
Red Hat Advanced Cluster Management
for Kubernetes 2.11

Observability

Observability

Last Updated: 2024-10-18

Red Hat Advanced Cluster Management for Kubernetes 2.11 Observability

Observability

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Enable the observability component to gain insight about your managed clusters.

. .

Table of Contents

CHAPTER 1. OBSERVABILITY SERVICE
1.1. OBSERVABILITY ARCHITECTURE

1.1.1. Observability open source components
1.1.2. Observability architecture diagram
1.1.3. Persistent stores used in the observability service
1.1.4. Additional resources

1.2. OBSERVABILITY CONFIGURATION
1.2.1. Metric types
1.2.2. Observability pod capacity requests
1.2.3. Additional resources

1.3. ENABLING THE OBSERVABILITY SERVICE
1.3.1. Prerequisites
1.3.2. Enabling observability from the command line interface

1.3.2.1. Configuring storage for AWS Security Token Service
1.3.2.2. Generating access keys using the AWS Security Service
1.3.2.3. Creating the MultiClusterObservability custom resource

1.3.3. Enabling observability from the Red Hat OpenShift Container Platform console
1.3.3.1. Verifying the Thanos version

1.3.4. Disabling observability
1.3.4.1. Disabling observability on all clusters
1.3.4.2. Disabling observability on a single cluster

1.3.5. Removing observability
1.3.6. Additional resources

1.4. CUSTOMIZING OBSERVABILITY CONFIGURATION
1.4.1. Creating custom rules
1.4.2. Adding custom metrics

1.4.2.1. Adding user workload metrics
1.4.2.2. Removing default metrics

1.4.3. Adding advanced configuration for retention
1.4.4. Dynamic metrics for single-node OpenShift clusters
1.4.5. Updating the MultiClusterObservability custom resource replicas from the console
1.4.6. Increasing and decreasing persistent volumes and persistent volume claims
1.4.7. Customizing route certificate
1.4.8. Customizing certificates for accessing the object store
1.4.9. Configuring proxy settings for observability add-ons

1.4.9.1. Prerequisite
1.4.10. Disabling proxy settings for observability add-ons
1.4.11. Customizing the managed cluster Observatorium API and Alertmanager URLs (Technology Preview)
1.4.12. Configuring fine-grain RBAC (Technology Preview)
1.4.13. Additional resources

1.5. USING OBSERVABILITY
1.5.1. Querying metrics using the observability API
1.5.2. Exporting metrics to external endpoints
1.5.3. Viewing and exploring data by using dashboards

1.5.3.1. Viewing historical data
1.5.3.2. Viewing Red Hat Advanced Cluster Management dashboards
1.5.3.3. Viewing the etcd table
1.5.3.4. Viewing the Kubernetes API server dashboard
1.5.3.5. Viewing the OpenShift Virtualization dashboard

1.5.4. Additional resources
1.5.5. Using Grafana dashboards

4
4
4
5
6
7
8
8

10
11

12
12
13
16
16
19
21
22
22
22
22
22
22
23
23
24
25
26
26
27
29
30
30
31
32
33
34
34
35
36
37
37
38
40
40
40
41
41
41
41

42

Table of Contents

1

. .

. .

1.5.5.1. Setting up the Grafana developer instance
1.5.5.1.1. Verifying Grafana version

1.5.5.2. Designing your Grafana dashboard
1.5.5.2.1. Designing your Grafana dashboard with a ConfigMap

1.5.5.3. Uninstalling the Grafana developer instance
1.5.5.4. Additional resources

1.5.6. Using managed cluster labels in Grafana
1.5.6.1. Adding managed cluster labels
1.5.6.2. Enabling managed cluster labels
1.5.6.3. Disabling managed cluster labels
1.5.6.4. Additional resources

1.6. MANAGING ALERTS
1.6.1. Configuring Alertmanager
1.6.2. Forwarding alerts

1.6.2.1. Disabling alert forwarding for managed clusters
1.6.3. Silencing alerts

1.6.3.1. Migrating observability storage
1.6.4. Suppressing alerts
1.6.5. Additional resources

CHAPTER 2. SEARCHING IN THE CONSOLE
2.1. SEARCH COMPONENTS
2.2. SEARCH CUSTOMIZATION AND CONFIGURATIONS
2.3. SEARCH OPERATIONS AND DATA TYPES
2.4. ADDITIONAL RESOURCES
2.5. MANAGING SEARCH

2.5.1. Creating search configurable collection
2.5.2. Customizing the search console
2.5.3. Querying in the console
2.5.4. Updating klusterlet-addon-search deployments on managed clusters
2.5.5. Additional resources

CHAPTER 3. USING OBSERVABILITY WITH RED HAT INSIGHTS
3.1. PREREQUISITES
3.2. MANAGING INSIGHT POLICYREPORTS

3.2.1. Searching for insight policy reports
3.2.2. Viewing identified issues from the console
3.2.3. Viewing update risk predictions

3.3. ADDITIONAL RESOURCES

42
43
43
43
44
45
45
46
46
47
47
47
48
48
49
49
50
51
52

53
53
54
56
56
57
57
58
59
60
61

62
62
62
62
63
63
64

Red Hat Advanced Cluster Management for Kubernetes 2.11 Observability

2

Table of Contents

3

CHAPTER 1. OBSERVABILITY SERVICE
Observability can help you identify and assess performance problems without additional tests and
support. The Red Hat Advanced Cluster Management for Kubernetes observability component is a
service you can use to understand the health and utilization of clusters, and workloads across your fleet.
By using the observability service, you are able to automate and manage the components that are within
observability.

Observability service uses existing and widely-adopted observability tools from the open source
community. By default, multicluster observability operator is enabled during the installation of Red Hat
Advanced Cluster Management. Thanos is deployed within the hub cluster for long-term metrics
storage. The observability-endpoint-operator is automatically deployed to each imported or created
managed cluster. This controller starts a metrics collector that collects the data from Red Hat
OpenShift Container Platform Prometheus, then sends the data to the Red Hat Advanced Cluster
Management hub cluster.

Read the following documentation for more details about the observability component:

Observability architecture

Observability configuration

Enabling the observability service

Using observability

Customizing observability

Using observability

Managing alerts

Searching in the console

Using observability with Red Hat Insights

1.1. OBSERVABILITY ARCHITECTURE

The multiclusterhub-operator enables the multicluster-observability-operator pod by default. You
must configure the multicluster-observability-operator pod.

Observability open source components

Observability architecture diagram

Persistent stores used in the observability service

1.1.1. Observability open source components

Observability service uses open source observability tools from community. View the following
descriptions of the tools that are apart of the product observability service:

Thanos: A toolkit of components that you can use to perform global querying across multiple
Prometheus instances. For long-term storage of Prometheus data, persist it in any S3
compatible storage. You can also compose a highly-available and scalable metrics system.

Prometheus: A monitoring and alerting tool that you can use to collect metrics from your

Red Hat Advanced Cluster Management for Kubernetes 2.11 Observability

4

Prometheus: A monitoring and alerting tool that you can use to collect metrics from your
application and store these metrics as time-series data. Store all scraped samples locally, run
rules to aggregate and record new time series from existing data, and generate alerts.

Alertmanager: A tool to manage and receive alerts from Prometheus. Deduplicate, group, and
route alerts to your integrations such as email, Slack, and PagerDuty. Configure Alertmanager to
silence and inhibit specific alerts.

1.1.2. Observability architecture diagram

The following diagram shows the components of observability:

The components of the observability architecture include the following items:

The multicluster hub operator, also known as the multiclusterhub-operator pod, deploys the
multicluster-observability-operator pod. It sends hub cluster data to your managed clusters.

The observability add-on controller is the API server that automatically updates the log of the
managed cluster.

The Thanos infrastructure includes the Thanos Compactor, which is deployed by the
multicluster-observability-operator pod. The Thanos Compactor ensures that queries are
performing well by using the retention configuration, and compaction of the data in storage.
To help identify when the Thanos Compactor is experiencing issues, use the four default alerts
that are monitoring its health. Read the following table of default alerts:

Table 1.1. Table of default Thanos alerts

Alert Severity Description

ACMThanosCompactHalte
d

critical An alert is sent when the
compactor stops.

CHAPTER 1. OBSERVABILITY SERVICE

5

ACMThanosCompactHigh
CompactionFailures

warning An alert is sent when the
compaction failure rate is
greater than 5 percent.

ACMThanosCompactBuck
etHighOperationFailures

warning An alert is sent when the
bucket operation failure rate is
greater than 5%.

ACMThanosCompactHasN
otRun

warning An alert is sent when the
compactor has not uploaded
anything in last 24 hours.

Alert Severity Description

The observability component deploys an instance of Grafana to enable data visualization with
dashboards (static) or data exploration. Red Hat Advanced Cluster Management supports
version 8.5.20 of Grafana. You can also design your Grafana dashboard. For more information,
see Designing your Grafana dashboard .

The Prometheus Alertmanager enables alerts to be forwarded with third-party applications. You
can customize the observability service by creating custom recording rules or alerting rules. Red
Hat Advanced Cluster Management supports version 0.25 of Prometheus Alertmanager.

1.1.3. Persistent stores used in the observability service

Important: Do not use the local storage operator or a storage class that uses local volumes for
persistent storage. You can lose data if the pod relaunched on a different node after a restart. When this
happens, the pod can no longer access the local storage on the node. Be sure that you can access the
persistent volumes of the receive and rules pods to avoid data loss.

When you install Red Hat Advanced Cluster Management the following persistent volumes (PV) must be
created so that Persistent Volume Claims (PVC) can attach to it automatically. As a reminder, you must
define a storage class in the MultiClusterObservability custom resource when there is no default
storage class specified or you want to use a non-default storage class to host the PVs. It is
recommended to use Block Storage, similar to what Prometheus uses. Also each replica of
alertmanager, thanos-compactor, thanos-ruler, thanos-receive-default and thanos-store-shard
must have its own PV. View the following table:

Table 1.2. Table list of persistent volumes

Component name Purpose

alertmanager Alertmanager stores the nflog data and silenced
alerts in its storage. nflog is an append-only log of
active and resolved notifications along with the
notified receiver, and a hash digest of contents that
the notification identified.

Red Hat Advanced Cluster Management for Kubernetes 2.11 Observability

6

observability-thanos-compactor The compactor needs local disk space to store
intermediate data for its processing, as well as bucket
state cache. The required space depends on the size
of the underlying blocks. The compactor must have
enough space to download all of the source blocks,
then build the compacted blocks on the disk. On-disk
data is safe to delete between restarts and should be
the first attempt to get crash-looping compactors
unstuck. However, it is recommended to give the
compactor persistent disks in order to effectively use
bucket state cache in between restarts.

observability-thanos-rule The thanos ruler evaluates Prometheus recording
and alerting rules against a chosen query API by
issuing queries at a fixed interval. Rule results are
written back to the disk in the Prometheus 2.0
storage format. The amount of hours or days of data
retained in this stateful set was fixed in the API
version observability.open-cluster-
management.io/v1beta1. It has been exposed as
an API parameter in observability.open-cluster-
management.io/v1beta2: RetentionInLocal

observability-thanos-receive-default Thanos receiver accepts incoming data (Prometheus
remote-write requests) and writes these into a local
instance of the Prometheus TSDB. Periodically
(every 2 hours), TSDB blocks are uploaded to the
object storage for long term storage and
compaction. The amount of hours or days of data
retained in this stateful set, which acts a local cache
was fixed in API Version observability.open-
cluster-management.io/v1beta. It has been
exposed as an API parameter in
observability.open-cluster-
management.io/v1beta2: RetentionInLocal

observability-thanos-store-shard It acts primarily as an API gateway and therefore
does not need a significant amount of local disk
space. It joins a Thanos cluster on startup and
advertises the data it can access. It keeps a small
amount of information about all remote blocks on
local disk and keeps it in sync with the bucket. This
data is generally safe to delete across restarts at the
cost of increased startup times.

Note: The time series historical data is stored in object stores. Thanos uses object storage as the
primary storage for metrics and metadata related to them. For more details about the object storage
and downsampling, see Enabling observability service .

1.1.4. Additional resources

To learn more about observability and the integrated components, see the following topics:

CHAPTER 1. OBSERVABILITY SERVICE

7

See Observability service

See Observability configuration

See Enabling the observability service

See the Thanos documentation.

See the Prometheus Overview.

See the Alertmanager documentation.

1.2. OBSERVABILITY CONFIGURATION

When the observability service is enabled, the hub cluster is always configured to collect and send
metrics to the configured Thanos instance, regardless of whether hub self-management is enabled or
not. When the hub cluster is self-managed, the disableHubSelfManagement parameter is set to false,
which is the default setting. The multiclusterhub-operator enables the multicluster-observability-
operator pod by default. You must configure the multicluster-observability-operator pod.

Metrics and alerts for the hub cluster appear in the local-cluster namespace. The local-cluster is only
available if hub self-management is enabled. You can query the local-cluster metrics in the Grafana
explorer. Continue reading to understand what metrics you can collect with the observability
component, and for information about the observability pod capacity.

1.2.1. Metric types

By default, OpenShift Container Platform sends metrics to Red Hat using the Telemetry service. The
acm_managed_cluster_info is available with Red Hat Advanced Cluster Management and is included
with telemetry, but is not displayed on the Red Hat Advanced Cluster Management Observe
environments overview dashboard.

View the following table of metric types that are supported by the framework:

Table 1.3. Parameter table

Metric name Metric type Labels/tags Status

acm_managed_clust
er_info

Gauge hub_cluster_id,
managed_cluster_id,
vendor, cloud,
version, available,
created_via,
core_worker,
socket_worker

Stable

config_policies_eval
uation_duration_sec
onds_bucket

Histogram None Stable. Read
Governance metric for
more details.

config_policies_eval
uation_duration_sec
onds_count

Histogram None Stable. Refer to
Governance metric for
more details.

Red Hat Advanced Cluster Management for Kubernetes 2.11 Observability

8

https://thanos.io/v0.36/thanos/getting-started.md/
https://prometheus.io/docs/introduction/overview/
https://prometheus.io/docs/alerting/latest/alertmanager/

config_policies_eval
uation_duration_sec
onds_sum

Histogram None Stable. Read
Governance metric for
more details.

policy_governance_i
nfo

Gauge type, policy,
policy_namespace,
cluster_namespace

Stable. Review
Governance metric for
more details.

policyreport_info Gauge managed_cluster_id,
category, policy,
result, severity

Stable. Read Managing
insight _PolicyReports_
for more details.

search_api_db_conn
ection_failed_total

Counter None Stable. See the Search
components section in
the Searching in the
console documentation.

search_api_dbquery
_duration_seconds

Histogram None Stable. See the Search
components section in
the Searching in the
console documentation.

search_api_requests Histogram None Stable. See the Search
components section in
the Searching in the
console documentation.

search_indexer_requ
est_count

Counter None Stable. See the Search
components section in
the Searching in the
console documentation.

search_indexer_requ
est_duration

Histogram None Stable. See the Search
components section in
the Searching in the
console documentation.

search_indexer_requ
ests_in_flight

Gauge None Stable. See the Search
components section in
the Searching in the
console documentation.

search_indexer_requ
est_size

Histogram None Stable. See the Search
components section in
the Searching in the
console documentation.

