
Red Hat AMQ 2020.Q4

AMQ Streams on OpenShift Overview

For use with AMQ Streams 1.6 on OpenShift Container Platform

Last Updated: 2020-12-02

Red Hat AMQ 2020.Q4 AMQ Streams on OpenShift Overview

For use with AMQ Streams 1.6 on OpenShift Container Platform

Legal Notice

Copyright © 2020 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide provides an overview of the features and capabilities of AMQ Streams.

. .

. .

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. KEY FEATURES
1.1. KAFKA CAPABILITIES
1.2. KAFKA USE CASES
1.3. HOW AMQ STREAMS SUPPORTS KAFKA

CHAPTER 2. ABOUT KAFKA
2.1. KAFKA CONCEPTS
2.2. PRODUCERS AND CONSUMERS

CHAPTER 3. AMQ STREAMS DEPLOYMENT OF KAFKA
3.1. KAFKA COMPONENT ARCHITECTURE
3.2. KAFKA BRIDGE INTERFACE

3.2.1. HTTP requests
3.2.2. Supported clients for the Kafka Bridge

CHAPTER 4. AMQ STREAMS OPERATORS
Operators
4.1. CLUSTER OPERATOR
4.2. TOPIC OPERATOR
4.3. USER OPERATOR

CHAPTER 5. KAFKA CONFIGURATION
5.1. CUSTOM RESOURCES

Kafka topic custom resource
5.2. COMMON CONFIGURATION

Example YAML showing common configuration
5.3. KAFKA CLUSTER CONFIGURATION

Example YAML showing Kafka configuration
5.4. KAFKA MIRRORMAKER CONFIGURATION

MirrorMaker 2.0
Cluster configuration
Bidirectional replication across two clusters
Example YAML showing MirrorMaker 2.0 configuration

MirrorMaker
Key Consumer configuration
Key Producer configuration
Example YAML showing MirrorMaker configuration

5.5. KAFKA CONNECT CONFIGURATION
Example YAML showing Kafka Connect configuration
Connectors
Managing connectors
Example YAML showing KafkaConnector configuration
Example YAML showing annotation to enable KafkaConnector

5.6. KAFKA BRIDGE CONFIGURATION
CORS
Example YAML showing Kafka Bridge configuration

CHAPTER 6. SECURING KAFKA
6.1. ENCRYPTION
6.2. AUTHENTICATION
6.3. AUTHORIZATION

CHAPTER 7. MONITORING

4
4
4
4

6
6
7

9
9

10
10
11

13
13
14
15
16

17
17
17
17
18
19

20
20
20
21
22
22
23
23
23
23
24
24
24
25
25
25
25
26
26

27
27
27
28

29

Table of Contents

1

. .

7.1. PROMETHEUS
7.2. GRAFANA
7.3. KAFKA EXPORTER
7.4. DISTRIBUTED TRACING

Tracing for Kafka clients
7.5. CRUISE CONTROL

APPENDIX A. USING YOUR SUBSCRIPTION
Accessing Your Account
Activating a Subscription
Downloading Zip and Tar Files

29
30
30
30
30
30

31
31
31
31

Red Hat AMQ 2020.Q4 AMQ Streams on OpenShift Overview

2

Table of Contents

3

CHAPTER 1. KEY FEATURES
AMQ Streams simplifies the process of running Apache Kafka in an OpenShift cluster.

This guide is intended as a starting point for building an understanding of AMQ Streams. The guide
introduces some of the key concepts behind Kafka, which is central to AMQ Streams, explaining briefly
the purpose of Kafka components. Configuration points are outlined, including options to secure and
monitor Kafka. A distribution of AMQ Streams provides the files to deploy and manage a Kafka cluster,
as well as example files for configuration and monitoring of your deployment.

A typical Kafka deployment is described, as well as the tools used to deploy and manage Kafka.

1.1. KAFKA CAPABILITIES

The underlying data stream-processing capabilities and component architecture of Kafka can deliver:

Microservices and other applications to share data with extremely high throughput and low
latency

Message ordering guarantees

Message rewind/replay from data storage to reconstruct an application state

Message compaction to remove old records when using a key-value log

Horizontal scalability in a cluster configuration

Replication of data to control fault tolerance

Retention of high volumes of data for immediate access

1.2. KAFKA USE CASES

Kafka’s capabilities make it suitable for:

Event-driven architectures

Event sourcing to capture changes to the state of an application as a log of events

Message brokering

Website activity tracking

Operational monitoring through metrics

Log collection and aggregation

Commit logs for distributed systems

Stream processing so that applications can respond to data in real time

1.3. HOW AMQ STREAMS SUPPORTS KAFKA

AMQ Streams provides container images and Operators for running Kafka on OpenShift. AMQ Streams

Red Hat AMQ 2020.Q4 AMQ Streams on OpenShift Overview

4

AMQ Streams provides container images and Operators for running Kafka on OpenShift. AMQ Streams
Operators are fundamental to the running of AMQ Streams. The Operators provided with AMQ Streams
are purpose-built with specialist operational knowledge to effectively manage Kafka.

Operators simplify the process of:

Deploying and running Kafka clusters

Deploying and running Kafka components

Configuring access to Kafka

Securing access to Kafka

Upgrading Kafka

Managing brokers

Creating and managing topics

Creating and managing users

CHAPTER 1. KEY FEATURES

5

CHAPTER 2. ABOUT KAFKA
Apache Kafka is an open-source distributed publish-subscribe messaging system for fault-tolerant real-
time data feeds.

Additional resources

For more information about Apache Kafka, see the Apache Kafka website.

2.1. KAFKA CONCEPTS

Knowledge of the key concepts of Kafka is important in understanding how AMQ Streams works.

