster Management for Kubernetes 2.11 Governance

4

Table of Contents

5

CHAPTER 1. SECURITY OVERVIEW
Manage the security of your Red Hat Advanced Cluster Management for Kubernetes components.
Govern your cluster with defined policies and processes to identify and minimize risks. Use policies to
define rules and set controls.

Prerequisite: You must configure authentication service requirements for Red Hat Advanced Cluster
Management for Kubernetes. See Access control for more information.

Read through the following topics to learn more about securing your cluster:

Certificates introduction

Governance

1.1. CERTIFICATES INTRODUCTION

You can use various certificates to verify authenticity for your Red Hat Advanced Cluster Management
for Kubernetes cluster. Continue reading to learn about certificate management.

Certificates

Managing certificates

1.2. CERTIFICATES

All certificates required by services that run on Red Hat Advanced Cluster Management are created
during the installation of Red Hat Advanced Cluster Management. View the following list of certificates,
which are created and managed by the following components of Red Hat OpenShift Container Platform:

OpenShift Service Serving Certificates

Red Hat Advanced Cluster Management webhook controllers

Kubernetes Certificates API

OpenShift default ingress

Required access: Cluster administrator

Continue reading to learn more about certificate management:

Red Hat Advanced Cluster Management hub cluster certificates

Red Hat Advanced Cluster Management managed certificates

Note: Users are responsible for certificate rotations and updates.

1.2.1. Red Hat Advanced Cluster Management hub cluster certificates

OpenShift default ingress certificate is technically a hub cluster certificate. After the Red Hat Advanced
Cluster Management installation, observability certificates are created and used by the observability
components to provide mutual TLS on the traffic between the hub cluster and managed cluster.

The open-cluster-management-observability namespace contains the following certificates:

Red Hat Advanced Cluster Management for Kubernetes 2.11 Governance

6

../../html-single/access_control#access-control

observability-server-ca-certs: Has the CA certificate to sign server-side certificates

observability-client-ca-certs: Has the CA certificate to sign client-side certificates

observability-server-certs: Has the server certificate used by the observability-
observatorium-api deployment

observability-grafana-certs: Has the client certificate used by the observability-rbac-
query-proxy deployment

The open-cluster-management-addon-observability namespace contain the following
certificates on managed clusters:

observability-managed-cluster-certs: Has the same server CA certificate as
observability-server-ca-certs in the hub server

observability-controller-open-cluster-management.io-observability-signer-client-cert:
Has the client certificate used by the metrics-collector-deployment

The CA certificates are valid for five years and other certificates are valid for one year. All observability
certificates are automatically refreshed upon expiration. View the following list to understand the effects
when certificates are automatically renewed:

Non-CA certificates are renewed automatically when the remaining valid time is no more than
73 days. After the certificate is renewed, the pods in the related deployments restart
automatically to use the renewed certificates.

CA certificates are renewed automatically when the remaining valid time is no more than one
year. After the certificate is renewed, the old CA is not deleted but co-exist with the renewed
ones. Both old and renewed certificates are used by related deployments, and continue to work.
The old CA certificates are deleted when they expire.

When a certificate is renewed, the traffic between the hub cluster and managed cluster is not
interrupted.

View the following Red Hat Advanced Cluster Management hub cluster certificates table:

Table 1.1. Red Hat Advanced Cluster Management hub cluster certificates

Namespace Secret name Pod label

open-cluster-
management

channels-apps-open-
cluster-management-
webhook-svc-ca

app=multicluster-
operators-channel

open-cluster-
management

channels-apps-open-
cluster-management-
webhook-svc-signed-ca

app=multicluster-
operators-channel

open-cluster-
management

multicluster-operators-
application-svc-ca

app=multicluster-
operators-application

open-cluster-
management

multicluster-operators-
application-svc-signed-
ca

app=multicluster-
operators-application

CHAPTER 1. SECURITY OVERVIEW

7

open-cluster-
management-hub

registration-webhook-
serving-cert signer-
secret

Not required open-cluster-
management-hub

Namespace Secret name Pod label

1.2.2. Red Hat Advanced Cluster Management managed certificates

View the following table for a summarized list of the component pods that contain Red Hat Advanced
Cluster Management managed certificates and the related secrets:

Table 1.2. Pods that contain Red Hat Advanced Cluster Management managed certificates

Namespace Secret name (if applicable)

open-cluster-management-agent-addon cluster-proxy-open-cluster-management.io-proxy-
agent-signer-client-cert

open-cluster-management-agent-addon cluster-proxy-service-proxy-server-certificates

1.2.2.1. Managed cluster certificates

You can use certificates to authenticate managed clusters with the hub cluster. Therefore, it is
important to be aware of troubleshooting scenarios associated with these certificates.

The managed cluster certificates are refreshed automatically.

1.2.3. Additional resources

Use the certificate policy controller to create and manage certificate policies on managed
clusters. See Certificate policy controller for more details.

See Using custom CA certificates for a secure HTTPS connection for more details about
securely connecting to a privately-hosted Git server with SSL/TLS certificates.

See OpenShift Service Serving Certificates for more details.

The OpenShift Container Platform default ingress is a hub cluster certificate. See Replacing the
default ingress certificate for more details.

See Certificates introduction for topics.

1.2.4. Managing certificates

Continue reading for information about how to refresh, replace, rotate, and list certificates.

Refreshing a Red Hat Advanced Cluster Management webhook certificate

Replacing certificates for alertmanager route

Rotating the Gatekeeper webhook certificate

Red Hat Advanced Cluster Management for Kubernetes 2.11 Governance

8

../../html-single/applications#using-custom-CA-certificates-for-secure-HTTPS-connection
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html/security_and_compliance/configuring-certificates#add-service-serving
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html/security_and_compliance/configuring-certificates#replacing-default-ingress

1

1

Verifying certificate rotation

Listing hub cluster managed certificates

1.2.4.1. Refreshing a Red Hat Advanced Cluster Management webhook certificate

You can refresh Red Hat Advanced Cluster Management managed certificates, which are certificates
that are created and managed by Red Hat Advanced Cluster Management services.

Complete the following steps to refresh certificates managed by Red Hat Advanced Cluster
Management:

1. Delete the secret that is associated with the Red Hat Advanced Cluster Management managed
certificate by running the following command:

oc delete secret -n <namespace> <secret> 1

Replace <namespace> and <secret> with the values that you want to use.

2. Restart the services that are associated with the Red Hat Advanced Cluster Management
managed certificate(s) by running the following command:

oc delete pod -n <namespace> -l <pod-label> 1

Replace <namespace> and <pod-label> with the values from the Red Hat Advanced
Cluster Management managed cluster certificates table.

Note: If a pod-label is not specified, there is no service that must be restarted. The secret is
recreated and used automatically.

1.2.4.2. Replacing certificates for alertmanager route

If you do not want to use the OpenShift default ingress certificate, replace observability alertmanager
certificates by updating the alertmanager route. Complete the following steps:

1. Examine the observability certificate with the following command:

2. Change the common name (CN) on the certificate to alertmanager.

3. Change the SAN in the csr.cnf configuration file with the hostname for your alertmanager
route.

4. Create the two following secrets in the open-cluster-management-observability namespace.
Run the following commands:

openssl x509 -noout -text -in ./observability.crt

oc -n open-cluster-management-observability create secret tls alertmanager-byo-ca --cert
./ca.crt --key ./ca.key

oc -n open-cluster-management-observability create secret tls alertmanager-byo-cert --cert
./ingress.crt --key ./ingress.key

CHAPTER 1. SECURITY OVERVIEW

9

1

2

1.2.4.3. Rotating the gatekeeper webhook certificate

Complete the following steps to rotate the gatekeeper webhook certificate:

1. Edit the secret that contains the certificate with the following command:

2. Delete the following content in the data section: ca.crt, ca.key, tls.crt, and tls.key.

3. Restart the gatekeeper webhook service by deleting the gatekeeper-controller-manager pods
with the following command:

oc delete pod -n openshift-gatekeeper-system -l control-plane=controller-manager

The gatekeeper webhook certificate is rotated.

1.2.4.4. Verifying certificate rotation

Verify that your certificates are rotated using the following steps:

1. Identify the secret that you want to check.

2. Check the tls.crt key to verify that a certificate is available.

3. Display the certificate information by using the following command:

Replace <your-secret-name> with the name of secret that you are verifying. If it is necessary,
also update the namespace and JSON path.

4. Check the Validity details in the output. View the following Validity example:

The Not Before value is the date and time that you rotated your certificate.

The Not After value is the date and time for the certificate expiration.

1.2.4.5. Listing hub cluster managed certificates

You can view a list of hub cluster managed certificates that use OpenShift Service Serving Certificates
service internally. Run the following command to list the certificates:

oc edit secret -n openshift-gatekeeper-system gatekeeper-webhook-server-cert

oc get secret <your-secret-name> -n open-cluster-management -o jsonpath='{.data.tls\.crt}' |
base64 -d | openssl x509 -text -noout

Validity
 Not Before: Jul 13 15:17:50 2023 GMT 1
 Not After : Jul 12 15:17:50 2024 GMT 2

for ns in multicluster-engine open-cluster-management ; do echo "$ns:" ; oc get secret -n $ns -o
custom-
columns=Name:.metadata.name,Expiration:.metadata.annotations.service\\.beta\\.openshift\\.io/expiry
| grep -v '<none>' ; echo ""; done

Red Hat Advanced Cluster Management for Kubernetes 2.11 Governance

10

For more information, see OpenShift Service Serving Certificates in the Additional resources section.

Note: If observability is enabled, there are additional namespaces where certificates are created.

1.2.4.6. Additional resources

OpenShift Service Serving Certificates

Certificates introduction

CHAPTER 1. SECURITY OVERVIEW

11

https://docs.openshift.com/container-platform/4.14/security/certificates/service-serving-certificate.html

CHAPTER 2. GOVERNANCE
Enterprises must meet internal standards for software engineering, secure engineering, resiliency,
security, and regulatory compliance for workloads hosted on private, multi and hybrid clouds. Red Hat
Advanced Cluster Management for Kubernetes governance provides an extensible policy framework for
enterprises to introduce their own security policies. Continue reading the related topics of the Red Hat
Advanced Cluster Management governance framework:

Governance architecture

Policy overview

Policy controllers introduction

Policy controller advanced configuration

Policy compliance history (Technology Preview)

Supported policies

Policy dependencies

Manage Governance dashboard

Secure the hub cluster

Gatekeeper operator overview

Integrating Policy Generator

2.1. GOVERNANCE ARCHITECTURE

Enhance the security for your cluster with the Red Hat Advanced Cluster Management for Kubernetes
governance lifecycle. The product governance lifecycle is based on using supported policies, processes,
and procedures to manage security and compliance from a central interface page. View the following
diagram of the governance architecture:

Red Hat Advanced Cluster Management for Kubernetes 2.11 Governance

12

View the following component descriptions for the governance architecture diagram:

Policy propagator controller: Runs on the Red Hat Advanced Cluster Management hub cluster
and generates the replicated policies in the managed cluster namespaces on the hub based on
the placements bound to the root policy. It also aggregates compliance status from replicated
policies to the root policy status and initiates automations based on policy automations bound
to the root policy.

CHAPTER 2. GOVERNANCE

13

Governance policy add-on controller: Runs on the Red Hat Advanced Cluster Management
hub cluster and manages the installation of policy controllers on managed clusters.

Governance policy framework: The previous image represents the framework that runs as the
governance-policy-framework pod on managed clusters and contains the following
controllers:

Spec sync controller: Synchronizes the replicated policy in the managed cluster namespace
on the hub cluster to the managed cluster namespace on the managed cluster.

Status sync controller: Records compliance events from policy controllers in the replicated
policies on the hub and managed cluster. The status only contains updates that are relevant
to the current policy and does not consider past statuses if the policy is deleted and
recreated.

Template sync controller: Creates, updates, and deletes objects in the managed cluster
namespace on the managed cluster based on the definitions from the replicated policy
spec.policy-templates entries.

Gatekeeper sync controller: Records Gatekeeper constraint audit results as compliance
events in corresponding Red Hat Advanced Cluster Management policies.

2.1.1. Governance architecture components

The governance architecture also include following components:

Governance dashboard: Provides a summary of your cloud governance and risk details, which
include policy and cluster violations. Refer to the Manage Governance dashboard section to
learn about the structure of an Red Hat Advanced Cluster Management for Kubernetes policy
framework, and how to use the Red Hat Advanced Cluster Management for Kubernetes
Governance dashboard.
Notes:

When a policy is propagated to a managed cluster, it is first replicated to the cluster
namespace on the hub cluster, and is named and labeled using
namespaceName.policyName. When you create a policy, make sure that the length of the
namespaceName.policyName does not exceed 63 characters due to the Kubernetes
length limit for label values.

When you search for a policy in the hub cluster, you might also receive the name of the
replicated policy in the managed cluster namespace. For example, if you search for policy-
dhaz-cert in the default namespace, the following policy name from the hub cluster might
also appear in the managed cluster namespace: default.policy-dhaz-cert.

Policy-based governance framework: Supports policy creation and deployment to various
managed clusters based on attributes associated with clusters, such as a geographical region.
There are examples of the predefined policies and instructions on deploying policies to your
cluster in the open source community. Additionally, when policies are violated, automations can
be configured to run and take any action that the user chooses.

Open source community: Supports community contributions with a foundation of the Red Hat
Advanced Cluster Management policy framework. Policy controllers and third-party policies are
also a part of the open-cluster-management/policy-collection repository. You can contribute
and deploy policies using GitOps.

2.1.2. Additional resources

Red Hat Advanced Cluster Management for Kubernetes 2.11 Governance

14

https://github.com/open-cluster-management/policy-collection

See Policy controllers introduction.

See Deploying policies by using GitOps .

2.2. POLICY OVERVIEW

To create and manage policies, gain visibility and remediate configurations to meet standards, use the
Red Hat Advanced Cluster Management for Kubernetes security policy framework. Kubernetes custom
resource definition instances are used to create policies. You can create a policy in any namespace on
the hub cluster except the managed cluster namespaces. If you create a policy in a managed cluster
namespace, it is deleted by Red Hat Advanced Cluster Management. Each Red Hat Advanced Cluster
Management policy can be organized into one or more policy template definitions. For more details
about the policy elements, view the Policy YAML table section on this page.

You are responsible for ensuring that the managed cloud environment meets internal enterprise security
standards for software engineering, secure engineering, resiliency, security, and regulatory compliance
for workloads hosted on Kubernetes clusters.

2.2.1. Prerequisites

Each policy requires a Placement resource that defines the clusters that the policy document is
applied to, and a PlacementBinding resource that binds the Red Hat Advanced Cluster
Management for Kubernetes policy.
Policy resources are applied to cluster based on an associated Placement definition, where you
can view a list of managed clusters that match a certain criteria. A sample Placement resource
that matches all clusters that have the environment=dev label resembles the following YAML:

To learn more about placement and the supported criteria, see Placement overview in the
Cluster lifecycle documentation.

In addition to the Placement resource, you must create a PlacementBinding to bind your
Placement resource to a policy. A sample Placement resource that matches all clusters that
have the environment=dev label resembles the following YAML:

apiVersion: cluster.open-cluster-management.io/v1beta1
kind: Placement
metadata:
 name: placement-policy-role
spec:
 predicates:
 - requiredClusterSelector:
 labelSelector:
 matchExpressions:
 - {key: environment, operator: In, values: ["dev"]}

apiVersion: policy.open-cluster-management.io/v1
kind: PlacementBinding
metadata:
 name: binding-policy-role
placementRef:
 name: placement-policy-role 1
 kind: Placement
 apiGroup: cluster.open-cluster-management.io
subjects: 2

CHAPTER 2. GOVERNANCE

15

../../html-single/governance#policy-controllers
../../html-single/gitops#gitops-deploy-policies
../../html-single/clusters#placement-overview

1

2

If you use the previous sample, make sure you update the name of the Placement
resource in the placementRef section to match your placement name.

You must update the name of the policy in the subjects section to match your policy
name. Use the oc apply -f resource.yaml -n namespace command to apply both the
Placement and the Placementbinding resources. Make sure the policy, placement and
placement binding are all created in the same namespace.

To use a Placement resource, you must bind a ManagedClusterSet resource to the namespace
of the Placement resource with a ManagedClusterSetBinding resource. Refer to Creating a
ManagedClusterSetBinding resource for additional details.

When you create a Placement resource for your policy from the console, the status of the
placement toleration is automatically added to the Placement resource. See Adding a
toleration to a placement for more details.

Best practice: Use the command line interface (CLI) to make updates to the policies when you use the
Placement resource.

Learn more details about the policy components in the following sections:

Policy YAML structure

Policy YAML table

Policy sample file

2.2.2. Policy YAML structure

When you create a policy, you must include required parameter fields and values. Depending on your
policy controller, you might need to include other optional fields and values. View the following YAML
structure for policies:

- name: policy-role
 kind: Policy
 apiGroup: policy.open-cluster-management.io

apiVersion: policy.open-cluster-management.io/v1
kind: Policy
metadata:
 name:
 annotations:
 policy.open-cluster-management.io/standards:
 policy.open-cluster-management.io/categories:
 policy.open-cluster-management.io/controls:
 policy.open-cluster-management.io/description:
spec:
 disabled:
 remediationAction:
 dependencies:
 - apiVersion: policy.open-cluster-management.io/v1
 compliance:
 kind: Policy
 name:
 namespace:

Red Hat Advanced Cluster Management for Kubernetes 2.11 Governance

16

../../html-single/clusters#creating-managedclustersetbinding
../../html-single/clusters#adding-a-toleration-to-a-placement

2.2.3. Policy YAML table

View the following table for policy parameter descriptions:

Table 2.1. Parameter table

Field Optional or required Description

apiVersion Required Set the value to policy.open-
cluster-management.io/v1.

kind Required Set the value to Policy to
indicate the type of policy.

metadata.name Required The name for identifying the
policy resource.

 policy-templates:
 - objectDefinition:
 apiVersion:
 kind:
 metadata:
 name:
 spec:

apiVersion: policy.open-cluster-management.io/v1
kind: PlacementBinding
metadata:
bindingOverrides:
 remediationAction:
subFilter:
 name:
placementRef:
 name:
 kind: Placement
 apiGroup: cluster.open-cluster-management.io
subjects:
- name:
 kind:
 apiGroup:

apiVersion: cluster.open-cluster-management.io/v1beta1
kind: Placement
metadata:
 name:
spec:

CHAPTER 2. GOVERNANCE

17

metadata.annotations Optional Used to specify a set of security
details that describes the set of
standards the policy is trying to
validate. All annotations
documented here are
represented as a string that
contains a comma-separated list.

Note: You can view policy
violations based on the standards
and categories that you define for
your policy on the Policies page,
from the console.

bindingOverrides.remediatio
nAction

Optional When this parameter is set to
enforce, it provides a way for
you to override the remediation
action of the related
PlacementBinding resources
for configuration policies. The
default value is null.

subFilter Optional Set this parameter to restriction
to select a subset of bound
policies. The default value is null.

annotations.policy.open-
cluster-
management.io/standards

Optional The name or names of security
standards the policy is related to.
For example, National Institute of
Standards and Technology
(NIST) and Payment Card
Industry (PCI).

annotations.policy.open-
cluster-
management.io/categories

Optional A security control category
represent specific requirements
for one or more standards. For
example, a System and
Information Integrity category
might indicate that your policy
contains a data transfer protocol
to protect personal information,
as required by the HIPAA and PCI
standards.

annotations.policy.open-
cluster-
management.io/controls

Optional The name of the security control
that is being checked. For
example, Access Control or
System and Information Integrity.

Field Optional or required Description

Red Hat Advanced Cluster Management for Kubernetes 2.11 Governance

18

spec.disabled Required Set the value to true or false.
The disabled parameter
provides the ability to enable and
disable your policies.

spec.remediationAction Optional Specifies the remediation of your
policy. The parameter values are
enforce and inform. If specified,
the spec.remediationAction
value that is defined overrides
any remediationAction
parameter defined in the child
policies in the policy-templates
section. For example, if the
spec.remediationAction value
is set to enforce, then the
remediationAction in the
policy-templates section is set
to enforce during runtime.

spec.copyPolicyMetadata Optional Specifies whether the labels and
annotations of a policy should be
copied when replicating the policy
to a managed cluster. If you set
to true, all of the labels and
annotations of the policy are
copied to the replicated policy. If
you set to false, only the policy
framework specific policy labels
and annotations are copied to the
replicated policy.

spec.dependencies Optional Used to create a list of
dependency objects detailed with
extra considerations for
compliance.

spec.policy-templates Required Used to create one or more
policies to apply to a managed
cluster.

spec.policy-
templates.extraDependencie
s

Optional For policy templates, this is used
to create a list of dependency
objects detailed with extra
considerations for compliance.

Field Optional or required Description

CHAPTER 2. GOVERNANCE

19

spec.policy-
templates.ignorePending

Optional Used to mark a policy template as
compliant until the dependency
criteria is verified.

Important: Some policy kinds
might not support the enforce
feature.

Field Optional or required Description

2.2.4. Policy sample file

View the following YAML file which is a configuration policy for roles:

apiVersion: policy.open-cluster-management.io/v1
kind: Policy
metadata:
 name: policy-role
 annotations:
 policy.open-cluster-management.io/standards: NIST SP 800-53
 policy.open-cluster-management.io/categories: AC Access Control
 policy.open-cluster-management.io/controls: AC-3 Access Enforcement
 policy.open-cluster-management.io/description:
spec:
 remediationAction: inform
 disabled: false
 policy-templates:
 - objectDefinition:
 apiVersion: policy.open-cluster-management.io/v1
 kind: ConfigurationPolicy
 metadata:
 name: policy-role-example
 spec:
 remediationAction: inform # the policy-template spec.remediationAction is overridden by the
preceding parameter value for spec.remediationAction.
 severity: high
 namespaceSelector:
 include: ["default"]
 object-templates:
 - complianceType: mustonlyhave # role definition should exact match
 objectDefinition:
 apiVersion: rbac.authorization.k8s.io/v1
 kind: Role
 metadata:
 name: sample-role
 rules:
 - apiGroups: ["extensions", "apps"]
 resources: ["deployments"]
 verbs: ["get", "list", "watch", "delete","patch"]

apiVersion: policy.open-cluster-management.io/v1
kind: PlacementBinding
metadata:
 name: binding-policy-role

Red Hat Advanced Cluster Management for Kubernetes 2.11 Governance

20

2.2.5. Additional resources

Refer to Policy controllers.

See Managing security policies to create and update a policy. You can also enable and update
Red Hat Advanced Cluster Management policy controllers to validate the compliance of your
policies.

Return to the Governance documentation.

2.3. POLICY CONTROLLERS INTRODUCTION

Policy controllers monitor and report whether your cluster is compliant with a policy. Use the Red Hat
Advanced Cluster Management for Kubernetes policy framework by using the supported policy
templates to apply policies managed by these controllers. The policy controllers manage Kubernetes
custom resource definition instances.

Policy controllers check for policy violations, and can make the cluster status compliant if the controller
supports the enforcement feature. View the following topics to learn more about the following Red Hat
Advanced Cluster Management for Kubernetes policy controllers:

Kubernetes configuration policy controller

Certificate policy controller

Policy set controller

Operator policy controller

Important: Only the configuration policy controller policies support the enforce feature. You must
manually remediate policies, where the policy controller does not support the enforce feature.

2.3.1. Kubernetes configuration policy controller

The configuration policy controller can be used to configure any Kubernetes resource and apply security

placementRef:
 name: placement-policy-role
 kind: Placement
 apiGroup: cluster.open-cluster-management.io
subjects:
- name: policy-role
 kind: Policy
 apiGroup: policy.open-cluster-management.io

apiVersion: cluster.open-cluster-management.io/v1beta1
kind: Placement
metadata:
 name: placement-policy-role
spec:
 predicates:
 - requiredClusterSelector:
 labelSelector:
 matchExpressions:
 - {key: environment, operator: In, values: ["dev"]}

CHAPTER 2. GOVERNANCE

21

policies across your clusters. The configuration policy is provided in the policy-templates field of the
policy on the hub cluster, and is propagated to the selected managed clusters by the governance
framework.

A Kubernetes object is defined (in whole or in part) in the object-templates array in the configuration
policy, indicating to the configuration policy controller of the fields to compare with objects on the
managed cluster. The configuration policy controller communicates with the local Kubernetes API server
to get the list of your configurations that are in your cluster.

The configuration policy controller is created on the managed cluster during installation. The
configuration policy controller supports the enforce and the InformOnly feature to remediate when the
configuration policy is non-compliant.

When the remediationAction for the configuration policy is set to enforce, the controller applies the
specified configuration to the target managed cluster.

When the remediationAction for the configuration policy is set to InformOnly, the parent policy does
not enforce the configuration policy, even if the remediationAction in the parent policy is set to
enforce.

Note: Configuration policies that specify an object without a name can only be inform.

You can also use templated values within configuration policies. For more information, see Template
processing.

If you have existing Kubernetes manifests that you want to put in a policy, the Policy Generator is a
useful tool to accomplish this.

2.3.1.1. Configuration policy sample

apiVersion: policy.open-cluster-management.io/v1
kind: ConfigurationPolicy
metadata:
 name: policy-config
spec:
 namespaceSelector:
 include: ["default"]
 exclude: []
 matchExpressions: []
 matchLabels: {}
 remediationAction: inform
 severity: low
 evaluationInterval:
 compliant:
 noncompliant:
 object-templates:
 - complianceType: musthave
 objectDefinition:
 apiVersion: v1
 kind: Pod
 metadata:
 name: pod
 spec:
 containers:
 - image: pod-image
 name: pod-name

Red Hat Advanced Cluster Management for Kubernetes 2.11 Governance

22

2.3.1.2. Configuration policy YAML table

Table 2.2. Parameter table

Field Optional or required Description

apiVersion Required Set the value to policy.open-
cluster-management.io/v1.

kind Required Set the value to
ConfigurationPolicy to
indicate the type of policy.

metadata.name Required The name of the policy.

spec.namespaceSelector Required for namespaced objects
that do not have a namespace
specified

Determines namespaces in the
managed cluster that the object
is applied to. The include and
exclude parameters accept file
path expressions to include and
exclude namespaces by name.
The matchExpressions and
matchLabels parameters
specify namespaces to include by
label. See the Kubernetes labels
and selectors documentation.
The resulting list is compiled by
using the intersection of results
from all parameters.

spec.remediationAction Required Specifies the action to take when
the policy is non-compliant. Use
the following parameter values:
inform, InformOnly, or
enforce.

 ports:
 - containerPort: 80
 - complianceType: musthave
 objectDefinition:
 apiVersion: v1
 kind: ConfigMap
 metadata:
 name: myconfig
 namespace: default
 data:
 testData: hello
 spec:
...

CHAPTER 2. GOVERNANCE

23

https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/

spec.severity Required Specifies the severity when the
policy is non-compliant. Use the
following parameter values: low,
medium, high, or critical.

spec.evaluationInterval.com
pliant

Optional Used to define how often the
policy is evaluated when it is in the
compliant state. The values must
be in the format of a duration
which is a sequence of numbers
with time unit suffixes. For
example, 12h30m5s represents
12 hours, 30 minutes, and 5
seconds. It can also be set to
never so that the policy is not
reevaluated on the compliant
cluster, unless the policy spec is
updated.

By default, the minimum time
between evaluations for
configuration policies is
approximately 10 seconds when
the
evaluationInterval.compliant
is not set or empty. This can be
longer if the configuration policy
controller is saturated on the
managed cluster.

spec.evaluationInterval.nonc
ompliant

Optional Used to define how often the
policy is evaluated when it is in the
non-compliant state. Similar to
the
evaluationInterval.compliant
parameter, the values must be in
the format of a duration which is
a sequence of numbers with time
unit suffixes. It can also be set to
never so that the policy is not
reevaluated on the non-compliant
cluster, unless the policy spec is
updated.