Metric name Metric type Labels/tags Status

CHAPTER 1. OBSERVABILITY SERVICE

9

1.2.2. Observability pod capacity requests

Observability components require 2701mCPU and 11972Mi memory to install the observability service.
The following table is a list of the pod capacity requests for five managed clusters with observability-
addons enabled:

Table 1.4. Observability pod capacity requests

Deploymen
t or
StatefulSet

Container
name

CPU
(mCPU)

Memory
(Mi)

Replicas Pod total
CPU

Pod total
memory

observabilit
y-
alertmanage
r

alertmanage
r

4 200 3 12 600

config-
reloader

4 25 3 12 75

alertmanage
r-proxy

1 20 3 3 60

observabilit
y-grafana

grafana 4 100 2 8 200

grafana-
dashboard-
loader

4 50 2 8 100

observabilit
y-
observatoriu
m-api

observatoriu
m-api

20 128 2 40 256

observabilit
y-
observatoriu
m-operator

observatoriu
m-operator

100 100 1 10 50

observabilit
y-rbac-
query-proxy

rbac-query-
proxy

20 100 2 40 200

oauth-proxy 1 20 2 2 40

observabilit
y-thanos-
compact

thanos-
compact

100 512 1 100 512

observabilit
y-thanos-
query

thanos-
query

300 1024 2 600 2048

Red Hat Advanced Cluster Management for Kubernetes 2.11 Observability

10

observabilit
y-thanos-
query-
frontend

thanos-
query-
frontend

100 256 2 200 512

observabilit
y-thanos-
query-
frontend-
memcached

memcached 45 128 3 135 384

exporter 5 50 3 15 150

observabilit
y-thanos-
receive-
controller

thanos-
receive-
controller

4 32 1 4 32

observabilit
y-thanos-
receive-
default

thanos-
receive

300 512 3 900 1536

observabilit
y-thanos-
rule

thanos-rule 50 512 3 150 1536

configmap-
reloader

4 25 3 12 75

observabilit
y-thanos-
store-
memcached

memcached 45 128 3 135 384

exporter 5 50 3 15 150

observabilit
y-thanos-
store-shard

thanos-
store

100 1024 3 300 3072

Deploymen
t or
StatefulSet

Container
name

CPU
(mCPU)

Memory
(Mi)

Replicas Pod total
CPU

Pod total
memory

1.2.3. Additional resources

For more information about enabling observability, read Enabling the observability service.

Read Customizing observability to learn how to configure the observability service, view metrics
and other data.

Read Using Grafana dashboards.

Learn from the OpenShift Container Platform documentation what types of metrics are

CHAPTER 1. OBSERVABILITY SERVICE

11

Learn from the OpenShift Container Platform documentation what types of metrics are
collected and sent using telemetry. See Information collected by Telemetry for information.

Refer to Governance metric for details.

Refer to Prometheus recording rules.

Also refer to Prometheus alerting rules.

1.3. ENABLING THE OBSERVABILITY SERVICE

When you enable the observability service on your hub cluster, the multicluster-observability-operator
watches for new managed clusters and automatically deploys metric and alert collection services to the
managed clusters. You can use metrics and configure Grafana dashboards to make cluster resource
information visible, help you save cost, and prevent service disruptions.

Monitor the status of your managed clusters with the observability component, also known as the
multicluster-observability-operator pod.

Required access: Cluster administrator, the open-cluster-management:cluster-manager-admin role,
or S3 administrator.

Prerequisites

Enabling observability from the command line interface

Creating the MultiClusterObservability custom resource

Enabling observability from the Red Hat OpenShift Container Platform console

Disabling observability

Removing observability

1.3.1. Prerequisites

You must install Red Hat Advanced Cluster Management for Kubernetes. See Installing while
connected online for more information.

You must define a storage class in the MultiClusterObservability custom resource, if there is
no default storage class specified.

Direct network access to the hub cluster is required. Network access to load balancers and
proxies are not supported. For more information, see Networking.

You must configure an object store to create a storage solution.

Important: When you configure your object store, ensure that you meet the encryption
requirements that are necessary when sensitive data is persisted. The observability service
uses Thanos supported, stable object stores. You might not be able to share an object store
bucket by multiple Red Hat Advanced Cluster Management observability installations.
Therefore, for each installation, provide a separate object store bucket.

Red Hat Advanced Cluster Management supports the following cloud providers with stable
object stores:

Amazon Web Services S3 (AWS S3)

Red Hat Advanced Cluster Management for Kubernetes 2.11 Observability

12

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/support/index#about-remote-health-monitoring
../../html-single/governance#gov-metric
https://prometheus.io/docs/prometheus/latest/configuration/recording_rules/
https://prometheus.io/docs/prometheus/latest/configuration/alerting_rules/
../../html-single/install#installing-while-connected-online
../../html-single/networking#networking

Red Hat Ceph (S3 compatible API)

Google Cloud Storage

Azure storage

Red Hat OpenShift Data Foundation, formerly known as Red Hat OpenShift Container
Storage

Red Hat OpenShift on IBM (ROKS)

1.3.2. Enabling observability from the command line interface

Enable the observability service by creating a MultiClusterObservability custom resource instance.
Before you enable observability, see Observability pod capacity requests for more information.

Note:

When observability is enabled or disabled on OpenShift Container Platform managed clusters
that are managed by Red Hat Advanced Cluster Management, the observability endpoint
operator updates the cluster-monitoring-config config map by adding additional
alertmanager configuration that automatically restarts the local Prometheus.

The observability endpoint operator updates the cluster-monitoring-config config map by
adding additional alertmanager configurations that automatically restart the local Prometheus.
When you insert the alertmanager configuration in the OpenShift Container Platform managed
cluster, the configuration removes the settings that relate to the retention field of the
Prometheus metrics.

Complete the following steps to enable the observability service:

1. Log in to your Red Hat Advanced Cluster Management hub cluster.

2. Create a namespace for the observability service with the following command:

3. Generate your pull-secret. If Red Hat Advanced Cluster Management is installed in the open-
cluster-management namespace, run the following command:

a. If the multiclusterhub-operator-pull-secret is not defined in the namespace, copy the pull-
secret from the openshift-config namespace into the open-cluster-management-
observability namespace. Run the following command:

b. Create the pull-secret in the open-cluster-management-observability namespace, run
the following command:

oc create namespace open-cluster-management-observability

DOCKER_CONFIG_JSON=`oc extract secret/multiclusterhub-operator-pull-secret -n open-
cluster-management --to=-`

DOCKER_CONFIG_JSON=`oc extract secret/pull-secret -n openshift-config --to=-`

oc create secret generic multiclusterhub-operator-pull-secret \
 -n open-cluster-management-observability \
 --from-literal=.dockerconfigjson="$DOCKER_CONFIG_JSON" \

CHAPTER 1. OBSERVABILITY SERVICE

13

1

Important: If you modify the global pull secret for your cluster by using the OpenShift Container
Platform documentation, be sure to also update the global pull secret in the observability
namespace. See Updating the global pull secret for more details.

4. Create a secret for your object storage for your cloud provider. Your secret must contain the
credentials to your storage solution. For example, run the following command:

View the following examples of secrets for the supported object stores:

For Amazon S3 or S3 compatible, your secret might resemble the following file:

Enter the URL without the protocol. Enter the URL for your Amazon S3 endpoint that
might resemble the following URL: s3.us-east-1.amazonaws.com.

For more details, see the Amazon Simple Storage Service user guide .

For Google Cloud Platform, your secret might resemble the following file:

For more details, see Google Cloud Storage .

For Azure your secret might resemble the following file:

 --type=kubernetes.io/dockerconfigjson

oc create -f thanos-object-storage.yaml -n open-cluster-management-observability

apiVersion: v1
kind: Secret
metadata:
 name: thanos-object-storage
 namespace: open-cluster-management-observability
type: Opaque
stringData:
 thanos.yaml: |
 type: s3
 config:
 bucket: YOUR_S3_BUCKET
 endpoint: YOUR_S3_ENDPOINT 1
 insecure: true
 access_key: YOUR_ACCESS_KEY
 secret_key: YOUR_SECRET_KEY

apiVersion: v1
kind: Secret
metadata:
 name: thanos-object-storage
 namespace: open-cluster-management-observability
type: Opaque
stringData:
 thanos.yaml: |
 type: GCS
 config:
 bucket: YOUR_GCS_BUCKET
 service_account: YOUR_SERVICE_ACCOUNT

Red Hat Advanced Cluster Management for Kubernetes 2.11 Observability

14

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html/images/managing-images#images-update-global-pull-secret_using-image-pull-secrets
https://docs.aws.amazon.com/AmazonS3/latest/userguide/Welcome.html
https://cloud.google.com/storage/docs/introduction

1

1

If you use the msi_resource path, the endpoint authentication is complete by using
the system-assigned managed identity. Your value must resemble the following
endpoint: https://<storage-account-name>.blob.core.windows.net.

If you use the user_assigned_id path, endpoint authentication is complete by using the
user-assigned managed identity. When you use the user_assigned_id, the msi_resource
endpoint default value is https:<storage_account>.<endpoint>. For more details, see
Azure Storage documentation.

Note: If you use Azure as an object storage for a Red Hat OpenShift Container Platform
cluster, the storage account associated with the cluster is not supported. You must create a
new storage account.

For Red Hat OpenShift Data Foundation, your secret might resemble the following file:

Enter the URL without the protocol. Enter the URL for your Red Hat OpenShift Data
Foundation endpoint that might resemble the following URL:
example.redhat.com:443.

For more details, see Red Hat OpenShift Data Foundation .

For Red Hat OpenShift on IBM (ROKS), your secret might resemble the following file:

apiVersion: v1
kind: Secret
metadata:
 name: thanos-object-storage
 namespace: open-cluster-management-observability
type: Opaque
stringData:
 thanos.yaml: |
 type: AZURE
 config:
 storage_account: YOUR_STORAGE_ACCT
 storage_account_key: YOUR_STORAGE_KEY
 container: YOUR_CONTAINER
 endpoint: blob.core.windows.net 1
 max_retries: 0

apiVersion: v1
kind: Secret
metadata:
 name: thanos-object-storage
 namespace: open-cluster-management-observability
type: Opaque
stringData:
 thanos.yaml: |
 type: s3
 config:
 bucket: YOUR_RH_DATA_FOUNDATION_BUCKET
 endpoint: YOUR_RH_DATA_FOUNDATION_ENDPOINT 1
 insecure: false
 access_key: YOUR_RH_DATA_FOUNDATION_ACCESS_KEY
 secret_key: YOUR_RH_DATA_FOUNDATION_SECRET_KEY

CHAPTER 1. OBSERVABILITY SERVICE

15

https:
https://docs.microsoft.com/en-us/azure/storage/
https://www.redhat.com/en/technologies/cloud-computing/openshift-data-foundation

1 Enter the URL without the protocol. Enter the URL for your Red Hat OpenShift Data
Foundation endpoint that might resemble the following URL: example.redhat.com:443.

For more details, follow the IBM Cloud documentation, Cloud Object Storage . Be sure to
use the service credentials to connect with the object storage. For more details, follow the
IBM Cloud documentation, Cloud Object Store and Service Credentials.

1.3.2.1. Configuring storage for AWS Security Token Service

For Amazon S3 or S3 compatible storage, you can also use short term, limited-privilege credentials that
are generated with AWS Security Token Service (AWS STS). Refer to AWS Security Token Service
documentation for more details.

Generating access keys using AWS Security Service require the following additional steps:

1. Create an IAM policy that limits access to an S3 bucket.

2. Create an IAM role with a trust policy to generate JWT tokens for OpenShift Container Platform
service accounts.

3. Specify annotations for the observability service accounts that requires access to the S3
bucket. You can find an example of how observability on Red Hat OpenShift Service on AWS
(ROSA) cluster can be configured to work with AWS STS tokens in the Set environment step.
See Red Hat OpenShift Service on AWS (ROSA) for more details, along with ROSA with STS
explained for an in-depth description of the requirements and setup to use STS tokens.

1.3.2.2. Generating access keys using the AWS Security Service

Complete the following steps to generate access keys using the AWS Security Service:

1. Set up the AWS environment. Run the following commands:

apiVersion: v1
kind: Secret
metadata:
 name: thanos-object-storage
 namespace: open-cluster-management-observability
type: Opaque
stringData:
 thanos.yaml: |
 type: s3
 config:
 bucket: YOUR_ROKS_S3_BUCKET
 endpoint: YOUR_ROKS_S3_ENDPOINT 1
 insecure: true
 access_key: YOUR_ROKS_ACCESS_KEY
 secret_key: YOUR_ROKS_SECRET_KEY

export POLICY_VERSION=$(date +"%m-%d-%y")
export TRUST_POLICY_VERSION=$(date +"%m-%d-%y")
export CLUSTER_NAME=<my-cluster>
export S3_BUCKET=$CLUSTER_NAME-acm-observability
export REGION=us-east-2
export NAMESPACE=open-cluster-management-observability

Red Hat Advanced Cluster Management for Kubernetes 2.11 Observability

16

https://cloud.ibm.com/objectstorage/create
https://cloud.ibm.com/objectstorage/create%5BCloud
https://cloud.ibm.com/docs/cloud-object-storage/iam?topic=cloud-object-storage-service-credentials%5BService
https://docs.aws.amazon.com/STS/latest/APIReference/welcome.html
https://www.rosaworkshop.io/
https://www.rosaworkshop.io/rosa/15-sts_explained/

2. Create an S3 bucket with the following command:

3. Create a s3-policy JSON file for access to your S3 bucket. Run the following command:

4. Apply the policy with the following command:

5. Create a TrustPolicy JSON file. Run the following command:

export SA=tbd
export SCRATCH_DIR=/tmp/scratch
export OIDC_PROVIDER=$(oc get authentication.config.openshift.io cluster -o json | jq -r
.spec.serviceAccountIssuer| sed -e "s/^https:\/\///")
export AWS_ACCOUNT_ID=$(aws sts get-caller-identity --query Account --output text)
export AWS_PAGER=""
rm -rf $SCRATCH_DIR
mkdir -p $SCRATCH_DIR

aws s3 mb s3://$S3_BUCKET

{
 "Version": "$POLICY_VERSION",
 "Statement": [
 {
 "Sid": "Statement",
 "Effect": "Allow",
 "Action": [
 "s3:ListBucket",
 "s3:GetObject",
 "s3:DeleteObject",
 "s3:PutObject",
 "s3:PutObjectAcl",
 "s3:CreateBucket",
 "s3:DeleteBucket"
],
 "Resource": [
 "arn:aws:s3:::$S3_BUCKET/*",
 "arn:aws:s3:::$S3_BUCKET"
]
 }
]
 }

S3_POLICY=$(aws iam create-policy --policy-name $CLUSTER_NAME-acm-obs \
--policy-document file://$SCRATCH_DIR/s3-policy.json \
--query 'Policy.Arn' --output text)
echo $S3_POLICY

{
 "Version": "$TRUST_POLICY_VERSION",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Federated": "arn:aws:iam::${AWS_ACCOUNT_ID}:oidc-provider/${OIDC_PROVIDER}"

CHAPTER 1. OBSERVABILITY SERVICE

17

6. Create a role for AWS Prometheus and CloudWatch with the following command:

7. Attach the policies to the role. Run the following command:

Your secret might resemble the following file. The config section specifies
signature_version2: false and does not specify access_key and secret_key:

8. Specify service account annotations when you the MultiClusterObservability custom resource
as described in Creating the MultiClusterObservability custom resource section.