A Kafka cluster comprises multiple brokers. Topics are used to receive and store data in a Kafka cluster.
Topics are split by partitions, where the data is written. Partitions are replicated across topics for fault
tolerance.

Kafka brokers and topics

Broker

A broker, sometimes referred to as a server or node, orchestrates the storage and passing of
messages.

Topic

A topic provides a destination for the storage of data. Each topic is split into one or more partitions.

Cluster

A group of broker instances.

Partition

The number of topic partitions is defined by a topic partition count .

Partition leader

A partition leader handles all producer requests for a topic.

Partition follower

Red Hat AMQ 2020.Q4 AMQ Streams on OpenShift Overview

6

http://kafka.apache.org

A partition follower replicates the partition data of a partition leader, optionally handling consumer
requests.
Topics use a replication factor to configure the number of replicas of each partition within the cluster.
A topic comprises at least one partition.

An in-sync replica has the same number of messages as the leader. Configuration defines how many
replicas must be in-sync to be able to produce messages, ensuring that a message is committed only
after it has been successfully copied to the replica partition. In this way, if the leader fails the message
is not lost.

In the Kafka brokers and topics diagram, we can see each numbered partition has a leader and two
followers in replicated topics.

2.2. PRODUCERS AND CONSUMERS

Producers and consumers send and receive messages (publish and subscribe) through brokers.
Messages comprise an optional key and a value that contains the message data, plus headers and
related metadata. The key is used to identify the subject of the message, or a property of the message.
Messages are delivered in batches, and batches and records contain headers and metadata that provide
details that are useful for filtering and routing by clients, such as the timestamp and offset position for
the record.

Producers and consumers

Producer

A producer sends messages to a broker topic to be written to the end offset of a partition. Messages
are written to partitions by a producer on a round robin basis, or to a specific partition based on the
message key.

Consumer

A consumer subscribes to a topic and reads messages according to topic, partition and offset.

Consumer group

Consumer groups are used to share a typically large data stream generated by multiple producers

CHAPTER 2. ABOUT KAFKA

7

from a given topic. Consumers are grouped using a group.id, allowing messages to be spread across
the members. Consumers within a group do not read data from the same partition, but can receive
data from one or more partitions.

Offsets

Offsets describe the position of messages within a partition. Each message in a given partition has a
unique offset, which helps identify the position of a consumer within the partition to track the number
of records that have been consumed.
Committed offsets are written to an offset commit log. A __consumer_offsets topic stores
information on committed offsets, the position of last and next offset, according to consumer group.

Producing and consuming data

Red Hat AMQ 2020.Q4 AMQ Streams on OpenShift Overview

8

CHAPTER 3. AMQ STREAMS DEPLOYMENT OF KAFKA
Apache Kafka components are provided for deployment to OpenShift with the AMQ Streams
distribution. The Kafka components are generally run as clusters for availability.

A typical deployment incorporating Kafka components might include:

Kafka cluster of broker nodes

ZooKeeper cluster of replicated ZooKeeper instances

Kafka Connect cluster for external data connections

Kafka MirrorMaker cluster to mirror the Kafka cluster in a secondary cluster

Kafka Exporter to extract additional Kafka metrics data for monitoring

Kafka Bridge to make HTTP-based requests to the Kafka cluster

Not all of these components are mandatory, though you need Kafka and ZooKeeper as a minimum.
Some components can be deployed without Kafka, such as MirrorMaker or Kafka Connect.

3.1. KAFKA COMPONENT ARCHITECTURE

A cluster of Kafka brokers is main part of the Apache Kafka project responsible for delivering messages.

A broker uses Apache ZooKeeper for storing configuration data and for cluster coordination. Before
running Apache Kafka, an Apache ZooKeeper cluster has to be ready.

Each of the other Kafka components interact with the Kafka cluster to perform specific roles.

Kafka component interaction

Apache ZooKeeper

Apache ZooKeeper is a core dependency for Kafka as it provides a cluster coordination service,

CHAPTER 3. AMQ STREAMS DEPLOYMENT OF KAFKA

9

Apache ZooKeeper is a core dependency for Kafka as it provides a cluster coordination service,
storing and tracking the status of brokers and consumers. ZooKeeper is also used for leader election
of partitions.

Kafka Connect

Kafka Connect is an integration toolkit for streaming data between Kafka brokers and other systems
using Connector plugins. Kafka Connect provides a framework for integrating Kafka with an external
data source or target, such as a database, for import or export of data using connectors. Connectors
are plugins that provide the connection configuration needed.

A source connector pushes external data into Kafka.

A sink connector extracts data out of Kafka
External data is translated and transformed into the appropriate format.

You can deploy Kafka Connect with Source2Image support, which provides a convenient way
to include connectors.

Kafka MirrorMaker

Kafka MirrorMaker replicates data between two Kafka clusters, within or across data centers.
MirrorMaker takes messages from a source Kafka cluster and writes them to a target Kafka cluster.

Kafka Bridge

Kafka Bridge provides an API for integrating HTTP-based clients with a Kafka cluster.

Kafka Exporter

Kafka Exporter extracts data for analysis as Prometheus metrics, primarily data relating to offsets,
consumer groups, consumer lag and topics. Consumer lag is the delay between the last message
written to a partition and the message currently being picked up from that partition by a consumer

3.2. KAFKA BRIDGE INTERFACE

The Kafka Bridge provides a RESTful interface that allows HTTP-based clients to interact with a Kafka
cluster. It offers the advantages of a web API connection to AMQ Streams, without the need for client
applications to interpret the Kafka protocol.

The API has two main resources — consumers and topics — that are exposed and made accessible
through endpoints to interact with consumers and producers in your Kafka cluster. The resources relate
only to the Kafka Bridge, not the consumers and producers connected directly to Kafka.