Field Optional or required Description

Red Hat Advanced Cluster Management for Kubernetes 2.11 Governance

24

spec.object-templates Optional The array of Kubernetes objects
(either fully defined or containing
a subset of fields) for the
controller to compare with
objects on the managed cluster.
Note: While spec.object-
templates and spec.object-
templates-raw are listed as
optional, exactly one of the two
parameter fields must be set.

spec.object-templates-raw Optional Used to set object templates with
a raw YAML string. Specify
conditions for the object
templates, where advanced
functions like if-else statements
and the range function are
supported values. For example,
add the following value to avoid
duplication in your object-
templates definition:

{{- if eq .metadata.name
"policy-grc-your-meta-data-
name" }} replicas: 2 {{- else
}} replicas: 1 {{- end }}

Note: While spec.object-
templates and spec.object-
templates-raw are listed as
optional, exactly one of the two
parameter fields must be set.

Field Optional or required Description

CHAPTER 2. GOVERNANCE

25

spec.object-
templates[].complianceType

Required Use this parameter to define the
desired state of the Kubernetes
object on your managed clusters.
Use one of the following verbs as
the parameter value:

mustonlyhave:
Indicates that an object
must exist with the exact
fields and values as
defined in the
objectDefinition.

musthave: Indicates an
object must exist with
the same fields as
specified in the
objectDefinition. Any
existing fields on the
object that are not
specified in the object-
template are ignored. In
general, array values are
appended. The
exception for the array
to be patched is when
the item contains a
name key with a value
that matches an existing
item. Use a fully defined
objectDefinition using
the mustonlyhave
compliance type, if you
want to replace the
array.

mustnothave:
Indicates that an object
with the same fields as
specified in the
objectDefinition
cannot exist.

spec.object-
templates[].metadataComplia
nceType

Optional Overrides spec.object-
templates[].complianceType
when comparing the manifest’s
metadata section to objects on
the cluster ("musthave",
"mustonlyhave"). Default is unset
to not override
complianceType for metadata.

Field Optional or required Description

Red Hat Advanced Cluster Management for Kubernetes 2.11 Governance

26

spec.object-
templates[].recordDiff

Optional Use this parameter to specify if
and where to display the
difference between the object on
the cluster and the
objectDefinition in the policy.
The following options are
supported:

Set to InStatus to store
the difference in the
ConfigurationPolicy
status.

Set to Log to log the
difference in the
controller logs.

Set to None to not log
the difference.

By default, this parameter is set to
InStatus if the controller does
not detect sensitive data in the
difference. Otherwise, the default
is None. If sensitive data is
detected, the
ConfigurationPolicy status
displays a message to set
recordDiff to view the
difference.

spec.object-
templates[].recreateOption

Optional Describes when to delete and
recreate an object when an
update is required. When you set
the object to IfRequired, the
policy recreates the object when
updating an immutable field.
When you set the parameter to
Always, the policy recreates the
object on any update. When you
set the remediationAction to
inform, the parameter value,
recreateOption, has no effect
on the object. The IfRequired
value has no effect on clusters
without dry-run update support.
The default value is None.

spec.object-
templates[].objectDefinition

Required A Kubernetes object (either fully
defined or containing a subset of
fields) for the controller to
compare with objects on the
managed cluster.

Field Optional or required Description

CHAPTER 2. GOVERNANCE

27

spec.pruneObjectBehavior Optional Determines whether to clean up
resources related to the policy
when the policy is removed from a
managed cluster.

Field Optional or required Description

2.3.1.3. Additional resources

See the following topics for more information:

See the Policy overview for more details on the hub cluster policy.

See the policy samples that use NIST Special Publication 800-53 (Rev. 4) , and are supported
by Red Hat Advanced Cluster Management from the CM-Configuration-Management folder.

For information about dry-run support, see the Kubernetes documentation, Dry-run.

Learn about how policies are applied on your hub cluster, see Supported policies for more
details.

Refer to Policy controllers for more details about controllers.

Customize your policy controller configuration. See Policy controller advanced configuration .

Learn about cleaning up resources and other topics in the Cleaning up resources that are
created by policies documentation.

Refer to Policy Generator.

Learn about how to create and customize policies, see Manage Governance dashboard.

See Template processing.

2.3.2. Certificate policy controller

You can use the certificate policy controller to detect certificates that are close to expiring, time
durations (hours) that are too long, or contain DNS names that fail to match specified patterns. You can
add the certificate policy to the policy-templates field of the policy on the hub cluster, which
propagates to the selected managed clusters by using the governance framework. See the Policy
overview documentation for more details on the hub cluster policy.

Configure and customize the certificate policy controller by updating the following parameters in your
controller policy:

minimumDuration

minimumCADuration

maximumDuration

maximumCADuration

allowedSANPattern

Red Hat Advanced Cluster Management for Kubernetes 2.11 Governance

28

https://nvd.nist.gov/800-53/Rev4/control/CA-1
https://github.com/open-cluster-management/policy-collection/tree/main/stable/CM-Configuration-Management
https://kubernetes.io/docs/reference/using-api/api-concepts/#dry-run

disallowedSANPattern

Your policy might become non-compliant due to either of the following scenarios:

When a certificate expires in less than the minimum duration of time or exceeds the maximum
time.

When DNS names fail to match the specified pattern.

The certificate policy controller is created on your managed cluster. The controller communicates with
the local Kubernetes API server to get the list of secrets that contain certificates and determine all non-
compliant certificates.

Certificate policy controller does not support the enforce feature.

Note: The certificate policy controller automatically looks for a certificate in a secret in only the tls.crt
key. If a secret is stored under a different key, add a label named certificate_key_name with a value set
to the key to let the certificate policy controller know to look in a different key. For example, if a secret
contains a certificate stored in the key named sensor-cert.pem, add the following label to the secret:
certificate_key_name: sensor-cert.pem.

2.3.2.1. Certificate policy controller YAML structure

View the following example of a certificate policy and review the element in the YAML table:

2.3.2.1.1. Certificate policy controller YAML table

Table 2.3. Parameter table

Field Optional or required Description

apiVersion Required Set the value to policy.open-
cluster-management.io/v1.

apiVersion: policy.open-cluster-management.io/v1
kind: CertificatePolicy
metadata:
 name: certificate-policy-example
spec:
 namespaceSelector:
 include: ["default"]
 exclude: []
 matchExpressions: []
 matchLabels: {}
 labelSelector:
 myLabelKey: myLabelValue
 remediationAction:
 severity:
 minimumDuration:
 minimumCADuration:
 maximumDuration:
 maximumCADuration:
 allowedSANPattern:
 disallowedSANPattern:

CHAPTER 2. GOVERNANCE

29

kind Required Set the value to
CertificatePolicy to indicate
the type of policy.

metadata.name Required The name to identify the policy.

metadata.labels Optional In a certificate policy, the
category=system-and-
information-integrity label
categorizes the policy and
facilitates querying the certificate
policies. If there is a different
value for the category key in
your certificate policy, the value is
overridden by the certificate
controller.

spec.namespaceSelector Required Determines namespaces in the
managed cluster where secrets
are monitored. The include and
exclude parameters accept file
path expressions to include and
exclude namespaces by name.
The matchExpressions and
matchLabels parameters
specify namespaces to be
included by label. See the
Kubernetes labels and selectors
documentation. The resulting list
is compiled by using the
intersection of results from all
parameters.

Note: If the
namespaceSelector for the
certificate policy controller does
not match any namespace, the
policy is considered compliant.

spec.labelSelector Optional Specifies identifying attributes of
objects. See the Kubernetes
labels and selectors
documentation.

spec.remediationAction Required Specifies the remediation of your
policy. Set the parameter value to
inform. Certificate policy
controller only supports inform
feature.

Field Optional or required Description

Red Hat Advanced Cluster Management for Kubernetes 2.11 Governance

30

https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/

spec.severity Optional Informs the user of the severity
when the policy is non-compliant.
Use the following parameter
values: low, medium, high, or
critical.

spec.minimumDuration Required When a value is not specified, the
default value is 100h. This
parameter specifies the smallest
duration (in hours) before a
certificate is considered non-
compliant. The parameter value
uses the time duration format
from Golang. See Golang Parse
Duration for more information.

spec.minimumCADuration Optional Set a value to identify signing
certificates that might expire
soon with a different value from
other certificates. If the
parameter value is not specified,
the CA certificate expiration is the
value used for the
minimumDuration. See Golang
Parse Duration for more
information.

spec.maximumDuration Optional Set a value to identify certificates
that have been created with a
duration that exceeds your
desired limit. The parameter uses
the time duration format from
Golang. See Golang Parse
Duration for more information.

spec.maximumCADuration Optional Set a value to identify signing
certificates that have been
created with a duration that
exceeds your defined limit. The
parameter uses the time duration
format from Golang. See Golang
Parse Duration for more
information.

spec.allowedSANPattern Optional A regular expression that must
match every SAN entry that you
have defined in your certificates.
This parameter checks DNS
names against patterns. See the
Golang Regular Expression syntax
for more information.

Field Optional or required Description

CHAPTER 2. GOVERNANCE

31

https://golang.org/pkg/time/#ParseDuration
https://golang.org/pkg/time/#ParseDuration
https://golang.org/pkg/time/#ParseDuration
https://golang.org/pkg/time/#ParseDuration
https://golang.org/pkg/regexp/syntax/

spec.disallowedSANPattern Optional A regular expression that must
not match any SAN entries you
have defined in your certificates.
This parameter checks DNS
names against patterns.

Note: To detect wild-card
certificate, use the following SAN
pattern:
disallowedSANPattern: "[*]"

See the Golang Regular
Expression syntax for more
information.

Field Optional or required Description

2.3.2.2. Certificate policy sample

When your certificate policy controller is created on your hub cluster, a replicated policy is created on
your managed cluster. See policy-certificate.yaml to view the certificate policy sample.

2.3.2.3. Additional resources

Learn how to manage a certificate policy, see Managing security policies for more details.

Refer to Policy controllers introduction for more topics.

Return to the Certificates introduction.

2.3.3. Policy set controller

The policy set controller aggregates the policy status scoped to policies that are defined in the same
namespace. Create a policy set (PolicySet) to group policies that are in the same namespace. All
policies in the PolicySet are placed together in a selected cluster by creating a PlacementBinding to
bind the PolicySet and Placement. The policy set is deployed to the hub cluster.

Additionally, when a policy is a part of multiple policy sets, existing and new Placement resources remain
in the policy. When a user removes a policy from the policy set, the policy is not applied to the cluster
that is selected in the policy set, but the placements remain. The policy set controller only checks for
violations in clusters that include the policy set placement.

Notes:

The Red Hat Advanced Cluster Management sample policy set uses cluster placement. If you
use cluster placement, bind the namespace containing the policy to the managed cluster set.
See Deploying policies to your cluster for more details on using cluster placement.

In order to use a Placement resource, a ManagedClusterSet resource must be bound to the
namespace of the Placement resource with a ManagedClusterSetBinding resource. Refer to
Creating a ManagedClusterSetBinding resource for additional details.

Red Hat Advanced Cluster Management for Kubernetes 2.11 Governance

32

https://golang.org/pkg/regexp/syntax/
https://github.com/open-cluster-management/policy-collection/blob/main/stable/SC-System-and-Communications-Protection/policy-certificate.yaml
../../html-single/gitops#deploying-policies-to-your-cluster
../../html-single/clusters#creating-managedclustersetbinding

Learn more details about the policy set structure in the following sections:

Policy set controller YAML structure

Policy set controller YAML table

Policy set sample

2.3.3.1. Policy set YAML structure

Your policy set might resemble the following YAML file:

2.3.3.2. Policy set table

View the following parameter table for descriptions:

Table 2.4. Parameter table

apiVersion: policy.open-cluster-management.io/v1beta1
kind: PolicySet
metadata:
 name: demo-policyset
spec:
 policies:
 - policy-demo

apiVersion: policy.open-cluster-management.io/v1
kind: PlacementBinding
metadata:
 name: demo-policyset-pb
placementRef:
 apiGroup: cluster.open-cluster-management.io
 kind: Placement
 name: demo-policyset-pr
subjects:
- apiGroup: policy.open-cluster-management.io
 kind: PolicySet
 name: demo-policyset

apiVersion: cluster.open-cluster-management.io/v1beta1
kind: Placement
metadata:
 name: demo-policyset-pr
spec:
 predicates:
 - requiredClusterSelector:
 labelSelector:
 matchExpressions:
 - key: name
 operator: In
 values:
 - local-cluster

CHAPTER 2. GOVERNANCE

33

Field Optional or required Description

apiVersion Required Set the value to policy.open-
cluster-
management.io/v1beta1.

kind Required Set the value to PolicySet to
indicate the type of policy.

metadata.name Required The name for identifying the
policy resource.

spec Required Add configuration details for your
policy.

spec.policies Optional The list of policies that you want
to group together in the policy
set.

2.3.3.3. Policy set sample

2.3.3.4. Additional resources

See Red Hat OpenShift Platform Plus policy set .

See the Creating policy sets section in the Managing security policies topic.

Also view the stable PolicySets, which require the Policy Generator for deployment,
PolicySets-- Stable.

Return to the beginning of this topic, Policy set controller.

2.3.4. Operator policy controller

The operator policy controller allows you to monitor and install Operator Lifecycle Manager operators

apiVersion: policy.open-cluster-management.io/v1beta1
kind: PolicySet
metadata:
 name: pci
 namespace: default
spec:
 description: Policies for PCI compliance
 policies:
 - policy-pod
 - policy-namespace
status:
 compliant: NonCompliant
 placement:
 - placementBinding: binding1
 placement: placement1
 policySet: policyset-ps

Red Hat Advanced Cluster Management for Kubernetes 2.11 Governance

34

https://github.com/open-cluster-management/policy-collection/tree/main/policygenerator/policy-sets/stable

The operator policy controller allows you to monitor and install Operator Lifecycle Manager operators
across your clusters. Use the operator policy controller to monitor the health of various pieces of the
operator and to specify how you want to automatically handle updates to the operator.

You can also distribute an operator policy to managed clusters by using the governance framework and
adding the policy to the policy-templates field of a policy on the hub cluster.

You can also use template values within the operatorGroup and subscription fields of an operator
policy. For more information, see Template processing.

2.3.4.1. Prerequisites

Operator Lifecycle Manager must be available on your managed cluster. This is enabled by
default on Red Hat OpenShift Container Platform.

Required access: Cluster administrator

2.3.4.2. Operator policy YAML table

Field Optional or required Description

apiVersion Required Set the value to policy.open-
cluster-
management.io/v1beta1.

kind Required Set the value to OperatorPolicy
to indicate the type of policy.

metadata.name Required The name for identifying the
policy resource.

spec.remediationAction Required If the remediationAction for
the operator policy is set to
enforce, the controller creates
resources on the target managed
cluster to communicate to OLM
to install the operator and
approve updates based on the
versions specified in the policy. +
If the remediationAction set to
inform, the controller only
reports the status of the
operator, including if any
upgrades are available.

CHAPTER 2. GOVERNANCE

35

spec.operatorGroup Optional By default, if the
operatorGroup field is not
specified, the controller generates
an AllNamespaces type
OperatorGroup in the same
namespace as the subscription, if
supported. This resource is
generated by the operator policy
controller.

spec.complianceType Required Specifies the desired state of the
operator on the cluster. If set to
musthave, the policy is
compliant when the operator is
found. If set to mustnothave,
the policy is compliant when the
operator is not found.

spec.removalBehavior Optional Determines which resource types
need to be kept or removed when
you enforce an OperatorPolicy
resource with complianceType:
mustnothave defined. There is
no effect when
complianceType is set to
musthave. - operatorGroups
can be set to Keep or
DeleteIfUnused. The default
value is DeleteIfUnusued which
only removes the
OperatorGroup resource if it is
not used by any other operators. -
subscriptions can be set to
Keep or Delete. The default
value is Delete. -
clusterServiceVersions can
be set to Keep or Delete. The
default value is Delete. -
customResourceDefinitions
can be set to Keep or Delete.
The default value is Keep. If you
set this to Delete, the
CustomResourceDefintion
resources on the managed cluster
are removed and can cause data
loss.

Field Optional or required Description

Red Hat Advanced Cluster Management for Kubernetes 2.11 Governance

36

spec.subscription Required Define the configurations to
create an operator subscription.
Add information in the following
fields to create an operator
subscription. Default options are
selected for a few items if there is
no entry:

channel: If not
specified, the default
channel is selected from
the operator catalog.
The default can be
different on different
OpenShift Container
Platform versions.

name: Specify the
package name of the
operator.

namespace: If not
specified, the default
namespaced that is used
for OpenShift Container
Platform managed
clusters is openshift-
operators.

source: If not specified,
the catalog that contains
the operator is chosen.

sourceNamespace: If
not specified, the
namespace of the
catalog that contains the
operator is chosen.
Note: If you define a
value for
upgradeApproval,
your policy becomes
non-compliant.

Field Optional or required Description

CHAPTER 2. GOVERNANCE

37

spec.complianceConfig Optional Use this parameter to define the
compliance behavior for specific
scenarios that are associated with
operators. You can set each of
the following options individually,
where the supported values are
Compliant and NonCompliant:

catalogSourceUnheal
thy: Define the
compliance when the
catalog source for the
operator is unhealthy.
The default value is
Compliant because this
only affects possible
upgrades.

deploymentsUnavail
able: Define the
compliance when at least
one deployment of the
operator is not fully
available. The default
value is NonCompliant
because this reflects the
availability of the service
that the operator
provides.

upgradesAvailable:
Define the compliance
when there is an upgrade
available for the
operator. The default
value is Compliant
because the existing
operator installation
might be running
correctly.

spec.upgradeApproval Required If the upgradeApproval field is
set to Automatic, version
upgrades on the cluster are
approved by the policy when the
policy is set to enforce. If you set
the field to None, version
upgrades to the specific operator
are not approved when the policy
is set to enforce.

Field Optional or required Description

Red Hat Advanced Cluster Management for Kubernetes 2.11 Governance

38

spec.versions Optional Declare which versions of the
operator are compliant. If the
field is empty, any version running
on the cluster is considered
compliant. If the field is not
empty, the version on the
managed cluster must match one
of the versions in the list for the
policy to be compliant. If the
policy is set to enforce and the
list is not empty, the versions
listed here are approved by the
controller on the cluster.

Field Optional or required Description

2.3.4.3. Additional resources

See Template processing.

See Installing an operator by using the OperatorPolicy resource for more details.

See the Subscription topic in the OpenShift Container Platform documentation.

See Operator Lifecycle Manager (OLM) for more details.

See the Adding Operators to a cluster documentation for general information on OLM.

2.4. POLICY CONTROLLER ADVANCED CONFIGURATION

You can customize policy controller configurations on your managed clusters by using the
ManagedClusterAddOn custom resources. The following ManagedClusterAddOns configure the
policy framework, Kubernetes configuration policy controller, and the Certificate policy controller.
Required access: Cluster administrator

Configure the concurrency of the governance framework

Configure the concurrency of the configuration policy controller

Configure the rate of requests to the API server

Configure debug log

Governance metric

Verify configuration changes

2.4.1. Configure the concurrency of the governance framework

Configure the concurrency of the governance framework for each managed cluster. To change the
default value of 2, set the policy-evaluation-concurrency annotation with a nonzero integer within
quotation marks. Then set the value on the ManagedClusterAddOn object name to governance-
policy-framework in the managed cluster namespace of the hub cluster.

See the following YAML example where the concurrency is set to 2 on the managed cluster named

CHAPTER 2. GOVERNANCE

39

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html/operators/understanding-operators#olm-subscription_olm-understanding-olm
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html/operators/understanding-operators#operator-lifecycle-manager-olm
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/operators/index#olm-adding-operators-to-a-cluster

See the following YAML example where the concurrency is set to 2 on the managed cluster named
cluster1:

To set the client-qps and client-burst annotations, update the ManagedClusterAddOn resource and
define the parameters.

See the following YAML example where the queries for each second is set to 30 and the burst is set to
45 on the managed cluster called cluster1:

2.4.2. Configure the concurrency of the configuration policy controller

You can configure the concurrency of the configuration policy controller for each managed cluster to
change how many configuration policies it can evaluate at the same time. To change the default value
of 2, set the policy-evaluation-concurrency annotation with a nonzero integer within quotation marks.
Then set the value on the ManagedClusterAddOn object name to config-policy-controller in the
managed cluster namespace of the hub cluster.

Note: Increased concurrency values increase CPU and memory utilization on the config-policy-
controller pod, Kubernetes API server, and OpenShift API server.

See the following YAML example where the concurrency is set to 5 on the managed cluster named
cluster1:

apiVersion: addon.open-cluster-management.io/v1alpha1
kind: ManagedClusterAddOn
metadata:
 name: governance-policy-framework
 namespace: cluster1
 annotations:
 policy-evaluation-concurrency: "2"
spec:
 installNamespace: open-cluster-management-agent-addon

apiVersion: addon.open-cluster-management.io/v1alpha1
kind: ManagedClusterAddOn
metadata:
 name: governance-policy-framework
 namespace: cluster1
 annotations:
 client-qps: "30"
 client-burst: "45"
spec:
 installNamespace: open-cluster-management-agent-addon

apiVersion: addon.open-cluster-management.io/v1alpha1
kind: ManagedClusterAddOn
metadata:
 name: config-policy-controller
 namespace: cluster1
 annotations:
 policy-evaluation-concurrency: "5"
spec:
 installNamespace: open-cluster-management-agent-addon

Red Hat Advanced Cluster Management for Kubernetes 2.11 Governance

40

2.4.3. Configure the rate of requests to the API server

Configure the rate of requests to the API server that the configuration policy controller makes on each
managed cluster. An increased rate improves the responsiveness of the configuration policy controller,
which also increases the CPU and memory utilization of the Kubernetes API server and OpenShift API
server. By default, the rate of requests scales with the policy-evaluation-concurrency setting and is set
to 30 queries for each second (QPS), with a 45 burst value, representing a higher number of requests
over short periods of time.

You can configure the rate and burst by setting the client-qps and client-burst annotations with
nonzero integers within quotation marks. You can set the value on the ManagedClusterAddOn object
name to config-policy-controller in the managed cluster namespace of the hub cluster.

See the following YAML example where the queries for each second is set to 20 and the burst is set to
100 on the managed cluster called cluster1:

2.4.4. Configure debug log

When you configure and collect debug logs for each policy controller, you can adjust the log level.

Note: Reducing the volume of debug logs means there is less information displayed from the logs.

You can reduce the debug logs emitted by the policy controllers to be display error-only bugs in the
logs. To reduce the debug logs, set the debug log value to -1 in the annotation. See what each value
represents:

-1: error logs only

0: informative logs

1: debug logs

2: verbose debugging logs

To receive the second level of debugging information for the Kubernetes configuration controller, add
the log-level annotation with the value of 2 to the ManagedClusterAddOn custom resource. By
default, the log-level is set to 0, which means you receive informative messages. View the following
example:

apiVersion: addon.open-cluster-management.io/v1alpha1
kind: ManagedClusterAddOn
metadata:
 name: config-policy-controller
 namespace: cluster1
 annotations:
 client-qps: "20"
 client-burst: "100"
spec:
 installNamespace: open-cluster-management-agent-addon

apiVersion: addon.open-cluster-management.io/v1alpha1
kind: ManagedClusterAddOn
metadata:
 name: config-policy-controller
 namespace: cluster1
 annotations:

CHAPTER 2. GOVERNANCE

41

Additionally, for each spec.object-template[] in a ConfigurationPolicy resource, you can set the
parameter recordDiff to Log. The difference between the objectDefinition and the object on the
managed cluster is logged in the config-policy-controller pod on the managed cluster. View the
following example:

This ConfigurationPolicy resource with recordDiff: Log:

If the ConfigMap resource on the cluster lists fieldToUpdate: "1", then the diff appears in the config-
policy-controller pod logs with the following information:

Logging the diff:
--- default/my-configmap : existing
+++ default/my-configmap : updated
@@ -2,3 +2,3 @@
 data:
- fieldToUpdate: "1"
+ fieldToUpdate: "2"
 kind: ConfigMap

Important: Avoid logging the difference for a secure object. The difference is logged in plain text.

2.4.5. Governance metric

The policy framework exposes metrics that show policy distribution and compliance. Use the
policy_governance_info metric on the hub cluster to view trends and analyze any policy failures. See
the following topics for an overview of metrics:

2.4.5.1. Metric: policy_governance_info

The OpenShift Container Platform monitoring component collects the policy_governance_info metric.
If you enable observability, the component collects some aggregate data.

Note: If you enable observability, enter a query for the metric from the Grafana Explore page. When you
create a policy, you are creating a root policy. The framework watches for root policies, Placement
resources, and PlacementBindings resources to for information about where to create propagated

 log-level: "2"
spec:
 installNamespace: open-cluster-management-agent-addon

apiVersion: policy.open-cluster-management.io/v1
kind: ConfigurationPolicy
metadata:
 name: my-config-policy
spec:
 object-templates:
 - complianceType: musthave
 recordDiff: Log
 objectDefinition:
 apiVersion: v1
 kind: ConfigMap
 metadata:
 name: my-configmap
 data:
 fieldToUpdate: "2"

Red Hat Advanced Cluster Management for Kubernetes 2.11 Governance

42

policies, to distribute the policy to managed clusters.

For both root and propagated policies, a metric of 0 is recorded if the policy is compliant, and 1 if it is
non-compliant.

The policy_governance_info metric uses the following labels:

type: The label values are root or propagated.

policy: The name of the associated root policy.

policy_namespace: The namespace on the hub cluster where the root policy is defined.

cluster_namespace: The namespace for the cluster where the policy is distributed.

These labels and values enable queries that can show us many things happening in the cluster that
might be difficult to track.

Note: If you do not need the metrics, and you have any concerns about performance or security, you can
disable the metric collection. Set the DISABLE_REPORT_METRICS environment variable to true in
the propagator deployment. You can also add policy_governance_info metric to the observability
allowlist as a custom metric. See Adding custom metrics for more details.

2.4.5.2. Metric: config_policies_evaluation_duration_seconds

The config_policies_evaluation_duration_seconds histogram tracks the number of seconds it takes
to process all configuration policies that are ready to be evaluated on the cluster. Use the following
metrics to query the histogram:

config_policies_evaluation_duration_seconds_bucket: The buckets are cumulative and
represent seconds with the following possible entries: 1, 3, 9, 10.5, 15, 30, 60, 90, 120, 180, 300,
450, 600, and greater.

config_policies_evaluation_duration_seconds_count: The count of all events.

config_policies_evaluation_duration_seconds_sum: The sum of all values.

Use the config_policies_evaluation_duration_seconds metric to determine if the
ConfigurationPolicy evaluationInterval setting needs to be changed for resource intensive policies
that do not need frequent evaluation. You can also increase the concurrency at the cost of higher
resource utilization on the Kubernetes API server. See Configure the concurrency section for more
details.

To receive information about the time used to evaluate configuration policies, perform a Prometheus
query that resembles the following expression:

rate(config_policies_evaluation_duration_seconds_sum[10m])/rate
(config_policies_evaluation_duration_seconds_count[10m]

The config-policy-controller pod running on managed clusters in the open-cluster-management-
agent-addon namespace calculates the metric. The config-policy-controller does not send the metric
to observability by default.