9. Retrieve the S3 access key and secret key for your cloud providers with the following
commands. You must decode, edit, and encode your base64 string in the secret:

a. To edit and decode the S3 access key for your cloud provider, run the following command:

 },
 "Action": "sts:AssumeRoleWithWebIdentity",
 "Condition": {
 "StringEquals": {
 "${OIDC_PROVIDER}:sub": [
 "system:serviceaccount:${NAMESPACE}:observability-thanos-query",
 "system:serviceaccount:${NAMESPACE}:observability-thanos-store-shard",
 "system:serviceaccount:${NAMESPACE}:observability-thanos-compact"
 "system:serviceaccount:${NAMESPACE}:observability-thanos-rule",
 "system:serviceaccount:${NAMESPACE}:observability-thanos-receive",
]
 }
 }
 }
]
}

S3_ROLE=$(aws iam create-role \
 --role-name "$CLUSTER_NAME-acm-obs-s3" \
 --assume-role-policy-document file://$SCRATCH_DIR/TrustPolicy.json \
 --query "Role.Arn" --output text)
echo $S3_ROLE

aws iam attach-role-policy \
 --role-name "$CLUSTER_NAME-acm-obs-s3" \
 --policy-arn $S3_POLICY

apiVersion: v1
kind: Secret
metadata:
 name: thanos-object-storage
 namespace: open-cluster-management-observability
type: Opaque
stringData:
 thanos.yaml: |
 type: s3
 config:
 bucket: $S3_BUCKET
 endpoint: s3.$REGION.amazonaws.com
 signature_version2: false

Red Hat Advanced Cluster Management for Kubernetes 2.11 Observability

18

b. To view the access key for your cloud provider, run the following command:

c. To edit and decode the secret key for your cloud provider, run the following command:

d. Run the following command to view the secret key for your cloud provider:

10. Verify that observability is enabled by checking the pods for the following deployments and
stateful sets. You might receive the following information:

observability-thanos-query (deployment)
observability-thanos-compact (statefulset)
observability-thanos-receive-default (statefulset)
observability-thanos-rule (statefulset)
observability-thanos-store-shard-x (statefulsets)

1.3.2.3. Creating the MultiClusterObservability custom resource

Use the MultiClusterObservability custom resource to specify the persistent volume storage size for
various components. You must set the storage size during the initial creation of the
MultiClusterObservability custom resource. When you update the storage size values post-
deployment, changes take effect only if the storage class supports dynamic volume expansion. For
more information, see Expanding persistent volumes from the Red Hat OpenShift Container Platform
documentation.

Complete the following steps to create the MultiClusterObservability custom resource on your hub
cluster:

1. Create the MultiClusterObservability custom resource YAML file named
multiclusterobservability_cr.yaml.
View the following default YAML file for observability:

YOUR_CLOUD_PROVIDER_ACCESS_KEY=$(oc -n open-cluster-management-
observability get secret <object-storage-secret> -o jsonpath="{.data.thanos\.yaml}" |
base64 --decode | grep access_key | awk '{print $2}')

echo $YOUR_CLOUD_PROVIDER_ACCESS_KEY

YOUR_CLOUD_PROVIDER_SECRET_KEY=$(oc -n open-cluster-management-
observability get secret <object-storage-secret> -o jsonpath="{.data.thanos\.yaml}" |
base64 --decode | grep secret_key | awk '{print $2}')

echo $SECRET_KEY

apiVersion: observability.open-cluster-management.io/v1beta2
kind: MultiClusterObservability
metadata:
 name: observability
spec:
 observabilityAddonSpec: {}
 storageConfig:
 metricObjectStorage:
 name: thanos-object-storage
 key: thanos.yaml

CHAPTER 1. OBSERVABILITY SERVICE

19

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html/storage/expanding-persistent-volumes

You might want to modify the value for the retentionConfig parameter in the advanced
section. For more information, see Thanos Downsampling resolution and retention . Depending
on the number of managed clusters, you might want to update the amount of storage for
stateful sets. If your S3 bucket is configured to use STS tokens, annotate the service accounts
to use STS with S3 role. View the following configuration:

See Observability API for more information.

2. To deploy on infrastructure machine sets, you must set a label for your set by updating the
nodeSelector in the MultiClusterObservability YAML. Your YAML might resemble the
following content:

For more information, see Creating infrastructure machine sets.

3. Apply the observability YAML to your cluster by running the following command:

All the pods in open-cluster-management-observability namespace for Thanos, Grafana and
Alertmanager are created. All the managed clusters connected to the Red Hat Advanced
Cluster Management hub cluster are enabled to send metrics back to the Red Hat Advanced
Cluster Management Observability service.

4. Validate that the observability service is enabled and the data is populated by launching the
Grafana dashboards.

5. Click the Grafana link that is near the console header, from either the console Overview page or
the Clusters page.

a. Alternatively, access the OpenShift Container Platform 3.11 Grafana dashboards with the
following URL: https://$ACM_URL/grafana/dashboards.

b. To view the OpenShift Container Platform 3.11 dashboards, select the folder named OCP
3.11 .

spec:
 advanced:
 compact:
 serviceAccountAnnotations:
 eks.amazonaws.com/role-arn: $S3_ROLE
 store:
 serviceAccountAnnotations:
 eks.amazonaws.com/role-arn: $S3_ROLE
 rule:
 serviceAccountAnnotations:
 eks.amazonaws.com/role-arn: $S3_ROLE
 receive:
 serviceAccountAnnotations:
 eks.amazonaws.com/role-arn: $S3_ROLE
 query:
 serviceAccountAnnotations:
 eks.amazonaws.com/role-arn: $S3_ROLE

 nodeSelector:
 node-role.kubernetes.io/infra: ""

oc apply -f multiclusterobservability_cr.yaml

Red Hat Advanced Cluster Management for Kubernetes 2.11 Observability

20

https://thanos.io/v0.8/components/compact/#downsampling-resolution-and-retention
../../html-single/apis#observability-api
https://docs.openshift.com/container-platform/4.14/machine_management/creating-infrastructure-machinesets.html
https:/grafana/dashboards

6. Access the multicluster-observability-operator deployment to verify that the multicluster-
observability-operator pod is being deployed by the multiclusterhub-operator deployment.
Run the following command:

7. View the labels section of the multicluster-observability-operator deployment for labels that
are associated with the resource. The labels section might contain the following details:

8. Optional: If you want to exclude specific managed clusters from collecting the observability data,
add the following cluster label to your clusters: observability: disabled.

The observability service is enabled. After you enable the observability service, the following functions
are initiated:

All the alert managers from the managed clusters are forwarded to the Red Hat Advanced
Cluster Management hub cluster.

All the managed clusters that are connected to the Red Hat Advanced Cluster Management
hub cluster are enabled to send alerts back to the Red Hat Advanced Cluster Management
observability service. You can configure the Red Hat Advanced Cluster Management
Alertmanager to take care of deduplicating, grouping, and routing the alerts to the correct
receiver integration such as email, PagerDuty, or OpsGenie. You can also handle silencing and
inhibition of the alerts.
Note: Alert forwarding to the Red Hat Advanced Cluster Management hub cluster feature is
only supported by managed clusters on a supported OpenShift Container Platform version.
After you install Red Hat Advanced Cluster Management with observability enabled, alerts are
automatically forwarded to the hub cluster. See Forwarding alerts to learn more.

1.3.3. Enabling observability from the Red Hat OpenShift Container Platform
console

Optionally, you can enable observability from the Red Hat OpenShift Container Platform console by
creating a project named open-cluster-management-observability. Complete the following steps:

1. Create an image pull-secret named, multiclusterhub-operator-pull-secret in the open-
cluster-management-observability project.

2. Create your object storage secret named, thanos-object-storage in the open-cluster-
management-observability project.

3. Enter the object storage secret details, then click Create. See step four of the Enabling
observability section to view an example of a secret.

4. Create the MultiClusterObservability custom resource instance. When you receive the
following message, the observability service is enabled successfully from OpenShift Container
Platform: Observability components are deployed and running.

oc get deploy multicluster-observability-operator -n open-cluster-management --show-labels

NAME READY UP-TO-DATE AVAILABLE AGE LABELS
multicluster-observability-operator 1/1 1 1 35m
installer.name=multiclusterhub,installer.namespace=open-cluster-management

 labels:
 installer.name: multiclusterhub
 installer.namespace: open-cluster-management

CHAPTER 1. OBSERVABILITY SERVICE

21

1.3.3.1. Verifying the Thanos version

After Thanos is deployed on your cluster, verify the Thanos version from the command line interface
(CLI).

After you log in to your hub cluster, run the following command in the observability pods to receive the
Thanos version:

The Thanos version is displayed.

1.3.4. Disabling observability

You can disable observability, which stops data collection on the Red Hat Advanced Cluster
Management hub cluster.

1.3.4.1. Disabling observability on all clusters

Disable observability by removing observability components on all managed clusters. Update the
multicluster-observability-operator resource by setting enableMetrics to false. Your updated
resource might resemble the following change:

1.3.4.2. Disabling observability on a single cluster

Disable observability by removing observability components on specific managed clusters. Complete the
following steps:

1. Add the observability: disabled label to the managedclusters.cluster.open-cluster-
management.io custom resource.

2. From the Red Hat Advanced Cluster Management console Clusters page, add the
observability=disabled label to the specified cluster.
Note: When a managed cluster with the observability component is detached, the metrics-
collector deployments are removed.

1.3.5. Removing observability

When you remove the MultiClusterObservability custom resource, you are disabling and uninstalling
the observability service. From the OpenShift Container Platform console navigation, select Operators
> Installed Operators > Advanced Cluster Manager for Kubernetes. Remove the
MultiClusterObservability custom resource.

1.3.6. Additional resources

Links to cloud provider documentation for object storage information:

Amazon Web Services S3 (AWS S3)

thanos --version

spec:
 imagePullPolicy: Always
 imagePullSecret: multiclusterhub-operator-pull-secret
 observabilityAddonSpec: # The ObservabilityAddonSpec defines the global settings for all managed
clusters which have observability add-on enabled
 enableMetrics: false #indicates the observability addon push metrics to hub server

Red Hat Advanced Cluster Management for Kubernetes 2.11 Observability

22

Amazon Web Services S3 (AWS S3)

Red Hat Ceph (S3 compatible API)

Google Cloud Storage

Azure storage

Red Hat OpenShift Data Foundation (formerly known as Red Hat OpenShift Container
Storage)

Red Hat OpenShift on IBM (ROKS)

See Using observability.

To learn more about customizing the observability service, see Customizing observability.

For more related topics, return to the Observability service.

1.4. CUSTOMIZING OBSERVABILITY CONFIGURATION

After you enable observability, customize the observability configuration to the specific needs of your
environment. Manage and view cluster fleet data that the observability service collects.

Required access: Cluster administrator

Creating custom rules

Adding custom metrics

Adding advanced configuration for retention

Updating the MultiClusterObservability custom resource replicas from the console

Increasing and decreasing persistent volumes and persistent volume claims

Customizing route certification

Customizing certificates for accessing the object store

Configuring proxy settings for observability add-ons

Disabling proxy settings for observability add-ons

1.4.1. Creating custom rules

Create custom rules for the observability installation by adding Prometheus recording rules and alerting
rules to the observability resource.

To precalculate expensive expressions, use the recording rules abilities with Prometheus to create alert
conditions and send notifications based on how you want to send an alert to an external service. The
results are saved as a new set of time series. View the following examples to create a custom alert rule
within the observability-thanos-rule-custom-rules config map:

To get a notification for when your CPU usage paases your defined value, create the following
custom alert rule:

CHAPTER 1. OBSERVABILITY SERVICE

23

https://aws.amazon.com/getting-started/hands-on/lightsail-object-storage/
https://www.redhat.com/en/technologies/storage/ceph
https://cloud.google.com/storage
https://docs.microsoft.com/en-us/azure/storage/blobs/storage-blobs-introduction
https://www.redhat.com/en/technologies/cloud-computing/openshift-data-foundation
https://www.ibm.com/docs/en/baw/20.x?topic=storage-preparing-cloud-public-roks
https://prometheus.io/docs/prometheus/latest/configuration/recording_rules/
https://prometheus.io/docs/prometheus/latest/configuration/alerting_rules/

Notes:

When you update your custom rules, observability-thanos-rule pods restart automatically.

You can create multiple rules in the configuration.

The default alert rules are in the observability-thanos-rule-default-rules config map of
the open-cluster-management-observability namespace.

To create a custom recording rule to get the sum of the container memory cache of a pod,
create the following custom rule:

Note: After you make changes to the config map, the configuration automatically reloads. The
configuration reloads because of the config-reload within the observability-thanos-rule
sidecar.

To verify that the alert rules are functioning correctly, go to the Grafana dashboard, select the Explore
page, and query ALERTS. The alert is only available in Grafana if you created the alert.

1.4.2. Adding custom metrics

Add metrics to the metrics_list.yaml file to collect from managed clusters. Complete the following
steps:

1. Before you add a custom metric, verify that mco observability is enabled with the following
command:

data:
 custom_rules.yaml: |
 groups:
 - name: cluster-health
 rules:
 - alert: ClusterCPUHealth-jb
 annotations:
 summary: Notify when CPU utilization on a cluster is greater than the defined
utilization limit
 description: "The cluster has a high CPU usage: {{ $value }} core for {{ $labels.cluster
}} {{ $labels.clusterID }}."
 expr: |
 max(cluster:cpu_usage_cores:sum) by (clusterID, cluster, prometheus) > 0
 for: 5s
 labels:
 cluster: "{{ $labels.cluster }}"
 prometheus: "{{ $labels.prometheus }}"
 severity: critical

data:
 custom_rules.yaml: |
 groups:
 - name: container-memory
 rules:
 - record: pod:container_memory_cache:sum
 expr: sum(container_memory_cache{pod!=""}) BY (pod, container)

oc get mco observability -o yaml

Red Hat Advanced Cluster Management for Kubernetes 2.11 Observability

24

1

2

2. Check for the following message in the status.conditions.message section reads:

3. Create the observability-metrics-custom-allowlist config map in the open-cluster-
management-observability namespace with the following command:

4. Add the name of the custom metric to the metrics_list.yaml parameter. Your YAML for the
config map might resemble the following content:

Optional: Add the name of the custom metrics that are to be collected from the managed
cluster.

Optional: Enter only one value for the expr and record parameter pair to define the query
expression. The metrics are collected as the name that is defined in the record parameter
from your managed cluster. The metric value returned are the results after you run the
query expression.

You can use either one or both of the sections. For user workload metrics, see the Adding user
workload metrics section.

Note: You can also individually customize each managed cluster in the custom metrics allowlist
instead of applying it across your entire fleet. You can create the same YAML directly on your
managed cluster to customize it.

5. Verify the data collection from your custom metric by querying the metric from the Grafana
dashboard Explore page. You can also use the custom metrics in your own dashboard.

1.4.2.1. Adding user workload metrics

Collect OpenShift Container Platform user-defined metrics from workloads in OpenShift Container
Platform to display the metrics from your Grafana dashboard. Complete the following steps:

1. Enable monitoring on your OpenShift Container Platform cluster. See Enabling monitoring for
user-defined projects in the Additional resources section.