3.2.1. HTTP requests

The Kafka Bridge supports HTTP requests to a Kafka cluster, with methods to:

Send messages to a topic.

Retrieve messages from topics.

Retrieve a list of partitions for a topic.

Create and delete consumers.

Subscribe consumers to topics, so that they start receiving messages from those topics.

Retrieve a list of topics that a consumer is subscribed to.

Red Hat AMQ 2020.Q4 AMQ Streams on OpenShift Overview

10

Unsubscribe consumers from topics.

Assign partitions to consumers.

Commit a list of consumer offsets.

Seek on a partition, so that a consumer starts receiving messages from the first or last offset
position, or a given offset position.

The methods provide JSON responses and HTTP response code error handling. Messages can be sent
in JSON or binary formats.

Clients can produce and consume messages without the requirement to use the native Kafka protocol.

Additional resources

To view the API documentation, including example requests and responses, see the Kafka
Bridge API reference.

3.2.2. Supported clients for the Kafka Bridge

You can use the Kafka Bridge to integrate both internal and external HTTP client applications with your
Kafka cluster.

Internal clients

Internal clients are container-based HTTP clients running in the same OpenShift cluster as the Kafka
Bridge itself. Internal clients can access the Kafka Bridge on the host and port defined in the
KafkaBridge custom resource.

External clients

External clients are HTTP clients running outside the OpenShift cluster in which the Kafka Bridge is
deployed and running. External clients can access the Kafka Bridge through an OpenShift Route, a
loadbalancer service, or using an Ingress.

HTTP internal and external client integration

CHAPTER 3. AMQ STREAMS DEPLOYMENT OF KAFKA

11

https://strimzi.io/docs/bridge/latest/

Red Hat AMQ 2020.Q4 AMQ Streams on OpenShift Overview

12

CHAPTER 4. AMQ STREAMS OPERATORS
AMQ Streams supports Kafka using Operators to deploy and manage the components and
dependencies of Kafka to OpenShift.

Operators are a method of packaging, deploying, and managing an OpenShift application. AMQ Streams
Operators extend OpenShift functionality, automating common and complex tasks related to a Kafka
deployment. By implementing knowledge of Kafka operations in code, Kafka administration tasks are
simplified and require less manual intervention.

Operators
AMQ Streams provides Operators for managing a Kafka cluster running within an OpenShift cluster.

Cluster Operator

Deploys and manages Apache Kafka clusters, Kafka Connect, Kafka MirrorMaker, Kafka Bridge, Kafka
Exporter, and the Entity Operator

Entity Operator

Comprises the Topic Operator and User Operator

Topic Operator

Manages Kafka topics

User Operator

Manages Kafka users

The Cluster Operator can deploy the Topic Operator and User Operator as part of an Entity Operator
configuration at the same time as a Kafka cluster.

Operators within the AMQ Streams architecture

CHAPTER 4. AMQ STREAMS OPERATORS

13

4.1. CLUSTER OPERATOR

AMQ Streams uses the Cluster Operator to deploy and manage clusters for:

Kafka (including ZooKeeper, Entity Operator, Kafka Exporter, and Cruise Control)

Kafka Connect

Kafka MirrorMaker

Kafka Bridge

Custom resources are used to deploy the clusters.

For example, to deploy a Kafka cluster:

A Kafka resource with the cluster configuration is created within the OpenShift cluster.

The Cluster Operator deploys a corresponding Kafka cluster, based on what is declared in the
Kafka resource.

The Cluster Operator can also deploy (through configuration of the Kafka resource):

A Topic Operator to provide operator-style topic management through KafkaTopic custom
resources

A User Operator to provide operator-style user management through KafkaUser custom

Red Hat AMQ 2020.Q4 AMQ Streams on OpenShift Overview

14

A User Operator to provide operator-style user management through KafkaUser custom
resources

The Topic Operator and User Operator function within the Entity Operator on deployment.

Example architecture for the Cluster Operator

4.2. TOPIC OPERATOR

The Topic Operator provides a way of managing topics in a Kafka cluster through OpenShift resources.

Example architecture for the Topic Operator

The role of the Topic Operator is to keep a set of KafkaTopic OpenShift resources describing Kafka
topics in-sync with corresponding Kafka topics.

Specifically, if a KafkaTopic is:

Created, the Topic Operator creates the topic

CHAPTER 4. AMQ STREAMS OPERATORS

15

Deleted, the Topic Operator deletes the topic

Changed, the Topic Operator updates the topic

Working in the other direction, if a topic is:

Created within the Kafka cluster, the Operator creates a KafkaTopic

Deleted from the Kafka cluster, the Operator deletes the KafkaTopic

Changed in the Kafka cluster, the Operator updates the KafkaTopic

This allows you to declare a KafkaTopic as part of your application’s deployment and the Topic
Operator will take care of creating the topic for you. Your application just needs to deal with producing
or consuming from the necessary topics.

If the topic is reconfigured or reassigned to different Kafka nodes, the KafkaTopic will always be up to
date.

4.3. USER OPERATOR

The User Operator manages Kafka users for a Kafka cluster by watching for KafkaUser resources that
describe Kafka users, and ensuring that they are configured properly in the Kafka cluster.

For example, if a KafkaUser is:

Created, the User Operator creates the user it describes

Deleted, the User Operator deletes the user it describes

Changed, the User Operator updates the user it describes

Unlike the Topic Operator, the User Operator does not sync any changes from the Kafka cluster with the
OpenShift resources. Kafka topics can be created by applications directly in Kafka, but it is not expected
that the users will be managed directly in the Kafka cluster in parallel with the User Operator.

The User Operator allows you to declare a KafkaUser resource as part of your application’s deployment.
You can specify the authentication and authorization mechanism for the user. You can also configure
user quotas that control usage of Kafka resources to ensure, for example, that a user does not
monopolize access to a broker.