2.4.6. Verify configuration changes

When you apply the new configuration with the controller, the ManifestApplied parameter is updated in

CHAPTER 2. GOVERNANCE

43

../../html-single/observability#adding-custom-metrics

When you apply the new configuration with the controller, the ManifestApplied parameter is updated in
the ManagedClusterAddOn. That condition timestamp helps verify the configuration correctly. For
example, this command can verify when the cert-policy-controller on the local-cluster was updated:

oc get -n local-cluster managedclusteraddon cert-policy-controller | grep -B4 'type: ManifestApplied'

You might receive the following output:

 - lastTransitionTime: "2023-01-26T15:42:22Z"
 message: manifests of addon are applied successfully
 reason: AddonManifestApplied
 status: "True"
 type: ManifestApplied

2.4.7. Additional resources

See Kubernetes configuration policy controller

Return to the Governance topic for more topics.

Return to the beginning of this topic, Policy controller advanced configuration .

2.5. POLICY COMPLIANCE HISTORY (TECHNOLOGY PREVIEW)

The policy compliance history API is an optional technical preview feature if you want long-term storage
of Red Hat Advanced Cluster Management for Kubernetes policy compliance events in a queryable
format. You can use the API to get additional details such as the spec field to audit and troubleshoot
your policy, and get compliance events when a policy is disabled or removed from a cluster. The policy
compliance history API can also generate a comma-separated values (CSV) spreadsheet of policy
compliance events to help you with auditing and troubleshooting.

The policy compliance history API can also generate a comma-separated values (CSV) spreadsheet of
policy compliance events for further auditing and troubleshooting.

2.5.1. Prerequisites

The policy compliance history API requires a PostgreSQL server on version 13 or newer.
Some Red Hat supported options include using the registry.redhat.io/rhel9/postgresql-15
container image, the registry.redhat.io/rhel8/postgresql-13 container image, the postgresql-
server RPM, or postgresql/server module. Review the applicable official Red Hat
documentation on setup and configuration for the path you choose. The policy compliance
history API is compatible with any standard PostgreSQL and is not limited to the official Red
Hat supported offerings.

This PostgreSQL server must be reachable from the Red Hat Advanced Cluster Management
hub cluster. If the PostgreSQL server is running externally of the hub cluster, ensure the routing
and firewall configuration allows the hub cluster to connect to port 5432 of the PostgreSQL
server. This port might be a different value if it is overridden in the PostgreSQL configuration.

2.5.2. Enable the compliance history API

Configure your managed clusters to record policy compliance events to the API. You can enable this on
all clusters or a subset of clusters. Complete the following steps:

1. Configure the PostgreSQL server as a cluster administrator. If you deployed PostgreSQL on

Red Hat Advanced Cluster Management for Kubernetes 2.11 Governance

44

1

2

3

1. Configure the PostgreSQL server as a cluster administrator. If you deployed PostgreSQL on
your Red Hat Advanced Cluster Management hub cluster, temporarily port-forward the
PostgreSQL port to use the psql command. Run the following command:

2. In a different terminal, connect to the PostgreSQL server locally similar to the following
command:

3. Create a user and database for your Red Hat Advanced Cluster Management hub cluster with
the following SQL statements:

4. Create the governance-policy-database Secret resource to use this database for the policy
compliance history API. Run the following command:

Add the namespace where Red Hat Advanced Cluster Management is installed. By default,
Red Hat Advanced Cluster Management is installed in the open-cluster-management
namespace.

Add the host name of the PostgresQL server. If you deployed the PostgreSQL server on
the Red Hat Advanced Cluster Management hub cluster and it is not exposed outside of
the cluster, you can use the Service object for the host value. The format is <service
name>.<namespace>.svc. Note, this approach depends on the network policies of the
Red Hat Advanced Cluster Management hub cluster.

You must specify the Certificate Authority certificate file in the ca data field that signed
the TLS certificate of the PostgreSQL server. If you do not provide this value, you must
change the sslmode value accordingly, though it is not recommended since it reduces the
security of the database connection.

5. Add the cluster.open-cluster-management.io/backup label to backup the Secret resource for
a Red Hat Advanced Cluster Management hub cluster restore operation. Run the following
command:

6. For more customization of the PostgreSQL connection, use the connectionURL data field

oc -n <PostgreSQL namespace> port-forward <PostgreSQL pod name> 5432:5432

psql 'postgres://postgres:@127.0.0.1:5432/postgres'

CREATE USER "rhacm-policy-compliance-history" WITH PASSWORD '<replace with
password>';
CREATE DATABASE "rhacm-policy-compliance-history" WITH OWNER="rhacm-policy-
compliance-history";

oc -n open-cluster-management create secret generic governance-policy-database \ 1
 --from-literal="user=rhacm-policy-compliance-history" \
 --from-literal="password=rhacm-policy-compliance-history" \
 --from-literal="host=<replace with host name of the Postgres server>" \ 2
 --from-literal="dbname=ocm-compliance-history" \
 --from-literal="sslmode=verify-full" \
 --from-file="ca=<replace>" 3

oc -n open-cluster-management label secret governance-policy-database cluster.open-
cluster-management.io/backup=""

CHAPTER 2. GOVERNANCE

45

directly and provide a value in the format of a PostgreSQL connection URI. Special characters in
the password must be URL encoded. One option is to use Python to generate the URL encoded
format of the password. For example, if the password is $uper<Secr&t%>, run the following
Python command to get the output %24uper%3CSecr%26t%25%3E:

7. Run the command to test the policy compliance history API after you create the governance-
policy-database Secret. An OpenShift Route object is automatically created in the same
namespace. If routes on the Red Hat Advanced Cluster Management hub cluster do not utilize a
trusted certificate, you can choose to provide the -k flag in the curl command to skip TLS
verification, though this is not recommended:

If successful, the curl command returns a value similar to the following message:

{"data":[],"metadata":{"page":1,"pages":0,"per_page":20,"total":0}}

If it is not successful, the curl command might return either of the two messages:

{"message":"The database is unavailable"}

{"message":"Internal Error"}

a. If you receive a message, view the Kubernetes events in the open-cluster-
management namespace with the following command:

b. If you receive instructions from the event to view the governance-policy-propagator
logs, run the following command:

c. You might receive an error message that indicates the user, password, or database is
incorrectly specified. See the following message example:

2024-03-05T12:17:14.500-0500 info compliance-events-api
complianceeventsapi/complianceeventsapi_controller.go:261 The database
connection failed: pq: password authentication failed for user "rhacm-policy-
compliance-history"

d. Update the governance-policy-database Secret resource with the correct
PostgreSQL connection settings with the following command:

python -c 'import urllib.parse; import sys; print(urllib.parse.quote(sys.argv[1]))'
'$uper<Secr&t%>'

curl -H "Authorization: Bearer $(oc whoami --show-token)" \
 "https://$(oc -n open-cluster-management get route governance-history-api -o
jsonpath='{.spec.host}')/api/v1/compliance-events"

oc -n open-cluster-management get events --field-selector
reason=OCMComplianceEventsDBError

oc -n open-cluster-management logs -l name=governance-policy-propagator -f

oc -n open-cluster-management edit secret governance-policy-database

Red Hat Advanced Cluster Management for Kubernetes 2.11 Governance

46

2.5.3. Set the compliance history API URL

Set the policy compliance history API URL to enable the feature on managed clusters. Complete the
following steps:

1. Retrieve the external URL of the policy compliance history API with the following command:

The output might resemble the following information, with the domain name of your Red Hat
Advanced Cluster Management hub cluster:

https://governance-history-api-open-cluster-management.apps.openshift.redhat.com

2. Create an AddOnDeploymentConfig object similar to the following example:

Replace the value parameter value with your compliance history external URL.

2.5.3.1. Enable on all managed clusters

Enable the compliance history API on all managed clusters to record compliance events from your
managed clusters. Complete the following steps:

1. Configure the governance-policy-framework ClusterManagementAddOn object to use the
AddOnDeploymentConfig with the following command:

2. Add or update the spec.supportedConfigs array. Your resource might have the following
configuration:

2.5.3.2. Enable a single managed cluster

Enable the compliance history API on a single managed cluster to record compliance events from the
managed cluster. Complete the following steps:

1. Configure the governance-policy-framework ManagedClusterAddOn resource in the

echo "https://$(oc -n open-cluster-management get route governance-history-api -
o=jsonpath='{.spec.host}')"

apiVersion: addon.open-cluster-management.io/v1alpha1
kind: AddOnDeploymentConfig
metadata:
 name: governance-policy-framework
 namespace: open-cluster-management
spec:
 customizedVariables:
 - name: complianceHistoryAPIURL
 value: <replace with URL from previous command>

oc edit ClusterManagementAddOn governance-policy-framework

 - group: addon.open-cluster-management.io
 resource: addondeploymentconfigs
 defaultConfig:
 name: governance-policy-framework
 namespace: open-cluster-management

CHAPTER 2. GOVERNANCE

47

1. Configure the governance-policy-framework ManagedClusterAddOn resource in the
managed cluster namespace. Run the following command from your Red Hat Advanced Cluster
Management hub cluster with the following command:

Replace the <manage-cluster-namespace> placeholder with the managed cluster name
you intend to enable.

2. Add or update the spec.configs array to have an entry similar to the following example:

3. To verify the configuration, confirm that the deployment on your managed cluster is using the --
compliance-api-url container argument. Run the following command:

The output might resemble the following:

["--enable-lease=true","--hub-cluster-configfile=/var/run/klusterlet/kubeconfig","--leader-
elect=false","--log-encoder=console","--log-level=0","--v=-1","--evaluation-concurrency=2","--
client-max-qps=30","--client-burst=45","--disable-spec-sync=true","--cluster-
namespace=local-cluster","--compliance-api-url=https://governance-history-api-open-cluster-
management.apps.openshift.redhat.com"]

Any new policy compliance events are recorded in the policy compliance history API.

a. If policy compliance events are not being recorded for a specific managed cluster, view the
governance-policy-framework logs on the affected managed cluster:

b. Log messages similar to the following message are displayed. If the message value is
empty, the policy compliance history API URL is incorrect or there is a network
communication issue:

024-03-05T19:28:38.063Z info policy-status-sync
statussync/policy_status_sync.go:750 Failed to record the compliance event with the
compliance API. Will requeue. {"statusCode": 503, "message": ""}

c. If the policy compliance history API URL is incorrect, edit the URL on the hub cluster with
the following command:

Note: If you experience a network communication issue, you must diagnose the problem

oc -n <manage-cluster-namespace> edit ManagedClusterAddOn governance-policy-
framework

- group: addon.open-cluster-management.io
 resource: addondeploymentconfigs
 name: governance-policy-framework
 namespace: open-cluster-management

oc -n open-cluster-management-agent-addon get deployment governance-policy-framework
-o jsonpath='{.spec.template.spec.containers[1].args}'

oc -n open-cluster-management-agent-addon logs deployment/governance-policy-
framework -f

oc -n open-cluster-management edit AddOnDeploymentConfig governance-policy-
framework

Red Hat Advanced Cluster Management for Kubernetes 2.11 Governance

48

Note: If you experience a network communication issue, you must diagnose the problem
based on your network infrastructure.

2.5.4. Additional resource

See Policy compliance history API (Technology Preview) .

2.6. SUPPORTED POLICIES

View the supported policies to learn how to define rules, processes, and controls on the hub cluster when
you create and manage policies in Red Hat Advanced Cluster Management for Kubernetes.

2.6.1. Table of sample configuration policies

View the following sample configuration policies:

Table 2.5. Table list of configuration policies

Policy sample Description

Namespace policy Ensure consistent environment isolation and naming
with Namespaces. See the Kubernetes Namespace
documentation.

Pod policy Ensure cluster workload configuration. See the
Kubernetes Pod documentation.

Memory usage policy Limit workload resource usage using Limit Ranges.
See the Limit Range documentation.

Pod security policy (Deprecated) Ensure consistent workload security. See the
Kubernetes Pod security policy documentation.

Role policy
Role binding policy

Manage role permissions and bindings using roles
and role bindings. See the Kubernetes RBAC
documentation.

Security content constraints (SCC) policy Manage workload permissions with Security Context
Constraints. See Managing Security Context
Constraints documentation in the OpenShift
Container Platform documentation.

ETCD encryption policy Ensure data security with etcd encryption. See
Encrypting etcd data in the OpenShift Container
Platform documentation.

Compliance operator policy Deploy the Compliance Operator to scan and
enforce the compliance state of clusters leveraging
OpenSCAP. See Understanding the Compliance
Operator in the OpenShift Container Platform
documentation.

CHAPTER 2. GOVERNANCE

49

../../html-single/apis
https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
https://kubernetes.io/docs/concepts/workloads/pods/
https://kubernetes.io/docs/concepts/policy/limit-range/
https://kubernetes.io/docs/concepts/policy/pod-security-policy/
https://kubernetes.io/docs/reference/access-authn-authz/rbac/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html/authentication_and_authorization/managing-pod-security-policies
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html/security_and_compliance/encrypting-etcd
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html/security_and_compliance/compliance-operator#understanding-compliance-operator

Compliance operator E8 scan After applying the Compliance operator policy,
deploy an Essential 8 (E8) scan to check for
compliance with E8 security profiles. See
Understanding the Compliance Operator in the
OpenShift Container Platform documentation.

Compliance operator CIS scan After applying the Compliance operator policy,
deploy a Center for Internet Security (CIS) scan to
check for compliance with CIS security profiles. See
Understanding the Compliance Operator in the
OpenShift Container Platform documentation.

Image vulnerability policy Deploy the Container Security Operator and detect
known image vulnerabilities in pods running on the
cluster. See the Container Security Operator GitHub
repository.

Gatekeeper operator deployment Gatekeeper is an admission webhook that enforces
custom resource definition-based policies that are
run by the Open Policy Agent (OPA) policy engine.
See the Gatekeeper documentation. The
Gatekeeper operator is available for installing
Gatekeeper. For more information, see the
Gatekeeper operator overview

Gatekeeper compliance policy After deploying Gatekeeper to the clusters, deploy
this sample Gatekeeper policy that ensures
namespaces that are created on the cluster are
labeled as specified. For more information, see
Integrating Gatekeeper constraints and constraint
templates.

Red Hat OpenShift Platform Plus policy set Red Hat OpenShift Platform Plus is a hybrid-cloud
suite of products to securely build, deploy, run, and
manage applications for multiple infrastructures. You
can deploy Red Hat OpenShift Platform Plus to
managed clusters using PolicySets delivered
through a Red Hat Advanced Cluster Management
application. For details on OpenShift Platform Plus,
see the documentation for OpenShift Platform Plus.

Policy sample Description

Red Hat OpenShift Container Platform 4.x also supports the Red Hat Advanced Cluster Management
configuration policies.

View the following policy documentation to learn how policies are applied:

Namespace policy

Pod policy

Red Hat Advanced Cluster Management for Kubernetes 2.11 Governance

50

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html/security_and_compliance/compliance-operator#understanding-compliance-operator
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html/security_and_compliance/compliance-operator#understanding-compliance-operator
https://github.com/quay/container-security-operator#readme
https://open-policy-agent.github.io/gatekeeper/website/docs/
https://docs.redhat.com/en/documentation/openshift_platform_plus/4

Memory usage policy

Pod security policy

Role policy

Role binding policy

Security context constraints policy

ETCD encryption policy

Compliance operator policy

E8 scan policy

OpenShift CIS scan policy

Image vulnerability policy

Red Hat OpenShift Platform Plus policy set

Refer to Governance for more topics.

2.6.2. Namespace policy

The Kubernetes configuration policy controller monitors the status of your namespace policy. Apply the
namespace policy to define specific rules for your namespace.

Learn more details about the namespace policy structure in the following sections:

Namespace policy YAML structure

Namespace policy table

Namespace policy sample

2.6.2.1. Namespace policy YAML structure

apiVersion: policy.open-cluster-management.io/v1
kind: Policy
metadata:
 name:
 namespace:
 annotations:
 policy.open-cluster-management.io/standards:
 policy.open-cluster-management.io/categories:
 policy.open-cluster-management.io/controls:
 policy.open-cluster-management.io/description:
spec:
 remediationAction:
 disabled:
 policy-templates:
 - objectDefinition:
 apiVersion: policy.open-cluster-management.io/v1
 kind: ConfigurationPolicy

CHAPTER 2. GOVERNANCE

51

2.6.2.2. Namespace policy YAML table

Field Optional or required Description

apiVersion Required Set the value to policy.open-
cluster-management.io/v1.

kind Required Set the value to Policy to
indicate the type of policy.

metadata.name Required The name for identifying the
policy resource.

metadata.namespace Required The namespace of the policy.

spec.remediationAction Optional Specifies the remediation of your
policy. The parameter values are
enforce and inform. This value
is optional because it overrides
any values provided in
spec.policy-templates.

spec.disabled Required Set the value to true or false.
The disabled parameter
provides the ability to enable and
disable your policies.

spec.policy-
templates[].objectDefinition

Required Used to list configuration policies
containing Kubernetes objects
that must be evaluated or applied
to the managed clusters.

2.6.2.3. Namespace policy sample

See policy-namespace.yaml to view the policy sample.

See Managing security policies for more details. Refer to Policy overview documentation, and to the

 metadata:
 name:
 spec:
 remediationAction:
 severity:
 object-templates:
 - complianceType:
 objectDefinition:
 kind: Namespace
 apiVersion: v1
 metadata:
 name:
 ...

Red Hat Advanced Cluster Management for Kubernetes 2.11 Governance

52

https://github.com/open-cluster-management/policy-collection/blob/main/stable/CM-Configuration-Management/policy-namespace.yaml

See Managing security policies for more details. Refer to Policy overview documentation, and to the
Kubernetes configuration policy controller to learn about other configuration policies.

2.6.3. Pod policy

The Kubernetes configuration policy controller monitors the status of your pod policies. Apply the pod
policy to define the container rules for your pods. A pod must exist in your cluster to use this
information.

Learn more details about the pod policy structure in the following sections:

Pod policy YAML structure

Pod policy table

Pod policy sample

2.6.3.1. Pod policy YAML structure

apiVersion: policy.open-cluster-management.io/v1
kind: Policy
metadata:
 name:
 namespace:
 annotations:
 policy.open-cluster-management.io/standards:
 policy.open-cluster-management.io/categories:
 policy.open-cluster-management.io/controls:
 policy.open-cluster-management.io/description:
spec:
 remediationAction:
 disabled:
 policy-templates:
 - objectDefinition:
 apiVersion: policy.open-cluster-management.io/v1
 kind: ConfigurationPolicy
 metadata:
 name:
 spec:
 remediationAction:
 severity:
 namespaceSelector:
 exclude:
 include:
 matchLabels:
 matchExpressions:
 object-templates:
 - complianceType:
 objectDefinition:
 apiVersion: v1
 kind: Pod
 metadata:
 name:
 spec:
 containers:

CHAPTER 2. GOVERNANCE

53

2.6.3.2. Pod policy table

Table 2.6. Parameter table

Field Optional or required Description

apiVersion Required Set the value to policy.open-
cluster-management.io/v1.

kind Required Set the value to Policy to
indicate the type of policy.

metadata.name Required The name for identifying the
policy resource.

metadata.namespace Required The namespace of the policy.

spec.remediationAction Optional Specifies the remediation of your
policy. The parameter values are
enforce and inform. This value
is optional because the value
overrides any values provided in
spec.policy-templates.

spec.disabled Required Set the value to true or false.
The disabled parameter
provides the ability to enable and
disable your policies.

spec.policy-
templates[].objectDefinition

Required Used to list configuration policies
containing Kubernetes objects
that must be evaluated or applied
to the managed clusters.

2.6.3.3. Pod policy sample

See policy-pod.yaml to view the policy sample.

Refer to Kubernetes configuration policy controller to view other configuration policies that are
monitored by the configuration controller, and see the Policy overview documentation to see a full
description of the policy YAML structure and additional fields. Return to Managing configuration policies
documentation to manage other policies.

2.6.4. Memory usage policy

The Kubernetes configuration policy controller monitors the status of the memory usage policy. Use the

 - image:
 name:
 ...

Red Hat Advanced Cluster Management for Kubernetes 2.11 Governance

54

https://github.com/open-cluster-management/policy-collection/blob/main/stable/CM-Configuration-Management/policy-pod.yaml

The Kubernetes configuration policy controller monitors the status of the memory usage policy. Use the
memory usage policy to limit or restrict your memory and compute usage. For more information, see
Limit Ranges in the Kubernetes documentation.

Learn more details about the memory usage policy structure in the following sections:

Memory usage policy YAML structure

Memory usage policy table

Memory usage policy sample

2.6.4.1. Memory usage policy YAML structure

Your memory usage policy might resemble the following YAML file:

apiVersion: policy.open-cluster-management.io/v1
kind: Policy
metadata:
 name:
 namespace:
 annotations:
 policy.open-cluster-management.io/standards:
 policy.open-cluster-management.io/categories:
 policy.open-cluster-management.io/controls:
 policy.open-cluster-management.io/description:
spec:
 remediationAction:
 disabled:
 policy-templates:
 - objectDefinition:
 apiVersion: policy.open-cluster-management.io/v1
 kind: ConfigurationPolicy
 metadata:
 name:
 spec:
 remediationAction:
 severity:
 namespaceSelector:
 exclude:
 include:
 matchLabels:
 matchExpressions:
 object-templates:
 - complianceType: mustonlyhave
 objectDefinition:
 apiVersion: v1
 kind: LimitRange
 metadata:
 name:
 spec:
 limits:
 - default:
 memory:
 defaultRequest:

CHAPTER 2. GOVERNANCE

55

https://kubernetes.io/docs/concepts/policy/limit-range/

2.6.4.2. Memory usage policy table

Table 2.7. Parameter table

Field Optional or required Description

apiVersion Required Set the value to policy.open-
cluster-management.io/v1.

kind Required Set the value to Policy to
indicate the type of policy.

metadata.name Required The name for identifying the
policy resource.

metadata.namespace Required The namespace of the policy.

spec.remediationAction Optional Specifies the remediation of your
policy. The parameter values are
enforce and inform. This value
is optional because the value
overrides any values provided in
spec.policy-templates.

spec.disabled Required Set the value to true or false.
The disabled parameter
provides the ability to enable and
disable your policies.

spec.policy-
templates[].objectDefinition

Required Used to list configuration policies
containing Kubernetes objects
that must be evaluated or applied
to the managed clusters.

2.6.4.3. Memory usage policy sample

See the policy-limitmemory.yaml to view a sample of the policy. See Managing security policies for
more details. Refer to the Policy overview documentation, and to Kubernetes configuration policy
controller to view other configuration policies that are monitored by the controller.

2.6.5. Pod security policy (Deprecated)

The Kubernetes configuration policy controller monitors the status of the pod security policy. Apply a
pod security policy to secure pods and containers.

Learn more details about the pod security policy structure in the following sections:

Pod security policy YAML structure

 memory:
 type:
 ...

Red Hat Advanced Cluster Management for Kubernetes 2.11 Governance

56

https://github.com/open-cluster-management/policy-collection/blob/main/stable/SC-System-and-Communications-Protection/policy-limitmemory.yaml

Pod security policy table

Pod security policy sample

2.6.5.1. Pod security policy YAML structure

apiVersion: policy.open-cluster-management.io/v1
kind: Policy
metadata:
 name:
 namespace:
 annotations:
 policy.open-cluster-management.io/standards:
 policy.open-cluster-management.io/categories:
 policy.open-cluster-management.io/controls:
 policy.open-cluster-management.io/description:
spec:
 remediationAction:
 disabled:
 policy-templates:
 - objectDefinition:
 apiVersion: policy.open-cluster-management.io/v1
 kind: ConfigurationPolicy
 metadata:
 name:
 spec:
 remediationAction:
 severity:
 namespaceSelector:
 exclude:
 include:
 matchLabels:
 matchExpressions:
 object-templates:
 - complianceType:
 objectDefinition:
 apiVersion: policy/v1beta1
 kind: PodSecurityPolicy
 metadata:
 name:
 annotations:
 seccomp.security.alpha.kubernetes.io/allowedProfileNames:
 spec:
 privileged:
 allowPrivilegeEscalation:
 allowedCapabilities:
 volumes:
 hostNetwork:
 hostPorts:
 hostIPC:
 hostPID:
 runAsUser:
 seLinux:
 supplementalGroups:
 fsGroup:
 ...

CHAPTER 2. GOVERNANCE

57

2.6.5.2. Pod security policy table

Table 2.8. Parameter table

Field Optional or required Description

apiVersion Required Set the value to policy.open-
cluster-management.io/v1.

kind Required Set the value to Policy to
indicate the type of policy.

metadata.name Required The name for identifying the
policy resource.

metadata.namespace Required The namespace of the policy.

spec.remediationAction Optional Specifies the remediation of your
policy. The parameter values are
enforce and inform. This value
is optional because the value
overrides any values provided in
spec.policy-templates.

spec.disabled Required Set the value to true or false.
The disabled parameter
provides the ability to enable and
disable your policies.

spec.policy-
templates[].objectDefinition

Required Used to list configuration policies
containing Kubernetes objects
that must be evaluated or applied
to the managed clusters.

2.6.5.3. Pod security policy sample

The support of pod security policies is removed from OpenShift Container Platform and from
Kubernetes v1.25 and later. If you apply a PodSecurityPolicy resource, you might receive the following
non-compliant message:

violation - couldn't find mapping resource with kind PodSecurityPolicy, please check if you have CRD
deployed

For more information including the deprecation notice, see Pod Security Policies in the
Kubernetes documentation.

See policy-psp.yaml to view the sample policy. View Managing configuration policies for more
information.

Refer to the Policy overview documentation for a full description of the policy YAML structure,

Red Hat Advanced Cluster Management for Kubernetes 2.11 Governance

58

https://kubernetes.io/docs/concepts/policy/pod-security-policy/
https://github.com/open-cluster-management/policy-collection/blob/main/stable/SC-System-and-Communications-Protection/policy-psp.yaml

Refer to the Policy overview documentation for a full description of the policy YAML structure,
and Kubernetes configuration policy controller to view other configuration policies that are
monitored by the controller.

2.6.6. Role policy

The Kubernetes configuration policy controller monitors the status of role policies. Define roles in the
object-template to set rules and permissions for specific roles in your cluster.

Learn more details about the role policy structure in the following sections:

Role policy YAML structure

Role policy table

Role policy sample

2.6.6.1. Role policy YAML structure

apiVersion: policy.open-cluster-management.io/v1
kind: Policy
metadata:
 name:
 namespace:
 annotations:
 policy.open-cluster-management.io/standards:
 policy.open-cluster-management.io/categories:
 policy.open-cluster-management.io/controls:
 policy.open-cluster-management.io/description:
spec:
 remediationAction:
 disabled:
 policy-templates:
 - objectDefinition:
 apiVersion: policy.open-cluster-management.io/v1
 kind: ConfigurationPolicy
 metadata:
 name:
 spec:
 remediationAction:
 severity:
 namespaceSelector:
 exclude:
 include:
 matchLabels:
 matchExpressions:
 object-templates:
 - complianceType:
 objectDefinition:
 apiVersion: rbac.authorization.k8s.io/v1
 kind: Role
 metadata:
 name:
 rules:
 - apiGroups:

CHAPTER 2. GOVERNANCE

59

2.6.6.2. Role policy table

Table 2.9. Parameter table

Field Optional or required Description

apiVersion Required Set the value to policy.open-
cluster-management.io/v1.

kind Required Set the value to Policy to
indicate the type of policy.

metadata.name Required The name for identifying the
policy resource.

metadata.namespace Required The namespace of the policy.

spec.remediationAction Optional Specifies the remediation of your
policy. The parameter values are
enforce and inform. This value
is optional because the value
overrides any values provided in
spec.policy-templates.

spec.disabled Required Set the value to true or false.
The disabled parameter
provides the ability to enable and
disable your policies.

spec.policy-
templates[].objectDefinition

Required Used to list configuration policies
containing Kubernetes objects
that must be evaluated or applied
to the managed clusters.