If you have a managed cluster with monitoring for user-defined workloads enabled, the user

Observability components are deployed and running

oc apply -n open-cluster-management-observability -f observability-metrics-custom-
allowlist.yaml

kind: ConfigMap
apiVersion: v1
metadata:
 name: observability-metrics-custom-allowlist
data:
 metrics_list.yaml: |
 names: 1
 - node_memory_MemTotal_bytes
 rules: 2
 - record: apiserver_request_duration_seconds:histogram_quantile_90
 expr:
histogram_quantile(0.90,sum(rate(apiserver_request_duration_seconds_bucket{job=\"apiserv
er\",
 verb!=\"WATCH\"}[5m])) by (verb,le))

CHAPTER 1. OBSERVABILITY SERVICE

25

1

2

If you have a managed cluster with monitoring for user-defined workloads enabled, the user
workloads are located in the test namespace and generate metrics. These metrics are collected
by Prometheus from the OpenShift Container Platform user workload.

2. Add user workload metrics to the observability-metrics-custom-allowlist config map to
collect the metrics in the test namespace. View the following example:

Enter the key for the config map data.

Enter the value of the config map data in YAML format. The names section includes the
list of metric names, which you want to collect from the test namespace. After you create
the config map, the observability collector collects and pushes the metrics from the target
namespace to the hub cluster.

1.4.2.2. Removing default metrics

If you do not want to collect data for a specific metric from your managed cluster, remove the metric
from the observability-metrics-custom-allowlist.yaml file. When you remove a metric, the metric data
is not collected from your managed clusters. Complete the following steps to remove a default metric:

1. Verify that mco observability is enabled by using the following command:

2. Add the name of the default metric to the metrics_list.yaml parameter with a hyphen - at the
start of the metric name. View the following metric example:

3. Create the observability-metrics-custom-allowlist config map in the open-cluster-
management-observability namespace with the following command:

4. Verify that the observability service is not collecting the specific metric from your managed
clusters. When you query the metric from the Grafana dashboard, the metric is not displayed.

1.4.3. Adding advanced configuration for retention

To update the retention for each observability component according to your need, add the advanced
configuration section. Complete the following steps:

kind: ConfigMap
apiVersion: v1
metadata:
 name: observability-metrics-custom-allowlist
 namespace: test
data:
 uwl_metrics_list.yaml: 1
 names: 2
 - sample_metrics

oc get mco observability -o yaml

-cluster_infrastructure_provider

oc apply -n open-cluster-management-observability -f observability-metrics-custom-
allowlist.yaml

Red Hat Advanced Cluster Management for Kubernetes 2.11 Observability

26

1. Edit the MultiClusterObservability custom resource with the following command:

2. Add the advanced section to the file. Your YAML file might resemble the following contents:

Notes:

For descriptions of all the parameters that can added into the advanced configuration, see
the Observability API documentation.

The default retention for all resolution levels, such as retentionResolutionRaw,
retentionResolution5m, or retentionResolution1h, is 365 days (365d). You must set an
explicit value for the resolution retention in your MultiClusterObservability
spec.advanced.retentionConfig parameter.

3. If you upgraded from an earlier version and want to keep that version retention configuration,
add the configuration previously mentioned. Complete the following steps:

a. Go to your MultiClusterObservability resource by running the following command:

b. In the spec.advanced.retentionConfig parameter, apply the following configuration:

1.4.4. Dynamic metrics for single-node OpenShift clusters

Dynamic metrics collection supports automatic metric collection based on certain conditions. By default,
a single-node OpenShift cluster does not collect pod and container resource metrics. Once a single-
node OpenShift cluster reaches a specific level of resource consumption, the defined granular metrics
are collected dynamically. When the cluster resource consumption is consistently less than the threshold
for a period of time, granular metric collection stops.

oc edit mco observability -o yaml

spec:
 advanced:
 retentionConfig:
 blockDuration: 2h
 deleteDelay: 48h
 retentionInLocal: 24h
 retentionResolutionRaw: 365d
 retentionResolution5m: 365d
 retentionResolution1h: 365d
 receive:
 resources:
 limits:
 memory: 4096Gi
 replicas: 3

edit mco observability

spec:
 advanced:
 retentionConfig:
 retentionResolutionRaw: 365d
 retentionResolution5m: 365d
 retentionResolution1h: 365d

CHAPTER 1. OBSERVABILITY SERVICE

27

The metrics are collected dynamically based on the conditions on the managed cluster specified by a
collection rule. Because these metrics are collected dynamically, the following Red Hat Advanced
Cluster Management Grafana dashboards do not display any data. When a collection rule is activated
and the corresponding metrics are collected, the following panels display data for the duration of the
time that the collection rule is initiated:

Kubernetes/Compute Resources/Namespace (Pods)

Kubernetes/Compute Resources/Namespace (Workloads)

Kubernetes/Compute Resources/Nodes (Pods)

Kubernetes/Compute Resources/Pod

Kubernetes/Compute Resources/Workload A collection rule includes the following conditions:

A set of metrics to collect dynamically.

Conditions written as a PromQL expression.

A time interval for the collection, which must be set to true.

A match expression to select clusters where the collect rule must be evaluated.

By default, collection rules are evaluated continuously on managed clusters every 30 seconds, or at a
specific time interval. The lowest value between the collection interval and time interval takes
precedence. Once the collection rule condition persists for the duration specified by the for attribute,
the collection rule starts and the metrics specified by the rule are automatically collected on the
managed cluster. Metrics collection stops automatically after the collection rule condition no longer
exists on the managed cluster, at least 15 minutes after it starts.

The collection rules are grouped together as a parameter section named collect_rules, where it can be
enabled or disabled as a group. Red Hat Advanced Cluster Management installation includes the
collection rule group, SNOResourceUsage with two default collection rules: HighCPUUsage and
HighMemoryUsage. The HighCPUUsage collection rule begins when the node CPU usage exceeds
70%. The HighMemoryUsage collection rule begins if the overall memory utilization of the single-node
OpenShift cluster exceeds 70% of the available node memory. Currently, the previously mentioned
thresholds are fixed and cannot be changed. When a collection rule begins for more than the interval
specified by the for attribute, the system automatically starts collecting the metrics that are specified in
the dynamic_metrics section.

View the list of dynamic metrics that from the collect_rules section, in the following YAML file:

collect_rules:
 - group: SNOResourceUsage
 annotations:
 description: >
 By default, a {sno} cluster does not collect pod and container resource metrics. Once a {sno}
cluster
 reaches a level of resource consumption, these granular metrics are collected dynamically.
 When the cluster resource consumption is consistently less than the threshold for a period of
time,
 collection of the granular metrics stops.
 selector:
 matchExpressions:
 - key: clusterType
 operator: In

Red Hat Advanced Cluster Management for Kubernetes 2.11 Observability

28

A collect_rules.group can be disabled in the custom-allowlist as shown in the following example.
When a collect_rules.group is disabled, metrics collection reverts to the previous behavior. These
metrics are collected at regularly, specified intervals:

The data is only displayed in Grafana when the rule is initiated.

1.4.5. Updating the MultiClusterObservability custom resource replicas from the
console

If your workload increases, increase the number of replicas of your observability pods. Navigate to the
Red Hat OpenShift Container Platform console from your hub cluster. Locate the
MultiClusterObservability custom resource, and update the replicas parameter value for the
component where you want to change the replicas. Your updated YAML might resemble the following
content:

 values: ["{sno}"]
 rules:
 - collect: SNOHighCPUUsage
 annotations:
 description: >
 Collects the dynamic metrics specified if the cluster cpu usage is constantly more than 70% for
2 minutes
 expr: (1 - avg(rate(node_cpu_seconds_total{mode=\"idle\"}[5m]))) * 100 > 70
 for: 2m
 dynamic_metrics:
 names:
 - container_cpu_cfs_periods_total
 - container_cpu_cfs_throttled_periods_total
 - kube_pod_container_resource_limits
 - kube_pod_container_resource_requests
 - namespace_workload_pod:kube_pod_owner:relabel
 - node_namespace_pod_container:container_cpu_usage_seconds_total:sum_irate
 - node_namespace_pod_container:container_cpu_usage_seconds_total:sum_rate
 - collect: SNOHighMemoryUsage
 annotations:
 description: >
 Collects the dynamic metrics specified if the cluster memory usage is constantly more than 70%
for 2 minutes
 expr: (1 - sum(:node_memory_MemAvailable_bytes:sum) /
sum(kube_node_status_allocatable{resource=\"memory\"})) * 100 > 70
 for: 2m
 dynamic_metrics:
 names:
 - kube_pod_container_resource_limits
 - kube_pod_container_resource_requests
 - namespace_workload_pod:kube_pod_owner:relabel
 matches:
 - __name__="container_memory_cache",container!=""
 - __name__="container_memory_rss",container!=""
 - __name__="container_memory_swap",container!=""
 - __name__="container_memory_working_set_bytes",container!=""

collect_rules:
 - group: -SNOResourceUsage

CHAPTER 1. OBSERVABILITY SERVICE

29

For more information about the parameters within the mco observability custom resource, see the
Observability API documentation.

1.4.6. Increasing and decreasing persistent volumes and persistent volume claims

Increase and decrease the persistent volume and persistent volume claims to change the amount of
storage in your storage class. Complete the following steps:

1. To increase the size of the persistent volume, update the MultiClusterObservability custom
resource if the storage class support expanding volumes.

2. To decrease the size of the persistent volumes remove the pods using the persistent volumes,
delete the persistent volume and recreate them. You might experience data loss in the
persistent volume. Complete the following steps:

a. Pause the MultiClusterObservability operator by adding the annotation mco-pause:
"true" to the MultiClusterObservability custom resource.

b. Look for the stateful sets or deployments of the desired component. Change their replica
count to 0. This initiates a shutdown, which involves uploading local data when applicable to
avoid data loss. For example, the Thanos Receive stateful set is named observability-
thanos-receive-default and has three replicas by default. Therefore, you are looking for the
following persistent volume claims:

data-observability-thanos-receive-default-0

data-observability-thanos-receive-default-1

data-observability-thanos-receive-default-2

c. Delete the persistent volumes and persistent volume claims used by the desired
component.

d. In the MultiClusterObservability custom resource, edit the storage size in the
configuration of the component to the desired amount in the storage size field. Prefix with
the name of the component.

e. Unpause the MultiClusterObservability operator by removing the previously added
annotation.

f. To initiate a reconcilation after having the operator paused, delete the multicluster-
observability-operator and observatorium-operator pods. The pods are recreated and
reconciled immediately.

3. Verify that persistent volume and volume claims are updated by checking the
MultiClusterObservability custom resource.

1.4.7. Customizing route certificate

If you want to customize the OpenShift Container Platform route certification, you must add the routes
in the alt_names section. To ensure your OpenShift Container Platform routes are accessible, add the

spec:
 advanced:
 receive:
 replicas: 6

Red Hat Advanced Cluster Management for Kubernetes 2.11 Observability

30

1

2

following information: alertmanager.apps.<domainname>, observatorium-api.apps.<domainname>,
rbac-query-proxy.apps.<domainname>.

For more details, see Replacing certificates for alertmanager route in the Governance documentation.

Note: Users are responsible for certificate rotations and updates.

1.4.8. Customizing certificates for accessing the object store

You can configure secure connections with the observability object store by creating a Secret resource
that contains the certificate authority and configuring the MultiClusterObservability custom resource.
Complete the following steps:

1. To validate the object store connection, create the Secret object in the file that contains the
certificate authority by using the following command:

a. Alternatively, you can apply the following YAML to create the secret:

Optional: If you want to enable mutual TLS, you need to add the public.crt and private.key
keys in the previous secret.

2. Add the TLS secret details to the metricObjectStorage section by using the following
command:

Your file might resemble the following YAML:

The value for tlsSecretName is the name of the Secret object that you previously created.

The /etc/minio/certs/ path defined for the tlsSecretMountPath parameter specifies
where the certificates are mounted in the Observability components. This path is required
for the next step.

3. Update the thanos.yaml definition in the thanos-object-storage secret by adding the
http_config.tls_config section with the certificate details. View the following example:

oc create secret generic <tls_secret_name> --from-file=ca.crt=<path_to_file> -n open-
cluster-management-observability

apiVersion: v1
kind: Secret
metadata:
 name: <tls_secret_name>
 namespace: open-cluster-management-observability
type: Opaque
data:
 ca.crt: <base64_encoded_ca_certificate>

oc edit mco observability -o yaml

metricObjectStorage:
 key: thanos.yaml
 name: thanos-object-storage
 tlsSecretName: tls-certs-secret 1
 tlsSecretMountPath: /etc/minio/certs 2

CHAPTER 1. OBSERVABILITY SERVICE

31

1

2

1

Set the insecure parameter to false to enable HTTPS.

The path for the ca_file parameter must match the tlsSecretMountPath from the
MultiClusterObservability custom resource. The ca.crt must match the key in the
<tls_secret_name> Secret resource.

Optional: If you want to enable mutual TLS, you need to add the cert_file and key_file keys to
the tls_config section. See the following example:

The path for ca_file, cert_file, and key_file must match the tlsSecretMountPath from the
MultiClusterObservability custom resource. The ca.crt, public.crt, and private.crt must
match the respective key in the tls_secret_name> Secret resource.

4. To verify that you can access the object store, check that the pods are deployed. Run the
following command:

1.4.9. Configuring proxy settings for observability add-ons

Configure the proxy settings to allow the communications from the managed cluster to access the hub
cluster through a HTTP and HTTPS proxy server. Typically, add-ons do not need any special
configuration to support HTTP and HTTPS proxy servers between a hub cluster and a managed cluster.

thanos.yaml: |
 type: s3
 config:
 bucket: "thanos"
 endpoint: "minio:9000"
 insecure: false 1
 access_key: "minio"
 secret_key: "minio123"
 http_config:
 tls_config:
 ca_file: /etc/minio/certs/ca.crt 2
 insecure_skip_verify: false

 thanos.yaml: |
 type: s3
 config:
 bucket: "thanos"
 endpoint: "minio:9000"
 insecure: false
 access_key: "minio"
 secret_key: "minio123"
 http_config:
 tls_config:
 ca_file: /etc/minio/certs/ca.crt 1
 cert_file: /etc/minio/certs/public.crt
 key_file: /etc/minio/certs/private.key
 insecure_skip_verify: false

oc -n open-cluster-management-observability get pods -l app.kubernetes.io/name=thanos-
store

Red Hat Advanced Cluster Management for Kubernetes 2.11 Observability

32

1

2

But if you enabled the observability add-on, you must complete the proxy configuration.

1.4.9.1. Prerequisite

You have a hub cluster.

You have enabled the proxy settings between the hub cluster and managed cluster.

Complete the following steps to configure the proxy settings for the observability add-on:

1. Go to the cluster namespace on your hub cluster.

2. Create an AddOnDeploymentConfig resource with the proxy settings by adding a
spec.proxyConfig parameter. View the following YAML example:

For this field, you can specify either a HTTP proxy or a HTTPS proxy.

Include the IP address of the kube-apiserver.