When the user is created, the user credentials are created in a Secret. Your application needs to use the
user and its credentials for authentication and to produce or consume messages.

In addition to managing credentials for authentication, the User Operator also manages authorization
rules by including a description of the user’s access rights in the KafkaUser declaration.

Red Hat AMQ 2020.Q4 AMQ Streams on OpenShift Overview

16

CHAPTER 5. KAFKA CONFIGURATION
A deployment of Kafka components to an OpenShift cluster using AMQ Streams is highly configurable
through the application of custom resources. Custom resources are created as instances of APIs added
by Custom resource definitions (CRDs) to extend OpenShift resources.

CRDs act as configuration instructions to describe the custom resources in an OpenShift cluster, and are
provided with AMQ Streams for each Kafka component used in a deployment, as well as users and
topics. CRDs and custom resources are defined as YAML files. Example YAML files are provided with
the AMQ Streams distribution.

CRDs also allow AMQ Streams resources to benefit from native OpenShift features like CLI accessibility
and configuration validation.

In this chapter we look at how Kafka components are configured through custom resources, starting
with common configuration points and then important configuration considerations specific to
components.

5.1. CUSTOM RESOURCES

After a new custom resource type is added to your cluster by installing a CRD, you can create instances
of the resource based on its specification.

The custom resources for AMQ Streams components have common configuration properties, which are
defined under spec.

In this fragment from a Kafka topic custom resource, the apiVersion and kind properties identify the
associated CRD. The spec property shows configuration that defines the number of partitions and
replicas for the topic.

Kafka topic custom resource

There are many additional configuration options that can be incorporated into a YAML definition, some
common and some specific to a particular component.

5.2. COMMON CONFIGURATION

Some of the configuration options common to resources are described here. Security and metrics
collection might also be adopted where applicable.

Bootstrap servers

Bootstrap servers are used for host/port connection to a Kafka cluster for:

Kafka Connect

apiVersion: kafka.strimzi.io/v1beta1
kind: KafkaTopic
metadata:
 name: my-topic
 labels:
 strimzi.io/cluster: my-cluster
spec:
 partitions: 1
 replicas: 1
 # ...

CHAPTER 5. KAFKA CONFIGURATION

17

Kafka Bridge

Kafka MirrorMaker producers and consumers

CPU and memory resources

You request CPU and memory resources for components. Limits specify the maximum resources
that can be consumed by a given container.
Resource requests and limits for the Topic Operator and User Operator are set in the Kafka
resource.

Logging

You define the logging level for the component. Logging can be defined directly (inline) or externally
using a config map.

Healthchecks

Healthcheck configuration introduces liveness and readiness probes to know when to restart a
container (liveness) and when a container can accept traffic (readiness).

JVM options

JVM options provide maximum and minimum memory allocation to optimize the performance of the
component according to the platform it is running on.

Pod scheduling

Pod schedules use affinity/anti-affinity rules to determine under what circumstances a pod is
scheduled onto a node.

Example YAML showing common configuration

apiVersion: kafka.strimzi.io/v1beta1
kind: KafkaConnect
metadata:
 name: my-cluster
spec:
 # ...
 bootstrapServers: my-cluster-kafka-bootstrap:9092
 resources:
 requests:
 cpu: 12
 memory: 64Gi
 limits:
 cpu: 12
 memory: 64Gi
 logging:
 type: inline
 loggers:
 connect.root.logger.level: "INFO"
 readinessProbe:
 initialDelaySeconds: 15
 timeoutSeconds: 5
 livenessProbe:
 initialDelaySeconds: 15
 timeoutSeconds: 5
 jvmOptions:
 "-Xmx": "2g"
 "-Xms": "2g"
 template:

Red Hat AMQ 2020.Q4 AMQ Streams on OpenShift Overview

18

5.3. KAFKA CLUSTER CONFIGURATION

A kafka cluster comprises one or more brokers. For producers and consumers to be able to access
topics within the brokers, Kafka configuration must define how data is stored in the cluster, and how the
data is accessed. You can configure a Kafka cluster to run with multiple broker nodes across racks.

Storage

Kafka and ZooKeeper store data on disks.
AMQ Streams requires block storage provisioned through StorageClass. The file system format for
storage must be XFS or EXT4. Three types of data storage are supported:

Ephemeral (Recommended for development only)

Ephemeral storage stores data for the lifetime of an instance. Data is lost when the instance is
restarted.

Persistent

Persistent storage relates to long-term data storage independent of the lifecycle of the instance.

JBOD (Just a Bunch of Disks, suitable for Kafka only)

JBOD allows you to use multiple disks to store commit logs in each broker.

The disk capacity used by an existing Kafka cluster can be increased if supported by the
infrastructure.

Listeners

Listeners configure how clients connect to a Kafka cluster.
By specifying a unique name and port for each listener within a Kafka cluster, you can configure
multiple listeners.

The following types of listener are supported:

Internal listeners for access within OpenShift

External listeners for access outside of OpenShift

You can enable TLS encryption for listeners, and configure authentication.

Internal listeners are specified using an internal type.

External listeners expose Kafka by specifying an external type:

route to use OpenShift routes and the default HAProxy router

 pod:
 affinity:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: node-type
 operator: In
 values:
 - fast-network
 # ...

CHAPTER 5. KAFKA CONFIGURATION

19

loadbalancer to use loadbalancer services

nodeport to use ports on OpenShift nodes

ingress to use OpenShift Ingress and the NGINX Ingress Controller for Kubernetes

If you are using OAuth 2.0 for token-based authentication , you can configure listeners to use the
authorization server.