2.6.6.3. Role policy sample

Apply a role policy to set rules and permissions for specific roles in your cluster. For more information on
roles, see Role-based access control . View a sample of a role policy, see policy-role.yaml.

To learn how to manage role policies, refer to Managing configuration policies for more information. See
the Kubernetes configuration policy controller to view other configuration policies that are monitored
the controller.

2.6.7. Role binding policy

The Kubernetes configuration policy controller monitors the status of your role binding policy. Apply a
role binding policy to bind a policy to a namespace in your managed cluster.

 resources:
 verbs:
 ...

Red Hat Advanced Cluster Management for Kubernetes 2.11 Governance

60

../../html-single/access_control#role-based-access-control
https://github.com/open-cluster-management/policy-collection/blob/main/stable/AC-Access-Control/policy-role.yaml

Learn more details about the namespace policy structure in the following sections:

Role binding policy YAML structure

Role binding policy table

Role binding policy sample

2.6.7.1. Role binding policy YAML structure

2.6.7.2. Role binding policy table

apiVersion: policy.open-cluster-management.io/v1
kind: Policy
metadata:
 name:
 namespace:
 annotations:
 policy.open-cluster-management.io/standards:
 policy.open-cluster-management.io/categories:
 policy.open-cluster-management.io/controls:
 policy.open-cluster-management.io/description:
spec:
 remediationAction:
 disabled:
 policy-templates:
 - objectDefinition:
 apiVersion: policy.open-cluster-management.io/v1
 kind: ConfigurationPolicy
 metadata:
 name:
 spec:
 remediationAction:
 severity:
 namespaceSelector:
 exclude:
 include:
 matchLabels:
 matchExpressions:
 object-templates:
 - complianceType:
 objectDefinition:
 kind: RoleBinding # role binding must exist
 apiVersion: rbac.authorization.k8s.io/v1
 metadata:
 name:
 subjects:
 - kind:
 name:
 apiGroup:
 roleRef:
 kind:
 name:
 apiGroup:
 ...

CHAPTER 2. GOVERNANCE

61

Field Optional or required Description

apiVersion Required Set the value to policy.open-
cluster-management.io/v1.

kind Required Set the value to Policy to
indicate the type of policy.

metadata.name Required The name for identifying the
policy resource.

metadata.namespace Required The namespace of the policy.

spec.remediationAction Optional Specifies the remediation of your
policy. The parameter values are
enforce and inform. This value
is optional since it overrides any
values provided in spec.policy-
templates.

spec.disabled Required Set the value to true or false.
The disabled parameter
provides the ability to enable and
disable your policies.

spec.policy-
templates[].objectDefinition

Required Used to list configuration policies
containing Kubernetes objects
that must be evaluated or applied
to the managed clusters.

2.6.7.3. Role binding policy sample

See policy-rolebinding.yaml to view the policy sample. For a full description of the policy YAML
structure and additional fields, see the Policy overview documentation . Refer to Kubernetes
configuration policy controller documentation to learn about other configuration policies.

2.6.8. Security Context Constraints policy

The Kubernetes configuration policy controller monitors the status of your Security Context Constraints
(SCC) policy. Apply an Security Context Constraints (SCC) policy to control permissions for pods by
defining conditions in the policy.

Learn more details about SCC policies in the following sections:

SCC policy YAML structure

SCC policy table

SCC policy sample

2.6.8.1. SCC policy YAML structure

Red Hat Advanced Cluster Management for Kubernetes 2.11 Governance

62

https://github.com/open-cluster-management/policy-collection/blob/main/stable/AC-Access-Control/policy-rolebinding.yaml

2.6.8.2. SCC policy table

apiVersion: policy.open-cluster-management.io/v1
kind: Policy
metadata:
 name:
 namespace:
 annotations:
 policy.open-cluster-management.io/standards:
 policy.open-cluster-management.io/categories:
 policy.open-cluster-management.io/controls:
 policy.open-cluster-management.io/description:
spec:
 remediationAction:
 disabled:
 policy-templates:
 - objectDefinition:
 apiVersion: policy.open-cluster-management.io/v1
 kind: ConfigurationPolicy
 metadata:
 name:
 spec:
 remediationAction:
 severity:
 namespaceSelector:
 exclude:
 include:
 matchLabels:
 matchExpressions:
 object-templates:
 - complianceType:
 objectDefinition:
 apiVersion: security.openshift.io/v1
 kind: SecurityContextConstraints
 metadata:
 name:
 allowHostDirVolumePlugin:
 allowHostIPC:
 allowHostNetwork:
 allowHostPID:
 allowHostPorts:
 allowPrivilegeEscalation:
 allowPrivilegedContainer:
 fsGroup:
 readOnlyRootFilesystem:
 requiredDropCapabilities:
 runAsUser:
 seLinuxContext:
 supplementalGroups:
 users:
 volumes:
 ...

CHAPTER 2. GOVERNANCE

63

Field Optional or required Description

apiVersion Required Set the value to policy.open-
cluster-management.io/v1.

kind Required Set the value to Policy to
indicate the type of policy.

metadata.name Required The name for identifying the
policy resource.

metadata.namespace Required The namespace of the policy.

spec.remediationAction Optional Specifies the remediation of your
policy. The parameter values are
enforce and inform. This value
is optional since it overrides any
values provided in spec.policy-
templates.

spec.disabled Required Set the value to true or false.
The disabled parameter
provides the ability to enable and
disable your policies.

spec.policy-
templates[].objectDefinition

Required Used to list configuration policies
containing Kubernetes objects
that must be evaluated or applied
to the managed clusters.

For explanations on the contents of a SCC policy, see Managing Security Context Constraints from the
OpenShift Container Platform documentation.

2.6.8.3. SCC policy sample

Apply a Security context constraints (SCC) policy to control permissions for pods by defining conditions
in the policy. For more information, see Managing Security Context Constraints (SCC) .

See policy-scc.yaml to view the policy sample. For a full description of the policy YAML structure and
additional fields, see the Policy overview documentation. Refer to Kubernetes configuration policy
controller documentation to learn about other configuration policies.

2.6.9. ETCD encryption policy

Apply the etcd-encryption policy to detect, or enable encryption of sensitive data in the ETCD data-
store. The Kubernetes configuration policy controller monitors the status of the etcd-encryption policy.
For more information, see Encrypting etcd data in the OpenShift Container Platform documentation.
Note: The ETCD encryption policy only supports Red Hat OpenShift Container Platform 4 and later.

Learn more details about the etcd-encryption policy structure in the following sections:

Red Hat Advanced Cluster Management for Kubernetes 2.11 Governance

64

https://docs.openshift.com/container-platform/4.14/authentication/managing-security-context-constraints.html#security-context-constraints-about_configuring-internal-oauth
https://docs.openshift.com/container-platform/4.14/authentication/managing-security-context-constraints.html#security-context-constraints-about_configuring-internal-oauth
https://github.com/open-cluster-management/policy-collection/blob/main/stable/SC-System-and-Communications-Protection/policy-scc.yaml
https://docs.openshift.com/container-platform/4.14/security/encrypting-etcd.html

ETCD encryption policy YAML structure

ETCD encryption policy table

ETCD encryption policy sample

2.6.9.1. ETCD encryption policy YAML structure

Your etcd-encryption policy might resemble the following YAML file:

2.6.9.2. ETCD encryption policy table

Table 2.10. Parameter table

Field Optional or required Description

apiVersion Required Set the value to policy.open-
cluster-management.io/v1.

apiVersion: policy.open-cluster-management.io/v1
kind: Policy
metadata:
 name:
 namespace:
 annotations:
 policy.open-cluster-management.io/standards:
 policy.open-cluster-management.io/categories:
 policy.open-cluster-management.io/controls:
 policy.open-cluster-management.io/description:
spec:
 remediationAction:
 disabled:
 policy-templates:
 - objectDefinition:
 apiVersion: policy.open-cluster-management.io/v1
 kind: ConfigurationPolicy
 metadata:
 name:
 spec:
 remediationAction:
 severity:
 object-templates:
 - complianceType:
 objectDefinition:
 apiVersion: config.openshift.io/v1
 kind: APIServer
 metadata:
 name:
 spec:
 encryption:
 ...

CHAPTER 2. GOVERNANCE

65

kind Required Set the value to Policy to
indicate the type of policy.

metadata.name Required The name for identifying the
policy resource.

metadata.namespace Required The namespace of the policy.

spec.remediationAction Optional Specifies the remediation of your
policy. The parameter values are
enforce and inform. This value
is optional because it overrides
any values provided in
spec.policy-templates.

spec.disabled Required Set the value to true or false.
The disabled parameter
provides the ability to enable and
disable your policies.

spec.policy-
templates[].objectDefinition

Required Used to list configuration policies
containing Kubernetes objects
that must be evaluated or applied
to the managed clusters.

Field Optional or required Description

2.6.9.3. ETCD encryption policy sample

See policy-etcdencryption.yaml for the policy sample. See the Policy overview documentation and the
Kubernetes configuration policy controller to view additional details on policy and configuration policy
fields.

2.6.10. Compliance Operator policy

You can use the Compliance Operator to automate the inspection of numerous technical
implementations and compare those against certain aspects of industry standards, benchmarks, and
baselines. The Compliance Operator is not an auditor. To be compliant or certified with these various
standards, you need to engage an authorized auditor such as a Qualified Security Assessor (QSA), Joint
Authorization Board (JAB), or other industry recognized regulatory authority to assess your
environment.

Recommendations that are generated from the Compliance Operator are based on generally available
information and practices regarding such standards, and might assist you with remediations, but actual
compliance is your responsibility. Work with an authorized auditor to achieve compliance with a standard.

For the latest updates, see the Compliance Operator release notes .

2.6.10.1. Compliance Operator policy overview

You can install the Compliance Operator on your managed cluster by using the Compliance Operator

Red Hat Advanced Cluster Management for Kubernetes 2.11 Governance

66

https://github.com/open-cluster-management/policy-collection/blob/main/stable/SC-System-and-Communications-Protection/policy-etcdencryption.yaml
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html/security_and_compliance/compliance-operator#compliance-operator-release-notes

You can install the Compliance Operator on your managed cluster by using the Compliance Operator
policy. The Compliance operator policy is created as a Kubernetes configuration policy in Red Hat
Advanced Cluster Management. OpenShift Container Platform supports the compliance operator
policy.

Note: The Compliance operator policy relies on the OpenShift Container Platform Compliance
Operator, which is not supported on the IBM Power or IBM Z architectures. See Understanding the
Compliance Operator in the OpenShift Container Platform documentation for more information about
the Compliance Operator.

2.6.10.2. Compliance operator resources

When you create a compliance operator policy, the following resources are created:

A compliance operator namespace (openshift-compliance) for the operator installation:

An operator group (compliance-operator) to specify the target namespace:

A subscription (comp-operator-subscription) to reference the name and channel. The
subscription pulls the profile, as a container, that it supports. See the following sample, with the
current version replacing 4.x:

apiVersion: policy.open-cluster-management.io/v1
kind: ConfigurationPolicy
metadata:
 name: comp-operator-ns
spec:
 remediationAction: inform # will be overridden by remediationAction in parent policy
 severity: high
 object-templates:
 - complianceType: musthave
 objectDefinition:
 apiVersion: v1
 kind: Namespace
 metadata:
 name: openshift-compliance

apiVersion: policy.open-cluster-management.io/v1
kind: ConfigurationPolicy
metadata:
 name: comp-operator-operator-group
spec:
 remediationAction: inform # will be overridden by remediationAction in parent policy
 severity: high
 object-templates:
 - complianceType: musthave
 objectDefinition:
 apiVersion: operators.coreos.com/v1
 kind: OperatorGroup
 metadata:
 name: compliance-operator
 namespace: openshift-compliance
 spec:
 targetNamespaces:
 - openshift-compliance

CHAPTER 2. GOVERNANCE

67

https://github.com/open-cluster-management/grc-ui/blob/main/src-web/components/common/templates/spec-comp-operator.yaml
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html/security_and_compliance/compliance-operator#understanding-compliance-operator

After you install the compliance operator policy, the following pods are created: compliance-operator,
ocp4, and rhcos4. See a sample of the policy-compliance-operator-install.yaml.

2.6.10.3. Additional resources

For more information, see Managing the Compliance Operator in the OpenShift Container
Platform documentation for more details.

You can also create and apply the E8 scan policy and OpenShift CIS scan policy, after you have
installed the compliance operator. For more information, see E8 scan policy and OpenShift CIS
scan policy.

To learn about managing compliance operator policies, see Managing security policies for more
details. Refer to Kubernetes configuration policy controller for more topics about configuration
policies.

2.6.11. E8 scan policy

An Essential 8 (E8) scan policy deploys a scan that checks the master and worker nodes for compliance
with the E8 security profiles. You must install the compliance operator to apply the E8 scan policy.

The E8 scan policy is created as a Kubernetes configuration policy in Red Hat Advanced Cluster
Management. OpenShift Container Platform supports the E8 scan policy. For more information, see
Managing the Compliance Operator in the OpenShift Container Platform documentation for more
details.

2.6.11.1. E8 scan policy resources

When you create an E8 scan policy the following resources are created:

A ScanSettingBinding resource (e8) to identify which profiles to scan:

apiVersion: policy.open-cluster-management.io/v1
kind: ConfigurationPolicy
metadata:
 name: comp-operator-subscription
spec:
 remediationAction: inform # will be overridden by remediationAction in parent policy
 severity: high
 object-templates:
 - complianceType: musthave
 objectDefinition:
 apiVersion: operators.coreos.com/v1alpha1
 kind: Subscription
 metadata:
 name: compliance-operator
 namespace: openshift-compliance
 spec:
 channel: "4.x"
 installPlanApproval: Automatic
 name: compliance-operator
 source: redhat-operators
 sourceNamespace: openshift-marketplace

apiVersion: policy.open-cluster-management.io/v1

Red Hat Advanced Cluster Management for Kubernetes 2.11 Governance

68

https://github.com/open-cluster-management/policy-collection/blob/main/stable/CA-Security-Assessment-and-Authorization/policy-compliance-operator-install.yaml
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/security_and_compliance/index#compliance-operator-understanding
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/security_and_compliance/index#compliance-operator-understanding

A ComplianceSuite resource (compliance-suite-e8) to verify if the scan is complete by
checking the status field:

A ComplianceCheckResult resource (compliance-suite-e8-results) which reports the results
of the scan suite by checking the ComplianceCheckResult custom resources (CR):

kind: ConfigurationPolicy
metadata:
 name: compliance-suite-e8
spec:
 remediationAction: inform
 severity: high
 object-templates:
 - complianceType: musthave # this template checks if scan has completed by checking the
status field
 objectDefinition:
 apiVersion: compliance.openshift.io/v1alpha1
 kind: ScanSettingBinding
 metadata:
 name: e8
 namespace: openshift-compliance
 profiles:
 - apiGroup: compliance.openshift.io/v1alpha1
 kind: Profile
 name: ocp4-e8
 - apiGroup: compliance.openshift.io/v1alpha1
 kind: Profile
 name: rhcos4-e8
 settingsRef:
 apiGroup: compliance.openshift.io/v1alpha1
 kind: ScanSetting
 name: default

apiVersion: policy.open-cluster-management.io/v1
kind: ConfigurationPolicy
metadata:
 name: compliance-suite-e8
spec:
 remediationAction: inform
 severity: high
 object-templates:
 - complianceType: musthave # this template checks if scan has completed by checking the
status field
 objectDefinition:
 apiVersion: compliance.openshift.io/v1alpha1
 kind: ComplianceSuite
 metadata:
 name: e8
 namespace: openshift-compliance
 status:
 phase: DONE

apiVersion: policy.open-cluster-management.io/v1
kind: ConfigurationPolicy
metadata:

CHAPTER 2. GOVERNANCE

69

Note: Automatic remediation is supported. Set the remediation action to enforce to create
ScanSettingBinding resource.

See a sample of the policy-compliance-operator-e8-scan.yaml. See Managing security policies for
more information. Note: After your E8 policy is deleted, it is removed from your target cluster or
clusters.

2.6.12. OpenShift CIS scan policy

An OpenShift CIS scan policy deploys a scan that checks the master and worker nodes for compliance
with the OpenShift CIS security benchmark. You must install the compliance operator to apply the
OpenShift CIS policy.

The OpenShift CIS scan policy is created as a Kubernetes configuration policy in Red Hat Advanced
Cluster Management. OpenShift Container Platform supports the OpenShift CIS scan policy. For more
information, see Understanding the Compliance Operator in the OpenShift Container Platform
documentation for more details.

2.6.12.1. OpenShift CIS resources

When you create an OpenShift CIS scan policy the following resources are created:

A ScanSettingBinding resource (cis) to identify which profiles to scan:

 name: compliance-suite-e8-results
spec:
 remediationAction: inform
 severity: high
 object-templates:
 - complianceType: mustnothave # this template reports the results for scan suite: e8 by
looking at ComplianceCheckResult CRs
 objectDefinition:
 apiVersion: compliance.openshift.io/v1alpha1
 kind: ComplianceCheckResult
 metadata:
 namespace: openshift-compliance
 labels:
 compliance.openshift.io/check-status: FAIL
 compliance.openshift.io/suite: e8

apiVersion: policy.open-cluster-management.io/v1
kind: ConfigurationPolicy
metadata:
 name: compliance-cis-scan
spec:
 remediationAction: inform
 severity: high
 object-templates:
 - complianceType: musthave # this template creates ScanSettingBinding:cis
 objectDefinition:
 apiVersion: compliance.openshift.io/v1alpha1
 kind: ScanSettingBinding
 metadata:
 name: cis
 namespace: openshift-compliance

Red Hat Advanced Cluster Management for Kubernetes 2.11 Governance

70

https://github.com/open-cluster-management/policy-collection/blob/main/stable/CM-Configuration-Management/policy-compliance-operator-e8-scan.yaml
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html/security_and_compliance/compliance-operator#understanding-compliance-operator

A ComplianceSuite resource (compliance-suite-cis) to verify if the scan is complete by
checking the status field:

A ComplianceCheckResult resource (compliance-suite-cis-results) which reports the results
of the scan suite by checking the ComplianceCheckResult custom resources (CR):

 profiles:
 - apiGroup: compliance.openshift.io/v1alpha1
 kind: Profile
 name: ocp4-cis
 - apiGroup: compliance.openshift.io/v1alpha1
 kind: Profile
 name: ocp4-cis-node
 settingsRef:
 apiGroup: compliance.openshift.io/v1alpha1
 kind: ScanSetting
 name: default

apiVersion: policy.open-cluster-management.io/v1
kind: ConfigurationPolicy
metadata:
 name: compliance-suite-cis
spec:
 remediationAction: inform
 severity: high
 object-templates:
 - complianceType: musthave # this template checks if scan has completed by checking the
status field
 objectDefinition:
 apiVersion: compliance.openshift.io/v1alpha1
 kind: ComplianceSuite
 metadata:
 name: cis
 namespace: openshift-compliance
 status:
 phase: DONE

apiVersion: policy.open-cluster-management.io/v1
kind: ConfigurationPolicy
metadata:
 name: compliance-suite-cis-results
spec:
 remediationAction: inform
 severity: high
 object-templates:
 - complianceType: mustnothave # this template reports the results for scan suite: cis by
looking at ComplianceCheckResult CRs
 objectDefinition:
 apiVersion: compliance.openshift.io/v1alpha1
 kind: ComplianceCheckResult
 metadata:
 namespace: openshift-compliance
 labels:
 compliance.openshift.io/check-status: FAIL
 compliance.openshift.io/suite: cis

CHAPTER 2. GOVERNANCE

71

See a sample of the policy-compliance-operator-cis-scan.yaml file. For more information on creating
policies, see Managing security policies.

2.6.13. Image vulnerability policy

Apply the image vulnerability policy to detect if container images have vulnerabilities by leveraging the
Container Security Operator. The policy installs the Container Security Operator on your managed
cluster if it is not installed.

The image vulnerability policy is checked by the Kubernetes configuration policy controller. For more
information about the Security Operator, see the Container Security Operator from the Quay repository.

Notes:

Image vulnerability policy is not functional during a disconnected installation.

The Image vulnerability policy is not supported on the IBM Power and IBM Z architectures. It
relies on the Quay Container Security Operator . There are no ppc64le or s390x images in the
container-security-operator registry.

View the following sections to learn more:

Image vulnerability policy YAML structure

Image vulnerability policy sample

2.6.13.1. Image vulnerability policy YAML structure

When you create the container security operator policy, it involves the following policies:

A policy that creates the subscription (container-security-operator) to reference the name
and channel. This configuration policy must have spec.remediationAction set to enforce to
create the resources. The subscription pulls the profile, as a container, that the subscription
supports. View the following example:

apiVersion: policy.open-cluster-management.io/v1
kind: ConfigurationPolicy
metadata:
 name: policy-imagemanifestvuln-example-sub
spec:
 remediationAction: enforce # will be overridden by remediationAction in parent policy
 severity: high
 object-templates:
 - complianceType: musthave
 objectDefinition:
 apiVersion: operators.coreos.com/v1alpha1
 kind: Subscription
 metadata:
 name: container-security-operator
 namespace: openshift-operators
 spec:
 # channel: quay-v3.3 # specify a specific channel if desired
 installPlanApproval: Automatic
 name: container-security-operator
 source: redhat-operators
 sourceNamespace: openshift-marketplace

Red Hat Advanced Cluster Management for Kubernetes 2.11 Governance

72

https://github.com/open-cluster-management/policy-collection/blob/main/stable/CM-Configuration-Management/policy-compliance-operator-cis-scan.yaml
https://github.com/quay/container-security-operator
https://github.com/open-cluster-management/policy-collection/blob/main/stable/SI-System-and-Information-Integrity/policy-imagemanifestvuln.yaml
https://operatorhub.io/operator/project-quay-container-security-operator
https://quay.io/repository/quay/container-security-operator

An inform configuration policy to audit the ClusterServiceVersion to ensure that the container
security operator installation succeeded. View the following example:

An inform configuration policy to audit whether any ImageManifestVuln objects were created
by the image vulnerability scans. View the following example:

2.6.13.2. Image vulnerability policy sample

See policy-imagemanifestvuln.yaml. See Managing security policies for more information. Refer to
Kubernetes configuration policy controller to view other configuration policies that are monitored by the
configuration controller.

2.6.14. Red Hat OpenShift Platform Plus policy set

Configure and apply the OpenShift Platform Plus policy set (openshift-plus) to install Red Hat
OpenShift Platform Plus.

The OpenShift Platform Plus policy set contains two PolicySets that are deployed. The OpenShift Plus
policy set applies multiple policies that are set to install OpenShift Platform Plus products. The Red Hat
Advanced Cluster Security secured cluster services and the Compliance Operator are deployed onto all

apiVersion: policy.open-cluster-management.io/v1
kind: ConfigurationPolicy
metadata:
 name: policy-imagemanifestvuln-status
spec:
 remediationAction: inform # will be overridden by remediationAction in parent policy
 severity: high
 object-templates:
 - complianceType: musthave
 objectDefinition:
 apiVersion: operators.coreos.com/v1alpha1
 kind: ClusterServiceVersion
 metadata:
 namespace: openshift-operators
 spec:
 displayName: Red Hat Quay Container Security Operator
 status:
 phase: Succeeded # check the CSV status to determine if operator is running or not

apiVersion: policy.open-cluster-management.io/v1
kind: ConfigurationPolicy
metadata:
 name: policy-imagemanifestvuln-example-imv
spec:
 remediationAction: inform # will be overridden by remediationAction in parent policy
 severity: high
 namespaceSelector:
 exclude: ["kube-*"]
 include: ["*"]
 object-templates:
 - complianceType: mustnothave # mustnothave any ImageManifestVuln object
 objectDefinition:
 apiVersion: secscan.quay.redhat.com/v1alpha1
 kind: ImageManifestVuln # checking for a Kind

CHAPTER 2. GOVERNANCE

73

https://github.com/open-cluster-management/policy-collection/blob/main/stable/SI-System-and-Information-Integrity/policy-imagemanifestvuln.yaml

of your OpenShift Container Platform managed clusters.

2.6.14.1. Prerequisites

Install Red Hat OpenShift Container Platform on Amazon Web Services (AWS) environment.

Install Red Hat Advanced Cluster Management for Kubernetes.

Install the Policy Generator Kustomize plugin. See the Policy Generator documentation for
more information.

2.6.14.2. OpenShift Platform Plus policy set components

When you apply the policy set to the hub cluster, the following OpenShift Platform Plus components are
installed:

Table 2.11. Component table

Component Policy Description

Red Hat Advanced Cluster
Security

policy-acs-central-ca-bundle Policy used to install the central
server onto the Red Hat
Advanced Cluster Management
for Kubernetes hub cluster and
the managed clusters.

policy-acs-central-status Deployments to receive Red Hat
Advanced Cluster Security status.

policy-acs-operator-central Configuration for the Red Hat
Advanced Cluster Security central
operator.

policy-acs-sync-resources Policy used to verify that the Red
Hat Advanced Cluster Security
resources are created.

OpenShift Container Platform policy-advanced-managed-
cluster-status

The managed hub cluster.
Manager of the managed cluster.

Compliance operator policy-compliance-operator-
install

Policy used to install the
Compliance operator.

Red Hat Quay policy-config-quay Configuration policy for Red Hat
Quay.

policy-install-quay Policy used to install Red Hat
Quay.

policy-quay-status Installed onto the Red Hat
Advanced Cluster Management
hub cluster.

Red Hat Advanced Cluster Management for Kubernetes 2.11 Governance

74

Red Hat Advanced Cluster
Management

policy-ocm-observability Sets up the Red Hat Advanced
Cluster Management
observability service.

Red Hat OpenShift Data Platform policy-odf Available storage for the hub
cluster components that is used
by Red Hat Advanced Cluster
Management observability and
Quay.

policy-odf-status Policy used to configure the Red
Hat OpenShift Data Platform
status.

Component Policy Description

2.6.14.3. Additional resources

See Installing Red Hat OpenShift Platform Plus by using a policy set .

Return to Policy set controller.

View the openshift-plus policy set sample for all of the policies included in the policy set.

2.7. MANAGE GOVERNANCE DASHBOARD

Manage your security policies and policy violations by using the Governance dashboard to create, view,
and edit your resources. You can create YAML files for your policies from the command line and console.
Continue reading for details about the Governance dashboard from the console.

2.7.1. Governance page

The following tabs are displayed on the Governance page Overview, Policy sets , and Policies. Read the
following descriptions to know which information is displayed:

Overview
The following summary cards are displayed from the Overview tab: Policy set violations , Policy
violations, Clusters, Categories, Controls, and Standards.

Policy sets
Create and manage hub cluster policy sets.

Policies

Create and manage security policies. The table of policies list the following details of a
policy: Name, Namespace, and Cluster violations are displayed.

You can edit, enable or disable, set remediation to inform or enforce, or remove a policy by
selecting the Actions icon. You can view the categories and standards of a specific policy by
selecting the drop-down arrow to expand the row.

Reorder your table columns in the Manage column dialog box. Select the Manage column
icon for the dialog box to be displayed. To reorder your columns, select the Reorder icon

CHAPTER 2. GOVERNANCE

75

https://github.com/open-cluster-management-io/policy-collection/blob/main/policygenerator/policy-sets/stable/openshift-plus/

and move the column name. For columns that you want to appear in the table, click the
checkbox for specific column names and select the Save button.