3. To get the IP address, run following command on your managed cluster:

4. Go to the ManagedClusterAddOn resource and update it by referencing the
AddOnDeploymentConfig resource that you made. View the following YAML example:

5. Verify the proxy settings. If you successfully configured the proxy settings, the metric collector
deployed by the observability add-on agent on the managed cluster sends the data to the hub
cluster. Complete the following steps:

apiVersion: addon.open-cluster-management.io/v1alpha1
kind: AddOnDeploymentConfig
metadata:
 name: <addon-deploy-config-name>
 namespace: <managed-cluster-name>
spec:
 agentInstallNamespace: open-cluster-managment-addon-observability
 proxyConfig:
 httpsProxy: "http://<username>:<password>@<ip>:<port>" 1
 noProxy: ".cluster.local,.svc,172.30.0.1" 2

oc -n default describe svc kubernetes | grep IP:

apiVersion: addon.open-cluster-management.io/v1alpha1
kind: ManagedClusterAddOn
metadata:
 name: observability-controller
 namespace: <managed-cluster-name>
spec:
 installNamespace: open-cluster-managment-addon-observability
 configs:
 - group: addon.open-cluster-management.io
 resource: AddonDeploymentConfig
 name: <addon-deploy-config-name>
 namespace: <managed-cluster-name>

CHAPTER 1. OBSERVABILITY SERVICE

33

a. Go to the hub cluster then the managed cluster on the Grafana dashboard.

b. View the metrics for the proxy settings.

1.4.10. Disabling proxy settings for observability add-ons

If your development needs change, you might need to disable the proxy setting for the observability
add-ons you configured for the hub cluster and managed cluster. You can disable the proxy settings for
the observability add-on at any time. Complete the following steps:

1. Go to the ManagedClusterAddOn resource.

2. Remove the referenced AddOnDeploymentConfig resource.

1.4.11. Customizing the managed cluster Observatorium API and Alertmanager URLs
(Technology Preview)

You can customize the Observatorium API and Alertmanager URLs that the managed cluster uses to
communicate with the hub cluster to maintain all Red Hat Advanced Cluster Management functions
when you use a load balancer or reserve proxy. To customize the URLs, complete the following steps:

1. Add your URLs to the advanced section of the MultiClusterObservability spec. See the
following example:

Notes:

Only HTTPS URLs are supported. If you do not add https:// to your URL, the scheme is
added automatically.

You can include the standard path for the Remote Write API,
/api/metrics/v1/default/api/v1/receive in the customObservabilityHubURL spec. If you
do not include the path, the Observability service automatically adds the path at runtime.

Any intermediate component you use for the custom Observability hub cluster URL cannot
use TLS termination because the component relies on MTLS authentication. The custom
Alertmanager hub cluster URL supports intermediate component TLS termination by using
your own existing certificate instructions.

2. If you are using a customObservabilityHubURL, create a route object by using the following
template. Replace <intermediate_component_url> with the intermediate component URL:

spec:
 advanced:
 customObservabilityHubURL: <yourURL>
 customAlertmanagerHubURL: <yourURL>

apiVersion: route.openshift.io/v1
kind: Route
metadata:
 name: proxy-observatorium-api
 namespace: open-cluster-management-observability
spec:
 host: <intermediate_component_url>
 port:
 targetPort: public

Red Hat Advanced Cluster Management for Kubernetes 2.11 Observability

34

3. If you are using a customAlertmanagerHubURL, create a route object by using the following
template. Replace <intermediate_component_url> with the intermediate component URL:

1.4.12. Configuring fine-grain RBAC (Technology Preview)

To restrict metric access to specific namespaces within the cluster, use fine-grain role-based access
control (RBAC). Using fine-grain RBAC, you can allow application teams to only view the metrics for the
namespaces that you give them permission to access.

You must configure metric access control on the hub cluster for the users of that hub cluster. On this
hub cluster, a ManagedCluster custom resource represents every managed cluster. To configure RBAC
and to select the allowed namespaces, use the rules and action verbs specified in the ManagedCluster
custom resources.

For example, you have an application named, my-awesome-app, and this application is on two different
managed clusters, devcluster1 and devcluster2. Both clusters are in the AwesomeAppNS namespace.
You have an admin user group named, my-awesome-app-admins, and you want to restrict this user
group to only have access to metrics from only these two namespaces on the hub cluster.

In this example, to use fine-grain RBAC to restrict the user group access, complete the following steps:

1. Define a ClusterRole resource with permissions to access metrics. Your resource might
resemble the following YAML:

 tls:
 insecureEdgeTerminationPolicy: None
 termination: passthrough
 to:
 kind: Service
 name: observability-observatorium-api
 weight: 100
 wildcardPolicy: None

apiVersion: route.openshift.io/v1
kind: Route
metadata:
 name: alertmanager-proxy
 namespace: open-cluster-management-observability
spec:
 host: <intermediate_component_url>
 path: /api/v2
 port:
 targetPort: oauth-proxy
 tls:
 insecureEdgeTerminationPolicy: Redirect
 termination: reencrypt
 to:
 kind: Service
 name: alertmanager
 weight: 100
 wildcardPolicy: None

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:

CHAPTER 1. OBSERVABILITY SERVICE

35

1

2

3

Represents the parameter values for the managed clusters.

Represents the list of managed clusters.

Represents the namespace of the managed clusters.

2. Define a ClusterRoleBinding resource that binds the group, my-awesome-app-admins, with
the ClusterRole resource for the awesome-app-metrics-role. Your resource might resemble
the following YAML:

After completing these steps, when the users in the my-awesome-app-admins log into the Grafana
console, they have the following restrictions:

Users see no data for dashboards that summarize fleet level data.

Users can only select managed clusters and namespaces specified in the ClusterRole resource.

To set up different types of user access, define separate ClusterRoles and ClusterRoleBindings
resources to represent the different managed clusters in the namespaces.

1.4.13. Additional resources

Refer to Prometheus configuration for more information. For more information about recording
rules and alerting rules, refer to the recording rules and alerting rules from the Prometheus
documentation.

For more information about viewing the dashboard, see Using Grafana dashboards.

See Exporting metrics to external endpoints .

 name: awesome-app-metrics-role
rules:
 - apiGroups:
 - "cluster.open-cluster-management.io"
 resources:
 - managedclusters: 1
 resourceNames: 2
 - devcluster1
 - devcluster2
 verbs: 3
 - metrics/AwesomeAppNS

kind: ClusterRoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 name: awesome-app-metrics-role-binding
subjects:
 - kind: Group
 apiGroup: rbac.authorization.k8s.io
 name: my-awesome-app-admins
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: awesome-app-metrics-role

Red Hat Advanced Cluster Management for Kubernetes 2.11 Observability

36

https://prometheus.io/docs/prometheus/latest/configuration/configuration/
https://prometheus.io/docs/prometheus/latest/configuration/recording_rules/

See Enabling monitoring for user-defined projects.

See the Observability API.

For information about updating the certificate for the alertmanager route, see Replacing
certificates for alertmanager.

For more details about observability alerts, see Observability alerts

To learn more about alert forwarding, see the Prometheus Alertmanager documentation.

See Observability alerts for more information.

For more topics about the observability service, see Observability service.

See Management Workload Partitioning for more information.

1.5. USING OBSERVABILITY

Use the observability service to view the utilization of clusters across your fleet.

Querying metrics using the observability API

Exporting metrics to external endpoints

Viewing and exploring data

1.5.1. Querying metrics using the observability API

Observability provides an external API for metrics to be queried through the OpenShift route, rbac-
query-proxy. See the following options to get your queries for the rbac-query-proxy route:

You can get the details of the route with the following command:

oc get route rbac-query-proxy -n open-cluster-management-observability

You can also access the rbac-query-proxy route with your OpenShift OAuth access token. The
token should be associated with a user or service account, which has permission to get
namespaces. For more information, see Managing user-owned OAuth access tokens .

Complete the following steps to create proxy-byo-cert secrets for observability:

1. Get the default CA certificate and store the content of the key tls.crt in a local file. Run the
following command:

oc -n openshift-ingress get secret router-certs-default -o jsonpath="{.data.tls\.crt}" | base64 -d
> ca.crt

2. Run the following command to query metrics:

curl --cacert ./ca.crt -H "Authorization: Bearer {TOKEN}"
https://{PROXY_ROUTE_URL}/api/v1/query?query={QUERY_EXPRESSION}

Note: The QUERY_EXPRESSION is the standard Prometheus query expression. For example,
query the metrics cluster_infrastructure_provider by replacing the URL in the previously

CHAPTER 1. OBSERVABILITY SERVICE

37

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html/monitoring/enabling-monitoring-for-user-defined-projects
../../html-single/apis#observability-api
../governance/#replacing-cert-alertmanager
https://prometheus.io/docs/alerting/latest/alertmanager/
https://github.com/openshift/enhancements/blob/master/enhancements/workload-partitioning/management-workload-partitioning.md#management-workload-partitioning
https://docs.openshift.com/container-platform/4.14/authentication/managing-oauth-access-tokens.html

mentioned command with the following URL: https://{PROXY_ROUTE_URL}/api/v1/query?
query=cluster_infrastructure_provider. For more details, see Querying Prometheus.

3. Run the following command to create proxy-byo-ca secrets using the generated certificates:

4. Create proxy-byo-cert secrets using the generated certificates by using the following
command:

1.5.2. Exporting metrics to external endpoints

Export metrics to external endpoints, which support the Prometheus Remote-Write specification in real
time. Complete the following steps to export metrics to external endpoints:

1. Create the Kubernetes secret for an external endpoint with the access information of the
external endpoint in the open-cluster-management-observability namespace. View the
following example secret:

The ep.yaml is the key of the content and is used in the MultiClusterObservability custom
resource in next step. Currently, observability supports exporting metrics to endpoints without
any security checks, with basic authentication or with tls enablement. View the following tables
for a full list of supported parameters:

Name Description Schema

url
required

URL for the external endpoint. string

http_client_c
onfig
optional

Advanced configuration for the HTTP client. HttpClientConfig

HttpClientConfig

oc -n open-cluster-management-observability create secret tls proxy-byo-ca --cert ./ca.crt --
key ./ca.key

oc -n open-cluster-management-observability create secret tls proxy-byo-cert --cert
./ingress.crt --key ./ingress.key

apiVersion: v1
kind: Secret
metadata:
 name: victoriametrics
 namespace: open-cluster-management-observability
type: Opaque
stringData:
 ep.yaml: |
 url: http://victoriametrics:8428/api/v1/write
 http_client_config:
 basic_auth:
 username: test
 password: test

Red Hat Advanced Cluster Management for Kubernetes 2.11 Observability

38

https:/api/v1/query?query=cluster_infrastructure_provider
https://prometheus.io/docs/prometheus/latest/querying/basics/

Name Description Schema

basic_auth
optional

HTTP client configuration for
basic authentication.

BasicAuth

tls_config
optional

HTTP client configuration for
TLS.

TLSConfig

BasicAuth

Name Description Schema

username
optional

User name for basic
authorization.

string

password
optional

Password for basic
authorization.

string

TLSConfig

Name Description Schema

secret_name
required

Name of the secret that
contains certificates.

string

ca_file_key
optional

Key of the CA certificate in the
secret (only optional if
insecure_skip_verify is set to
true).

string

cert_file_key
required

Key of the client certificate in
the secret.

string

key_file_key
required

Key of the client key in the
secret.

string

insecure_skip_verify
optional

Parameter to skip the
verification for target
certificate.

bool

2. Add the writeStorage parameter to the MultiClusterObservability custom resource for adding
a list of external endppoints that you want to export. View the following example:

spec:
 storageConfig:
 writeStorage: 1
 - key: ep.yaml
 name: victoriametrics

CHAPTER 1. OBSERVABILITY SERVICE

39

1 Each item contains two attributes: name and key. Name is the name of the Kubernetes
secret that contains endpoint access information, and key is the key of the content in the
secret. If you add more than one item to the list, then the metrics are exported to multiple
external endpoints.

3. View the status of metric export after the metrics export is enabled by checking the
acm_remote_write_requests_total metric.

a. From the OpenShift Container Platform console of your hub cluster, navigate to the Metrics
page by clicking Metrics in the Observe section.

b. Then query the acm_remote_write_requests_total metric. The value of that metric is the
total number of requests with a specific response for one external endpoint, on one
observatorium API instance. The name label is the name for the external endpoint. The
code label is the return code of the HTTP request for the metrics export.

1.5.3. Viewing and exploring data by using dashboards

View the data from your managed clusters by accessing Grafana from the hub cluster. You can query
specific alerts and add filters for the query.

For example, to explore the cluster_infrastructure_provider alert from a single-node OpenShift cluster,
use the following query expression: cluster_infrastructure_provider{clusterType="SNO"}

Note: Do not set the ObservabilitySpec.resources.CPU.limits parameter if observability is enabled on
single node managed clusters. When you set the CPU limits, it causes the observability pod to be
counted against the capacity for your managed cluster. See the reference for Management Workload
Partitioning in the Additional resources section.

1.5.3.1. Viewing historical data

When you query historical data, manually set your query parameter options to control how much data is
displayed from the dashboard. Complete the following steps:

1. From your hub cluster, select the Grafana link that is in the console header.

2. Edit your cluster dashboard by selecting Edit Panel.

3. From the Query front-end data source in Grafana, click the Query tab.

4. Select $datasource.

5. If you want to see more data, increase the value of the Step parameter section. If the Step
parameter section is empty, it is automatically calculated.

6. Find the Custom query parameters field and select max_source_resolution=auto.

7. To verify that the data is displayed, refresh your Grafana page.

Your query data appears from the Grafana dashboard.

1.5.3.2. Viewing Red Hat Advanced Cluster Management dashboards

When you enable the Red Hat Advanced Cluster Management observability service, three dashboards
become available. the following dashboard descriptions:

Red Hat Advanced Cluster Management for Kubernetes 2.11 Observability

40

Alert Analysis: Overview dashboard of the alerts being generated within the managed cluster
fleet.

Clusters by Alert : Alert dashboard where you can filter by the alert name.

Alerts by Cluster : Alert dashboard where you can filter by cluster, and view real-time data for
alerts that are initiated or pending within the cluster environment.

1.5.3.3. Viewing the etcd table

You can also view the etcd table from the hub cluster dashboard in Grafana to learn the stability of the
etcd as a data store. Select the Grafana link from your hub cluster to view the etcd table data, which is
collected from your hub cluster. The Leader election changes across managed clusters are displayed.

1.5.3.4. Viewing the Kubernetes API server dashboard

View the following options to view the Kubernetes API server dashboards:

View the cluster fleet Kubernetes API service-level overview from the hub cluster dashboard in
Grafana.

1. Navigate to the Grafana dashboard.

2. Access the managed dashboard menu by selecting Kubernetes > Service-Level Overview
> API Server. The Fleet Overview and Top Cluster details are displayed.
The total number of clusters that are exceeding or meeting the targeted service-level
objective (SLO) value for the past seven or 30-day period, offending and non-offending
clusters, and API Server Request Duration is displayed.

View the Kubernetes API service-level overview table from the hub cluster dashboard in
Grafana.

1. Navigate to the Grafana dashboard from your hub cluster.

2. Access the managed dashboard menu by selecting Kubernetes > Service-Level Overview
> API Server. The Fleet Overview and Top Cluster details are displayed.
The error budget for the past seven or 30-day period, the remaining downtime, and trend
are displayed.

1.5.3.5. Viewing the OpenShift Virtualization dashboard

You can view the Red Hat OpenShift Virtualization dashboard to see comprehensive insights for each
cluster with the OpenShift Virtualization operator installed. The state of the operator is displayed, which
is determined by active OpenShift Virtualization alerts and the conditions of the Hyperconverged
Cluster Operator. Additionally, you view the number of running virtual machines and the operator
version for each cluster.