Rack awareness

Rack awareness is a configuration feature that distributes Kafka broker pods and topic replicas
across racks, which represent data centers or racks in data centers, or availability zones.

Example YAML showing Kafka configuration

5.4. KAFKA MIRRORMAKER CONFIGURATION

To set up MirrorMaker, a source and target (destination) Kafka cluster must be running.

You can use AMQ Streams with MirrorMaker 2.0, although the earlier version of MirrorMaker continues
to be supported.

MirrorMaker 2.0
MirrorMaker 2.0 is based on the Kafka Connect framework, connectors managing the transfer of data
between clusters.

apiVersion: kafka.strimzi.io/v1beta1
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 # ...
 listeners:
 - name: tls
 port: 9093
 type: internal
 tls: true
 authentication:
 type: tls
 - name: external1
 port: 9094
 type: route
 tls: true
 authentication:
 type: tls
 # ...
 storage:
 type: persistent-claim
 size: 10000Gi
 # ...
 rack:
 topologyKey: topology.kubernetes.io/zone
 # ...

Red Hat AMQ 2020.Q4 AMQ Streams on OpenShift Overview

20

https://github.com/kubernetes/ingress-nginx

MirrorMaker 2.0 uses:

Source cluster configuration to consume data from the source cluster

Target cluster configuration to output data to the target cluster

Cluster configuration
You can use MirrorMaker 2.0 in active/passive or active/active cluster configurations.

In an active/active configuration, both clusters are active and provide the same data
simultaneously, which is useful if you want to make the same data available locally in different
geographical locations.

In an active/passive configuration, the data from an active cluster is replicated in a passive
cluster, which remains on standby, for example, for data recovery in the event of system failure.

You configure a KafkaMirrorMaker2 custom resource to define the Kafka Connect deployment,
including the connection details of the source and target clusters, and then run a set of MirrorMaker 2.0
connectors to make the connection.

Topic configuration is automatically synchronized between the source and target clusters according to
the topics defined in the KafkaMirrorMaker2 custom resource. Configuration changes are propagated
to remote topics so that new topics and partitions are detected and created. Topic replication is defined
using regular expression patterns to whitelist or blacklist topics.

The following MirrorMaker 2.0 connectors and related internal topics help manage the transfer and
synchronization of data between the clusters.

MirrorSourceConnector

A MirrorSourceConnector creates remote topics from the source cluster.

MirrorCheckpointConnector

A MirrorCheckpointConnector tracks and maps offsets for specified consumer groups using an offset
sync topic and checkpoint topic. The offset sync topic maps the source and target offsets for
replicated topic partitions from record metadata. A checkpoint is emitted from each source cluster
and replicated in the target cluster through the checkpoint topic. The checkpoint topic maps the last
committed offset in the source and target cluster for replicated topic partitions in each consumer
group.

MirrorHeartbeatConnector

A MirrorHeartbeatConnector periodically checks connectivity between clusters. A heartbeat is
produced every second by the MirrorHeartbeatConnector into a heartbeat topic that is created on
the local cluster. If you have MirrorMaker 2.0 at both the remote and local locations, the heartbeat
emitted at the remote location by the MirrorHeartbeatConnector is treated like any remote topic
and mirrored by the MirrorSourceConnector at the local cluster. The heartbeat topic makes it easy to
check that the remote cluster is available and the clusters are connected. If things go wrong, the
heartbeat topic offset positions and time stamps can help with recovery and diagnosis.

Figure 5.1. Replication across two clusters

CHAPTER 5. KAFKA CONFIGURATION

21

Figure 5.1. Replication across two clusters

Bidirectional replication across two clusters
The MirrorMaker 2.0 architecture supports bidirectional replication in an active/active cluster
configuration, so both clusters are active and provide the same data simultaneously. A MirrorMaker 2.0
cluster is required at each target destination.

Remote topics are distinguished by automatic renaming that prepends the name of cluster to the name
of the topic. This is useful if you want to make the same data available locally in different geographical
locations.

However, if you want to backup or migrate data in an active/passive cluster configuration, you might
want to keep the original names of the topics. If so, you can configure MirrorMaker 2.0 to turn off
automatic renaming.

Figure 5.2. Bidirectional replication

Example YAML showing MirrorMaker 2.0 configuration

 apiVersion: kafka.strimzi.io/v1alpha1

Red Hat AMQ 2020.Q4 AMQ Streams on OpenShift Overview

22

MirrorMaker
The earlier version of MirrorMaker uses producers and consumers to replicate data across clusters.

MirrorMaker uses:

Consumer configuration to consume data from the source cluster

Producer configuration to output data to the target cluster

Consumer and producer configuration includes any authentication and encryption settings.

A whitelist defines the topics to mirror from a source to a target cluster.

Key Consumer configuration

Consumer group identifier

The consumer group ID for a MirrorMaker consumer so that messages consumed are assigned to a
consumer group.

Number of consumer streams

A value to determine the number of consumers in a consumer group that consume a message in
parallel.

Offset commit interval

An offset commit interval to set the time between consuming and committing a message.

Key Producer configuration

Cancel option for send failure

You can define whether a message send failure is ignored or MirrorMaker is terminated and
recreated.

Example YAML showing MirrorMaker configuration

 kind: KafkaMirrorMaker2
 metadata:
 name: my-mirror-maker2
 spec:
 version: 2.6.0
 connectCluster: "my-cluster-target"
 clusters:
 - alias: "my-cluster-source"
 bootstrapServers: my-cluster-source-kafka-bootstrap:9092
 - alias: "my-cluster-target"
 bootstrapServers: my-cluster-target-kafka-bootstrap:9092
 mirrors:
 - sourceCluster: "my-cluster-source"
 targetCluster: "my-cluster-target"
 sourceConnector: {}
 topicsPattern: ".*"
 groupsPattern: "group1|group2|group3"

apiVersion: kafka.strimzi.io/v1beta1
kind: KafkaMirrorMaker
metadata:
 name: my-mirror-maker
spec:

CHAPTER 5. KAFKA CONFIGURATION

23

5.5. KAFKA CONNECT CONFIGURATION

A basic Kafka Connect configuration requires a bootstrap address to connect to a Kafka cluster, and
encryption and authentication details.