Complete bulk actions by selecting multiple policies and clicking the Actions button. You
can also customize your policy table by clicking the Filter button.
When you select a policy in the table list, the following tabs of information are displayed
from the console:

Details: Select the Details tab to view policy details and placement details. In the
Placement table, the Compliance column provides links to view the compliance of the
clusters that are displayed.

Results: Select the Results tab to view a table list of all clusters that are associated to
the policy.

From the Message column, click the View details link to view the template details, template
YAML, and related resources. You can also view related resources. Click the View history link to
view the violation message and a time of the last report.

2.7.2. Governance automation configuration

If there is a configured automation for a specific policy, you can select the automation to view more
details. View the following descriptions of the schedule frequency options for your automation:

Manual run : Manually set this automation to run once. After the automation runs, it is set to
disabled. Note: You can only select Manual run mode when the schedule frequency is disabled.

Run once mode : When a policy is violated, the automation runs one time. After the automation
runs, it is set to disabled. After the automation is set to disabled, you must continue to run the
automation manually. When you run once mode , the extra variable of target_clusters is
automatically supplied with the list of clusters that violated the policy. The Ansible Automation
Platform Job template must have PROMPT ON LAUNCH enabled for the EXTRA VARIABLES
section (also known as extra_vars).

Run everyEvent mode : When a policy is violated, the automation runs every time for each unique
policy violation per managed cluster. Use the DelayAfterRunSeconds parameter to set the
minimum seconds before an automation can be restarted on the same cluster. If the policy is
violated multiple times during the delay period and kept in the violated state, the automation
runs one time after the delay period. The default is 0 seconds and is only applicable for the
everyEvent mode. When you run everyEvent mode, the extra variable of target_clusters and
Ansible Automation Platform Job template is the same as once mode .

Disable automation: When the scheduled automation is set to disabled, the automation does
not run until the setting is updated.

The following variables are automatically provided in the extra_vars of the Ansible Automation Platform
Job:

policy_name: The name of the non-compliant root policy that initiates the Ansible Automation
Platform job on the hub cluster.

policy_namespace: The namespace of the root policy.

hub_cluster: The name of the hub cluster, which is determined by the value in the clusters DNS
object.

policy_sets: This parameter contains all associated policy set names of the root policy. If the

Red Hat Advanced Cluster Management for Kubernetes 2.11 Governance

76

policy_sets: This parameter contains all associated policy set names of the root policy. If the
policy is not within a policy set, the policy_set parameter is empty.

policy_violations: This parameter contains a list of non-compliant cluster names, and the value
is the policy status field for each non-compliant cluster.

2.7.3. Additional resources

Review the following topics to learn more about creating and updating your security policies:

Managing security policies

Managing configuration policies

Configuring Ansible Automation Platform for governance

Governance

2.7.4. Configuring Ansible Automation Platform for governance

Red Hat Advanced Cluster Management for Kubernetes governance can be integrated with Red Hat
Ansible Automation Platform to create policy violation automations. You can configure the automation
from the Red Hat Advanced Cluster Management console.

Prerequisites

Creating a policy violation automation from the console

Creating a policy violation automation from the CLI

2.7.4.1. Prerequisites

A supported OpenShift Container Platform version

You must have Ansible Automation Platform version 3.7.3 or a later version installed. It is best
practice to install the latest supported version of Ansible Automation Platform. See Red Hat
Ansible Automation Platform documentation for more details.

Install the Ansible Automation Platform Resource Operator from the Operator Lifecycle
Manager. In the Update Channel section, select stable-2.x-cluster-scoped. Select the All
namespaces on the cluster (default) installation mode.
Note: Ensure that the Ansible Automation Platform job template is idempotent when you run it.
If you do not have Ansible Automation Platform Resource Operator, you can find it from the Red
Hat OpenShift Container Platform OperatorHub page.

For more information about installing and configuring Red Hat Ansible Automation Platform, see Setting
up Ansible tasks.

2.7.4.2. Creating a policy violation automation from the console

After you log in to your Red Hat Advanced Cluster Management hub cluster, select Governance from
the navigation menu, and then click on the Policies tab to view the policy tables.

Configure an automation for a specific policy by clicking Configure in the Automation column. You can
create automation when the policy automation panel appears. From the Ansible credential section, click
the drop-down menu to select an Ansible credential. If you need to add a credential, see Managing

CHAPTER 2. GOVERNANCE

77

https://docs.ansible.com/ansible-tower/
../../html-single/applications#setting-up-ansible
../../html-single/clusters#managing-credentials-overview

credentials overview.

Note: This credential is copied to the same namespace as the policy. The credential is used by the
AnsibleJob resource that is created to initiate the automation. Changes to the Ansible credential in the
Credentials section of the console is automatically updated.

After a credential is selected, click the Ansible job drop-down list to select a job template. In the Extra
variables section, add the parameter values from the extra_vars section of the PolicyAutomation.
Select the frequency of the automation. You can select Run once mode , Run everyEvent mode , or
Disable automation.

Save your policy violation automation by selecting Submit. When you select the View Job link from the
Ansible job details side panel, the link directs you to the job template on the Search page. After you
successfully create the automation, it is displayed in the Automation column.

Note: When you delete a policy that has an associated policy automation, the policy automation is
automatically deleted as part of clean up.

Your policy violation automation is created from the console.

2.7.4.3. Creating a policy violation automation from the CLI

Complete the following steps to configure a policy violation automation from the CLI:

1. From your terminal, log in to your Red Hat Advanced Cluster Management hub cluster using the
oc login command.

2. Find or create a policy that you want to add an automation to. Note the policy name and
namespace.

3. Create a PolicyAutomation resource using the following sample as a guide:

4. The Automation template name in the previous sample is Policy Compliance Template.
Change that value to match your job template name.

5. In the extra_vars section, add any parameters you need to pass to the Automation template.

6. Set the mode to either once, everyEvent, or disabled.

7. Set the policyRef to the name of your policy.

8. Create a secret in the same namespace as this PolicyAutomation resource that contains the

apiVersion: policy.open-cluster-management.io/v1beta1
kind: PolicyAutomation
metadata:
 name: policyname-policy-automation
spec:
 automationDef:
 extra_vars:
 your_var: your_value
 name: Policy Compliance Template
 secret: ansible-tower
 type: AnsibleJob
 mode: disabled
 policyRef: policyname

Red Hat Advanced Cluster Management for Kubernetes 2.11 Governance

78

8. Create a secret in the same namespace as this PolicyAutomation resource that contains the
Ansible Automation Platform credential. In the previous example, the secret name is ansible-
tower. Use the sample from application lifecycle to see how to create the secret.

9. Create the PolicyAutomation resource.
Notes:

An immediate run of the policy automation can be initiated by adding the following
annotation to the PolicyAutomation resource:

When the policy is in once mode, the automation runs when the policy is non-compliant.
The extra_vars variable, named target_clusters is added and the value is an array of each
managed cluster name where the policy is non-compliant.

When the policy is in everyEvent mode and the DelayAfterRunSeconds exceeds the
defined time value, the policy is non-compliant and the automation runs for every policy
violation.

2.8. TEMPLATE PROCESSING

Configuration policies and operator policies support the inclusion of Golang text templates. These
templates are resolved at runtime either on the hub cluster or the target managed cluster using
configurations related to that cluster. This gives you the ability to define policies with dynamic content,
and inform or enforce Kubernetes resources that are customized to the target cluster.

A policy definition can contain both hub cluster and managed cluster templates. Hub cluster templates
are processed first on the hub cluster, then the policy definition with resolved hub cluster templates is
propagated to the target clusters. A controller on the managed cluster processes any managed cluster
templates in the policy definition and then enforces or verifies the fully resolved object definition.

The template must conform to the Golang template language specification, and the resource definition
generated from the resolved template must be a valid YAML. See the Golang documentation about
Package templates for more information. Any errors in template validation are recognized as policy
violations. When you use a custom template function, the values are replaced at runtime.

Important:

If you use hub cluster templates to propagate secrets or other sensitive data, the sensitive data
exists in the managed cluster namespace on the hub cluster and on the managed clusters where
that policy is distributed. The template content is expanded in the policy, and policies are not
encrypted by the OpenShift Container Platform ETCD encryption support. To address this, use
fromSecret or copySecretData, which automatically encrypts the values from the secret, or
protect to encrypt other values.

When you add multiline string values such as, certificates, always add | toRawJson | toLiteral
syntax at the end of the template pipeline to handle line breaks. For example, if you are copying
a certificate from a Secret resource and including it in a ConfigMap resource, your template
pipeline might be similar to the following syntax:

ca.crt: '{{ fromSecret "openshift-config" "ca-config-map-secret" "ca.crt" | base64dec |
toRawJson | toLiteral }}'

metadata:
 annotations:
 policy.open-cluster-management.io/rerun: "true"

CHAPTER 2. GOVERNANCE

79

../../html-single/applications#ansible-secrets

The toRawJson template function converts the input value to a JSON string with new lines
escaped to not affect the YAML structure. The toLiteral template function removes the outer
single quotes from the output. For example, when templates are processed for the key: '{{
'hello\nworld' | toRawJson }}' template pipeline, the output is key: '"hello\nworld"'. The
output of the key: '{{ 'hello\nworld' | toRawJson | toLiteral }}' template pipeline is key:
"hello\nworld".

See the following table for a comparison of hub cluster and managed cluster templates:

2.8.1. Comparison of hub cluster and managed cluster templates

Table 2.12. Comparison table

Templates Hub cluster Managed cluster

Syntax Golang text template
specification

Golang text template
specification

Delimiter {{hub … hub}} {{ … }}

Context A .ManagedClusterName
variable is available, which at
runtime, resolves to the name of
the target cluster where the policy
is propagated. The
.ManagedClusterLabels
variable is also available, which
resolves to a map of keys and
values of the labels on the
managed cluster where the policy
is propagated.

No context variables

Access control You can only reference
namespaced Kubernetes objects
that are in the same namespace
as the Policy resource.

You can reference any resource
on the cluster.

Red Hat Advanced Cluster Management for Kubernetes 2.11 Governance

80

Functions A set of template functions that
support dynamic access to
Kubernetes resources and string
manipulation. See Template
functions for more information.
See the Access control row for
lookup restrictions.

The fromSecret template
function on the hub cluster stores
the resulting value as an
encrypted string on the replicated
policy, in the managed cluster
namespace.

The equivalent call might use the
following syntax: {{hub "(lookup
"v1" "Secret" "default" "my-
hub-secret").data.message |
protect hub}}

A set of template functions
support dynamic access to
Kubernetes resources and string
manipulation. See Template
functions for more information.

Function output storage The output of template functions
are stored in Policy resource
objects in each applicable
managed cluster namespace on
the hub cluster, before it is synced
to the managed cluster. This
means that any sensitive results
from template functions are
readable by anyone with read
access to the Policy resource
objects on the hub cluster, and
anyone with read access to the
ConfigurationPolicy or
OperatorPolicy resource
objects on the managed clusters.
Additionally, if etcd encryption is
enabled, the policy resource
objects are not encrypted. It is
best to carefully consider this
when using template functions
that return sensitive output (e.g.
from a secret).

The output of template functions
are not stored in policy related
resource objects.

Templates Hub cluster Managed cluster

CHAPTER 2. GOVERNANCE

81

Processing Processing occurs at runtime on
the hub cluster during
propagation of replicated policies
to clusters. Policies and the hub
cluster templates within the
policies are processed on the hub
cluster only when templates are
created or updated.

Processing occurs on the
managed cluster. Configuration
policies are processed
periodically, which automatically
updates the resolved object
definition with data in the
referenced resources. Operator
policies automatically update
whenever a referenced resource
changes.

Processing errors Errors from the hub cluster
templates are displayed as
violations on the managed
clusters the policy applies to.

Errors from the managed cluster
templates are displayed as
violations on the specific target
cluster where the violation
occurred.

Templates Hub cluster Managed cluster

Continue reading the following topics:

Template functions

Advanced template processing in configuration policies

2.8.2. Template functions

Reference Kubernetes resources such as resource-specific and generic template functions on your hub
cluster by using the {{hub … hub}} delimiters, or on your managed cluster by using the {{ … }}
delimiters. You can use resource-specific functions for convenience and to make the content of your
resources more accessible.

2.8.2.1. Template function descriptions

If you use the generic function, lookup, which is more advanced, familiarize yourself with the YAML
structure of the resource that is being looked up. In addition to these functions, utility functions such as
base64enc, base64dec, indent, autoindent, toInt, toBool, and more are available.

To conform templates with YAML syntax, you must define templates in the policy resource as strings
using quotes or a block character (| or >). This causes the resolved template value to also be a string. To
override this, use toInt or toBool as the final function in the template to initiate further processing that
forces the value to be interpreted as an integer or boolean respectively.

Continue reading to view the descriptions and examples for some of the custom template functions that
are supported:

fromSecret

fromConfigMap

fromClusterClaim

lookup

Red Hat Advanced Cluster Management for Kubernetes 2.11 Governance

82

base64enc

base64dec

indent

autoindent

toInt

toBool

protect

toLiteral

copySecretData

copyConfigMapData

Sprig open source

2.8.2.1.1. fromSecret

The fromSecret function returns the value of the given data key in the secret. View the following syntax
for the function:

func fromSecret (ns string, secretName string, datakey string) (dataValue string, err error)

When you use this function, enter the namespace, name, and data key of a Kubernetes Secret resource.
You must use the same namespace that is used for the policy when using the function in a hub cluster
template. See Template processing for more details.

View the following configuration policy that enforces a Secret resource on the target cluster:

apiVersion: policy.open-cluster-management.io/v1
kind: ConfigurationPolicy
metadata:
 name: demo-fromsecret
 namespace: test
spec:
 namespaceSelector:
 exclude:
 - kube-*
 include:
 - default
 object-templates:
 - complianceType: musthave
 objectDefinition:
 apiVersion: v1
 data: 1
 USER_NAME: YWRtaW4=
 PASSWORD: '{{ fromSecret "default" "localsecret" "PASSWORD" }}' 2
 kind: Secret 3
 metadata:
 name: demosecret

CHAPTER 2. GOVERNANCE

83

1

2

3

When you use this function with hub cluster templates, the output is automatically encrypted using
the protect function.

The value for the PASSWORD data key is a template that references the secret on the target
cluster.

You receive a policy violation if the Kubernetes Secret resource does not exist on the target
cluster. If the data key does not exist on the target cluster, the value becomes an empty string.

Important: When you add multiline string values such as, certificates, always add | toRawJson |
toLiteral syntax at the end of the template pipeline to handle line breaks. For example, if you are copying
a certificate from a Secret resource and including it in a ConfigMap resource, your template pipeline
might be similar to the following syntax:

ca.crt: '{{ fromSecret "openshift-config" "ca-config-map-secret" "ca.crt" | base64dec | toRawJson |
toLiteral }}'

The toRawJson template function converts the input value to a JSON string with new lines
escaped to not affect the YAML structure.

The toLiteral template function removes the outer single quotes from the output. For example,
when templates are processed for the key: '{{ 'hello\nworld' | toRawJson }}' template pipeline,
the output is key: '"hello\nworld"'. The output of the key: '{{ 'hello\nworld' | toRawJson |
toLiteral }}' template pipeline is key: "hello\nworld".

2.8.2.1.2. fromConfigmap

The fromConfigMap function returns the value of the given data key in the config map. When you use
this function, enter the namespace, name, and data key of a Kubernetes ConfigMap resource. You must
use the same namespace that is used for the policy using the function in a hub cluster template. See
Template processing for more details.

View the following syntax for the function:

func fromConfigMap (ns string, configmapName string, datakey string) (dataValue string, err Error)

View the following configuration policy that enforces a Kubernetes resource on the target managed
cluster:

 namespace: test
 type: Opaque
 remediationAction: enforce
 severity: low

apiVersion: policy.open-cluster-management.io/v1
kind: ConfigurationPolicy
metadata:
 name: demo-fromcm-lookup
 namespace: test-templates
spec:
 namespaceSelector:
 exclude:
 - kube-*
 include:

Red Hat Advanced Cluster Management for Kubernetes 2.11 Governance

84

1

2

3

4

You receive a policy violation if the Kubernetes ConfigMap resource does not exist on the target
cluster.

If the data key does not exist on the target cluster, the value becomes an empty string.

The value for the log-file data key is a template that retrieves the value of the log-file from the
logs-config config map in the default namespace.

The log-level is a tempalte that retrieves the value of the log-level data key in the default
namespace.

2.8.2.1.3. fromClusterClaim

The fromClusterClaim function returns the value of the Spec.Value in the ClusterClaim resource.
View the following syntax for the function:

func fromClusterClaim (clusterclaimName string) (dataValue string, err Error)

View the following example of the configuration policy that enforces a Kubernetes resource on the
target managed cluster:

 - default
 object-templates:
 - complianceType: musthave
 objectDefinition:
 kind: ConfigMap 1
 apiVersion: v1
 metadata:
 name: demo-app-config
 namespace: test
 data: 2
 app-name: sampleApp
 app-description: "this is a sample app"
 log-file: '{{ fromConfigMap "default" "logs-config" "log-file" }}' 3
 log-level: '{{ fromConfigMap "default" "logs-config" "log-level" }}' 4
 remediationAction: enforce
 severity: low

apiVersion: policy.open-cluster-management.io/v1
kind: ConfigurationPolicy
metadata:
 name: demo-clusterclaims 1
 namespace: default
spec:
 namespaceSelector:
 exclude:
 - kube-*
 include:
 - default
 object-templates:
 - complianceType: musthave
 objectDefinition:
 kind: ConfigMap
 apiVersion: v1

CHAPTER 2. GOVERNANCE

85

1

2

3

When you use this function, enter the name of a Kubernetes ClusterClaim resource. You receive a
policy violation if the ClusterClaim resource does not exist.

Configuration values can be set as key-value properties.

The value for the platform data key is a template that retrieves the value of the platform.open-
cluster-management.io cluster claim. Similarly, it retrieves values for product and version from
the ClusterClaim resource.

2.8.2.1.4. lookup

The lookup function returns the Kubernetes resource as a JSON compatible map. When you use this
function, enter the API version, kind, namespace, name, and optional label selectors of the Kubernetes
resource. You must use the same namespace that is used for the policy within the hub cluster template.
See Template processing for more details.

If the requested resource does not exist, an empty map is returned. If the resource does not exist and
the value is provided to another template function, you might get the following error: invalid value;
expected string.

Note: Use the default template function, so the correct type is provided to later template functions.
See the Sprig open source section.

View the following syntax for the function:

func lookup (apiversion string, kind string, namespace string, name string, labelselector ...string)
(value string, err Error)

For label selector examples, see the reference to the Kubernetes labels and selectors documentation, in
the Additional resources section. View the following example of the configuration policy that enforces a
Kubernetes resource on the target managed cluster:

 metadata:
 name: sample-app-config
 namespace: default
 data: 2
 platform: '{{ fromClusterClaim "platform.open-cluster-management.io" }}' 3
 product: '{{ fromClusterClaim "product.open-cluster-management.io" }}'
 version: '{{ fromClusterClaim "version.openshift.io" }}'
 remediationAction: enforce
 severity: low

apiVersion: policy.open-cluster-management.io/v1
kind: ConfigurationPolicy
metadata:
 name: demo-lookup
 namespace: test-templates
spec:
 namespaceSelector:
 exclude:
 - kube-*
 include:
 - default
 object-templates:

Red Hat Advanced Cluster Management for Kubernetes 2.11 Governance

86

1

2

Configuration values can be set as key-value properties.

The value for the metrics-url data key is a template that retrieves the v1/Service Kubernetes
resource metrics from the default namespace, and is set to the value of the Spec.ClusterIP in the
queried resource.

2.8.2.1.5. base64enc

The base64enc function returns a base64 encoded value of the input data string. When you use this
function, enter a string value. View the following syntax for the function:

func base64enc (data string) (enc-data string)

View the following example of the configuration policy that uses the base64enc function:

2.8.2.1.6. base64dec

The base64dec function returns a base64 decoded value of the input enc-data string. When you use
this function, enter a string value. View the following syntax for the function:

 - complianceType: musthave
 objectDefinition:
 kind: ConfigMap
 apiVersion: v1
 metadata:
 name: demo-app-config
 namespace: test
 data: 1
 app-name: sampleApp
 app-description: "this is a sample app"
 metrics-url: | 2
 http://{{ (lookup "v1" "Service" "default" "metrics").spec.clusterIP }}:8080
 remediationAction: enforce
 severity: low

apiVersion: policy.open-cluster-management.io/v1
kind: ConfigurationPolicy
metadata:
 name: demo-fromsecret
 namespace: test
spec:
 namespaceSelector:
 exclude:
 - kube-*
 include:
 - default
 object-templates:
 - complianceType: musthave
 objectDefinition:
 ...
 data:
 USER_NAME: '{{ fromConfigMap "default" "myconfigmap" "admin-user" | base64enc }}'

CHAPTER 2. GOVERNANCE

87

func base64dec (enc-data string) (data string)

View the following example of the configuration policy that uses the base64dec function:

2.8.2.1.7. indent

The indent function returns the padded data string. When you use this function, enter a data string with
the specific number of spaces. View the following syntax for the function:

func indent (spaces int, data string) (padded-data string)

View the following example of the configuration policy that uses the indent function:

2.8.2.1.8. autoindent

apiVersion: policy.open-cluster-management.io/v1
kind: ConfigurationPolicy
metadata:
 name: demo-fromsecret
 namespace: test
spec:
 namespaceSelector:
 exclude:
 - kube-*
 include:
 - default
 object-templates:
 - complianceType: musthave
 objectDefinition:
 ...
 data:
 app-name: |
 "{{ (lookup "v1" "Secret" "testns" "mytestsecret") .data.appname) | base64dec }}"

apiVersion: policy.open-cluster-management.io/v1
kind: ConfigurationPolicy
metadata:
 name: demo-fromsecret
 namespace: test
spec:
 namespaceSelector:
 exclude:
 - kube-*
 include:
 - default
 object-templates:
 - complianceType: musthave
 objectDefinition:
 ...
 data:
 Ca-cert: |
 {{ (index (lookup "v1" "Secret" "default" "mycert-tls").data "ca.pem") | base64dec | indent 4
}}

Red Hat Advanced Cluster Management for Kubernetes 2.11 Governance

88

The autoindent function acts like the indent function that automatically determines the number of
leading spaces based on the number of spaces before the template.

View the following example of the configuration policy that uses the autoindent function:

2.8.2.1.9. toInt

The toInt function casts and returns the integer value of the input value. When this is the last function in
the template, there is further processing of the source content. This is to ensure that the value is
interpreted as an integer by the YAML. When you use this function, enter the data that needs to be
casted as an integer. View the following syntax for the function:

func toInt (input interface{}) (output int)

View the following example of the configuration policy that uses the toInt function:

apiVersion: policy.open-cluster-management.io/v1
kind: ConfigurationPolicy
metadata:
 name: demo-fromsecret
 namespace: test
spec:
 namespaceSelector:
 exclude:
 - kube-*
 include:
 - default
 object-templates:
 - complianceType: musthave
 objectDefinition:
 ...
 data:
 Ca-cert: |
 {{ (index (lookup "v1" "Secret" "default" "mycert-tls").data "ca.pem") | base64dec |
autoindent }}

apiVersion: policy.open-cluster-management.io/v1
kind: ConfigurationPolicy
metadata:
 name: demo-template-function
 namespace: test
spec:
 namespaceSelector:
 exclude:
 - kube-*
 include:
 - default
 object-templates:
 - complianceType: musthave
 objectDefinition:
 ...
 spec:
 vlanid: |
 {{ (fromConfigMap "site-config" "site1" "vlan") | toInt }}

CHAPTER 2. GOVERNANCE

89

2.8.2.1.10. toBool

The toBool function converts the input string into a boolean, and returns the boolean. When this is the
last function in the template, there is further processing of the source content. This is to ensure that the
value is interpreted as a boolean by the YAML. When you use this function, enter the string data that
needs to be converted to a boolean. View the following syntax for the function:

func toBool (input string) (output bool)

View the following example of the configuration policy that uses the toBool function:

2.8.2.1.11. protect

The protect function enables you to encrypt a string in a hub cluster policy template. It is automatically
decrypted on the managed cluster when the policy is evaluated. View the following example of the
configuration policy that uses the protect function:

In the previous YAML example, there is an existing hub cluster policy template that is defined to use the

apiVersion: policy.open-cluster-management.io/v1
kind: ConfigurationPolicy
metadata:
 name: demo-template-function
 namespace: test
spec:
 namespaceSelector:
 exclude:
 - kube-*
 include:
 - default
 object-templates:
 - complianceType: musthave
 objectDefinition:
 ...
 spec:
 enabled: |
 {{ (fromConfigMap "site-config" "site1" "enabled") | toBool }}

apiVersion: policy.open-cluster-management.io/v1
kind: ConfigurationPolicy
metadata:
 name: demo-template-function
 namespace: test
spec:
 namespaceSelector:
 exclude:
 - kube-*
 include:
 - default
 object-templates:
 - complianceType: musthave
 objectDefinition:
 ...
 spec:
 enabled: |
 {{hub (lookup "v1" "Secret" "default" "my-hub-secret").data.message | protect hub}}

Red Hat Advanced Cluster Management for Kubernetes 2.11 Governance

90

1

In the previous YAML example, there is an existing hub cluster policy template that is defined to use the
lookup function. On the replicated policy in the managed cluster namespace, the value might resemble
the following syntax: $ocm_encrypted:okrrBqt72oI+3WT/0vxeI3vGa+wpLD7Z0ZxFMLvL204=

Each encryption algorithm used is AES-CBC using 256-bit keys. Each encryption key is unique per
managed cluster and is automatically rotated every 30 days.

This ensures that your decrypted value is to never be stored in the policy on the managed cluster.

To force an immediate rotation, delete the policy.open-cluster-management.io/last-rotated
annotation on the policy-encryption-key Secret in the managed cluster namespace on the hub cluster.
Policies are then reprocessed to use the new encryption key.

2.8.2.1.12. toLiteral

The toLiteral function removes any quotation marks around the template string after it is processed.
You can use this function to convert a JSON string from a config map field to a JSON value in the
manifest. Run the following function to remove quotation marks from the key parameter value:

key: '{{ "[\"10.10.10.10\", \"1.1.1.1\"]" | toLiteral }}'

After using the toLiteral function, the following update is displayed:

key: ["10.10.10.10", "1.1.1.1"]

2.8.2.1.13. copySecretData

The copySecretData function copies all of the data contents of the specified secret. View the following
sample of the function:

When you use this function with hub cluster templates, the output is automatically encrypted using
the protect function.

2.8.2.1.14. copyConfigMapData

The copyConfigMapData function copies all of the data content of the specified config map. View the
following sample of the function:

complianceType: musthave
 objectDefinition:
 apiVersion: v1
 kind: Secret
 metadata:
 name: my-secret-copy
 data: '{{ copySecretData "default" "my-secret" }}' 1

complianceType: musthave
 objectDefinition:
 apiVersion: v1
 kind: ConfigMap
 metadata:
 name: my-secret-copy
 data: '{{ copyConfigMapData "default" "my-configmap" }}'

CHAPTER 2. GOVERNANCE

91

2.8.2.2. Sprig open source

Red Hat Advanced Cluster Management supports the following template functions that are included
from the sprig open source project:

Table 2.13. Table of supported, community Sprig functions

Sprig library Functions

Cryptographic and security htpasswd

Date date, mustToDate, now, toDate

Default default, empty, fromJson, mustFromJson,
ternary, toJson, toRawJson

Dictionaries and dict dict, dig, get, hasKey, merge, mustMerge, set,
unset

Integer math add, mul, div, round, sub

Integer slice until, untilStep,

Lists append, concat, has, list, mustAppend,
mustHas, mustPrepend, mustSlice, prepend,
slice

String functions cat, contains, hasPrefix, hasSuffix, join, lower,
mustRegexFind, mustRegexFindAll,
mustRegexMatch, quote, regexFind,
regexFindAll, regexMatch, regexQuoteMeta,
replace, split, splitn, substr, trim, trimAll, trunc,
upper

Version comparison semver, semverCompare

2.8.2.3. Additional resources

See Template processing for more details.