The dashboard also lists alerts affecting the health of the operator and separately includes all
OpenShift Virtualization alerts, even those not impacting the health of the operator. You can filter the
dashboard by cluster name, operator health alerts, health impact of alerts, and alert severity.

1.5.4. Additional resources

For more information, see Prometheus Remote-Write specification.

Read Enabling the observability service.

CHAPTER 1. OBSERVABILITY SERVICE

41

https://prometheus.io/docs/concepts/remote_write_spec/

For more topics, return to Observability service.

1.5.5. Using Grafana dashboards

Use Grafana dashboards to view hub cluster and managed cluster metrics. The data displayed in the
Grafana alerts dashboard relies on alerts metrics, originating from managed clusters. The alerts metric
does not affect managed clusters forwarding alerts to Red Hat Advanced Cluster Management alert
manager on the hub cluster. Therefore, the metrics and alerts have distinct propagation mechanisms
and follow separate code paths.

Even if you see data in the Grafana alerts dashboard, that does not guarantee that the managed cluster
alerts are successfully forwarding to the Red Hat Advanced Cluster Management hub cluster alert
manager. If the metrics are propagated from the managed clusters, you can view the data displayed in
the Grafana alerts dashboard.

To use the Grafana dashboards for your development needs, complete the following:

Setting up the Grafana developer instance

Designing your Grafana dashboard

Uninstalling the Grafana developer instance

1.5.5.1. Setting up the Grafana developer instance

You can design your Grafana dashboard by creating a grafana-dev instance. Be sure to use the most
current grafana-dev instance.

Complete the following steps to set up the Grafana developer instance:

1. Clone the open-cluster-management/multicluster-observability-operator/ repository, so that
you are able to run the scripts that are in the tools folder.

2. Run the setup-grafana-dev.sh to setup your Grafana instance. When you run the script the
following resources are created: secret/grafana-dev-config, deployment.apps/grafana-dev,
service/grafana-dev, ingress.extensions/grafana-dev, persistentvolumeclaim/grafana-dev:

./setup-grafana-dev.sh --deploy
secret/grafana-dev-config created
deployment.apps/grafana-dev created
service/grafana-dev created
serviceaccount/grafana-dev created
clusterrolebinding.rbac.authorization.k8s.io/open-cluster-management:grafana-crb-dev
created
route.route.openshift.io/grafana-dev created
persistentvolumeclaim/grafana-dev created
oauthclient.oauth.openshift.io/grafana-proxy-client-dev created
deployment.apps/grafana-dev patched
service/grafana-dev patched
route.route.openshift.io/grafana-dev patched
oauthclient.oauth.openshift.io/grafana-proxy-client-dev patched
clusterrolebinding.rbac.authorization.k8s.io/open-cluster-management:grafana-crb-dev
patched

3. Switch the user role to Grafana administrator with the switch-to-grafana-admin.sh script.

a. Select the Grafana URL, https:grafana-dev-open-cluster-management-observability.

Red Hat Advanced Cluster Management for Kubernetes 2.11 Observability

42

https://github.com/open-cluster-management/multicluster-observability-operator

a. Select the Grafana URL, https:grafana-dev-open-cluster-management-observability.
{OPENSHIFT_INGRESS_DOMAIN}, and log in.

b. Then run the following command to add the switched user as Grafana administrator. For
example, after you log in using kubeadmin, run following command:

./switch-to-grafana-admin.sh kube:admin
User <kube:admin> switched to be grafana admin

The Grafana developer instance is set up.

1.5.5.1.1. Verifying Grafana version

Verify the Grafana version from the command line interface (CLI) or from the Grafana user interface.

After you log in to your hub cluster, access the observabilty-grafana pod terminal. Run the following
command:

grafana-cli

The Grafana version that is currently deployed within the cluster environment is displayed.

Alternatively, you can navigate to the Manage tab in the Grafana dashboard. Scroll to the end of the
page, where the version is listed.

1.5.5.2. Designing your Grafana dashboard

After you set up the Grafana instance, you can design the dashboard. Complete the following steps to
refresh the Grafana console and design your dashboard:

1. From the Grafana console, create a dashboard by selecting the Create icon from the navigation
panel. Select Dashboard, and then click Add new panel.

2. From the New Dashboard/Edit Panel view, navigate to the Query tab.

3. Configure your query by selecting Observatorium from the data source selector and enter a
PromQL query.

4. From the Grafana dashboard header, click the Save icon that is in the dashboard header.

5. Add a descriptive name and click Save.

1.5.5.2.1. Designing your Grafana dashboard with a ConfigMap

Design your Grafana dashboard with a ConfigMap. You can use the generate-dashboard-configmap-
yaml.sh script to generate the dashboard ConfigMap, and to save the ConfigMap locally:

./generate-dashboard-configmap-yaml.sh "Your Dashboard Name"
Save dashboard <your-dashboard-name> to ./your-dashboard-name.yaml

If you do not have permissions to run the previously mentioned script, complete the following steps:

1. Select a dashboard and click the Dashboard settings icon.

2. Click the JSON Model icon from the navigation panel.

CHAPTER 1. OBSERVABILITY SERVICE

43

3. Copy the dashboard JSON data and paste it in the data section.

4. Modify the name and replace $your-dashboard-name. Enter a universally unique identifier
(UUID) in the uid field in data.$your-dashboard-name.json.$$your_dashboard_json. You can
use a program such as uuidegen to create a UUID. Your ConfigMap might resemble the
following file:

Notes:

If your dashboard is created within the grafana-dev instance, you can take the name of the
dashboard and pass it as an argument in the script. For example, a dashboard named Demo
Dashboard is created in the grafana-dev instance. From the CLI, you can run the following
script:

./generate-dashboard-configmap-yaml.sh "Demo Dashboard"

After running the script, you might receive the following message:

Save dashboard <demo-dashboard> to ./demo-dashboard.yaml

If your dashboard is not in the General folder, you can specify the folder name in the
annotations section of this ConfigMap:

annotations:
 observability.open-cluster-management.io/dashboard-folder: Custom

After you complete your updates for the ConfigMap, you can install it to import the
dashboard to the Grafana instance.

Verify that the YAML file is created by applying the YAML from the CLI or OpenShift Container
Platform console. A ConfigMap within the open-cluster-management-observability namespace is
created. Run the following command from the CLI:

oc apply -f demo-dashboard.yaml

From the OpenShift Container Platform console, create the ConfigMap using the demo-
dashboard.yaml file. The dashboard is located in the Custom folder.

1.5.5.3. Uninstalling the Grafana developer instance

When you uninstall the instance, the related resources are also deleted. Run the following command:

./setup-grafana-dev.sh --clean

kind: ConfigMap
apiVersion: v1
metadata:
 name: $your-dashboard-name
 namespace: open-cluster-management-observability
 labels:
 grafana-custom-dashboard: "true"
data:
 $your-dashboard-name.json: |-
 $your_dashboard_json

Red Hat Advanced Cluster Management for Kubernetes 2.11 Observability

44

secret "grafana-dev-config" deleted
deployment.apps "grafana-dev" deleted
serviceaccount "grafana-dev" deleted
route.route.openshift.io "grafana-dev" deleted
persistentvolumeclaim "grafana-dev" deleted
oauthclient.oauth.openshift.io "grafana-proxy-client-dev" deleted
clusterrolebinding.rbac.authorization.k8s.io "open-cluster-management:grafana-crb-dev" deleted

1.5.5.4. Additional resources

See Exporting metrics to external endpoints .

See uuidegen for instructions to create a UUID.

See Using managed cluster labels in Grafana for more details.

Return to the beginning of the page Using Grafana dashboard.

For topics, see the Observing environments introduction .

1.5.6. Using managed cluster labels in Grafana

Enable managed cluster labels to use them with Grafana dashboards. When observability is enabled in
the hub cluster, the observability-managed-cluster-label-allowlist ConfigMap is created in the open-
cluster-management-observability namespace. The ConfigMap contains a list of managed cluster
labels maintained by the observabilty-rbac-query-proxy pod, to populate a list of label names to filter
from within the ACM - Cluster Overview Grafana dashboard. By default, observability ignores a subset of
labels in the observability-managed-cluster-label-allowlist ConfigMap.

When a cluster is imported into the managed cluster fleet or modified, the observability-rbac-query-
proxy pod watches for any changes in reference to the managed cluster labels and automatically
updates the observability-managed-cluster-label-allowlist ConfigMap to reflect the changes. The
ConfigMap contains only unique label names, which are either included in the ignore_labels or labels
list. Your observability-managed-cluster-label-allowlist ConfigMap might resemble the following
YAML file:

data:
 managed_cluster.yaml: |
 ignore_labels: 1
 - clusterID
 - cluster.open-cluster-management.io/clusterset
 - feature.open-cluster-management.io/addon-application-manager
 - feature.open-cluster-management.io/addon-cert-policy-controller
 - feature.open-cluster-management.io/addon-cluster-proxy
 - feature.open-cluster-management.io/addon-config-policy-controller
 - feature.open-cluster-management.io/addon-governance-policy-framework
 - feature.open-cluster-management.io/addon-iam-policy-controller
 - feature.open-cluster-management.io/addon-observability-controller
 - feature.open-cluster-management.io/addon-search-collector
 - feature.open-cluster-management.io/addon-work-manager
 - installer.name
 - installer.namespace
 - local-cluster
 - name

CHAPTER 1. OBSERVABILITY SERVICE

45

https://man7.org/linux/man-pages/man1/uuidgen.1.html

+ <1> Any label that is listed in the ignore_labels keylist of the ConfigMap is removed from the drop-
down filter on the ACM - Clusters Overview Grafana dashboard. <2> The labels that are enabled are
displayed in the drop-down filter on the ACM - Clusters Overview Grafana dashboard. The values are
from the acm_managed_cluster_labels metric, depending on the label key value that is selected.

Continue reading how to use managed cluster labels in Grafana:

Adding managed cluster labels

Enabling managed cluster labels

Disabling managed cluster labels

1.5.6.1. Adding managed cluster labels

When you add a managed cluster label to the observability-managed-cluster-label-allowlist
ConfigMap, the label becomes available as a filter option in Grafana. Add a unique label to the hub
cluster, or managed cluster object that is associated with the managed cluster fleet. For example, if you
add the label, department=finance to a managed cluster, the ConfigMap is updated and might
resemble the following changes:

1.5.6.2. Enabling managed cluster labels

Enable a managed cluster label that is already disabled by removing the label from the ignore_labels
list in the observability-managed-cluster-label-allowlist ConfigMap.

For example, enable the local-cluster and name labels. Your observability-managed-cluster-label-
allowlist ConfigMap might resemble the following content:

 labels: 2
 - cloud
 - vendor

data:
 managed_cluster.yaml: |
 ignore_labels:
 - clusterID
 - cluster.open-cluster-management.io/clusterset
 - feature.open-cluster-management.io/addon-application-manager
 - feature.open-cluster-management.io/addon-cert-policy-controller
 - feature.open-cluster-management.io/addon-cluster-proxy
 - feature.open-cluster-management.io/addon-config-policy-controller
 - feature.open-cluster-management.io/addon-governance-policy-framework
 - feature.open-cluster-management.io/addon-iam-policy-controller
 - feature.open-cluster-management.io/addon-observability-controller
 - feature.open-cluster-management.io/addon-search-collector
 - feature.open-cluster-management.io/addon-work-manager
 - installer.name
 - installer.namespace
 - local-cluster
 - name
 labels:
 - cloud
 - department
 - vendor

Red Hat Advanced Cluster Management for Kubernetes 2.11 Observability

46

The ConfigMap resyncs after 30 seconds to ensure that the cluster labels are updated. After you
update the ConfigMap, check the observability-rbac-query-proxy pod logs in the open-cluster-
management-observability namespace to verify where the label is listed. The following information
might be displayed in the pod log:

enabled managedcluster labels: <label>

From the Grafana dashboard, verify that the label is listed as a value in the Label drop-down menu.

1.5.6.3. Disabling managed cluster labels

Exclude a managed cluster label from being listed in the Label drop-down filter. Add the label name to
the ignore_labels list. For example, your YAML might resemble the following file if you add local-
cluster and name back into the ignore_labels list:

Check the observability-rbac-query-proxy pod logs in the open-cluster-management-observability
namespace to verify where the label is listed. The following information might be displayed in the pod
log:

disabled managedcluster label: <label>

1.5.6.4. Additional resources

See Using Grafana dashboards.

Return to the beginning of the page, Using managed cluster labels in Grafana .

1.6. MANAGING ALERTS

Receive and define alerts for the observability service to be notified of hub cluster and managed cluster

data:
 managed_cluster.yaml: |
 ignore_labels:
 - clusterID
 - installer.name
 - installer.namespace
 labels:
 - cloud
 - vendor
 - local-cluster
 - name

data:
 managed_cluster.yaml: |
 ignore_labels:
 - clusterID
 - installer.name
 - installer.namespace
 - local-cluster
 - name
 labels:
 - cloud
 - vendor

CHAPTER 1. OBSERVABILITY SERVICE

47

Receive and define alerts for the observability service to be notified of hub cluster and managed cluster
changes.

Configuring Alertmanager

Forwarding alerts

Silencing alerts

Suppressing alerts

1.6.1. Configuring Alertmanager

Integrate external messaging tools such as email, Slack, and PagerDuty to receive notifications from
Alertmanager. You must override the alertmanager-config secret in the open-cluster-management-
observability namespace to add integrations, and configure routes for Alertmanager. Complete the
following steps to update the custom receiver rules:

1. Extract the data from the alertmanager-config secret. Run the following command:

2. Edit and save the alertmanager.yaml file configuration by running the following command:

Your updated secret might resemble the following content:

Your changes are applied immediately after it is modified. For an example of Alertmanager, see
prometheus/alertmanager.

1.6.2. Forwarding alerts

After you enable observability, alerts from your OpenShift Container Platform managed clusters are

oc -n open-cluster-management-observability get secret alertmanager-config --template='{{
index .data "alertmanager.yaml" }}' |base64 -d > alertmanager.yaml

oc -n open-cluster-management-observability create secret generic alertmanager-config --
from-file=alertmanager.yaml --dry-run -o=yaml | oc -n open-cluster-management-
observability replace secret --filename=-

global
 smtp_smarthost: 'localhost:25'
 smtp_from: 'alertmanager@example.org'
 smtp_auth_username: 'alertmanager'
 smtp_auth_password: 'password'
templates:
- '/etc/alertmanager/template/*.tmpl'
route:
 group_by: ['alertname', 'cluster', 'service']
 group_wait: 30s
 group_interval: 5m
 repeat_interval: 3h
 receiver: team-X-mails
 routes:
 - match_re:
 service: ^(foo1|foo2|baz)$
 receiver: team-X-mails

Red Hat Advanced Cluster Management for Kubernetes 2.11 Observability

48

https://github.com/prometheus/alertmanager/blob/master/doc/examples/simple.yml

After you enable observability, alerts from your OpenShift Container Platform managed clusters are
automatically sent to the hub cluster. You can use the alertmanager-config YAML file to configure
alerts with an external notification system.

View the following example of the alertmanager-config YAML file:

If you want to configure a proxy for alert forwarding, add the following global entry to the
alertmanager-config YAML file:

1.6.2.1. Disabling alert forwarding for managed clusters

To disable alert forwarding for managed clusters, add the following annotation to the
MultiClusterObservability custom resource:

When you set the annotation, the alert forwarding configuration on the managed clusters is reverted.
Any changes made to the ocp-monitoring-config config map in the openshift-monitoring namespace
are also reverted. Setting the annotation ensures that the ocp-monitoring-config config map is no
longer managed or updated by the observability operator endpoint. After you update the configuration,
the Prometheus instance on your managed cluster restarts.