Kafka Connect instances are configured by default with the same:

Group ID for the Kafka Connect cluster

Kafka topic to store the connector offsets

Kafka topic to store connector and task status configurations

Kafka topic to store connector and task status updates

If multiple different Kafka Connect instances are used, these settings must reflect each instance.

Example YAML showing Kafka Connect configuration

Connectors
Connectors are configured separately from Kafka Connect. The configuration describes the source
input data and target output data to feed into and out of Kafka Connect. The external source data must
reference specific topics that will store the messages.

Kafka provides two built-in connectors:

FileStreamSourceConnector streams data from an external system to Kafka, reading lines
from an input source and sending each line to a Kafka topic.

 # ...
 consumer:
 bootstrapServers: my-source-cluster-kafka-bootstrap:9092
 groupId: "my-group"
 numStreams: 2
 offsetCommitInterval: 120000
 # ...
 producer:
 # ...
 abortOnSendFailure: false
 # ...
 whitelist: "my-topic|other-topic"
 # ...

apiVersion: kafka.strimzi.io/v1beta1
kind: KafkaConnect
metadata:
 name: my-connect
spec:
 # ...
 config:
 group.id: my-connect-cluster
 offset.storage.topic: my-connect-cluster-offsets
 config.storage.topic: my-connect-cluster-configs
 status.storage.topic: my-connect-cluster-status
 # ...

Red Hat AMQ 2020.Q4 AMQ Streams on OpenShift Overview

24

FileStreamSinkConnector streams data from Kafka to an external system, reading messages
from a Kafka topic and creating a line for each in an output file.

You can add other connectors using connector plugins, which are a set of JAR files that define the
implementation required to connect to certain types of external system.

You create a custom Kafka Connect image that uses new Kafka Connect plugins.

To create the image, you can use:

A Kafka container image on Red Hat Ecosystem Catalog as a base image

OpenShift builds and the Source-to-Image (S2I) framework to create new container images

Managing connectors
You can use the KafkaConnector resource or the Kafka Connect REST API to create and manage
connector instances in a Kafka Connect cluster. The KafkaConnector resource offers an OpenShift-
native approach, and is managed by the Cluster Operator.

The spec for the KafkaConnector resource specifies the connector class and configuration settings, as
well as the maximum number of connector tasks to handle the data.

Example YAML showing KafkaConnector configuration

You enable KafkaConnectors by adding an annotation to the KafkaConnect resource.

Example YAML showing annotation to enable KafkaConnector

5.6. KAFKA BRIDGE CONFIGURATION

A Kafka Bridge configuration requires a bootstrap server specification for the Kafka cluster it connects
to, as well as any encryption and authentication options required.

Kafka Bridge consumer and producer configuration is standard, as described in the Apache Kafka

apiVersion: kafka.strimzi.io/v1beta1
kind: KafkaConnector
metadata:
 name: my-source-connector
 labels:
 strimzi.io/cluster: my-connect-cluster
spec:
 class: org.apache.kafka.connect.file.FileStreamSourceConnector
 tasksMax: 2
 config:
 file: "/opt/kafka/LICENSE"
 topic: my-topic
 # ...

apiVersion: kafka.strimzi.io/v1beta1
kind: KafkaConnect
metadata:
 name: my-connect
 annotations:
 strimzi.io/use-connector-resources: "true"
 # ...

CHAPTER 5. KAFKA CONFIGURATION

25

https://access.redhat.com/containers/#/product/RedHatAmq
https://docs.okd.io/3.11/dev_guide/builds/index.html
https://docs.okd.io/3.11/creating_images/s2i.html
https://kafka.apache.org/documentation/#connect_rest

Kafka Bridge consumer and producer configuration is standard, as described in the Apache Kafka
configuration documentation for consumers and Apache Kafka configuration documentation for
producers.

HTTP-related configuration options set the port connection which the server listens on.

CORS
The Kafka Bridge supports the use of Cross-Origin Resource Sharing (CORS). CORS is a HTTP
mechanism that allows browser access to selected resources from more than one origin, for example,
resources on different domains. If you choose to use CORS, you can define a list of allowed resource
origins and HTTP methods for interaction with the Kafka cluster through the Kafka Bridge. The lists are
defined in the http specification of the Kafka Bridge configuration.

CORS allows for simple and preflighted requests between origin sources on different domains.

A simple request is a HTTP request that must have an allowed origin defined in its header.

A preflighted request sends an initial OPTIONS HTTP request before the actual request to
check that the origin and the method are allowed.

Example YAML showing Kafka Bridge configuration

Additional resources

Fetch CORS specification

apiVersion: kafka.strimzi.io/v1alpha1
kind: KafkaBridge
metadata:
 name: my-bridge
spec:
 # ...
 bootstrapServers: my-cluster-kafka:9092
 http:
 port: 8080
 cors:
 allowedOrigins: "https://strimzi.io"
 allowedMethods: "GET,POST,PUT,DELETE,OPTIONS,PATCH"
 consumer:
 config:
 auto.offset.reset: earliest
 producer:
 config:
 delivery.timeout.ms: 300000
 # ...