See Advanced template processing in configuration policies for use-cases.

For label selector examples, see the Kubernetes labels and selectors documentation.

Refer to the Golang documentation - Package templates .

See the Sprig Function Documentation for more details.

2.8.3. Advanced template processing in configuration policies

Use both managed cluster and hub cluster templates to reduce the need to create separate policies for
each target cluster or hardcode configuration values in the policy definitions. For security, both

Red Hat Advanced Cluster Management for Kubernetes 2.11 Governance

92

https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://golang.org/pkg/text/template/
https://masterminds.github.io/sprig/

resource-specific and the generic lookup functions in hub cluster templates are restricted to the
namespace of the policy on the hub cluster.

Important: If you use hub cluster templates to propagate secrets or other sensitive data, that causes
sensitive data exposure in the managed cluster namespace on the hub cluster and on the managed
clusters where that policy is distributed. The template content is expanded in the policy, and policies are
not encrypted by the OpenShift Container Platform ETCD encryption support. To address this, use
fromSecret or copySecretData, which automatically encrypts the values from the secret, or protect to
encrypt other values.

Continue reading for advanced template use-cases:

Special annotation for reprocessing

Object template processing

Bypass template processing

2.8.3.1. Special annotation for reprocessing

Hub cluster templates are resolved to the data in the referenced resources during policy creation, or
when the referenced resources are updated.

If you need to manually initiate an update, use the special annotation, policy.open-cluster-
management.io/trigger-update, to indicate changes for the data referenced by the templates. Any
change to the special annotation value automatically initiates template processing. Additionally, the
latest contents of the referenced resource are read and updated in the policy definition that is
propagated for processing on managed clusters. A way to use this annotation is to increment the value
by one each time.

2.8.3.2. Object template processing

Set object templates with a YAML string representation. The object-template-raw parameter is an
optional parameter that supports advanced templating use-cases, such as if-else and the range
function. The following example is defined to add the species-category: mammal label to any
ConfigMap in the default namespace that has a name key equal to Sea Otter:

Note: While spec.object-templates and spec.object-templates-raw are optional, exactly one of the
two parameter fields must be set.

View the following policy example that uses advanced templates to create and configure infrastructure

object-templates-raw: |
 {{- range (lookup "v1" "ConfigMap" "default" "").items }}
 {{- if eq .data.name "Sea Otter" }}
 - complianceType: musthave
 objectDefinition:
 kind: ConfigMap
 apiVersion: v1
 metadata:
 name: {{ .metadata.name }}
 namespace: {{ .metadata.namespace }}
 labels:
 species-category: mammal
 {{- end }}
 {{- end }}

CHAPTER 2. GOVERNANCE

93

View the following policy example that uses advanced templates to create and configure infrastructure
MachineSet objects for your managed clusters.

apiVersion: policy.open-cluster-management.io/v1
kind: ConfigurationPolicy
metadata:
 name: create-infra-machineset
spec:
 remediationAction: enforce
 severity: low
 object-templates-raw: |
 {{- /* Specify the parameters needed to create the MachineSet */ -}}
 {{- $machineset_role := "infra" }}
 {{- $region := "ap-southeast-1" }}
 {{- $zones := list "ap-southeast-1a" "ap-southeast-1b" "ap-southeast-1c" }}
 {{- $infrastructure_id := (lookup "config.openshift.io/v1" "Infrastructure" ""
"cluster").status.infrastructureName }}
 {{- $worker_ms := (index (lookup "machine.openshift.io/v1beta1" "MachineSet" "openshift-
machine-api" "").items 0) }}
 {{- /* Generate the MachineSet for each zone as specified */ -}}
 {{- range $zone := $zones }}
 - complianceType: musthave
 objectDefinition:
 apiVersion: machine.openshift.io/v1beta1
 kind: MachineSet
 metadata:
 labels:
 machine.openshift.io/cluster-api-cluster: {{ $infrastructure_id }}
 name: {{ $infrastructure_id }}-{{ $machineset_role }}-{{ $zone }}
 namespace: openshift-machine-api
 spec:
 replicas: 1
 selector:
 matchLabels:
 machine.openshift.io/cluster-api-cluster: {{ $infrastructure_id }}
 machine.openshift.io/cluster-api-machineset: {{ $infrastructure_id }}-{{ $machineset_role }}-{{
$zone }}
 template:
 metadata:
 labels:
 machine.openshift.io/cluster-api-cluster: {{ $infrastructure_id }}
 machine.openshift.io/cluster-api-machine-role: {{ $machineset_role }}
 machine.openshift.io/cluster-api-machine-type: {{ $machineset_role }}
 machine.openshift.io/cluster-api-machineset: {{ $infrastructure_id }}-{{ $machineset_role }}-
{{ $zone }}
 spec:
 metadata:
 labels:
 node-role.kubernetes.io/{{ $machineset_role }}: ""
 taints:
 - key: node-role.kubernetes.io/{{ $machineset_role }}
 effect: NoSchedule
 providerSpec:
 value:
 ami:
 id: {{ $worker_ms.spec.template.spec.providerSpec.value.ami.id }}

Red Hat Advanced Cluster Management for Kubernetes 2.11 Governance

94

2.8.3.3. Bypass template processing

You might create a policy that contains a template that is not intended to be processed by Red Hat
Advanced Cluster Management. By default, Red Hat Advanced Cluster Management processes all
templates.

To bypass template processing for your hub cluster, you must change {{ template content }} to {{ `{{
template content }}` }}.

Alternatively, you can add the following annotation in the ConfigurationPolicy section of your Policy:
policy.open-cluster-management.io/disable-templates: "true". When this annotation is included, the
previous workaround is not necessary. Template processing is bypassed for the ConfigurationPolicy.

2.8.3.4. Additional resources

See Template functions for more details.

Return to Template processing.

See Kubernetes configuration policy controller for more details.

 apiVersion: awsproviderconfig.openshift.io/v1beta1
 blockDevices:
 - ebs:
 encrypted: true
 iops: 2000
 kmsKey:
 arn: ''
 volumeSize: 500
 volumeType: io1
 credentialsSecret:
 name: aws-cloud-credentials
 deviceIndex: 0
 instanceType: {{ $worker_ms.spec.template.spec.providerSpec.value.instanceType }}
 iamInstanceProfile:
 id: {{ $infrastructure_id }}-worker-profile
 kind: AWSMachineProviderConfig
 placement:
 availabilityZone: {{ $zone }}
 region: {{ $region }}
 securityGroups:
 - filters:
 - name: tag:Name
 values:
 - {{ $infrastructure_id }}-worker-sg
 subnet:
 filters:
 - name: tag:Name
 values:
 - {{ $infrastructure_id }}-private-{{ $zone }}
 tags:
 - name: kubernetes.io/cluster/{{ $infrastructure_id }}
 value: owned
 userDataSecret:
 name: worker-user-data
 {{- end }}

CHAPTER 2. GOVERNANCE

95

Also refer to the Red Hat OpenShift Container Platform etcd encryption documentation .

2.9. MANAGING SECURITY POLICIES

Create a security policy to report and validate your cluster compliance based on your specified security
standards, categories, and controls.

View the following sections:

Creating a security policy

Updating security policies

Deleting a security policy

Cleaning up resources that are created by policies

2.9.1. Creating a security policy

You can create a security policy from the command line interface (CLI) or from the console.

Required access: Cluster administrator

Important: * You must define a placement and placement binding to apply your policy to a specific
cluster. The PlacementBinding resource binds the placement. Enter a valid value for the cluster Label
selector field to define a Placement and PlacementBinding resource. * In order to use a Placement
resource, a ManagedClusterSet resource must be bound to the namespace of the Placement resource
with a ManagedClusterSetBinding resource. Refer to Creating a ManagedClusterSetBinding resource
for additional details.

2.9.1.1. Creating a security policy from the command line interface

Complete the following steps to create a policy from the command line interface (CLI):

1. Create a policy by running the following command:

oc create -f policy.yaml -n <policy-namespace>

2. Define the template that the policy uses. Edit your YAML file by adding a policy-templates field
to define a template. Your policy might resemble the following YAML file:

apiVersion: policy.open-cluster-management.io/v1
kind: Policy
metadata:
 name: policy1
spec:
 remediationAction: "enforce" # or inform
 disabled: false # or true
 namespaceSelector:
 include:
 - "default"
 - "my-namespace"
 policy-templates:
 - objectDefinition:
 apiVersion: policy.open-cluster-management.io/v1

Red Hat Advanced Cluster Management for Kubernetes 2.11 Governance

96

https://docs.openshift.com/container-platform/4.14/security/encrypting-etcd.html
../../html-single/clusters#creating-managedclustersetbinding

3. Define a PlacementBinding resource to bind your policy to your Placement resource. Your
PlacementBinding resource might resemble the following YAML sample:

2.9.1.1.1. Viewing your security policy from the CLI

Complete the following steps to view your security policy from the CLI:

1. View details for a specific security policy by running the following command:

oc get policies.policy.open-cluster-management.io <policy-name> -n <policy-namespace> -o
yaml

2. View a description of your security policy by running the following command:

oc describe policies.policy.open-cluster-management.io <policy-name> -n <policy-
namespace>

2.9.1.2. Creating a cluster security policy from the console

After you log in to your Red Hat Advanced Cluster Management, navigate to the Governance page and

 kind: ConfigurationPolicy
 metadata:
 name: operator
 # namespace: # will be supplied by the controller via the namespaceSelector
 spec:
 remediationAction: "inform"
 object-templates:
 - complianceType: "musthave" # at this level, it means the role must exist and must
have the following rules
 apiVersion: rbac.authorization.k8s.io/v1
 kind: Role
 metadata:
 name: example
 objectDefinition:
 rules:
 - complianceType: "musthave" # at this level, it means if the role exists the rule is a
musthave
 apiGroups: ["extensions", "apps"]
 resources: ["deployments"]
 verbs: ["get", "list", "watch", "create", "delete","patch"]

apiVersion: policy.open-cluster-management.io/v1
kind: PlacementBinding
metadata:
 name: binding1
placementRef:
 name: placement1
 apiGroup: cluster.open-cluster-management.io
 kind: Placement
subjects:
- name: policy1
 apiGroup: policy.open-cluster-management.io
 kind: Policy

CHAPTER 2. GOVERNANCE

97

click Create policy. As you create your new policy from the console, a YAML file is also created in the
YAML editor. To view the YAML editor, select the toggle at the beginning of the Create policy form to
enable it.

1. Complete the Create policy form, then select the Submit button. Your YAML file might
resemble the following policy:

See the following PlacementBinding example:

See the following Placement example:

apiVersion: policy.open-cluster-management.io/v1
kind: Policy
metadata:
 name: policy-pod
 annotations:
 policy.open-cluster-management.io/categories:
'SystemAndCommunicationsProtections,SystemAndInformationIntegrity'
 policy.open-cluster-management.io/controls: 'control example'
 policy.open-cluster-management.io/standards: 'NIST,HIPAA'
 policy.open-cluster-management.io/description:
spec:
 complianceType: musthave
 namespaces:
 exclude: ["kube*"]
 include: ["default"]
 pruneObjectBehavior: None
 object-templates:
 - complianceType: musthave
 objectDefinition:
 apiVersion: v1
 kind: Pod
 metadata:
 name: pod1
 spec:
 containers:
 - name: pod-name
 image: 'pod-image'
 ports:
 - containerPort: 80
 remediationAction: enforce
 disabled: false

apiVersion: policy.open-cluster-management.io/v1
kind: PlacementBinding
metadata:
 name: binding-pod
placementRef:
 name: placement-pod
 kind: Placement
 apiGroup: cluster.open-cluster-management.io
subjects:
- name: policy-pod
 kind: Policy
 apiGroup: policy.open-cluster-management.io

Red Hat Advanced Cluster Management for Kubernetes 2.11 Governance

98

2. Optional: Add a description for your policy.

3. Click Create Policy. A security policy is created from the console.

2.9.1.2.1. Viewing your security policy from the console

View any security policy and the status from the console.

1. Navigate to the Governance page to view a table list of your policies. Note: You can filter the
table list of your policies by selecting the Policies tab or Cluster violations tab.

2. Select one of your policies to view more details. The Details, Clusters, and Templates tabs are
displayed. When the cluster or policy status cannot be determined, the following message is
displayed: No status.

3. Alternatively, select the Policies tab to view the list of policies. Expand a policy row to view the
Description, Standards, Controls, and Categories details.

2.9.1.3. Creating policy sets from the CLI

By default, the policy set is created with no policies or placements. You must create a placement for the
policy set and have at least one policy that exists on your cluster. When you create a policy set, you can
add numerous policies.

Run the following command to create a policy set from the CLI:

oc apply -f <policyset-filename>

2.9.1.4. Creating policy sets from the console

1. From the navigation menu, select Governance.

2. Select the Policy sets tab.

3. Select the Create policy set button and complete the form.

4. Add the details for your policy set and select the Submit button.

Your policy is listed from the policy table.

2.9.2. Updating security policies

Learn to update security policies.

apiVersion: cluster.open-cluster-management.io/v1beta1
 kind: Placement
 metadata:
 name: placement-pod
spec:
 predicates:
 - requiredClusterSelector:
 labelSelector:
 matchLabels:
 cloud: "IBM"

CHAPTER 2. GOVERNANCE

99

2.9.2.1. Adding a policy to a policy set from the CLI

1. Run the following command to edit your policy set:

oc edit policysets <your-policyset-name>

2. Add the policy name to the list in the policies section of the policy set.

3. Apply your added policy in the placement section of your policy set with the following command:

oc apply -f <your-added-policy.yaml>

PlacementBinding and Placement are both created.

Note: If you delete the placement binding, the policy is still placed by the policy set.

2.9.2.2. Adding a policy to a policy set from the console

1. Add a policy to the policy set by selecting the Policy sets tab.

2. Select the Actions icon and select Edit. The Edit policy set form appears.

3. Navigate to the Policies section of the form to select a policy to add to the policy set.

2.9.2.3. Disabling security policies

Your policy is enabled by default. Disable your policy from the console.

After you log in to your Red Hat Advanced Cluster Management for Kubernetes console, navigate to the
Governance page to view a table list of your policies.

Select the Actions icon > Disable policy. The Disable Policy dialog box appears.

Click Disable policy. Your policy is disabled.

2.9.3. Deleting a security policy

Delete a security policy from the CLI or the console.

Delete a security policy from the CLI:

a. Delete a security policy by running the following command:

oc delete policies.policy.open-cluster-management.io <policy-name> -n <policy-
namespace>

After your policy is deleted, it is removed from your target cluster or clusters. Verify that
your policy is removed by running the following command: oc get policies.policy.open-
cluster-management.io <policy-name> -n <policy-namespace>

Delete a security policy from the console:
From the navigation menu, click Governance to view a table list of your policies. Click the
Actions icon for the policy you want to delete in the policy violation table.

Click Remove. From the Remove policy dialog box, click Remove policy.

Red Hat Advanced Cluster Management for Kubernetes 2.11 Governance

100

2.9.3.1. Deleting policy sets from the console

1. From the Policy sets tab, select the Actions icon for the policy set. When you click Delete, the
Permanently delete Policyset? dialogue box appears.

2. Click the Delete button.

2.9.4. Cleaning up resources that are created by policies

Use the pruneObjectBehavior parameter in a configuration policy to clean up resources that are
created by the policy. When pruneObjectBehavior is set, the related objects are only cleaned up after
the configuration policy (or parent policy) associated with them is deleted.

View the following descriptions of the values that can be used for the parameter:

DeleteIfCreated: Cleans up any resources created by the policy.

DeleteAll: Cleans up all resources managed by the policy.

None: This is the default value and maintains the same behavior from previous releases, where
no related resources are deleted.

You can set the value directly in the YAML file as you create a policy from the command line.

From the console, you can select the value in the Prune Object Behavior section of the Policy templates
step.

Notes:

If a policy that installs an operator has the pruneObjectBehavior parameter defined, then
additional clean up is needed to complete the operator uninstall. You might need to delete the
operator ClusterServiceVersion object as part of this cleanup.

As you disable the config-policy-addon resource on the managed cluster, the
pruneObjbectBehavior is ignored. To automatically clean up the related resources on the
policies, you must remove the policies from the managed cluster before the add-on is disabled.

2.9.5. Additional resources

View more descriptions of the policy YAML files in the Policy overview .

See Resources that support support set-based requirements in the Kubernetes documentation
for a valid expression.

View the stable Policysets, which require the Policy Generator for deployment, PolicySets--
Stable.

Refer to Governance for more topics about policies.

2.9.6. Managing configuration policies

Learn to create, apply, view, and update your configuration policies.

Required access: Administrator or cluster administrator

Creating a configuration policy

CHAPTER 2. GOVERNANCE

101

https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/#resources-that-support-set-based-requirements
https://github.com/open-cluster-management/policy-collection/tree/main/policygenerator/policy-sets/stable

Updating configuration policies

Deleting a configuration policy

2.9.6.1. Creating a configuration policy

You can create a YAML file for your configuration policy from the command line interface (CLI) or from
the console.

If you have an existing Kubernetes manifest, consider using the Policy Generator to automatically
include the manifests in a policy. See the Policy Generator documentation. View the following sections
to create a configuration policy:

2.9.6.1.1. Creating a configuration policy from the CLI

Complete the following steps to create a configuration policy from the (CLI):

1. Create a YAML file for your configuration policy. Run the following command:

oc create -f configpolicy-1.yaml

Your configuration policy might resemble the following policy:

2. Apply the policy by running the following command:

oc apply -f <policy-file-name> --namespace=<namespace>

3. Verify and list the policies by running the following command:

oc get policies.policy.open-cluster-management.io --namespace=<namespace>

Your configuration policy is created.

2.9.6.1.2. Viewing your configuration policy from the CLI

apiVersion: policy.open-cluster-management.io/v1
kind: Policy
metadata:
 name: policy-1
 namespace: my-policies
policy-templates:
- apiVersion: policy.open-cluster-management.io/v1
 kind: ConfigurationPolicy
 metadata:
 name: mustonlyhave-configuration
 spec:
 namespaceSelector:
 include: ["default"]
 exclude: ["kube-system"]
 remediationAction: inform
 disabled: false
 complianceType: mustonlyhave
 object-templates:

Red Hat Advanced Cluster Management for Kubernetes 2.11 Governance

102

Complete the following steps to view your configuration policy from the CLI:

1. View details for a specific configuration policy by running the following command:

oc get policies.policy.open-cluster-management.io <policy-name> -n <namespace> -o yaml

2. View a description of your configuration policy by running the following command:

oc describe policies.policy.open-cluster-management.io <name> -n <namespace>

2.9.6.1.3. Creating a configuration policy from the console

As you create a configuration policy from the console, a YAML file is also created in the YAML editor.

1. Log in to your cluster from the console, and select Governance from the navigation menu.

2. Click Create policy. Specify the policy you want to create by selecting one of the configuration
policies for the specification parameter.

3. Continue with configuration policy creation by completing the policy form. Enter or select the
appropriate values for the following fields:

Name

Specifications

Cluster selector

Remediation action

Standards

Categories

Controls

4. Click Create. Your configuration policy is created.

2.9.6.1.4. Viewing your configuration policy from the console

View any configuration policy and its status from the console.

After you log in to your cluster from the console, select Governance to view a table list of your policies.
Note: You can filter the table list of your policies by selecting the All policies tab or Cluster violations tab.

Select one of your policies to view more details. The Details, Clusters, and Templates tabs are displayed.

2.9.6.2. Updating configuration policies

Learn to update configuration policies by viewing the following section.

2.9.6.2.1. Disabling configuration policies

Disable your configuration policy. Similar to the instructions mentioned earlier, log in and navigate to the
Governance page to complete the tasks.

1. Select the Actions icon for a configuration policy from the table list, then click Disable. The

CHAPTER 2. GOVERNANCE

103

1. Select the Actions icon for a configuration policy from the table list, then click Disable. The
Disable Policy dialog box appears.

2. Click Disable policy.

The policy is disabled, but not deleted.

2.9.6.3. Deleting a configuration policy

Delete a configuration policy from the CLI or the console.

Delete a configuration policy from the CLI with the following procedure:

1. Run the following command to delete the policy from your target cluster or clusters:

oc delete policies.policy.open-cluster-management.io <policy-name> -n <namespace>

2. Verify that your policy is removed by running the following command:

oc get policies.policy.open-cluster-management.io <policy-name> -n <namespace>

Delete a configuration policy from the console with the following procedure:

1. From the navigation menu, click Governance to view a table list of your policies.

2. Click the Actions icon for the policy you want to delete in the policy violation table, then
click Remove.

3. From the Remove policy dialog box, click Remove policy.

Your policy is deleted.

2.9.6.4. Additional resources

See configuration policy samples that are supported by Red Hat Advanced Cluster
Management from the CM-Configuration-Management folder.

Alternatively, you can refer to the Table of sample configuration policies to view other
configuration policies that are monitored by the controller. For details to manage other policies,
refer to Managing security policies.

2.9.7. Managing operator policies in disconnected environments

You might need to deploy Red Hat Advanced Cluster Management for Kubernetes policies on Red Hat
OpenShift Container Platform clusters that are not connected to the internet (disconnected). If the
policies you deploy are used to deploy policies that install an Operator Lifecycle Manager operator, you
must follow the procedure for Mirroring an Operator catalog .

Complete the following steps to validate access to the operator images:

1. See Verify required packages are available to validate that packages you require to use with
policies are available. You must validate availability for each image registry used by any
managed cluster that the following policies are deployed to:

container-security-operator

Red Hat Advanced Cluster Management for Kubernetes 2.11 Governance

104

https://github.com/open-cluster-management/policy-collection/tree/main/stable/CM-Configuration-Management
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/operators/index#olm-mirror-catalog_olm-restricted-networks
../../html-single/install#verify-required-package

Deprecated: gatekeeper-operator-product

compliance-operator

2. See Configure image content source policies to validate that the sources are available. The
image content source policies must exist on each of the disconnected managed clusters and
can be deployed using a policy to simplify the process. See the following table of image source
locations:

Governance policy type Image source location

Container security registry.redhat.io/quay

Compliance registry.redhat.io/compliance

Gatekeeper registry.redhat.io/rhacm2

2.9.8. Installing Red Hat OpenShift Platform Plus by using a policy set

Continue reading for guidance to apply the Red Hat Openshift Platform Plus policy set. When you apply
the Red Hat OpenShift policy set, the Red Hat Advanced Cluster Security secured cluster services and
the Compliance Operator are deployed onto all of your OpenShift Container Platform managed clusters.

2.9.8.1. Prerequisites

Complete the following steps before you apply the policy set:

1. To allow for subscriptions to be applied to your cluster, you must apply the policy-configure-
subscription-admin-hub.yaml policy and set the remediation action to enforce. Copy and
paste the following YAML into the YAML editor of the console:

apiVersion: policy.open-cluster-management.io/v1
kind: Policy
metadata:
 name: policy-configure-subscription-admin-hub
 annotations:
 policy.open-cluster-management.io/standards: NIST SP 800-53
 policy.open-cluster-management.io/categories: CM Configuration Management
 policy.open-cluster-management.io/controls: CM-2 Baseline Configuration
spec:
 remediationAction: inform
 disabled: false
 policy-templates:
 - objectDefinition:
 apiVersion: policy.open-cluster-management.io/v1
 kind: ConfigurationPolicy
 metadata:
 name: policy-configure-subscription-admin-hub
 spec:
 remediationAction: inform
 severity: low
 object-templates:
 - complianceType: musthave
 objectDefinition:

CHAPTER 2. GOVERNANCE

105

../../html-single/install#disconnect-configure-icsp

 apiVersion: rbac.authorization.k8s.io/v1
 kind: ClusterRole
 metadata:
 name: open-cluster-management:subscription-admin
 rules:
 - apiGroups:
 - app.k8s.io
 resources:
 - applications
 verbs:
 - '*'
 - apiGroups:
 - apps.open-cluster-management.io
 resources:
 - '*'
 verbs:
 - '*'
 - apiGroups:
 - ""
 resources:
 - configmaps
 - secrets
 - namespaces
 verbs:
 - '*'
 - complianceType: musthave
 objectDefinition:
 apiVersion: rbac.authorization.k8s.io/v1
 kind: ClusterRoleBinding
 metadata:
 name: open-cluster-management:subscription-admin
 roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: open-cluster-management:subscription-admin
 subjects:
 - apiGroup: rbac.authorization.k8s.io
 kind: User
 name: kube:admin
 - apiGroup: rbac.authorization.k8s.io
 kind: User
 name: system:admin

apiVersion: policy.open-cluster-management.io/v1
kind: PlacementBinding
metadata:
 name: binding-policy-configure-subscription-admin-hub
placementRef:
 name: placement-policy-configure-subscription-admin-hub
 kind: Placement
 apiGroup: cluster.open-cluster-management.io
subjects:
- name: policy-configure-subscription-admin-hub
 kind: Policy
 apiGroup: policy.open-cluster-management.io

Red Hat Advanced Cluster Management for Kubernetes 2.11 Governance

106

2. To apply the previous YAML from the command line interface, run the following command:

oc apply -f policy-configure-subscription-admin-hub.yaml

3. Install the Policy Generator kustomize plugin. Use Kustomize v4.5 or newer. See Generating a
policy to install an Operator.

4. Policies are installed to the policies namespace. You must bind that namespace to a
ClusterSet. For example, copy and apply the following example YAML to bind the namespace
to the default ClusterSet:

5. Run the following command to apply the ManagedClusterSetBinding resource from the
command line interface:

oc apply -f managed-cluster.yaml

After you meet the prerequisite requirements, you can apply the policy set.

2.9.8.2. Applying Red Hat OpenShift Platform Plus policy set

1. Use the openshift-plus/policyGenerator.yaml file that includes the prerequisite configuration
for Red Hat OpenShift Plus. See openshift-plus/policyGenerator.yaml.

2. Apply the policies to your hub cluster by using the kustomize command:

kustomize build --enable-alpha-plugins | oc apply -f -

Note: For any components of OpenShift Platform Plus that you do not want to install, edit the
policyGenerator.yaml file and remove or comment out the policies for those components.

2.9.8.3. Additional resources

See Red Hat OpenShift Platform Plus policy set for an overview of the policy set.

Return to the beginning of the topic, Installing Red Hat OpenShift Platform Plus by using a

apiVersion: cluster.open-cluster-management.io/v1beta1
kind: Placement
metadata:
 name: placement-policy-configure-subscription-admin-hub
spec:
 predicates:
 - requiredClusterSelector:
 labelSelector:
 matchExpressions:
 - {key: name, operator: In, values: ["local-cluster"]}

apiVersion: cluster.open-cluster-management.io/v1beta2
kind: ManagedClusterSetBinding
metadata:
 name: default
 namespace: policies
spec:
 clusterSet: default

CHAPTER 2. GOVERNANCE

107

../../html-single/gitops#gitops-policy-operator
https://github.com/open-cluster-management/policy-collection/blob/main/policygenerator/policy-sets/stable/openshift-plus/policyGenerator.yaml

Return to the beginning of the topic, Installing Red Hat OpenShift Platform Plus by using a
policy set

2.9.9. Installing an operator by using the OperatorPolicy resource

To install Operator Lifecycle Manager (OLM) managed operators on your managed clusters, use an
OperatorPolicy policy template in a Policy definition.