Important: Metrics on your managed cluster are lost if you have a Prometheus instance with a persistent
volume for metrics, and the Prometheus instance restarts. Metrics from the hub cluster are not affected.

When the changes are reverted, a ConfigMap named cluster-monitoring-reverted is created in the
open-cluster-management-addon-observability namespace. Any new, manually added alert forward
configurations are not reverted from the ConfigMap.

Verify that the hub cluster alert manager is no longer propagating managed cluster alerts to third-party
messaging tools. See the previous section, Configuring Alertmanager .

1.6.3. Silencing alerts

Add alerts that you do not want to receive. You can silence alerts by the alert name, match label, or time

global:
 slack_api_url: '<slack_webhook_url>'

route:
 receiver: 'slack-notifications'
 group_by: [alertname, datacenter, app]

receivers:
- name: 'slack-notifications'
 slack_configs:
 - channel: '#alerts'
 text: 'https://internal.myorg.net/wiki/alerts/{{ .GroupLabels.app }}/{{ .GroupLabels.alertname }}'

global:
 slack_api_url: '<slack_webhook_url>'
 http_config:
 proxy_url: http://****

metadata:
 annotations:
 mco-disable-alerting: "true"

CHAPTER 1. OBSERVABILITY SERVICE

49

Add alerts that you do not want to receive. You can silence alerts by the alert name, match label, or time
duration. After you add the alert that you want to silence, an ID is created. Your ID for your silenced alert
might resemble the following string, d839aca9-ed46-40be-84c4-dca8773671da.

Continue reading for ways to silence alerts:

To silence a Red Hat Advanced Cluster Management alert, you must have access to the
observability-alertmanager-main pod in the open-cluster-management-observability
namespace. For example, enter the following command in the pod terminal to silence
SampleAlert:

Silence an alert by using multiple match labels. The following command uses match-label-1 and
match-label-2:

If you want to silence an alert for a specific period of time, use the --duration flag. Run the
following command to silence the SampleAlert for an hour:

You can also specify a start or end time for the silenced alert. Enter the following command to
silence the SampleAlert at a specific start time:

To view all silenced alerts that are created, run the following command:

If you no longer want an alert to be silenced, end the silencing of the alert by running the
following command:

To end the silencing of all alerts, run the following command:

1.6.3.1. Migrating observability storage

If you use alert silencers, you can migrate observability storage while retaining the silencers from its
earlier state. To do this, migrate your Red Hat Advanced Cluster Management observability storage by

amtool silence add --alertmanager.url="http://localhost:9093" --author="user" --
comment="Silencing sample alert" alertname="SampleAlert"

amtool silence add --alertmanager.url="http://localhost:9093" --author="user" --
comment="Silencing sample alert" <match-label-1>=<match-value-1> <match-label-2>=
<match-value-2>

amtool silence add --alertmanager.url="http://localhost:9093" --author="user" --
comment="Silencing sample alert" --duration="1h" alertname="SampleAlert"

amtool silence add --alertmanager.url="http://localhost:9093" --author="user" --
comment="Silencing sample alert" --start="2023-04-14T15:04:05-07:00"
alertname="SampleAlert"

amtool silence --alertmanager.url="http://localhost:9093"

amtool silence expire --alertmanager.url="http://localhost:9093" "d839aca9-ed46-40be-84c4-
dca8773671da"

amtool silence expire --alertmanager.url="http://localhost:9093" $(amtool silence query --
alertmanager.url="http://localhost:9093" -q)

Red Hat Advanced Cluster Management for Kubernetes 2.11 Observability

50

creating new StatefulSets and PersistentVolumes (PV) resources that use your chosen StorageClass
resource.

Note: The storage for PVs is different from the object storage used to store the metrics collected from
your clusters.

When you use StatefulSets and PVs to migrate your observability data to new storage, it stores the
following data components:

Observatorium or Thanos: Receives data then uploads it to object storage. Some of its
components store data in PVs. For this data, the Observatorium or Thanos automatically
regenerates the object storage on a startup, so there is no consequence if you lose this data.

Alertmanager: Only stores silenced alerts. If you want to keep these silenced alerts, you must
migrate that data to the new PV.

To migrate your observability storage, complete the following steps:

1. In the MultiClusterObservability, set the .spec.storageConfig.storageClass field to the new
storage class.

2. To ensure the data of the earlier PersistentVolumes is retained even when you delete the
PersistentVolumeClaim, go to all your existing PersistentVolumes.

3. Change the reclaimPolicy to "Retain": `oc patch pv <your-pv-name> -p '{"spec":
{"persistentVolumeReclaimPolicy":"Retain"}}'.

4. Optional: To avoid losing data, see Migrate persistent data to another Storage Class in DG 8
Operator in OCP 4.

5. Delete both the StatefulSet and the PersistentVolumeClaim in the following StatefulSet
cases:

a. alertmanager-db-observability-alertmanager-<REPLICA_NUMBER>

b. data-observability-thanos-<COMPONENT_NAME>

c. data-observability-thanos-receive-default

d. data-observability-thanos-store-shard

e. Important: You might need to delete, then re-create, the MultiClusterObservability
operator pod so that you can create the new StatefulSet.

6. Re-create a new PersistentVolumeClaim with the same name but the correct StorageClass.

7. Create a new PersistentVolumeClaim referring to the old PersistentVolume.

8. Verify that the new StatefulSet and PersistentVolumes use the new StorageClass that you
chose.

1.6.4. Suppressing alerts

Suppress Red Hat Advanced Cluster Management alerts across your clusters globally that are less
severe. Suppress alerts by defining an inhibition rule in the alertmanager-config in the open-cluster-
management-observability namespace.

An inhibition rule mutes an alert when there is a set of parameter matches that match another set of

CHAPTER 1. OBSERVABILITY SERVICE

51

https://access.redhat.com/solutions/6922821

1 1

2 2

An inhibition rule mutes an alert when there is a set of parameter matches that match another set of
existing matchers. In order for the rule to take effect, both the target and source alerts must have the
same label values for the label names in the equal list. Your inhibit_rules might resemble the following:

The inhibit_rules parameter section is defined to look for alerts in the same namespace. When a
critical alert is initiated within a namespace and if there are any other alerts that contain the
severity level warning or info in that namespace, only the critical alerts are routed to the
Alertmanager receiver. The following alerts might be displayed when there are matches:

ALERTS{alertname="foo", namespace="ns-1", severity="critical"}
ALERTS{alertname="foo", namespace="ns-1", severity="warning"}

If the value of the source_match and target_match_re parameters do not match, the alert is
routed to the receiver:

ALERTS{alertname="foo", namespace="ns-1", severity="critical"}
ALERTS{alertname="foo", namespace="ns-2", severity="warning"}

To view suppressed alerts in Red Hat Advanced Cluster Management, enter the following
command:

1.6.5. Additional resources

See Customizing observability for more details.

For more observability topics, see Observability service.

global:
 resolve_timeout: 1h
inhibit_rules: 1
 - equal:
 - namespace
 source_match: 2
 severity: critical
 target_match_re:
 severity: warning|info

amtool alert --alertmanager.url="http://localhost:9093" --inhibited

Red Hat Advanced Cluster Management for Kubernetes 2.11 Observability

52

CHAPTER 2. SEARCHING IN THE CONSOLE
For Red Hat Advanced Cluster Management for Kubernetes, search provides visibility into your
Kubernetes resources across all of your clusters. Search also indexes the Kubernetes resources and the
relationships to other resources.

Search components

Search customization and configurations

Search operations and data types

2.1. SEARCH COMPONENTS

The search architecture is composed of the following components:

Table 2.1. Search component table

Component name Metrics Metric type Description

search-collector Watches the Kubernetes
resources, collects the
resource metadata,
computes relationships
for resources across all
of your managed
clusters, and sends the
collected data to the
search-indexer. The
search-collector on
your managed cluster
runs as a pod named,
klusterlet-addon-
search.

search-indexer

Receives resource
metadata from the
collectors and writes to
PostgreSQL database.
The search-indexer
also watches resources
in the hub cluster to
keep track of active
managed clusters.

search_indexer_requ
est_duration

Histogram Time (seconds) the
search indexer takes to
process a request (from
managed cluster).

search_indexer_requ
est_size

Histogram Total changes (add,
update, delete) in the
search indexer request
(from managed cluster).

search_indexer_requ
est_count

Counter Total requests received
by the search indexer
(from managed
clusters).

CHAPTER 2. SEARCHING IN THE CONSOLE

53

search_indexer_requ
ests_in_flight

Gauge Total requests the
search indexer is
processing at a given
time.

search-api

Provides access to all
cluster data in the
search-indexer
through GraphQL and
enforces role-based
access control (RBAC).

search_api_requests Histogram Histogram of HTTP
requests duration in
seconds.

search_dbquery_dur
ation_seconds

Histogram Latency of database
requests in seconds.

search_api_db_conn
ection_failed_total

Counter The total number of
database connection
attempts that failed.

search-postgres Stores collected data
from all managed
clusters in an instance of
the PostgreSQL
database.

Component name Metrics Metric type Description

Search is configured by default on the hub cluster. When you provision or manually import a managed
cluster, the klusterlet-addon-search is enabled. If you want to disable search on your managed cluster,
see Modifying the klusterlet add-ons settings of your cluster for more information.

2.2. SEARCH CUSTOMIZATION AND CONFIGURATIONS

You can modify the default values in the search-v2-operator custom resource. To view details of the
custom resource, run the following command:

The search operator watches the search-v2-operator custom resource, reconciles the changes and
updates active pods. View the following descriptions of the configurations:

PostgreSQL database storage:
When you install Red Hat Advanced Cluster Management, the PostgreSQL database is
configured to save the PostgreSQL data in an empty directory (emptyDir) volume. If the empty
directory size is limited, you can save the PostgreSQL data on a Persistent Volume Claim (PVC)
to improve search performance. You can select a storageclass from your Red Hat Advanced
Cluster Management hub cluster to back up your search data. For example, if you select the
gp2 storageclass your configuration might resemble the following example:

oc get search search-v2-operator -o yaml

apiVersion: search.open-cluster-management.io/v1alpha1
kind: Search
metadata:
 name: search-v2-operator
 namespace: open-cluster-management

Red Hat Advanced Cluster Management for Kubernetes 2.11 Observability

54

../../html-single/add-ons#modifying-the-klusterlet-add-ons-settings-of-your-cluster

1

2

3

This configuration creates a PVC named gp2-search and is mounted to the search-postgres
pod. By default, the storage size is 10Gi. You can modify the storage size. For example, 20Gi
might be sufficient for about 200 managed clusters.

Optimize cost by tuning the pod memory or CPU requirements, replica count, and update log
levels for any of the four search pods (indexer, database, queryapi, or collector pod). Update
the deployment section of the search-v2-operator custom resource. There are four
deployments managed by the search-v2-operator, which can be updated individually. Your
search-v2-operator custom resource might resemble the following file:

You can apply resources to an indexer, database, queryapi, or collector pod.

You can add multiple environment variables in the envVar section to specify a value for
each variable that you name.

You can control the log level verbosity for any of the previous four pods by adding the - -
v=3 argument.

See the following example where memory resources are applied to the indexer pod:

 labels:
 cluster.open-cluster-management.io/backup: ""
spec:
 dbStorage:
 size: 10Gi
 storageClassName: gp2

apiVersion: search.open-cluster-management.io/v1alpha1
kind: Search
metadata:
 name: search-v2-operator
 namespace: open-cluster-management
spec:
 deployments:
 collector:
 resources: 1
 limits:
 cpu: 500m
 memory: 128Mi
 requests:
 cpu: 250m
 memory: 64Mi
 indexer:
 replicaCount: 3
 database: 2
 envVar:
 - name: POSTGRESQL_EFFECTIVE_CACHE_SIZE
 value: 1024MB
 - name: POSTGRESQL_SHARED_BUFFERS
 value: 512MB
 - name: WORK_MEM
 value: 128MB
 queryapi:
 arguments: 3
 - -v=3

CHAPTER 2. SEARCHING IN THE CONSOLE

55

Node placement for search pods:
You can update the Placement of search pods by using the nodeSelector parameter, or the
tolerations parameter. View the following example configuration:

2.3. SEARCH OPERATIONS AND DATA TYPES

Specify your search query by using search operations as conditions. Characters such as >, >=, <, <=, !=
are supported. See the following search operation table:

Table 2.2. Search operation table

Default operation Data type Description

= string, number This is the default operation.

! or != string, number This represents the NOT
operation, which means to
exclude from the search results.

<, ⇐, >, >= number

> date Dates matching the last hour, day,
week, month, and year.

* string Partial string match.

2.4. ADDITIONAL RESOURCES

For instruction about how to manage search, see Managing search.

 indexer:
 resources:
 limits:
 memory: 5Gi
 requests:
 memory: 1Gi

spec:
 dbStorage:
 size: 10Gi
 deployments:
 collector: {}
 database: {}
 indexer: {}
 queryapi: {}
 nodeSelector:
 node-role.kubernetes.io/infra: ""
 tolerations:
 - effect: NoSchedule
 key: node-role.kubernetes.io/infra
 operator: Exists

Red Hat Advanced Cluster Management for Kubernetes 2.11 Observability

56

For more topics about the Red Hat Advanced Cluster Management for Kubernetes console, see
Web console.

2.5. MANAGING SEARCH

Use search to query resource data from your clusters.

Required access: Cluster administrator

Continue reading the following topics:

Creating search configurable collection

Customizing the search console

Querying in the console

Updating klusterlet-addon-search deployments on managed clusters

2.5.1. Creating search configurable collection

To define which Kubernetes resources get collected from the cluster, create the search-collector-
config config map. Complete the following steps:

1. Run the following command to create the search-collector-config config map:

2. List the resources in the allow (data.AllowedResources) and deny list
(data.DeniedResources) sections within the config map. Your config map might resemble the
following YAML file:

oc apply -f <your-search-collector-config>.yaml

apiVersion: v1
kind: ConfigMap
metadata:
 name: search-collector-config
 namespace: <namespace where search-collector add-on is deployed>
data:
 AllowedResources: |- 1
 - apiGroups:
 - "*"
 resources:
 - services
 - pods
 - apiGroups:
 - admission.k8s.io
 - authentication.k8s.io
 resources:
 - "*"
 DeniedResources: |- 2
 - apiGroups:
 - "*"
 resources:
 - secrets
 - apiGroups:

CHAPTER 2. SEARCHING IN THE CONSOLE

57

../../html-single/web_console#web-console

1

2

The previous config map example displays services and pods to be collected from all
apiGroups, while allowing all resources to be collected from the admission.k8s.io and
authentication.k8s.io apiGroups.

The config map example also prevents the central collection of secrets from all
apiGroups while preventing the collection of policies, iampolicies, and
certificatepolicies from the apiGroup admission.k8s.io.

Note: If you do not provide a config map, all resources are collected by default. If you only
provide AllowedResources, all resources not listed in AllowedResources are automatically
excluded. Resources listed in AllowedResources and DeniedResources at the same time are
also excluded.