Red Hat AMQ 2020.Q4 AMQ Streams on OpenShift Overview

26

http://kafka.apache.org/20/documentation.html#newconsumerconfigs
http://kafka.apache.org/20/documentation.html#producerconfigs
https://www.w3.org/TR/cors/

CHAPTER 6. SECURING KAFKA
A secure deployment of AMQ Streams can encompass:

Encryption for data exchange

Authentication to prove identity

Authorization to allow or decline actions executed by users

6.1. ENCRYPTION

AMQ Streams supports Transport Layer Security (TLS), a protocol for encrypted communication.

Communication is always encrypted for communication between:

Kafka brokers

ZooKeeper nodes

Operators and Kafka brokers

Operators and ZooKeeper nodes

Kafka Exporter

You can also configure TLS between Kafka brokers and clients by applying TLS encryption to the
listeners of the Kafka broker. TLS is specified for external clients when configuring an external listener.

AMQ Streams components and Kafka clients use digital certificates for encryption. The Cluster
Operator sets up certificates to enable encryption within the Kafka cluster. You can provide your own
server certificates, referred to as Kafka listener certificates, for communication between Kafka clients
and Kafka brokers, and inter-cluster communication.

AMQ Streams uses Secrets to store the certificates and private keys required for TLS in PEM and PKCS
#12 format.

A TLS Certificate Authority (CA) issues certificates to authenticate the identity of a component. AMQ
Streams verifies the certificates for the components against the CA certificate.

AMQ Streams components are verified against the cluster CA Certificate Authority (CA)

Kafka clients are verified against the clients CA Certificate Authority (CA)

6.2. AUTHENTICATION

Kafka listeners use authentication to ensure a secure client connection to the Kafka cluster.

Supported authentication mechanisms:

Mutual TLS client authentication (on listeners with TLS enabled encryption)

SASL SCRAM-SHA-512

OAuth 2.0 token based authentication

The User Operator manages user credentials for TLS and SCRAM authentication, but not OAuth 2.0.

CHAPTER 6. SECURING KAFKA

27

The User Operator manages user credentials for TLS and SCRAM authentication, but not OAuth 2.0.
For example, through the User Operator you can create a user representing a client that requires access
to the Kafka cluster, and specify TLS as the authentication type.

Using OAuth 2.0 token-based authentication, application clients can access Kafka brokers without
exposing account credentials. An authorization server handles the granting of access and inquiries about
access.

6.3. AUTHORIZATION

Kafka clusters use authorization to control the operations that are permitted on Kafka brokers by
specific clients or users. If applied to a Kafka cluster, authorization is enabled for all listeners used for
client connection.

If a user is added to a list of super users in a Kafka broker configuration, the user is allowed unlimited
access to the cluster regardless of any authorization constraints implemented through authorization
mechanisms.

Supported authorization mechanisms:

Simple authorization

OAuth 2.0 authorization (if you are using OAuth 2.0 token-based authentication)

Open Policy Agent (OPA) authorization

Simple authorization uses AclAuthorizer, the default Kafka authorization plugin. AclAuthorizer uses
Access Control Lists (ACLs) to define which users have access to which resources.

OAuth 2.0 and OPA provide policy-based control from an authorization server. Security policies and
permissions used to grant access to resources on Kafka brokers are defined in the authorization server.

URLs are used to connect to the authorization server and verify that an operation requested by a client
or user is allowed or denied. Users and clients are matched against the policies created in the
authorization server that permit access to perform specific actions on Kafka brokers.

Red Hat AMQ 2020.Q4 AMQ Streams on OpenShift Overview

28

CHAPTER 7. MONITORING
Monitoring data allows you to monitor the performance and health of AMQ Streams. You can configure
your deployment to capture metrics data for analysis and notifications.

Metrics data is useful when investigating issues with connectivity and data delivery. For example, metrics
data can identify under-replicated partitions or the rate at which messages are consumed. Alerting rules
can provide time-critical notifications on such metrics through a specified communications channel.
Monitoring visualizations present real-time metrics data to help determine when and how to update the
configuration of your deployment. Example metrics configuration files are provided with AMQ Streams.

Distributed tracing complements the gathering of metrics data by providing a facility for end-to-end
tracking of messages through AMQ Streams.

Cruise Control provides support for rebalancing of Kafka clusters, based on workload data.

Metrics and monitoring tools

AMQ Streams can employ the following tools for metrics and monitoring:

Prometheus pulls metrics from Kafka, ZooKeeper and Kafka Connect clusters. The Prometheus
Alertmanager plugin handles alerts and routes them to a notification service.

Kafka Exporter adds additional Prometheus metrics

Grafana provides dashboard visualizations of Prometheus metrics

Jaeger provides distributed tracing support to track transactions between applications

Cruise Control balances data across a Kafka cluster

Additional resources

Prometheus

Kafka Exporter

Grafana Labs

Jaeger

Cruise Control Wiki

7.1. PROMETHEUS

Prometheus can extract metrics data from Kafka components and the AMQ Streams Operators.

To use Prometheus to obtain metrics data and provide alerts, Prometheus and the Prometheus
Alertmanager plugin must be deployed. Kafka resources must also be deployed or redeployed with
metrics configuration to expose the metrics data.

Prometheus scrapes the exposed metrics data for monitoring. Alertmanager issues alerts when
conditions indicate potential problems, based on pre-defined alerting rules.

Sample metrics and alerting rules configuration files are provided with AMQ Streams. The sample
alerting mechanism provided with AMQ Streams is configured to send notifications to a Slack channel.

CHAPTER 7. MONITORING

29

https://github.com/prometheus
https://github.com/danielqsj/kafka_exporter
https://grafana.com/
https://www.jaegertracing.io/
https://github.com/linkedin/cruise-control/wiki

7.2. GRAFANA

Grafana uses the metrics data exposed by Prometheus to present dashboard visualizations for
monitoring.