2.9.9.1. Creating an OperatorPolicy resource to install Quay

See the following operator policy sample that installs the latest Quay operator in the stable-3.11
channel using the Red Hat operator catalog:

After you add the OperatorPolicy policy template, the operatorGroup and subscription objects are
created on the cluster by using the controller. As a result, the rest of the installation is completed by
OLM. You can view the health of owned resources in the .status.Conditions and
.status.relatedObjects fields of the OperatorPolicy resource on your managed cluster.

To verify the operator policy status, run the following command on your managed cluster:

2.9.9.2. Additional resources

See Operator policy controller

2.10. POLICY DEPENDENCIES

Dependencies can be used to activate a policy only when other policies on your cluster are in a certain
state. When the dependency criteria is not met, the policy is labeled as Pending and resources are not

apiVersion: policy.open-cluster-management.io/v1
kind: Policy
metadata:
 name: install-quay
 namespace: open-cluster-management-global-set
spec:
 disabled: false
 policy-templates:
 - objectDefinition:
 apiVersion: policy.open-cluster-management.io/v1beta1
 kind: OperatorPolicy
 metadata:
 name: install-quay
 spec:
 remediationAction: enforce
 severity: critical
 complianceType: musthave
 upgradeApproval: None
 subscription:
 channel: stable-3.11
 name: quay-operator
 source: redhat-operators
 sourceNamespace: openshift-marketplace

oc -n <managed cluster namespace> get operatorpolicy install-quay

Red Hat Advanced Cluster Management for Kubernetes 2.11 Governance

108

created on your managed cluster. There are more details about the the criteria status in the policy
status.

You can use policy dependencies to control the ordering of how objects are applied. For example, if you
have a policy for an operator and another policy for a resource that the operator manages, you can set a
dependency on the second policy so that it does not attempt to create the resource until the operator is
installed. This can help with the performance on the managed cluster.

Required access: Policy administrator

View the following policy dependency example, where the ScanSettingBinding is only created if the
upstream-compliance-operator policy is already compliant on the managed cluster:

apiVersion: policy.open-cluster-management.io/v1
kind: Policy
metadata:
 annotations:
 policy.open-cluster-management.io/categories: CM Configuration Management
 policy.open-cluster-management.io/controls: CM-2 Baseline Configuration
 policy.open-cluster-management.io/standards: NIST SP 800-53
 policy.open-cluster-management.io/description:
 name: moderate-compliance-scan
 namespace: default
spec:
 dependencies: 1
 - apiVersion: policy.open-cluster-management.io/v1
 compliance: Compliant
 kind: Policy
 name: upstream-compliance-operator
 namespace: default
 disabled: false
 policy-templates:
 - extraDependencies: 2
 - apiVersion: policy.open-cluster-management.io/v1
 kind: ConfigurationPolicy
 name: scan-setting-prerequisite
 compliance: Compliant
 ignorePending: false 3
 objectDefinition:
 apiVersion: policy.open-cluster-management.io/v1
 kind: ConfigurationPolicy
 metadata:
 name: moderate-compliance-scan
 spec:
 object-templates:
 - complianceType: musthave
 objectDefinition:
 apiVersion: compliance.openshift.io/v1alpha1
 kind: ScanSettingBinding
 metadata:
 name: moderate
 namespace: openshift-compliance
 profiles:
 - apiGroup: compliance.openshift.io/v1alpha1
 kind: Profile
 name: ocp4-moderate

CHAPTER 2. GOVERNANCE

109

1

2

3

The dependencies field is set on a Policy object, and the requirements apply to all policy
templates in the policy.

The extraDependencies field can be set on individual policy template. For example the parameter
can be set for a configuration policy, and defines criteria that must be satisfied in addition to any
dependencies set in the policy.

The ignorePending field can be set on each individual policy template, and configures whether the
Pending status on that template is considered as Compliant or NonCompliant when the overall
policy compliance is calculated. By default, this is set to false and a Pending template causes the
policy to be NonCompliant. When you set this to true the policy can still be Compliant when this
template is Pending, which is useful when that is expected status of the template.

Note: You cannot use a dependency to apply a policy on one cluster based on the status of a policy in
another cluster.

2.11. SECURE THE HUB CLUSTER

Secure your Red Hat Advanced Cluster Management for Kubernetes installation by enhancing the hub
cluster security. Complete the following steps:

1. Secure Red Hat OpenShift Container Platform. For more information, see OpenShift Container
Platform security and compliance.

2. Setup role-based access control (RBAC). For more information, see Role-based access control .

3. Customize certificates, see Certificates.

4. Define your cluster credentials, see Managing credentials overview

5. Review the policies that are available to help you harden your cluster security. See Supported
policies

 - apiGroup: compliance.openshift.io/v1alpha1
 kind: Profile
 name: ocp4-moderate-node
 settingsRef:
 apiGroup: compliance.openshift.io/v1alpha1
 kind: ScanSetting
 name: default
 remediationAction: enforce
 severity: low

Red Hat Advanced Cluster Management for Kubernetes 2.11 Governance

110

https://docs.openshift.com/container-platform/4.14/security/index.html
../../html-single/access_control#role-based-access-control
../../html-single/clusters#credentials
../../html-single/governance#supported-policies

CHAPTER 3. GATEKEEPER OPERATOR OVERVIEW
The Gatekeeper operator installs Gatekeeper, which is a validating webhook with auditing capabilities.
Install the Gatekeeper operator on a Red Hat OpenShift Container Platform cluster from the Operator
Lifecycle Manager operator catalog. With Red Hat Advanced Cluster Management for Kubernetes, you
can install Gatekeeper on your hub cluster by using the Gatekeeper operator policy. After you install
Gatekeeper, use it for the following benefits:

Deploy and check Gatekeeper ConstraintTemplates and constraints on managed clusters by
using the Red Hat Advanced Cluster Management policy integration.

Enforce Kubernetes custom resource definition-based policies that run with your Open Policy
Agent (OPA).

Evaluate Kubernetes resource compliance requests for the Kubernetes API by using the
Gatekeeper constraints.

Use OPA as the policy engine and use Rego as the policy language.

Prerequisite: You need a Red Hat Advanced Cluster Management for Kubernetes or Red Hat
OpenShift Container Platform Plus subscription to install Gatekeeper and apply Gatekeeper policies to
your cluster.

To learn more about using the Gatekeeper operator, see the following resources:

General support

Operator channels

Configuring the Gatekeeper operator

Managing the Gatekeeper operator installation policies

Integrating Gatekeeper constraints and constraint templates

3.1. GENERAL SUPPORT

To understand the support you receive from the Gatekeeper operator, see the following list:

Supports current version of the Gatekeeper operator, preceding versions, and all z-stream
releases of those versions.

Receive maintenance support and relevant security vulnerability fixes for preceding and current
versions.

Support for all Red Hat OpenShift Container Platform versions that receive standard support.
Note: The Gatekeeper operator is not supported on end-of-life OpenShift Container Platform
versions or versions that receive extended support.

To view the release notes for the Gatekeeper operator, see gatekeeper-operator-bundle.

3.2. OPERATOR CHANNELS

With the Gatekeeper operator, you have access to two types of channels to help you make upgrades.
These channels are the stable channel and the y-stream version channel.

CHAPTER 3. GATEKEEPER OPERATOR OVERVIEW

111

https://catalog.redhat.com/software/containers/gatekeeper/gatekeeper-operator-bundle/64ba9da52b6048f1d6695232

With the stable channel, you can access the latest available version, whether it is an x-stream, y-stream,
or z-stream. The stable channel includes the latest version of the latest y-stream channel.

With the y-stream version channel, you can access all the z-stream versions for a particular y-stream.

3.3. CONFIGURING THE GATEKEEPER OPERATOR

Install the Gatekeeper operator from the Operator Lifecycle Manager catalog to install Gatekeeper on
your cluster. With Red Hat Advanced Cluster Management you can use a policy to install the Gatekeeper
operator by using the governance framework. After you install the Gatekeeper operator, configure the
Gatekeeper operator custom resource to install Gatekeeper.

3.3.1. Prerequisites

Required access: Cluster administrator.

Understand how to use the Operator Lifecycle Manager (OLM) and the OperatorHub by
completing the Adding Operators to a cluster and the Additional resources section in the
OpenShift Container Platform documentation .

3.3.2. Gatekeeper custom resource sample

The Gatekeeper operator custom resource tells the Gatekeeper operator to start the Gatekeeper
installation on the cluster. To install Gatekeeper, use the following sample YAML, which includes sample
and default values:

apiVersion: operator.gatekeeper.sh/v1alpha1
kind: Gatekeeper
metadata:
 name: gatekeeper
spec:
 audit:
 replicas: 1
 auditEventsInvolvedNamespace: Enabled 1
 logLevel: DEBUG
 auditInterval: 10s
 constraintViolationLimit: 55
 auditFromCache: Enabled
 auditChunkSize: 66
 emitAuditEvents: Enabled
 resources:
 limits:
 cpu: 500m
 memory: 150Mi
 requests:
 cpu: 500m
 memory: 130Mi
 validatingWebhook: Enabled
 mutatingWebhook: Enabled
 webhook:
 replicas: 3
 emitAdmissionEvents: Enabled
 admissionEventsInvolvedNamespace: Enabled 2
 disabledBuiltins:

Red Hat Advanced Cluster Management for Kubernetes 2.11 Governance

112

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html/operators/administrator-tasks#olm-adding-operators-to-a-cluster

1

2

3

Note: For versions 3.14 or later, you can implement the following features from this YAML:

Enable the auditEventsInvolvedNamespace parameter to manage the namespace audit event
you want to create. When you enable this parameter, the Gatekeeper controller deployment runs
with the following argument: --audit-events-involved-namespace=true.

Enable the admissionEventsInvolvedNamespace parameter to manage the namespace
admission event you want to create. When you enable this parameter, the Gatekeeper controller
deployment runs with the following argument: --admission-events-involved-namespace=true.

To manage your webhook operations, you can use the following values for the operations
parameter, "CREATE", "UPDATE", "CONNECT", and "DELETE".

3.3.3. Configuring auditFromCache for sync details

For versions 3.14 or later, the Gatekeeper operator exposes a setting in the Gatekeeper operator
custom resource for the audit configuration with the auditFromCache parameter, which is disabled by
default. Configure the auditFromCache parameter to collect resources from constraints.

When you set the auditFromCache parameter to Automatic, the Gatekeeper operator collects
resources from constraints and inserts those resources into your Gatekeeper Config resource. If the
resource does not exist, the Gatekeeper operator creates the Config resource.

If you set the auditFromCache parameter to Enabled, you need to manually set the Gatekeeper

 - http.send
 operations: 3
 - "CREATE"
 - "UPDATE"
 - "CONNECT"
 failurePolicy: Fail
 resources:
 limits:
 cpu: 480m
 memory: 140Mi
 requests:
 cpu: 400m
 memory: 120Mi
 nodeSelector:
 region: "EMEA"
 affinity:
 podAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 - labelSelector:
 matchLabels:
 auditKey: "auditValue"
 topologyKey: topology.kubernetes.io/zone
 tolerations:
 - key: "Example"
 operator: "Exists"
 effect: "NoSchedule"
 podAnnotations:
 some-annotation: "this is a test"
 other-annotation: "another test"

CHAPTER 3. GATEKEEPER OPERATOR OVERVIEW

113

If you set the auditFromCache parameter to Enabled, you need to manually set the Gatekeeper
Config resource with the objects to sync to the cache. For more information, see Configuring Audit in
the Gatekeeper documentation.

To configure the auditFromCache parameter for resource collection from constraints, complete the
following steps:

1. Set auditFromCache to Automatic in the Gatekeeper resource. See the following example:

2. To verify that the resources are added to your Config resource, view that the syncOnly
parameter section is added. Run the following command:

Your Config resource might resemble the following example:

Optional: You can view the explanation of the auditFromCache setting from the description of the
Gatekeeper operator custom resource by running the following command:

3.4. MANAGING THE GATEKEEPER OPERATOR INSTALLATION
POLICIES

Use the Red Hat Advanced Cluster Management policy to install the Gatekeeper operator and
Gatekeeper on a managed cluster.

Required access: Cluster administrator

apiVersion: operator.gatekeeper.sh/v1alpha1
kind: Gatekeeper
metadata:
 name: gatekeeper
spec:
 audit:
 replicas: 2
 logLevel: DEBUG
 auditFromCache: Automatic

oc get configs.config.gatekeeper.sh config -n openshift-gatekeeper-system

apiVersion: config.gatekeeper.sh/v1alpha1
kind: Config
metadata:
 name: config
 namespace: "openshift-gatekeeper-system"
spec:
 sync:
 syncOnly:
 - group: ""
 version: "v1"
 kind: "Namespace"
 - group: ""
 version: "v1"
 kind: "Pod"

oc explain gatekeeper.spec.audit.auditFromCache

Red Hat Advanced Cluster Management for Kubernetes 2.11 Governance

114

To create, view, and update your Gatekeeper operator installation policies, complete the following
sections:

Installing Gatekeeper using a Gatekeeper operator policy

Creating a Gatekeeper policy from the console

Upgrading Gatekeeper and the Gatekeeper operator

Disabling Gatekeeper operator policy

Deleting Gatekeeper operator policy

Uninstalling Gatekeeper constraints, Gatekeeper instance, and Gatekeeper operator policy

3.4.1. Installing Gatekeeper using a Gatekeeper operator policy

To install the Gatekeeper operator policy, use the configuration policy controller. During the install, the
operator group and subscription pull the Gatekeeper operator to install it on your managed cluster.
Then, the policy creates a Gatekeeper custom resource to configure Gatekeeper.

The Red Hat Advanced Cluster Management configuration policy controller checks the Gatekeeper
operator policy and supports the enforce remediation action. When you set the controller to enforce it
automatically creates the Gatekeeper operator objects on the managed cluster.

3.4.2. Creating a Gatekeeper policy from the console

When you create a Gatekeeper policy from the console, you must set your remediation enforce to install
Gatekeeper.

3.4.2.1. Viewing the Gatekeeper operator policy

To view your Gatekeeper operator policy and its status from the console, complete the following steps:

1. Select the policy-gatekeeper-operator policy to view more details.

2. Select the Clusters tab to view the policy violations.

3.4.3. Upgrading Gatekeeper and the Gatekeeper operator

You can upgrade the versions for Gatekeeper and the Gatekeeper operator. When you install the
Gatekeeper operator with the Gatekeeper operator policy, notice the value for upgradeApproval. The
operator upgrades automatically when you set upgradeApproval to Automatic.

If you set upgradeApproval to Manual, you must manually approve the upgrade for each cluster where
the Gatekeeper operator is installed.

3.4.4. Disabling Gatekeeper operator policy

To disable your policy-gatekeeper-operator policy, select the Disable option from the Actions menu in
the console, or set spec.disabled: true from the CLI.

3.4.5. Deleting Gatekeeper operator policy

To delete your Gatekeeper operator policy from your CLI, complete the following steps:

CHAPTER 3. GATEKEEPER OPERATOR OVERVIEW

115

1. Delete Gatekeeper operator policy by running the following command:

2. Verify that you deleted your policy by running the following command:

To delete your Gatekeeper operator policy from the console, click the Actions icon for the policy-
gatekeeper-operator policy and select Delete.

3.4.6. Uninstalling Gatekeeper constraints, Gatekeeper instance, and Gatekeeper
operator policy

To uninstall Gatekeeper policy, complete the steps in the following sections:

Removing Gatekeeper constraints

Removing Gatekeeper instance

Removing Gatekeeper operator

3.4.6.1. Removing Gatekeeper constraints

To remove the Gatekeeper constraint and ConstraintTemplate from your managed cluster, complete
the following steps:

1. Edit your Gatekeeper constraint or ConstraintTemplate policy.

2. Locate the template that you used to create the Gatekeeper Constraint and
ConstraintTemplate.

3. Delete the entries from the list of templates. (Or delete the policy if they’re the only templates.)

4. Save and apply the policy.

Note: The constraint and ConstraintTemplate are provided directly in the policy-templates instead of
within a ConfigurationPolicy.

3.4.6.2. Removing Gatekeeper instance

To remove the Gatekeeper instance from your managed cluster, complete the following steps:

1. Edit your Gatekeeper operator policy.

2. Locate the ConfigurationPolicy template that you used to create the Gatekeeper operator
custom resource.

3. Change the value for complianceType of the ConfigurationPolicy template to mustnothave.
Changing the value deletes the Gatekeeper operator custom resource, signaling to the
Gatekeeper operator to clean up the Gatekeeper deployment.

oc delete policies.policy.open-cluster-management.io <policy-gatekeeper-operator-name> -n
<namespace>

oc get policies.policy.open-cluster-management.io <policy-gatekeeper-operator-name> -n
<namespace>

Red Hat Advanced Cluster Management for Kubernetes 2.11 Governance

116

3.4.6.3. Removing Gatekeeper operator

To remove the Gatekeeper operator from your managed cluster, complete the following steps:

1. Edit your Gatekeeper operator policy.

2. Locate the OperatorPolicy template that you used to create the Subscription CR.

3. Change the value for complianceType of the OperatorPolicy template to mustnothave.

3.4.7. Additional resources

For more details, see the following resources:

Integrating Gatekeeper constraints and constraint templates.

Policy Gatekeeper.

For an explanation of the optional parameters that can be used for the Gatekeeper operator
policy, see Gatekeeper Helm Chart .

3.5. INTEGRATING GATEKEEPER CONSTRAINTS AND CONSTRAINT
TEMPLATES

To create Gatekeeper policies, use ConstraintTemplates and constraints. Add templates and
constraints to the policy-templates of a Policy resource. View the following YAML examples that use
Gatekeeper constraints in Red Hat Advanced Cluster Management policies:

ConstraintTemplates and constraints: Use the Gatekeeper integration feature by using Red
Hat Advanced Cluster Management policies for multicluster distribution of Gatekeeper
constraints and Gatekeeper audit results aggregation on the hub cluster. The following example
defines a Gatekeeper ConstraintTemplate and constraint (K8sRequiredLabels) to ensure the
gatekeeper label is set on all namespaces:

apiVersion: policy.open-cluster-management.io/v1
kind: Policy
metadata:
 name: require-gatekeeper-labels-on-ns
spec:
 remediationAction: inform 1
 disabled: false
 policy-templates:
 - objectDefinition:
 apiVersion: templates.gatekeeper.sh/v1beta1
 kind: ConstraintTemplate
 metadata:
 name: k8srequiredlabels
 annotations:
 policy.open-cluster-management.io/severity: low 2
 spec:
 crd:
 spec:
 names:
 kind: K8sRequiredLabels
 validation:

CHAPTER 3. GATEKEEPER OPERATOR OVERVIEW

117

https://github.com/open-cluster-management-io/policy-collection/blob/main/stable/CM-Configuration-Management/policy-gatekeeper-operator-downstream.yaml
https://github.com/open-policy-agent/gatekeeper/blob/master/charts/gatekeeper/README.md

1

2 3

Since the remediationAction is set to inform, the enforcementAction field of the
Gatekeeper constraint is overridden to warn. This means that Gatekeeper detects and
warns you about creating or updating a namespace that is missing the gatekeeper label. If
the policy remediationAction is set to enforce, the Gatekeeper constraint
enforcementAction field is overridden to deny. In this context, this configuration prevents
any user from creating or updating a namespace that is missing the gatekeeper label.

Optional: Set a severity value for the policy.open-cluster-management.io/severity
annotation for each Gatekeeper constraint or constraint template. Valid values are the
same as for other Red Hat Advanced Cluster Management policy types: low, medium,
high, or critical.

With the previous policy, you might receive the following policy status message: warn - you
must provide labels: {"gatekeeper"} (on Namespace default); warn - you must provide
labels: {"gatekeeper"} (on Namespace gatekeeper-system). When you delete Gatekeeper
constraints or ConstraintTemplates from a policy, the constraints and ConstraintTemplates
are also deleted from your managed cluster.

To view the Gatekeeper audit results for a specific managed cluster from the console, go to to
the policy template Results page. If search is enabled, view the YAML of the Kubernetes objects
that failed the audit.

Notes:

 openAPIV3Schema:
 properties:
 labels:
 type: array
 items: string
 targets:
 - target: admission.k8s.gatekeeper.sh
 rego: |
 package k8srequiredlabels
 violation[{"msg": msg, "details": {"missing_labels": missing}}] {
 provided := {label | input.review.object.metadata.labels[label]}
 required := {label | label := input.parameters.labels[_]}
 missing := required - provided
 count(missing) > 0
 msg := sprintf("you must provide labels: %v", [missing])
 }
 - objectDefinition:
 apiVersion: constraints.gatekeeper.sh/v1beta1
 kind: K8sRequiredLabels
 metadata:
 name: ns-must-have-gk
 annotations:
 policy.open-cluster-management.io/severity: low 3
 spec:
 enforcementAction: dryrun
 match:
 kinds:
 - apiGroups: [""]
 kinds: ["Namespace"]
 parameters:
 labels: ["gatekeeper"]

Red Hat Advanced Cluster Management for Kubernetes 2.11 Governance

118

1

2

The Related resources section is only available when Gatekeeper generates audit results.

The Gatekeeper audit runs every minute by default. Audit results are sent back to the hub
cluster to be viewed in the Red Hat Advanced Cluster Management policy status of the
managed cluster.

policy-gatekeeper-admission: Use the policy-gatekeeper-admission configuration policy
within a Red Hat Advanced Cluster Management policy to check for Kubernetes API requests
denied by the Gatekeeper admission webhook. View the following example:

The ConfigurationPolicy remediationAction parameter is overwritten by
remediationAction in the parent policy.

Set to the actual namespace where Gatekeeper is running if it is different.

3.5.1. Additional resources

For more details, see the following resources:

policy-gatekeeper-operator.yaml

What is OPA Gatekeeper?

apiVersion: policy.open-cluster-management.io/v1
kind: ConfigurationPolicy
metadata:
 name: policy-gatekeeper-admission
spec:
 remediationAction: inform 1
 severity: low
 object-templates:
 - complianceType: mustnothave
 objectDefinition:
 apiVersion: v1
 kind: Event
 metadata:
 namespace: openshift-gatekeeper-system 2
 annotations:
 constraint_action: deny
 constraint_kind: K8sRequiredLabels
 constraint_name: ns-must-have-gk
 event_type: violation

CHAPTER 3. GATEKEEPER OPERATOR OVERVIEW

119

https://github.com/open-cluster-management-io/policy-collection/blob/main/stable/CM-Configuration-Management/policy-gatekeeper-operator-downstream.yaml
https://www.openpolicyagent.org/docs/latest/kubernetes-introduction/#what-is-opa-gatekeeper

CHAPTER 4. INTEGRATING POLICY GENERATOR
By integrating the Policy Generator, you can use it to automatically build Red Hat Advanced Cluster
Management for Kubernetes policies. To integrate the Policy Generator, see Policy Generator.

For an example of what you can do with the Policy Generator, see Generating a policy that installs the
Compliance Operator.

4.1. POLICY GENERATOR

The Policy Generator is a part of the Red Hat Advanced Cluster Management for Kubernetes
application lifecycle subscription Red Hat OpenShift GitOps workflow that generates Red Hat
Advanced Cluster Management policies using Kustomize. The Policy Generator builds Red Hat
Advanced Cluster Management policies from Kubernetes manifest YAML files, which are provided
through a PolicyGenerator manifest YAML file that is used to configure it. The Policy Generator is
implemented as a Kustomize generator plug-in. For more information on Kustomize, read the Kustomize
documentation.

View the following sections for more information:

Policy Generator capabilities

Policy Generator configuration structure

Policy Generator configuration reference table

4.1.1. Policy Generator capabilities

The Policy Generator and its integration with the Red Hat Advanced Cluster Management application
lifecycle subscription OpenShift GitOps workflow simplifies the distribution of Kubernetes resource
objects to managed OpenShift Container Platform clusters, and Kubernetes clusters through Red Hat
Advanced Cluster Management policies.

Use the Policy Generator to complete the following actions:

Convert any Kubernetes manifest files to Red Hat Advanced Cluster Management configuration
policies, including manifests that are created from a Kustomize directory.

Patch the input Kubernetes manifests before they are inserted into a generated Red Hat
Advanced Cluster Management policy.

Generate additional configuration policies so you can report on Gatekeeper policy violations
through Red Hat Advanced Cluster Management for Kubernetes.

Generate policy sets on the hub cluster.

4.1.2. Policy Generator configuration structure

The Policy Generator is a Kustomize generator plug-in that is configured with a manifest of the
PolicyGenerator kind and policy.open-cluster-management.io/v1 API version.

To use the plug-in, start by adding a generators section in a kustomization.yaml file. View the following
example:

Red Hat Advanced Cluster Management for Kubernetes 2.11 Governance

120

The policy-generator-config.yaml file that is referenced in the previous example is a YAML file with the
instructions of the policies to generate. A simple PolicyGenerator configuration file might resemble the
following example:

The configmap.yaml represents a Kubernetes manifest YAML file to be included in the policy.
Alternatively, you can set the path to a Kustomize directory, or a directory with multiple Kubernetes
manifest YAML files. View the following example:

You can also use the object-templates-raw manifest to automatically generate a ConfigurationPolicy
with the content you add. See the following example:

Your content is used in the generated ConfigurationPolicy and added as an entry for the policy-
templates of a policy. The object-templates-raw generated ConfigurationPolicy has the same name
as a manifest generated from a ConfigurationPolicy that has no specified name.

The generated Policy, along with the generated Placement and PlacementBinding might resemble
the following example:

generators:
 - policy-generator-config.yaml

apiVersion: policy.open-cluster-management.io/v1
kind: PolicyGenerator
metadata:
 name: config-data-policies
policyDefaults:
 namespace: policies
 policySets: []
policies:
 - name: config-data
 manifests:
 - path: configmap.yaml

apiVersion: v1
kind: ConfigMap
metadata:
 name: my-config
 namespace: default
data:
 key1: value1
 key2: value2

apiVersion: policy.open-cluster-management.io/v1
kind: PolicyGenerator
metadata:
 name: config-data-policies
policyDefaults:
 namespace: policies
 policySets: []
policies:
 - name: config-data
 manifests:
 - path: object-templates-raw: |
 <your_content>

CHAPTER 4. INTEGRATING POLICY GENERATOR

121

apiVersion: cluster.open-cluster-management.io/v1beta1
kind: Placement
metadata:
 name: placement-config-data
 namespace: policies
spec:
 predicates:
 - requiredClusterSelector:
 labelSelector:
 matchExpressions: []

apiVersion: policy.open-cluster-management.io/v1
kind: PlacementBinding
metadata:
 name: binding-config-data
 namespace: policies
placementRef:
 apiGroup: cluster.open-cluster-management.io
 kind: Placement
 name: placement-config-data
subjects:
- apiGroup: policy.open-cluster-management.io
 kind: Policy
 name: config-data

apiVersion: policy.open-cluster-management.io/v1
kind: Policy
metadata:
 annotations:
 policy.open-cluster-management.io/categories: CM Configuration Management
 policy.open-cluster-management.io/controls: CM-2 Baseline Configuration
 policy.open-cluster-management.io/standards: NIST SP 800-53
 policy.open-cluster-management.io/description:
 name: config-data
 namespace: policies
spec:
 disabled: false
 policy-templates:
 - objectDefinition:
 apiVersion: policy.open-cluster-management.io/v1
 kind: ConfigurationPolicy
 metadata:
 name: config-data
 spec:
 object-templates:
 - complianceType: musthave
 objectDefinition:
 apiVersion: v1
 data:
 key1: value1
 key2: value2
 kind: ConfigMap
 metadata:
 name: my-config

Red Hat Advanced Cluster Management for Kubernetes 2.11 Governance

122

4.1.3. Policy Generator configuration reference table

Note that all the fields in the policyDefaults section except for namespace can be overridden for each
policy, and all the fields in the policySetDefaults section can be overridden for each policy set.