2.5.2. Customizing the search console

Customize your search results and limits. Complete the following tasks to perform the customization:

1. Customize the search result limit from the OpenShift Container Platform console.

a. Update the console-mce-config in the multicluster-engine namespace. These settings
apply to all users and might affect performance. View the following performance parameter
descriptions:

SAVED_SEARCH_LIMIT - The maximum amount of saved searches for each user. By
default, there is a limit of ten saved searches for each user. The default value is 10. To
update the limit, add the following key value to the console-config config map:
SAVED_SEARCH_LIMIT: x.

SEARCH_RESULT_LIMIT - The maximum amount of search results displayed in the
console. Default value is 1000. To remove this limit set to -1.

SEARCH_AUTOCOMPLETE_LIMIT - The maximum number of suggestions retrieved
for the search bar typeahead. Default value is 10,000. To remove this limit set to -1.

b. Run the following patch command from the OpenShift Container Platform console to
change the search result to 100 items:

2. To add, edit, or remove suggested searches, create a config map named console-search-
config and configure the suggestedSearches section. Suggested searches that are listed are
also displayed from the console. It is required to have an id, name, and searchText for each
search object. View the following config map example:

 - admission.k8s.io
 resources:
 - policies
 - iampolicies
 - certificatepolicies

oc patch configmap console-mce-config -n multicluster-engine --type merge -p '{"data":
{"SEARCH_RESULT_LIMIT":"100"}}'

kind: ConfigMap
apiVersion: v1
metadata:
 name: console-search-config

Red Hat Advanced Cluster Management for Kubernetes 2.11 Observability

58

1 Add the namespace where search is enabled.

2.5.3. Querying in the console

You can type any text value in the Search box and results include anything with that value from any
property, such as a name or namespace. Queries that contain an empty space are not supported.

For more specific search results, include the property selector in your search. You can combine related
values for the property for a more precise scope of your search. For example, search for cluster:dev red
to receive results that match the string "red" in the dev cluster.

Complete the following steps to make queries with search:

1. Click Search in the navigation menu.

2. Type a word in the Search box , then Search finds your resources that contain that value.

As you search for resources, you receive other resources that are related to your original
search result, which help you visualize how the resources interact with other resources in the
system.

Search returns and lists each cluster with the resource that you search. For resources in the
hub cluster, the cluster name is displayed as local-cluster.

 namespace: <acm-namespace> 1
data:
 suggestedSearches: |-
 [
 {
 "id": "search.suggested.workloads.name",
 "name": "Workloads",
 "description": "Show workloads running on your fleet",
 "searchText": "kind:DaemonSet,Deployment,Job,StatefulSet,ReplicaSet"
 },
 {
 "id": "search.suggested.unhealthy.name",
 "name": "Unhealthy pods",
 "description": "Show pods with unhealthy status",
 "searchText": "kind:Pod
status:Pending,Error,Failed,Terminating,ImagePullBackOff,CrashLoopBackOff,RunContainerEr
ror,ContainerCreating"
 },
 {
 "id": "search.suggested.createdLastHour.name",
 "name": "Created last hour",
 "description": "Show resources created within the last hour",
 "searchText": "created:hour"
 },
 {
 "id": "search.suggested.virtualmachines.name",
 "name": "Virtual Machines",
 "description": "Show virtual machine resources",
 "searchText": "kind:VirtualMachine"
 }
]

CHAPTER 2. SEARCHING IN THE CONSOLE

59

Your search results are grouped by kind, and each resource kind is grouped in a table.

Your search options depend on your cluster objects.

You can refine your results with specific labels. Search is case-sensitive when you query
labels. See the following examples that you can select for filtering: name, namespace,
status, and other resource fields. Auto-complete provides suggestions to refine your
search. See the following example:

Search for a single field, such as kind:pod to find all pod resources.

Search for multiple fields, such as kind:pod namespace:default to find the pods in the
default namespace.
Notes:

When you search for more than one property selector with multiple values, the search
returns either of the values that were queried. View the following examples:

When you search for kind:Pod name:a, any pod named a is returned.

When you search for kind:Pod name:a,b, any pod named a or b are returned.

Search for kind:pod status:!Running to find all pod resources where the status is not
Running.

Search for kind:pod restarts:>1 to find all pods that restarted at least twice.

3. If you want to save your search, click the Save search icon.

4. To download your search results, select the Export as CSV button.

2.5.4. Updating klusterlet-addon-search deployments on managed clusters

To collect the Kubernetes objects from the managed clusters, the klusterlet-addon-search pod is run
on all the managed clusters where search is enabled. This deployment is run in the open-cluster-
management-agent-addon namespace. A managed cluster with a high number of resources might
require more memory for the klusterlet-addon-search deployment to function.

Resource requirements for the klusterlet-addon-search pod in a managed cluster can be specified in
the ManagedClusterAddon custom resource in your Red Hat Advanced Cluster Management hub
cluster. There is a namespace for each managed cluster with the managed cluster name. Complete the
following steps:

1. Edit the ManagedClusterAddon custom resource from the namespace matching the managed
cluster name. Run the following command to update the resource requirement in xyz managed
cluster:

2. Append the resource requirements as annotations. View the following example:

oc edit managedclusteraddon search-collector -n xyz

apiVersion: addon.open-cluster-management.io/v1alpha1
kind: ManagedClusterAddOn
metadata:
 annotations: addon.open-cluster-management.io/search_memory_limit: 2048Mi
 addon.open-cluster-management.io/search_memory_request: 512Mi

Red Hat Advanced Cluster Management for Kubernetes 2.11 Observability

60

The annotation overrides the resource requirements on the managed clusters and automatically restarts
the pod with new resource requirements.

Note: You can discover all resources defined in your managed cluster by using the API Explorer in the
console. Alternatively, you can discover all resources by running the following command: oc api-
resources

2.5.5. Additional resources

See multicluster global hub for more details.

See Observing environments introduction .

CHAPTER 2. SEARCHING IN THE CONSOLE

61

../../html-single/multicluster_global_hub#multicluster-global-hub

CHAPTER 3. USING OBSERVABILITY WITH RED HAT
INSIGHTS

Red Hat Insights is integrated with Red Hat Advanced Cluster Management observability, and is enabled
to help identify existing or potential problems in your clusters. Red Hat Insights helps you to identify,
prioritize, and resolve stability, performance, network, and security risks. Red Hat OpenShift Container
Platform offers cluster health monitoring through Red Hat OpenShift Cluster Manager. Red Hat
OpenShift Cluster Manager collects anonymized, aggregated information about the health, usage, and
size of the clusters. For more information, see Red Hat Insights product documentation .

When you create or import an OpenShift cluster, anonymized data from your managed cluster is
automatically sent to Red Hat. This information is used to create insights, which provide cluster health
information. Red Hat Advanced Cluster Management administrator can use this health information to
create alerts based on severity.

Required access: Cluster administrator

3.1. PREREQUISITES

Ensure that Red Hat Insights is enabled. For more information, see Modifying the global cluster
pull secret to disable remote health reporting.

Install OpenShift Container Platform version 4.0 or later.

Hub cluster user, who is registered to Red Hat OpenShift Cluster Manager, must be able to
manage all the Red Hat Advanced Cluster Management managed clusters in Red Hat OpenShift
Cluster Manager.

3.2. MANAGING INSIGHT POLICYREPORTS

Red Hat Advanced Cluster Management for Kubernetes PolicyReports are violations that are
generated by the insights-client. The PolicyReports are used to define and configure alerts that are
sent to incident management systems. When there is a violation, alerts from a PolicyReport are sent to
incident management system.

3.2.1. Searching for insight policy reports

You can search for a specific insight PolicyReport that has a violation, across your managed clusters.
Complete the following steps:

1. Log in to your Red Hat Advanced Cluster Management hub cluster.

2. Select Search from the navigation menu.

3. Enter the following query: kind:PolicyReport.
Note: The PolicyReport name matches the name of the cluster.

4. You can specify your query with the insight policy violation and categories. When you select a
PolicyReport name, you are redirected to the Details page of the associated cluster. The
Insights sidebar is automatically displayed.

5. If the search service is disabled and you want to search for an insight, run the following
command from your hub cluster:

Red Hat Advanced Cluster Management for Kubernetes 2.11 Observability

62

https://docs.redhat.com/en/documentation/red_hat_insights/1-latest
https://docs.openshift.com/container-platform/4.14/support/remote_health_monitoring/opting-out-of-remote-health-reporting.html#insights-operator-new-pull-secret_opting-out-remote-health-reporting

oc get policyreport --all-namespaces

3.2.2. Viewing identified issues from the console

You can view the identified issues on a specific cluster. Complete the following steps:

1. Log in to your Red Hat Advanced Cluster Management cluster.

2. Select Overview from the navigation menu.

3. Check the Cluster issues summary card. Select a severity link to view the PolicyReports that are
associated with that severity. Details of the cluster issues and the severities are displayed from
the Search page. Policy reports that are associated with the severity and have one or more
issues appear.

4. Select a policy report to view cluster details from the Clusters page. The Status card displays
information about Nodes, Applications, Policy violations , and Identified issues.

5. Select the Number of identified issues to view details. The Identified issues card represents the
information from Red Hat insights. The Identified issues status displays the number of issues by
severity. The triage levels used for the issues are the following severity categories: Critical,
Major, Low, and Warning.

a. Alternatively, you can select Clusters from the navigation menu.

b. Select a managed cluster from the table to view more details.

c. From the Status card, view the number of identified issues.

6. Select the number of potential issues to view the severity chart and recommended remediations
for the issues from the Potential issue side panel. You can also use the search feature to search
for recommended remediations. The remediation option displays the Description of the
vulnerability, Category that vulnerability is associated with, and the Total risk.

7. Click the link to the vulnerability to view steps on How to remediate and the Reason for the
vulnerability.
Note: When you resolve the issue, you receive the Red Hat Insights every 30 minutes, and Red
Hat Insights is updated every two hours.

8. Be sure to verify which component sent the alert message from the PolicyReport.

a. Navigate to the Governance page and select a specific PolicyReport.

b. Select the Status tab and click the View details link to view the PolicyReport YAML file.

c. Locate the source parameter, which informs you of the component that sent the violation.
The value options are grc and insights.

3.2.3. Viewing update risk predictions

View the potential risks for updating your managed clusters. Complete the following steps:

1. Log in to your managed cluster.

2. Go to the Overview page.

CHAPTER 3. USING OBSERVABILITY WITH RED HAT INSIGHTS

63

3. From the Powered by Insights section, you can view the percentage of clusters with predicted
risks, which are listed by severity.

4. Select the number for the severity to view the list of clusters from the Clusters page.

5. Select the cluster that you want, then click the Actions drop-down button.

6. Click Upgrade clusters to view the risk for the upgdate.

7. From the Upgrade clusters modal, find the Upgrade risks column and click the link for the
number of risks to view information in the Hybrid Cloud console.

3.3. ADDITIONAL RESOURCES

Learn how to create custom alert rules for the PolicyReports, see Configuring Alertmanager
for more information.

See Observability service.

Red Hat Advanced Cluster Management for Kubernetes 2.11 Observability

64

	Table of Contents
	CHAPTER 1. OBSERVABILITY SERVICE
	1.1. OBSERVABILITY ARCHITECTURE
	1.1.1. Observability open source components
	1.1.2. Observability architecture diagram
	1.1.3. Persistent stores used in the observability service
	1.1.4. Additional resources

	1.2. OBSERVABILITY CONFIGURATION
	1.2.1. Metric types
	1.2.2. Observability pod capacity requests
	1.2.3. Additional resources

	1.3. ENABLING THE OBSERVABILITY SERVICE
	1.3.1. Prerequisites
	1.3.2. Enabling observability from the command line interface
	1.3.2.1. Configuring storage for AWS Security Token Service
	1.3.2.2. Generating access keys using the AWS Security Service
	1.3.2.3. Creating the MultiClusterObservability custom resource

	1.3.3. Enabling observability from the Red Hat OpenShift Container Platform console
	1.3.3.1. Verifying the Thanos version

	1.3.4. Disabling observability
	1.3.4.1. Disabling observability on all clusters
	1.3.4.2. Disabling observability on a single cluster

	1.3.5. Removing observability
	1.3.6. Additional resources

	1.4. CUSTOMIZING OBSERVABILITY CONFIGURATION
	1.4.1. Creating custom rules
	1.4.2. Adding custom metrics
	1.4.2.1. Adding user workload metrics
	1.4.2.2. Removing default metrics

	1.4.3. Adding advanced configuration for retention
	1.4.4. Dynamic metrics for single-node OpenShift clusters
	1.4.5. Updating the MultiClusterObservability custom resource replicas from the console
	1.4.6. Increasing and decreasing persistent volumes and persistent volume claims
	1.4.7. Customizing route certificate
	1.4.8. Customizing certificates for accessing the object store
	1.4.9. Configuring proxy settings for observability add-ons
	1.4.9.1. Prerequisite

	1.4.10. Disabling proxy settings for observability add-ons
	1.4.11. Customizing the managed cluster Observatorium API and Alertmanager URLs (Technology Preview)
	1.4.12. Configuring fine-grain RBAC (Technology Preview)
	1.4.13. Additional resources

	1.5. USING OBSERVABILITY
	1.5.1. Querying metrics using the observability API
	1.5.2. Exporting metrics to external endpoints
	1.5.3. Viewing and exploring data by using dashboards
	1.5.3.1. Viewing historical data
	1.5.3.2. Viewing Red Hat Advanced Cluster Management dashboards
	1.5.3.3. Viewing the etcd table
	1.5.3.4. Viewing the Kubernetes API server dashboard
	1.5.3.5. Viewing the OpenShift Virtualization dashboard

	1.5.4. Additional resources
	1.5.5. Using Grafana dashboards
	1.5.5.1. Setting up the Grafana developer instance
	1.5.5.2. Designing your Grafana dashboard
	1.5.5.3. Uninstalling the Grafana developer instance
	1.5.5.4. Additional resources

	1.5.6. Using managed cluster labels in Grafana
	1.5.6.1. Adding managed cluster labels
	1.5.6.2. Enabling managed cluster labels
	1.5.6.3. Disabling managed cluster labels
	1.5.6.4. Additional resources

	1.6. MANAGING ALERTS
	1.6.1. Configuring Alertmanager
	1.6.2. Forwarding alerts
	1.6.2.1. Disabling alert forwarding for managed clusters

	1.6.3. Silencing alerts
	1.6.3.1. Migrating observability storage

	1.6.4. Suppressing alerts
	1.6.5. Additional resources

	CHAPTER 2. SEARCHING IN THE CONSOLE
	2.1. SEARCH COMPONENTS
	2.2. SEARCH CUSTOMIZATION AND CONFIGURATIONS
	2.3. SEARCH OPERATIONS AND DATA TYPES
	2.4. ADDITIONAL RESOURCES
	2.5. MANAGING SEARCH
	2.5.1. Creating search configurable collection
	2.5.2. Customizing the search console
	2.5.3. Querying in the console
	2.5.4. Updating klusterlet-addon-search deployments on managed clusters
	2.5.5. Additional resources

	CHAPTER 3. USING OBSERVABILITY WITH RED HAT INSIGHTS
	3.1. PREREQUISITES
	3.2. MANAGING INSIGHT POLICYREPORTS
	3.2.1. Searching for insight policy reports
	3.2.2. Viewing identified issues from the console
	3.2.3. Viewing update risk predictions

	3.3. ADDITIONAL RESOURCES