A deployment of Grafana is required, with Prometheus added as a data source. Example dashboards,
supplied with AMQ Streams as JSON files, are imported through the Grafana interface to present
monitoring data.

7.3. KAFKA EXPORTER

Kafka Exporter is an open source project to enhance monitoring of Apache Kafka brokers and clients.
Kafka Exporter is deployed with a Kafka cluster to extract additional Prometheus metrics data from
Kafka brokers related to offsets, consumer groups, consumer lag, and topics. You can use the Grafana
dashboard provided to visualize the data collected by Prometheus from Kafka Exporter.

A sample configuration file, alerting rules and Grafana dashboard for Kafka Exporter are provided with
AMQ Streams.

7.4. DISTRIBUTED TRACING

Within a Kafka deployment, distributed tracing using Jaeger is supported for:

MirrorMaker to trace messages from a source cluster to a target cluster

Kafka Connect to trace messages consumed and produced by Kafka Connect

Kafka Bridge to trace messages consumed and produced by Kafka Bridge, and HTTP requests
from client applications

Template configuration properties are set for the Kafka resources, which describe tracing environment
variables.

Tracing for Kafka clients
Client applications, such as Kafka producers and consumers, can also be set up so that transactions are
monitored. Clients are configured with a tracing profile, and a tracer is initialized for the client
application to use.

7.5. CRUISE CONTROL

Cruise Control is an open source project for simplifying the monitoring and balancing of data across a
Kafka cluster. Cruise Control is deployed alongside a Kafka cluster to monitor its traffic, propose more
balanced partition assignments, and trigger partition reassignments based on those proposals.

Cruise Control collects resource utilization information to model and analyze the workload of the Kafka
cluster. Based on optimization goals that have been defined, Cruise Control generates optimization
proposals outlining how the cluster can be effectively rebalanced. When an optimization proposal is
approved, Cruise Control applies the rebalancing outlined in the proposal.

Prometheus can extract Cruise Control metrics data, including data related to optimization proposals
and rebalancing operations. A sample configuration file and Grafana dashboard for Cruise Control are
provided with AMQ Streams.

Red Hat AMQ 2020.Q4 AMQ Streams on OpenShift Overview

30

APPENDIX A. USING YOUR SUBSCRIPTION
AMQ Streams is provided through a software subscription. To manage your subscriptions, access your
account at the Red Hat Customer Portal.

Accessing Your Account

1. Go to access.redhat.com.

2. If you do not already have an account, create one.

3. Log in to your account.

Activating a Subscription

1. Go to access.redhat.com.

2. Navigate to My Subscriptions.

3. Navigate to Activate a subscription and enter your 16-digit activation number.

Downloading Zip and Tar Files
To access zip or tar files, use the customer portal to find the relevant files for download. If you are using
RPM packages, this step is not required.

1. Open a browser and log in to the Red Hat Customer Portal Product Downloads page at
access.redhat.com/downloads.

2. Locate the Red Hat AMQ Streams entries in the JBOSS INTEGRATION AND AUTOMATION
category.

3. Select the desired AMQ Streams product. The Software Downloads page opens.

4. Click the Download link for your component.

Revised on 2020-12-02 15:51:49 UTC

APPENDIX A. USING YOUR SUBSCRIPTION

31

https://access.redhat.com
https://access.redhat.com
https://access.redhat.com/downloads

	Table of Contents
	CHAPTER 1. KEY FEATURES
	1.1. KAFKA CAPABILITIES
	1.2. KAFKA USE CASES
	1.3. HOW AMQ STREAMS SUPPORTS KAFKA

	CHAPTER 2. ABOUT KAFKA
	2.1. KAFKA CONCEPTS
	2.2. PRODUCERS AND CONSUMERS

	CHAPTER 3. AMQ STREAMS DEPLOYMENT OF KAFKA
	3.1. KAFKA COMPONENT ARCHITECTURE
	3.2. KAFKA BRIDGE INTERFACE
	3.2.1. HTTP requests
	3.2.2. Supported clients for the Kafka Bridge

	CHAPTER 4. AMQ STREAMS OPERATORS
	Operators
	4.1. CLUSTER OPERATOR
	4.2. TOPIC OPERATOR
	4.3. USER OPERATOR

	CHAPTER 5. KAFKA CONFIGURATION
	5.1. CUSTOM RESOURCES
	Kafka topic custom resource

	5.2. COMMON CONFIGURATION
	Example YAML showing common configuration

	5.3. KAFKA CLUSTER CONFIGURATION
	Example YAML showing Kafka configuration

	5.4. KAFKA MIRRORMAKER CONFIGURATION
	MirrorMaker 2.0
	Cluster configuration
	Bidirectional replication across two clusters
	Example YAML showing MirrorMaker 2.0 configuration

	MirrorMaker
	Key Consumer configuration
	Key Producer configuration
	Example YAML showing MirrorMaker configuration

	5.5. KAFKA CONNECT CONFIGURATION
	Example YAML showing Kafka Connect configuration
	Connectors
	Managing connectors
	Example YAML showing KafkaConnector configuration
	Example YAML showing annotation to enable KafkaConnector

	5.6. KAFKA BRIDGE CONFIGURATION
	CORS
	Example YAML showing Kafka Bridge configuration

	CHAPTER 6. SECURING KAFKA
	6.1. ENCRYPTION
	6.2. AUTHENTICATION
	6.3. AUTHORIZATION

	CHAPTER 7. MONITORING
	7.1. PROMETHEUS
	7.2. GRAFANA
	7.3. KAFKA EXPORTER
	7.4. DISTRIBUTED TRACING
	Tracing for Kafka clients

	7.5. CRUISE CONTROL

	APPENDIX A. USING YOUR SUBSCRIPTION
	Accessing Your Account
	Activating a Subscription
	Downloading Zip and Tar Files