Table 4.1. Parameter table

Field Optional or required Description

apiVersion Required Set the value to policy.open-
cluster-management.io/v1.

kind Required Set the value to
PolicyGenerator to indicate the
type of policy.

metadata.name Required The name for identifying the
policy resource.

placementBindingDefaults.n
ame

Optional If multiple policies use the same
placement, this name is used to
generate a unique name for the
resulting PlacementBinding,
binding the placement with the
array of policies that reference it.

policyDefaults Required Any default value listed here is
overridden by an entry in the
policies array except for
namespace.

policyDefaults.namespace Required The namespace of all the policies.

policyDefaults.complianceTy
pe

Optional Determines the policy controller
behavior when comparing the
manifest to objects on the cluster.
The values that you can use are
musthave, mustonlyhave, or
mustnothave. The default value
is musthave.

 namespace: default
 remediationAction: inform
 severity: low

CHAPTER 4. INTEGRATING POLICY GENERATOR

123

policyDefaults.metadataCom
plianceType

Optional Overrides complianceType
when comparing the manifest
metadata section to objects on
the cluster. The values that you
can use are musthave, and
mustonlyhave. The default
value is empty ({}) to avoid
overriding the complianceType
for metadata.

policyDefaults.categories Optional Array of categories to be used in
the policy.open-cluster-
management.io/categories
annotation. The default value is
CM Configuration
Management.

policyDefaults.controls Optional Array of controls to be used in the
policy.open-cluster-
management.io/controls
annotation. The default value is
CM-2 Baseline Configuration.

policyDefaults.standards Optional An array of standards to be used
in the policy.open-cluster-
management.io/standards
annotation. The default value is
NIST SP 800-53.

policyDefaults.policyAnnotat
ions

Optional Annotations that the policy
includes in the
metadata.annotations section.
It is applied for all policies unless
specified in the policy. The default
value is empty ({}).

policyDefaults.configuration
PolicyAnnotations

Optional Key-value pairs of annotations to
set on generated configuration
policies. For example, you can
disable policy templates by
defining the following parameter:
{"policy.open-cluster-
management.io/disable-
templates": "true"}. The
default value is empty ({}).

Field Optional or required Description

Red Hat Advanced Cluster Management for Kubernetes 2.11 Governance

124

policyDefaults.copyPolicyMe
tadata

Optional Copies the labels and annotations
for all policies and adds them to a
replica policy. Set to true by
default. If set to false, only the
policy framework specific policy
labels and annotations are copied
to the replicated policy.

policyDefaults.severity Optional The severity of the policy
violation. The default value is low.

policyDefaults.disabled Optional Whether the policy is disabled,
meaning it is not propagated and
no status as a result. The default
value is false to enable the policy.

policyDefaults.remediationA
ction

Optional The remediation mechanism of
your policy. The parameter values
are enforce and inform. The
default value is inform.

policyDefaults.namespaceSe
lector

Required for namespaced objects
that do not have a namespace
specified

Determines namespaces in the
managed cluster that the object
is applied to. The include and
exclude parameters accept file
path expressions to include and
exclude namespaces by name.
The matchExpressions and
matchLabels parameters
specify namespaces to include by
label. Read the Kubernetes labels
and selectors documentation. The
resulting list is compiled by using
the intersection of results from all
parameters.

Field Optional or required Description

CHAPTER 4. INTEGRATING POLICY GENERATOR

125

policyDefaults.evaluationInte
rval

Optional Use the parameters compliant
and noncompliant to specify
the frequency for a policy to be
evaluated when in a particular
compliance state. When managed
clusters have low CPU resources,
the evaluation interval can be
increased to reduce CPU usage
on the Kubernetes API. These are
in the format of durations. For
example, "1h25m3s" represents
1 hour, 25 minutes, and 3 seconds.
These can also be set to "never"
to avoid evaluating the policy
after it has become a particular
compliance state.

policyDefaults.pruneObjectB
ehavior

Optional Determines whether objects
created or monitored by the
policy should be deleted when the
policy is deleted. Pruning only
takes place if the remediation
action of the policy has been set
to enforce. Example values are
DeleteIfCreated, DeleteAll, or
None. The default value is None.

policyDefaults.recordDiff Optional Specifies if and where to log the
difference between the object on
the cluster and the
objectDefinition in the policy.
Set to Log to log the difference
in the controller logs or None to
not log the difference. By default,
this parameter is empty to not log
the difference.

policyDefaults.dependencies Optional A list of objects that must be in
specific compliance states before
this policy is applied. Cannot be
specified when
policyDefaults.orderPolicies
is set to true.

policyDefaults.dependencies
[].name

Required The name of the object being
depended on.

Field Optional or required Description

Red Hat Advanced Cluster Management for Kubernetes 2.11 Governance

126

policyDefaults.dependencies
[].namespace

Optional The namespace of the object
being depended on. The default is
the namespace of policies set for
the Policy Generator.

policyDefaults.dependencies
[].compliance

Optional The compliance state the object
needs to be in. The default value
is Compliant.

policyDefaults.dependencies
[].kind

Optional The kind of the object. By default,
the kind is set to Policy, but can
also be other kinds that have
compliance state, such as
ConfigurationPolicy.

policyDefaults.dependencies
[].apiVersion

Optional The API version of the object. The
default value is policy.open-
cluster-management.io/v1.

policyDefaults.description Optional The description of the policy you
want to create.

policyDefaults.extraDepende
ncies

Optional A list of objects that must be in
specific compliance states before
this policy is applied. The
dependencies that you define are
added to each policy template
(for example,
ConfigurationPolicy)
separately from the
dependencies list. Cannot be
specified when
policyDefaults.orderManifest
s is set to true.

policyDefaults.extraDepende
ncies[].name

Required The name of the object being
depended on.

policyDefaults.extraDepende
ncies[].namespace

Optional The namespace of the object
being depended on. By default,
the value is set to the namespace
of policies set for the Policy
Generator.

policyDefaults.extraDepende
ncies[].compliance

Optional The compliance state the object
needs to be in. The default value
is Compliant.

Field Optional or required Description

CHAPTER 4. INTEGRATING POLICY GENERATOR

127

policyDefaults.extraDepende
ncies[].kind

Optional The kind of the object. The
default value is to Policy, but can
also be other kinds that have a
compliance state, such as
ConfigurationPolicy.

policyDefaults.extraDepende
ncies[].apiVersion

Optional The API version of the object. The
default value is policy.open-
cluster-management.io/v1.

policyDefaults.ignorePendin
g

Optional Bypass compliance status checks
when the Policy Generator is
waiting for its dependencies to
reach their desired states. The
default value is false.

policyDefaults.orderPolicies Optional Automatically generate
dependencies on the policies
so they are applied in the order
you defined in the policies list. By
default, the value is set to false.
Cannot be specified at the same
time as
policyDefaults.dependencies
.

policyDefaults.orderManifest
s

Optional Automatically generate
extraDependencies on policy
templates so that they are
applied in the order you defined
in the manifests list for that
policy. Cannot be specified when
policyDefaults.consolidateM
anifests is set to true. Cannot
be specified at the same time as
policyDefaults.extraDepende
ncies.

policyDefaults.consolidateM
anifests

Optional This determines if a single
configuration policy is generated
for all the manifests being
wrapped in the policy. If set to
false, a configuration policy per
manifest is generated. The
default value is true.

Field Optional or required Description

Red Hat Advanced Cluster Management for Kubernetes 2.11 Governance

128

policyDefaults.informGateke
eperPolicies (Deprecated)

Optional Set
informGatekeeperPolicies to
false to use Gatekeeper
manifests directly without
defining it in a configuration
policy. When the policy references
a violated Gatekeeper policy
manifest, an additional
configuration policy is generated
in order to receive policy
violations in Red Hat Advanced
Cluster Management. The default
value is true.

policyDefaults.informKyvern
oPolicies

Optional When the policy references a
Kyverno policy manifest, this
determines if an additional
configuration policy is generated
to receive policy violations in Red
Hat Advanced Cluster
Management, when the Kyverno
policy is violated. The default
value is true.

policyDefaults.policyLabels Optional Labels that the policy includes in
its metadata.labels section. The
policyLabels parameter is
applied for all policies unless
specified in the policy.

policyDefaults.policySets Optional Array of policy sets that the policy
joins. Policy set details can be
defined in the policySets
section. When a policy is part of a
policy set, a placement binding is
not generated for the policy since
one is generated for the set. Set
policies[].generatePlacement
WhenInSet or
policyDefaults.generatePlac
ementWhenInSet to override
policyDefaults.policySets.

policyDefaults.generatePolic
yPlacement

Optional Generate placement manifests
for policies. Set to true by
default. When set to false, the
placement manifest generation is
skipped, even if a placement is
specified.

Field Optional or required Description

CHAPTER 4. INTEGRATING POLICY GENERATOR

129

policyDefaults.generatePlace
mentWhenInSet

Optional When a policy is part of a policy
set, by default, the generator
does not generate the placement
for this policy since a placement is
generated for the policy set. Set
generatePlacementWhenInS
et to true to deploy the policy
with both policy placement and
policy set placement. The default
value is false.

policyDefaults.placement Optional The placement configuration for
the policies. This defaults to a
placement configuration that
matches all clusters.

policyDefaults.placement.na
me

Optional Specifying a name to consolidate
placements that contain the same
cluster label selectors.

policyDefaults.placement.lab
elSelector

Optional Specify a placement by defining a
cluster label selector using either
key:value, or providing a
matchExpressions,
matchLabels, or both, with
appropriate values. See
placementPath to specify an
existing file.

policyDefaults.placement.pla
cementName

Optional Define this parameter to use a
placement that already exists on
the cluster. A Placement is not
created, but a
PlacementBinding binds the
policy to this Placement.

policyDefaults.placement.pla
cementPath

Optional To reuse an existing placement,
specify the path relative to the
location of the
kustomization.yaml file. If
provided, this placement is used
by all policies by default. See
labelSelector to generate a new
Placement.

Field Optional or required Description

Red Hat Advanced Cluster Management for Kubernetes 2.11 Governance

130

policyDefaults.placement.clu
sterSelector (Deprecated)

Optional PlacementRule is deprecated.
Use labelSelector instead to
generate a placement. Specify a
placement rule by defining a
cluster selector using either
key:value or by providing
matchExpressions,
matchLabels, or both, with
appropriate values. See
placementRulePath to specify
an existing file.

policyDefaults.placement.pla
cementRuleName
(Deprecated)

Optional PlacementRule is deprecated.
Alternatively, use
placementName to specify a
placement. To use an existing
placement rule on the cluster,
specify the name for this
parameter. A PlacementRule is
not created, but a
PlacementBinding binds the
policy to the existing
PlacementRule.

policyDefaults.placement.pla
cementRulePath (Deprecated)

Optional PlacementRule is deprecated.
Alternatively, use
placementPath to specify a
placement. To reuse an existing
placement rule, specify the path
relative to the location of the
kustomization.yaml file. If
provided, this placement rule is
used by all policies by default. See
clusterSelector to generate a
new PlacementRule.

policySetDefaults Optional Default values for policy sets. Any
default value listed for this
parameter is overridden by an
entry in the policySets array.

policySetDefaults.placement Optional The placement configuration for
the policies. This defaults to a
placement configuration that
matches all clusters. See
policyDefaults.placement for
description of this field.

Field Optional or required Description

CHAPTER 4. INTEGRATING POLICY GENERATOR

131

policySetDefaults.generateP
olicySetPlacement

Optional Generate placement manifests
for policy sets. Set to true by
default. When set to false the
placement manifest generation is
skipped, even if a placement is
specified.

policies Required The list of policies to create along
with overrides to either the
default values, or the values that
are set in policyDefaults. See
policyDefaults for additional
fields and descriptions.

policies.description Optional The description of the policy you
want to create.

policies[].name Required The name of the policy to create.

policies[].manifests Required The list of Kubernetes object
manifests to include in the policy,
along with overrides to either the
default values, the values set in
this policies item, or the values
set in policyDefaults. See
policyDefaults for additional
fields and descriptions. When
consolidateManifests is set to
true, only complianceType,
metadataComplianceType,
and recordDiff can be
overridden at the
policies[].manifests level.

Field Optional or required Description

Red Hat Advanced Cluster Management for Kubernetes 2.11 Governance

132

policies[].manifests[].path Required Path to a single file, a flat
directory of files, or a Kustomize
directory relative to the
kustomization.yaml file. If the
directory is a Kustomize directory,
the generator runs Kustomize
against the directory before
generating the policies. If there is
a requirement to process Helm
charts for the Kustomize
directory, set
POLICY_GEN_ENABLE_HEL
M to "true" in the environment
where the policy generator is
running to enable Helm for the
policy generator.

policies[].manifests[].patche
s

Optional A list of Kustomize patches to
apply to the manifest at the path.
If there are multiple manifests, the
patch requires the apiVersion,
kind, metadata.name, and
metadata.namespace (if
applicable) fields to be set so
Kustomize can identify the
manifest that the patch applies
to. If there is a single manifest, the
metadata.name and
metadata.namespace fields
can be patched.

policies.policyLabels Optional Labels that the policy includes in
its metadata.labels section. The
policyLabels parameter is
applied for all policies unless
specified in the policy.

policySets Optional The list of policy sets to create,
along with overrides to either the
default values or the values that
are set in policySetDefaults. To
include a policy in a policy set, use
policyDefaults.policySets,
policies[].policySets, or
policySets.policies. See
policySetDefaults for
additional fields and descriptions.

policySets[].name Required The name of the policy set to
create.

Field Optional or required Description

CHAPTER 4. INTEGRATING POLICY GENERATOR

133

policySets[].description Optional The description of the policy set
to create.

policySets[].policies Optional The list of policies to be included
in the policy set. If
policyDefaults.policySets or
policies[].policySets is also
specified, the lists are merged.

Field Optional or required Description

4.1.4. Additional resources

Read Generating a policy to install GitOps Operator .

Read to Policy set controller for more details.

Read Applying Kustomize for more information.

Read the Governance documentation for more topics.

See an example of a kustomization.yaml file.

Refer to the Kubernetes labels and selectors documentation.

Refer Gatekeeper for more details.

Refer to the Kustomize documentation.

4.2. GENERATING A POLICY THAT INSTALLS THE COMPLIANCE
OPERATOR

Generate a policy that installs the Compliance Operator onto your clusters. For an operator that uses
the namespaced installation mode, such as the Compliance Operator, an OperatorGroup manifest is
also required.

Complete the following steps:

1. Create a YAML file with a Namespace, a Subscription, and an OperatorGroup manifest called
compliance-operator.yaml. The following example installs these manifests in the compliance-
operator namespace:

apiVersion: v1
kind: Namespace
metadata:
 name: openshift-compliance

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: compliance-operator
 namespace: openshift-compliance
spec:

Red Hat Advanced Cluster Management for Kubernetes 2.11 Governance

134

../../html-single/gitops#gitops-policy-generator
../../html-single/applications#applying-kustomize
https://kubectl.docs.kubernetes.io/references/kustomize/kustomization/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://open-policy-agent.github.io/gatekeeper/website/docs/
https://kustomize.io/

2. Create a PolicyGenerator configuration file. View the following PolicyGenerator policy
example that installs the Compliance Operator on all OpenShift Container Platform managed
clusters:

3. Add the policy generator to your kustomization.yaml file. The generators section might
resemble the following configuration:

As a result, the generated policy resembles the following file:

 targetNamespaces:
 - openshift-compliance

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: compliance-operator
 namespace: openshift-compliance
spec:
 channel: release-0.1
 name: compliance-operator
 source: redhat-operators
 sourceNamespace: openshift-marketplace

apiVersion: policy.open-cluster-management.io/v1
kind: PolicyGenerator
metadata:
 name: install-compliance-operator
policyDefaults:
 namespace: policies
 placement:
 labelSelector:
 matchExpressions:
 - key: vendor
 operator: In
 values:
 - "OpenShift"
policies:
 - name: install-compliance-operator
 manifests:
 - path: compliance-operator.yaml

generators:
 - policy-generator-config.yaml

apiVersion: cluster.open-cluster-management.io/v1beta1
kind: Placement
metadata:
 name: placement-install-compliance-operator
 namespace: policies
spec:
 predicates:
 - requiredClusterSelector:
 labelSelector:
 matchExpressions:
 - key: vendor

CHAPTER 4. INTEGRATING POLICY GENERATOR

135

 operator: In
 values:
 - OpenShift

apiVersion: policy.open-cluster-management.io/v1
kind: PlacementBinding
metadata:
 name: binding-install-compliance-operator
 namespace: policies
placementRef:
 apiGroup: cluster.open-cluster-management.io
 kind: Placement
 name: placement-install-compliance-operator
subjects:
 - apiGroup: policy.open-cluster-management.io
 kind: Policy
 name: install-compliance-operator

apiVersion: policy.open-cluster-management.io/v1
kind: Policy
metadata:
 annotations:
 policy.open-cluster-management.io/categories: CM Configuration Management
 policy.open-cluster-management.io/controls: CM-2 Baseline Configuration
 policy.open-cluster-management.io/standards: NIST SP 800-53
 policy.open-cluster-management.io/description:
 name: install-compliance-operator
 namespace: policies
spec:
 disabled: false
 policy-templates:
 - objectDefinition:
 apiVersion: policy.open-cluster-management.io/v1
 kind: ConfigurationPolicy
 metadata:
 name: install-compliance-operator
 spec:
 object-templates:
 - complianceType: musthave
 objectDefinition:
 apiVersion: v1
 kind: Namespace
 metadata:
 name: openshift-compliance
 - complianceType: musthave
 objectDefinition:
 apiVersion: operators.coreos.com/v1alpha1
 kind: Subscription
 metadata:
 name: compliance-operator
 namespace: openshift-compliance
 spec:
 channel: release-0.1
 name: compliance-operator
 source: redhat-operators
 sourceNamespace: openshift-marketplace

Red Hat Advanced Cluster Management for Kubernetes 2.11 Governance

136

As a result, the generated policy is displayed.

 - complianceType: musthave
 objectDefinition:
 apiVersion: operators.coreos.com/v1
 kind: OperatorGroup
 metadata:
 name: compliance-operator
 namespace: openshift-compliance
 spec:
 targetNamespaces:
 - compliance-operator
 remediationAction: enforce
 severity: low

CHAPTER 4. INTEGRATING POLICY GENERATOR

137

	Table of Contents
	CHAPTER 1. SECURITY OVERVIEW
	1.1. CERTIFICATES INTRODUCTION
	1.2. CERTIFICATES
	1.2.1. Red Hat Advanced Cluster Management hub cluster certificates
	1.2.2. Red Hat Advanced Cluster Management managed certificates
	1.2.2.1. Managed cluster certificates

	1.2.3. Additional resources
	1.2.4. Managing certificates
	1.2.4.1. Refreshing a Red Hat Advanced Cluster Management webhook certificate
	1.2.4.2. Replacing certificates for alertmanager route
	1.2.4.3. Rotating the gatekeeper webhook certificate
	1.2.4.4. Verifying certificate rotation
	1.2.4.5. Listing hub cluster managed certificates
	1.2.4.6. Additional resources

	CHAPTER 2. GOVERNANCE
	2.1. GOVERNANCE ARCHITECTURE
	2.1.1. Governance architecture components
	2.1.2. Additional resources

	2.2. POLICY OVERVIEW
	2.2.1. Prerequisites
	2.2.2. Policy YAML structure
	2.2.3. Policy YAML table
	2.2.4. Policy sample file
	2.2.5. Additional resources

	2.3. POLICY CONTROLLERS INTRODUCTION
	2.3.1. Kubernetes configuration policy controller
	2.3.1.1. Configuration policy sample
	2.3.1.2. Configuration policy YAML table
	2.3.1.3. Additional resources

	2.3.2. Certificate policy controller
	2.3.2.1. Certificate policy controller YAML structure
	2.3.2.2. Certificate policy sample
	2.3.2.3. Additional resources

	2.3.3. Policy set controller
	2.3.3.1. Policy set YAML structure
	2.3.3.2. Policy set table
	2.3.3.3. Policy set sample
	2.3.3.4. Additional resources

	2.3.4. Operator policy controller
	2.3.4.1. Prerequisites
	2.3.4.2. Operator policy YAML table
	2.3.4.3. Additional resources

	2.4. POLICY CONTROLLER ADVANCED CONFIGURATION
	2.4.1. Configure the concurrency of the governance framework
	2.4.2. Configure the concurrency of the configuration policy controller
	2.4.3. Configure the rate of requests to the API server
	2.4.4. Configure debug log
	2.4.5. Governance metric
	2.4.5.1. Metric: policy_governance_info
	2.4.5.2. Metric: config_policies_evaluation_duration_seconds

	2.4.6. Verify configuration changes
	2.4.7. Additional resources

	2.5. POLICY COMPLIANCE HISTORY (TECHNOLOGY PREVIEW)
	2.5.1. Prerequisites
	2.5.2. Enable the compliance history API
	2.5.3. Set the compliance history API URL
	2.5.3.1. Enable on all managed clusters
	2.5.3.2. Enable a single managed cluster

	2.5.4. Additional resource

	2.6. SUPPORTED POLICIES
	2.6.1. Table of sample configuration policies
	2.6.2. Namespace policy
	2.6.2.1. Namespace policy YAML structure
	2.6.2.2. Namespace policy YAML table
	2.6.2.3. Namespace policy sample

	2.6.3. Pod policy
	2.6.3.1. Pod policy YAML structure
	2.6.3.2. Pod policy table
	2.6.3.3. Pod policy sample

	2.6.4. Memory usage policy
	2.6.4.1. Memory usage policy YAML structure
	2.6.4.2. Memory usage policy table
	2.6.4.3. Memory usage policy sample

	2.6.5. Pod security policy (Deprecated)
	2.6.5.1. Pod security policy YAML structure
	2.6.5.2. Pod security policy table
	2.6.5.3. Pod security policy sample

	2.6.6. Role policy
	2.6.6.1. Role policy YAML structure
	2.6.6.2. Role policy table
	2.6.6.3. Role policy sample

	2.6.7. Role binding policy
	2.6.7.1. Role binding policy YAML structure
	2.6.7.2. Role binding policy table
	2.6.7.3. Role binding policy sample

	2.6.8. Security Context Constraints policy
	2.6.8.1. SCC policy YAML structure
	2.6.8.2. SCC policy table
	2.6.8.3. SCC policy sample

	2.6.9. ETCD encryption policy
	2.6.9.1. ETCD encryption policy YAML structure
	2.6.9.2. ETCD encryption policy table
	2.6.9.3. ETCD encryption policy sample

	2.6.10. Compliance Operator policy
	2.6.10.1. Compliance Operator policy overview
	2.6.10.2. Compliance operator resources
	2.6.10.3. Additional resources

	2.6.11. E8 scan policy
	2.6.11.1. E8 scan policy resources

	2.6.12. OpenShift CIS scan policy
	2.6.12.1. OpenShift CIS resources

	2.6.13. Image vulnerability policy
	2.6.13.1. Image vulnerability policy YAML structure
	2.6.13.2. Image vulnerability policy sample

	2.6.14. Red Hat OpenShift Platform Plus policy set
	2.6.14.1. Prerequisites
	2.6.14.2. OpenShift Platform Plus policy set components
	2.6.14.3. Additional resources

	2.7. MANAGE GOVERNANCE DASHBOARD
	2.7.1. Governance page
	2.7.2. Governance automation configuration
	2.7.3. Additional resources
	2.7.4. Configuring Ansible Automation Platform for governance
	2.7.4.1. Prerequisites
	2.7.4.2. Creating a policy violation automation from the console
	2.7.4.3. Creating a policy violation automation from the CLI

	2.8. TEMPLATE PROCESSING
	2.8.1. Comparison of hub cluster and managed cluster templates
	2.8.2. Template functions
	2.8.2.1. Template function descriptions
	2.8.2.2. Sprig open source
	2.8.2.3. Additional resources

	2.8.3. Advanced template processing in configuration policies
	2.8.3.1. Special annotation for reprocessing
	2.8.3.2. Object template processing
	2.8.3.3. Bypass template processing
	2.8.3.4. Additional resources

	2.9. MANAGING SECURITY POLICIES
	2.9.1. Creating a security policy
	2.9.1.1. Creating a security policy from the command line interface
	2.9.1.2. Creating a cluster security policy from the console
	2.9.1.3. Creating policy sets from the CLI
	2.9.1.4. Creating policy sets from the console

	2.9.2. Updating security policies
	2.9.2.1. Adding a policy to a policy set from the CLI
	2.9.2.2. Adding a policy to a policy set from the console
	2.9.2.3. Disabling security policies

	2.9.3. Deleting a security policy
	2.9.3.1. Deleting policy sets from the console

	2.9.4. Cleaning up resources that are created by policies
	2.9.5. Additional resources
	2.9.6. Managing configuration policies
	2.9.6.1. Creating a configuration policy
	2.9.6.2. Updating configuration policies
	2.9.6.3. Deleting a configuration policy
	2.9.6.4. Additional resources

	2.9.7. Managing operator policies in disconnected environments
	2.9.8. Installing Red Hat OpenShift Platform Plus by using a policy set
	2.9.8.1. Prerequisites
	2.9.8.2. Applying Red Hat OpenShift Platform Plus policy set
	2.9.8.3. Additional resources

	2.9.9. Installing an operator by using the OperatorPolicy resource
	2.9.9.1. Creating an OperatorPolicy resource to install Quay
	2.9.9.2. Additional resources

	2.10. POLICY DEPENDENCIES
	2.11. SECURE THE HUB CLUSTER

	CHAPTER 3. GATEKEEPER OPERATOR OVERVIEW
	3.1. GENERAL SUPPORT
	3.2. OPERATOR CHANNELS
	3.3. CONFIGURING THE GATEKEEPER OPERATOR
	3.3.1. Prerequisites
	3.3.2. Gatekeeper custom resource sample
	3.3.3. Configuring auditFromCache for sync details

	3.4. MANAGING THE GATEKEEPER OPERATOR INSTALLATION POLICIES
	3.4.1. Installing Gatekeeper using a Gatekeeper operator policy
	3.4.2. Creating a Gatekeeper policy from the console
	3.4.2.1. Viewing the Gatekeeper operator policy

	3.4.3. Upgrading Gatekeeper and the Gatekeeper operator
	3.4.4. Disabling Gatekeeper operator policy
	3.4.5. Deleting Gatekeeper operator policy
	3.4.6. Uninstalling Gatekeeper constraints, Gatekeeper instance, and Gatekeeper operator policy
	3.4.6.1. Removing Gatekeeper constraints
	3.4.6.2. Removing Gatekeeper instance
	3.4.6.3. Removing Gatekeeper operator

	3.4.7. Additional resources

	3.5. INTEGRATING GATEKEEPER CONSTRAINTS AND CONSTRAINT TEMPLATES
	3.5.1. Additional resources

	CHAPTER 4. INTEGRATING POLICY GENERATOR
	4.1. POLICY GENERATOR
	4.1.1. Policy Generator capabilities
	4.1.2. Policy Generator configuration structure
	4.1.3. Policy Generator configuration reference table
	4.1.4. Additional resources

	4.2. GENERATING A POLICY THAT INSTALLS THE COMPLIANCE OPERATOR

